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1. Introduction

Air quality monitoring is a long-term assessment of pollutant levels that helps to assess
the extent of pollution and provide information about air quality trends. Furthermore, an
air quality monitoring system (AQMS) supports research by providing the information
necessary for scientists to perform long-term studies of population exposure to various
atmospheric substances and generally estimate the health effects of air pollution. In
addition, an advanced AQMS could make useful information available to policy makers
and planners in order to help make informed decisions about managing and improving
air quality by better understanding the sources of air pollution. The purpose of this
Special Issue is to provide an overview of recent advances in environmental monitoring
and assessment, which includes the design, development and application of advanced
monitoring systems based on cutting edge scientific knowledge.

2. Current and Future Challenges in Air Quality Monitoring

In this Special Issue, 23 papers were submitted and 13 were accepted for publication
(57% acceptance rate). Forty-six percent of the published studies originated from Asian
countries, 31% of them were conducted in European countries and 23% were done in the
USA and South America. Various topics were addressed in the contributed articles, which
can be distinguished into two main groups: (i) development of emerging AQ monitoring
systems and methodologies and (ii) evaluation and modeling of AQMN data in terms
of AQ and health impact assessment. A quite smaller group included studies on the
improvement of methodological approaches to analyzing AQ data.

In the first group, Paralikis et al. [1] developed Al-doped NiO films which can poten-
tially be used as a sensing element for ozone gas sensors. The gas-sensing performance of
the film for ozone was studied at different operating temperatures and was able to detect
ozone at an ultra-low concentration of 10 ppb. Davidović et al. [2] evaluated the changes
in air pollution in Serbia due to the COVID-19 pandemic using data from permanently
operating air quality monitoring stations as well as by deploying low-cost particulate
matter (PM) sensors. Beyond the useful outcomes for the improvement of air quality due
to the reduction of transport and industrial activities, the study confirmed the low-cost PM
sensors’ usefulness in air quality assessment, as they increase spatial resolution. It also
pointed out the necessity to calibrate them and follow the QA/QC protocols in order to ver-
ify their reliability. Following a similar methodological approach, Yiniva Camargo-Caicedo
et al. [3] observed the changes in air quality using data from an air quality network and
from the Ozone Monitoring Instrument (OMI) satellite in order to estimate improvements
in air quality in Colombia due to COVID-19 pandemic lockdown. Furthermore, emissions
from road transportation of four groups of pollutants (greenhouse gases, ozone precursor
gases, aerosols and acidifying gases) before and during the lockdown were estimated and
compared. The results could serve decision makers in adopting strategies to improve air
quality related to the transportation sector. Regarding this sector, Li et al. [4] presented
and analyzed data from four portable emissions measurement system (PEMS) tests of
heavy-duty vehicles. More specifically, they analyzed the NOx emission of urban, rural and
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motorway sections and calculated the moving averaging window (MAW) NOx emission
under the required boundary conditions. Finally, they explored the proper methods to
evaluate real-world NOx emission based on the MAW method. It is worth noting that
the study pointed out the insufficiency of the current evaluation method for real-world
NOx emission of heavy-duty vehicles, indicating where the research community should
focus future studies. It is obvious from the previous studies that an air quality monitoring
network (AQMN) plays an important role in air pollution management. However, setting
up an initial network in a city often lacks the necessary information, such as historical pol-
lution and geographical data, which makes establishing an effective network challenging.
Meanwhile, cities with an existing one do not adequately represent spatial coverage of
air pollution issues or face rapid urbanization, where additional stations are needed. To
resolve the two cases, Athita Onuean et al. [5] proposed four methods for finding stations
and constructing a network. They introduced and applied a coverage percentage and
weighted coverage degree for evaluating the results from the proposed methods that will
be implemented as a guide for establishing a new network and can be a tool for improving
spatial coverage of an existing network for future expansions in air monitoring.

In the second group, Afifa Aslam et al. [6] investigated the concentration level of PM2.5
and PM10 as well as their carbonaceous fraction, including organic carbon (OC), elemental
carbon (EC) and total carbon (TC) from samples collected from five different sectors in
Pakistan. It is well-known that studying the chemical composition of particulate matter
(PM) provides an opportunity to conduct additional studies on source identification, impact
assessment and trend analysis. Furthermore, Cho et al. [7] have shown that quantitative
assessments of chemical and biological properties of ambient PM2.5 and VOCs can be used
effectively to characterize, compare and contrast air pollution across different geographical
regions (Los Angeles basin) to account for effects of atmospheric modifications on air mass
and to evaluate exposure proximity to an emission source. Observational data from city AQ
monitoring stations are usually analyzed and used for numerical simulations in order to
evaluate the impact of emission control scenarios. To that end, Zhan et al. [8] analyzed the
air quality observational data of major air pollutants in 2015 and during pollution episodes
in Haizhu district, China, and the impacts of emission control scenarios on air quality
by the year 2020 were evaluated using a WRF-Chem numerical simulation. In the same
direction, Li et al. [9] investigated the pollution characteristics, transport pathways and
potential sources of PM2.5 based on PM2.5 monitoring data from 2015 to 2016 in Weifang,
China. For that purpose, they used three methods: Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT), the potential source contribution function (PSCF) and
concentration weighted trajectory (CWT). Nowadays, fine dust data acquired by various
personal monitoring devices is of great value as training data for predicting future fine dust
concentrations and innovatively alerting people of potential danger. However, most of the
fine dust data obtained from these devices include either missing or abnormal data caused
by various factors such as sensor malfunction, transmission errors or storage errors. Park
et al. [10] presented methods for interpolating the missing data and detecting anomalies in
PM2.5 time series data. These methods are expected to contribute greatly to improving the
reliability of data.

Air pollution data obtained from various monitoring campaigns are usually used
for health impact assessment. Stamatelopoulou et al. [11] examined the concentrations
and sources of PAHs and trace metals in indoor dust and, more specifically, focused on
residences with infants and young children. Exposure to toxicants contained in house-
settled dust is of paramount concern, especially in the case of young children, due to their
particular behavioral characteristics. In this context, extracts of sieved vacuum cleaner dust
from 20 residences with young children in Athens, Greece were examined for the presence
of PAHs and trace metals. Outdoor environment and, more specifically, industrialized
areas also play a significant role in citizens’ health. To that end, Koukoulakis et al. [12]
simultaneously monitored PAHs, PCDD/Fs, dlPCBs and indPCBs bonded to particulate
matter (PM10) for the estimation of their health risks to nearby citizens. SPSS statistical
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package was employed for statistical analysis and source apportionment purposes. Cancer
risk was also estimated from total persistent organic pollutants (POPs) dataset according to
the available literature. Specific attention should be given to studies on the health impacts
of air pollution where regression analysis is used. The complexity of count data regression
models can lead to false inference and overfitting. Joseph et al. [13] presented a simple
histogram of predicted and observed count values (POCH) which, while rarely found in
the environmental literature but presented in authoritative statistical texts, can dramatically
reduce the risk of accepting untrue hypotheses.

3. Conclusions

In conclusion, the papers in this Special Issue have highlighted two thematic areas of
AQ monitoring that researchers currently focus on: (i) the improvement of AQ monitoring
methods and (ii) the use of AQ data in order to better assess the impact of air pollution
to the environment and health. While this Special Issue has been closed, further research
towards these directions is expected shortly, as there are still several challenging research
questions to be answered.
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Abstract: Al-doped NiO (NiO:Al) has attracted the interest of researchers due to its excellent optical
and electrical properties. In this work, NiO:Al films were deposited on glass substrates by the radio
frequencies (rf) sputtering technique at room temperature and they were tested against ozone gas.
The Oxygen content in (Ar-O2) plasma was varied from 2% to 4% in order to examine its effect on
the gas sensing performance of the films. The thickness of the films was between 160.3 nm and
167.5 nm, while the Al content was found to be between 5.3 at% and 6.7 at%, depending on the
oxygen content in plasma. It was found that NiO:Al films grown with 4% O2 in plasma were able to
detect 60 ppb of ozone with a sensitivity of 3.18% at room temperature, while the detection limit was
further decreased to 10 ppb, with a sensitivity of 2.54%, at 80 ◦C, which was the optimum operating
temperature for these films. In addition, the films prepared in 4% O2 in plasma had lower response
and recovery time compared to those grown with lower O2 content in plasma. Finally, the role of the
operating temperature on the gas sensing properties of the NiO:Al films was investigated.

Keywords: p-type sensor; Al-doped NiO; rf sputtering; ozone gas sensing

1. Introduction

Ozone (O3) is a well-known harmful gas existing in the atmosphere as a product of
photochemical reactions of Nitrogen dioxide (NO2) and/or Volatile Organic Compounds
(VOCs), which are very common environmental pollutants that come from industrial
activity, cars, etc. [1]. As a result, over 80% of people live in cities where air pollution is
higher than the safety limits of the World Health Organization (WHO) [2]. Taking into
account that ozone is associated with various respiratory symptoms, including dyspnea,
upper airway irritation, coughing, and chest tightness [1], the need of its detection in
outdoor as well as indoor environments becomes of paramount importance.

Various kinds of materials, such as Metal Oxide Semiconductors (MOS) [3–5], inor-
ganic perovskites [6], as well as hybrid perovskites [7] have been examined as gas sensing
elements for ozone detection during the last decades. Among them, MOS are by far the
most well studied materials for ozone gas sensing applications due to their excellent electri-
cal and optical properties as well as the fact that they can be grown by a number of methods
even at large scale [8,9]. Nickel oxide (NiO) is a p-type metal oxide semiconductor with
a wide energy band gap of 3.4–3.8 eV that has interesting optoelectronic properties [10].
Thus, it can be used in UV photo-detectors [11] as an active material in photovoltaics,
such as perovskite or dye-sensitized solar cells [12–16], as well as in electrochromic [17],
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thermoelectric [18], and gas sensing devices for the detection of gases, such as H2 [19,20],
CH4 [21], NO2 [22], ethanol [23], O3 [24], etc. Furthermore, the introduction of Aluminum
(Al) atoms in the NiO structure seems to enhance its electrical as well as optical proper-
ties [25], while not affecting its gas sensing performance. As a result, Al-doped NiO films
have been already tested against NO2 [26,27], ethanol [28], CO [29], H2, and CH4 [30].
However, NiO:Al films have not been examined for ozone detection, according to our
literature research.

In this work, rf-sputtered Al-doped NiO films were tested, for first time, against ozone.
The effect of Oxygen content in Ar-O2 plasma as well as the operating temperature on the
gas sensing performance were studied. It was found that NiO:Al films have the ability
to detect ozone even at room temperature, while those prepared with 4% O2 in plasma
successfully detected ozone at an ultra-low concentration of 10 ppb at 80 ◦C. The latter is
one of the lower operating temperatures for metal oxide gas sensors.

2. Materials and Methods

2.1. Deposition Conditions

A Nordiko RFG2500 rf sputtering system was employed to grow NiO:Al films using a
Ni metal target and Ar-O2 air mixture in plasma. Two (2) Al pellets were placed on the
Ni target surface for Al-doping. Both pressure and sputtering power were kept constant
during deposition, being 5 mTorr and 300 W, respectively. The films were deposited on
three different substrates, namely the commercial (Metrohm/DropSens) InterDigitated
Transducers (glass substrate, Pt electrodes, bands/gaps = 5 µm) for sensing measurements,
a piece of silicon wafer for structural characterization, and microscope glass for optical
measurements. All depositions were done at room temperature (RT). The O2 content
in plasma was varied, being 2.0%, 2.8%, and 4.0% in order to examine its effect on the
gas sensing characteristics of the films. After deposition, the films underwent thermal
annealing at 400 ◦C under air for 24 h, in order to improve both their crystallinity and
optical properties.

2.2. Characterization

The structure of the Al-doped NiO films was examined by the X-ray Diffraction (XRD)
technique, using a PANalyticalEmpyrean diffractometer equipped with Cu-LFF as an
X-Ray source, at λ = 0.15406 nm. The measurement mode was 2θ/θ varying from 20◦ to
90◦, with a step of 0.013◦/s. Using the XRD pattern the crystallite size (D) of the films was
calculated according to Scherrer’s Equation (1)

D(nm) = (0.9·λ)/(B·cosθ) (1)

where λ is the X-ray wavelength which equals to 0.154 nm. B is the Full Width at Half
Maximum (FWHM) of the corresponding peak at an angle 2θ. Moreover, the lattice constant
(a0) for the cubic structure of NiO was calculated according to Equation (2)

a = (h2 + k2 + ℓ
2)1/2/d (2)

where d is the distance between the adjacent planes in the set (hkℓ). Field Emission Surface
Electron Microscopy (FESEM) was used to investigate the surface morphology of the
films using a Hitachi S570 microscope, equipped with an Energy Dispersive X-ray (EDX)
spectrometry system, which was employed to determine the Al at% of the NiO:Al films.
Optical properties of the films were studied with a Perkin Elmer Lambda 950 UV/Vis/NIR
spectrophotometer in the wavelength range of 250–2500 nm. The transmittance spectra and
the corresponding Tauc plot were used in order to calculate the optical energy bandgap of
the films assuming that direct transitions are permitted according to Equation (3)

(αhv) = A (hv − Eg)1/2 (3)
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where α is the absorption coefficient, hv the photon energy, A is a constant and Eg the
optical energy bandgap. The thickness of the films was measured by using a Veeco Dektak
150 stylus profilometer.

2.3. Gas Sensing

In order to investigate the gas sensing performance in ozone, the NiO:Al films de-
posited on IDTs were placed in a homemade stainless steel test chamber. A mechanical
pump was used to initially evacuate the chamber, while an FP-400 temperature controller
was employed to regulate the operating temperature. Ozone of different concentrations
was produced by an ozone analyzer (Thermo, Model 49i, Thermofisher scientific, Waltham,
MA, USA). A Keithley 6517A electrometer was used to apply a constant voltage on the
films and measure the electrical current variations upon the interaction between the film
and the target gas. The chamber was initially evacuated at a pressure of 1 mbar. Prior to
the ozone exposure, the films were treated with synthetic (dry) air for 45 min in order to
be stabilized in the testing environment. After that, the films were exposed to ozone of
specific concentrations for a constant time duration in which the electrical current was
increased, while the recovery of the films in its initial state was done by exposing them in
synthetic air for a specific time period. Both ozone and synthetic air were introduced in
the chamber with a flow of 200 sccm (standard cubic centimeters per minute) regulated by
mass flow controllers, while the pressure in the chamber was kept constant of 700 mbar.
The whole procedure was monitored by a PC through an appropriate LabVIEW program.
The sensitivity (S) of the sensor is defined by the following Equation (4)

S(%) = [(Igas − Iair)/Iair] · 100% (4)

where Igas is the maximum value of electrical current in the presence of ozone, while Iair is
the minimum value of electrical current in the presence of synthetic air (absence of ozone),
as depicted in Figure 1. Moreover, the response time (tresp) is defined as the time that is
needed for the electrical current to become equal to the 90% of the value of Igas in the
presence of ozone, while the recovery time (trec) is defined as the required time for the
electrical current to be equal to 10% of the value of Igas in the absence of ozone (in the
presence of synthetic air).

α −

α

−

Figure 1. Typical sensing measurement of an O3-synthetic air cycle.

All measurements were taken under the room relative humidity (RH) which was
about 60%.
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3. Results and Discussion

3.1. Characterization

The XRD patterns of rf-sputtered Al-doped NiO films deposited on Si substrates at
room temperature with different O2 content in plasma that underwent thermal annealing
at 400 ◦C for 24 h are presented in Figure 2. It can be seen that all films had a polycrystalline
structure with a peak of high intensity at 2θ = 43.3◦ corresponding to a reflection from
the (200) planes and two low intensity peaks at 2θ = 36.5◦ and 62.9◦ corresponding to
reflections from the (111) and (220) planes, respectively, according to JCPDS Card No.
047-1049. No peaks corresponding to other materials were found, indicating that all Al
atoms were introduced in the NiO structure. Using Equation (1) for the diffraction peak
with the highest intensity (200), the crystallite size of the films was calculated (Table 1)
and found to be between 8.68 nm for films prepared with 2% and 2.8% O2 in plasma and
7.89 nm for those prepared with 4% O2 in plasma. In the case of the films prepared with
4% O2, the decrease of the crystallite size may lead to a further increase of defect states
inside the crystal structure, which can also be observed through the intensity of the main
peak. In addition, the lattice constant (a0) of the films was calculated from Equation (2) and
was varied between 0.417 nm and 0.421 nm (Table 1). Both the crystallite size and lattice
constant are in agreement with the values reported in the literature for Al-doped NiO films
prepared by various techniques [25,31].

θ
θ

Figure 2. X-ray Diffraction (XRD) patterns of rf-sputtered NiO:Al films grown at room temperature
with different O2 content in plasma that underwent thermal annealing at 400 ◦C for 24 h.

Table 1. Deposition parameters, thickness (t), crystallite size (D), lattice constant (a0), and optical
energy bandgap (Eg) of rf-sputtered Al-doped NiO films.

Sample
No.

% O2

in Plasma
%at.
Al

t
(nm)

D
(nm)

a0

(nm)
Eg

(eV)

S1749 2.0 5.3 160.3 8.68 0.417 3.66
S1746 2.8 6.5 168.7 8.68 0.421 3.65
S1743 4.0 6.7 167.5 7.89 0.420 3.66

The surface morphology of the NiO:Al films is presented in Figure 3a–c. It can be seen
that all films had a smooth and uniform surface consisting of grains with a diameter of
around 40 nm The increased defects on the surface of the film prepared with 4% O2 can be
also be observed.
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(a) 2.0% (b) 2.8% 

 
(c) 4.0% 

Figure 3. SEM images of rf-sputtered NiO:Al films grown at room temperature with (a) 2.0%, (b) 2.8%,
and (c) 4.0% O2 content in plasma that underwent thermal annealing at 400 ◦C for 24 h.

The transmittance spectra of the Al-doped NiO films are shown in Figure 4. All films
were highly transparent (>70%) in the visible region as well as in the near infrared one.
Using Equation (3) and the Tauc plot (inset of Figure 4), the optical energy bandgap was
calculated and found to be around 3.66 eV (Table 1), comparable with the values reported
by Chattopadhyay et al. for Al-doped NiO films grown by the rf sputtering technique [25].

 

Figure 4. Transmittance spectra of rf-sputtered NiO:Al films grown at room temperature with
different O2 content in plasma that underwent thermal annealing at 400 ◦C for 24 h. Inset: Tauc plot
to determine the optical energy band gap of the films.
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3.2. Gas Sensing

The gas sensing performance of rf-sputtered Al-doped NiO films was investigated
by exposing them to ozone gas with a concentration varying from 10 ppb to 3000 ppb, at
operating temperatures between RT and 150 ◦C. The duration in ozone exposure was 5 min
for films prepared with 4% O2 in plasma and 10 min for the films prepared with 2% and
2.8% O2 in plasma, while the recovery of the sensors was carried out by exposing them to
synthetic air for 10 min and 15 min, respectively. The applied voltage was 10 V when the
operating temperature equals to RT, while for the rest of the operating temperatures the
applied voltage was 1 V.

A typical measurement of electrical current variation for different O3 concentrations
is presented in Figure 5. In the presence of ozone the electrical current of the film is
increased reaching a maximum value, while in the absence of the target gas the electrical
current of the film is decreased, as a result of its interaction with synthetic air, reaching its
initial value. Moreover, it is noted that the sensor cannot be fully recovered to its initial
electrical current value, especially at high concentrations (>600 ppb), probably due to
residual oxidation. The gas sensing mechanism for Al-doped NiO films is the typical one
for a p-type semiconductor. Thus, upon the exposure to synthetic air, Oxygen species (O,
O2−, etc.) are formed as a result of the O2 adsorption on the films’ surface. This is described
through the following Equations (5)–(7).

O2(gas) + e− → O−
2(adsorbed) (5)

O2(gas) + 2e− → 2O−
(adsorbed) (6)

O−
2(adsorbed) + e− → O2−

(adsorbed) (7)

where the kind of oxygen ions is dependent on the operating temperature (Toper), being
O−

2 for Toper < 100 ◦C, O− for 100 ◦C < Toper < 300 ◦C, and O2− for Toper > 300 ◦C. The
Oxygen species take out electrons from NiO, increasing the number of holes, leading to an
increase of electrical conductivity, thus a depletion layer is formed. As a result, the height
of the potential barrier at the grain boundaries is decreased and the electrical current is
slightly increased. When NiO:Al films interact with ozone, which is a strongly oxidizing
gas, the ozone molecules are adsorbed on the films’ surface trapping the free electrons,
resulting in an increase of the hole concentration as well as in a decrease of the thickness of
the depletion layer. Thus, an extra increase of the electrical current is occurred [32,33].

Figure 5. Electrical current variation of a NiO:Al film prepared with 4% O2 in plasma, as a function
of time for different O3 concentrations, at 110 ◦C.
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In Figure 6a–c the variation in sensitivity of the NiO:Al films grown with different
O2 content in plasma are shown. This was calculated by Equation (4) as a function of
ozone concentration for various operating temperatures and plotted in logarithmic scale.
In addition, a linear fitting has been applied confirming that the sensitivity is increased
with O3 concentration, independent of the Oxygen content in the plasma or the operating
temperature. From Figure 6, it becomes clear that all films can detect the ozone gas even
at an ultra-low concentration of 10 ppb. Specifically, the films prepared with 2% O2 in
plasma had a lowest detection limit of around 200 ppb with a sensitivity 1.88%, 11.31% and
38.66% at RT, 110 ◦C and 150 ◦C, respectively, while at 80 ◦C the lowest detection limit was
400 ppb with a sensitivity of 5.17%. Moreover, films synthesized with 2.8% O2 in plasma
had a lowest detection limit of 400 ppb [27] (sensitivity 0.84%), 200 ppb (sensitivity 6.25%),
200 ppb (sensitivity 6.94%) and 60 ppb (sensitivity 6.22%) when the operating temperature
equals to RT, 80 ◦C, 110 ◦C, and 150 ◦C, respectively. Finally, the NiO:Al prepared with
4% O2 in plasma appeared to have a lowest detection limit of 60 ppb (sensitivity 3.18%),
10 ppb (sensitivity 2.54%), 60 ppb (sensitivity 2.44%) and 400 ppb (sensitivity 9.02%) when
the operating temperature equals to RT, 80 ◦C, 110 ◦C, and 150 ◦C. The detection limit of
10 ppb at 80 ◦C is one order of magnitude less than the one that has been reported [32] for
Co3O4 nanobricks at almost the same working temperature (85 ◦C). The above mentioned
values for all NiO:Al films are presented in Table 2.

Furthermore, in Figure 7 the effect of the operating temperature on gas sensing
performance of the rf-sputtered NiO:Al films is shown. The films tested against 400 ppb
ozone at various operating temperatures, namely RT, 80 ◦C, 110 ◦C, and 150 ◦C. It can
be seen that films prepared with 4% O2 in plasma appeared to have the best sensitivity
at 80 ◦C, while the rest of them showed a maximum sensitivity at 150 ◦C. This can be
attributed to both less Al content and smaller crystallite size of the films grown with 4%
O2 in plasma compared to the others, which also leads to a further decrease of the defect
states that can reduce the adsorption energy of the O3 gas molecules [34]. In addition, the
operating temperature of 80 ◦C is one of the lowest that has been reported for ultra-low
ozone concentration (10 ppb) [4,32].

Finally, the response and recovery time of the NiO:Al films for each operating tem-
perature were calculated and presented in Figure 8a–c. Films grown with 2% and 2.8%
O2 in plasma had a response time between 400 s and 800 s, depending on both operating
temperature and ozone concentration, while for those prepared with 4% O2 in plasma the
response time was ranging from 150 s to 500 s. In the same way, the recovery time for the
former films was between 400 s and 900 s, while it was varied from 200 s to 600 s for films
grown with 4% O2 in plasma. It should be noticed that the Al: NiO films grown with 4%
O2 in plasma showed the best response and the recovery time equals to 189.6 s and 243.6 s,
respectively, against 10 ppb ozone at an operating temperature of 80 ◦C. The response time
values of Al: NiO films are higher than those in other reported works, while the recovery
time values are comparable to those reported in the literature [4,32,34–38]. However, most
of these sensors work at higher temperatures and/or have a higher concentration detection
limit than those presented in this work.
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Figure 6. Sensitivity on different ozone concentrations at various operating temperatures of rf-sputtered
NiO:Al with (a) 2.0%, (b) 2.8%, and (c) 4.0% O2 in plasma. A linear fitting plot has been applied.
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Table 2. Deposition parameters, temperature of operation (◦C), minimum detection concentration
(ppb), and sensitivity (S) of rf-sputtered Al-doped NiO films.

Sample No.
% O2

in Plasma
Toper (◦C)

Minimum Detected
Concentration (ppb)

S (%)

S1749 2.0

RT 213 1.88
80 393 5.17

110 213 11.31
150 207 38.66

S1746 2.8

RT 393 0.84
80 212 6.25

110 215 6.94
150 67 6.22

S1743 4.0

RT 58 3.18
80 13 2.54

110 59 2.44
150 330 9.02

Figure 7. Sensitivity of rf-sputtered NiO:Al films grown with different O2 content in plasma as a
function of operating temperature.
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Figure 8. Response and recovery times at different operating temperatures of rf-sputtered NiO:Al
with (a) 2.0%, (b) 2.8%, and (c) 4.0% O2 in plasma as a function of ozone concentrations.
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4. Conclusions

Al-doped NiO films were grown by the rf sputtering technique with different oxygen
contents in Ar-O2 plasma, i.e., 2%, 2.8%, and 4%, at room temperature. All films were
polycrystalline as revealed by the XRD technique, while their surface was smooth as was
confirmed by Scanning Electron Microscopy. Moreover, all films were highly transparent,
showing a transmittance of more than 70% in the visible spectrum. The gas sensing
performance of the films against ozone was studied at different operating temperatures,
namely 25 ◦C, 80 ◦C, 110 ◦C, and 150 ◦C. All films were sensitive to ozone of different
concentrations. Specifically, films grown with 4% O2 in plasma were able to detect ozone at
an ultra-low concentration of 10 ppb at a low operating temperature of 80 ◦C. Thus NiO:Al
films can be potentially used as a sensing element for ozone gas sensors.
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Abstract: Changes in air pollution in the region of the city of Novi Sad due to the COVID-19
induced state of emergency were evaluated while using data from permanently operating air quality
monitoring stations belonging to the national, regional, and local networks, as well as ad hoc
deployed low-cost particulate matter (PM) sensors. The low-cost sensors were collocated with
reference gravimetric pumps. The starting idea for this research was to determine if and to what
extent a massive change of anthropogenic activities introduced by lockdown could be observed in
main air pollutants levels. An analysis of the data showed that fine and coarse particulate matter, as
well as SO2 levels, did not change noticeably, compared to the pre-lockdown period. Isolated larger
peaks in PM pollution were traced back to the Aralkum Desert episode. The reduced movement of
vehicles and reduced industrial and construction activities during the lockdown in Novi Sad led to a
reduction and a more uniform profile of the PM2.5 levels during the period between morning and
afternoon air pollution peak, approximately during typical working hours. Daily profiles of NO2,
NO, and NOX during the state of emergency proved lower levels during most hours of the day, due to
restrictions on vehicular movement. CO during the state of the emergency mainly exhibited a lower
level during night. Pollutants having transportation-dominated source profiles exhibited a decrease
in level, while pollutants with domestic heating source profiles mostly exhibited a constant level.
Considering local sources in Novi Sad, slight to moderate air quality improvement was observed
after the lockdown as compared with days before. Furthermore, PM low-cost sensors’ usefulness
in air quality assessment was confirmed, as they increase spatial resolution, but it is necessary to
calibrate them at the deployment location.

Keywords: PM and gaseous air pollutants; air pollution monitoring; low-cost PM sensors; sensor
calibration; emergency lockdown

1. Introduction

The appearance of the highly contagious coronavirus [1] (COVID-19) at the end of
2019 in Wuhan, China, and many deaths all over the globe, forced the world’s governments
to adopt different levels of interventions and emergency measures, due to the virus’ easy
human transmission [1,2]. The emergency measures included travel restrictions and
lockdowns. During the implementation of these measures worldwide, many countries
reported air pollution reduction, which could result from reduced transport and other
anthropogenic activities in some countries [3]. Besides transport sector restrictions, the
industrial and manufacturing sectors are heavily affected by the pandemic [4,5], and their
reduced or stopped activities could also be reflected in decrease of air pollution.

The lockdown interventions led to a reduction in population-weighted PM2.5 of
14.5 µg/m3 across China (−29.7%) and 2.2 µg/m3 across Europe (−17.1%), with mean
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reduction in PM2.5 concentrations during the lockdown period of around 20% in Europe
when comparing the lockdown period in 2020 to previous years [6,7]. A study led by French
National Institute for Industrial Environment and Risks (INERIS) [8], which analyzed short-
term influence of COVID lockdowns on PM10 and nitrogen dioxide (NO2), determined
significant decreases in NO2 and nitrogen oxides throughout Europe. Regarding PM10
concentration, the situation is less uniform and European cities selected in the study [8]
experienced a range of different outcomes depending on the city region. At Iberian Penin-
sula, reductions in PM10 were observed. In Western Europe, PM10 increase (or only a slight
decrease) after lockdown was observed due to dominating effect of emission advections
from anthropogenic sources (e.g., agricultural, industrial). At Scandinavian Peninsula, only
a small decrease of PM10 levels was identified due to considerable effect of road dust due to
use of studded tires, road dusting and salting, i.e., high road dust emissions, which caused
enhancement of PM10 effectively masking the lockdown reduction effect. At Central and
Eastern Europe mixed decrease/increase of the average PM10 concentrations was identified
as the effect of lockdown emission reductions was disturbed by a large natural dust episode
on 26–29 March. In addition to PM, the main gaseous air pollutants NO2, sulfur dioxide
(SO2), carbon monoxide (CO), and ozone (O3) that are usually collected at monitoring
sites were analyzed in different areas all over Europe [8]. From these preliminary studies
and reports [7,8], it seems evident that nitrogen dioxide (NO2), nitrogen oxide (NO) and
nitrogen oxides (NOX) noticeably decrease while O3 increases.

This study is devoted to short-term air quality changes in the city of Novi Sad, Serbia
(Lat/Long: 45.26714◦, 19.83355◦), focused on the period immediately before and during the
COVID-19 lockdown. In order to create data sets, online and off-line data from national [9],
regional [10], and local monitoring networks [11] were combined with newly acquired data
from an ongoing measurement campaigns utilizing PM low-cost sensors (LCS). The aim of
this study was to investigate the impacts of lockdown and local meteorology on the level of
selected main air pollutants [12]. The analysis was focused on the period of approximately
three months, 1 February–30 April, six weeks before and six weeks during lockdown, with
additional attention focused to period of about one week immediately before and during
the COVID-19 lockdown, for which high-resolution LCS data were available. Selected
air pollution data was supplemented (underpinned) with available local meteorological
parameters in order to better understand and explain the interactions between pollution and
meteorology. Depending on the temporal resolution of data provided by used monitoring
tools, variations of main pollutants at the daily level were analyzed in cases when data
with sufficient temporal resolution were available.

2. Materials and Methods

2.1. Study Area

Novi Sad represents an urban-industrial agglomeration and, it is the second largest
city in Serbia. The city is situated at about 80 m above sea level and it experiences a regional
climate from moderately continental to continental. The speed of all recorded winds is
mostly between 2.2 and 3.1 m/s, and in terms of frequency, winds that prevail in Novi
Sad are north, northeast, and northwest [13]. The main sources of outdoor air pollution
in Serbia include the energy sector, the transport sector, waste dump sites, and industrial
activities, while the specific sources of air pollution in Novi Sad include the petrochemical
industry complex and increasing road traffic [14].

2.2. Air Pollution Monitoring at National, Regional and Local Networks at Novi Sad

The monitoring of outdoor ambient air quality is usually done via networks at the
national and local levels. However, despite having a high quality of instrumentation, these
kinds of networks are usually very sparse, may not monitor all of the needed parameters,
and give little insight into personal exposure. In specific cases, when rapid deployment
and increased temporal resolution may be of more interest, IoT (Internet of Things) enabled
low-cost sensors may provide interesting complementary data.
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In the city of Novi Sad, there are three main groups of monitoring stations: stations
that belong to national networks, stations in the regional network, and stations in the local
monitoring networks.

National Network, (website http://www.amskv.sepa.gov.rs/pregledstanica.php)

• NN1, Novi Sad-Rumenačka (air quality variables that are monitored: SO2, NO2, CO,
PM10, PM2.5, wind direction, wind speed) type of station: traffic (Lat/Long: 45.26263◦,
19.81902◦)

• NN2, Novi Sad—Liman (air quality variables that are monitored: SO2, O3, NO2, CO)
type of station: background (Lat/Long: 45.23864◦, 19.83570◦)

Regional Network, (website http://www.amskv.sepa.gov.rs/pregledstanica.php)

• RN1, Novi Sad—Šangaj (air quality variables that are monitored: BTEX, H2S, SO2, t,
RH, wind direction, wind speed), type of station: industrial, (Lat/Long: 45.27237◦,
19.87333◦)

Local network, (website https://environovisad.rs/air_points/mm3)

• LN1, Novi Sad—Intersection of Rumenačka and Bulevar Jaše Tomića, type of station:
urban/traffic, (Lat/Long: 45.26348◦, 19.81903◦)

• LN2, Kać—Kralj Petar 1, type of station: suburban/traffic, (Lat/Long: 45.29980◦,
19.93926◦)

• LN3, Novi Sad- Sunčani kej 41, type of station: urban/background, (Lat/Long:
45.24000◦, 19.85139◦)

• LN4, Sremska Kamenica, Kamenički park 1-14, type of station: suburban/background,
(Lat/Long: 45.22931◦, 19.84898◦)

2.3. Ongoing Sampling Campaign with Low-Cost Sensors and Reference Pumps

An ongoing measuring campaign with low-cost sensors and reference gravimetric
pumps in the city of Novi Sad started in February 2020 and was conducted during mid-
February and March. Our monitoring campaign utilizing low-cost sensors was already
underway in Novi Sad when Emergency State Measures were introduced on 16 March. The
more, or less severe lockdown was used as a unique opportunity to conduct this additional
experiment, in which results about the possible relation between massive change of general
population daily habits and change in traffic and industrial emissions could be obtained.
At selected sampling sites, besides low-cost sensors that measured PM2.5 with a temporal
resolution of several seconds, PM2.5 was collected on Quartz fiber filters by reference
gravimetric pumps set to sample air for 48 h. A note about sampling duration is in place
here. Timing and duration of the sampling can be adapted for specific purpose in order
to use the available resources most effectively. For example, within the ESCAPE project
sampling schedule (for purposes of Europe-wide LUR modeling) was two-week sampling,
with timers which were set to sample for 15 min every 2 h so that effectively a 42-h sample
was collected over 14 days [15]. This compromise must encompass frequency of accessing
device in the field conditions on one hand and quality and quantity of samples necessary
for calibration of low-cost sensor on the other hand. In this way “best of both worlds” are
obtained: the low-cost sensors provide high temporal resolution, while use of reference
gravimetric pumps minimizes the errors. Our sampling schedule produces approximately
8 samples over period of 16 days. Additional details are given in Appendix A. Particulate
matter low-cost sensor suite (LCS), ekoNET was made by Dunavnet [16]. LCS platform was
equipped with a PMS7003 particulate matter sensor. Plantower PMS7003 has counting
efficiency of 50% at 0.3 µm and 98% at 0.5 µm, and maximum consistency error ±10%
at 100~500 µg/m3 and ±10 µg/m3 at 0~100 µg/m3 range [17,18]. Reference gravimetric
pump that was collocated with each LCS was Leckel Model LVS3 [19], with standard PM2.5
inlet and 2.3 lpm flowrate.

In the period before the Emergency State Measures, the sampling campaign was
performed at 4 measuring sites (MS), namely: MS1 (Hajduk Veljkova 4), MS2 (Rumenački
put 20), MS3 (Reljkovićeva 2), MS5 (Račkog 78). All four localities can be characterized as
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traffic sites since they are situated in the vicinity of traffic intersections and streets with a
high or medium volume of traffic (Figure 1). After lockdown, the campaign was continued
during the following 8–10 days at 3 sites (MS1, MS2, MS3) and repeated at MS5 where
sampling was performed previously during February. The instruments were situated
within 1m of each other, and no additional inlets were used in order to minimize particle
losses. At measuring sites, the instrumentation was at about 2–3 m above the ground. The
sampling campaign was carried out at all 4 measuring sites continuously, 7 days before
the state of emergency (abbreviation BEMS in further text) and 8 days during the state of
emergency (abbreviation EMS in further text) that was declared due to COVID-19 in Serbia.

Figure 1. Map with location of measuring sites (MS1, MS2, MS3, MS5) and monitoring stations at
national (NN), regional (RN) and local level (LN).

Measuring site 1 (MS1, Lat/Long: 45.24968◦, 19.82467◦) was located in a narrow city
center, at a distance of 50 m from the intersection of Futoški put, Hajduk Veljkova, and
Cara Dušana Street. Possible sources of PM2.5 in addition to traffic may include residential
heating, small boilers and stoves for individual households in the surrounding area. Types
of vehicles passing through the intersection are light vehicles and public transportation
(buses). A small heating plant is placed within close proximity (about 1 km). Measuring site
2 (MS2, Lat/Long: 45.27573◦, 19.80066◦) was located in the Industrial Zone South, at the
very border of the residential area in the Rumenačka 20 street. Measuring instruments were
located at the height of about 2.5 m next to a very busy roundabout within the courtyard of
the Veterinary Institute in Novi Sad. The distance between the roundabout and measuring
site was about 30 m. The traffic at MS2 consists mainly of light and heavy trucks and
buses since the roundabout represents the main way that leads to the highway in that
city area. The rest of the Industrial zone consists of a couple of industrial plants whose
production capacities are very low, so the main source of suspended particles at this location
is traffic. The third measuring site, (MS3, Lat/Long: 45.2494◦, 19.87729◦), was situated in
Petrovaradin, associated municipality of Novi Sad. Instruments were placed at the height
of 3 m, near the intersection of Reljkovićeva and Preradovićeva Street, which is one of the
busiest intersections in Petrovaradin municipality. The distance between the measuring site
and Reljkovićeva Street was 5 m, and the distance to the intersection was 60 m. Reljkovićeva
Street is the main street with heavy traffic that passes through Petrovaradin from Novi
Sad. Traffic mainly consists of trucks and cars and, to a lesser extent, of bus traffic. Sources
of PM2.5 at the measuring site beside traffic are residential heating. The fourth site (MS5,
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Lat/Long: 45.23406◦, 19.88453◦), was also situated in Petrovaradin, as was MS3. Račkog
Street serves as a transportation hub and is in the vicinity of the intersections of regional
roads. It is the busiest street in Petrovaradin, with high intensity of both heavy vehicle and
light vehicle traffic. The majority of heavy transportation from Reljkovićeva Street passes
through this street. The measuring devices were set at the height of 3 m, at a distance of
12 m from the street. At this site, particulate matter can be emitted mainly by traffic and
by residential heating boilers. Considering MS positions, possible sources of PM2.5 in the
ambient air at all four localities include traffic, along with households and facilities in the
vicinity that are using natural gas and other fossil fuels as a heating source.

3. Results and Discussion

As an initial analysis step, we have plotted particulate matter concentration at available
stations that belong to local and national monitoring networks before and after entering
the state of emergency (Figure 2) in the period from 1 February to 30 April. Local and
regional monitoring stations publicly report daily average concentrations, while data
collected at national monitoring station are available with 1 h resolution. A large peak in
both PM2.5 (Figure 2b) and PM10 (Figure 2a) concentration is clearly visible on 26, 27 and
28 March, and is similar in magnitude for all monitoring stations. For these several days,
the daily average levels of PM10 and PM2.5 were up to 250 and 100 µg/m3, respectively.
Extremely high concentrations of particulate matter were recorded at automatic monitoring
stations in the whole of Serbia and surrounding countries. The level of PM10 at the higher
temporal resolution (e.g., 1 min) in some cities in Serbia, including Novi Sad, reached up
to 600 µg/m3. No similar peaks exist for PM10 for other days, while for PM2.5 similar
magnitude peaks do exist, albeit only locally (i.e., for only one of the observed monitoring
stations). This kind of pattern indicates some isolated regional event that happened in
the period on 26–28 March. Figure A2 shows the back trajectory that was calculated
using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) transport and
dispersion model. The air mass back trajectory was calculated at 270 m above the ground,
on 27 March, when the maximal concentration of PM10 was measured at Novi Sad’s
national and local network sites. Based on the back-trajectory analysis, the presence of a
possible source of non-local air pollution is evident. This source of dust can be associated
via back trajectory tracing to the Aralkum Desert that is located at the Kazakhstan and
Uzbekistan border. Back trajectory for surrounding days is also given in Appendix B.

Figure 2. Daily concentrations at sites belonging to national and local monitoring networks before and after entering the
state of emergency (dashed gray line) (a) PM10 (b) PM2.5.

Tables 1 and 2 show descriptive statistics for fine and coarse particulate matter data
collected at stations that belong to the national and local monitoring network in the area
of Novi Sad for the period from 1 February to 30 April, split into periods before and after
lockdown measures introduced due to COVID-19 pandemic. Tables also include descriptive
statistic when 3-day Aralkum Desert episode is excluded from data. Looking into data from
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EMS and EMS* columns in Tables 1 and 2, it becomes evident that natural distant sources
may be very dominant in total particulate matter pollution and thus effectively mask local
changes originating from emergency state, strongly swaying mean and maximum values
of PM pollution. When comparing BEMS (before emergency state) and EMS* (during
emergency state) columns in Table 1, it can be seen that the median slightly increased
for LN1 and NN1 (both stations are urban traffic), strongly increased for LN3 (urban
background), and decreased for LN2 and LN4 (LN2 and LN4 are suburban traffic and
suburban background stations respectively). When comparing BEMS and EMS* columns
in Table 2, it can be seen that the median decreased for LN2, LN4 and NN1 (suburban
traffic, suburban background and urban traffic) and, again, strongly increased for LN3
(urban background). While it is expected that traffic sites experienced decrease in PM2.5
pollution, a strong increase in both PM10 and PM2.5 for LN3 is somewhat surprising and
may indicate presence of source which emits both fine and coarse particles that was active
during EMS. However, LN3 had lowest concentration of all stations in BEMS period. The
often-nonlinear relationships between changes in emissions and changes in concentrations
may also explain why lower air pollution may not occur at all locations.

Table 1. Descriptive statistics for PM10 [µg/m3] data collected via the national and local network for air pollution monitoring
in Novi Sad for the period of BEMS and EMS campaign in Novi Sad. EMS* denotes EMS data with Aralkum Desert episode
excluded from data.

LN1 LN2 LN3 LN4 NN1
Period BEMS EMS EMS* BEMS EMS EMS* BEMS EMS EMS* BEMS EMS EMS* BEMS EMS EMS*
Mean 30.97 43.97 32.59 23.77 / 24.97 17.72 39.69 28.88 25.21 29.49 20.38 36.83 49.58 41.89
St.dev. 13.24 43.56 13.84 10.31 / 22.30 7.62 40.17 12.49 21.85 37.64 9.83 16.89 39.95 20.30

Median 28.50 33.00 30.50 21.10 / 17.00 16.05 31.00 28.50 20.40 19.00 17.00 33.35 36.50 36.30
MIN 14.00 13.00 13.00 8.70 / 5.00 7.30 6.00 6.00 11.70 4.00 4.00 9.70 13.20 13.20
MAX 62.00 243.00 66.00 44.60 / 122.00 40.90 219.00 51.00 122.60 209.00 42.00 85.10 231.60 88.50

Table 2. Descriptive statistics for PM2.5 [µg/m3] data collected via the national and local network for air pollution
monitoring in Novi Sad for the period of BEMS and EMS campaign in Novi Sad. EMS* denotes EMS data with Aralkum
Desert episode excluded from data.

LN2 LN3 LN4 NN1
Period BEMS EMS EMS* BEMS EMS EMS* BEMS EMS EMS* BEMS EMS EMS*
Mean 19.08 / 19.95 12.09 25.22 19.44 18.71 19.95 14.77 20.95 23.95 21.42
St.dev. 8.26 / 17.52 5.19 21.25 8.51 14.85 21.06 7.63 10.08 15.44 10.65
Median 17.00 / 14.00 10.95 20.35 19.00 14.80 14.00 12.40 18.30 18.50 17.60
MIN 7.00 / 4.00 5.00 4.10 4.10 8.00 3.20 3.20 6.80 7.30 7.30
MAX 36.00 / 97.60 28.00 99.00 35.00 84.00 99.00 33.60 50.50 86.40 48.20

In the subsequent section, diurnal variation will be able to reveal more details about
changes and differences in air pollution levels since we will use additional data obtained
from high-resolution low-cost sensors.

Weather conditions can also noticeably contribute to the changes that are seen in
pollutant concentrations, and in some cases changes in meteorology can lead to increased
air pollution. At the time of this study, meteorological data with 1 h temporal resolution
originating from national network station NN1 were available. Meteorological conditions
in the interaction with the landscape’s physical features are key factors that influence the
rate of change, movement, and dispersal of gaseous and particulate matter pollution in the
air. Sampling campaign in both BEMS and EMS period was conducted during the heating
season (lasting from 15 October until 15 April) in the Republic of Serbia. It is well known
that particulate matter concentration may correlate with temperature and relative humidity,
and that often it strongly negatively correlates with wind speed [20]. This means that
wind speed and temperature are two key factors affecting PM2.5 and PM10 concentration
distributions emitted from local sources. These two factors will be discussed next.

Before and during the emergency state lowest PM2.5 concentrations were observed
when the wind was coming from the southeast direction and to a lesser extent north-
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east direction (Figure 3 upper row), while most of the highest PM2.5 concentrations were
observed for low wind speeds within the 1.5 m/s, (Figure 3 upper and middle row).

Figure 3. PM2.5 [µg/m3] counts by wind direction (upper row), PM2.5 [µg/m3] pollution rose (middle row) and PM2.5~PM10

robust slope (lower row) (a) before emergency state 1–15 March (b) during emergency state 16–31 March, Aralkum episode
excluded (c) during emergency state 1–15 April.

Having in mind the position and type (traffic) of Rumenačka monitoring station, this
indicates the presence of strong local sources of air pollution, mainly related to traffic and
residential heating, whose influence is minimized mainly by favorable meteorological
conditions. These conditions may come in form of stronger winds, for example over 5 m/s,
as can be seen from low PM2.5 concentrations in Figure 3b,c middle row. This is also
confirmed by lower row in Figure 3, depicting PM2.5~PM10 robust slope. Different types of
sources have different size distribution signature, for example combustion sources emit
a large proportion of PM2.5, while on the other hand material used during construction,
geological matter, polen and similar have larger coarse fraction. As can be seen from
Figure 3b,c, within wind speeds smaller than 1 m/s there is an indication of strong local
combustion processes, indicated by high PM2.5~PM10 ratio. Stronger wind noticeably
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change local air pollution composition and reduce PM2.5 concentration, thus making
PM2.5~PM10 ratio very small.

Figure 4 shows the mean values and 95% confidence interval for the normalized pressure,
temperature and PM2.5 measured at station Rumenačka, before and during emergency state.
All of the air quality variables are min-max normalized taking into account the whole period
1 March to 15 April. Min-max values for the pressure, temperature and PM2.5 concentrations
are 989.0–1024.0 mbar, −2.06–28.4 ◦C, and 0.0–91.97 µg/m3, respectively.

Figure 4. Normalized pressure, temperature and PM2.5 concentrations in different hours of the day (min-max normalization
for the whole period) (a) before emergency state 1–15 March (b) during emergency state 16–31 March, Aralkum episode
excluded (c) during emergency state 1–15 April.

The period during the emergency state had a lower mean temperature in 0–6 h
period of the day, as evident from the plots. This is also accompanied by increased PM2.5
concentrations in the 0–6 h period of the day and higher pressure throughout the day
compared to the period before the emergency state. In the city of Novi Sad, residential
heating is realized either as individual boilers or via district heating facilities, which
are a substantial contributor to PM concentrations. Residential heating had to be used
more since citizens have been instructed to stay at home as much as possible [21]. This
is evident in Figure 4b, where lower temperatures correspond to higher PM2.5 pollution.
On the other hand, as evident from Figure 4c, higher temperatures, at least in part, can
be associated with reduction in PM2.5 pollution.

3.1. Descriptive Statistic of PM2.5 Levels before and at the Beginning of Emergency Measure State
Measured with Low-Cost Sensors

In the current and following section, we will try to gain a bit more insight into periods
before and during COVID lockdown by utilizing higher temporal resolution of low-cost
sensors. Table 3 shows descriptive statistics for data collected via low-cost sensors at 4
different locations in Novi Sad. For each measuring spot, two columns are given, first
referring to the period before the emergency state, and second referring to the period after
the emergency state. These periods are identical for measuring sites MS1, MS2 and MS3,
going from 8 to 15 March 2020 for the BEMS period, and from 16 to 24 March 2020 for the
EMS period. From MS5 site, BEMS period data was collected somewhat earlier from 6
to 23 February 2020, while the EMS period mostly coincides with the EMS period for the
remaining sites, 18 to 26 March 2020.
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Table 3. Descriptive statistics for data collected via low-cost sensors, at 4 different locations in Novi Sad.

MS1 MS2 MS3 MS5
Campaign BEM EM BEM EM BEM EM BEM EM

Mean 24.05 25.85 26.79 31.02 26.27 28.72 23.50 21.31
St.dev. 17.70 16.71 20.94 23.54 16.14 16.86 15.50 6.38

Median 21.46 22.13 22.54 23.61 26.61 24.02 20.01 21.11
MIN 2.56 6.37 1.90 4.47 6.50 8.28 7.99 11.49
MAX 74.21 74.26 78.84 88.54 66.34 75.64 61.83 39.14

25th perc. 8.73 13.24 7.97 12.15 11.03 16.34 12.59 17.08
75th perc. 34.52 35.26 40.81 47.50 36.07 38.12 30.13 24.70

The median of PM2.5 concentration was similar in the BEMS and EMS period for all sites,
a slight decrease in the median was observed only for MS3. Maximum values of PM2.5 (98th
percentile) increased for MS2 and MS3 sites, remained the same for MS1, and decreased for
MS5 site. Another interesting aspect is the standard deviation of the pollution, which may
signal change in pollution sources and their distribution: it remained the same at MS1 and
MS3 sites but showed a noticeable decrease at MS5 site. More insight into PM2.5 pollution and
change that occurred during EMS at these sites is possible via time series and 24 h boxplots
shown in further text.

3.2. Changes in Diurnal Variation of PM2.5 at Sampling Site MS1, MS2, MS3 and MS5 before
and after Measures of the State Emergency

The reduced movement of vehicles as well as reduced industrial activities during
lockdown in Novi Sad, leading to the reduction of the exhaust emissions, were a probable
cause for a reduction (as seen from reduced interquartile range of hourly boxplots in
Figure 5) and a more uniform profile of the PM2.5 levels approximately during typical
working hours (8 AM–5 PM).

According to recently published studies, similar findings were identified in several
cities in various parts of the world [22]. In the first month of lockdown, period 15 March–
15 April 2020, the official heating session was still ongoing. For the most part, mean daily
temperatures in the week before and in the first weeks of lockdown, during which the
sampling campaign was conducted, were below 10 ◦C. Residential heating sources caused
higher concentration in the morning and during the night at almost all sampling sites and
can be clearly recognized from the boxplot representing 1 h variations in the week before
the EMS and period at the EMS beginning (Figure 5).

Figure 5. Cont.
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Figure 5. Daily profile of PM2.5 measured before measures of the state of emergency (left) and during measures of the state
of emergency (right) at (a) MS1 (b) MS2 (c) MS3 (d) MS5.

3.3. Changes in Diurnal Variation of Gaseous Pollutants and PM2.5 at NN1 before and after
Measures of the State Emergency

For the identification of changes of main air pollutants levels, it was necessary to create
diurnal variation whenever it was possible, i.e., data have been collected using monitors
with high temporal resolution. Figure 6 depicts diurnal variations of measured main
gaseous pollutants at site that belongs to the national monitoring network: Rumenačka
SEPA, NN1 before and after measures of the state emergency. At NN1 the following
was observed:
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• Daily profiles of SO2, the main pollutant, depicted in the form of a boxplot (Figure 6a),
show that, on average, there was no noticeable change a week before and 10 days
during the emergency state. For most hours of day, the SO2 concentration was below
20 µg/m3, with occasional “outliers” in the range from 35–40 µg/m3 in the morning
and afternoon pollution peaks.

• Daily profiles for NOx show a clear change in daily patterns (Figure 6b). Because
boxplot color corresponds to the value of median, it is evident that the median of
these main pollutants was reduced during the first 10 days of the emergency state
during most hours of the day. NOx boxplots show clear morning and afternoon
pollution peaks, both before and during the emergency state, but the median of these
peaks is reduced during the emergency state. The median was around 80–95 µg/m3

before emergency state from 18–19 h, and an evident reduction to the median of about
15–25 µg/m3 is visible during the emergency state. Additionally, during the most
active hours of the day (period from 9 h to 17 h), a noticeable drop in the level of air
pollution was observed, indicated by lower median and smaller interquartile range
(median around 50 µg/m3 before emergency state during this time of day, and about
25 µg/m3 during emergency state in this time of day).

• Observing CO daily profiles following conclusions can be reached. During the active
hours of the day, in the period from 9 h to 17 h, the level of air pollution stayed similar
in, going around 0.8 mg/m3 with a relatively narrow interquartile range (Figure 6c).
During morning hours, the situation is similar, with a slight increase during the
emergency state, with median still being in the range from 0.8 to 1 mg/m3, but with
larger interquartile ranges during the emergency state. On the other hand, from 18 h
to 23 h, there is a slight reduction in the CO level during the emergency state. Since
there are no noticeable changes in the daily profiles before and during the emergency
state for CO levels, it can be argued that pollutants with domestic heating source
profiles mostly exhibited constant levels.

• An interesting increase in PM2.5 levels in the early morning and in the nighttime at
different monitoring sites over the area of the city of Novi Sad, even during lockdown,
has also been noticed (Figure 6d). However, during the most active hours of the day
(period from 9 h to 17 h) a noticeable drop in the level of air pollution was evident, as
indicated by a lower median and smaller interquartile range.

Figure 6. Cont.
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Figure 6. Rumenačka SEPA, NN1 station, hourly boxplots before (left) and during emergency state (right) (a) SO2 (b) NOx

(c) CO (d) PM2.5.

Equivalent analysis was also done for Liman SEPA NN2 station and is shown in
Appendix D. Similar and comparable results were observed all over the EU in various
studies focusing on COVID-19 influences [23,24]. Results for levels of NO2, PM10 and
PM2.5 over the EU member countries have been presented by EEA [25]. Data show, as in
the city of Novi Sad, that NO2, a pollutant mainly emitted by road transport, has decreased
in many European cities where lockdown measures were applied. Changes in levels of
PM2.5 may also be expected due to lockdown measures, however, a consistent reduction
cannot yet be seen across European cities, as is the case in Novi Sad. This is likely due to
the fact that the main sources of this pollutant are more varied, including, at the European
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level, the combustion of fuel for the heating of residential, commercial and institutional
buildings, industrial activities and road traffic.

4. Conclusions

In this paper, we have presented a study targeting particulate matter pollution in the
city of Novi Sad that was conducted during February–April of 2020. On 15 March 2020,
when the COVID-19 lockdown started and emergency state measures were declared, a
sampling campaign of collecting data with gravimetric pumps and IoT low-cost sensors
has been already in progress. New circumstances were promptly integrated into the
campaign’s planning, as they opened possibilities for examining the influence of broader
societal changes on air pollution. Additional campaign efforts, which now also included
examining COVID-19 lockdown influence, were carried out and data were collected both
before and at the beginning of COVID-19 lockdown in Novi Sad.

Looking at descriptive aggregate statistical data, we have not identified a noticeable
reduction in PM2.5 concentration levels at a daily level. The measuring campaign and
data collection were finished at the last sampling site (MS5) on March 26th. No significant
non-local sources were influential up until that point. On 27 and 28 March, when the con-
centrations of PM2.5 and PM10 were extremely high in the whole of Serbia and surrounding
countries, Aralkum desert was pointed out as the external source of high increase in PM.
This source of dust was confirmed via back trajectory tracing to Aralkum Desert. The
trends and levels of fine and coarse particulate matter in Novi Sad and other cities in Serbia
before and after lockdown were under multiple factors similar to those that were observed
in cities in the region, e.g., Budapest and Sofia, as shown in [8].

In the city of Novi Sad, air pollution mainly comes from traffic and residential heating,
where citizens of Novi Sad use a variety of fuels for heating of individual houses: gas,
biomass, and fossil fuels. More detailed analysis showed that the morning peak and higher
concentration during the night period remained present in the daily profiles, even after the
COVID-19 lockdown and in that period, there were also no noticeable changes in the daily
profile at all sampling sites. Morning peak and higher concentrations during the night and
variability characteristics for that period stayed the same at all four low-cost sampling sites
and part of the daily profile for that period was similar before and after emergency state
measures were declared. For the period corresponding to working hours, between 8 AM
and 5 PM, when people are the most active and traffic is usually the most frequent, the PM
concentrations and their variability were lower during COVID-19 lockdown than during
the week before COVID-19 lockdown. This can be attributed to the fact that majority of
citizens stayed at home, leading to reduced traffic and associated emissions.

These analyses prove that lowering anthropogenic activities intensity contributes to
changes in the diurnal pattern of fine particulate matter and some other main air pollutants.
Natural events like long–range transport of air masses that may happen during lock–down,
also strongly contribute to the increased air pollutants concentrations. These influences
may sway the summary statistics and illustrates the need for higher temporal resolution
monitoring. The perspective for further analyses is in additional analyses of chemical
content of PM2.5 from collected filters.
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Appendix A

Field Calibration of PM2.5 Low-Cost Device Performed via Collocation with Reference Pump

As our extensive descriptive data analysis has shown, low-cost PM2.5 devices are
suitable for giving insights into air pollution trends, which can be confirmed via strong
correlation between low-cost device readings and data obtained from the national net-
work. However, despite this and despite the fact that the low-cost devices have gone
through initial calibration, in order to avoid mismatch between calibration location and
deployment location, low-cost sensors were additionally calibrated by collocating them
with the reference gravimetric pumps at their deployment location. Data calibration is
also essential to mitigate unfounded risk perception from low-cost sensors [26,27]. Calibra-
tion curves are shown in Figure A1, along with the Pearson’s correlation coefficient and
calibration equations.

Figure A1. PM2.5 correlation: (a) MS1 site reference pump vs. low-cost device (b) MS2 site reference pump vs. low-cost
device (c) MS3 site reference pump vs. low-cost device (d) MS5 site reference pump vs. low-cost device.

Only the data points that were obtained from unscathed filters were used for cal-
ibration purposes. Despite the sensors having gone through initial calibration by the
manufacturer, calibration coefficients obtained via collocation at the deployment location
are modestly (figure panels (a), (b), (c), or significantly (d) different from 1.0). It can be thus
concluded that the additional round calibration at the deployment location is a desirable
and necessary step to obtain useful results from low-cost sensors. All results and data
reported in this study, originating from low-cost sensors, are calibrated using deployment
location calibration.

Appendix B

HYSPLIT Analysis of Sand Episode Originating from Aralkum Desert

During the episode [28], air mass trajectory came from the northeast, passed through
Romania, Ukraine, Russia, Kazakhstan and Uzbekistan (Figure A2b). Finally, extremely
high concentrations of PM10 were probably, in large part, due to the dust coming from the
Aralkum Desert located at the Kazakhstan and Uzbekistan border.
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Figure A2. The air mass back trajectory for the city of Novi Sad on (a) 25 of March (b) 27 of March (c) on 29 of March.

In the period before and after PM pollution episodes, back trajectories showed less
capability for long-range transport as evident from Figure A2a,c (note the differences in
zoom level for same 72 h trajectory duration).

Appendix C

Correlation of PM2.5 Concentration in the City of Novi Sad between Spatially Distributed
Measuring Sites

In order to better understand spatial variability of PM pollution in the city of Novi Sad,
data for PM2.5 fine particulate matter at additional sampling sites, which was measured
simultaneously using low-cost sensors and reference pumps set to 48 h averaging, were
correlated with the NN1 SEPA station.

Pearson’s correlation coefficient between 48 h concentrations measured at the site that
belongs to the national network of air quality monitoring NN1 collected with equivalent
monitor GRIMM Aerosol EDM 180 [29] and concentrations measured using reference
gravimetric pumps LVS3 Sven Leckel [19] at MS1, MS2, MS3 and MS5 site vary between
0.85 and 0.99 (Figure A3).

Figure A3. PM2.5 correlation: (a) MS1 site reference pump vs. SEPA equivalent instrument (b) MS2 site reference pump vs.
SEPA equivalent instrument (c) MS3 site reference pump vs. SEPA equivalent instrument (d) MS5 site reference pump vs.
SEPA equivalent instrument.

The highest Pearson’s correlation coefficient was identified, not surprisingly, between
sites situated along the same street, Rumenačka (Figure A3b), at the distance of about
2.7 km. High correlation despite the relatively large distance between the sites indicates
that sources of pollution covary, most probably due to traffic consisting of mainly light
and heavy trucks and buses, since the roundabout represents the main way that leads
to the highway. Pearson’s correlation coefficient was also high for the other three sites,
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approximately 0.86 for the MS1 site and 0.85 for the other two sites located on the other side
of the Danube river at Petrovaradin, a location where there are currently no monitoring
sites from national, regional or local monitoring network.

Pearson’s correlation coefficient between 1 h concentrations measured at the site that
belongs to the national network of air quality monitoring NN1 and concentrations mea-
sured using low-cost sensors at MS1, MS2, MS3 and MS5 shown in Figure A4 vary between
0.61 and 0.97. The highest Pearson’s correlation coefficient can be noticed between the
sites at the same street, Rumenačka (Figure A4b), at a distance of about 2.7 km, r = 0.97.
Pearson’s coefficient correlation of 0.89 is identified between NN1 measured with equiva-
lent instrument GRIMM Aerosol EDM 180 and Dunavnet ekoNET device equipped with
PMS7003 low-cost sensor located at MS1 (Figure A4a) and MS3 (Figure A4c).

Figure A4. PM2.5 correlation: (a) MS1 low-cost sensor vs. SEPA equivalent instrument (b) MS2 low-cost sensor vs. SEPA
equivalent instrument (c) MS3 low-cost sensor vs. SEPA equivalent instrument (d) MS5 low-cost sensor vs. SEPA equivalent
instrument (at different location).

A Pearson’s correlation coefficient that is lowest is identified between the equivalent
device at NN1 and low-cost device at MS5 (Figure A4d). The possible reason for the lower
coefficient correlation between NN1 and MS5 is probably due to differences in particu-
late matter levels and probably due to divergent content as well as local meteorological
conditions at two locations. This illustrates the need for higher spatial resolution of PM
monitoring efforts and, to some extent, locations where there is a need to deploy additional
sensors (locations with lower correlation to reference stations).

Appendix D

Changes in Diurnal Variation of Gaseous Pollutants at NN2 before and after Measures of the
State Emergency

In Figure A5, diurnal variation of the main gaseous pollutants at Liman SEPA, NN2
automatic monitoring station, before and after the state emergency measures, are shown:

• Daily profiles of SO2, the main pollutant, depicted in the form of a boxplot (Figure A5a),
show that, on average, there is a slight change a week before and 10 days during the
emergency state. In the week before, for most hours of day, SO2 concentration was
approximately 5 µg/m3, while in the first 10 days of the emergency state, the median
is a bit higher between 7 and 8 µg/m3 from midnight to morning hours and about
10 µg/m3 later on during the working hours and evening.

• Daily profiles for O3, the main pollutant, follow diurnal cycle with maximal levels
from 10 to 16 h with a median of about 70 µg/m3 in the week before and 80 µg/m3 in
the first 10 days of the emergency state (Figure A5b). During morning and evening
hours, median values are also 10 µg/m3 lower in the week before (about 50 µg/m3)
than in the first 10 days of the emergency state (60 about µg/m3). Interquartile ranges
are larger during the emergency state in periods of day with maximal levels of O3.

• Daily profiles for NO, NO2 and NOx at Liman NN2 site, although lower in general,
show a clear change in daily patterns similar to Rumenačka NN1 site. NOx boxplots
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(Figure A5c) show clear morning and afternoon pollution peaks, both before and
during the emergency state, but the median of these peaks is reduced during the
emergency state (median around 30–35 µg/m3 before emergency state from 18 to 19 h,
and an evident reduction of the median of about 15 µg/m3 during the emergency
state). In addition, during the most active hours of the day (period from 9 to 17 h),
a significant drop in the level of air pollution can be observed, indicated by a lower
median (median around 15–30 µg/m3 before the emergency state during this time of
day, and about 10–15 µg/m3 during emergency state during this time of day).

• Observing CO daily profiles at Liman (Figure A5d), NN2 site, the following conclu-
sions can be reached. During the active hours of the day, from 9 h to 17 h level of
CO stayed similar, going between 0.4 and 0.5 mg/m3, with a narrower interquartile
range during the emergency state. During morning hours, the median level is similar,
but with larger interquartile ranges before the emergency state. Similar as at the
Rumenačka site, from 18 to 23 h, there is a slight reduction in CO level during the
emergency state. Daily profiles before and during the emergency state for CO levels
are connected with domestic heating sources that stay the same and traffic, leading to
a slight reduction.

Figure A5. Cont.
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Figure A5. Liman SEPA, NN2, station, hourly boxplots before (left) and during emergency state (right) (a) SO2 (b) O3

(c) NOx (d) CO.
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Abstract: The aim of this work was to analyze the changes in the emissions from the transport
sector during the COVID-19 lockdown in Colombia. We compared estimated emissions from road
transportation of four groups of pollutants, namely, greenhouse gases (CO2, CH4, N2O), ozone
precursor gases (CO, NMVOC, NOx), aerosols (BC, PM2.5, PM10), and acidifying gases (NH3, SO2),
during the first half of 2020 with values obtained in the same period of 2018. The estimate of emissions
from road transportation was determined using a standardized methodology consistent with the
2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse
Gas Inventories and the European Environment Agency/European Monitoring and Evaluation
Program. We found a substantial reduction in GHG emissions for CH4, N2O, and CO2 by 17%,
21%, and 28%, respectively. The ozone precursors CO and NMVOC presented a decrease of 21%
and 22%, respectively, while NOx emissions were reduced up to 15% for the study period. In
addition, BC decreased 15%, and there was a reduction of 17% for both PM10 and PM2.5 emissions.
Finally, acidifying gases presented negative variations of 19% for SO2 and 23% for NH3 emissions.
Furthermore, these results were consistent with the Ozone Monitoring Instrument (OMI) satellite
observations and measurements at air quality stations. Our results suggest that the largest decreases
were due to the reduction in the burning of gasoline and diesel oil from the transport sector during
the COVID-19 lockdown. These results can serve decision makers in adopting strategies to improve
air quality related to the analyzed sector.

Keywords: COVID-19; lockdown; acidifying gases; aerosols; greenhouse gases; ozone precursors;
road transportation; Colombia

1. Introduction

COVID-19 emerged on 30 December 2019 [1] and was declared a global pandemic by
the World Health Organization on 11 March 2020 [2]. The outbreak of the virus started
in Wuhan, the capital of Hubei Province, China, and in a few weeks, it had spread to
dozens of other countries in Asia [3]. Since then, the SARS-CoV-2 virus has spread in
Africa, America, Asia, Europe and Oceania [4]. It led to most countries adopting isolation
measures to stop its spread and avoid the collapse of health systems [5]. The first case in
Colombia was confirmed by the National Health Institute on 6 March 2020. The Ministry
of Health and Social Protection declared a public health emergency in the country on
12 March 2020, and a few weeks later, the Ministry of Interior ordered preventive lockdown
and containment measures starting on 25 March 2020, whereby many human activities
in the educational, cultural, transportation, and industrial manufacturing sectors were
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constrained. Consequently, educational institutes and non-essential factories remained
closed, public events were cancelled, and work at home was implemented, to prevent the
further spread of the COVID-19 pandemic.

The anthropogenic changes caused by the lockdown led to a decline in industrial
production and energy consumption, up to 30% in some countries [6,7]. Energy demand
has been altered drastically worldwide, and due to forced confinement, many international
borders were closed and populations were isolated in their homes [8]. This led to a change
in some consumption patterns for energy, e.g., those related to the transport sector, because
of a reduction in mobility. These restrictions on economic activity during the pandemic
have reduced NO2 emissions in China, Europe and the United States during COVID-19 [9].

Mobility has also been one of the things most affected by the COVID-19 restrictions.
The changes in patterns of mobility indicate a reduction in vehicular traffic; as a conse-
quence, a decrease in emissions associated with this sector is to be expected, given that
the greenhouse gas (GHG) emissions from road and aviation transportation make up 72%
and 11% of all GHG emissions, respectively [10]. Consequently, containment measures
implemented in various countries have shown changes in the air quality [11–14]. The
use of fossil fuels by road vehicles is the main source of four groups of pollutants, in-
cluding GHG [10], including carbon dioxide (CO2), methane (CH4), and nitrous oxide
(N2O); ozone precursor gases, such as carbon monoxide (CO) [15], non-methane volatile
organic compounds (NMVOC) [16], and nitrogen oxides (NOx) [17,18]; aerosols, including
black carbon (BC) [10] and particulate matter (PM2.5, PM10) [15]; acidifying gases, such
as ammonia (NH3) [19] and sulfur dioxide (SO2) [20]. GHG emissions, such as CO2, are
mainly produced by power generation and road transport. Other GHG emissions, such as
CH4, are generated by fermentation processes, fossil fuel extraction and use, landfills and
waste. In addition, N2O is produced from soil emissions [21]. Ozone precursor gases, such
as CO, are emitted by incomplete fuel combustion of road transport as well as industrial
processes [22]. NMVOCs are important air pollutants because of their contributions of sec-
ondary compounds (aerosols and ozone), generated from gasoline combustion [16,23,24].
The emissions of NOx (NOx = NO + NO2) mainly include biomass burning and fuel
combustion (e.g., power plant combustion, industrial emissions and transportation emis-
sions) [25]. Aerosol emissions are contributed mostly as by-products of combustion from
thermal power stations, vehicle engines and factories [26], with on-road vehicles being the
source of fine particulate matter (PM2.5) [27]. In addition, one of the main anthropogenic
emissions sources of BC is the incomplete combustion of fossil fuels (especially diesel) in
vehicles [10]. Acidifying gases are emitted by the combustion of biomass and fossil fuels as
well as by industrial activity [19,20]. NH3 emissions related to road traffic are due to use
of catalytic NOx reduction systems on light and heavy-duty vehicles [19], whose devices
use an injection of urea or ammonia [28]. Recent studies showed that the containment
measures to minimize the spread of SARS-CoV-2 have resulted in reductions of 15% to
40% in industrial sectors and temporarily reduced China’s CO2 emissions by 25%. The
European Public Health Alliance (EPHA) states that, in Italy, the urban NO2 pollution
comes mainly from traffic, especially diesel vehicles, which are also a major source of
particulate matter; the COVID-19 pandemic has resulted in a remarkable drop in these
pollutants. France also showed a drop in NOx emissions as a result of the reduction in
economic activities and transportation. During the spread of the COVID-19 pandemic
in New York, traffic levels were estimated to be down 35% compared with the previous
year; significant decreases in the emissions of CO and CO2 were registered, with a 5–10%
reduction in CO2 [26].

Some studies have examined the effects of the COVID-19 lockdown on urban mobil-
ity [18,29–31]. The data show that mobility has dropped around the world as the spread of
the virus has increased; public transportation systems were the most affected due to users
refusing to use them in order to avoid social contact, and therefore the risk of contagion [32].
Other studies have shown an improvement in air quality in some Colombian cities due
to mobility restrictions during the COVID-19 lockdown [33,34]. However, these studies
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did not look at the changes in atmospheric emissions associated with the observed air
quality changes. Google, in its COVID-19 Community Mobility Reports for Colombia
(https://www.google.com/covid19/mobility/), reports that, in April 2020, the country
saw the biggest reduction in visits to retail and recreation places (77%), transport stations
(77%), parks (67%), grocery stores and pharmacies (59%), and workplaces (58%), while
the trend of mobility in residential areas increased by 28%. At the beginning of May, the
opening of some economic sectors caused an increase in mobility in relation to the previous
month, especially in workplaces (17%), grocery stores and pharmacies (13%), retail and
recreation places (10%), and transport stations (9%).

Therefore, the aim of this study is to analyze the changes in the emissions associated
with road transportation during the COVID-19 lockdown in Colombia, comparing these
emissions with values obtained in the same period of 2018 for four groups of pollutants,
namely, GHGs (CH4, CO2, N2O), ozone precursor gases (CO, NMVOC, NOx), aerosols (BC,
PM10, PM2.5), and acidifying gases (NH3, SO2). The results can serve decision makers in
the development of strategies to improve air quality related to the road transport sector in
Colombia. This article is ordered as follows. Section 2 describes the methodology applied to
estimate emissions in Colombia and details the changes in air quality observed by Bogotá’s
air quality network and from the OMI satellite. Section 4 details the results of the emissions
changes and improvements in air quality in Colombia due to its COVID-19 pandemic
lockdown, while Section 5 discusses the results and provides further analysis in light of
updated literature. Finally, Section 5 reports the main conclusions and perspectives.

2. Materials and Methods

2.1. Study Area

Colombia occupies a total surface of 1,140,000 km2 in the northern part of South
America (Figure 1). It has a population of approximately 49.5 million inhabitants, dis-
tributed into 32 departments and one capital district, Bogotá D.C., with a population of
7.8 million [35]. The gross domestic product (GDP) was 323.80 billion USD (at current
prices), with a per capita income of 7842 USD (GDP/capita) in 2019, according to the World
Bank data and its trading economics projections [36]. The country’s vehicle fleet reached
15.6 million units in 2020 [37], with a fuel consumption during the first half of the year
equivalent to 2.5 million m3 diesel oil, 2.6 million m3 gasoline and 600,000 m3 compressed
natural gas (CNG). According to the last Colombia GHG national inventory presented to
the Intergovernmental Panel on Climate Change (IPCC) [38], from a sectorial point of view,
annual Carbon Dioxide Equivalent (CO2 eq.) emissions (for the year 2012) correspond to
158.6 Tg to agriculture, 78.0 Tg to energy, 13.3 Tg to waste, and 8.9 Tg to industry. While
the transport sub-sector emitted 28.2 Tg, contributing 36% of energy sector emissions and
11% of the total emissions of the country.

2.2. Emission Estimation

We studied emissions from road transportation in four groups of pollutants that
affect climate change, air quality and health, namely, GHGs (CH4, CO2 and N2O), ozone
precursor gases (CO, NMVOC and NOx), aerosols (BC, PM10 and PM2.5), and acidifying
gases (NH3 and SO2).

Several studies have been conducted to estimate the emissions from road transporta-
tion based on fuel consumption [17,39,40]. To estimate these emissions, we selected a
standardized methodology consistent with the 2006 IPCC Guidelines for National Green-
house Gas Inventories [41] and the method from the EEA/EMEP Emission Inventory
Guidebook 2019. [42]. Thus, we used tier 1 methods that use activity data derived from
available statistical information (energy statistics, production statistics, traffic counts, pop-
ulation size, etc.). In addition, tier 1 emission factors were chosen to represent "typical" or
"averaged" process conditions; they tended to be independent of technology. Furthermore,
we used an additional level of detail (tier 2) for the calculation of SO2 emissions, since
Colombian fuel emission factors were used [43]. This is consistent with previous studies
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that showed that this methodology was adequate to estimate inventories at the national
level, when detailed information by city was not available [20,44–47]. Overall, the method
was based on estimating emissions through a linear relationship between activity data and
emission factors (Table A1). The calculation was made using Equation (1), as follows:

E(p) = ∑
p, f ,v

(

Fuel f ,v ∗ E fp, f ,v

)

(1)

where E (p) is the total emission for species or pollutant p, Fuel (f,v) is the fuel sold (diesel,
gasoline and CNG) for type of vehicle v, Ef (p,f,v) is the emission factor for pollutant species
p, for type of fuel f and vehicle v.

Figure 1. Location of Colombia in South America. Study area covers the entire territory of Colombia.

Therefore, the emission estimate for each polluting species was calculated using
Equation (1) with the following data:

Fuel: We used the Statistical Bulletin by Ministry of Mines and Energy [48], which
includes activities such as monthly sales of fuels for the first half of 2018. We used the
Liquid Fuel Information System (SICOM) [49], which includes monthly sales to fuel retail
distributors for the first half of 2020. In addition, we used the Mercantile Exchange
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Colombia [50] (as shown in Table A2), for data on the consumption of CNG (Figure A1).
Furthermore, considering that consumption was only focused on the transport sector, fuel
distribution data was obtained from automotive service stations, assuming 96% of the
distribution of the total of this category (retail distributors) was the total of the fuel supply,
according to SICOM data [49]. For fuel consumption by vehicle type, the consumption
distribution percentages (Table 1) of the indicative action plan for energy efficiency [51]
were selected, calculating consumption by vehicle category.

Table 1. Fuel consumption by vehicle category [51].

Fuel
Consumption (%)

Cars Cargo Public Transport Motorcycles Others

Gasoline 77 - - 22 1
Diesel oil 18 53 26 - 3

CNG 91 7 2 - -

Number of vehicles: Census of number of vehicles by type (vehicle category) from the
Single National Traffic Registry of Colombia [37].

Emission factors: The emission factors considered were those established by the
EMEP/EEE Joint Inventory Guide to Air Pollutant Emissions database [42], for vehi-
cle type and pollutant (GHGs, ozone precursors, aerosols and acidifying gases). The SO2
emission factor and the power calorific value by type of fuel was obtained from the 2016
UPME FECOC calculator (Colombian fuel emission factors) in energy units (Kg Tj−1) [43],
except the CNG power calorific value was taken from the PROMIGAS technical notes [52].
These values were assumed for all types of vehicle under study. Additionally, CO2eq from
the main GHGs (CH4 and N2O) was estimated. CO2eq emissions with a 100-year horizon
global warming potential (GWP100: CH4 = 28 and N2O = 298) have been considered
through the IPCC’s suggestion in the 5th Assessment Report (AR5) [53]. We analyzed
the monthly variations in emissions from January to June 2018 and 2020. The emissions
reduction during the COVID-19 pandemic lockdown in Colombia was calculated based on
the year 2018.

2.3. Emissions Reduction vs. Air Quality Improvement

We analyzed the improvements in air quality to relate them to the emission reductions
analyzed during the quarantine period. We used data from five air quality traffic stations in
Bogotá (Carvajal-Sevillana, Estación Móvil, Fontibón, Las Ferias, Minambiente) available
in the Bogotá Air Quality Monitoring Database (BAQMD) [54]. These data were used
to assess the air quality concentration of CO, SO2, NO2 and O3; the equipment used by
BAQMD is specified in Table A3. For each station, data from April, May and June of
2018 were used to calculate the mean concentrations of each pollutant for each month.
Similarly, data from April, May and June of 2020 were used to calculate mean levels of
each pollutant during the lockdown. It is worth clarifying that BAQMD reports pollutant
concentrations under standard conditions (1 atm and 25 ◦C). Thus, this allowed us to
perform a comparison with concentrations during the same period of a base year (2018).
This base-year comparison was also performed to control for meteorological conditions.
We used tropospheric NO2 data for April to June 2018 and 2020, retrieved from the ozone
monitoring instrument (OMI), a visual and ultraviolet spectrometer aboard the NASA
Aura spacecraft [55]. This information enabled the emissions analysis and estimation
associated with road transportation in the four groups of pollutants previously cited. In
addition, the average NO2 retrieved from OMI data was estimated for the period of April
to June 2018 and 2020 to evaluate the NO2 level variation during the pandemic lockdown
in Colombia [56].
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3. Results

Figure 2 shows the monthly emissions of analyzed pollutants for the compared periods.
In the first half of 2020, the emissions of the four groups of pollutants associated with road
transportation decreased starting in March compared with those estimated for the base
year 2018. In late March 2020, the national government adopted vehicle restrictions, so
April showed a higher reduction of GHG emissions for CO2, CH4 and N2O in percentages
equivalent to 58%, 40% and 71%, respectively. CO2 reduction was the most representative
due its contribution of 97.62% of the total emissions from the transport sector, specifically
the burning of fossil fuels by road transportation (lightweight and cargo vehicles) [38].
Later, GHG emissions increased in May by 24%, 16% and 27% for CO2, CH4 and N2O,
respectively, owing the reactivation of some economic sectors. Restrictions began to be
relaxed, allowing the opening of some activities that were restricted during the confinement.
As a result, GHG emissions in June continued to increase, though they remained lower
than those of 2018.

Figure 2. Estimated total emissions (Gg) of the four groups of pollutants that affect climate change, air quality and health:
(a) GHGs (CH4, CO2 and N2O); (b) ozone precursors (CO, NMCOV and NOx); (c) aerosols (BC, PM10 and PM2.5); (d)
acidifying gases (NH3 and SO2) for January to June of 2018 and 2020.

As shown in Figure 3, all estimated pollutants showed reductions between January
and June 2020 due to the pandemic lockdown in Colombia. Negative variations in GHG
emissions were 28%, 17% and 20% for CO2, N2O and CH4, respectively. While the ozone
precursor group showed a reduction of up to 21% and 22% for CO and NMVOC, respec-
tively. The emissions of these pollutants were mostly the result of burning gasoline and
diesel oil, which represent 90% of the total emissions. In addition, the NOx emissions
variation was −15% for the study period, with 50% of the total emissions by this pollutant
attributed to the burning of diesel oil.

Aerosol emissions of PM10 and PM2.5 each showed a negative emissions variation of
17%, which was associated mostly with the fuel consumption by cargo vehicles and public
transport [57]. BC emissions showed a decrease of 15%, and acidifying gases also displayed
reductions. SO2 emissions showed a negative variation of 19%, while NH3 emissions were
reduced by 23% of its. These emissions reductions were mainly produced by the reduction
in consumption of gasoline and diesel oil. In general, pollutant groups that registered the
most reduction in emissions variations were GHGs (−22%) and acidifying gases (−21%),
while CO2 presented the greatest reduction among all pollutants analyzed.
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Figure 3. Emissions variations of the four groups of pollutants in the study: (a) GHGs; (b) ozone precursors; (c) aerosols; (d)
acidifying gases, during the January to June 2020 in relation to the same period of 2018.

Figure 4 shows the variations in CO2 emissions in Colombia. Territorial divisions
that showed the greatest reduction in CO2 emissions were Bogotá D.C. (−4168 Gg CO2),
Magdalena (−1381 Gg CO2), Bolívar (−308 Gg CO2), Atlántico (−118 Gg CO2), and
Caquetá (−30 Gg CO2). These contrast with positive emission variations in departments
such as Valle del Cauca (295 Gg CO2), Cundinamarca (278 Gg CO2), Norte de Santander
(248 Gg CO2), Antioquia (232 Gg CO2), and Cesar (209 Gg CO2), during the study period.

Colombian administrative divisions that showed the greatest reduction in CO2
(Bogota, Magdalena, Bolivar, Atlántico and Caquetá) make up 44.5% of the national pop-
ulation. The circulation of people was reduced to avoid contagion by COVID-19. Thus,
these territories registered (between March and June 2020) a decrease of 6005 Gg of CO2
compared to the same period in 2018. While Valle del Cauca, Cundinamarca, Norte de
Santander, Antioquia, and Cesar departments reported a total increase of 1262 Gg CO2.
Overall, the net reduction in Colombia was approximately of 4743 Gg CO2 (Table A4).

Considering the significant emission reduction of CO2 in Bogotá D.C., associated with
road transportation and its population density, we also analyzed data from five air quality
traffic stations in Bogotá. In addition, we evaluated the concentrations of CO, SO2, NO2
and O3 during the lockdown period ranging from April to June 2020 and compared these
to the same period in 2018. We observed significant air quality improvements through a
decrease in CO, SO2 and NO2 in areas influenced by vehicular traffic. Drastic reductions
in CO (up to −60.85%), SO2 (up to −73.23%), and NO2 (up to −60.60%) concentrations
were observed in the urban area during the lockdown, as shown in Table 2. By contrast, an
increase of up to 106.32% (in May) in ozone concentrations was observed in urban areas
of Bogotá.

Figure 5 shows NO2 concentration reductions visualized by satellite measurement
of background tropospheric data available from OMI. The levels of NO2 over Colombia
decreased substantially in the Central Region during the lockdown (April to June 2020)
compared to the same period in 2018. Nevertheless, the north region showed an increase in
the levels of NO2 over Atlántico, Bolívar, Cesar, La Guajira and Magdalena departments.
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Figure 4. Spatial distribution of CO2 emissions variation through internal political and territorial divisions (departments).
Warm and cold colors indicate an increase and decrease, respectively, in emissions between the March and June 2018
and 2020.

Table 2. Mean concentration and standard deviation of CO, SO2, NO2 and O3 in Bogotá during the lockdown (April to June 2020)
compared to the same period in 2018 [54].

Air Pol-
lutant

Mean Concentration 2018 (µg.m−3) Mean Concentration 2020 (µg.m−3)
Variation of Mean

Concentrations (%) from 2018
to 2020

Apr May Jun Apr May Jun Apr May Jun

CO 1408.75 ±
363.64

1269.63 ±
304.62

1074.67 ±
396.98

551.55 ±
276.74

787.13 ±
301.38

920.46 ±
422.75 −60.85 −38.18 −13.8

SO2 3.90 ± 2.00 3.41 ± 1.26 4.50 ± 1.50 2.83 ± 1.19 3.30 ± 2.06 4.13 ± 2.15 −27.39 −16.57 −8.22
NO2 56.10 ± 12.20 44.70 ± 7.82 46.60 ± 7.46 22.10 ± 9.75 27.80 ± 14.46 29.30 ± 12.59 −60.6 −37.81 −37.12
O3 14.66 ± 6.88 10.28 ± 3.95 13.06 ± 6.75 37.53 ± 13.61 21.21 ± 7.07 18.16 ± 7.43 60.92 106.32 27.66
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Figure 5. Spatial distribution of mean levels of tropospheric NO2 through internal political and territorial divisions
(departments) between April and June 2018 and 2020. Source: Time averaged map of NO2 tropospheric column (30% cloud
screened) daily 0.25 deg. (OMI OMNO2dv003) 1/cm2.

4. Discussion

The Colombian government’s restrictions to curb the spread of the COVID-19 pan-
demic have had a significant impact in several sectors of its economy due to the cessation
of some activities [58]. Our results showed reductions for the four groups of pollutants
analyzed. In particular, a total of 6010 Gg were eliminated, mainly in seven territorial
subdivisions of Colombia where close to 50% of the national population live [59]. One of
the positive impacts identified is the emissions reduction from decreased road transport.
This is registered by recent studies on air quality improvements carried out in Sao Paulo
(Brazil), which reported high reductions of air pollutant concentrations during its partial
lockdown due to the decrease in vehicular traffic in analyzed areas [60]. In Barcelona
(Spain), the most significant reductions were estimated for pollutants related to traffic
emissions [61]. Emissions in China caused by road transport have been affected by the lock-
down, generating a reduction of the pollutants associated with this sector [62]. Therefore,
the lockdown significantly reduced the air pollution (air pollutants and warming gases) in
most cities across the world [26].
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Emissions of the four pollutant groups selected in this study depend on the con-
sumption of fossil fuels, which during the lockdown decreased in accordance with the
lower vehicle traffic in Colombia. According to Colombian government reports, diesel and
gasoline consumption experienced a drop of 50% and 65%, respectively, since mid-March
when the lockdown began [63]. Furthermore, the Mercantile Exchange Colombia did not
register increases in the consumption data for CNG [50]. This led to a reduction in the
estimated emissions of the four pollutant groups studied, with the most variation in GHGs,
specifically CO2. It is consistent with recent studies that affirm the first sector with the
greatest reduction in global emissions of CO2 during isolation was transportation [64].

The emissions reduction of ozone precursor gases (CO, NMVOC, NOx) registered in
this study is consistent with the highest reduction of CO and NO2 that occurred in China
due the lockdown measures taken to control the COVID-19 pandemic, which dramatically
reduced the number of vehicles on the road, and consequently led to an improvement in air
quality due most likely to reduced emissions from some sectors (such as the transportation
linked to the NO2 emissions). This occurred chiefly in those provinces with large fleet
vehicular and secondary industries, which suggests that the reduced emissions from the
transportation and industrial sectors caused a decrease in concentrations of these gases [18].
In addition, it was reported that NO2 emissions were reduced by up to 60% in the city of
Santander (Spain) [32]. Other studies found a 20–30% reduction in emissions of NO2 in
China, Spain, France, Italy, and the USA due to the lockdown [9] and a drastic reduction of
NO (up to −77.3%), NO2 (up to −54.3%), and CO (up to −64.8%) in Sao Paulo (Brazil). In
the case of NO, one recent study demonstrated that heavy-duty diesel trucks are the major
sources of this pollutant [65]. While the NMVOC emissions reduction was −22% in this
study, other research has shown a PM2.5 emissions reduction of −17% [23].

Aerosol reductions (BC, PM10, PM2.5) in our study were consistent with recent stud-
ies. Chinese researchers carried out an analysis of PM2.5 data in cities such as Beijing,
Shanghai, Guangzhou, and Wuhan during COVID-19 and found a pronounced reduction
in air pollution attributed to the reduction of emissions in transportation and industrial
sectors [18]. As well, it was observed over the major cities of India, such as Delhi, Mumbai,
Hyderabad, Kolkata and Chennai, that a decline in PM2.5 during the lockdown period
registered a significant improvement in air quality, which provides important information
to the cities’ administration about the implementation of regulations [14]. Other studies
conducted during the lockdown suggested the main sources of atmospheric particulate
matter PM10 and PM2.5 (include fossil fuel combustion, motor vehicle exhaust emissions,
industrial production, secondary particulate matter generation, among others) experienced
a significant reduction up to −48.9% in three of China’s provinces [66]. The decline in
PM2.5 emissions due to the lockdown to control the spread of SARS-CoV-2 in New York,
Los Angeles, Zaragoza, Rome, Dubai, Delhi, Mumbai, Beijing and Shanghai reflected the
positive changes that contributed to improve air quality [67]. BC emissions reduction can
be attributed to on-road diesel sources [68], so the mitigation of transportation-related BC
emissions decreased the global emissions significantly [69].

In this study, acidifying gases (NH3, SO2) also showed a significant emissions reduc-
tion, up to −23% for NH3. Other studies found that decreasing emissions were identified
in Kannur district, India (−16%), due to a complete shutdown of traffic and industrial
activities [70], as NH3 emissions come mainly from heavy-duty diesel vehicles [65]. In
addition, SO2 emissions registered a decrease (−19%), which was identified in China as a
decrease attributed to lower emissions from traffic and coal combustion [62]. Kannur, India,
reported decreased emissions (−62%), and a diurnal variation most pronounced during
peak traffic hours was absent during the lockdown owing to the roads being deserted [70].

Figure 4 shows NO2 emissions increased in the northern Colombian region due to
events of long-range pollution transport, like regional biomass burning beginning at the
end of March, during the lockdown, according to recent studies [33,34]; the air quality
improvement shown in this period was partially annulled by the impact of these events.
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Despite an emissions reduction in the four pollutant groups selected, an increase of
ozone concentration was observed in urban areas of Bogotá. This result was consistent
with recent studies, in which Sao Paulo (Brazil) urban areas, highly influenced by road
transportation, had an increase of approximately 30% in ozone emissions [60]. The increase
of ozone concentration is related to nitrogen monoxide decreases, which may cause a reduc-
tion in ozone consumption during the photochemical reactions [61,71]. Moreover, VOCs are
often the limiting precursors for O3 production in urban areas [23,31]. O3 levels increased
up to 57%, probably due to lower titration of O3 by NO (titration, NO + O3 = NO2 + O2),
and the decrease of NOx added to the increase of solar irradiation and temperatures in
this period of the year [61]; ozone levels are a major concern in tropical cities, where the
temperature and insolation favor the atmospheric processes leading to O3 formation [31].
In this sense, recent studies also showed that reductions in PM2.5 during the COVID-19
pandemic favored the formation of O3 due to a reduction in NOx levels due to reduced
transport and an increase in solar radiation [31,72]. On the other hand, the increase in ozone
seems to be associated with the decrease in PM2.5, because the sinking of hydroperoxy
radicals is slowed down, and therefore, ozone production accelerates [73].

Therefore, these results showed that a reduction in the transport sector contributed
to lower emissions of the four pollutant groups (GHGs, ozone precursors, aerosols and
acidifying gases), but was not able to cut down ozone concentrations, which leads us to
consider other strategies aimed at reducing emissions and the reactivity in the troposphere,
such as fuel composition and the control of vehicular emission systems. However, these
results indicate that today, more than ever, we must take measures that are focused on
individual behavioral changes.

Previous studies recommend high-impact actions for emissions savings >0.8 Mg CO2
eq per year for countries, with potential contribution to systemic change and substantial
reduction in annual emissions, such as living without vehicles (2.4 Mg CO2 eq saved
per year) and opting for more efficient vehicles or switching to electric cars (1.19 Mg CO2
eq saved per year) [74]. Using the cleanest available technology (electric cars) results in
significant reductions. Despite the fact that these actions can be effective, the dependence of
people on the use of conventional cars is increasingly noticeable, and it is evidenced by the
vehicle fleet records in Colombia. Therefore, governments should consider the adoption
of incentives to use fewer polluting vehicles [75]. Also, Wynes et al. [74] show significant
emissions reductions through moderate-impact actions (emissions savings 0.2–0.8 Mg CO2
eq per year), such as replacing gasoline-burning vehicles with hybrid cars, and even the
use of public transportation, which reduces emissions by 26–76% [76], as well as biking
and walking. In Colombia, incentive measures should encourage the use of CNG or
hybrid vehicles, as natural gas represents the lowest emissions compared to the other fuels
under study.

The changes in air pollution during the COVID-19 lockdown can provide insight
into the achievability of air quality improvement when there are significant restrictions
in emissions related to the sectors with the greatest impact, thus giving regulators better
ability to control air pollution [13]. However, it is likely that most of the changes observed
in 2020 in terms of emissions are temporary, since no structural changes are reflected in
the economic or transport systems [8]. Moreover, several studies have shown that poor air
quality is related to increases in infections and mortality due to COVID-19 [77–80]. This
would indicate that a reduction in emissions and improvements in air quality could also
reduce the rate of infection and mortality due to COVID-19 [47,81–85]. Thus, it would
be expected that prevention measures (such as social distancing and lockdowns, among
others) are actually more profitable than a cure [78,86,87].

5. Conclusions

The effect of restricted human activities due to the COVID-19 pandemic in Colombia
since mid-March of 2020 was studied by analyzing emissions variations of eleven criteria
pollutants, comparing the first half of 2020 with values obtained in the same period of 2018.
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In general, the air quality improved during the COVID-19 lockdown, and it was apparently
caused by reductions in emissions of some human activities, such as in the transportation
sector. Lifting the lockdown and the normalization of activities in the productive sectors
may reverse the reduction of global air pollution and even increase air pollution levels
if researchers, decision makers, productive sectors, and governments do not articulate
efforts to maintain the economy with minimum emissions. COVID-19 has allowed us to
analyze the positive impacts of the measures adopted during the lockdown, specifically
those that have generated reductions in pollution emissions with evident consequences
for the air quality. Thus, it is important to identify the impact of low, moderate and high
actions on reducing emissions, with emphasis in the agricultural and energy sectors, and
especially the contributions of the transport sub-sector. The circumstances under which
we have lived, and the measures adopted during the pandemic, taking in consideration
changes for improving environmental conditions, can be the subject of dialogue at the next
conference of the United Nations for Climate Change, COP26. Additionally, future work
may use more detailed methodologies, such as tier 3 [42,88], to achieve high-resolution
spatial inventories in Colombia.
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Appendix A

Table A1. Emission factors by vehicle classification and fuel type.

Vehicle Type Fuel
CO2 * CH4 ** N2O ** CO * NMVOC * NOx * BC * PM2.5 * PM10 * NH3 * SO2

+

(Kg/m3) (kg/TJ) (Kg/m3) (Kg/m3) (Kg/m3) (Kg/m3) (Kg/m3) (Kg/m3) (Kg/m3) (Kg/m3) (kg/TJ)

Personal cars
Gasoline 2329 25.00 0.15 61.74 7.39 6.42 3 × 10−3 0.02 0.02 0.81 3.57
Gas Oil 2678 3.90 0.07 2.81 0.59 10.95 0.53 0.93 0.93 0.05 2.91

CNG 1972 92.00 0.06 60.90 9.81 10.93 - - - 0.06 -

Light
commercial

vehicles

Gasoline 2329 25.00 0.14 111.94 10.72 9.72 7 × 10−4 0.01 0.01 0.49 3.57
Gas Oil 2678 3.90 0.05 6.25 1.30 12.60 0.71 1.28 1.28 0.03 2.91

CNG 1972 92.00 - 4.10 0.14 9.35 - 0.01 0.01 - -

Heavy duty
vehicles

Gas Oil 2678 3.90 0.04 6.41 1.62 28.20 0.42 0.79 0.79 0.01 2.91
CNG 1972 92.00 - 4.10 0.19 9.35 - 0.01 0.01 - -

Motorcycles Gasoline 2329 25.00 0.04 39.54 96.58 4.88 0.18 1.62 1.62 0.04 3.57

* EMEP/EEA air pollutant emission inventory guidebook 2019 [42]. ** 2006 IPCC Guidelines for National Greenhouse Inventories [41].
+ 2016 UPME FECOC calculator (Colombian fuel emission factors) [43].

Table A2. Fuel sales (m3) by department for March to June 2018 and 2020.

Departments
Gasoline Diesel

2018 2020 2018 2020

Amazonas 1167 1808 1167 491
Antioquia 154,614 195,364 154,614 206,015
Arauca 2456 13,591 2456 11,024
San Andrés y Providencia 1844 2397 1844 621
Atlántico 73,855 46,499 73,855 53,498
Bogotá D.C. 1,112,981 184,188 892,924 144,130
Bolívar 118,597 45,119 124,428 73,072
Boyacá 25,132 39,383 21,619 53,587
Caldas 17,596 24,280 11,606 19,639
Caquetá 8680 14,167 22,570 6439
Casanare 7751 15,883 12,365 37,034
Cauca 18,299 41,413 11,317 22,147
Cesar 30,871 59,565 59,162 112,311
Choco 6606 19,768 5091 15,555
Córdoba 22,813 37,646 16,226 36,267
Cundinamarca 74,089 88,491 74,260 165,606
Guainía 956 3576 670 696
Guaviare 2257 4270 1314 2293
Huila 21,200 34,236 16,067 26,438
La Guajira 3781 31,629 10,080 16,893
Magdalena 268,517 22,459 320,757 18,756
Meta 19,924 34,320 22,967 47,797
Nariño 33,581 72,836 21,191 46,554
Norte de Santander 14,744 68,938 21,411 67,054
Putumayo 7304 17,838 6064 7558
Quindío 11,741 16,622 7083 13,289
Risaralda 20,316 29,554 14,635 22,211
Santander 45,700 63,675 42,618 65,638
Sucre 11,014 18,367 6122 14,021
Tolima 28,855 38,160 26,876 60,583
Valle del Cauca 106,590 143,532 84,913 163,125
Vaupés 183 458 244 93
Vichada 572 2877 636 1887
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Figure A1. Fuel consumption from March to June 2018 and 2020. GNG sales data was only available
at the national level.

Table A3. Equipment used by BAQMD to monitor air quality in Bogota city [54]. Note that only the
equipment that measures the parameters (pollutants) used in this comparison is shown.

Pollutants Measurement Principle Used Equipment

CO Infrared absorption spectrophotometry CO Thermo Scientific 48i
SO2 Ultraviolet pulsed fluorescence SO2 Thermo Scientific 43i
NO2 Chemiluminescence NOx Ecotech 9841
O3 Absorption spectrophotometry in the ultraviolet O3 Ecotech 9841

Table A4. CO2 emissions (Gg) by departments from March to June 2018 and 2020.

Departments 2018 2020

Amazonas 5.84 5.53
Antioquia 774.15 1006.71
Arauca 12.30 61.18
San Andrés y Providencia 9.23 7.25
Atlántico 369.79 251.56
Bogotá D.C. 4983.45 814.97
Bolívar 609.43 300.76
Boyacá 116.43 235.23
Caldas 72.06 109.14
Caquetá 80.65 50.24
Casanare 51.17 136.16
Cauca 72.93 155.77
Cesar 230.33 439.49
Choco 29.02 87.70
Córdoba 96.59 184.80
Cundinamarca 371.42 649.57
Guainía 4.02 10.19
Guaviare 8.78 16.09
Huila 92.40 150.54
La Guajira 35.80 118.91
Magdalena 1484.36 102.54
Meta 107.91 207.93
Nariño 134.96 294.31
Norte de Santander 91.67 340.13
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Table A4. Cont.

Departments 2018 2020
Putumayo 33.25 61.79
Quindío 46.31 74.30
Risaralda 86.51 128.31
Santander 220.57 324.08
Sucre 42.05 80.33
Tolima 139.18 251.11
Valle del Cauca 475.65 771.13
Vaupés 1.08 1.31
Vichada 3.04 11.75
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Abstract: The manufacturers of China VI heavy-duty vehicles were required to conduct in-service
conformity (ISC) tests by using a portable emissions measurement system (PEMS). The moving
averaging window (MAW) method was used to evaluate the NOx emission required by the China
VI emission standard. This paper presented the results of four PEMS tests of a China VI (step B)
N3 category vehicle. Our analyses revealed that the real NOx emission of the test route was much
higher than the result evaluated by the MAW method. We also found the data produced during
the urban section of a PEMS test was completely excluded from the evaluation based on the current
required boundary conditions. Therefore, in order to ensure the objectivity of the evaluation, this
paper proposed three different evaluation methods. Method 1 merely set the power threshold as
10% for valid MAWs; Method 2 reclassified the MAWs into “Urban MAWs”, “Rural MAWs” and
“Motorway MAWs” according to the vehicle speed. Method 3 reclassified the MAWs into “Hot
MAWs” and “Cold MAWs” according to engine coolant temperature. The NOx emission evaluation
results for Method 1 were not satisfactory, but those for Method 2 and Method 3 were close to the
real NOx emission, the errors were all within ±10%.

Keywords: portable emissions measurement system; moving averaging window; real-world NOx
emission; heavy-duty diesel vehicle; evaluation method

1. Introduction

On-road diesel vehicles produce a great amount of nitrogen oxides (NOx) worldwide,
leading to deterioration of the environment and increasing health issues [1,2]. According
to updated traffic emission inventory, considering nonlocal trucks, almost 80% of the total
vehicular NOx emission in Beijing was emitted by diesel vehicles [2,3].

In the past few decades, increasingly stringent emission regulations had been adopted
by many countries (e.g., Europe, US, Korea, Japan) [4,5]. China has also issued “Limits and
measurement methods for emissions from diesel fueled heavy-duty vehicles (CHINA VI)”
numbered “GB17691-2018” in June 2018.

In order to deal with the increasingly stringent emission standards, the manufacturers
generally used selective catalytic reduction (SCR) technology for alleviating NOx emissions
at the tailpipe combined with diesel particle filters (DPF) for particulate matter (PM)
reduction, diesel oxidation catalysts (DOC) for the oxidation of incomplete combustion
products and ammonia slip catalyst (ASC) for the oxidation of NH3 [6,7].

What’s more, in the DOC unity, in addition to oxidation of CO and unburned hydrocar-
bons, NO conversion to NO2 takes place, thus increasing the quite low NO2 concentration
in the exhaust gas (about 5% to 10% of total NOx). This increase in NO2 concentration
speeds up the passive regeneration process of DPF and, thus, largely affects the decrease in
back pressure, enhancing the operating performance and prolonging the life-time of the
aftertreatment device [8–10].

Although regulated NOx emission limits had been progressively tightened, many
researchers claimed that current diesel vehicles emitted far more NOx under real-world
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operating conditions than during laboratory certification testing [1,11,12]. Under this condi-
tion, the real driving emissions (RDE) test (also called PEMS test) protocols using a portable
emissions measurement system (PEMS)—which is a compact equipment composed by a
portable gas analyzer, a global positioning system (GPS) receiver, a data logging system
and so on—had already been adopted by many countries (e.g., Europe, US, Korea) to
check the on-road conformity of emissions [5,13–17]. In addition, manufacturers were
also required to conduct in-service conformity (ISC) testing by using a portable emissions
measurement system (PEMS) in China.

The PEMS test regulation establishes the requirements for route composition which
must cover a wide range of real-world conditions by accounting with defined shares of
urban, rural and motorway operation. Other parameters considered are trip duration,
ranges of vehicle speed, cumulative work performed by the engine, etc. [18]. Ambient
boundary conditions including altitude and ambient temperature for the PEMS test are
also involved in the regulation [14].

However, even with all these requirements, repeatability of PEMS tests is hardly
achievable, because the boundary conditions are unique for a PEMS test. For instance, it is
scarcely possible to guarantee that the trip time and vehicle speed of two PEMS tests are
exactly the same on the same test route, needless to say different test routes [14,19,20].

Therefore, PEMS tests still have some debatable points (e.g., trip composition, bound-
ary conditions and data analysis methods) required further detailed study [14]. For instance,
a study performed by Mendoza-Villafuerte et al. [21] revealed that up to 85% of the NOx
emissions measured during the tests performed were not taken into consideration if the
boundary conditions for data exclusion set in the current legislation were applied.

In order to overcome the repeatability issue of the PEMS tests, many data analysis
methods (e.g., the vehicle specific power (VSP) method, the power binning (PB) method,
not-to-exceed (NTE) method, moving averaging window (MAW) method, etc.) were
introduced for processing the test data [22,23].

Varella et al. [23] tested three different methods (the MAW, PB and VSP), concluding
that there were differences between all methods both for CO2 and NOx emissions estima-
tion due to the statistical and numerical treatment from each method. The current data
analysis method regulated by the European Community (EC) and China is the moving
average window (MAW) method.

This work aims to analyze the data produced during the four PEMS tests. Firstly, to
analyze the NOx emission of each section (urban, rural and motorway); then, to calculate
the MAW NOx emission under the required boundary conditions; finally, to explore proper
methods to evaluate the real-world NOx emission based on MAW method.

2. Experiments and Materials

Detailed descriptions of the tested vehicle, test instrumentation and route, MAW
method, boundary conditions for a valid PEMS test and data evaluation, judgement rule of
pass-fail for emissions are provided in this section.

2.1. Tested Vehicle

A heavy-duty diesel vehicle (Figure 1a) which was the type approved to the China VI
(step B) standard and registered in August 2019 was used to perform the on-road emissions
measurement (PEMS test).

The tested vehicle which covered 2135.3 km at the beginning of Test 1 was equipped
with the latest aftertreatment technologies comprised of a diesel oxidation catalyst (DOC)
followed by a diesel particulate filter (DPF) in series with a selective catalytic reduction
(SCR) catalyst and an ammonia slip catalyst (ASC) in sequence (Figure 1b,c). There are
two on-board NOx sensors located at the DOC inlet for the engine output NOx measure-
ment and ASC outlet for tailpipe NOx measurement, respectively (Figure 1c). The main
characteristics of the tested vehicle are summarized in Table 1.
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Figure 1. (a) Tested vehicle; (b) aftertreatment configuration (picture of real products); (c) NOx sensors location and
aftertreatment configuration (schematic plot).

Table 1. Summary of vehicle, engine, aftertreatment, fuel and DEF specifications.

Type of Engine XX13600-60

Type of Vehicle Long–Haul
Year of production 2019

Engine rated power 441 kW
Reference Torque 3000 Nm

WHTC Cycle Work 38.72 kWh
Emission standard China VI (step B)

Aftertreatment System DOC + DPF + SCR + ASC
Gross vehicle weight kg

Payload 50%
Category of vehicle N3

Fuel China VI Standard
DEF Adblue (32.5%)

DEF: diesel exhaust fluid.

2.2. Portable Emissions Measurement System (PEMS)

AVL-M.O.V.E-PEMS (Figure 2) consists of tailpipe attachment, heated exhaust lines, ex-
haust flow meter (EFM), exhaust gas analyzers used to measure concentrations of gaseous
emissions (including carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbon
(THC), nitrogen monoxide (NO) and nitrogen dioxide (NO2), etc.), PM module, PN module,
a global positioning system (GPS) from which we can get vehicle speed, latitude, longitude
and altitude, sensors for measuring ambient temperature and humidity, charger, system
control, E-box, etc. NOx concentration is calculated by the sum of NO and NO2 concentra-
tion. The electrical power needed for the PEMS operation (DC 22~28 V) is supplied by two
external batteries.

The PEMS uses flame ionization detection (FID) for THC measurement, non-dispersive
infrared (NDIR) for CO and CO2 measurements, non-dispersive ultra-violet (NDUV)
for NO, NO2 measurement. The EFM uses a pitot tube based on Bernoulli’s principle
to calculate mass flow on the basis of airflow differential pressure measurement. The
measurement principle and measurement range of gaseous emissions are shown in Table 2.

All emissions are measured on a wet basis, so that no corrections are required for
the analysis. The PEMS is warmed up for at least 1.5 h, then zeroed and spanned with
calibration gas before the test.
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Figure 2. Installation of test instrument (AVL-M.O.V.E-PEMS).

Table 2. Measurement principle and measurement range of gaseous emissions for the PEMS used.

Measured Variable Measurement Principle Measurement Range

CO NDIR 0~49,999 ppm
CO2 NDIR 0~20 vol%
NO NDUV 0~5000 ppm
NO2 NDUV 0~2500 ppm
THC FID 0~30,000 ppm

2.3. Test Route

The four PEMS tests were carried out in Suzhou, China along the same route. The
test route shall always start with urban driving followed by rural and motorway driving
specified in the regulation. We conducted the urban section of the route in the city, the rural
and motorway sections on the beltway of Suzhou and a part of the China G2 expressway
(Figure 3).

Figure 3. Topographic map of the PEMS test route.

For N3 category vehicles, the first short trip (referring to the driving process between
the end of one idle speed and the beginning of the next idle speed) with vehicle speed
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exceeding 55 km/h is defined as the beginning of the rural section, and the first short
trip with vehicle speed exceeding 75 km/h is defined as the beginning of the motorway
section. The average vehicle speed of each section shall meet the following requirements:
urban section (≥15 to ≤30 km/h), rural section (≥45 to ≤70 km/h), motorway Section
(>70 km/h). The shares of operation shall be expressed as a percentage of the total trip
duration, and the trip shall consist of approximately 20% urban, 25% rural and 55%
motorway operation. Here, ‘approximately’ shall mean the target value ±5%.

The entire trip duration is decided by the cumulative work performed by the engine.
All the tests considered for the analysis should perform between 4 and 7 times the amount
of work performed over the WHTC cycle of the engine.

Moreover, the proportional cumulative positive altitude gain over the entire trip shall
be less than 1200 m/100 km, the start and the end point shall not differ in their elevation
above sea level by more than 100 m, etc. These requirements were all fulfilled since the test
route was performed in a relatively flat area.

2.4. Moving Averaging Window (MAW) Method

The emissions shall be evaluated by the MAW method, based on the reference work
(the amount of work performed over the WHTC cycle of the engine).

The principle of the calculation is as follows: the mass emissions are not calculated for
the complete data set, but for sub-sets of the complete data set, the length of these sub-sets
is determined by the work measured over the reference laboratory transient cycle (WHTC
for “CHINA VI”).

The moving average calculations are conducted with a time increment ∆t equal to the
data sampling period which was set as 500 ms in the four PEMS tests. The end point of the
test is taken as the starting point of the first MAW shown in Figure 4.

Figure 4. Definition of first and last moving averaging windows (MAWs).

The duration t2,i − t1,i of the ith averaging window is determined by Equation (1):

W(t2,i)− W(t1,i) ≥ Wre f (1)

where:

- W(tj,i) is the cumulative engine work measured between the start and time tj,i, kWh;
- Wre f is the amount of work produced over the WHTC, kWh;
- t2,i shall be selected by Equation (2):

W(t2,i − ∆t)− W(t1,i) < Wre f ≤ W(t2,i)− W(t1,i) (2)

where ∆t is the data sampling period, equal to 1 s or less.
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The brake-specific emissions EFp (g/kWh) shall be calculated for each window and
each pollutant by Equation (3):

EFp =
m

W(t2,i)− W(t1,i)
(3)

where:

- m is the cumulative mass of the pollutant of the window, g/window;
- W(t2,i)−W(t1,i) is the cumulative engine work during the ith averaging window, kWh.

2.5. Boundary Conditions for Data Evaluation

The current PEMS procedure for heavy-duty vehicles is defined by a series of boundary
conditions that prescribes the amount of data to be taken into consideration for the final
analysis including the effectiveness of the test and pass-fail of the pollutants’ emissions.

The main boundary conditions for a valid test are as follows:

• Ambient temperature: between −7 and 38 ◦C.
• Altitude: not more than 2400 m.
• Test route: as abovementioned in “2.3 Test Route” (including trip share and vehicle

speed, etc.).
• Cold start: at the beginning of the PEMS test, the engine coolant temperature shall

not exceed 30 ◦C unless the ambient temperature is higher than 30 ◦C, in this case, the
engine coolant temperature shall not be 2 ◦C higher than the ambient temperature. The
data used for emissions evaluation is recorded after the engine coolant temperature
has reached 70 ◦C for the first time or after the coolant temperature is stabilized within
±2 ◦C over a period of 5 min (whichever comes first but not later than 20 min after
engine starts).

• Payload: 10 to 100% of the maximum vehicle payload.
• Cumulative work: 4~7 times the amount of work performed over the WHTC applica-

ble to the engine used by the tested vehicle.
• Selection of valid windows: the valid windows are the windows whose average power

exceeds the power threshold of 20% of the maximum engine power. The percentage of
valid windows shall be equal or greater than 50%. If the percentage of valid windows
is less than 50%, the data evaluation shall be repeated using lower power thresholds.
The power threshold shall be reduced in steps of 1% until the percentage of valid
windows is equal to or greater than 50%.

• Power Threshold: In any case, the power threshold shall not be lower than 10%,
otherwise, the test shall be void.

• The pass-fail conditions for a valid test are as follows:
• The 90th cumulative percentile of the valid windows emissions shall be less than the

limit required in the regulation (for China VI, NOx limit: 0.690 g/kWh; CO limit:
6 g/kWh; PN limit: 1.2 × 1012 #/kWh);

• NOx concentration is required to be less than or equivalent to 500 ppm for 95% of
valid data points.

3. Results and Discussion

The data set used for emissions evaluation of the four PEMS tests were all recorded
after the engine coolant temperature had reached 70 ◦C for the first time.

3.1. Overall Results

The results of the four PEMS tests conducted on the same route are shown in Table 3.
As it can be seen, the four PEMS tests are all valid.
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Table 3. Results of the four PEMS Tests of the tested vehicle.

Test 1 Test 2 Test 3 Test 4

Altitude not more than 2400 m Yes Yes Yes Yes
Cold start Yes Yes Yes Yes

Average Ambient temperature (◦C) 22.9 20.0 10.4 6.7
Average relative humidity (%) 96.3 69.6 66.2 65.9

Payload (%) 50 50 50 50
Urban first (urban-rural-motorway) Yes Yes Yes Yes

Urban share driving (%) 21.4 21.2 19.8 20.4
Rural share (%) 22.1 27.0 25.1 25.2

Motorway share (%) 56.5 51.7 55.0 54.4
Urban driving average speed (km/h) 25.3 24.4 21.6 23.5
Rural driving average speed (km/h) 55.4 60.9 60.9 57.7

Motorway driving average speed (km/h) 75.5 73.0 75.8 76.5
Odometer (km) 2135.3 10,557.4 47,443.5 82,258.3

Trip distance (km) 168.8 159.1 178.4 145.6
Trip duration (s) 9102 9117 10,009 8183

Total Work (kWh) 195.42 179.66 205.21 175.73
Cumulative work (*WHTCWork) 5.047 4.640 5.300 4.539

Valid MAW Power Threshold (%) 20 17 20 20
Percentage of valid MAWs (%) 61.5 72.3 50.2 64.3

95th NOx concentration (ppm) 245.1 188.0 296.2 416.2
90th cumulative percentile of Valid MAWs

NOx emission (g/kWh)
0.068 0.551 0.438 0.337

Test Valid or not Valid Valid Valid Valid

Test 1 was conducted on 1 September 2019; Test 2, on 8 October 2019; Test 3, on 26
November 2019; Test 4, on 14 January 2020. The payloads of the four PEMS tests were all
50% of the maximum vehicle load (Gross vehicle weight, 28,800 kg). All of the four PEMS
tests started with a cold engine.

The power threshold which shall not be lower than 10% in any case used in the four
PEMS tests was 20%, 17%, 20% and 20% respectively, under this circumstance, the percent-
age of valid MAWs of the four PEMS tests was 61.5%, 72.3%, 50.2%,64.3% respectively. The
90th cumulative percentile of valid MAWs NOx emissions (g/kWh) and 95th cumulative
percentile of NOx concentration (ppm) of the four PEMS tests were all within the required
limit under the boundary conditions described in Section 2.5 in this paper.

In addition, the odometer at the beginning of Test 1, regarded as customer acceptance
testing, was 2135.3 km. The odometer at the beginning of Test 2, regarded as in-service
conformity (ISC) testing, was 10,557.4 km. The vehicle odometer shall be at least 10,000 km
when carrying out the in-service conformity (ISC) testing. As for Test 3 and Test 4, the
odometer at the beginning of the test was chosen to meet the requirements of durability
test of the in-service vehicle.

3.2. Section NOx Emission Analysis

Before the discussion, it had to be known that the engine output NOx concentration
was from the NOx sensor located at the DOC inlet, and the tailpipe NOx concentration
was calculated by the sum of NO and NO2 concentration from gas analyzers of the AVL-
M.O.V.E-PEMS. In this section, we mainly talked about NOx emission characteristics of
each section, especially the urban section.

Figure 5a shows the cumulative mass of engine NOx emission of each section of the
test route, and as it can be seen, the least amount of engine NOx emission was emitted
during the urban section of the test route because of its shortest test duration. Figure 5b
shows the contribution ratio of each section to the total mass of engine NOx emission.
Specifically, the contribution ratio of the urban section was 12.39% in Test 1, 10.91% in
Test 2, 9.04% in Test 3, 8.74% in Test 4. The contribution ratios of the motorway section
were all more than 60% in the four PEMS tests. So, we may conclude that the contribution
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of each section to the total mass of engine NOx emission is positively correlated with the
trip share.

Figure 5. (a) Each section’s cumulative mass of engine NOx emission; (b) each section’s contribution
ratio to the total mass of engine NOx emission.

Figure 6a shows the cumulative mass of tailpipe NOx of each section of the test route,
as it can be seen, the greatest amount of tailpipe NOx emission was emitted during the
urban section in spite of its lowest contribution to the total mass of the engine NOx emission
and shortest test duration. The contribution ratio of urban section to the total mass of
tailpipe NOx emission was as high as 69.10% in Test 1, 45.25% in Test 2, 55.52% in Test 3,
62.54% in Test 4 (Figure 6b). So, we may conclude that the tailpipe NOx emission of urban
section is very terrible for the in-use N3 category heavy-duty vehicles.

Table 4 shows engine output of NOx and tailpipe NOx brake-specific emissions
(BSNOx emission: g/kWh) in each section of the test route.
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Figure 6. (a) Each section’s cumulative mass of tailpipe NOx emission; (b) each section’s contribution
ratio to the total mass of tailpipe NOx emission.

Table 4. NOx brake-specific emissions of each section.

Section Test 1 Test 2 Test 3 Test 4

Engine out
NOx emission

[g/kWh]

Urban 8.162 6.647 8.105 7.114
Rural 6.578 6.640 7.212 6.838

Motorway 6.466 6.610 7.330 6.691
Overall 6.665 6.622 7.363 6.759

Tailpipe
NOx emission

[g/kWh]

Urban 5.054 3.519 5.637 7.388
Rural 0.395 0.370 0.344 0.271

Motorway 0.059 0.502 0.413 0.317
Overall 0.648 0.794 0.811 0.893

As it can be seen, there was a slight difference of the engine out BSNOx emissions
between rural section and motorway section in all of the four PEMS tests. The engine
output of BSNOx emission of urban section is a slightly higher than that of other sections
in Test 1, Test 3 and Test 4, but, in Test 2,the engine out BSNOx emission of each section is
almost the same. For the entire trip, the engine out BSNOx emissions of the four PEMS
tests were 6.665, 6.622, 7.363 and 6.759 g/kWh, respectively.

The tailpipe BSNOx emissions of rural section and motorway section which were
lower than the required limit of NOx emission (0.690 g/kWh) were also lower than that of
the entire trip, but, the tailpipe BSNOx emission of urban section was significantly higher
than that of other sections. For instance, the tailpipe BSNOx emission of urban section
was 8.27 times greater than that of the entire trip in Test 4. For the entire trip, the tailpipe
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BSNOx emissions of the four PEMS tests were 0.648 g/kWh, 0.794 g/kWh, 0.811 g/kWh,
0.893 g/kWh, respectively. So, we may conclude that the real-world NOx emissions may
get worse as the increase of odometer.

Figure 7 shows the instantaneous emissions of the engine output of NOx, tailpipe
NOx and the instantaneous vehicle speed of the entire trip in Test 3. As it can be seen, the
tailpipe NOx concentration is almost close to the engine output of NOx concentration in
the urban section since catalytic converter requires a certain temperature to work efficiently.
A small urea solution injection was registered in the urban section because the temperature
of catalytic converter was not high enough. The data points which conducted urea solution
injection were only 6.3% of the data points recorded in the whole urban section in Test 3
(Figure 8).

Figure 7. The instantaneous emissions of engine output of NOx, tailpipe NOx and vehicle speed of the entire trip in Test 3.

Figure 9a shows the instantaneous engine NOx emission and the vehicle acceleration
profile of the entire trip in Test 3. As it can be seen, there was little abrupt acceleration
during the rural or motorway section because the vehicle speed was relatively stable during
these two sections. Most abrupt positive acceleration occurred during urban section. As
shown in Figure 9b, NOx emission peaks were clearly linked to the vehicle acceleration
peaks during the urban section, that means abrupt positive vehicle acceleration would lead
to worse engine NOx emission. In fact, the urban section of the four PEMS test were mainly
conducted on the city road with traffic jam, roundabouts and traffic light, driving under
these circumstances may lead to more frequent “stop-go” events where abrupt positive
vehicle acceleration would happen.

So, the lower temperature of SCR may lead to a smaller urea solution injection and
more frequent “stop-go” events which may lead to higher engine NOx emission together
would cause higher tailpipe NOx emission in the urban section.

We see clearly from the above discussion that the urban tailpipe NOx emission plays
an important role in the real-world tailpipe NOx emission of N3 category heavy-duty
diesel vehicle.
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Figure 8. The average temperature of selective catalytic reduction (SCR) and the amount of urea
solution injection in Test 3; (a) for entire trip; (b) for urban section.

Figure 9. The instantaneous engine NOx emission and the vehicle acceleration in Test 3; (a) for entire
trip; (b) for urban section.
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3.3. MAW NOx Emission Analysis

In this section, the NOx emission we talk about refers to tailpipe NOx emission and
all the basic data was from the AVL-M.O.V.E-PEMS. The boundary conditions meet the
requirements described in Section 2.5 in this paper.

Table 5 shows the number of MAWs, number of valid MAWs, valid MAWs ratio,
power threshold, 90th cumulative percentile of valid MAWs NOx emission (g/kWh), and
the real NOx emission of the entire trip (g/kWh), and the difference between entire trip
NOx emission and 90th cumulative percentile of valid MAWs NOx emission of the four
PEMS test.

Table 5. Information of MAW and real NOx emission of the four PEMS tests.

Test 1 Test 2 Test 3 Test 4

MAW Number 12,291 12,513 13,742 10,432
Valid MAW Number 7562 9047 6895 6709
Valid MAW Ratio (%) 61.5 72.3 50.2 64.3
Power Threshold (%) 20 17 20 20

90th cumulative percentile of Valid
MAWs NOx emission (g/kWh)

0.068 0.551 0.438 0.337

Real NOx emission of the entire trip
(g/kWh)

0.648 0.794 0.811 0.893

Error 90th Valid MAW to Overall (%) −89.48 −30.59 −45.91 −62.29

The percentage of valid windows was less than 50% when power threshold was 20%,
19%, 18%, respectively in Test 2. So, the final power threshold used to evaluate the NOx
emission in Test 2 was 17%.

There was a great difference between the real NOx emission of the entire trip and 90th
cumulative percentile of valid MAWs NOx emission (g/kWh). The evaluation results of
the four PEMS tests were all lower than the real, the error is −89.48% in Test 1, −30.59%
in Test 2, −45.91% in Test 3 and −62.29% in Test 4. Not only that, the evaluated NOx
emissions were all lower than the required limit (0.690 g/kWh), but for Test 2, Test 3 and
Test 4, the real NOx emissions were higher than 0.690 g/kWh.

Figure 10a shows the distribution, in g/kWh, of the NOx emissions of each MAW
versus the average power (% of maximum engine power) of each MAW during Test 3.
As it can be seen, the data points in the red rectangle are considered in the final analysis
according to the boundary conditions. The higher NOx emissions which are excluded
from the final analysis because of the imposed boundary conditions which are mainly
concentrated in the MAWs whose average power are higher.

Figure 10. (a) MAWs NOx emissions vs. % of maximum engine power of MAWs during Test 3; (b)
MAWs vehicle speed vs. % of maximum engine power of MAWs during Test 3.

Figure 10b shows the average vehicle speed and average power (% of maximum
engine power) of each MAW. The lower the average power of the MAW is, the lower the
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average vehicle speed of the MAW is. As we know, low vehicle speed occurs mainly in the
urban section.

Figure 11 shows the distribution of the urban start position, rural start position,
motorway start position, test end position, start position of the first valid MAW and end
position of the last valid MAW on the timeline. As it can be seen, the end positions of the
last valid MAWs are all located in the rural section of the four PEMS tests, that means the
valid MAWs obtained by the rules described in Section 2.5 in this paper (in accordance
with China VI, GB17691-2018) just represent the emission characteristics of rural and
motorway sections.

Figure 11. Section and first (last) valid MAW distribution information; (a) for Test 1; (b) for Table 2.
(c) for Test 3; (d) for Test 4.

So, if we still want to evaluate the NOx emission by MAW method, the data during
the urban operation must be taken into account for the evaluation and new rules may be
needed. Before that, we have to find main influence factors of the MAW NOx emission.

Figure 12 shows a heatmap that reveals the Pearson correlation coefficient between
the parameters’ mean value or cumulative value of the MAWs in Test 3.
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Figure 12. Heatmap of MAW parameters inTest#3 (Pearson correlation coefficient).

Table 6 shows the parameters which have a strong correlation to MAW NOx emission
according to the heatmap shown in Figure 12. MAW NOx emission is positively correlated
with the window duration, the cumulative mass of NOx emission and the cumulative
fuel consumption of the MAW; moreover, it is negatively correlated with the average
power, NOx conversion efficiency, average vehicle speed, average SCR temperature, urea
consumption and urea-fuel ratio of the MAW.

Table 6. Pearson correlation coefficient of MAW NOx emission.

Test 1 Test 2 Test 3 Test 4

MAW NOx emission [g/kWh]

MAW Duration (s) 0.910 0.739 0.817 0.842
MAW Average Power (kW) −0.800 −0.590 −0.678 −0.730

MAW Cumulative NOx Mass (g) 1.000 1.000 1.000 1.000
MAW DeNOx Efficiency (%) −0.999 −0.998 −1.000 −1.000

MAW Average Vehicle Speed (km/h) −0.876 −0.744 −0.772 −0.775
MAW Average SCR Temperature (◦C) −0.885 −0.641 −0.677 −0.751

MAW Fuel Consumption (kg) 0.995 0.623 0.709 0.807
MAW engine coolant(◦C) -0.871 -0.620 -0.632 -0.672

MAW NOx Emission (g/kWh) 1.000 1.000 1.000 1.000

3.4. The Exploration of Evaluation Methods

The parameters which have a strong correlation to MAW NOx emission including the
MAW duration, the MAW average power, the MAW average vehicle speed, etc. (Table 6)
may help us clearly distinguish urban section from rural and motorway sections. Therefore,
in order to guarantee the objectivity and accuracy of the evaluation, referring to the baseline
already described in Section 2.5 in this paper, three different methods (Method 1~3) were
applied to extend the regulatory boundary conditions, details were as follows:

Method 1—in accordance with the baseline except power threshold (PT), and setting
the PT as 10% for valid MAWs.

Method 2—in accordance with Method 1 except using the 90th cumulative percentile of
the valid MAWs emissions as the result of the PEMS test. Instead, according to the average
vehicle speed of the MAWs, redefining the MAWs as “Motorway MAWs” (>70 km/h),
“Rural MAWs” (≤70 km/h and ≥reference vehicle speed) and “Urban MAWs” (<reference
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vehicle speed), where, the reference vehicle speed is equal to the average vehicle speed
of the rural section of the PEMS test. More than that, distributing weighting factors to
“Motorway MAWs” (0.55), “Rural MAWs” (0.25), and “Urban MAWs” (0.2) according to
the required trip share. The final evaluation results shall be calculated by Equation (4):

EF = 90%ileEFUrban MAW ∗ 0.2 + 90%ileEFRural MAW ∗ 0.25 + 90%ileEFMotorway MAW ∗ 0.55 (4)

where: 90%ile is 90th cumulative percentile.
Method 3—in accordance with Method 1 except using the 90th cumulative percentile

of the valid MAWs emissions as the result of the PEMS test. Instead, redefining the
MAWs according to the average engine coolant temperature of the MAWs as “Cold MAWs”
(<reference engine coolant temperature) and “Hot MAWs” (≥reference engine coolant
temperature), where, the reference engine coolant temperature is equal to the average
engine coolant temperature of the entire trip. At the same time, distributing weighting
factor to “Cold MAWs” (0.14), “Hot MAWs” (0.86) referring to the WHTC rules. The final
evaluation results shall be calculated by Equation (5):

EF = 90%ileEFColdMAW ∗ 0.14 + 90%ileEFHotMAW ∗ 0.86 (5)

where: 90%ile is 90th cumulative percentile.
Due to the uncertainty of the PEMS test procedures, such as trip share, vehicle speed

or cumulative work, etc., it is hardly for us to find a constant “Reference Value” to ensure a
better universality of Method 2 or Method 3, so, the key point of these two methods were
to find a proper “Reference Value”. Our data analysis revealed that the average value of a
certain section of the test or the entire trip may be a good choice.

Table 7 shows the evaluation results of the Method 1~3, As it can be seen:

Table 7. The results of the Method 1~3.

Method Parameters Test 1 Test 2 Test 3 Test 4

—— Real NOx emission of the entire trip (g/kWh) 0.648 0.794 0.811 0.893

Method 1

Power Threshold (%) 10 10 10 10
NOx emission by Method 1 (g/kWh) 1.43 0.611 0.645 1.203

Error1 (Method 1 to Real NOx emission) 120.7% −23.1% −20.4% 34.6%
MAW Number 12,291 12,513 13,742 10,432

Valid MAW Number 12,291 12,513 13,742 10,432
Valid MAW Ratio 100% 100% 100% 100%

Method 2

Power Threshold (%) 10 10 10 10
NOx emission by Method 2 (g/kWh) 0.619 0.773 0.833 0.812

Error2 (Method 2 to Real NOx emission) −4.5% −2.7% 2.8% −9.1%
Reference Vehicle Speed (km/h) 55.4 60.9 60.9 57.7

Method 3

Power Threshold (%) 10 10 10 10
NOx emission by Method 3 (g/kWh) 0.661 0.784 0.763 0.955

Error3 (Method 3 to Real NOx emission) 2.0% −1.2% −5.9% 6.9%
Reference Engine Coolant Temperature (◦C) 78.0 80.8 80.4 80.1

For Method 1, when the power threshold (PT) was set as 10%, all of the MAWs of the
four PEMS tests were valid, and the data produced during the entire trip was taken into
account for the evaluation. Even so, there was also a great difference between the real NOx
emission of the entire trip and 90th cumulative percentile of valid MAWs NOx emission
(g/kWh), not only that, both positive error and negative error were existed. The error was
as high as 120.7% in Test 1, −23.1% in Test 2, −20.4% in Test 3, 34.6% in Test 4. So, we may
conclude that just reducing the power threshold (PT) may be not useful enough for an
objective evaluation.

For Method 2, the average vehicle speed of rural section of the test was used to
distinguish “Urban MAWs” and “Rural MAWs”, that because, for N3 category vehicles,
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there may be no MAW during the urban operation only. As shown in Figure 13, the
cumulative work of urban section of each PEMS test was less than the work performed
over the WHTC cycle (38.72 kWh). So, for the four PEMS tests, no MAW was merely
composed by the urban operation. The less the cumulative work of urban section, the more
the data produced in rural section and used to compose the last MAW.

Figure 13. Cumulative work of each section of the four PEMS tests.

Figure 14 shows the distribution of the redefined MAWs of the four PEMS tests by
Method 2. As it can be seen, the worse polluting windows were categorized as “Urban
MAW”, most MAWs were categorized as “Motorway MAW” because of its longest test
duration and maximum cumulative work. The error between the real NOx emission of the
entire trip and the NOx emission evaluated by Method 2 was −4.5% in Test 1, −2.7% in
Test 2, 2.8% in Test 3 and −9.1% in Test 4.

Figure 14. Distribution of the redefined MAWs of the four PEMS tests by Method 2; (a) for Table 1.
(b) for Test 2; (c) for Test 3; (d) for Test 4.

For Method 3, the average engine coolant temperature of the entire trip was used to
distinguish “Hot MAWs” and “Cold MAWs”. As shown in Figure 15, the engine coolant
temperature generally rose gradually and then stabilized around a certain value after
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the engine coolant temperature had reached 70 ◦C for the first time during a PEMS test.
Usually, there was no urea solution injection during the “rising period”. So, we renamed
the “rising period” as “Cold Operation”. Via the data analysis, we found that taking the
average engine coolant temperature of the entire trip as the “Reference Value” would lead
to an exciting result.

Figure 15. The instantaneous engine coolant temperature and urea solution injection of the entire
trip; (a) for Test 1; (b) for Test 2; (c) for Test 3; (d) for Test 4.

Figure 16 shows the distribution of the redefined MAWs of the four PEMS tests by
Method 3, only a few of MAWs were regarded as “Cold MAWs” which had worse NOx
emission. The error between the real NOx emission of the entire trip and the NOx emission
evaluated by Method 3 was 2.0% in Test 1, −1.2% in Test 2, −5.9% in Test 3 and 6.9% in
Test 4.

Figure 16. Distribution of the redefined MAWs of the four PEMS tests by Method 3; (a) for Test 1; (b)
for Test 2; (c) for Test 3; (d) for Test 4.

To sum it up, the performance of Method 2 or Method 3 was much better than Method
1, and the evaluation errors of Method 2 or Method 3 were all within ±10% (Table 7),
that meant vehicle speed and engine coolant temperature could be used as the assistant
parameters to classify the MAWs for better heavy-duty vehicle real world NOx emission
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evaluation. At the same time, we may conclude that a method that could represent the
characteristics of each section (such as “urban section”, “cold section”) of a PEMS test shall
be adopted for the emissions evaluation.

4. Conclusions and Outlook

This study had presented and analyzed the data produced by four valid PEMS tests of
a China VI (step B), N3 category heavy-duty diesel vehicle. The conclusions of the present
study can be summarized to the following:

• The highest tailpipe NOx emissions including the cumulative mass and the brake-
specific emission were invariably found during urban operation, which was of great
concern for urban air quality and human health. This was mainly because the SCR
temperature of the catalytic converter was not high enough to ensure the urea solution
injection in most of urban operation. Therefore, heating up SCR rapidly may be an
effective means to reduce NOx emission in the urban section.

• For N3 category vehicle, the data producted during the urban section of a PEMS test
was excluded from emissions analysis by MAW method due to the higher power
threshold (20%) required by boundary conditions. Therefore, a lower power threshold
should be used or power threshold boundary should be avoided.

• There was a great difference between the real NOx emission of the entire trip and
90th cumulative percentile of valid MAWs NOx emission(g/kWh)whether the power
threshold was set as 10% or 20%.

• The 90th cumulative percentile of valid MAWs NOx emission just represents the
emission characteristics of certain sections (rural and motorway for N3 category
vehicles) of a PEMS test rather than the entire trip. So, average vehicle speed of the
MAWs was used to categorize the MAWs into “Urban MAWs”, “Rural MAWs” and
“Motorway MAWs”; average engine coolant temperature of the MAWs was used to
categorize the MAWs into “Hot MAWs” and “Cold MAWs”. The evaluation results of
the NOx emission of these two kinds of categorized MAWs were close to the real NOx
emission, and the errors were all within ±10%.

In this work, we had pointed out the insufficient of the current evaluation method
for heavy-duty vehicle real world NOx emission. Future studies should focus on the
following aspects:

• The control and evaluation for NOx emission of cold start (engine coolant temperature
less than 70 ◦C) or low load operation conditions.

• More individualized boundary conditions or MAW rules for the real-world NOx
emission of each category vehicle, such as the definition of power thresholds (PT),
valid MAW, weights factors, etc.

• The real amount (g, g/kW.h or g/km) of heavy-duty diesel vehicles’ real world NOx
emission, especially the urban section.
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Abstract: Air quality monitoring network (AQMN) plays an important role in air pollution man-
agement. However, setting up an initial network in a city often lacks necessary information such
as historical pollution and geographical data, which makes it challenging to establish an effective
network. Meanwhile, cities with an existing one do not adequately represent spatial coverage of
air pollution issues or face rapid urbanization where additional stations are needed. To resolve
the two cases, we propose four methods for finding stations and constructing a network using
Euclidean distance and the k-nearest neighbor algorithm, consisting of Euclidean Distance (ED),
Fixed Surrounding Sphere (FSS), Euclidean Distance + Fixed Surrounding Sphere (ED + FSS), and
Euclidean Distance + Adjustable Surrounding Sphere (ED + ASS). We introduce and apply a coverage
percentage and weighted coverage degree for evaluating the results from our proposed methods. Our
experiment result shows that ED + ASS is better than other methods for finding stations to enhance
spatial coverage. In the case of setting up the initial networks, coverage percentages are improved
up to 22%, 37%, and 56% compared with the existing network, and adding a station in the existing
one improved up by 34%, 130%, and 39%, in Sejong, Bonn, and Bangkok cities, respectively. Our
method depicts acceptable results and will be implemented as a guide for establishing a new network
and can be a tool for improving spatial coverage of the existing network for future expansions in
air monitoring.

Keywords: Euclidean Distance; spatial coverage; air quality monitoring network; sustainability mon-
itoring

1. Introduction

Air quality monitoring networks (AQMN) are established as tools that determine
policies and strategies for achieving air quality standards. A plan for designing an AQMN
depends on objectives such as urban planning, environmental policies, and budget. Gener-
ally, designing an AQMN is done by environmental authorities or governmental organi-
zations based on empirical judgments. An expert group assesses various criteria to make
their decisions, such as budget and population thresholds. These play a significant role
in determining the required number and location of monitoring stations. For example,
Thailand and South Korea set up air monitoring stations in government office areas to
reduce the cost of installation, maintenance, and the safety of the devices [1,2]. Guidelines
of the USA and Australia suggest installing new air quality monitoring stations based
on population size [3,4]. In such cases, monitoring stations are often considered in an ad
hoc fashion.

The critical issues in AQMN designing are separated into a setting up network for
allocating optimum stations and optimizing the existing network to better reflect air quality
in the area. There are different methods to design a new network, all of which must
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comply with the Environmental Protection Agency (EPA) guideline or local government
regulations [5]. Furthermore, various studies mainly consider pollution data, population
density, land-use regression, distance to major roads, and high-risk observation regions to
identify new air quality monitoring stations [6–10]. Some studies investigated pollution
indicators in the area surrounding stations [11–13]. Such a zone is called a sphere of
influence (SOI) and the original algorithm was developed by Liu et al. in 1986. Their
proposed method uses air pollution data to determine spatial coverage and the number of
air monitoring stations [14].

Optimization, evaluation, and revision of existing AQMN to meet changing local area
pollution levels has been an important research topic over the past few decades [15–18].
The main cause regarding the distribution of air pollution and emission source changed
caused by urbanization. The rapid expansion of the urban areas in developing countries of
Asia leads to air quality monitoring issues such as excessive numbers of stations in urban
regions and a lack of adequate numbers of stations in rural areas [19]. Consequently, several
approaches have suggested adding or removing stations by considering various constraints
such as population density, historical pollution data, terrain conditions, budget, and health
impact. They use statistical analytics, weight criteria, holistic approaches, data simulation,
and pure measurement for AQMN optimization [20–22]. Moreover, some studies apply
terrain maps, heat maps, gridded synthetic assessment, and graphical information systems
(GIS) to show high pollution concentration areas. They analyze pollution criteria and
combine them with spatial statistics to determine suitable areas to recommend for station
location sites [23–27].

However, studies of optimal designs or revision of AQMN in less developed countries
(LDCs) are relatively scarce. Such studies in the literature are mostly related to minimizing
air pollution’s health impact [28,29]. The LDCs have different issues than in developed
countries, such as limited budgets to establish the stations, lack of historical pollution data,
and requirements that demand air pollution monitoring cover vast areas. All of these
constraints are critical factors for AQMN design [30]. Therefore, recommending the station
location to cover a prospective land use expansion has an important key role for sustainable
development of air pollution control and helps assess air pollution’s spatial variability for
better monitoring of air quality [31].

Previous studies attempted to design air monitoring networks by considering specific
air pollution concentration, cost, population data, and other parameters, while spatial
coverage was ignored. Such a design methodology causes station locations to have high
density in some particular regions, especially in urban areas. It does not distribute coverage
to rural areas with a sufficient number of stations. The incremental building of air quality
monitoring in urban areas can make better monitoring of the specific areas. However,
it leads to an increase in installation and maintenance costs, which is one of the main
constraints for designing a dense air quality monitoring network. Furthermore, none
of the methods in previous studies mentioned designing an AQMN without historical
pollution data or city characteristics data. Furthermore, it is important to consider that the
air monitoring networks designed are not only for use today but also for urban expansion
in the future.

We organized the rest of the paper as follows. Problem formulation is introduced in
Section 2. We describe the study areas in Section 3. In Section 4 proposes four methods for
finding the best next station, which includes algorithms and equations. In Section 5, the
evaluation criteria will be explained. The results of the proposed methods are compared
and discussed in Section 6. Finally, Section 7 draws our conclusion and suggests possible
future work.

2. Problem Formulation

The studied problem is based on finding the next stations to achieve maximum spatial
coverage. We apply the concept of Euclidean Distance and the k-nearest neighbor algorithm
(k-NN) to calculate the distance between station neighbors. The objectives are set up a
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network and improve an existing network. In the preparation process, we divide map of
study areas into a square of a grid and identify latitude longitude pairs at the centroid of all
grids. Such geographic coordinates are used to calculate the distance. Given only a study
area map and a specified number of stations, how can one calculate and recommend the
stations to achieve maximum spatial coverage? The objective is to find the stations which
meet the following constraints:

(i) Achieve maximum spatial coverage while maintaining proper overlapped area be-
tween the nearest-neighbors’ stations

(ii) Propose methods without using historical pollution and city characteristics data.

The proposed method was tested and demonstrated in three real cities and compared
with existing network coverage. This study can provide recommendations for environmen-
tal authorities or city planners to select the stations for increasing spatial coverage of air
quality monitoring.

3. Study Areas

This study used three cities—Sejong: South Korea, Bangkok: Thailand, and Bonn:
Germany—as the primary research areas. The three cities are developed smart city pro-
totypes facing urban expansion shortly. Another reason for our choices is that the three
regions have different sizes and shapes. The sizes of the cities in ascending order are Bonn,
Sejong, and Bangkok, respectively. Because the size of Sejong is in the middle, we chose
Sejong city as the primary implementation, and the other two cities are used as test cases.
Our study areas are described in this section.

Sejong city is located almost the middle of Korea on a long, stretching mainly north
to south. The population was about 350,000 in October 2020, and the size of Sejong city is
465.23 km2. Sejong was specifically designed to be a smart city, so it serves as an example
of the standard for the other cities experimenting with developing smart city infrastructure.
Sejong city has four air quality monitoring stations, as shown with triangle symbols in
Figure 1a. For this study, the whole area of the city is divided into 2024 grid cells of
500 × 500 m, as shown in Figure 1d.

 

 

Figure 1. Study areas (a–c) show administrative boundaries, and triangle symbols show current stations. The map regions
(d) divided into 2024 grid cells in Sejong city.

Bangkok is the capital city of Thailand. The city is located in almost the middle of
Thailand and occupies 1568.7 km2. Because this city has the highest population density in
Thailand, Bangkok city has an air pollution problem from traffic and energy consumption.
There are 12 air quality monitoring stations from the pollution control department, which

77



Appl. Sci. 2021, 11, 848

are depicted with the triangle symbols, as shown in Figure 1b. Our experiment divided the
area of Bangkok into 7010 grid cells of the same size as we used for Sejong city.

Bonn city is located in western Germany and occupies 141.06 km2. This city is one
of eight major smart cities studied and one of two cities that will now access their brand
new 5G network. Bonn has only one air quality monitoring station, which is located in
the north of the city. Figure 1c shows the map and location of the air quality monitoring
station in Bonn. Furthermore, for our experiment, the whole area of the city is divided into
653 grid cells.

4. Proposed Methods

In this study, finding optimal stations’ main target goal is achieving the maximum
spatial coverage while still preserving appropriate overlapping areas. The maximum
spatial coverage designed can be realized through the optimal placement of the stations in
the city. Moreover, maintaining a relevant overlapped area can enhance effectiveness for
more reliable and accurate data collection. Accordingly, in this section, we proposed finding
the stations based on the Euclidean Distance and the k-nearest neighbor’s algorithm (k-
NN). The proposed methods framework consists of four main methods and two evaluation
criteria, as shown in Figure 2.

 

M1: Euclidean Distance (ED) M3: Euclidean Distance + 

Fixed Surrounding Sphere 

(ED + FSS) 

M4: Euclidean Distance + 

Adjustable Surrounding Sphere 

(ED + ASS) 

M2: Fixed Surrounding Sphere (FSS) 
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Network 
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Figure 2. The framework of proposed methods.

In the proposed framework, our input consists of a map and parameters. The map of
the study area is divided into a square of continue grid. A centroid of each square grid is a
point that consists of latitude-longitude coordinates. For simple understanding throughout
this paper, we use the term “location” (Li), i = 1 . . . N to represent the centroid of a grid. The
parameters consisted of (i) a grid index at the center of the map, (ii) a specified number of
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stations, and (iii) the diameter length of the surrounding sphere of each station as described
in Section 6.1. Next, we give stations in area A, which consist of η stations. The value
S = {Sj, . . . , Sη} is a list of stations. Each station Sj, j = 1 . . . η is at a location in our study
area. All of the input will use to calculate by our proposed methods.

M1: Euclidean Distance (ED) and M2: Fixed Surrounding Sphere are the initial
method for finding the next stations. The M3 method is a combination of previous methods.
The M4 is an upgraded version of M3. Our evaluation criteria, coverage percentage
(COV), and weighted coverage degree (WCD) are used to evaluate the results from the
methods then return the optimal network. The comprehensive methods are described in
the following sections.

4.1. Euclidean Distance (ED)

In this study, we apply the Euclidean Distance function to calculate distance from
location (Li) to three nearest neighbor stations {NS1, NS2, NS3}, as illustrated in Figure 3.
We use k-NN (k = 3) because the nearby stations can exchange data reliability with existing
stations. Let NS1, NS2, and NS3 be members of the set of nearest neighboring stations of Li,
where Li is a position to calculate EDi. We calculate the Euclidean Distance (EDi) at any
Li as:

EDi =

√

(

DLi , NS1

)2
+
(

DLi ,NS2

)2
+
(

DLi ,NS3

)2 (1)

 

 ݀݉௦

 

Figure 3. The location of Li and its nearest neighbor stations NS1, NS2, and NS3.

EDi denotes Euclidean Distance at Li, where i is an index of the location, and each
parenthesized value is the distance from Li to NS1, NS2, and NS3, respectively. If k < 3, then
we adapt the equation by using only existing stations. For example, if k = 2, then DLi ,NS3 is
equal to zero. Thus, EDi is calculated using only DLi ,NS1 and DLi ,NS2 .

In order to calculate and find the next station, the following definitions are used. Let S
denote a list of stations in a network and let Lt be a candidate station to be evaluated for
the possibility of it being the next station. Thus, the current station network is S + Lt. Here,
we calculate EDi according to Equation (1). Subsequently, we sum EDi values as:

TEDLt
=

N

∑
i=0

EDi (2)

TEDLt denotes the total of EDi, where Lt is a candidate for the next station, and N
is the number of locations. The candidate with the lowest TEDLt will be defined as the
additional station.
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4.2. Fixed Surrounding Sphere (FSS)

The fixed surrounding sphere (FSS) method was inspired by the original sphere of
influence (SOI) [12]. We applied such an idea for determining the area surrounding each
station without using pollution concentration data. The constant value is identified to a
diameter length of FSS with reference to city air quality monitoring network designing
in Seoul city [2]. In Seoul’s existing air monitoring network, the 25 stations are located
approximately 5 km away from each other. They are not located close to the road, high
emission concentration sources, or high-density population areas. On the other hand,
these stations are distributed throughout the city. Consequently, we predefined a fixed
diameter (dms) of FSS to divide the covered and non-covered areas under stations. As
shown in Figure 4, the triangle symbols represent stations. The surrounding covered area
of the stations is illustrated as a circle shape in Figure 4a and a pie shape in Figure 4b by
determining a diameter length. The areas outside represent the non-covered areas. The
shapes depend on the position of stations on the map. However, such areas are defined as
covered areas, although the shapes of the areas are different.

 

 

 ݀݉௦

 

(a)                      (b) 

Figure 4. The (a) circle and (b) pie shapes indicate the covered areas by stations at the different positions on the map by
determining a diameter length.

The procedure to classify the covered and non-covered areas under a station are
described in this subsection. Let station Sj be a location of station and the diameter of Sj

be equal to dms. The location (Li) is covered (monitored) by a station Sj when the distance

from Li to Sj is less than dms
2 and also such Li will be members of all covered areas for Asj.

Equation (3) represents the probability p(Li,Sj) that a location is covered by station Sj.

p
(

Li, Sj

)

=

{

1 : “covered area”, i f distance(Li, Sj) ≤ dms
2

0 : “non − covered area”, otherwise
∈ ASj (3)

i is the index of location from 0 to N − 1, where N represents the number of locations
in area A, and j provides an index of stations in S.

The Algorithm 1 Fixed Surrounding Sphere (FSS) can be described as follows:
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Algorithm 1. Fixed Surrounding Sphere (FSS)

ௗೞଶ
p൫ܮ, ܵ൯ =   ൝  1: “ , ܮ)݁ܿ݊ܽݐݏ݅݀ ݂݅ , ܵ)  ≤  ݀݉௦20: “ , ∋             ݁ݏ݅ݓݎℎ݁ݐ  ௌܣ 

−

 Input: Map; a specified number of stations; index of center of map; 

 1: Identify the first station at center of map and insert into station list S = {S1}. 

 2:  while a specified number of stations is not satisfied do 

 3:   while all Lt in the non-covered area have not been tried do 

 4:    Select candidate station (Lt) and we temporarily append Lt to the station list S. 

 5:    Classify covered and non-covered areas of S with Equation (3). 

 6:    Calculate the total of the non-covered area and pass value to the #poor variable. 

 7:    Remove the temporarily added Lt from S. 

 8:   end while 

 9:   #poor values are compared.  

 10:   The Lt with the smallest value of #poor will be chosen as the next location of station. 

 11:   Lt is permanently appended to the station list S. 

 12:  end while 

 13: return List of stations S. # The output is a list of stations with the first station at S1. For examples: 

 14:      # S = {S1, La, Lb, …, Lƞ} 

4.3. Euclidean Distance + Fixed Surrounding Sphere (ED + FSS)

This method combines the concepts Euclidean Distance (ED) and Fixed Surrounding
Sphere (FSS). However, the difference between this method and the previous one is the
location of the first station. For ED and FSS, the first stations are set at the center of the map,
while for ED + FSS, all map locations are tried as a first station. The output of this method
is a multi-list of stations in which the first stations are different. Consequently, further
evaluation criteria have been introduced to evaluate the best network with a maximum of
spatial coverage.

We divide ED + FSS into two processes: (i) finding the next stations and (ii) evaluating
a maximum coverage percentage while still preserving an appropriate overlapped area
for the network. The first process, finding the next stations, is described with Algorithm 2
Euclidean Distance + Fixed Surrounding Sphere (ED + FSS) as follows:
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Algorithm 2. Euclidean Distance + Fixed Surrounding Sphere (ED + FSS)

 Input: Map; a specified number of stations; 

 1: For each Li in map do 

 2:  select Li and insert into station list, S = {Li}. 

 3:   while a specified number of stations is not satisfied do 

 4:    while all Lt in the non-covered area have not been tried do 

 5:     Select candidate station (Lt) and we temporarily append Lt to the station list S. 

 6:    Classify covered and non-covered areas of S with Equation (3). 

 7:    Calculates TEDLt with Equation (2) and stores the current TEDLt value in a list. 

 8:    Remove the temporarily added Lt from S. 

 9:   end while 

 10:   Compare TEDLt value in a list  

 11:   The Lt with the smallest value of TEDLt will be chosen as the next location of station. 

 12:   Lt is permanently appended to the station list S. 

 13:  end while  

 14:  Store station list S into multi-list  

 15: end for  

 16: return Multi-list of stations. 

 17:    # The output is multi-list of stations. For examples:  

 18:    # {Si = {Li, La, Lb, …, Lη}, Si+1 = {Li+1, Lc, Ld, …, Lη}, …, SN = {LN, Le, Lf, …, Lη}} 

= ݊݅ݐ݅ݏ ݂݂ ݐݑܥ ݅ݐܽݎ)݀݊ݑݎ   ×                ((ݐݏ݈݅) ℎݐ݈݃݊݁

After we obtain a multi-list of stations, the next process is to evaluate the maximum
coverage percentages of all Sx. The ED + FSS will use two criteria, Coverage Percent-
age (COV) and Weighted Coverage Degree (WCD), for selecting the best network. The
descriptions of COV and WCD criteria are outlined in Section 5.

4.4. Euclidean Distance + Adjustable Surrounding Sphere (ED + ASS)

This method is an upgrade from ED + FSS. We change from using a fixed diameter to an
adjustable diameter, which depends on a station’s covered area proportion. Our proposed
method considers economic benefits based on deployment costs and station location with
the highest spatial coverage for a specified number of economically feasible stations. The
covered area proportion can be adjusted as needed. For example, if the environmental
authority has a budget limit for establishing monitoring stations, an arbitrary ratio can
be predefined as 50% or 70%. On the other hand, if they require high spatial resolution
monitoring or an unlimited budget, the ratio can be predefined as 10% or 30%.

As a warmup to ED + ASS, we select a station at the center of the map (Scenter) for
calculating the length of the diameter. Next, we calculate EDi from all locations (Li) on map
to the Scenter with Equation (1). We pass all the EDi values into a list. Subsequently, we
sort the obtained list in ascending order, which means that locations closer to the station
with lower EDi values will be at the beginning of the list. The cut off position corresponds
to an arbitrary ratio, as mentioned above. We calculate the cut off position value with
Equation (4).

Cut o f f position = round(ratio × length (list)) (4)
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ratio is predefined covered area proportion of the station, length (list) is equal N where N
represents the total number of locations in area.

In the sorted list, we access the index of the list at the cut off position and get the
value of that EDi value. The value of EDi is multiplied by two and defined as a diameter
length of the ED + ASS method. Once, we have obtained the diameter length, and then we
can continue the procedure of establishing the station network and evaluating the global
maximum coverage of the station network in the same way as we did with ED + FSS.

5. Evaluation Criteria

In ED + FSS and ED + ASS, there is a multi-list of station networks with different
first locations that must be processed to evaluate the maximum coverage percentage.
Consequently, in order to find the best station network, the evaluation criteria are designed
and described next.

5.1. Coverage Percentage (COV)

The covered area of stations (AS) can be determined using Equation (3). Given the
list of stations S located in a study area, we can assess the k-coverage when a location
is covered by at least k different stations. The parameter k is called Coverage Degree. It
means at least k stations cover each location in the study area. There are previous studies
of wireless network coverage that have discussed the required k value of a network. Such
studies explain a proper value of k that depends on the application. For example, an
application requires k = 1 in a monitoring environment in which fault tolerance is not
important. Meanwhile, k > 1 should be used when stronger monitoring is required, such
as in an industrial or dangerous chemical region. Furthermore, in cases requiring fault
tolerance, k ≥ 3 is required. Therefore, it is clear that the station networks with higher
k-coverage are more reliable [32,33].

Suppose that there are four stations. The circle shapes represent covered areas of
a station and × symbols represent Li for coverage degree assessment. If × symbols are
within the covered areas of one station, then we define such Li as a C1. If × symbol lies
within the covered areas of two, three, and four stations, then it is denoted by C2, C3, and
C4 as shown in Figure 5a–d, respectively. The area outside the circle is defined as a C0,
which means it is a non-covered area.

≥

 

௧ ܸܱܥ  =  100 ×  ∑ ୀଵܰܥ              

                   

(a)               (b)                  (c)                   (d) 

C0 

Figure 5. The example of coverage degree, (a–d) indicate the covered areas by one, two, three, and four stations.

We calculate the coverage percentage using the count Li in each of the coverage degrees.
The coverage percentage (COV) is used to evaluate results in our proposed methods and
can be calculated with Equation (5).

COVpercentage = 100 × ∑
k
i=1 Ci

N
(5)

Ci denotes the summation of Li in coverage degree, i is k-coverage number, k indicates
a number of stations in the network, and N is total number of locations in study area A.

83



Appl. Sci. 2021, 11, 848

5.2. Weighted Coverage Degree (WCD)

Weighted coverage degree (WCD) is an additional criterion. It is used whenever
COV cannot give a unique answer to the best network. The WCD corresponds to number
of stations and k-coverage. For example, if the study area has four stations, here the
k-coverage k = 4 (coverage degree: C0, C1, C2, C3, C4) and the weight has five values of
coverage degree. We calculate the weight value by employing the Divide and Conquer
concept. The ∑Wi is a value equal to one. The Wk is calculated from ∑Wi divided by
two. The next weight value at Wk-i will decrease from the previous by half, which means
Wk-i = Wk divided by two. The weight calculation is done continuously until the last
weight at W0 is set equal to W1. Table 1 is an example of weight value generation when the
coverage degree is equal to 4. The WCD can be calculated by coverage degree weighting
with Equation (6).

WCD = 100 × ∑
k
i=0 WiCi

N
(6)

Table 1. Example of weight generation.

Coverage Degree C4 C3 C2 C1 C0 C4

Weight, ∑Wi = 1 W4 = 0.5 W3 = 0.25 W2 = 0.125 W1 = 0.0625 W0 = 0.0625 W4 = 0.5

Wi is a weight value and ∑Wi = 1, i ǫ {0, 1, 2, . . . , k}, k indicates a number of stations
in the network, and the weights are associated to Coverage Degree (Ci).

6. Results and Discussion

This section explains the parameters used in the experiment and compares each
method’s pros and cons. In scenario 1, setting up a network by considering four cases as
following, (i) spatial coverage, (ii) performance of coverage percentage versus the number
of the stations added incrementally, (iii) coverage percentage versus a specified number of
stations, and (iv) flexibility to apply our methods to different cities. In scenario 2, finding
an additional station to improve the current network is evaluated.

6.1. Experimental Parameter Settings

The parameter settings are shown in Table 2. The area size (A) is the number of
locations in study areas. The centers of the maps are located at indices 1056, 3516, and 218
for Sejong, Bangkok, and Bonn. The specified number of stations is equal to the existing
stations in the cities. The diameter length of the M3: ED + FSS is a fixed value of ten
kilometers and the M4: ED + ASS is predetermined. We consider the proportion of covered
area from reasonable based on the number of existing stations, as shown in Figure 6. Finally,
we determined that 30% is a proper value for our experiment.

Table 2. Experiment Parameter Setting.

Parameters Sejong Bangkok Bonn

Area size (A) 2024 7010 653
Index of the center of the map 1056 3516 218

Number of stations 4 12 1
Diameter length of FSS (dms) 10 km. 10 km. 10 km.

Diameter 1 length of ASS (dms) 14.2 km. 25.4 km. 8.6 km.

1 Diameter calculation is based on proportion with a covered area of 30% for the cities.
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      (a) 10%                    (b) 30%                   (c) 50%                   (d) 70% 

Figure 6. Depicts the proportion of covered area in 10%, 30%, 50%, and 70% (a–d), respectively.

6.2. Assessment of Scenario 1: Setting Up a Network

6.2.1. Spatial Coverage

Table 3 shows M1: ED, M2: FSS and compares them with the existing stations in
Sejong city. In Table 3, triangle symbols depict existing stations, and circles represent the
spatial coverage. Let us consider a result in M1: ED, where we defined the first station at
the center and used four stations as input parameters. The output from M1: ED is shown
in Table 3 (b). Three stations are located near each other, but one station is located far away
from its neighbors. We found significant inefficient spatial coverage in that case because
almost all covered areas overlap. The COV of M1: ED is 57%, which is a 16% decrease in
the current value, and WCD shows a value of 12.58, which increased 48% when compared
with the current value. Next, consider the result in M2: FSS; we used the input parameters
as same as M1: ED except adding a fixed diameter of ten kilometers to be used in the
calculation. The result shows that most stations are located apart from the first station at the
center, as shown in Table 3 (c). As a result, M2: FSS achieves the best coverage percentage
up to 91% and an increase of 34% compared to the current value. On the other hand, the
WCD value shows 7.44, which decreased by 13%.

Table 3. The existing stations and the results of stations, coverage percentage, and weighted coverage degree of two
methods: M1: ED and M2: FSS.

Current M1: ED M2: FSS

Map of Sejong city
and

Stations

 

 

 
−

 
−

(a)
 

 

 
−

 
−

(b)
 

 

 
−

 
−

(c)

1. Coverage Degree & Weight

C0: 655
C1: 774
C2: 527
C3: 67
C4: 1

W0: 0.0625
W1: 0.0625
W2: 0.125
W3: 0.25
W4: 0.5

C0: 877
C1: 526
C2: 44
C3: 508
C4: 69

W0: 0.0625
W1: 0.0625
W2: 0.125
W3: 0.25
W4: 0.5

C0: 183
C1: 1513
C2: 299
C3: 29
C4: 0

W0: 0.0625
W1: 0.0625
W2: 0.125
W3: 0.25
W4: 0.5

2. Coverage Percentage (COV) 68%
57%

(−16%)
91%

(+34%)

3. Weighted Coverage Degree
(WCD) value

8.52
12.58

(+48%)
7.44

(−13%)

The M1: ED shows large overlapping areas which make a strengthened area with
neighboring stations. The area of overlap can make data more reliable in case of data
verification between neighboring stations and also produce a network which is fault
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tolerant. We denominate such overlap areas as confidence areas because they can enhance
data reliability. However, this method shows spatial coverage weaknesses. In contrast, M2:
FSS shows achieving good spatial coverage which can cover an area up to 91% in the case
of four stations in Sejong city. For the spatial coverage assessment, it is possible to conclude
that M2: FSS is better than M1: ED.

6.2.2. Performance of Coverage Percentage Versus the Number of Stations
Added Incrementally

Our previous result when establishing four stations using M2: FSS shows a high
coverage percentage of about 91%, which is better than M1: ED. In this case, we compared
the performance of M2: FSS and M3: ED + FSS in terms of coverage percentage versus
the number of stations added incrementally. The specified number of stations is seven. In
Figure 7, the plot graph shows a comparison coverage percentage (COV) as the number
of stations increases. The dashed line with square symbols indicates M2: FSS that shows
coverage percentage increasing sharply and degrading from stations numbered 4 to 7.
In contrast, the dotted line with triangle symbols indicates M3: ED + FSS and offers a
relatively stable increasing trend from stations numbered 1 to 7. We conclude that M3:
ED + FSS shows a coverage increasing trend better than that of M2: FSS.
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Figure 7. Plot of historical coverage percentage versus number of stations in Sejong.

Next, we investigated the additional stations of M2: FSS. As shown in Table 4 (a), light
color of triangle symbols indicated the three additional stations which are located close to
the border.

Although the M2: FSS achieves excellent spatial coverage (98%) nonetheless, the
additional stations cause loss of area coverage, which shows the transparent area inside
circles. On the other hand, all seven stations from the M3: ED + FSS method are located
inside the city. These stations provide both sufficient spatial coverage (94%) and right
overlapping area, as clearly shown in Table 4 (b). According to the result, we can assert a
performance of M3: ED + FSS in achieving spatial coverage without loss of area coverage
while still preserving the overlapped areas. The nearby stations can enhance strength to
neighboring stations, which makes the network more robust and its data more reliable.
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Table 4. The results of stations, coverage percentages, and weighted coverage degrees of two methods: M2: FSS and M3:
ED + FSS.

M2: FSS M3: ED + FSS

Map of Sejong city
and

Stations

 

 

(a)

 

(b)

1. Coverage Degree & Weighted

C0: 49
C1: 767
C2: 856
C3: 290
C4: 62
C5: 0
C6: 0
C7: 0

W1: 0.0078125
W1: 0.0078125
W2: 0.015625
W3: 0.03125
W4: 0.0625
W5: 0.125
W6: 0.25
W7: 0.5

C0: 121
C1: 520
C2: 757
C3: 584
C4: 42
C5: 0
C6: 0
C7: 0

W1: 0.0078125
W1: 0.0078125
W2: 0.015625
W3: 0.03125
W4: 0.0625
W5: 0.125
W6: 0.25
W7: 0.5

2. Coverage Percentage (COV) 98% 94%

3. Weighted Coverage Degree (WCD) value 1.61 1.86

6.2.3. Coverage Percentage Versus a Specified Number of Stations

In this experimental case, we compared the performance of M3: ED + FSS and M4:
ED + ASS concerning coverage percentage versus a specified number of stations. The
location of station results from two methods is shown in Table 5. This part of our experiment
aims to consider the flexibility of finding stations when we predefine the number of stations.

Table 5. Location of stations within the cities and coverage percentage.

4 Stations 5 Stations 6 Stations 7 Stations

M3: ED + FSS

 
 

 
COV: 76%

 
 

COV: 87%

 
 

 
COV: 91%

 
 

COV: 94%

M4: ED + ASS

 
 

COV: 83%

 
 

 
COV: 93%

 
 

COV: 97%

 
 

 
COV: 99%

We will evaluate the coverage percentage and distribution of the stations in the study
area. The results based on M3: ED + FSS show that the stations in similar aligned positions
seem like a straight line in all four cases. On the other hand, results for M4: ED + ASS show
a better balance of stations. The stations are readjusted whenever the number of stations
changes. Furthermore, in four cases of a specified number of stations, the M4: ED + ASS
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has a higher coverage percentage and is better than M3: ED + FSS. Clearly, M4: ED + ASS
is better than M3: ED + FSS to better cover the percentage and balance of stations.

6.2.4. Flexibility to Apply Our Methods for Different Cities

The M4: ED + ASS shows good spatial coverage and balance of stations based on a
specified number of stations. For this section, we compared our method’s capability to
apply to different sizes of cities and evaluated balancing and distribution of the stations in
cities. We used M3: ED + FSS and M4: ED + ASS in Bangkok, Sejong, and Bonn. The cities
in that list are in descending order by size.

Table 6 (bkk-1), (sj-1), and (bo-1) shows the existing stations and current coverage
percentages. There are twelve stations in Bangkok, four stations in Sejong, and one station
in Bonn. The result of M3: ED + FSS in Table 6 (bkk-2) shows an imbalance of stations. On
the other hand, the stations from M4: ED + ASS in Table 6 (bkk-3) are evenly distributed
over the city. One benefit of balancing locations and overlapping areas is that the network
can better support the future urban expansion and provide better air pollution monitoring.
Although in Table 6, (sj-3) and (bo-3) cannot clearly show the balancing of stations when
compared with Table 6 (sj-2) and (bo-2), the COV values of M4: ED + ASS are higher than
M3: ED + FSS and show significantly increased rates of 56%, 22%, and 37%, in Bangkok,
Sejong, and Bonn, respectively. These results allow us to conclude that our M4: ED + ASS
is more flexible than M3: ED + FSS for designing new station networks in any city size.

Table 6. Locations of stations within the cities and coverage percentages: (bkk-1), (sj-1), (bo-1) depict current stations,
(bkk-2), (sj-2), (bo-2) depict station networks using M3: ED + FSS, and (bkk-3), (sj-3), (bo-3) depict station networks improved
using M4: ED + ASS, in Bangkok, Sejong, and Bonn, respectively.

Country/Methods
Bangkok, Thailand

(1568.7 km2)
Sejong, Korea
(465.23 km2)

Bonn, Germany
(141.06 km2)

Current

 
(bkk-1)

COV: 64%
(sj-1)

COV: 68%
(bo-1)

COV: 27%

M3: ED + FSS

 
(bkk-2)

COV: 99% (+55%)

 
(sj-2)

COV: 76% (+12%)

 
(bo-2)

COV: 33% (+22%)

M4: ED + ASS

(bkk-3)
COV: 100% (+56%)

(sj-3)
COV: 83% (+22%)

 
(bo-3)

COV: 37% (+37%)
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6.3. Assessment of Scenario 2: Finding Additional Stations to Improve the Current Network

For this section, we applied M4: ED + ASS to add one station into the network. Then,
we evaluated the results with our proposed criteria: COV and WCD. In Table 7, triangle
symbols indicate the existing stations, and star symbol indicates the additional station.
The additional stations show the performance of our proposed method and evaluation
criteria. They can improve coverage percentages by 39%, 34%, and 130% in Bangkok,
Sejong, and Bonn.

Table 7. Location of an additional station and resulting coverage percentages in Bangkok, Sejong,
and Bonn.

Bangkok, Thailand Sejong, Korea Bonn, Germany

 

COV: 89% (+39%)
 

COV: 91% (+34%)

 
COV: 62% (+130%)

One of the key limitations of our study is the appropriate ratio of spatial coverage
satisfaction versus confidence area. As shown in Figure 8, the dashed line plot graph
compares coverage percentage and the number of stations. The 6th stations show the most
coverage percentage of 90%. Increasing the number of stations from 7 up to 12 does not
significantly increase coverage. Thus in future work, a change of strategy is needed after
achieving the spatial coverage to increase the overlapped regions.
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Figure 8. Plot of coverage percentage versus number of stations in Bangkok.

7. Conclusions

Increasing spatial coverage of AQMN gives effective environmental management.
Especially in setting up a network in cities that lack historical pollution data, adding
stations in cities with an existing network that face urbanization can make it challenging to
design adequate spatial coverage and effective AQMN. Our experimental results proved
the ability of the proposed method to provide maximum spatial coverage based on a given
number of stations. The results showed that ED + ASS achieved effectiveness both in
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enhance spatial coverage and proper confidence area. In setting up a network in the cities,
such a method suggested a balance of station locations and achieved maximum spatial
coverage. The stations are neither located close to the border, nor are they close together.
However, they are evenly distributed over the city. These results indicated that if the city
planner considers economic benefits and the investment costs for constructing a network,
the proposed method can give an excellent. In adding stations in cities, the results showed
an optimal for the next station and enhanced the spatial coverage. Our proposed method
showed effectiveness for expanding the existing networks as well as setting up AQMN.

In future work, we will consider the ratio of spatial coverage satisfaction versus
confidence area as we mentioned in our experiment. We will modify our methods by
changing strategies after achieving the spatial coverage to increase the overlapped regions
of confidence areas. Moreover, we will integrate the historical pollution information, the
city characteristics data, and land-use to find stations for better air pollution monitoring.
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Abstract: The future megacity of Faisalabad is of prime interest when considering environmental
health because of its bulky population and abundant industrial and anthropogenic sources of coarse
particles (PM10) and fine airborne particulate matter (PM2.5). The current study was aimed to
investigate the concentration level of PM2.5 and PM10, also the characterization of carbonaceous
aerosols including organic carbon (OC), elemental carbon (EC) and total carbon (TC) in PM2.5

and PM10 samples collected from five different sectors (residential, health, commercial, industrial,
and vehicular zone). The data presented here are the first of their kind in this sprawling city having
industries and agricultural activities side by side. Results of the study revealed that the mass
concentration of PM2.5 and PM10 is at an elevated level throughout Faisalabad, with ambient PM2.5

and PM10 points that constantly exceeded the 24-h standards of US-EPA, and National Environment
Quality Standards (NEQS) which poses harmful effects on the quality of air and health. The total
carbon concentration varied between 21.33 and 206.84 µg/m3, and 26.08 and 211.15 µg/m3 with an
average of 119.16 ± 64.91 µg/m3 and 124.71 ± 64.38 µg/m3 for PM2.5 in summer and winter seasons,
respectively. For PM10, the concentration of TC varied from 34.52 to 289.21 µg/m3 with an average
of 181.50 ± 87.38 µg/m3 (for summer season) and it ranged between 44.04 and 300.02 µg/m3 with
an average of 191.04 ± 87.98 µg/m3 (winter season), respectively. No significant difference between
particulate concentration and weather parameters was observed. Similarly, results of air quality index
(AQI) and pollution index (PI) stated that the air quality of Faisalabad ranges from poor to severely
pollute. In terms of AQI, moderate pollution was recorded on sampling sites in the following order;
Ittehad Welfare Dispensary > Saleemi Chowk > Kashmir Road > Pepsi Factory, while at Nazria
Pakistan Square and Allied Hospital, higher AQI values were recorded. The analysis and results
presented in this study can be used by policy-makers to apply rigorous strategies that decrease air
pollution and the associated health effects in Faisalabad.

Keywords: particulate matter; aerosols; vehicular exhaust; industrial activity; WHO; NEQS; US-EPA
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1. Introduction

In many developing countries, increasing industrialization and overpopulation becomes the
reason for escalating air pollution [1]. According to various researches conducted in high-income
countries situated in the Asian region, the level of many air pollutants is normally beyond the ambient
air quality standards and WHO guidelines. In many developing countries, the use of non-renewable
fuel like biomass and diesel is associated with the increasing level of air pollution at the regional level.
Airborne particulate matter is abundant in the atmosphere and is the foremost indicator of the quality of
air in a specified area. Chemical composition, concentration and size of particulate matter varied widely
and are delimited universally under acceptable standards built on size elements ranging from PM2.5 to
PM10 to Total Suspended Particles (TSP), while PM4 was also identified as the respirable size fraction [2].
Particulate matter instigates from a diversity of anthropogenic (e.g., rapid industrialization, agricultural
activities, refineries, waste incineration, biomass burning, motor vehicles, utilities, brick kiln, industrial
emissions power plants, factories, large population and heavy traffic) are responsible for bad air quality
in the cities due to elevated levels of gaseous and particulate pollutants [3] and natural (e.g., dust storm
and sea spray) sources, besides secondary formation processes. However, also mineral dust transport
from deserted areas is considered a significant source for regional pollution in Asia [4]. Henceforth,
for the air quality management and epidemiological studies, the assessment of the concentration of
atmospheric particulate matter (PM) and its associated toxic constituents is a prerequisite [5]. It was
consistently confirmed by epidemiological studies that there is a strong association between ambient
particulate matter comprising toxic components and cardiovascular- and respiratory-related upsurges
in mortality and morbidity, particularly in urban areas [6]. This connection has been revealed to
be stronger for PM2.5 rather than for PM10 or total suspended particles since PM2.5 can infiltrate
deep into the alveolar areas of the human lungs [6]. The transport and distribution of particulate
matter in the atmosphere are distinctly allied with meteorological parameters such as air temperature,
relative humidity, atmospheric pressure, wind direction, speed, and rainfall [7]. In various parts of the
world, different monitoring programs on atmospheric PM have been directed which exposed varied
instabilities and disproportions among the trace element constituents and particulate matter [8].

Components of carbonaceous aerosol, elemental carbon (EC) and organic carbon (OC), account
for a large element of atmospheric particulate matter and, on average, subsidize 20–35% of coarse
particulate and 20–45% of fine particulate [9]. Carbonaceous aerosols have a chief role in the interactions
of light-particles within the atmosphere and are one of the significant components of fine and coarse
particulate matter; they are therefore associated with the negative climatic and environmental impacts
and the worsening in public health and air quality [10]. Elemental carbon is often used as a
substitute for black carbon (BC) and is discharged into the atmosphere mostly through the processes
of combustion [11]. Elemental carbon is primarily accountable for the absorption of light in the
atmosphere, which sturdily influence the radiative balance of the earth [12]. The six main sources of
elemental carbon have been recognized using organic tracers as coal combustion, biomass burning,
vehicle exhaust, cigarette smoke, cooking and vegetative detritus [13]. Carbonaceous aerosols were
found dominant in PM2.5 (which is attained from agricultural waste and wood-fuel burning) and have
a strong effect on the decline in visibility and air-quality and also stimulates radiative forcing on a
regional scale [14].

In Pakistan, control of air pollution has not yet become a democratic issue because of a lack of
suitable information for policy and decision-makers, though some infrequent reports that identify
airborne particulate matter as a great health and environmental concern in urban regions of Pakistan are
present [15]. Generally, the concentration of particulate matter is many folds higher than the acceptable
limits documented by the World Health Organization (WHO), National Environmental Quality
Standards (NEQS) and the United States Environmental Protection Agency (US-EPA). According to
the World Bank [16], the annual burden of health because of particulate matter was 1% of the GDP and
is accountable for 700 deaths among children and 22,000 premature deaths amongst adults in Pakistan.
However, due to the absence of air quality management competencies, the country is suffering from the
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deterioration of air quality. Evidence from many international bodies and governmental organizations
has indicated that air pollution is a momentous risk to the health of residents, environment and quality
of life [17]. According to a study directed by the World Health Organization, Bombay, Calcutta and
Tehran were found to be the most contaminated cities in Asia [18]. Similarly, Faisalabad (the textile
city of Pakistan) is also highlighted to be an extremely polluted city in this study. Due to increased
industrialization and construction of commercial zones and rapid urbanization, the atmosphere of the
city is getting worst day by day [19]. This state of concern stimulated us to conduct a comprehensive
study on the status of air pollution in Faisalabad. As a result of the burning issue of air pollution
and associated health impacts, a study was planned to examine the quality of air in Faisalabad
city for which 12 different sites were selected and categorized as residential, commercial, industrial,
and health centers.

Keeping in view the facts discussed above, the present study was conducted with the following
objectives: (a) to measure the quality of air with its allied consequences within varying activity zones
of Faisalabad city; (b) to compare the ambient air quality of Faisalabad with air pollution indexes such
as NEQS -Pakistan, National Ambient Air Quality Standards (NAAQS)-US-EPA and WHO; and (c)
to provide an opportunity to conduct additional studies on source identification, impact assessment,
and trend analysis for this zone. It is expected that the current study will be supportive for designing
and establishing emission regulations and abatement strategies in the future.

2. Methodology

2.1. Study Area and Sampling Sites

Faisalabad is the third-largest city of Pakistan and a major industrial hub (dominated by textile
and chemical industries); consequently, the air quality of the city is a major environmental problem.
It covers an area of 1230 km2 and is occupied by more than four million people. The summer season
is very hot with a humid climate while a cold winter (falls to 0 ◦C some days) is experienced by the
Faisalabad city. The climate of the city touches extreme hotness and humidity during summer and cold
during winter. The sampling sites were banquets around Faisalabad and its vicinities. Twelve sampling
sites were nominated based on current anthropogenic activities accountable for atmospheric pollution,
and the dominant direction of wind for pollutant dispersion and distribution in the area. The locations
were selected based on the zones in the city. The selected locations are comprised of medical units,
residential areas, commercial areas, industrial areas, and automobiles rich areas. The average wind
speed of 3–6 km in winter and 6–13 km in summer was observed. The map showing the locations on
the Faisalabad (Figure 1) represents the coordinates of the location within Faisalabad geography.

2.2. Data Collection

Data of meteorological parameters were obtained from Agromet. The PM concentrations
were determined by the first author herself. We took the samples from all the locations and then
measurements were made in the Lab. We took sample readings sector-wise and readings for all the
residential sites were taken at the same time. A similar trend was followed for commercial, industrial,
health, and automobile sites. At Provincial and Federal EPAs, Data Logging systems retrieve the data
about the quality of ambient air from air monitoring stations with the help of data processing software.
The seasonal average was intended to find out the difference in the mass concentration of PM2.5 in
summer and winter seasons. For this study, 12 discrete sampling sites under five diverse sectors
(residential, health, commercial, industrial, and automobile vehicles) were selected for the evaluation
of PM2.5 and PM10 with the help of high air volume sampler. The interpretations were taken at three
diverse times (morning, noon, and evening) daily from November 1 to December 31 for winter and
from May 1 to June 30 for summer. It should be noted that wind speed and direction influence the rate
of diffusion of pollution. The temperature inversion is also directly linked to solar radiation making
the air softer, hence the air converts into fog because pollutants and dust are no longer raised from the
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surface. This can become a problem in metropolises where numerous pollutants exist. The data of
temperature and radiation used in this study was collected from the Agricultural Metrological Cell
Agromet Bulletin.

 

– –

Pakistan
Faisalabad

Faisalabad

PUNJAB

Figure 1. Study sites within the Faisalabad city and location of the city within the political map
of Pakistan.

2.3. Sample Analysis (Chemical, Gravimetric, and Carbonaceous Aerosols)

After sample collection, the filter papers were kept in exact environmental conditions at a relative
humidity of 30–40% and temperature of 20–23 ◦C for 24 h as per the US-EPA standard. Before mass
analysis, the filter paper with fine and coarse particulates samples was equilibrated for 24 h in silica gel
desiccators to abolish the effect of humidity and to attain accurate particulate matter measurements.
The PM2.5 and PM10 masses of each sample were determined gravimetrically by deducting the initial
average mass of the blank filter from the final average mass of the sampled filter. Gravimetric analysis
is the determination of particulate concentration based on weight difference. Individual filters (Teflon®,
46.2 mm) were weighed on an electronic micro-balance pre and post field sampling. Particulate
matter <2.5 µm was collected from ambient air on the filters throughout the sample duration of 24 h.
The net variances between pre- and post-sampling filter weights were used to estimate the mass
concentration in the ambient air of the city. After post weighing, filters can be stored for a minimum of
one year. Using the post-sample and pre-sample filter weights, the total filter mass gain (PM2.5) and
the concentration of PM10 were respectively calculated from Equation (1) and Equation (2):

PM2.5 = (MPost −MPre)(103)/MPre (1)

PM10 = (Wf −Wi)(106)/V (2)

Here PM2.5 is the total mass gain in µg, MPost is the post sample filter weight in mg, MPre is the
pre-sample filter weight in µg, Wf is the filter paper weight, Wi is the initial mass of filter paper, and V
is the total air sampled in m3. In the current study, elemental carbon was determined by a two-step
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combustion method described by [20]. Filters were heated for 2 h at 340 ◦C in an oxygen atmosphere to
remove organic carbon (OC). The calibration procedure was done using tartaric acid dyed in aluminum
foil. While, total carbon was determined by a combustion method, where all material on the filter
is combusted in pure oxygen at 1000 ◦C and the resulting CO2 is measured by non-dispersive IR
photometry (NDIR, Maihak) [21].

2.4. Air Quality and Pollution Index

An Air Quality Index is defined as a complete scheme that converts the weighed values of
parameters related to individual air pollution (e.g., the concentration of pollutant) into a sole number
or set of numbers [22]. Air Quality Index (AQI) is a tool to detect the present scenario of air quality.
AQI was calculated based on the arithmetic mean of the ratio of the concentration of pollutants to the
standard value of that pollutant such as PM10, PM2.5, NO2, and SO2. The average is then multiplied
by 100 to arrive at the AQI index. The pollutant AQI and the pollution index (PI) of the potentially
noxious element were respectively derived from Equations (3) and (4):

AQI = (W ∗C/Cs) (3)

PI = Cn/Bn (4)

where W is the pollutant weighted, C is the observed value (PM2.5, PM10, SO2 and NO2), Cs is
the CPCB standard for the residential area [23], Bn is the background concentration, and Cn is the
measured concentration of the element. It should be noted that in Pakistan, the National Air Quality
Index is followed. Moreover, it should be highlighted that the pollution index of the potentially
contaminated elements is the ratio between the concentration of toxic elements and the reference
background concentration of the consistent elements obtained from a previous published study [24].

3. Results

3.1. Mass Concentration of PM2.5 and PM10 in Winter Season

The results of the present investigations in Faisalabad city for which 12 different sites were selected
and categorized as residential, commercial, industrial and health centers are presented (Figure 2).
The concentration of PM2.5 had the following decreasing order in the air samples collected near medical
centers of Mian Trust Hospital (38.50 ± 0.30 µg/m3), Ittehad Welfare Dispensary (37.35 + 0.45 µg/m3),
Allied Hospital (36.65 ± 0.27 µg/m3). While, in residential areas, the highest concentration of fine
particulate was found in Ghulam Muhammad Abad (39.1 ± 0.50 µg/m3) followed by Raza Abad (35.2
± 0.23 µg/m3), Saleemi Chowk (33.83 ± 0.74 µg/m3), Kashmir Road (32.25 ± 0.14 µg/m3). In the selected
commercial areas, Nazria Pakistan (43.63± 0.59µg/m3) was the most polluted site of the city. The average
concentration of PM2.5 in small industrial estate was recorded as (37.93 ± 0.19 µg/m3) followed by
Pepsi factory area (37.17 ± 0.62 µg/m3); while in and near transport station (35.08 ± 0.61 µg/m3) was
analyzed. In contrast, the highest concentration level of PM10 was found in the samples collected from
Nazria Pakistan (800.85 ± 0.93 µg/m3) followed by Mian Trust Hospital (586.6 ± 3.88 µg/m3), Allied
Hospital (584.62 ± 3.41 µg/m3), Small Industrial Estate (469.1 ± 0.57 µg/m3) and Ghulam Muhammad
Abad (440.2 ± 0.10 µg/m3); while the lowest concentration was analyzed in the ambient air of Saleemi
Chowk (280.18 ± 0.12 µg/m3). The average particulate concentration can be compared with guideline
values proposed by WHO, US-EPA and NEQS. During the present study, the concentration of PM2.5

was within the guideline value of the US-EPA and NEQS (35 µg/m3) but still higher than the WHO
guideline value of 25µg/m3 [25] for 24 h average, while coarse particles were drastically exceeding the
safe limits of all the quality standards. The composition of particulate matter is strongly reliant with its
sources, i.e., anthropogenic or natural (Figure 2).
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Figure 2. Average mass concentrations of PM2.5 and PM10 in long summer and long winter in
Faisalabad city.

3.2. Mass Concentration of PM2.5 and PM10 in Summer Season

Figure 2 shows the mass concentration of fine (PM2.5) and coarse (PM10) particles calculated
from the samples collected during the winter (Dec 2016 to Jan 2017) and summer (May to June 2017)
seasons from different selected areas of Faisalabad. It was clear from the results that the concentration
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levels of both particulates were lower in the summer season as compared to the winter season.
According to the results, it was cleared that the contamination level that the concentration level of
both particulates was lower in the summer season as compared to the winter season. According to
the results, the highest concentration of PM2.5 was found in the air samples collected from Nazria
Pakistan (42.5 ± 0.57 µg/m3) followed by a Ghulam Muhammad Abad (38.4 ± 0.34 µg/m3), Mian Trust
Hospital and Small Industrial Estate air samples (36.9 ± 0.34 µg/m3). While, the mass volume of PM2.5

was lower in the air samples of Station Chowk (33.5 ± 0.35 µg/m3), Raza Abad (34.2 ± 0.28 µg/m3),
Saleemi Chowk (31.8 ± 0.94 µg/m3) and Kashmir Road (31.2 ± 0.21 µg/m3) when compared with
US-EPA and NEQS guidelines rather than WHO safe limits. The rest of the areas were slightly higher
in PM2.5 concentrations than US-EPA and NEQS safe limits but still highly polluted if compared with
WHO guidelines. Table 1 represents the concentration values of coarse particles obtained after analysis.
The decreasing order was followed as Nazria Pakistan (800.6 ± 2.16 µg/m3), Allied Hospital (477.4
± 3.7 µg/m3), Mian Trust Hospital (477.3 ± 0.82 µg/m3), Small Industrial Estate (465.4 ± 1.16 µg/m3),
Ghulam Muhammad Abad (440.1 ± 0.13 µg/m3), Raza Abad (380.1 ± 0.08 µg/m3) with the lowest value
obtained at Kashmir Road (297.3 ± 0.50 µg/m3). According to the results, the mass concentration of
PM10 is exceeding the safe guidelines of all the selected air quality standards throughout the study area.

Table 1. (National Air Quality Index, CPCB, October 2014).

Category Range

Good 0–50
Satisfactory 51–100

Moderately Polluted 101–200
Poor 201–300

Very Poor 301–400
Severe 401–500

3.3. Seasonal Impact on PM2.5 and PM10 Concentration

Figure 2 represents the average concentration of PM2.5 and PM10 in the long summer and winter
seasons during the study period. Figure 2 shows the highest fine particulates concentration in a
commercial area on the average 39.18 ± 4.70 µg/m3 and 40.73 ± 2.9 µg/m3 with the lowest obtained
concentration in the residential sector ranging from 33.91 ± 3.27 µg/m3 and 35.1 ± 2.93 µg/m3 for
summer and winter season, respectively. The WHO safe limit for PM2.5 is 25 µg/m3 and for PM10 is
50 µg/m3 (WHO, 2005). Similarly, the US-EPA and NEQS safe limit for PM2.5 is 35 µg/m3 and PM10 is
150 µg/m3 [26,27]. Coarse particles (PM10) were similar in trend as shown by PM2.5 with decreasing
trend as commercial areas, hospital areas, industrial areas, automobile station and residential areas were
in the range of 575.19 ± 66.26 µg/m3, 499.81 ± 148.62 µg/m3, 409.63 ± 59.44 µg/m3, 379.63 ± 0.81 µg/m3

and 350.98 ± 74.29 µg/m3 in winter and 573.14 ± 321.64 µg/m3, 427.52 ± 86.30 µg/m3, 405.63 ±
84.49 µg/m3, 349.41 ± 74.48 µg/m3 and 349.46 ± 74.49 µg/m3 in the summer season, respectively.
Correspondingly, Figure 2 showed a strong positive correlation between PM2.5 and PM10 in both winter
and summer seasons on average.

3.4. Analysis of Carbonaceous Aerosols in fine (PM2.5) and Coarse Particulate (PM10) Samples

The concentration level of carbonaceous aerosols is presented in Figures 3–5 for summer and winter
seasons. It was clear that concentration of EC and OC was higher in winter (Figures 3 and 4) which
was quite similar with previous studies. According to the results, EC was found in low concentration
on average in the samples of fine particles collected from Kashmir Road (8.56 ± 1.86 µg/m3) in
summer season while highest EC contamination was found in the ambient air of Nazria Pakistan
(89.67 ± 1.52 µg/m3). A similar trend was found for OC with the lowest concentration in the PM2.5

samples collected from Kashmir Road (19.93 ± 0.42 µg/m3) categorized as one of the residential sites,
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while the highest values were obtained in the ambient air of Nazria Pakistan (178.4 ± 3.51 µg/m3)
nominated as the busiest commercial zone of Faisalabad with a variety of businesses (Figure 4).
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Figure 3. Concentration of carbonaceous species—elemental carbon (EC) in PM2.5 in summer (a); PM2.5

in winter (b); PM10 in summer (c); PM10 in winter (d). All units are expressed in µg/m3.

When considering TC for the investigated sites (Figure 5), it was observed that Nazria
Pakistan was heavily contaminated (268.08 ± 5.03 µg/m3) followed by Small Industrial Estate
(248.23 ± 5.79 µg/m3), Fish Farm (235.68 ± 5.02 µg/m3), Allied Hospital (224.34 ± 3.62 µg/m3),
Vehicular station (223.21 ± 3.82 µg/m3), Mian Trust Hospital (202.77 ± 8.42 µg/m3) and Pepsi Factory
(184.84 ± 4.27 µg/m3) with positive OC/EC correlation which indicates the common source of emission
of TC in these zones. While, residential areas (G.M Abad, Saleemi Chowk, Raza Abad and Kashmir
Road) were less contaminated (114.71 ± 2.76 µg/m3; 64.97 ± 3.58 µg/m3; 51.16 ± 3.14 µg/m3; and 28.49
± 2.27 µg/m3, respectively), as compared to the other sites indicating negative OC/EC correlation.
While samples of fine particulates collected in the winter season from the same investigating sites were
analyzed for carbonaceous aerosol concentration. The levels of EC and OC were higher in winter as
compared to the summer season. This may be due to the more wood and fossil fuel burning to warm
up the surroundings as well as extra consumption of diesel and petrol by vehicles to warm up the
engines in sizzling cold weather. The concentration of TC was much higher in the ambient air of Nazria
Pakistan (277.5 ± 4.9 µg/m3) followed by Small Industrial Estate (262.01 ± 3.68 µg/m3), Fish Farm
(248.07 ± 5.28 µg/m3), Allied Hospital (237.13 ± 2.89 µg/m3), Vehicular Station (234.4 ± 4.08 µg/m3),
Mian Trust Hospital (215.97 ± 8.82 µg/m3), Pepsi Factory (194.27 ± 4.30 µg/m3) and Ittehad Welfare
Dispensary (142.58 ± 7.69 µg/m3). On the other side, mix community of domestic zones showed
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less concentration of both EC and OC but still falls in contamination categories that are not safe for
human health. Kashmir Road was detected with the least concentration of TC (38 ± 3.43 µg/m3) while
Ghulam Muhammad Abad was higher in TC (130.04 ± 2.6 µg/m3) concentration in the residential
zone. A positive OC/EC correlation was observed in the maximum of the investigating sites in the
winter season. Samples of coarse particulate were also analyzed to evaluate the concentration level of
carbonaceous aerosols collected from the investigating sites of Faisalabad city for summer and winter
seasons, respectively.
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Figure 4. Concentration of carbonaceous species—organic carbon (OC) in PM2.5 in summer (a); PM2.5

in winter (b); PM10 in summer (c); PM10 in winter (d). All units are expressed in µg/m3.

We found similar trends of concentration level as experienced with aerosols available in fine
particulates but higher in concentration than observed in PM2.5 samples. Commercial areas of
Faisalabad were enriched with TC (289.21 ± 2.75 µg/m3 and 300.02 ± 3.25 µg/m3 for Nazria Pakistan
and 253.06 ± 5.59 µg/m3 and 264.36 ± 4.16 µg/m3 for Fish Farm) at an elevated level among all the
sites. Coarse particulate samples collected from the Small Industrial Estate were also found to be
extremely high (267.19 ± 4.28 µg/m3 and 277.28 ± 3.16 µg/m3) after Nazria Pakistan followed by
Vehicular Station (243.75 ± 3.66 µg/m3 and 252.85 ± 2.9 µg/m3), Allied Hospital (242.58 ± 5.24 µg/m3

and 251.93 ± 4.44 µg/m3), Mian Trust Hospital (221.4 ± 6.51 µg/m3 and 228.27 ± 5.53 µg/m3) and
Ittehad Welfare Dispensary (151.28 ± 12.09 µg/m3 and 167.31 ± 4.57 µg/m3) for summer and winter
seasons, respectively. Concentration level of carbonaceous aerosol was higher in Ghulam Muhammad
Abad (132.62 ± 3.4 µg/m3 and 142.95 ± 3.65 µg/m3) while considering the residential zone of the city
followed by Saleemi Chowk (76.95 ± 4.87 µg/m3 and 76.95 ± 3.9 µg/m3), Raza Abad (61.57 ± 3 µg/m3
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and 74.4 ± 2.32 µg/m3) and Kashmir Road (34.52 ± 2.02 µg/m3 and 44.04 ± 1.97 µg/m3) for both the
seasons accordingly.
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Figure 5. Concentration of carbonaceous species—total carbon (TC) in PM2.5 in summer (a); PM2.5 in
winter (b); PM10 in summer (c); PM10 in winter (d). All units are expressed in µg/m3.

3.5. Air Quality and Pollution Index

The air temperature of the study area fluctuated between 18–25 ◦C in winter which is considered
a typical range while the trend in May–June 2017, as shown in Figure 6, showed an increase to 37.2 ◦C
on average. Figure 6 also demonstrates the trend of relative humidity with a mean value of that varies
from 39.45% in summer to 60.4% in winter. Table 1 presented the categories of air quality according to
the AQI while Figure 7 illustrates the AQI index of selected sites of Faisalabad city with detrimental
outcomes. It was found that the ambient air of Faisalabad city ranges from moderately polluted
with the sequence of Ittehad Welfare Dispensary > Saleemi Chowk > Kashmir Road > Pepsi Factory,
while severely polluted air was found in the vicinity of Nazria Pakistan Square, followed by Allied
Hospital. The air quality of Mian Trust Hospital and the Small Industrial Estate was categorized as very
poor besides GM Abad, Raza Abad and Station Chowk where the air quality was poor. The overall air
quality of Faisalabad city was not good for health and other activities that require urgent attention from
Government institutes and ministries involved in making and implementing policies to safeguard
the environment.
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Figure 6. Relation of weather parameters in summer and winter seasons.
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Figure 7. Air Quality Index (AQI) of Faisalabad city after analysis.

The average values of pollution index (PI) for each potential toxic element at selected sites of
Faisalabad city for both seasons have been shown in Figure 8. In some residential areas, PI of PM2.5

was found in the average level of pollution. While the PI of PM10 was estimated for the same areas
showed a middle level of pollution 1 < PI ≤ 2, and sample site which is located near Nazria Pakistan
Square suggested a high level of environmental pollution PI > 4. The PM2.5 concentrations for almost
all the sampling sites also showed a low level of environmental pollution of PI ≥ 1. At Saleemi Chowk,
Fish Farm, and Kashmir Road, the PI of PM10 showed a low level of environmental pollution PI ≤ 1,
while samples collected in the vicinities of Ittehad Welfare Dispensary, Pepsi Factory, Station Chowk,
Raza Abad, GM Abad, and Mian Trust Hospital showed the middle level of pollution (2 < PI ≤ 3) in
the environment. It should be noted that the samples of Allied Hospital and Nazria Pakistan showed
the highest environmental pollution level of 3 < PI < 4. This can be due to the toxic elements in urban
dust which accumulate and originate mainly from traffic, paint, and many other nonspecific urban
sources in the megacity.
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Figure 8. Pollution index flow diagram of PM2.5 and PM10 in Faisalabad.

In order to show the difference between the mass concentrations of PM2.5 and PM10 were
statistically significant between the 12 locations, four sets of null hypotheses with H0: µ(Location1) =
µ(Location2) = . . . = µ(Location12) were tested against the alternative hypotheses that the means of
mass concentrations in the 12 locations were not equal. Based on the very small p-value that resulted
from the one-way analysis of variance tests (p < 0.0001), all null hypotheses were rejected at any
significant level and we concluded that the difference between locations was statistically significant.
This result has been also shown in Figure 9 by means of the four scatter plots that demonstrate a visual
comparison between the mean values of PM2.5 and PM10 data in the 12 locations with respect to the
daytime (morning, afternoon, evening) and season (summer or winter). Taking plot labeled (c) of
Figure 9 as an example (mean of PM10 data in summer), the difference between morning concentrations
of PM2.5 in the 12 locations is clearly visible. It should be noted that for 61 days of winter the total
number of measurements was 549. That is 61 days multiplied by 3 daytime (morning, afternoon,
and evening) multiplied by 3 replications for each time.
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Figure 9. A comparison between mean values of PM2.5 and PM10 data with respect to the daytime
(morning, afternoon, evening) and season (summer or winter) in the 12 locations for (a): PM2.5 in
summer, (b): PM2.5 in winter, (c) PM10 in summer, (d) PM10 in winter.
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4. Discussion

Usually, the sources of gaseous pollutants are measured in three categories: natural emission
mechanism, combustion sources and industrial manufacturing processes. Industrial sources of
particulates, like steel, heavy traffic loads, indiscriminate burning of solid wastes and cement factories
are the main sources of PM [2,28] besides gaseous and noise pollutants. The increasing air pollution is,
after losses of properties, crops and increased health care costs. Airborne particulate matter is abundant
in the atmosphere and varies extensively (temporally and spatially) in size, chemical composition and
concentration. Emissions of particulate matter towards air are the focal environmental challenges for
the transport and industrial sectors [4]. According to the WHO report, South Asia has developed as one
of the most polluted zones in the globe because of its increasing population and rapid industrialization.
Acquaintance to PM leads to more appointments to the emergency room or doctor. Health effects
include premature deaths with existing lung and heart diseases, lung damage, coughing, aggravated
asthma, wheezing and shortness of breath. Specifically, in the dry and cold season in major urban areas
of Pakistan, people of almost all ages suffer from throat infections as reported [2,4,17]. In Pakistan,
like the other developing countries, the emissions from vehicles have been conquered by emissions
from poorly maintained and old vehicles that subsidize to heightened mass concentrations of carbon
monoxide and fine particulates [17,28].

The current study focused on particulate volume has reported the highest concentration of
PM2.5 and PM10 in a commercial area on the average 39.18 ± 4.70 µg/m3, 573.14 ± 321.64 µg/m3

and 40.73 ± 2.9 µg/m3, 575.19 ± 225.66 µg/m3 for summer and winter, respectively (Figure 2).
While, the lowest concentration of PM2.5 and PM10 was obtained in the residential sector ranging
(33.91 ± 3.27 µg/m3), (35.1 ± 2.93 µg/m3) and (349.46.75 ± 74.49 µg/m3), (350.98 ± 74.29 µg/m3) for
summer and winter season correspondingly with a strong positive correlation between PM2.5 and
PM10 in both seasons on average. According to the guidelines, the reference value for PM2.5 and PM10

are WHO (25 µg/m3 and 50 µg/m3) [17,25], NEQS and US-EPA (35 µg/m3, 150 µg/m3) [26,27] and most
samples examined in the present study had values higher than the reference values. Elemental carbon
is discharged from a variety of ignition procedures, categorized as a short-lived climate forcer that put
up to atmospheric warming and also allied with human mortality and morbidity [28]. Common sources
of atmospheric primary and secondary organic carbon antecedents are biomass burning, vehicular
exhaust, biogenic emission and industrial emissions [29]. During the winter season, a higher level of
pollutants especially the mass concentration of PM2.5 persists in the ambient air of Faisalabad, owing to
reduced atmospheric dispersion due to high relative humidity. Similarly, it was observed that PM2.5

and PM10 sources were frequently localized as depicted by high concentrations at low wind speeds,
mostly by the emissions from road vehicles [2,29]. This demonstrates the fact that PM2.5 and PM10

concentrations were lower in summer than in winter (Figure 2) due to an increase in wind speed
and temperature.

Prior studies conducted in the carbonaceous aerosols were assessed to account for about 50–60%
of the total mass of PM2.5 in metropolises in Jordan, Israel and Palestine [30]. Not unexpectedly,
since production and processing of oil was prevalent transversely in the Middle East, substantial
oil burning was valued to contribute 18% to total mass of PM10 and 69% to the total mass of PM2.5

in Jeddah, Saudi Arabia [31]. Likewise, in Faisalabad, Pakistan, the quality of air not only reflects
the impact of regional and local dust but also momentous local sources which include numerous
industries and a heavy traffic weight. In municipal areas, the higher concentrations of PM2.5 and
PM10 are symbolic of the higher density of traffic as presented in the current study (Figures 2 and 4).
Additionally, the burden of particulates is higher in the daytime than nighttime one, demonstrating
more urban activities throughout day time. In Faisalabad, the textile industry, the topographical
configuration and the geographical location make the problem of air pollution so perilous that it is very
crucial to study it (Figure 5). The current study aimed at finding out whether or not the situation of air
pollution in Faisalabad was previously seriously abundant to warrant the establishment of a regular air
quality management system through which intercession measures can be premeditated and executed.
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The analysis result of ambient air samples of selected sites of Faisalabad city displays that the level of
particulate matter in most of the areas of the city is above the indorsed levels of the WHO, NEQS and
US-EPA. Most of the city’s commercial and residential areas are within the sensitive zone with the
maximum concentrations of PM, which is constant with their proximity to the city’s industrial areas.

When compared with the other studies conducted in other cities, it was found that the PM2.5

level at Industrial Estate I-10 and IJP Road has reached the critical level (>35 µg/m3) whereas at
Industrial Estate I-9 it was moderate to the high level (31.9 µg/m3 to 41.1 µg/m3) [27]. While, the mean
concentration of PM2.5 and PM10 for Peshawar city during the study period has been calculated
to be respectively 172 µg/m3 and 480 µg/m3 [32]. A similar high mass concentration of particulate
matter was observed by [33] at Lahore, Pakistan and documented that the average PM2.5 mass
was 190 µg/m3, and ranged from 89 µg/m3 to 476 µg/m3, far over US-EPA standards. Much higher
PM10 mass concentration was experienced in Faisalabad when compared with other megacities [34],
In addition, the PM10 concentrations were quite higher than the annual mean PM10 concentrations
in Eastern Mediterranean and Africa [35,36] (WHO. Ambient (outdoor) 2014), Malaysia [34] and
Bogota, Egypt, Los Angeles and Mexico [34]. It was also identified that PM10 is the dominant pollutant
in the index value [37]. While, according to the results obtained after the analysis of particulate matters
samples, the highest concentration of elemental carbon was 103.12 ± 1.46 µg/m3 and the highest
concentration of organic carbon was 196.9 ± 1.79 µg/m3. While, 300.02 ± 3.25 µg/m3 was the highest
TC concentration found in the samples of coarse particulate matter collected in the vicinity of Nazria
Pakistan (Figure 3). When compared, it was found that these concentrations are comparatively higher
than in other metropolises in the areas like Punjab, India (116 µg/m3), Hangzhou, China (119 µg/m3),
Kolkatta, India (197 µg/m3), New Delhi, India (219 µg/m3) and Lahore, Pakistan (233 µg/m3) [38–40].
For elemental carbon, a large number of sources are identified, e.g., biomass and coal-fired power
plant, two-stroke vehicles, fossil fuel burning, diesel engines and low burning efficiency. Elemental
carbon is also utilized as a tracer for vehicular emission [17,40]. It was stated by [41] that diesel and
gasoline motor vehicles and traffic exhaust are key sources of elemental carbon, followed by biomass
burning. Organic carbon can be released straight from sources identified as primary carbon as a result
of biomass and fossil combustion or can be formed as a result of a chemical reaction recognized as
secondary organic carbon [42]. Temperature means are also under the normal limit but the increasing
trend shows the alarming state of affairs and the same case is with radiations. Relative humidity has
a value that is normal and considered healthy but a decreasing trend precedes the deterioration of
ambient air quality. AQI and PI indicated that the ambient air quality of Faisalabad city falls from poor
to severely polluted categories which are not safe to breathe and perform our daily activities.

5. Conclusions

Studying particle matters with aerodynamic diameters below 10 µm and 2.5 µm have received
research attention for atmospheric pollution characteristics due to their severe effects on the human
health issue. In this paper, we studied PM10 and PM2.5 and highlighted that atmospheric pollution has
become a significant issue as a result of growing industries in the megacity of Faisalabad, leading to the
increased risk factors for chronic respiratory diseases in elderly and accelerated loss of lung function
in newborns. To determine the pollution characteristics of particular matter, as well as the source
and factors affecting them, we concentrated our study on 12 different sites that were selected and
categorized as residential, commercial, industrial and health centers. Results of our study showed that
the PM concentrations measured during current study periods (Dec 2016–Jan 2017) at various zones of
Faisalabad were surprisingly higher than summer (May–June 2017). The enormous difference between
fine (PM2.5) and coarse (PM10) particulate specifies that Faisalabad is inclined by a high loading of
“coarse” particulate dust. Commercial areas are heavily polluted with fine and coarse particulate
pollution. The average levels of pollution for fine and particulate matter were recorded as 39.18 ± 4.70,
573.14 ± 321.64 and 40.73 ± 2.9, 575.19 ± 225.66 during summer and winter, respectively (values in
µg/m3). The average PM2.5 and PM10 concentrations were higher as compared to other major cities like

106



Appl. Sci. 2020, 10, 8864

Islamabad, Lahore, and Peshawar. The quality of ambient air of Faisalabad has deteriorated beyond
the safe limits set by WHO, US-EPA and NEQS. We also concluded that carbonaceous aerosols are in
higher concentration in the air of the study sites. The air quality of Faisalabad city ranges from poor to
severely polluted category which is highly unsafe for human health. These demands for an effort to
introduce appropriate pollution control and management plans such as plantation and green belts
for the betterment of civic life. A sustainable solution to improve air quality in Faisalabad would be
to reduce emission by replacing high-energy consuming industries with renewable and clean energy
sources, besides other strategies that reduce the use of fossil energy. Future studies may involve the
use of wavelet analysis to explore the temporal characteristics of PM2.5 and PM10, or to investigate the
relationship between meteorological factors and PM10.
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Abstract: Background: Most studies on air pollution (AP) exposure have focused on adverse health
effects of particulate matter (PM). Less well-studied are the actions of volatile organic compounds
(VOCs) not retained in PM collections. These studies quantified chemical and biological properties
of both PM2.5 and VOCs. Methods: Samples were collected near the Port of Los Angeles
(Long Beach, LB), railroads (Commerce, CM), and a pollution-trapping topography-site (San Bernardino,
SB). Quantitative assays were conducted: (1) chemical—prooxidant and electrophile content,
(2) biological—tumor necrosis factor-α (TNF-α) and heme oxygenase-1 (HO-1) expression (3),
VOC modulation of PM effects and (4), activation of the antioxidant response element (ARE) using
murine RAW 264.7 macrophages. Results: SB site samples were the most potent in the chemical and
biological assays, followed by a CM railroad site. Only PM2.5 exhibited significant proinflammatory
responses. VOCs were more potent than PM2.5 in generating anti-inflammatory responses; further,
VOC pretreatment reduced PM-associated TNF-α expression. VOCs significantly increased ARE
activation compared to their corresponding PM2.5 which remained at background levels. Conclusion:
Ambient VOCs are major contributors to adaptive responses that can modulate PM effects, in vitro,
and, as such, need to be included in comprehensive assessments of AP.

Keywords: PM2.5; VOC; volatile organic compounds; prooxidants; electrophiles; tumor necrosis factor
alpha; hemeoxygenase-1; ambient air; antioxidant response element; murine RAW 264.7 macrophages

1. Introduction

Epidemiological and clinical studies have firmly established associations between ambient air
pollution (AP) levels and adverse health effects (see for examples, [1–4]). To advance our understanding
of the relationships between AP exposure and disease processes, chemical and biological studies are
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needed to identify and characterize underlying molecular and cellular mechanisms. An essential
element of those studies is the use of quantitative methodologies that allow for the comparison of
results across other AP studies conducted in different local environments and geographical regions.

Our prior studies have been focused on characterizing reactive chemicals in AP that interact
with cellular targets to elicit responses such as inflammation. In ambient air, these chemicals are
differentially distributed between particle and vapor phases as obtained in AP sample collections.
The particulate matter phase (typically PM2.5) contains mostly prooxidants such as redox active
metals together with higher molecular weight quinones and humic-like substances (HULIS) [5,6]
together with inorganic electrophiles such as arsenic and zinc. The vapor phase contains mostly
volatile organic compounds (VOCs) that include quinones [7–9] and electrophilic carbonyls [10].
At the functional level, prooxidants catalyze the reduction of oxygen to reactive oxygen species and
electrophiles react with nucleophilic functions, such as thiolate and amino groups, to form covalent
bonds (see Graphical Abstract).

Surprisingly, in recent years, research on biological assessments of AP has largely focused only
on the consequences of PM exposure without addressing the potential biological contributions of
corresponding VOCs. To address this deficiency, the present studies were designed to generate
quantitative data on both PM2.5 and VOCs of ambient AP samples for evaluating their distinct
chemical reactivities and biological effect profiles.

In AP biological studies, the consequences of chemical exposure upon cellular components involves
induction of oxidative stress and/or protein modifications that at low levels activate cytoprotective
mechanisms but at higher levels initiate proinflammatory responses [11]. To understand the relationship
between levels of reactive chemicals and this continuum of cellular responses, in this study we
determined in PM2.5 and VOC fractions of ambient AP samples the prooxidant content based on
their ability to transfer electrons from dithiothreitol to oxygen [12] and electrophile content, based on
their ability to inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [13]. The same
fractions were then subjected to cellular assays designed to determine relative potencies of their
biological responses.

The AP samples for this study were collected at three regions that neighbor railyards (Long Beach (LB),
Commerce (CM), and San Bernardino (SB)) in the Los Angeles Basin with the objective of assessing
regional differences in the chemical and biological actions of AP [14]. The chemical study results
show distinct distributions of reactive chemicals: prooxidants in the PM2.5 and the electrophiles in
the VOCs. The biological study results show that the samples with high reactive chemical content
were the most potent in eliciting biological responses: PM2.5 promoting an inflammatory response
and VOCs promoting an anti-inflammatory response.

Additionally, a second set of AP samples were collected at CM at sites 0.03–1 mile from its
railyards to assess their chemical and biological actions as a function of proximity to the emission
source. Those CM local samples exhibited profiles similar to the three regions’ data, i.e., high chemical
reactivity was associated with potent biological effects; furthermore, distance-dependent chemical and
biological reactivities were also observed.

The pro- and anti-inflammatory biological responses to the PM2.5 and VOC samples raised
the question of whether additive or antagonistic interactions occur following ambient AP exposures
(i.e., PM2.5 + VOCs). We could not address this issue directly insofar as the concentrations of PM2.5
and VOC extracts precluded simultaneous exposure studies, however, we did conduct a two phase
exposure in which RAW 264.7 macrophages were pre-exposed to VOCs, followed 24 h later by exposure
to PM2.5. The results show that pre-exposure to VOCs reduces the magnitude of an inflammatory
response to subsequent PM2.5. Based on prior studies showing that compounds contained in VOCs
can activate the Nrf2-ARE pathway [15], the current samples were similarly tested. VOCs, but not
PM2.5, activated this pathway, suggesting a cellular mechanism for their anti-inflammatory actions.
Collectively, our in vitro studies show that VOCs contain reactive chemicals capable of inducing
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significant anti-inflammatory effects and, as such, need to be included with PM analyses to enable
comprehensive studies of ambient AP.

2. Materials and Methods

2.1. Materials

Rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH), nicotinamide adenine
dinucleotide (NAD+), ethylenediaminetetraacetic acid (EDTA), glyceraldehyde-3-phosphate (GAP),
dithiothreitol (DTT), 5,5′-dithiobisbis-(2-dinitrobenzoic acid (DTNB), and diethylenetriaminepentaacetic
acid (DTPA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Other reagents were of
the highest grade available and purchased from Fisher Scientific (Pittsburgh, PA, USA). Murine
macrophage cell line RAW 264.7 cells were purchased from American Type Cell Culture (Manassas, VA,
USA). Dulbecco’s modified Eagle medium (DMEM) and penicillin/streptomycin were purchased from
Life Technologies (Carlsbad, CA, USA). Fetal bovine serum was purchased from Gemini Bio-Products
(Sacramento, CA, USA). The ELISA kits for TNF- α were purchased from BD Biosciences Pharmingen
(San Diego, CA, USA) and the kits for HO-1 were purchased from Enzo Life Sciences (Farmington,
NY, USA). Lipofectamine LTX transfection reagent was obtained from Life Technologies (Carlsbad,
CA, USA).

2.2. Sample Collection and Extraction

2.2.1. PM2.5

Medium-volume samplers (Tish, Cleves, OH) were located in the selected locations; PM2.5 and
vapor samples were collected continuously for 48 h as one time collections. The LB and SB samples
were collected in early summer (June). The CM samples were collected continuously over a 5 d
period in late spring (May). Teflon-coated glass fiber filters (Pall Corp, East Hills, NY) were used
for PM2.5 collection and XAD-4 resin beds (Acros, Thermo Fisher Scientific) for the vapor-phase.
Sampling details and matrix cleaning procedures have been previously published (16). Estimates of
the volume equivalent for each vapor sample analyzed were based on the air volume collected divided
by the fraction of the total extract used in each analysis. Aqueous suspensions of PM2.5 samples were
prepared by sonicating filter punches in cell culture water for 20 min and the corresponding volume
of air (m3/cm2) calculated to normalize the results. As the mass of the PM2.5 on the filter was not
measured, the volume equivalent of air was used to describe the final concentration of the particles in
the aqueous suspension, which was 2.2–6.0 m3/mL.

2.2.2. VOCs

XAD-4 resin beds containing the trapped vapor phase organic components corresponding to
each particle sample were extracted by sonication (30 min) with dichloromethane. The suspension
was filtered through a 0.45 µm nylon filter (Millipore, Billerica, Massachusetts), the volume reduced,
and solvent evaporated into a known volume of dimethyl sulfoxide (DMSO), so the concentration for
analysis could be expressed as m3 per mL of DMSO. The final concentration of the organic extract
was approximately 300 m3/mL of DMSO. Blank XAD-4 resin extracts were prepared as described
previously and used as controls [16]. Highly polar compounds such as those with multiple hydroxyl
moieties that are associated with the vapor phase would not be extracted with dichloromethane.

2.3. Chemical Assays

2.3.1. DTT Assay

This assay measured the prooxidant content of the sample from its ability to transfer electrons from
DTT to oxygen [12–17]. In the procedure, aliquots of vapor-phase and PM2.5 water suspensions were
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incubated with DTT (Sigma Chemical Co., MO, USA) for times varying from 10 to 30 min. The reaction
was quenched at specific times and after addition of DTNB to the complex with the remaining DTT,
the absorbance at 412 nm was measured. Rates were calculated averaging duplicate runs, and were
blank-corrected. The units were DTT nmol consumed per min per m3, with 95% confidence intervals
derived from regression analysis of rates.

2.3.2. GAPDH Assay

Electrophilic reactivity was measured from the sample’s ability to inhibit or inactivate the thiolate
enzyme GAPDH, through covalent bonding [13]. In brief, a mixture of 1 unit of rabbit GAPDH was
incubated with aliquots of the organic extracts of vapors or water suspensions of particles under argon
gas at 25 ◦C for 120 min. The reaction was then quenched by adding an equal volume of cold DTT
solution; GAPDH activity, based on the rate of nicotinamide adenine dinucleotide (NADH) formation,
was measured by its absorption at 340 nm. The ability to inactivate the enzyme was expressed in
equivalents of N-ethylmaleimide (NEM), the standard electrophile, which was included in each assay
as a control. Samples were run in triplicate and values reported as averages ± SEM. The assay provided
a measure for electrophile content that was based on structures capable of interacting with the catalytic
center of the enzyme and provided a quantitative estimate of the electrophilic content which could be
used in comparison studies. The units used were the equivalents of NEM per m3.

2.4. Cell Culture and Treatment

2.4.1. Cell Viability

Cell viability was determined by the 3-(4,5-dimethylthiazol-2yl)-2,5-triphenyl tetrazolium bromide
(MTT) tetrazolium salt colorimetric assay [18]. A 5 mg/mL MTT solution was prepared in phosphate
buffered saline and sterilized by filtration through a Steriflip. RAW264.7 cells were exposed to particle
and vapor samples in 96-well plates for 16 h then treated with 10 µL of 5 mg/mL MTT for 2 h at 37 ◦C.
The medium was removed and 100 µL DMSO was added to dissolve the formazan. Absorbance was
measured at 540 nm on a Biotek Synergy 2 Multi-mode Microplate Reader. To determine suitable sample
concentration ranges for these experiments, air sample toxicity was assessed by RAW 264.7 macrophages
exposure to concentrations of 1 m3/mL for 16 h. The loss of cells was normalized to that caused by
a blank filter extract for the PM2.5 and a blank XAD resin extract for the vapors. The PM2.5 loss
was 113.6% ± 3.9% (SEM for N = 8) and that for XAD was 94.7% ± 3.0% of their respective controls.
Based on these results, all subsequent cell experiments used concentrations of 1 m3/mL or less.

2.4.2. Cell Exposure

Murine RAW 264.7 cells were cultured in DMEM, supplemented by 1% penicillin-streptomycin
and 10% FBS as described by Li et al. [11] with slight modifications. Cells were exposed to three
concentrations (0.1 to 2.0 m3 air equivalent/mL) of PM2.5 or VOC extracts in duplicate for 16 h,
after which the medium and cells were separated and the cells subjected to lysis to obtain a cell extract.
The cell extracts were used in the ELISA assays for HO-1 and the medium used to assay TNF-α.
The results were analyzed by linear regression procedures (Graph Pad Prism, (San Diego CA, USA) to
determine (a) concentration dependency of the response, and (b), if the slope was significant, its value,
which is a measure of the potency of the sample.

2.5. Two Phase Study VOC Pretreatment/PM Exposure

In phase 1, cells were exposed to the VOC at a single concentration in triplicate (1 m3/mL) together
with the relevant controls for 24 h. In phase 2, the medium was removed and replaced with fresh
medium containing the challenge agent, or PM2.5, also at 1 m3/mL for 16 h. Cells and media were then
processed for HO-1 and TNF-α analyses
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2.5.1. ELISA Assays

The ELISA assays were performed following instructions provided by the manufacturers (HO-1;
Enzo Life Sciences; TNF-α, BD Pharmingen). The results reported are the differences between the
control and the experimental conditions. Values for HO-1 (ng/mg cell protein) and TNF-α (pg/mg cell
protein) were normalized to cell protein.

2.5.2. ARE/EpRE Activation

DNA transfections were performed with Lipofectamine LTX transfection reagent (Life Technologies,
Carlsbad, CA) following the manufacturer’s instructions performing cell culture in 12-well plates.
ARE-luciferase cDNA (1 µg/well) and pRL-TK cDNA (0.1 µg/well) or transfection reagent (2 µL/well)
were mixed with serum-free media. Before addition to the cells, the DNA solution and transfection
reagent solution were mixed together and incubated for 20 min at room temperature to allow the
formation of complexes. The complexes were mixed with the culture media and incubated for 24 h
to allow transfection. After transfection, the cells were exposed to the samples as described above
and luciferase activity measured in cellular extracts according to the manufacturer’s instructions
(Dual-Luciferase reporter assay system; Promega, WI, USA) with a multi-mode microplate reader
(Synergy 2, Bio-Tek, Winooski, VT, USA).

2.6. Collection Sites

The ambient air samples for this study were collected in three communities with railyards in the
Los Angeles Basin: Commerce (CM), Long Beach (LB) and San Bernardino (SB) (Figure 1). CM, with two
railyards, is located in the midtown area of Los Angeles. LB is southwest of CM and neighbors the
Pacific Ocean and the Port of Los Angeles, which is the largest container port in the United States
as measured by container volume and cargo value. Its emission sources would include both local
railyards and the Port. The SB site is located in the eastern end of the Basin, approximately 80 miles
from the coast and represents a receptor site that receives air parcels that have been subjected to
modifications by photochemical and chemical reactions as they move from east to west across the
Basin [19], together with emissions from a SB railyard. We previously observed that as the air mass
moves east, a trend toward higher levels of 9,10-phenanthroquinone was found in the air samples,
consistent with its formation from phenanthrene by atmospheric processes [7].

 

Figure 1. Map of the Los Angeles Basin with locations of the air collection sites: Long Beach (LB),
Commerce (CM) and San Bernardino (SB). The Los Angeles Basin contains a coastal area bordered by the
San Gabriel Mountains located in northern Los Angeles County and western San Bernardino County.
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The second set of collections focused on CM at different distances nearby its railyards to assess
ambient air properties as a function of distance from emission sources (Figure 2).

 

Figure 2. Map of the Commerce railyards with locations of air collection sites.

The sites, CM1 and CM2, were closest to the CM-Union Pacific railyard and downwind from the
Burlington Northern and Santa Fe (BNSF) Hobart yard. Sites CM3 and CM4 were both upwind of
the BNSF yard, but CM3 was closer to the yards and to a diesel truck processing center. CM4 was
considered as a background site, minimally directly impacted by the railyard activities. It should be
pointed out that as the samples were collected continuously 24-h/d for 5-d, changes in air movement
during that period could have minimized differences due to changes from prevailing onshore to
infrequent offshore winds. The distances from the railyards for the CM collections are summarized in
Table 1.

Table 1. Location of collection sites at Commerce.

Site Distance from Railyard (ft) Emission Environment

CM1 155 Railyard
CM2 400 Railyard (between 2 tracks)
CM3 4440 Diesel truck loading site
CM4 7000 Background

2.7. Biological Reactivities

Two markers were used to assess cellular responses by the RAW 264.7 macrophage cell line:
TNF-α as a proinflammatory response [20,21] and HO-1 as an anti-inflammatory response [22].
Cellular responses were determined at three concentrations (0.1, 0.5 and 1.0 m3/mL) to ensure that
the responses compared were linear over the concentrations used. The results were analyzed
by linear regression to obtain slopes of the concentration vs. response curves. The results
provide an assessment of the concentration-dependency of the response with the slope providing a
quantitative assessment of potency in stimulating expression of the target markers, TNF-α and HO-1
(see Supplementary Materials).

2.8. Computational Procedures

All computations were performed with GraphPad Prism 8.12 (San Diego, CA, USA).
Linear regression procedures were used to generate the best-fit values, the standard error of the
slope and its 95% confidence intervals together with an assessment of the significance of the slope
provided by its p value. These procedures generated Pearson correlation coefficients and their
respective p values.
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3. Results

3.1. Chemical and Biological Reactivities for Basin Sites

The PM and VOC samples from SB were the most reactive compared to those collected at CM
and LB. For all three regions, the prooxidant content was mostly associated with the PM2.5 fraction
(Figure 3).

α

α

Figure 3. Chemical properties of particulate matter (PM) and volatile organic compound (VOC) air
samples collected at CM, LB and SB. For each region’s PM and VOC samples, nmol dithiothreitol
(DTT) consumed (prooxidant content (a)) and N-ethylmaleimide (NEM) equivalents derived from a
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)-inhibition assay (electrophile content (b)) were
measured. The VOCs represent the dichloromethane extracts of XAD resin traps of the vapor phases.
Error bars indicate 95% CI (n = 3) for DTT results; SEM (n = 3) for the NEM results (values of the CIs
are detailed in supplemental data—Table S1).

In contrast, electrophile content was mostly associated with the VOC fractions; electrophile
content of the PM2.5 was close to background levels. SB VOC electrophile content was approximately
three-fold higher than those for CM, LB. All PM2.5 samples increased TNF-α expression, with SB being
40-fold more potent than CM and LB (Figure 4). Increases in TNF-α expression were not detected in
the VOC samples, i.e., they did not exhibit a concentration-dependent response (data not shown).

α
α

α
α

Figure 4. Relative potencies of air samples from CM, LB (a) and SB (b) to increase TNF-α in RAW 264.7
macrophages. TNF-α expression in the media was measured following exposure to the indicated PM
2.5 concentrations for 16 h. The solid lines represent the best line fit following linear regression analysis
of the results (n = 3 for each data point) with potencies indicated by the slopes (values of the regression
analysis are detailed in supplemental data—Table S4).

All VOC samples increased HO-1 expression, with SB being three-fold more potent than CM, LB,
(Figure 5). The SB PM also increased HO-1 expression but the response was markedly lower than
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its VOC; concentration-dependent increases in HO-1 expression for CM PM2.5 and LB PM2.5 were
not detected.

α
α

α
α

Figure 5. Relative potencies of VOC and PM 2.5 air samples from CM, LB (a) and SB (b) to increase
HO-1 expression in RAW 264.7 macrophages. Cell extracts were measured following exposure to the
indicated concentrations of either VOC or its corresponding PM for 16 h. The lines represent the best
line fit following linear regression analysis of the results (n = 3 for each data point) with potencies
indicated by the slopes (values of the regression analysis are detailed in supplemental data—Table S5).

3.2. Chemical and Biological Reactivities: CM Railroad Sites

The collection sites were located at different distances (0.03 to 1.3 mi from the railyards (Table 1)
identified as CM1 to CM4 in increasing distance. The PM2.5 prooxidant and VOC electrophile content
decreased as a function of distance from the railroad emission source (Figure 2) with the exception of
CM2 which was adjacent to two railyards.

Prooxidant content was mostly associated with PM2.5 samples while electrophile content was
mostly associated with the VOC samples. VOC prooxidant and PM2.5 electrophile contents remained
close to background levels for all samples (Figure 6).
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Figure 6. Chemical properties of PM and VOC air samples collected near to the CM railroad area
(CM1—closest, CM4 most distant). For each PM and VOC local sample, the nmol DTT consumed
(prooxidant content (a)) and NEM equivalents (electrophile content (b)) were measured. Error bars
indicate 95% CI for DTT (n = 3) results and SEM (n = 3) for the GAPDH results; analysis methods as
described in Figure 4, (values of the CIs are detailed in supplemental data—Tables S2 and S3).

The biological reactivities paralleled the profiles of the regional samples. Further, PM2.5 TNF-α
and VOC HO-1 expression showed a ‘distance’ pattern, with CM2 being the most potent and CM4
(most distant) being least potent; PM2.5 HO-1 expression remained close to background levels for all
samples (Figure 7).
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Figure 7. TNF-α expression (a) and HO-1 expression (b,c) in RAW 264.7 macrophages using air samples
collected nearby CM railroads (CM1—closest, CM4 most distant). Macrophages were incubated with
three concentrations of VOC or PM for 16 h. The lines represent the best line fit following linear
regression analysis of the results (n = 3 for each data point) with potencies indicated by the slopes
(values of the regression are detailed in supplemental data—Tables S4 and S5).

3.3. SB VOC Pretreatment Effects on SB PM2.5 2.5 Expression of TNF-α and HO-1 in RAW 264.7 Macrophages

The anti-inflammatory properties of the VOC suggested that VOC pretreatment may affect the
attenuation of the pro-inflammatory effects of a subsequent PM2.5 challenge. We selected the most
potent samples—SB VOC for the pretreatment and SB PM2.5 for the challenge. A sequential exposure
experiment was performed in which cells were first exposed to the SB VOC for 24 h. The media was
then replaced with fresh media containing control filter extracts or suspensions of the SB PM2.5 and
the exposure continued for 16 h. Macrophages and media were analyzed for HO-1 and TNF-α content,
respectively (Figure 8).
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α

α

Figure 8. SB VOC pretreatment effects on SB PM 2.5 expression of TNF-α (a) and HO-1 (b) in RAW
264.7 macrophages. Cells were preincubated with VOC (1 m3/mL) for 24 h followed by incubation with
PM 2.5 (1 m3/mL) for 16 h; TNF-α—XAD Blk/PM 2.5 vs. VOC/PM 2.5, n = 4; p** < 0.005; HO-1—XAD
Blk/PM 2.5 vs. VOC/PM 2.5, n = 4; *** p < 0.001.

The reason for the two-stage exposure was the limitation in the volume of sample solutions
that could be added to the plate cells while maintaining the incubation conditions (see Methods for
details). The results show a 54% decrease in the TNF-α response to the PM2.5 challenge following
pretreatment to SB VOCs at 1 m3/mL, n = 4; p**** < 0.005, together with a significant 200% increase in
HO-1 expression (Blank XAD/SB vs. SB VOC/SB 2.5; (n = 4; p < 0.001).

3.4. Activation of the antioxidant Response Element (ARE) in RAW 264.7 Macrophages by Air Samples from
CM, LB and SB

In prior studies, we measured an HO-1 response in VOC samples collected at Riverside CA
(a sample site nearby SB). Those samples also showed an electrophilic effect on the ARE [23].

119



Appl. Sci. 2020, 10, 3245

Accordingly, we evaluated in this study the three regional samples for their potential to activate the
ARE. The results show that all VOC samples significantly increased ARE activation 1.5- to three-fold
compared to their corresponding PM2.5 samples which remained at background levels. The SB VOC
sample was approximately two-fold more potent than the LB and CM samples (Figure 9).

α

α

Figure 9. Activation of the antioxidant response element (ARE) in RAW 264.7 macrophages by air
samples from CM, LB and SB. Cells transfected with ARE-luciferase cDNA were exposed to either
PM2.5 and VOC from CM, LB, SB at 1 m3/mL for 16 h and ARE activation assessed; (see Methods
for ARE procedures). Each value is the mean ± SD, n = 4/sample site; site values normalized to
corresponding blanks; CM VOC vs. CM PM2.5, ** p < 0.005; LB VOC vs. LB PM 2.5, SB VOC vs. SB
PM2.5, *** p < 0.00001.

4. Discussion

In our prior AP studies on PM2.5 and VOCs, we characterized chemical species that can participate
in two reactions associated with acute toxicity, (1) prooxidants that catalyze the formation of hydrogen
peroxide and hydroxyl radical, and (2) electrophiles that form covalent bonds with nucleophilic
groups such as amino and thiolate found in proteins. Furthermore, we showed that VOC electrophiles
associated with AP can activate cellular signaling pathways relevant to adverse health effects [23].
However, VOC biological assessment has received minimal attention in conjunction with PM research
despite its apparent contributions to AP toxicology, with the exception of adductomics studies by
Rappaport and his associates (e.g., [24]).

For this study, analytical methods we previously developed and validated [14] were used
to characterize chemical and biological properties of SB, CM and LB AP samples. The samples
were obtained from (1) an aqueous suspension of the particulates, PM2.5, and (2) an organic
extract of the VOCs trapped by polystyrene resins placed downstream of the PM2.5 filters which
have been shown to contain the majority of the total electrophiles present in ambient air [14].
Based on our previous analyses of seasonal effects on AP properties [14,16], the samples for this
study collected in late spring/early summer were likely have relatively higher prooxidant and VOC
electrophile content compared to winter collections. Nonetheless, despite such quantitative differences,
predominantly PM—TNF-α—and VOC electrophile responses were consistently observed for both
seasonal collections. The quantitative nature of the regional data allowed for multiple comparisons
between different parameters of AP chemical reactivities in terms of pro- and anti-inflammatory
properties, and their distribution between PM 2.5 and VOC phases. Prooxidant reactivity and
proinflammatory responses (TNF-α increases) were predominantly associated with PM samples
while electrophile reactivity and anti-inflammatory responses (HO-1 increases and ARE activation)
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were predominantly associated with VOCs. Future studies, both in vitro and in vivo, are needed
to determine whether the interactions of these responses are synergistic or antagonistic following
concurrent exposure of PM and VOCs. Presently, evidence for a potential interaction is suggested
from the results of the two-phase studies we conducted with RAW 264.7 macrophages in which the
anti-inflammatory effects of the VOC suppressed the pro-inflammatory effects of the PM2.5.

The following analysis illustrates how the data we generated can be used to explain differences in
the response profiles of the two most reactive and potent samples, SB and CM2.

Of particular note, the SB and CM2 samples have comparable chemical reactivities in the DTT
assay (0 65, 0.50; Table 2), but the SB pro- and anti-inflammatory potencies as derived from the
biological assays were significantly greater (slope values from linear regression analysis; Table 2B).
Namely, the SB TNF-α and HO-1 responses were 14 and four times more potent, respectively, than those
generated by CM2. We interpret these differences in terms of the chemical content in the samples
being collected at different regions of the LA Basin. The CM2 sample consists mostly of railyard traffic
emissions, whereas the SB sample has been subjected to atmospheric chemical reactions on the air
mass as it moves approximately 80 miles across the Basin. These reactions convert, among other
compounds, polynuclear aromatic hydrocarbons to their corresponding quinones as exemplified by
9,10-phenanthroquinone generation (PQ) [7] a potent biological prooxidant associated with PM [25].
Relatively higher levels of such organic prooxidants in the SB PM2.5 sample are suggested by the
DTT assay data (Table 2B) that show a larger fraction of the SB PM activity not inhibited by metal
chelation (i.e., DTPA-insensitive), in support of this phenomenon of atmospheric formation of organic
prooxidants. Analogously, the generation of organic electrophiles such as 1,4-benzoquinone (BQ)
likely contribute to the more potent SB anti-inflammatory HO-1 response in the VOC fraction (Table 3).
Based on these considerations, we suggest that the higher pro- and anti-inflammatory actions of the
SB sample compared to that of CM2 are due to its higher content of organic reactants generated by
photochemical processes.

Table 2. Prooxidant content of SB and CM2 samples.

DTT DTT + DTPA

Mean 95% CI Mean 95% CI

SB 0.65 0.55–0.75 0.16 0.11–0.20
CM2 0.50 0.47–0.55 0.08 0.03–0.13

SB/CM2 ratio 1.31 1.89

Prooxidant content, defined by DTT activity (nmols DTT consumed/min*m3), in the presence and absence of 20 µM,
diethylenetriamine pentaacetic acid (DTPA), a metal chelator [16].

Table 3. Biological properties of SB and CM2 samples.

PM2.5 TNF-α VOC HO-1

Equation Slope: 95% CI Equation Slope: 95% CI

SB Y = 413.9*X − 16.7 319.9–507.9 Y = 185.2.4*X − 37.8 158.5–212.9
CM2 Y = 29.88*X − 0.34 22.58–37.18 Y = 42.74*X + 4.49 22.76–58.22

SB/CM2 ratio 13.8 4.3

Slopes of cellular responses to three concentrations of PM2.5 from the indicated PM2.5 samples as a function of
cellular protein concentration. Units: Y = TNF-α pg/mg protein; Y = HO-1 ng/mg protein/m3; X =m3/mL.

A second consideration in determining relative biological potencies of PM and VOCs is their
cellular access upon exposure. PM/metal ions’ entry into cells is regulated by endocytosis and transport
processes [6,26], whereas quinones such as PQ and BQ are neutral and non-polar compounds that
can readily penetrate membranes to promote oxidative stress-related reactions [27]. These biological
differences underscore the complex chemical composition of PM, which limits the interpretive value of
a general chemical assay such as the DTT assay and necessitate inclusion of parallel biological assays
for more definitive evaluation of PM reactivities.
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Direct extrapolation of these results to potential toxicological effects in humans, i.e.,
PM-induced oxidative stress and VOC-induced covalent adducts, remains to be established. In one of
the very few direct comparisons of ‘whole’ diesel exhaust (DE) and VOC components, Campen et al. [28]
compared the cardiovascular effects of these two samples in mice and observed major effects consistent
with myocardial ischemia, attributable to VOC components. These VOC effects were also seen in vitro
using isolated blood vessels. Although some of the chemical components were determined, they did
not, however, assay for redox-active species or electrophiles. A second relevant study examined
the role of electrophiles that included 1,2-naphthoquinone, a component of VOCs [25] in the actions
of DE on mouse lungs [29]. In an intact lung model and in multiple cultured human lung cell
models, they showed activation of transient receptor potential ankyrin-1, a pro-inflammatory mediator,
on airway C-fibers by a variety of qualitatively and quantitatively different DE particles. These studies
demonstrated the actions of VOCs underlying the toxicity of emissions and emphasized the need for
further studies that model human exposure conditions.

5. Conclusions

We have shown that quantitative assessments of chemical and biological properties of ambient
PM2.5 and VOCs can be used effectively to characterize, compare and contrast AP across different
geographical regions, to account for effects of atmospheric modifications on air mass, and to evaluate
exposure proximity to an emission source. Of major significance is the consistent characterization of
VOCs in terms of their electrophilic chemical reactivity and biological modulation of HO-1 expression
and ARE activation. Collectively, these results have human health implications. VOCs, being non-polar
volatile species, will readily enter the lungs and penetrate membranes to access all body compartments
and thus can potentially contribute to multiple organ effects. Furthermore, electrophilic properties of
VOCs can affect the long-term inactivation of protein function resulting from their covalent binding
with tissue nucleophiles. Consequently, the effects of low level VOC exposure in AP can accumulate
over time and contribute to chronic adverse health effects.
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Abstract: Due to increasingly stringent control policy, air quality has generally improved in major
cities in China during the past decade. However, the standards of national regulation and the World
Health Organization are yet to be fulfilled in certain areas (in some urban districts among the cities)
and/or certain periods (during pollution episode event). A further control policy, hence, has been
issued in the 13th Five-Year Plan (2016–2020, hereafter 13th FYP). It will be of interest to evaluate
the air quality before the 13th FYP (2015) and to estimate the potential air quality by the end of the
13th FYP (2020) with a focus on the area of an urban district and the periods of severe pollution
episodes. Based on observation data of major air pollutants, including SO2 (sulphur dioxide),
NO2 (nitrogen dioxide), CO (carbon monoxide), PM10 (particulate matter with aerodynamic diameter
equal to or less than 10 µm), PM2.5 (particulate matter with aerodynamic diameter equal to or less
than 2.5 µm) and O3 (Ozone), the air quality of Haizhu district [an urban district in the Pearl River
Delta (PRD), China] in 2015 suggested that typical heavy pollution occurred in winter and the hot
season, with NO2 or PM2.5 as the key pollutants in winter and O3 as the key pollutant in the hot
season. We also adopted a state-of-the-art chemical transport model, the Weather Research and
Forecasting model coupled with Chemistry (WRF-Chem), to predict the air quality in Haizhu District
2020 under different scenarios. The simulation results suggested that among the emission control
scenarios, comprehensive measures taken in the whole of Guangzhou city would improve air quality
more significantly than measures taken just in Haizhu, under all conditions. In the urban district,
vehicle emission control would account more than half of the influence of all source emission control
on air quality. Based on our simulation, by the end of the 13th FYP, it is noticeable that O3 pollution
would increase, which indicates that the control ratio of volatile organic compounds (VOCs) and
nitrogen oxides (NOx) may be unsuitable and therefore should be adjusted. Our study highlights the
significance of evaluating the efficacy of current policy in reducing the air pollutants and recommends
possible directions for further air pollution control for urban areas during the 13th FYP.

Keywords: 13th Five-Year Plan; pollution episode; WRF-Chem; emission control scenario; PRD
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1. Introduction

The quality of ambient air is vital to human health. Air quality management is important for
many authorities around the world [1]. The Chinese government has put great effort into mitigating
the elevated level of air pollutants in the past decade, especially since the Air Pollution Control Action
Plan (APCAP) was issued by the State Council in 2013 [2]. The annual levels of PM2.5, PM10, SO2,
and NO2 decreased by 12%, 11%, 20%, and 5%, respectively, in major cities during 2013–2015 [3,4].

However, the effect was highly heterogeneous both spatially and temporally since the national
standards of air quality were violated in some districts/towns in cities and during severe pollution
episode events. Observation stations in the urban area of Beijing [5], Shanghai [6], and Guangzhou [7,8]
recorded heavy pollution episodes in winter (PM10, PM2.5, and NO2 as key pollutants) and/or hot
seasons (summer and autumn, O3 as key pollutant) [9,10].

To further tackle the air pollution issue, authorities of national and local level have formulated a
series of regulations for the 13th Five-Year Plan (13th FYP) [11,12]. Targets have been set such that,
by the end of 13th FYP, the emission of SO2 and NO2 should decrease 15% compared to that in 2015,
and the ratio of heavy pollution days in 2020 should reduce 25% compared to that in 2015 [11]. The three
national typical air pollution city clusters (Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl
River Delta (PRD)) have their own targets. For example, for the cities of the PRD region, concentrations
of air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) should meet national secondary air quality
standards and the number of heavy pollution day should be zero [11]. Although the emission of the
air pollutant from large industrial point sources has been decreasing in the past decade, the emission
from traffic has been significantly increasing, which leads to critical challenges in air pollution control.
It will be of significance to assess the air quality level in the year before the 13th FYP (2015) and to
predict the impact of 13th FYP on air quality by 2020.

Some modelling studies have been conducted to evaluate the potential influence of the 13th FYP
policy or the impact of policies on air quality during some major public events. Wang et al. (2016) [13]
evaluated the impact of emission control measures on the air quality in the PRD region with WRF-CMAQ
(The Weather Research and Forecasting Model-Community Multiscale Air Quality Model) model
simulation on emission scenarios (a base case in 2010, two cases in 2020). Liu et al. (2017) [14] assessed
the cobenefits (air quality and climate change) of vehicle emission control measures for 2015–2020
in the PRD region. Maji et al. (2018) [15] reported the PM2.5-related mortality under air pollution
control policies for China 2020. Yang et al. (2016) [16] analysed the effect of the coal control strategy in
China on carbon mitigation and pollutants control for 2020 and 2030. Wang et al. (2015) [17] assessed
the air quality situation under the pollution control policy of thermal power plants in China for 2020
with MM5-CMAQ (Fifth-Generation Mesoscale Regional Weather Model-Community Multiscale Air
Quality Model). Qui et al. (2017) [18] studied the effect of emission control strategies on air quality of
Baotou, China. Cai et al. (2017) [19] researched the impact of the ‘Air Pollution Prevention and Control
Action Plan’ on PM2.5 in the Jing-Jin-Ji region from 2012–2020 with WRF-CMAQ. Li et al. (2017) [20]
estimated the effect of policies in the ‘13th Five-Year Plan’ period on air pollutants emission of China’s
electric power sector. Wei et al. (2017) [21] analysed the impact of policies in Shanxi province, China.
Guo et al. (2016) [22] researched the impact of emission control measures on air quality during APEC
(Asia–Pacific Economic Cooperation summit) China 2014 with the Weather Research and Forecasting
coupled with Chemistry (WRF-Chem). Xu et al. (2013) [23] evaluated the effect of air pollution control
policies on air quality during the 16th Asian Games with CMAQ (Community Multiscale Air Quality
Model). Shen et al. (2016) [24] analysed the influence of emission control policies on air quality during
China’s V-Day parade in 2015. Air quality numerical models (WRF-CMAQ, MM5-CMAQ, WRF-Chem,
etc.) and scenario analyses were used widely to evaluate the effectiveness of policies on air quality.
These studies only focused on the impact of policies on annual air quality in 2020 or on air quality
during some major public events and did not investigate air quality on heavy pollution events.

For heavy pollution, previous works focused on the characteristics and formation of pollution
episodes. Tan et al. (2009) [25] investigated the chemical characteristics of haze in Guangzhou
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(2002–2003, summer and winter) with PM10 samples and gas chromatography-mass spectrometry
(GC-MS). Wang et al. (2015) [26] researched the formation process of a severe haze episode in the
Yangtze River Delta (2013 winter) based on visibility and meteorological parameters, and backward
trajectories of the air mass. Zhang et al. (2015) [27] applied WRF-Chem to simulate a severe haze
in Beijing (2013 winter) and discussed the meteorological impacts on haze. Zhan et al. (2017) [7]
analysed the spatial and temporal association of PM2.5 pollution events between typical cities of
PRD (2014 winter). Ding et al. (2004) [28] discussed the effects of sea–land breezes on the transport
of air pollution during an ozone episode in PRD (2001 autumn) with the MM5 (Fifth-Generation
Mesoscale Regional Weather) model. Shen et al. (2015) [29] researched the source of an ozone
episode in PRD (2008 autumn) with the CAMx (Comprehensive Air-quality Model with extensions)
model. Zhao et al. (2015) [30] investigated the chemical characteristics of ozone episodes in Shanghai
(2010–2013, O3 peaked in summer) with the differential optical absorption spectroscopy (DOAS) and the
hybrid single particle Lagrangian integrated trajectory (HYSPLIT) model. Xu et al. (2008) [31] simulated
typical summertime ozone episodes in Beijing (2000) with the WRF-CAMx (Weather Research and
Forecasting Model Comprehensive Air-quality Model with extensions) model to analyse the process,
and Qu et al. (2014) [32] used the CMAQ-MADRID (Community Multiscale Air Quality Model-Model
of Aerosol Dynamics, Reaction, Ionization, and Dissolution) model to evaluate the effects of NOx

and VOCs emissions on ozone pollution in Beijing (2007 summer). According to previous studies,
meteorological conditions and emission significantly affected pollution, and numerical models were
widely used to analyse the characteristics of pollution. However, the model evaluation of the impact of
the 13th FYP on the air quality in 2020 during the pollution episode has not attracted much attention.

The air pollution control strategy in China is now at the new stage that the manufacturing industry
in megacities in China (e.g., Guangzhou) is no longer the dominant emission source; control on
vehicle emissions is becoming the primary subject [33]; the control strategy is transforming from
urban/regional control to district/town grid control [34]. The PRD region is one of the three national
typical air pollution city clusters [2]. PRD has experienced the major problem of transferring from
haze to complex (haze and photochemical) pollution. Moreover, it is the first city cluster to achieve the
goal in the APCAP, i.e., compared with the levels in 2012, the concentration of fine particles (PM2.5)
in Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta (PRD) reduced by 25%,
20%, and 15%, respectively, by 2017 [4]. As the centre of PRD and the capital city in Guangdong
province, Guangzhou is one of the cities with the poorest air quality in PRD, more comprehensive
and more stringent air pollution control measures were implemented in Guangzhou than in other
cities of PRD, so that Guangzhou is a role model in air quality management [35]. Haizhu district is an
island in the urban area of Guangzhou, with a typical urban landscape (residential and commercial
areas) comprising many high rises, shops, residential apartments, highways, and major roads that
pass through the urban area, and its air quality was relatively poor [36–38]. It is an ideal testbed to
determine how the emission control measures affect air quality in urban areas. Besides, manufacturing
industries have been moved out from Haizhu due to the ‘limitation of high-pollution production’
policy [39,40], which has been a typical trend in cities of China recently [3]. Therefore, our study
focused on the Guangzhou central district (Haizhu district) (Figure 1).

In this study, we first compiled an evaluation on the observational data in Haizhu district in 2015
with a focus on the periods of pollution episodes. Then we designed four scenarios based on the 13th
FYP regulations, and utilized the WRF-Chem model to evaluate the effect of the emission control
measures and the influence of Haizhu policy and Guangzhou (except Haizhu) policy on air quality
in Haizhu district 2020 under those scenarios. The research framework is shown in Figure S1 in the
Supplementary Materials.
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Figure 1. The Haizhu region and its location (GD: Guangdong province; PRD: Pearl River Delta;
GZ: Guangzhou) [14,41,42].

2. Data and Model Experiment

2.1. Observation Data

Air quality monitoring data, including the hourly concentrations of pollutants (CO, SO2,
PM2.5, PM10, NO2, O3) and daily AQI (Air Quality Index), were collected from Guangzhou
Environmental Monitoring Centre data network (http://210.72.1.216:8080/gzaqi_new/RealTimeDate.
html). Hourly and daily meteorological data [wind speed, wind direction, relative humidity (RH),
temperature, satellite cloud images, etc.] were downloaded from the Guangzhou meteorological data
network (http://data.tqyb.com.cn/weather/index.jsp). These websites are regularly maintained by the
government, and the data are released to the public. The data mentioned above were used to analyse the
air quality status and pollution episodes in 2015, and to evaluate the WRF-Chem model’s performance.

2.2. Emission Inventory and Scenarios

2.2.1. Emission Inventory

The anthropogenic emissions from the 2012-based Multiresolution Emission Inventory for China
(MEIC) [43] (http://www.meicmodel.org/), biogenic emission parameterisation [44], dust emission
parameterisation [45], and sea salt emission parameterisation [46], and the marine emission from
EDGAR (Emission Database for Global Atmospheric Research, http://edgar.jrc.ec.europa.eu/) were
applied in this study. The 2012-based MEIC was a Chinese national emission inventory with a resolution
of 0.25◦ × 0.25◦ based on 2012 emission status, developed by Tsinghua University. It included the
emissions in major sectors, such as transport, industry and human residential, etc. [13]. Previous studies
reported that MEIC was well developed by a technology-based emission model [47] and similar emission
datasets have been widely used in the numerical simulation for cities in PRD [27,48].

The emissions in the key research area, Guangzhou, were obtained based on the Guangzhou
ambient air quality plan (2016–2025) [49]. The emission of air pollutants from different sources in
Haizhu district in 2015 was retrieved from the Guangzhou environmental protection bureau’s data
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network (http://www.gzepb.gov.cn/infoindex.htm). Based on the statistics yearbook (http://210.72.
4.52/gzStat1/chaxun/njsj.jsp) and the Guangzhou environmental protection bureau’s data network,
the emission inventory was generated according to Chinese national technical guidelines [50,51] and
relevant studies (Zheng et al., 2009 [52]; Zhao et al., 2015 [53]). Spatial allocation of emission inventory
depended on the source characteristics. Haizhu district is an urban area, and the major emission sectors
are industry, residential, and (road) transport. Emission sectors, corresponding inventory technical
guidelines, and special allocation rules in this research are shown in Table S1.

According to the 2015-based Haizhu district emission inventory, the 2020 Haizhu district emission
inventory was predicted with the extrapolation function [13] [EI_2020 = fx (EI_2015 × activity factor),
where EI refers to the emission inventory, and the activity factor refers to the trend of emission
sections, gained from emission control policies for the 13th Five-Year period [12,49,54] and the trend
of city development in the past five to ten years (e.g., society, economy, vehicle and population, etc.)
according to the statistical yearbook network (http://210.72.4.52/gzStat1/chaxun/njsj.jsp)]. We note that
the emission inventory in Haizhu district is compiled on an annual resolution. The resolution of these
inventories was 0.01◦ × 0.01◦. All of the emission inventories have the same major sectors (transport,
industry, and residential, etc.).

2.2.2. Emission Scenarios

Because the major and easily controlled sections had been regulated during the 12th Five-Year
Plan period (12th FYP), the 13th FYP emission control policy was set more aggressively: industries
generating air pollution will be moved out from the central city area, ultraclean/effective technology
will be widely used, the ratio of public transport will rise to 70% of motorised travel [12], electric buses
will be applied widely, accounting for 63% of public buses [54], vehicle emission standards and fuel
standards will be strengthened (specifically, eliminating high pollution vehicles, implementing the
new national emission standard of vehicle and the new national vehicle fuel standard, etc.), and VOC
emission will be controlled entirely in particular industries (e.g., chemical industry, paint industry,
and printing industry, etc.) [49].

Four scenarios were designed to evaluate the impact of the 13th FYP on the air quality in Haizhu
district in 2020. The meteorological conditions were assumed to be unchanged, which means that the
meteorological conditions in 2015 were used for all scenarios in 2020. The four 2020 scenarios are as
follows (also in Table S2):

Scenario 2020A was proposed such that both Haizhu emission control policy and Guangzhou
(except Haizhu) emission control policy would follow the 2015 emission control policy tendency.
This scenario is a baseline scenario.

Scenario 2020B was designed such that Haizhu emission control would be implemented based on
the 13th FYP emission control plan, while Guangzhou (except Haizhu) would still adhere to the 2015
emission control policy.

Scenario 2020C was a 13th FYP policy scenario in which both Haizhu emission control policy and
Guangzhou (except Haizhu) emission control policy would be implemented based on the 13th FYP
emission control plan.

Scenario 2020D was a scenario for vehicle control in Haizhu due to the significance of vehicle
emission in Haizhu. In this scenario, vehicle control in Haizhu would be implemented based on the
13th FYP emission control plan, while other emission source controls in the Haizhu and Guangzhou
(except Haizhu) emission control policy would remain as the 2015 emission control policy tendency.
We note that the contribution of vehicle emission in Haizhu district is <10% of that in Guangzhou city.

Table 1 shows the changes in emissions of SO2, NOx, CO, PM10, PM2.5, and VOCs for the different
scenarios in the whole city of Guangzhou. The 2020A, 2020B, and 2020D scenario emissions would be
higher than the 2015 emissions (SO2, NOx, CO, PM10, PM2.5, and VOCs would increase 57.2–58.9%,
47.4–48.6%, 60.1–60.2%, 14.6–15.1%,25.8–26.4%, and 24.9–25.0%, respectively), whereas the 2020C
scenario emission would be lower than or roughly equal to the 2015 emission. The difference of
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emissions among each scenarios indicates that the emission control of the whole Guangzhou city
would significantly affect the 2020 emission. Additionally, the emission ratio (VOCs/NOx) would be
around 0.72 in scenarios 2020A, 2020B, and 2020D and 0.60 in scenario 2020C, lower than 0.86 in 2015.

Table 1. Changes in pollutant emissions of the different scenarios in the whole city (Guangzhou) (A, B,
C, and D are scenarios 2020A, 2020B, 2020C, and 2020D, respectively).

SO2 NOx CO PM10 PM2.5 VOCs

(A-2015)/2015 58.9% 48.6% 60.2% 15.1% 26.4% 25.0%
(B-2015)/2015 57.2% 47.4% 60.1% 14.6% 25.8% 24.9%
(C-2015)/2015 −72.9% −14.2% 1.0% −36.7% −41.8% −33.2%
(D-2015)/2015 58.9% 48.1% 60.1% 15.0% 26.2% 25.0%

The changes in emissions for each sector are shown in Figure 2. SO2 emission from the sectors
residential, vehicle, and others, and NOx emission from the residential sector in the four 2020 scenarios
would be lower than those in the 2015 emission. PM2.5 emission and PM10 emission from the residential
sector in scenarios 2020B and 2020C would also be lower than those in the 2015 emission. In scenarios
2020C, NOx emission from the vehicle and others sectors, CO emission from the industry, residential,
and vehicle sectors, and VOCs emission from the residential sector would be higher than those in the
2015 emission. Overall pollutants emissions in scenarios 2020A, 2020B and 2020D would be higher
than those in 2015, pollutants emissions in scenarios 2020C would be lower than in 2015, except that
CO emission in scenarios 2020C would be slightly higher than that in 2015.

Figure 2. Emission changes in sectors in different scenarios in the whole city (Guangzhou).

2.3. WRF-Chem Model Setup

2.3.1. Description of WRF-Chem Model

WRF-Chem is a chemical transport model developed by the community led by NOAA/ESRL
(Earth System Research Laboratory, The United States National Oceanic and Atmospheric
Administration) [55,56], and it is widely used for analysing heavy pollution processes and the
effectiveness of emission control measures [22,27,57].

2.3.2. Configuration of WRF-Chem

In this study, a three-nested domain was applied for model set-up (Figure S2), with grid cell areas
of 9 × 9 km, 3 × 3 km, and 1 × 1 km, respectively. The biggest domain covered the southern China
area, the middle domain covered PRD, and the smallest one covered the Guangzhou central area.
There were 27 sigma levels for all domains, and in this study, the data of the ground level was
mainly used. The NCEP (the United States’ National Centers for Environmental Prediction) 6-h FNL
(Final Operational Global Analysis data) meteorological data and the emission inventory mentioned
above were input for model setup. The simulation data from MOZART (Model for Ozone and Related
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Chemical Tracers, https://www.acom.ucar.edu/wrf-chem/mozart.shtml) was used as the initial and
boundary chemistry data [58]. The related parameterisation schemes in the simulation were the
Regional Acid Deposition Model, version 2 (RADM2) gas-phase chemical mechanism [59] and the
MADE/SORGAM (Modal Aerosol Dynamics Model for Europe/Secondary Organic Aerosol Model)
aerosol chemical mechanism [60,61]. We have not activated the feedback from chemistry on meteorology.
The first 120 h in the simulation were used as the model spin-up.

2.3.3. Cases Setup

(1) Evaluation of overall air quality in 2020
The month of October was used as a proxy of the entire year of 2015 since the pollutant

concentrations in October 2015 were very similar to those in the whole year (details are shown in
Section 3.1). WRF-Chem simulations were conducted with the emissions in four 2020 scenarios and the
emissions in 2015. The simulated concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 were compared
between results of the four 2020 scenarios and the result of 2015, in order to evaluate the effectiveness
of the 13th FYP policy on air quality. The meteorological conditions for 2020 scenarios were assumed
to be the same as the meteorological conditions in 2015. The results are shown in Section 3.3.

(2) Evaluation of air quality during pollution episodes
To identify the air quality status, we analysed the annual air quality situation and air pollution

events based on the data observed in four urban stations (Baogang, Chisha, Shayuan, and Haizhuhu) in
Guangzhou Haizhu district (Figure 1). A pollution episode was defined as a short period consisting of
subsequent days (at least one day) with the AQI ≥ 101 [62]. A heavy pollution episode was a pollution
episode with AQI ≥ 201 [62].

The pollution episodes in 2015 are shown in Table 2 (more information is shown in Table S3). The table
shows that the number and the pollution level of pollution episodes had seasonal characters. The pollution
episodes occurred more often in winter, and heavy pollution was observed in the summer and winter.
The Shayuan station and Haizhuhu station suffered pollution episodes more than other stations in 2015,
and Shayuan was the only station where the heavy pollution episodes were observed in both winter and
summer (14–28 January 2015, and 3–8 August 2015, respectively). The two heavy pollution episodes
were typical pollution (PM2.5 and NO2 pollution in winter, O3 pollution in summer [63]). Therefore,
the two heavy pollution episodes in Shayuan were analysed with pollution and meteorology progress
(results shown in Section 3.1.2). Also, the meteorology conditions of these two episodes were applied in
the 2020 scenarios numerical simulations with WRF-Chem to evaluate the effectiveness of the 13th FYP
policy on air quality of pollution episodes (specifically, PM2.5 and NO2 pollution for the winter episode,
O3 pollution for the summer episode). The simulation results are shown in Section 3.4.

Table 2. Pollution episodes observed at Haizhu monitoring stations in 2015.

Station Season Event Frequency (Units) key Pollutant Max Pollution Level

Baogang Spring 5 PM2.5, NO2, O3 Moderate pollution
Summer 4 O3 Heavy pollution
Autumn 3 PM2.5, NO2, O3 Moderate pollution
Winter 9 PM2.5, NO2 Moderate pollution

Chisha Spring 4 PM2.5, NO2, O3 Moderate pollution
Summer 4 O3 Heavy pollution
Autumn 3 NO2, O3 Moderate pollution
Winter 7 PM2.5, NO2 Moderate pollution

Shayuan Spring 7 PM2.5, O3 Moderate pollution
Summer 5 O3 Heavy pollution
Autumn 12 PM2.5, NO2, O3 Moderate pollution
Winter 7 PM2.5, NO2 Heavy pollution

Haizhuhu Spring 6 PM2.5, NO2, O3 Moderate pollution
Summer 3 O3 Light pollution
Autumn 10 NO2, O3 Moderate pollution
Winter 12 PM2.5, NO2, O3 Moderate pollution
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3. Results and Discussion

3.1. Air Quality in Haizhu in 2015

3.1.1. Overview

The annually-averaged concentrations of PM2.5, PM10, SO2, and NO2 were 40 µg/m3, 61 µg/m3,
14 µg/m3, and 49 µg/m3, respectively, in Haizhu district in 2015, which were higher than those in the
whole of Guangzhou city (39 µg/m3, 59 µg/m3, 13 µg/m3, and 47 µg/m3, respectively [64]). The 95th
percentile of the CO daily concentration was 0.9 mg/m3, in Haizhu district in 2015, which was lower
than that in the whole of Guangzhou city (1.5 mg/m3, [64]), The routine pollutants (except for O3)
peaked in January (winter), among which PM2.5 and NO2 were the major pollutants. The 90th percentile
of the daily 8 h maximum O3 concentration (O3-8h) in 2015 was 139 µg/m3, slightly lower than that
in Guangzhou (145 µg/m3; [64]). O3-8h peaked in September (summer to autumn, or hot season).
O3 was also the key pollutant in summer and autumn in Haizhu district [64]. These observational
results suggested that air quality in Haizhu was still harmful to human health (the thresholds:
PM2.5 ≤ 10 µg/m3 annual mean, PM10 ≤ 20 µg/m3 annual mean, NO2 ≤ 40 µg/m3 annual mean,
O3-8h ≤ 100 µg/m3 8 h mean) [65] and it was worse than the Guangzhou average level in 2015,
which highlights the necessity of district/town regulation in air quality control. Please note that this
study does not intend to estimate the influence of air quality on human health which is sensitive to the
exposure levels (the levels of air pollutants). The pollutant concentrations in October 2015 were very
similar to those in the year of 2015 (a-SO2, a-NO2, a-PM10, a-PM2.5, a-O3-8h, a-CO, in Figure 3a).

Figure 3. (a) Air pollutant monthly concentrations in 2015 averaged in four stations (Baogang, Chisha,
Shayuan, and Haizhuhu) in Haizhu district, (b) comparison of air quality in 2015 in Haizhu district
and the 13th Five-Year targets. (In (a), a-SO2, a-NO2, a-PM10, a-PM2.5 means 2015 annual value
for SO2, NO2, PM10, PM2.5, respectively; a-O3-8h means the 90th percentile of O3-8h in 2015; a-CO
means the 95th percentile of the CO daily concentration in 2015; other pollutants: monthly-averaged
concentrations. In (b), O3: the 90th percentile of O3-8h in a year; CO: the 95th percentile of the CO daily
concentration in a year; other pollutants: annually-averaged concentrations. These parameters were
adopted according to the national standards in China [66].).
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Compared with the 13th FYP targets in 2020 (PM2.5 ≤ 30 µg/m3, PM10 ≤ 50 µg/m3, SO2 ≤15 µg/m3,
NO2 ≤ 40 µg/m3, O3-8h ≤ 160 µg/m3, and CO ≤ 2 mg/m3) in Guangzhou [49] (Figure 3b), PM2.5, PM10,
and NO2 concentrations in 2015 exceeded the targets, and the air pollutant emission could even rise
in the coming years (Table 1). Haizhu district could face worsening air quality, and more emphasis
should be placed on the control measures and effectiveness assessment for PM2.5 and NO2 during the
13th FYP so that the measures can be duly adjusted to achieve the 13th FYP targets.

3.1.2. Air Quality during Pollution Episodes

Table 2 summarizes the pollution episodes in Haizhu district in 2015. Shayuan station was the
only station where heavy pollution episodes were observed in both winter and summer, and the two
pollution episodes were also the typical pollution (PM2.5 and NO2 pollution in winter, O3 pollution in
summer). Therefore, these two typical pollution episodes in Shayuan will be analysed in detail below.

(1) Heavy pollution episode in winter
A winter heavy pollution episode in Haizhu district occurred during 14–28 January 2015 (Table S4

shows the statistical data). In this pollution episode, the air quality was light pollution in the beginning
(15–19 January), then the pollution level peaked during 20–21 January. It finally decreased to light
pollution again in the third period (22–27 January). On 28 January, the air quality was good again.
This episode was a process in which the air quality decreased gradually and then increased gradually.
During this episode, the wind speed was in the range of 1.1–2.9 m/s, the RH was in the range of
52–85%, and there was no precipitation. The temperature was in the range of 10.3–18.0 ◦C, and the
surface pressure was in the range of 1009.1–1016.1 hPa. The low wind speed during this winter episode
(~1.5 m/s) indicated that the atmosphere was stable, and as reported in previous studies, low or calm
wind speed generally leads to high pollution [67,68], because stable atmospheric condition favours the
accumulation of pollutants. There is another possibility that the existence of temperature inversion
layer could also lead to the accumulation of the air pollutants (e.g., Malek et al., 2006 [69]).

(2) Heavy pollution episode in summer
A summer heavy pollution episode in Haizhu district happened during 3–8 August 2015 (Table S5).

The whole episode covered only six days, including the two days of light pollution (4 and 7 August),
one day of moderate pollution (5 August), and one day of heavy pollution (6 August). The pollution
occurred and disappeared within a short time, but it exhibited high intensity. In this episode, the
wind speed was in the range of 1.1–4.4 m/s, the RH was between 65 and 76%, and there was no
precipitation. In the first period (3–6 August 2015), the wind speed was in the range of 1.1–1.4 m/s.
There was no precipitation nor cloud. The temperature was in the range of 27.6–30.3 ◦C, and the
surface pressure was in the range of 991.7–1002.4 hPa. The hourly temperatures were between 23.4
and 35.6 ◦C. Sunny weather, low wind, and high temperatures would create favourable conditions
for O3 production and accumulation [10]. Then, the wind speed increased to 3.9–4.4 m/s during
7–8 August 2015. Strong wind transported the air pollutants out of Haizhu, improving the air quality
in Haizhu to light pollution. The temperature inversion layer might also enhance the accumulation of
the air pollutants (e.g., Malek et al., 2006 [69]).

3.2. Evaluation of WRF-Chem Model Performance

October was the month when the concentrations of PM2.5, NO2 and O3 (the major pollutants in
Haizhu) were all at elevated levels. Therefore, we used the observed data in October to evaluate the
performance of the WRF-Chem simulation.

(1) Meteorological simulation evaluation
The simulated surface meteorological parameters (wind speed, wind direction, temperature,

and RH) in Guangzhou were validated with the observed data (Table S6 and Figure 4). The temperature,
RH, and wind speed in the simulation were generally in line with the observations (Table S6),
and the simulated wind directions covered the observed wind directions (Figure 4, wind direction).
Similar model behaviour was reported in some previous studies [9,70,71]. The over-prediction of
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the wind speed in the present study is probably due to the underestimation of the roughness in
the cities. For example, the constructions in the urban area are not adequately represented in our
model simulation although a very fine resolution of 1 km is already used. Overall, the simulation
generally reproduced the meteorological condition in 2015.
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Figure 4. Comparison of simulated and observed meteorological parameters in Guangzhou, 2015.
(Hourly statistical data in October 2015).

(2) Chemical simulation evaluation.
Simulated pollutant concentrations were also compared to observed data, including O3 daily 8 h

maximum concentration and other pollutants’ daily-averaged concentrations (CO, PM2.5, PM10, SO2,
and NO2). Metrics of evaluation on model performance are shown in Table S7. The ranges of the
mean-bias (MB) and root-mean-square-error (RMSE) on pollutant concentrations were −8.07 µg/m3

to 24.34 µg/m3, 9.81 µg/m3 to 48.35 µg/m3, respectively, except CO. The MB and RMSE of CO were
−0.32 mg/m3 and 0.43 mg/m3, respectively. Compared to previous studies [13,70–72], the model in
this paper showed similar behaviour. Figure 5 shows that the general characteristics of the routine
pollutants were captured by the simulation. Monthly averaged simulated concentrations of NO2,
PM10, SO2, CO, O3-8h, and PM2.5 at the locations of the monitoring sites were 147.6%, 101.1%, 112.0%,
65.1%, 91.4%, and 80.9% of the observations, respectively. Concentrations of NO2, PM10, and SO2 were
overpredicted in the simulation, and concentrations of CO, O3-8h, and PM2.5 were underestimated.
It is noticeable that there was an observed peak in pollution on 14 October which was underestimated
in the simulation. Concentrations of NO2, PM10, SO2, CO, O3-8h, and PM2.5 in the simulation were
39%, 49%, 42%, 52%, 49%, and 65% less than that of the observation on 14 October, respectively.
The most probable reason for the discrepancy is the meteorological condition was not well captured.
Other possible causes include the uncertainty of the emission inventory, the uncertainty of the chemical
scheme in simulating the formation of secondary air pollutants, etc. The uncertainty of emission
inventories results from the uncertainty in the activity level, the emission factor, and the different grid
size [73–75]. The simulation of secondary air pollutants (O3, secondary inorganic and organic aerosol)
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is a hot research topic and still contains some uncertainty as reported in Ahmadov et al. (2012) [76],
Li et al., (2018) [77], etc. Besides, the planetary boundary (PBL) scheme also plays an important role
in predicting the level of air pollutants at the surface and the reader is referred to relevant studies
(e.g., Banks and Baldasano, 2016 [78]; Shin and Hong, 2011 [79]; Hu et al., 2010 [80]) for the evaluation
of various PBL schemes including the one used in the present study, i.e., the YSU (Yonsei University)
scheme [81]. There is also the possibility that the representative area of the measurement site differs
from the grid cell that contains the site and such difference might lead to the difficulty of directly
comparing the simulation with observation (e.g., Schutgens et al. 2016 [82]).
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Figure 5. Comparisons of simulated and observed CO, NO2, PM2.5, PM10, SO2, and O3. (Daily statistical
data in October 2015 in Haizhu district; O3: daily 8-h maximum concentration; other pollutants:
daily-averaged concentration).

In the present study, we follow the relevant air quality modelling studies, e.g., those studies
included in Table S7, to use the statistic tools to evaluate the WRF-Chem model performance.
While the statistic method can provide some insights into the model abilities, it would help if
some advanced diagnostic tools, e.g., the simulation error apportioning techniques proposed by
Solazzo et al. (2017a) [83] and Solazzo et al. (2017b) [84], are adopted in future study to identify the
critical processes that demand most urgent attention.

3.3. Effect of 13th FYP on Overall Air Quality in Haizhu in 2020

Since the pollutant concentrations in October 2015 were very similar to those in the whole year,
the simulated results in the four 2020 scenarios in October are used for evaluating the effect of the 13th
FYP on the air quality in Haizhu by comparing to the simulation for October 2015 (Figure 6).

Figure 6 shows that simulated concentrations of five pollutant species (CO, NO2, PM2.5,
PM10, and SO2) in scenario 2020C are lower than pollutants concentrations simulated in 2015.
For O3, 2020 scenarios’ simulation results are higher than 2015 result. CO, PM2.5, PM10, and SO2

concentrations in 2020 scenarios A, B, D are higher than the pollutants concentration in 2015
simulation. NO2 concentrations in the four 2020 scenarios are slightly lower than the concentration in
2015 simulation.
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Figure 6. Comparison between simulation on October 2015 and 2020 scenarios simulation on October
in Haizhu district (monthly-averaged surface concentrations).

It is noticeable that O3 concentrations in all of the four 2020 scenarios are higher than those in
2015 simulation, which means that ozone pollution will probably get worse by the end of 13th FYP.
Although scenario 2020A had the slightly less pollution than other scenarios had, the level of Ox

(O3 + NO2) in scenario 2020A was higher than that of other scenarios (Figure 6), which means that
atmospheric oxidation in scenario 2020A was more elevated [13,85]. It would cause the more intensive
formation of secondary aerosols, which would lead to regional pollution [86]. Meanwhile, the level of
Ox in scenario 2020C was the lowest.

In Section 3.1, the observed concentrations of PM2.5, PM10, and NO2 in 2015 exceeded the targets.
Meanwhile, the WRF-Chem simulations suggested that from 2015 to 2020, the concentrations of PM2.5

and PM10 would increase in scenarios 2020A, 2020B, and 2020D. Therefore, the real concentrations of
aerosols in 2020 could be higher than those in 2015 and further exceed the targets. The observed O3-8h
concentration in 2015 did not exceed the target (Section 3.1), but with the increasing trend from 2015 to
2020 as simulated in all scenarios, the real O3-8h concentration in 2020 should be considered as a cause
for concern.

According to the simulations, by the end of 13th FYP, if the emission control policy just follows
12th FYP policy (scenario 2020A), the air pollution would increase and the control on all emission
sectors in Haizhu (scenario 2020B) and control just on vehicle emissions in Haizhu (scenario 2020D)
would have a similar impact on air quality, and could not improve air quality very much. The scenario
2020C (the comprehensive emission control measures taken in the whole Guangzhou city) would have
the better effect on the emission control than other scenarios would do. Among the four 2020 scenarios,
the scenario 2020C is the better scenario.

According to Figure 6, pollutant concentrations between scenario 2020B and 2020D are similar.
The effect of controlling every emission sectors in Haizhu district would be almost equal with the effect
of only controlling the traffic emission in Haizhu district, suggesting that traffic source would be a key
source in Haizhu district.

Wang et al. (2016) [13] used WRF-CMAQ model (a base case in 2010, two cases in 2020) and
evaluated the impact of emission control measures on the air quality in the PRD region, and their results
showed that reducing NOx emissions would cause rising PM2.5 levels in certain areas, although it would
benefit with reduction of regional PM2.5. They also noted that O3 formation in PRD was generally
VOCs-limited and cutting VOCs emission could benefit the reduction of overall O3. Liu et al. (2017) [14]
assessed the influence of vehicle emission control measures for 2015–2020 in the PRD region on air
quality and climate and their results suggested that, if vehicle emission wasn’t controlled, most air
pollutants and GHG would increase by 20–64% by 2020.
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3.4. Effect of 13th FYP on Air Quality during Heavy Pollution Episodes in Haizhu in 2020

To evaluate the effect of 13th FYP on NO2 and PM2.5 in the winter heavy pollution episode and
O3 in the summer heavy pollution episode, we conducted the WRF-Chem simulations with the four
2020 pollution control scenarios (2020A, 2020B, 2020C, and 2020D). Table 3 shows the changes in
pollutant concentrations of the four scenarios. Since Table 3 has summarized the overall impacts
(in numbers) of each emission reduction scenarios on the concentration of PM2.5, NO2, and O3, we will
present the spatial variation of the impact in Figures 7–9 in the following text. According to the results
of Section 3.2, the simulation during the observational peak was underestimated compared to the
measurement, implying that the actual concentrations of pollutants in 2020 could be higher than
our simulations.

Table 3. Changes in pollutant concentrations in Haizhu district of scenarios (A, B, C, and D are scenarios
2020A, 2020B, 2020C, and 2020D, respectively; winter episode: 14–28 January; summer episode: 3–8 August).

Species Changes in Pollutant Concentrations

(B-A)/A (C-A)/A (D-A)/A

Winter episode PM2.5 −7.15% −23.42% −3.18%
NO2 −6.46% −28.29% −4.59%

Summer episode O3 0.45% 0.35% 0.14%

Figure 7. Maps of the simulated mean PM2.5 concentration distribution during the period 0000 BJT,
20 January, to 2300 BJT, 21 January, over Haizhu for 2020 scenarios (a: 2020A; b: 2020B; c: 2020C;
d: 2020D; HZ: Haizhu; GZ: Guangzhou; BJT: Beijing Time).
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Figure 8. Maps of the simulated mean NO2 concentration distribution during the period 0000 BJT, 20
January, to 2300 BJT, 21 January, over Haizhu for 2020 scenarios (a: 2020A; b: 2020B; c: 2020C; d: 2020D;
HZ: Haizhu; GZ: Guangzhou).

(1) Effect on PM2.5 and NO2 in winter heavy pollution episode
For the simulated concentrations of PM2.5 and NO2 in Shayuan station, the concentrations of

PM2.5 and NO2 were in the order of 2020A > 2020D > 2020B > 2020C. Comprehensive emission control
measures taken in the whole of Guangzhou (2020C) would be able to reduce concentrations of PM2.5

and NO2 two times more than those just in Haizhu (2020B). In previous research, emission control
from outside of Beijing contributed 8–14% to the improvement of the air quality in Beijing during
APEC [57]. Therefore, regional control policies are needed. Regional control measures in a whole city
could affect the air quality of the urban district, even if the district is just an isolated island. Referring to
the measures in Haizhu, the effect of vehicle emission control (2020D) on PM2.5 (NO2) reduction
would be ~44% (~71%) of the effect of comprehensive measures (2020B), meaning that vehicles are the
major PM2.5 (NO2) emission source in Haizhu. Vehicle emission is a typical problem in urban areas of
China [87]. Previous studies showed that vehicle emission accounted for 21%, 10%, and 19.3% of the
total PM2.5 in Dongguan (2014) [68], Guangzhou (2014) [88], and PRD (2012) [89], respectively.
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Figure 9. Maps of the simulated O3 mean daily 8 h maximum concentration distribution over Haizhu
for 2020 scenarios on 6 August (a: 2020A; b: 2020B; c: 2020C; d: 2020D; HZ: Haizhu; GZ: Guangzhou).

In the worst meteorological condition, PM2.5 pollution on Haizhu district would be improved,
as shown in Figures 7c and 7b, which means that the effects on regional air quality of scenarios 2020C
and 2020B were relatively significant. In particular, compared with 2020D (Figure 7d), the improvement
on regional air quality in 2020B was more obvious, although the PM2.5 pollution in the particular
station (Shayuan) seemed to have no significant difference. In Figure 8, NO2 pollution shows a similar
situation. It indicates that regional and comprehensive measures could improve regional air quality
during heavy pollution days.

(2) Effect on O3 in summer heavy pollution episode
For the Shayuan station, the O3 pollution in scenario 2020B would be higher than in other

scenarios, and the O3 pollution in the other scenarios were in the order 2020C > 2020D > 2020A (Table 3).
The simulation results suggested that the O3 level increases from 2015 to 2020 in all emission scenarios
even in 2020C in which the rest of air pollutants decrease. Such changes of O3 concentration is probably
because the Haizhu district is a VOC-limited region in which the O3 level increases (decreases) with the
reduction of NOx (VOCs) emission (e.g., Sillman, 1999 [90]). There are generally two pathways that can
be adopted to relieve the O3 pollution in VOC-limited region like Haizhu district. (1) To significantly
reduce the NOx level and push the Haizhu district into NOx-limited region in which O3 level decreases
with the reduction of NOx and VOCs. However, in this pathway, there will be a period in which
O3 level significantly increases before it starts to decrease. (2) To adopt a proper reduction ratio of
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VOCs/NOx and flatten the O3 increase to the largest extent during the transient from VOC-limited
region to NOx-limited region. But this pathway requires a great deal of effort to determine a favourable
reduction ratio of VOCs/NOx and cut the emission of VOCs from various sectors.

The findings in the present study highlight the complexity and nonlinear chemistry of O3 formation
and call for further investigations. For example, the reduction ratio of VOCs/NOx for anthropogenic
sources was generally suggested to be 1:2 in PRD [10]. However, considering the change of precursor
emissions and meteorological conditions, the ratio of VOCs/NOx might need to be further studied.
Besides, the NO2 is overpredicted in the present study implying that the VOC-limited nature in Haizhu
district might be overpredicted, although there is very low chance that Haizhu district is a NOx-limited
region in 2015 because the NOx is still at an elevated level and this region (PRD) has been repeatedly
diagnosed as a VOC-limited region (e.g., Xue et al., 2014 [91]). Moreover, the formation of O3 depends
on the local mixture of NOx and VOCs. Therefore, the location/sector of the emission of NOx and VOC,
apart from the overall reduction of NOx and VOC in an area, might have an impact on the changes
of O3. Although we have made some effort on such topic by evaluating the effect of only controlling
traffic emission on air quality (scenario 2020D), it would be of interest to adopt more sophisticated
tools, e.g., a tagging technique (Grewe, 2013 [92]), to evaluate the effect of various combinations of
emission reduction in sectors in future study.

The simulated O3-8h distribution on 6 August is shown in Figure 9 to demonstrate the difference
of regional O3 pollution in Haizhu district. Ozone pollution would be relieved in scenario 2020C
(Figure 9c) compared with that in other scenarios (Figure 9a,b,d). It is noticeable that ozone pollution
in the southwest area (red area, suburban and rural area) in 2020C (Figure 9c) could be smaller than
those in other scenarios (Figure 9a,b,d), which may be because of the suitable ratio of precursors in that
area of scenario 2020C, although the pollution in Haizhu (urban area) seemed to have no significant
difference. The difference of regional O3 pollution shows that in the southwest area (suburban and
rural area), the policy in scenario 2020C could decrease the O3 significantly (less red area), and in other
regions, e.g., in Haizhu (urban area), the effect is less noticeable, which indicated that the control of
ozone pollution should be taken according to local conditions, i.e., measures in urban areas should be
different from those in rural areas. We note that transboundary transport of O3 and its precursors (CO,
VOCs, and NOx) due to mesoscale dynamics complicates O3 pollution control and requires strong and
efficient cooperation among the adjacent regions.

4. Conclusions

In this study, the air quality in the year of 2015 and during pollution episodes in Haizhu district
were analysed, and the impacts of emission control scenarios by the year of 2020 on air quality were
evaluated using the WRF-Chem numerical simulation.

For the air quality in Haizhu 2015, the annually-averaged concentrations of PM2.5, PM10, SO2,
and NO2 were higher than those in the entire Guangzhou city. O3-8h was slightly lower than that
in Guangzhou. Pollution episodes in Haizhu in 2015 primarily occurred in summer and winter.
The typical winter pollution episode (14 to 28 January) was a process of gradual accumulation of
pollution and dissipation, with NO2 or PM2.5 as the key pollutants, associated with the wind. The heavy
pollution episode in the hot season (3 to 8 August) was a process of pollution that occurred and
disappeared quickly, with O3 as the key pollutant, due to suitable local pollution and strong sunshine.

The WRF-Chem simulation generally captured the observed chemical characteristics,
suggesting that the WRF-Chem model could be used to simulate air quality in the research case.

Emission control scenario 2020C (comprehensive measures taken in the whole of Guangzhou city)
would improve air quality more significantly than other scenarios (measures taken in Haizhu) under
all conditions (heavy pollution conditions and annual level). For urban areas, scenario 2020D
(vehicle emission control) would account for more than half of the influence of 2020B (all source
emission controls) on air quality. By the end of the 13th FYP, it is noticeable that O3 pollution would
increase, which indicates that the control ratio of VOCs and NOx may be unfavourable and requires
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further assessment. It would be of interest to perform simulations with the meteorology/chemistry
interactions to investigate the influence of policies on O3 and other air pollutants in future research.

Our study suggested that control measures should be strengthened for NO2, PM2.5, and PM10,
and control ratio of VOCs and NOx should be adjusted for controlling O3. The urban area should
focus on vehicle emission control, strengthen regional cooperation on pollution control, and establish
short-term measures for heavy pollution conditions.
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Abstract: As air pollution becomes progressively more serious, accurate identification of urban air
pollution characteristics and associated pollutant transport mechanisms helps to effectively control
and alleviate air pollution. This paper investigates the pollution characteristics, transport pathways,
and potential sources of PM2.5 in Weifang based on PM2.5 monitoring data from 2015 to 2016 using
three methods: Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), the potential
source contribution function (PSCF), and concentration weighted trajectory (CWT). The results
show the following: (1) Air pollution in Weifang was severe from 2015 to 2016, and the annual
average PM2.5 concentration was more than twice the national air quality second-level standard
(35 µg/m3). (2) Seasonal transport pathways of PM2.5 vary significantly: in winter, spring and
autumn, airflow from the northwest and north directions accounts for a large proportion; in contrast,
in summer, warm-humid airflows from the ocean in the southeastern direction dominate with
scattered characteristics. (3) The PSCF and CWT results share generally similar characteristics in
the seasonal distributions of source areas, which demonstrate the credibility and accuracy of the
analysis results. (4) More attention should be paid to short-distance transport from the surrounding
areas of Weifang, and a joint pollution prevention and control mechanism is critical for controlling
regional pollution.

Keywords: PM2.5; spatiotemporal characteristics; back-trajectory clustering; potential source
contribution; concentration weighted trajectory

1. Introduction

With rapid socioeconomic development, accelerated industrialization, and continuously increasing
energy consumption, particulates have become major urban air pollutants in China [1–3]. In particular,
fine particulates PM2.5 can not only reduce atmospheric visibility but also increase mortality and
incidence of diseases such as respiratory diseases [4–6], and these particulates have aroused great public
concern and attention. Studies have indicated that urban air pollution levels and their spatiotemporal
distributions are not only associated with local emissions but also influenced by cross-regional transport
from sources in surrounding areas [7–9]. Accurate identification of urban atmospheric pollution
characteristics and transport mechanisms is critical to control and mitigate air pollution [10].

Existing studies on the spatiotemporal characteristics of PM2.5 and transport mechanisms
have mostly focused on geo-statistics analysis [11], air quality models (e.g., large-scale Weather
Research and Forecasting (WRF) model) [12], and back-trajectory clustering-based mechanism analysis.
For back-trajectory clustering-based transport analysis, previous research has mostly focused on
hotspots [13,14], while there is limited research on small but seriously polluted cities in China.
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Li et al. (2018, 2019) indicated that PM2.5 concentration and its influencing factors varied in different
seasons, and they also preliminarily showed that the air pollution in Weifang City was affected by
meteorological conditions and pollution of surrounding cities [6,15]. The above-mentioned studies
are based on qualitative analysis. To quantitatively analyze the cross-regional influences of Weifang
in different seasons, this paper describes an in-depth study of the seasonal variations in internal and
external potential sources and provides targeted pollution control measures for government over
different seasons. In addition, to improve the credibility and accuracy of the results, different trajectory
analysis methods are used to analyze the potential sources of Weifang PM2.5 in this paper, which can
be used to evaluate the results through mutual verification.

Therefore, based on hourly high-frequency PM2.5 data from 38 provincial monitoring stations in
Weifang from 2015 to 2016, this paper examines the transport characteristics and potential sources of
PM2.5 in Weifang City in different seasons by using a back-trajectory clustering method. This research
helps to better understand the causes of PM2.5 pollution and the sources in Weifang as well as provides
important scientific references for joint atmospheric pollution control in Weifang City.

This paper includes five sections. Section 2 summarizes relevant studies on pollutant transport
mechanisms and potential sources. Section 3 describes the data sources and methods used.
The analytical results of the PM2.5 pollution characteristics and potential source contributions in
different seasons are presented in Section 4, followed by the conclusions in Section 5.

2. Literature Review

The causes and sources of urban air pollution are closely related to the characteristics of airflow
transport trajectories. Methods such as the back-trajectory model, clustering analysis, and the
potential source contribution function (PSCF) method have become important ways to address these
characteristics [16–18]. For example, Yan et al. (2015) conducted a trajectory analysis on a smog
process in Beijing in February 2014 and discovered that Baoding, Hengshui, and Handan are important
potential source areas in the region [19]. Donnelly et al. (2015) analyzed the effects of various long-range
transport pathways of the concentrations of particulate matter with diameter less than 10 µm (PM10) in
Ireland by using the HYSPLIT4 model and showed that air quality in Ireland is heavily dependent
on air mass origin and the inherent characteristics of the air mass [20]. Lee et al. (2011) examined
the pathways of PM10 by back-trajectory analysis and showed that the transboundary pollutants of
high-PM10 levels are more than twice as high as those from internal sources, especially in winter and
spring; in addition, the local pollutants contributing to high-PM10 concentrations have decreased
through the efforts to reduce emissions, but the transboundary pollutants have not decreased [21].
By analyzing the transport pathways of particulate matter over Guwahati, located in the Brahmaputra
River Valley (BRV), Tiwari et al. (2017) found that the turbid air masses transported over Guwahati
mostly from the western and southwestern directions contribute to higher PM concentrations, either
carrying anthropogenic pollution from the Indo-Gangetic Plains or locally and LRT (long-range
transported) dust from BRV and western India, respectively [22]. Li et al. (2017) employed the
PSCF and concentration weighted trajectory (CWT) methods to analyze the transport trajectories
and potential sources of PM2.5 and PM10 in Beijing and demonstrated that, in summer and autumn,
the impacts of air pollution are mostly from the south and southeast, while those in spring and winter
are influenced from the southeast and north [23]. By analyzing the transport pathways and potential
sources of PM10 pollution in Shanghai, Li et al. (2014) reported that there are two potential sources
of PM10 pollution in Shanghai: one is located in the northwest (for example, Hebei and Shandong),
while the other is in the southwest (for example, Zhejiang and Jiangxi) [24]. Yang et al. (2017) examined
the spatiotemporal characteristics and trajectories of a smog process in Beijing in December 2015 and
discovered that the PM2.5 concentration in Beijing was high in the south but low in the north [25].
The major potential pollutant sources are the deserts in the northwest and the built-up areas in the
Beijing-Tianjin-Hebei region.
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Based on eight monitoring locations in Chengdu and meteorological data over three months,
Liao et al. (2017) analyzed the spatiotemporal characteristics and sources of PM2.5 in Chengdu.
The results reveal that the major potential sources of PM2.5 in Chengdu are located along the western
margin of the Sichuan Basin and in the southeastern cities [26]. Xin et al. (2016) adopted daily average
PM10 concentration data and Global Data Assimilation System (GDAS) data to study the transport
trajectories that significantly influence PM10 in Xining and found that atmospheric pollution is easily
affected by inland trajectories [27]. Based on nine air quality monitoring locations in Qingdao in winter,
Li et al. (2017) analyzed the characteristics of atmospheric pollution and pollutant sources, the results
revealed that PM2.5 is a major urban atmospheric pollutant in Qingdao, and the greatest contributions
are from Shanxi, the southern part of Hebei, and the western part of Shandong [23]. Additionally,
pollutants such as aerosols from the deserts in Inner Mongolia and the Yellow Sea are also a cause
of atmospheric pollution. Lv et al. (2015) discovered that the PM2.5 concentration in Guangzhou
is more sensitive to the velocities of air mass movements than their directions. The regional PM2.5

contributions in spring, summer, autumn, and winter are 15%, 28%, 16%, and 22%, respectively [28].
However, previous studies have shortcomings with respect to air pollution transport characteristics.

Most studies: (1) have focused on typical large-scale regions, while limited research has focused
on small yet heavily polluted cities, such as Weifang City [24]; and (2) have adopted low temporal
resolution data (with 6- or 24- h resolution); however, high time resolution data have been shown to
contribute to improved resolutions of source areas in PSCF calculations [23]. Moreover, in previous
studies, several air quality monitoring data have mostly been used only to obtain average pollutant
concentrations in PSCF models, whereas sparse and unevenly distributed monitoring data cannot truly
represent the concentrations over the study area.

3. Data and Methodology

3.1. Study Area and Data Sources

Weifang is located in the middle of the Shandong Peninsula (Figure 1), with Zibo to the west,
Linyi to the south, Qingdao to the east and Laizhou Bay and the Bohai Sea to the north, covering
a total area of 16,000 square kilometers. Weifang City is high in the south (with ground elevation
100–1032 m) and low in the north (with ground elevation under 7 m). The south is mainly covered
with hills and low mountains, while the northeast is mainly characterized by plains and lakes. Weifang
City has been experiencing industrial and economic advancements and was one of the most rapidly
developing cities in Shandong Province. As of 2019, the number of registered vehicles had exceeded
2 million. This growth has resulted in damage to the Weifang City environment. Existing studies
on the characteristics of air pollution in Weifang have mainly focused on spatiotemporal patterns,
while few reports have described the transport trajectories and mechanisms as well as the potential
sources of air pollution. This paper utilizes hourly PM2.5 monitoring data and a back-trajectory model
to analyze the transport pathways and potential source contributions of PM2.5 pollution in Weifang
and can provide important scientific support for joint atmospheric pollution control and management.

The PM2.5 monitoring data used in this paper were acquired from 5 national monitoring stations,
4 provincial monitoring stations, and 29 city monitoring stations in Weifang (Table A1 in Appendix A).
The data were obtained by automatic air quality monitors through 24-h continuous monitoring
and cover the period from 1 March 2015 to 29 February 2016. The data were acquired from the
Data Center of the Ministry of Environmental Protection of the People’s Republic of China (http:
//datacenter.mep.gov.cn/index). Thermo Fisher 1405F monitoring devices were used to measure the
PM2.5 concentrations, and this instrument operates on the principle of measuring PM2.5 concentrations
by a filter dynamic measurement system (FDMS) with the tapered element oscillating microbalance
(TEOM) and the beta-attenuation method [6].
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Figure 1. Study area and spatial distribution of monitoring sites.

The major data structure is illustrated in Figure 2a. The meteorological data used in the
back-trajectory model were obtained from GDAS data provided by the National Centers for
Environmental Prediction (NCEP). The 1.0◦ resolution global reanalysis data are adopted. These data
are recorded every 6 h, namely, at 00:00, 06:00, 12:00 and 18:00 (UTC). Their structure is shown in
Figure 2b.

 
(a) Structure of PM2.5 monitoring data 

 
(b) Structure of GDAS data 

 

 

π

 

𝑃𝑆𝐶𝐹 = 𝑛𝑁𝑁  
μ

Figure 2. Structures of monitoring station data and GDAS data.
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3.2. Methodology

(1) HYSPLIT model

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model established by
the Air Resources Laboratory of the National Oceanic and Atmospheric Administration (NOAA) is
used in this paper to analyze sources and transport trajectories of air pollutants [29,30]. This model
gives highly accurate and temporally continuous simulation results and has been widely used in
research on the transport and diffusion of various pollutants in different areas. The HYSPLIT model is
divided into two parts: the backward transport model and the forward diffusion model, which solve
problems concerning sources and sinks, respectively. In this paper, the backward transport model of
the HYSPLIT model is employed to simulate 72-h backward airflow transport trajectories near the
ground surface in Weifang during the period of interest. The characteristics of the airflow movements
in the study area are thereby reflected.

(2) Trajectory clustering analysis

Trajectory clustering analysis, a multivariate statistical analyses technique, was used to divide the
trajectory data into several classes or clusters. Data in the same class or cluster share a higher degree of
similarity, whereas those in different classes or clusters vary more significantly [31]. This paper uses
TrajStat, a plugin of MeteoInfo; this plugin can view, query, and cluster trajectories and includes two
clustering methods: Euclidean distance and angle distance. Because this paper aims to determine the
direction from which the air masses that reach the site have originated, the angle distance clustering
method is utilized to cluster airflow trajectories. The angle distance is often used to define the mean
angle between the two trajectories, which varies between 0 and π. The details of the angle distance
clustering method can be found in the work of Sirois and Bottenheim (1995) [32].

(3) Potential source contribution function (PSCF)

The PSCF model is a simple method that links residence time in upwind areas with high
concentrations through a conditional probability field [33]. This method can identify pollutant sources
by analyzing airflow trajectories and a given threshold [34,35]. It can be calculated as follows:

PSCFi j =
ni j

Ni j
(1)

where Ni j is the total number of airflow trajectories’ endpoints that fall in the ijth grid and nij is the
total number of airflow trajectories’ endpoints for which the measured PM2.5 concentration exceeds a
given threshold in the same grid. In this study, the 24-h average Grade II standard PM2.5 concentration
(75 µg/m3) in ambient air quality standards of China (GB3095-2012) was selected as the threshold
value [26]. The trajectories were calculated hourly. Studies have demonstrated that great uncertainty
exists in the calculation result when Nij is extremely small. To eliminate this uncertainty, an arbitrary
weight function, Wij, was applied when the number of the endpoints in a particular cell was less than
three times the average number of endpoints for each cell [36,37].

WPSCFi j = Wi j × PSCFi j (2)

Wi j =































1.00 Ni j > 80
0.70 20 < Ni j ≤ 80
0.42 10 < Ni j ≤ 20
0.05 0 < Ni j ≤ 10

(3)
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(4) Concentration weighted trajectory (CWT)

The CWT method first computes the weighted concentrations of trajectories and then obtains the
weighted concentrations of grids [38]. The calculation formula of the CWT method is given as follows:

CWTi j =

∑N
k=1 Ckτi jk
∑N

k=1 τi jk

(4)

where CWTij is the weighted average concentration of grid ij; N is the total number of trajectories;
k denotes a trajectory; Ck is the PM2.5 concentration of trajectory k when it passes through grid ij, which
can be calculated by the HYSPLIT model; and τijk is the duration in which trajectory k stays in grid
ij [39,40]. In addition, the CWT method gives rise to great uncertainties, thus the weight coefficient
Wij is needed to reduce these uncertainties. Similarly, Wij is determined using Equation (3), and the
introduction of the coefficient is as follows:

WCWTi j = Wi j ×CWTi j (5)

For PSCF and CWT methods, the input data and applicable resolution of grid are the same.
The difference between CWT and PSCF is that PSCF usually uses a concentration threshold to
evaluate the potential sources of PM2.5. It means that it may have the same PSCF value when sample
concentrations are either only slightly higher or much higher than the criterion. As a result, it may
not distinguish moderate sources from strong ones. For CWT method, the limitation of PSCF can be
overcome by assigning a weighted concentration by averaging the sample concentrations that have
associated trajectories that cross the grid cell.

4. Results and Analyses

4.1. PM2.5 Pollution Characteristics

Hourly PM2.5 concentration data for Weifang from 2015 to 2016 are examined to analyze the
annual, seasonal, and monthly characteristics of the PM2.5 concentration. The annual average PM2.5

concentration in Weifang is 73.03 µg/m3, which is more than twice the national second-level standard
(35 µg/m3) and nearly five-fold the national first-level standard (15 µg/m3). Figure 3 presents the
seasonal and monthly variations in the PM2.5 concentration. In general, the monthly average PM2.5

concentration presents a U-shaped curve. The PM2.5 concentration is higher in winter (December,
January, and February), approximately 101.64 µg/m3, which significantly exceeds the national 24-h
atmospheric quality second-level standard (75 µg/m3). The concentrations in autumn (September to
November) and spring (March to May) are 74.81 and 66.53µg/m3, respectively. The lowest concentration
occurs in summer (June to August), with only 49.12 µg/m3. The PM2.5 concentrations in the four
seasons all exceed the national 24- h atmospheric quality first-level standard (35 µg/m3). The highest
concentration occurs in January (122.86 µg/m3) and the lowest in July (48.02 µg/m3). The monthly
average considerably decreases in March but rapidly increases in October.
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Figure 3. Quarterly and monthly characteristics of PM2.5 concentration in Weifang.

4.2. Backward Trajectory Clustering

TrajStat was used to process airflow data in Weifang in different seasons to obtain transport
trajectories in different seasons. However, from these airflow trajectories, it is not possible to determine
the exact number of trajectories from different directions. Therefore, according to the consistency in
the spatial distributions of various airflow trajectory types, trajectories in spring, summer, autumn,
and winter are integrated into four, five, two, and two clusters, respectively (Figure 4).

Figure 4 shows that, in spring, the airflow trajectories originating from northern inland areas
(Trajectories 1–3) dominate. More specifically, airflows originating from Russia, Mongolia, central Inner
Mongolia, and Hebei account for 36.91% of the total trajectories, and those from the Yellow Sea and
central Shandong account for 29.38%. In summer, the airflow trajectories are shorter and follow a
star-shaped distribution. Influenced by warm and humid airflows from the ocean, these trajectories
are dominated by southerly and southeasterly winds and account for 67.1% of the total trajectories.
In autumn, as cold air masses move southward, the airflow trajectories from the southeast weaken.
As a result, the airflow trajectories originating from southeastern Mongolia, central Inner Mongolia,
and northeastern Hebei account for 59.07%. The airflow trajectories from northeastern Hebei are
shorter, accounting for 40.30%. They pass over the waters of the Bohai Sea and finally return to Weifang
via the inland areas of Shandong. In winter, under the influence of the Siberian cold current, the airflow
trajectories originating from the northwest dominate (68.91%). These trajectories are longer, and the air
masses move more quickly. Moreover, in winter, the airflow trajectories from southwestern Shandong
account for 31.06% and are shorter and slower.

4.3. Transport Trajectories in Different Seasons

Based on the airflow backward trajectory clustering results in different seasons, combined with the
hourly PM2.5 concentration data, this paper analyzes the pollution characteristics of different transport
trajectories. According to the second-level PM2.5 concentration (75 µg/m3) in Ambient Air Quality
Standards (GB 3905-2012), back-trajectories are classified into “low polluted” trajectories (<75 µg/m3)
and “polluted” trajectories (75 µg/m3). The statistics for different types of trajectories are described
in Table 1.
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Figure 4. Cluster mean back-trajectories in different seasons in Weifang from March 2015 to
February 2016.

Table 1. Trajectory proportions and PM2.5 concentrations based on all trajectories and pollution trajectories.

Season
Trajectory

Cluster

All Trajectories Polluted Trajectories

Proportion (%)
Average
(µg/m3)

Proportion of Seasonal
Total Polluted

Trajectories (%)

Average
(µg/m3)

Spring

1 12.08 83.35 29.43 109.71
2 45.36 69.63 31.55 99.46
3 27.15 53.72 18.83 98.21
4 15.41 76.64 20.20 111.62

All 70.83 104.87

Summer

1 34.06 41.50 12.04 89.41
2 22.71 42.93 4.45 88.29
3 6.63 62.95 20.68 99.94
4 21.16 68.16 43.19 94.13
5 15.44 47.59 19.63 96.24

All 52.63 94.92

Autumn
1 25.80 94.52 52.60 124.22
2 74.20 66.53 47.40 116.84

All 80.53 120.72

Winter
1 37.11 148.08 55.72 158.08
2 62.89 82.99 44.28 114.11

All 115.54 138.61
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(1) Pollution characteristics in spring

The average PM2.5 concentration of spring trajectories is 70.83 µg/m3. The trajectory clusters in
descending order are: 2 > 3 > 4> 1. The airflow trajectories originating from the north (Inner Mongolia)
have the highest average PM2.5 concentrations, reaching 83.35 µg/m3. This may be due to two
reasons: one is that these airflows mainly come from the western arid regions of China, and, in spring,
northwesterly winds easily blow loose topsoil and fine sand from dry surfaces to form sandstorms;
the other reason is that these trajectories pass over the industrial areas in southern Hebei and easily
transport local pollutants to Weifang City to form accumulation. Type 3 trajectories from the northwest
are longer and have the lowest PM2.5 concentration of 53.72 µg/m3. This may due to two reasons:
(1) these trajectories travel large distances at high wind speeds; and (2) they subsequently pass over
regions with high vegetation cover and relatively low population density [41], such as Xilingol league in
Inner Mongolia, Chengde City in northern Hebei, and waters of the Bohai Sea. Both the abovementioned
cases may lead to low pollution transport and effective adsorption, diffusion, and dilution of pollutants.

The average PM2.5 concentration of the polluted trajectories is 104.87 µg/m3. In particular,
Type 1 and 2 trajectories account for 29.43% and 31.55% of the total polluted trajectories, respectively.
These types together account for 60.98% of the seasonal total polluted trajectories, suggesting that
PM2.5 is mainly transported from the north and southeast directions to Weifang in spring.

(2) Pollution characteristics in summer

The average PM2.5 concentration of summer trajectories is the lowest, only 49.40µg/m3. In summer,
many plants flourish, and the total leaf area of surface vegetation significantly increases, which is
conducive to the adsorption of atmospheric particulates. Moreover, precipitation in summer is
more concentrated, and the increased precipitation greatly facilitates wet deposition and dilution of
atmospheric pollutants. However, under the control of the subtropical high and typhoon, the trajectories
are diverse. The trajectory clusters in descending order of average PM2.5 concentration are: 4 > 3 >
5 > 2 > 1. The airflow trajectories from southeast have the highest value (68.16 µg/m3), followed by
those from northwest (62.95 µg/m3). This pattern indicates that external pollutant emissions from
southeast and northwest have a substantial effect on PM2.5 pollution in Weifang. Although Type
4 originated from the Yellow Sea, affected by subtropical auxiliary high pressure and wheat straw
burning in south China, pollutants and suspended particles from eastern Zhejiang and southern
Shandong are easily carried by the trajectory and accumulate Weifang. Type 1 trajectories originating
from the Bohai Sea have the lowest average PM2.5 concentration (41.50 µg/m3) and make up the largest
proportion of the total trajectories. These trajectories mainly pass over waters and coastal areas in
eastern Shandong. These areas are characterized by strong air masses, cleanliness, and intensive
atmospheric wet deposition, which facilitate wet deposition and dilution of pollutants [1,6,42].

The average PM2.5 concentration of polluted trajectories is 94.92 µg/m3. Types 3–5 trajectories
account for 20.68%, 43.19%, and 19.63% of the total polluted summer trajectories, respectively.
They together account for 83.50% of the seasonal total polluted trajectories, indicating that PM2.5 is
mainly transported in easterly directions to Weifang in summer.

(3) Pollution characteristics in autumn

Autumn trajectories have an average PM2.5 concentration of 80.53 µg/m3. The autumn trajectory
clusters in descending order of PM2.5 concentration are: 1 > 2. In particular, Type 2 trajectories are
longer and have lower PM2.5 concentrations. These trajectories originate mostly from northwestern
Mongolia, central Inner Mongolia, and northern Hebei and travel over extensive areas at high wind
speeds. In addition, they pass over the waters of the Bohai Sea and enter Weifang directly. The air
masses are relatively clean, which is conducive to the diffusion of pollutants. In contrast, the PM2.5

concentrations of Type 1 trajectories are higher, with an average of 94.52 µg/m3. This is because short
and slow Type 1 trajectories do not favor the diffusion of pollutants. Furthermore, these airflow
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trajectories pass over the northeastern part of Shandong before they reach Weifang and often carry
pollutants from Shandong, leading to higher PM2.5 concentrations.

The polluted trajectories have an average PM2.5 concentration of 120.72 µg/m3. Type 1 trajectories
account for 52.60% of the total polluted trajectories. It follows that the northeasterly direction is the
major PM2.5 transport direction to Weifang in autumn.

(4) Pollution characteristics in winter

Compared to the other three seasons, the average PM2.5 concentration of winter trajectories is
the highest, reaching 115.54 µg/m3. More specifically, Type 2 trajectories have the highest PM2.5

concentrations, with an average of 148.08 µg/m3. This is mostly because these airflow trajectories
originate from south-central Hebei and pass over inland cities in northern Shandong. In winter,
these areas are in the heating period, leading to increases in anthropogenic pollutant emissions,
such as from coal burning [8,43]. As air masses pass over these areas, they usually carry soil, dust,
and pollutants from the inland areas to Weifang. In addition, these airflow trajectories are relatively
short and travel slowly, making pollutants not able to diffuse easily. Hence, the average PM2.5

concentration of these trajectories is relatively high. In contrast, the average concentration of Type
2 trajectories is the lowest, but they are also significantly higher than those in the other seasons,
at 82.99 µg/m3. These trajectories originate from Siberia and arrive in Weifang through the Mongolian
Plateau, Inner Mongolia, Hebei, Beijing, Tianjin, and the Bohai Sea and are relatively long and travel
at higher wind speeds. These trajectories pass over the waters of the Bohai Sea, which may slightly
facilitate the diffusion and elimination of pollutants.

The average PM2.5 concentration of polluted winter trajectories is 138.61 µg/m3. The average
PM2.5 concentration of Type 1 trajectories reaches 158.08 µg/m3, which includes not only the external
source from southern Hebei Province but also local emissions and is the main pollution source of
Weifang City in winter.

Overall, in autumn and winter, Weifang is mostly influenced by pollutants from inland areas of
Hebei and Shandong. Airflows from these areas often carry particulates emitted from the passed areas.
This reflects the knock-on effects of PM2.5 pollution within Shandong Province. In summer, due to
the influences from coastal cities in the east and clean airflows from the ocean, the concentrations of
pollutants are lower. In spring, severe pollution in Weifang is closely associated with sandstorms in
the arid areas in the west, where loose topsoil and fine sand are blown from dry surfaces.

4.4. Potential Source Regions

To further investigate the sources of atmospheric pollutant transport in Weifang, this paper
analyzes the potential source regions of PM2.5 pollution. First, PM2.5 concentration data are added to
airflow trajectories, and areas covering all airflow trajectories are uniformly divided into 0.5◦ × 0.5◦

grids. Then, the weighted potential source contribution function (WPSCF) value of each grid is
computed. WPSCF reveals the spatial distribution of PM2.5 potential sources obtained by combining
back-trajectories and measurements of PM2.5 concentration. A high PSCF value signifies a potential
source location. The greater the WPSCF value of a grid is, the higher the contribution levels of potential
source regions to PM2.5 pollution in Weifang, given that other factors remain stable.

Figure 5 shows the PSCF results for PM2.5 in Weifang from 2015 to 2016. The colors represent the
contribution levels of potential source areas; the black color is associated with high concentrations,
while green represents low PM2.5 concentrations. Distinct seasonal variations are noted in the
distribution of the potential source areas of PM2.5. (1) In spring, high PSCF values are mainly found in
north-central Jiangsu and southwestern Shandong. Additionally, areas such as Tianjin, Liaoning and
western Jilin have key influences on the sources of pollution in Weifang. (2) In summer, PSCF values
are generally smaller, indicating that Weifang is less affected by pollutants from the surrounding areas
in summer. Compared to those in spring, the potential sources are shifted eastward and are located
in Shandong and the waters of the Bohai Sea and Yellow Sea. This is may because the southeasterly
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monsoon carries pollutants emitted from passed areas when it moves northward. Furthermore, stubble
burning is the most intensive in some southern regions in summer, creating large fumes that easily travel
northward with the monsoon. (3) In autumn, higher PSCF values are increasing and are mainly found
in regions such as northern Anhui, northeastern Henan, and southwestern Shandong. In addition,
areas such as Hebei, Beijing, Tianjin, eastern Shanxi, and central Inner Mongolia make certain potential
contributions. (4) In winter, potential source areas transit and extend northwestward. High values
are found in the whole city of Shandong, northern Jiangsu, northeastern Henan, and southern Hebei;
in these regions, their situations are very similar to that of Weifang, with the same climate, industrial
emission, population density, and winter heating. In addition, those values in eastern Shanxi and
western Inner Mongolia increase.

  

  

 

Figure 5. Spatial distribution of WPSCF values of PM2.5 in spring, summer, autumn, and winter from
March 2015 to February 2016.

In summary, in winter, spring, and autumn, Weifang is more substantially affected by nearby
inland cities in Jiangsu, Henan, and Shandong, and these areas are potential source regions of pollutants
in Weifang. In contrast, in summer, Weifang is less influenced by pollutants from surrounding areas.
Moreover, comparisons reveal that the distributions of high PSCF values in different seasons agree
well with those of the major trajectory areas shown in Table 1. This finding indicates that the potential
source contribution results obtained by the PSCF method in this paper are reasonably reliable.

157



Appl. Sci. 2020, 10, 2835

4.5. Potential Source Region Contributions

The CWT method is adopted to calculate the weighted concentrations of trajectories originating
from various potential source regions. The CWT value represents a weighted specific concentration
value by averaging sample concentrations that have associated trajectories that cross the grid cell,
under the condition of other factors remaining relatively constant. The larger is the CWT value,
the greater is the contribution of the grid cell to the pollutant concentration of Weifang City. The results
are illustrated in Figure 6. The regions colored in black correspond to the main contributing sources
associated with the highest PM2.5 values, while the green color represents regions with low values.
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Figure 6. Spatial distribution of WCWT values of PM2.5 in spring, summer, autumn, and winter from
March 2015 to February 2016.

In spring, higher WCWT values are mostly concentrated in northeastern Henan and southwestern
Shandong, which are important sources of PM2.5 in Weifang. These areas have daily average PM2.5

concentration contributions above 80 µg/m3. Additionally, other regions in Shandong, western Tianjin,
and the central Bohai region influence pollution in Weifang. For these areas, the daily average PM2.5

concentration contributions are more than 60 µg/m3.
In summer, WCWT values are generally smaller. The highest CWT values covering the map were

distributed in coastal areas in the east, such as Zhejiang and Jiangsu, with values of 60–80 µg/m3.
This is possibly because southeasterly wind dominates in Weifang in summer. Sea-salt aerosols from
the south are easily transported to the Weifang region via the monsoon traveling northward.
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Compared to those in summer, higher WCWT values in autumn are found in areas further south
and northeast. These values are mainly observed at the intersection of Anhui, Jiangsu, and Shandong,
with daily average PM2.5 concentration contributions of above 80 µg/m3. Furthermore, relatively
substantial contributions are observed in certain localized areas such as eastern Hebei, southern Beijing,
and Tianjin, and the daily average PM2.5 concentration contributions of these areas exceed 60 µg/m3.

The WCWT values in winter are greater than those in other seasons. The greatest contributions to
the PM2.5 concentration in Weifang are throughout Shandong as well as certain nearby areas such as
northeastern Henan, northern Jiangsu, and southwestern Hebei. The daily average contributions are
more than 80 µg/m3. This is probably because many pollutants are emitted when coal is burned for
heating in the north in winter.

When CWT results are compared to the WPSCF results, they have basically consistent results
for areas contributing to the PM2.5 concentration in Weifang, which demonstrates the credibility and
accuracy of the analysis results. Nevertheless, the potential source regions obtained via the CWT
method for spring, summer, and autumn cover larger areas than those simulated by the PSCF method,
while the results for winter are similar. These results are consistent with the findings reported by
Yan et al. (2018) in Yinchuan [44]. These observations may arise because the CWT method takes
into account all the concentrations rather than a subset of high concentrations in the PSCF method.
The findings demonstrate that the seasonal distributions of PM2.5 source areas obtained by these
two methods share generally similar characteristics, suggesting the credibility and accuracy of the
analysis results.

5. Discussion and Conclusions

Based on PM2.5 monitoring data from 2015 to 2016 from 38 air quality monitoring stations,
this paper describes an in-depth study of the seasonal variations in internal and external potential
sources in Weifang by using different trajectory analysis methods.

(1) Seasonal differences in the contributions of potential source regions of PM2.5 in Weifang. In winter,
spring, and autumn, airflows are mostly from the northwesterly and northerly directions and
significantly influence the PM2.5 concentration in Weifang. However, in summer, airflow
trajectories are scattered, and warm and humid airflows from the ocean in the southeastern
direction dominate. In winter, spring, and autumn, Weifang is more greatly affected by pollutant
transport from nearby inland cities in Shandong and Henan. These transport pathways are short
in general, and the wind speeds are low, leading to accumulation of the carried pollutants in
Weifang. In contrast, in summer, Weifang is less influenced by pollutants from the surrounding
areas, and the potential source regions are mainly located in coastal areas in the east, such as
Jiangsu, the Bohai Sea, and the Yellow Sea. It should be noted that the region covering central
Inner Mongolia and southern Liaoning is also a potential source area for Weifang.

(2) Policy implications for PM2.5 pollution in Weifang. The results indicate that, in formulating
relevant pollution control and prevention measures, the government should focus on the control of
pollutant sources and take the migration of regional pollution caused by these sources into account.
For example, according to the transport patterns of pollutants in Weifang, the surrounding
pollutant source regions can be divided and classified (such as key control zones). This finding
suggests that different control and management policies can be implemented, and region-specific
pollution control and prevention measures can be formulated. Because Weifang is more
significantly affected by short-distance pollutant transport from the surrounding cities and
provinces as well as inland areas in Shandong Province, the government should pay more
attention to short-distance transport from these regions. For instance, more intensive greening
measures can be introduced to reduce the short-distance transport of PM2.5. Furthermore, the
interactions between the city and its surrounding areas should be considered, and joint control
and cooperation between different regions should be enhanced.
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(3) Evaluation of the analysis results. The results demonstrate that the seasonal distributions of PM2.5

source areas obtained by two methods (PSCF and CWT) share generally similar characteristics,
demonstrating the credibility and accuracy of the analysis results. Both methods can effectively
reflect the potential source areas of pollution in the region. However, there is a limitation in
validating the modeling results with the real transport values because emissions and depositions
of air pollutants along the trajectories cannot be captured easily. Nevertheless, our results are
able to locate the source direction and areas and identify source contributions to a certain extent.
To support this point, we analyzed the notice issued by Shandong Provincial Environmental
Protection Office, which indicates that the primary source of external dust transport from
Inner Mongolia is the main reason that leads to the rapid increase in pollutants in Weifang
City in April [45]. Thus, some references indicated that in northern China (such as Weifang),
the main pollution sources come from anthropogenic emissions related to coal burning and
their transportation [46]. These cases both support our findings regarding spring and winter.
In addition, PSCF and CWT are appropriate tools that help identify source contributions to the
concentration variations at the destination, assuming that other elements/factors remain the
same, such as the period of the kite festival (in April every year). In the future, additional work
that combines emission sources and external monitored PM2.5 concentration data is needed to
improve the prediction of PM2.5 source regions and validate the analysis results quantitatively.

This paper analyzes the external and internal potential source regions of PM2.5 pollution and their
influences on Weifang City. Our findings can provide scientific support for the design of region-specific
measures for atmospheric pollution prevention and the development of a chemical transport model
combined with meteorology. However, this work also has limitations. For instance, the resolution
of the study grid based on the backward trajectory model is not very high and may not be applied
to small-scale regions. Furthermore, the estimation of the sources of PM2.5 is not perfect because the
contributing sources were calculated only based on meteorological data without information such as
the production and deposition of dust. In future research, based on the results in this paper, auxiliary
parameters such as the local emission sources and external PM2.5 monitoring value will be combined to
improve the simulation analysis accuracy and evaluate the accuracy of potential sources contributing to
the PM2.5 in Weifang quantitatively. Furthermore, analyses for various years will be further conducted
to assess the inter-annual variability.
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Appendix A

Table A1. Information of Air Monitoring Stations.

Order Station Name Latitude Longitude Type Availability

1 Weifang arbitration committee 36.702 119.122
National
monitoring
stations

Available

2 Weifang environmental protection bureau 36.702 119.144
3 Hanting Station 36.774 119.191
4 Weifang No. 7 High School 36.687 119.017
5 Weifang Fangzi post 36.652 119.164

6 Weifang College 36.715 119.176
Provincial
monitoring
stations

7 Weifang government 36.728 119.018
8 Jincheng Middle School 36.772 119.098
9 Xinhui group 36.637 119.107

10 Shouguang monitoring station 36.869 118.735

City
monitoring
stations

11 Zhucheng Safety Supervision Bureau 36.004 119.406
12 Changle Sports Bureaus 36.730 118.834
13 Changyi No. 7 High School 36.859 119.431
14 East side in Binhai district 37.020 119.145
15 Qingzhou Guangtong group 36.742 118.494
16 Gaomi college town 36.343 119.748
17 Anqiu Qingyunhu village 36.479 119.223
18 Changyi Xiaying school 37.051 119.479
19 Zhucheng Technology School 36.045 119.404
20 Xiashan water works 36.503 119.411
21 Gaomi Ruiguang electronic 36.411 119.807
22 Changle Wutu street 36.684 118.887
23 Fangzi Luneng school 36.614 119.124
24 Linqu qushan 36.503 118.543
25 Experimental school in Gaoxin district 36.687 119.198
26 West side in Binhai district 37.116 118.999
27 Hanting foreign language school 36.758 119.205
28 Shouguang business district 36.859 118.787
29 Shouguang Hou village 37.047 119.075
30 Qingzhou monitoring station 36.681 118.491
31 Shouguang Yangkou village 37.240 118.879
32 Qingzhou Shuangbeistadium 36.657 118.456
33 Normal university of Special education 36.734 119.078
34 Linqu water works 36.500 118.520
35 Gaomi Sports Bureaus 36.359 119.802
36 Changle Zhuliu street 36.715 118.875
37 Changyi highway bureau 36.842 119.390
38 Anqiu Qingyunshan scenic spot 36.437 119.240
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Abstract: With the development of technology, especially technologies related to artificial
intelligence (AI), the fine-dust data acquired by various personal monitoring devices is of great value
as training data for predicting future fine-dust concentrations and innovatively alerting people of
potential danger. However, most of the fine-dust data obtained from those devices include either
missing or abnormal data caused by various factors such as sensor malfunction, transmission errors,
or storage errors. This paper presents methods to interpolate the missing data and detect anomalies
in PM2.5 time-series data. We validated the performance of our method by comparing ours to
well-known existing methods using our personal PM2.5 monitoring data. Our results showed that the
proposed interpolation method achieves more than 25% improved results in root mean square error
(RMSE) than do most existing methods, and the proposed anomaly detection method achieves fairly
accurate results even for the case of the highly capricious fine-dust data. These proposed methods are
expected to contribute greatly to improving the reliability of data.

Keywords: data interpolation; anomaly detection; bootstrap; fine dust; PM2.5

1. Introduction

Korea has been experiencing severe environmental health problems caused by exposure to fine
dust [1]. Thus, many stakeholders, including government officials, are trying hard to find solutions for
the environmental issues. As part of these efforts, various artificial intelligence (AI)-based technologies
are drawing attention as a way to predict future exposure levels as well as to reduce real-time exposure
to PM2.5 in our daily life. PM data is closely related to personalized health-care service and preventive
medicine, which are research areas that have attracted much interest from many researchers today.
The personalized healthcare service prompted us to develop predictive analytics technology, which
requires the acquisition of data related to individual activity patterns [2,3]. Such data can be seen
as person-specific data that is different from the population-based data to be used for the existing
broadcasting-type environmental information service aimed at a large audience [2,4]. The pico-scale
data is usually collected from each individual sensor device [4]. Unfortunately, such data are more
likely to be incomplete than data collected from stationary sensors, because sensors attached to human
subjects are affected significantly by the person’s activity patterns, meteorological conditions, or the
malfunction of the installed device or sensor itself. These kinds of incomplete data can lead to the
provision of wrong services, because they may invoke wrong algorithmic decisions caused by the data.
Such incomplete data typically include missing or abnormal data. In order to provide high-quality
environmental information services, it is essential to conduct studies to deal with these two issues.

Much research has been done on the two issues mentioned above. Most of such research tends
to focus on detecting missing or anomalous data only as follows. Conventional techniques related
to missing data imputation in time-series data include methods based on machine learning, such
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as random forests [5], maximum likelihood estimation [6], expectation maximization [7], or nearest
neighbors [8]. Technologies belonging to anomalous data detection include prediction-based [9],
distance-based [10], probability-based [11], and linear models [11]. Researches dealing with both
technologies include [12,13] both using machine learning techniques. As we have seen, there are few
studies that simultaneously address these two problems.

Thus, in this study, we present our data-mining skills approach that deals with the two problems
of missing and abnormal data included in the PM2.5 data obtained from a personal portable sensor.
Especially, we demonstrate that our kernel regression-based interpolation method and abnormal data
detection method can be applied to our real personal PM2.5 measurement data. We attempt to extend a
well-known interpolation method incorporating a simple linear interpolation method to interpolate
the bursty PM2.5 data. The performance of the proposed method is provided in comparison to those of
existing interpolation methods. In addition, details on the method are presented in the algorithmic
method section of this paper.

2. Methods

2.1. Proposed Algorithm

In this paper, we proposed two algorithms: the kernel regression-based interpolation method and
the subsequent abnormal-data detection method. The algorithm presented in this paper was done in
the order shown in Figure 1. First, we chose the part of the total data that had no missing data and
estimated the bandwidth for the chosen data part. Here, the bandwidth was the value to use for the
kernel regression-based interpolation (KRBI) (dotted line in Figure 1), which will be explained in the
next subsection. Afterwards, we examined missing data for the entire dataset. If there was missing
data, we used linear interpolation (LI) to interpolate the missing data. Afterwards, the interpolation
was done again by applying the KRBI algorithm [14]. In this case, the optimal bandwidth value, which
was previously obtained, was used. If there were no missing data, abnormal-data detection began for
the entire dataset.

 

Figure 1. Flowchart of the proposed interpolation and anomaly detection.

2.2. Optimal Bandwidth Selection Based on Leave One Out Cross-Validation (LOOCV)

In order to calculate the appropriate bandwidth, we took all of the data and split it into training
and verification data. As the bandwidth was changed from the small value to the large value,
the verification data value was predicted using the training data. Finally, we calculated the estimated
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error in terms of the actual verification data value. Among the bandwidth values that contributed
to the error calculation, we programmed our algorithm to take the bandwidth value that provided
the lowest error as an appropriate bandwidth for the data used. The corresponding pseudo-code is
available in [15]. The bandwidth selection process is explained in the experimental section.

2.3. Kernel Regression-Based Interpolation Using Linear Interpolation

The method proposed in this paper is based on the kernel regression [14], but it took the advantages
of the linear interpolation method [16]. The LI method can be used appropriately, especially when
the time-series trend is clear. For instance, when the time-series pattern appears to be rising up or
decreasing, the LI method can be applied for the interpolation of the corresponding data pattern more
appropriately. We used this property of the LI method in order to improve the performance of the
KRBI method. In other words, we used the LI method for the bursty missing data a priori and then
applied the KRBI method for the final interpolation of the missing data.

The kernel regression algorithm can be summarized as follows. First, we defined the time-series
data as (ti, yi) where ti and yi represented the time and measurement of data at time ti. Kernel regression
was to set the representative value ŷ of yis where p ≤ i ≤ q and the bandwidth h are defined as h = p− q.
In this case, the representative value ŷ might be calculated as a weighted average value of Wiyi where
the weight Wi could be generated by following well-known statistical models such as Gaussian or
uniform distributions. The algorithm can be expressed mathematically as follows.

ŷ =

∑n
i=1 Kh

(

x−xi
h

)

yi

∑n
j=1 Kh

( x−x j

h

) = Wiyi

where the choice of weight Wi =
∑n

i=1 Kh

( x−xi
h

)

∑n
j=1 Kh

( x−xj
h

) and Kh(·) is a kernel chosen [14].

In order to apply the KRBI method, a proper bandwidth calculation must be done. For this
purpose, we used a part of the data that had no missing data to estimate the proper bandwidth for the
data interpolation. A detailed description is provided in the next section.

2.4. Context-Aware Anomaly Detection

Once we finished the bandwidth selection for interpolation and optimal bandwidth, we developed
another algorithm for detecting anomalies in the time-series data. Many techniques have been presented
to detect anomalies using various techniques. In this paper, we defined anomalies as data that showed
significant changes in values within a very short time. For instance, if PM2.5 concentration, measured
every 10 seconds, showed significant drops or jumps during the 10-s period (for instance, observations
that fall below Q1-1.5IQR or above Q3+1.5IQR in the box-and-whisker plot), we considered the value
to be abnormal, because the amount of change in PM2.5 concentration is assumed to stay stable or
similar within a very short time. However, this rule was not an appropriate criterion for detecting
outliers, because too much data fell into this category, and it was hard to think that they were all
anomalies, given the data context. Thus, in this research, we defined data as anomalous when the
following conditions were met. In reality, the PM2.5 concentration does not change significantly in
most cases. This phenomenon is reflected in the detection of anomalies in our time-series data analysis.

di =
∣

∣

∣yi − yi−1

∣

∣

∣ > th

In other words, if di (difference of adjacent yis) exceeds a certain threshold, th, then yi can be an
anomaly. Thresholds are chosen by visual inspection according to the characteristics of the PM data at
the moment. Details are available in the experimental section.
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3. Experimental Tests

3.1. Bootstrap Simulation on Real Dataset

In this section, we verified the effectiveness of the proposed interpolation method. In order to
verify its validity, we (1) randomly removed some of the actual data, (2) interpolated the removed data
based on our algorithm, and then (3) compared them with each other in terms of certain performance
criteria, including a comparison of applying results using other known methods. We executed our
experiments based on a bootstrapping test using the given data in three different scenarios. We assumed
that the arc shape of time-series data could be classified into three different patterns in general: up
slope, down slope, and flat. Based on this assumption, the validity of the method could be evaluated
only for data belonging to each shape pattern. We used the bootstrapping test on the chosen dataset
belonging to each shape pattern. Samples from each pattern section of the data were randomly selected
and then deleted on purpose. Next, we estimated the interpolating values for the deleted data and
compared the error rate between the real values and the estimated interpolation values. The time-series
data for these validation tasks are given in Section 3.3.2. Given our thorough examination of the data,
the data corresponding to the following time index were specifically chosen because they appeared to
match the three typical shape patterns and did not have missing values in the patterns: 3600 to 4600
for the up slope, 3250 to 3500 for the down slope, and 19,000 to 20,000 (Flat 1), 27,000 to 28,000 (Flat 2),
and 37,000 to 40,000 (Flat 3) for the flat pattern. Specifically, for the flat pattern case, we chose three
sections in order to examine any significant performance differences, because the duration of the flat
pattern section is relatively longer than the other part of the time-series data. In our bootstrapping test,
40, 60, 80, and 100 datapoints were randomly deleted to create missing data, and the interpolation
results on the deleted data were evaluated compared to those of the original data in terms of RMSE
(root mean squared error).

The performance of our proposed method was compared to those of the LOCF (last observation
carried forward), Agg (aggregate), and Spline methods [17]. The LOCF method takes the most recent
values prior to itself. The Agg method takes the mean of a few previous values. The Spline method
is a smoothing technique that comes with base R; it was used for the interpolation of missing data.
The results of comparing these four methods are given in Table 1, which shows that our proposed
method had lower RMSEs than those of the existing three methods, except for the flat pattern, for which
the RMSEs of all four methods were not statistically different. R programming language was used to
analyze the performance of the interpolation methods, and R packages stats, zoo, and Metrics were
used for the interpolation and calculation of error rates [18]. The simulation was performed on a
Microsoft Windows 10 computer with Intel® Core™ i7-6500U CPU at 2.60GHz.

As demonstrated by the real data-set experiments, our proposed method worked better than the
existing methods did, although there were very similar results for a few cases, such as the flat pattern.
Based on these experimental results, we finally applied our proposed methods to the remaining cases
of missing values.
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Table 1. Root mean squared errors (RMSEs) of the four interpolation methods applied to our real-time
personal monitoring data. LOCF: last observation carried forward.

Data Pattern Interpolation Method
Number of Missing Data

40 60 80 100

Up slope

Proposed 26.919 26.426 25.733 28.599
Spline 37.052 36.679 35.682 37.908
LOCF 36.604 36.909 35.707 38.393
Agg 656.741 657.476 659.759 658.761

Down slope

Proposed 24.687 25.704 27.840 28.945
Spline 26.741 27.817 30.233 31.834
LOCF 34.223 35.888 38.719 39.818
Agg 283.824 278.758 280.763 280.666

Flat 1

Proposed 4.551 3.981 4.341 4.376
Spline 3.871 3.326 3.555 3.535
LOCF 5.215 4.803 4.874 5.403
Agg 4.426 3.918 4.052 4.071

Flat 2

Proposed 3.633 3.751 3.694 3.656
Spline 3.505 3.610 3.514 3.493
LOCF 4.554 4.817 4.893 4.783
Agg 4.031 4.129 4.062 4.062

Flat 3

Proposed 2.335 2.310 2.429 2.325
Spline 2.229 2.080 2.237 2.187
LOCF 2.991 3.027 3.226 2.875
Agg 2.271 2.125 2.293 2.233

3.2. Optimal Bandwidth Selection

Before we carried out our interpolation on the data, we needed to decide on the value of the
bandwidth used for our interpolation method. For this task, we randomly chose a complete part of the
data that did not have missing data to estimate optimal bandwidth for the data set. Then, the complete
data were split into two different sets for training and validation. The training dataset was used to set
up a kernel regression model, and then the validation was carried out for the remaining data set. In this
bandwidth-selection step, we increased the bandwidth from 1 to 100 to find out which bandwidth
provided the smallest error that could be applied to our interpolation procedure. This bandwidth
estimation step can in fact depend on the nature of the data. That is, since the results of the estimation
may differ significantly depending on the shape of the data pattern, different bandwidths for each of
the three data patterns were estimated and used for this study. However, because it was hard to detect
the changing point of these different data patterns in our time-series data, we used the bandwidth
estimated for the flat data pattern for the following two real-world data experiments. Further research
on automatically calculating the appropriate bandwidth depending on the data patterns is necessary
in the future.

3.3. Interpolation and Anomaly Detection with Real-World Personal Data

We applied our method described above our separated PM2.5 data set containing missing data.
These PM2.5 data were collected at 10-s intervals from portable personal PM2.5 monitors attached to
the subjects. The data were measured between 25 January 2019 and 1 February 2019.

3.3.1. Application of Interpolation and Anomaly Detection Method with Real-World Personal
Dataset 1

As shown in Figure 2, the level of PM2.5 was stable, implying that the subject was relatively calm
with minimal abrupt activity changes. The length of the dataset was 59,422 at 10-s intervals, but it
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had 17,968 missing datapoints in total. Before we went on to detect the anomalies, we first selected an
optimal bandwidth for the dataset as we did previously.

Figure 2. This is a data set that was collected for 6 days between 25 January 2019 and 31 January 2019.
The length of the dataset is 59,422, having 17,968 missing datapoints in total.

After deciding on an optimal bandwidth for the data set, as seen in Figure 3, we interpolated
the missing values based on the algorithm mentioned before. The corresponding results are given in
Figure 4.

Figure 3. By increasing the bandwidth from small to large, we calculate the RMSE of the estimation
and examined at what value of the bandwidth the corresponding RMSE is the minimum.
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Figure 4. Missing values are interpolated and shown in red.

Figure 4 shows the interpolated data (red dots) superimposed on the actual data. It indicates that
the missing data appeared in a small or large aggregated formation. In particular, it can be seen that
much of data loss occurred between 40,000 and 60,000 according to the time index. After checking the
raw data, we confirmed that this large data loss occurred between 13:00 and 16:00, presumably because
of various activities in the afternoon. So much missing data could be very difficult to interpolate
by methods other than linear interpolation. In such a case, it is preferable to carry out the initial
interpolation using linear interpolation, as in our method, and then to apply other methods to improve
the result. As shown in the figure, the interpolation goes well with the overall pattern of the data.

As the next step, for the entire dataset, we detected anomalies in the dataset, based on the method
described in the method section. When the difference of adjacent PM2.5 values is above a certain
threshold (in this experiment, 200), we considered them to be anomalies. The corresponding anomalies
are shown in red in Figure 5, which shows there are eight anomalies detected by visual inspection;
the four red dots on the top seems to be the true outliers. The other red dots at the bottom do not
appear to be true outliers, but they can also be regarded as outliers, because the PM concentration
significantly dropped from the previous state by more than 200 µg/m3 in 10 s, which is not acceptable
as a normal degree of change. This result explains that the proposed outlier detection method produces
fairly reliable results to some degree, even in a highly capricious environment. In selecting a threshold,
we took an empirical approach to decide the threshold. Some data that could be visually regarded
as anomaly data were selected as reference data, and then these data were examined to see if they
were detected as actual anomaly data. As we performed the experiments with varying thresholds,
the values when these reference data were detected were selected as thresholds.
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Figure 5. Anomalies are shown in red.

3.3.2. Application of Interpolation and Anomaly Detection with Real-World Personal Dataset Two

This dataset was collected for 8 days between 25 January 2019 and 1 February 2019. The length of
the dataset is 62,878, having 74 missing datapoints in total. Dataset 1 used in the previous experimental
test was very stable, because the distribution of PM data was mostly less than 100 µg/m3 during the
data acquisition period. However, the PM data in Dataset 2 (Figure 6) reached up to 2000 to 8000 µg/m3

with 10-s intervals and showed a more dynamic change in the distribution of PM data, implying
that the subject had various activities or was exposed to many different environmental conditions
containing all the data-distribution patterns of rising, falling, and stable PM2.5 concentrations.

Figure 6. This is Dataset 2, collected for 8 days between 25 January 2019 and 1 February 2019. The length
of the dataset is 62,878, having 74 missing datapoints in total.
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The same bandwidth estimation steps were also carried out as described previously. Figure 7
shows the chosen bandwidth of 20 estimated for the flat part of the data between 33,000 and 33,600 in the
time index. The interpolated missing data are shown in red in Figure 8, overlaid on the entire dataset.

Figure 7. Optimal bandwidth for this dataset is chosen as being 19.

Figure 8. Missing data is interpolated and shown in red.

Figure 8 can be seen as two sets of data with different natures; in the front part, the data fluctuates
heavily, but in the back part, the data are relatively stable. In particular, the front data were generated
between 14:00 and 18:00, probably by a wide variety of movements. Unlike the previous Dataset 1,
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the data loss is relatively small, even under the condition of dynamic movements; so, a very stable
performance sensor may be used. In the case of the latter part of the data, it appears that more data loss
occurs than from the front part, but not much data are actually lost. Overall, a fairly stable interpolation
result can be observed.

Finally, anomalies are also shown in red, in Figure 9. Overall, eight anomalies seem to be detected
by visual inspection. If you look at the enlarged part of the data (between 2750 and 4000 out of the
whole dataset), you can see that the detected outliers can be accepted as real outliers, because the
corresponding PM concentration significantly changes within a 10-s period. In this experiment set,
the threshold value 1000 was used as the criterion to detect outliers, and the threshold was also
empirically chosen, analogously to the approach described in Section 3.3.1.

 
(a) (b) 

Figure 9. Anomalies are detected and shown in red (a) outliers for the entire dataset (b) outliers shown
enlarged for the part of the dataset between 2750 and 4000.

4. Discussion

This paper presented the results of research on two important technologies related to artificial
intelligence environmental information services, such as PM2.5 exposure level prediction, and providing
alerts based on the prediction. Most environmental data inevitably contain both missing data and
anomalies caused by various factors, such as sensor malfunctions, errors in transmission, or errors
in storage. Such incomplete data can lead to the miscalculation of data-based analysis and so must
be processed appropriately before we use them for data analysis. Most of the related studies have
tended to deal with either interpolation or abnormal data problems only. However, it is desirable that
interpolation and abnormal data should be handled together for viable data-based services. Therefore,
we conducted the research on these two problems simultaneously.

The first technique was interpolation, which can be regarded as a technique to cope with data lost
from various sensors. Data tend to be missed mainly in time-series data, which is known to occur in
three major forms: missing completely at random (MCAR), missing at random (MAR), and not missing
at random (NMAR). In particular, the MAR type is an appropriate form of model for describing the
data that are missing in most fine-dust time-series data [17]. This model assumes that the pattern of
the time-series data can be described by a certain mathematical generative model and also attempts to
take advantages of correlation information in multivariate environments to solve the missing-data
problem [17]. In a stationary environment where sensors are fixed to certain objects, the generative
model may be used to analyze the data. However, in a univariate case where data are collected from
portable wearable devices, it is very challenging to estimate the missing data, because the number of
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attributes to use is very limited, and a large amount of data is likely to be missing [19]. In these cases,
it is very difficult to apply a mathematical generation model to describe the data-distribution pattern
or representative values for a specific activity. There are very few articles addressing the interpolation
methods for univariate time-series data. Articles by Junninen studied the univariate algorithm in 2004,
but do not consider time-series aspects [20]. Authors applied ARIMA (autoregressive integrated
moving average) and SARIMA (seasonal autoregressive integrated moving average) models for the
univariate model interpolation and provided comparison results [21]. A performance comparison is
provided, using built-in interpolation methods in R [19]. Data loss in one instant or a short period of time
can be easily interpolated with a simple error-recovery method such as linear interpolation. However,
this simple interpolation method may be inadequate for a long bursty loss of sensor-provided data.
When such long bursty data loss occurs, the interpolation method with the prediction technique may
be more appropriate.

In addition, anomalous-data detection technology should be applied to detect data that deviate
from the characteristics of data distribution. The anomalies can be commonly found in various
industries including the environmental and finance fields. Anomalous time-series data can be regarded
as data that disturb the continuity of data based on temporal flow [11]. Most techniques to detect
anomalies can be classified as supervised and unsupervised according to the presence or absence of
data labels [22]. The supervised method is a technique for detecting abnormal data by means of a
learning algorithm when the data are labeled. The unsupervised method can be used when there is
no label in the data, and can be used more flexibly than the supervised method can be, because often
data labels are not available. As another category of classification, point-anomalous data detection
technology detects one datapoint that has abnormal characteristics among much normal data [22].
In contrast, the statistical method extends the point method, and is a technology that detects data when
that fall inside or outside a specific range of values in order to find anomalies. The disadvantage of
these technologies is that most of these values are set up by hand. Recently, a lot of context-based
methods have been studied. These can be seen as techniques for identifying abnormal data depending
on the context of a situation. We proposed a method to detect abnormal data that show significant
incremental or decremental changes as measured by time.

Although the excellence of the proposed algorithms has been proved by experiments, we address
the limitations in conducting this study. First, the bootstrapping test was used to prove the excellence of
the interpolation method, because we did not have any reference data for our interpolation algorithm.
However, under such circumstances, we assumed that the bootstrapping test was the best choice
for generating a missing value dataset randomly from a secure dataset. In addition, we did three
scenario-specific experiments to evaluate the performance of the proposed method, which could be
considered a simplified approach. The patterns of data distribution can be more complicated; since
data distribution patterns were not considered in this study, some other methods might work better,
depending on the type of data. In addition, we did interpolation by applying the same bandwidth
estimated for the flat data pattern to the entire dataset. In the future, it is necessary to conduct research
to automatically apply different bandwidth values for each data pattern. Finally, because the method
proposed in this study was a kind of context-aware based detection method, we acknowledge that other
methods previously proposed could get a completely different result. In addition, the threshold value
was chosen empirically by visual inspection at the moment, but we need to develop a sophisticated
algorithm to choose the value automatically. We may introduce such an automatic method in our near
future study.

Despite the limitations of this study, it has a very important academic significance in that it
presents a solution to the problem of interpolation and abnormal data of fine-dust data acquired from
personal mobile terminals. We believe that these technologies will be a cornerstone for personalized
environmental data services in the near future. Future research will include the prediction of PM data
concentrations in both indoor and outdoor environments based on machine-learning technologies.
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5. Conclusions

We think out findings have contributed greatly to overcoming the incompleteness of environmental
data obtained from individual sensors and to providing an academic basis for more reliable data analysis.
If the proposed algorithm is further improved, it will contribute a lot to advancing personalized
healthcare and preventive medicine research.
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Abstract: House settled dust (HSD) contains various hazardous materials, including polycyclic
aromatic hydrocarbons (PAHs) and metals. Exposure to toxicants contained in HSD is of paramount
concern especially in the case of young children, due to their particular behavioral characteristics.
In this context, extracts of sieved vacuum cleaner dust from 20 residences with young children were
examined for the presence of PAHs and trace metals, in Athens, Greece. The results indicated that
PAHs and metals were ubiquitous in the studied residences. The calculated enrichment factors (EF)
of trace metals indicated that Cu, Se, Zn, Hg, Cd, and Pb were mainly of anthropogenic. According to
the PCA analysis, the main sources of household dust were: smoking inside the houses, combustion
processes, resuspension of soil dust, and vehicle traffic. In general, the cancer risk due to PAHs
exposure was found lower than the threshold value. The ingestion of house dust was the most
important route of exposure to metals. The dose of almost all elements for the children was found
1–2 orders of magnitude lower than the corresponding reference values. Both the carcinogenic and
noncarcinogenic risks of exposure were within the safety limits.

Keywords: settled house dust; PAHs; metals; enrichment factor; sources; health risk assessment

1. Introduction

Indoor air pollution plays a key role in human health since people spend the largest
part of their time in indoor environments and 70–80% of their day in residential environ-
ments [1]. Indoor air and dust are the two main pathways ways of exposure to environ-
mental contaminants. Depending on the nature of the contaminant itself, other routes
like dietary exposure could also be of great importance. Compared to indoor air, indoor
dust is more suitable for estimating human exposure to various chemical substances [2].
Polycyclic aromatic hydrocarbons (PAHs) and trace metals are both ubiquitous in house
settled dust (HSD). Young children are more seriously affected by toxicants in HSD due
to their particular behavioral characteristics, such as hand-to-mouth behavior, crawling,
frequent mouth breathing, and sucking or chewing dirty toys [3–5]. Considering that
children spend almost all of their day at home and their breathing zone is very close to
the floor, where residential dust tends to accumulate, makes them more susceptible to
environmental stressors [6].

Indoor sources of PAHs include smoking, cooking, gas-fired appliances, and the pene-
tration of polluted outdoor air, since the incomplete combustion processes, traffic, industrial
emissions, and heating with fossil fuels constitute some of the major outdoor sources of
PAHs [2,7–10]. Several PAHs are known or suspected carcinogens, most prevalent among
them being benzo[a]pyrene (B[a]P) and benz[a]anthracene (B[a]A) [7]. Whilst PAHs have
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not been directly associated with asthma and allergies so far, results from a number of stud-
ies suggest that traffic-derived PAHs and those emitted from smoking, cooking, and space
heating may increase the risk for asthma-related symptoms and seroatopy in children [11].

Trace metals in indoor settled dust originated from both indoor and outdoor sources.
External sources include soil, road dust, industrial and vehicular emissions, while deco-
rative paints, consumer and cosmetic products, appliances, and combustion products of
cooking, heating, and smoking constitute important indoor sources [12,13]. Inhalation, dust
ingestion, and dermal contact are the main routes of human exposure to toxic metals, while
it has been proved that incidental oral ingestion constitutes the most important exposure
pathway, especially in the case of young children [12,14]. Taking into account that metals
accumulated in the tissues and internal organs of the human body, affecting the central
nervous system and acting as cofactors or promoters of other disorders, makes infants
and young children more vulnerable to metal exposure when compared to adults [15,16].
In particular, trace metals such as Cd, Cr, Ni, and Pb can have cumulative effects, causing
growth retardation in children, kidney disease, cancer, and several other adverse health
effects [17].

To the best of our knowledge, there has been very limited research in Europe to
examine the concentrations and sources of PAHs and trace metals in indoor dust [18–20]
and even scarce focusing on residences with infants and young children [7]. Additionally,
the present work is the first of its kind to be conducted in Greece. The objectives of this study
were: (a) to identify the concentrations and profiles of PAHs and trace metals in indoor dust
collected from Greek households, (b) to examine the relationship between the household
characteristics and occupant’s activities with PAH and trace metals concentrations in indoor
dust, (c) to determine the sources of PAHs and trace metals in indoor dust of Greece, (d) to
conduct a health risk assessment and to evaluate the cancer risks of exposure to PAHs and
metals in residential environments.

2. Material and Methods

2.1. Study Design and Dust Sample Collection

In the present study, twenty residences located in various areas across the Athens
region were investigated. Participants with a child below three years of age were eligible
and were recruited both through advertising via flyers in several facilities of interest and
word of mouth. The field campaigns took place during the warm season of 2015 (June–
October). Before starting the sampling procedures, an informed consent form was signed
by each participant. Vacuum cleaner bags were collected from all the 20 residences. The
residents were asked to vacuum floors only but they were not limited to certain rooms.
The idea behind that is that the residents carry the dust through movement from one room
to another. The bags were removed from the vacuum cleaner, placed in zip-seal plastic
bags, and transported to the laboratory where they were stored at −20 ◦C, as described by
Zhu et al. [21]. The samples were then analyzed for 25 PAHs and 15 trace metals.

In addition, detailed data regarding the building characteristics, such as location and
type of the residence, potential nearby pollution sources and presence of attachedgarage,
were recorded. Participants were asked to fill out an additional questionnaire concerning
the characteristics of the residences (e.g., age of the house, previous water damage, presence
of pets, smoking status).

2.2. Samples Clean Up and Preparation

One day before the beginning of the analysis, the samples were placed in a fume
hood to reach room temperature. Subsequently, each dust sample was sieved to achieve
homogenization. At the end of the process, the sieved dust was weighed using a high
precision electronic scale (GIBERTINI, E42S-B, Novate Milanese (MI), Italy) and stored at
−20 ◦C until analysis.
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2.3. Laboratory Analysis of PAHs

Out of the 20 dust samples that were collected, 3 were destroyed during the analytical
process. Therefore, the results that were obtained from 17 residences are subsequently
presented. The dust extracts were analyzed for 25 PAHs using gas chromatography/mass
spectrometry (GC/MS), including naphthalene (Nap), 2-methylnaphthalene (2M-Nap),
1-methylnaphthalene (1M-Nap), 1,2-dimethylnaphthalene (1,2 DM-Nap), 2,6- dimethyl-
naphthalene (2,6 DM-Nap), acenaphthene (Ace), 2,3,5-trimethylnaphthalene (2,3,5-TM-
Nap), acenaphthylene (Acy), anthracene (Ant), benzo[a]anthracene (B[a]A), benzo[a]pyrene
(B[a]P), benzo[e]pyrene (B[e]P), benzo[b]fluoranthene (B[b]F), benzo[k]fluoranthene
(B[k]F),benzo[g,h,i]perylene (B[ghi]Per), chrysene (Chry), dibenzo[a,h]anthracene (dBaAnt),
fluoranthene (Fla), fluorene (Fl), perylene (Per), indeno (1,2,3-c,d) pyrene (IndP), phenan-
threne (Phe), dibenzothiophene (dbt) pyrene (Pyr), 3,6-dimethylphenanthrene (3,6-dMePhe),
1-methylphenanthrene (1-MePhe). The analysis of the polyaromatic hydrocarbons was
performed according to ISO12884 with the use of the certified material NIST Urban Dust
(1649b). The main steps of the analytical procedure are the following. Samples were
extracted in a Soxhlet extractor for 24 h at a reflux rate of about 4 cycles per hour. Before
the extraction, deuterared PAHs (d8-Nap, d10-A, d10-Phe, d10-Chr, d10-Pyr, d12-B[ghi]P
and d12-Perylene) were added as internal standards to monitor recovery. Subsequently, the
extracts were concentrated in a rotary evaporator, loaded onto activated silica gel column
chromatography, and eluted with n-hexane and n-hexane/dichloromethane (3:2). PAHs
fraction was concentrated under a gentle stream of nitrogen, and an aliquot was analyzed
by GC/MS (Agilent Technologies 7890A GC). Twenty-five PAHs were detected, including
a group of suspected carcinogens PAHs.

2.4. Laboratory Analysis of Trace Metals

All materials that came into contact with the samples were previously washed thor-
oughly, soaked in dilute HNO3 (Merck, Darmstadt, Germany), and rinsed with ultrapure
water of 18.2 MΩ cm (Millipore, Bedford, MA, USA). For the preparation of all required
solutions, class A volumetric glassware was used. For the determination of As, Ba, Cd,
Cr, Cu, Mn, Ni, Pb, Sr, V, the samples were digested with HNO3 65% supra pure (Merck)
with the subsequent addition of H2O2 30% (Merck), according to the procedure described
by [22]. For Hg and Se, samples were acid digested with HNO3 in Teflon vials closed and
left overnight at room temperature. The following day, the vials were thermostated at
80 ◦C for 3 h. The samples were allowed to cool at room temperature before their dilution
with Milli-Q water. The digested samples were analyzed through inductively coupled
plasma mass spectrometry (ICP-MS) by a Thermo Scientific ICAP Qc (Waltham, MA, USA).
Measurements were carried out in a single collision cell mode, with kinetic energy dis-
crimination (KED) using pure He. Matrix induced signal suppressions and instrumental
drift were corrected by internal standardization (45Sc, 103Rh). Analyses of Al, Fe, and Zn
were carried out by flame atomic absorption spectrometry (FAAS) (SpectrAA 200; Varian,
Mulgrave, Vic, Australia), following digestion of the samples with a mixture of HNO3
(65%), HCl (30%) and HF (40%). The calibration curves matched the matrix (acidity) of
the samples.

2.5. QA and QC

2.5.1. PAHs

The quantification of PAHs was carried out through a linear calibration curve, which
was built on matrix-matched standards (dust on filters). For the determination of the
curve a standard polyaromatic solution containing secondary PAHs derivatives was used
as internal standards. The solutions were of known concentration (0.05–10 ng/µL). The
expanded uncertainty (Uexp k = 2) ranged from 6.3% to 23%, while the LOD of the method
ranged from 0.6 pg/µL to 12.8 pg/µL.
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2.5.2. Trace Metals

The method detection limits (MDLs) were within the range 0.500–5.00 ng g−1 for
ICP-MS determined elements and 25.0–50.0 µg g−1 for FAAS determined elements. For
statistical calculations, values below the MDLs were assigned the method detection limits
divided by

√
2. The quality assurance was provided by analyzing the certified reference

material (CRM) NIST 1649a (urban dust), which includes reference values for selected trace
elements.The recoveries for As, Ba, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in the CRM were in
the range ±20%. Further, recovery efficiency for spiking sample analysis was ±25% for
all elements.

2.6. Statistical Analysis

Statistical analysis was performed with SPSS 22 software (SPSS Inc., Chicago, IL, USA)
for Microsoft Windows®. The nonparametric Kruskal–Wallis test was used to examine
whether there were significant differences in chemical concentrations among residences
with different household characteristics and different occupant’s activities. Statistical
significance was set at two stages p < 0.05 (95% confidence interval) and p < 0.1 (90%
confidence interval). Pearson’s correlation coefficient analysis and principal component
analysis (PCA) identified the relationship between contaminants and possible sources.
PCA constitutes one of the most common multivariate statistical methods widely used in
dust contamination studies [2,9,17,23].

2.7. Enrichment Factors

In order for the metal enrichment in house dust and possible natural or anthropogenic
sources to be determined, enrichment factors (EF) were calculated using the Equation (1).

EF =

(

Cx/Cre f

)

sample
(

Cx/Cre f

)

background

(1)

where Cx/Cre f : the ratio of concentrations of trace metal to the corresponding concentration
of a reference metal in the sample and background. In the present study, Al was selected
as reference metal, as it is considered that anthropogenic activity contributes the least
to its presence. In general, as long as the enrichment factor is less than 10, the natural
origin of the elements dominates, while for values greater than 10, their enrichment due to
anthropogenic activity is important due to anthropogenic activity [15,23], especially for
metals for which the factor is estimated to be greater than 40.

2.8. Cancer Risk Assessment of PAHs in Settled House Dust

The estimation of the excess lifetime cancer risks for young children associated with
nondietary ingestion of PAHs in settled house dust was conducted, according to the
methodology of Maerterns et al. [18], using the following equation:

Lifetime cancer risk =
n

∑
i=1

(

(Ci × PEFi × IR × EF × SF × AF
BW × 1000

)

(2)

where C: the concentration (µg/g) of each of the carcinogenic PAHs (B[a]A, B[a]P, B[b]F,
B[k]F, Chr, D[ah]A and Ind), PEF (Potency Equivalency Factor): the factor that expresses
the potency of each PAH in terms of B[a]P which were as follows: B[a]A = 0.1, B[b]F = 0.1,
B[k]F = 0.1, Chr = 0.001, D[ah]A = 5 and Ind = 0.1, IR (Ingestion Rate): Daily ingestion
rate of dust which was considered as 0.05 g/day and 0.1 g/day, EF (Exposure Factor): the
rate of exposure, which was calculated taking into account that a preschool-aged children
is active for 12 h (while the remaining 12 asleep) and assuming that is exposed to these
concentrations until the age of 5, BW (Body Weight): the average body weight, which was
considered equal to 13 Kg, SF (Slope Factor): the estimate of the probability of a response
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occurring per unit intake of the PAH over a lifetime and for the present study an oral slope
factor for B[a]P equal to 7.3 (mg·Kg/day) was used, AF (Adjustment Factor): the factor
accounts for children’s exposure during early life stages. For exposure to carcinogens,
U.S.EPA recommends: AF = 0 for children up to 2 years of age and AF = 3 for children
between 2 and 15 years of age. It has been estimated that preschool-aged children (1–5 years
old) ingest 0.05 to 0.1 g of dust per day, depending on the season and the amount of time
spent indoors [18]. For this reason, two different scenarios for the calculation of the risk
of carcinogenesis were included: a moderate exposure scenario (0.05 g/day) and a high
exposure scenario (0.1 g/day). For the calculations, the average value of B2PAHs that was
obtained taking into account the concentrations of all the studied residences, was used.

2.9. Health Risk Assessment of Metals in Settled House Dust

The present study aims to calculate the exposure of children and their parents to
metals in house dust based on the assessment method of human exposure risk developed
by US Environmental Protection Agency [24]. Residents are exposed to dust through three
main pathways: ingestion, inhalation, and dermal contact. The dose received through each
of the pathways was calculated by the following equations:

Dingestion = C × IngR × EF × ED
BW × AT

× 10−6 (3)

Ddermal = C × SA × SL × ABS × EF × ED
BW × AT

× 10−6 (4)

Dinhalation = C × InhR × EF × ED
PEF × BW × AT

(5)

The available studies on the carcinogenic risk parameters in the current assessment
standards have been conducted, taking into account only the pathway of inhalation [25].
Therefore, the daily average exposure for life through inhalation of a carcinogenic metal
(LDinhalation ) was calculated by:

LDinhalation =
C × EF

PEF × AT
×
(

InhRchild × EDchild

BWchild
+

InhRadult × EDadult

BWadult

)

(6)

where C is the concentration (mg/kg) of the metal in the dust. IngR is the ingestion rate,
estimated in the present study to be equal to 200 (mg/day) for children and 100 (mg/day)
for their parents [26]. InhR is the inhalation rate and was considered as 5.71 for children and
19.02 for adults (m3/day) [27]. Exposure frequency (EF), taking into account holidays, was
assumed as 335 days per year. Exposure duration (ED) was taken as 5 years for children
and 25 years for adults. AT is the averaging time (ED × 365 days for noncarcinogens and
70 × 365 days for carcinogens). BW is the average body weight (13 Kg for children and
70 Kg for adults). The surface area of skin exposure (SA) was considered to be 1150 cm2

for children and 2145 cm2 for their parents. The skin adhesive capacity (SL) was taken as
0.2 for children and 0.07 for adults. The skin absorption factor (ABS) was considered as
0.001 [15]. PEF is the particulate emission factor, in this study, 1.36 × 109 m3/kg.

The doses that were calculated for each element and exposure pathway were sub-
sequently divided by the corresponding reference dose (RfD) (mg/kg × day) to obtain
the noncancer risk (HQ), while the dose was multiplied by the corresponding slope factor
(SF) to calculate the level of cancer risk [15]. The hazard index (HI) is the sum of HQ. It is
supported that if HQ or HI < 1, the risk is small, whereas in case HQ or HI >1, there is a
noncarcinogenic risk. Risk refers to the risk of cancer, indicating the probability of cancer,
which is usually expressed as the proportion of cancer population in unit population. The
acceptable risk is within the range of 10−6 to 10−4 [15,27].
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3. Results and Discussion

3.1. PAH and Trace Metals Concentrations

3.1.1. PAHs

Overall, the 25 PAHs were detected in all dust samples, except for perylene, which was
not detected in six residences. The concentrations of all the individual PAHs are presented
in Table 1. The total PAH concentration in indoor dust ranged between 1.4 and 7.3 µg/g,
across the houses, with a median value of 2.2 µg/g. The house with the lowest total
concentration was a recently renovated apartment, and its occupants had moved in about
a month before the start of the campaign. This observation is consistent with previously
conducted studies, where lower ΣPAH concentrations in newly constructed or renovated
houses have been reported [18,21]. The house with the highest ΣPAH concentration was
10 years old, and the only distinct feature it had when compared to the other houses of the
study was the presence of a large carpet in the living room. This finding is in agreement
with the observations of Maertens et al. [18], who reported elevated total PAH concentration
in a residence that was 90% carpeted. In general, the ΣPAH concentrations in the present
study were lower with respect to previous studies. Specifically, the mean levels of total
PAHs in indoor dust in two studies that were conducted in China were much higher as
follows: 21.9–329.6 and 30.9 µg/g, respectively [2,9]. Similarly, higher concentrations were
reported in USA (29.2 µg/g) [28,29], Canada (12.9 µg/g) [18] and Italy (5.11) [19].

Among the measured PAHs, phenanthrene was the most predominant, followed by
fluorene, while perylene was the congener detected in the lowest concentrations in all the
studied households. In terms of their molecular weight, PAHs are categorized in three
main categories: PAHs with High Molecular Weight (HMW), Medium Molecular Weight
(MMW) and Low Molecular Weight (LMW). HMW PAHs are in general more toxic and
harmful with respect to the LMW, which are less toxic. In the present study, LMW PAHs
were the predominant PAHs in indoor dust, accounting for 87.5 % of the total PAHs.

Table 1. Concentrations of polycyclic aromatic hydrocarbons (PAHs) in indoor dust samples (ng/g).

PAH (ng/g) Mean Median SD Min Max

Nap 339 116 609 75.2 2479
2M-Nap 242 172 198 118 965
1M-Nap 126 91.6 107 61.1 518

Acy 15.7 13.2 7.82 8.24 39.4
1,2 DM-Nap 49.4 40.1 30.7 29.5 158
2,6 DM-Nap 11.7 9.08 7.04 6.43 33.2

Ace 94.6 78.0 69.0 60.8 353
2,3,5-TM-Nap 10.5 8.56 7.33 3.12 28.8

Fl 421 424 207 221 1116
DBT 25.4 21.2 20.9 4.96 91.8
Phe 925 905 465 528 2525

1M-Phe 67.9 45.8 79.0 14.9 358
3,6 DM-Phe 42.3 21.5 75.7 7.59 334

Ant 22.6 19.4 12.7 10.3 57.3
Flu 99.0 86.0 61.8 30.2 308
Pyr 100 74.4 117 20.1 542
BaA 11.3 8.25 12.2 1.68 54.9
Chr 45.3 27.2 72.9 4.25 325
BbF 20.7 16.9 19.9 2.01 90.4
BkF 10.7 7.22 12.3 1.01 55.7
Bep 14.0 9.79 14.8 1.49 65.9
Bap 7.06 5.45 5.69 1.05 24.0
Per 1.02 1.08 1.06 0.00 3.39

IndP 11.1 8.39 10.8 1.05 49.2
dBaAnt 2.06 1.69 1.83 0.39 8.39

B[ghi]Per 13.8 10.3 11.2 1.36 49.3

Out of the 25 measured PAHs, 16 (naphthalene, acenapthylene, acenaphtene, flu-
orene, phenanthrene, anthracene, fluoranthrene, pyrene, bez(a)anthracene, chrysene,
benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene,
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dibenzo(a,h)anthracene) have been designated high priority pollutants by Environmen-
tal Protection Agency (EPA), while 7 (bez(a)anthracene, chrysene, benzo(b)fluoranthene,
benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene)
have been classified as human carcinogens by the U.S.EPA (2003), referred as B2 PAHs. The
contribution of B2 PAHs was estimated equal to 5% of the total PAHs. Especially benzo
(a) pyrene has been classified as particularly dangerous and has been extensively studied
worldwide [7,18,30–32]. The German Federal Environmental Agency’s Commission for
indoor air quality has established the limit of 10 µg/g for exposure to B[a]P in house
dust [18]. B[a]P concentrations in the present study were found 3 orders of magnitude
lower than the above limit. Compared to the results of earlier studies, the concentrations of
B[a]P found in this study were either lower [18,31,32] or comparable [7].

3.1.2. Trace Metals

The concentrations of the heavy metals identified in the dust samples are summarized
in Table 2. Among the elements that were examined, Fe was found to have the highest
concentration (4.9 µg/g), followed by Al (4.2 µg/g), Zn (0.4 µg/g), Cu (0.34 µg/g) and Ba
(0.25 µg/g). The elevated concentrations of both soil-related (Fe, Al) and anthropogenic (Zn,
Cu, Ba) elements in the dust samples implies that the dust accumulation in the residential
indoor Environment is mainly affected by the resuspension of natural dust (soil) and road
dust. The elements Hg and Cd had the lowest concentrations.

Table 2. Metal concentrations in indoor dust samples (µg/g).

Elements Mean SD Min Max

Zn 401 211 136 1031
Fe 4913 5650 851 26100
Al 4217 9391 269 44900
Hg 0.4 0.5 0.0 2.1
V 9.0 5.4 2.4 21.3
Cr 65.2 36.4 14.2 147
Mn 128 67.9 28.9 272
Ni 29.9 23.9 5.2 103
Cu 339 711 11.8 3051
As 4.0 4.4 1.3 19.8
Se 1.0 0.6 0.2 2.8
Sr 118 97.6 37.7 396
Cd 0.5 0.6 0.1 2.3
Ba 251 237.0 35.0 1130
Pb 46.1 71.5 6.5 343

The highest concentration of Fe (26.1 mg/g) was observed in a residence located in
an urban area on a high circulation road. Indeed, Fe has been linked with traffic as it
originates either from road dust resuspension or emissions from brake wear [33]. The
highest concentration of Al (45 mg/g) was observed in a residence which was located
in a rural area, while the highest levels of Zn, Cu, and Sr were detected in a ground
floor house located in the Athens city centre, and thus significantly affected by vehicular
emissions [34]. Due to the absence of established legislation, limits for trace metals in
indoor dust were compared with concentrations reported in the literature. Compared to
the metal concentrations reported in a recent study examining residential dust samples
in Toronto, Canada, the levels of the present study were all higher (Cr (65.2 vs. 42 µg/g),
Cu (339 vs. 136 µg/g), Ni (29.9 vs. 23 µg/g), Pb (46.1 vs. 36 µg/g), and Zn (401 vs.
386 µg/g), except for Cd (0.5 vs. 1.7 µg/g) [12]. Higher concentrations compared to those
of the present work were also presented in an earlier study conducted in Japan [31], where
Shakya 2013, reported lower concentrations for Cr, Ni, Pb, and Zn, but higher for Cd (0.5
vs. 8.2 µg/g) in Kathmandu, Nepal [32].
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3.2. Relationship between PAH and Trace Metals Concentrations and Household Characteristics

The relationship between the individual PAH and trace metal concentrations and a
series of household characteristics was examined.

3.2.1. PAHs

Compared to residences located in suburban areas, houses in urban areas were found
to exhibit significantly higher concentrations of Anthracene (26.2 vs. 16.1 ng/g, p < 0.05)
and other PAHs derived from combustion processes (Flut, Pyr, B[a]A, Chr, B[b]F, B[k]F,
B[a]P, Ind και B[ghi]P), referred to hereafter as COMPAHs, such as B[a]P (8.5 vs. 5.8 ng/g).
This is in agreement with the literature, as it has been reported that proximity to combustion
sources such as vehicle exhaust emissions is probably the most important factor affecting
the accumulation of PAHs in indoor dust [2,7,35]. The age of the house was found to
affect both the Pyr (75 vs. 114 ng/g, p < 0.05) and all the B2PAH (87 vs. 140 ng/g,
p < 0.05) concentrations, with the houses that have been built in the last 20 years presenting
lower concentrations than the older ones. Houses on the ground floor presented higher
concentrations of Flut, B[a]A, Chr, B[b]F, Ind, D[ah]A (p < 0.05), which are known to
originate from combustion processes.

Both the B2PAH and COMPAH concentrations were considerably higher in the houses
with an attached garage. Especially for BaP a significant difference was noticed (13.6
vs. 6.2 ng/g, p < 0.05). The existence of a metro or tram station nearby (< 200 m) was
associated with increased concentrations of COMPAHs (479 vs. 217 ng/g, p < 0.05),
especially those of B[a]A, B[a]P, Ind and D[ah ]A. This is probably due to the heavy traffic
and the parking stations that are located close to such stations. The presence of a carpet
in the house was associated with increased concentrations of Nap (1319 vs. 209 ng/g,
p < 0.05), while the habit of residents wearing shoes inside their home was associated with
higher concentrations of COMPAHs (475 vs. 221 ng/g, p < 0.05), as well as B2PAHs (191 vs.
73 ng/g), especially those of B[a]P, Pyr, Chr, D[ah]A and B[ghi].

3.2.2. Metals

The location of the house seems to be an important factor in the presence of Zn
(p = 0.083), Fe (p = 0.071), and Sr p = 0.071) in house dust, with houses located in urban
areas having higher concentrations. Figure 1 illustrates the elevated concentrations of the
aforementioned elements detected in urban areas, which are lower in suburban areas and
especially in rural areas. This observation is explained by the common emission sources
of these elements, which are traffic emissions and road dust resuspension. Also, houses
located close to a highway (<200 m) indicated higher concentrations of Se (1.3 vs. 0.6 µg/g,
p = 0.073).
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Figure 1. Concentrations of Fe, Zn and Sr in urban, suburban and rural areas.
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Residences located either on the ground floor or the first floor indicated higher Hg
concentrations with respect to those at higher floors (0.62 vs. 0.16 µg/g, p < 0.05). The age of
the house was found to affect the levels of Sr, as higher concentrations in homes older than
20 years (128 vs. 77 µg/g, p < 0.05) were observed. In houses with a total area of less than
100 m2, higher concentrations of Fe (6928 vs. 2526 µg/g, p < 0.05), Al (2691 vs. 1562 µg/g,
p < 0.05), V (10.6 vs. 5.7 µg/g, p < 0.05) and Ba (327 vs. 133 µg/g, p < 0.05) were found.
This fact can be related to the lower number of openings (windows and doors) to houses of
smaller total area, which consequently leads to lower infiltration rates. Houses that used
fireplaces as the main source of heating indicated significantly higher concentrations of Pb
(343 vs. 32 µg/g, p < 0.05), probably due to the burning of painted or treated wood [33,34],
while those that were heated using electricity were associated with significantly higher
concentrations of Fe (10729 vs. 3529, p < 0.05) and V (12.8 vs. 7.3 µg/g, p = 0.059), likely
due to dust resuspension occurring during the operation of air conditioning. In houses
that remained closed (without the presence of occupants) for several hours during the day,
higher values of As (8.7 vs. 2.5 µg/g, p < 0.05) and Sr (152 vs. 93, p < 0.05) were detected
in household dust. The type of glazing appeared to affect Pb levels in household dust, as
higher concentrations were observed in homes with single glazing compared to those with
double glazing (57.8 vs. 46.2, p = 0.078). In terms of glazing on indoor Pb concentrations,
we believe that the effect is not directly related to the type of glazing (or to be more accurate
not only related to that) but on the type of the windows used. Double glazed windows
are of newer technology and have been found in previous studies to significantly reduce
the infiltration rates [35]. Since Pb is emitted from outdoor anthropogenic activities and
resides in the fine fraction, it is expected that its indoor concentrations will be attributed
mainly to infiltration. Finally, as with PAHs, the habit of residents wearing shoes inside
their dwelling significantly affected the levels of Al (2684 vs. 1850 µg/g, p = 0.076) and Ba
(275 vs. 217 µg/g, p < 0.05) in house dust. As both elements can be found in urban dust,
there are transferred inside the residents by the dust that is found on their shoes.

3.3. Relationship between PAH and Trace Metals Concentrations and Occupant Activities

Apart from the household characteristics, the impact of the occupants’ activities on
the detection of PAHs and trace metals in dust was also examined.

3.3.1. PAHs

The analysis demonstrated that smoking inside the house significantly contributes
to the increase of the concentrations of Phe (1275 versus 780 ng/g, p = 0.0730.1) and Ant
(32.1 versus 18.7, p = 0.073), whereas no statistically significant differences for the other
COMPAHs were observed. However, the concentrations of all COMPAHs in smoker’s
residences were found to be significantly higher than in nonsmoker’s dwellings (Figure 2).
In particular, Chr indicated 2.5 times higher concentration in smokers’ homes (72 vs.
30 ng/g), while Pyr (153 vs. 63 ng/g), B[b]F (30 vs. 14 ng/g), B [ k] F (16 vs. 7 ng/g) and B
[a] p (10 vs. 5 ng/g) were found twice as high in smokers’ houses as in nonsmokers. In a
review that was conducted by Maertens et al. [36], a moderate but statistically significant
relationship between smoking and PAHs concentration has been reported, while Langer
et al. (2010) pointed out in their study that smoking was not a strong determinant in the
presence of PAHs in house dust. However, other studies indicated no significant difference
between smoking and nonsmoking dust [29,37], with Qi et al. [2] underlying that the effect
of smoking on PAH concentration in dust remains uncertain. The use of air conditioning
was strongly associated with both COMPAHs (548 vs. 227 ng/g, p < 0.05) and B2 PAHs (226
vs. 66 ng/g, p < 0.05). Finally, an inverse association between the concentration of ΣPAHs
and cleaning activities was found. In particular, houses that were mopped more than once
per week indicated significantly lower levels of ΣPAHs (3.4 versus 2.3 µg/g, p < 0.05).
This finding suggests that frequent cleaning activities can help reduce the concentration of
PAHs in household dust. This observation is in agreement with Maertens et al. [18], who
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reported a weak but statistically significant negative correlation between the frequency of
vacuum use and the concentration of PAHs.

Σ
Σ μ

μ μ
μ

μ
μ

μ
μ μ

μ μ

Figure 2. Concentrations of COMPAHs in smoking and nonsmoking houses.

3.3.2. Metals

In terms of residents’ activities, smoking indoors was associated with increased con-
centrations of Cu (593 vs. 216 µg/g, p < 0.05), Sr (141 vs. 89 µg/g, p < 0.05) and Zn
(422 vs. 379 µg/g, p = 0.058.1). Frequent cleaning activities (> 5 activities/week) were
associated with increased Al concentrations (2801 vs. 1918 µg/g, p < 0.05) and the use of
cleaning sprays was associated with increased levels of Pb (75.3 vs. 19.5 µg/g, p < 0.05).
The use of air conditioning appeared to increase the concentrations of Cu (765 vs. 120 µg/g,
p = 0.070.1), Zn (540 vs. 321 µg/g, p = 0.092) and Cd (1.0 vs. 0.3 µg/g, p = 0.0090.1). Finally,
in terms of different cooking methods, frying was associated with increased levels of Ni
(34.0 vs. 25.3 µg/g, p < 0.05) and Mn (147 vs. 100 µg/g, p = 0.076) in house dust, while
frequent boiling (using of pot) was linked with higher levels of As (6.1 vs. 3.2 3 µg/g,
p < 0.05) and Cd (1.1 vs. 0.3 3 µg/g, p < 0.05).

3.4. Enrichment Factors and Principal Component Analysis

Figure 3 presents EF of elements in the house dust samples. Several metals such as Fe,
V, Mn, Sr, and Ba were of natural origin (EF < 10), while other metals such as Cu, Se, Zn,
Hg, Cd, Pb (EF > 40) and Cr, Ni, As (20 < EF < 40) appeared to derive from anthropogenic
processes.
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Figure 3. Enrichment factor (EF) of elements in house dust.
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Principal Component Analysis (PCA) was performed for the PAHs and the metal
contents of all dust samples. Eight PCs (Principal Components) were extracted with
eigenvalues >1, by which 91.9% of the total variance was explained. The predominant
components of each factor (>0.5) are presented in bold (Table 3).

Table 3. Results of Principal Component Analysis (PCA).

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8

Smoking
Combustion
Processes

Soil Dust
Vehicle

Emissions
Road Dust

Abrasion
of Plated
Surfaces

Soil
Vehicle
Emis-
sions

Eigenvalue 11.522 4.840 3.540 2.127 2.051 1.269 1.160 1.056

Cumulative % 38.41 54.54 66.34 73.43 80.27 84.50 88.36 91.88

Acy 0.187 0.951 −0.005 −0.035 0.068 −0.058 −0.108 0.132
Ace −0.104 0.962 0.093 −0.025 −0.120 0.028 0.037 0.052
Fl 0.088 0.973 −0.026 −0.063 −0.030 −0.060 −0.087 −0.065

PH 0.068 0.987 −0.018 −0.060 0.027 −0.027 −0.049 −0.057
Ant 0.360 0.632 −0.021 −0.112 0.462 0.123 −0.027 −0.105
Flu 0.913 0.367 0.003 −0.016 0.113 0.013 0.021 −0.055
Pyr 0.975 0.115 0.071 −0.007 −0.027 0.035 −0.047 −0.007

Ba[A] 0.987 0.008 0.026 0.064 0.067 0.002 0.057 0.037
Chr 0.974 0.058 0.086 −0.001 −0.058 0.052 0.032 −0.042

B[b]F 0.973 0.111 0.011 −0.009 0.116 0.020 0.032 0.069
B[k]F 0.991 0.061 0.034 0.036 0.041 0.016 0.027 0.018
B[a]P 0.929 −0.049 −0.047 0.020 0.133 0.018 0.123 0.128
Ind 0.986 0.050 0.004 0.011 0.077 −0.003 0.061 0.041

D[ah]A 0.971 0.033 −0.070 0.004 0.033 0.053 −0.006 −0.023
B[ghi]P 0.940 0.018 −0.078 −0.039 0.145 −0.052 0.191 0.029

Zn 0.261 −0.091 0.310 0.613 0.563 −0.159 0.050 0.216
Fe 0.152 −0.158 0.032 0.048 0.133 −0.080 0.910 0.015
Al −0.078 −0.166 0.933 −0.056 0.202 0.032 −0.131 0.037
Hg 0.883 −0.016 0.013 −0.039 −0.069 0.383 0.044 −0.048
V 0.218 −0.065 0.750 0.460 0.108 0.015 0.260 0.099
Cr 0.276 0.188 0.491 0.008 0.133 0.761 −0.059 0.100

Mn 0.203 −0.050 0.188 0.314 −0.461 −0.273 0.460 −0.176
Ni 0.535 0.016 −0.042 0.203 0.468 −0.004 0.513 −0.002
Cu 0.146 0.019 0.153 −0.246 0.859 −0.123 0.187 −0.160
As −0.017 −0.027 0.026 0.963 −0.172 −0.031 −0.014 −0.016
Se 0.203 0.298 −0.127 0.112 0.049 −0.299 −0.225 −0.635
Sr −0.077 0.263 0.897 0.177 −0.138 −0.066 0.083 −0.120
Cd 0.123 −0.158 −0.195 −0.033 −0.145 0.893 −0.103 −0.039
Ba −0.184 −0.276 0.357 0.691 −0.156 0.070 0.259 −0.174
Pb 0.198 0.154 −0.074 0.022 −0.044 −0.117 −0.130 0.802

Concerning PAHs, the first column includes Flut, Pyr, B [a] A, Chr, B [b] F, B [k] F, B
[a] P, Ind, D [ah] A and B [ghi] P, while of the metals mainly includes Hg and less Ni. Thus,
Factor 1 appears to be related to smoking indoors at home since the aforementioned PAHs
belong to the COMPAHs category and are related to combustion processes, while both the
Hg and Ni have also been suggested as derivatives of smoking [38]. This is also confirmed
by Figure 2, where the concentrations of COMPAHS are considerably high in the houses of
smokers compared to those of nonsmokers. Similar results were obtained for Hg (smokers’
houses: 0.5, nonsmokers’ houses: 0.2 µg/g) and to a lesser extent for Ni (smokers’ houses:
24, nonsmokers’ houses: 22 µg/g). On Factor 2, the contribution of Acy, Ace, Fl, and Phe
is important and to a lesser extent the one of Ant, indicating that their common source
is the combustion from vehicle emissions. Therefore, this factor is related to traffic and
the aforementioned species originating from ambient air penetrate indoors. On factor 3,
the main contribution of Al, followed by Sr and V, indicates that the above elements have
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mainly natural origin. On factor 4, the main contribution of As and to a lesser extent of Ba
and Zn implies the existence of sources related to vehicle traffic, while the presence of Cu
and Zn on factor 5 is associated with the road dust resuspension [39]. Regarding factor 6,
the significant contribution of Cd and Cr may be attributed to abrasion of plated surfaces
(fragments of the coating of metal surfaces or galvanized paints). Finally, on factor 7 the
main contribution of Fe indicated that this factor is soil-related, while on factor 8 the great
loading of Pb is mainly related to vehicle emissions. The latter is in agreement with the
literature since it has been reported that Pb has anthropogenic contamination rather than
soil-related origin [31].

3.5. Health Risk Assessment of PAHs and Heavy Metals in Settled House Dust

3.5.1. Cancer Risk Assessment of PAHs in Settled House Dust

A risk assessment using the concentration data of carcinogenic PAHs was conducted
in order to assess the potentially detrimental effects associated with exposure to B2PAHs.
For the moderate exposure scenario (0.05 g day−1) the results indicated that the risk of
carcinogenesis was 1.2 × 10−7, while for a residence, in which the highest concentrations
of B2 PAHs were observed, the risk was 5.4 × 10−7. These values were found to be one
order of magnitude smaller than those of Maertens et al. [18] (1.6 × 10−6) and Roberts
et al. [40] (7.8 × 10−6). The results of the present study were comparable but slightly higher
than those of Langer et al. [7]. For the high exposure scenario (0.1 g day-1), the risk of
carcinogenesis was estimated as 2.5 × 10−7 and compared with the values reported in
Maertens et al. [18] (3.2 × 10−6) and Roberts et al. [40] (1.6 × 10−5) was one and two orders
of magnitude lower, respectively. However, in the case of the residence, where the highest
concentrations of carcinogenic PAHs were observed, the risk was 1.1 × 10−6, and it was
comparable to the one of Maertens et al. [18] and an order of magnitude lower than that of
Roberts et al. [40]. Although a strict threshold for risk of carcinogenicity that corresponds
to safe exposure has not been established yet, one cancer case per million people (1 × 10−6)
is commonly used as the baseline level of acceptable risk. The values that were obtained by
the present study are lower than the above limit for both exposure scenarios. As for the
house with the highest levels of exposure, the risk of carcinogenesis for the high exposure
scenario marginally exceeded the acceptable risk.

3.5.2. Heavy Metal Risk Exposure in Settled House Dust

Table 4 presents the doses of metals that children and their parents received through all
the three routes of exposure, as well as the total dose. According to the results, the ingestion
of house dust was found to be the main exposure pathway for metals to children, followed
by dermal contact. This finding is in agreement with previously conducted studies [15,41].
The results also indicated that the doses received by the children were one or two orders of
magnitude lower than those of their parents. Depending on the magnitude of exposure
dose the heavy metals for both children and their parents were sorted as follows: Zn > Cu
> Cr > Pb > Ni > Ni > As > Se > Cd > Hg.

Table 4. Exposure to heavy metals in SHD through the different exposure pathways.

Element Dingestion Dinhalation DDermal Dtotal

Child Adult Child Adult Child Adult Child Adult

Cr 1.00 × 10−3 9.32 × 10−5 2.11 × 10−8 1.30 × 10−8 1.15 × 10−6 1.40 × 10−7 1.00 × 10−3 9.33 × 10−5

Ni 4.60 × 10−4 4.27 × 10−5 9.65 × 10−9 5.97 × 10−9 5.29 × 10−7 6.41 × 10−8 4.60 × 10−4 4.27 × 10−5

Cu 5.22 × 10−3 4.85 × 10−4 1.10× 10−7 6.78 × 10−8 6.00 × 10−6 7.28 × 10−7 5.22 × 10−3 4.85 × 10−4

Cd 8.23 × 10−6 7.65 × 10−7 1.73 × 10−10 1.07 × 10−10 9.47 × 10−9 1.15 × 10−9 8.24 × 10−6 7.66 × 10−7

Pb 7.09 × 10−4 6.58 × 10−5 1.49 × 10−8 9.20 × 10−9 8.15 × 10−7 9.88 × 10−8 7.09 × 10−4 6.59 × 10−5

Zn 6.16 × 10−3 5.72 × 10−4 1.29 × 10−7 8.01 × 10−8 7.09 × 10−6 8.60 × 10−7 6.17 × 10−3 5.73 × 10−4

Hg 5.79 × 10−6 5.38 × 10−7 1.22 × 10−10 7.53 × 10−11 6.66 × 10−9 8.08 × 10−10 5.80 × 10−6 5.39 × 10−7

As 6.08 × 10−5 5.64 × 10−6 1.28 × 10−9 7.89 × 10−10 6.99 × 10−8 8.47 × 10−9 6.08 × 10−5 5.65 × 10−6

Se 1.61 × 10−5 1.50 × 10−6 3.39 × 10−10 2.09 × 10−10 1.85 × 10−8 2.25 × 10−9 1.61 × 10−5 1.50 × 10−6
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According to Table 5, which presents a comparison between the total doses for children
and their parents with the reference doses, the total dose of Cr for children was the same
order of magnitude as the reference dose. The doses for all the other elements were found
1–2 order of magnitude lower than the corresponding reference doses. As for the parents,
the doses were significantly lower with respect to the children, and the differences between
the reference doses were larger (2–4 order of magnitude).

Table 5. Comparison between the total doses for children and their parents with the reference doses.

Element Dtotal DRef

Child Adult Child & Adult

Cr 1.00 × 10−3 9.33 × 10−5 3.0 × 10−3

Ni 4.60 × 10−4 4.27 × 10−5 2.0 × 10−2

Cu 5.22 × 10−3 4.85 × 10−4 2.0 × 10−2

Cd 8.24 × 10−6 7.66 × 10−7 1.0 × 10−3

Pb 7.09 × 10−4 6.59 × 10−5 3.0 × 10−3

Zn 6.17 × 10−3 5.73 × 10−4 3.0 × 10−1

Hg 5.80 × 10−6 5.39 × 10−7 3.0 × 10−4

As 6.08 × 10−5 5.65 × 10−6 3.0 × 10−4

Se 1.61 × 10−5 1.50 × 10−6 5.0 × 10−3

All HQ values were found to be less than one, and therefore, the risk is limited or
even negligible, while as expected all values were found to be higher for children than for
adults (Table 6). The element of the house dust associated with the highest noncarcinogenic
risk was Cr, for both children and their parents. This finding is in agreement with Shao
et al. [27], who also found that Cr was linked with the highest noncarcinogenic risk. On the
scales of dangerousness Cu and Pb followed, while Cd was the element that was linked to
the lowest risk, probably because it was detected only in low concentrations.

Table 6. Noncarcinogenic exposure risk values for children and their parents.

Element HQchild HQadult

Cr 0.335 0.031
Ni 0.023 0.002
Cu 0.261 0.024
Cd 0.008 0.001
Pb 0.236 0.022
Zn 0.021 0.002
Hg 0.019 0.002
As 0.203 0.019
Se 0.003 0.000

Table 7 presents the lifetime average exposure doses of carcinogenic heavy metals
(Cr, Ni, Cd, As) through the inhalation pathway, indicating that the elements are sorted as
follows: Cr > Ni > As > Cd. According to the results, the carcinogenic risk exposure dose
Exposure Risk was found to be too low to constitute a significant hazard for children and
their parents.

Table 7. Carcinogenic risk values of trace metal in inhalation exposure pathway.

Element LDinh SFinh (mg·kg−1
·d−1) Exposure Risk

Cr 9.43 × 10−8 42.00 3.96 × 10−6

Ni 4.32 × 10−8 0.84 3.63 × 10−8

Cd 7.73 × 10−10 6.30 4.87 × 10−9

As 5.71 × 10−9 1.50 8.56 × 10−9
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4. Conclusions

In summary, the dust samples collected from houses of young children in Athens,
Greece, are indicative of relatively clean or moderately polluted indoor environments.
This is why, the ΣPAH concentrations reported in the present study were in general lower
with respect to those recorded in literature, while the metal concentrations were in some
cases higher compared to those of previous studies. The calculated EFs of the heavy
metals indicated that the elements Cu, Se, Zn, Hg, Cd, and Pb (EF > 40) were mainly of
anthropogenic origin. PCA analysis on the chemical composition matrix of house dust
showed that the sources that contributed the most to the concentrations of household dust
were: smoking, combustion processes, resuspension of soil dust, traffic, and the abrasion
of plated surfaces. The cancer risk of PAHs exposure was found lower than the threshold
value, with the exception of one residence where high concentrations of carcinogenic PAHs
were detected. Health risk assessment indicated that the ingestion of house dust is the most
important route of exposure to heavy metals, followed by dermal absorption. As for the
children, except of Cr, the doses of all elements were found 1–2 orders of magnitude lower
than the corresponding reference doses, and the doses of parents were significantly lower
with respect to the children. Regarding the noncarcinogenic risk, the heavy metals were
sorted as Cr > Cu > Pb, while the risk of exposure of children and their parents was within
the safety limits. Concerning the carcinogenic risk, the heavy metals were sorted as Cr >
Ni > As > Cd, while the carcinogenic risk was found too low to be a risk to human health.
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Abstract: Background: Thriassion Plain is considered the most industrialized area in Greece and
thus a place where emissions of pollutants are expected to be elevated, leading to the degradation
of air quality. Methods: Simultaneous determination of polycyclic aromatic hydrocarbons (PAHs),
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs)
was performed in PM10 samples. SPSS statistical package was employed for statistical analysis and
source apportionment purposes. Cancer risk was estimated from total persistent organic pollutants’
(POPs) dataset according to the available literature. Results: POPs concentrations in particulate matter
were measured in similar levels compared to other studies in Greece and worldwide, with mean
concentrations of ΣPAHs, ΣPCDD/Fs, dioxin like PCBs, and indicator PCBs being 7.07 ng m−3,
479 fg m−3, 1634 fg m−3, and 18.1 pg m−3, respectively. Seasonal variations were observed only for
PAHS with higher concentrations during cold period. MDRs, D/F ratios, and principal component
analysis (PCA) highlighted combustions as the main source of POPs’ emissions. Estimation of
particles’ carcinogenic and mutagenic potential indicates the increased toxicity of PM10 during cold
periods, and cancer risk assessment concludes that 3 to 4 people out of 100,000 may suffer from cancer
due to POPs’ inhalation. Conclusions: Increased cancer risk for citizens leads to the necessity of
chronic POPs’ monitoring in Thriassion Plain, and such strategies have to be a priority for Greek
environmental authorities.

Keywords: POPs; PAHs; PCDD/Fs; PCBs; industrial site; Greece; air quality

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans
(PCDDs and PCDFs or PCDD/Fs), along with, polychlorinated biphenyls (PCBs), both dioxin like
(dlPCBs) and non-dioxin like (ndlPCBs), are ubiquitous semi volatile persistent organic pollutants
(POPs) that can be found far from their emission sources through long range transport of air masses
either as gas molecules or bounded to particulate matter [1–3]. POPs are also characterized as low
soluble compounds that tend to bioaccumulate and biomagnify in biota [4], and due to their potential
health implications and especially their mutagenic, teratogenic, and carcinogenic effects, they have
attracted global research attention [5–8].

195



Appl. Sci. 2020, 10, 9023

PAHs constitute byproducts of incomplete fossil fuel combustion or biomass burning [9], and they
could also be emitted by solid waste incineration [10] and aluminum production, and they can be
found in crude oil, asphalt coal, and tar [11]. The most dominant routes of human exposure to PAHs
are via ingestion and inhalation [12–14]. On the other hand, PCDD/Fs are not produced intentionally,
besides using them for research scope, but they are unintentionally formed as by-products of chlorinated
compounds in combustion and industrial thermal processes like waste incineration, ferrous and
secondary nonferrous smelting, cement kilning, and also from fuel combustion, pulp production,
chlorinated substances production, and chemical and petrochemical industries [4,15–20]. PCBs have
similar emission sources as PCDD/Fs, and they were used in transformer, paint, and capacitor
production. Although PCBs have been phased out from production processes in most countries
in the last decades, many studies investigate PCB contaminants in air, especially in industrialized
sites [2,16,20,21]. PCBs are divided into dlPCBs, due to their similar metabolism in humans with
dioxins [22] and to non-dioxin like PCBs (ndlPCBs), of which six congeners have often been chosen
as indicators PCBs (indPCBs) for the evaluation of ndlPCBs’ contamination in the atmosphere [23].
Due to their presence in many commercial PCB mixtures [24], their predominance in air samples from
industrial sites is an indication of their impact on the atmospheric environment.

There is a general acceptance that either long- or short-term exposure to POPs may lead to adverse
health effects [25–27]. Therefore, many monitoring programs have been undertaken by developed
countries’ authorities under the prism of the Stockholm Convention for the cooperation among
nations to eliminate unintentionally emitted POPs including PCDDs/Fs and dlPCBs. Intense POPs
research provides evidence that some compounds (e.g., PAHs, PCDDs/Fs, and dlPCBs) exert intense
carcinogenic, mutagenic, or teratogenic effects on humans, and therefore IARC [28,29] and the United
States Environmental Protection Agency [12] have classified them as probable human carcinogens.
PCBs have also been included in IARC’s latest report as substances with carcinogenic impacts on
humans due to their relation with melanoma cancer [30].

In this study, the most heavily industrialized area of Greece has been selected for the simultaneous
monitoring of PAHs, PCDD/Fs, dlPCBs, and indPCBs bonded to particulate matter (PM10) and for
the estimation of their health risks for nearby citizens. Although some toxic PCDDF/s and PCBs were
found to be particularly in gas phase [31,32], according to several other works, PCDD/Fs participated
majorly in particulate form, especially the congeners with increased chlorine atoms (penta, hexa,
hepta, and octa compounds) [33,34]. According to the study by Lee and Jones (1999) [33] about the
partitioning behavior of PCDD/Fs in gas and particulate phase, PCDDs tended to be more associated
with atmospheric particulates than the equivalent PCDF homologue groups, probably reflecting the
slightly lower vapor pressures of PCDDs. Our choice to study these POPs simultaneously in PM10 was
made to find out the levels of POPs in samples already legislated and monitored for other pollutants.
To our knowledge, this is the first study in this direction in Greece, and one of the few globally, and thus
it may be helpful for the development and implementation of strategies for the regulation of emissions
in this site, only a few kilometers east, southeast from the Greek capital, Athens.

2. Materials and Methods

2.1. Site Description and Sampling Procedure

The sampling campaign was performed in the industrial city of Eleusis located at central Greece,
with a population reaching approximately 25,000 people according to a 2011 census. Eleusis is in the
heart of Thriassion Plain, the largest industrial area in Greece, approximately 18 km northwest from
the center of Athens (the capital of Greece) (Figure 1). It is the place where the majority of crude oil in
Greece is imported and refined. Within this area, the largest crude oil refineries are located, and over
300 industrial plants, referring to metallurgical processes, cement, chemical and food production plants,
shipyards, etc., are situated. A recently imposed environmental pressure on the surrounding area is
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the illegal uncontrolled combustions that take place in the neighboring industrial site of Aspropirgos
for the recovery of raw materials by burning tires, electronics, plastics, etc. [35,36].

 

−

Figure 1. The sampling point in the Thriassion Plain and the nearby capital Athens.

The sampling point was located in the center of Eleusis at a height of 4 m from the ground.
A medium volume sampler (MVS) equipped with a PM10 cutoff inlet was used to collect particulate
phase on Quartz fiber filters with a diameter of 47 mm, at a flow rate of 2.3 m3 h−1 for 24 h.
The sampling procedure was performed according to EN12341. Filter blanks were included in
each sampling campaign, and if necessary, appropriate corrections of the results were performed.
The sampling duration was from December 2018 to July 2019, and 30 samples were collected in total.
The sampling procedure was apportioned in order to study possible seasonal variations, and fifteen
samples were collected during a cold period (December 2018 to February 2019) and another fifteen
during a warm period (May 2019 to July 2019).

2.2. Materials

A PAH-determination procedure was validated using the Polynuclear Aromatic Hydrocarbons
Mix, a standard solution of the compounds studied including naphthalene (NAP), acenaphthylene
(ACY), acenaphthene (ACE), fluorene (FL), phenanthrene (PHE), anthracene (ANT), fluoranthene
(FLT), pyrene (PYR), chrysene (CHR), benzo[a]anthracene (BaA), benzo[b,k]fluoranthenes
(BbkF), benzo[a]pyrene (BaP), indeno[1,2,3 cd]pyrene (IPY), dibenzo[a,h]anthracene (DBaA),
and benzo[ghi]perylene (BPE), and purchased by Sigma Aldrich. A mix of phenanthrene D10
and perylene D12 (Supelco) was also prepared for quantitation and quantification of PAHs, and all
solvents were appropriate for residue analysis purchased from Carlo Erba and Macron Fine Chemicals.
For the PCDD/Fs and PCBs analysis, all solvents used were residue analysis picograde, and were
purchased from Promochem. Activated carbon FU 4652 was purchased from Schunk Kohlenstofftechnik
GmbH. Basic Alumina for dioxin analysis was purchased from MP Biochemicals GmbH and silica gel
60–200 mesh from Merck. The internal standards used were 13 C-labelled solutions of PCDD/Fs and
PCBs in toluene, and were added to each sample prior to extraction. They contained a mixture of 13
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C12 isomers of all the 17 PCDD/F congeners except OCDF, the four 13C12 non-ortho PCBs, the eight
13C12 mono ortho PCBs, and the six 13C12 indicator PCBs. The isomers for the preparation of the
13C12 internal standard solutions, the injection standards 13C12 1,2,3,4-TCDD, and 13C12 PCB-80 were
purchased from Wellington Laboratories.

2.3. Sample Extraction and Clean Up

After sampling, the filter was cut in two symmetrical halves. The first half was used for PAHs
analysis, while the second half was used for the determination of PCDD/Fs. The procedure, carried out
for PAHs analysis, was fully described in our previous study [36]. In general, the filters were spiked
with the mix of internal standards (phenanthrene D10 and perylene D12), and then were extracted
with dichloromethane in an ultrasonic bath (Ultrasonic LC 130H, Elma, Germany). The extraction
procedure was performed in triplicate. The obtained extracts were combined and concentrated in
volume using a rotary evaporator (Rotavapor R-210, Buchi, Switzerland) at 28 ◦C nearly to 2–3 mL.
Then, a solvent change step was performed with the addition of hexane. Subsequently a purification
step was followed. A 30 cm × 1 cm i.d. glass column chromatography was used. The column was
packed with anhydrous sodium sulphate and silica gel, and was activated with hexane before the
sample was placed on the top of the column. The clean-up was performed using initially hexane and
then a mixture of CH2Cl2: n-hexane 3:2. This eluted fraction was collected and finally evaporated
under a flow of nitrogen.

The analysis of PCDD/Fs and PCBs was performed according to EPA T0-9A protocol. Quartz filters
were extracted overnight with toluene in a soxhlet apparatus. Prior to extraction, samples were
spiked with 0.1 ng 13C12 labeled PCDD/Fs and non-ortho PCBs (n.o.-PCBs), and 1.0 ng mono-ortho
PCBs (m.o.-PCBs) and indPCBs as quantitative standards. The extract was subjected to clean-up.
Active carbon Carbosphere or FU4652 was used for the separation of PCDD/Fs and n.o.-PCBs, in two
different fractions, with toluene as elution solvent. Further clean-up of fractions was performed by
column chromatography with basic alumina and 44% H2SO4-silicagel eluted with different mixtures
of hexane:dicloromethane. After evaporation, the eluate containing the PCDD/Fs was re-dissolved
in n-nonane containing 2 ng mL−1 of injection standard 13C12 1,2,3,4-TCDD, while that containing
the n.o. PCBs was re-dissolved in n-nonane containing 2 ng mL−1 13C12 PCB80. For mono-ortho
and indicator PCBs, 10% of the fraction obtained from Soxhlet extraction was dissolved in hexane
and brought onto a column chromatography filled with 10 g of 44% H2SO4-silica. Further clean-up
was performed by column chromatography with basic alumina and 44% H2SO4-silica and elution
with hexane:dicloromethane. The eluate was evaporated to dryness and re-dissolved in n-nonane
containing 20 ng mL−1 of injection standard (13C12 PCB 80). A detailed description of the whole
clean-up procedure has been given elsewhere [7].

2.4. Instrumental Analysis and Quality Assurance

A GC/MS (6890N/5975B, Agilent Technologies, Santa Clara, CA 95051, USA) was employed for
PAHs determination. The GC instrument was equipped with a split/splitless injector and a HP-5ms
[5%-(phenyl)-methylpolysiloxane] (Agilent J&W GC Columns, Agilent Technologies, Santa Clara, CA,
USA) capillary column. High purity Helium was the carrier gas with a velocity of 1.5 mL min−1.
A pulsed splitless mode was used for the injection, and the injector’s temperature was set at 280 ◦C.
The GC oven temperature program was: 65 ◦C (hold for 1 min) to 320 ◦C at 15 ◦C min with a final
isothermal hold for 3 min. Inlet and MS source temperatures were 280 ◦C and 230 ◦C, respectively.
Selected ion monitoring (SIM) mode was used for the quantification of the analytes. Detection limits
(DLs) of the studied PAHs ranged from 0.0002 (ANT and DBA) to 0.002 (FLT and PYR) ng m−3.
Recoveries varied from 82% (FL) to 117% (CHR) calculated from spiked filters determination.

The quantification of PCDD/Fs and PCBs was performed by High Resolution Gas
Chromatography–High Resolution Mass Spectrometry (Electron-Impact) (HRGC-HRMS, EI),
on Multiple Ion Detection (MID) mode, on a Trace 1310 gas chromatograph (ThermoScientific,
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Waltham, MA 02451, USA) equipped with an Agilent DB-5MS GC column, 60 m length, 0.25 mm
I.D., 0.10 µm film, a TriPlus RSH autosampler, coupled to a DFS mass spectrometer (ThermoScientific,
Waltham, MA, USA) performing at 10,000 resolving power (10% valley definition). Instrumental
conditions and quality control criteria are according to US EPA Method 1613 and European Standard EN
1948. The quantification was carried out by the isotopic dilution method. According to the European
guidance, in the field of PCDD/Fs and PCBs analysis, results are calculated as sum-parameters based
on concentrations and on limits of quantitation (LOQs) only, while limits of detection (LODs) do not
carry any relevant information, and due to high precision in measurement, are considered equal to
LOQs. The limit of quantitation (LOQ) for each congener was determined as the concentration in the
extract which produced an instrumental response at two different ions to be monitored with a signal
to noise ratio of 3:1 for the less sensitive signal. LOQ values were 0.1 (PCDD/Fs and n.o.-PCBs) and
2 (m.o.-PCBs) pg/sample. LOQs were evaluated during accreditation of the method using different
reference materials and the respective higher LOQ value is used for each group of congeners for all
samples. These values are low enough to ensure that the difference between the upper-bound level
and lower-bound level does not exceed 20%. Recovery rates of 70–120% were also calculated by spiked
filters analysis.

2.5. Statistical Analysis

Statistical analysis was performed using SPSS software package (IBM SPSS statistics version
24). This statistical software package was suitable for multivariate analysis of the environmental
data [16,35–39]. Shapiro-Wilk and Kolmogorov–Smirnov tests used to study whether the data followed
normal distribution with a value of p > 0.05 indicated normal distribution. As no variable of the dataset
was normally distributed, the Mann–Whitney test for 2 independents was employed to carry out if
there was a statistically significant difference. A value of p < 0.05 (95% confidence level) was considered
to indicate a significant difference in the statistical analysis of the data. Principal Component Analysis
(PCA) was used for the investigation of any possible associations and source apportionment among
PAHs, PCDD/Fs, and PCBs. PCA consists of eigenvalue decomposition of the covariance matrix of
Gaussian distributed random variables. However, in environmental studies, PCA is used as a tool
for data compression, dimension reduction, or even filtering method for non-Gaussian (non-normal)
distributed and/or nonlinear data. Application of PCA for source apportionment purposes has been
performed in many POPs’ studies [16,23,39].

2.6. Health Risk Estimation

BaPE is the first parameter to estimate carcinogenicity of total PAHs. BaPE values above 1.0 ng m−3

represent an increased cancer risk. BaPE is calculated according to Equation (1):

BaPE = ([BaA] ∗ 0.06) + ([BbF] ∗ 0.07) + ([BkF] ∗ 0.07) + ([BaP] ∗ 1) + ([DBA] ∗ 0.6) (1)

Total carcinogenic and mutagenic potential of particulate bound PAHs, ΣBaPTEQ and ΣBaPMEQ,
were calculated as described elsewhere [40–42], using Equations (2) and (3):

ΣBaPTEQ = Σ
{

([BaA] ∗ 0.1) + ([CHR] ∗ 0.01) + ([BbF] ∗ 0.1) + ([BkF] ∗ 0.1)
+ ([BaP] ∗ 1) + ([IPY] ∗ 0.1) + ([DBA] ∗ 5) + ([BPE] ∗ 0.01)

} (2)

ΣBaPMEQ = Σ
{

([BaA] ∗ 0.082) + ([CHR] ∗ 0.017) + ([BbF] ∗ 0.25) + ([BkF] ∗ 0.11)
+ ([BaP] ∗ 1) + ([IPY] ∗ 0.31) + ([DBA] ∗ 0.29) + ([BPE] ∗ 0.19)

} (3)
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The relation between exposure and cancer risk is considered linear in low doses, and thus
inhalation cancer risk associated to PAHs could be calculated from ΣBAPTEQ using the inhalation unit
risk (IURBaP= 1.1 × 10−3 (µg m−3)−1 [43] for BaP and according to the following equation (Equation (4)):

ICR = ΣBaPTEQ ∗ IURBaP (4)

In general, exposure to toxic substances in the ambient air depends on the chronic daily intake
(CDI) of each pollutant emitted by the source. CDI (mg/kg/day) could be calculated as Life Averaged
Daily Dose (LADD) using Equation (5) [43–45]:

CDI = Cair∗ IF (5)

where Cair is concentration of pollutant (mg m−3), and IF is Intake Factor (mg3/kg/day) derived from
Equation (6):

IF =
IR ∗ EF ∗ ED ∗ ET

BW ∗AT
(6)

where according to EPA (1998) Inhalation Rate (IR) = 20 m3/day; Exposure Frequency (EF) = 365 days;
Exposure Duration (ED) = 70 years; Exposure Time (ET) = 24 h/day; Body Weight (BW) = 70 kg;
and Average Time (AT) = 35,500 days for exposure to carcinogenic pollutants. Cancer risk of the
specific substances like POPs is calculated using Equation (7):

Cancer Risk = LADD ∗ SF (7)

where Slope Factor (SF) (mg/kg·day)−1 values were calculated by Equation (8):

SF =
IUR m3µg− 1 × 70 kg × 103 µg mg− 1

20 m3 day− 1
(8)

Inhalation Unit Risk values used for the estimation of Cancer Risk by each PCDD/Fs, PCBs,
and PAHs were obtained from OEHHA [46]. Cancer risk values in our study were compared to
upper-bound cancer risk of 1 × 10−6 (one person per million could develop cancer from the inhalation
of this pollutant). Cancer risk values over this benchmark level are considered significant, and risks
over 1 × 10−4 are unacceptable by EPA (2012). Finally, a total risk related to the sampling site was
calculated, summarizing the risk from each pollutant.

3. Results and Discussion

3.1. Results

3.1.1. PAHs and Indpcbs

PAHs concentrations are presented in Table 1. ΣPAHs ranged from 1.27 to 16.5 ng m−3 with a
median value of 6.12 ng m−3. PAHs levels were found in the same levels with a previous research
in the same site [47] (ΣPAHs = 7.9 ng m−3) and slightly lower than our previous study in the nearby
area of Aspropirgos (mean value 9.8 ng m−3) [36]. PAHs in other Greek cities were measured in lower
concentrations, with mean values 3.34 and 6.46 ng m−3 in the harbor of Volos [48], 3.08 ng m−3 in
Spata, and 3.21 ng m−3 in Koropi [49], but significantly higher mean concentrations were reported in
industrial sites of Istanbul (60.5 ng m−3) [39] and Aliaga (218 ng m−3) [21], Turkey.
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Table 1. Average, median, and ranged concentrations of polycyclic aromatic hydrocarbons (PAHs) (ng m−3) for the overall and seasonally divided sampling period.
NAP: Naphthalene; ACY: Acenaphthylene; ACE: Acenaphthene; FL: Fluorene; PHE: Phenanthrene; ANT: Anthracene; FLT: Fluoranthene; PYR: Pyrene; CHR: Chrysene;
BaA: Benzo[a]anthracene; BbkF: Benzo[b,k]fluoranthenes; BaP: Benzo[a]pyrene; IPY: Indeno[1,2,3 cd]pyrene; DBaA: Dibenzo[a,h]anthracene; BPE: Benzo[ghi]perylene.

NAP ACY ACE FL PHE ANT FLT PYR CHR BaA BbkF BaP IPY DBaA BPE ΣPAHs

Overall Sampling Campaign (N = 30)

Average 0.22 0.03 0.03 0.06 0.35 0.29 0.23 0.34 0.60 0.50 1.82 0.93 0.80 0.20 0.65 7.07
Median 0.17 0.007 0.0001 0.06 0.30 0.30 0.18 0.34 0.49 0.39 1.54 0.66 0.69 0.19 0.59 6.12
Range 0.05–0.67 0.0002–0.21 0.0001–0.20 0.02–0.12 0.19–0.79 0.06–0.51 0.05–0.69 0.05–0.73 0.00009–2.94 0.0002–1.63 0.0001–4.38 0.04–3.07 0.00005–1.86 0.00002–0.50 0.00003–1.59 1.27–16.5

Cold Period (N = 15)

Average 0.24 0.03 0.04 0.06 0.37 0.30 0.26 0.34 0.74 0.63 2.32 1.03 1.00 0.25 0.82 8.44
Median 0.19 0.002 0.0001 0.06 0.31 0.32 0.21 0.30 0.60 0.73 2.39 0.90 0.99 0.24 0.76 8.88
Range 0.07–0.67 0.002–0.21 0.0001–0.20 0.02–0.12 0.19–0.79 0.06–0.51 0.05–0.69 0.05–0.73 0.00009–2.94 0.09–1.63 0.36–4.38 0.23–2.34 0.32–1.86 0.10–0.50 0.24–1.59 2.88–16.5

Warm Period (N = 15)

Average 0.15 0.04 0.03 0.04 0.27 0.28 0.11 0.34 0.05 0.03 0.0001 0.57 0.05 0.00002 0.04 2.01
Median 0.13 0.03 0.0001 0.04 0.28 0.28 0.11 0.34 0.00009 0.04 0.0001 0.07 0.00005 0.00002 0.04 1.60
Range 0.05–0.37 0.01–0.07 0.0001–0.18 0.02–0.06 0.21–0.31 0.22–0.33 0.09–0.15 0.32–0.36 0.00009–0.17 0.0002–0.06 0.0001–0.0001 0.04–3.07 0.0005–0.14 <0.0002 0.00003–0.09 1.27–4.46
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BaP is considered the most toxic PAHs compound, and its values ranged from below LOD to
3.04 ng m−3 with an average value of 0.93 ng m−3, which is close to the target value of 1 ng m−3

from the 4th Daughter Directive [50,51]. BaP highest average concentration in Aspropirgos was
3.6 ng m−3, while in Eleusis, the mean concentration was 0.71 ng m−3 [47]. Similar levels of BaP
were also recorded in Thessaloniki, with the average values for the cold and warm periods being
0.12 and 0.86 ng m−3, respectively [42], while BaP concentration in Volos measured 0.60 ng m−3 [49].
Lower BaP concentrations were found in industrial sites of Istanbul, Turkey (0.39 ng m−3) [39], Dunkirk,
France (0.29 ng m−3) [31], and Jiangsu Province, China (up to 0.35 ng m−3) [16], whereas much higher
concentrations were presented in the industrial site of Shanghai, with a mean value of 5.95 ng m−3 [52].

In Table 2, concentrations of indPCBs are presented with values ranging from 11.4–26.6 pg m−3,
with a median value of 18.1 pg m−3. The most abundant compound was PCB28 (7.96 pg m−3),
followed by PCB101 (2.86 pg m−3). Levels of PM10-bound indPCBs were similar to that reported in
Thessaloniki (0.5–29.2 pg m−3) [53], but relatively lower than in Rome (163 pg m−3) [54] and Brescia
(474 pg m−3) [23], Italy.

Table 2. Average, median, and ranged concentrations of indicator polychlorinated biphenyls (indPCBs)
(pg m−3) for the overall and seasonally divided sampling period.

PCB-28 PCB-52 PCB-101 PCB-138 PCB-153 PCB-180 ΣPCBs

Overall Sampling Campaign (N = 30)

Average 7.96 1.82 2.86 2.30 2.01 1.18 18.1
Median 8.25 1.71 2.56 2.26 1.83 1.11 17.4
Range 4.53–11.7 1.09–2.94 1.34–5.78 1.68–3.80 1.18–3.30 0.66–1.87 11.4–26.6

Cold Period (N = 15)

Average 7.36 1.93 2.47 2.26 2.34 1.29 17.6
Median 7.49 1.86 2.53 2.35 2.30 1.21 17.1
Range 4.53–9.37 1.09–2.94 1.63–3.37 1.72–3.07 1.56–3.30 0.80–1.87 11.6–22.4

Warm Period (N = 15)

Average 8.56 1.72 3.24 2.34 1.67 1.07 18.6
Median 8.46 1.62 2.80 2.13 1.58 0.94 17.6
Range 4.60–11.7 1.10–2.32 1.34–5.78 1.68–3.80 1.18–2.33 0.66–1.73 11.4–26.6

3.1.2. PCDD/Fs and dlPCBs

The PCDD/F and dlPCB results obtained in this study are summarized in Tables 3 and 4,
respectively. Toxic equivalency factors that were reconsidered by World Health Organization in 2005
were applied to calculate PCDD/F and dlPCB toxic equivalent (TEQ) concentrations [22]. Values below
LOQ were assumed to be equal to LOQ (upper-bound concentrations) to evaluate the worst case
scenario of exposure. PCDD/F concentrations in PM10 collected from the industrial area of Eleusis were
145–3472 fg m−3 (mean 696 fg m−3) and the PCDD/F TEQs ranged from 287 to 2560 fg WHOTEQ2005 m−3

(mean 656 fg WHOTEQ2005 m−3). Lower atmospheric (both particulate and gas phase) concentrations
have been reported in a few studies around industrial sites like Shanghai, China where TEQs were
calculated between 9.28–423 fg WHO-TEQ2005 m−3 (mean 88.9 fg WHOTEQ2005 m−3) [55]. Additionally,
in an urban site of Brno, Czech Republic, particulate-bound concentrations of PCDD/Fs ranged from
4.63 to 661 fg m−3 [56] while in gas phase of background areas in Spain (2.18–19.1, mean 656 fg
WHOTEQ2005 m−3) [57]. Similar levels of PCDDFs were measured in the atmosphere (particulate and
gas phase) of Umm-Al-Aish oil field, with values of 31.2–516 fg WHOTEQ2005 m−3 [20], and in PM10
from Rome with 5.43–734 fg WHOTEQ98 m−3 [54]. Higher concentrations were also presented in many
industrial sites worldwide (Table 5), and our results were classified among the lowest in global literature.
The comparison emphasizes in studies performed in industrial sites even the samples derived from
particulate, gas, or both atmospheric phases. To our knowledge, in Greece, only two studies referred
to ambient concentrations of PCDD/Fs, with our results being in the same levels with those found
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in particulate phase from the center of Athens (73 fg m−3 in the background site and 462 fg m−3

in the urban site) [32] and lower than the particle-bound concentrations measured in Thessaloniki
(150–12,890 fg m−3) [53]. There is no international standard about reference or target values of PCDD/Fs
in the air, however, a review by Lohmann and Jones (1998) [58] reported some typical values according
to the sampling point (background—remote sites: <10 fg I-TEQ m−3, rural sites: 20–50 fg I-TEQ m−3),
urban or industrial sites: 100–400 fg I-TEQ m−3). Comparing our results with these values, it is obvious
that the industrial area of Thriassion Plain has a significant impact on the ambient air concentration
of PCDD/Fs. The mean values in our study (mean 656 fg WHO-TEQ2005/m−3) are also below the
recommendations by the Environment Minister in Ontario (Canada) (5000 fg I-TEQ m−3) [3] and
slightly over the atmospheric standard of Japan (600 fg WHOTEQ2005 m−3), but far higher than the
standard of Germany (150 fg WHOTEQ2005 m−3) [59,60]. It is noteworthy that the results in this study
referred only to the particulate phase, and the calculated WHO-TEQ values may be underestimated.

For the dlPCBs, the total particulate concentrations (expressed as the sum of m.o. and n.o.
congeners) were 975–4083 fg m−3 (median 1438 fg m−3), and the WHOTEQ2005 concentrations
were 53–512 fg m−3. As it is clear from Table 5, the concentrations and WHOTEQ2005 of dlPCBs
are in comparable values with studies in industrial sites of Dunkirk, France (743–1747 fg m−3,
particulate phase) [31], and Shanghai, China (340–7607 fg m−3, particulate plus gas phase) [55], but
significantly higher concentrations have been reported in gas phase under the vicinity of a steel
complex in Korea (6100–61,800 fg m−3) [61] or in the urban atmospheres (particulates and gas phase)
in Hochiminh, Vietnam (1570–8300 fg m−3) [62] and Brescia, Italy (11,600–708,400 fg m−3) [23].

203



Appl. Sci. 2020, 10, 9023

Table 3. Average, median, and ranged concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) (fg m−3) for the overall and seasonally divided
sampling period.

2,3,7,8-
TCDD

1,2,3,7,8-
PeCDD

1,2,3,4,7,8-
HxCDD

1,2,3,6,7,8-
HxCDD

1,2,3,7,8,9-
HxCDD

1,2,3,4,6,7,8-
HpCDD

OCDD ΣPCDDs
2,3,7,8-
TCDF

1,2,3,7,8-
PeCDF

2,3,4,7,8-
PeCDF

1,2,3,4,7,8-
HxCDF

1,2,3,6,7,8-
HxCDF

2,3,4,6,7,8-
HxCDF

1,2,3,7,8,9-
HxCDF

1,2,3,4,6,7,8-
HpCDF

1,2,3,4,7,8,9-
HpCDF

OCDF ΣPCDFs
WHO-TEQ
PCDD/Fs

Overall Sampling Campaign (N = 30)

Average 1.81 2.35 2.58 2.69 3.19 33.2 172 217 1.83 2.64 6.93 13.8 10.4 21.6 4.25 129 9.93 279 479 656
Median 1.81 1.81 1.81 1.81 1.81 10.8 111 167 1.81 1.81 1.81 3.93 1.92 2.88 2.14 55.1 3.89 94.0 325 444
Range <1.81 1.81–4.75 1.81–7.70 1.81–7.53 1.81–7.53 1.81–167 10.4–510 29.8–528 1.81–2.07 1.81–14.0 1.81–74.5 1.81–99.3 1.81–77.2 1.81–172 1.81–18.3 1.81–569 1.81–39.6 2.75–2912 52.8–2945 287–2560

Cold Period (N = 15)

Average 1.81 2.53 2.41 2.96 2.45 50.2 151 427 1.83 3.43 11.2 24.8 18.0 39.6 5.84 193 12.8 128 439 914
Median 1.81 1.81 1.81 2.07 2.07 34.0 114 327 1.81 1.81 2.07 8.50 10.5 8.59 3.28 141 6.84 86.4 311 692
Range <1.81 1.81–4.67 1.81–5.01 1.81–7.35 1.81–5.36 5.43–167 10.4–306 157–861 1.81–2.07 1.81–74.5 1.81–74.5 1.81–99.3 1.81–77.2 1.81–172 1.81–18.3 5.06–569 1.81–32.7 20.8–408 52.9–1176 332–2560

Warm Period (N = 15)

Average 1.81 2.17 2.75 2.42 3.93 16.3 192 221 1.83 1.85 2.66 2.79 2.78 3.57 2.66 64.1 7.06 429 519 398
Median 1.81 1.81 1.81 1.81 1.81 3.51 96.6 170 1.81 1.81 1.81 1.81 1.81 2.02 1.81 26.3 1.81 181 339 366
Range <1.81 1.81–4.75 1.81–7.70 1.81–7.53 1.81–20.6 1.81–97.6 17.2–510 29.8–527 1.81–2.03 1.81–2.21 1.81–8.85 1.81–5.36 1.81–7.15 1.81–11.8 1.81–8.66 1.81–279 1.81–39.6 2.75–2912 63–2945 287–544

Table 4. Average, median, and ranged concentrations of dioxin like PCBs (dlPCBs) (fg m−3) for the overall and seasonally divided sampling period.

PCB-77 PCB-81 PCB-126 PCB-169 PCB-105 PCB-114 PCB-118 PCB-123 PCB-156 PCB-157 PCB-167 PCB-189 ΣdlPCBs
WHO-TEQ

dlPCBs

Non- Ortho PCBs Mono- Ortho PCBs

Overall Sampling Campaign (N = 30)

Average 85.8 6.28 22.4 6.37 238 36.3 752 62.4 101 75.7 208 40.5 1634 137
Median 72.9 5.45 17.1 5.25 186 36.3 594 60.8 92.9 74.5 156 36.3 1438 105
Range 41.2–268 1.81–19.0 8.26–86.6 1.81–22.0 113–634 <36.3 453–2029 36.3–143 36.0–259 36.3–188 36.3–969 36.3–116 975–4083 53.1–512

Cold Period (N = 15)

Average 75.4 5.72 21.4 7.51 190 36.3 637 61.5 104 93.3 112 37.4 1382 136
Median 74.0 5.61 17.2 6.40 184 36.3 586 63.7 93.5 87.1 74.3 36.3 1290 105
Range 41.2–113 1.99–9.33 8.47–35.6 1.81–14.7 146–287 <36.3 505–871 41.0–94.0 36.0–195 36.3–188 36.3–324 36.3–43.9 1092–1893 62.5–217

Warm Period (N = 15)

Average 96.3 6.80 23.3 5.24 287 36.3 867 63.3 97.2 58.0 303 43.5 1887 139
Median 71.6 5.16 16.0 2.76 237 36.3 815 42.5 85.1 51.6 238 36.3 1592 93.9
Range 50.8–268 1.81–19.0 8.26–86.6 1.81–22.0 113–634 <36.3 453–2029 36.3–143 37.6–259 36.3–81.2 36.3–969 36.3–116 975–4083 53.1–512
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Table 5. Worldwide concentrations of persistent organic pollutants (POPs) according to literature in comparison with this study. (p refers to particulate phase and G to
gas phase samples).

Area Area Description
Sampling

(Year/Phase)
ΣPCDD/Fs

(fg m−3)
WHO

(TEQ fg m−3)
ΣdlPCBs

WHO
(TEQ fg m−3)

ΣindPCBs
(pg m−3)

ΣPAHs
(ng m−3)

Reference

Eleusis, Greece Industrial 2018–2019/P 145–3472 287–2560 975–4083 53.1–512 22.9–53.2 1.3–16.5 This study

Athens, Greece Background/Urban 2000/P 73–462 (P) 73 (P + G) 1.79–4.94 [32]

Thessaloniki, Greece Semirural/Urban 1999/P 150–12,890 4–119 0.5–29.2 [53]

Porto, Portugal Urban/Industrial 1999–2004/P + G 200–15,000 9.8–817 [63]

Rome, Italy Urban 2000–2001/P 5.43–734 0.66–7.28 88.9–372 [54]

Steel Complex, Korea Industrial 2006/G 6100–61,800 [61]

Anshan, China Industrial 2008/G 20–9790 4560 0.3–23 [38]

Satellite cities of Seoul, Korea Industrial 2003–2009/P + G 360–55,755 310–3143 678–40,968 200–1712 [64]

Brescia, Italy Urban/Industrial /P 380–11,390 10–190 11,600–708,400 4–130 92.7–8566 [23]

Brno, Czech Republic Urban 2009–2010/P 4.3–661- 14.2–614 0.04–14.4 [56]

Aliaga, Turkey Industrial 2009–2010/G 1.6–838 [21]

Shanghai, China Industrial 2013/P + G 258–4928 9.28–423 340–7607 1.08–55.9 [55]

Dunkirk, France Industrial 2008–2009/P 718–1070 12,990–25,430 744–1747 0.29–1.95 [31]

Istanbul, Turkey Industrial 2011–2012/P + G 0.7–27.9 0.04–445 [39]

Umm Al-Aish, Kuwait Industrial 2014–2015/P + G 31.2–516 3.9–36.8 [20]

Hochiminh, Vietnam Urban 2016–2017/P + G 410–52,700 22.2–1530 1570–8300 1.77–44.1 [62]

Tibet- Qinghai Plateau, China Industrial 2015/G– 1180–2180 113–242 490–900 3.18–7.12 [4]

Jiangsu, China Industrial 2018/P + G 11,900–57,700 136–597 580–2710 0.64–11.3 11–18 [16]
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3.2. Seasonal Variations and Congeners’ Contributions

In Tables 1–4, the results were divided by their seasonality in order to reveal any possible variation
between measurements during cold and warm periods. The Mann–Whitney test was applied in each
dataset for this purpose.

Regarding PAHs, seasonal variations were observed for PAHs with 4 or more rings in their
molecules. These high molecular weight PAHs presented significantly higher concentrations during
cold months (p < 0.05). PAHs’ seasonal variations are described also in Figure 2 and it is worth
mentioning that ΣPAHs was 4 times higher during cold months (8.44 ng m−3 compared to 2.01 ng m−3),
and the most carcinogenic among the compounds, BaP, exceeded the target limit of the European
Commission with an average value of 1.03 ng m−3, while during warm period, it was 0.57 ng m−3.
Such differences can be explicated by the increased direct emissions sources (fossil fuel combustion,
biomass burning, etc.) during cold months, and by the enhanced condensation of PAHs in the
particulate matter due to the lower temperatures [41], whereas increased solar radiation and atmospheric
oxidants during warm months lead to PAHs’ degradation [65]. Similar seasonal trends, especially
for high molecular weight PAHs, have also been reported in other studies in Greece [36,47,66] and
globally [21,39,41].

Σ −

−

−

−

 

−

Σ

Figure 2. PAH seasonal variations in ng m−3 (* outliers and o values above 3rd quartile).

In Figure 3, the relative contribution of each compound is presented for both sampling periods.
Obviously, 5–6 rings PAHs were the most abundant species during cold period, accounting for about
80% of the ΣPAHs, while the percentage is about 30.4% in the warm period dominating by the low
molecular weight PAHs. This inversion may be a result of the decreased emissions from combustions
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related with central heating during the warm period. The dominance of petrogenic low molecular
weight PAHs, especially with 3–4 rings, in the warm period may be affected also by emissions from
petroleum depositories from oil refineries and cargo ships [49,67,68] that both constitute a constant
factor in the area working all year long. The most abundant PAH during the cold period was BbkF
27.5% followed by BaP 12.2%, while in summer BaP remained the dominant PAH with 28.2% relative
abundance, followed this time by petrogenic ANT and PHE with 13.9 and 13.5%, respectively (Figure 3).
BbkF and BaP were also the most abundant compounds in other studies in Aspropirgos [36], Athens [66],
Volos [49], Greece, in Dunkirk, France [31], and Sao Paolo, Brazil [41].

Figure 3. Relative abundance among PAH compounds for the cold and warm periods.

As for the indPCB’s seasonal variations, none of the six congeners presented statistically significant
differences (p values were >0.05) between the cold and warm periods, with the concentrations for
both seasons being included in Table 2. The indPCBs also did not present any alteration regarding
their relative abundance, with PCB28 being the most abundant congener in both sampling periods
(41.7 and 46.0%, respectively) (Figure 4). The indPCBs profile also indicates a marked decrease in
concentration with increasing chlorination for different congeners. The same outcome was highlighted
also by Colombo et al. (2013) in the highly industrialized city of Brescia, in northern Italy [23].
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Figure 4. Relative abundance among indPCB congeners for the cold and warm periods.

Seasonal variations of dioxins are presented in Figure 5 and according to the Mann–Whitney test
only 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDF were found significantly higher during the cold period.
Table 2 and Figure 5 show that there was not a clear seasonal pattern, with some compounds like OCDD
(warm: 192 fg m−3, cold: 151 fg m−3) and OCDF (warm: 429 fg m−3, cold: 128 fg m−3) being relatively
higher during the warm period. However, the WHOTEQ2005 value was significantly higher in cold
months, revealing that particulate PCDD/Fs pose a higher risk to human health during cold periods
due to their higher concentrations (Figure 6). This outcome could be combined with our previous
studies in this area [35,36], where uncontrolled combustions in Thriassion Plain play a potential role in
atmospheric degradation and the increased toxicity of the particles in the whole area, including Eleusis
and Aspropirgos town (Figure 1). In particular, during cold months the wind direction is usually
north, northeast (N, NE) in the sampling area and as a result the particulate matter is enriched by
the site where uncontrolled combustions take part [35]. Comparing with other studies, in some of
them, seasonal variations were observed with higher concentrations during cold months [38,54,64],
assuming either elevated combustions for heating or relatively low boundary layer heights in cold
weather [58] being the dominant reason for that outcome. Nevertheless, other studies did not describe
any seasonal trend for PCDD/Fs [69].

Discussion on the congener profile of PCDD/Fs during the warm and cold periods will be based
on Figure 7. The most toxic congener, 2,3,7,8-TCDD, was not detected in any sample. The congener
profiles demonstrated the prevalence of OCDF, OCDD, 1,2,3,4,6,7,8,-HpCDF, and 1,2,3,4,6,7,8-HpCDD
for the entire sampling period. The relative abundances of these four compounds were 19.7–58%,
23.1–26.0%, 8.7–29.6%, and 2.2–7.7%, respectively. The results are in agreement with those from
other studies in industrial sites in Shanghai [55] and Anshan [38], China, in Seoul, Korea [64], and in
Umm-Al-Aish oil field, Kuwait [20].
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−Figure 5. PCDD/F seasonal variations in pg m−3 (* outliers and o values above 3rd quartile).−

 

Figure 6. WHO-TEQ2005 seasonal variations for PCDD/Fs and dlPCBs (* outliers and o values above
3rd quartile).
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Figure 7. Relative abundance among PCDD/F congeners for the cold and warm periods.

In regard to particle-bound dlPCBs, no seasonal pattern was observed during the sampling
campaign (Table 3), with concentrations and WHOTEQ2005 values for each congener (Figure 6) being
quite similar between the cold and warm periods. This result is in agreement with other studies [20],
although there are papers reporting elevated concentrations during warm periods for PCBs in gas
phase [38,64], assuming that PCBs evaporated more easily from soil to gaseous phase and could be
transported long-range under high temperatures [38,70,71].

Although the sampling was performed only in the particulate phase, the dlPCBs congener
fingerprint detected in our study complies with that reported in the literature. Thus, according to
Figure 8, the most abundant congener was PCB118, accounting for 45.9–46.1% of the relative abundance
followed by PCB105 (13.7–15.2%), PCB167 (8.1–16.7%), and PCB77 (5.1–5.7%). The outcome from our
study matches the profile from other studies in both gas and particulate phase [6,20,23,72], except for
PCB167, reinforcing the conclusion that the dlPCBs’ profile does not depend on the sampling location.

Figure 8. Relative abundance among dlPCB congeners for the cold and warm periods.
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3.3. Source Apportionment

Calculation of different molecular diagnostic ratios (MDRs) has been applied in many studies
for source apportionment of PAHs in the atmosphere [65,73,74]. The approach relies on the fact
that emission of certain PAHs from characteristic sources tends to be constant, and thus the ratio
receptor/source remains stable [67,68]. However, MDRs should be used with caution, as PAH
components may differ in reactivity and atmospheric residence times [67]. In Table 6, the selected
MDRs are presented for the whole period and for each season separately. All four MDRs conclude to
the same outcome, suggesting strong pyrogenic source contributions. Moreover, there was no observed
difference between the cold and warm periods, assuming that the sources are constant and strongly
related with combustions in the area. The MDRs calculated here are parallel with those reported
previously for Aspropirgos and Eleusis [36,47], which also suggest effects from pyrogenic sources.

Table 6. MDRs (molecular diagnostic ratios) for the whole sampling campaign and their interpretation
from literature [67].

Petrogenic
Origin

Pyrogenic
Origin

This Study

Mean Cold Warm

ANT/(ANT + PHE) <0.1 >0.1 0.46 0.45 0.51

BaA/(BaA + CHR) <0.2 >0.35 0.56 0.51 0.62

FLT/(FLT + PYR) <0.4 >0.4 0.46 0.47 0.45

IPY/(IPY + BPE) <0.2 >0.2 0.55 0.56 0.52

One of the tools to estimate possible common sources among PCDD/Fs is the calculation of PCDD
to PCDF (D/F) ratio. In general, these ratios in ambient air indicate the degree of contamination from
combustion sources. Values above 1.0 suggest less contribution, while values <0.5 show increased
contribution of combustion sources [75]. In our study, the D/F ratio was found in an average value of
0.45, a value ranging from 0.49 during the cold period to 0.42 during the warm period. The values
suggest that in the whole sampling period, the PCDD/Fs emissions were influenced dominantly by
thermal processes. The same results were obtained from other studies in industrial sites in satellite
cities of Seoul, Korea [64]. Steel and iron plants’ emissions can also be considered as a continuous
source of PCDD/Fs in Thriassion Plain, as reported also by Li et al. (2011) in northeast China [38].

In order to evaluate any potential associations and gain an overview of the relationships among
the pollutants investigated, principal component analysis (PCA) was performed in the entire dataset
(Table 7). PCA was also applied for PAHs, PCDD/Fs, and PCBs separately, but the results were
overlapping so the combined PCA was preferred, including all the studied compounds. Three factors
explained the 83.4% of the total variance. PC1 was heavily loaded with high molecular weight
PAHs like BaP (0.805), IPY (0.821), and BbkF (0.759) together with most of the PCDFs and some of
PCDDs. This factor agrees that PAHs and PCDD/Fs have common sources related with combustions,
both controlled and illegal. Indeed, open burning for waste incineration in the studied area is a
common practice, and these emissions combined with industrial ones could compose a constant source
of both pollutants. Another possible common source for these POPs could be cement kiln factory
where the conditions of the furnace; very high temperature, mixing and excess of oxygen; make it an
ideal place for a ‘perfect’ combustion [39,76]. The PC2 (24.3% of variance) was tightly clustered with
PCBs loadings (around 0.7) and is a factor indicating the common source of PCBs, both dlPCBs and
indPCBs. PCBs were clearly distinct from PCDD/Fs and PAHs as also reported in other studies [23].
PCBs emissions may be affected of the industries and chemical plants of Thriassion Plain while
uncontrolled combustions of plastic may also enrich the aerosols with PCBs. The third factor (22.9%
of variance) was associated with petrogenic, low molecular weight PAHs and DBaA, suggesting a
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common petrogenic origin [16]. The oil refineries in this site are a dominant source of emissions,
and volatile compounds could release into the atmosphere from their petroleum depositories.

Table 7. Principal component analysis in the whole sampling campaign.

PC1 PC2 PC3

Explained Variance 36.2% 24.3% 22.9%
NAP −0.399 0.329 −0.213
ACY −0.223 −0.258 0.114
ACE 0.330 0.307 −0.205
FL −0.198 0.210 0.763

PHE −0.027 −0.048 0.805
ANT 0.439 −0.077 −0.260
FLT 0.116 0.204 0.893
PYR 0.132 0.370 0.848
CHR 0.755 0.420 0.525
BaA 0.729 0.398 0.501
BbkF 0.759 0.182 0.491
BaP 0.805 0.026 −0.005
IPY 0.821 0.124 0.448

DBaA 0.534 0.340 0.748
BPE 0.808 0.112 0.433

1,2,3,7,8- PeCDD 0.314 0.287 0.056
1,2,3,4,7,8- HxCDD 0.785 −0.119 0.444
1,2,3,6,7,8- HxCDD −0.362 −0.029 0.338
1,2,3,7,8,9- HxCDD −0.173 −0.388 0.345

1,2,3,4,6,7,8- HpCDD 0.768 0.268 0.015
OCDD 0.131 0.064 −0.580

2,3,7,8- TCDF 0.664 −0.362 −0.080
1,2,3,7,8- PeCDF 0.788 −0.227 −0.023
2,3,4,7,8- PeCDF 0.772 0.499 −0.174

1,2,3,4,7,8- HxCDF 0.815 −0.070 −0.161
1,2,3,6,7,8- HxCDF 0.743 0.554 −0.018
2,3,4,6,7,8- HxCDF 0.879 0.234 −0.135
1,2,3,7,8,9- HxCDF 0.622 0.531 −0.044

1,2,3,4,6,7,8- HpCDF 0.889 0.180 −0.104
1,2,3,4,7,8,9- HpCDF 0.497 −0.106 0.182

OCDF −0.087 0.040 −0.452
PCB-77 0.270 0.113 0.082
PCB-81 −0.069 −0.251 0.010

PCB-126 0.079 0.779 0.223
PCB-169 0.132 0.600 0.570
PCB-105 −0.049 0.313 −0.360
PCB-118 −0.062 0.583 −0.388
PCB-123 −0.201 0.686 −0.184
PCB-156 0.169 0.720 0.128
PCB-157 0.286 0.706 0.234
PCB-167 −0.067 −0.489 −0.055
PCB-189 −0.082 0.455 0.294
PCB-28 0.108 0.384 −0.630
PCB-52 0.238 0.717 −0.269

PCB-101 −0.266 0.473 −0.472
PCB-138 −0.010 0.838 −0.236
PCB-153 0.163 0.832 0.216
PCB-180 −0.238 0.651 0.299

3.4. Health Risk Assessment

Starting with BaPE values, the average of 1.27 ng m−3 indicates increased toxicity of the particulate
matter due to BaP related PAHs. The values were lower during the warm period (0.57 ng m−3) and
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are in agreement with our previous study in the area with values ranging from 0.14–4.6 ng m−3.
Average ΣBaPTEQ in our study was found to be 2.29 ng m−3 (cold: 2.76 ng m−3, warm: 0.58 ng m−3),
lower than in Aspropirgos (7.0 ng m−3 in autumn and 3.8 ng m−3 in winter months) [32], but higher than
in Thessaloniki (1.5 ng m−3) [42]. Similar values were presented in Mestre, Venice with a BaPTEQ value
of 3.6 ng m−3 during winter and 1.7 ng m−3 in autumn months [77]. Parallel seasonal patterns were
calculated for ΣBaPMEQ with an average value of 1.61 ng m−3 (cold: 1.89 ng m−3, warm: 0.59 ng m−3).
As it is clear from Figure 9, the cold period was strongly associated with increased toxicity of aerosol
due to PAHs levels.

 

Σ Σ Ε

−

−

−

−

Σ −

Σ −

Σ −

−

Figure 9. Seasonal variation of BaPE, ΣBaPTEQ, and ΣBaPMEQ (* outliers).

ICR, due to the toxicity of PAHs bound to PM10, was calculated with a mean value of 2.6 × 10−6

and 3.0 × 10−6 during the cold period and 1.1 × 10−6 during the warm period. ICR in Eleusis was
higher than that calculated in Thessaloniki (1.6–1.7 × 10−6 during winter) [42], but in the same level
with previous work in Thessaloniki with a value of 2.8 × 10−6 [78].

According to USEPA health risk evaluation procedure, the cancer risk from the investigated
substances was calculated, and the total cancer risk from POPs in Eleusis was 3.6 × 10−5 (Table 6).
This outcome could be translated as 3 to 4 cancer occurrences over 100,000 people living in Eleusis
inside Thriassion Plain. The exposure in this area was considered significant as it exceeded the EPA
limit of 1 × 10−6 and, as it is obvious in Table 8, cancer risks derived from PAHs, PCDD/Fs, and dlPCBs
were individually above this threshold, with highest risk derived from PAHs (2.4 × 10−5). Cancer risks
calculated in this study were higher than in the literature [2,45,56], but lower than the cancer risk (over
6.2 × 10−5) in Jiangsu Province, China, a place around chemical plants [16]. It has to be clarified here
that risk evaluation for PCDD/Fs and dlPCBs may has been underestimated, as some particularly toxic
congeners of PCDD/Fs (e.g., 2,3,7,8 TCDD, 1,2,3,7,8 PeCDD) and all dlPCBs are mostly presented in
gas phase. Thus, the total cancer risk may be even higher than the calculated one.

Table 8. Cancer risk for PAHs, PCDD/Fs, and dlPCBs and total risk for citizens of Eleusis.

Cancer Risk

ΣRiskPAHs 2.4 × 10−5

ΣRiskPCDD/Fs 9.9 × 10−6

ΣRiskdlPCBs 1.6 × 10−6

Total Cancer Risk 3.6 × 10−5
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4. Conclusions

An adequate descriptive profile of POPs contamination in particulate matter from the most
affected atmosphere in Greece has been reported for the first time. Combustions were found to be the
most important sources of atmospheric degradation by source apportionment tools. Although POPs
concentrations were found at normal levels compared with studies from the available literature,
the estimated cancer risk for the citizens was significantly elevated. As a result, the entire Thriassion
Plain is a place that has to be fully monitored regarding POPs emissions, and strategies to this scope
have to be scheduled and fulfilled.
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Abstract: In studies on the health impacts of air pollution, regression analysis continues to advance
far beyond classical linear regression, which many scientists may have become familiar with in an
introductory statistics course. With each new level of complexity, regression analysis may become
less transparent, even to the analyst working with the data. This may be especially true in count
data regression models, where the response variable (typically given the symbol y) is count data
(i.e., takes on values of 0, 1, 2, . . . ). In such models, the normal distribution (the familiar bell-shaped
curve) for the residuals (i.e., the differences between the observed values and the values predicted
by the regression model) no longer applies. Unless care is taken to correctly specify just how those
residuals are distributed, the tendency to accept untrue hypotheses may be greatly increased. The
aim of this paper is to present a simple histogram of predicted and observed count values (POCH),
which, while rarely found in the environmental literature but presented in authoritative statistical
texts, can dramatically reduce the risk of accepting untrue hypotheses. POCH can also increase the
transparency of count data regression models to analysts themselves and to the scientific community
in general.

Keywords: count data; correlation; regression models

1. Introduction

In count data regression analysis, the response variable takes on count values (i.e., 0,
1, 2, . . . ). The consequences of this property of the response variable can be understood by
comparison with classical linear regression analysis.

In classical linear regression analysis, for a set of n datapoints, the predicted value of
the response variable ŷi may be given by

ŷi = β̂0 + β̂1x1i + β̂2x2i + . . . + β̂mxmi f or i = 1, 2, . . . , n (1)

where x1, . . . , xm are the covariates, β̂0, . . . , β̂m are the parameters, and ŷi is the predicted
value of the response variable. ŷi is also the estimate of the expected value of the response
variable given the covariate values. Hence, (1) is referred to as the conditional mean model
(CMM).

The CMM residuals, i.e., the differences between ŷi and observed values yi, are
distributed about the conditional mean according to the normal probability density func-
tion (pdf):

f (resi) =
1

σ
√

2π
exp

(

−1
2

( resi

σ

)2
)

(2)
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where resi = yi − ŷi, the residual for the i − th observed value, and σ is the standard
deviation of the residuals. The closer resi is to 0, the higher the value of f (resi). If the
residuals are also identically distributed (i.e., come from the same, vast, imaginary pool
of residuals) and independently distributed (i.e., one residual is not useful in predicting
the value of another), then the pdfs may be multiplied together to form the normal-based
likelihood function:

Lnormal =
n

∏
i=1

1
σ
√

2π
exp

(

− 1
2

( resi
σ

)2
)

=
n

∏
i=1

1
σ
√

2π
exp

(

− 1
2

(

yi−(β̂0+β̂1x1 i+β̂2x2 i+...+β̂mxmi)
σ

)2
) (3)

The best estimates of CMM parameters may be found by adjusting them until they
maximize this normal-based likelihood function.

Several properties of this likelihood function allow classical regression analysis to be
transparent, both to the analyst working with the data and to the general audience review-
ing the published results. Maximizing the likelihood function corresponds to minimizing
the sum of the squares of the residuals, and thus a plot of the resulting conditional mean
shows it passing more-or-less through the middle of the scattering of observed values.
One senses that shifting or rotating that best-fit line would not improve the fit. Also,
the relatively simple R2, which varies from 0 to 1, and is a measure of the portion of the
variation in the response variable accounted for by the conditional mean model, is visually
represented in the plot.

In classical linear regression, the standard deviation appearing in the likelihood func-
tion can be estimated directly from the residuals to give a fairly reasonable representation
of the spread of the data, even if the residuals are not exactly normally distributed. This, in
turn, allows for p-values that tend to be relatively trustworthy. There is still a risk that a
covariate that is not truly associated with the response variable will have a low p-value due
to mere chance. This risk increases as the number of covariates under consideration for
inclusion in the CMM increases. Overfitting of the CMM (i.e., the inclusion of covariates or
other complexities that represent merely random effects rather than actual associations)
may then occur. However, the dataset can be divided into two subsets—training data
(to build the CMM) and testing data. The training data can be further subdivided for
k-fold cross-validation, with reductions in R2 or other simple measures to help detect the
presence of inappropriate covariates. Finally, because such covariates may elude even
k-fold cross-validation, the final CMM is applied to the testing data, and, again, reductions
in R2 or other simple measures will further aid in detecting false inference and overfitting.

Unfortunately, many of the above desirable features are not available in count data
regression analysis. To begin with, the CMM immediately becomes more complex with the
right side typically being exponentiated:

ŷi = eβ̂0+β̂1x1 i+β̂2x2 i+...+β̂mxmi (4)

If one plots the conditional mean through the scattering of observed values, the correct
placement of the line may now seem counter-intuitive because non-linearity in the CMM,
along with other factors, mean that the distribution of the observed values will not likely
be symmetric about the best fit line. Casual assessment of the goodness-of-fit by eye is
difficult, as can be seen, for example, in Figure 1, which shows candidates of best-fit lines
for childhood asthma data in Houston, Texas (Figure 1 will be discussed in more detail in
the next section). Furthermore, the normal pdf will now need to be replaced by any one
of dozens of probability mass functions (pmfs) to build the likelihood function. Incorrect
pmf selection can lead to underestimation of the spread of the data, resulting in falsely
low p-values [1], false inference, and overfitting. Worse still, there is no longer a simple,
universally recognized R2 or other intuitively appealing measures of goodness-of-fit that
can be conveniently used in k-fold cross-validation or in application to test data to help

220



Appl. Sci. 2021, 11, 3375

warn against overfitting. There are only various forms of the more difficult to interpret
pseudo-R2, and other measures, depending on the representation of the residuals [2]. This
may explain why authoritative “how-to” guides on data analysis in R may demonstrate
k-fold cross-validation for various model types but not for count data regression [3,4]. In
our literature review of the impact of air quality on respiratory health, we found k-fold
cross-validation and application of testing data was used [5], but never for a count data
response variable in a CMM.

 

< 10ିଵହ

𝐴𝐼𝐶 = −2 ∙ 𝑙𝑛 (ℒ) + 2 ∙ 𝑘ℒ 𝑘ℒℒ

Figure 1. Emergency department childhood asthma arrivals in response to mold during summers of
2003–2011 in Houston, Texas.

Addressing all the ramifications of misspecification of the pmf in count data regression
analysis is beyond the scope of this brief commentary. The impact of misspecification on
p-values for covariate parameter estimates, and a simple strategy to reduce the tendency
for the underestimation to occur, are illustrated in the following sections.

2. Illustration of False Inference and Overfitting Due to pmf Misspecification

The consequences of misspecifying the pmf in count data regression analysis can be
seen in our own analysis of the relationship between air quality and childhood asthma
in Houston, Texas, during the summers of 2003–2011. Concentrations of aeroallergens
(mold and pollen) and anthropogenic contaminants (butane, nitrous oxide, ozone, sulfur
dioxide, and particulates) were initially included in the model as covariates. The number
of children arriving per day at particular hospital emergency departments for asthma was
the response variable. We initially assumed the Poisson distribution for the pmf. With this
pmf, a strong association between the response variable and the mold concentration was
found, with p-value < 10−15.

However, the most appropriate CMM and pmf among those being considered may be
identified as that which yields the lowest Akaike information criteria (AIC) value [6]

AIC = −2·ln(L) + 2·k (5)

where L is the likelihood function value for the selected pmf, and k is the number of
parameters that may be adjusted to increase L. The second term is thus a way of penalizing
the inclusion of parameters, as including an additional adjustable parameter will always
increase L, even if the parameter is not truly representative of actual statistical relationships.
Variations of the AIC may also be used. We use the original AIC here because it is commonly
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available in software packages. The chooseDist() function of the R gamlss package [7] runs
through dozens of pmfs for building likelihood functions, adjusts parameters to maximize
each, and then identifies the one with the lowest AIC. By using this process, dozens of pmfs
were found, which yielded a lower AIC than did the Poisson distribution. An alternative
pmf, the zero-inflated Poisson, which allows for a higher number of zeros than would be
expected for the Poisson and thus, in turn, has a substantially broader spread than the
Poisson would show for our dataset, was found to yield the lowest AIC among the dozens
of available pmfs. The resulting p-value for the mold covariate was now 0.051, a p-value
increase of many orders of magnitude compared to that provided by the Poisson pmf,
leading the mold covariate to be accepted as statistically significant only under far less
strict criteria.

Figure 1 shows a plot of the best-fit line through the data based on the Poisson pmf
(gray) and the zero-inflated Poisson pmf (green). Due to the non-linearity of the CMM and
other factors, one would be hard-pressed to say whether either of the lines fits the data
well, let alone which fits the data better to justify the use of one CMM or pmf over the other.
Indeed, as we will see in the following discussion of the generation and analysis of synthetic
data, radically different pmfs may yield essentially identical CMMs, completely eliminating
the usefulness of plots, such as in Figure 1, in determining which pmf is superior.

To show that the impact of pmf misspecification on p-values is not unique to pecu-
liarities of the somewhat small air quality and childhood asthma dataset we ourselves are
working with, we developed a synthetic dataset that readers are free to view, re-generate
with parameters of their choice, and re-test through the link provided in the data availabil-
ity statement below. Figure 2 shows how we generated the synthetic dataset and how the
reader could use the code to generate their own. The three blocks forming the left column
of the schematic are all the reader would need to select to build the synthetic dataset.

𝑥ଵ, 𝑥ଶ 𝑥ଷ 𝜇 = 10𝜎 = 1 𝑥ଷ𝑦ො = 𝑒ଵା.ଵ௫భା.ଵ௫మ  𝑓𝑜𝑟 𝑖 = 1, 2, … , 1000𝑦 𝑦ො𝜎 = ඥ𝑦ො + 𝛼𝑦ොଶ𝜎 = ඥ𝑦ො𝛼

Figure 2. Schematic for the generation of synthetic data with count data as the response variable.
pmf: probability mass functions; CMM: conditional mean model.

For our synthetic dataset, which we analyzed in Table 1 below, the code provided
through the link was applied in R version 4.0.0 [8] to generate 1000 values for each of three
covariates, x1, x2, and x3, from the normal distribution with the mean µ = 10 and standard
deviation σ = 1. Parameter values were then assigned to create 1000 conditional mean
values as follows, with x3 excluded:

ŷi = e1+0.1x1 i+0.1x2 i f or i = 1, 2, . . . , 1000 (6)

Observed yi values were distributed about these ŷi values according to the negative

binomial pmf, which has a standard deviation of σi =
√

ŷi + αŷ2
i . (This is in contrast with

the Poisson distribution, which is less spread out, with σi =
√

ŷi.) A value of 0.5 was
chosen for α, the dispersion parameter.
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Table 1. Results for regression analysis using negative binomial (Neg. Bin.) pmf (Loptimal columns) and Poisson pmf
(LPoisson columns).

^
y=e

^

β0+
^

β1x1 as a
Conditional Mean Model

^
y=e

^

β0+
^

β1x1+
^

β2x as a
Conditional Mean Model

^
y=e

^

β0+
^

β1x1+
^

β2x+
^

β3x3 as a
Conditional Mean Model

LPoisson Loptimal LPoisson Loptimal LPoisson Loptimal

pmf Poisson Neg. bin. Poisson Neg. bin. Poisson Neg. bin.

σi

√

ŷi

√

ŷi + αŷi
2

√

ŷi

√

ŷi + αŷi
2

√

ŷi

√

ŷi + αŷi
2

α NA 0.515 NA 0.512 NA 0.511

AIC 15,054.0 7905.6 14,973.3 7900.9 14,960.1 7901.3

β̂0 (p-value)
1.52

(< 2 × 10−16)
1.47

(7.6 × 10−9)
0.85

(7.2 × 10−16)
0.84

(0.017)
1.15

(< 2 × 10−16)
1.17

(0.0072)

β̂1 (p-value)
0.15

(< 2 × 10−16)
0.15

(1.2 × 10−9)
0.15

(< 2 × 10−16)
0.15

(1.1 × 10−9)
0.15

(< 2 × 10−16)
0.15

(9.3 × 10−10)

β̂2 (p-value) NA NA
0.065

(< 2 × 10−16)
0.063

(0.0099)
0.064

(< 2 × 10−16)
0.063

(0.011)

β̂3 (p-value) NA NA NA NA
−0.029

(0.00010)
−0.033
(0.20)

The results for each of the three CMMs are shown in Table 1 Loptimal columns. In each
case, the optimal pmf is, not surprisingly, the same one used to generate the data. In some
cases, adding covariates may cause a switch to a pmf with a less spread structure [1]. As
expected, x3, which was not used to generate the response variable, has a coefficient with a
p-value well above 0.05, and slightly increases the AIC. It is to be excluded from the CMM.

For comparison, results for the Poisson pmf, often used in the literature, appear in
the LPoisson columns. The p-values are now falsely low, sometimes by several orders of
magnitude. The false inference would now lead to including x3. The lowering of the AIC
value by including x3 shows that the AIC is inadequate for preventing CMM overfitting.

Hilbe, an author of more than 10 books on statistical modeling, has cautioned that
“Many analysts have been deceived into thinking that they have developed a well-fitted
model” because the spread of the residuals was greater than represented in their count
data regression model [1]. In our own dataset of childhood asthma and air quality in
Houston, the distribution of the daily arrivals to the emergency department appears to
be zero-inflated, i.e., there is an inexplicably high number of days with zero arrivals if
the observed values are assumed to be Poisson distributed about the conditional mean.
The zero-inflated Poisson pmf accounted for what is in effect an increase in the spread
of the residuals, thereby giving a more realistic p-value (0.051), which is many orders of
magnitude higher than that suggested by the Poisson pmf (< 10−15).

Utilizing the most appropriate pmf can dramatically reduce the risk of false inference
and overfitting. However, it must be noted that the AIC and related criteria do not establish
appropriateness in any absolute sense but only identify the best choice among a set of
choices. It could be that none of the choices is ultimately appropriate. In recognition of
this limitation of such criteria, and in recognition of limitations among various software
packages to select the most appropriate pmf, and to provide an intuitively appealing visual
check on the selected pmf and CMM, a predicted-and-observed count histogram (POCH)
is discussed in the following section.

3. The Predicted-And-Observed Count Histogram

Figures 3 and 4 are predicted-and-observed count histograms (POCH), similar to
what is presented but not formally named in authoritative count data regression analysis
texts [1,2]. Black dots and other markers are where the tops of the more traditional vertical
histogram bars would be to represent the number of times that the response variable takes
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on the count value. The black dots represent the number of occurrences of the observed
response variable values, while the green and gray markers represent the number of
occurrences predicted by the models. In Figure 3, for example, the black dot at the count
of 0 indicates that there were 0 childhood asthma emergency department arrivals on 57
of the summer days, while the gray square indicates that the Poisson pmf anticipates 0
arrivals to occur on only 40 of the summer days. Figure 3 shows that while the Poisson and
zero-inflated Poisson had similar performance in predicting the number of days for which
three or more arrivals occur, the zero-inflated Poisson pmf was a substantial improvement
overall for the lower arrival numbers. In Figure 4, the model having two covariates and
using the negative binomial pmf was clearly a better fit than was the three-covariate model
with the Poisson pmf. Though not shown in either POCH, the analyst may generate
predicted values from the pmf that best fits the observed histogram directly, i.e., without
a CMM, note the resulting AIC value, and thus have a baseline AIC value from which to
develop the CMM.

Figure 3. Predicted-and-Observed Count Histogram for modeling of emergency department arrivals
with mold as the covariate, for summers from 2003–2011 in Houston, Texas.

In both Figures 3 and 4, the POCH shows Poisson pmfs (as opposed to the zero-
inflated and negative binomial pmfs) have a more narrow distribution than does the actual
data. It thus clearly warns that p-values with the Poisson pmf for these particular datasets
will be falsely low. Such charts immediately provide transparency of the complicated count
data regression analysis to the analyst working with the data and to the broader audience.

The POCH is easily generated for even the most complex count data regression analy-
sis models, including ones that incorporate smoothing splines, autoregressive parameters,
etc., as in generalized additive models and models in which the count data is binary, such
as in case-crossover studies. The POCH merely requires a predicted response variable
and a representation of the distribution of residuals, and so can be developed even for a
quasi-likelihood method [9].

A POCH helps assess the correctness of the pmf not only in regards to spread, but also
in regard to skewness, zero-inflation, hurdles, and other potentially important features. A
POCH will not entirely address every violation of statistical assumptions. For example,
one still needs to check for autocorrelation among residuals. However, where the POCH
does not directly address them, it may provide a solid starting point. For example, testing
for autocorrelation in count models requires standardizing the residuals before plotting the
autocorrelation function [2,10]. The POCH can help identify the correct pmf for the stan-
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dardization. Once the final model is selected, perhaps including autoregressive parameters,
the POCH should be re-generated to re-confirm the appropriateness of the model.

Figure 4. Predicted-and-Observed Count Histogram for the synthetic dataset.

In our literature review of the impact of air quality on health, we found no histogram
such as a POCH, or any explicit evidence that the most appropriate pmf was used. This
absence even among excellent articles [11–18] suggests a systemic issue extending beyond
individual authors. We recommend that publishers require a POCH for articles involving
count data regression models.

4. Conclusions

The complexity of count data regression models can lead to false inference and over-
fitting. A remedy is a predicted-and-observed count histogram POCH, which makes the
analysis more transparent to analysts themselves and to the scientific community in general.

Author Contributions: J.F.J. and H.O.S. guided this research and contributed significantly to prepar-
ing the manuscript for publication. H.O.S., C.G.M. and T.S. participated in development the research
methodology. J.F.J. and C.F. developed the scripts used in the analysis. J.F.J. and C.F. performed the
data analysis with contribution from H.O.S. C.G.M. compiled that data. J.F.J. prepared the first draft.
J.F.J., H.O.S., C.G.M. and T.S. performed the final overall proof reading of the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The synthetic data and R code used to generate and analyze it is
available at the Open Science Framework website at https://osf.io/rjtkz (accessed on 1 February
2021). Access may require going to https://osf.io first and then searching for public profile rjtkz.

Acknowledgments: This work has been supported in part through the Robert Wood Johnson Demon-
stration Project (grant #043506) for Texas Emergency Department Asthma Surveillance.

Conflicts of Interest: The authors declare no conflict of interest.

225



Appl. Sci. 2021, 11, 3375

References

1. Hilbe, J.M. Modeling Count Data; Cambridge University Press: New York, NY, USA, 2014.
2. Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data, 2nd ed.; Cambridge University Press: New York, NY, USA, 2013.
3. Kabacoff, R.I. R in Action: Data Analysis and Graphics with R; Manning Publications Co.: Shelter Island, NY, USA, 2015.
4. Rigby, R.A.; Stasinopoulos, D.M.; Heller, G.Z.; De Bastiani, F. Distributions for Modeling Location, Scale, and Shape: Using Gamlss in

R; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2020.
5. Vitolo, C.; Scutari, M.; Ghalaieny, M.; Tucker, A.; Russell, A. Modeling air pollution, climate, and health data using Bayesian

networks: A case study of the English regions. Earth Space Sci. 2018, 5, 76–88. [CrossRef]
6. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Proceedings of the Second International

Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Petrov, B.N., Caski, F., Eds.; Akademiai Kiado: Budapest,
Hungary, 1973; pp. 267–281.

7. Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape (with discussion). Appl. Stat. 2005,
54, 507–554. [CrossRef]

8. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2020. Available online: https://www.R-project.org/ (accessed on 1 February 2021).

9. Wedderburn, R.W.M. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 1974,
61, 439–447.

10. Li, W.K. Testing model adequacy for some Markov regression models for time series. Biometrika 1991, 78, 83–89. [CrossRef]
11. Choi, M.; Curriero, F.C.; Johantgen, M.; Mills, M.E.C.; Sattler, B.; Lipscomb, J. Association between ozone and emergency

department visits: An ecological study. Int. J. Environ. Health Res. 2011, 21, 201–221. [CrossRef] [PubMed]
12. Hyrkas-Palmu, H.; Ikäheimo, T.M.; Laatikainen, T.; Jousilahti, P.; Jaakkola, M.S.; Jaakkola, J.J.K. Cold weather increases respiratory

symptoms and functional disability especially among patients with asthma and allergic rhinitis. Sci. Rep. 2018, 8, 10131. [CrossRef]
[PubMed]

13. Lam, H.C.; Li, A.M.; Chan, E.Y.; Goggins, W.B., III. The short-term association between asthma hospitalisations, ambient
temperature, other meteorological factors and air pollutants in Hong Kong: A time-series study. Thorax 2016, 71, 1097–1109.
[CrossRef] [PubMed]

14. Lin, Y.; Chang, S.; Lin, C.; Chen, Y.; Wang, Y. Comparing ozone metrics on associations with outpatient visits for respiratory
diseases in Taipei Metropolitan area. Environ. Pollut. 2013, 177, 177–184. [CrossRef] [PubMed]

15. O’Lenick, C.R.; Winquist, A.; Chang, H.H.; Kramer, M.R.; Mulholland, J.A.; Grundstein, A.; Sarnat, S.E. Evaluation of individual
and area-level factors as modifiers of the association between warm-season temperature and pediatric asthma morbidity in
Atlanta, GA. Environ. Res. 2017, 156, 132–144. [CrossRef] [PubMed]

16. Rublee, C.S.; Sorensen, C.J.; Lemery, J.; Wade, T.J.; Sams, E.A.; Hilborn, E.D.; Crooks, J.L. Associations between dust storms and
intensive care unit admissions in the United States, 2000–2015. GeoHealth 2020, 3, e2020GH000260. [CrossRef] [PubMed]

17. Xu, Z.; Huang, C.; Su, H.; Turner, L.R.; Qiao, Z.; Tong, S. Diurnal temperature range and childhood asthma: A time-series study.
Environ. Health 2013, 12, 12. Available online: http://www.ehjournal.net/content/12/1/12 (accessed on 1 February 2021).

18. Zhang, H.; Liu, S.; Chen, Z.; Zu, B.; Zhao, Y. Effects of variations in meteorological factors on daily hospital visits for asthma:
A time-series study. Environ. Res. 2020, 182, 109115. [CrossRef] [PubMed]

226



MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel. +41 61 683 77 34

Fax +41 61 302 89 18

www.mdpi.com

Applied Sciences Editorial Office

E-mail: applsci@mdpi.com

www.mdpi.com/journal/applsci





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-2139-8 


	Blank Page

