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Preface to “Satellite Data Application, Validation and
Calibration for Atmospheric Observation”

Well-calibrated, remotely sensed spectral observations acquired from the growing constellation
of environmental satellites flown in low-Earth orbit (LEO) and geosynchronous orbit (GEO) provide
the vast majority of data for the purpose of observing the global atmosphere and oceans over varying
space and timescales. While environmental satellite data have been critical in the improvement of
numerical weather forecasts via data assimilation in recent years, a large complement of derived
geophysical products and state parameters (e.g., environmental data records, climate data records)
retrieved from sensor data records (i.e., spectral radiances) are used for Earth system observation at
microscale, mesoscale, synoptic, and global climate scales. Because multiple independent passive
and active sensors are sensitive to different portions of the EM spectrum and deployed onboard
different satellite platforms, high absolute calibration accuracy is crucial for synergistic observations
and data continuity, as well as for specifying reliable uncertainty estimates. Climate change
detection, in particular, requires the capability to resolve small global signals over decadal timescales
(approximately 0.1 K per decade), which fundamentally requires stable sensor data records (SDRs)
with high calibration accuracy. Routine monitoring of sensor calibration stability is facilitated via the
validation of retrieved geophysical state parameters (i.e., SDRs, environmental (EDRs) and climate
data records (CDRs)), which includes assessments of both absolute accuracy and precision with
respect to independent reference measurements.

We are pleased to bring you this Remote Sensing Special Issue volume “Satellite Data Application,
Validation, and Calibration for Atmospheric Observation”, which features 21 papers covering current
topics on the calibration/validation (cal/val) of advanced passive sensors (IR and/or MW) essential
for Earth (atmospheric/oceanic) observation onboard operational, experimental, and next-generation
environmental satellites. Featured topics range from sensor (SDR) calibration (Luo and Minnett,
Scarino et al., W. Yang et al., Yan et al., Burgdorf et al., lacovazzi et al., Lee et al., Aumann et al.)
and algorithm/retrieval (EDR) validation (Sun et al., Nalli et al., Oshio et al., Park et al., Luo and
Minnett, Xue et al.), to the subsequent improvements, impacts and applications of derived products
(Liang and Liu, S. Yang et al., Berndt et al., Zou et al., Jiang et al., Zhou and Grassotti, Y. Yang and
Wang).

Nicholas Nalli, Quanhua Liu, Lori A. Borg
Editors
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Abstract: Radiosondes are important for calibrating satellite sensors and assessing sounding re-
trievals. Vaisala RS41 radiosondes have mostly replaced RS92 in the Global Climate Observing
System (GCOS) Reference Upper Air Network (GRUAN) and the conventional network. This study
assesses R541 and RS92 upper tropospheric humidity (UTH) accuracy by comparing with Infrared
Atmospheric Sounding Interferometer (IASI) upper tropospheric water vapor absorption spectrum
measurements. Using single RS41 and RS92 soundings at three GRUAN and DOE Atmospheric
Radiation Measurement (ARM) sites and dual RS92/RS41 launches at three additional GRUAN sites,
collocated with cloud-free IASI radiances (OBS), we compute Line-by-Line Radiative Transfer Model
radiances for radiosonde profiles (CAL). We analyze OBS-CAL differences from 2015 to 2020, for
daytime, nighttime, and dusk/dawn separately if data is available, for standard (STD) RS92 and RS41
processing, and RS92 GRUAN Data Processing (GDP; RS41 GDP is in development). We find that
daytime RS41 (even without GDP) has ~1% smaller UTH errors than GDP RS92. RS541 may still have a
dry bias of 1-1.5% for both daytime and nighttime, and a similar error for nighttime RS92 GDP, while
standard RS92 may have a dry bias of 3-4%. These sonde humidity biases are probably upper limits
since “cloud-free” scenes could still be cloud contaminated. Radiances computed from European
Centre for Medium-Range Weather Forecasts (ECMWF) analyses match better than radiosondes
with IASI measurements, perhaps because ECMWEF assimilates IASI measurements. Relative differ-
ences between RS41 STD and RS92 GDP, or between radiosondes and ECMWF humidity profiles
obtained from the radiance analysis, are consistent with their differences obtained directly from the
RH measurements.

Keywords: radiosondes; satellite; upper tropospheric humidity; infrared radiances; radiative transfer

1. Introduction

Balloon-borne radiosonde (or “sonde”) observations (RAOBs) are critical in numer-
ical weather prediction (NWP), data assimilation and forecasting, satellite data calibra-
tion/validation (cal/val), and upper air climate change detection. Vaisala RS92 was a major
sonde type in the global operational upper air network and a reference sonde in the Global
Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) [1]. However,
RS92 has gradually been replaced by Vaisala RS41 starting in late 2013. RS92 production
ended in 2017, and all stations analyzed in this study stopped using R592 for operational
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flights by early 2019. Vaisala RS41 includes new sensor technologies aimed at improving
measurement accuracy for temperature, humidity and other variables throughout the atmo-
sphere. These include a heated humidity sensor to prevent dew or frost formation in clouds
and a separate temperature sensor attached to the humidity sensor. When the humidity
sensor temperature differs from the free-air temperature sensor (whether the humidity
sensor is heated intentionally or by erroneous solar heating), it is simple to express the
relative humidity (RH) reading as RH at the free-air temperature. Characterizing the RS41
measurement improvement and accuracy is key to the GRUAN R592-to-RS41 transition
management program.

This study assesses the accuracy of atmospheric humidity observations of Vaisala
RS92 and RS41. The first and most-used approach to estimate radiosonde accuracy is to
conduct assessments in RH or specific humidity, primarily through comparing the data
measured simultaneously by different radiosonde instruments from field experiments,
e.g., [2-7]. Vomel et al. [7] identify RS92 dry biases in the upper troposphere through
comparing with cryogenic frost point hygrometer (CFH) measurements, and they propose
a correction method to remove the mean bias.

A second assessment method is conducted in satellite radiance space. “Radiance
space” refers to the fact that satellite remote sensing instruments measure the received
radiant energy or radiance, which is emitted at each spectral frequency according to
temperature and concentration of atmospheric gases, aerosols, and cloud particles. Desired
meteorological variables are derived using radiances in carefully selected spectral bands.
This study compares observed (OBS) atmospheric satellite radiances in spectral bands
sensitive to moisture, with radiances calculated (CAL) from radiosonde temperature and
humidity profiles via a forward radiative transfer model (RTM) [8-13]. For example,
Moradi et al. [11,12] use microwave radiance values at 183 GHz as the base to analyze
humidity characteristics of different radiosondes.

In this paper, OBS satellite radiances are hyperspectral infrared radiances measured
in the upper tropospheric water vapor absorption spectral band (1400-1900 cm~!) by
the Infrared Atmospheric Sounding Interferometer (IASI). The instrument is on the Euro-
pean Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) MetOp-B
satellite. IASI is a Fourier Transform Spectrometer that provides 8461 channels cover-
ing the IR spectrum from 3.62-15.5 um (2762-645 cm ™). TASI is a well-characterized
IR instrument and has been considered as the in-orbit reference sensor in the Global
Space Inter-Calibration System (GSICS) [Tim Hewison at EUMETSAT, personal communi-
cation; http:/ /gsics.atmos.umd.edu/pub/Development/ AnnualMeeting2019/ GRWG_
GDWG_2019_Meeting_Minutes]. The instrument radiometric uncertainty is stable with
time, its noise-equivalent delta temperature in the upper tropospheric water vapor ab-
sorption band is ~0.1-0.3 K at 280 K, and the corresponding noise in radiance units is
~0.06 mW m~2 sr em ™! [14].

This paper calculates radiances (CAL) from radiosonde (or model) temperature and
humidity profiles using the Line-by-Line RTM (LBLRTM) [15] over the 1400-1900 cm !
spectral band, which covers practically all atmospheric levels from ~700 hPa and above.
LBLRTM is considered a standard in computing radiances by the IR RTM community. It is
a highly accurate radiation code that describes the interaction between atmospheric matter
and radiation with a very high wavenumber resolution [13]. Calbet et al. [13] similarly use
LBLRTM radiances to estimate Vaisala R592 accuracy at Nauru, the former (1998-2013)
Tropical Western Pacific (TWP) ARM site, by comparing with observed IASI radiances. We
adopt their approach to understand upper tropospheric humidity (UTH) accuracy, and
we extend their study to several GRUAN and ARM sites and compare Vaisala RS41 with
RS92. As in Calbet et al. [13], we analyze only cases where the IASI pixel is cloud-free, as
discussed in Section 2.2.2, because clouds lead to contaminated radiances.

This study uses the established formula in this field to compare instruments (e.g., [1]),
which is the OBS-CAL difference such as IASI-RS92, where IASI (OBS) is considered the
reference. Note that the sign of OBS-CAL is opposite from the usual bias formula, which
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would be CAL-OBS. For example, if RS92 radiances have a positive (high) bias relative to
IASI, OBS-CAL is negative.

Operational soundings, including from GRUAN stations, use standard Vaisala proce-
dures and corrections for rapid processing and transmission, but some biases remain and
ongoing efforts to reduce these errors are documented at https://www.vaisala.com/en/
sounding-data-continuity. Special GRUAN data processing (GDP, using GRUAN software
version 2), aims to remove systematic data biases and provide uncertainty estimates [16]
so GRUAN soundings can meet climate data record requirements. The NOAA Products
Validation System (NPROVS) [17] routinely collects radiosondes and collocates them with
satellite sounding data, but when a GRUAN processed sounding and operational sounding
are both available, the GRUAN sounding is retained in NPROVS. A test version of GDP
is being developed for R541, so all RS41 soundings collected in NPROVS have standard
Vaisala processing (referred to as “RS41 STD”). Depending on site and time period, RS92
soundings collected in NPROVS were processed either through GRUAN software (“RS92
GDP”) or standard Vaisala procedures (“RS92 STD”).

Validation of retrieved vertical profiles of temperature and humidity obtained from
satellite sounding instruments, by comparing them with radiosondes is subject to diverse
uncertainties. Among these reasons are significant radiosonde biases, actual profile dif-
ferences due to the collocation time and distance and separation, and biases in radiative
transfer modelling [10]. A detailed comparison exercise, such as the one presented in
this paper, is therefore very necessary to properly validate satellite sounder retrievals.
In particular, these results are applicable to the validation of satellite-derived products,
such as those generated by the NOAA Unique Combined Atmospheric Processing System
(NUCAPS, [18,19]) algorithm and several EUMETSAT Nowcasting Satellite Application
Facility (SAF) products.

Section 2 describes data and methods. Section 2.1 lists the sites with either single
launches (RS92 or RS41) or dual launches (RS592 and RS41 are suspended under the same
balloon) collocated with IASI data. Section 2.2 lists methods or procedures used to process
radiosonde data as the input to the LBLRTM radiance calculation, select IASI pixels for
cloud-free scenes, assess the consistency of radiosonde data with IASI data (in radiance
space), and convert the radiance differences (OBS-CAL) into RH differences to compute
bias statistics. In Section 3, we first present the OBS-CAL analysis for RS92 GDP vs. R541
STD, using the dual launch data from three GRUAN sites. Those dual launches allow us
to understand the humidity difference of the two sondes in radiance and RH, and verify
their consistency using both approaches. We then assess, through analyzing the OBS-CAL
difference, the accuracy of R541 STD, RS92 GDP and RS92 STD based on single launches
closely matched with an IASI overpass. Radiosonde and NWP model sounding profiles
are the major datasets used as the references for satellite sounding data validation and
calibration [20]. Model analysis soundings closely collocated to radiosondes and IASI
measurements from European Centre for Medium-Range Weather Forecasts (ECMWF)
are also analyzed at those single launch sites with the aim to find out model accuracy
in comparison with radiosondes and IASI. Section 4 summarizes specific uncertainties
involved in this analysis.

2. Data and Methods
2.1. Collocated Radiosonde Launches and Their Collocations with IASI Data

The target data for the radiosonde data assessment is the radiance measurements of
IASI onboard the MetOp-B satellite, with local equator crossing times being 0930 and 2130.
Radiosondes at GRUAN and ARM sites are launched at nominal synoptic times (0000,
0600, 1200, and 1800 UTC, with actual launches usually ~1 h earlier, so the radiosonde is in
the stratosphere at the stated time. Some stations may not have four launches per day). In
addition to synoptic launches, dedicated radiosondes are launched from time to time at
ARM sites targeting NOAA polar satellites, including SNPP and NOAA20 [18,19], with
local equator crossing times at 0130 and 1330.
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Collocation time and distance mismatch errors are the biggest uncertainties in the
assessment using IASI measurements [10,13]. We selected only sondes launched between
30 min before and 15 min after satellite overpass and within 50 km of the IASI pixel location.

The Eastern North Atlantic (ENA) ARM site at Graciosa Airport, Azores, often meets
the criteria with synoptic launches approximately in coincidence with IASI overpasses.
In high latitudes, MetOp-B swaths view the same location on several consecutive orbits
about 100 min apart (but not necessarily synchronized with synoptic radiosondes). The
North Slope of Alaska (NSA) ARM site at Barrow (Utqiagvik), Alaska, and the Ny Ale-
sund, Norway, GRUAN site are used in this study because their radiosondes have higher
chances to be close enough in time to IASI overpasses. While these high-latitude sites are
very frequently cloudy, that is not a major concern since our assessment focuses on the
upper troposphere.

Additionally, to support the RS92-to-RS41 transition, some GRUAN sites made RS92
and RS41 dual launches starting 2014. These provide the most rigorous radiosonde com-
parisons because both radiosondes sample the same air column, but the comparisons are
still relative because neither RS41 nor RS92 provides absolute accuracy. For dual launches
collected in NPROVS, RS92 soundings are mostly GDP while RS41 soundings are STD. At
the Lauder, New Zealand GRUAN site, synoptic soundings are closely matched with IASI
overpasses (within ~1 h before satellite overpass), but synoptic launches at Lindenberg
(11Z) and Payerne (11Z and 23Z) are mostly 1-3 h after the overpass, and prevent direct
determination of radiosonde accuracy using IASI as the reference, as will be discussed for
individual stations in Section 3.1. Nevertheless, dual launches allow us to verify that the
radiance difference of the dual sondes is consistent with their difference in RH observations.
That would give us the confidence to estimate radiosonde RH biases from the radiance
analysis (Sections 3.2-3.4). Of course, the close match of Lauder dual launches with IASI
also provides the opportunity to infer the absolute accuracy of RS92 and RS41. The upper
portion of Table 1 lists information about the three dual launch sites and their respective
launch numbers.

The lower portion of Table 1 lists three sites with single launches at synoptic times
that often coincide within 30 min before and 15 min after IASI overpasses. The sounding
processing is a mixture of RS41 STD, RS92 GDP, and RS92 STD. Analysis of those data
via OBS-CAL differences is designed to address the absolute accuracy of the radiosonde
humidity data. Table 1 lists the numbers of those sondes along with the respective numbers
of collocated soundings with corresponding cloud-free and all-sky IASI scenes. Sound-
ing numbers for nighttime, daytime, or dusk/dawn are stated in Section 3, where the
radiosonde accuracies are analyzed for those diurnal times if they have enough samples
available for analysis.

As mentioned, all of the radiosonde profiles are collected in NPROVS [17,18], sup-
ported by the NOAA Joint Polar Satellite System (JPSS) program and operated at NOAA
NESDIS office of Satellite Applications and Research (STAR) starting 2008. NPROVS pro-
vides routine data access, collocation, and intercomparison of multiple satellite temperature
and water vapor sounding product suites and NWP model profiles respectively matched
with a) global operational radiosondes and b) GRUAN including dedicated radiosonde
observations. The collocation approach is to select the “single closest” sounding from each
product suite for each radiosonde.

The EUMETSAT MetOp-B IASI L2 sounding product [21,22] is one of the retrieval
products routinely ingested in NPROVS for collocations with radiosonde data. The L2
are physical retrievals generated using an optimal estimation method (OEM) by using the
all-sky retrievals as the first guess. The all-sky retrievals are generated using piecewise
regression methods and infrared and microwave channel data. OEM is attempted for
clear-sky only as identified using strict cloud screening and other testing procedures (see
Appendix A for more information). The L2 physical retrievals are generated at each IASI
field-of-view (FOV). IASI level 1c apodized measurements (smoothed to remove artificial
diffractive effects that distort the spectra) are appended to the selected collocations of
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radiosonde with IASI retrieval profile for use in the study. The level 1c datasets are
accessed from the NOAA Comprehensive Large Array-Data Stewardship System (CLASS)
(https:/ /www.avl.class.noaa.gov/saa/products/welcome).

Table 1. Data from the radiosonde sites that are used for the analysis. In the last column, the number of soundings given

first is those collocated with clear-sky Infrared Atmospheric Sounding Interferometer (IASI) scenes, followed by soundings

associated with all sky scenes in parentheses. In that column, the time collocation limits are given in brackets for IASI minus

radiosonde observation (RAOB) time.

Latitude, Number of
Station Name . Longitude Starting and Soundings [Time
Launch Types (WMO ID) Radiosonde (Launch Ending Date Collocation
Elevation) Limits]
Lauder, New RS92 GDP, RS41 45.0376°5 Nov 2015 to 14 (26)
Zealand STD 169.6826°E Nov 2016 [0~+1h]
(93817) (370 m)
RS92 and RS41 Lg‘ii‘\‘:ﬁ;g' RS92 GDP, ?ﬁ%‘;g Dec 2014 to 29 (152)
dual 1 h ) ~
ual launches (10393) RS41 STD (115 m) Oct 2017 [+1~+3 h]
Payerne, RS92 GDP, 46.8151'N Aug 2014 to 19 (86)
Switzerland RS41 STD 6.9437°F Oct 2017 [+1~+3h]
(06610) (490.5 m)
Eastern North o
Atlantic (ENA), RS41 5TD 39'09120N Jan 2015 to 225 (1297)
. RS92 GDP 28.0263°W .
Graciosa, Azores RS92 STD (31 m) May 2020 [—30~+15 min]
(08507)
North Slope
RS92 or RS41 p °
AN Alaska (NSA), RS41 STD 71.3226°N Jan 2015 to 122 (978)
single launches L 156.6180°W .
Barrow (Utqiagvik) RS92 GDP (8 m) May 2020 [—30~+15 min]
(70027) m
N&ﬁiﬁfg‘d' RS41 STD ﬁgﬁg? May 2015 to 45 (900)
(01004) RS92 GDP (155 m) May 2020 [—=30~+15 min]

The selected IASI-RAOB collocations need to go through cloud screening to make
sure the IASI FOV scene is cloud-free (see Section 2.2.2 and Appendix A for details) before
CAL radiances are computed from radiosonde profiles.

ECMWEF operational analysis profiles [23] are also collocated to RAOBs at all IASI-
RAOB collocations analyzed. The ECMWEF analyses are available at 0000, 0600, 1200, and
1800UTC, with 91 vertical pressure levels thinned from the 137 model sigma levels and
horizontal resolution of 0.25° x 0.25° [24]. The collocated ECMWF profiles are over 1 h
from IASI overpasses in most of the dual launch cases, while ~1 hr or less from overpasses
in most of the single launch cases.

2.2. Methodology
2.2.1. Radiosonde Profile Data Processing

GRUAN RS92 and RS41 soundings report data values at 1-s intervals, or usually
~7000 vertical levels (accessed from gruan.org/data). Those high-density profiles are con-
verted into 100 vertical levels for the rapid transmittance algorithm used in radiative
transfer models [20]. The GRUAN sounding objective is to aim for an altitude of 5 hPa, but
only about 50% reach 15 hPa and less than 5% reach 5 hPa due to the use of smaller balloons
that burst sooner. To apply the radiative transfer equations to the radiosonde profiles,
they must be extended above the burst altitude to the top of the atmosphere (TOA) by
appending the collocated ECMWF operational analysis to the top of the radiosonde profile.
RS92 and RS41 sensors measure the RH of the ambient air, whereas the RTM requires water

5
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vapor concentration, typically specific humidity. We convert from RH to specific humidity
using the Hyland and Wexler formula [25].

To verify the humidity difference estimated from the radiance difference, for example,
between two radiosondes or between radiosondes and ECMWTF as discussed in Section 3,
we compute the humidity (and temperature) difference from their sounding profiles. To
minimize the impact of different vertical resolutions on the assessment, the 100-level
radiosonde profiles and 91-level ECMWE profiles are averaged to ~1-km coarse layers for
temperature and ~2-km coarse layers for humidity. Statistics are then computed in those
layers with the mid-point coarse layer pressures shown in vertical profile figures (e.g.,
Figure 1d,e). This approach is standard in validating satellite retrieval soundings using
radiosonde or NWP data [18-20,26].

Lauder, Dual sondes, Radiance difference
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Figure 1. Cont.
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Figure 1. Lauder, New Zealand. (a—c) Mean radiance differences based on 14 dual launches, daytime within 1 h of TASI
overpass. (a) The solid line is the mean difference between IASI observed radiances and calculated radiosonde radiances
(OBS-CAL, IASI minus RS92 GDP). Dotted lines show +2 standard errors (from zero) of the combined uncertainties (see
text for more information). (b) As in (a) except for IASI minus RS41 STD based on the same dual flights. (c) The solid line is
RS92 GDP minus RS41 STD. The dotted lines show + one standard deviation of the RS92 GDP minus RS41 STD differences
from the solid line. (d—e) Mean differences and standard deviations, RS92 GDP minus RS41 STD, at specified pressure levels
(hPa), based on same dual launches as in (a—c). (d) Blue line is the mean atmospheric relative humidity (RH) difference,

averaged at specified pressure levels, and the red line is its standard deviation. Gray numbers toward the left of the plot are
mean RS541 STD RH values (%) at marked pressure levels. (e) As in (d) except for mean atmospheric temperature difference,
and gray numbers are RS41 STD mean temperature (K).

2.2.2. Cloud Screening for IASI Pixels

A key to this sonde humidity data assessment is that IASI pixels collocated with
radiosondes should not be cloud-contaminated. Undetected clouds, primarily high clouds,
in the “cloud-free” scenes would bias the assessment. Cloud screening flag information
included in the EUMETSAT IASI L2 product is used to find the cloud-free IASI pixels (see
Appendix A), and their collocations with RAOBs are then used in the study. Table 1 shows
the number of accepted cases after IASI cloud screening. On the average, cloud screening
rejects ~87% of the soundings with IASI data within the collocation limits.
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2.2.3. Consistency of Radiosonde Data with IASI Measurements

Collocated IASI measurements are compared with the computed radiosonde radiances
to find out if the two types of measurements are consistent with each other. Following
the proposed rationale [27] for statistical consistency of collocated measurements, IASI
and radiosonde data are considered to be consistent with each other if their difference in
radiance is within 2 times the k value,

my —my| < ky/o?+u2 +u3 (1)

where “m;” and “my” are OBS and CAL radiances to be compared, “u1” and “uy” the
associated uncertainties, “o” the uncertainty due to mismatch and “k” the agreement
parameter. The uncertainty in LBLRTM should also be listed as one of the uncertainty
components inside the square root but is included in the ¢ term here to keep the formula
general. For this study, the unit for radiance variables is mW m~2 sr cm 1.

Ideally, the radiosonde and IASI consistency is assessed for individual collocations by
utilizing Equation (1), and based on that, the consistency for the whole collocation sample is
then statistically determined. At individual collocations, the IASI instrument uncertainty is
generally available (see Introduction), and uncertainty in computed radiance from GRUAN
soundings can be estimated via radiative transfer modelling [13], whether assuming the
uncertainty is either fully vertically correlated or not. The spatial and temporal collocation
error, however, is unknown. The collocation error is suggested to be much bigger than other
uncertainty components [13]. Equation (1) is therefore, not directly used in the assessment,
and that could be a limitation of the analysis.

As described by Immler et al. [27], with normally distributed variables and indepen-
dent uncertainty factors, the standard error (ste) of the OBS-CAL difference for an ensemble
(for example, all of the collocations of R541 STD with IASI from a site) is equal to the square
root of the (02 + 112 +1p2) term. The ste value for a specific wavenumber is calculated from
the standard deviation (std) of the OBS-CAL difference by dividing std by the square root
of the number of samples (i.e., collocations).

The uncertainty derived from ste based on the ensemble-average is named as the
overall or total uncertainty. In this study, this total uncertainty term is used to assess the
consistency of ensemble-averaged radiosonde and IASI data in radiance space. RS92 GDP
is considered to be consistent with IASI if the mean OBS-CAL difference is less than 2 times
ste ([13], their Figures 6 and 8), so this paper uses the same definition. This is a 2-sided
test of consistency at approximately the 95% statistical significance level. Note that they
estimate the “average” collocation uncertainty from the std of the OBS-CAL difference.

2.2.4. Converting the Radiance Difference to RH Difference

Radiosonde biases estimated from OBS-CAL differences are stated in terms of radi-
ances (or brightness temperatures). The corresponding biases in RH percentage points
can be estimated by simply adding various RH values to the corresponding radiosonde
profiles and recomputing the radiances until the OBS-CAL difference for RS92 or RS41
becomes negligible.

Calbet et al. [13] conclude, based on their Figures 7 and 8, that their RS92 OBS-CAL
difference of —0.11267 mW m~2 sr cm ! (averaged for the spectral band 1500-1570 cm 1)
is equivalent to a 2.5% RH dry bias relative to IASI radiances, and our radiance biases
infer a daytime RS92 GDP dry bias of 2.58% and a nighttime dry bias of 0.69%. We use
this conversion to estimate the radiosonde (or ECMWF) RH biases from their OBS-CAL
differences. Note that channels with wavenumber in the range of 1500-1570 cm ™! are highly
water vapor absorptive with their peak absorption in the middle to upper troposphere.
They are not affected by low-level clouds or the underlying surface.
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The mean OBS-CAL difference, DIFF, and standard deviation (STD), are formulated

as follows: )
o _ L2 (0BS; ~ CALy) "
P Nw
N,
Ne ¢
DIFF = % (3)
N, 2
¢ (C; — DIFF
STD = \/le(NlC — ) (4)

where OBSi,]- is the IASI-observed radiance in wavenumber i for collocation j, CALi,]- is the
corresponding LBLRTM-simulated radiance, and Ny, and N, are the number of wavenum-
bers (or spectral channels) and collocations included in the average, respectively. For the
1500-1570 cm ! spectral region, the wavenumber w1 and w2, and N, in Equation (2), are
3421 and 3701, and 281.

Equations (2)—(4) can be applied to any spectral region to compute the radiance bias
statistics. Bias statistics in the water vapor absorption band (1615-1800 cm ') are also
computed, another spectral region that is not sensitive to low-level features. For this region,
w1, w2, and Ny, in Equation (2) are 3881, 4621, and 741. An equivalence of the OBS-CAL
difference of —0.07239 mW m~2 sr cm~! averaged for 1615-1800 cm~! to a 2.5% RH dry
bias [13] is applied to estimate the RH bias from the radiance difference averaged for this
spectral region.

The radiance difference statistics computed using Equations (2)—(4) and the RH bias
statistics estimated from the radiance differences are listed in all tables except Table 1 to
calculate the radiosonde or ECMWEF data accuracy. Unless a spectral region is specified,
the RH bias estimated from radiance analysis stated in the text is the average of the values
computed from those two regions to better represent the upper tropospheric water vapor
absorption across the spectra.

Direct humidity observations from radiosonde and ECMWE profiles are used to verify
their consistency with the UTH characteristics estimated from the radiances, as discussed
in the next section. The IASI channels at 1400-1900 cm ! are actually sensitive to the water
vapor content accumulated through an upper tropospheric layer, rather than a single level.
At any wavelength, radiation detected by the satellite originates from the atmospheric layer
where there is appreciable water vapor. Above the layer, there is negligible absorption,
nor is there enough emission of infrared radiation to be detected. Any radiation emitted
below that layer is simply absorbed by the water vapor above it. The layer emitting enough
radiation to be detected does not have sharp boundaries. This poses a challenge to define
the upper-tropospheric layer in the radiosonde or ECMWEF humidity profile that best
matches the layer defined in radiance space.

In this study, the 200.9-407.4 hPa pressure interval is used to represent that upper
tropospheric layer for all sites and time periods analyzed. RH differences between two
dual sondes or between radiosondes and ECMWEFE (third line of each row in the last column
of Tables 2-5) are computed from that pressure interval.

Note that atmospheric structure, including the tropopause and the height of the
upper troposphere, varies with location, season or even time of day. Uncertainty can be
introduced by the factors discussed in this and preceding paragraphs when we compare
the RH characteristics computed from radiances with radiosonde humidity observations.
We therefore include figures with RH difference statistics depicted from the lower to the
upper troposphere (e.g., Figure 1d) as examples to better understand the consistency of the
RH difference between radiance space and humidity observations.
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Table 2. Dual launch sounding comparisons. (Col. 1) Station, and in parentheses, period of day (according to category
of solar elevation angle, SEA) and number of dual soundings analyzed with this SEA category. For each station and
SEA category, there are 3 pairs of rows showing a set of mean difference comparisons. The first row in each pair is a
header (shown in Col. 2 only) that summarizes the two instruments in that difference comparison, with the differences
shown in the second row, Cols. 2-5 or 2-6 as applicable. All radiance differences have units of mW m~2 sr cm ™!,
RH differences are % (percentage points out of 100), and each number inside parentheses is one standard deviation of
the corresponding variable. The third set of comparisons (in italics) is based on differences of differences, specifically
(IASI-RS41 STD)-(IASI-RS92 GDP) = R592 GDP-RS41 STD. (Cols. 2-5) OBS-CAL differences are averaged over spectral
regions of (Cols. 2-3) 1500-1570 em~! and (Cols. 4-5) 1615-1800 cm L. (Cols. 2 and 4) Mean OBS-CAL radiance differences.
(Cols. 3 and 5) Corresponding RH differences estimated from OBS-CAL differences. (Col. 6, applicable only to bottom
set of comparisons) RH differences calculated from direct observations (radiosonde RH, specifically RS92 GDP-RS41 STD)
averaged from 200.9-407.4 hPa. Radiosonde “GDP” or “STD” denotes radiosonde soundings processed either through
GRUAN software or standard Vaisala procedures.

Station Rﬁ?;'i‘%i « OBS-CALRHDiff  OBS-CAL Radiance ~ OBS-CAL RH Diff  Direct Obs RH Diff
(Dual Launches) 15001570 con 1 1500-1570 cm—1 Diff 1615-1800 cm 1 1615-1800 cm 1 200.9-407.4 hPa
IASI-RS92 GDP
~0.1291 (0.085) 2.86 (1.9) ~0.0818 (0.059) 2.82 (2.0)
IASI-RS41 STD
Lauder (day, 14) ~0.0705 (0.081) 1.56 (1.8) —0.0386 (0.057) 1.33 (2.0)
RS92-RS41
0.0585 (0.029) ~1.30(0.6) 0.0431 (0.019) ~1.49(0.7) ~1.33(0.8)
IASI-RS92 GDP
~0.2204 (0.107) 4.89 (2.4) —0.1447 (0.082) 5.00 (2.8)
. IASI-RS41 STD
Lindenberg (day, 19) ~0.1307 (0.103) 2.90 (2.3) ~0.0841 (0.080) 2.90 (2.8)
RS92-RS41
0.0897 (0.044) ~1.99 (1.0) 0.0606 (0.031) ~2.09(1.1) ~1.91(1.2)
IASI-RS92 GDP
~0.1160 (0.196) 2.57 (4.3) ~0.0847 (0.135) 2.92 (4.7)
Payerne (night, 10) IASI-RS41 STD
’ ~0.1318 (0.182) 2.93 (4.0) ~0.0894 (0.126) 3.09 (4.4)
RS92-RS41
—0.0158 (0.055) 0.35(1.2) —0.0047 (0.033) 0.16 (1.1) 1.13(1.9)
IASI-RS92 GDP
~0.1578 (0.131) 3.50 (2.9) —0.0741 (0.108) 2.56 (3.7)
Payerne (day, 9) IASI-RS41 STD
' ~0.1073 (0.130) 238 (2.9) ~0.0423 (0.108) 1.46 3.7)
RS92-RS41
0.0505 (0.042) ~1.12(0.9) 0.0319 (0.027) ~1.10(0.9) ~0.73(1.0)

Table 3. Same as Table 2, except that soundings are single launches of R541 STD, OBS-CAL comparisons are IASI-RS41
STD or IASI-ECMWFE, where European Centre for Medium-Range Weather Forecasts (ECMWEF) is the collocated reanalysis
sounding, and the third set of comparisons for each station and period of day is (IASI-ECMWF)-(IASI-RS41 STD) = RS41
STD-ECMWE. Note that the Arctic stations (NSA and Ny Alesund) have comparisons based on dusk/dawn soundings with
SEA between —7.5° and +7.5°.

Station OBS-CAL OBS-CAL RH OBS-CAL OBS-CAL RH Direct Obs
(RS41 STD Radiance Diff Diff Radiance Diff Diff 1615-1800 RH Diff
Single Launches) 1500-1570 cm—1 1500-1570 cm—1 1615-1800 cm—1 cm~1 200.9-407.4 hPa

IASI-RS41 STD
—0.0528 (0.054) 118 (1.2) —0.0334 (0.039) 115 (1.3)
ENA IASI-ECMWEF
(night, 12) 0.0131 (0.057) ~0.29 (1.3) ~0.0081 (0.042) 0.28 (1.4)
RS41-ECMWF —1.46 (1.2) 0.0253 (0.043)
0.0659 (0.053) —0.87 (1.5) —0.42 (3.5)

10
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Table 3. Cont.

Station OBS-CAL OBS-CAL RH OBS-CAL OBS-CAL RH Direct Obs
(RS41 STD Radiance Diff Diff Radiance Diff Diff 1615-1800 RH Diff
Single Launches) 1500-1570 cm 1 1500-1570 cm 1 1615-1800 cm 1 cm~1 200.9-407.4 hPa
TASI-RS41 STD
—0.0633 (0.042) 1.41 (0.9) 0.0370 (0.028) 1.28 (1.0)
ENA IASI-ECMWF
(day, 27) 0.0238 (0.063) —0.53 (1.4) 0.0070 (0.054) —0.24 (1.9)
RS41-ECMWF
0.0871 (0.065) —1.93(1.4) 0.0440 (0.053) —1.52(1.8) —2.38(7.2)
TIASI-RS41 STD
—0.0610 (0.057) 1.35 (1.3) —0.0356 (0.032) 1.23 (1.1)
NSA IASI-ECMWF
(night, 29) ~0.0052 (0.065) 0.11 (1.4) —0.0117 (0.038) 0.41 (1.3)
RS41-ECMWF
0.0558 (0.046) —1.23(1.0) 0.0239 (0.027) —0.83(0.9) —2.34(3.4)
TIASI-RS41 STD
—0.0662 (0.027) 1.47 (0.6) ~0.0416 (0.022) 1.44 (0.8)
NSA IASI-ECMWF
(dusk/dawn, 36) —0.0338 (0.037) 0.75 (0.8) —0.0261 (0.030) 0.90 (1.0)
RS41-ECMWF
0.0324 (0.043) —0.72 (1.0) 0.0155 (0.031) —0.54(1.1) —1.00 (3.8)
TIASI-RS41 STD
—0.0593 (0.047) 1.31 (1.0) —0.0372 (0.026) 1.28 (0.9)
Ny Alesund IASI-ECMWEF
(dusk/dawn, 12)  —0.0012 (0.082) 0.03 (1.9) —0.0047 (0.066) 0.16 (2.3)
RS41-ECMWF
0.0580 (0.096) —1.29(2.1) 0.0324 (0.068) —-1.12(2.4) —2.41 (4.0)
TIASI-RS41 STD
—0.0977 (0.061) 217 (1.4) —0.0422 (0.038) 1.46 (1.3)
Ny Alesund (day, IASI-ECMWEF
15) ~0.0065 (0.057) 0.14 (1.3) ~0.0008 (0.041) 0.28 (1.4)
RS41-ECMWF
0.0912 (0.067) —2.02(1.5) 0.0414 (0.045) —1.43(1.5) —0.66 (5.8)

Table 4. Same as Table 3, except that soundings are single launches of RS92 GDP, OBS-CAL comparisons are IASI - RS92

GDP or IASI - ECMWE, and the third set of comparisons for each station and period of day is (IASI-ECMWEF) - (IASI-RS92
GDP) = RS92 GDP-ECMWE

Station (RS92 OBS-CAL OBS-CAL RH OBS-CAL OBS-CAL RH Direct obs
GDP Single Radiance Diff Diff 1500-1570 Radiance Diff Diff 1615-1800 RH Diff
Launches) 1500-1570 cm 1 cm~! 1615-1800 cm 1 cm~! 200.9-407.4 hPa
TIASI-RS92 GDP
—0.0527 (0.088) 1.17 (1.9) —0.0316 (0.057) 1.09 (2.0)
ENA TASI-ECMWF
(night, 43) 0.0471 (0.115) —1.04 (2.6) 0.0208 (0.082) —0.72 (2.8)
RS92-ECMWF
0.0998 (0.134) —2.21(3.0) 0.0524 (0.093) —1.81(3.2) —0.43 (8.4)
TASI-RS92 GDP
—0.1196 (0.090) 2.65 (2.0) —0.0722 (0.063) 2.49 (2.2)
ENA TASI-ECMWF
(day, 50) 0.0097 (0.096) —0.22 (2.2) —0.011 (0.078) 0.36 (2.7)
RS92-ECMWF
0.1293 (0.127) —2.87 (2.8) 0.0617 (0.092) —2.13(3.2) —1.90 (6.1)

11
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Table 4. Cont.

Station (RS92 OBS-CAL OBS-CAL RH OBS-CAL OBS-CAL RH Direct obs
GDP Single Radiance Diff Diff 1500-1570 Radiance Diff Diff 1615-1800 RH Diff
Launches) 1500-1570 cm 1 cm~1 1615-1800 cm 1! cm—1 200.9-407.4 hPa
IASI-RS92 GDP
—0.0596 (0.063) 1.32 (1.4) —0.0396 (0.036) 1.37 (1.2)
NSA IASI-ECMWE
(night, 10) —0.0043 (0.095) 0.10 (2.1) —0.0135 (0.055) 0.47 (1.9)
RS92-ECMWF
0.0553 (0.086) —1.23(1.9) 0.0260 (0.055) —0.89 (1.9) —3.65(5.4)
IASI-RS92 GDP
—0.0924 (0.039) 2.05 (0.9) —0.0554 (0.019) 1.91 (0.7)
NSA IASI-ECMWE
(day, 5) —0.0521 (0.029) 1.16 (0.6) —0.0413 (0.029) 1.42 (1.0)
RS92-ECMWF
0.0403 (0.043) —0.90 (1.0) 0.0141 (0.037) —0.49 (1.3) —1.70 (4.4)
IASI-RS92 GDP
—0.1190 (0.046) 2.64 (1.0) —0.0558 (0.031) 1.93 (1.1)
Ny Alesund IASI-ECMWE
(day, 6) 0.0030 (0.107) —0.065 (2.4) 0.0002 (0.086) —0.01 (3.0)
RS92-ECMWF
0.1220 (0.084) —2.71(1.9) 0.0643 (0.026) —1.94(2.2) —3.88 (4.5)
Table 5.

Same as Table 3, except that soundings are single launches of RS92 STD, OBS-CAL comparisons

are IASI-RS92 STD or IASI-ECMWE, and the third set of comparisons for each station and period of day is
(IASI-ECMWF)-(IASI-RS92 STD) = RS92 STD-ECMWE.

Station (RS92

OBS-CAL

OBS-CAL RH OBS-CAL OBS-CAL RH Direct Obs
STD Single Radiance Diff Diff 1500-1570 Radiance Diff Diff 1615-1800 RH Diff
Launches) 1500-1570 cm 1 cm! 1615-1800 cm 1 cm~! 200.9-407.4 hPa
TASI-RS92 STD
—0.1758 (0.075) 3.90 (1.7) ~0.1132 (0.05) 391 (1.7)
ENA TIASI-ECMWF
(night, 43) 0.0096 (0.080) ~021 (1.8) ~0.0133 (0.056) 0.46 (1.9)
RS92-ECMWF
0.1854 (0.112) —4.11 (2.5) 0.1000 (0.075) —3.4(2.6) —3.08 (6.0)
TASI-RS92 STD
~0.1448 (0.118) 321 (2.6) —0.0952 (0.075) 3.29 (2.6)
ENA TASI-ECMWF
(day, 50) 0.0082 (0.105) —0.18 (2.3) ~0.0681 (0.078) 0.24 (2.7)
RS92-ECMWF
0.1529 (0.144) —-3.39(3.2) 0.0088 (0.094) —3.05(3.3) —2.32(7.8)
3. Results

3.1. Dual Launches of RS92 GDP and RS41 STD

Dual launches of RS92 and R541 radiosondes at Lauder, Lindenberg, and Payerne were
made at synoptic times. Table 2 shows the number of analyzed clear-sky collocations at
each station. As in Sun et al. [28], solar elevation angles (SEAs) computed at the radiosonde
launch location and time are used to group soundings into three categories for analysis:
Nighttime (SEA < —7.5°), daytime (SEA > +7.5°), and dusk/dawn (any other SEA). While
the time of a collocated IASI observation or ECMWF profile may be in a different SEA
category from the sounding, the SEA at the IASI or ECMWF location is not different enough
from the radiosonde SEA category to reject that case. Fewer cases are analyzed at Lauder
and Lindenberg than totals shown in Table 1 due to insufficient night or dusk/dawn
collocations for reasonable statistical analysis.
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Lauder, New Zealand. Figure 1 shows the average OBS-CAL differences from 14
daytime collocations for (a) RS92 GDP and (b) RS41 STD. These soundings were launched
at ~0900 local time, within ~1 h prior to an IASI overpass. The negative OBS-CAL radiance
differences shown for both RS92 and RS41 indicate that both sonde types are dry-biased in
the upper troposphere. The positive RS92 GDP-RS41 STD radiance difference (Figure 1c)
computed using IASI radiance as the transfer standard indicates that RS92 GDP appears to
be more dry-biased than R541 STD.

The dotted lines in Figure 1a,b show %2 ste (from zero) of the combined uncertainties
(as stated in Section 2.2.3), indicating that the CAL radiances for R592 GDP (solid black
line) are statistically inconsistent with IASI measurements while the CAL radiances for
RS41 STD (solid red line) are mostly consistent with IASL

Spikes in the OBS-CAL difference in the spectral regions of 1400-1500 cm~! and
1800-1900 cm ! reflect the sensitivity of narrow spectral lines to the lower troposphere
(usually below 700 hPa). Those features are common to all sites analyzed in the study.

As listed in Table 2, the OBS-CAL mean difference for RS92 GDP averaged for
1500-1570 cm ™! is —0.1291 (40.085) mW m~2 sr em ™! and for RS41 STD is —0.0705
(4:0.081) mW m~2 sr cm ™! for RS41 STD, where the values inside the parentheses are one
standard deviation of the difference. Throughout the paper, values inside the parentheses
following mean biases or differences are one standard deviation. The RH dry biases in the
upper troposphere computed from the radiance differences are 2.86% for RS92 GDP and
1.56% for RS41 STD. Similarly, as indicated in Table 2, the RH dry biases converted from the
radiance differences at 1615-1800 cm~! are 2.82% and 1.33%, respectively for RS92 GDP
and RS41 STD. The daytime dry bias in RS92 GDP humidity data obtained from Lauder
is slightly higher (by 0.30% in the absolute RH value) than found from the former TWP
Nauru site [13].

The RH differences between RS92 GDP and RS41 STD estimated from their radiance
differences are 1.40% (0.65%), basically consistent with the RH difference of 1.33% (0.8%)
based on the measured data (Table 2). Figure 1d indicates that RS92 GDP is systematically
drier than R41 STD by 1-1.5% from the lower troposphere to the upper troposphere during
daytime (based on only clear sky data). However, the RH (for RS41) STD averages 25.5%
at 478 hPa and 5.5% at 156 hPa, and in terms of specific humidity, this means that RS92
GDP (compared to RS41 STD) averages 3.9% drier at 478 hPa, and 18.2% drier at 156 hPa;
specific humidity is more fundamental (than RH) to atmospheric radiative transfer.

In the humidity-sensitive channels, atmospheric temperature may also affect the radi-
ation the satellite receives. In Figure le, the RS92 GDP temperature appears to be slightly
warmer (by <0.2 K except at the highest level) than RS41 STD above 150 hPa, suggesting
the existence of a radiation-related warm bias in GRUAN processed data [28]. However,
RS92 GDP appears to be colder than RS41 STD in the troposphere with a maximum cold
difference of ~0.2 K around 300 hPa.

Appendix B further investigates the impact of atmospheric temperature differences
between RS92 GDP and RS41 STD in their CAL radiance differences. It appears the colder
temperature in the upper troposphere in RS92 GDP (minus R541 GDP) leads to slightly
more negative radiance differences in the spectrum range of 1400-1900 cm ! (Figure A1),
interpreted as being slightly moister in the upper troposphere. However, the radiance
difference contributed by the temperature difference is small. For example, —0.0125 mW
m~2 sr cm™! averaged for 1500-1570 cm~ 1 is equivalent to 0.28% in RH. Note that the
warm temperature difference in the lower stratosphere does not seem to have an impact on
the radiance differences in the 1400-1900 cm ! band.

Lindenberg, Germany. Given the longitude of this station, most of the dual sondes (11Z)
launched at this site are 1 to 3 h after the MetOp-B overpass. Because it generally takes
~30 min for the balloon to reach ~300 hPa [29], the actual time difference is over 1.5 to 3.5 h
in the upper troposphere and lower stratosphere, and systematic (always after overpass).

In Table 2, the OBS-CAL radiance differences averaged for 1500-1570 cm ™! for RS92
GDP and RS41 STD are —0.2204 and —0.1307 mW m~2 sr cm ™! respectively, and the

13



Remote Sens. 2021, 13,173

radiance derived dry RH biases are 4.89% and 2.90%, respectively, again compared to IASL
Similar values are obtained from the spectral region 1618-1800 cm . Those numbers are
statistically different from zero and are much bigger than the values obtained from Lauder
and other single launch sites (see Sections 3.2 and 3.3) where the time differences are within
0.5h.

The ¢ term in Equation (1) may increase with the increase in time difference, but
the mean difference is not affected much as long as the time differences in the ensemble
are random in sign [30]. We suspect the big difference values in radiance and hence in
RH values estimated from the radiances at Lindenberg are related to the systematic time
difference between the radiosonde launch and IASI overpass.

Consistent with Lauder, the positive radiance difference between R592 GDP and RS41
STD obtained by using IASI as the transfer standard (Figure 2a) indicates that RS92 GDP is
drier than RS41 STD. In Table 2, the RH difference estimated from the OBS-CAL differences
averages —2.04% over the 1500~1570 and 1615-1800 cm~! bands, which is close to the
directly observed difference of —1.91%, as also shown in the RH difference vertical profile
in Figure 2b (i.e., ~—2% in RH at ~330 hPa).

Lindenberg, Dual sondes, Radiance difference
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Figure 2. Lindenberg, Germany, differences based on 19 pairs of daytime dual launches. (a) Mean radiance differences for
RS92 GDP minus RS41 STD, as in Figure 1c. (b,c) RH and T differences for RS92 GDP minus RS41 STD, as in Figure 1d,e.
Gray numbers are the same as in Figure 1d,e.

14



Remote Sens. 2021, 13,173

Appendix B indicates that a small radiance difference is contributed by the small
temperature difference at Lindenberg (Figure 2c). Both Lauder and Lindenberg analyses
indicate that lower stratospheric temperatures do not have impacts on upper tropospheric
humidity-sensitive radiances (1400-1900 cm~!), and mid-upper tropospheric temperatures
can have an impact, but impacts of a temperature difference <0.2 K on radiance in the
context of RH are negligible.

Payerne, Switzerland. Similar to Lindenberg, dual launches at Payerne are mostly
1-3 h after IASI overpasses. As shown in Table 2, the daytime RH dry bias converted
from the OBS-CAL difference averaged for 1500~1570 cm ™~ is 3.50% for RS92 GDP and
2.38% for RS41 STD; and the corresponding night dry biases are 2.57% and 2.93%. As at
Lindenberg, those big RH bias values may be “inflated” by a systematic time difference. In
the 15001570 cm~! band, the daytime RS92 GDP minus RS41 STD RH difference estimated
from radiance differences is —1.12% (0.9%), and the nighttime RH difference is +0.35%
(1.2%). Blue lines in Figure 3a,b show similar radiosonde RH differences at ~300 hPa.
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Figure 3. Payerne, Switzerland. Similar to Figure 1d, mean RH differences and standard deviations (Gray numbers are
mean RS41 STD RH at marked pressure levels), RS92 GDP minus RS41 STD, at specified pressure levels (hPa). Averaged
from (a) 10 nighttime collocations and (b) 9 daytime collocations.

Analysis of dual sonde data in this subsection indicates that the RH differences esti-
mated from radiance space are basically consistent with the measured upper tropospheric
RH differences in the radiosonde observations. This lends confidence in using radiance
differences to analyze the sonde accuracy for single launched sondes to be presented in
Sections 3.2-3.4.

3.2. Single Launches of RS41 STD

As mentioned in the Introduction, all single launches of radiosondes (including RS41
STD, RS92 GDP, and RS92 STD) analyzed in the study are within 50 km and between 0.5 h
before and 0.25 h after IASI MetOp-B overpasses. ECMWEF analyses are typically ~1 h or
less from the satellite overpasses in those single launch cases.
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ENA. A small UTH dry bias for RS41 STD for both nighttime and daytime is suggested
by the slightly negative OBS-CAL radiance differences (Figure 4a,b). The RH dry biases
estimated from OBS-CAL are 1.17% (1.25%) and 1.34% (0.95%) for nighttime and daytime,
respectively. The ECMWEF analyses collocated with radiosondes are ~0.5 h after overpasses
in this location. OBS-CAL for ECMWF is close to zero (Figure 4c,d), and the RH biases in
Table 3 estimated from the radiance differences are 0.00% (1.35%) and 0.39% (1.65%) for
nighttime and daytime.

ENA, RS41 STD, Radiance difference
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Figure 4. Eastern North Atlantic (ENA) station at Graciosa, Azores, Portugal. (a-d) Mean OBS-CAL radiance differences and
standard deviations as in Figure 1a. (a,c) based on 12 night collocations, (b,d) based on 27 daytime collocations. (a,b) IASI
minus RS41 STD. (c¢,d) IASI minus ECMWE. (e,f) As in Figure 3, but for RS41 STD minus ECMWF (plotted gray numbers
are R541 STD mean RH percentages), and based on (e) 12 night collocations and (f) 27 daytime collocations.

The UTH dry biases of R541 STD relative to ECMWF estimated from the radiance
analysis (1.17% for nighttime and 1.73% for daytime) are basically consistent with those
directly computed from the RH profiles (Table 3 and Figure 4e,f). Interestingly, RS41 STD
appears to be <1% moister than ECMWF for both nighttime and daytime in the low-middle
troposphere (Figure 4e,f).

The standard deviations of the RH differences computed from the RH profile data are,
however, much bigger than the ones estimated from the radiance differences (e.g., 7.2% vs.
1.6% for daytime, Table 3). This contrast occurs with all single launches (Tables 3-5), but
does not occur with the dual launches, where they are comparable to each other (Table 2).
The primary reason is that the standard deviations in column 6 of Tables 3-5 are based on
radiosonde RH compared with ECMWEF RH that may differ up to 1 h and 10 km from the
radiosonde, while those in Table 2 are computed from dual sondes with no collocation time
or distance error.

The OBS-CAL differences (solid curves of Figure 4c,d) across 1400-1900 cm ™! for
ECMWEF fall within 2 X ste, suggesting that ECMWEF and IASI are consistent with each
other in the radiance space after taking into account the uncertainty terms discussed in
Section 2.2. This consistency happens at other single launch collocations analyzed in this
subsection and the following two subsections too (figures not shown).

For RS41 STD (Figure 4a,b), OBS-CAL differences for nighttime marginally fall within
2 x ste, while OBS-CAL differences for daytime are far beyond 2 x ste. This nighttime vs.
daytime contrast is partly related to the mean OBS-CAL differences, which are slightly
bigger during daytime (Table 2). However, the major factor is that the daytime collocation
sample (27) is much bigger than the night sample (12), so the ensemble-averaged ¢ (and
hence ste) is much smaller in the daytime through better averaging out the random colloca-
tion noise. Therefore, the consistency evaluation methods discussed in Section 2.2.3 should
be exercised cautiously. The collocation sample size and hence the ensemble-averaged

17



Remote Sens. 2021, 13,173

uncertainty could play an important role in determining if two variables are consistent
with each other.

NSA. The R541 and IASI cloud-free collocations occur mostly at night and dusk/dawn.
At this site, ECMWEF is within ~0.5 h after each MetOp-B overpass. Similar to the ENA
OBS-CAL radiance patterns, the OBS-CAL differences for R541 STD for both nighttime and
dusk/dawn (Figure 5b,d) are slightly negative, equivalent to a small dry bias in RS41 STD
(1.29% and 1.46% respectively, Table 3).
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Figure 5. North Slope Alaska (NSA) at Barrow (Utgiagvik). As in Figure 4a,b,e,f), but for (a,c) 29 night collocations and
(b,d) 36 dusk/dawn collocations.
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Cift{mw/m? sr crm™)

Cift{mw/m? sr cm™)

Relative to the R541 STD minus ECMWF RH differences estimated from the radiance
analysis, 1.02% and 0.63% for nighttime and dusk/dawn, the radiosonde RH differences
directly computed over 200.9-407 .4 hPa are greater (Table 3). The reason is that the pressure
interval does not accurately represent the upper troposphere at the site (see discussion in
Section 2.2.4), where the tropopause altitude is generally lower. As a matter of fact, by
raising the pressure by ~50 hPa, the UTH dryness of R541 STD relative to ECMWF obtained
from the RH profiles (Figure 5c,d) matches well with RH from the radiance analysis.

Note that in Figure 5a,b, the ste values of OBS-CAL for RS41 STD show fluctuations in
the channel from 1800 to 1900 cm ! for both nighttime and dusk/dawn, but not in other
spectral ranges. This feature is not seen at ENA (Figure 4a—d) or the three dual launch sites
(e.g., Figure 1a,b) while it is also observed at Ny Alesund (figures not shown). Atmospheric
water vapor content over polar regions tends to be low and channels in 1800-1900 cm !
could be sensitive to surface snow /ice which often occurs there.

Ny Alesund. Most of the radiosonde-satellite collocations for cloud-free scenes are for
dusk/dawn and daytime. As listed in Table 3, dry biases of 1.46% and 1.82% are estimated
for RS41 STD from the OBS-CAL differences for dusk/dawn and daytime respectively.
ECMWEF shows a smaller dry bias (<0.7%) estimated from the radiance analysis for both
dusk/dawn and daytime, but the bias at this site is slightly greater than that at ENA
or NSA. The reason for that could be that ECMWF is ~1 h after satellite overpass at Ny
Alesund while the time difference in other two sites is ~0.5 h.

3.3. Single Launches of RS92 GDP

ENA. The negative OBS-CAL radiance differences for RS92 GDP (Figure 6a,b) indicate
that the GRUAN processed RS92 has a small upper tropospheric dry bias in both nighttime
and daytime, with the daytime dry bias being larger. RH dry biases estimated from the
OBS-CAL difference are 1.13% and 2.57% for nighttime and daytime, respectively. The
nighttime biases for RS92 GDP and RS41 STD at the same site are comparable, but the
daytime RS92 GDP bias is greater (by ~1% in RH) than for RS41 STD.

ENA, RS92 GDP, Radiance difference
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Figure 6. Eastern North Atlantic (ENA) at Graciosa, Azores. As in Figure 4a,b except for RS92 GDP instead of RS41 STD,
based on (a) 43 night profiles and (b) 50 daytime profiles.
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The nighttime OBS-CAL differences for RS92 GDP (averaged from 43 collocations)
marginally fall within 2 x ste, while daytime OBS-CAL differences (averaged from 50
collocations) are far beyond 2 x ste (Figure 6a,b). That contrast is primarily related to the
mean OBS-CAL differences, which are bigger during daytime than nighttime.

NSA. The sample of collocations with cloud-free IASI is small. A dry bias of 1.35%
during nighttime and 1.98% during daytime is obtained from the radiance analysis (Table 4).
ECMWEF is collocated within 0.5 h after the satellite overpass at nighttime and 2-3 h after the
overpass for daytime. The OBS-CAL difference for ECMWF averaged over 1500-1570 cm !
for nighttime is only —0.0043 (0.095) mW m~2 sr cm ! equivalent to a RH dry bias of 0.1%.
For daytime, the value is —0.0521 (0.029) mW m~2 sr cm ™!, equivalent to a dry bias of
1.16%. We suspect the contrast is related to the difference in ECMWE-IASI collocation time
separation, as discussed in Section 3.1 for data at Lindenberg and Payerne.

Ny Alesund. There are only daytime collocations available for a statistical analysis
of RS92 GDP launches. A dry bias in R592 GDP of 2.29% estimated from OBS-CAL is
shown (Table 4). ECMWF is ~1 h after the satellite overpass. Again, the dryness in RS92
GDP relative to ECMWEF estimated from the radiance analysis is verified in radiosonde RH
observations (Table 4).

3.4. Single Launches of RS92 STD

This study has R592 STD launches and IASI collocations only at station ENA. A
striking feature in the OBS-CAL differences for RS92 STD (Figure 7a,b) is their differences
are greater than for R541 STD and RS92 GDP for both nighttime and daytime, suggesting
that UTH dry biases of RS92 STD are larger. RH biases estimated from the radiance analysis
are 3.90% (1.7%) and 3.25% (2.6%) respectively for nighttime and daytime. Those big biases
exaggerate the statistical inconsistency between RS92 STD and IASI, compared to between
RS92 GDP or RS41 STD and IASIL

ENA, R592 STD, Radionce difference
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Figure 7. Eastern North Atlantic (ENA) at Graciosa, Azores. As in Figure 5a,b except for RS92 STD instead of RS41 STD,
based on (a) 43 night profiles and (b) 50 daytime profiles.
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The RS92 STD dry biases (Figure 7a,b and Table 5) we obtained from the radiance
analysis appear to be smaller than those reported by Miloshevich et al. [5]. They notice a
dry bias of 4% and 5% for nighttime and daytime respectively by comparing with cryogenic
frost point hygrometer measurements. A possible explanation of the discrepancy between
the two studies is that radiosonde biases estimated from the radiance analysis are for the
whole layer with water vapor detected by IASI, while the biases in Miloshevich et al. [5] are
for specific levels of the upper troposphere. Also, https://www.vaisala.com/en/sounding-
data-continuity documents a change in Vaisala RS92 operational corrections after 2010.

4. Summary and Discussion

This paper assesses accuracies of upper tropospheric humidity observations for day-
time and night separately for Vaisala RS41 STD, R592 GDP, and R592 STD, respectively. This
is achieved by comparing the humidity sensitive infrared radiances (the 1400-1900 cm !
spectral band) computed using LBLRTM from radiosonde profiles with collocated cloud-
free IASI radiance measurements and with radiances similarly computed from collocated
ECMWFEF model profiles. We primarily use single radiosondes from three GRUAN and
ARM sites, with launches (primarily at synoptic times) mostly coincident within 30 min
before and 15 min after IASI overpasses. We also compare dual launches (RS92 and RS41)
at three other GRUAN sites, with radiosondes within 1 h of IASI overpasses at one station
and 1-3 h before overpasses at the other two stations. Dual launches provide a direct
comparison of R592 vs. RS41 and with IASI, and are used as a cross-validation of the
results obtained from single launches of RS92 or RS41. Accuracy of ECMWEF humidity
data is assessed in radiance space utilizing the collocations from single launch sites where
ECMWEF data is mostly at or within ~1 h of IASI. All comparisons of ECMWF vs. 1ASI
radiances show very small systematic ECMWEF biases.

Relative to IASI as a practical reference, daytime RS41 (even without GDP) has ~1%
(percentage points of RH) smaller UTH errors than RS92 GDP. RS41 may still have a dry
bias of 1-1.5% in both daytime and nighttime, and RS92 GDP may have a similar dry bias at
night, while standard RS92 may have a dry bias of 3-4%. Those characteristics are obtained
independently from 1500-1570 cm~! and 1615-1800 cm !, indicating the consistency of
water vapor spectroscopy between the two bands. The relative differences between RS541
STD and RS92 GDP or between radiosonde and ECMWF obtained from the radiance
analysis are consistent with their differences in RH measurements. The small biases of RS41
STD indicate that RS41 at operational stations is probably almost an “absolute” standard.
Note also that RS92 GDP improves accuracy to nearly the level of RS41 STD.

Radiosonde-satellite collocation uncertainty plays a big role in assessing their consis-
tency, but collocation uncertainty generally remains unknown for individual collocations.
A method was used to investigate the consistency between ensemble-averaged radiosonde
(ECMWEF) and IASI by computing an overall or total uncertainty term, including noise
from radiosonde and satellite instruments, collocation uncertainty, and uncertainty in the
LBLRTM (Section 2.2.3). Results show that RS92 STD for both daytime and nighttime and
RS92 GDP for daytime are not statistically consistent with IASI. RS92 GDP for nighttime
and RS41 STD for both nighttime and daytime are consistent with IASI for some cases
while not for some other cases. Interpretation of the biases and consistency results pre-
sented in the study requires caution since the size of the collocation sample can directly
affect the standard deviation of the overall uncertainty term, and thus the consistency (and
confidence) of the assessment. It is interesting to notice, however, that ECMWEF analyses
are statistically consistent with IASI in almost all of the cases analyzed. We are uncertain
about the reason for high model consistency, but ECMWEF assimilation of both radiosonde
data and IASI radiances may play a role.

The sonde humidity biases obtained from the radiance analysis are likely to be
upper limits since the “cloud-free” scenes selected could still be cloud contaminated
(Appendix A). The IASI channels used as the target for the analysis sense the water vapor
content of an atmospheric layer in the upper troposphere, and caution is needed to compare
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the sonde accuracy obtained from the radiance analysis with other studies focusing on
measurements made at other atmospheric levels.
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Appendix A

Cloud tests used to find cloud-free scenes for the IASI L2 physical retrieval [31]
include the following procedures. The IASI window channel test compares the measured
radiance in window channels against clear-sky simulated radiance using a collocated NWP
profile (“NWP test”). The Advanced Very High Resolution Radiometer (AVHRR) test relies
on evaluation of the presence of clouds within each instantaneous field-of-view using
collocated AVHRR imager data only (“AVHRR test”). The ANN cloud detection test uses
both IASI and collocated AVHRR measurements in combination and implements artificial
neural networks to classify the scenes (“ANN test”).

Cloud test flag “FLG_CLDNES” for each IASI retrieval generated from those testing
procedures has one of the following values: “1” denotes cloud free with high confidence,
and no clouds detected with the NWP, AVHRR and ANN cloud tests. “2” denotes presum-
ably clear, or potential small cloud contamination (at least one cloud test detected a cloud)
but a cloud could not be characterized with confidence. “3” denotes cloud detected and
characterized and the retrieved cloud amount is <80%. “4” denotes cloud detected and
characterized and the retrieved cloud amount is >80%.

The cloud amount retrieved in the EUMETSAT L2 product is zero when FLG_CLDNES
is “1” or “2”. We assume that pixels with FLG_CLDNES = “1” have more confidence than
“2"” to be “clear”. We, however, notice that the OBS-CAL radiance differences for the two
cases do not show a significant difference from each other. As shown in Table A1, OBS-CAL
differences for RS92 GDP with FLG_CLDNES assigned “1” or “2” are nearly identical in
both nighttime and daytime. The data used for Table A1 are from ENA because this site
has many more samples than other sites. It remains unclear why there is no difference for
these two cloud test flags. This could be because both cases have a comparable degree
of confidence that the pixel scene is cloud-free, or because the cloud screening method
may still be ambiguous. Regardless of the reason, to have more samples for statistical
analysis, RAOB-IASI collocations with FLG_CLDNES assigned 1 or 2 in the IASI retrievals
are combined to conduct the OBS-CAL analysis.
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Table A1. Mean differences of OBS-CAL (in all cases, IASI-RS92 GDP) calculated for IASI scenes
with cloud flag being clear with high confidence (“CLD1”) and presumably clear (“CLD2”) using
collocations of IASI-RS92 GDP data at ENA. The RH biases estimated from OBS-CAL are also listed.
Numbers of IASI-RAOB collocations are in the parentheses after CLD1 and CLD2 in the second
column. The CLD1 or CLD2 header in Col. 2 applies also to Cols. 3-5. Each value in parentheses in
the difference lines (lines 2 and 4 in each station and SEA category) is one standard deviation of the
difference to its left.

OBS-CAL OBS-CAL
Station (RS92 (IASI-RS92 OBS-CAL (IASI-RS92 OBS-CAL
GDP, Single GDP) RH Diff GDP) RH Diff
Launches) Radiance Diff 150-1570 cm 1 Radiance Diff 161-1800 cm 1
1500-1570 cm 1 161-1800 cm—1
CLDI (14)
ENA —0.0529 (0.057) 117 (1.3) ~0.0301 (0.045) 1.04 (1.6)
(Night) CLD2 (29)
—0.0526 (0.099) 117 (2.2) ~0.0323 (0.062) 112 (2.1)
CLD1 (21)
ENA ~0.1225 (0.095) 272 (2.1) ~0.0702 (0.074) 243 (2.5)
(Day)
—0.1174 (0.086) 2.61(1.9) ~0.0736 (0.053) 2.54 (1.8)
Appendix B

The impact of atmospheric temperature differences on the calculated radiance differ-
ences at 1400-1900 cm ™! is quantified using RS92 and RS41 dual launch radiosonde data,
where both sondes sample the same surface and atmosphere. We recalculate the radiances
for RS41 STD, but use the R592 GDP temperature and RS41 STD humidity profiles, and
keep other variables needed in the LBLRTM calculation the same. This new R541 STD is
called RS41 STDv. We then compare RS41 STDv radiances with the radiances calculated
using RS41 STD temperature and humidity. The difference between the two radiances,
CAL (RS41 STDv)-CAL (RS41 STD), if any, is expected to come from their temperature
difference.

Figure A1 shows the mean difference and +2 standard deviations of CAL(RS41 STDv)-
CAL(RS541 STD), based on the same Lauder dual launch data used in Figure 1. The radiance
differences are negative across 1400-1900 cm !, indicating that the colder temperature
in RS92 GDP (relative to RS41 STD, see Figure 1le) around the upper troposphere tends
to “cause” a more “wet” RH. However, the radiance difference is rather small, averaging
—0.0125 mW m~2 st cm ™! for 1500-1570 cm ™!, equivalent to 0.278 % in RH.

Lauder, Dual sondes, Radionce difference

RS41 STDv —minus— RS41 STD
Daytime

1500 1700 1900
Wavenumber {cm™"}

1800

1500

Figure A1. Lauder, New Zealand. CAL radiance differences, RS41 STDv minus RS41 STD, based on 14 daytime launches.
Dotted lines show =+ one standard deviation from the solid line, as in Figure 1c. RS41 STDv includes temperature profile
from RS92 GDP and humidity profile from RS41 STD. See text for discussion on the impact of temperature difference
(between RS92 GDP and RS41 STD) on the RH difference estimated from the radiance analysis.

23



Remote Sens. 2021, 13,173

Figure A2 is based on the dual launch data at Lindenberg (also used for Figure 2). The
radiance difference between RS42 STDv and RS41 STD is —0.0010 mW m~2 sr cm~! for
1500-1570 cm ™1, equivalent to 0.023% in RH. The temperature difference between RS92
GDP and RS41 STD in the upper troposphere is much smaller at Lindenberg than at Lauder
(for example, —0.06 K vs. —0.14 K at 328.6 hPa); the radiance difference between RS92 GDP
and RS41 STD is also smaller at Lindenberg than at Lauder. Since the temperature difference
is very small in these analyses, the temperature contribution to the CAL radiances and
hence the humidity computed from the radiance is negligible.

Lindenberg, Dual sondes, Rodiance difference

™~ a.1d
IE RS41 STDv —minus— R<S41 STD
2 005 Daytime
t O
~
E -0.05
;-ﬂ: =010
1400 1500 1600 1700 1800 1900

Wavenumber {cm™")

Figure A2. Lindenberg, Germany. Same as Figure Al but for 19 daytime dual launches.
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Abstract: A fully connected “deep” neural network algorithm with the Community Radiative Transfer
Model (FCDN_CRTM) is proposed to explore the efficiency and accuracy of reproducing the Visible
Infrared Imaging Radiometer Suite (VIIRS) radiances in five thermal emission M (TEB/M) bands.
The model was trained and tested in the nighttime global ocean clear-sky domain, in which the VIIRS
observation minus CRTM (O-M) biases have been well validated in recent years. The atmosphere
profile from the European Centre for Medium-Range Weather Forecasts (ECMWF) and sea surface
temperature (SST) from the Canadian Meteorology Centre (CMC) were used as FCDN_CRTM input,
and the CRTM-simulated brightness temperatures (BTs) were defined as labels. Six dispersion days’
data from 2019 to 2020 were selected to train the FCDN_CRTM, and the clear-sky pixels were identified
by an enhanced FCDN clear-sky mask (FCDN_CSM) model, which was demonstrated in Part 1.
The trained model was then employed to predict CRTM BTs, which were further validated with the
CRTM BTs and the VIIRS sensor data record (SDR) for both efficiency and accuracy. With iterative
refinement of the model design and careful treatment of the input data, the agreement between
the FCDN_CRTM and the CRTM was generally good, including the satellite zenith angle and
column water vapor dependencies. The mean biases of the FCDN_CRTM minus CRTM (F-C) were
typically ~0.01 K for all five bands, and the high accuracy persisted during the whole analysis
period. Moreover, the standard deviations (STDs) were generally less than 0.1 K and were consistent
for approximately half a year, before they significantly degraded. The validation with VIIRS SDR
data revealed that both the predicted mean biases and the STD of the VIIRS observation minus
FCDN_CRTM (V-F) were comparable with the VIIRS minus direct CRTM simulation (V-C). Meanwhile,
both V-F and V-C exhibited consistent global geophysical and statistical distribution, as well as stable
long-term performance. Furthermore, the FCDN_CRTM processing time was more than 40 times
faster than CRTM simulation. The highly efficient, accurate, and stable performances indicate that
the FCDN_CRTM is a potential solution for global and real-time monitoring of sensor observation
minus model simulation, particularly for high-resolution sensors.

Keywords: community radiative transfer model (CRTM); deep learning; fully connected “deep”
neural network (FCDN); radiative transfer; artificial neural network (ANN); batch normalization
(BN); real time; the visible infrared imaging radiometer suite (VIIRS)
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1. Introduction

The Community Radiative Transfer Model (CRTM) was developed at the Joint Center for Satellite
Data Assimilation (JCSDA). This fast radiative transfer model is used at the National Oceanic and
Atmospheric Administration (NOAA) and in many institutes and universities, both nationally and
internationally [1-7]. The model simulates satellite measurements from visible, infrared, or microwave
bands and calculates corresponding tangent-linear, adjoint, and Jacobian values for various geophysical
and atmospheric parameters to support radiance assimilation and the retrieval of atmosphere and
surface states [4,6]. Trained transmittance coefficients are used in the CRTM instead of the convolution
of sensor response function with line-by-line calculations. This approach renders the CRTM highly
efficient for application in operational numerical weather prediction, sensor validation and long-term
monitoring, development of the environment data record (EDR), and climate research for most polar
orbiting and geostationary meteorological satellite sensors [3,8-10]. For instance, at the National Centers
for Environmental Prediction (NCEP), the CRTM is a key component of the core of the data assimilation
system, called Gridpoint Statistical Interpolation (GSI), to simulate various satellite data [11]. Since the
NOAA sea surface temperature (SST) system—the Advanced Clear-sky Processor over Ocean (ACSPO)
system—was developed [3], the CRTM has been used to real-time monitor the sensor radiometric bias
performance of infrared (IR) window bands for more than a decade on the website of Monitoring
of IR Clear-sky Radiances over Ocean for SST (MICROS; https://www.star.nesdis.noaa.gov/sod/sst/
micros) [8,9]. Moreover, the monitoring of sensor observations against CRTM simulation (O-M) is a
key component of the integrated calibration/validation system (ICVS) established by the NOAA Center
for Satellite Applications and Research (STAR; https://www.star.nesdis.noaa.gov/icvs) [12].

Although the simplified transmittance coefficients have been adopted in the CRTM, with the
development of high spatial and temporal resolution sensors, the efficiency of CRTM simulation is
still a key issue for global data monitoring of the O-M biases, such as the Visible Infrared Imaging
Radiometer Suite (VIIRS) onboard the satellites in the Joint Polar Satellite System (JPSS) and the
advanced baseline imager (ABI) onboard the geostationary operational environmental satellite-R
(GOES-R). Based on an offline experiment, for the CRTM to reproduce 1440 x 720 clear-sky radiances
for VIIRS five thermal emission M (TEB/M) bands, which are equivalent to approximately 30-s sensor
scans, more than two minutes are required on a STAR internal Linux box with a 2.2 G CPU and 200 G
memory. It is thus impossible to timeously simulate global VIIRS data with more than 1 billion pixels
for real-time monitoring of the sensor radiometric biases using the CRTM as a reference.

To improve CRTM efficiency for high-resolution sensors, MICROS conducted CRTM simulation
at the grid level of the NCEP global forecast system (GFS) and then interpolated the model BTs to the
sensor pixel. The method renders the global O-M calculation highly efficient even for high-resolution
sensors, such as VIIRS and ABI. However, the O-M mean bias and the standard deviation (STD)
remain somewhat large [8,9]. For the ICVS, the model data were simulated in selected pixels from a
four-by-four moving window, which reduced the solution by one-sixteenth, making real-time O-M
monitoring possible for high-resolution sensors [12]. Although reducing the space resolution may
speed up CRTM simulation, missing information and dispersed global coverage are problems for some
EDR users, such as the SST. Moreover, for simulation in visible bands, the efficiency of atmospheric
scattering is a known issue in the remote sensing community.

In recent years, the method of an artificial neural network (ANN) has gradually become a popular
algorithm and is applied in most science and technical fields, including atmosphere and ocean remote
sensing and climate research [13-18]. Using simple, statistical, nonlinear approximation instead of
a complicated physical-based model in ANNSs renders a more computationally efficient method to
achieve a similar job to that of the physical-based model without significant accuracy loss [13-18].
These advantages have attracted an increasing number of remote sensing scientists to explore the
possible replacement of the radiative transfer (RT) forward model or inversion with the ANN model in
recent years [19-26]. Given the complicated nature of the RT model and its input, emulating a full
RT model using only one ANN architecture is currently impossible. Each study of ANN emulation
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generally focuses on one specific purpose and limit in some spectrum range, such as visible, long-IR,
short-IR, or micro waves. Some ANN emulators have been combined with additional statistics analysis,
such as principal component analysis, to reduce the dimensionality of the input features [26].

To explore the efficiency and accuracy of ANN application in the CRTM and in the real-time
monitoring of sensor radiometric biases in global, we designed and developed a fully connected
deep neural network (FCDN) algorithm and applied it to CRTM simulation for the Suomi-National
Polar-orbiting Partnership (SNPP) VIIRS in five TEB/M bands. Together with the earlier-developed
FCDN clear-sky mask (FCDN_CSM) [27,28], the objectives in this study are (1) to predict global clear-sky
BTs using a well-trained FCDN_CRTM for high spatial resolution VIIRS in near real time and (2) to
validate the FCDN_CRTM prediction accuracy, efficiency, and long-term stability. Section 2 discusses
the methodology of this research. A detailed description of the FCDN_CRTM and data preprocessing
is provided. This section also includes a brief summary of the CRTM and its inputs, FCDN_CSM,
and batch normalization (BN), which are all used in this study. Section 3 then demonstrates model
training, testing, and predicting, along with the model’s validation with CRTM BTs and VIIRS SDR
data. Thereafter, Section 4 discusses several scientific insights regarding the model and Section 5
provides the conclusion.

2. Methodology

In this section, we first summarize CRTM simulation applied to VIIRS TEB/M bands in the ocean
clear-sky domain, in conjunction with upper air profiles from the European Centre for Medium-Range
Weather Forecasts (ECMWF) and SST from the Canadian Meteorology Centre (CMC). Then, we discuss
the FCDN_CRTM architecture and data preprocessing in detail. In parallel, a summary of the
FCDN_CSM is provided, which is used in this study to identify the clear-sky domain efficiently. Finally,
we demonstrate the BN algorithm in the FCDN_CRTM to speed up the model convergence.

2.1. The CRTM and Input Data

By excluding the effect of the daytime solar reflection for the mid-IR bands [29] and focusing on
more uniformly distributed ocean, CRTM simulation for VIIRS thermal emission bands has been well
validated with sensor measurements for over a decade in the nighttime clear-sky ocean domain [3,8-10].
The condition is, thus, used in this study to evaluate the FCDN_CRTM accuracy and stability with
mature CRTM simulation.

As the CRTM was used for the VIIRS thermal emission bands, the effects of scattering in the
atmosphere were omitted in this study. When excluding the quantitative analyses of the effect of solar
reflection and the effect of cloud for all bands, and focusing only on the nighttime ocean clear-sky
domain, the radiative transfer equation used for the VIIRS TEB bands is written as follows:

R(6) = (0)B(Ts)T(0) + LT(0) + (1—(0))LT(0)T(6) (1)

where R(0) refers to TOA radiance for the VIIRS TEB band; 6 is the satellite zenith angle (SZA);
and ¢(6) depicts the surface emissivity. The diversity and complexity of a land surface can cause
unexpected bias and noise in the CRTM simulation; hence, we first selected the more uniform ocean
surface in this study. The surface emissivity was defined in line with the wind-speed-dependent
emissivity of Wu and Smith [30]. Moreover, Ts denotes surface temperature, and B(Ts) is its Planck
radiance. Atmospheric transmittance 7(6) and both upwelling and downwelling radiances L(6) and
ﬁ(@) were calculated within the CRTM. The three terms on the right-hand side of the equation are
surface emission, upwelling atmospheric emission, and reflected downwelling atmospheric emission,
respectively. Trained atmospheric transmittance coefficients were derived against the line-by-line
radiative transfer model (LBLRTM) transmittances, and they were then used to calculate 7(6), LT(9),
and L_i(Q) for most sensors onboard NOAA-related polar orbiting and geostationary satellites, such as
VIIRS. Resulting errors in TOA BTs were found to be small [31].
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Inputs to the CRTM mainly consist of the atmospheric profiles of pressure, temperature, moisture,
and ozone; surface temperature; wind speed; solar zenith angle; and satellite view zenith angle;
among others. An earlier documentation [3] described in detail the CRTM inputs from the atmosphere
profiles of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and
the Reynolds SST, and the CRTM inputs were then further updated using higher resolution ECMWF
(https://www.ecmwf.int) and CMC SST to improve simulation accuracy [12]. The ECMWEF data are
accumulated in the STAR server by the NOAA soundings team and are refreshed daily. This ECMWF
product has a 0.25° horizontal resolution with 91 vertical layers in the early release and later updated
to 137. The profiles are available up to 0.02 mb (http://www.ecmwf.int/en/forecasts/datasets); therefore,
no vertical extrapolation is needed for CRTM calculation. Eight files per day are acquired at 00, 06, 12,
and 18 UTC, including four analyses (i.e., 0-h forecast) and four forecasts (3-h and 9-h forecasts at 00
UTC, and 15-h and 21-h forecasts at 12 UTC).

The main difference between the GFS and ECMWF profiles is that the former defines the profile in
level but the latter defines the profile in layers. This makes ECMWEF atmosphere profiles easier to input
into the CRTM, as the complex conversion from levels to layers does not need to be considered [3].
In addition, the ECMWF’s reported u and v components of wind vector were used in this study to
calculate the near-surface wind speed and direction, and they were then input into the CRTM to
determine the sea surface emissivity. In this study, we performed the model simulation in VIIRS pixels,
as the simulation results are more accurate than those performed in-grid [12]. The ECMWF fields
were, thus, first linearly interpolated in time to match the VIIRS SDR observation times, using two 0-h
forecasts separated by 6 h. Since the two 0-h ECMWF forecasts are close to the analysis data, they are
more accurate for CRTM simulation than the other forecasts. These time-interpolated fields were
further bilinearly interpolated in space to match the VIIRS pixels before simulating CRTM BTs. A 0.1°
daily CMC SST analysis (https://podaac.jpl.nasa.gov/dataset/CMCO0.1deg-CMC-L4-GLOB-v3.0) was
selected as the surface temperature input into the CRTM. It was interpolated in the same way as the
ECMWEF to match the VIIRS pixels in space. In addition, we did not include the aerosol model in the
CRTM simulation in this study. As previously discussed, a missing aerosol in the CRTM simulation
may result in a slight overestimation (~0.1 K), particularly for longwave IR window bands [3].

2.2. The FCDN_CRTM Architecture

Due to the issue with efficiency in CRTM simulation for high-resolution sensors, an FCDN
was proposed to explore model efficiency. An FCDN is a multilayered artificial neural architecture,
which is widely used among deep-learning models to solve problems of function fitting, classification,
clustering, and pattern recognition. Liang et al. [27] summarized the details of the FCDN, which was
successfully applied to the classification problem of the VIIRS clear-sky mask for efficient and accurate
O-M validation in global.

In that early study, we constructed an FCDN including two hidden layers with 40 X 90 neurons
and 11 features as the model input into classify four CSM types. We demonstrated that the FCDN could
learn complex nonlinear functional mappings with highly accurate predicted results, given sufficient
computational resources and training data. Moreover, the FCDN black-box system reduces the manual
work needed for setting up in the traditional methods, including many empirical thresholds in the
physics-based CSM retrieval. Furthermore, it offers efficiency and migration advantages.

In the current study, we applied the FCDN to simulate the BTs of five VIIRS TEB/M bands using
ECMWEF data and CMC SST as input. This model is hereafter referred to as the FCDN_CRTM, as the
CRTM simulation was used as the model reference. Furthermore, different from the classification
application in the FCDN_CSM, the FCDN_CRTM is a regression problem: to predict a continuous
quantity output for an example. We, thus, made several critical updates to the FCDN_CRTM architecture.
First, the number of input features for BT calculation included 91-layer profiles for atmospheric
temperature, water vapor, and O3, as well as surface and satellite geophysical parameters—which
greatly outnumber those of the FCDN_CSM. We discuss the input data further in the next subsection.
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Therefore, the design of the FCDN_CRTM architecture was more complex to ensure rapid convergence
and to attain a global optimum for the cost function (also called the loss function) during the model
training. As discussed in [27], there is no mathematical or physical rule to determine the best
hyperparameters, other than early ANN references and fine-tuning by repeated experiments. By effort
in extensive experiments and model fine-tuning, we finally designed three hidden layers with 512,
384, and 64 neurons in the layers, respectively. Second, using the mean squared error (MSE) as a
cost function for a regression problem was more intuitive than using the cross-entry loss, as in the
FCDN_CSM. Furthermore, a regularization term, known as the L2 norm, was added in the cost function
to avoid possible overfitting when the model was used to predict CRTM BTs [32]. The following
equation (Equation (2)) shows the final cost function used in the FCDN_CRTM:

n

J(w,b) = Y (=) + A ) IW2I 2)
k=0

i=0

where w and b are the weight and bias, respectively, while n represents the batch size, and m is the
total number of weights. As described in part 1, the symbol A refers to the regularization coefficient,
which is a hyper-parameter in the FCDN_CRTM to decide how much to penalize the flexibility of our model.
In this study, we selected A to be 0.001.

2.3. Summary of the FCDN_CSM

A new algorithm of the VIIRS clear-sky mask using the FCDN (FCDN_CSM) [27] was developed
to replace the traditional physical-based model. The aim is to identify clear-sky domain efficiently for
the real-time monitoring of VIIRS O-M biases in the ICVS system. The model was further enhanced
recently to include the FCDN_CSM prediction and validation in daytime and improve its long-term
stability [28]. Although a slight residual cloud may remain by using the FCDN-CSM, the O-M mean
biases are comparable and the maximum degradation of the STDs is only several hundredths of a
Kelvin in M16, in comparison to using the ACSPO CSM. On the other hand, the model required less
than one minute to generate a day’s worth of CSM, at approximately 0.6 billion pixels, in comparison
to computationally consuming in the traditional model. Furthermore, the model did not obviously
degrade in a half-year analysis period, and it was, thus, used in this study to efficiently identify
clear-sky pixels for VIIRS.

2.4. The FCDN_CRTM Input and Preprocessing

As discussed in Section 1, CRTM simulation for VIIRS thermal emission bands in the nighttime
clear-sky ocean domain has been well validated for over a decade [3,8-10]. Under the selected
condition, which excluded solar contamination in M12, daytime diurnal cycle effects, cloud effects,
and complicated land surfaces, the O-M mean biases and STDs are only 0.1 + 0.3 K for the atmosphere
transparency band (M12) and 0.3 + 0.5 K for the atmosphere opacity band (M16). Achieving these
accuracies under the same atmospheric and geographic conditions is, thus, most challenging for the
first proposed FCDN_CRTM. Careful treatment of the input data is critical for model accuracy.

All training and testing data were limited to more than 90° of the solar zenith angle and ocean
pixels. Similar to the CRTM input, the FCDN_CRTM input features were obtained from ECMWF and
CMC SST, including 91-layer atmosphere temperatures; water vapor contents; O3; and each value of
surface wind speed, surface temperature, and surface pressure. The ECMWEF pressure profiles were
calculated by the surface pressure, with the same scales applied to 92 vertical levels for all space grids.
Thus, theoretically, surface pressure was adequate to represent a 92-level pressure profile input for the
FCDN_CRTM. The result in the next section further verifies this selection.

All ECMWEF and CMC gridding data were interpolated with time and space to match the VIIRS
SDR pixels. Furthermore, the SZA in VIIRS SDR GEO granules was extracted as a model feature and
was roughly separated into positive and negative values by the half-scan swath for model validation.
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Although the SZA was directly used as an input feature for the FCDN_CSM to conduct clear-sky
classification, a secant of SZA selected in this study is more effective. We further discuss this issue in
the next section. While only ocean-type data were selected in this study, the land or sea mask was
nonetheless used as a feature in the FCDN_CRTM to allow for an extension of the functionality to
include a land analysis in the future. Overall, 278 features were prepared as FCDN_CRTM input,
and CRTM Version 2.3.0 was used to generate BT references. Note that some researchers [26] have
suggested reducing the dimensionality for input features using principle component analysis (PCA) or
other methods to simplify the model and speed up the model training; however, in our case, we kept
all 91-layer data as model inputs to include extensive and detailed atmosphere states without any
energy loss. Table 1 lists all input features and output BTs in the FCDN_CRTM.

Table 1. Summary of input features and output brightness temperatures (BTs) in the fully connected
“deep” neural network algorithm with the Community Radiative Transfer Model (FCDN_CRTM). SZA:
satellite zenith angle.

Input Features Output BTs
Names Number Names Number

land/sea mask 1 M12 BT 1

Secant of SZA 1 M13 BT 1

Wind Speed 1 M14 BT 1

Surface Temperature 1 M15 BT 1

Surface Pressure 1 M16 BT 1
Air Temperatures 91
water vapor contents 91
O3 contents 91

Total 278 Total 5

2.5. Batch Normalization and Output Mode

Two processing phases were conducted during the FCDN training: forward propagation and
backward propagation. Forward propagation enabled the cost function calculation from the left layer
of the FCDN architecture to the right, while backward propagation updated the weights and biases
by calculating the gradient of the cost function from the right layer to the left. The gradients ideally
become steadily smaller from the right layer to the left. However, the weights in the deeper layers
are sometimes not updated, and the training of the network is, thus, not highly effective. This is
known as the vanishing gradient problem, which occurs frequently for complex and deep neuronal
networks. The root cause of vanishing gradients is that the input distribution that maps to the
nonlinear function gradually moves closer to the limit saturation zone as backward propagation
progresses to deep layers [33]. To avoid this problem, BN was introduced in the FCDN_CRTM as in
Equations (3) to (7) [33]:

B - {xll---/xm} (3)
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where B represents x values over a mini batch that was fed into the model in each training iteration,
i and o2 refer to the mini batch mean and variance, respectively, and y and 3 are two hyper-parameters
used to move the original input into a region in which the model is more sensitive to the input.
For each hidden layer, the input distribution that moves closer to the limit saturation zone is forced to a
relatively normal distribution (£;), with a mean of 0 and variance of 1. The input value of the nonlinear
transformation function is, hence, in a region that is highly sensitive to the input, thus avoiding the
problem of gradient disappearance and dramatically accelerating the training of the deep neural
network. Batch normalization also reduces gradients or their initial values” dependence on the scale of
the parameters. This enables the use of highly flexible learning rates. Furthermore, BN regularizes the
model and reduces the risk of overfitting.

In addition, the prediction BT can be trained together or separately by individual bands. As the
possible band-by-band correlation, individual band training and multi-band training may cause
different accuracies. To verify the advantage of BN and select the best output mode, in the FCDN_CRTM,
we tested the sensitivity of training performance for the following four cases: (1) single-band training
with BN and (2) without BN, and (3) multi-band training with BN and (4) without BN. The single-band
training, in which the output layer included only one band BT, required five training sessions to obtain
all TEB/M BTs for VIIRS. In contrast, the multi-band training trained all five band BTs simultaneously.

ECMWF data on one day (12 October 2019), and the corresponding simulated CRTM data,
were separated into training (90%) and testing (10%) data sets to use as model input. The SZA
was randomly selected between 0° and 60°, and the solar zenith angle was set to be larger than 90°
(nighttime). Figure 1 illustrates the cost function convergence during the training for the four cases.
It was clear that all cases converged and reached their optimal results after 400,000 iterations each.
For both single-band and multi-band training, the cost functions for the cases with BN converged
faster and reached smaller values than those without BN. This finding implies that the predicted BTs
from the FCDN model with BN were the most accurate. Furthermore, despite a 0.05 difference for
the cost-function convergence between the single and multi-bands, the results were comparable after
introducing BN to the model.

0.9

—— Single-Band Training without BN
0.8 —— Single-Band Training with BN
—— Multi-Band Training without BN
—— Multi-Band Training with BN

o
o

(=)
wn

o
>

Mean Squart Error

o
w

o
[N)

o
R

‘ %‘m‘w i

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
Iterations (x1e5)

4 -,\ WAWAAMAA M e et ikt S

0.0

Figure 1. The convergences of the cost function during the training for the four cases: single-band
training with batch normalization (BN) and without BN, and multi-band training with BN and
without BN.

Table 2 lists the means and STDs of the BT differences between the FCDN_CRTM and the CRTM
(F-C) for the testing data set. The mean values for all cases were close to 0, whereas the STDs for the
cases with BN were ~0.2 K smaller than those without BN. Furthermore, the STDs for the case of
multi-band training with BN were slightly larger than for single-band training with BN, indicating that
the latter training was more accurate than the former. The smaller STDs for single-band training might
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imply that this method avoided interaction among the bands through potential band-band correlation.
However, the training and testing accuracies for the multi-band training with BN still remained close
to those of single-band training with BN. Furthermore, the multi-band training was more efficient than
the single-band model, as all bands were trained at once. It was, thus, reasonable to continue using
only the multi-band training with BN thereafter.

Table 2. Global F-C mean and STD for SNPP Visible Infrared Imaging Radiometer Suite (VIIRS) on 21
February 2020 from bands M12-M16 (F-C: difference between FCDN_CRTM BT and CRTM BT; u: F-C
mean bias; o: corresponding STD; SB: single-band training; MB: multi-bands training).

u (F-C, K) o (F-C,K)
SB SB and BN MB MB and BN SB SB and BN MB MB and BN
M12 0.0069 0.0096 —-0.0076 0.0486 0.3162 0.1127 0.3534 0.1551
M13 0.0000 0.0336 —-0.0130 0.0328 0.3142 0.1236 0.3599 0.1644
Mi14 -0.0159 -0.0479 —-0.0088 0.0260 0.3166 0.1253 0.3534 0.1546
M15 0.0131 0.0683 —0.0064 0.0357 0.3196 0.1307 0.3469 0.1561
Mieé 0.0022 —-0.0363 —-0.0050 0.0389 0.3285 0.1183 0.3560 0.1633

3. FCDN_CRTM Training, Testing, Predicting, and Validating

In this section, we first demonstrate detailed FCDN_CRTM training and testing. We then employ
the trained model to predict CRTM BTs and validate the model with CRTM simulation and VIIRS
SDR data.

3.1. FCDN_CRTM Training and Testing

To take account the seasonal cycle effects and to build a robust FCDN_CRTM that can predict BTs
accurately and stably, the input data should include most spatial and temporal conditions in global.
In this section, six dispersion data points from 2019 to 2020, including 10 March, 5 May, 1 August,
12 October, and 6 November in 2019 and 15 January in 2020, which nearly cover all seasons, were
utilized as FCDN_CRTM input data. These data were selected side by side with the CRTM BTs for five
VIIRS TEB/M bands. Roughly 40 million samples were accumulated after data preprocessing.

The samples were further separated into training, validation, or testing data sets at a ratio of 90:5:5.
The sample data were randomly shuffled and normalized before being fed into the FCDN_CRTM,
and the number of iterations was extended to 2.4 million to make the cost function converge adequately.
The algorithm was developed by using Tensorflow version 1.4 and Python version 3.7 with parallel
processing capability. In total, 6-20 CPUs were used in parallel during the model training, testing,
and predicting on a NOAA STAR Linux server that had 200 G of memory and 2.2 G multi-core CPUs,
but without GPU support. The whole model training took approximately 8-10 h.

Figure 2 depicts changes in the cost function and the corresponding mean and STD of the testing
data for M15 during the training. We recorded the values of the cost function after every 1000 iterations,
but we tested the model every 6000 iterations. The value of the cost function began at ~80,000, which is
cut from the figure to emphasize the latest convergence. However, it can be estimated by calculating
the MSE for the typical BTs of five TEB/M bands. For instance, for a typical BT with 280 K after the
first iteration of training, the MSE calculated from the forward propagation should be close to the
square of 280, which was close to our expected value. The cost function rapidly reduced from ~80,000
to 0.1 during the first several 10,000 iterations and then gradually became smaller as the iterations
increased. During the entire training, the cost function oscillated up and down, but persisted in
decreasing, although at increasingly slow speeds, and remained nearly constant at the end of the
training. The persistent decreasing of the cost function implies that the BN introduced in the model
might mitigate the vanishing gradient problem for a long-iteration training, as the change in the cost
function became extremely small in later iterations. In the meantime, the massive amount of input
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data, which covered all seasons, provided a larger data extent to optimize the model more adequately
for a long training time.
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Figure 2. The changes of the loss function (upper panel), mean (middle panel), and standard deviation
(STD) (bottom panel) of the testing data for M15 during the FCDN_CRTM training.

Similar to the cost function, the mean and STD were quickly reduced at the beginning of the
training and gradually converged as the iterations increased. The mean quickly dropped to its global
minimum midway through training, while the STD continued to decrease and was finally stable at the
end of the training. We present only the trends for the mean and STD for M15, but the performances
of other bands were similar. As discussed in [27], the cost function, mean, and STD oscillated up
and down during the training; this was due to using small batch sizes instead of a single sample in
each iteration.

Table 3 compares the F-C mean biases and STDs between the training, testing, and prediction
data. The prediction data are discussed in the next subsection. For all bands, the F-C means and the
STDs were within several thousandths of a Kelvin and several hundredths of a Kelvin, respectively,
and are comparable between the training and testing data sets, suggesting that no significant overfitting
occurred in the model. Finally, including BN and regularization, together with the substantial
all-seasons data fed into the model, resulted in a well-trained model and a significant avoidance of the
overfitting effect.

Table 3. The F-C mean and STD of the train and test data, and predicted data for 02/21/2020 (F-C:
difference between FCDN_CRTM BT and CRTM BT; w: F-C mean bias; o: corresponding STD).

Train Data Test Data Prediction Data
u o u o u o
M12 —-0.0013 0.0313 —0.0013 0.0320 —-0.0011 0.0405
M13 —-0.0018 0.0329 -0.0018 0.0336 0.0019 0.0408
M14 0.0 0.0444 0.0 0.0454 0.0009 0.0585
M15 —0.0006 0.0505 —0.0005 0.0516 —0.0002 0.0682
Mi16 —0.0006 0.0620 —0.0006 0.0633 —0.0058 0.0860
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3.2. FCDN_CRTM Prediction and Validation with the CRTM

The trained FCDN_CRTM was first used to predict five CRTM BTs for February 21, 2020, which is
about one month after the nearest training data. We defined these data as prediction data to distinguish
between the training and testing data. As CRTM simulation is quite time consuming, VIIRS data were
down sampled by a four-by-four window [12] to speed up CRTM simulation for the model validation.
To comprehensively validate the model performance, we did not perform any other quality control for
all data, except for the FCDN_CSM clear-sky identification. All ocean clear-sky pixels were selected,
including full satellite scan swath and high latitude. As a result, 6.5 million pixels were used for the
model validation after the FCDN_CSM clear-sky identification.

The initial experiment used the direct SZA as an input feature to train the FCDN_CRTM and
predict the CSM for 02/21/2020, which was similar to its use in the FCDN_CSM. However, a distinct
stratification structure persisted in the global distribution of the F-C, regardless of how we tuned the
model. Figure 3 (upper panel) depicts this specific texture in the east Pacific Ocean for the M16 band,
which is the most pronounced among the five TEB/M bands. As the forward radiance is more related
to the cosine of SZA than the SZA itself, by using a secant of SZA as the input feature instead of SZA
in the same training condition, the stratification structure was removed completely in the prediction
data, as illustrated in the bottom panel of Figure 3. This slight change to the input feature resulted in a
significant improvement in the model, strongly indicating that feature selection is important for the
ANN model. Hereafter, the secant of SZA was selected as the input feature in this study.

FCDN_CRTM-CRTM, M16, using SZA

A = 03
e ,d»“-‘ o e =
o4 A S 4 -
20°N R e 8 ey Wr f o.
@T g = M"_&?'
L Y o Jl toa
k g4 (Y
b =, " e fgj" o <
0° So i pig R ol — . =% roo >
v ';‘ - it pv4
> ‘Q} < ; > lf)
R o o + F-0.1
- o
"N Ergt -
20°s L—;—‘,f‘i y A f =05
y 3 = I
N Jo
- N R s, 03
180° 150°W 120°W :

FCDN_CRTM-CRTM, M16, using secant of SZA

Kelvin

Figure 3. The distribution of the F-C mean biases in M16 with the direct SZA (upper) or secant of SZA
(bottom) as an input feature in FCDN_CRTM

Figure 4 portrays the global distribution (left panel) and histograms (right panel) of the F-C
mean biases in M12, M15, and M16. A summary of the corresponding F-C statistics for all five bands
is listed in the right two columns of Table 3. Note that the train and test data sets were generated
using the ACSPO CSM as clear-sky identification, whereas the prediction data used the FCDN_CSM,
which was trained with the ACSPO CSM. Therefore, in Table 3, the STDs were slightly reduced for
prediction data mainly due to possible residual clouds and outliers, rather than significant overfitting
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existence. This saying was further verified by the later analyses of the long-term stability. Furthermore,
the global distributions were generally uniform, particularly for the most atmosphere-transparent
band—M12—followed by M15 and M16. The F-C means were Gaussian distributed, and the global
means were typically +£0.002 K, with uncertainties of several hundredths of a Kelvin for all five bands.
Further analysis showed that the correlation coefficients between FCDN_CRTM prediction and CRTM
simulation are typically 0.9999 for all five bands. All statistics analyses indicated that the model
is quite accurate for BT prediction with most atmospheric and geographic conditions. In addition,
some outliers had slightly larger biases for M15 and M16 in the high SZA, which may be due to the
low accuracy related to a long atmosphere path.
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Figure 4. Global distributions (left panel) and histograms (right panel) of the differences between
FCDN_CRTM predicted and CRTM in M12 (upper), M15 (middle) and M16 (bottom) on 02/21/2020.

Figure 5 further validates the model performance in the SZA and total column water vapor
(CWYV) content dependencies of the F-C differences. Both parameters are the key factors to evaluate
radiative transfer model performance. The left panel shows the SZA dependence of the F-C mean,
STD, and corresponding histograms. The right panel is the same as the left, but for CWV. For both SZA
and CWYV, no significant dependencies of the F-C mean biases were observed. All curves of these F-C
biases are within a small amplitude range from —0.05 to 0 for all SZA and CWYV bins, which suggests
that the FCDN_CRTM can reproduce CRTM BTs accurately for different SZAs and CWVs. In addition,
there was slight noise at the high CWV, due to the small data portion in the corresponding bin.
Moreover, the uniform distribution performance even existed in the SZA dependencies of the STD
(e.f. L2 moment) when the SZA ranged from —-55° to 55°. The dependencies gradually increased
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after an SZA larger than 55°, but the maximum increasing amplitude was still ~0.05 K for M16.
The amplitudes of the CWV dependencies were [0.02, 0.08] for M12 and M13, [0.04, 0.09] for M14 and
M15, and [0.08, 0.12] for M16. Although the CWV dependencies of the STD were slightly larger than
those of the SZA, the amplitudes were still within several hundredths of a Kelvin.
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Figure 5. The F-C biases as functions of satellite zenith angle (left panel) and column water vapor
(right panel) in VIIRS M12-M16 for 02/21/2020. (upper panel) F-C mean; (middle panel) STD;
and (bottom panel) corresponding histogram.

Overall, for all TEB/M bands, the FCDN_CRTM-predicted BTs are generally consistent with the
CRTM for different SZAs and CWVs, suggesting that the model is robust for BT prediction under most
atmosphere and geographical conditions. However, slightly large STDs were found with a high SZA
and a large CWYV, particularly for M16, indicating that the FCDN_CRTM can still be fine-tuned to
improve accuracy and spatial stability.

3.3. FCDN_CRTM Validation with VIIRS SDR Data

Similar to the CRTM applications, one ultimate goal of the FCDN_CRTM is to evaluate and
monitor the accuracy, stability, and cross-sensor consistency of the VIIRS radiometric biases. Hence,
FCDN_CRTM model validation with VIIRS SDR data is necessary to check the model performances in
extensive atmosphere and geographical conditions. As the VIIRS O-M biases have been successfully
used in the past decade to validate CRTM performance under a global ocean clear-sky condition for
infrared atmosphere window bands [3,8-10], in this section, we use a similar method and focus on the
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consistency between the VIIRS observation minus FCDN_CRTM prediction (V-F) and the VIIRS minus
CRTM simulation (V-C).

Figure 6 presents the global distributions of the V-C (left panel) and V-F (right panel) for M12,
M15, and M16, and the corresponding histograms are shown in Figure 7. The global distributions
were quite consistent between V-F and V-C, and both mean biases for M12 were only negative several
hundredths of a Kelvin. Both V-F and V-C exhibited negative biases in long-window IR (LWIR) bands
— M15 and M16 (the root sources of the negative V-C biases for LWIR have been discussed in [3,8],
wherein one of the key factor is possible residual clouds). However, the negative mean biases for V-F
(-0.02 K, -0.27 K, and -0.35 K for M12, M15, and M16, respectively) were all slightly smaller than
for V-F suggesting that the FCDN_CRTM prediction is closer to VIIRS observations. Additionally,
the STDs of 0.32, 0.44, and 0.53 K for V-F are extremely comparable to those for V-C, and the largest
difference was only 0.005 K in M16. The summary of global statistics of V-C and V-F, including M13
and M14, are listed in Table 4, which shows that the means and STDs for M13 and M14 are also similar
to those of M12, M15, and M16.

Global Distribution (VIIRS-CRTM) M12, 2020-02-21

SN L e
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Kelvin

180° 120°W 60°W 0° 60°E 120°E 180°

Global Distribution (VIIRS-CRTM) M15, 2020-02-21

Kelvin

i i
120°W 60°W

Kelvin

Figure 6. Global distributions of the V-C (left panels) and V-F (right panels) for M12 (upper), M15
(middle) and M16 (bottom) on 21 February 2020.

Table 4. Global mean and STD for SNPP VIIRS on 21 February 2020 between V-C and V-F (V-C:
difference between VIIRS BT and CRTM BT, V-F: difference between VIIRS BT and FCDN_CRTM BT;
p: V-C or V-F mean bias; o: standard deviation).

V-C V-F

n o n X

M12  -0.0405 0.3160 —-0.0383 0.3185
M13  -0.5894 0.2650 —-0.5894 0.2680
M14 -0.5212 0.3850 —-0.5168 0.3895
M15 -0.2932 0.4390 —-0.2885 0.4440
Mi6 -0.3811 0.5255 —-0.3690 0.5318
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Figure 7. Global histograms of the V-C (left panels) and V-F (right panels) for M12 (upper), M15
(middle) and M16 (bottom) on February 21, 2020.

Overall, the global distribution, histograms, and statistics data provide strong evidence that V-F
is consistent with V-C under most atmosphere and geographical conditions, and the BTs predicted
by the FCDN_CRTM were reasonable and accurate in the global ocean clear-sky domain for VIIRS
TEB/M bands.

3.4. Long-Term Stability of the FCDN_CRTM

In this study, the stability of the FCDN_CRTM is not only key to the performance for the long-term
monitoring of sensor radiometric biases, but also a way to check whether there is any overfitting in the
model. For this purpose, we used the trained model to additionally predict BTs for five dispersion
days—03/16/2020, 04/15/2020, 05/16/2020, 06/10/2020, 07/01/2020, and 07/30/2020—where we selected
one day in each month from March to July 2020. Including 02/21/2020, seven days” data were used
to evaluate the stability of the FCDN_CRTM. Note that the day selection was random, and as with
data from 02/21/2020, we did not perform any quality control for the data, except for the clear-sky
identification by the FCDN_CSM.

Figure 8 illustrates the time series of the F-C error bars from M12 to M16 for the seven days.
The VIIRS clear-sky pixels were identified by the FCDN_CSM. The blue dashed line represents the
mean for all seven-day data and all bands, and together with two blue dashed lines (y = mean-0.1 and
y = mean + 0.1), the three dashed lines help to be more intuitive in checking day-to-day changes of the
F-C mean and STD. A corresponding comparison between V-C and V-F is presented in Figure 9 for M12,
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M15, and M16. The F-C mean biases persisted for several thousandths of a Kelvin for all analyzed days
and all bands. The average of the F-C means were —0.008, —0.006, —0.008, —0.011, and —0.013 K for M12
to M16, respectively, and the change was not significant over the time period. As expected, the STDs
on 02/21/2020, listed in Table 3 were the smallest among the seven days for all bands, as this day is
closest to the training data period. However, the STD changes were minimal in the first three days,
and the amplitude of the change was between 0.001 K and 0.009 K for all bands. Even on 5/15/2020
and 6/10/2020, the STDs only increased by a maximum 0.039 K in M12 in comparison to the most
accurate on 02/21/2020. After 06/10/2020, the STDs significantly worsened, and on 07/30/2020, they were
3—4 times more than on other days. Recall that the regularization and BN were introduced in the model,
and all season data were included in model training. All efforts were intended to avoid overfitting
of the deep learning model. However, 278 input features and a complicated model architecture may
result in overfitting not being fully eliminated. Moreover, the seasonal cycle and extreme climate
events [34] could cause possible noise during the model prediction. Interestingly, both means and
STDs between V-C and V-F persisted consistently longer in Figure 9, wherein the changes in mean and
STD from 02/21/2020 to 07/01/2020 are typically only between 0.01 K and 0.038 K for all bands. Then,
the V-F STD increased by ~0.055 K on 07/30/2020. Overall, the stable means and STDs of F-C and the
consistency between V-F and V-C from 02/21/2020 to 06/10/2020 provide strong evidence that the robust
performance of the FCDN_CRTM can be extended from 5 months to half a year. However, model
retraining is needed to maintain a high accuracy of the FCDN_CRTM prediction after that period.
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4. Discussion

4.1. Efficiency of FCDN_CRTM

As discussed in the last section, one advantage of the FCDN_CRTM is that the model reproduced
similar accurate BTs as CRTM simulation, without using a complicated radiative transfer equation.
Furthermore, with the same NOAA STAR Linux server (without GPU support), the CRTM simulation
for 6 million clear-sky points required approximately 12 min. In contrast, the total processing time for
the FCDN_CRTM with multi CPUs is only 17 s, which was about 42 times faster than the CRTM. On the
other hand, even we set one CPU to conduct FCDN_CRTM prediction, which is the same condition
with that for CRTM simulation, the total processing time to predict the same amount data is no more
than 40 s, suggesting that the high efficiency of FCDN_CRTM is mainly due to its inherent high-efficient
calculation, rather than just because it utilizes as many as possible CPU resources. This further implies
that the model has a strong capability to efficiently simulate high-resolution spatial and temporal
sensors, even for insufficient CPU resources. Certainly, the more data are processed, the more memory
is needed.

4.2. End-to-End System

In this study, the whole algorithm included data collection and preprocessing, clear-sky mask
prediction, and VIIRS BT prediction and validation. In addition, model training of the FCDN_CSM
and FCDN_CRTM was separate from the system. Thus, combining all components, we have built an
end-to-end Al framework to predict VIIRS BTs. It first inputs VIIRS SDR, ECMWEF data, and CMC
SST to the data preprocessing module. This module then collocates atmosphere and surface gridding
data in space and time to the VIIRS pixel level and generates both the FCDN_CSM input data with
11 features and the FCDN_CRTM with 278 features. Thereafter, the FCDN_CSM input data are fed into
the FCDN_CSM model to produce the VIIRS clear-sky mask. The predicted VIIRS CSM are further
input into the clear-sky identification module to identify clear-sky pixels for the FCDN_CRTM input
data. Finally, the FCDN_CRTM input data with clear-sky mask are fed into the FCDN_CRTM to
predict five TEB/M BTs, and the results are input into the validation module to validate prediction data
with CRTM simulation or VIIRS SDR data. The whole system is illustrated in Figure 10.
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Figure 10. An End-to-End processing chart of FCDN_CRTM System.

This framework has the potential to build a system for real-time monitoring of VIIRS BTs against
Al predictions. It can input VIIRS SDR data for granules, orbits, or an entire day, in conjunction
with the ECMWF and the CMC, to predict corresponding clear-sky BTs and to evaluate VIIRS data
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simultaneously. As discussed in the previous section, the FCDN_CRTM is much more efficient
than CRTM simulation and has a better design for real-time monitoring of VIIRS radiometric biases.
Furthermore, the framework makes it easy to extend our research in the future to include land, cloud,
and other conditions.

5. Conclusions

An FCDN algorithm, namely, the FCDN_CRTM, was proposed to explore the efficiency and
accuracy for reproducing VIIRS BTs in five TEB/M bands. The model was trained and tested in the
nighttime global ocean clear-sky domain, in which the CRTM simulation has been well validated in
recent years. The ECMWF atmosphere profile and the CMC SST were used as FCDN_CRTM input,
and the CRTM BTs were defined as labels.

Efforts were made to improve model performance by iteratively refining the model design and
carefully treating the input data. The FCDN_CRTM was designed with three hidden layers, with 512,
384, and 64 neurons in each layer, respectively. We used 278 features as input and five VIIRS TEB/M
BTs as output, and the six dispersed days of data from 2019 and 2020, which constituted approximately
40 million samples and covered all seasons, were selected to train the FCDN_CRTM. The trained
model was employed to predict CRTM BTs on seven randomly selected days from 21 February to
30 July 2020—nearly one day per month. The predicted BTs were validated with the CRTM BTs
and VIIRS SDR data for both accuracy and stability. Moreover, the earlier published FCDN_CSM
was used to quickly identify clear-sky pixels for the FCDN_CRTM prediction, and BN, which was
introduced in the FCDN_CRTM, sped up the model convergence and further reduced the STD by
~0.2 K. Furthermore, both BN and regularization used in the model, together with the all-season data
fed into the model training, aided in avoiding overfitting and made the model more robust. In addition,
a secant of the SZA used as FCDN_CRTM input instead of the SZA itself significantly improved the
model prediction performance.

Using a line-by-line RTM (LBLRTM) simulated BT as the FCDN model reference could be more
reasonable and accurate than CRTM, as the LBLRTM provides spectral radiance calculations with
accuracies most consistent with the sensor measurements [35]. However, its computational inefficiency
prevents the possibility of large data sample collection for FCDN_CRTM training, testing, prediction,
and validation. In contrast, the CRTM’s accuracies have been well validated, although the model
is an approximate RTM that uses trained transmittance coefficients. Especially for the TEB bands,
the root MSE between the CRTM and the LBLRTM is only ~0.016 K [31], and using CRTM BT as the
FCDN_CRTM reference is, thus, adequate for high accuracy and efficiency in this initial study.

As a result, the F-C means were within several thousandths of a Kelvin, and the STDs were within
several hundredths of a Kelvin for all bands, and they are comparable between the training and testing
data sets. The high accuracies could persist for about half a year before the STDs degrade significantly.
In addition, the FCDN_CRTM-predicted BTs are generally consistent with those of the CRTM with
different SZAs and CWVs for all TEB/M bands under most atmosphere and geographical conditions.
By validation with VIIRS SDR in global distribution and corresponding histograms, V-F was consistent
with V-C in most atmosphere and geographical conditions, and the consistencies lasted even longer
than the stable F-C period. Furthermore, the FCDN_CRTM processing time was at least one order of
magnitude faster than the CRTM simulation. The highly efficient and accurate FCDN_CRTM is, thus,
a potential solution to real-time monitoring of global O-M biases for high-resolution VIIRS. We plan to
continue to monitor the model’s result periodically under the framework to check for any anomalies
and find possible physical explanations. Our future work will extend the FCDN_CRTM functionalities
to include land, cloud, and other conditions in the FCDN_CRTM end-to-end framework.
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Abstract: The satellite passive microwave (PMW) sensor brightness temperatures (TBs) of all tropical
cyclones (TCs) from 1987-2012 have been carefully calibrated for inter-sensor frequency differences,
center position fixing using the Automated Rotational Center Hurricane Eye Retrieval (ARCHER)
scheme, and application of the Backus—Gilbert interpolation scheme for better presentation of the
TC horizontal structure. With additional storm motion direction and the 200-850 hPa wind shear
direction, a unique and comprehensive TC database is created for this study. A reliable and detailed
climatology for each TC category is analyzed and discussed. There is significant annual variability
of the number of storms at hurricane intensity, but the annual number of all storms is relatively
stable. Results based on the analysis of the 89 GHz horizontal polarization TBs over oceans are
presented in this study. An eyewall contraction is clearly displayed with an increase in TC intensity.
Three composition schemes are applied to present a reliable and detailed TC climatology at each
intensity category and its geographic characteristics. The global composition relative to the North
direction is not able to lead a realistic structure for an individual TC. Enhanced convection in
the down-motion quadrants relative to direction of TC motion is obvious for Cat 1-3 TCs, while Cat
4-5 TCs still have a concentric pattern of convection within 200 km radius. Regional differences are
evident for weak storms. Results indicate the direction of TC movement has more impact on weak
storms than on Cat 4-5 TCs. A striking feature is that all TCs have a consistent pattern of minimum
TBs at 89 GHz in the downshear left quadrant (DSLQ) for the northern hemisphere basins and in
the downshear right quadrant (DSRQ) for the southern hemisphere basin, regarding the direction
of the 200-850 hPa wind shear. Tropical depression and tropical storm have the minimum TBs in
the downshear quadrants. The axis of the minimum TBs is slightly shifted toward the vertical shear
direction. There is no geographic variation of storm structure relative to the vertical wind shear
direction except over the southern hemisphere which shows a mirror image of the storm structure
over the northern hemisphere. This study indicates that regional variation of storm structure relative
to storm motion direction is mainly due to differences of the vertical wind shear direction among
these basins. Results demonstrate the direction of the 200-850 hPa wind shear plays a critical role in
TC structure.

Keywords: tropical cyclone; climatology; wind shear; storm motion; satellite measurement; brightness temperature

1. Introduction

A tropical cyclone (TC) can be one of the most impactful weather systems, causing catastrophic
damages to human lives, society, transportation, properties, etc. [1,2]. For example, hurricane Katrina in
2005, with a maximum wind speed of 280 km hr~!, impacted most of the southeast United States (US),
making landfall in the greater New Orleans area. It is the costliest hurricane in US history, killing an
estimated 1245-1836 people and causing damages of $149 billion US dollars [3]. TCs can attain very

47



Remote Sens. 2020, 12, 3610

strong wind speeds, greater than 260 km hr~!, and bring heavy precipitation. Most TC damage is caused
by the force of its strong wind, storm surge, and flash flooding. Flooding from US landfalling TCs is
the leading cause of death related to severe storms [4]. TC rainfall can contribute up to 15% of the total
precipitation over a hurricane season in the Carolinas of the United States [5]. To mitigate the potential
impact of TCs, appropriate preparations should be taken based on accurate monitoring and predictions
of TC intensity, structure and precipitation.

The low earth orbit (LEO) satellite passive microwave (PMW) sensor-based measurements are extremely
important in TC monitoring and forecasts because of the PMW sensor’s capability in penetrating clouds to
observe TC temperature and humidity profiles and the horizontal structure [6-9]. The unique horizontal
structures of the inner eyewall, outer eyewall, principal convective band and secondary convective band
as well as the moat areas are clearly captured by PMW sensors at the 85-91 GHz channels [10,11]. Three types
of spiral bands, based on movement, are possible: stationary (non-propagating), apparent propagation
(stationary with respect to the TC center), and intrinsic propagation [1]. These special characteristics have
been utilized for estimation and prediction of TC intensity and evolution using various approaches, such as
Dvorak technique [12], Advanced Dvorak Technique (ADT) [13,14], and satellite consensus [15,16].

TC structure characteristics and evolution are associated with intensification processes [17-25]. Both
TC intensifying and weakening periods have maximum precipitation in the downshear left quadrant
(DSLQ) and up-shear left quadrant (USLQ). The minimum rain area, especially the greater areal coverage
of stratiform rainfall, located in the up-shear quadrants, is associated with a TC rapid intensification process.
Another indication of a rapid intensifying vortex is a cyclonic rotation of shallow-to-moderate-to-deep
precipitation from the downshear right to downshear left to up-shear left quadrants. Lightning activity
is often evident in DSLQ in the TC inner core (0-100 km) area and in the downshear right quadrant
(DSRQ) in the outer rainband (100-300 km) region [20]. The inner core lightning burst (ICLB) is also linked
to TC intensity change. Results show that TCs with ICLB inside the radius of maximum wind (RMW)
lead to intensification and weakening with ICLB outside the RMW [21]. Thus, the vertical wind shear
direction is critical to TC horizontal structure patterns. These results highlight importance of the azimuthal
coverage of precipitation and the radial location of deep convection for TC intensification. In addition,
the environmental impacts on TC structures shows regional differences, but are not well investigated using
satellite observations [26-29]. Therefore, a thorough analysis using a long term PMW sensor brightness
temperature (TB) TC database will be important to evaluate these results and lead to new insights of TC
structure and their geographic variations.

A comprehensive TC database is created with an improved calibration scheme and an advanced
interpolation scheme as well as an accurate TC center position from all PMW sensors during 1987-2012
and with TC motion and the 200-850 hPa vertical wind shear information from National Hurricane
Center’s Hurricane WRF forecasts used in the statistical hurricane intensity prediction scheme (SHIPS)
outputs [30]. Detailed structural features of TCs revealed in this study can provide an improved
and accurate climatology of TC structure and how it varies with intensity and geographic basins.
Results should benefit evaluations of numerical weather prediction (NWP) model TC simulations
and the decision-making efforts to mitigate incoming TC impacts. An accurate TC climatology can
also be applied to guide improvements of NWP model skills for better predictions of TC intensity
and distribution and to improve understanding of TC intensification processes.

2. Methodology and Datasets

The maximum TB difference due to frequency differences among PMW sensors at 85, 89, and 91 GHz
is approximately 15 K. These TB differences have to be corrected in order to have consistent TBs from all
PMW sensors for TC applications. Yang et al. [31] developed a physical-based inter-sensor calibration
scheme to calibrate Special Sensor Microwave Imager (SSM/I) and Tropical Rainfall Measurement Mission
(TRMM) Microwave Imager (TMI) TBs at 85 GHz and Special Sensor Microwave Imager and Sounder
(SSMIIS) TBs at 91 GHZ into 89 GHz so that all PMW sensors will have consistent TBs at 89 GHz to monitor
TC activities. The calibrated TBs are applied for the Naval Research Laboratory (NRL) TC webpage products
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utilized for near real-time monitoring of global TC activities. Accurate center position is very important to
present TC structure. The Automated Rotational Center Hurricane Eye Retrieval (ARCHER) scheme [32,33]
is used to fix the TC center positions initiated with the 6-hr TC best track locations. The Backus—Gilbert
interpolation scheme [34] is implemented for SSM/I and SSMIS to have better presentations of TC structure.
The 200-850 hPa vertical wind shear, defined as the difference of mean wind vector over a concentric zone
of 200-800 km radius around a TC center between 200 and 850 hPa, is applied to represent the ambient
large scale environmental conditions [30,35,36]. The 6-hr best track information of global TCs from Joint
Typhoon Warning Center (JTWC), Central Pacific Hurricane Center (CPHC), and National Hurricane
Center (NHC) such as the maximum wind speed, minimum center surface pressure, center positions,
and direction of TC movement and 200-850 hPa vertical wind shear are collected with the NRL PMW
TBs to create a unique comprehensive TC database during 1987-2012. Since the horizontal polarization is
better for presentation of storm horizontal structure features, only 89 GHz at horizontal polarization (H) is
utilized for this study. Storms over oceans only captured by PMW sensors are included in the dataset.

PMW sensors and their life cycles during 1987-2012 are displayed in Figure 1. SSM/I was onboard
the Defense Meteorological Satellite Program (DMSP) F08, F10, F11, F13, F14, and F15, while SSMIS is
on DMSP F16-F18. The Advanced Microwave Scanning Radiometer for Earth Observing System (EOS)
(AMSR-E) was onboard the EOS Aqua satellite. TMI was on the NASA TRMM satellite. The overlaps
of these satellites provide multiple chances to observe a TC per day during its lifecycle. The TC intensity is
classified as five categories based on Saffir-Simpson hurricane wind scale, in addition to tropical depression
(TD) and tropical storm (TS) [37,38]. Cat 3-5 TCs are classified as major hurricanes. There are six TC
basins: Atlantic (AL), Central Pacific (CP), East Pacific (EP), Indian Ocean (IO), Southern Hemisphere
(SH) and West Pacific (WP) [6,36]. A TC is classified into one of the basins depending on its center
position. A distribution list of all categorized storms observed by PMW sensors during 19872012 can
be found in Table 1. The thousands of observations for each storm category, except Cat 5 TCs with 615
samples, provide a solid foundation for a robust analysis of global storm climatology. However, there is
a significantly uneven distribution of the observed TCs over the six basins, especially for major hurricanes.
The number of observed TCs over CP, EP, and IO is much smaller than other basins, especially over 1O
where only 17 samples of Cat 5 TCs are available.

Satellite Passive Microwave Sensors Applied in NRL Tropical Cyclone Database (1987-2012)
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Figure 1. Chart of all satellite passive microwave (PMW) sensors during 1987-2012 used in the Naval
Research Laboratory (NRL) Tropical Cyclone (TC) database.
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Table 1. Total observations from satellite passive microwave (PMW) sensors in 1987-2012 for every

tropical cyclone (TC) basin and category.

TD TS Catl Cat2 Cat3 Cat4 Cats
AL 4909 7832 2195 749 548 461 74
CpP 785 332 129 68 85 94 47

EP 6016 4633 1178 574 497 355 44
10 2025 1353 159 48 81 61 17
SH 10,225 8685 2174 1026 1025 726 79
WP 11,718 8794 3101 1699 1418 1520 354
Total 35,678 31,629 8936 4164 3654 3217 615

The consistent TBs at 89 GHz are interpolated at 0.01° x 0.01° spatial resolution and extracted over
a 12° x 12° area over the TC center. A polar coordinate system is then adapted to better represent the TC
intensity and structure. This system has a radius of 500 km with resolution of 1 km and azimuthal
angles of 360° with a resolution of 0.5°. The polar system is ideal for TC climatology when a composite
analysis has to be utilized. In order to study impacts of the TC motion and vertical wind shear on
TC structures, TBs in the polar coordinate system are rotated accordingly with directions of the TC
movement and the 200-850 hPa wind shear before a composition process is conducted for observations
at each storm intensity category, respectively.

3. Results
3.1. TC Structure Climatology

3.1.1. Global TC Annual Variability

Figure 2 shows comparison of annual variation of global storm activities from the PMW sensor
measurements and the JTWC best track data during 1987-2012. A close agreement is obvious after 1992.
The significantly less observed storms from PMW sensors before 1991 is due to the fact that only FO8 was
available during that time period. Some storms were missed in 1991 because only FO8 and F10 sensors
were available. The evidence is clear that there is a significantly annual variability of TCs, especially
for major hurricanes. Twelve Cat 5 TCs were observed in 1997 while one observed Cat 5 TC in 1993
and 2008. However, the total number of annual storms is relatively stable around 100 with a small
annual variation. It is also worth noting there is no obvious trend on the number of annual storms.

From PMW Satellite Observations From Joint Typhoon Warning Center
— 1D TS ---Catl . 7TD T . :
100 /—\ > - e i T S
S RU
p
1 . ) ) \ A 1 . . . . . , .
1986 1989 1992 1903 1998 2001 2004 2007 2010 2013 1986 1980 1992 1995 1998 2001 2004 2007 2010 2013
Year Year

Figure 2. Annual variability of TC activities at each category. Left panel is from the PMW sensor
observations while right panel is from Joint Typhoon Warning Center JTWC). The vertical dashed line
is a mark of 1991 which was for start of at least two PMW sensor observations.
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3.1.2. Global TC Structure

Radial patterns of the azimuthally-averaged PMW TBs at 8 H GHz for a polar coordinate system
are shown in Figure 3 for global composite storms in 1987-2012 at each intensity category. The depressed
values of TBs at 89 GHz is due to the scattering effect of ice particles from deep convections; therefore,
the minimum TB position is an indication of the TC eyewall location. The heavy dashed line is
a connection of these minimum TBs for Cat 1-5 TCs. The eyewall of Cat 5 TCs has a radius of 30 km
while 50 km for Cat 1 TCs. A slight tilting of the heavy dashed line indicates an eyewall contraction
with increase of TC intensity. A TB depression is not obvious near the TD center position because its
convection is weak which has a small scattering effect. Another reason is that the TD convection is
not well organized so that its center position is not accurately identified. A TB depression around
radius of 50 km is evident with a very small amplitude for TS due to less convection intensity and less
well-defined eyewall than seen in stronger TCs.

Radial Patterns of Global Composite TC TBs
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Figure 3. Radial patterns of PMW sensor brightness temperatures (TBs) at 89H GHz for each category
of the global composite TCs in 1987-2012. The heavy dashed line is connection of minimum TBs of Cat
1-5 TCs.

Composition of a large sample of observed TCs from PMW sensors is the best way to present an
accurate climatology of TC structure. Figure 4 displays distributions of the composite TBs at 89H GHz
relative to the North direction for each storm intensity category during 1987-2012. The prominent
feature for Cat 1-5 TCs is the consistent concentric pattern of TBs, which is easily understandable
because of the TC consistent eyewall and spiral convections. A decrease of TB amplitudes near eyewall
associated with increase of TC intensity is evident. The concentric pattern is not clear for TS and TD.

It is well-known that a TC presents a unique asymmetric distribution of spiral convections.
The composition analysis for global storms in Figure 4 will not lead to a realistic structure
for an individual TC, but results demonstrate the composition process is correctly conducted.
Published literature indicates that distribution of strong convection is impacted by TC motion, intensity
variability, and especially the vertical wind shear of a TC’s ambient condition [28,29,39-43]. A recent
study of TC precipitation climatology shows that the maximum TC rainfall is located in the down-motion
quadrants with direction of the TC movement and in DSLQ with direction of the 200-850 hPa vertical
wind shear [44]. Therefore, we will analyze impacts of the large scale environmental conditions on
TC structure.
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Figure 4. Climatology of the composited global TC structure relative to the North direction at each
storm intensity category from PMW sensors at 89H GHz in 1987-2012.

Distributions of the composite TBs at 89H GHz for all global storm categories with regards
to direction of TC movement are displayed in Figure 5a. The relative low TBs are associated with
strong convection and mostly located in the down-motion left quadrant (DMLQ) for TD and TS
and in the down-motion quadrants for Cat 1-3 TCs. The strong convection in the down-motion
quadrants indicates convergence caused by the storm movement plays an important role on convection
enhancement ahead of its motion. However, the concentric pattern is still a dominant feature for storms
of higher intensity (Cat 4-5 TCs). It indicates that effect of the TC movement is not able to overtake
impact on structure of the thermodynamic processes which generate a strong vortex for Cat 4-5 TCs.
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Figure 5. Same Figure 4, except for composition with regard to (a) direction of TC movementand (b) direction of the
200-850 hPa wind shear. The pink vertical arrow shows direction of the TC movement or 200-850 hPa wind shear.
The red dashed line in (b) is for axis of the minimum TBs.

By same token, distributions of TBs at 89H GHz with regard to direction of the 200-850 hPa wind
shear for all storm intensity categories are given by Figure 5b. The consistent distribution pattern
for Cat 1-5 TCs is a distinct feature, i.e., the minimum TBs are always located in DSLQ. However,
the minimum TBs are located in the down-motion quadrants for TD and TS. The minimum TBs decrease
with an increase of TC intensity is expected due to strong convection which is always correlated with
magnitude of higher intensity TCs. Results demonstrate that the direction of the 200-850 hPa wind
shear plays a critical role in the distribution of TC convection.

To minimize potential uncertainties associated with limited samples in each category of the Cat
3-5 TCs, Figure 6 presents a distribution comparison of the global composite TBs for major hurricanes
between three different composition methods. The combination of major hurricanes in 1987-2012
leads to a more reliable distribution of TC structure than each category of the Cat 3-5 TCs because
of more samples involved in the composition process. The classic composition with the North direction
shown in the left panel displays an expected concentric pattern of the minimum TBs near the eyewall.
Regarding direction of the TC movement, although the concentric pattern is still a dominant feature,
a slight forward shift of the minimum TBs is visible. This feature is due to the mixed results from
the down-motion quadrants for Cat 3 TC convections and a concentric pattern for Cat 4-5 TC
convection. The right panel presents a distinct distribution pattern from the others. The minimum TBs
are clearly concentrated in DSLQ with a minimum axis slightly shifted to direction of the 200-850 hPa
wind shear. Results from analysis of the major hurricane structure further confirms the findings from
Figure 5, except for a clear and smooth distribution pattern. Direction of the 200-850 hPa wind shear is
the key factor in affecting distributions of the TC convection, i.e., convection is climatologically favored
in DSLQ with a maximum axis slightly shifted to the shear direction, and in downshear quadrants
for TD and TS. Direction of the TC movement also plays a more important role in weak storms
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(TD, TS, and Cat 1-2 TCs) than in major hurricanes. These features are consistent with locations of TC
heavy precipitation [25,28,29,44].

Global Composite Cat 3-5 TC TBs at 89H GHz
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Figure 6. Climatology of major hurricanes at 89H GHz composited from global TCs in 1987-2012.
Left, middle and right panel is for composition with direction of northward, TC movement
and 200-850 hPa wind shear, respectively. White arrow is shown as direction of the composition
method for each panel. The red dashed line in the right panel is for axis of the minimum TBs.

More studies are still needed to explain why direction of the vertical wind shear plays a critical
role in distribution of strong TC convection. Black et al. [45] suggested that the rapidly rotating
tangential winds near the TC strong convections create a maximum vertical motion in DSLQ which
lead to the minimum TBs at 89 GHz and the maximum rainfall there. Nevertheless, a consistent
pattern of the minimum TB distributions at 89H GHz with regard to direction of the 200-850 hPa
wind shear from the reliable TC database provide valuable information on storm structure to mitigate
impacts of approaching storms when the large scale environmental condition is available.

3.2. Structure Differences Among TC Basins

3.2.1. Geographic Features of Environmental Impacts

The environmental impacts on TC structure are clearly shown in Section 3.1.3 and the published
literature [22,25,26,28,29]. However, discussion of regional differences on the environmental impacts
was not thoroughly verified because of the limited TC observations used in these published studies.
With the large TC observations in 1982-2012, a reliable and detailed analysis on geographic features
of environmental impacts can be conducted. The mean motion speed of each storm intensity category
over all TC basins is listed in Table 2. It is obvious that the averaged storm motion speed is relatively
slower over CP, EP, 10, and SH than AL and WP basin. The mean motion speeds (scalar average)
of 5.4-6.9, 3.9-6.0, 4.2-6.3, 3.6-5.9, 4.0-4.7, and 4.9-6.0 m s™! are for AL, CP, EP, IO, SH, and WP,
respectively. In general, the motion speed increases from TD to Cat 1 TCs, then decreases from Cat 2 to
Cat 5 TCs. Table 3 displays the mean 200-850 hPa wind shear amplitude (scalar average) for each storm
intensity category over all TC basins. A range of the shear magnitudes are 5.8-9.9, 5.6-7.5, 4.4-7.3,
5.6-9.1,5.4-89, and 4.7-8.0 m s~! for AL, CP, EP, 10, SH, and WP basin, respectively. The prominent
feature is a consistent decrease of the vertical wind shear magnitude with increase of the TC intensity
category over all basins, except the Cat 4-5 TCs over 10 which has a very limited samples. It is well
established a relatively weak vertical wind shear is a favorable condition for TC intensification process.
Overall, AL basin has a relatively large vertical wind shear, while CP and EP have a relatively small
vertical wind shear.

54



Remote Sens. 2020, 12, 3610

Table 2. Averaged motion speed at each intensity category over each TC basin (m s™1).

TD TS Catl Cat2 Cat3 Cat4 Cat5
AL 54 67 6.9 5.8 6.1 57 5.6
CP 49 55 6.0 39 4.6 5.0 49
EP 42 45 4.6 4.8 5.0 52 6.3
IO 36 38 3.8 44 4.0 4.1 5.9
SH 40 47 44 45 45 41 41
WP 49 60 6.0 5.5 54 52 5.3

Table 3. Averaged 200-850 hPa wind shear at each intensity category over each TC basin (m s™1).

TD TS Catl Cat2 Cat3 Cat4 Cats
AL 85 94 9.9 8.4 8.0 6.7 5.8
cP 60 74 7.5 7.3 5.6 5.6 5.7
EP 73 64 55 54 4.8 4.5 44
I0 90 91 6.8 6.5 5.6 6.6 6.8
SH 83 89 8.2 74 7.6 6.0 54
WP 79 80 7.8 7.5 74 5.6 4.7

Figure 7 displays the composite structures with regard to direction of TC movement at each storm
intensity category over AL, SH, and WP. Over the AL basin, the minimum TBs are in DMRQ for Cat
2-3 TCs while an apparent concentric pattern within 200 km radius is for Cat 4-5 TCs. The Cat 1
TC has the minimum TBs in DMLQ. TD and TS have no clear patterns but with relative low TBs in
the left quadrants. Over the SH basin, there is a clear concentration of convections in the down-motion
quadrants for TD, TS, and Cat 1-3 TCs, while Cat 4-5 TCs still have a dominant concentric pattern.
Over the WP basin, TD, TS, and Cat 1-3 TCs have the minimum TBs located in DMLQ, and Cat
4-5 TCs have a concentric pattern. The mean motion vector of each storm category over all basins
(average of motion vectors) is listed in Table 4. It is evident that the mean storm motion vector is
headed to the northwest direction over CP, EP, and WP basin. The AL basin storms have the mean
motion vector directions of 289°-15° from the North and the IO basin storms have mean motion
vector directions of 303°~10°, while the SH storms have different mean vector directions of 185°-225°.
The relatively smaller amplitudes of the motion vectors compared with the corresponding scalar
averages of motion speeds shown in Table 2 are resultant of the varying directions of motion vectors.
In addition, percentage of the amplitude decrease of averaged motion vectors is relatively larger for
weak storms than for higher intensity TCs, indicating that there are more variations of the motion
vector directions for weak storms than for strong TCs. Therefore, there are clear regional structure
differences regarding direction of TC movement for TD, TS and Cat 1-3 TCs. It also indicates that
direction of TC movement has less impact on higher intensity Cat 4-5 TCs, which demonstrates the TC
strong vortex is resilient to impact of the TC motion.

A similar analysis of TC structure with regard to direction of the 200-850 hPa wind shear is
displayed in Figure 8. The most striking feature is that AL and WP storms have a consistent structure
pattern with the minimum TBs within a radius of 300 km in DSLQ for Cat 1-5 TCs and in downshear
quadrants for TD and TS. For SH storms, the minimum TBs is in downshear quadrants for TD and TS,
while in DSRQ for Cat 1-5 TCs. The difference in location of the minimum TBs for Cat 1-5 TCs between
AL/WP and SH actually reflects the opposite circulation patterns of storms between the Northern
and the Southern Hemisphere, which further demonstrates a critical role from direction of the
200-850 hPa wind shear. In addition, a more concentric pattern in the inner core area (radius < 100 km)
for Cat 5 TCs demonstrates a more resilience to the environmental impact for strong vortexes than for
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weak storms. A close review also indicates that the axis of the minimum TBs marked by the red dashed
line is slightly shifted toward the vertical wind shear direction. In addition, similar characteristics as
the AL/WP storms relative to the vertical wind shear direction are found for CP, EP, and IO basins
(Figures are omitted).

The mean 200-850 hPa wind shear vectors (average of the shear vectors) of storms for each
intensity category over all basins are shown in Table 5. The overall much smaller mean amplitudes
of the vertical wind shear vector compared to the corresponding averaged scalar wind shear shows
environmental conditions for different storms. The large geographic variations of the mean vertical
wind shear directions among these basins clearly display their different environmental conditions.
The mean vertical wind shear vector presents directions of 75°-95°, 54°-157°, 252°-95°, 260°-17°,
90°-135°, and 81°-227° for storms over AL, CP, EP, IO, SH, and WP, respectively.

Table 4. Averaged motion vector at each intensity category over each TC basin. (Direction: clockwise
from the North in degree; Speed unit: m s71).

Basin. Motion TD TS Catl Cat2 Cat3 Cat4 Cat5
Vector

AL Speed 2.4 3.0 41 3.4 42 49 52
Direction  323.7 9.7 15.0 3448 3287 3023 2892

cp Speed 3.7 2.6 51 3.4 4.0 45 47
Direction 2775 3177 3060 3155 3160 296.7 274.1

EP Speed 3.0 3.7 4.0 4.0 44 48 5.0
Direction 287.0 2957 296.7 2976 2942 2911 2964

0 Speed 22 22 2.1 34 3.0 32 5.1
Direction 303.5 3242 3482 1.5 105 3562 3429

SH Speed 1.8 2.3 2.4 2.6 2.5 24 2.5
Direction 2252 1851 1914 1860 1915 2125 206.5

WP Speed 29 3.1 34 3.3 3.5 3.8 45

Direction 308.5 349.7 3458 3405 3392 3234 3094

Table 5. Averaged 200-850 hPa wind shear vector at each intensity category over each TC basin
(Direction: clockwise from the North in degree; Wind shear unit: m s7.

Wind
Basin Shear TD TS Cat1l Cat2 Cat3 Cat4 Cat5
Vector
AL WindShear 47 6.1 7.1 55 54 45 4.0
Direction 93.5 91.5 75.7 79.7 79.2 77.3 94.8
cp WindShear 2.0 3.7 54 5.6 45 24 5.6
Direction 77.8 68.5 54.0 74.8 59.6 109.6 157.2
EP WindShear 0.3 0.6 0.8 0.6 0.7 1.3 22
Direction 345.8 255.7 2529 277.0 288.2 258.4 94.7
0 WindShear 6.1 6.2 4.0 3.8 3.6 3.1 4.5
Direction 300.1 299.6 297.8 281.7 260.1 324.2 17.3
SH WindShear 8.3 8.9 8.2 7.4 7.6 6.0 54
Direction 135.2 1231 119.6 121.1 117.8 126.9 89.9
WP WindShear 2.5 1.5 0.9 1.0 2.0 0.8 1.1
Direction 226.9 197.3 130.4 122.9 81.5 156.0 186.4
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TC structure of the composite major hurricanes with regard to direction of TC movement over
the six basins is given in Figure 9a. The prominent feature is a common concentric pattern of TBs at
89H GHz within 200 km radius over all basins except 1O, indicating a resilience of the strong vortex
to the motion impact. However, a close review still reveals differences on locations of the minimum
TBs near the eyewall. It is in the down-motion right quadrant (DMRQ) for AL, right quadrants
for CP, left quadrants for EP, down-motion quadrants for SH, and DMLQ for WP. The minimum
TBs are obviously shifted into the left quadrants for IO. Similar analysis with regard to direction
of the 200-850 hPa wind shear demonstrates a consistent TC structural pattern (Figure 9b). A striking
feature is a consistent location of the minimum TBs at 89H GHz in DSLQ for all basins except SH
where it is in DSRQ. Since the TC circulation pattern in the southern hemisphere is opposite to what is
seen in the northern hemisphere, the TC minimum TBs at 8 HGHz in DSRQ over SH is expected. A
close review of Figure 9b indicates a consistent axis of the minimum TBs marked by the red dashed
line is slightly shifted toward the vertical shear direction.
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Figure 9. Distributions of the 89H GHz TBs over six basins in 1987-2012 for the composite Cat 3-5 TCs
relative to (a) direction of TC movement and (b) direction the 200-850 hPa wind shear. The red dashed
line in (b) is for axis of the minimum TBs.

3.2.2. Regional Characteristics of TC Structure

Distribution patterns relative to the North direction at each storm intensity category over AL,
SH and WP are displayed in Figure 10. These kinds of patterns actually reflect the combined impacts
of the storm motion and the 200-850 hPa wind shear on storm structures. The similar concentric
pattern for Cat 4-5 TCs among these basins are expected because a strong vortex and consistent eyewall
appearance associated with intense TCs that are more resilient to the external forcing than the weak
storms. The relative minimum TBs at 89H GHz within radius of 300 km are in the northeast quadrant for
AL Cat 14 TCs, where relatively low TBs are also evident for Cat 5 TCs (Figure 10a). The approximate
eastward direction of the vertical wind shear vector indicates that location of the TC minimum TBs is
corresponding to DSLQ. Due to the mostly northwest direction of the TC motion, the motion impact is
actually in a competitive role of the vertical wind shear. However, results demonstrate the vertical
wind shear has a dominant role on the AL TC structure.
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The relative minimum 89H GHz TBs are located in the southeast quadrant for the SH Cat
1-4 TCs (Figure 10b). The associated vertical wind shear vectors, generally, have an East direction,
which shows that convections are in DSRQ. The associated TC motions are mainly in the south direction.
Thus, impacts from motion and the vertical wind shear are supportive to each other which lead to
the SH TC convections located in the southeast quadrant. For the WP Cat 1-4 TCs, the minimum TBs at
89H GHz in the southeast quadrant are resultant of the combined impact of the motion and the vertical
wind shear (Figure 10c); however, it seems more impacts are linked with the wind shear. The mean
vertical wind shear vectors have direction in the southeast quadrant while the mean motion vectors
have direction in the northwest quadrant. Differences are obvious for TD and TS among these
basins. Both motion directions and the vertical wind shear directions given by Tables 4 and 5 show
the combined impacts lead to variations of TD and TS structures.
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Figure 10. Same as Figure 7, except for relative to the North direction.

Regional differences of TC structure are visible from comparison of 89H GHz TB distributions
among the six basins. Figure 11 shows distribution of TBs at 89H GHz for the composite Cat 3-5 TCs
over the six basins regarding the North direction. Although the strong TC vortex is resilient to
the environmental impacts, a geographic variation is obvious. The concentric patterns of TBs within
a 200 km radius are clearly shown in EP, SH, and WP. Both AL and CP basin has the minimum TBs
concentrated in the northeast quadrant, while in the west quadrants over the IO basin.

For better display of impacts of storm movement and the 200-850 hPa wind shear on storm
structure, a comparison of major hurricanes during 1987-2012 over AL, SH, and WP regarding direction
of the North, TC motion and the 200-850 hPa wind shear is shown in Figure 12. For composition
relative to direction of TC movement (middle panel), the AL major hurricanes have the minimum TBs
located in DMRQ, while both SH and WP major hurricanes have a concentric pattern with a slight
shift of minimum TBs in the down-motion quadrants. A consistent pattern for AL and WP major
hurricane is displayed with minimum TBs in DSLQ, while SH major hurricanes have the minimum
TBs in DSRQ which is opposite to what shown in AL/WP, regarding to direction of the 200-850 hPa
wind shear (right panel). The red dashed lines indicate the axis of the minimum TBs is slightly shifted
toward the vertical shear direction. The major hurricane structure relative to the North direction shows
the minimum TBs are located in the northeast quadrant for AL, the southeast quadrant for WP, and in
concentric zones for SH (left panel).
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Figure 11. Distributions of 89H GHz TBs for the composite Cat3-5 TCs relative to the North direction
over six basins in 1987-2012.
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Figure 12. Comparison of the composite TB distributions at 89H GHz for major hurricanes over AL,
SH and WP. Left, middle and right panel is for composition with regard to northward, direction
of TC movement, and direction of the 200-850 hPa wind shear, respectively. White arrow is direction
of the composition method for each panel. The red dashed line in the right panel is for axis of the
minimum TBs.
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4. Discussion

This analysis demonstrates the obvious regional differences of storm structure relative to storm
motion among the six basins, especially for weak storms. TC structure relative to the 200-850 hPa wind
shear direction has a consistent pattern with convection located in DSLQ among these basins except
the SH basin where convection is located in DSRQ. Results demonstrated in this study are consistent with
the published literature [20,21,24,28,46,47]. Exploring mechanisms to explain different impacts on structure
from TC motion and the vertical shear are beyond scope of this study. However, evidence revealed here
does support the conclusion that the convergence caused by storm motion is most likely responsible for
strong convection ahead of storm motion, especially for a weak storm [47,48]. The maximum vertical
motion in DSLQ caused by the rapid rotating tangential winds near TC strong convection proposed
by Black et al. [45] is verified by observational evidence. Because of the relatively small differences
of the TC motion direction among the northern hemispheric basins and large differences of the vertical
wind shear direction, the regional variability of TC structure relative to the storm motion is actually
caused by differences of the environmental forcing among these basins. The combined impact of storm
motion and the vertical wind shear leads to asymmetric TC convection. The vertical wind shear plays
a dominant role if the storm motion impact is not lined up with the wind shear. Mctaggart-Cowan et al.
[49] demonstrated there are significant differences of large scale systems affecting tropical cyclogenesis
among these basins. Results from Wu et al. [50] showed 19.8% TC formations over west Pacific are
associated with the Monsoon Gyres, indicating more complex large scale environmental conditions for
WP TC formation. Results from this study provide observational evidence from prospective of satellite
measurements to confirm that the large scale 200-850 hPa wind shear is critical to storm development
and structure.

Systematic analysis not only confirms results from published literature but also leads to an
improved and detailed climatology of TCs associated with each storm category and their geographic
variability based on long and reliable satellite PMW observations. The satellite-observed TCs from
recent years are not included, although they will increase TC samples for a potentially better climatology,
especially for major hurricanes. Recent updates on PMW sensor calibrations [51] are also not included.
Although these updates could reduce potential uncertainties on TC structure especially for Cat 5 TCs
over CP, EP, and IO, they will not, in general, change results from this study. Reprocessing of the
new PMW TB datasets for an updated TC database will address these issues, but it is beyond scope
of this study. In addition, impacts from speed of TC movement and magnitude of the 200-850 hPa
wind shear and their combined impacts are not investigated in details in this study and should be
topics of future studies.

5. Conclusions

The historical storms (TD, TS and TCs) observed by all satellite PMW sensors during 1987-2012
are analyzed in a polar coordinate system with different composition methods regarding directions
of the North, TC movement and the 200-850 hPa wind shear. The primary goal of this study is
to provide a reliable and detailed climatology on global TC activities, structure and geographic
characteristics. The TMI and SSM/I TBs at 85 GHz and SSMIS TBs at 91 GHz TBs are calibrated to
89 GHz so that SSM/I, SSMIS, TMI and AMSR-E used in this study have a consistent high frequency
channel at 89 GHz. ARCHER is used to accurately fix the TC center positions. The suppression of TBs at
89 GHz due to ice particle scattering effects is strongly associated with TC convection, i.e., the minimum
TBs display locations of strong convection.

Analysis shows that having a large number of samples of observed storms in this study leads to
robust results on climatology of TC structure and their regional differences. There is significant annual
variability of global TC activities, especially for major hurricanes; however, the total number of storms
is relatively stable around 100. There is no evidence indicating any trend of TC activities. The radius
of the TC eyewall increases with decrease of intensity with a radius of 30 km and 50 km for Cat 5
and Cat 1TCs, respectively.
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The composition method regarding the North direction for global storms presents a concentric
pattern of TBs within 200 km radius because of the large number of samples of the observed storms used
in the composition process. Thus, this method for global storms will not lead to a realistic storm structure
for an individual storm due to the fact that TCs have a unique spiral convection structure. The impact
of direction of TC movement and the 200-850 hPa wind shear on TC structure are systematically
analyzed in this study. The composite structures of global storms at different intensity categories
regarding direction of TC movement show the minimum TBs located in DMLQ for TD, TS, and Cat
1-2 TCs, while major hurricanes have an apparent concentric pattern. The climatology of storm structure
with regard to direction of the 200-850 hPa wind shear presents a distinctive feature, i.e., the minimum
TBs located in DSLQ for Cat 1-5 TCs and in forward quadrants for TD and TS. Results demonstrate
direction of TC movement has obvious impacts on the structure of the relatively weak storms; however,
direction of the 200-850 hPa wind shear has a critical role in distribution of the TC convection.

The detailed geographic characteristics of TC structure are clearly demonstrated by comparison
of three different composition schemes. Regarding direction of TC movement, the composite pattern
of major hurricanes has the minimum TBs at 89H GHz located in DMRQ over AL basin, left quadrants
over 1O basin, and a concentric pattern within 200 km radius over CP, SH, EP, and WP basins.
The direction of TC movement has more significant impacts on less intense TCs than strong TCs.
The concentric pattern within 200 km radius is always similar for Cat 4-5 TCs among these basins;
however, differences are obvious for TD, TS, and Cat 1-3 TCs. The AL Cat 2-3 TCs have the minimum
TBs in DMRQ while Cat 1 TCs have a minimum in DMLQ. TD, TS and Cat 1-3 TCs over SH basin
have the minimum TBs in the down-motion quadrants. Over the WP basin, TD, TS, and Cat 1-2 TCs
have minimum TBs in DMLQ while Cat 3 TCs have minimum TBs in the down-motion quadrants.
Results demonstrate that there is a significant regional variation of storm structure relative to the motion
direction and that convergence induced by TC movement play an import role on the structure of TD, TS,
and Cat 1-2 TCs and less role for Cat 3 TCs and almost no impacts on Cat 4-5 TCs. This study also
reveals that the geographic variation of the structure relative to storm motion direction is mainly due
to differences of the vertical wind shear direction among these basins.

Regarding direction of the 200-850 hPa wind shear, TD and TS have a consistent minimum
TBs in the downshear quadrants, while Cat 1-5 TCs have consistent minimum TBs in DSLQ for
all basins except in DSRQ for SH basin, i.e., TC structure has no geographic variations regarding
direction of the vertical wind shear. Since the suppressed TBs at 89 GHz are closely linked to deep
convection, the consistent patterns shown in TBs and surface precipitation for all storm categories
solidify results from this study. This study provides robust observational evidence to confirm the large
scale environmental forcing has a critical and consistent impact on TC structure. This feature is
important because it could be utilized in TC forecasting and preparation to mitigate impacts from
an approaching TC.

The storm structures relative to the North direction are resultant from the combined impact
of storm motion and the 200-850 hPa wind shear. Results demonstrate the geographic variation
of storm structures relative to motion direction is actually due to regional differences of the vertical wind
shear direction. The impact from vertical wind shear dominates the impact from storm motion when
their roles are not collaborated each other, indicating the critical role to storm structure by the vertical
wind shear direction. Zhang and Tao [52] showed the vertical wind shear has a significant effect on
the TC predictability, especially during storm formation and rapid intensification. More studies are
needed to investigate the potential mechanisms through carefully designed cloud model simulations.
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Abstract: The National Aeronautics and Space Administration (NASA) Short-term Prediction Research
and Transition Center (SPoRT) has been part of a collaborative effort within the National Oceanic
and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Proving Ground and
Risk Reduction (PGRR) Program to develop gridded satellite sounding retrievals for the operational
weather forecasting community. The NOAA Unique Combined Atmospheric Processing System
(NUCAPS) retrieves vertical profiles of temperature, water vapor, trace gases, and cloud properties
derived from infrared and microwave sounder measurements. A new, optimized method for deriving
NUCAPS level 2 horizontally and vertically gridded products is described here. This work represents
the development of approaches to better synthesize remote sensing observations that ultimately
increase the availability and usability of NUCAPS observations. This approach, known as “Gridded
NUCAPS”, was developed to more effectively visualize NUCAPS observations to aid in the quick
identification of thermodynamic spatial gradients. Gridded NUCAPS development was based on
operations-to-research feedback and is now part of the operational National Weather Service display
system. In this paper, we discuss how Gridded NUCAPS was designed, how relevant atmospheric
fields are derived, its operational application in pre-convective weather forecasting, and several
emerging applications that expand the utility of NUCAPS for monitoring phenomena such as fire
weather, the Saharan Air Layer, and stratospheric air intrusions.

Keywords: NUCAPS; satellite soundings; weather forecasting; operational applications; retrievals;
infrared; CrIS; severe weather; fire weather; tropical weather; stratospheric intrusions
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1. Introduction

The National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System
(JPSS) Proving Ground and Risk Reduction (PGRR) Program has fostered the development and
application of satellite sounding retrievals for the benefit of end users though a “Sounding Initiative”
and competitively funded projects. The National Aeronautics and Space Administration (NASA)
Short-term Prediction Research and Transition Center (SPoRT; [1]) has been part of this effort since 2014,
contributing expertise associated with their research-to-operations/operations-to-research paradigm. As
a result of multi-organizational/multi-agency collaborations within the JPSS PGRR Sounding Initiative,
hyperspectral infrared satellite sounding retrievals are contributing to operational weather forecasting
in novel ways that were not anticipated two decades ago when the first hyperspectral infrared sounder
was launched on Aqua in 2002. The implementation of the NOAA Unique Combined Atmospheric
Processing System (NUCAPS; [2—4]) soundings in the United States NOAA National Weather Service
(NWS) operational environment inspired much of the work within the JPSS PGRR Sounding Initiative,
including the product design and applications that we discuss in this paper. The structure of the
level 2 environmental data records, as arrays of vertical soundings, has limited the availability and
accessibility of NUCAPS-derived products to assess these observations in plan-view for spatial context
and has limited their widespread application for short-term weather forecasting. While a few previous
studies have developed and demonstrated the feasibility of level 2, plan-view hyperspectral infrared
sounder products [5,6] for convective forecasting, these capabilities have not been widely adopted
into operational NUCAPS algorithm processing. Although level 3 gridded products are routinely
produced and available as standard NUCAPS products, there has been a gap in the development
of gridded, level 2 products or standardized approaches to support short-term forecasting/analysis.
In addition, the derivation of more specialized fields beyond basic temperature, moisture, and trace
gases has traditionally not been produced due to the lack of standard approaches to easily process and
derive level 2 products. A new method and concept for the processing and representation of NUCAPS
level 2-derived products is presented here. This work represents the development of approaches to
better synthesize remote sensing observations that ultimately increase the availability and usability
of NUCAPS observations to benefit scientific analysis and applications. The optimization of basic
gridding and interpolation methodologies as appropriately applied to NUCAPS data retains their
observational characteristics and enables state-of-the-art product development to further support their
application in weather analysis and forecasting, allowing the capability to add or develop new derived
products easily. The derived products presented herein, represent the novel development of fields not
traditionally derived from hyperspectral infrared sounder observations and new concepts/methods to
support applications related to short-term weather forecasting and analysis.

The NUCAPS retrieval system is based on version 5.9 of the NASA Atmospheric Infrared Sounder
(AIRS) science team method [7] and runs operationally at NOAA with global coverage in near real-time
(~180 min latency) and via direct broadcast sites with regional coverage in real-time (<60 min latency).
By “operational”, we mean that the system runs continually on every measurement made from space.
While NUCAPS has the capability to retrieve soundings from AIRS measurements, it runs operationally
at NOAA on measurements made by the Cross-track Infrared Sounder (CrIS), in orbit since 2011 on two
different platforms, as well as the Infrared Atmospheric Sounding Interferometer (LASI), in orbit since
2006 on a series of European Meteorological Operational (MetOp) satellite platforms. On any given day
at a target scene, there are thus multiple NUCAPS soundings available throughout the diurnal cycle
to support any number of applications. Here, we introduce the novel NUCAPS product, known as
“Gridded NUCAPS”, and the applications it supports. We distinguish between operational applications
with a known user-base in weather forecasting and emerging applications with demonstrated relevance
to weather forecasting.

NUCAPS sounding products are operationally available to the NOAA weather forecasting
community through the Advanced Weather Interactive Processing System (AWIPS) that ingests and
displays data products from a wide array of sources to support weather analysis and forecasting.
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In 2014, NUCAPS soundings were officially delivered to the NWS AWIPS system operationally, and for
the first time forecasters could visualize hyperspectral infrared sounding observations as “Skew-T"
diagrams, or thermodynamic plots of temperature and dewpoint profiles. This is also how forecasters
view radiosondes, so comparisons between these two sources are easy and intuitive. With thousands
of satellite soundings supplementing the sparse radiosonde network, forecasters suddenly had
ready access to wide swaths of satellite soundings that helped them characterize the pre-convective
environment, when radiosondes are typically sparse or absent [6,8-12]. To date, NUCAPS remains
the only NOAA operational sounding product from hyperspectral infrared measurements and the
only product of its kind in AWIPS. With active partnerships in the JPSS PGRR Sounding Initiative
and this new data source available to NWS Weather Forecast Offices (WFOs) within the United States
(including Alaska, Hawaii, and Puerto Rico), forecasters started applying NUCAPS soundings to
different forecasting scenarios, such as the cold air aloft aviation hazard described by Weaver et al. [13].
It was this novel application in aviation weather forecasting that inspired the design of Gridded
NUCAPS, which allowed forecasters to visualize incoming swaths of NUCAPS soundings as horizontal
or vertical cross-sections, instead of individual soundings one Skew-T diagram at a time. With Gridded
NUCAPS, Alaskan forecasters could readily determine the spatial and vertical extent of cold-air aloft
features and thus speed up their issuing of warnings to the aviation community. The methodology
to ingest and display satellite soundings as a series of values at different pressure levels, instead of
vertical profiles, was first developed by [5] and later refined by this team through an iterative process
involving end user assessment and feedback [11,13-15] with the current method described below. As a
result of operations-to-research feedback and collaborative efforts within the JPSS PGRR Sounding
Initiative, AWIPS now has the operational ability to display NUCAPS soundings not only as Skew-T
diagrams, but also as plan-views and cross-sections of the three-dimensional atmosphere through the
Gridded NUCAPS capability.

Gridded NUCAPS has operational applications in severe weather forecasting because with
overpasses from CrIS at 01:30 pm local time, it characterizes the summertime, peak afternoon
pre-convective environment with observations between typical radiosonde launches that forecasters
can use to evaluate forecast models ahead of afternoon thunderstorms. With Gridded NUCAPS,
weather forecasters can visualize horizontal swaths of the retrieved sounding observations at different
heights and quickly identify areas of convective instability. Gridded NUCAPS has been evaluated
within AWIPS by operational forecasters at the Hazardous Weather Testbed (HWT) annually since
2016 to determine its relevance and applicability and refine its quality [8-11,15-17]. The HWT is one of
a number of NOAA test beds [18] designed to facilitate a link between researchers and operational
forecasters. Esmaili et al. [11] discussed how our partnership with the NWS through the JPSS PGRR
program ensures an effective flow of information between the research and operational communities.
There is the “research-to-operations” flow that helps to make science operationally available to
decision-makers and the “operations-to-research” flow that inspires operationally relevant research
and products tailored to operational applications. The Gridded NUCAPS capability, with its emerging
applications that we discuss in this paper, is a testimony to the value of this partnership and flow
of information.

The main aim of this work is to highlight the Gridded NUCAPS product design and discuss several
emerging applications within the NOAA operational environment and beyond. These new applications
are an opportunity for research to have value in operations and, in turn, for operations to inform research
and product improvement. Section 2 describes the datasets and methodology we implemented to project
the NUCAPS soundings from their instrument grid to a standard latitude/longitude grid (0.5° resolution
at a fixed set of vertical levels. Section 3 highlights one operational application—namely, surveilling
the pre-convective environment—and three emerging applications, including fire weather analysis,
monitoring the Saharan Air Layer (SAL), and identifying stratospheric air influence and tropopause
folding. The latter was first conceptualized and demonstrated by [19-21] for the AIRS version 6 suite of
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products. Section 4 is a discussion of the significance of this work, while the manuscript is concluded in
Section 5.

2. Materials and Methods

2.1. Datasets: NUCAPS Satellite Soundings

We focus here on the NUCAPS retrieved profiles of temperature, moisture, and ozone from CrIS
and the Advanced Technology Microwave Sounder (ATMS) on the Suomi-National Polar-orbiting
Partnership (S-NPP) and NOAA-20 platforms. NUCAPS is based on the AIRS version 5.9 algorithm [7].
S-NPP NUCAPS soundings were made available to the NWS in 2014 through the satellite broadcast
network. Today, only NOAA-20 soundings are made available to the NWS, since the S-NPP CrIS side-b
electronics anomaly during 2019 impacted the availability of S-NPP NUCAPS for a short period of
time, and its feed into AWIPS was shut off as a result. Although much of this work depends on the
real-time delivery of NUCAPS soundings to the NWS, the examples in this work utilize both NOAA-20
and S-NPP NUCAPS data obtained from the NOAA Comprehensive Large Array Stewardship System
(CLASS), either reprocessed for AWIPS display or processed and displayed with the Gridded NUCAPS
stand-alone python code base.

For use in real-time forecasting, the NUCAPS algorithm was designed to achieve high-quality
profiles across the globe, generate traceable error estimates, and maintain a high computational efficiency.
NUCAPS is an optimal estimation retrieval system [22]. Optimal estimation is a method employed in
many other retrieval systems also [23-27] that adds information from the radiance measurements to an
estimate of the atmospheric state (known as the a-priori, or first guess), while propagating error estimates
from both sources to the final solution. This technique has been widely adopted because the space-based
radiance measurements do not contain enough information to fully resolve the vertical atmospheric
state at every retrieval footprint, and an a-priori estimate helps stabilize the solution. An optimal
estimation temperature retrieval can, thus, be interpreted as an improvement in prior assumptions
about atmospheric temperature based on measurements from space. One can use any number of data
sources to function as an a-priori, as seen in these systems [23-27]. NUCAPS calculates an a-priori for
temperature, moisture, and ozone by applying regression coefficients to the CrIS/ATMS measurements.
These coefficients are calculated off-line as the correlation between four global days of CrIS/ATMS
measurements and co-located atmospheric state variables from the European Centre for Medium-range
Weather Forecasts (ECMWF) reanalysis model. Even though these regression coefficients have a
model dependence, one can regard the regression retrievals from radiance measurements to have a
minimal dependence on forecast models because most of the information about the instantaneous
atmospheric state is derived from the radiances themselves. NUCAPS uses a linear regression approach,
as described by [28], though other approaches exist here [29-33]. Operational meteorologists value
the fact that NUCAPS soundings are largely model-independent, because this allows them to verify
forecast models in real-time.

NUCAPS is a multi-step retrieval system that we will not describe in-depth, but it is worth
highlighting how NUCAPS retrieves soundings in cloudy atmospheres, because this has direct
relevance to discussions here. NUCAPS uses a technique called “cloud clearing” [7,24,34] to derive a
cloud-free radiance estimate from each cluster of 9 CrIS radiances (3 X 3 fields of view). This technique
is a simple, robust means with which to remove the effects of clouds from the measured radiances
without prior knowledge of clouds or the requirement for complex radiative transfer calculations
through clouds. With cloud clearing, NUCAPS retrievals in partly cloudy scenes can be interpreted as
the state of the atmosphere around or past the clouds, not through the clouds. Cloud clearing does
reduce the spatial resolution of NUCAPS retrievals, since a sounding is retrieved for every aggregate of
9 CrIS fields of view (~50 km at nadir and ~150 km at the edge of the scan), but it significantly increases
the retrieval yield to a ~75% success rate from a global set of measurements and allows sounding
observations in complex, partly cloudy scenes to characterize the environment within storms. Another
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aspect of NUCAPS is that it retrieves temperature and moisture twice—first from a microwave-only
(MW-only) set of ATMS channels [25,35,36], and second from a set of infrared plus microwave (IR +
MW) channels [2,4]. Both MW-only and IR + MW retrievals are part of the NUCAPS product, but only
the latter is available in AWIPS. The MW-only retrievals contribute to evaluating whether the IR + MW
retrievals failed or succeeded.

2.2. Methods: Gridded NUCAPS Product Design

The current Gridded NUCAPS capability was released in the AWIPS baseline distribution in 2019.
AWIPS is the primary visualization and decision-support platform for the NWS WFOs. “Baseline”
means that the same configuration and software capability is distributed to all WFOs within the United
States. This gives each WFO the ability to generate the same Gridded NUCAPS products from the
real-time flow of satellite data into AWIPS. The Gridded NUCAPS capability is still under active
development to refine the initial AWIPS capability and to create a robust code base for processing
gridded sounding products for real-time web-based visualizations for non-AWIPS users and to support
applied research and validation studies.

Before the horizontal grids are created, a vertical interpolation is independently applied to each
sounding to interpolate the data to standard pressure levels (Pgq). In Gridded NUCAPS, the 100
native NUCAPS levels are transformed to standard meteorological levels in the AWIPS operational
environment for inter-comparison with other data sets, such as models and radiosondes. The set of
standard gridded levels we defined are 41 levels from 1100 to 100 hPa every 25 hPa to match the NWP
models and enable easier comparison in AWIPS. The observations are interpolated from the Earth’s
surface to 100 hPa with linear interpolation. In NUCAPS, trace gases are retrieved on pressure layers
and temperature on pressure levels. Trace gas quantities, such as water vapor and ozone, must first
be converted from a layer quantity to a level quantity. The conversion takes the midpoint between
two layer quantities to calculate the level quantity, where V},,,; in Equation (1) represents the trace gas
variable such as water vapor or ozone and i represents the index of the native 100 NUCAPS pressure
levels, where i = 1 and i = 100 are at the top and bottom of the atmosphere, respectively:

Vi+Viq .
View, i = 2 l > 1 . 1)
! Vi i=1

Note that index i may be less than 100 for soundings where the topography is higher and surface
pressure is lower than 1100 hPa. This methodology is described below. Separate functions (Equations (2)
and (3)) are used to interpolate temperature to standard levels (Ty,;) compared to water vapor and
ozone (Vg ). To preserve the mass, water vapor and ozone are linearized by interpolating the standard
logarithm of the column density. Below, j represents the index of the 41 standard pressure levels where
Pi_1 < Py, < P;. Like the index i: j = 1 and j = 41 are at the top and bottom of the atmospheric column,
respectively:

Pgtgj— Pia
Tota, j = Tica + (Tstd, i~ Ti—l) X #, 2
1 1—
1010 (Psta,j) — log1o(Pi—1) 1"
Vot = [10g10(Vi_1) * (loglo(vsm’ j) ~logyp(Vi-1)) log,(P;) —log;(Pi-1) G

Figure 1a is an example of the impact of the vertical interpolation on the sounding. There are only
slight differences between the resampled profile (blue) and the original sounding (pink). With the cold
air aloft aviation hazard in mind, critical temperatures < —65 °C (gray shading in Figure 1b,c) are still
identified in the vertically interpolated sounding, with only a 10 hPa difference between the bottom of
the cold air aloft layer when comparing the interpolated and native NUCAPS temperature. Based on
forecaster feedback, the slight differences in the 250-200 hPa layer are not significant enough to impact
the integrity of the sounding or drastically change decisions related to forecasting applications.
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Figure 1. Example of the vertical interpolation compared to the native National Oceanic and
Atmospheric Administration (NOAA)’s NOAA Unique Combined Atmospheric Processing System
(NUCAPS) resolution. (a) NUCAPS vertical temperature sounding plotted on native 100 levels in
blue overlaid on NUCAPS temperature interpolated to 41 standard levels (pink). Comparison of the
300-150 hPa upper-level region between (b) temperature interpolated to 41 vertical levels, and (c) native
NUCAPS 100 levels. The gray region represents the region of the sounding <—65 °C, the criteria for
identifying the potential for the cold air aloft aviation hazard.

The horizontal gridding is performed on temperature, relative humidity, and additional derived
fields. Each array of aggregated soundings is added to a 0.5° latitude/longitude grid over a global
domain using nearest neighbor and minimal interpolation. Regions outside the swath are masked
where data are unavailable before the gridding takes place. Horizontal fields are created for temperature
and relative humidity on 41 standard levels and at the surface (e.g., 2-m), quality flags, and derived
single layer products: total precipitable water (TPW) and layer precipitable water (LPW), total ozone,
ozone anomaly, and tropopause level are also gridded. In AWIPS, the data are output as a grid record
and made available for display. The derived parameters in AWIPS are leveraged to calculate and
display additional fields such as lapse rates, theta-e/theta-e lapse rates, Haines Index, and other stability
parameters derived from temperature and moisture. The derived parameters are baseline python
functions in AWIPS that perform calculations on model and even satellite data to “derive” fields for
display. Given that Gridded NUCAPS is ingested as a grid record, akin to model data, any derived
parameter that uses temperature or moisture fields for its derivation can be calculated and displayed.
Therefore, a wide array of display fields are available through AWIPS-derived parameters. Some fields
derived by AWIPS such as stability indices that rely on levels within the boundary layer still need
further evaluation for accuracy and efficacy. The specific variables and levels/layers presented here
were chosen based on operations-to-research feedback gathered during annual participation in the
HWT spring experiment [11,16,17].

Ideally, prior to vertical interpolation and horizontal gridding, the bottom of each sounding should
be found based on comparing the surface pressure to the NUCAPS pressure levels. Correctly adjusting
the surface and boundary layer conditions according to local changes in topography and surface
pressure benefits the interpretation of satellite soundings and prevents the propagation of systematic
uncertainty in derived geophysical variables (i.e., lapse rate, stability indices). Note that NUCAPS
sounding files include 100 levels from 1100 hPa (P1qp) up to top of the atmosphere (0.0016 hPa; P,),
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and 1100 hPa is often below the Earth’s surface and unrepresentative of actual conditions. In the event
that the Earth’s surface is higher than Py, the remainder of the pressure grid is filled in with values
identical to surface temperature, thus creating an isothermal profile below the surface. The technique
outlined in Figure 2 removes any isothermal layer from the NUCAPS sounding and correctly assigns
the bottom level. This technique to find the bottom portion of the sounding is implemented in
the current AWIPS capability. This technique can be taken one step further to adjust the boundary
layer temperature and moisture values in the sounding. The boundary layer multiplier (BLMULT;
Equation (4)), can be calculated to either narrow or broaden the boundary layer to within 0.2 to 1.2 hPa.
Then, a representative fraction of the temperature or moisture can be added or removed from the
bottom of the sounding. Since the NUCAPS level closest to the surface pressure will never be an exact
match, BLMULT can account for this discrepancy. BLMULT is calculated by:

Psurf — Protlev-1

BLMULT = 4)

Ppotier = Protiev—1 ’
where P is the array of 100 NUCAPS pressure levels, surface pressure (P) is obtained from the Global
Forecast System as part of the NUCAPS algorithm, and botlev is the bottom-level pressure index found
using one of the three conditions in Figure 2. Then, the surface temperature (T, is calculated by
Equation (5) as follows:

Tsurf = Tpotlev—1 + BLMULT X [Tbotlev - Tbotlev—l]- (5)

Note that Equation (5) is modified to calculate the surface relative humidity in the same manner.
For the total column fields such as ozone and total precipitable water (V},), BLMULT is applied to the
concentration density at the bottom level (Vy,4,p) and added to the total column:

botlev—1

Vit = BLMULT X Vbotlez; + Zi:l

V.. (6)

Plevel = mln( l Psurf_ P l )

Condition: Condition:
Psurf < IDlevel Psurf > I:’Ievt-:ol
Plevel_ Psurf >=5

Condition: botley =
I:’surf = I:’Ievel Level
Condition: Condition: betley
Psurf > PIevel Psurf > I:’Ievt-:ol L I +1
Pievel = Psurf <5 Plevel= Psurs> 5 eve

Figure 2. The conditions for finding the index of the bottom level (botlev) in a NUCAPS sounding.
Level is the index of the pressure level satisfying min(|Pg,¢—P|). The index botlev is required for
accurately calculating the temperature and trace gas surface values.
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Figure 3 is an example application of the surface adjustment and BLMULT to a NUCAPS sounding.
With a surface pressure of 1029 hPa, the bottom of the sounding is the 1042 hPa NUCAPS level and
BLMULT represents an expansion of the boundary layer by 0.5576 hPa. Note that the isothermal
layer starting at 1042 hPa and downward is below the topography. The BLMULT can then be applied
to temperature and moisture to adjust the surface value. In this case, the fraction of temperature
within the bottom layer is added to the temperature at the specified level (258.318 K at 1013 hPa)
for a new surface temperature of 257.774 K. BLMULT was only implemented within TPW and is the
lowest LPW field in the Gridded NUCAPS. Active development is underway to fully implement
BLMULT in the second iteration of the AWIPS capability and the non-AWIPS visualizations. Currently,
the surface or 2-meter temperature and relative humidity are found according to Figure 1 after the
data are interpolated to standard levels, but BLMULT is not applied. Note that the isothermal layer is
removed before vertical interpolation, but BLMULT was not fully implemented due to the complexity
of developing the initial AWIPS plugin. The newer version will use BLMULT to adjust the temperature
and moisture of the sounding to find 2 m fields and will apply BLMULT prior to performing any
vertical interpolation. Active development is underway to test this with non-AWIPS processing and
integrate it in updated AWIPS code.

Surface pressure 1029
Surface pressure 1029 hPa > 1013 hPa nucaps level
Pdiff = 16 hPa which is > 5 hPa
So bottom (botlev) is nucaps level +1 or 1042 hPa so we don’t cut off data.
But now we’ve included too much data by moving the bottom to 1042 hPa

958 259.784 59.784
986 259.327 59.327
1013 258.318 258.318
. 257.774
1042 257.228
’ Sounding adjusted based
on surface pressure and
1070 : . 257.228 BLMULT to account for
Sounding with data
topography/local
below topography "
1100 257.228 conditions

Figure 3. Example of finding the bottom of a sounding, calculation of boundary layer multiplier
(BLMULT), and deriving the surface temperature.

2.3. Methods: Gridded NUCAPS-Derived Fields

2.3.1. Lapse Rate

For AWIPS users, the lapse rate is calculated with AWIPS-derived parameters according to the
Poisson Equation (Equation (7)). The constant is the result of the division of gravity 9.81 m/s by the
gas constant for dry air (287 J/kg-K). T (P) and Ty (Pp) represent temperature (pressure) at the top
and bottom of the layer, respectively. The AWIPS menu includes commonly used lower-level and
upper-level lapse rates based on feedback from users to promote ease of access. Less commonly used
lapse rates are available through the AWIPS product browser. For non-AWIPS tools which do not
automatically compute the lapse rate, the lapse rate is pre-calculated for visualization of the 850-500,
700-500, and 400-200 hPa layers, and additional lapse rate calculations can be flexibly added for
processing and display.

LR = 0.034167 x [log Tl/ log PE] ?)
0 0
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2.3.2. Haines Index

The Haines Index was first described by [37] and further defined by [38], and is calculated with
two terms representing stability and moisture. The stability term is assigned a value, 1-3, based on
the lapse rate of the identified layer, which is also calculated with Equation (7). The moisture term
is assigned a value of 1-3 based on the dew point depression of the defined level. The two values
are added to indicate the potential for large fire growth (e.g., 2-3 = very low, 4 = low, 5 = moderate,
6 = high). Werth and Ochoa [38] give suggested layers/levels to derive the Haines Index to account
for topography and reduce the influence of the diurnal variability in the surface temperature and
associated surface inversions. The AWIPS-derived parameters calculate the Haines Index given the
temperature and relative humidity of the NUCAPS grids. These layers/levels can be adjusted in the
AWIPS Haines Index-derived parameter. Current development with the Gridded NUCAPS non-AWIPS
visualizations includes the derivation of the Haines Index at the suggested layers/levels based on [38].

2.3.3. Precipitable Water

The derivation of precipitable water (TPW and LPW) was included in the initial AWIPS gridding
capability. The TPW and LPW represent the water vapor contained in a vertical column of unit
cross-sectional area extending between any two specified levels and is expressed in terms of the height
the water would stand if completely condensed into the same unit area, as expressed in Equation (8):

_ MWm»o toa ,
TPW = =20 x 3" WVe(i). ®)

1=S

The water vapor column density is integrated from the top to bottom level following Equation (8),
and then multiplied by the molecular mass of water vapor (MWip0, 18.0151 g/mol) and divided by
Avogadro’s number (N,, 6.02214199 x 10%), yielding a value in cm. Precipitable water is calculated
over three additional layers (surface-800 hPa, surface-500 hPa, or surface-300 hPa) in the initial version
of the AWIPS implementation, with plans to adjust the layer calculations based on user feedback.
In AWIPS, forecasters can view TPW or LPW in cm, m, or inches, depending on user preference
and editing user configuration files. BLMULT is applied to adjust the bottom of the TPW and LPW
fields. Future AWIPS implementation of LPW will include the derivation of the products with the
moisture interpolated to standard levels and LPW calculated over familiar layers similar to other
satellite-derived PW products (e.g., surface-850, 850-700, 700-500, and 500-300 hPa). The current
Gridded NUCAPS web-visualizations and examples below derived from non-AWIPS code include the
new LPW layers.

2.3.4. Ozone-Derived Products

As a result of end user feedback within the JPSS PGRR program, several derived products
were included in the Gridded NUCAPS development. Previous work by [19] and [20,21] led to the
development of ozone-derived products from hyperspectral infrared sounders to support forecasting
rapid cyclogenesis and the development of associated high winds and hurricane extratropical transition.
The total column ozone is calculated from the ozone mixing ratio and converted to Dobson Units for
gridding and display. The ozone anomaly product was developed to identify regions of climatologically
high ozone, indicating the presence of stratospheric air and the potential for tropopause folding [21].
The total column ozone is compared to a latitudinal and monthly climatology database developed by [39]
to characterize anomalous ozone values. With the knowledge that stratospheric air can be identified
where ozone values are at least 25% greater than climatology [40], the percent of normal between 0%
and 200% is calculated and displayed with values 125% or greater in shades of blue. The full product
derivation and examples are outlined in [21]. The tropopause level product was created as an innovative
method of identifying the tropopause in satellite soundings. Since it can be difficult to ascertain the
tropopause height by analyzing vertical temperature and moisture profiles due to the smooth nature
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of satellite soundings, the use of gridded-plan view ozone products is advantageous. Ozone can be
used to identify the height of the tropopause; however, the use of threshold values such as 100 ppb
can be misleading due to the seasonal changes in ozone and the tropopause height. Thouret et al. [41]
developed a seasonal variation in ozone at the dynamic tropopause, defined as 2 Potential Vorticity
Units, using flight observations and model data. The study resulted in the following equation, which is
a synthetic definition of the monthly mean climatological ozone value at the tropopause that accounts
for the sine seasonal variation with a maximum in May and minimum in November:

91 + 28 xsin(m X (Month—2)/6. )

With the NUCAPS soundings, the tropopause level is found by matching the level where the
ozone value is greater than or equal to the monthly threshold determined by Equation (9) from
Thouret et al. [41]. The tropopause level in hPa is then gridded for display.

3. Results

3.1. Surveilling the Pre-Convective Environment

During the 2019 HWT Spring Experiment, NUCAPS soundings were used in the analysis of
convection that developed in central Illinois on 5 June [42,43]. A line of storms developed in southern
Iowa, and moved southeast into central Illinois by 1600 UTC. Figure 4a shows the Gridded NUCAPS
TPW values around 30 mm over the region, while closer analysis of 700-500 hPa LPW indicates a drier
layer in southern Illinois. This same dry signature is also evident in the 700 hPa relative humidity.
Although not shown, the near-surface LPW and relative humidity fields indicate a relatively moist
near-surface environment. The storms developed along a swath of regionally higher LPW and relative
humidity, and increased in intensity during the afternoon hours, before decreasing in overall intensity
after moving into the environment with drier air in the mid-levels (e.g., around 2200 UTC, approximately
3.5 h after the NOAA-20 overpass). The Storm Prediction Center storm reports indicate that most of the
wind damage associated with the line occurred between 2030 and 2220 UTC [44]. This analysis shows
the advantage of plan-view analysis to assess the environment, especially with more reliable fields
that are above the boundary layer influence. Interrogating individual NUCAPS profiles can provide
valuable temperature and moisture measurements, especially above the boundary layer. However,
because soundings are volume measurements and not point observations, near the surface the soundings
may underestimate important stability indices or features such as inversions when compared with
radiosondes. In the June 5 case, the forecaster found NUCAPS vertical sounding Convective Available
Potential Energy (CAPE) values were underestimated in the low to mid-levels when compared to the
immediate Lincoln, Illinois sounding, which was valid at 1700 UTC [42]. The gridded fields allow
the end user to assess the broad environment quickly and above the boundary layer, with a focus on
changes in gradients and patterns.

These activities have led to valuable operations-to-research feedback from end users to tailor
products to address the needs of the operational environment. One key area of active research is
addressing the representation of the boundary layer in satellite soundings. Forecasters need the
accurate representation of surface temperature, moisture, and structures such as inversion layers to
diagnose the potential for convective development. The representation of temperature and moisture
fields is also necessary, since they are used to derive common stability fields such as CAPE, important for
diagnosing convective potential and storm-scale updraft strength. Manual and automated techniques
have been applied to improve the boundary layer representation of satellite soundings and have been
accepted by forecasters as an improvement in the utility of these data in operations [11,45]. There are
ongoing efforts by NUCAPS developers to improve the boundary representation within the retrieval
algorithm and as a post-processing step within target applications. An in-depth discussion of these
efforts is, however, beyond the scope of this paper.
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Figure 4. NOAA-20 Gridded NUCAPS on 5 June 2020, 1833 UTC (a) total precipitable water (TPW),
(b) 700-500 hPa layer precipitable water (LPW), and (c) 700 hPa relative humidity.
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3.2. Fire Weather Analysis

Fire weather is an emerging application to utilize NUCAPS soundings and gridded products to
diagnose the thermodynamic characteristics of the environment conducive to the potential for wildfire
development and growth, as well as tracking smoke [46,47]. Lindley et al. [48] provide an overview of
the common meteorological features associated with wildfires in the southern Great Plains, notably the
development of low-level thermal ridges (LLTR). The example presented below highlights the ability
of Gridded NUCAPS products to capture the LLTR associated with the 2018 Rhea, Oklahoma fire.
In addition, the derived parameters in AWIPS allow for the derivation of the Haines Index.

The Rheafire started around 12 April 2018 and burned approximately 285,196 acres [49]. The region
was experiencing an extreme drought and on this particular day a dry line was positioned to the
east and an LLTR developed. Lindley et al. [48] suggest the analysis of fields such as mean sea level
pressure, 2-meter temperature and relative humidity, 850 hPa temperature, and 500 hPa height to
identify the LLTR. Gridded NUCAPS fields from both the S-NPP 1845 and 2025 UTC overpasses can
be combined and compared to the 2000 UTC Rapid Update (RAP) model data (Figure 5). The level
of 700 hPa was chosen to view data above the influence of topography, as some missing values were
apparent at 850 hPa over the Rocky Mountains, impeding broad synoptic analysis. The 2 m temperature
and relative humidity fields from NUCAPS indicate warm (25-30 °C temperatures) and dry (10-20%
relative humidity) conditions in western Oklahoma (Figure 5a,b). The 10 m RAP winds indicate that
these warm, dry conditions are being advected into the region. Analysis of the 700 hPa temperature
field indicates the thermal ridge axis over the region (Figure 5c). This feature identified in the Gridded
NUCAPS is consistent with the RAP model (Figure 5d), and the RAP 500 hPa height is consistent with
the expected pattern of an LLTR.

Figure 5. Advanced Weather Interactive Processing System (AWIPS) display of the 12 April 2018
Suomi-National Polar-orbiting Partnership (S-NPP) Gridded NUCAPS 1839 and 2021 UTC overpass and
Rapid Update (RAP) model 2000 UTC analysis. (a) Gridded NUCAPS 2 m temperature, RAP surface
wind, and mean sea level pressure; (b) Gridded NUCAPS 2 m relative humidity, RAP surface wind,
and mean sea level pressure; (¢) Gridded NUCAPS 700 hPa temperature and RAP 500 hPa wind
and height; (d) RAP 700 hPa temperature, 500 hPa wind and height. Note that the AWIPS regional
localization prevents the display of RAP on a full conus domain.

On 13 April, these same features continued to persist. The surface thermodynamic fields
(Figure 6a,b) reveal the continued persistence of warm, dry conditions, and the well-defined LLTR
visually agrees with the RAP analysis (Figure 6¢,d). In addition, the Gridded NUCAPS Haines Index
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did indicate a broad region (orange) of high potential for large fire growth, consistent with the RAP
analysis. The Haines Index, calculated with the 850-700 hPa lapse rates and 850 hPa dew point
depression, depicted a region of high potential for fire growth over western Oklahoma, but with an axis
shifted to the east compared to the RAP model (Figure 7a,b). The Gridded NUCAPS thermodynamic
tields and the derived Haines Index demonstrate the application of Gridded NUCAPS to increase the
situational awareness of fire weather conditions and the potential for fire growth. The combination
of Gridded NUCAPS fields, supplemented by additional model fields such as wind and height,
are demonstrated as a viable dataset for the identification of an LLTR. The Gridded NUCAPS fields
can provide observations between model runs and are a model-independent observational dataset to
confirm model features such as patterns and gradients.

Figure 6. AWIPS display of 13 April 2018 S-NPP Gridded NUCAPS 0839 UTC overpass and RAP
0800 UTC analysis. (a) Gridded NUCAPS 2 m temperature, RAP surface wind, and mean sea level
pressure; (b) Gridded NUCAPS 2 m relative humidity, RAP surface wind, and mean sea level pressure;
(c) Gridded NUCAPS 750 hPa temperature and RAP 500 hPa height; (d) RAP 750 hPa temperature and
500 hPa height.

(a) (b)

Figure 7. AWIPS display of Haines Index calculated from the 850-700 hPa lapse rate and 850 hPa dew
point depression. (a) S-NPP Gridded NUCAPS Haines Index for 13 April 2019 0839 UTC overpass and
(b) RAP Haines Index for the 13 April 0800 UTC analysis.

3.3. Monitoring the Saharan Air Layer

The NUCAPS retrievals perform well in clear to partly cloudy conditions; therefore, the Saharan
Air Layer (SAL) is an ideal atmospheric phenomenon to observe and monitor. The SAL is an air mass
of warm, dry, and often very dusty conditions that originates within the Saharan deserts in northern
Africa, then propagates westward for several thousand kilometers, depending on its strength and

79



Remote Sens. 2020, 12, 3311

favorable surrounding environments [50,51]. Using true color imagery, the SAL is identified as a
distinct brown (dusty) plume propagating off the northwest coast of Africa, as shown in Figure 8.

Figure 8. NOAA-20 Visible Infrared Imaging Radiometer Suite (VIIRS) True Color imagery on June
22 obtained from NASA Worldview (https://worldview.earthdata.nasa.gov/). The brownish plume
that covers the Dominican Republic, Puerto Rico, and the West Indies reveals a strong dust presence
associated with the SAL in this region. The bright white rectangular feature toward the top middle
portion of the image is sun glint.

From a thermodynamic perspective, [52] used available land-based rawinsonde measurements
to provide Skew-T Log P profiles to track the lifespan of a typical SAL outbreak. Near the source
region, the SAL outbreak is initially featured with a constant theta (dry adiabatic) profile from the
surface to some elevated level, approximately 500 hPa. The accompanying mixing ratio profile starts
as very dry at the surface, leading up to 500 hPa to cap the upper extent of the SAL. As the feature
propagates westward over the eastern Atlantic basin just offshore of northwest Africa, the surface
becomes cut off from the cool and moist marine boundary layer. Finally, the SAL layer greatly
becomes diluted by the surrounding cumulus cloud fields and mixing with the boundary layer as
it encounters the greater Caribbean and western Atlantic region. Dunion and Marron [53] showed
how the mixing ratio at 700 mb is marked by a dry anomaly during a SAL event as compared to
the nominal occurrence of the moist tropical environment. The SAL is also accompanied with a low
level easterly jet (<10,000 ft). As a result, the slate of NUCAPS sounding products can greatly aid
forecasters and analysts in the identification of the SAL, particularly over the data-sparse open water
of the Atlantic [54]. The identification of this feature is not only important for impacting hurricane
development or suppression [55], but also contributes to adverse health impacts [51,56].

Frequent summertime SAL outbreaks can occur during mid-June through to late August and are of
great concern to forecasters and public health agencies throughout the greater Caribbean. Specifically,
the population situated within the Caribbean islands, northern South America, the Gulf of Mexico, and
the southern United States are particularly impacted by high aerosol content, leading to health hazards
associated with poor air quality, as dust concentrations often exceed the United States Environmental
Protection Agency standards for PM 2.5 and PM 10. Previous studies [51,56] report that the SAL-related
airborne dust impacts Puerto Ricans and its neighboring islands throughout the West Indies, as they
suffer from some of the worst global asthma rates, far greater than those of the mainland United States.
These results translate into more frequent medical visits and higher mortality rates, especially among
the very young and elderly. As the SAL progresses farther west, the feature becomes more diffuse
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and the satellite identification becomes harder to identify, as the SAL typically encounters cumulus
clouds and maritime mixing. The NWS WFO in San Juan, Puerto Rico, monitors and predicts the
strength and progression of the SAL in order to issue accurate and timely warnings, and is constantly
interested in new environmental resources to improve the accuracy and timeliness of significant SAL
event predictions. One of the most sought-after analysis tools is atmospheric soundings, which are
greatly lacking in the upstream and data-sparse Atlantic basin. It is here that the NUCAPS Skew-T
soundings and gridded formats are currently being investigated.

One of the best opportunities in exploiting the thermodynamic characteristics of the “classic SAL”
occurred during the period 17-29 June 2020, where satellite, model, and surface-based measurements
highlighted very strong SAL signatures throughout its progression. This episode became a noteworthy
global media concern, as human impacts from the Saharan dust were considered an exacerbation of
the novel coronavirus pandemic, particularly over the greater Caribbean and southern United States
populations. The NOAA-20 Visible Infrared Imaging Radiometer Suite (VIIRS) true color imagery
(Figure 8) was used to track the dust plume from its source over northwest Africa through the tropical
north Atlantic basin. Note the fairly cloud-free region within the associated dust pattern, which is quite
unusual this far from the source region. The strength of the SAL is dramatized as far downwind as off
the southeast United States coast on 28 June. Figure 9 provides a mapping of the approximate SAL
positions for each day. The “X” within each dot are days that have corresponding plots, as displayed
in Figure 10. In Figure 10, the profiles for June 21 and 23 are very similar to a typical SAL event,
with the temperature (solid red) lines following constant theta, or dry adiabat from 900 hPa to ~650 hPa.
Within the same depth, the mixing ratio profile (dashed red line) follows a slightly drier than constant
w profile. The mixing ratio line reaches 600 hPa before reaching another dry layer above 500 hPa.

A number of Gridded NUCAPS products, as sampled in Figure 11, depict strong SAL signatures
within each of the products. TPW (Figure 11a) and 700-500 hPa LPW (Figure 11b) exhibit lower
precipitable water values in the vicinity of the SAL, as seen in the true color imagery (Figure 8).
Although not shown, the near-surface LPW (sfc-850 hPa) indicates moist near-surface conditions,
consistent with SAL characteristics. Additionally, warm conditions are evident in the 850 hPa
temperature (Figure 11c) Gridded NUCAPS field. Fields such as relative humidity and lapse rate
can additionally be analyzed to identify the SAL to further assess dry, stable conditions. Even the
Gridded NUCAPS ozone anomaly indicates elevated ozone values in the SAL region, consistent with
previous literature [57,58], where elevated ozone mixing ratio values were observed above the SAL.
However, additional analysis is needed to determine the efficacy of utilizing the ozone anomaly for
SAL identification. As demonstrated here and in other studies [54,59], the NUCAPS vertical soundings
and Gridded NUCAPS present new opportunities to analyze the physical process and characteristics
of the SAL as it traverses the data-sparse Atlantic basin.
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Figure 9. Map of approximate SAL positions (dots) for each afternoon during 17-25 June 2020. Circles
with inner “X” annotations are related to the corresponding Skew-T Log P profiles in Figure 10 below.
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Figure 10. Composites of early morning (night) and afternoon (day) Skew-T plots of temperature
(solid lines) and dew point temperature (dashed lines) of the S-NPP and NOAA-20 NUCAPS over the
locations mapped in Figure 9 for June 21 and 23.
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Figure 11. The 22 June 2020, 1205 to 1900 UTC NOAA-20 Gridded NUCAPS (a) TPW, (b) 700-500 hPa
layer precipitable water, (c) 850 hPa temperature, and (d) ozone anomaly.

3.4. Identifying Stratospheric Air Influence and Tropopause Folding

The Gridded NUCAPS ozone and ozone-derived products can be used to identify the influence
of stratospheric air on weather systems and processes such as cyclogenesis, hurricane tropical to
extratropical transition, and stratospherically-driven near surface high wind events, predicated on
previous work by [19-21]. The ability to identify stratospheric air influence and the potential for
tropopause folding can increase situational awareness of the development of hazards (damaging winds,
high waves, and heavy rain) associated with these types of events. In addition, the identification of the
tropopause can be an important indicator for the potential for turbulence in the vicinity of the jet stream
due to the large gradients in temperature and wind [60]. Given the smooth nature of the NUCAPS
vertical soundings, the identification of the tropopause features (e.g., isothermal layer and/or inversion)
is not always straightforward. Since ozone is a precursor for stratospheric intrusions given the high
ozone content of air above the tropopause [61,62], NUCAPS ozone and ozone-derived products can be
utilized to identify stratospheric intrusions and the potential for tropopause folding. The example
below highlights an instance where the evaluation of Gridded NUCAPS and radiosondes were used to
diagnose the tropopause height.
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A low-pressure system was traversing the Upper Midwest and Ohio Valley from 31 October to
1 November 2019 and deepening and maturing with time. Figure 12a shows an area of high ozone
content associated with the passing cyclone. Since the total column ozone varies climatologically with
season and latitude, high ozone values alone are a difficult metric for the identification of anomalous
stratospheric air [21], associated with the descent of warm, dry ozone-rich air and its accumulation in
the atmospheric column. Figure 12b indeed indicates that the region of high ozone values is associated
with anomalous values of the total column ozone for the latitude and season. The darker blue values
starting at 125% and greater represent the accumulation of stratospheric air and the potential for
tropopause folding. The ozone-derived tropopause level (Figure 12c) indicates that the tropopause
was as low as 550-650 hPa over western Illnois and 450-550 hPa over a broad region of the upper
Midwest. Although the NOAA-20 overpass was around 1900 UTC on the 31 October, the analysis
of the 0000 UTC 1 November sounding at Lincoln, Illnois, confirms a lower tropopause with a
double tropopause signature observed at 500 and 300 hPa (Figure 13a). The difference between the
Gridded NUCAPS and radiosonde could be explained by the comparison of differing observation types
(e.g., points versus an area spanning 50km within the sounding footprint). The radiosonde at Green
Bay, Wisconsin, indicates a higher tropopause at about 475 hPa, consistent with the Gridded NUCAPS
product (Figure 13b). The comparison of the Gridded NUCAPS ozone-derived products to radiosondes
here and in previous literature [19,21] demonstrates the value of ozone-derived fields for assessing
the presence of stratospheric air and the potential for tropopause folding. The identification of these
features in a plan-view perspective are important in applications such as forecasting rapid cyclogenesis
and the development of high winds over data-sparse ocean basins, anticipating hurricane tropical to
extratropical transition, and assessing the potential for turbulence near jet streams [63]. With Gridded
NUCAPS in AWIPS, these fields are available for testing and demonstrating these applications.
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Figure 12. AWIPS display of NOAA-20 Gridded NUCAPS on the 31 October 2019, 1901 UTC: (a) total
column ozone, (b) ozone anomaly, and (c) tropopause level.

An example of the extratropical transition of Hurricane Arthur in 2014 highlights additional analysis
that can increase the situational awareness of changes in the hurricane environment as it relates to
anticipating changes in storm intensity. During 4 July, Arthur interacted with an upstream mid-latitude
trough and accelerated northeastward. The warm, dry stratospheric air associated with the upper-level
trough is colored orange in the air mass composite imagery (Figure 14a; [19,21,65-67]) derived from the
Moderate Resolution Imaging Spectroradiometer onboard NASA’s Aqua satellite. Figure 14b shows
that the stratospheric air is drawn further into the storm over the next 23 h. According to the National
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Hurricane Center [68], Arthur began to lose strength as the storm encountered strong upper-level winds
and colder sea-surface temperatures. Arthur was classified as a tropical storm by 0600 UTC on 5 July
and deemed extratropical by 1200 UTC. Figure 14b is 5.5 h after the extratropical classification.
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Figure 13. The 1 November 2019, 0000 UTC sounding at (a) Lincoln, Illinois, and (b) Green Bay,
Wisconsin. Images retrieved from the University of Wyoming [64].

(b)

Figure 14. Aqua MODIS Air Mass Composite Imagery on (a) 4 July 2014 1835-1845 UTC and (b) 5 July
2014 1735-1750 UTC.

Building on the work of Berndt [69], which analyzes the S-NPP overpasses leading up to and
following the extratropical transition of Arthur (2014), Gridded NUCAPS can provide additional
insights into the hurricane environment and synoptic interactions. The upper-level trough can be
identified in the Gridded NUCAPS 500-hPa temperature field, and dry 500 hPa conditions are present
in the near-storm environment (Figure 15a,b). The interaction with the 500 hPa trough becomes
more pronounced by 0605 UTC, and dry air is closer to the storm center (Figure 15¢,d), increasing
the situational awareness of the pending extratropical transition. This interaction is much more
pronounced by 1735 UTC on 5 July (Figure 15e,f). The ozone anomaly and tropopause height fields can
be analyzed to determine the potential for stratospheric intrusion and tropopause folding. The ozone
anomaly indicates that a region of stratospheric air is present (Figure 16a; blue colors), but still west of
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the storm center. In addition, low tropopause heights of 400-500 hPa are associated with this region
(Figure 16b). Correspondence with model fields such as potential vorticity can confirm these features.
By 0605 UTC on the 5 July, the region of stratospheric air and lower tropopause was much closer to
the storm center (Figure 16¢,d) and was further drawn into the storm by the afternoon (Figure 16e,f).
Events such as extratropical transition and rapid cyclogenesis can create damaging winds, waves,
and storm surges that can impact the populous region along the eastern United States or marine
activities in the Atlantic and Pacific basins. Gridded NUCAPS, as another observational dataset,
can support the thermodynamic and synoptic analysis of these events and complement model analyses
to increase the situational awareness of changes in storm intensity that create hazardous conditions.

SPORT S-NPP CrIS/ATMS Gridded NUCAPS 500mb Temperature 20140704 1700 UTC
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Figure 15. S-NPP Gridded NUCAPS 500 hPa temperature (left) and relative humidity (right):
(a,b) overpass time on the 4 July 1745-1755 UTC; (c,d) combined overpasses on the 5 July with
0605-615 UTC on the right and 0745-0755 UTC on the left; (e,f) valid on the 5 July 2014 1725-1735 UTC.
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SPORT S-NPP CriS/ATMS Gridded NUCAPS Total Ozone Anomaly 20140704 1700 UTC
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Figure 16. S-NPP Gridded NUCAPS ozone anomaly (left) and tropopause level (right): (a,b) overpass
time on the 4 July 1745-1755 UTC; (c,d) combined overpasses on the 5 July with 0605-615 UTC on the
right and 0745-0755 UTC on the left; (e,f) valid on the 5 July 2014 1725-1735 UTC.

4. Discussion

New methods and concepts and a standardized approach have been presented to create
level 2 gridded and derived products from hyperspectral infrared sounding observations with
a focus on NUCAPS observations and short-term weather forecasting. Traditional display tools
such as skew-T diagrams, while important, do not fully exploit the strength of satellite soundings
(personal communication, C. Barnet), and active user engagement with the weather community led to
operations-to-research feedback, ultimately adapting NUCAPS to the operational environment [11].
The development of operationally relevant Gridded NUCAPS fields fills a gap, whereby NUCAPS
level 2 gridded products to support short-term weather forecasting have been limited and now allow
for the analysis of types of events suitable for thermodynamic analysis [47,63]. This method and
capability advance the application and benefit of remote sensing observations, enabling novel analysis
and the use of observations beyond their intended use. Few studies have presented methods to
create level 2gridded hyperspectral infrared products to support short-term weather forecasting,
and the current structure of environmental data records as arrays of vertical soundings require
additional data manipulation and processing. Although it is trivial for scientists to process and derive
plan-view fields from hyperspectral infrared environmental data records through data processing and
manipulation, this data structure has limited the use and application of hyperspectral soundings to the
scientific community and advanced users. This work represents new, optimized processing to more
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effectively visualize the information content of NUCAPS observations, making data more accessible to
broader communities and allowing for information compression and the quick analysis of sounding
observations [9]. The development of this level 2 gridding method and subsequent integration into
baseline AWIPS for NWS-wide distribution was a direct result of operations-to-research feedback
and the need to efficiently analyze many soundings in a short period of time, given the constraints,
demands, and pace of the operational environment [11-13,17].

This work builds upon the early development of gridding dual-regression algorithm hyperspectral
infrared soundings, where data were processed through the polar2grid software [5,29]. These early,
experimental methods were adapted to NUCAPS observations in collaboration with the developers,
as explained in [13], and further adapted for integration in AWIPS, as explained here. Experimental
methods had to be adapted to conform with the constrains of the AWIPS system and available software
without requiring burdensome computing expense or resources. The optimization of processing here
to create level 2 gridded and derived products with the characteristics of the NUCAPS observations
(e.g., footprint size, level vs. layer quantities, retaining data integrity) and the needs of end users in
mind (e.g., compatibility with AWIPS, standard levels, fields of interest) represents a new method and
technique for processing NUCAPS level 2 products and furthers the accessibility, value, and benefit of
these observations to support a wide variety of science and applications. Although level 3 gridded
products are routinely produced and available as standard NUCAPS products, there has been a gap
in the development of level 2 products or standardized gridding approaches to support short-term
weather forecasting. In addition, the derivation of more specialized fields beyond basic temperature,
moisture, and trace gases have traditionally not been produced due to the lack of a standard approach
to easily process level 2 products. As a feasibility study, [6] demonstrates the information content
available to the operational weather community through the derivation of NUCAPS horizontal
derived fields of stability indices for convective weather forecasting and emphasizes the advantages
and limitations of NUCAPS for this application. The work described here presents the benefit of
additional derived fields such as lapse rates, LPW, the Haines Index, and ozone products uniquely
developed to optimize the benefit of ozone observations to identify and diagnose the dynamic
processes that drive weather. The ozone anomaly and tropopause-level products are developed based
on atmospheric dynamics principles relative to how the concentration of ozone varies over time and
space as well as the relationship to dynamic variables such as potential vorticity. The processing and
derivation of the TPW/LPW fields were designed to facilitate comparison with existing satellite-derived
TPW/LPW products.

Few studies have defined or described a methodology for level 2 gridded hyperspectral
infrared-derived products for short-term weather forecasting. Gridded NUCAPS products were
the result of consciously listening and tailoring NUCAPS towards users’ needs and represent a way
for the forecaster to quickly assess the environment and highlight baroclinicity and other important
features within our soundings to enable the acceptance and, more importantly, value of the NASA and
NOAA satellite investments (personal communication, C. Barnet). As described here, this method
developed through operations-to-research feedback represents a standard, reproducible approach to
effectively visualize NUCAPS observations as level 2 gridded products for more effective analysis and
interpretation. As this new approach is now available to all NWS forecasters in the operational AWIPS
system and is available online through SPoRT (https://weather.msfc.nasa.gov/cgi-bin/sportPublishData.
pl?dataset=griddednucaps), Gridded NUCAPS reaches a broader audience of applied science users for
the assessment of novel applications.

5. Conclusions

Interaction with end users and product assessments within the context of the NASA SPoRT
research-to-operations/operations-to-research paradigm [1] and collaboration within the NOAA JPSS
PGRR Program Sounding Initiative have demonstrated the value of operations-to-research collaborations,
specifically to provide insight into the limitations and advantages [11,13] of products to tailor them
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for the operational environment. A new method and concept for the processing and representation of
NUCAPS level 2 gridded and products is presented here, representing the development of approaches
to better synthesize remote sensing observations that ultimately increase the availability and usability of
NUCAPS observations to benefit scientific analysis and applications. The optimization of basic gridding
and interpolation methodologies as appropriately applied to NUCAPS data retains observational
characteristics and enables state-of-the-art product development to further support application in weather
analysis and forecasting, The derived products presented herein represent the novel development of fields
not traditionally derived from hyperspectral infrared sounder observations and new concepts/methods
to support applications related to short-term weather forecasting and analysis. The early development
and demonstration of Gridded NUCAPS for the cold air aloft aviation hazard and analysis of the
pre-convective environment led to the development of a baseline National Weather Service (NWS)
capability to create gridded displays of satellite sounding retrievals in the Advanced Weather Interactive
Processing System (AWIPS). Gridded NUCAPS was released in AWIPS in 2019, enhancing the capabilities
of NUCAPS temperature and moisture soundings that have been available to NWS forecasters as
Skew-T’s since 2014. The techniques described here were developed to optimally interpolate data to
standard levels and grid observations on a 0.5° latitude/longitude grid with minimal interpolation.
Each sounding is adjusted to account for changes in the local topography and surface pressure, removing
data below the ground surface. Then, they are vertically interpolated to 41 standard meteorological
levels from 1100 to 100 hPa every 25 hPa. Temperature is interpolated separately from water vapor
and trace gases, which are converted from layer to level quantities and linearized by interpolating
the standard logarithm of the column density. Each array of aggregated soundings is added to a
0.5° latitude/longitude grid over a global domain using nearest neighbor and minimal interpolation,
masking regions outside of the swath prior to gridding. Horizontal fields are created for temperature
and relative humidity on 41 standard levels and at the surface (e.g., 2 m);and derived single-layer
products including: quality flags, total precipitable water (TPW) and layer precipitable water (LPW),
total ozone, ozone anomaly, and tropopause level. The capabilities additionally include the derivation
of lapse rates and the Haines Index. The development of operationally relevant Gridded NUCAPS
fields allows for the analysis of types of events suitable to thermodynamic analysis [47,63] and fills a
gap whereby NUCAPS level 2 gridded products for supporting short-term weather forecasting have
been limited.

The examples presented here demonstrate the analysis possible with the new Gridded NUCAPS
capability. Fields such as TPW, LPW, relative humidity, and lapse rates can be used to anticipate the
development of convection, where the analysis of gradients and observations between model runs
can increase situational awareness, which has already been demonstrated through assessments at the
Hazardous Weather Testbed (HWT). The analysis of the 5 June 2019 case demonstrates the value of
assessing the broad environment quickly through the identification of the moisture gradient along
which the storm developed and produced strong winds. As an emerging application, the assessment of
the fire weather environment with NUCAPS soundings is demonstrated here through the identification
of the LLTR and analysis of the Haines Index. The near-surface and mid-level temperature and moisture
fields were compared to model data to identify the synoptic pattern and LLTR that persisted on the
12-13 April and created weather conditions conducive to the development of the Rhea, Oklahoma
fire in 2018. In addition, the derived Haines Index identified a region of high fire potential in the
area. The combination of NUCAPS observations with additional model fields such as wind and
height demonstrate the value of NUCAPS in supporting fire weather analysis as a model-independent
observational dataset to identify thermodynamic features. The visualizations in AWIPS and through
a website allow for NWS forecasters and Incident Meteorologists to use NUCAPS products during
fire events such as the Rhea fire. Demonstrating the breadth of emerging applications, NUCAPS
soundings and Gridded NUCAPS is shown as another observational dataset to identify the Saharan
Air Layer (SAL). The June 2020 SAL event is analyzed with NUCAPS vertical profiles, capturing the
dry layer on June 21 and 23 in the low to mid-levels. The Gridded NUCAPS TPW and LPW fields
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were used in the identification of the spatial and vertical extent of the dry, dusty air layer, with the
dry pronounced in the 700-500 hPa layer. In addition, elevated temperatures were observed in
the NUCAPS 850 hPa temperature field in the SAL region, consistent with typical SAL conditions.
Although warranting further analysis and investigation of the efficacy of the approach, an ozone
anomaly product with values greater than 125% was observed in the SAL region; thus hinting at
elevated ozone mixing ratios associated with the feature. Lastly, the ozone-derived products designed
specifically for assessing changes in cyclone or hurricane intensity provide unique information for the
identification of such events and anticipating hazards associated with stratospheric air and tropopause
folding. The demonstration of the NUCAPS total column ozone, ozone anomaly, and tropopause level
for identifying a double tropopause signature from 500 to 300 hPa in the upper Midwest from 31 October
to 1 November 2019 captures the ability of Gridded NUCAPS to identify stratospheric intrusions and
tropopause folding events. The additional analysis of the extratropical transition of Hurricane Arthur
in 2014 was presented to demonstrate the capabilities of the Gridded NUCAPS temperature, moisture,
and ozone fields. The Gridded NUCAPS 500 hPa temperature was used to track the development
of the upper-level trough and interaction with the storm from 4 to 5 July. The interaction of dry air
with the storm, one indicator of many for extratropical transition, was pronounced in the 500 hPa
relative humidity fields with dry air infiltrating the storm center by 1735 UTC 5 July, shortly after the
extratropical classification. The ozone anomaly and tropopause-level fields observed the region of
stratospheric air and lower tropopause heights (400-500 hPa) associated with the upper-level trough,
positioned west of the storm on 4 July, moving eastward, and interacting with the storm center by the
afternoon of 5 July. Although these fields and applications were previously demonstrated related to
the NOAA NWS Ocean Prediction Center analysis of deepening cyclones [19,21] and preliminarily
introduced to the NOAA NWS National Hurricane Center [69], these fields are now more widely
available to all NWS forecasters to apply to a broader set of applications [63]. The identification of the
tropopause and jet stream interactions is important for anticipating changes in storm and hurricane
intensity as well as turbulence.

As Gridded NUCAPS is under continued development to add additional derived products and
improve the representation of soundings, such as accounting for surface and topography, there are
opportunities to discover new applications and how the data can be used for scientific process studies.
Additional fields such as trace gases can be processed for display in non-AWIPS visualizations to support
additional end users related to tracking smoke plumes important to NWS Incident Meteorologists
or researchers conducting field campaigns [46]. Although NUCAPS performs best in clear to partly
cloudy conditions, the gridded fields derived from microwave-only soundings have the potential for
utility for applications under non-precipitating, cloudy conditions where the microwave retrieval was
still successful, such as aviation icing or evaluating the expected precipitation type [70]. There are
opportunities to uncover new applications, such as the analysis of the hurricane environment [71,72]
and understanding the processes related to the tropical cyclone diurnal cycle [73]. In addition, NUCAPS,
especially with multi-satellite assessments and the use of microwave-only soundings, has potential
as a proxy to demonstrate the capabilities of the upcoming NASA Time-Resolved Observations of
Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS; [74]) Mission
as a dataset to prepare users for the analysis possible with this new mission. Lastly, the use of multiple
satellite platforms or trajectory modeling [17,75] can increase the temporal and spatial coverage of
observations, providing insight into the utility of a geostationary hyperspectral infrared sounder in
the future.
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Abstract: The Sentinel-3 series satellites belong to the European Earth Observation satellite
missions for supporting oceanography, land, and atmospheric studies. The Sea and Land Surface
Temperature Radiometer (SLSTR) onboard the Sentinel-3 satellites was designed to provide a
significant improvement in remote sensing of skin sea surface temperature (SSTgyin). The successful
application of SLSTR-derived SSTgyy, fields depends on their accuracies. Based on sensor-dependent
radiative transfer model simulations, geostationary Geostationary Operational Environmental Satellite
(GOES-16) Advanced Baseline Imagers (ABI) and Meteosat Second Generation (MSG-4) Spinning
Enhanced Visible and Infrared Imager (SEVIRI) brightness temperatures (BT) have been transformed
to SLSTR equivalents to permit comparisons at the pixel level in three ocean regions. The results
show the averaged BT differences are on the order of 0.1 K and the existence of small biases between
them are likely due to the uncertainties in cloud masking, satellite view angle, solar azimuth angle,
and reflected solar light. This study demonstrates the feasibility of combining SSTyi, retrievals from
SLSTR with those of ABI and SEVIRI.

Keywords: SLSTR; evaluation; thermal bands; ABI; SEVIRI

1. Introduction

Skin sea surface temperature (SSTgin) is one of the critical variables in the climate system,
indicating air-sea interaction patterns near the upper ocean skin layer [1]. The infrared radiometers on
earth observation satellites, in both geostationary and polar orbits, have provided retrievals of sea
surface temperature (SST) for a half-century [2]. Our choice of satellite radiometers for this analysis
was guided by the desire to include one on a polar-orbiting satellite of recent design but with a long
planned deployment sequence, a new radiometer type on geostationary satellites again with a long
planned deployment duration, and an older radiometer design in geostationary orbit of a type that has
been producing data for many years. Thus, the study has relevance not only for the present, but also
for the past and future.

The new generation of visible and infrared imaging radiometers, the Sea and Land Surface
Temperature Radiometer (SLSTR) onboard Copernicus Sentinel-3A and Sentinel-3B satellites,
provide global operational measurements that can be used to derive SSTgyy,, land surface temperature,
fire radiative power, aerosol optical depth, etc. [3-5]. The SLSTRs are the fourth and fifth along-track
scanning radiometers and are based on the prior along-track scanning radiometers (ATSR; [6]) and
advanced ATSR (AATSR; [7]), which have provided valuable measurements to study the Earth’s
climate system and improve weather forecasting and ocean studies [3,4].

SLSTR was designed to achieve the scientific objective of a mean temporal accuracy of 0.1 K for
SSTskin products [4]. However, this potential will not be realized without the accurate measurements
of top-of-atmosphere radiances. Absolute calibration should be applied to the radiometer, SLSTR
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radiometric pre-launch calibration is determined at the Rutherford Appleton Laboratory in the United
Kingdom (UK) [8,9]. The SLSTR onboard radiometric calibration of the infrared channels is based on
two blackbodies with different temperatures (265K and 302K) [8].

With the significant improvements on prior sensors on satellites in geostationary orbits, the new
generation of sensors, such as the Advanced Baseline Imager (ABI; [10]) onboard the united states
(US ) Geostationary Operational Environmental Satellite (GOES) series along with the relatively old
sensor Spinning Enhanced Visible and InfraRed Imager (SEVIRI; [11]) onboard the fourth satellite in
Meteosat Second Generation (MSG-4), can sample the low- and mid-latitude regions of the Earth’s
surface and atmosphere and provide valuable data for comparison SLSTR brightness temperatures
(BT) in this study:.

Sensor-to-sensor comparison can be used to provide assessment on many newly launched sensors.
The previous solar reflective band comparisons between the Advanced Himawari Imager (AHI; [12])
and the Visible Infrared Imaging Radiometer Suite (VIIRS; [13]) by Yu and Wu [14] confirmed the linear
relationships between them using collocated pairs. The collocated deep convective cloud data have a
small difference in the near-infrared bands. Liang, et al. [15] compared measurements and simulations
of the AHI, VIIRS and MODerate-resolution Imaging Spectroradiometers (MODIS; [16]) for clear-sky
radiances above the sea surface and found the biases in the sensor radiances minus model simulated
radiances are relatively stable. Li, et al. [17] have reported a comparison of measurements of MODIS
and VIIRS thermal emissive bands using Atmospheric Infrared Sounder (AIRS) hyperspectral radiances
convolved with the relative spectral response functions of the MODIS and VIIRS bands, they found the
BTs agree relatively well with each other, the differences being within 0.2K. Many other investigators
also use this approach to conduct comparisons between various sensors [17-19]. We use conversion
functions derived by radiative transfer model simulations to convert the BTs retrieved by geostationary
satellite radiometers into SLSTR equivalent versions to perform the analysis reported here. This method
has been used by Yu and Wu [14], NASA Langley spectral band difference adjustment [20] and Wu, et
al. [21] and others, and found to be useful.

SLSTR, ABI, and SEVIRI provide capabilities for deriving SSTgyi, from the clear sky “atmospheric
windows” of wavelengths 3.5-4.1 um and 8.5-12 pm spectral intervals (which are called thermal
emissive bands here). Among the SLSTR, nine spectral channels in the 0.554-12.022 pm spectral range,
S7 (A =3.74 um), S8 (A = 10.95 um), and S9 (A = 12.00 um), can be used for deriving SSTyin [22]. For ABI
and SEVIRI, the additional bands near A = 8.5-8.7 um are also useful for SSTy;, retrieval [23-25], as well
as in the cloud mask used to eliminate measurements containing radiance emitted or modified by
clouds [26]. SSTgin derived from measurements in these thermal bands have provided long time-series
for various studies [2], the stability of measurements in these bands must be continuously evaluated,
especially when they are used to assess the rapidly environmental changes.

This study focused on the preliminary inter-comparison of the new generation of SLSTR
radiometers with geostationary radiometers ABI and SEVIRI, in which the performance of the
thermal emissive bands were compared. We organize this paper as follows: an overview of the different
satellite data is introduced in Section 2. The inter-comparisons between SLSTR and ABI, as well as
SLSTR and SEVIR, in three regions, are discussed in Section 3. The reasons for the uncertainties are
also introduced in Section 3. Section 4 gives the conclusion of this study.

2. Methods and Materials

2.1. Overview of the Satellite Data

The datasets used in this study include those from radiometers on Sentinel-3A, MSG-4,
and GOES-16 satellites are all freely accessible from data servers. Here, we briefly describe the
characteristics of the satellite radiometers and their thermal emissive bands that are used to derive
SSTekin. Relative spectral response functions of SLSTR and the corresponding ABI and SEVIRI channels
are given in Figure 1 and Table 1. The gray line in Figure 1 is the atmospheric transmission spectrum for
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vertical propagation through a standard atmosphere, the spectral response functions of these thermal
emissive channels are similar.
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Figure 1. Relative spectral response function of the Sea and Land Surface Temperature Radiometer
(SLSTR), with those of Advanced Baseline Imagers (ABI) and Spinning Enhanced Visible and Infrared
Imager (SEVIRI) thermal bands around wavelengths of 3.7um, 8.9um, 11um and 12um. Data are from
National Oceanic and Atmospheric Administration Center for Satellite Applications and Research
(STAR) National Calibration Center for Visible Infrared Imaging Radiometer Suite (VIIRS)/ABI, from the
European Space Agency (ESA )Sentinels Hub for SLSTR and SEVIRI. The gray line is the atmospheric
transmission spectrum for vertical propagation through a standard atmosphere.

Table 1. Spectral bands of the SLSTR and geostationary satellite radiometers ABI and SEVIRI. All these
bands are usually referred to as thermal emissive bands. Only those with a sea surface temperature
(SST) capability are shown.

Band Center Wavelength (um) Band Center Wavelength (1um) Band Center Wavelength (ium)

Band GOES-ABI MSG-4 SEVIRI Sentinel-3A SLSTR
IR038 7 3.90 4 3.90 7 3.74
IR087 1 8.50 7 8.70

IR112 14 11.20 9 10.80 S8 10.95
IR123 15 12.30 10 12.00 S9 12.00

The ability to retrieve the SSTgin, by making atmospheric corrections is based on different
atmospheric transmissions at different infrared wavelengths. The measurements are usually taken
in spectral regions with wavelengths from ~3.5 pm to ~4.1 pm and ~10 pm to ~13 um, where the
atmosphere is quite transparent, with variations in clear-sky transmission caused primarily by water
vapor, which in itself is highly variable. The widely used SSTgyiy, retrieval algorithm, the non-linear
SST (NLSST; [27]), is based on the atmospheric transmission window near the IR112 and IR123 bands
(Table 1), with other dependences on satellite zenith angle, first-guess SST, coefficient set for latitude
bands and month of year [2,28]. The IR038 band near the 3.7-3.9 um interval can be used to retrieve
nighttime SSTyi, and correct dust aerosol effect [29-31]. Both ABI and SEVIRI are spectrally matched
to three SLSTR bands, S7, S8, and S9, respectively. Additionally, ABI and SEVIRI have an IR086 band
near 8.5-8.7 um for deriving SSTi,. However, the SLSTR does not include a similar IR086 band in
their SSTin, retrievals. For this reason, we only consider comparisons of the bands near the SLSTR S7
(A =3.74 pm), S8 (A = 10.95 um), and S9 (A = 12.00 pum) spectral ranges in this study.
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Figure 2 shows the one-day track of Sentinel-3A as well as the coverage of the GOES-16 and MSG
geostationary meteorological satellites that will be used in this study. Table 2 gives the temporal and
spatial resolutions of the three satellite retrievals. Details of each radiometer are given in Sections 2.2-2.4.

Geostationary satellite coverages. Background: May 2020 SST
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Figure 2. The Sentinel-3A one-day ground tracks along with the coverage areas of the two geostationary
meteorological satellites currently in operation and are used in this study. May 2020 monthly mean
SST is the background. Three black rectangles indicate the research areas in this study, the numbers
correspond to the three parts in Section 4.

Table 2. Characters of each satellite product.

Satellite Available from Temporal Resolution Spatial Resolution
EUMETSAT v 3 min for
Sentinel-3A SLSTR Copernicus Online GEEVZI-IB dat(; 1km
Data Access (CODA)
NOAA Amazon Web
GOES-ABI Services (AWS) Data every 10 min 1 km
Centre
MSG-4 SEVIRI EUMETSAT Data every 15 min 3km
Centre

2.2. SLSTR Data

The European Copernicus Sentinel-3A was launched in February 2016 into a polar orbit with
descending equator crossing time at 10:00 AM. SLSTR is one of the key instruments for the European
Copernicus Sentinel observational system. Unlike the MODIS and VIIRS, which are broad-swath
linear-scanners with an atmospheric correction based on the differential atmospheric effects at different
wavelengths, the SLSTR onboard Sentinel-3A and Sentinel-3B satellites includes dual view scan systems
taking measurements through different atmospheric paths, providing direct measurements of the
atmospheric effect, but at the cost of narrower swaths of 740 km. The SLSTR also has a wider nadir view
with 1400 km swath. The SLSTRs can provide accurate SSTgy, derived by radiative transfer model
simulated top-of-atmosphere BTs [22,32]. Since the 3.74 um band can be contaminated during daytime
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by solar radiation, the SLSTR SSTgy, is selected from a selection of four algorithms depending on
single-view, dual-view, daytime, and nighttime. An initial assessment of the Sentinel-3A SLSTR SSTgin
accuracy determined by comparisons with measurements of the ship-borne Marine-Atmospheric
Emitted Radiance Interferometer (M-AERI; [33]) indicates a median discrepancy of —0.098 K with a
robust standard deviation of 0.296 K [3].

2.3. ABI Data

The National Oceanic and Atmospheric Administration (NOAA) geostationary satellite GOES-16,
located above 75.2°W, began operation on December 16th, 2017 [10]. ABI has 16 spectral channels,
including six visible and near-infrared channels and ten in the infrared. The ABI uses an internal
blackbody target and deep space for calibrating the thermal bands. The ABI has improved performance
with regard to radiometric calibration accuracy and image navigation/registration compared to prior
instruments, it provides full-disk imagery every 10 minutes and the nearest in time Level 2 Cloud and
Moisture Imagery Full Disk (CMIPF) data are used to compare with the corresponding SLSTR scenes.
The ABI CMIPF files were downloaded from the NOAA data project on Amazon Web Services (AWS)
at no cost. The ABI Advanced Clear Sky Processor for Ocean (ACSPO) cloud mask [34] was also used
in this study to identify and remove the cloudy pixels.

2.4. SEVIRI Data

Located in geostationary orbit at 0° longitude, SEVIRI onboard MSG-4 can provide full-disk
images every 15 minutes. SEVIRI has twelve spectral channels, of which eight are in the infrared.
The spatial resolution of the infrared channels is 3 km. The SEVIRI level 1.5 image data were acquired
from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Earth
Observation portal. The SEVIRI level 1.5 data are geolocated and have had radiometric calibration
applied. As the SEVIRI level 1.5 data include calibrated top-of-atmospheric radiances instead of
BTs in each channel, each radiance measurement has been converted into BT according to Planck’s
equation [35].

2.5. MERRA-2 Data

Sea surface and vertical atmospheric data are needed to drive radiative transfer simulations of
top-of-atmosphere BTs to convert those of ABI and SEVIRI into equivalent SLSTR BTs. As the reanalysis
ocean surface and atmospheric fields are internally consistent [36], this study uses atmospheric state
vectors from the NASA Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA-2; [37]). The reanalysis datasets contain geolocated, geophysical variables, including SSTyin
and air temperature and humidity at 72 standard pressure levels [38,39], these were used to characterize
the atmospheric conditions under which the satellite measurements were made for the radiative
transfer model simulations of the spectral radiance for each satellite radiometer measurement, and also
to derive the formulas to convert the BTs.

2.6. RTTOV Simulation

The radiative transfer model used here is the computationally efficient Radiative Transfer
for Tiros Operational Vertical (RTTOV [40]) with sea surface and atmospheric state taken from
MERRA-2 reanalysis.

3. Methods

This study used three research areas to perform the comparative analysis of the SLSTR BTs and
those measured by geostationary satellite radiometers (Table 3).
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Table 3. Details of the SLSTR L1-B data used in this study.

Areas for Date UTC Time
Eastern tropical . Day: 15:21:14 PM
North Atlantic Ocean SLSTR with ABI 1 January 2020 Night: 02:55:20 AM
Mediterranean Sea SLSTR with SEVIRI 23 December 2019~ Day: 09:04:56 AM

Night: 20:21:51 PM

Day: 12:09:44 AM
Night: 00:36:20 AM

Cross-covered region ~ SLSTR with SEVIRI and ABI 27 November 2019

The first step was to match the SLSTR with ABI and SEVIRI data based on latitude and longitude.
Due to the fact that the three instruments have different spatial resolutions, the matched data provide
measurements at nearly the same location. We selected the nearest point with the spatial distance
between the SLSTR and matched data less than 1 km, which is less than their spatial resolution
(Table 2). The time differences between them are usually <5 minutes to mitigate the effects of
temporal temperature changes. The satellite viewing geometry is different for each sensor, so to
reduce the effect of atmospheric absorption and scattering on radiance measurements, the SLSTR
satellite zenith angle is limited to within 45 degrees, then the SLSTR oblique view data will be
excluded. Then, the SLSTR Bayesian cloud mask was applied to remove the cloud-contaminated pixels.
Additionally, the corresponding ACSPO and SEVIRI cloud masks were used to ensure the clear-sky
scenes for the ABI and SEVIRI measurements.

The next step in the analyses was to harmonize the BT measurements taken by each satellite
radiometer to account for the relative spectral response functions (Figure 1). The successful
harmonization of the BTs obtained from all satellite radiometers is important to this study. Wu, et al. [21]
and Yu and Wu [14] assumed the BTs of AHI and Advanced Very High-Resolution Radiometer (AVHRR)
at specific channels could be linearly expressed by other similar spectral channels such as VIIRS and
MODIS. Wu, et al. [21] and Sohn, et al. [41] used a simple conversion function when comparing MODIS
BTs with those of Multifunctional Transport Satellites (MTSAT) or AVHRR. However, they selected
the pixels with almost the same viewing geometries, the differences of satellite viewing angle are
lower than 50 degrees to reduce the uncertainties caused by different viewing geometries. We updated
the conversion functions with the secant of satellite zenith angle terms with respect to the BT
changes. Li, et al. [17] and many other investigators used the spectral band difference adjustments
based on the NASA Langley Scanning Imaging Absorption Chartography (SCIAMACHY) tool [20].
However, the data flow from SCIAMACHY ended with the failure of Environmental Satellite (Envisat)
in April 2012, well before the launch of the Sentinel-3S and the GOES 16 ABI, therefore we derived
conversion functions based on radiative transfer simulations to convert the ABI and SEVIRI BTs into
SLSTR equivalents:

BTSLSTR equivalent = @ X BT ap] or sEvIRI + b X BTsLsTR X (sec(Ospsr) — 1) + ¢
XBT a1 or sevIR X (sec(0apr or sEvirt) — 1) +d

The coefficients g, b, ¢, and d were determined by regressions of the SLSTR BT and ABI/SEVIRI BT
of each channel and each geographic area. BT is the BT, 0 is the satellite zenith angle. In this study,
all of the analyses are based on BTs.

The form of this equation was derived by simulating the spectra of the radiation leaving the top
of the atmosphere using RTTOV radiative transfer modeling with the atmospheric state taken from
MERRA-2 to derive the simulated satellite radiometer measurements. The SST, 2m air temperature
and surface wind data were taken from the MERRA-2 instl_2d_asm dataset, the three-dimensional
air temperature and relative humidity were taken from the MERRA-2 inst3_3d_asm_Nv dataset.
The harmonization process is completed across the entire swath of the SLSTR. Satellite zenith angles
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were set between 0° to 45° to derive the sensitivity to viewing geometry. We did not include the aerosol
or cloud effects in the simulations.

4. Results and Discussion

4.1. Eastern Tropical North Atlantic Ocean Region

The variabilities of the oceanographic and atmospheric conditions along the Gulf Stream have
drawn a lot of attention for many years. The Florida Current causes complex SST variations as well as a
strong atmospheric response in this region [42]. Inter-comparison of Sentinel-3A SLSTR and GOES-16
ABI in this region supports the regional studies of the Gulf Stream and Florida Current.

Selecting a granule with less cloud cover than many others, Figure 3 shows the SLSTR false
color infrared image of this area on 1 January 2020, 15:21:14 Coordinated Universal Time (UTC)
and the corresponding satellite zenith angles and solar zenith angles. Figures 4 and 5 show the
comparison of the pixel-by-pixel matched near-coincident measurements between SLSTR and ABI.
All of the ABI values have been converted to SLSTR equivalent BTs. Clearly, there is generally good
agreement between all three bands from these scenes. The overall SLSTR BTs are higher in the S8 and
S9 comparisons. For SLSTR S7 compared to ABI band 7, there is a negative bias near the Bahamas
islands, the S7 band can be contaminated by sun light and there are residual clouds near this region.
Figure 5 (third row) shows the histograms of the BT differences in three bands. Their distribution
patterns are similar but with many peaks for SLSTR S9 with ABI band 15. Some larger discrepancies,
shown in the SLSTR S9 with ABI 15 scatter plot and difference distribution, are caused by large SLSTR
satellite zenith angles and cloud edges.

Solar Zenith Angle 15:21UTC _SLSTR Sat Zenith Angle 15:21UTC ABI Sat Zenith Angle 15:21UTC

34

;\ T
SRS . 7 e,

Figure 3. (a): SLSTR daytime false color infrared image of the eastern tropical North Atlantic Ocean coast
region on 1 January 2020, 15:21:14 UTC. (b): Solar zenith angles data at the same time. (c): Corresponding
SLSTR satellite zenith angles. (d): Corresponding ABI satellite zenith angles, only the points with
available ABI matched up pairs are shown.

SLSTR S7 minus ABI Band7 Day 5 SLSTR S8 minus ABI Band14 Day
>!

°
Brightness Temperature Difference
°
Brightness Temperature Difference

SLSTR S9 minus ABI Band15 Day

)
Brightness Temperature Difference

Figure 4. Distributions of the daytime brightness temperature (BT) differences between SLSTR and ABI
in the eastern tropical North Atlantic Ocean of SLSTR S7 (top-left), S8(top-right) and S9 (bottom-left).
The colors indicate the SLSTR minus ABI equivalent BTs.
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Figure 5. First row: scatter plots of the ABI equivalent BTs as a function of the SLSTR BTs of each
channel pair. The colors show the density of the data according to the scale on the right. Second row:
scatter plots of the SLSTR minus ABI BTs as a function of the SLSTR BT. Third row: histograms of the
SLSTR minus ABI BTs. All of the ABI BTs indicate the transferred SLSTR-equivalent BTs. The BTs are
divided into 0.5 K intervals. The density shows the number of matched points within 0.2 K times 0.2 K
BT cells divided by the maximum number.

The nighttime false color infrared image is shown in Figure 6. There is a dense cloud cover.
Figures 7 and 8 display the nighttime SLSTR BT versus equivalent BTs of ABI. The results of overall
comparisons of the nighttime BTs are in better agreement with equivalent BTs than those of daytime.
. Solar Zenith Angle 02:55UTC

_SLSTR Sat Zenith Angle 02:55UTC _ABI Sat Zenith Angle 02:55UTC
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Figure 6. (a): SLSTR nighttime false color infrared image of the eastern tropical North Atlantic
Ocean coast region on 1 January 2020, 02:55:20 UTC. (b): Solar zenith angles at the same time.
(c): Corresponding SLSTR satellite zenith angles. (d): Corresponding ABI satellite zenith angles,
only the points with available ABI matched up pairs are shown.

From the geographical distribution of BT differences corresponding to the matching and selection
criteria (Figure 7), there is an overall positive bias when comparing the matched SLSTR and equivalent
ABI BTs. The dashed lines in the panels in the first row of Figure 8 represent the one-to-one relationship,
showing that for SLSTR bands S8 and S9, the BTs < 290 K deviate from the one-to-one lines. These results
are consistent with other SLSTR BT comparisons, such as by Shrestha, et al. [43] who also found
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such discrepancies at the lower SLSTR BTs when compared with those of MODIS. Here, this result
may come from the residual contamination at cloud edges and by thin ice clouds, since their BTs are
normally lower than those of the sea surface. Although no matchup pairs used to derive the ABI to
SLSTR transfer functions are selected with the satellite zenith angle > 45° in this study, the difference
distributions based on the selected granule show discrepancies with large viewing angles in S8 and
S9 spectral channels. Figure 8 (third row) illustrates the histograms of the BT difference of SLSTR
minus ABI during nighttime, which indicates the close similarity of the skewed distributions. Table 4
summarizes the statistics of the SLSTR BTs minus ABI equivalent BTs in this region, the averaged BT
differences are on the order of —0.035 K to 0.079 K with the S7 band comparisons having the minimum

average difference.
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Figure 7. As shown in Figure 4, but for nighttime.
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Figure 8. As shown in Figure 5, but for nighttime.
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Table 4. Statistics of SLSTR BTs minus ABI equivalent BTs in eastern tropical North Atlantic Ocean.
STD: standard deviation. RSD: robust standard deviation.

Eastern

TopicalNorth - DayNight — (qiSrny ag' a0 w0 00
s7 0.028 ~0.005 0.296 0.248

Day S8 0.054 0.008 0.326 0.145

SLSTR 59 0.042 0.006 0.401 0.260
ABI s7 0.039 ~0.033 0.360 0.281
Night S8 0.079 0.028 0.383 0.230

59 ~0.035 ~0.088 0.360 0.330

4.2. Mediterranean Sea Region

As the largest semi-enclosed sea in the world, the Mediterranean Sea has highly specific oceanic
characteristics. The SST diurnal cycles in the Mediterranean Sea are more frequent than global
regions [44], which can cause marked SST changes. Several studies have estimated the heat budget
and their relations to the SST diurnal cycle [45,46]. Satellite measurements can provide high-quality
synoptic datasets to study the Mediterranean Sea heat budget, accurate knowledge of their performance
is crucial for such research. Figure 9a gives the daytime false color infrared image and satellite geometry
data on 23 December 2019, 09:04:56 UTC—the reason for choosing this time is that there is less cloud
cover compared to other days.

Solar Zenith Angle 09:04UTC SLSTR Sat Zenith Angle 09:04UTC SEVIRI Sat Zenith Angle 09:04UTC

degrees

Figure 9. (a): SLSTR daytime false color infrared image of the Mediterranean Sea region on 23 December
2019, 09:04:56 UTC. (b): Solar zenith angles data at the same time. (c): Corresponding SLSTR satellite
zenith angles. (d): Corresponding SEVIRI satellite zenith angles, only the points with available SEVIRI
matched up pairs are shown.

Results of the comparisons in Figures 10 and 11 indicate that for most of the matched points
(with high density at the scatter plots), SLSTR BTs agree well with SEVIRI data for S8 and S9 bands,
while SLSTR S7 generally has larger differences with SEVIRI band 4 during the daytime due to
solar effects. The fact that SLSTR S8 and S9 bands are biased warm may suggest there is residual
cloud contamination in the SEVIRI in the Mediterranean Sea region. The SLSTR and SEVIRI cloud
masks should be consistent with each other; however, there are large differences near cloud edges,
and the difference in viewing angles to the cloud edge causes parallax, which may contribute to
these differences.

The most apparent outliers within these channels belong to S7 with large scattering angles of solar
radiation and large satellite zenith angles.

Visual inspection of the SLSTR nighttime false color infrared image (Figure 12a) confirms that the
cloud edges are the leading cause of the significant warm bias between them. Although the matchup
criteria have removed most of the pairs with cloud cover, some of the SEVIRI scenes still have low BTs
probably due to the cloud emission instead of from the sea surface.
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Figure 10. Distributions of the daytime BT differences between SLSTR and SEVIRI in the Mediterranean
Sea region of SLSTR S7 (top-left), S8 (top-right) and S9 (bottom-left). The colors indicate the SLSTR
minus SEVIRI equivalent BTs.
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Figure 11. First row: scatter plot of the SLSTR BTs with SEVIRI equivalent BTs of each channel pair.
The colors show the density of the data according to the right scale. Second row: scatter plot of
the SLSTR BT with SLSTR minus SEVIRI BT of each channel pair. Third row: histograms of the BT
differences of SLSTR minus SEVIRI for each channel pair. All of the SEVIRI BTs indicate the transferred
SLSTR-equivalent BTs. The BTs are divided into 0.5 K intervals.
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Solar Zenith Angle 20:21UTC SLSTR Sat Zenith Angle 20:21UTC SEVIRI Sat Zenith Angle 20:21UTC
52
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Figure 12. (a): SLSTR nighttime false color infrared image of the Mediterranean Sea region on 23
December 2019, 20:21:51 UTC. (b): Solar zenith angles at the same time. (c): Corresponding SLSTR
satellite zenith angles. (d): Corresponding SEVIRI satellite zenith angles, only the points with available
SEVIRI matched up pairs are shown.

Shown in Figures 13 and 14 are results of the SLSTR and SEVIRI comparison during nighttime.
All of the results in these three channels display significant discrepancies at 280-285 K. The most likely
distributions of these points with relatively large discrepancies are near coastal regions through visual
inspection of Figure 13. Figure 14 (third row) shows the histograms of the BT differences. Each channel
of them exhibits very similar difference distributions. Table 5 summarizes the statistics of the SLSTR
BTs minus SEVIRI equivalent BTs in the Mediterranean Sea region, the averaged BT differences are
over 0.1 K, which is larger than for other regions examined, which may be due to increased number of
comparisons indicating cloud-edge effects.
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Figure 13. As shown in Figure 10, but for nighttime.
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Figure 14. As shown in Figure 11, but for nighttime.

Table 5. Statistics of SLSTR BTs minus SEVIRI equivalent BTs in the Mediterranean Sea area.

Mediterranean Sea  Day/Night (S]i,;r}F(}{) N(Ilesn M?Icgan S(;])) I}IS<]))
S7 0.133 0.045 0.544 0.493

Day S8 0.067 —-0.005 0.454 0.143

SLSTR =) 0.073 0.008 0.440 0.198
SE‘\]/SiRI s7 0.077 0.012 0.480 0.320
Night S8 0.143 ~0.003 0.674 0.240

S9 0.124 —-0.003 0.644 0.328

4.3. Cross-Covered Region

GOES-16 is located above 75.2°W and MSG-4 is located above 0°W; thus, the areas near 37.5°W
are under the coverage of three satellites when Sentinel-3A underlies the geostationary satellites.
After checking SLSTR true color images, we found this area always includes large amounts of cloud.
For this case, two granules of Sentinel-3A SLSTR data from 27 November 2019 are selected to perform
the inter-comparison of the three radiometers because of the relatively small cloud coverage compared
to other days. The inter-comparison of the thermal emissive bands over this region can further show
their performance under the same conditions.

The false color infrared image and satellite geometry data are given in Figure 15. It is clear that the
daytime SLSTR image has solar contamination as the area in the right of Figure 15a shows a sun-glitter
pattern. There is also a thin cloud cover over this region on 27 November 2019, 12:09 UTC. As the
SLSTR S7 near 3.74 um usually suffers from sunlight contamination during daytime and there is a
clear sun-glitter patch in the scene, the SLSTR S8 and S9 BTs are preliminarily evaluated with the
corresponding ABI and SEVIRI BTs.
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Figure 15. (a): SLSTR daytime false color infrared image of the cross-covered region on 27 November
2019, 12:09 UTC. (b): Solar zenith angles data at the same time. Corresponding SLSTR (c), ABI (d),
SEVIRI (e) satellite zenith angles data.

The cross-comparisons of these three radiometers in this region are limited to SLSTR satellite zenith
angles less than 20 degrees as this reduces the range of zenith angle differences to the geostationary
satellites. Figure 16 shows the geographical distribution of the daytime BT differences. In comparison
to the two infrared channels of SEVIRI, the ABI channels 14 and 15 (shown in the first row of Figure 17)
show much larger discrepancies at lower SLSTR BTs, indicating a significant underestimate of BT.
Most of the matchup pairs with positive discrepancies at the first row are near the cloud edge, and larger
positive discrepancies occur at lower SLSTR BTs, as shown in the second row of Figure 17. All of these
discrepancies can also be addressed in the third row, which shows the histograms of the daytime BT
differences in three bands.
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Figure 16. First row: distributions of the daytime BT difference between SLSTR and ABI in the
cross-covered region on 27 November 2019, 12:09 UTC. The color indicates the SLSTR minus SEVIRI
equivalent BT. Second row: corresponding BT difference distributions between SLSTR and SEVIRI.
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Figure 17. First row: scatter plots of the ABI/SEVIRI equivalent BTs as a function of the SLSTR BTs
of each channel pair. The colors show the density of the data according to the scale on the right.
Second row: scatter plots of the SLSTR minus ABI/SEVIRI BTs as a function of the SLSTR BT. Third row:
histograms of the SLSTR minus ABI/SEVIRI BTs. All of the ABI/SEVIRI BTs indicate the transferred
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SLSTR-equivalent BTs. The BTs are divided into 0.5 K intervals.

The nighttime false color infrared image and satellite view geometries are shown in Figure 18.
Figures 19 and 20 show the nighttime comparisons between SLSTR, ABI and SEVRI. Figure 19 shows the
geographic distributions of the BT differences in two bands. As for the eastern tropical North Atlantic
Ocean region, the nighttime comparisons show better agreement compared to daytime. The significant
positive discrepancies can also be found at the image near the cloud edge. Strong linear relationships
between SLSTR and ABI/SEVIRI can be found at most of the matched-up points, as indicated by the
first row of Figure 20. However, the overall fitting slopes of high density-points do not agree well
with the one-to-one black line. The discrepancies may suggest that the conversion functions have
larger uncertainties over this region. Possible reasons are greater water vapor concentrations and large

ABI/SEVIRI satellite zenith angles.

Figure 18. (a): SLSTR nighttime false color infrared image of the cross-covered region on 27 November
2019, 00:36 UTC. (b): Solar zenith angles data at the same time. Corresponding SLSTR (c), ABI (d),
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Figure 19. As shown in Figure 16, but for nighttime.
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Table 6 shows the statistics of the SLSTR BTs minus ABI/SEVIRI equivalent BTs. The average
BT differences are on the order of 0.1 K. Daytime comparisons are better than at nighttime in terms
of the average difference and standard deviations. The standard deviations of SLSTR vs ABI are
higher than SLSTR vs SEVIRI. The SLSTR S9 band comparisons have larger differences than the S8

band comparisons.
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Figure 20. As shown in Figure 17, but for nighttime.
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Table 6. Statistics of SLSTR BTs minus ABI/SEVIRI equivalent BTs.

. . Band Mean Median STD RSD
Cross-Covered Region  Day/Night (SLSTR) K) K) ) K)
R S8 0.035 0.013 0.452 0.184
a
SLSTR Y 59 0.056 0.030 0.516 0211
VS
ABI S8 0.128 0.036 0.891 0.186
Night
S9 0.143 0.025 1.084 0.207
R S8 0.087 0.018 0.450 0.202
a
SLSTR y 59 0.072 0.010 0.467 0.241
VS
SEVIRI S8 0.084 0.014 0.465 0.224
Night
59 0.105 0.024 0.549 0.265

5. Conclusions

With the significant improvements in design, SLSTRs onboard the Sentinel-3A series of satellites
provide observational data in nine visible to infrared bands. Good absolute calibration is required
for the accurate derivation of SSTgy;, from radiance measurements, which is achieved by using two
onboard blackbodies. Even so, external comparisons of the SLSTR BTs with those of other satellite
radiometers are extremely important to ensure the stability and continuity of the long-term satellite
climate-related data products, which require the combination of measurements from multiple satellite
radiometers, including different designs.

Among the SLSTR nine spectral channels in the 0.554-12.022 um wavelength spectral range, bands
S7 (3.74 um), S8 (10.95 pm), and S9 (12.00 pm) are used for deriving the SSTyn. Here, we compared the
BTs of these three SLSTR thermal emission bands with those from geostationary satellite radiometers.

Pixel-by-pixel collocated BTs from SLSTR, ABI, and SEVIRI were used together with their cloud
masks to select clear-sky measurements. Empirical regression formulas derived from simulated
top-of-atmosphere radiance spectra using the relative spectral response functions of each band were
used to convert ABI and SEVIRI BTs to SLSTR-equivalent values, taking into account the satellite
zenith angle. The results indicate that SLSTR thermal emissive bands 57, S8 and S9 are comparably
well-calibrated as the corresponding ABI and SEVIRI bands, except for S7 bands, which suffer from
sunlight contamination during daytime. The measurements from the different satellite radiometers
can be combined within the accuracy limits shown in Tables 4-6. Given the occurrence of outliers
in the distributions of the BT differences, the robust standard deviation is a better measure of the
correspondence of the measurements of the different radiometers. The main differences are due to
the residual cloud edges and coast effects, probably land-mask effects, while the other disagreements
may be due to different viewing angles and solar contamination of measurements in the mid-infrared
atmospheric transmission window. However, it is apparent that the cloud-screening algorithms for all
sensors are not identifying all cases of cloud contamination.

It should be noted that the coefficients in the equation to derive SLSTR-equivalent BTs for the
geostationary satellite data are dependent on each scene, as a result of the limited ranges of SST and
atmospheric conditions in each. Conversion equations applicable to larger areas with greater variability
and different times require additional terms, possibly including additional variables, such as the water
vapor amount.
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Abstract: Prior evaluations of Visible Infrared Imaging Radiometer Suite (VIIRS) out-of-band (OOB)
contribution to total signal revealed specification exceedance for multiple key solar reflective and
infrared bands that are of interest to the passive remote-sensing community. These assessments are
based on laboratory measurements, and although highly useful, do not necessarily translate to OOB
contribution with consideration of true Earth-reflected or Earth-emitted spectra, especially given the
significant spectral variation of Earth targets. That is, although the OOB contribution of VIIRS is well
known, it is not a uniform quantity applicable across all scene types. As such, this article quantifies
OOB contribution for multiple relative spectral response characterization versions across the S-NPP,
NOAA-20, and JPSS-2 VIIRS sensors as a function of varied SCIAMACHY- and TASI-measured
hyperspectral Earth-reflected and Earth-emitted scenes. For instance, this paper reveals measured
radiance variations of nearly 2% for the S-NPP VIIRS M5 (~0.67 um) band, and up to 5.7% for certain
VIIRS M9 (~1.38 um) and M13 (~4.06 um) bands that are owed solely to the truncation of OOB
response for a set of spectrally distinct Earth scenes. If unmitigated, e.g., by only considering the
published extended bandpass, such variations may directly translate to scene-dependent scaling
discrepancies or subtle errors in vegetative index determinations. Therefore, knowledge of OOB
effects is especially important for inter-calibration or environmental retrieval efforts that rely on
specific or multiple categories of Earth scene spectra, and also to researchers whose products rely
on the impacted channels. Additionally, instrument teams may find this evaluation method useful
for pre-launch characterization of OOB contribution with specific Earth targets in mind rather than
relying on general models.

Keywords: VIIRS; S-NPP; NOAA-20; JPSS-2; spectral response; out-of-band; in-band; hyperspectral

1. Introduction

Instrument relative spectral response (RSR) characterization is an important element of pre-launch
performance specification. Well-characterized spectral performance is critical to the reliable on-orbit
operation of Earth-monitoring instruments, whether for routine measurements or for climate
studies, and also lends confidence to radiometric calibration efforts and the products reliant on
them [1,2]. The Clouds and the Earth’s Radiant Energy System (CERES) project, for instance, relies
on RSR-dependent calibration adjustments and atmospheric transmissivity calculations to produce
accurate cloud products for consistent flux measurements [3-7]. As such, complete pre-launch
evaluation of sensor geometric performance, including RSR co-registration and spatial response
characterization, is a necessary requirement established to meet the goals of the remote sensing
community [8-13]. Moeller et al. and Schwarting et al. conducted extensive laboratory RSR
characterization efforts for the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument series
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using Spectral Measurement Assembly (SpMA) and spherical integrating sphere (SIS) analyses. These
laboratory instruments allowed for characterization of the full optical path and any optical or electronic
cross talks for nearly all VIIRS bands [1,2,14-19].

Pre-launch, the VIIRS RSRs are specified by their band center, bandpass, extended bandpass, and
out-of-band (OOB) response, which are determined from the complete integrated signal. Figure 1 is a
schematic recreated from several such figures of Moeller et al. and Schwarting et al. (e.g., “Figure 1” in
all listed Moeller et al. references) that illustrates the spectral performance specification metrics for
VIIRS, in which the band center is the central wavelength between the 50% response-level bandpass
bounds, and the extended bandpass is bound at 1% response levels with associated lower and
upper wavelength (A) thresholds, beyond which are the OOB regions [1,2,16-19]. Moeller et al. and
Schwarting et al. conducted these characterization efforts for both the Suomi National Polar-Orbiting
Partnership (5-NPP) VIIRS Government Team (GT, consisting of NASA, Aerospace Corp., MIT/Lincoln
Lab, and Univ. Wisconsin) and industry (Northrop Grumman, NG) RSR products. The analysis was also
performed for versions 1 and 2 (V1 and V2) of the first Joint Polar Satellite System (JPSS-1/NOAA-20)
VIIRS RSRs, and V1 and V2 of the future JPSS-2 VIIRS RSRs. With laboratory measurements, they
assessed spectral performance metrics with respect to their specified values, results of which are given
in tables along with listed bandpass and extended bandpass limits [1,2,16-19].

Band Center |

100% —»
50% —»
AIower oos Aupper oos
_1% 1%
-
Out-of-band Bandpass Out-of-band
< >
Extended Bandpass

Figure 1. Schematic of “VIIRS spectral performance specification metrics,” which is a recreation of
“Figure 1” from the works of Moeller et al. and Schwarting et al. [1,2,16-19]. The lower and upper
wavelength 1% response limits that separate the extended bandpass and out-of-band (OOB) regions
are designated as AjouerOOB and AypperOOB, respectively.

Although the laboratory results are valuable, they cannot account for the highly varied spectral
signatures measured by Earth-observing imagers because OOB contribution to the total scene radiance
depends on the spectral shape of the at-sensor radiance. That s, it is difficult to tie the pre-launch spectral
performance metrics to OOB behavior for specific Earth-viewed scenes. The OOB radiance signal is
dependent on the Earth-reflected spectra and the extended bandpass specifications/measurements
unique to each channel. The goal of this study is to quantify the OOB contribution to the total VIIRS
signal as a function of instrument version, channel, extended bandpass definition, and Earth scene
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type. This knowledge is important for scene-dependent inter-calibration efforts, for environmental
retrievals, and in regard to error consideration for cloud/aerosol property computations.

This article examines the VIIRS OOB contribution for the S-NPP VIIRS GT and NG RSR products,
as well as the V2 releases of the NOAA-20 (V2.1 in the case of band M9) and JPSS-2 VIIRS RSRs.
The reason both S-NPP VIIRS RSR products are studied is because despite the post-launch endorsement
of the NG RSR release by the Government Team, the GT RSR release, which diverges from the NG
RSR “primarily due to analysis differences that only affect the RSR at low response levels,” may
still be of “investigative interest” to the remote sensing community as an “alternative high quality
RSR” [1,2,20]. For the NOAA-20 and JPSS-2 VIIRS, there is no distinction between GT and industry
RSR releases because only the former carried out a pre-launch characterization effort [17,19,21]. Users
within the inter-calibration community and product teams that rely on VIIRS should find these results
useful, even if only for assurance that OOB contribution is within acceptable tolerance for their specific
application, which should often be the case especially for the newer VIIRS. Regardless, this work
informs users on the impact of limiting spectral integration to published extended bandpass limits
versus the full-band RSR for applications that rely on such techniques.

2. Data and Methodology

The Earth-view hyperspectral data used in this study were acquired from the Envisat Scanning
Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument for
visible bands, and from the MetOp Infrared Atmospheric Sounding Interferometer (IASI) instrument for
infrared (IR) bands [22-25]. Operatingina 10:00 AM local time sun-synchronous orbit, the SCCAMACHY
instrument has a fine spectral resolution across eight channels covering 0.24-2.38 pm; however poor
spectral quality in higher channels limits the usable wavelength upper range to ~1.75 um. It has four
30 x 240 km? nadir fields of view (FOVs) divided along a 960 km swath with footprint-center viewing
zenith angles (VZAs) ranging from ~7.5° to ~27.1°. The instrument performed daily solar irradiance
measurements via a solar diffuser, remained stable over its lifetime of 1 March 2002-8 April 2012,
and maintained an absolute on-orbit calibration accuracy of 2-6% [22,26-28]. The IASI instrument
was the first operational interferometer in space measuring 3.6-15.5 pm across 8461 spectral bands
with a spectral resolution of 0.5 cm™!, has a 12 km FOV, and, operating on MetOp-A, has a local
equator crossing time of 09:30 AM [24,25,29]. The instrument has been relied upon by the Global
Space-Based Inter-Calibration System (GSICS) international organization as an absolute calibration
reference given the high confidence in IR hyperspectral sensor calibration and the capability of
creating pseudo imager radiance signatures by convolving the hyperspectral data with imager RSRs.
The imager-RSR-convolved IASI radiance values are used to radiometrically scale the imager to the
IASI standard [30-35].

Many studies have employed RSR-integration techniques, involving either simulated or measured
hyperspectral radiance information, for the purpose of spectral band adjustment factor (SBAF)
computation. An SBAF is used to account for spectral differences between common instrument RSRs,
which is an important step of the imager inter-calibration process [36—43]. The background and
methodology of the specific SBAF computation pertinent to this work, which is dependent on measured
Earth radiance spectra that are relevant to common inter-calibration techniques, were described in
detail by Scarino et al. In short, pseudo radiance signatures for a reference and target satellite imager are
computed by convolving many hyperspectral radiance footprints with the imager RSRs. A simple ratio
of means or regression of the set of pseudo radiance pairs then constitutes the target/reference SBAF
for the selected Earth scene. Therefore, applying the SBAF to the true reference radiance data will yield
predicted target radiance data that are spectrally consistent with the true target radiance [43]. An online
tool (found through https://satcorps.larc.nasa.gov or directly at https://satcorps.larc.nasa.gov/SBAF)
was developed to allow users to easily produce Earth-scene-specific SBAFs with the least uncertainty
for their carefully chosen inter-calibration conditions [43]. The tool has been recommended by GSICS
and each month serves over 4000 requests from the international community.
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This SBAF computation methodology was modified to allow for a simple assessment of the
OOB contribution to the total signal [43]. Instead of using distinct imagers for the pseudo radiance
calculations, the same VIIRS RSR is used as both the reference and the target. The reference pseudo
radiance values are integrated from either SCTAMACHY or IASI using the full-band VIIRS RSR
(i.e., the extended bandpass plus OOB radiance L;,), whereas the target pseudo radiance values are
integrated only within the range of the extended bandpass (i.e., the in-band radiance L;,;,). The OOB
contribution is examined in terms of both the specified and measured lower and upper 1% extended
bandpass limits for S-NPP VIIRS GT, S-NPP VIIRS NG, NOAA-20 VIIRS V2, and JPSS-2 VIIRS V2,
which are provided by Moeller et al. and are also listed in Table 1 [1,2,17,19]. Table 2 provides the
version descriptions of the VIIRS RSR products used in this study. Note that in the case of S-NPP VIIRS
RSR products, operational calibration of the VIIRS radiances does not employ either of the versions
listed in Table 2, but rather relies on Modulated RSR Release 1.0 [44]. The impact of this discrepancy is
discussed at length in Section 4. The OOB contribution 'y can be measured by the ratio of L, to Ly,
and then expressed as a percentage as follows:

Lin _ 1' x 100 1)
total

Values of vy close to 0 suggest minimal OOB contribution for the evaluated scene type. Note that
Moeller et al. define a maximum integrated out-of-band (MIOOB) response, described as the ratio of
integrated out-of-band response to integrated in-band response, which is formulaically different than
Equation (1) but leads to similar conclusions [17].

Table 1. Lower and upper 1% extended bandpass limits (um) as provide by Moeller et al. [1,2,17,19].

VIIRS Specified S-NPP VIIRS S-NPP VIIRS NOAA-20 VIIRS V2 JPSS-2 VIIRS
Band GT Measured NG Measured Measured V2 Measured
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
I1 0.5650 0.7150 0.5832  0.6866  0.5830  0.6868 0.5944 0.6915 0.5941  0.6878
12 0.8020 0.9280 0.8287  0.8979 0.8285 0.8978 0.8427 0.8923 0.8359 0.8981
13 1.5090 1.7090 1.5431 1.6641 1.5413 1.6628 1.5443 1.6677 1.5486 1.6880
14 3.3400 4.1400 34730  4.0090 34725  4.0093 3.4741 4.0152 3.4900  4.0405
I5 9.9000 129000 10.1910 13.0813 10.1702 13.0355 10.1708 13.0906 10.4751 12.7011
M1 0.3760  0.4440 0.3949 04268 03948  0.4267 0.3956 0.4251 0.3976  0.4235
M2 0.4170 0.4730 0.4314 0.4585 0.4313 0.4585 0.4292 0.4577 0.4345 0.4565
M3 0.4550 0.5210 0.4725 0.5065 0.4725 0.5026 0.4729 0.5044 0.4761 0.5013
M4 0.5230 0.5890 0.5298 0.5728 0.5298 0.5727 0.5402 0.5737 0.5418 0.5687
M5 0.6380 0.7060 0.6484  0.6938 0.6484  0.6937 0.6497 0.6851 0.6513  0.6937
Meé 0.7210  0.7710  0.7302 0.7606  0.7302  0.7605 0.7342 0.7582 0.7364  0.7585
M7 0.8010  0.9290 0.8293  0.8980  0.8293  0.8979 0.8428 0.8925 0.8362  0.8983
M8 1.2050 1.2750 1.2135 1.2652 1.2105 1.2652 1.2140 1.2649 1.2257 1.2564
M9 1.3510 1.4050 1.3621 1.3900 1.3613 1.3899 1.3620 1.3900 1.3691 1.3977
M10 1.5090 1.7090 15426  1.6648  1.5420  1.6645 1.5457 1.6676 1.5487  1.6877
M12 3.4100 3.9900 3.5162  3.8900 3.5153  3.8905 3.5191 3.8938 3.5290  3.8749
M13 3.7900 4.3100 3.9005 4.2137 39004  4.2408 3.9091 4.2247 3.8665 4.1710
M14 8.0500 9.0500 8.3335 8.8759 83322 8.8755 8.3363 8.8793 82331  8.9251
M15 9.7000 11.7400 99187 11.6499 99162 11.6502 9.9169 11.6387 10.0329  11.3481
M16A  11.0600 13.0500 11.0951 12.6700 11.0684 12.6681 11.1041 12.6925 11.2984 12.6509
M16B  11.0600 13.0500 11.0983 12.6787 11.0727 12.6766 11.1015 12.6985 11.2986 12.6576
DNBM 04700  0.9600 - - - - 0.4878 0.9069 0.4909  0.9003
DNBL 04700 0.9600 - - - - 0.4910 0.9001 0.4907  0.9012
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Table 2. Version descriptions of the VIIRS relative spectral response (RSR) products used in this study.

VIIRS RSR Version Description
Government Team “Best” Spacecraft Level RSR for F1 VisNIR M Bands (7 Apr 2011) and I
S-NPP GT
Bands (27 Jun 2011)
S-NPP NG Northrop Grumman October 2011 RSR Release
NOAA-20 Data Analysis Working Group Release of J1 VIIRS RSR Version 2 (Version 2.1 for Band M9)
JPSS-2 Data Analysis Working Group Release of J2 VIIRS RSR Version 2

It should be acknowledged that examination of OOB contribution with respect to the specified
1% extended bandpass limits is inherently contradictory, given that OOB is only defined in terms of
the true measured limits. That is, because specified limits are provided by the manufacturer before
the instrument is built, true determination of the 1% response levels is inseparable from physical
measurements. Therefore, it should be recognized that, in this paper, any OOB contribution that is said
to be examined based on specified 1% extended bandpass limits in fact necessarily relies on measured
response values that are inside of the specified lower and upper bounds. In other words, regardless of
the actual response value associated with the specified limits, measured values within those limits are
treated as part of the in-band region. Thus, the “1%” designation of the specified extended bandpass is
in name only, and actual response levels for specified OOB contribution cases are less than 1%, which
contradicts the OOB definition. As a result, examinations offered in this manuscript that are in terms of
specified limits should be considered theoretical. The value of such examinations is in understanding
the sensitivity of 'y to a narrower set of response limits that signify a theoretical, alternative definition
of OOB, provided it is understood that the results of specified limit examinations are inherently biased
and serve only as a reference for relative interpretation. That is, this view fosters a means for analysis
that allows one to visualize OOB signals with respect to different sets of limits, which is a way of
illustrating how energy contributions within or outside of a defined extended bandpass change the
integrated radiances L;, and Lyy;,;;—a technique that is used in Section 4. To this end, testing with
the limit values of the published specified 1% extended bandpass rather than some other arbitrary
set of limits is a matter of convenience, and also reflects the presentation structure of the works of
Moeller et al. and Schwarting et al., which offered the inspiration for this effort [1,2,16-19].

No VIIRS data, aside from RSR information, are used in this study. All L;, and Ly, data are based
on integrated hyperspectral radiance measurements. For solar reflective bands, the average OOB
contribution y is determined from RSR-integrated SCTAMACHY Level-1b Version-7.03 radiances from
August 2002 through December 2010, where L;, and Ly, are the mean values of hundreds to thousands
(depending on the scene) of pseudo radiance pairs computed for each scene-relevant footprint:

Liy
_m__1

x 100 2)
Ltotul

=

The solar reflective bands include I-bands I1-13, M-bands M1-M10, and Day/Night Band (DNB)
mid (MGS) and high (HGS) gain stages (where applicable). Band M11, with a central wavelength near
2.25 um, is not evaluated due to poor SCIAMACHY spectral calibration quality [28]. Note that the
S-NPP VIIRS DNB contribution is not investigated in this study owing to the absence of associated
measured 1% extended bandpass limits [1,2]. A flowchart of the complete y determination methodology
is given in Figure 2. Alternatively, Figure 3 is a notated scatter plot of pseudo radiance L;/Ly, pairs that
illustrates  determination for an all-sky tropical ocean (ATO) scene. Liy and Ly, are the y-axis and
x-axis averaged datapoints, respectively, the ratio of which is equal to the slope of a linear regression
that is forced through the origin. The linear nature of the scatter datapoints is expected for comparable
Earth-scene spectra given the rather subtle difference between in-band and full-band RSR structure,
which is found to be true for all scenes investigated in this study. That is, the small difference in signal
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contribution between in-band and full-band RSR integration, which this study aims to quantify, can be
expressed as a constant value for the given scene type, with small uncertainty.
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Figure 2. Flow chart of methodology for ¥ determination using i of N SCIAMACHY or IASI
hyperspectral radiance fields of view (FOVs).

Eleven Earth-reflected scene types were evaluated, which are based on the distinct spectra offerings
of the SBAF tool [43]. The scenes include deep convective clouds (DCC), ATO, clear-sky tropical
ocean (CTO), the Libya-4 Pseudo Invariant Calibration Site (Lib-4 PICS) the Uyuni Salt Flats, and
six land classifications defined by the International Geosphere-Biosphere Programme (IGBP) [45].
The Forest classification consists of IGBP IDs 1-5, Shrubland consist of IDs 6 and 7, Woodland is
ID 8, Grassland consists of IDs 9 and 10, Wetland is ID 11, and Cropland consists of IDs 12 and
14. These classification groupings are based on approximate spectral similarity as relevant to OOB
contribution assessment, which was determined empirically. Any remaining, unused IGBP IDs are
either redundant with already considered scenes, or there was an insufficient number of SCTAMACHY
measurements for that land type given the large FOV size. Accurate representation of the identified
IGBP type by the SCTAMACHY footprint is ensured by requiring that the center and all four corners of
the 30 x 240 km? SCTAMACHY FOV be of the same ID. Note that Bhatt et al. showed that the large size
of the SCIAMACHY footprint does accurately represent the spectra of the Lib-4 PICS by comparing the
influence of an SBAF determined using the Lib-4 PICS boundaries to that from a Libyan Desert PICS
one-third the original Lib-4 size. They found the spectral radiance difference between the two Libyan
Desert domains to be less than 0.6%, indicating minimal impact from the spatial disparity [43,45].
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For IR bands, 7 was determined from footprint-mean L;, and Ly, using IASI Level-1c radiances
acquired from the NOAA Comprehensive Large Array-Data Stewardship System (CLASS) archive,
based on the combined time periods of January, April, July, and October 2008. The evaluated bands
include I-bands I4-15 and M-bands M12-M16, where M16 is separated into time-delay-integrated
bands M16A and M16B [11,46-48]. Rather than by scene type, IR y evaluation is separated by thermal
infrared brightness temperature (IR BT) based on the integration of IASI hyperspectral radiance over
the Aqua MODIS 11-pm band (band 31), that is then converted to temperature using the Planck
function and the Aqua MODIS band 31 central wavelength (11.02 um). The average OOB contribution
is assessed for measurements with MODIS-integrated IASI IR BT that is less than 205 K and greater
than 295 K, as well as the full dynamic range (FDR). The remote sensing calibration community should
find the described method effective for scene-specific evaluation of OOB contribution to total signal,
which is possible to perform pre-launch.

SCIAMACHY-measured Pseudo S-NPP VIIRS GT
Band M1 (0.42 .m) ATO Radiance
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Figure 3. Notated scatter plot illustrating 3 determination for an all-sky tropical ocean (ATO) scene.
The ratio Lj,/Lyy, can also be thought of as the slope of a pseudo radiance pairs linear regression that is
forced through 0 Wm=2sr~!pum~1.

3. Results

Tables 3-10 summarize the SCTAMACHY-based Earth-reflected radiance scene-specific y results
for solar reflective bands within the reliable SCIAMACHY hyperspectral range of 0.24-1.75 um,
dependent on the selected RSR characterization versions of each VIIRS instrument. The tables are
separated by instrument and version, and also by whether OOB contribution is evaluated using
specified or measured lower and upper 1% extended bandpass limits [1,2,17,18]. For example, Table 3
presents results for S-NPP VIIRS GT RSR characterization for specified 1% extended bandpass limits,
and Table 4 shows the same for measured 1% extended bandpass limits. Results for S-NPP VIIRS NG,
NOAA-20 V2, and JPSS-2 V2 RSR characterization follow in the same manner. Entries in each table
with bold text signify y of at least 0.5%. This somewhat arbitrary 0.5% significance level was chosen
loosely based on unofficial practices of the CERES Imager and Geostationary Calibration Group (IGCG)
to achieve inter-calibration consistency that is better than 0.5%. It is a threshold that works well for this
study in exemplifying the relative performance of the different VIIRS instruments with regard to y.
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Table 3. S-NPP VIIRS GT RSR Earth-reflected scene-dependent radiance average OOB contribution ()

for specified 1% extended bandpass limits, shown in %.

Band DCC ATO CTO  Lib-4 Uyuni Forest Shrubland Woodland Grassland Wetland Cropland
I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.13 0.10 0.23 0.01 0.05 0.07 0.01 0.04 0.02 0.04 0.04
13 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02
M1 0.83 1.67 2.46 1.28 0.39 1.05 0.08 1.21 0.62 1.54 0.87
M2 0.52 0.59 0.91 0.51 0.14 0.52 0.05 0.50 0.22 0.66 0.37
M3 0.57 0.63 0.89 0.19 0.30 0.17 0.08 0.32 0.16 0.41 0.20
M4 0.26 0.18 0.06 0.25 0.22 0.43 0.25 0.19 0.10 042 0.13
M5 0.01 0.06 0.47 0.37 0.13 1.87 0.26 0.71 0.02 1.13 0.55
Meé 0.07 0.06 0.25 0.14 0.02 0.31 0.17 0.19 0.14 0.20 0.21
M7 0.15 0.12 0.26 0.00 0.06 0.09 0.01 0.05 0.02 0.05 0.05
M8 0.02 0.05 0.05 0.05 0.04 0.06 0.04 0.06 0.05 0.05 0.05
M9 0.00 0.02 0.20 1.23 0.08 0.38 0.94 0.76 0.71 0.57 0.79
M10 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02

Table 4. S-NPP VIIRS GT RSR Earth-reflected scene-dependent y for measured 1% extended bandpass

limits, shown in %.

Band DCC ATO CTO Lib4 Uyuni Forest Shrubland Woodland Grassland Wetland Cropland
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.10 0.05 0.16 0.08 0.03 0.16 0.07 0.11 0.08 0.11 0.11
I3 0.00 0.04 0.03 0.03 0.02 0.05 0.02 0.04 0.03 0.03 0.04
M1 0.83 1.69 2.50 1.27 0.40 1.08 0.10 1.24 0.64 1.58 0.89
M2 0.35 0.61 0.94 0.49 0.16 0.55 0.03 0.52 0.24 0.67 0.39
M3 0.48 0.64 0.90 0.20 0.30 0.18 0.08 0.32 0.16 041 0.21
M4 0.27 0.19 0.04 0.24 0.22 0.38 0.27 0.16 0.10 0.37 0.10
M5 0.01 0.04 0.45 0.40 0.15 1.94 0.28 0.74 0.02 1.19 0.56
Meé 0.02 0.06 0.09 0.31 0.12 0.51 0.33 0.37 0.30 0.38 0.40
M7 0.12 0.06 0.18 0.08 0.04 0.18 0.07 0.13 0.08 0.13 0.12
M8 0.03 0.08 0.10 0.10 0.06 0.12 0.10 0.11 0.10 0.11 0.11
M9 0.00 0.02 0.22 1.27 0.09 0.41 1.01 0.79 0.79 0.59 0.85

M10 0.01 0.04 0.04 0.03 0.02 0.05 0.03 0.04 0.03 0.02 0.04

Table 5. S-NPP VIIRS NG RSR Earth-reflected scene-dependent ¥ for specified 1% extended bandpass

limits, shown in %.

Band DCC ATO CTO  Lib-4 Uyuni Forest Shrubland Woodland Grassland Wetland Cropland
I 0.02 0.06 0.18 0.08 0.01 0.21 0.06 0.10 0.00 0.16 0.07
12 0.08 0.08 0.19 0.02 0.03 0.04 0.01 0.02 0.01 0.02 0.02
13 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
M1 0.90 1.52 2.16 0.97 0.46 0.77 0.09 1.00 0.54 1.27 0.70
M2 0.57 0.37 0.53 0.23 0.13 0.20 0.01 0.24 0.12 0.33 0.17
M3 0.59 0.60 0.83 0.15 0.29 0.12 0.06 0.28 0.15 0.35 0.18
M4 0.26 0.16 0.10 0.28 0.23 0.47 0.23 0.21 0.10 0.46 0.15
M5 0.01 0.07 0.51 0.38 0.14 1.90 0.27 0.73 0.02 1.16 0.55
Me6 0.09 0.11 0.37 0.15 0.01 0.31 0.18 0.19 0.14 0.19 0.22
M7 0.11 0.10 0.25 0.02 0.04 0.06 0.02 0.03 0.02 0.03 0.04
M8 0.03 0.04 0.05 0.04 0.03 0.05 0.04 0.05 0.04 0.04 0.05
M9 0.00 0.03 0.21 1.37 0.11 0.43 111 0.87 0.86 0.70 0.92
M10 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02
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Table 6. S-NPP VIIRS NG RSR Earth-reflected scene-dependent ) for measured 1% extended bandpass
limits, shown in %.

Band DCC ATO CTO Lib-4 Uyuni Forest Shrubland Woodland Grassland Wetland  Cropland
In 0.02 0.06 0.19 0.09 0.02 0.22 0.07 0.10 0.00 0.17 0.07
12 0.06 0.02 0.12 0.09 0.00 0.12 0.07 0.09 0.07 0.10 0.09
13 0.00 0.04 0.03 0.03 0.02 0.05 0.02 0.04 0.02 0.03 0.03
M1 0.94 1.57 221 0.93 0.50 0.82 0.14 1.05 0.58 1.32 0.75
M2 0.26 0.38 0.55 0.21 0.15 0.22 0.01 0.26 0.14 0.34 0.19
M3 0.44 0.60 0.83 0.15 0.29 0.12 0.06 0.28 0.15 0.35 0.17
M4 0.27 0.18 0.08 0.26 0.23 0.42 0.25 0.19 0.10 042 0.12
M5 0.01 0.04 0.48 0.42 0.15 1.97 0.29 0.75 0.01 1.22 0.57
Mé 0.04 0.02 0.22 0.33 0.12 0.52 0.34 0.37 0.30 0.37 0.40
M7 0.08 0.04 0.17 0.10 0.02 0.15 0.08 0.11 0.08 0.11 0.11
Ms8 0.04 0.08 0.09 0.10 0.07 0.11 0.10 0.10 0.09 0.10 0.10
M9 0.04 0.08 0.31 1.53 0.16 0.54 1.25 1.00 1.00 0.82 1.07
M10 0.00 0.04 0.04 0.03 0.02 0.05 0.02 0.04 0.03 0.02 0.04

Table 7. NOAA-20 VIIRS V2 RSR Earth-reflected scene-dependent y for specified 1% extended bandpass
limits, shown in %.

Band DCC ATO CTO Lib-4 Uyuni Forest Shrubland Woodland Grassland Wetland Cropland
In 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.07 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
13 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02
M1 0.06 0.10 0.14 0.08 0.02 0.04 0.00 0.05 0.03 0.08 0.03
M2 0.11 0.17 0.21 0.04 0.09 0.03 0.01 0.07 0.05 0.09 0.05
M3 0.18 0.07 0.08 0.00 0.06 0.03 0.01 0.01 0.01 0.01 0.00
M4 0.06 0.05 0.04 0.04 0.05 0.07 0.01 0.02 0.01 0.04 0.01
M5 0.06 0.06 0.06 0.06 0.06 0.23 0.04 0.06 0.01 0.12 0.05
Mé 0.00 0.00 0.04 0.02 0.01 0.03 0.03 0.02 0.02 0.02 0.02
M7 0.11 0.03 0.05 0.01 0.02 0.02 0.01 0.01 0.00 0.00 0.01
M8 0.03 0.04 0.04 0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.04
M9 0.00 0.02 0.20 1.26 0.10 0.40 1.01 0.80 0.78 0.63 0.84
M10 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01
DMBMGS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DMBLGS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 8. NOAA-20 VIIRS V2 RSR Earth-reflected scene-dependent y for measured 1% extended

bandpass limits, shown in %.

Band DCC ATO CTO Lib-4 Uyuni Forest Shrubland Woodland Grassland Wetland  Cropland
n 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.02 0.01
12 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01
13 0.01 0.03 0.03 0.02 0.02 0.05 0.02 0.04 0.02 0.02 0.03
M1 0.10 0.13 0.17 0.05 0.05 0.07 0.03 0.09 0.06 0.11 0.07
M2 0.12 0.18 0.22 0.02 0.11 0.03 0.02 0.08 0.06 0.10 0.06
M3 0.07 0.07 0.07 0.00 0.05 0.05 0.02 0.01 0.00 0.02 0.01
M4 0.06 0.05 0.04 0.05 0.05 0.06 0.01 0.01 0.01 0.04 0.01
M5 0.07 0.08 0.08 0.08 0.07 0.22 0.06 0.05 0.03 0.11 0.03
Meé 0.04 0.06 0.03 0.10 0.06 0.12 0.10 0.10 0.09 0.09 0.10
M7 0.03 0.02 0.04 0.00 0.02 0.03 0.00 0.01 0.00 0.01 0.01
M8 0.03 0.07 0.08 0.09 0.06 0.10 0.08 0.09 0.08 0.10 0.09
M9 0.01 0.02 0.22 1.32 0.08 0.44 1.08 0.85 0.85 0.69 0.91
M10 0.01 0.03 0.03 0.02 0.02 0.04 0.02 0.04 0.02 0.02 0.03
DMBMGS 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
DMBLGS 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00
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Table 9. JPSS-2 VIIRS V2 RSR Earth-reflected scene-dependent ¥ for specified 1% extended bandpass
limits, shown in %.

Band DCC ATO CTO  Lib-4 Uyuni Forest Shrubland Woodland Grassland Wetland Cropland
I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02
M1 0.03 0.03 0.04 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02
M2 0.02 0.03 0.02 0.01 0.02 0.00 0.01 0.01 0.01 0.00 0.01
M3 0.05 0.02 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.01
M4 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00
M5 0.06 0.07 0.09 0.06 0.06 0.17 0.04 0.04 0.02 0.07 0.03
Me6 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03
M7 0.04 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01
M8 0.01 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.04 0.02
M9 0.01 0.09 1.14 5.66 0.21 217 3.29 3.76 242 2.85 3.31
M10 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01

DMBMGS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DMBLGS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 10. JPSS-2 VIIRS V2 RSR Earth-reflected scene-dependent y for measured 1% extended bandpass
limits, shown in %.

Band DCC ATO CTO Lib4 Uyuni Forest Shrubland Woodland Grassland Wetland Cropland
n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.03 0.04 0.04 0.01 0.05 0.03 0.04 0.03 0.04 0.04
I3 0.01 0.03 0.03 0.02 0.02 0.05 0.02 0.04 0.03 0.03 0.03
M1 0.23 0.04 0.05 0.00 0.02 0.04 0.02 0.04 0.03 0.04 0.03
M2 0.02 0.03 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01
M3 0.01 0.02 0.02 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.01
M4 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00
M5 0.07 0.09 0.11 0.08 0.07 0.20 0.06 0.04 0.03 0.09 0.03
Me6 0.05 0.06 0.08 0.07 0.06 0.09 0.07 0.08 0.07 0.08 0.08
M7 0.01 0.02 0.03 0.03 0.01 0.06 0.03 0.05 0.03 0.03 0.04
M8 0.01 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04
M9 0.01 0.10 1.15 5.70 0.23 2.21 3.39 3.80 2.50 2.88 3.38
M10 0.01 0.03 0.02 0.02 0.02 0.05 0.02 0.04 0.02 0.03 0.03
DMBMGS 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
DMBLGS 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00

The cause of the scene-dependent variation in y can be interpreted from visualization of the
selected RSR, with its associated lower and upper 1% extended bandpass boundaries, overlaid with
hyperspectral radiance spectra of the various Earth scenes. Such visualizations have been prepared
as Figures 4-6. For example, Figure 4 highlights the significant OOB signal of the S-NPP VIIRS M1
(~0.42 um) band, in this case based on the NG RSR characterization effort, and how that might respond
to the Earth-reflected spectra of common inter-calibration targets like DCC, ATO, CTO, and the Lib-4
PICS. Figure 5 reveals scene-dependent y behavior for the S-NPP VIIRS NG M5 (~0.67 pm) band, which
is an important spectral channel for inter-calibration and parameterization efforts [6,7,49]. As seen in
Tables 7-10, only the M9 (~1.38 pm) bands offer 3 values in exceedance of 0.5% for both NOAA-20 and
JPSS-2, the nature of which can be evaluated in Figure 6 for select scenes.
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Figure 4. S-NPP VIIRS NG band M1 RSR overlaid with SCTAMACHY Earth-reflected radiance.
Response is displayed on a logarithmic scale in order to better highlight the OOB magnitudes. Vertical
dashed lines indicate the specified lower and upper 1% response limits, and the vertical dotted lines
indicate the measured lower and upper 1% response limits.
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Figure 5. Same as Figure 4, except with an S-NPP VIIRS NG band M5 example.

Table 11 shows the IASI-based Earth-emitted and Earth-reflected radiance scene-specific y values
for VIIRS bands with central wavelengths greater than 3.6 um, dependent on the selected RSR
characterization versions of each VIIRS instrument. Note that the Earth-reflected contribution is only
relevant for the mid-wave IR (~3—4 pm) bands 14 (~3.74 pm), M12 (~3.69 um), and M13 (~4.06 um)
during daytime. The “<205 K” and “>295 K” columns signify y results for IASI footprints in which
the Aqua MODIS 11-um band-integrated (i.e., band 31) IASI IR BT is greater than or less than the
indicated value, such as to separate evaluation based on Earth-emitted temperature. The column
label “FDR” signifies that the full dynamic range of IASI measurements was considered, i.e., without
any BT-based truncation. The associated Figure 7a highlights the OOB signal of the S-NPP VIIRS GT
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band M13 RSR, and how the impact of in-band vs. OOB magnitude can change depending on scene
temperature. Figure 7a allows for close analysis of the in-band measurement range, whereas Figure 7b
uses alternative axes scaling limits in order to grant full view of the band M13 OOB measurement range.

Table 11. VIIRS RSR Earth-emitted (and Earth-reflected for daytime 14, M12, and M13 bands)
temperature-dependent radiance average OOB contribution () for specified and measured 1% extended
bandpass limits, shown in %, analyzed separately where Aqua MODIS 11-pum band-integrated IASI
infrared brightness temperature (IR BT) is less than 205 K, is greater than 295 K, and with no BT limit
specified (i.e., full dynamic range or FDR).

Specified Measured
Instrument  Band <205 K FDR >295 K <205 K FDR >295 K
14 0.00 0.00 0.00 0.07 0.00 0.00
15 0.14 0.28 0.29 0.20 0.23 0.23
S.NPP M12 0.02 0.01 0.01 0.15 0.02 0.03
VIIRS GT  M13 0.09 0.04 0.04 2.39 0.59 0.62
M14 0.01 0.02 0.02 0.02 0.01 0.01
M15 0.08 0.09 0.09 0.05 0.11 0.11
M16A 0.11 0.03 0.03 0.11 0.04 0.04
M16B 0.10 0.03 0.02 0.09 0.03 0.03
4 0.00 0.00 0.00 0.06 0.00 0.00
15 0.03 0.03 0.03 0.00 0.00 0.00
S.NPD M12 0.02 0.01 0.01 0.15 0.02 0.03
VIIRSNG  MI3 0.08 0.03 0.04 0.76 0.17 0.19
M14 0.00 0.00 0.00 0.01 0.01 0.01
Mi15 0.07 0.07 0.07 0.05 0.10 0.10
M16A 0.08 0.00 0.01 0.08 0.01 0.00
M16B 0.08 0.00 0.01 0.07 0.01 0.00
4 0.00 0.00 0.00 0.06 0.00 0.00
15 0.04 0.05 0.05 0.00 0.00 0.00
NOAAZe M2 0.03 0.01 0.01 0.15 0.03 0.04
VIIRS V2 M13 0.06 0.02 0.03 0.91 0.20 0.21
M14 0.00 0.00 0.00 0.01 0.01 0.01
Mi15 0.07 0.07 0.07 0.04 0.09 0.09
M16A 0.08 0.00 0.01 0.08 0.01 0.00
M16B 0.08 0.00 0.01 0.07 0.01 0.00
14 0.00 0.00 0.00 0.07 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00
[pss-2 M12 0.01 0.01 0.01 0.13 0.03 0.03
VIIRS V2 M13 0.02 0.01 0.01 0.22 0.14 0.15
M14 0.01 0.00 0.00 0.01 0.01 0.01
M15 0.00 0.00 0.00 0.02 0.02 0.02
M16A 0.01 0.00 0.00 0.01 0.00 0.00
M16B 0.01 0.00 0.00 0.01 0.00 0.00
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Figure 6. Same as Figure 4, except with NOAA-20 VIIRS V2 and JPSS-2 VIIRS V2 band M9 examples
and the right y-axis limit extended to 10~7. Here, the red vertical dotted lines indicate the measured
lower and upper 1% response limits for JPSS-2 VIIRS. Both instruments have the same specified lower
and upper 1% response limits (black vertical dashed lines).
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Figure 7. (a) Same as Figure 4, except with S-NPP VIIRS GT Band M13 RSR overlaid with IASI
Earth-reflected (day only) and Earth-emitted (day and night) radiance for hyperspectral footprint
measurements where Aqua MODIS 11-pm band-integrated IASI IR BT is less than 205 K, is greater
than 295 K, and with no BT limit specified (i.e., full dynamic range). (b) Rescaled version of (a) with
broader x-axis, left y-axis, and right y-axis limits in order to reveal the full OOB measurement range of
S-NPP VIIRS GT band M13. Note that 3.6 um is the lower wavelength limit of IASL
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Table 12 summarizes y for VIIRS mid-wave IR bands 14, M12, and M13 based on measured 1%
extended bandpass limits, separated by day and night IASI measurements. As in Table 11, Aqua MODIS
11-um band-integrated IASI IR BT limits are also considered. With an overall smaller magnitude
compared to Figure 7a, Figure 8a reveals the nighttime-only, temperature-dependent Earth-emitted
radiance spectra with JPSS-2 VIIRS V2 band M13 RSR and extended bandpass limit information
overlaid. Even though the JPSS-2 VIIRS V2 band M13 OOB measurement range is significantly
narrower than that of S-NPP VIIRS GT, Figure 8b offers the same rescaled view as that of Figure 7b for
the sake of comparison.
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Figure 8. (a) Same as Figure 7a, except with JPSS-2 VIIRS V2 band M13 RSR overlaid with nighttime-only
IASI Earth-emitted radiance. (b) Rescaled version of (a) for comparative study with Figure 7b.
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Table 12. Same as Table 11, except separated by day and night, and based only on measured 1%
extended bandpass limits for bands 14, M12, and M13.

Day Night
Instrument Band
<205 K FDR >295 K <205 K FDR >295 K

4 0.07 0.01 0.00 0.02 0.01 0.01

S-NPP M12 0.16 0.00 0.02 0.10 0.05 0.05
VIIRS GT

M13 1.52 0.57 0.61 5.71 0.61 0.64

4 0.06 0.00 0.00 0.05 0.05 0.05

S-NPP M12 0.15 0.01 0.02 0.09 0.05 0.05
VIIRS NG

M13 0.56 0.16 0.18 1.53 0.19 0.20

4 0.07 0.01 0.00 0.05 0.01 0.01

NOAA-20 M12 0.16 0.01 0.03 0.09 0.06 0.05
VIIRS V2

M13 0.64 0.19 0.21 1.96 0.22 0.22

4 0.07 0.01 0.00 0.04 0.01 0.01

JPSS-2 M12 0.14 0.01 0.02 0.07 0.05 0.05
VIIRS V2

M13 0.16 0.14 0.15 0.49 0.15 0.15

4. Discussion

The overall magnitude of OOB Earth-scene-dependent radiance contribution is much more
significant for the S-NPP VIIRS instrument compared to the later NOAA-20 and JPSS-2 sensors.
This finding is true for solar reflective bands and IR bands, as evidenced by the greater frequency
of bold table entries, which signify 7 of 0.5% or greater, for S-NPP compared to the other platforms.
For example, the S-NPP VIIRS GT and NG characterization versions have six solar reflective bands
with y of at least 0.5% for at least one scene type (although up to ten scene types for a single band
in case of NG band M1), based on measured lower and upper 1% extended bandpass limits (Table 4,
Table 6). For NOAA-20 and JPSS-2 VIIRS V2 characterization, by comparison, only solar reflective
band M9 exhibits y of at least 0.5%, in this case across six (NOAA-20) or eight (JPSS-2) scenes based on
measured extended bandpass limits (Table 8, Table 10). Finally, although overall 7 magnitudes for
NOAA-20 and JPSS-2 VIIRS are small compared to those of S-NPP VIIRS (also including where 7 does
not exceed 0.5%), the largest OOB contribution is found for JPSS-2 VIIRS V2 band M9 over the Lib-4
PICS, with a magnitude of 5.70% (5.66%) based on measured (specified) extended bandpass limits
(Tables 9 and 10). The smallest y for this band and scene is that of S-NPP VIIRS GT, with a magnitude
of 1.27% (1.23%) for measured (specified) extended bandpass limits, which is still a rather significant
OOB influence (Tables 3 and 4). The reason y values are notably large for this band is related to the low
spectral signal at these wavelengths (~1.38 pum).

The cause of the larger S-NPP VIIRS band M1 y values across most scene types can be interpreted
from Figure 4. In this figure, significant OOB response is observed up to a wavelength of nearly 1.0 um,
with the maximum OOB response peak exceeding 0.01 twice near 0.8 um. By comparison, maximum
OOB response for NOAA-20 and JPSS-2 VIIRS V2 band M1 is ~0.0006, with fewer OOB response
peaks beyond 0.5 um (not shown). Of the four selected scenes of Figure 4, the greatest OOB influence
occurs for CTO, the darkest scene having a maximum ¥ of ~2.2%, whereas the least influence occurs
for the for DCC and Lib-4, the brightest scenes having y values of ~0.9-1.0% (Tables 5 and 6). It is
intuitive that darker scenes are most influenced by OOB radiance contribution given that even minimal
additional OOB energy measured by the sensor is significant compared to the already low signal of the
in-band measurement. That is, a low signal is susceptible to noise. This concept does not discount
the importance of OOB consideration for bright scenes, however, as evident by the ~1.0% y values.
Furthermore, the fact that S-NPP VIIRS band M1 y values for CTO and DCC each differ from that
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for ATO (Tables 3-6) suggests that ATO OOB contribution is not strictly represented by a constant
factor (as otherwise suggested in Figure 3), but rather is sensitive to the radiance magnitude and the
changing spectral composition of the scene. Nevertheless, ATO retrieval applications, such as those
used for CERES calibration, are designed to accommodate average conditions with an acceptable level
of uncertainty, and therefore the ATO average OOB contribution as given is appropriate, especially
because the ATO ¥ value is, as expected, found to be roughly the average of that for CTO and DCC [49].

Even though ¥ results based on the specified 1% extended bandpass considerations should not be
treated as absolute, but rather are theoretical as previously discussed in Section 2, their examination
provides a point of reference that helps illustrate how energy contributions relative to varying OOB
definitions affect integrated radiance. Thereby it is interesting to note that if considering specified 1%
extended bandpass limits, Lib-4  exceeds that of DCC by 0.07%, with Lib-4 at 0.97% and DCC at
0.90% (Table 5). For measured extended bandpass limits, however, the y are within 0.01%, with Lib-4
at 0.93% and DCC at 0.94% (Table 6). In other words, between the use of measured limits to specified
limits, an increase in OOB radiance contribution of 0.04% is observed for DCC. This increase is owed
to the greater values of integrated radiance allowed by the further extension of the specified limit
in the increasing-wavelength direction from the central wavelength of ~0.42 um (Figure 4). That is,
the greater integrated radiance allowed by the specified extended bandpass limits results in better
agreement with the integrated contribution from OOB response at high wavelengths, and thus ) based
on the specified extended bandpass limits is less than that based on the measured limits. Similarly, a
decrease in OOB radiance contribution of 0.04% is observed for Lib-4, going from specified to measured
limits. In this case, the further extension of the specified limit allows for more integration of low
radiance values at ultraviolet (UV) wavelengths of less than 0.4 um compared to that for the measured
limits. This additional integration of low UV-reflected radiance in part offsets the integrated radiance
gained at the higher OOB wavelengths, which results in a larger  for specified 1% extended bandpass
limits compared to that of measured limits.

For Earth-monitoring efforts like CERES, satellite records must be combined seamlessly in order to
avoid discontinuities in retrievals that arise from either radiometric scaling errors or varying algorithm
assumptions. Therefore, it is important to particularly examine the average OOB contribution for
the I1 (~0.64 um) and M5 bands given the historic and continued proliferation of similar channels
on Earth-observing imagers and their importance to inter-calibration and cloud parameterization
efforts [6,7,49]. Scene-dependent y significance should, it appears, generally not be a concern
for the NOAA-20 and JPSS-2 VIIRS instruments in these bands (Tables 7-10). For S-NPP VIIRS,
OOB contributions are also similarly minimal for band I1, with maximum magnitudes of ~0.2% for
CTO and Forest scene types. Although these values could be significant in any application that relies
exclusively on such views, the effect is mitigated when radiance contribution from these scenes is
combined with other scenes likely found within the instrument FOV, e.g., CERES inter-calibration
relies on ATO rather than CTO. Note that in some cases, CERES inter-calibration and other applications
do rely on a single scene, such as DCC [49-52]. Fortunately, OOB contributions in band I1 and M5 are
minimal in such a case. Nevertheless, it is advisable that CERES applications of VIIRS measurements
consider the full-band RSR when inter-calibrating or for other applications in which spectral integration
is necessary, e.g., atmospheric transmissivity determinations [3].

Although the I1 band appears to be relatively unimpacted by scene-dependent OOB contribution,
the S-NPP VIIRS M5 band does exhibit rather large ) for ocean and vegetative scene types. In Figure 5,
the S-NPP VIIRS NG M5 band is examined particularly with CTO (~0.5%) and Forest (~2%) given that
CTO is a subset of ATO, which is relied upon in CERES inter-calibration, and Forest has the largest
Y value of all M5 band scene assessments. Even though the OOB response for M5 does not reach
the magnitude of that for M1, the response coupled with relatively high CTO radiance values near
~0.42-0.50 pm results in 0.5% OOB contribution, even considering counter-acting OOB contribution
from measurements at wavelengths greater than the upper 1% extended bandpass limit. In the case of
Forest spectra, the M5 in-band contributions are situated within in a relative minimum, i.e., a spectral
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“valley,” compared to immediate lower and higher wavelength ranges. As such, OOB integrated
radiance contribution is compounded by strong signals on either side of the central wavelength with
comparable response on the order of about 0.001. How this average OOB contribution might influence
environmental retrievals can be examined through normalized difference vegetation index (NDVI)
determinations, which are calculated from visible (VIS: ~0.65 um) and near infrared (NIR: ~0.86 pm)
radiance measurement ratios [NDVI = (NIR — VIS)/(NIR + VIS)] [53-56]. When considering measured
1% extended bandpass limits (Table 6), the S-NPP VIIRS NG bands M5 and M7 (~0.86 um) 1.97% and
0.15%, respectively, OOB contributions would amount to less than a 1% change in NDVI for a rough
median value of measured Forest radiance (i.e., ~24 Wm™2sr~'um™! for VIS and ~55 Wm2sr™ ! um™!
for NIR). The influence is small, but if relying on S-NPP VIIRS for NDVI determination, bands I1 and
12 (~0.86 num) should be favored over the comparable M-bands when considering OOB-contributed
error, because any reduction in contrast between the VIS and NIR bands owing to the OOB signal is
undesirable. Although these OOB effects may only rarely require consideration within specialized,
environmental retrieval subsets of the remote sensing community, there is, nonetheless, value to be
found in improved understanding of scene-specific OOB contribution to the total signal, especially
with regard to pre-launch evaluation.

It is interesting to note that despite the prominence of significant OOB contribution across many
S-NPP VIIRS bands and scene types, band-specific behaviors, in terms of overall y for different
targets, do not necessarily reflect the performance metric findings of the Moeller et al. measured
MIOOB analyses. Although ¥ and MIOOB are not equivalent metrics, there is value, nevertheless,
in acknowledging how failed specification as determined by measured MIOOB assessment, i.e.,
designated as out-of-specification in Moeller et al.’s Table 6, relates to the scene-dependent OOB
contribution results presented in this manuscript [2]. As an example, of the VIS/NIR bands (i.e., M1-M?7,
I1, and 12) the overall highest MIOOB values are found for band M4 (~0.55 um) at 3.80% and 3.65%
for the S-NPP VIIRS GT and NG RSR products, respectively. In terms of ¥, however, OOB effects in
the M4 band remain consistently low (in a relative sense) across all scene types for both S-NPP VIIRS
GT and NG. Conversely, whereas band M2 (~0.44 um) measured MIOOB metrics meet specification
for both S-NPP VIIRS RSR products, y for this band exceeds the chosen 0.5% significance level for
five scenes in the case of the GT RSR product, and for one scene in the case of the NG RSR product
(Table 4, Table 6). Again, MIOOB and y magnitudes are not directly comparable, but from a relative
perspective, these findings support the idea that, with regard to performance specification, there is
value in the scene-dependent evaluation of OOB contribution, knowledge of which complements the
understanding of MIOOB metrics.

Before continuing with a closer examination of the NOAA-20 and JPSS-2 VIIRS and IR band results,
it should be acknowledged that strong, spectrally dependent degradation in the S-NPP VIIRS mirror
reflectance has modulated the VIIRS RSRs in the solar reflective bands, which prompted the generation
and release of degradation modulated S-NPP VIIRS RSRs by the NASA VIIRS Characterization Support
Team (VCST). The modulated RSRs have been used for operational sensor data record production
since 5 April 2013 [15,44,57,58]. In order to assess the impact of a modulated RSR with regard
to OOB contribution, ¥ was evaluated for the eleven Earth-reflected scene types using band M1,
which of all bands is predicted to have the largest radiance error after the four VIIRS mirrors are
completely degraded [14]. The evaluation is based on the measured 1% extended bandpass limits of
the S-NPP-VIIRS NG spectral performance characterization effort, because the VCST used the NG
product as the baseline RSR in coming up with the modulated RSR [2,44]. On average, use of the M1
modulated RSR reduced scene-dependent y by 25% of the original Table 6 values (ranging from 14%
for Lib-4 to 50% for Shrubland). These percentages translate to an average reduction in y magnitude of
0.22% (ranging from 0.07% for Shrubland to 0.50% for CTO). Shrubland has both the largest percentage
reduction and the smallest magnitude reduction owing to its initially small  value of 0.14 (Table 6).
Overall, these are significant reductions, which demonstrate the benefit of the modulated RSR in
terms of . Nevertheless, even with this reduction in ¥ across all evaluated scenes, only two of the
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ten categories that initially had a y value above the 0.5% significance level fell below that threshold
when using the modulated RSR (i.e., Uyuni, which dropped from 0.50% to 0.35%, and Grassland,
which dropped from 0.58% to 0.44%). Therefore, given that the Moeller et al. published extended
bandpass limits predate formulation of the modulated RSRs, and because the M1 band is the most
influenced by the mirror degradation, further examination of the remaining bands is left for future
efforts. The M1 band results suggest that scenes with the most influence from OOB contribution still
remain significantly affected even with this update to the operational RSR, and lesser impact from the
modulated RSR implementation is expected for the other bands [15].

Although NOAA-20 and JPSS-2 VIIRS V2 average OOB contribution is largely better than that
of S-NPP VIIRS, Figure 6 offers close examination of the band M9 exception. For either VIIRS, the
in-band integrated radiance for Lib-4 spectra is on the order of 0.6 Wm=2sr~'um~!, and less than that
for Forest and CTO scenes. Given such a small in-band signal, it is intuitive that even minimal OOB
energy contribution could have a significant impact on the radiance measurement, especially if that
OOB contribution occurs at wavelengths with substantially more energy. This is exactly the case for
JPSS-2 VIIRS V2, for which a relatively small (~0.0001) OOB peak at ~1.24 um can amount to over 5%
in OOB radiance signal for the Lib-4 PICS. Furthermore, because CTO, Forest, Shrubland, Woodland,
Grassland, Wetland, and Cropland share a similar spectral signature with regard to a low signal near
~1.38 um and an increased signal near ~1.24 um, their respective y values are also high, although not as
high as that for Lib-4. This substantial signal-to-noise sensitivity for ~1.38 um bands favors high cloud
detection, which is why CERES inter-calibration efforts cannot use PICS methods for such imager
channels, and instead employ DCC-based calibration techniques to characterize the signal at a much
higher magnitude near ~50 Wm2sr lum™! [51]. Finally, although NOAA-20 VIIRS does not have the
same OOB peak near ~1.24 um as JPSS-2 VIIRS has, it does, nevertheless, have a strong OOB signal
just outside the lower specified 1% extended bandpass limit, which coincides with the rapid increase
in the Lib-4 (as well as other scenes) radiance spectral signature. Additionally, compared to JPSS-2,
NOAA-20 VIIRS has a stronger OOB signal beyond 1.6 um, although at a rather weak response of less
than 1075. Albeit not as severe as the JPSS-2 VIIRS case, the small leak beyond the extended bandpass
combined with the heightened OOB signal in the 1.6-1.75 pm range (shown only up to the range of
1.7 um in Figure 6) is enough to cause significantly more than 1% in OOB radiance contribution to the
imager measurement.

For VIIRS IR bands, with each instrument except for that on JPSS-2, a significant OOB influence of
at least 0.5% is found only for band M13, especially for cold scenes, i.e., ~11-um IR BT IASI footprint
values smaller than 205 K (Table 11). The cause once again is due to a low in-band radiance signal
(especially for cold measurements) being dominated by OOB leaks at high relative energy, which can
be interpreted from Figure 7a following previously described analysis methods. In short, a significant
portion of the OOB contribution is sourced from the energy in the wavelength range between the M13
specified and measured 1% extended bandpass limits, as evidenced by the at least 0.55% difference in
7 for all three BT ranges, with all ) for the specified column being 0.09% or less (Table 11). The energy
contribution from outside of this in-band-focused view of S-NPP VIIRS GT band M13 is insignificant.
Nevertheless, a broader view of the complete OOB signal is given in Figure 7b, with x-axis limits based
on the published OOB measurement range of 1000-7096 nm [1]. The RSR axis (right y-axis) lower limit
has been extended from 10~ to 1077 in order to fit the band M13 response. The amount of ) sourced
from this level of response, even for the relatively broad wavelength range covered and considering
the higher values of integrated radiance compared to those of the in-band region, is small relative to
the impact of OOB contribution from the higher response regions nearer to the extended bandpass
limits, as discussed above. Specifically, y based on integration starting at 4.4 pm (a relative radiance
minimum) and ending at the upper OOB measurement range amounts to less than 0.006% for all three
BT ranges.

The fact that M13 is a mid-wave IR band suggests there could be a diurnal dependency owed to
a daytime solar contribution. This idea is explored in Table 12 for all mid-wave IR bands, in which
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significantly greater y values are found for nighttime measurements due to the overall decrease in
energy at night, again with most significance for the coldest measurements. Daytime ) values are
expectedly smaller in magnitude than those for the combined day and night analysis of Table 11, and
although no additional bands, regardless of temperature, exceed the chosen 0.5% ¥ significance level at
night, neither do previously significant bands drop below the 0.5% ¥ level during the day. Figure 8a not
only reveals a significantly smaller in-band radiance for IR BT < 205 K, which is the cause of the 5.71%
7 level for S-NPP VIIRS GT at night, but also offers evidence as to why these effects are not observed for
JPSS-2 VIIRS V2. For S-NPP VIIRS GT, the measured upper 1% extended bandpass limit is at 4.2137 pm,
which is near where the radiance signal begins to increase and the RSR is relatively strong. For JPSS-2
VIIRS V2, the measured upper 1% extended bandpass limit is at 4.171 um, which is short of the signal
increase that begins near 4.2 pum. Furthermore, the JPSS-2 VIIRS V2 RSR in this (>4.2 pm) OOB region
is steeper and of lesser magnitude compared to those for S-NPP VIIRS GT. Figure 8b is given with the
same axes limits as those of Figure 7b in order to highlight the OOB signal differences between the
S-NPP VIIRS GT and JPSS-2 VIIRS V2 band M13, the latter case being significantly more constrained.
For the remaining IR bands where radiance magnitudes are higher overall, OOB contribution to the
total signal is minimal.

5. Conclusions

On-orbit operational and climate-monitoring measurements by Earth-overserving instruments
rely on well-characterized spectral performance—a critical aspect of imager pre-launch testing.
Understanding spectral performance is necessary for recognizing the proper implementation and
accuracy of radiometric calibration efforts and the products and research endeavors that rely on them,
e.g., CERES. Critical laboratory experiments allow for characterization of the full optical path and any
optical or electronic cross talks for nearly all VIIRS bands, but they cannot account for the specific
spectral signatures measured by Earth-observing imagers. Therefore, it is difficult to tie pre-launch
spectral performance metrics to OOB behavior for many varied Earth-viewed scenes. This study
quantifies the OOB contribution to the total VIIRS signal and how it changes based on instrument
version, channel, extended bandpass limits, and scene type, knowledge of which is important for
scene-dependent inter-calibration efforts and environmental and cloud product retrievals. The results
inform users of the target-dependent impact of published extended bandpass limits for methods that
allow for selective RSR integration. It is appropriate for the remote sensing community to rely on
the VIIRS channel-measured 1% extended bandpass, which will be sufficient in most applications.
Inter-calibration or retrieval efforts that are dependent on certain scene types for which OOB is
significant, however, may require consideration of the full-band VIIRS RSR for improved accuracy or
at least for understanding of the potential sources of bias.

The OOB contribution to total signal was assessed using modified methodologies for SCTAMACHY-
and IASI-based SBAF computation, employing ratio analysis of VIIRS RSR in-band and full-band
integrated radiance FOVs. This method can be used to evaluate scene-specific OOB contribution
in pre-launch spectral characterization efforts, which may be of interest to product teams that rely
on specific scene conditions. This paper not only quantifies the scene dependence and influence of
specified vs. measured 1% extended bandpass limits, but also provides visualization of the OOB
contribution for selected targets and VIIRS bands. It was shown that S-NPP VIIRS is, overall, subject
to a greater magnitude of OOB Earth-scene-dependent radiance contribution compared to that for
the later NOAA-20 and JPSS-2 VIIRS instruments. That said, the OOB contribution for JPSS-2 VIIRS
V2 band M9 has a magnitude of 5.7% for the Lib-4 PICS, which is the largest ¥ value found for
solar reflective bands. The fact that dark scenes, as is the case for Lib-4 in the M9 band, are most
influenced by OOB radiance contribution is intuitive, given that a small amount of outside energy
is significant compared to the low signal of the in-band measurement, i.e., a low signal dominated
by noise. This signal-to-noise consideration was similarly the main cause of OOB-contributed error
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for the M13 band, particularly for cold scenes at night, reaching a ¥ magnitude of 5.7% in the case of
S-NPP VIIRS GT.

It is important that satellite records be combined seamlessly for long-term Earth-monitoring
efforts like CERES. The aim is to minimize retrieval discontinuities, and thus particular examination of
OOB contribution for the VIIRS I1 and M5 bands is valuable. Of the VIIRS instruments, only that on
S-NPP elicits a need for meaningful consideration of OOB contribution in these channels, and only
in the case of the M5 band for ocean and vegetative scene types. Such cases of OOB influence may
impact certain environmental retrieval applications, e.g., NDVI determinations, but these negative
effects can be largely avoided by using either another VIIRS instrument, if possible, or by utilizing the
comparable I-band or M-band alternatives to the OOB-influenced channels, assuming the potential
drawbacks are otherwise acceptable. For similar reasoning, the results of this study support NOAA-20
VIIRS over S-NPP VIIRS as a CERES inter-calibration reference when considering OOB-contributed
uncertainty. Furthermore, it is advisable for CERES VIIRS and similar retrieval groups to consider the
full-band RSR when spectral integration is required, or otherwise be aware of potential bias, thereby
being able to account for potentially impactful OOB signal contribution depending on the scene and
application. Although the spectral performance of VIIRS is adequate in the majority of applications,
there is, nevertheless, value in understanding the scene-dependent OOB response, even if only for
quality assurance purposes.
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Abstract: This paper provides an overview of the validation of National Oceanic and Atmospheric
Administration (NOAA) operational retrievals of atmospheric carbon trace gas profiles, specifically
carbon monoxide (CO), methane (CH,) and carbon dioxide (CO;), from the NOAA-Unique Combined
Atmospheric Processing System (NUCAPS), a NOAA enterprise algorithm that retrieves atmospheric
profile environmental data records (EDRs) under global non-precipitating (clear to partly cloudy)
conditions. Vertical information about atmospheric trace gases is obtained from the Cross-track
Infrared Sounder (CrIS), an infrared Fourier transform spectrometer that measures high resolution
Earth radiance spectra from NOAA operational low earth orbit (LEO) satellites, including the
Suomi National Polar-orbiting Partnership (SNPP) and follow-on Joint Polar Satellite System
(JPSS) series beginning with NOAA-20. The NUCAPS CO, CHy, and CO; profile EDRs are
rigorously validated in this paper using well-established independent truth datasets, namely total
column data from ground-based Total Carbon Column Observing Network (TCCON) sites, and in
situ vertical profile data obtained from aircraft and balloon platforms via the NASA Atmospheric
Tomography (ATom) mission and NOAA AirCore sampler, respectively. Statistical analyses using
these datasets demonstrate that the NUCAPS carbon gas profile EDRs generally meet JPSS Level
1 global performance requirements, with the absolute accuracy and precision of CO 5% and 15%,
respectively, in layers where CrIS has vertical sensitivity; CHy and CO, product accuracies are
both found to be within 1%, with precisions of ~1.5% and $0.5%, respectively, throughout the
tropospheric column.

Keywords: satellite cal/val; error analysis; greenhouse gases; carbon monoxide; methane; carbon
dioxide; trace gas; remote sensing; retrieval algorithms; satellite applications

1. Introduction

The U.S. National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System
(JPSS) is a NOAA-operational low earth orbit (LEO) satellite series that features the hyperspectral
infrared (IR) Cross-track Infrared Sounder (CrIS) [1] and Advanced Technology Microwave Sounder
(ATMS) [2] systems. Four satellites are planned to fly in the same orbit over the next two decades
beginning with the NOAA-20 satellite (which was referred to as JPSS-1 or J-1 prior to launch in
late 2017), and was preceded by the Suomi National Polar-orbiting Partnership (SNPP) satellite
launched in late 2011. The CrIS instrument is an advanced IR Fourier transform spectrometer
(FTS) that obtains sensor data records (SDRs) consisting of well-calibrated IR Earth emission
spectra over three bands (longwave 650-1095 cm~!, midwave 1210-1750 cm~!, and shortwave
2155-2550 cm 1), with 2211 channels in full spectral-resolution (FSR) mode (maximum optical path
difference of 0.8 cm for all three bands and spectral resolution Av = 0.625 cm~ !, with 713, 865
and 633 channels in the longwave, midwave and shortwave bands, respectively) [3]. The CrIS
spectra allow for retrieval of atmospheric vertical profile environmental data records (EDRs) with
the best possible vertical resolution (=2-7 km for temperature and water vapor throughout the
troposphere) comparable to predecessor sounding systems, namely the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) Metop-series Infrared Atmospheric Sounding
Interferometer (IASI) [4,5] and the National Aeronautics and Space Adminstration (NASA) EOS-Aqua
Atmospheric Infrared Sounder (AIRS) [6,7]. The NOAA-operational EDR retrieval algorithm for
operational hyperspectral thermal IR sounders (viz., CrIS and IASI) is the NOAA-Unique Combined
Atmospheric Processing System (NUCAPS) [8,9]. The NUCAPS algorithm is based upon the heritage
methodology developed for the EOS-Aqua AIRS and is a modular implementation of the multi-step
NASA AIRS Science Team retrieval algorithm Version 5 [10,11].
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NUCAPS SNPP previously ran on CrIS spectra with reduced resolution in the midwave and
shortwave bands (1.25 cm ! and 2.5 cm ™!, respectively) due to truncated interferograms in those
bands during operational processing [3]; these reduced-resolution spectra have been referred to as
“nominal” or “normal” resolution as this was the originally planned operational resolution of the
CrIS SDR. However, offline production of CrIS FSR began in December 2014 [3,12], with operational
Interface Data Processing Segment production starting in March 2017. The move to FSR was motivated
in part by a demonstration study showing the impact of the CrIS spectral resolution on the retrieval
of the carbon monoxide EDR [13]. Given that the CrIS FSR mode has been operational since then
(i.e., for the remainder of the SNPP lifetime as well as the follow-on JPSS satellite series, beginning
with NOAA-20), the NUCAPS system was upgraded to run in FSR mode using the Stand-Alone
Radiative Transfer Algorithm (SARTA) [14] delivered by the University of Maryland Baltimore County
(UMBC). For more details on the NUCAPS algorithm theoretical basis and user applications, the reader
is referred to other papers [9,10] and/or the Algorithm Theoretical Basis Document (ATBD) available
online [15].

The Earth emission spectra (i.e., SDRs) measured by CrIS, IASI and AIRS contain information
about the atmospheric temperature (T) and moisture (q) profiles, along with trace gases including
O3, CO, CHy, CO,, SO,, HNO3; and N,O. The NUCAPS physical retrieval module [15] retrieves
these individual parameters in a sequential fashion, using channels rigorously determined to be
sensitive to each parameter [16], beginning with cloud-cleared radiance spectra (i.e., clear-column IR
spectra which are derived with the help of the collocated ATMS data) [10], followed by T, q, ozone
(O3) and the remaining trace gases, with the results output on the radiative transfer model (RTM)
(or radiative transfer algorithm, RTA) 100 layer grid (T output is on layer boundaries or “levels”).
The NUCAPS algorithm solves for the trace gases in an effort to optimize the retrieved thermodynamic
(T and g) profile EDRs [9], but the long-term investments in the CrIS and IASI sounders onboard future
operational NOAA and EUMETSAT LEO satellite missions (as indicated above) has motivated the
exploitation of these space assets for the routine production of the carbon trace gas EDRs, namely
carbon monoxide (CO) [17,18], methane (CHy) [19], and carbon dioxide (CO5) [20].

The validation of the NUCAPS T, g and Os profile EDRs with respect to high-quality reference
datasets has been previously reported in Nalli et al. [21,22], where it was demonstrated that the SNPP
EDRs meet JPSS Level 1 requirements; additional independent assessments of the SNPP T and g
EDRs versus other reference datasets have been reported elsewhere [23,24]. Similar performances
have been established for the EDR products from the NOAA-20 satellite, launched since the original
SNPP validation effort. Since that time, the NUCAPS algorithm development team has focused on
improvements to the operational carbon trace gas EDR products mentioned above. The improvements
include updated a priori profiles (based on current zonal climatologies) and RTA tuning (empirically
removing residual biases between the model and observations), along with optimized quality assurance
(QA) flags (based upon the algorithm chi-square, x?, degrees-of-freedom, and other quality measures).
Thus, in this paper we focus our attention on validating the operational NUCAPS (offline v2.8) CO,
CHjand CO; trace gas EDRs; additional details on the NUCAPS carbon trace gas retrievals can be
found in a forthcoming paper (Warner et al., manuscript in prep for Atmos. Chem. Phys.).

2. Methodology

Carbon trace gas EDR validation was a new requirement within the JPSS calibration/validation
(cal/val) program [25] beginning with the transition to the full spectral-resolution (FSR) CrIS NUCAPS.
The JPSS Level 1 requirements for carbon trace gas profile EDRs are given in Table 1, which are
defined for the global ensemble of total column, cloud-cleared cases. These requirements serve as the
program metrics by which the system is considered to have reached Validated Maturity and meets
mission requirements.
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Table 1. JPSS Level 1 Requirements * for (CrIS) Carbon Trace Gas Column EDRs.

Statistic Threshold Objective
Carbon Monoxide EDR
CO Precision T 15% 3%
CO Accuracy ¥ +5% +5%
Methane EDR
CHy Precision 1% (20 ppbv) N/A
CHy Accuracy  £4% (80 ppbv) N/A
Carbon Dioxide EDR

CO; Precision  0.5% (2 ppmv)  1.05 to 1.4 ppmv
CO; Accuracy  +1% (4 ppmv) N/A

* Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement—Final, Version 2.10,
25 June 2014, JPSS-REQ-1002, NOAA /NESDIS, pp. 3941, 98; “Level 1” is a programmatic term that refers to
the “highest level” program requirement; ¥ Measurement precision is defined as the standard deviation (one
sigma) of the sample measurement errors; ¥ Measurement accuracy is defined as the magnitude of the mean
measurement error.

Satellite sounder validation methodology has been well-established for T, g and O3 profile
EDRs within previous validation work, with the various coarse-layer statistical uncertainty
characterizations conducted relative to baseline reference datasets (i.e., “truth”) roughly classified
within a “hierarchy” [26]. Profile statistics for layer gas concentrations are defined in terms of fractional
errors, including systemic (i.e., bias or “accuracy”), random (i.e., 1o variability or “precision”), and total
combined error (i.e., root mean square error, RMSE). For carbon trace gases we have adopted a similar
hierarchical approach based upon available reference datasets, consisting of (1) numerical model global
comparisons, (2) satellite EDR intercomparisons, (3) surface-based observing network assessments,
and (4) intensive field campaign in situ data assessments. Those at the base of the hierarchy may
be readily employed during the early cal/val stages (or anytime thereafter) of a satellite’s lifetime,
whereas those near the top are employed during later stages. These are briefly overviewed below.

Numerical model output (analysis and/or forecast interpolated to NUCAPS footprints) enables
the rapid comparison with large, global datasets obtained during “Focus Days” (i.e., days selected
for the acquisition of global SDRs that are used for retrieving EDRs using the latest versions of offline
code) and as such are extremely useful for early evaluation of the algorithm and identifying gross
problem areas [27]. Numerical models used for such comparisons include the European Center for
Medium-Range Weather Forecast (ECMWEF), the NOAA CarbonTracker [28], and the Copernicus
Atmosphere Monitoring Service (CAMS) [29]. Such analyses are useful in identifying regional or
spectral biases. However, dynamical models (e.g., ECMWF) do not constitute independent correlative
data given that they assimilate radiances, and generally do not model chemistry and/or surface fluxes.

Trace gas EDRs obtained from other satellite sensors or algorithms provide quasi-independent
observations for global intercomparisons. Like numerical model comparisons, this approach also
allows for the acquisition of large, global data samples that can facilitate early consistency checks.
In addition, such data (depending on the sensor/algorithm) may be more reliable than model
analyses, especially in the case of previously validated EDR products, thus providing additional
global confidence. AIRS is extremely useful for this purpose given it is a mature, high-resolution
IR sounder that runs an end-to-end algorithm similar to NUCAPS, with the Aqua satellite flying in
the same 01:30, 13:30 local equator crossing time orbit. Other satellite sounder EDR datasets include
Tropospheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5, the NASA
Orbiting Carbon Observatory (OCO-2), Greenhouse gases Observing Satellite (GOSAT), and the
Aura Microwave Limb Sounder (MLS). However, a limitation of these data for validation is that
they may possess similar retrieval error characteristics (in the case of AIRS [27]) or different vertical
sensitivity, and thus ultimately would require proper treatment of each sensor’s averaging kernels [30]
(cf. Appendix A).
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Ground-based, remotely sensed observations obtained periodically from surface-based observing
networks provide independent truth datasets with a global distribution reasonably representing
global latitude zones roughly analogous to radiosonde observations (RAOB) for temperature and
moisture. The most notable example of such a dataset is the Total Carbon Column Observing Network
(TCCON) [31], a ground-based network of uplooking solar-spectrum FTS instruments that obtain total
column measurements of traces gases (discussed more in Section 3.1). A newer source of in situ data
are vertical profiles obtained from the balloon-borne AirCore sampling system [32,33]. NUCAPS
EDR collocations with these ground-based networks thus provide independent datasets for statistical
assessments [26]. However, limitations in these datasets include the time latencies needed for acquiring
reasonable collocation sample sizes, uncertainties in unit conversions, and different sensitivities to
atmospheric layers.

At the top of the validation data hierarchy are intensive aircraft campaigns that provide episodic,
but generally comprehensive sets of in situ and remotely sensed vertical profile data from multiple
ascents and descents of dedicated aircraft flying over a specified region. Aircraft campaigns thus
allow for detailed performance specification over regions of interest. Examples of trace gas campaigns
suitable for SNPP validation include the Atmospheric Tomography (ATom) mission [34] (discussed
in Section 3.3) and, previously, the HIAPER Pole-to-Pole Observations (HIPPO) [35] campaigns.
The specific datasets used for NUCAPS trace gas validation are detailed in Section 3 below.

3. Data

Following the hierarchical approach described in Section 2, multiple complementary correlative
truth datasets are relied upon to provide independent measurements for validation. We have leveraged
three datasets for this purpose, namely uplooking spectrometer total-column data from TCCON,
balloon-borne profiles from AirCore, and finally aircraft in situ vertical profile data from ATom.
Existing satellite EDR datasets from other platforms (viz., Aqua AIRS and TROPOMI) have also
been utilized for global intercomparisons to demonstrate the NUCAPS products look qualitatively
reasonable and geographically consistent (Warner et al., manuscript in prep for Atmos. Chem. Phys.).
Specifics of the layer and unit conversions required for conducting quantitative statistical assessments
of NUCAPS (Section 4) are explicitly described for completeness and reproducibility.

3.1. TCCON

The Total Carbon Column Observing Network (TCCON) [31] is a ground-based network of Bruker
125HR uplooking solar-spectrum FTS that obtain spectral measurements in the near-IR region that
encompasses the CO, CHy, CO,, N>O, and O, absorption bands [31], thus comprising an independent
data source for validating NUCAPS. The interferograms are collected with a 45 cm optical path
difference (45 cm was chosen deliberately to optimize retrievals of CO; in the 6000 cm ! band) yielding
a spectral resolution of ~20.02 cm~!. The total column retrievals of these trace gases is achieved via
a retrieval algorithm (called GFIT) that includes both the forward and inverse model calculations.
The inverse algorithm employs least-squares fitting by scaling an a priori [31]. The a priori profiles used
in the GFIT system, x(, were obtained from the NOAA National Centers for Environmental Prediction,
National Center for Atmospheric Research (NCEP/NCAR) analysis. TCCON station data can facilitate
intercomparisons (acting as a “transfer-standard”) between retrievals from multiple satellites.

The total column trace gases retrieved by TCCON are in dry mole fractions (DMF), whereas
the NUCAPS algorithm retrieves trace gas layer abundances (in molecules/cm?) on the 100 RTA
model layers. Thus, a conversion scheme must be implemented. Furthermore, because TCCON and
NUCAPS have fundamental differences in vertical sensitivity, it is desirable that the TCCON column
averaging kernels (AKs) be utilized in the integration of the NUCAPS observation. For explicitness,
the conversion scheme and application of TCCON column AKs in the integration of NUCAPS retrieved
trace gas profile EDRs are detailed in Appendix A.
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In practice the column AKs are dependent only on the solar zenith angle, 65, of the
measurements [31]. Thus a single set of column AKs from the Lamont Site, a(f ), are provided
for gridded values of 8 = 10°, 15°,...,85° (shown in Figure 1), which can then be interpolated to
the solar zenith angle of the measurement. From Figure 1 a fundamental limitation in the utility of
TCCON data for IR sounder (e.g., NUCAPS) validation becomes evident, namely the TCCON tendency
for higher sensitivity in the upper layers of the atmosphere, except at larger 0, for CHy and CO,.
The TCCON vertical sensitivity must be taken into account when comparing against the sounder
retrieved EDRs, which typically have peak sensitivity in the mid-troposphere (discussed more in
Section 4).

TCCON Column Averaging Kernels
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Figure 1. TCCON tropospheric column AKs [31] as a function of solar zenith angle, 6, for (left)
carbon monoxide, (middle) methane, and (right) carbon dioxide.

3.2. AirCore

The NOAA Global Monitoring Laboratory (GML) AirCore sampling system [32,33,36] is an
innovative in situ sampling approach that employs long, coated stainless-steel tubes to collect a sample
of the ambient atmospheric air column (i.e., a “core” analogous to an ice-core). The tubes are open at
one end, filled with a “fill gas” (with known levels of CO,, CHy, and CO), and configured in a tight
coil so that they can be deployed upon a suitable platform, notably helium or hydrogen-filled 3000 g
balloons. The AirCore is evacuated upon balloon-borne ascent and then fills with ambient air upon
parachuted descent. However, unlike a radiosonde, the sampling package is tracked during its return
from ~30 km altitude to the surface (e.g., via a parachute in the case of a balloon) and subsequently
sealed and recovered, where it can then be brought back to the lab for analysis using a laboratory-grade
trace gas analyzer (e.g., Picarro, Inc.). AirCore thus allows in situ measurement of mole fraction
samples for various trace gases (e.g., CO, CHy and CO;) without requiring an aircraft or onboard data
transmission system (e.g., as with an ozonesonde). A distinct advantages of AirCore is the capability
for multiple deployments with a distributed geographic coverage over land. In this capacity AirCore
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has promise to be a surface-based network like TCCON, albeit with calibrated, high-resolution profiles
measured in samples that survey £98% column, somewhat analogous to an ozonesonde network.

Because the length scale of diffusion is <0.5 m over the time it takes to analyze an AirCore
sample (=4 h), >100 discrete samples can be measured in a 100 m AirCore tube. The resultant profile
resolution surpasses the 100-layer forward model grid employed in the retrieval. Thus we follow the
approach documented in Nalli et al. [26] (Appendix B op. cit.), performing molecular-integrations of
column densities for each trace gas constituent, allowing us to redivide the atmospheric path to the
101 layer boundaries, which then allows the computation of the effective layer values in a physically
rigorous manner. The conversions to NUCAPS RTA layer abundances therefore requires concurrent
measurements of temperature and water vapor, which are obtained from a radiosonde package flown
on the AirCore payload.

3.3. ATom

The Atmospheric Tomography (ATom) mission [34] deployed an extensive gas and aerosol
measurement payload on the NASA DC-8 aircraft for global-scale sampling of the atmosphere, profiling
continuously from 0.2-12 km altitude. Flights occurred during all four seasons, originating from the
Armstrong Flight Research Center in Palmdale, California, USA, flying north to the western Arctic,
south to the South Pacific, east to the Atlantic, north to Greenland, before returning to California
across central North America or the North American Arctic. Figure 2 shows the flight paths for the
20162018 sampling periods (ATom-1, -2, and -4). ATom-1 and -2 data were first used for SNPP
NUCAPS development and validation prior to our J-1 validation effort; we subsequently obtained
ATom-4 data for NOAA-20 validation (note that ATom-3 was still pre NOAA-20), and simply combined
it with our existing ATom-1 and -2 collocation data for SNPP going forward.

ATom Flights 2016-2018 (Wofsy et al. 2018)
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Figure 2. Atmospheric Tomography (ATom) flights for the period of 2016-2018 (ATom-1, -2, and -4) [34];
individual flights are distinguished from one another using different colors. Map projection is equal-area.

During ATom flights, the aircraft repeatedly ascended to 10-12 km, leveled-off, then descended
to different heights at different rates. The raw aircraft data are recorded as a function of time,
with reported altitudes featuring small-to-medium scale fluctuations throughout any given flight.
Correlative truth profiles must thus be extracted only from smooth, continuous ascent/descents,
disregarding small-scale altitude fluctuations and periods when the aircraft leveled off. Through trial
and error, we devised an approach for extracting these profiles from the flight data based upon three
criteria, namely the ascent/descent rate, Az /At (to find actual ascents/descents), the time difference
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between successive ascending/descending profiles (given that level-off periods separate the ascents
and descents), and the thickness of the interquartile range covered by the profile (to ensure reasonably
complete tropospheric profiles).

In this work we use the NOAA Picarro G2401-m in situ measurements of CO, CH4 and CO, from
ATom. More information on the ATom NOAA Picarro data can be found at https://espo.nasa.gov/
atom/instrument/NOAA_Picarro. Because the 10 second average ATom Picarro data are given in
mixing ratios in ppm (or dry air mole fractions) at a vertical resolution comparable to the RTM/RTA
layering, we simply interpolate these data to the RTA levels (layer boundaries), then convert to layer
abundances (molecules /cm?) for the statistical assessment of the NUCAPS EDRs. This is in contrast to
the molecule-conservation approach required for high-resolution data (e.g., AirCore) as briefly alluded
to in the previous section.

Relevant to the JPSS requirements, the ATom statistics on total columns in Section 4 are computed
as follows. NUCAPS performs retrievals of CO and CH, concentrations (as well as HyO and O3)
in layer abundance space (molecules/cm?). Therefore column assessments for CO and CHy are
performed for total column quantities by integrating the NUCAPS retrieved layer abundances; CO,,
on the other hand, is retrieved in mixing ratios (ppm), and thus we need only take the mean for the
total column (CO; is treated differently given that CO, channels are used first in the physical retrieval
steps for the T profile retrievals). The column abundance for atmospheric species X (viz., CO and
CHy) is defined as the vertical integral of the number density N, from the top measurement z; to the
measurement level height z

S.(X) = /th Ni(2') dz'. 1)

For the NUCAPS retrieval on the RTA layers, the total column may be computed from the finite

difference formula [26]
L,—1

Yo (X) ~ FprNyr, 0z, + Y, Nypdzp, 2)
T

where z; is the surface altitude and the quantities Wx, 1 0z;, are the NUCAPS retrieved layer abundance
for gas species x and RTA layer L (of thickness dz1), L is the bottom partial layer, and Fpy, is the
bottom-layer multiplier factor defined as

FBL = :7 (©)

where p; is the surface level (boundary) pressure, P, and Pj, _; are the bottom-layer boundary pressures
(i.e., the pressures of the bottom two levels, [, and [}, — 1).

3.4. NUCAPS Retrievals

The NUCAPS retrieval sensitivity to state profile parameters (e.g., trace gas concentration) can
be inferred from the retrieval AKs. The AK matrix is theoretically defined as A = 0%/9Jx [37-40],
where A is a square matrix dimensioned m x m, m being the number of layers for the retrieved (i.e.,
estimated) and “true” (correlative) profiles, X and x, respectively. Note that the retrieval X is related to
x via the measurement equation ¥ = I[F(x,b), b, c], where F is the forward model with parameters
b (e.g., spectroscopy), and [ is the inverse model (i.e., retrieval), with parameters ¢ not included in F
(i.e., unrelated to the measurement) [26,39]. In the case of the NUCAPS algorithm, trapezoidal basis
functions are used in the physical retrievals of each parameter (e.g., CO, CHy, COy), and thus the
corresponding A matrices must be transformed to “effective AKs” on the RTA layers, A, (dimensioned
n x n, where n = 100 > m is the number of RTA layers), the details of which can be found in earlier
papers [26,40].

Figure 3 shows zonal-mean NUCAPS effective AKs taken from a global Focus Day (23 January
2020) for the tropics, northern and southern hemisphere (NH and SH) midlatitude, and polar zones.
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The Focus Day includes on the order of 220,000 NUCAPS retrievals over the entire globe, which,
generally speaking, is considered representative of the range of global atmospheric conditions.
The plots show the RTA column (or area, i.e., the row-sum along the first dimension) effective AKs
for the CO, CHy, and CO; channels [16] (subplots a—c, respectively). It can be seen that the peak
sensitivities comprise broad layers. For CO, this roughly spans 600 to 300 hPa and that the peak
remains fairly constant from the poles to the tropics. However, sensitivity is markedly less in the polar
zones, this related to the lower tropopause, with sensitivity lowest in the SH plausibly due to lower
ambient concentrations associated with substantially reduced source regions. There may also be some
seasonal variability not accounted for in the Focus Day sample (which was during boreal winter).
For CH4 and CO», the peak sensitivities are somewhat lower in magnitude and higher in altitude than

CO (~400-200 hPa and 300-200 hPa, respectively), with the height and sensitivity likewise decreasing
with latitude zone.
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Figure 3. Zonal-mean NUCAPS RTA column (or row-sum) effective averaging kernels A, for full
spectral-resolution NOAA-20 CrIS carbon trace gas retrievals from a global Focus Day, 23 January 2020:
(a) carbon monoxide, (b) methane, and (c) carbon dioxide. The solid lines are tropics (30°S to 30°N),
dotted lines are midlatitudes (30-60°S and °N) and dashed lines are polar (60-90°S and °N).

The ability of the CrIS sensor to provide information about the trace gas profiles is also
demonstrated by considering the NUCAPS algorithm degrees-of-freedom (DoF), defined as the sum
of the A matrix diagonals, representing the total vertical information content [9]. Figure 4 shows the
NUCAPS DoF for CO, CHy4 and CO; for the same Focus Day as in Figure 3. DoF for CO are mostly
>1 (i.e., contain >1 independent pieces of information from the CrIS spectra) for most of the globe
equatorward of the polar zones, with the exception of some high altitude locations, whereas areas
with DoF >1 for CH4 and CO; are primarily limited to the tropics (where the tropopause is at a higher
altitude). Generally we expect greater retrieval skill in the regions with higher DoF.
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NUCAPS J01 v2.8 DoF (20200123)
Carbon Monoxide
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Figure 4. NUCAPS algorithm degrees-of-freedom (DoF) for NOAA-20 carbon trace gas retrievals from
a global Focus Day, 23 January 2020: (top) carbon monoxide, (middle) methane, and (bottom) carbon
dioxide. Map projections are equal-area.

4. Results and Discussion

In the following sections, the NUCAPS carbon trace gas retrievals are statistically validated versus
the collocated baseline datasets described in Sections 3.1-3.3. In these analyses, we apply essentially
the same collocation methodology as that used for our earlier ozone profile validation [22], whereby we
impose a space-time collocation criterion in an effort to strike a balance between collocation mismatch
uncertainty and sample size.

4.1. Statistical Analysis versus TCCON Baseline

For NUCAPS carbon gas validation using TCCON site observations, we ran offline SNPP and
NOAA-20 NUCAPS retrievals for 6 global focus days spanning the annual cycle (1 April, 15 June,
20 August, 15 October and 15 December 2018, and 15 February 2019), then collocated the NUCAPS
fields-of-regard (FORs, which consist of 3 x 3 CrIS fields-of-view used for cloud-clearing [9,10]) within
Ar <125 km radius and At within £2 h of the TCCON measurements. The global focus day runs
also allowed for numerical model and satellite EDR comparisons (as discussed in Section 2), but these
will be highlighted in a future paper (Warner et al., manuscript in prep for Atmos. Chem. Phys.).
Figure 5 shows the locations of TCCON stations with available data that collocated with the SNPP
data (NUCAPS QA-accepted cases) during these focus days.
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TCCON Stations (SNPP Focus Days: Apr Jun Aug Oct Dec Feb)
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Figure 5. TCCON stations [31] collocated with SNPP NUCAPS (QA -accepted cases, Ar < 125 km and
£2 h) for 6 global focus days (1 April 2018, 15 June 2018, 20 August 2018, 15 October 2018, 15 December
2018, 15 February 2019); stations shown are (south to north): Lauder (NZ) [41,42], Wollongong (AU) [43],
Darwin (AU) [44], Burgos, Ilocos Norte (PH) [45], Izana (ES) [46], Saga (JP) [47], Edwards (US) [48],
Lamont (US) [49], Rikubetsu (JP) [50], Park Falls (US) [51], Zugspitze (DE) [52], Garmisch (DE) [53],
Orléans (FR) [54], Paris (FR) [55], Karlsruhe (DE) [56], Bialystok (PL) [57], East Trout Lake, SK (CA) [58],
Sodankyla (FI) [59,60], and Ny Alesund, Spitsbergen (NO) [61].

As mentioned in Section 3.1, statistical comparisons of NUCAPS with TCCON requires unit
conversions, as well as integration of the NUCAPS 100 layer profiles. In this case, the NUCAPS profiles
(in layer abundances, molecules/cm?) are first converted to dry mole fractions and then integrated into
a total column value with or without the TCCON AKSs applied, as detailed in Appendix A. The results
for SNPP NUCAPS retrievals versus individual TCCON stations, ordered from south to north, are
summarized in Figure 6; these plots show reasonable consistency of the SNPP NUCAPS retrievals
versus individual TCCON stations (similar results were obtained for NOAA-20, but not shown here
due to space constraints). The positive bias evident in the CO results may in part be due to the different
vertical sensitivities between the NUCAPS and TCCON measurements, as evidenced by column AK
peak altitudes shown in Figures 1 and 3. The TCCON vertical sensitivities for CO are weighted toward
the upper troposphere and above, whereas sensitivities for CHy and CO, transition to the troposphere
for larger solar zenith angles, with a crossover point roughly in the mid-troposphere (2450 hPa).
NUCAPS retrievals, on the other hand, being derived from passive thermal IR spectra, tend on
having peak sensitivity weighted toward the mid-troposphere. In addition to the different instrument
sensitivities, however, there is also a known problem in the TCCON Xc( scaling, wherein the TCCON
data were scaled down by ~6.7% to match older aircraft data. There is now less confidence placed in
this value given that it has changed as more recent in situ profiles have been added for comparison [62],
and thus it is believed that this scaling factor also contributes to the observed discrepancy between the
NUCAPS and TCCON CO.
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Figure 6. Box-whisker robust error statistics (%) of total column SNPP NUCAPS trace gas retrievals
(QA-accepted cases including trace gas QA) versus means at individual collocated (Ar < 125 km and
£2 h) TCCON stations, ordered from south to north: (left) CO, (center) CHy, and (right) CO,. Circles
and blue boxes depict medians and interquartile range, respectively; blue “whiskers” depict remaining
data spread excluding outliers, and + signs designate outliers. TCCON column AKs were applied in
the NUCAPS column integrations (cf. Appendix A). Note that available data from Caltech, Pasadena
(US) [63], Jet Propulsion Laboratory (US) [64], Bremen (DE) [65], and Eureka (CA) [66] ultimately did
not meet the collocation criteria.

The results for the complete QA-ed samples (N = 472, 422, 540, yields = 74%, 67%, 85% for
CO, CH4 and COy, respectively) are summarized as scatterplots and histograms in Figures 7 and 8§,
respectively. The scatterplots show reasonable correlation between the total column retrievals and
TCCON measurements (r = 0.89, 0.63, 0.86 for CO, CHy4 and CO,, respectively), and the histograms
show roughly Gaussian distributions in the errors. Featured in the histograms are results with (blue)
and without (red) the TCCON AKs applied to the integrations, which for CHy and CO; basically
show very little difference when the AKs are applied. However, for CO a somewhat larger bias is
seen when TCCON AKs are applied. At first this may seem counterintuitive, but this is likely because,
as already mentioned, the TCCON AKs for CO (unlike CH4 and CO;) all peak above the UT/LS,
whereas the NUCAPS AKs for CO peak in the mid-troposphere. Thus, greater weight is given to
the upper-troposphere/lower-stratosphere (UT/LS) when TCCON AKs are applied to NUCAPS,
and given that NUCAPS has no skill above 100 hPa, we therefore would expect less agreement in the
total column results.
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Figure 7. Scatterplots of total column SNPP NUCAPS trace gas retrievals versus means at individual
collocated TCCON stations (Ar < 125 km radius and At within £2 h): (left) CO, (center) CHy, and (right)
CO,; horizontal errorbars denote the 3 ¢ uncertainties in the mean collocated TCCON measurements.
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Figure 8. Histograms of total column differences (%) between SNPP NUCAPS trace gas retrievals
and individual TCCON station means: (top) CO, (center) CHy, and (bottom) CO,. The blue and red
histograms show results with and without TCCON column AKs applied in the NUCAPS integrations,
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respectively; “acc+qa” indicates QA-accepted retrievals including trace gas QA.
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4.2. Statistical Analysis versus AirCore Baseline

Like TCCON, AirCore data can provide spot-checks and an additional evaluation method for
comparing results from multiple satellites (viz. SNPP and NOAA-20). NOAA/GML provided us
with 42 complete AirCore profiles launched over the period of 22 March 2018 to 30 January 2020.
The AirCore balloon launches were timed for LEO satellite overpasses, specifically the Orbiting Carbon
Observatory-2 (OCO-2) within the NASA A-Train constellation (01:30 and 13:30 local equator crossing
time orbit), which fortuitously collocate with the SNPP and NOAA-20 overpasses in the same afternoon
orbit. NUCAPS FORs are included within Ar < 100 km radius and At within £2 h of the AirCore
launches; Figure 9 shows the locations of collocated NOAA-20 NUCAPS FOR along with the AirCore
launch sites. One may see that the samples are primarily located over North America, with a handful
located in Europe.

NUCAPS-J01 AirCore Collocations (-2 2 hrs, 100 km)
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50°N .
e
40°N for
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NUCAPS
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120 "W 80 "W 40°W 0"
Figure 9. NOAA-20 NUCAPS collocations with AirCore launches (Ar < 100 km radius and At within
+2h).

The original “high density” profiles were reduced to the NUCAPS 100 RTA layer abundances
as described in Section 3.2. To perform the unit conversions it was necessary to utilize the AirCore
payload InterMet-1 radiosonde temperature and relative humidity (RH) measurements, but negative
RH values were sometimes reported by the sonde in the UT/LS. To get around this problem, we
simply adjusted these values to a small positive number (1%), as the stated accuracy of the InterMet-1
RH sensor is +5%. To justify this, we performed a simple sensitivity test to determine the error in
layer abundance for a +1% RH perturbation (performing conversions with 1% added to the entire
RH profile and then subtracting the unperturbed values). The results are presented as a function of
ambient water vapor mixing ratio (ppmv) and pressure altitude in Figure 10, where it can be seen that
the error from a 1% RH adjustment is negligible.
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Figure 10. Sensitivity of computed trace gas (carbon monoxide) NUCAPS RTA layer abundances (%
error). The x-axis is the RTA layer water vapor volume mixing ratio (ppmv) and the y-axis is pressure
altitude (hPa).

Because of the limited DoF and vertical sensitivity of the instrument, we also use AKs in our
evaluation of the NUCAPS carbon trace gas profile retrievals. Thus the analysis will include results
based upon “smoothed” correlative truth data, xs, which is obtained by applying the NUCAPS
effective-AKs A, to the original high-resolution truth profile x [26,39,40]

In(xs) = In(xg) + Ae [In(x) — In(xp)], 4)

where xg is the a priori profile. Using x; in place of x in the statistical analyses effectively removes
the null-space error associated with the limited vertical resolution inherent in the radiances used by
the retrieval algorithm. However, caution must be exercised when using this approach. When the
algorithm possess little-to-no sensitivity to a profile parameter x, the AK matrix becomes a null matrix,
A. — 0, ,,, and the second term on the right in Eqution (4) goes to zero. In this case, both the smoothed
truth profile and the retrieval reduce to the a priori, xg. Although the result would indicate that the
retrieval system is self-consistent and working properly, it would also give the misleading appearance
of a perfect retrieval of the true atmospheric state, which is definitely not the case.

Figures 11 and 12 show the resulting statistical comparisons of the collocated NOAA-20 NUCAPS
retrievals versus the AirCore profiles, without and with AKs applied, respectively. The results for
CO, CH4 and CO; are shown in the left, middle and right plots, respectively. From Figure 9, we
recall that the AirCore profiles are all located over Northern Hemisphere (NH) land-based sites (viz.,
North America and Europe). We subsequently found that several of these profiles exhibited very
large gradients that are well outside the theoretical vertical resolution limitations of the CrIS sensor,
with vertical gradients in the AirCore high-resolution profiles not well-captured by the NUCAPS
climatological a priori. The profile statistics for AirCore are shown on the coarse-layers defined by
the NUCAPS algorithm trapezoidal basis functions, similar to the statistical analyses of NUCAPS
T(p)/HyO/05 profiles [21,22].
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NUCAPS J01 v28 Retrieval vs AirCore (acc+ga, -2 to 2 h, 100 km)
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Figure 11. NOAA-20 NUCAPS coarse-layer accuracy (bias +2¢ uncertainty in the sample mean;
dotted red line and blue hatches) and precision (1o variability; solid dark red line) statistics versus
AirCore profiles: (left) carbon monoxide, (center) methane, and (right) carbon dioxide. Layer sample
sizes are indicated on the right margins; “acc+qa” indicates QA-accepted retrievals including trace

gas QA.
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Figure 12. As Figure 11 except with NUCAPS AKs applied to the high resolution AirCore data as
indicated by Eqution (4).
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For this small NH continental sample, the NUCAPS retrievals are found to exhibit somewhat
a positive bias in CO and CHy, both without (Figure 11) and with AKs (Figure 12) applied.
The latter indicates biases not arising from null-space errors ($25% and $2.5%, respectively) and
thus there is systematic error in the layers where NUCAPS has sensitivity. This results from AirCore
profiles with higher observed concentrations (not shown here) in the lower troposphere (Z700 hPa),
decreasing rapidly to the mid-troposphere (=500 hPa), then increasing again to the upper troposphere
(=200 hPa). NUCAPS, on the other hand, has sensitivity in the mid-troposphere (Figure 3), and the a
priori concentrations generally decrease with height. In contrast, the CO; retrievals exhibit a very small
negative bias (~0.5%), with most of that apparently null-space error as seen in the results with AKs
applied (Figure 12 right), indicating that the retrieval is accurate in the layers of sensitivity (Figure 3).
Precision magnitudes (random errors) for all three gases are somewhat comparable to their accuracies
(systematic errors), with some of those errors originating from their null-spaces, especially carbon
monoxide, and to a lesser extent, carbon dioxide. Given the limited size and geographic representation
of the sample, these results should not be considered definitive or globally representative, but they do
offer insight into the challenges inherent in retrieving regional profiles over land. But more importantly,
these first-use results demonstrate the potential utility of the AirCore sampling system for operational
trace gas validation.

4.3. Statistical Analysis versus ATom Baseline

The in situ global data from the ATom intensive campaigns are considered to be at the top of
our validation “hierarchy” (cf. Section 2). Thus, while we relied more on the TCCON analyses
for the developmental phases of the trace gas algorithms (per the hierarchal approach), we give
higher weight to the ATom data for a final quantitative evaluation of the NUCAPS carbon gas EDR
product performance relative to the metrics defined by the JPSS Level 1 requirements summarized
in Table 1. Although JPSS requirements are applicable to the total system error (including null-space
error), it is nevertheless imperative to include AKs in the validation of the carbon trace gases as in
Section 4.2, with the caveats discussed above in that section. Similar to the analyses for TCCON
and AirCore, NUCAPS FORs are collocated within Ar < 100 km radius and At within +1.5 h of the
ATom measurements. Figure 13 shows the dates and locations of SNPP and NOAA-20 NUCAPS FOR
collocated with the midpoint of extracted profiles from the ATom-1, -2, and -4 campaigns. These maps
show the excellent global zonal representation of the validation sample, albeit primarily over oceans.
Although the NUCAPS retrievals may generally be “easier” (i.e., more accurate) over ocean surfaces
(i.e., where the surface emission/reflectance properties are relatively uniform and well characterized
relative to the retrieval uncertainties) [67], this is not always the case [68], and operational satellite
data have been demonstrated to make their greatest impact over the data-sparse oceans [69]. Thus the
ATom data are of singular value for our validation.

Based on the NUCAPS-ATom collocation samples, the global profile error statistics for the
NUCAPS retrievals (IR accepted cases, clear to partly cloudy, with trace gas QA applied (Warner
et al., manuscript in prep for Atmos. Chem. Phys.)) are computed versus ATom NOAA Picarro
baseline; as before (cf. Section 4.2), the results are summarized within Figures 14-17, with CO, CHy and
CO;, statistics shown in the left, center, and rightmost plots. Because the ATom profiles generally exhibit
smaller vertical gradients and are closer to the NUCAPS a priori profiles (as opposed to AirCore),
we display these results on the original 100 RTA layers (as opposed to trapezoidal coarse-layers).
For reference, the JPSS Level 1 global specification requirements (Table 1) for accuracy (bias) and
precision (variability) are included in the plots with dashed gray lines. Figures 14 and 15 show results
for NOAA-20 and SNPP, respectively, and these are followed by Figures 16 and 17, which show the
results with the NUCAPS AKs applied to the ATom profiles.
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NUCAPS-NOAA-20 ATom Collocations (1.5 hr, 100 km)

NUCAPS-SNPP ATom Collocations (1.5 hr, 100 km)
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Figure 13. ATom collocation samples for NUCAPS carbon trace gas profile validation: NUCAPS FOR
(gold x) are shown collocated with extracted ATom profiles (red circles) within space-time collocation
windows of Ar < 100 km radius and At within £1.5 h for (left) ATom-4 with NOAA-20, and (right)
ATom-1, -2, -4 with SNPP.

In the leftmost plots of Figures 14 and 15 we find that the CO accuracy (biases) for the broad layer
between 400-600 hPa (which corresponds to the region where the algorithm has maximum sensitivity)
are reasonably close to, or within, JPSS requirements; CH4 and CO; biases, on the other hand, are well
within requirements throughout the troposphere, with CHy bias statistically close to zero (at the 2¢
level) below 400 hPa. Precision (variabilities) for CO and CHy fall somewhat outside the requirements,
whereas the CO, precision meets requirements throughout the entire tropospheric column.

When the AKs are applied to the truth data via Eqution (4) (Figures 16 and 17), the retrievals
are seen to be within JPSS requirements throughout the tropospheric column, with the exception of
CH,4. While these are not the actual total-system accuracy and precision relative to the correlative
measurement, they indicate that the algorithm is performing properly within its theoretical limits,
which includes the vertical resolution afforded by the radiances, cloud-clearing, RTA tuning,
a priori, algorithm damping factor (an optimization parameter that limits noise propagation into
the solution [40]) and QA flags. In particular we can see that errors falling outside of requirements in
the CO and CO; retrievals are the result of the null-space error; thus these errors are indicative of a
fundamental limitation in the vertical resolving power of the CrIS sensor. The methane precision, on the
other hand, poses an enduring problem, given that the results still fall outside requirements throughout
the troposphere (with the exception of the lower troposphere, where NUCAPS has little skill; Figure 3b),
even with AKs applied. We also found this to be the case with tighter space-time collocation criteria
(not shown here), which would reduce potential mismatch errors, but also decreases sample size and
thus redundancy. Thus, these comparisons to a large swath of recent in situ measurements (ATom,
AirCore and TCCON) suggest that the CHy precision threshold (viz., 1%), may in fact be unrealistically
stringent, especially when one considers the far more relaxed requirement for accuracy (viz., 4%).
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NUCAPS v2.8 JO1 Retrieval vs ATom (acc+ga, -1.5 to 1.5 h, 100 km)
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Figure 14. NOAA-20 NUCAPS 100-RTA layer accuracy (bias £2¢ uncertainty in the sample mean;
dotted red line and blue hatches) and precision (1o variability; solid dark red line) statistics versus
ATom-4 in situ aircraft data (NOAA Picarro measurements): (left) carbon monoxide, (center) methane,
and (right) carbon dioxide. Layer sample sizes are indicated on the right margins. The vertical dashed
and dot-dashed gray lines indicate the JPSS Level 1 requirements for accuracy (bias) and precision
(variability), respectively; “acc+qa” indicates QA-accepted retrievals including trace gas QA.

NUCAPS v2.8 NPP Retrieval vs ATom (acc+qa, -1.5 to 1.5 h, 100 km)
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Figure 15. As Figure 14 except for the SNPP satellite versus ATom-1, -2 and -4.
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NUCAPS v2.8 JO1 Retrieval vs AK-smoothed ATom (acc+qa, -1.5 to 1.5 h, 100 km)
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Figure 16. As Figure 14 except with NUCAPS AKs applied to the ATom data as indicated by Eqution (4).

NUCAPS v2.8 NPP Retrieval vs AK-smoothed ATom (acc+qa, -1.5 to 1.5 h, 100 km)
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Figure 17. As Figure 14 except for the SNPP satellite.

The total column results relevant to the JPSS requirements (cf. Section 3.3) for both the NOAA-20
and SNPP data samples are summarized in Table 2 in terms of fractional accuracy (bias), precision
(1o variability), total combined uncertainty (RMSE), correlation coefficient (r) and associated p-values,
sample sizes (N), and yield. For completeness, we include results with and without NUCAPS AKs
applied to the ATom truth profiles, indicated by “AK” and “raw”columns, respectively. As commented
above, with the exception of the CHy precision, results are generally within requirements, especially
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when NUCAPS AKs are applied. Likewise, the NUCAPS CO and CO; products both exhibit good
total column correlation with ATom measurements (>0.75), with CH4 on the order of 0.5.

Table 2. Validated NUCAPS-CrIS Trace Gas EDR Total Column Measurement Uncertainty

(ATom Baseline).
Bias (%) o (%) RMSE (%) r p
Trace Gas N  Yield
Raw AK Raw AK Raw AK Raw AK Raw AK
NOAA-20
CcO +105 +42.0 186 96 214 9.8 092 092 0 0 298  59%
CHy4 -02 408 14 1.3 14 1.6 0.61 0.61 0 0 190  38%
CO, -0.7 -0.1 0.4 0.3 0.8 03 081 0.84 0 0 321  63%
Suomi NPP

CcO +78 +19 156 83 17.5 85 091 0.89 0 0 901 64%
CHy +0.0 407 1.6 1.3 1.6 1.5 038 0.38 0 0 696  49%
CO, —0.6 —0.1 04 0.3 0.7 03 078 0.79 0 0 969  69%

5. Conclusions and Future Work

This work has presented the formal validation of NOAA-20 and SNPP NUCAPS IR atmospheric
carbon trace gas profile EDRs (CO, CHy and CO»), in continuation of the validation of the T, g
and Oj profile EDRs described in earlier papers [21-24]. Because of the NUCAPS cloud-clearing
methodology, the NUCAPS atmospheric profile EDRs, including trace gases, are retrieved under
global, non-precipitating conditions, allowing the benefit and advantage of twice-per-day (per satellite)
global yields on the order of 40-70%.

The NUCAPS IR sounder validation strategy employs a “hierarchical” approach drawing upon
multiple independent baseline truth datasets [26], including TCCON ground-based spectrometers,
AirCore profiles, and ATom aircraft-based in situ profiles. Based upon these globally representative
data, we have conducted ongoing statistical analyses (per the JPSS Cal/Val Program) that have
provided guidance for the recent NUCAPS trace gas algorithm improvements validated in this work
(Warner et al., manuscript in prep for Atmos. Chem. Phys.). The NUCAPS optimal estimation (OE)
physical retrievals generally improve upon the climatological a priori (not shown here due to space
limitations) where CrIS has sensitivity (Figure 3). We have subsequently shown here that the carbon
trace gas EDRs (CO, CHy, and CO;) from the latest version of NUCAPS are performing reasonably
within expectations. It is noted that the truth data used in these analyses span all global climate zones
(tropical, midlatitude and polar), as well as land and ocean locations (Figures 5, 9 and 13). Based
upon our analysis comparing to global in situ vertical profiles from the ATom campaigns, it has been
shown that the NUCAPS CrIS-FSR carbon trace gas profile EDRs generally meet JPSS Level 1 global
performance requirements (Tables 1 and 2), with the exception of the stringent 1% CHy precision
specification, which may be extremely difficult to achieve in practice.

Future work on the NUCAPS trace gas products include optimization of the damping parameters,
implementation of QA for the CO, retrievals, improvements to the SARTA forward model surface
emissivity first-guess (land, ocean and snow /ice), as well as exploring additional trace gas products
(e.g., NHgz, SO,, Isoprene, PAN) and collaborations with in situ data providers (e.g., NOAA/GML).
The NUCAPS AKs are planned to be included in a future version as standard output in the operational
NetCDF files (currently the AKs are output only to offline binary files), and the NUCAPS algorithm
will also operationally be supported for data from the EUMETSAT Metop-B, -C and Metop-SG
hyperspectral IASI systems.
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Abbreviations

The following abbreviations are used in this manuscript:

AIRS Atmospheric Infrared Sounder

AK(s) averaging kernel(s)

ATMS Advanced Technology Microwave Sounder

ATom Atmospheric Tomography mission

CAMS Copernicus Atmosphere Monitoring Service

CrIS Cross-track Infrared Sounder

DoF degrees-of-freedom

ECMWE European Center for Medium Range Weather Forecast
EDR(s) environmental data record(s)

EUMETSAT  European Organisation for the Exploitation of Meteorological Satellites
FOR(s) field(s)-of-regard (NUCAPS)

FSR full spectral-resolution (CrIS)

FTS Fourier transform spectrometer

IASI Infrared Atmospheric Sounding Interferometer

JPSS Joint Polar Satellite System

J-1 orJo1 JPSS-1 satellite (i.e., NOAA-20 pre-launch, still used as a designator in operational files)
LEO low earth orbit

NOAA National Oceanic and Atmospheric Adminstration
NUCAPS NOAA-Unique Combined Atmospheric Processing System
OE optimal estimation

QA quality assurance

RH relative humidity
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RMSE root mean square error

RTA radiative transfer algorithm (alternatively, rapid transmittance algorithm)
RTM radiative transfer model

SARTA Stand-Alone Radiative Transfer Algorithm

SDR(s) sensor data record(s)

SNPP Suomi National Polar-orbiting Partnership (satellite)

TCCON Total Carbon Column Observing Network

UT/LS upper-troposphere/lower-stratosphere

Appendix A. NUCAPS to TCCON Conversions

Appendix A.1. Column Integration Formulas

The TCCON measurement for a given atmospheric profile constitutes an integrated column
measurement of dry mole fraction (DMF), X;. The integrated mole fraction is related to the constituent
profile (as a function of pressure, p) as [70]

_ T xw)
Zp(X) ZO/M(mg(p’(P)dP/ (A1)

where p; is the surface pressure, g is the gravitational acceleration, ¢ is the latitude, X is the constituent
mole fraction, and M is the molecular mass of air. X(p) is related to the DMF, X, as

X(p) = Xa(p) [1 = Q(p)] , (A2)

where Q is the mole fraction of water vapor. M(p) may be broken into moist () and dry (d)
components as

M(p) = mq Q(p) +mq[1—Q(p)] - (A3)
Substituting Equtions (A2) and (A3) into Eqution (A1) yields [70]

Ps
_ Xa(p)
200 = [ e "y

where € = my/m,; and from Eqution (A2) the water vapor DMF is given by

Q(p)
Qilp) = =57 (A5)
) =100
Eqution (A4) forms the basis integrating the NUCAPS retrievals, which we will return to below
in Appendix A.3. It may also be seen that dry mole fractions are required for comparing a given trace
gas measurement against TCCON. The conversion of NUCAPS retrievals to DMFs are discussed in the

next section.

Appendix A.2. NUCAPS Layer Conversions

In the current application using NUCAPS, the X-constituent dry mole fraction X is derived from
the NUCAPS retrieved volume mixing ratios, X, (which in turn are computed from the retrieved layer
abundances), as follows. The retrieved mole fraction may be calculated from the gas partial pressure as

x(p) = PP (A6)
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where carrots (e.g., X) denote measurement estimates (here being the NUCAPS retrievals), P is the RTA
atmospheric effective-layer pressure and py is the retrieved partial pressure of the gas computed from

px(P) = 10% - X, (P) [P — pg(P)] (A7)

and the water vapor partial pressure is computed from

Q,(P)-107°
1+ QU(P) -10-°

pg(P) =P (A8)

where Qy is the volume mixing ratio in in parts per million (ppmv). The retrieval dry mole fraction is
then computed from Eqution (A2) as

5 oy X(P)
where from Eqution (A6)
~ pa(P
Q(P) = pql() ), (A10)

Appendix A.3. Application of TCCON Column AKs

Rodgers and Connor [30] formulated the theoretical basis for performing rigorous
intercomparisons of remotely sensed atmospheric soundings obtained by instruments with dlffermg
measurement characteristics. For total column estimates from two observing systems, Ci and Gy,
the expected difference is given by [30]

Ci—C = (a1 — ) (x = xc) + (e1 — £2), (A11)

where aj, a, are the column averaging kernels, and €1, €; are the column measurement errors, for each
sensor, respectively, x is the “true” atmospheric profile state (implicitly in dry mole fraction, omitting
the subscript d in vector notation for convenience), and x, is the central tendency of the ensemble
(assumed to be Gaussian); we take the subscripts “1” and “2” to denote NUCAPS and TCCON,
respectively. The corresponding variance, 0, is given by [30]

0?2 (C1 — Cy) = (a1 — a2)"Sc(ag — ap) + (07 +02), (A12)

where S, is the background covariance matrix. Given a known “true” profile state, x, along with S,
Equtions (A11) and (A12) can be used to verify rigorously whether a collocated NUCAPS and TCCON
column observation are consistent within their theoretical measurement limitations.

However, in the current application we are given only a profile estimate (NUCAPS retrieval, X1),
and a column estimate (TCCON observation, Cy) for the purpose of evaluating NUCAPS using TCCON
as a reference, while the “true” profile state remains unknown. Given the significant differences
between each system’s AKs (cf. Figures 1 and 3), and that the NUCAPS X; is an OE retrieval, we
estimate the TCCON observation of that state by integrating X; using the TCCON AKs [30]

Ci2 = Co + a2 (X1 — xo), (A13)

where Cp and xg denote the TCCON column and profile a priori, respectively. This equation roughly
follows from Eqution (A11) by assuming a; = i (the unit vector), x = X; (the NUCAPS retrieved profile
is used in lieu of the unknown truth), ¢, ~ 0 (the TCCON measurement is accurate), and x¢ = xq (i.e.,
the ensemble central tendency is captured by the TCCON a priori). C1 can then be used in place of G
for comparisons against the TCCON observations, Gy, in empirically estimating ¢;.
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The righthand side of Eqution (A13) integrates the NUCAPS profile in a manner approximating
what TCCON would have observed (under the same ambient environmental conditions) by applying
TCCON AKs within the integration. The two terms are computed as follows:

2y (X
C =5 ) : (A14)
: ~ -1
[{mag(p,@)[1+eQulp)]} dp
0

where X, is shorthand for the vertical sum, and
Tp[A- (X~ Xo)]

f{md g(p, @) [1+eQa(p)]} 'dp

aT (5\( _ X()) — , (A15)

where the denominators are the integrated columns for dry air and

bs X4y (p)
Zp(X0) = | Py, Al6
p(Xo) o mag(pe)[1+eQatp)] ¥ (A16)

Ps Xa(p)—Xay (p)

= A 0

] /0 (p) mg g(p,g)[1+€ Qu(p)]
Rigorous application of Equtions (A11) and (A12) toward NUCAPS and TCCON intercomparisons

using an independent set of collocated truth profiles x (e.g., high-resolution AirCore profiles) will be

the subject of future collaborative work.

Tp[A- (X~ Xo) (A17)
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Abstract: The monitoring of wetland methane (CH,4) emission is essential in the context of global CHy
emission and climate change. The remotely sensed multitemporal Atmospheric Infrared Sounder
(AIRS) CHy4 data and the Breaks for Additive Season and Trend (BFAST) algorithm were used to
detect atmospheric CHy dynamics in the Zoige wetland, China between 2002 and 2018. The overall
atmospheric CHy concentration increased steadily with a rate of 5.7 + 0.3 ppb/year. After decomposing
the time-series of CHy data using the BFAST algorithm, we found no anomalies in the seasonal
and error components. The trend component increased with time, and a total of seven breaks were
detected within four cells. Six were well-explained by the air temperature anomalies primarily,
but one break was not. The effect of parameter & on decomposition outcomes was studied because it
could influence the number of breaks in the trend component. As h increased, the number of breaks
decreased. The interplays of the observations of interest, break numbers, and statistical significance
should determine the & value.

Keywords: atmospheric infrared sounder (AIRS); breaks for additive season and Trend (BFAST)
algorithm; methane (CHjy); multitemporal data; Zoige wetland; China

1. Introduction

Among all natural and anthropogenic sources, wetlands are the single largest methane (CHy)
source and contribute 20%~40% of the total global CH4 emission [1]. Wetland CH4 emissions result
from interactions between several biological, chemical, and physical processes that primarily include
CH4 production, transportation, and oxidation. Methanogenic bacteria carry out the production by
decomposing a limited number of relatively simple substrates under strictly anaerobic conditions.
Thus, the production rate is limited by the availability of substrate and regulated by climatic and
edaphic factors such as temperature, water table position, and pH [2-6]. CH,4 can be transported to
the atmospheric through various pathways: molecular diffusion, ebullition, and via vascular plant
stems [7]. The produced CHj is mostly oxidized by methanotrophs present at the oxic-anoxic boundary
in the soil before emitting into the atmosphere [8]. Thus, the difference between the production and
oxidation rates determines the rate of CHy emission into the atmosphere.

Paleo records and recent studies suggest vital positive feedback of wetlands to global warming
through CHy emissions [9,10]. Therefore, the long-term variation and abrupt changes in wetland CHy4
emissions are essential elements to understand the present conditions of the global CH4 emissions
and climate changes [11,12]. An abrupt change or break usually denotes a rupture in the established
range of observations. In this study, a breakpoint occurs when the wetland CHy4 emission is beyond a
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given threshold value, as observed in the remote-sensing time-series and delineated by an algorithm,
triggering a discontinuous transition where a new starting point and rate are initiated.

Within the context of climate change, continuous monitoring of wetland CH4 emissions is
essential. With available multitemporal remote-sensing observations and datasets, various long-term
change detection methods have been proposed. Temporal decomposition techniques have shown
the ability to account for seasonal, gradual, and abrupt changes or breaks in terrestrial ecosystems.
An early LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery) algorithm
divides long-term trends into piecewise-linear segments to characterize long-term changes in forest
properties [13,14]. The algorithm captures changes at an annual scale but not at an intra-annual one.
The Detecting Breakpoints and Estimating Segments in Trend (DBEST) can detect both abrupt and
non-abrupt changes [15]. All the above methods are generally used to detect changes in the trend
components, while seasonality is ignored.

The Seasonal-Trend decomposition based on a locally weighted regression smoother (STL) can
identify both the phenological cycle and gradual change [16]. The STL cannot detect abrupt changes, as it
assumed that the trend component varies smoothly [17]. Based on the STL algorithm, Verbesselt et al. [18]
developed the Breaks for Additive Season and Trend (BFAST) algorithm that detects seasonal, gradual,
and abrupt changes in a time-series simultaneously. The algorithm has been used and validated in
many studies. For instance, Verbesselt et al. [19] detected drought-related vegetation disturbances.
Saatchi et al. [20] examined the impact of the water deficit on the Amazon forest. Watts and Laffan [21]
assessed the effectiveness of the algorithm in semi-arid regions, where the vegetation response is
typically aseasonal. Hamunyela et al. [22] studied deforestation from the same data in dry and humid
tropical forest areas.

CHy studies have been conducted in the Zoige wetland, mainly using in situ measurements [23,24].
However, the measurements are sparse and cannot be representative on a large scale. Systematic
observation of the vertical variation of CHy is scarce. Therefore, space-borne measures become crucial
as they provide broad spatial and multitemporal coverage, helping to understand better variations
(e.g., abrupt changes or breaks) of the wetlands CHy emission and its impact on global climate change.
Although the BFAST method has received much attention, no study has been conducted to use the
technique coupled with the multitemporal remote-sensing data to understand the variations of the
atmospheric CHy concentrations over wetlands. Thus, our aims are (i) to capture the CH4 dynamic
in the Zoige wetland using the BFAST algorithm coupled with remote-sensing observations of a
time-series and (ii) to investigate the role of air temperature in altering a CH, time-series. Like any
study using an algorithm, the algorithm parameterization is anticipated. The parameterization of &,
a key parameter in the BFAST algorithm, is evaluated as the third objective. Thus, the impact of / on
the outcome is studied.

2. Study Area, Datasets, and Methodology

2.1. Study Area

The Zoige Plateau (100°34'-103°45’ E, 31°40’-34°48’ N) is at the eastern edge of the Qinghai-Tibetan
Plateau, China. Elevations of the plateau range from about 2400 to 5000 m above the mean sea level.
The mean is ~3500 m (Figure 1). The wetland in the Zoige Plateau, approximately 4600 km?, consists
mainly of peatland that is about 40% of the peat stock in China. The peatland is regarded as one of the
largest alpine peatlands in the world [25]. The area is within the high-altitude temperate humid climate
region. The annual precipitation ranges from 400 to 800 mm [26]. The temperature varies considerably,
with a yearly mean near 0 °C. The long cold-dry winters but short warm-humid summers generally
make the accumulation rate of organic matter in soil higher than the decomposition rate. Methanogens
use organic matter to generate CHy.
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Figure 1. Digital elevation model (DEM) of the Zoige wetland, China. Three meteorological stations
(red dots) and six wind measurement sites (black crosses) are identified.

2.2. Datasets

2.2.1. Meteorological and GLDAS Datasets

Three meteorological stations are located at Maqu, Zoige, and Hongyuan (Figure 1). The air
pressure and temperature, wind direction and speed, humidity, and precipitation are measured.
The data between September of 2002 and March of 2017 are available and downloadable at the China
Meteorological Data Service Center (http://data.cma.cn/site/index.html).

The wind speed and direction are also measured at 90 m above the ground surface at six sites
(Figure 1). After analyzing all the wind data from September of 2002 to March of 2018, we found that
the wind direction changes annually with an inter-annual cyclic variation. The wind speed varies
annually but may not have a clear high or low period intra-annually. The average wind speed between
2002 and 2018 was ~4 m/s. There was not a noticeable trend of increase or decrease. With the spatial
resolution of the rasterized CH, data of 1° (longitude) x 1° (latitude) or ~100 km by ~100 km in the
study area, the CH, diffusion and transport caused by winds were not considered.

The Global Land Data Assimilation System (GLDAS) (https://ldas.gsfc.nasa.gov/gldas/) is a global
land-data assimilation system established in recent years, aimed at using satellite- and ground-based
observation data products, advanced land surface models, and data assimilation technology to generate
optimal surface conditions and flux data. The GLDAS data are downloadable at the NASA Goddard
Earth Science Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/datasets). The soil
moisture (0-10 cm, 1040 cm, 40-100 cm, and 100-200 cm) and soil temperature (0-10 cm, 1040 cm,
40-100 cm, and 100-200 cm) data of GLDAS-Noah Version 2 between September of 2002 and March
of 2018 were downloaded. They are monthly datasets with a spatial resolution of 1° (longitude) x
1° (latitude).

2.2.2. CH4 and Landcover Datasets

The Atmospheric Infrared Sounder (AIRS) instrument on-board the NASA Earth Observing
System Aqua satellite was launched into space in May of 2002. The AIRS is hyperspectral, having
2378 detectors in the infrared spectra from 3.7 to 15.4 pm [27]. The spatial resolution of AIRS is 13.5 km
at nadir. Within a 24-h period, AIRS usually observes the globe twice. AIRS methane retrievals
are broadly sensitive, ranging between 850 hPa (hectopascal) and the lower stratosphere, with peak
sensitivity around 300-400 hPa. The AIRS Standard Version 6 Level 3 monthly data (AIRS3STM) of
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the atmospheric CH, concentration [28] were chosen. The data were divided into twenty-four layers
corresponding to different atmospheric pressures or heights above the mean sea level. Here, the CHy
concentration (parts per billion, ppb) at 600 hPa atmospheric pressure was extracted. The equivalent
elevation is ~3600 m, which is about 100 m higher than the mean elevation of the study area. The data
between September of 2002 and March of 2018 was downloaded from the NASA Goddard Data and
Information Services Center at https://disc.gsfc.nasa.gov/datasets. Since the data at a single pixel was
analyzed, a 3 X 3 AIRS sub-image covered the Zoige wetland spatially (Figure 1). The cells are named
as A1—Ag from left to right and then from top to bottom.

We used the recently created China land cover products provided by the Resource and Environment
Science and Data Center. Multiyear products in 2000, 2005, 2010, 2015, and 2018 are available and
downloadable at http://www.resdc.cn/Default.aspx. The original land cover type is designed as a
hierarchical classification scheme that allows one to adjust the thematic detail that describes each land
cover class. Here, we first grouped the “level 2” classes into four categories: cropland, grassland, forest,
and water body. Peatland in “level 2” remained as a category. The rest land cover types were classified
as other. Thus, we had six land cover types. At such an aggregation level, the six land cover types did
not change much from 2000 to 2018. The land cover data in 2010, which was near the middle of the
studied time-series, was chosen. It should be noted that the peatland with high grassland coverage
(>20%) might be classified into grassland in the downloaded datasets. Thus, some grassland, when the
ground is wet, can be considered as wetland, per se.

Within the overlapped area of the study area and each cell, percentages of the six cover types
were calculated and are shown in Table 1. Grassland and forest are the primary land cover in A,
whose ground area is only about 25% within the study area. A, is the mixture of peatland, grassland,
and forest, with the grassland cover type being dominant. About 65% area of A; is inside of the study
area. A3 is the grassland area having the lowest elevation in the study area (i.e., Figure 1). The majority
of Aj is outside of the study area. In Ay, the grassland, forest, and peatland are the major land cover
types. More than one-half of the site is within the study area. As, entirely within the study area,
is covered by the peatland, grassland, and forest, with a small part of the waterbody. Ag is the mixture
of peatland and grassland, with the grassland being dominant. About 70% of the area of Ay is inside
the study area. Ay is covered by the grassland and forest, with a percentage of the peatland. More
than one-half of the site is within the study area. The land cover types in Ag are like those in A;. More
than 50% area of Ag is located inside of the study area. A small northwestern corner of Ay is inside the
study area. Since A1, Az, or Ag is mostly outside of the study area, the atmospheric CH4 concentrations
over each cell were not studied. Thus, we focused on Ay, Ay, As, Ag, A7, and Ag.

Table 1. Percent of each land cover type of the overlapped area within the study area and each cell.

Aj Ay As Ag Ay Ag

Cropland 0.2 1.3 0.4 0.5 0.4 0.5
Grassland 77.3 78.4 74.1 70.4 48.8 77.4
Forest 11.0 124 4.7 13.0 459 18.6
Peatland 9.1 1.5 17.3 15.7 0.2 3.3
Water body 1.4 0.2 0.9 0.0 0.0 0.0
others 1.0 6.2 2.6 0.4 4.7 0.2

2.3. The BEAST Algorithm

The algorithm decomposes the multitemporal AIRS CHy data, Y(t), into three components, as
Y(t) = S(t) +T(t) +E(t) (1)

where S(t) is the seasonal component, T(t) is the trend component, and E(t) the error one. All are
functions of time ¢. If there is no single abrupt change point or breakpoint, 5(t) is continuous over the
entire period. If one breakpoint occurs, S5(t) becomes two piecewise functions. If multiple breakpoints

174



Remote Sens. 2020, 12, 3199

exist, one piecewise function is developed between two adjacent breakpoints. With the anticipated
periodic characteristics of S(¢), a harmonic function is used. Assume p breakpoints occur at times

f, ey and’c?, with Tg being the start of the time-series and Tz 41 the end of the series. Then, between

T?_l and T? (G=1,2,...,p), one can express 5(t) as

T

K
0, :Z[yj,ksin(znT’“)kacos(Z"T’“) @
k=1
where k is the kth number of the harmonic term. K is the highest-order harmonic term used in the
algorithm. f is the frequency. Since the period for S(f) is annual, f is one cycle per year. yjx = a;cos(6;x)
and 0 = aj;sin(6j). a;x is amplitude and 6;; phase, and both are segment-specific parameters.
In this study, we are interested in the S(t) on an annual basis. The highest order of harmonic terms
used in (2) cannot be greater than three [17,29,30], such that we can focus on changes using an entire
season as the smallest timespan and eliminate unnecessary high-frequency variations in the AIRS data.
Thus, K is set to 3.

T(t) is continuous over the entire period if a single breakpoint does not occur. If breaks happen,
T(t) is expressed as piecewise functions as well. Assume m breakpoints happen at times 77, ..., andt;,,
with 7 being the start of the time-series and 7,  ; the end of the series. A piecewise linear function

within ’L’;_1< t< Tlf(i =1,2,...,m)is
T(t) = a; + Bit (3)

where «; is the ith intercept and f3; the ith slope. Breakpoints that occur in T(f) or S(f) can generally
differ in time or magnitude. Finally, the error term of E(f) is obtained in the decomposition.

2.4. The Effect of the h Parameter on the Decomposition

The BFAST algorithm uses the ordinary least squares residuals-based moving sum (OLS-MOSUM)
to evaluate whether one or more breakpoints happen in the trend component or seasonal component [31].
The sum of a fixed number of residuals in a moving data window, whose size was determined by the
bandwidth parameter, 1€(0, 1), moving over the whole sample period, was analyzed. If the evaluation
indicated a significant change (with the significance level of p < 0.05), the break was estimated [32].
As implemented ([33]), the Bayesian information criterion determined the number of breakpoints.
The date and confidence interval (CI) of each breakpoint was estimated at 95%. Additionally, 1
determined the minimal segment size between two potential breakpoints in the time-series and was
the ratio of the number of observations within a segment divided by the total length of a time-series.
The two-end points of the segment or the entire time-series were excluded before the division. Although
he(0, 1), the maximum h was < 0.5 if one breakpoint was to occur [21]. Per recommendations in [21]
and [34], the minimum & was at least > 5% of the observations within the time-series. Therefore, we
varied h between 0.05 and 0.5 to understand its impact on the outcome and determine an % value to
link the breaks with abnormal natural events (e.g., temperature).

3. Results

3.1. Increase of Atmospheric CHy Concentration Derived From AIRS Data

The time-series of the atmospheric CHy concentrations over A,, A4, As, Ag, A7, and Ag were
studied individually. Figure 2 demonstrates an annual cyclic pattern and a persistent increase in the
CH, concentrations at the Zoige wetland during 2002-2018. In the figure, each dot is one observation
or one month. A linear fit line was added and is shown as a red, dashed line. The parameters of
the linear fit lines over the six cells are listed in Table 2. The slopes of the lines are between 0.015
and 0.017 ppb/day. With each fit line, the atmospheric CH4 concentrations in September of 2002
and March of 2018 were calculated. The concentration values ranged from 1811.357 to 1854.134
ppb in September of 2002 and from 1901.917 to 1944.989 ppb in March of 2018. The increases, after
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nearly 16 years, were 96.220, 90.560, 90.560, 84.900, 84.900, and 84.900 ppb in A,, A4, As, As, Ay,
and Ag, respectively. The average annual rate was 5.7 + 0.3 ppb/year. The globally averaged annual
rate was 5.1 + 0.6 ppb/year using the marine surface data between 2002 and 2017 (E. Dlugokencky,
National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory
(ESRL), https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). Regarding the global data, an increase in
the atmospheric CHy concentration at the Zoige wetland is likely true quantitatively.
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Figure 2. Atmospheric Infrared Sounder (AIRS) atmospheric CH4 concentration data between 2002
and 2018, shown as a black curve. Each dot is an observation or one month in the monthly AIRS data.
The red, dashed line is a linear fit line. (a) Ay, (b) A4, (c) As, (d) Ag, (e) A7, and (f) Asg.

Table 2. Intercept and slope values of linear fit lines for A,, Ay, As, Ag, A7, and Asg.

Az A4 A5 A6 A7 AS
Slope (ppb/day) 0.017 0.016 0.016 0.015 0.015 0.015
Intercept (ppb) 1211.269  1211.357  1219.759  1289.315 1273904  1291.634

3.2. Decomposition of the CHy Time-Series

The decomposition for each of the six cells was conducted individually. No breaks in 5(t) for each
cell were found. Values of the crest, trough, height, and mean are tabulated in Table 3. The seasonal
component of each cell has a mean value near zero, which suggests normality. As an example, Figure 3
shows an S(t) of A5 between 2002 and 2018. It is annually cyclic, which is anticipated. The parameters
of S(t) for As are given in Table 4. In short, no further analysis of S(t) in each cell was carried out.

Table 3. Descriptive summary of the seasonal and error components of Ay, A4, As, Ag, A7, and Ag.
The unit is ppb. 5(t): seasonal component and E(#): trend component.

S(t) E(t)
Crest Trough Height Mean Mean St. Dew.
Ay 26.857 -31.275 58.132 0.002 0.000 10.933
Ay 36.272 —-32.849 69.121 -0.014 0.000 12.784
As 30.139 -37.296 67.435 -0.003 0.000 10.703
Ag 17.652 -16.801 34.453 -0.010 0.000 9.344
Ay 25.744 —23.094 48.838 —0.005 0.000 10.294
Ag 25.745 —23.095 48.840 —-0.008 0.000 11.971
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Figure 3. Decomposition of the atmospheric CHy concentration data over As. S(t), T(t), and E(t) are
the seasonal, trend, and error components, respectively. Two breakpoints were detected in the trend
component. The vertical dotted lines in T(t) indicate the beginnings of breakpoints (December of 2009
and May of 2012).

Table 4. Parameters of 5(t) shown in Figure 3a and 0; (i = 1, 2, 3) are the coefficients of the sine and
cosine terms, respectively. The unit for y; and 0; is ppb. f is the frequency (once per year).

Y1 01 Y2 0, Y3 03 f
0.066 0.002 -0.070 0.042 17.540 —24.890 1

The mean and standard deviation of the error component of the six cells were also analyzed,
respectively. The annual mean value for each of the six cells is 0.000 ppb. The standard deviations
range from 9.344 to 12.784 ppb and are ~0.57% of the average atmospheric CH, concentration within
the study period. Thus, E(t) is considered normal. The E(t) of A5 between 2002 and 2018 are shown in
Figure 3 as well. No particular patterns exist.

In the trend components, two breakpoints were detected at Ay, A4, and As. A7 had one. No breaks
were found at Ag and Ag. The time and magnitude of the changes are shown in Table 5. Timewise, two
breakpoints occurred in December of 2009, one in January of 2010, one in October of 2010, and three in
May of 2012. Additionally, a negative magnitude value indicates a drop, whereas a positive value,
an increase. Thus, there are six decreases and one increase. Figure 3 shows the trend component of As
between 2002 and 2018. There are two drops and three segments or piecewise functions.
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Table 5. Atmospheric CH, changes in the trend components over Ay, A4, A5, and Ay at each breakpoint.
At a breakpoint, an increase is positive, but a decrease negative.

YYYY/MM-YYYY/MM Az (ppb) A4 (ppb) A5 (ppb) Ay (ppb)

2009/12-2010/01 —27.821 —23.861
2010/01-2010/02 —21.427

2010/10-2010/11 12.851
2012/05-2012/06 —25.544 —22.925 —20.843

Each piecewise linear function within each segment was derived for Aj, A4, As, Ag, A7, and Asg,
respectively. The intercept and slope of each function for each cell are tabulated in Table 6. Of A;, A4,
As, and Ay, there is at least one break in the trend components. The intercept values vary and are linked
to the breaks. The intercept value of Ag, 1285.509, is similar to that in the fit line (1289.315, Table 2).
The similarity repeats for Ag (Table 6 confer, c.f., Table 2). All slope values are positive, showing
an increasing trend. The values range from 0.011 to 0.076 ppb/day. Moreover, the slope in the final
segment for Ay, A4, As, or Ay is always steeper than the counterpart in the first segment. The timing of
the acceleration is mostly in agreement with previous studies. The growth rate is plateaued in the
mid-2000s, and then, the rate accelerates onwards [35,36].

Table 6. Intercept and slope values of each segment of T(t) of Ay, A4, As, Ag, A7, and Ag.

YYYY/MM-YYYY/MM Intercept (ppb) Slope (ppb/Day)

2002/09-2010/01 1217.768 0.016
A, 2010/02-2012/05 -832.480 0.067
2012/06-2018/03 975.031 0.022
2002/09-2009/12 1246.428 0.016

Ay 2010/01-2012/05 ~1216.253 0.076
2012/06-2018/03 1122.718 0.019
2002/09-2009/12 1221.172 0.016

As 2010/01-2012/05 —789.977 0.066
2012/06-2018/03 1089.205 0.019

4 2002/09-2010/10 1441.086 0.011
7 2010/11-2018/03 1350.378 0.013
Ag 2002/09-2018/03 1285.509 0.015
Ag 2002/09-2018/03 1286.080 0.015

3.3. Parameterization of h and Its Impact on the Decomposition

As one knows that the number of breakpoints decreases when / increases, the negative and
monotonic relationship suggests two aspects. First, an & value cannot be too large. An excessively
large one can unnecessarily smoothen the trend component. Second, an & value or values exist
after considering the interplays of the observations of interest, break numbers, and statistical
significance. In this study, we were interested in CHy variations in the trend components using
monthly remote-sensing time-series data. Factors such as an abnormal temperature event or events
very likely affecting the observed atmospheric CH4 concentrations were of interest.

As discussed previously, i was between 0.05 and 0.5. At h = 0.05, seven breakpoints over A,
Ay, As, and Ay occurred from September of 2002 to March of 2018 (Table 7). The total number of
monthly observations within September of 2002 and March of 2018 was 185. Thus, at & = 0.05,
the corresponding number of observations within two breakpoints was 9.3. Statistically, the number is
too small. One needs to increase the /1, boosting the number of observations while keeping the same
number of breakpoints, if possible. Then, an exploratory approach is taken at an increment step of
h =0.01. As h changes from 0.05 to 0.13, the number of observations, 1, and the seven breakpoints
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remain. Once h > 0.14, the number of breakpoints decreases. All the breakpoints disappear when
h >0.17 (Table 7).

Table 7. Of an h value, number of observations (11,), and number of breakpoints detected in the trend
components of Ay, A4, As, and Ay of the time-series. 1 is the ratio of the number of observations within
a segment divided by the total length of a time-series, excluding the beginning and end observations.

h Nno A2 A4 A5 A7
0.05 9.3 2 2 2 1
0.13 24.1 2 2 2 1
0.14 259 0 1 2 0
0.16 29.6 0 1 2 0
0.17 31.5 0 0 0 0

Using the times that breaks happened in Table 5, we calculated the number of observations
between two breakpoints in A, A4, and As. The numbers are 26, 27, and 27, respectively. For the
three cells, I at 0.13 is the maximum value if all six breaks are desired. Furthermore, i > 0.17 should
not be considered if one breakpoint is wanted (Table 7). Therefore, I does influence decomposition.
To maintain the maximum number of breakpoints in the trend components at A,, A4, and As, we
should set 1 < 0.13. Unfortunately, the & value of 0.17 and a corresponding number of observations of
31.5 could not be used to explain the disappearance of the breakpoint at A;. The number of monthly
observations between September of 2002 (the starting month of the time-series) and October of 2010
was 96. The number of observations between November of 2010 and March of 2018 (the end of the
time-series) was 87.

4. Discussion

4.1. Interpretation of Breaks With Air Temperature Variations

With the occurrence of a breakpoint in the trend component, one is interested to know what the
possible causes are. In Table 5, there are six breakpoints linked to decreasing values but one increasing
value. As illustrated and stated previously, the topography and land cover types differ among Aj, A4,
As, and Ay. Logically, one reason is whether a more or less uniform physical feature or event exists
and predominantly causes the change.

The soil temperature and water table level are two main factors that influence CHy emissions
from the wetlands into the atmosphere [2,3]. The soil moisture at the surface is usually positively
related to the water table position [37]. Thus, the abnormal changes in soil temperature and moisture
content may