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Abstract: Let T[1, n] be a string of length n and T[i, j] be the substring of T starting at position i and

ending at position j. A substring T[i, j] of T is a repeat if it occurs more than once in T; otherwise, it is

a unique substring of T. Repeats and unique substrings are of great interest in computational biology

and information retrieval. Given string T as input, the Shortest Unique Substring problem is to find

a shortest substring of T that does not occur elsewhere in T. In this paper, we introduce the range

variant of this problem, which we call the Range Shortest Unique Substring problem. The task is to

construct a data structure over T answering the following type of online queries efficiently. Given a

range [α, β], return a shortest substring T[i, j] of T with exactly one occurrence in [α, β]. We present

an O(n log n)-word data structure with O(logw n) query time, where w = Ω(log n) is the word size.

Our construction is based on a non-trivial reduction allowing for us to apply a recently introduced

optimal geometric data structure [Chan et al., ICALP 2018]. Additionally, we present an O(n)-word

data structure with O(√n logǫ n) query time, where ǫ > 0 is an arbitrarily small constant. The latter

data structure relies heavily on another geometric data structure [Nekrich and Navarro, SWAT 2012].

Keywords: shortest unique substring; suffix tree; heavy-light decomposition; range queries;

geometric data structures

1. Introduction

Finding regularities in strings is one of the main topics of combinatorial pattern matching and

its applications [1]. Among the most well-studied types of string regularities is the notion of repeat.

Let T[1, n] be a string of length n. A substring T[i, j] of T is called a repeat if it occurs more than once

in T. The notion of unique substring is dual: it is a substring T[i, j] of T that does not occur more than

once in T. Computing repeats and unique substrings has applications in computational biology [2,3]

and information retrieval [4,5].

In this paper, we are interested in the notion of shortest unique substring. All of the shortest

unique substrings of string T can be computed in O(n) time using the suffix tree data structure [6,7].

Many different problems based on this notion have already been studied. Pei et al. [4] considered the

following problem on the so-called position (or point) queries. Given a position i of T, return a shortest

unique substring of T covering i. The authors gave an O(n2)-time and O(n)-space algorithm, which

finds the shortest unique substring covering every position of T. Since then, the problem has been

revisited and optimal O(n)-time algorithms have been presented by Ileri et al. [8] and Tsuruta et al. [9].

Several other variants of this problem have been investigated [10–19].
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We introduce a natural generalization of the shortest unique substring problem.

Specifically, our focus is on the range version of the problem, which we call the Range Shortest

Unique Substring (rSUS) problem. The task is to construct a data structure over T to be able to answer

the following type of online queries efficiently. Given a range [α, β], return a shortest substring

T[k, k + h − 1] of T with exactly one occurrence (starting position) in [α, β]; i.e., k ∈ [α, β], there is

no k′ ∈ [α, β] (k′ 6= k), such that T[k, k + h− 1] = T[k′, k′ + h− 1], and h is minimal. Note that this

substring, T[k, k + h− 1], may end at a position k + h− 1 > β. Further note that there may be multiple

shortest unique substrings.

Range queries are a classic data structure topic [20–22]. A range query q = f (A, i, j) on an array

of n elements over some set S, denoted by A[1, n], takes two indices 1 ≤ i ≤ j ≤ n, a function f

defined over arrays of elements of S, and outputs f (A[i, j]) = f (A[i], . . . , A[j]). Range query data

structures have also been specifically considered for strings [23–26]. For instance, in bioinformatics

applications we are often interested in finding regularities in certain regions of a DNA sequence [27–31].

In the Range–LCP problem, defined by Amir et al. [23], the task is to construct a data structure

over T to be able to answer the following type of online queries efficiently. Given a range [α, β],

return i, j ∈ [α, β] such that the length of the longest common prefix of T[i, n] and T[j, n] is maximal

among all pairs of suffixes within this range. The state of the art is an O(n)-word data structure

supporting O(logO(1) n)-time (polylogarithmic-time) queries [25] (see also [26,32]).

1.1. Main Problem and Main Results

An alphabet Σ is a finite nonempty set of elements called letters. We fix a string T[1, n] =

T[1] · · ·T[n] over Σ. The length of T is denoted by |T| = n. By T[i, j] = T[i] · · ·T[j], we denote

the substring of T starting at position i and ending at position j of T. We say that another string

P has an occurrence in T or, more simply, that P occurs in T if P = T[i, i + |P| − 1], for some i.

Thus, we characterize an occurrence of P by its starting position i in T. A prefix of T is a substring of T

of the form T[1, i] and a suffix of T is a substring of T of the form T[i, n].

We next formally define the main problem considered in this paper.

Problem rSUS

Preprocess: String T[1, n].

Query: Range [α, β], where 1 ≤ α ≤ β ≤ n.

Output: (p, ℓ) such that T[p, p + ℓ− 1] is a shortest string with exactly one occurrence in [α, β].

If α = β the answer (α, 1) is trivial. So, in the rest we assume that α < β.

Example 1. Given T = c
1

a
2

a
3

b
4

c
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and a query [α, β] = [5, 16], we need to find a shortest

substring of T with exactly one occurrence in [5, 16]. The output here is (p, ℓ) = (10, 2), because T[10, 11] = ac

is the shortest substring of T with exactly one occurrence in [5, 16].

Our main results are summarized below. We consider the standard word-RAM model of

computations with w-bit machine words, where w = Ω(log n), for stating our results.

Theorem 1. We can construct an O(n log n)-word data structure that can answer any rSUS query on T[1, n]

in O(logw n) time.

Theorem 2. We can construct an O(n)-word data structure that can answer any rSUS query on T[1, n] in

O(√n logǫ n) time, where ǫ > 0 is an arbitrarily small constant.

1.2. Paper Organization

In Section 2, we prove Theorem 1 and, in Section 3, we prove Theorem 2. We conclude this paper in

Section 4 with some future proposals. An early version of this paper appeared as [33]. When compared

to that early version ([33]), Theorem 2 is new.
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2. An O(n log n)-Word Data Structure

Our construction is based on ingredients, such as the suffix tree [7], heavy-light decomposition [34],

and a geometric data structure for rectangle stabbing [35]. Let us start with some definitions.

Definition 1. For a position k ∈ [1, n] and h ≥ 1, we define Prev(k, h) and Next(k, h), as follows:

Prev(k, h) = max
j
{{j < k | T[k, k + h− 1] = T[j, j + h− 1]} ∪ {−∞}}

Next(k, h) = min
j
{{j > k | T[k, k + h− 1] = T[j, j + h− 1]} ∪ {+∞}}.

Intuitively, let x and y be the occurrences of T[k, k + h − 1] right before and right after the

position k, respectively. Subsequently, Prev(k, h) = x and Next(k, h) = y. If x (resp., y) does not exist,

then Prev(k, h) = −∞ (resp., Next(k, h) = +∞).

Definition 2. Let k ∈ [a, b]. We define λ(a, b, k), as follows:

λ(a, b, k) = min{h | Prev(k, h) < a and Next(k, h) > b}.

Intuitively, λ(a, b, k) denotes the length of the shortest substring that starts at position k with

exactly one occurrence in [a, b].

Definition 3. For a position k ∈ [1, n], we define Ck, as follows:

Ck = {h > 1 | (Next(k, h),Prev(k, h)) 6= (Next(k, h− 1),Prev(k, h− 1))} ∪ {1}

Example 2. (Running Example for Definition 3) Let T = c
1

a
2

a
3

b
4

c
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and k =

10. We have that (Next(10, 1),Prev(10, 1)) = (12, 9), (Next(10, 2),Prev(10, 2)) = (20,−∞),

and (Next(10, 3),Prev(10, 3)) = (+∞,−∞). Thus, C10 = {2, 3} ∪ {1} = {1, 2, 3}.

Intuitively, Ck stores the set of candidate lengths for the shortest unique substrings starting at

position k. We make the following observation.

Observation 1. λ(a, b, k) ∈ Ck, for any 1 ≤ a ≤ b ≤ n.

Example 3. (Running Example for Observation 1) Let T = c
1

a
2

a
3

b
4

c
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and k = 10.

We have that C10 = {1, 2, 3}. For a = 5 and b = 16, λ(5, 16, 10) = 2, denoting substring ac. For a = 5 and

b = 20, λ(5, 20, 10) = 3, denoting substring aca.

The following combinatorial lemma is crucial for efficiency.

Lemma 1. ∑k |Ck| = O(n log n).

Proof. The proof of Lemma 1 is deferred to Section 2.1.

We are now ready to present our construction. By Observation 1, for a given query range [α, β],

the answer (p, ℓ) that we are looking for is the pair (k, h) with the minimum h under the following

conditions: k ∈ [α, β], h ∈ Ck, Prev(k, h) < α and Next(k, h) > β. Equivalently, (p, ℓ) is the pair (k, h)

with the minimum h, such that h ∈ Ck, α ∈ (Prev(k, h), k], and β ∈ [k,Next(k, h)). We map each h ∈ Ck

into a weighted rectangle Rk,h with weight h, which is defined as follows:

Rk,h = [Prev(k, h) + 1, k]× [k,Next(k, h)− 1].

Let R be the set of all such rectangles, then the lowest weighted rectangle in R stabbed by the

point (α, β) is Rp,ℓ. In short, an rSUS query on T[1, n] with an input range [α, β] can be reduced to

3
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an equivalent top-1 rectangle stabbing query on a setR of rectangles with input point (α, β). In the

2-d Top-1 Rectangle Stabbing problem, we preprocess a set of weighted rectangles in 2-d, so that

given a query point q the task is to report the largest (or lowest) weighted rectangles containing q [35].

Similarly, here, the task is to report the lowest weighted rectangle inR containing the point (α, β) (see

Figure 1 for an illustration). By Lemma 1, we have that |R| = O(n log n). Therefore, by employing

the optimal data structure for top-1 rectangle stabbing presented by Chan et al. [35], which takes

O(|R|)-word space supporting O(logw |R|)-time queries, we arrive at the space-time trade-off of

Theorem 1. This completes our construction.

T :
1

Problem Reduction

Figure 1. Illustration of the problem reduction: (k, h) is the output of the rSUS problem with query

range [α, β], where h = λ(α, β, k) ∈ Ck. Rk,h is the lowest weighted rectangle in R containing the

point (α, β).

2.1. Proof of Lemma 1

Let lcp(i, j) denote the length of the longest common prefix of the suffixes of T starting at positions

i and j in T. Additionally, let S denote the set of all (x, y) pairs, such that 1 ≤ x < y ≤ n and

lcp(x, y) > lcp(x, z), for all z ∈ [x + 1, y − 1]. The proof can be broken down into Lemma 2 and

Lemma 3.

Lemma 2. ∑k |Ck| = O(|S|).

Proof. Let us fix a position k. Let

C′k = {h > 1 | Prev(k, h) 6= Prev(k, h− 1)}

C′′k = {h > 1 | Next(k, h) 6= Next(k, h− 1)}.

Clearly we have that Ck = C′k ∪ C′′k ∪ {1}.
The following statements can be deduced by a simple contradiction argument:

4
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1. Let i = Prev(k, h) 6= −∞, where h ∈ C′k, then i = Prev(k, lcp(i, k))
2. Let j = Next(k, h) 6= ∞, where h ∈ C′′k , then j = Next(k, lcp(k, j)).

Figure 2 illustrates the proof for the first statement. The second one can be proved in a similar

fashion.

1T :

Figure 2. Let h ∈ C′k and i = Prev(k, h). By contradiction, assume that there exists j ∈ (i, k) such that

j = Prev(k, lcp(i, k)). Since h ≤ lcp(i, k), T[j, j + h− 1] = T[k, k + h− 1]. This is a contradiction with

i = Prev(k, h). Thus, i = Prev(k, lcp(i, k)).

Clearly, |C′k| is proportional to the number of (i, k) pairs, such that lcp(i, k) 6= 0 and i =

Prev(k, lcp(i, k)). Similarly, |C′′k | is proportional to the number of (k, j) pairs, such that lcp(k, j) 6= 0

and j = Next(k, lcp(k, j)). Therefore, ∑k |Ck| is proportional to the number of (x, y) pairs, such that

lcp(x, y) 6= 0 and lcp(x, y) > lcp(x, z), for all z ∈ [x + 1, y − 1]. This completes the proof of

Lemma 2.

Lemma 3. |S| = O(n log n).

Proof. Consider the suffix tree data structure of string T[1, n], which is a compact trie of the n suffixes

of T appended with a letter $ /∈ Σ [7]. This suffix tree consists of n + 1 leaves (one for each suffix

of T) and at most n internal nodes. The edges are labeled with substrings of T. Let u be the lowest

common ancestor of the leaves corresponding to the strings T[x, n]$ and T[y, n]$. Subsequently,

the concatenation of the edge labels on the path from the root to u is exactly the longest common prefix

of T[x, n]$ and T[y, n]$. For any node u, we denote, by size(u), the total number of leaf nodes of the

subtree rooted at u.

We decompose the nodes in the suffix tree into light and heavy nodes. The root node is light and

for any internal node, exactly one child is heavy. Specifically, the heavy child is the one having the

largest number of leaves in its subtree (ties are broken arbitrarily). All other children are light. This tree

decomposition is known as heavy-light decomposition. We have the following critical observation.

Any path from the root to a leaf node contains many nodes; however, the number of light nodes is at

most log n [34,36]. Additionally, corresponding to the n + 1 leaves of the suffix tree, there are n + 1

paths from the root to the leaves. Therefore, the sum of subtree sizes over all light nodes is O(n log n).

We are now ready to complete the proof. Let Su ⊆ S denote the set of pairs (x, y), such

that the lowest common ancestor of the leaves corresponding to suffixes T[x, n]$ and T[y, n]$ is

u. Clearly, the paths from the root to the leaves that correspond to suffixes T[x, n]$ and T[y, n]$ pass

from two distinct children of node u and then at least one of the two must be a light node. There are

two cases. In the first case, both leaves are under the light children. In the second case, one leaf is

under a light child and the other is under the heavy child. In both cases, we have at least one leaf

under a light node. If we fix the leaf that is under the light node, we can enumerate the total number

of pairs based on the subtree size of the light nodes. Therefore, |Su| is at most twice the sum of size(·)
over all light children of u. Since |S| = ∑u |Su|, we can bound |S| by the sum of size(·) over all light

nodes in the suffix tree, which is O(n log n). This completes the proof of Lemma 3.

3. An O(n)-Word Data Structure

This section is dedicated to proving Theorem 2. For simplicity, we only focus on the computation

of the length ℓ of the output (p, ℓ).

Let SA be the suffix array of string T of length n , which is a permutation of {1, · · · , n}, such that

SA[i] = j if T[j, n] is the ith lexicographically smallest suffix of T [37]. Further, let SA−1 be the inverse

5
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suffix array of string T of length n, which is a permutation of {1, · · · , n}, such that SA−1[SA[i]] = i.

Moreover, SA of T can be constructed in linear time and space [38,39].

We observe that an O(β− α + 1)-time solution is straightforward with the aid of the suffix tree

of T as follows. First, identify those leaves corresponding to the suffixes starting within [α, β] using

the inverse suffix array of T and mark them. Subsequently, for each marked leaf, identify its lowest

ancestor node (and double mark it), such that a marked neighbor is also under it. This can be done via

at most two O(1)-time Lowest Common Ancestor (LCA) queries over the suffix tree of T while using

O(n) additional space [22]. Afterwards, find the minimum over the string-depth of all double-marked

nodes, add 1 to it, and report it as the length ℓ. The correctness is readily verified.

We employ the above procedure when β − α + 1 < 3∆, where ∆ is a parameter to be set

later. We now consider the case when β − α + 1 ≥ 3∆. Note that ℓ is the smallest element in

S∗ = {λ(α, β, k) | k ∈ [α, β]}. Let α′ be the smallest number after α and β′ be the largest number

before β, such that α′ and β′ are multiples of ∆. Subsequently, S∗ can be written as the union of

S′ = {λ(α, β, k) | k ∈ [α, α′ − 1] ∪ [β′ + 1, β]} and S′′ = {λ(α, β, k) | k ∈ [α′, β′]}. Furthermore, S′′ can

be written as S′′1 ∪ S′′2 ∪ S′′3 , where

• S′′1 = {h = λ(α, β, k) | k ∈ [α′, β′],Prev(k, h) ∈ [α′ − ∆, α− 1]}
• S′′2 = {h = λ(α, β, k) | k ∈ [α′, β′],Next(k, h) ∈ [β + 1, β′ + ∆]}
• S′′3 = {h = λ(α, β, k) | k ∈ [α′, β′],Prev(k, h) ∈ (−∞, α′ − ∆− 1],Next(k, h) ∈ [β′ + ∆ + 1, ∞)}.

Our construction is based on a solution to the Orthogonal Range Predecessor/Successor in 2-d

problem. A set P of n points in an [1, n] × [1, n] grid can be preprocessed into a linear-space data

structure, such that the following queries can be answered in O(logǫ n) time per query [40]:

• ORQ([x′, x′′], [−∞, y′′]) = arg maxj{(i, j) ∈ P ∩ [x′, x′′]× [−∞, y′′]}
• ORQ([−∞, x′′], [y′, y′′]) = arg maxi{(i, j) ∈ P ∩ [−∞, x′′]× [y′, y′′]}
• ORQ([x′, x′′], [y′,+∞]) = arg minj{(i, j) ∈ P ∩ [x′, x′′]× [y′,+∞]}
• ORQ([x′,+∞], [y′, y′′]) = arg mini{(i, j) ∈ P ∩ [x′,+∞]× [y′, y′′]}.

We next show how to maintain additional structures, so that the smallest element in each of the

above sets can be efficiently computed and, thus, the smallest among them can be reported as ℓ.

• Computing the Smallest Element in S′: for each k ∈ [α, α′ − 1] ∪ [β′ + 1, β], we compute λ(α, β, k)

and report the smallest among them. We handle each λ(α, β, k) query in timeO(logǫ n), as follows:

first find the leaf corresponding to the string position k in the suffix tree of T, then the last

(resp., first) leaf on its left (resp., right) side, such that the string position x (resp., y) corresponding

to it is in [α, β], and report 1 + max{lcp(k, x), lcp(k, y)}. To efficiently enable the computation of

x (resp., y), we preprocess the suffix array into an O(n)-word data structure that can answer

orthogonal range predecessor (resp., successor) queries in O(logǫ n) time [40].
• Computing the Smallest Element in S′′1 : for each r ∈ [α′ − ∆, α− 1], we compute the smallest

element in {h = λ(α, β, k) | k ∈ [α′, β′],Prev(k, h) = r} and report the smallest among them.

The procedure is the following: find the leaf corresponding to the string position r in the suffix

tree of T and the last (resp., first) leaf on its left (resp., right) side, such that its corresponding

string position x (resp., y) is in [α′, β′] (via orthogonal range successor/predecessor queries as

earlier). Subsequently, t = max{lcp(r, x), lcp(r, y)} is the length of the longest prefix of T[r, n]

with an occurrence d in [α′, β′]. However, we need to verify whether occurrence d is unique and

its Prev(d, t) = r. For this, find the two leftmost occurrences of T[r, r + t− 1] after r, denoted by

x′ and y′ (x′ < y′), via two orthogonal range successor queries. If y′ does not exist, set y′ = +∞.

Then report λ(α, β, d) if α′ ≤ x′ ≤ β′ < y′. Otherwise, report +∞.
• Computing the Smallest Element in S′′2 : for each r ∈ [β + 1, β′ + ∆], we compute the smallest

element in {h = λ(α, β, k) | k ∈ [α′, β′],Next(k, h) = r} and report the smallest among them.

The procedure is analogous to that of S′′1 ; i.e., find the length t of the longest prefix of T[r, n] with

an occurrence d in [α′, β′]. Then, find the two rightmost occurrences of T[r, r + t− 1] before r,

6



Algorithms 2020, 0, 5

denoted by x′ and y′ (x′ < y′), via two orthogonal range successor queries. If x′ does not exist,

set x′ = +∞. Subsequently, report λ(α, β, d) if x′ < α′ ≤ y′ ≤ β′. Otherwise, report +∞.
• Computing the Smallest Element in S′′3 : the set S′′3 can be written as {λ(α′ − ∆, β′ + ∆, k) | k ∈

[α′, β′]}, which is now dependent only on α′, β′ and ∆. Therefore, our idea is to pre-compute

and explicitly store the minimum element in {λ(a− ∆, b + ∆, k) | k ∈ [a, b]} for all (a, b) pairs,

where both a and b are multiples of ∆, and for that the desired answer can be retrieved in constant

time. The additional space needed is O((n/∆)2).

We set ∆ = ⌊√n⌋. The total space is then O(n) and total time is O(∆ logǫ n) = O(√n logǫ n).

Therefore, we arrive at Theorem 2.

4. Final Remarks

We introduced the Range Shortest Unique Substring (rSUS) problem, the range variant of the

Shortest Unique Substring problem. We presented a O(n log n)-word data structure with O(logw n)

query time, where w = Ω(log n) is the word size, for this problem. We also presented a O(n)-word

data structure with O(√n logǫ n) query time, where ǫ > 0 is an arbitrarily small constant.

We leave the following related questions unanswered:

1. Can we design an O(n)-word data structure for the rSUS problem with polylogarithmic

query time?
2. Can we design an efficient solution for the k mismatches/edits variation of the rSUS problem,

perhaps using the framework of [41]?
3. Can our reduction from Section 2 be extended to other types of string regularities, such as shortest

absent words [42]?
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Abstract: There are two reasons to have an efficient algorithm for identifying all right-maximal

Lyndon substrings of a string: firstly, Bannai et al. introduced in 2015 a linear algorithm to compute

all runs of a string that relies on knowing all right-maximal Lyndon substrings of the input string,

and secondly, Franek et al. showed in 2017 a linear equivalence of sorting suffixes and sorting

right-maximal Lyndon substrings of a string, inspired by a novel suffix sorting algorithm of Baier.

In 2016, Franek et al. presented a brief overview of algorithms for computing the Lyndon array

that encodes the knowledge of right-maximal Lyndon substrings of the input string. Among those

presented were two well-known algorithms for computing the Lyndon array: a quadratic in-place

algorithm based on the iterated Duval algorithm for Lyndon factorization and a linear algorithmic

scheme based on linear suffix sorting, computing the inverse suffix array, and applying to it the next

smaller value algorithm. Duval’s algorithm works for strings over any ordered alphabet, while for

linear suffix sorting, a constant or an integer alphabet is required. The authors at that time were

not aware of Baier’s algorithm. In 2017, our research group proposed a novel algorithm for the

Lyndon array. Though the proposed algorithm is linear in the average case and has O(n log(n))

worst-case complexity, it is interesting as it emulates the fast Fourier algorithm’s recursive approach

and introduces τ-reduction, which might be of independent interest. In 2018, we presented a linear

algorithm to compute the Lyndon array of a string inspired by Phase I of Baier’s algorithm for suffix

sorting. This paper presents the theoretical analysis of these two algorithms and provides empirical

comparisons of both of their C++ implementations with respect to the iterated Duval algorithm.

Keywords: combinatorics on words; string algorithms; regularities in strings; suffix sorting;

Lyndon substrings; Lyndon arrays; right-maximal Lyndon substrings; tau-reduction algorithm;

Baier’s sort algorithm; iterative Duval algorithm

1. Introduction

In combinatorics on words, Lyndon words play a very important role. Lyndon words, a special

case of Hall words, were named after Roger Lyndon, who was looking for a suitable description of

the generators of free Lie algebras [1]. Despite their humble beginnings, to date, Lyndon words

have facilitated many applications in mathematics and computer science, some of which are:

constructing de Bruijin sequences, constructing bases in free Lie algebras, finding the lexicographically

smallest or largest substring in a string, and succinct prefix matching of highly periodic strings;

see Marcus et al. [2], and the informative paper by Berstel and Perrin [3] and the references therein.

The pioneering work on Lyndon decomposition was already introduced by Chen, Fox, and Lyndon

in [4]. The Lyndon decomposition theorem is not explicitly stated there; nevertheless, it follows from the work

presented there.
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Theorem 1 (Lyndon decomposition theorem, Chen+Fox+Lyndon, 1958). For any word x, there are

unique Lyndon words u1, ..., uk so that ui+1 ≺ ui for any 1 ≤ i < k, and x = u1u2 . . . uk, where ≺ denotes the

lexicographic ordering.

As there exists a bijection between Lyndon words over an alphabet of cardinality k and irreducible

polynomials over Fk [5], many results are known about this factorization: the average number of

factors, the average length of the longest factor [6] and of the shortest [7]. Several algorithms deal

with Lyndon factorization. Duval gave in [8] an elegant algorithm that computes, in linear time and

in-place, the factorization of a word into Lyndon words. More about its implementation can be found

in [9]. In [10], Fredricksen and Maiorana presented an algorithm generating all Lyndon words up to

a given length in lexicographical order. This algorithm runs in a constant average time.

Two of the latest applications of Lyndon words are due to Bannai et al. In [11], they employed

Lyndon roots of runs to prove the runs conjecture that the number of runs in a string is bounded by the

length of the string. In the same paper, they presented an algorithm to compute all the runs in a string

in linear time that requires the knowledge of all right-maximal Lyndon substrings of the input string

with respect to an order of the alphabet and its inverse. The latter result was the major reason for our

interest in computing the right-maximal Lyndon substrings of a given string. Though the terms word

and string are interchangeable, and so are the terms subword and substring, in the following, we prefer

to use exclusively the terms string and substring to avoid confusing the reader.

There are at least two reasons for having an efficient algorithm for identifying all right-maximal

Lyndon substrings of a string: firstly, Bannai et al. published in 2017 [11] a linear algorithm to compute

all runs in a string that depends on knowing all right-maximal Lyndon substrings of the input string,

and secondly, in 2017, Franek et al. in [12] showed a linear equivalence of sorting suffixes and sorting

right-maximal Lyndon substrings, inspired by Phase II of a suffix sorting algorithm introduced by

Baier in 2015 (Master’s thesis [13]) and published in 2016 [14].

The most significant feature of the runs algorithm presented in [11] is that it relies on knowing

the right-maximal Lyndon substrings of the input string for some order of the alphabet and for the

inverse of that order, while all other linear algorithms for runs rely on Lempel–Ziv factorization of

the input string. It also raised the issue about which approach may be more efficient: to compute

the Lempel–Ziv factorization or to compute all right-maximal Lyndon substrings. There are several

efficient linear algorithms for Lempel–Ziv factorization (e.g., see [15,16] and the references therein).

Interestingly, Kosolobov [17] showed that for a general alphabet, in the decision tree model,

the runs problem is easier than the Lempel–Ziv decomposition. His result supports the conjecture that

there must be a linear random access memory model algorithm finding all runs.

Baier introduced in [13], and published in [14], a new algorithm for suffix sorting. Though Lyndon strings

were never mentioned in [13,14], it was noticed by Cristoph Diegelmann in a personal communication [18]

that Phase I of Baier’s suffix sort identifies and sorts all right-maximal Lyndon substrings.

The right-maximal Lyndon substrings of a string x = x[1..n] can be best encoded in the so-called

Lyndon array, introduced in [19] and closely related to the Lyndon tree of [20]: an integer array L[1..n]

so that for any i ∈ 1..n, L[i] = the length of the right-maximal Lyndon substring starting at the position i.

In an overview [19], Franek et al. discussed an algorithm based on an iterative application of

Duval’s Lyndon factorization algorithm [8], which we refer to here as IDLA, and an algorithmic scheme

based on Hohlweg and Reutenauer’s work [20], which we refer to as SSLA. The authors were not

aware of Baier’s algorithm at that time. Two additional algorithms were presented there, a quadratic

recursive application of Duval’s algorithm and an algorithm NSV* with possibly O(n log(n))

worst-case complexity based on ranges that can be compared in constant time for constant alphabets.

The correctness of NSV* and its complexity were discussed there just informally.

The algorithm IDLA (see Figure 1) is simple and in-place, so no additional space is required except

for the storage for the string and the Lyndon array. It is completely independent of the alphabet of the

string and does not require the alphabet to be sorted; all it requires is that the alphabet be ordered,

12



Algorithms 2020, 13, 294

i.e., only pairwise comparisons of the alphabet symbols are needed. Its weakness is its quadratic

worst-case complexity, which becomes a problem for longer strings with long right-maximal Lyndon

substrings, as one of our experiments showed (see Figure 11 in Section 7).

In our empirical work, we used IDLA as a control for comparison and as a verifier of the results.

Note that the reason the procedure MaxLyn of Figure 1 really computes the longest Lyndon prefix is not

obvious and is based on the properties of periods of prefixes; see [8] or Observation 6 and Lemma 11

in [19].

Lemma 1, below, characterizes right-maximal Lyndon substrings in terms of the relationships

of the suffixes and follows from the work of Hohlweg and Reutenauer [20]. Though the definition of

the proto-Lyndon substring is formally given in Section 2 below, it suffices to say the it means that it

is a prefix of a Lyndon substring of the string. The definition of the lexicographic ordering ≺ is also

given Section 2. The proof of this lemma is delayed to the end of Section 2, where all the technical

terms needed are defined.

procedure MaxLyn(x[1 . . n], j, Σ,≺) | integer
i← j + 1; max← 1
while i ≤ n do

k← 0
while x[j + k] = x[i + k] do

k← k + 1
if x[j + k] ≺ x[i + k] then

i← i + k + 1; max← i− 1
else

return max
procedure IDLA(x[1 . . n], j, Σ,≺) | integer array

i← 1
while i < n do

L[i] = MaxLyn(x[i . . n], j, Σ,≺)
i← i + 1

L[n]← 1
return L

Figure 1. Algorithm IDLA.

Lemma 1. Consider a string x[1..n] over an alphabet ordered by ≺ .

A substring x[i..j] is proto-Lyndon if and only if:

(a) x[i..n] ≺ x[k..n] for any i < k ≤ j .

A substring x[i..j] is right-maximal Lyndon if and only if:

(b) x[i..n] is proto-Lyndon and

(c) either j = n or x[j+1..n] ≺ x[i..n] .

Thus, the Lyndon array is an NSV (Next Smaller Value) array of the inverse suffix array. Consequently,

the Lyndon array can be computed by sorting the suffixes, i.e., computing the suffix array, then computing

the inverse suffix array, and then applying NSV to it; see [19]. Computing the inverse suffix array and

applying NSV are “naturally” linear, and computing the suffix array can be implemented to be linear;

see [19,21] and the references therein. The execution and space characteristics are dominated by those of

the first step, i.e., computation of the suffix array. We refer to this scheme as SSLA.

In 2018, a linear algorithm to compute the Lyndon array from a given Burrows–Wheeler transform

was presented [22]. Since the Burrows–Wheeler transform is computed in linear time from the suffix

array, it is yet another scheme of how to obtain the Lyndon array via suffix sorting: compute the suffix

array; from the suffix array, compute the Burrows–Wheeler transform, then compute the Lyndon array

during the inversion of the Burrows–Wheeler transform. We refer to this scheme as BWLA.
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The introduction of Baier’s suffix sort in 2015 and the consequent realization of the connection to

right-maximal Lyndon substrings brought up the realization that there was an elementary (not relying on

a pre-processed global data structure such as a suffix array or a Burrows–Wheeler transform) algorithm

to compute the Lyndon array, and that, despite its original clumsiness, could be eventually refined to

outperform any SSLA or BWLA implementation: any implementation of a suffix sorting-based scheme

requires a full suffix sort and then some additional processing, while Baier’s approach is “just” a partial

suffix sort; see [23].

In this work, we present two additional algorithms for the Lyndon array not discussed in [19].

The C++ source code of the three implementations IDLA, TRLA, and BSLA is available; see [24].

Note that the procedure IDLA is in the lynarr.hpp file.

The first algorithm presented here is TRLA. TRLA is a τ-reduction based Lyndon array algorithm

that follows Farach’s approach used in his remarkable linear algorithm for suffix tree construction [25]

and reproduced very successfully in all linear algorithms for suffix sorting (e.g., see [21,26] and the

references therein). Farach’s approach follows the Cooley–Tukey algorithm for the fast Fourier transform

relying on recursion to lower the quadratic complexity to O(n log(n)) complexity; see [27]. TRLA was

first introduced by the authors in 2019 (see [28,29]) and presented as a part of Liut’s Ph.D. thesis [30].

The second algorithm, BSLA, is a Baier’s sort-based Lyndon array algorithm. BSLA is based on

the idea of Phase I of Baier’s suffix sort, though our implementation necessarily differs from Baier’s.

BSLA was first introduced at the Prague Stringology Conference 2018 [23] and also presented as a part

of Liut’s Ph.D. thesis [30] in 2019; here, we present a complete and refined theoretical analysis of the

algorithm and a more efficient implementation than that initially introduced.

The paper is structured as follows: In Section 2, the basic notions and terminology are presented.

In Section 3, the TRLA algorithm is presented and analysed. In Section 4, the BSLA algorithm is

presented and analysed. In Section 5, the datasets with random strings of various lengths and

over various alphabets and other datasets used in the empirical tests are described. In Section 6,

the conclusion of the research and the future work are presented. The results of the empirical

measurements of the performance of IDLA, TRLA, and BSLA on those datasets are presented in

Section 7 in both tabular and graphical forms.

2. Basic Notation and Terminology

Most of the fundamental notions, definitions, facts, and string algorithms can be found in [31–34].

For the ease of access, this section includes those that are directly related to the work herein.

The set of integers is denoted by Z. For two integers i ≤ j, the range i..j = {k ∈ Z | i ≤ k ≤ j}.
An alphabet is a finite or infinite set of symbols, or equivalently called letters. We always assume that

the sentinel symbol $ is not in the alphabet and is always assumed to be lexicographically the smallest.

A string over an alphabet A is a finite sequence of symbols from A. A $-terminated string over A is

a string over A terminated by $. We use the array notation indexing from 1 for strings; thus, x[1..n]

indicates a string of length n; the first symbol is the symbol with index 1, i.e., x[1]; the second symbol

is the symbol with index 2, i.e., x[2], etc. Thus, x[1..n] = x[1]x[2]...x[n]. For a $-terminated string x

of length n, x[n+1] = $. The alphabet of string x, denoted as Ax, is the set of all distinct alphabet

symbols occurring in x.

We use the term strings over a constant alphabet if the alphabet is a fixed finite alphabet.

The integer alphabet is the infinite alphabet A = {0, 1, 2, ...}. We use the term strings over integer

alphabet for the strings over the alphabet {0, 1, 2, ...} with an additional constraint that all letters

occurring in the string are all smaller than the length of the string, i.e., in this paper, x[1..n] is a string

over the integer alphabet if it is a string over the alphabet {0, 1, ...n−1}. Many authors use a more

general definition; for instance, Burkhardt and Kärkkäinen [35] defined it as any set of integers of size

no(1); however, our results can easily be adapted to such more general definitions without changing

their essence.
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We use a bold font to denote strings; thus, x denotes a string, while x denotes some

other mathematical entity such as an integer. The empty string is denoted by ε and has

length zero. The length or size of string x = x[1..n] is n. The length of a string x is denoted

by |x|. For two strings x = x[1..n] and y = y[1..m], the concatenation xy is a string u

where u[i] =

{

x[i] f or i ≤ n,

y[i− n] f or n < i ≤ n+m.

If x = uvw, then u is a prefix, v a substring, and w a suffix of x. If u (respectively, v, w)

is empty, then it is called an empty prefix (respectively, empty substring, empty suffix); if |u| <
|x| (respectively, |v| < |x|, |w| < |x|), then it is called a proper prefix (respectively, proper substring,

proper suffix). If x = uv, then vu is called a rotation or a conjugate of x; if either u = ε or v = ε,

then the rotation is called trivial. A non-empty string x is primitive if there is no string y and no

integer k ≥ 2 so that x = yk = yy · · · y
︸ ︷︷ ︸

k times

.

A non-empty string x has a non-trivial border u if u is both a non-empty proper prefix and

a non-empty proper suffix of x. Thus, both ε and x are trivial borders of x. A string without a non-trivial

border is call unbordered.

Let≺ be a total order of an alphabetA. The order is extended to all finite strings over the alphabet

A: for x = x[1..n] and y = y[1..n], x ≺ y if either x is a proper prefix of y or there is a j ≤ min{n, m}
so that x[1] = y[1], ..., x[j−1] = y[j−1] and x[j] ≺ y[j]. This total order induced by the order of the

alphabet is called a lexicographic order of all non-empty strings over A. We denote by x � y if either

x ≺ y or x = y. A string x over A is Lyndon for a given order ≺ of A if x is strictly lexicographically

smaller than any non-trivial rotation of x. In particular:

x is Lyndon⇒ x is unbordered⇒ x is primitive

Note that the reverse implications do not hold: aba is primitive but neither unbordered, nor Lyndon,

while acaab is unbordered, but not Lyndon. A substring x[i..j] of x[1..n], 1 ≤ i ≤ j ≤ n is a right-maximal

Lyndon substring of x if it is Lyndon and either j = n or for any k > j, x[i..k] is not Lyndon.

A substring x[i..j] of a string x[1..n] is proto-Lyndon if there is a j ≤ k ≤ n so that x[i..k] is Lyndon.

The Lyndon array of a string x = x[1..n] is an integer array L[1..n] so that L[i] = j where j ≤ n−i is

a maximal integer such that x[i..i+ j−1] is Lyndon. Alternatively, we can define it as an integer array

L′[1..n] so that L′[i] = j where j is the last position of the right-maximal Lyndon substring starting at

the position i. The relationship between those two definitions is straightforward: L′[i] = L[i]+i−1 or

L[i] = L′[i]−i+1.

Proof of Lemma 1. We first prove the following claim:

Claim. Substring x[i..j] is right-maximal Lyndon if and only if:

(b′) x[i..n] ≺ x[k..n] for any i < k ≤ j and

( c ) either j = n or x[j+1..n] ≺ x[i..n].

Let x[i..j] be right-maximal Lyndon. We need to show that (b′) and (c) hold.

Let i < k ≤ j. Since it is Lyndon, x[i..j] ≺ x[k..j]. Thus, there is 0 ≤ r so that i+r ≤ j and j+r ≤ j

and x[i + ℓ] = x[j+ℓ] for any 0 ≤ ℓ < r and x[i+r] ≺ x[j+r]. It follows that x[i..n] ≺ x[j..n], and (b′)
is satisfied.

If j = n, then (c) holds. Therefore, let us assume that j < n.

(1) If x[i] ≺ x[j+1], then x[i..j+1] ≺ x[j+1..j+1]; together with x[i..j] ≺ x[k..j] for any i < k ≤ j,

it shows that x[i..j+1] is Lyndon, contradicting the right-maximality of x[i..j].

(2) If x[i] ≻ x[j+1], then x[i..n] ≻ x[j+1..n], and (c) holds.

(3) If x[i] = x[j+1], then there are a prefix u, strings v and w, and an integer r ≥ 1 so that uv = x[i..j],

x[i..n] = uvurw, and x[j + 1..n] = urw. Let us take a maximal such u and a maximal such r.
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(3a) Let r ≥ 2. Then, since uv = x[i..j] is Lyndon, u ≺ v, and so, uu ≺ uv; hence, urw ≺
uvurw, and (c) holds.

(3b) Let r = 1, i.e., x[i..n] = uvuw and x[j+1..n] = uw. There is no common prefix of v and

w as it would contradict the maximality of u. There are thus two mutually exclusive

cases, either v[1] ≺ w[1] or v[1] ≻ w[1]. Let v[1] = c1 and w[1] = c2. If c1 ≺ c2,

then uc1 ≺ uc2, and so, uv ≺ uc2. For any u = u1u2, uv ≺ u2v as uv is Lyndon,

so uv ≺ u2c2, giving uvc2 to be Lyndon, a contradiction with the right-maximality of

uv. Therefore, c1 ≻ c2; thus, uw ≺ uvuw, and (c) holds.

Now, we go in the opposite direction. Assuming (b′) and (c), we need to show that x[i..j] is

right-maximal Lyndon.

Consider the right-maximal substring of x starting at the position i; it is x[i..ℓ] for some i ≤ ℓ ≤ n.

(1) If ℓ < j, then by the first part of this proof, x[i..n] ≻ x[ℓ+1..n], contradicting the assumption (b′)
as ℓ+1 ≤ j.

(2) If j < ℓ, then j+1 ≤ ℓ, and by the first part of this proof, x[i..n] ≺ x[j+1..n], contradicting the

assumption (c) .

(3) If ℓ = j, then x[i..j] is right-maximal Lyndon.

Now, we can prove (a). Let x[i..j] be a proto-Lyndon substring of x. By definition, it is a prefix of

a Lyndon substring of x and, hence, a prefix of a right-maximal Lyndon substring of x, say x[i..ℓ] for

some j ≤ ℓ ≤ n. It follows from the claim that x[i..n] ≺ x[k..n] for any i < k ≤ ℓ. Since j ≤ ℓ, (a) holds.

For the opposite direction, if (a) holds, then there are two possibilities: either there is j < ℓ ≤ n so

that x[i..n] ≻ x[ℓ..n] or x[i..n] ≺ x[k..n] for any i < k ≤ n. By the claim, in the former case, x[i..ℓ−1]

is a right-maximal Lyndon substring of x, while in the latter case, x[i..n] is a right-maximal Lyndon

substring of x . Thus, in both cases, x[i..j] is a prefix of a Lyndon substring of x.

With (a) proven, we can now replace (b′) in the claim with (b), completing the proof.

3. τ-Reduction Algorithm (TRLA)

The purpose of this section is to introduce a recursive algorithm TRLA for computing the Lyndon

array of a string. As will be shown below, the most significant aspect is the so-called τ-reduction

of a string and how the Lyndon array of the τ-reduced string can be expanded to a partially filled

Lyndon array for the whole string, as well as how to compute the missing values. This section thus

provides the mathematical justification for the algorithm and, in so doing, proves the correctness of the

algorithm. The mathematical understanding of the algorithm provides the bases for the bounding of

its worst-case complexity by O(n log(n)) and determining the linearity of the average-case complexity.

The first idea of the algorithm was proposed in Paracha’s 2017 Ph.D. thesis [36]. It follows Farach’s

approach [25]:

(1) reduce the input string x to y;

(2) by recursion, compute the Lyndon array of y; and

(3) from the Lyndon array of y, compute the Lyndon array of x.

The input strings for the algorithm are $-terminated strings over an integer alphabet. The reduction

computed in (1) is important. All linear algorithms for suffix array computations use the proximity

property of suffixes: comparing x[i..n] and x[j..n] can be done by comparing x[i] and x[j] and, if they are the

same, comparing x[i+1..n] with x[j+1..n]. For instance, in the first linear algorithm for the suffix array by

Kärkkäinen and Sanders [37], obtaining the sorted suffixes for positions i ≡ 0 (mod 3) and i ≡ 1 (mod 3)

via the recursive call is sufficient to determine the order of suffixes for the i ≡ 2 (mod 3) positions,

then merging both lists together. However, there is no such proximity property for right-maximal

Lyndon substrings, so the reduction itself must have a property that helps determine some of the

values of the Lyndon array of x from the Lyndon array of y and computing the rest.
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In our algorithm, we use a special reduction, which we call τ-reduction, defined in Section 3.2,

that reduces the original string to at most 1
2 and at least 2

3 of its length. The algorithm computes y as

a τ-reduction of the input string x in Step (1) in linear time. In Step (3), it expands the Lyndon array of

the reduced string computed by Step (2) to an incomplete Lyndon array of the original string also in

linear time. The incomplete Lyndon array computed in (3) is about 1
2 to 2

3 full, and for every position i

with an unknown value, the values at positions i−1 and i+1 are known. In particular, the values at

Position 1 and position n are both known. Therefore, much information is provided by the recursive

Step (2). For instance, for 00011001, via the recursive call, we would identify the right-maximal Lyndon

substrings that are underlined in 00011 001 and would need to compute the missing right-maximal

Lyndon substrings that are underlined in 00011001.

However, computing the missing values of the incomplete Lyndon array takes at most O(n log(n))

steps, as we will show, resulting in the overall worst-case complexity of O(n log(n)). When the input

string is such that the missing values of the incomplete Lyndon array of the input string can be

computed in linear time, the overall execution of the algorithm is linear as well, and thus, the average

case complexity will be shown to be linear in the length of the input string.

In the following subsections, we describe the τ-reduction in several steps: first, the τ-pairing,

then choosing the τ-alphabet, and finally, the computation of the τ(x). The τ-reduction may be of some

general interest as it preserves (see Lemma 6) some right-maximal Lyndon substrings of the original string.

3.1. τ-Pairing

Consider a $-terminated string x = x[1..n] whose alphabet Ax is ordered by ≺ where

x[n+1] = $ and $ ≺ a for any a ∈ Ax. A τ-pair consists of a pair of adjacent positions from

the range 1..n+1. The τ-pairs are computed by induction:

1. the initial τ-pair is (1, 2);

2. if (i−1, i) is the last τ-pair computed, then:

if i = n−1 then

the next τ-pair is set to (n, n+1)

stop

elseif i ≥ n then

stop

elseif x[i−1] ≻ x[i] and x[i] � x[i+1] then

the next τ-pair is set to (i, i+1); repeat 2.

else

the next τ-pair is set to (i+1, i+2); repeat 2.

Every position of the input string that occurs in some τ-pair as the first element is labelled black;

all others are labelled white. Note that Position 1 is always black, while the last position n can be either

black or white; however, the positions n−1 and n cannot be simultaneously both black. Note also

that most of the τ-pairs do not overlap; if two τ-pairs overlap, they overlap in a position i such that

1 < i < n and x[i−1] ≻ x[i] and x[i] � x[i+1]. The first position and the last position never figure in

an overlap of τ-pairs. Moreover, a τ-pair can be involved in at most one overlap; for an illustration,

see Figure 2; for the formal proof see Lemma 2.

Lemma 2. Let (i1, i1+1)...(ik, ik+1) be the τ-pairs of a string x = x[1..n]. Then, for any j, ℓ ∈ 1..k:

(1) i f |(ij, ij+1) ∩ (iℓ, iℓ+1)| = 1, then f or any m 6= j, ℓ, |(ij, ij+1) ∩ (im, im+1)| = 0,

(2) |(ij, ij+1) ∩ (iℓ, iℓ+1)| ≤ 1.
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1    2   3    4   5   6   7   8    9  10

Figure 2. Illustration of the τ-reduction of a string 011023122. The rounded rectangles indicate symbol

τ-pairs; the ovals indicate the τ-pairs. below are the colour labels of the positions; at the bottom is the

τ-reduction.

Proof. This is by induction; trivially true for |x| = 1 as (1, 2) is the only τ-pair. Assume it is true for

|x| ≤ n−1.

1. Case (ik, ik+1) = (n, n+1):

Then, (ik−1, ik−1+1) = (n−2, n−1), and so, (i1, i1+1)...(ik−1, ik−1+1) are τ-pairs of x[1..n−1];

thus, they satisfy (1) and (2) by the induction hypothesis. However, (n, n+1) ∩ (iℓ, iℓ+1) = ∅ for

1 ≤ ℓ < k, so (1) and (2) hold for (i1, i1+1)...(ik, ik+1).

2. Cases (ik, ik+1) = (n−1, n) and (ik−1, ik−1+1) = (n−2, n−1):

Therefore, (i1, i1+1)...(ik−1, ik−1+1) are τ-pairs of x[1..n−1], and thus, they satisfy (1) and (2) by

the induction hypothesis. However, (ik, ik+1) ∩ (iℓ, iℓ+1) = ∅ for 1 ≤ ℓ < k−1, and (ik, ik+1) ∩
(ik−1, ik−1+1) = {ik−1} = n−1; so, |(ik, ik+1) ∩ (ik−1, ik−1+1)| ≤ 1, and so, (1) and (2) hold for

(i1, i1+1)...(ik, ik+1).

3. Cases (ik, ik+1) = (n−1, n) and (ik−1, ik−1+1) = (n−3, n−2):

Then, (i1, i1+1)...(ik−1, ik−1+1) are τ-pairs of x[1..n−2], so they satisfy (1) and (2) by the induction

hypothesis. However, (ik, ik+1) ∩ (iℓ, iℓ+1) = ∅ for 1 ≤ ℓ < k, so (1) and (2) hold for

(i1, i1+1)...(ik, ik+1).

3.2. τ-Reduction

For each τ-pair (i, i+1), we consider the pair of alphabet symbols (x[i], x[i+1]). We call them symbol

τ-pairs. They are in a total order ⊳ induced by ≺ : (x[ij], x[ij+1])⊳ (x[iℓ], x[iℓ+1]) if either x[ij] ≺ x[iℓ],

or x[ij] = x[iℓ] and x[ij+1] ≺ x[iℓ+1]. They are sorted using the radix sort with a key of size two and

assigned letters from a chosen τ-alphabet that is a subset of {0, 1, ..., |τ(x)|} so that the assignment preserves

the order. Since the input string is over an integer alphabet, the radix sort is linear.

In the example (Figure 2), the τ-pairs are (1, 2)(3, 4)(4, 5)(6, 7)(7, 8)(9, 10), and so,

the symbol τ-pairs are (0, 1)(1, 0)(0, 2)(3, 1)(1, 2)(2, $). The sorted symbol τ-pairs are (0, 1)(0, 2)(1, 0)

(1, 2)(2, $)(3, 1). Thus, we chose as our τ-alphabet {0, 1, 2, 3, 4, 5}, and so, the symbol τ-pairs are

assigned these letters: (0, 1) → 0, (0, 2) → 1, (1, 0) → 2, (1, 2) → 3, (2, $) → 4, and (3, 1) → 5.

Note that the assignments respect the order ⊳ of the symbols τ-pairs and the natural order < of

{0, 1, 2, 3, 4, 5}.
The τ-letters are substituted for the symbol τ-pairs, and the resulting string is terminated with

$. This string is called the τ-reduction of x and denoted τ(x), and it is a $-terminated string over

an integer alphabet. For our running example from Figure 2, τ(x) = 021534. The next lemma justifies

calling the above transformation a reduction.
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Lemma 3. For any string x, 1
2 |x| ≤ |τ(x)| ≤ 2

3 |x|.

Proof. There are two extreme cases; the first is when all the τ-pairs do not overlap at all,

then |τ(x)| = 1
2 |x|; and the second is when all the τ-pairs overlap, then |τ(x)| = 2

3 |x|. Any other case

must be in between.

Let B(x) denote the set of all black positions of x. For any i ∈ 1..|τ(x)|, b(i) = j where j is a black

position in x of the τ-pair corresponding to the new symbol in τ(x) at position i, while t(j) assigns

each black position of x the position in τ(x) where the corresponding new symbol is, i.e., b(t(j)) = j

and t(b(i)) = i. Thus,

1..|τ(x)|
b
⇄

t
B(x)

In addition, we define p as the mapping of the τ-pairs to the τ-alphabet.

In our running example from Figure 2, t(1) = 1, t(3) = 2, t(4) = 3, t(6) = 4, t(7) = 5,

and t(9) = 6, while b(1) = 1, b(2) = 3, b(3) = 4, b(4) = 6, b(5) = 7, and b(6) = 9. For the letter

mapping, we get p(1, 2) = 0, p(3, 4) = 2, p(4, 5) = 1, p(6, 7) = 5, p(7, 8) = 3, and p(9, 10) = 4.

3.3. Properties Preserved by τ-Reduction

The most important property of τ-reduction is a preservation of right-maximal Lyndon substrings of

x that start at black positions. This means there is a closed formula that gives, for every right-maximal

Lyndon substring of τ(x), a corresponding right-maximal Lyndon substring of x. Moreover, the formula

for any black position can be computed in constant time. It is simpler to present the following results

using L′, the alternative form of the Lyndon array, the one where the end positions of right-maximal

Lyndon substrings are stored rather than their lengths. More formally:

Theorem 2. Let x = x[1..n]; let L′
τ(x)[1..m] be the Lyndon array of τ(x); and let L′x[1..n] be the Lyndon

array of x.

Then, for any black i ∈ 1..n, L′x[i] =
{

b(r) if b(r) = n or x[b(r)+1] � x[i]

b(r)+1 otherwise,

where r = L′
τ(x)[t(i)].

The proof of the theorem requires a series of lemmas that are presented below. First, we show

that τ-reduction preserves the relationships of certain suffixes of x.

Lemma 4. Let x = x[1..n], and let τ(x) = τ(x)[1..m]. Let i 6= j and 1 ≤ i, j ≤ n. If i and j are both black

positions, then x[i..n] ≺ x[j..n] implies τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

Proof. Since i and j are both black positions, both t(i) and t(j) are defined, and t(i) 6= t(j). Let us

assume that x[i..n] ≺ x[j..n]. The proof is argued in several cases determined by the nature of the

relationship x[i..n] ≺ x[j..n].

(1) Case: x[i..n] is a proper prefix of x[j..n].

Then, |x[i..n]| = n−i+1 < |x[j..n]| = n− j+1, and so, j < i. It follows that x[j..j+n−i] = x[i..n],

and thus, x[i..n] is a border of x[j..n].

(1a) Case: j+n−i is black.

Since n may be either black or white, we need to discuss two cases.

(1aα) Case: n is white.

Since n is white, the last τ-pair of x must be (n−1, n). The τ-pairs of x[j..j+n−i]

must be the same as the τ-pairs of x[i..n]; the last τ-pair of x[j..j+n−i] must
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be (j+n−i−1, j+n−i). Since j+n−i is black by our assumption (1a), the next

τ-pair of x must be (j+n−i, j+n−i+1), as indicated in the following diagram:

j j+n-i i n

Thus, τ(x)[t(j)..t(j+n−i−1)] = τ(x)[t(i)..t(n−1)]. Since t(n−1) = m, we have

τ(x)[t(j)..t(j+n−i−1)] = τ(x)[t(i)..m], and so, τ(x)[t(i)..m] is a proper prefix

of τ(x)[t(j)..m] giving τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

(1aβ) Case: n is black.

Then, the last τ-pair of x must be (n, n+1), and hence, the last τ-pair of

x[j..j+n−i], so the next τ-pair is (j+n−i, j+n−i+1); since n−1 cannot be

black when n is, the situation is as indicated in the following diagram:

j j+n-i-2 j+n-i i n-2 n

Thus, τ(x)[t(i)..t(n−2)] = τ(x)[t(j)..t(j+n−i−2)]. Since x[j+n−i] = x[n] and

(x[n], x[n+1]) = (x[n], $), we have (x[j+n−i], x[j+n−i+1])⊳ (x[n], x[n+1]),

and so, τ(x)[t(j+n−i)] ≺ τ(x)[t(n)], giving τ(x)[t(j)..t(n)] ≺ τ(x)[t(i)..t(n)].

Since t(n) = m, we have τ(x)[t(j)..m] ≺ τ(x)[t(i)..m].

(1b) Case: j+n−i is white.

Then, j+n− i−1 is black; hence, n−1 is black; so, n must also be white, and thus,

τ(x)[t(j)..t(j+n−i−1)] = τ(x)[t(i)..t(n−1)], as indicated by the following diagram:

nij+n-ij

Since t(n−1) = m, we have τ(x)[t(j)..t(j+n−i−1)] = τ(x)[t(i)..m], and so, τ(x)[t(i)..m]

is a proper prefix of τ(x)[t(j)..m], giving τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

(2) Case: x[i] ≺ x[j] or (x[i] = x[j] and x[i+1] ≺ x[j+1]).

Then, (x[i], x[i+1])⊳ (x[j], x[j+1]), and so, τ(x)[t(i)] ≺ τ(x)[t(j)], and thus, τ(x)[t(i)..m] ≺
τ(x)[t(j)..m].

(3) Case: for some ℓ ≥ 3, x[i..i+ℓ−1] = x[j..j+ℓ−1], while x[i+ℓ] ≺ x[j+ℓ].

First note that i+ℓ−2 and j+ℓ−2 are either both black, or both are white:

• If i+ℓ−2 is white, then the τ-pairs
(
(i, i+1), ..., (i+ℓ−3, i+ℓ−2)

)
of x[i..n] correspond

one-to-one to the τ-pairs
(
(j, j+1), ..., (j+ℓ−3, j+ℓ−2)

)
of x[j..n]. To determine what follows

(i+ℓ−3, i+ℓ−2), we need to know the relationship between the values x[i+ℓ−3], x[i+ℓ−2],

and x[i+ℓ−1]. Since x[i+ℓ−3] = x[j+ℓ−3], x[i+ℓ−2] = x[j+ℓ−2], and x[i+ℓ−1] =

x[j+ℓ−1], the values x[j+ℓ−3], x[j+ℓ−2], and x[j+ℓ−1] have the same relationship,

and thus, the τ-pair following (j+ℓ−3, j+ℓ−2) will be the “same” as the τ-pair following

(i+ℓ−3, i+ℓ−2). Since i+ℓ−2 is white, the τ-pair following (i+ℓ−3, i+ℓ−2) is (i+ℓ−1, i+ℓ),

and so, the τ-pair following (j+ℓ−3, j+ℓ−2) is (j+ℓ−1, j+ℓ), making j+ℓ−2 white as well.

• If i+ℓ−2 is black, then the τ-pairs
(
(i, i+1), ..., (i+ℓ−2, i+ℓ−1)

)
of x[i..n] correspond

one-to-one to the τ-pairs
(
(j, j+1), ..., (j+ℓ−2, j+ℓ−1)

)
of x[j..n]. It follows that j+ℓ−2 is

black as well.

We proceed by discussing these two cases for the colours of i+ℓ−2 and j+ℓ−2.

(3a) Case when i+ℓ−2 and j+ℓ−2 are both white.

Therefore, we have the τ-pairs
(
(i, i+1), ..., (i+ℓ−3, i+ℓ−2), (i+ℓ−1, i+ℓ)

)
for x[i..n]
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that correspond one-to-one to the τ-pairs
(
(j, j+1), ..., (j+ℓ−3, j+ℓ−2), (j+ℓ−1, j+ℓ)

)

for x[j..n]. It follows that τ(x)[t(i)..t(i+ℓ−3)] = τ(x)[t(j)..t(j+ℓ−3)]. τ(x)[t(i+ℓ−1)] =

p(i+ℓ−1, i+ℓ) and τ(x)[t(j+ℓ−1)] = p(j+ℓ−1, j+ℓ). Since x[i+ℓ−1] = x[j+ℓ−1] and,

by our assumption (3), x[i+ℓ] ≺ x[j+ℓ], it follows that (i+ℓ−1, i+ℓ)⊳ (j+ℓ−1, j+ℓ),

giving p(i+ℓ−1, i+ℓ) ≺ p(j+ℓ−1, j+ℓ), and so, τ(x)[t(i+ℓ−1)] ≺ τ(x)[t(j+ℓ−1)].

Since t(i+ℓ−3)+1 = t(i+ℓ−1) and t(j+ℓ−3)+1 = t(j+ℓ−1), we have τ(x)[t(i)..m] ≺
τ(x)[t(j)..m].

(3b) Case when i+ℓ−2 and j+ℓ−2 are both black.

Therefore, we have the τ-pairs
(
(i, i+1), ..., (i+ℓ−2, i+ℓ−1)

)
for x[i..n] that correspond

one-to-one to the τ-pairs
(
(j, j+1), ..., (j+ℓ−2, j+ℓ−1)

)
for x[j..n]. It follows that

τ(x)[t(i)..t(i+ℓ−2)] = τ(x)[t(j)..t(j+ℓ−2)].

We need to discuss the four cases based on the colours of i+ℓ−1 and j+ℓ−1.

(3bα) Both i+ℓ−1 and j+ℓ−1 are black.

It follows that the next τ-pair for x[i..n] is (i+ℓ−1, i+ℓ), and the next τ-pair

for x[j..n] is (j+ℓ−1, j+ℓ). It follows that t(i+ℓ−2)+1 = t(i+ℓ−1) and

t(j+ℓ−2)+1 = t(j+ℓ−1). Hence, τ(x)[t(i+ℓ−2)+1] = p(i+ℓ−1, i+ℓ) and

τ(x)[t(j+ℓ−2)+1] = p(j+ℓ−1, j+ℓ). Since x[i+ℓ−1] = x[j+ℓ−1] and,

by Assumption (3), x[i+ℓ] ≺ x[j+ℓ], we have (x[i+ℓ−1], x[i+ℓ])⊳ (x[j+ℓ−
1], x[j+ℓ]), and so, p(x[i+ℓ−1], x[i+ℓ]) ≺ p(x[j+ℓ−1], x[j+ℓ]), giving us

τ(x)[t(i+ℓ−2)+1] ≺ τ(x)[t(j+ℓ−2)+1]. It follows that τ(x)[t(i)..m] ≺
τ(x)[t(j)..m].

(3bβ) i+ℓ−1 is white, and j+ℓ−1 is black.

It follows that the next τ-pair for x[i..n] is (i+ ℓ, i+ ℓ+1), and the next

τ-pair for x[j..n] is (j+ℓ−1, j+ℓ). It follows that t(i+ℓ−2)+1 = t(i+ℓ),

while t(j+ℓ−2)+1 = t(j+ℓ−1). Thus, τ(x)[t(i+ℓ−2)+1] = p(i+ℓ, i+ℓ+1)

and τ(x)[t(j+ℓ−2)+1] = p(j+ℓ−1, j+ℓ). Since j+ℓ−1 is black, we know

that x[j−ℓ−2] ≻ x[j−ℓ−1] � x[j+ℓ]. Since x[i+ℓ−2] = x[j+ℓ−2] and

x[i+ℓ−1] = x[j+ℓ−1], we have x[i−ℓ−2] ≻ x[i−ℓ−1], and so, x[i−ℓ−1] ≻
x[i+ℓ], as otherwise, i−ℓ−1 would be black. This gives us x[j+ℓ−1] ≻ x[i+ℓ].

Thus, (x[i+ℓ], x[i+ℓ+1]) ⊳ (x[j+ℓ−1], x[j+ℓ]), giving p(i+ℓ, i+ℓ+1) ≺
p(j+ℓ−1, j+ℓ) and, ultimately, τ(x)[t(i+ℓ)] ≺ τ(x)[t(j+ℓ−1)]. The last step

is to realize that t(i+ℓ−2)+1 = t(i+ℓ) and t(j+ℓ−2)+1 = t(j+ℓ−2),

which gives us τ(x)[t(i+ℓ−2)+1] ≺ τ(x)[t(j+ℓ−2)+1]. It follows that

τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

(3bγ) i+ℓ−1 is black, and j+ℓ−1 is white.

It follows that the next τ-pair for x[i..n] is (i+ ℓ−1, i+ ℓ), and the next

τ-pair for x[j..n] is (j+ℓ, j+ℓ+1). It follows that t(i+ℓ−2)+1 = t(i+ℓ−1),

while t(j+ℓ−2)+1 = t(j+ℓ). Thus, τ(x)[t(i+ℓ−2)+1] = p(i+ℓ−1, i+ℓ) and

τ(x)[t(j+ℓ−2)+1] = p(j+ℓ, j+ℓ+1). Since i+ℓ−1 is black, we know that

x[i+ℓ−2] ≻ x[i+ℓ−1] � x[i+ℓ] ≺ x[j+ℓ], where the last inequality is our

Assumption (3). Therefore, x[j+ℓ−1] = x[i+ℓ−1] ≺ x[j+ℓ]. Thus, (x[i+ℓ−
1], x[i+ℓ]) ⊳ (x[j+ℓ], x[j+ℓ+1]), giving p(i+ℓ−1, i+ℓ) ≺ p(j+ℓ, j+ℓ+1),

τ(x)[t(i+ℓ−1)] ≺ τ(x)[t(j+ℓ)], and ultimately, τ(x)[t(i+ℓ−2)+1] = τ(x)[t(i+

ℓ−1)] ≺ τ(x)[t(j+ℓ)] = τ(x)[t(j+ℓ−2)+1]. It follows that τ(x)[t(i)..m] ≺
τ(x)[t(j)..m].

(3bδ) Both i+ℓ−1 and j+ℓ−1 are white.

Then, the next τ-pair for x[i..n] is (i+ℓ, i+ℓ+1), and the next τ-pair for

x[j..n] is (j+ℓ, j+ℓ+1). It follows that t(i+ℓ−2)+1 = t(i+ℓ), while t(j+

ℓ−2)+1 = t(j+ ℓ). Thus, τ(x)[t(i+ ℓ−2)+1] = p(i+ ℓ, i+ ℓ+1) and
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τ(x)[t(j+ℓ−2)+1] = p(j+ℓ, j+ℓ+1). Since x[i+ℓ−1] = x[j+ℓ−1] and, by our

Assumption (3), x[i+ℓ] ≺ x[j+ℓ], (x[i+ℓ], x[i+ℓ−1]) ≺ (x[j+ℓ], x[j+ℓ−1]),

giving p(i+ ℓ, i+ ℓ+1) ≺ p(j+ ℓ, j+ ℓ+1), τ(x)[t(i+ ℓ)] ≺ τ(x)[t(j+ ℓ)],

and ultimately, τ(x)[t(i+ℓ−2)+1] = τ(x)[t(i+ℓ)] ≺ τ(x)[t(j+ℓ)] = τ(x)[t(j+

ℓ−2)+1]. It follows that τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

Lemma 5 shows that τ-reduction preserves the proto-Lyndon property of certain proto-Lyndon

substrings of x.

Lemma 5. Let x = x[1..n], and let τ(x) = τ(x)[1..m]. Let 1 ≤ i < j ≤ n. Let x[i..j] be a proto-Lyndon

substring of x, and let i be a black position.

Then,

{

τ(x)[t(i)..t(j)] is proto-Lyndon if j is black

τ(x)[t(i)..t(j−1)] is proto-Lyndon if j is white.

Proof. Let us first assume that j is black.

Since both i and j are black, t(i) and t(j) are defined. Let i1 = t(i), j1 = t(j), and consider k1,

so that i1 < k1 ≤ j1. Let k = b(k1). Then, t(k) = k1 and i < k ≤ j, and so, x[i..n] ≺ x[k..n]

by Lemma 1 as x[i..j] is proto-Lyndon. It follows that τ(x)[t(i)..m] ≺ τ(x)[t(k)..m] by Lemma 4.

Thus, τ(x)[i1..m] ≺ τ(x)[k1..m] for any i1 < k1 ≤ j1, and so, τ(x)[i1..j1] is proto-Lyndon by Lemma 1.

Now, let us assume that j is white.

Then, j−1 is black, and x[i..j−1] is proto-Lyndon, so as in the previous case, τ(x)[t(i)..t(j−1)] is

proto-Lyndon.

Now, we can show that τ-reduction preserves some right-maximal Lyndon substrings.

Lemma 6. Let x = x[1..n], and let τ(x) = τ(x)[1..m]. Let 1 ≤ i < j ≤ n. Let x[i..j] be a right-maximal

Lyndon substring, and let i be a black position.

Then,

{

τ(x)[t(i)..t(j)] is a right-maximal Lyndon substring if j is black

τ(x)[t(i)..t(j−1)] is a right-maximal Lyndon substring if j is white.

Proof. Since x[i..j] is Lyndon and hence proto-Lyndon, by Lemma 5, we know that τ(x)[t(i)..t(j)]

is proto-Lyndon for j black, while for white j, τ(x)[t(i)..t(j−1)] is proto-Lyndon. Thus, in order to

conclude that the respective strings are right-maximal Lyndon substrings, we only need to prove that

the property (c) of Lemma 1 holds in both cases.

Since x[i..j] is right-maximal Lyndon, either j = n or x[j+1..n] ≺ x[i..n] by Lemma 1, giving j = n

or x[j+1] � x[i]. Since x[i..j] is Lyndon and hence unbordered, x[i] ≺ x[j]. Thus, either j = n or

x[j+1] � x[i] ≺ x[j].

If j = n, then there are two simple cases. If n is white, n−1 is black and m = t(n−1), so t(j−1) = m,

giving us (c) of Lemma 1 for τ(x)[t(i)..t(j−1)]. On the other hand, if n is black, then m = t(n), and so,

m = t(j) giving us (c) of Lemma 1 for τ(x)[t(i)..t(j)].

Thus, in the following, we can assume that j < n and that x[j+1] � x[i] ≺ x[j]. We will proceed

by discussing two possible cases, one where j is black and the other where j is white.

(1) Case: j is black.

We need to show that either t(j) = m or τ(x)[t(i)..m] ≻ τ(x)[t(j)+1..m].

If j = n, then t(j) = m, and we are done. Thus, we can assume that j < n. We must show that

τ(x)[t(j)+1..m] ≺ τ(x)[t(i)..m].
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(1a) Case: x[j+1] � x[j+2].

Then, x[j] ≻ x[j+1] and x[j+1] � x[j+2], and so, j+1 is black. It follows that t(j)+

1 = t(j+1). By Lemma 4, τ(x)[t(j+1)..m] ≺ τ(x)[t(i)..m] because x[j+1..n] ≺ x[i..n],

thus τ(x)[t(j)+1..m] ≺ τ(x)[t(i)..m].

(1b) Case: x[j+1] ≻ x[j+2].

Then, x[j] ≻ x[i] � x[j+1] ≻ x[j+2]. It follows that the τ-pair (j, j+1) is followed by

a τ-pair (j+2, j+3), and thus, t(j)+1 = t(j+2). Thus,

(x[j+2], x[j+3])⊳ (x[i], x[i+1])⊳ (x[j], x[j+1]); hence,

p(j+2, j+3) ≺ p(i, i+1) ≺ p(j, j+1). Since τ(x)[t(j)+1] = p(j+2, j+3), τ(x)[t(i)] =

p(j, i+1), and τ(x)[t(j)] = p(j, j+1), it follows that τ(x)[t(j)+1] ≺ τ(x)[t(i)], and so,

τ(x)[t(j)+1..m] ≺ τ(x)[t(i)..m].

(2) Case: j is white.

We need to prove that τ(x)[t(j−1)+1..m] ≺ τ(x)[t(i)..m]. Since j is white, necessarily both j−1

and j+1 are black and t(j−1)+1 = t(j+1). By Lemma 5, τ(x)[t(i)..t(j−1)] is proto-Lyndon as

both i and j−1 are black and x[i..j−1] is proto-Lyndon. Since x[i..n] ≻ x[j+1..n] and both i and

j+1 are black, by Lemma 4, we get τ(x)[t(i)..m] ≻ τ(x)[t(j+1)..m] = τ(x)[t(j−1)+1..m].

Now, we are ready to tackle the proof of Theorem 2.

Proof of Theorem 2. Let L′x[i] = j where i is black. Then, t(i) is defined, and x[i..j] is a right-maximal

Lyndon substring of x. We proceed by analysis of the two possible cases of the label for the position j.

Let (∗) denote the condition from the theorem, i.e.,

(∗) b
(
L′

τ(x)[t(i)]
)
= n or x

[
b
(
L′

τ(x)[t(i)]
)
+1
]
� x[i]

(1) Case: j is black.

Then, by Lemma 6, τ(x)[t(i)..t(j)] is a right-maximal Lyndon substring of τ(x);

hence, L′
τ(x)[t(i)] = t(j). Therefore, b

(
L′

τ(x)[t(i)]
)
= b(t(j)) = j = L′x[i]. We have to also

prove that the condition (∗) holds.

If j = n, then the condition (∗) holds. Therefore, assume that j < n. Since x[i..j] is right-maximal,

by Lemma 1, x[j+1..n] ≺ x[i..n], and so, x[j+1] � x[i]. Then, x[b
(
L′

τ(x)[t(i)]
)
+1] =

x[b
(
t(j)
)
+1] = x[j+1] � x[i].

(2) Case: j is white.

Then, j−1 is black, and τ(x)[t(j−1)] = p(j−1, j). By Lemma 6, τ(x)[t(i)..t(j−1)] is

a right-maximal Lyndon substring of τ(x); hence, L′
τ(x)[t(i)] = t(j−1), so b

(
L′

τ(x)[t(i)]
)
=

b(t(j−1)) = j−1, giving b
(
L′

τ(x)[t(i)]+1
)
= j.

We want to show that the condition (∗) does not hold.

If b
(
L′

τ(x)[t(i)]
)
= n, then j−1 = n, which is impossible as j ≤ n. Since x[i..j] is Lyndon,

x[i] ≺ x[j], and so, x[i] ≺ x
[
b
(
L′

τ(x)[t(i)]+1
)]

. Thus, Condition (∗) does not hold.

3.4. Computing L′x from L′
τ(x)

Theorem 2 indicates how to compute the partial L′x from L′
τ(x). The procedure is given in Figure 3.
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for i← 1 to n
if i = 1 or

(
x[i−1] ≻ x[i] and x[i] � x[i+1]

)
then

if x
[
b
(
L′

τ(x)[t(i)]
)
+1
]
� x[i] then

L′x[i]← b
(
L′

τ(x)[t(i)]
)

else
L′x[i]← b

(
L′

τ(x)[t(i)]
)
+1

else
L′x[i]← nil

Figure 3. Computing the partial Lyndon array of the input string.

To compute the missing values, the partial array is processed from right to left. When a missing

value at position i is encountered (note that it is recognized byL′x[i] = nil), the Lyndon arrayL′x[i+1..n]

is completely filled, and also, L′x[i−1] is known. Recall that L′x[i+1] is the ending position of the

right-maximal Lyndon substring starting at the position i+1. In several cases, we can determine the

value of L′x[i] in constant time:

1. if i = n, then L′x[i] = i.

2. if x[i] ≻ x[i+1], then L′x[i] = i.

3. if x[i] = x[i+1] and L′x[i+1] = i+1 and either i+1 = n or i+1 = L′x[i−1], then L′x[i] = i.

4. if x[i] ≺ x[i+1] and L′x[i+1] = i+1 and either i+1 = n or i+1 = L′x[i−1], then L′x[i] = i+1.

5. if x[i] � x[i+1] and L′x[i+1] > i+1 and either L′x[i+1] = n or L′x[i+1] = L′x[i−1], then L′x[i] =
L′x[i+1].

We call such points easy. All others will be referred to as hard. For a hard point i, it means that

x[i] is followed by at least two consecutive right-maximal Lyndon substrings before reaching either

L′x[i−1] or n, and we might need to traverse them all.

The while loop, seen in Figure 4’s procedure, is the likely cause of the O(n log(n)) complexity.

At first glance, it may seem that the complexity might be O(n2); however, the doubling of the length

of the string when a hard point is introduced actually trims it down to an O(n log(n)) worst-case

complexity. See Section 3.5 for more details and Section 7 for the measurements and graphs.

L′x[n]← n
for i← n−1 downto 2

if L′[i] = nil then
if x[i] ≻ x[i+1] then
L′[i]← i

else
if L′[i−1] = i−1 then

stop← n
else

stop← L′[i−1]
L′[i]← L′[i+1]
while L′[i] < stop do

if x[i..L′[i]] ≺ x[L′[i]+1..L′[L′[i]+1]] then
L′[i]← L′[L′[i]+1]

else
break

Figure 4. Computing missing values of the Lyndon array of the input string.

Consider our running example from Figure 2. Since τ(x) = 021534, we have

L′
τ(x)[1..6] = 6, 2, 6, 4, 6, 6 giving L′x[1..9] = 9, •, 3, 9, •, 6, 9, •, 9. Computing L′x[8] is easy as x[8] = x[9],
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and so, L′x[8] = 8. L′x[5] is more complicated and an example of a hard point: we can extend

the right-maximal Lyndon substring from L′x[6] to the left to 23, but no more, so L′x[5] = 6.

Computing L′x[2] is again easy as x[2] = x[3], and so, L′x[2] = 2. Thus, L′x[1..9] = 9, 2, 3, 9, 6, 6, 9, 8, 9.

3.5. The Complexity of TRLA

To determine the complexity of the algorithm, we attach to each position i a counter red[i]

initialized to zero. Imagine a hard point j indicated by the following diagram:

A1

stopj

Ar

A1 represents the right-maximal Lyndon substring starting at the position j+1; A2 represents the

right-maximal Lyndon substring following immediately A1 and so forth. To make j a hard point, r ≥ 2

and x[j] � x[j+1]. The value of stop is determined by:

stop =

{

L′x[j−1] i f L′x[j−1] > j−1

n otherwise
.

To determine the right-maximal Lyndon substring starting at the hard position j, we need first to

check if A1 can be left-extended by x[j] to make jA1 Lyndon; we are using abbreviated notation jA1

for the substring x[j..k] where A1 = x[j+1..k]; in simple words, jA1 represents the left-extension of A1

by one position. If jA1 is proto-Lyndon, we have to check whether A2 can be left-extended by jA1 to

a Lyndon substring. If jA1 A2 is Lyndon, we must continue until we check whether jA1 A2...Ar−1 is

Lyndon. If so, we must check whether jA1...Ar is Lyndon. We need not go beyond stop.

How do we check if jA1...Ak can left-extend Ak+1 to a Lyndon substring? If jA1...Ak � Ak+1, we can

stop, and jA1...Ak is the right-maximal Lyndon substring starting at position j. If jA1...Ak ≺ Ak+1,

we need to continue. Since stop is the last position of the right-maximal Lyndon substring at the

position j−1 or n, we are assured to stop there. When comparing the substring jA1...Ak with Ak+1,

we increment the counter red[i] at every position of Ak+1 used in the comparison. When done with the

whole array, the value of red[i] represents how many times i was used in various comparisons, for any

position i.

Consider a position i that was used k times for k ≥ 4, i.e., red[i] = k. In the next four diagrams

and related text, the upper indices of A and C do not represent powers; they are just indices. The next

diagram indicates the configuration when the counter red[i] was incremented for the first time in the

comparison of j1 A1
1...A1

r1−1 and A1
r1

during the computation of the missing value L′x[j1] where:

stop1 =

{

L′x[j1−1] i f L′x[j1−1] > j1−1

n otherwise

i

A1
1

|A1
1| = n1

A1
r1 +

C1

n1 ≥ 1

stop1j1
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The next diagram indicates the configuration when the counter red[i] was incremented for the

second time in the comparison of j2 A2
1...A2

r2−1 and A2
r2

during the computation of the missing value

L′x[j2] where:

stop2 =

{

L′x[j2−1] i f L′x[j2−1] > j2−1

n otherwise

i

A2
1

|A2
1| = n2

A2
r2 +

C2

C1 ⊆ A2
r2

n2 ≥ n1+1

n ≥ 2(n1+1)

≥ n1+1

stop2j2

The next diagram indicates the configuration when the counter red[i] was incremented for the third time

in the comparison of j3 A3
1...A3

r3−1 and A3
r3

during the computation of the missing value L′x[j3] where:

stop3 =

{

L′x[j3−1] i f L′x[j3−1] > j3−1

n otherwise

i

A3
1

|A3
1| = n3

A3
r3 +

C3

C2 ⊆ A3
r3

n3 ≥ 2n2

n ≥ 2n3 ≥ 22n2 ≥ 22(n1+1)

≥ 2n2

stop3j3

The next diagram indicates the configuration when the counter red[i] was incremented for the

fourth time in the comparison of j4 A4
1...A4

r4−1 and A4
r4

during the computation of the missing value

L′x[j4] where:

stop4 =

{

L′x[j4−1] i f L′x[j4−1] > j4−1

n otherwise

i

A4
1

|A4
1| = n4

A4
r4 +

C4

C3 ⊆ A4
r4

n4 ≥ 2n3

n ≥ 2n4 ≥ 23(n1+1)

≥ 2n3

stop4j4

and so forth until the k-th increment of red[i]. Thus, if red[i] = k, then n ≥ 2k−1(n1+1) ≥ 2k as

n1+1 ≥ 2. Thus, n ≥ 2k, and so, k ≤ log(n). Thus, either k < 4 or k ≤ log(n). Therefore, the overall

complexity is O(n log(n)).

To show that the average case complexity is linear, we first recall that the overall complexity of

TRLA is determined by the procedure filling the missing values. We showed above that there are at most

log(n) missing values (hard positions) that cannot be determined in constant time. We overestimate

the number of strings of length n over an alphabet of size Σ, 2 ≤ Σ ≤ n, which will force a non-linear
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computation, by assuming that every possible log(n) subset of indices with any possible letter

assignment forces the worst performance. Thus, there are Σn − ( n
log(n))Σ

log(n) strings that are processed

in linear time, say with a constant K1, and there are ( n
log(n))Σ

log(n) strings that are processed in the

worst time, with a constant K2. Let K = max(K1, K2). Then, the average time is bounded by:

(
Σn − ( n

log(n))Σ
log(n)

)
Kn + ( n

log(n))Σ
log(n)Kn log(n)

Σn
=

Kn + Kn
( n

log(n))Σ
log(n)

Σn

(
log(n)− 1

)
≤

Kn + Kn
( n

log(n))Σ
log(n)

Σn
log(n) ≤

Kn + Kn
nlog(n)Σlog(n)

log(n)!Σn
log(n) ≤

Kn + Kn
n2log(n)

2n
≤

Kn + Kn = 2Kn

for n ≥ 27. The last step follows from the fact that n2 log(n) ≤ 2n for any n ≥ 27.

The combinatorics of the processing is too complicated to ascertain whether the worst-case

complexity is linear or not. We tried to generate strings that might give the worst performance.

We used three different formulas to generate the strings, nesting the white indices that might require

non-constant computation: the dataset extreme_trla of binary strings is created using the recursive

formula uk+1 = 00uk0uk, using the first 100 shortest binary Lyndon strings as the start u0. The moment

the size uk exceeds the required length of the string, the recursion stops, and the string is trimmed to

the required length. For the extreme_trla1 dataset, we used the same approach with the formula

uk+1 = 000uk00uk, and for the extreme_trla2 dataset, we used the formula uk+1 = 0000uk00uk.

The space complexity of our C++ implementation is bounded by 9n integers. This upper bound

is derived from the fact that a Tau object (see Tau.hpp [24]) requires 3n integers of space for a string

of length n. Therefore, the first call to TRLA requires 3n, the next recursive call at most 3 2
3 n, the next

recursive call at most 3( 2
3 )

2n, ...; thus, 3n + 3 2
3 n + 3( 2

3 )
2n + 3( 2

3 )
3n + ... = 3n(1 + 2

3 + ( 2
3 )

2 + ( 2
3 )

3 +

( 2
3 )

4 + ...) = 3n 1
1− 2

3

= 9n. However, it should be possible to bring it down to 6n integers.

4. The Algorithm BSLA

The purpose of this section is to present a linear algorithm BSLA for computing the Lyndon

array of a string over an integer alphabet. The algorithm is based on a series of refinements of a list of

groups of indices of the input string. The refinement is driven by a group that is already complete,

and the refinement process makes the immediately preceding group also complete. In turn, this newly

completed group is used as the driver of the next round of the refinement. In this fashion, the refinement

proceeds from right to left until all the groups in the list are complete. The initial list of groups consists

of the groups of indices with the same alphabet symbol. The section contains proper definitions of

all these terms—group, complete group, and refinement. In the process of refinement, each newly

created group is assigned a specific substring of the input string referred to as the context of the group.

Throughout the process, the list of the groups is maintained in an increasing lexicographic order by

their contexts. Moreover, at every stage, the contexts of all the groups are Lyndon substrings of x with

an additional property that the contexts of the complete groups are right-maximal Lyndon substrings.

Hence, when the refinement is completed, the contexts of all the groups in the list represent all the

right-maximal Lyndon substrings of x. The mathematics of the process of refinement is necessary in
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order to ascertain its correctness and completeness and to determine the worst-case complexity of

the algorithm.

4.1. Notation and Basic Notions of BSLA

For the sake of simplicity, we fix a string x = x[1..n] for the whole Section 4.1; all the definitions

and the observations apply and refer to this x.

A group G is a non-empty set of indices of x. The group G is assigned a context, i.e., a substring

con(G) of x with the property that for any i ∈ G, x[i..i+|con(G)|−1] = con(G). If i ∈ G, then C(i)

denotes the occurrence of the context of G at the position i, i.e., the substring C(i) = x[i..i+|con(G)|−1].

We say that a group G′ is smaller than or precedes a group G′′ if con(G′) ≺ con(G′′).

Definition 1. An ordered list of groups 〈Gk, Gk−1, ..., G2, G1〉 is a group configuration if:

(C1) Gk ∪ Gk−1 ∪ ...∪ G2 ∪ G1 = 1..n;

(C2) Gj ∩ Gℓ = ∅ for any 1 ≤ ℓ < j ≤ k;

(C3) con(Gk) ≺ con(Gk−1) ≺ ... ≺ con(G2) ≺ con(G1);

(C4) For any j ∈ 1..k, con(Gj) is a Lyndon substring of x.

Note that (C1) and (C2) guarantee that 〈Gk, Gk−1, ..., G2, G1〉 is a disjoint partitioning of 1..n. For i ∈
{1, .., n}, gr(i) denotes the unique group to which i belongs, i.e., if i ∈ Gt, then gr(i) = Gt. Note that

using this notation, C(i) = x[i..i+|con(gr(i))|−1].

The mapping prev is defined by prev(i) = max{j < i | con(gr(j)) ≺ con(gr(i))} if such j exists,

otherwise prev(i) = nil.

For a group G from a group configuration, we define an equivalence ∼ on G as follows: i ∼ j iff

gr(prev(i)) = gr(prev(j)) or prev(i) = prev(j) = nil. The symbol [i]∼ denotes the class of equivalence

∼ that contains i, i.e., [i]∼ = {j ∈ G | j ∼ i}. If prev(i) = nil, then the class [i]∼ is called trivial.

An interesting observation states that if G is viewed as an ordered set of indices, then a non-trivial [i]∼
is an interval:

Observation 7. Let G be a group from a group configuration for x. Consider an i ∈ G such that prev(i) 6= nil.

Let j1 = min[i]∼ and j2 = max[i]∼ . Then, [i]∼ = {j ∈ G | j1 ≤ j ≤ j2}.

Proof. Since prev(j1) is a candidate to be prev(j), prev(j) 6= nil and prev(j1) ≤ prev(j) ≤ prev(j2) =

prev(j1), so prev(j) = prev(j1) = prev(j2).

On each non-trivial class of ∼, we define a relation ≈ as follows: i ≈ j iff |j−i| = |con(G)|; in

simple terms, it means that the occurrence C(i) of con(G) is immediately followed by the occurrence C(j) of

con(G). The transitive closure of≈ is a relation of equivalence, which we also denote by ≈. The symbol

[i]≈ denotes the class of equivalence ≈ containing i, i.e., [i]≈ = {j ∈ [i]∼ | j ≈ i}.
For each j from a non-trivial [i]∼ , we define the valence by val(j) = |[i]≈ |. In simple terms, val(i)

is the number of elements from [i]∼ that are ≈ i. Thus, 1 ≤ val(i) ≤ |G|.
Interestingly, if G is viewed as an ordered set of indices, then [i]≈ is a subinterval of the interval [i]∼ :

Observation 8. Let G be a group from a group configuration for x. Consider an i ∈ G such that prev(i) 6= nil.

Let j1 = min[i]≈ and j2 = max[i]≈ . Then, [i]≈ = {j ∈ [i]∼ | j1 ≤ j ≤ j2}.

Proof. We argue by contradiction. Assume that there is an j ∈ [i]∼ so that j1 < j < j2 and j /∈ [i]≈ .

Take the minimal such j. Consider j′ = j− |con(G)|. Then, j′ ∈ [i]∼ , and since, j′ < j, j′ ∈ [i]≈ due to

the minimality of j. Therefore, i ≈ j′ ≈ j, and so, j ≈ i, a contradiction.
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Definition 2. A group G is complete if for any i ∈ G, the occurrence C(i) of con(G) is a right-maximal

Lyndon substring of x.

A group configuration 〈Gk, Gk−1, ..., G2, G1〉 is t-complete, 1 ≤ t ≤ k, if

(C5) the groups Gt, ..., G1 are complete;

(C6) the mapping prev is proper on Gt:

for any i ∈ Gt, if prev(i) 6= nil and v = val(i), then there are i1, ..., iv ∈ Gt,

i ∈ {i1, ..., iv}, prev(i) = prev(i1) = ... = prev(iv), and so that C(prev(i))C(i1)...C(iv) is a prefix of

x[j..n];

(C7) the family {C(i) | i ∈ 1..n} is proper:

(a) if C(j) is a proper substring of C(i), i.e., C(j) ( C(i), then con(Gt) ≺ con(gr(j)),

(b) if C(i) is followed immediately by C(j), i.e., when i+ |con(gr(i))| = j, and C(i) ≺ C(j),

then con(gr(j)) � con(Gt);

(C8) the family {C(i) | i ∈ 1..n} has the Monge property, i.e., if C(i) ∩ C(j) 6= ∅, then C(i) ⊆ C(j) or

C(j) ⊆ C(i).

The condition (C6) is all-important for carrying out the refinement process (see (R3) below).

The conditions (C7) and (C8) are necessary for asserting that the condition (C6) is preserved during

the refinement process.

4.2. The Refinement

For the sake of simplicity, we fix a string x = x[1..n] for the whole Section 4.2; all the definitions,

lemmas, and theorems apply and refer to this x.

Lemma 9. Let Ax = {a1, ..., ak} and a1 ≺ a2 ≺ ... ≺ ak. For 1 ≤ ℓ ≤ k, define Gℓ = {i ∈ 1..n | x[i] =

ak+1−ℓ} with context ak+1−ℓ. Then, 〈Gk, ..., G1〉 is a one-complete group configuration.

Proof. (C1), (C2), (C3), and (C4) are straightforward to verify. To verify (C5), we need to show that G1

is complete. Any occurrence of ak in x is a right-maximal Lyndon substring, so G1 is complete.

To verify (C6), consider j = prev(i) and val(i) = v for i ∈ G1. Consider any r such that j < r < i.

If x[r] 6= ak, then prev(i) < r, which contradicts the definition of prev. Hence, x[r] = ak, and so,

x[j+1] = ... = x[i] = ...x[j+v+1] = ak, while x[j] = aq for some q < k. It follows that x[j..n] has aq(ak)
v

as a prefix.

The condition (C7(a)) is trivially satisfied as no C(i) can have a proper substring. If C(i) is

immediately followed by C(j) and C(i) ≺ C(j), then C(i) = x[i], j = i+1, C(j) = x[i+1], and x[i] ≺
x[i+1]. Then, con(C(j)) = x[i+1] � ak = con(G1), so (C7(b)) is also satisfied.

To verify (C8), consider C(i) ∩ C(j) 6= ∅. Then, C(i) = x[i] = x[j] = C(j).

Let 〈Gk, ..., Gt, ..., G1〉 by a t-complete group configuration. The refinement is driven by the group

Gt, and it might only partition the groups that precede it, i.e., the groups Gk, ..., Gt+1, while the groups

Gt, ..., G1 remain unchanged.

(R1) Partition Gt into classes of the equivalence ∼.

Gt = [i1]∼ ∪ [i2]∼ ∪ ... ∪ [ip]∼ ∪ X where X = {i ∈ Gt | prev(i) = nil} may be possibly empty

and i1 < i2 < ... < ip.

(R2) Partition every class [iℓ]∼ , 1 ≤ ℓ ≤ p, into classes of the equivalence ≈.

[iℓ]∼ = [jℓ,1]≈ ∪ [jℓ,2]≈ ∪ ...∪ [jℓ,mℓ
]≈ where val(jℓ,1) < val(jℓ,2) < ... < val(jℓ,mℓ

).

(R3) Therefore, we have a list of classes in this order: [j1,1]≈ , [j1,2]≈ , ... [j1,m1
]≈ , [j2,1]≈ , [j2,2]≈ , ...

[j2,m2
]≈ , ..., [jp,1]≈ , [jp,2]≈ , ... [jp,mp ]≈ . This list is processed from left to right. Note that for each

i ∈ [jℓ,⑨➠✝]≈ , prev(i) ∈ gr(jℓ,⑨➠✝), and val(i) = val(jℓ,⑨➠✝).

For each jℓ,⑨➠✝, move all elements {prev(i) | i ∈ [jℓ,⑨➠✝]≈} from the group gr(prev(jℓ,⑨➠✝)) into a new
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group H, place H in the list of groups right after the group gr(prev(jℓ,⑨➠✝)), and set its context to

con(gr(prev(jℓ,⑨➠✝)))con(gr(jℓ,⑨➠✝))
val(jℓ,⑨➠✝).

(
Note, that this “doubling of the contexts” is possible due to

(C6)
)
. Then, update prev:

All values of prev are correct except possibly the values of prev for indices from H.

It may be the case that for i ∈ H, there is i′ ∈ gr(jℓ,⑨➠✝), so that prev(i) < i′, so prev(i)

must be reset to the maximal such i′. (Note that before the removal of H from gr(jℓ,⑨➠✝), the

index i′ was not eligible to be considered for prev(i) as i and i′ were both from the same group.)

Theorem 3 shows that having a t-complete group configuration 〈Gk, ..., Gt+1, Gt, ..., G1〉 and refining

it by Gt, then the resulting system of groups is a (t+1)-complete group configuration. This allows

carrying out the refinement in an iterative fashion.

Theorem 3. Let Conf = 〈Gk, ..., Gt+1, Gt, ..., G1〉 be a t-complete group configuration, 1 ≤ t. After performing

the refinement of Conf by group Gt, the resulting system of groups denoted as Conf ′ is a (t+1)-complete group

configuration.

Proof. We carry the proof in a series of claims. The symbols gr(), con(), C(), prev(), and val() denote

the functions for Conf, while gr′(), con′(), C ′(), prev′(), and val′() denote the functions for Conf ′.
When a group Gt+1 is partitioned, a part of it is moved as the next group in the list, and we call it Ht+1;

thus, Gt+1 ≺ Ht+1 ≺ Gt. For details, please see (R3) above.

Claim 1. Conf ′ is a group configuration, i.e., (C1), (C2), (C3), and (C4) for Conf ′ hold.

Proof of Claim 1. (C1) and (C2) follow from the fact that the process is a refinement, i.e., a group

is either preserved as is or is partitioned into two or more groups. The doubling of the contexts in

Step (R3) guarantees that the increasing order of the contexts is preserved, i.e., (C3) holds. For any

j ∈ Gt so that j = prev(i) 6= nil, con(gr(prev(j))) is Lyndon, and con(gr(j)) is also Lyndon,

while con(gr(prev(j))) ≺ con(gr(j)), so con(gr(prev(j)))con(gr(j))val(j) is Lyndon as well; thus,

(C4) holds.

To illustrate the concatenation: let us call con(gr(prev(j))) as A and con(gr(j)) as B, and let val(j) = m,

then we know that A is Lyndon and B is Lyndon and A ≺ B; so, ABm is clearly Lyndon as if A and B

were letters.

This concludes the proof of Claim 1.

Claim 2. {C′(i) | i ∈ 1..n} is proper and has the Monge property, i.e., (C7) and (C8) for Conf ′ hold.

Proof of Claim 2. Consider C ′(i) for some i ∈ 1..n. There are two possibilities:

1. C ′(i) = C(i) or

2. C ′(i) = C(i)C(i1)...C(iv), for some i1, i2, ..., iv ∈ Gt, so that for any 1 ≤ ℓ ≤ v, i = prev(iℓ),

C(iℓ) = con(Gt), v = val(iℓ) and for any 1 ≤ ℓ < k and iℓ+1 = iℓ+ |con(Gt)|. Note that

con(gr(i)) ≺ con(Gt).

Consider C ′(i) and C ′(j) for some 1 ≤ i < j ≤ n.

1. Case C ′(i) = C(i) and C ′(j) = C(j).

(a) Show that (C7(a)) holds.

If C ′(j) ( C ′(i), then C(j) ( C(i), and so, by (C7(a)) for Conf,

con(Gt) ≺ con(gr(j)), and thus, con′(Ht+1) ≺ con(Gt) ≺ con(gr(j)) = con′(gr′(j)).

Therefore, (C7(a)) for Conf ′ holds.
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(b) Show that (C8) holds. If C ′(i) ∩ C ′(j) 6= ∅, then C(i) ∩ C(j) 6= ∅, so C(j) ⊆ C(i), and so,

C ′(j) ⊆ C ′(i); so, (C8) for Conf ′ holds.

2. Case C ′(i) = C(i) and C ′(j) = C(j)C(j1)..C(jw),

where w = val(j1), C(j1) = ... = C(jw) = con(Gt), and j1 ≈ ... ≈ jw.

(a) Show that (C7(a)) holds.

If C ′(j) ( C ′(i), then C(j)C(j1)..C(jw) ( C(i); hence, C(j) ( C(i), and so, by (C7(a)) for

Conf, con(Gt) ≺ con(gr(j)). By the t-completeness of Conf, C(j) is a right-maximal Lyndon

substring, a contradiction with C(j)C(j1).., C(jw) being Lyndon. This is an impossible case.

(b) Show that (C8) holds.

If C ′(i) ∩ C ′(j) 6= ∅, then C(j) ⊆ C(i) by (C8) for Conf. By (C7(a)) for Conf, C(j) cannot be

a suffix of C(i) as con(gr(j)) ≺ con(Gt). Hence, C(i)∩C(j1) 6= ∅, and so, C(j)C(j1) ⊆ C(i);
and since C(j1) cannot be a suffix of C(i) as gr(j1) = Gt, it follows that C(i) ∩ C(j2) 6= ∅,

..., ultimately giving C(j)C(j1)...C(jw) ⊆ C(i). Therefore, (C8) for Conf ′ holds.

3. Case C ′(i) = C(i)C(i1)..C(iv) and C ′(j) = C(j),

where v = val(i1), C(i1) = ... = C(iv) = con(Gt), and i1 ≈ ... ≈ iv.

(a) Show that (C7(a)) holds.

If C ′(j) ( C ′(i), then either C(j) ( C(i), which implies by (C7(a)) for Conf that con(Gt) ≺
con(gr(j)), giving con′(Ht+1) ≺ con′(Gt) = con(Gt) ≺ con(gr(j)) = con′(gr′(j)),

or C(j) ⊆ C(iℓ) for some 1 ≤ ℓ ≤ v. If C(j) = C(iℓ), then gr(j) = gr(iℓ) = Gt,

giving con′(Ht+1) ≺ con(Gt) = con(gr(j)). Therefore (C7(a)) for Conf ′ holds.

(b) Show that (C8) holds.

Let C ′(i) ∩ C ′(j) 6= ∅. Consider D = {iℓ | 1 ≤ ℓ ≤ v and C(j) ∩ C(iℓ) 6= ∅}.
Assume that D 6= ∅:

By (C8) for Conf, either C(j) ⊆ ⋃iℓ∈D C(iℓ) ⊆ C ′(i), and we are done, or
⋃

iℓ∈D C(iℓ) ⊆
C(j). Let i⑨➠✝ be the smallest element of D. Since C(i⑨➠✝) cannot be the prefix of C(j),

it means that i⑨➠✝ = i1. Since C(i1) cannot be a prefix of C(j), it means that C(i) ∩ C(j) 6=
∅, and so, C(j) ⊆ C(i), which contradicts the fact that C(j) ⊆ ⋃iℓ∈D C(iℓ) ⊆ C ′(i).

Assume that D = ∅:

Then, C(i) ∩ C(j) 6= ∅, and so, by (C8) for Conf, C(j) ⊆ C(i) ⊆ C ′(i) as i < j.

4. Case C ′(i) = C(i)C(i1)..C(iv) and C ′(j) = C(j)C(j1)...C(jw),

where v = val(i1), C(i1) = ... = C(iv) = con(Gt), and i1 ≈ ... ≈ iv and where v = val(j1),

C(j1) = ... = C(jw) = con(Gt), and j1 ≈ ... ≈ jw.

(a) Show that (C7(a)) holds.

Let C ′(j) ( C ′(i). Then, either C(j) ⊆ C(i), and so, con(Gt) ≺ con(gr(j)), implying that

C(j) is maximal contradicting C(j)C(j1)...C(jw) being Lyndon. Thus, C(j) ( C(iℓ) for

some 1 ≤ ℓ ≤ v. However, then, con(Gt) ≺ con(gr(j)), implying that C(j) is maximal,

again a contradiction. This is an impossible case.

(b) Show that (C8) holds.

Let C ′(i) ∩ C ′(j) 6= ∅. Let us first assume that C(i) ∩ C(j) 6= ∅. Then, C(j) ⊆
C(i). Since C(j) cannot be a suffix of C(i), it follows that C(i) ∩ C(j1) 6= ∅.

Therefore, C(j)C(j1) ⊆ C(i). Repeating this argument leads to C(j)C(j1)...C(jw) ⊆ C(i),
and we are done.

Therefore, assume that C(i) ∩ C(j) = ∅. Let 1 ≤ ℓ ≤ v be the smallest such that

C(iℓ) ∩ C(j) 6= ∅. Such an ℓ must exist. Then, iℓ ≤ j. If iℓ = j, then either C(iℓ) is

a prefix of C(j) or vice versa, both impossibilities; hence, iℓ < j. Repeating the same

arguments as for i, we get that C(j)C(j1)..C(jw) ⊆ C(iℓ), and so, we are done.
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It remains to show that (C7(b)) for Conf ′ holds.

Consider C ′(i) immediately followed by C ′(j) with C ′(i) ≺ C ′(j).

1. Assume that gr′(j) ∈ {Gt−1, ..., G1}.
Then, con(Gt) = con′(Gt), gr(j) = gr′(j), and con(gr(j)) = con′(gr′(j)). If C ′(i) = C(i),
then C(i) ≺ C(j), and C(i) is immediately followed by C(j), so by (C7(b)) for Conf, we have

a contradiction. Thus, C ′(i) = C(i)C(i1)...C(iv) for v = val(i) and con(gr(iv)) = con(Gt) ≺
con(gr(j)), and C(iv) is immediately followed by C(j), a contradiction by (C7(b)) for Conf.

2. Assume that gr′(j) = Gt.

Then, the group gr(i) is partitioned when refining by Gt, and so, C ′(i) = con′(gr′(i)) =

con(gr(i))C(j)v for v = val(j). Since C ′(i) is immediately followed by C ′(j) = con(Gt), we have

again a contradiction, as it implies that val(j) = v+1.

This concludes the proof of Claim 2.

Claim 3. The function prev′ is proper on Ht+1, i.e., (C6) for Conf ′ holds.

Proof of Claim 3. Let j = prev′(i) and i ∈ Ht+1 with val′(i) = v. Then, |[i]≈ | = v, and so, [i]≈ =

{i1, ..., iv}, where i1 < i2 < ... < iv. Hence, i1, ..., iv ∈ Ht+1, C ′(i1) = ... = C ′(iv) = con′(Ht+1),

and j = prev′(i) = prev′(i1) = ... = prev′(iv), and so, j < i1. It remains to show that C ′(j)C ′(i1)...C ′(iv)

is a prefix of x[j..n]. It suffices to show that C ′(j) is immediately followed by C ′(i1).
If C ′(j)∩ C ′(i1) 6= ∅, then by the Monge property (C8), C ′(i1) ⊆ C ′(j) as j < i1, and so, by (C7(a)),

con′(Ht+1) ≺ con′(gr′(i1)) = con′(Ht+1), a contradiction.

Thus, C ′(j) ∩ C ′(i1) = ∅. Set j1 = j+|con′(gr′(j))|. It follows that j1 ≤ i1. Assume that j1 <

i1. Since j = prev′(i1) and j < i1, con′(gr′(j1)) � con′(gr′(i1)) = con′(Ht+1). Since j1 /∈ Ht+1,

con′(gr′(j1)) ≻ con′(Ht+1). Consider C ′(j1). If C ′(j1) ∩ C ′(i1) 6= ∅, then by (C8), C ′(i1) ⊆ C ′(j1),

and so, by (C7(a)), con′(Ht+1) ≺ con′(gr′(i1)) = con′(Ht+1), a contradiction. Thus, C ′(j1) ∩ C ′(i1) =
∅. Since C ′(j1) immediately follows C ′(j), by (C7(b)), con′(gr′(j1)) � con′(Ht+1), a contradiction.

Therefore, j1 = i1, and so, prev′ is proper on Ht+1.

This concludes the proof of Claim 3.

Claim 4. Ht+1 is a complete group, i.e., (C5) for Conf ′ holds.

Proof of Claim 4. Assume that there is i ∈ Ht+1 so that C ′(i) is not maximal, i.e., for some k ≥
i+|con′(Ht+1)|, x[i..k] is a right-maximal Lyndon substring of x.

Either k = n and so con′(gr′(k)) = x[k], and so, C ′(k) is a suffix of x[i..k], or k < n, and then, x[k+

1] ≺ x[k], since x[k+1] � x[k] implies that x[i..k+1] is Lyndon, a contradiction with the right-maximality

of x[i..k]. Consider C ′(k), then C ′(k) ⊆ x[i..k], and so, C ′(k) = x[k].

Therefore, there is j1 so that i+|con′(Ht+1)| ≤ j1 ≤ k, and C ′(j1) is a suffix of x[i..k]. Take the

smallest such j1. If j1 = i+|con′(Ht+1)|, then C ′(i) ≺ C ′(j1) as x[i..k] = C ′(i)C ′(j1) is Lyndon. By (C7(b)),

C ′(j1) � con′(Ht+1), so we have con′(Ht+1) = C ′(i) ≺ C ′(j1) � con′(Ht+1), a contradiction.

Therefore, j1 > i+|con′(Ht+1)|. Consider x[j1−1]. If x[j1−1] � x[j1], x[j1−1..k] is Lyndon, and since

x[j1..k] = C ′(j1), x[j1−1..k] would be a context of gr′(j1−1), this contradicts the fact j1 was chosen

to be the smallest such one. Therefore, x[j1−1] ≻ x[j1], and so, con′(gr′(j1−1)) = x[j1−1]. Thus,

there is j2, i+|con′(Ht+1)| ≤ j2 < j1 ≤ k, and C ′(j2) is a suffix of x[i..j1−1]. Take the smallest such

j2. If C ′(j2) ≺ C ′(j1), then by (C7(b)), C ′(j1) � con′(Ht+1), a contradiction. Hence, C ′(j2) � C ′(j1).

If j2 = i + i+ |con′(Ht+1)|, then x[i..k] = C ′(i)C ′(j2)C ′(j1), and so, by (C7(b)), C ′(j2) � con′(Ht+1),

a contradiction. Hence, i+|con′(Ht+1)| < j2.

The same argument done for j2 can now be done for j3. We end up with i+ |con′(Ht+1)| ≤
j3 < j2 < j1 ≤ k and with C ′(j3) � C ′(j2) � C ′(j1) ≻ con′(Ht+1). If i+ |con′(Ht+1)| = j3,
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then we have a contradiction, so i+ |con′(Ht+1)| < j3. These arguments can be repeated only

finitely many times, and we obtain i+ |con′(Ht+1)| = jℓ < jℓ−1 < ... < j2 < j1 ≤ k so that

x[i..k] = C ′(i)C ′(jℓ)C ′(jℓ−1...C ′(j2)C ′(j1), which is a contradiction.

Therefore, our initial assumption that C ′(i) is not maximal always leads to a contradiction.

This concludes the proof of Claim 4.

The four claims show that all the conditions (C1) ... (C8) are satisfied for Conf ′, and that proves

Theorem 3.

As the last step, we show that when the process of refinement is completed, all right-maximal

Lyndon substrings of x are identified and sorted via the contexts of the groups of the final configuration.

Theorem 4.

Let Conf1 = 〈G1
k1

, G1
k1−1, ..., G1

2 , G1
1〉 with gr1(), con1(), C1(), prev1(), and val1() be the initial 1-complete

group configuration from Lemma 9.

Let Conf2 = 〈G2
k2

, G2
k2−1, ..., G2

2 , G2
1〉 with gr2(), con2(), C2(), prev2(), and val2() be the 2-complete group

configuration obtained from Conf1 through the refinement by the group G1
1 .

Let Conf3 = 〈G3
k3

, G3
k3−1, ..., G3

2 , G3
1〉 with gr3(), con3(), C3(), prev3(), and val3() be the 3-complete group

configuration obtained from Conf2 through the refinement by the group G2
2 .

...

Let Confr = 〈Gr
kr

, Gr
kr−1, ..., Gr

2, Gr
1〉 with grr(), conr(), Cr(), prevr(), and valr() be the r-complete group

configuration obtained from Confr−1 through the refinement by the group Gr−1
r−1 . Let Confr be the final

configuration after the refinement runs out.

Then, x[i..k] is a right-maximal Lyndon substring of x iff x[i..k] = Cr(i) = conr(grr(i)).

Proof. That all the groups of Confr are complete follows from Theorem 3, and hence, every Cr(i) is

a right-maximal Lyndon string. Let x[i..k] be a right-maximal Lyndon substring of x. Consider Cr(i);

since it is maximal, it must be equal to x[i..k].

4.3. Motivation for the Refinement

The process of refinement is in fact a process of the gradual revealing of the Lyndon substrings,

which we call the water draining method:

(a) lower the water level by one;

(b) extend the existing Lyndon substrings; the revealed letters are used to extend the existing Lyndon

substrings where possible, or became Lyndon substrings of length one otherwise;

(c) consolidate the new Lyndon substrings; processed from the right, if several Lyndon substrings are

adjacent and can be joined to a longer Lyndon substring, they are joined.

The diagram in Figure 5 and the description that follows it illustrate the method for a string

011023122. The input string is visualized as a curve, and the height at each point is the value of the

letter at that position.

In Figure 5, we illustrate the process:

(1) We start with the string 011023122 and a full tank of water.

(2) We drain one level; only 3 is revealed; there is nothing to extend, nothing to consolidate.

(3) We drain one more level, and three 2’s are revealed; the first 2 extends 3 to 23, and the remaining

two 2’s form Lyndon substrings 2 of length one; there is nothing to consolidate.

(4) We drain one more level, and three 1’s are revealed; the first two 1’s form Lyndon substrings 1

of length one; the third 1 extends 22 to 122; there is nothing to consolidate.
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(5) We drain one more level, and two 0’s are revealed; the first 0 extends 11 to 011; the second 0

extends 23 to 023; in the consolidation phase, 023 is joined with 122 to form a Lyndon substring

023122, and then, 011 is joined with 023122 to form a Lyndon substring 011023122.

(1) (2) (3)

(6)(4) (5)

0 0
1 1 1

2 2
3

2

1    2    3     4     5    6      7    8     9

0 0
1 1 1

2 2
3

2

1    2    3     4     5    6      7    8     9

0 0
1 1 1

2 2
3

2

1    2    3     4     5    6      7    8     9

0 0
1 1 1

2 2
3

2

1    2    3     4     5    6      7    8     9

0 0
1 1 1

2 2
3

2

1    2    3     4     5    6      7    8     9

0 0
1 1 1

2 2
3

2

1    2    3     4     5    6      7    8     9

Figure 5. The water draining method for 011023122. Stages (1)–(6) explained in the text.

Therefore, during the process, the following right-maximal Lyndon substrings were identified:

3 at Position 6, 23 at Position 5, 2 at Positions 8 and 9, 1 at Positions 2 and 3, 122 at Position 7, 023 at

Position 4, and finally, 011023122 at Position 1. Note that all positions are accounted for; we really have

all right-maximal Lyndon substrings of the string 011023122.

In Figure 6, we present an illustrative example for the string 011023122, where the arrows represent

the prev mapping shown only on the group used for the refinement. The groups used for the refinement

are indicated by the bold font.

0 1 1 0 2 3 1 2 2
1 2 3 4 5 6 7 8 9

G0 = {1, 4} G1 = {2, 3, 7} G2 = {5, 8, 9} G3 = {6}

G0 = {1, 4} G1 = {2, 3, 7} G2 = {8, 9} G23 = {5} G3 = {6}

G0 = {1} G023 = {4} G1 = {2, 3, 7} G2 = {8, 9} G23 = {5} G3 = {6}

G0 = {1} G023 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

G0 = {1} G023122 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

G011 = {1} G023122 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

G011023122 = {1} G023122 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

Figure 6. Group refinement for 011023122.

4.4. The Complexity of BSLA

The computation of the initial configuration can be done in linear time. To compute the initial

value of prev in linear time, a stack-based approach similar to the NSV algorithm is used. Since all

groups are non-empty, there can never be more groups than n. Theorem 3 is at the heart of the

algorithm. The refinement by the last completed group is linear in the size of the group, including the
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update of prev. Therefore, the overall worst-case complexity of BSLA is linear in the length of the

input string.

5. Data and Measurements

Initially, computations were performed on the Department of Computing and Software’s moore

server; memory: 32 GB (DDR4 @ 2400 MHz), CPU: 8 × Intel Xeon E5-2687W v4 @ 3.00 GHz,

OS: Linux Version 2.6.18-419.el5 (gcc Version 4.1.2 and Red Hat Version 4.1.2-55). To verify correctness,

new randomized data were produced and computed independently on the University of Toronto

Mississauga’s octolab cluster; memory: 8 × 32 GB (DDR4 @ 3200 MHz), CPU: 8 × AMD Ryzen

Threadripper 1920X (12-Core) @ 4.00 GHz, OS: Ubuntu 16.04.6 LTS (gcc Version 5.4.0). The results of

both were extremely similar, and those reported herein are those generated using the moore server.

All the programs were compiled without any additional level of optimization (i.e., neither -O1, nor -O2,

nor -O3 flags were specified for the compilation). The CPU time was measured in clock ticks with

1,000,000 clock ticks per second. Since the execution time was negligible for short strings, the processing

of the same string was repeated several times (the repeat factor varied from 106, for strings of length 10,

to one, for strings of length 5× 106), resulting in a higher precision. Thus, for graphing, the logarithmic

scale was used for both, x-axis representing the length of the strings and y-axis representing the time.

We used four categories of randomly generated datasets:

(1) bin

random strings over an integer alphabet with exactly two distinct letters (kind of binary strings).

(2) dna

random strings over an integer alphabet with exactly four distinct letters (kind of random

DNA strings).

(3) eng

random strings over an integer alphabet with exactly 26 distinct letters (kind of random English).

(4) int

random strings over an integer alphabet (i.e., over the alphabet {0, ..., n−1}).

Each dataset contains 100 randomly generated strings of the same length. For each category,

there were datasets for length s 10, 50, 102, 5× 102, ..., 105, 5× 105, 106, and 5× 106. The minimum,

average, and maximum times for each dataset were computed. Since the variance for each dataset was

minimal, the results for minimum times and the results for maximum times completely mimicked the

results for the average times, so we only present the averages here.

Tables 1–4 and the graphs in Figures 7–10 from Section 7 clearly indicate that the performance of

the three algorithms is linear and virtually indistinguishable. We expected IDLA and TRLA to exhibit

linear behaviour on random strings as such strings tend to have many, but short right-maximal Lyndon

substrings. However, we did not expect the results to be so close.

Despite the fact that IDLA performed in linear time on the random strings, it is relatively easy to

force it into its worst quadratic performance. The dataset extreme_idla contains individual strings

0123...n−1 of the required lengths. Table 5 and the graph in Figure 11 from Section 7 show this clearly.

In Section 3.5, we describe how the three datasets, extreme_trla, extreme_trla1,

and extreme_trla2, are generated and why. The results of experimenting with these datasets do

not suggest that the worst-case complexity for TRLA is O(n log(n)). Yet again, the performances

of the three algorithms are linear and virtually indistinguishable; see Tables 6–8 and the graphs in

Figures 12–14 in Section 7.

6. Conclusions and Future Work

We present two novel algorithms for computing right-maximal Lyndon substrings. The first one,

TRLA, has a simple implementation with a complicated theory behind it. Its average time complexity

is linear in the length of the input string, and its worst-case complexity is no worse than O(n log(n)).
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The τ-reduction used in the algorithm is an interesting reduction preserving right-maximal Lyndon

substrings, a fact used significantly in the design of the algorithm. Interestingly, it seem to slightly

outperform BSLA, at least on the datasets used for our experimentations. BSLA, the second algorithm,

is linear and elementary in the sense that it does not require a pre-processed global data structure.

Being linear and elementary, BSLA is more interesting, and it is possible that its performance could be

more streamlined. However, both the theory and implementation of BSLA are rather complex.

On random strings, none of the two algorithms were significantly better than the simple IDLA,

whose implementation is just a few lines. However, its quadratic worst-case complexity is an obstacle,

as our experiments indicated.

Additional effort needs to go into proving TRLA’s worst-case complexity. The experiments

performed did not indicate that it is not linear even in the worst case. Both algorithms need to be

compared to some efficient implementation of SSLA and BWLA.

7. Results

This section contains the measurements of the average times for the datasets discussed in the

previous section. For better understanding of the data, we present them in Tables 1–8 and Figures 7–14.

All the graphs include the curve x = y for reference.

Table 1. Average times for dataset bin (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 3.651× 10−1 1.582 1.054
50 4.082 1.050× 10 6.372

100 1.101× 10 2.140× 10 1.277× 10
500 8.655× 10 1.127× 102 6.786× 10
1000 1.975× 102 2.335× 102 1.484× 102

5000 1.278× 103 1.218× 103 8.595× 102

10, 000 2.765× 103 2.423× 103 1.820× 103

50, 000 1.665× 104 1.272× 104 1.018× 104

100, 000 3.606× 104 2.523× 104 2.113× 104

500, 000 2.071× 105 1.338× 105 1.493× 105

1, 000, 000 4.387× 105 2.717× 105 4.080× 105

5, 000, 000 2.483× 106 1.561× 106 3.098× 106
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TRLA
BSLA
y = x

Figure 7. Average times for dataset bin (106 clock ticks per second).
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Table 2. Average times for dataset dna (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 3.699× 10−1 1.579 1.080
50 3.509 1.037× 10 6.627
100 8.898 2.109× 10 1.403× 10
500 6.403× 10 1.123× 102 7.228× 10

1000 1.431× 102 2.332× 102 1.544× 102

5000 8.749× 102 1.207× 103 9.039× 102

10, 000 1.912× 103 2.460× 103 1.935× 103

50, 000 1.134× 104 1.280× 104 1.110× 104

100, 000 2.431× 104 2.588× 104 2.316× 104

500, 000 1.383× 105 1.390× 105 1.781× 105

1, 000, 000 2.916× 105 2.865× 105 4.994× 105

5, 000, 000 1.643× 106 1.968× 106 3.752× 106
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Figure 8. Average times for dataset dna (106 clock ticks per second).

Table 3. Average times for dataset eng (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 3.526× 10−1 1.584 9.865× 10−1

50 3.162 1.006× 10 5.960
100 7.315 2.057× 10 1.317× 10
500 4.996× 10 1.117× 102 7.245× 10
1000 1.112× 102 2.354× 102 1.542× 102

5000 6.722× 102 1.210× 103 9.087× 102

10, 000 1.452× 103 2.427× 103 2.042× 103

50, 000 8.505× 103 1.306× 104 1.301× 104

100, 000 1.802× 104 2.688× 104 2.768× 104

500, 000 1.025× 105 1.428× 105 2.381× 105

1, 000, 000 2.171× 105 3.253× 105 7.236× 105

5, 000, 000 1.206× 106 2.599× 106 6.092× 106
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Figure 9. Average times for dataset eng (106 clock ticks per second).

Table 4. Average times for dataset int (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 3.547× 10−1 1.645 9.794× 10−1

50 3.032 9.992 5.609
100 7.279 2.032× 10 1.153× 10
500 4.845× 10 1.136× 102 6.184× 10

1000 1.057× 102 2.376× 102 1.294× 102

5000 6.428× 102 1.218× 103 7.753× 102

10, 000 1.388× 103 2.544× 103 1.796× 103

50, 000 8.055× 103 1.448× 104 1.088× 104

100, 000 1.710× 104 2.943× 104 2.379× 104

500, 000 9.829× 104 1.825× 105 2.740× 105

1, 000, 000 2.071× 105 4.827× 105 7.989× 105

5, 000, 000 1.162× 106 5.143× 106 6.635× 106
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Figure 10. Average times for dataset int (106 clock ticks per second).
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Table 5. Average times for dataset extreme_idla (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 7.900× 10−1 1.440 7.000× 10−1

50 1.830× 10 8.200 3.600
100 7.190× 10 1.590× 10 6.800
500 1.778× 103 7.300× 10 3.550× 10
1000 7.105× 103 1.430× 102 6.900× 10
5000 1.776× 105 7.100× 102 3.400× 102

10, 000 7.111× 105 1.550× 103 6.800× 102

50, 000 1.784× 107 8.050× 103 3.400× 103

100, 000 7.130× 107 1.600× 104 6.800× 103

500, 000 1.783× 109 8.200× 104 3.700× 104

1, 000, 000 7.137× 109 1.660× 105 7.800× 104

5, 000, 000 1.813× 1011 8.800× 105 4.950× 105
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Figure 11. Average times for dataset extreme_idla (106 clock ticks per second).

Table 6. Average times for dataset extreme_trla (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 4.588× 10−1 1.628 1.126
50 4.987 1.039× 10 7.112

100 1.275× 10 2.179× 10 1.439× 10
500 9.033× 10 1.101× 102 6.914× 10
1000 2.060× 102 2.222× 102 1.392× 102

5000 1.319× 103 1.171× 103 7.699× 102

10, 000 2.896× 103 2.394× 103 1.652× 103

50, 000 2.209× 104 1.263× 104 8.992× 103

100, 000 3.965× 104 2.567× 104 1.862× 104

500, 000 2.233× 105 1.349× 105 1.091× 105

1, 000, 000 4.734× 105 2.759× 105 3.104× 105

5, 000, 000 2.632× 106 1.458× 106 2.298× 106
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Figure 12. Average times for dataset extreme_trla (106 clock ticks per second).

Table 7. Average times for dataset extreme_trla1 (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 5.040× 10−1 1.600 1.117
50 5.910 1.042× 10 7.290

100 1.460× 10 2.145× 10 1.446× 10
500 1.146× 102 1.126× 102 6.979× 10
1000 2.662× 102 2.284× 102 1.379× 102

5000 1.694× 103 1.205× 103 7.853× 102

10, 000 3.734× 103 2.477× 103 1.739× 103

50, 000 2.276× 104 1.310× 104 9.683× 103

100, 000 4.901× 104 2.796× 104 2.009× 104

500, 000 2.928× 105 1.465× 105 1.238× 105

1, 000, 000 6.199× 105 3.000× 105 3.622× 105

5, 000, 000 3.432× 106 1.642× 106 2.778× 106
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Figure 13. Average times for dataset extreme_trla1 (106 clock ticks per second).
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Table 8. Average times for dataset extreme_trla2 (106 clock ticks per second).

String Length Time in Ticks Time in Ticks Time in Ticks
IDLA TRLA BSLA

10 5.041× 10−1 1.683 1.121
50 6.160 1.020× 10 7.257

100 1.526× 10 2.090× 10 1.441× 10
500 1.367× 102 1.074× 102 7.117× 10
1000 3.202× 102 2.135× 102 1.390× 102

5000 2.024× 103 1.145× 103 7.966× 102

10, 000 4.500× 103 2.257× 103 1.762× 103

50, 000 2.728× 104 1.172× 104 1.012× 104

100, 000 5.941× 104 2.362× 104 2.115× 104

500, 000 3.639× 105 1.262× 105 1.351× 105

1, 000, 000 7.719× 105 2.571× 105 3.915× 105

5, 000, 000 4.263× 106 1.323× 106 3.118× 106
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Figure 14. Average times for dataset extreme_trla2 (106 clock ticks per second).
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BSLA Baier’s Sort Lyndon Array

IDLA Iterative Duval Lyndon Array

TRLA Tau Reduction Lyndon Array

References

1. Lyndon, R.C. On Burnside’s Problem. II. Trans. Am. Math. Soc. 1955, 78, 329–332.

2. Marcus, S.; Sokol, D. 2D Lyndon words and applications. Algorithmica 2017, 77, 116–133. [CrossRef]

3. Berstel, J.; Perrin, D. The origins of combinatorics on words. Eur. J. Comb. 2007, 28, 996–1022. [CrossRef]

41



Algorithms 2020, 13, 294

4. Chen, K.; Fox, R.; Lyndon, R. Free differential calculus IV. The quotient groups of the lower central series.

Ann. Math. 2nd Ser. 1958, 68, 81–95. [CrossRef]

5. Golomb, S. Irreducible polynomials, synchronizing codes, primitive necklaces and cyclotomic algebra.

Comb. Math. Appl. 1967, 4, 358–370.

6. Flajolet, P.; Gourdon, X.; Panario, D. The complete analysis of a polynomial factorization algorithm over

finite fields. J. Algorithms 2001, 40, 37–81. [CrossRef]

7. Panario, D.; Richmond, B. Smallest components in decomposable structures:exp-log class. Algorithmica 2001,

29, 205–226. [CrossRef]

8. Duval, J.P. Factorizing words over an ordered alphabet. J. Algorithms 1983, 4, 363–381. [CrossRef]

9. Berstel, J.; Pocchiola, M. Average cost of Duval’s algorithm for generating Lyndon words. Theor. Comput. Sci.

1994, 132, 415–425. [CrossRef]

10. Fredricksen, H.; Maiorana, J. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discret. Math.

1983, 23, 207–210. [CrossRef]

11. Bannai, H.; Tomohiro, I.; Inenaga, S.; Nakashima, Y.; Takeda, M.; Tsuruta, K. The “Runs” Theorem.

SIAM J. Comput. 2017, 46, 1501–1514. [CrossRef]

12. Franek, F.; Paracha, A.; Smyth, W. The linear equivalence of the suffix array and the partially sorted Lyndon

array. In Proceedings of the Prague Stringology Conference, Prague, Czech Republic, 28–30 August 2017;

pp. 77–84.

13. Baier, U. Linear-Time Suffix Sorting—A New Approach for Suffix Array Construction. Master’s Thesis,

University of Ulm, Ulm, Germany, 2015.

14. Baier, U. Linear-Time Suffix Sorting—A New Approach for Suffix Array Construction. In Proceedings of the

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016), Tel Aviv, Israel, 27–29 June 2016;

Grossi, R., Lewenstein, M., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany,

2016; Volume 54, pp. 1–12.

15. Chen, G.; Puglisi, S.; Smyth, W. Lempel-Ziv factorization using less time & space. Math. Comput. Sci. 2013,

1, 605–623.

16. Crochemore, M.; Ilie, L.; Smyth, W. A simple algorithm for computing the Lempel-Ziv factorization.

In Proceedings of the 18th Data Compression Conference, Snowbird, UT, USA, 25–27 March 2008;

pp. 482–488.

17. Kosolobov, D. Lempel-Ziv factorization may be harder than computing all runs. In Proceedings of the 32

International Symposium on Theoretical Aspects of Computer Science—STACS 2015, Garching, Germany,

4–7 March 2015; pp. 582–593.

18. Digelmann, C. (Frankfurt, Germany). Personal communication, 2016.

19. Franek, F.; Sohidull Islam, A.; Sohel Rahman, M.; Smyth, W. Algorithms to compute the Lyndon array.

In Proceedings of the Prague Stringology Conference 2016, Prague, Czech Republic, 29–31 August 2016;

pp. 172–184.

20. Hohlweg, C.; Reutenauer, C. Lyndon words, permutations and trees. Theor. Comput. Sci. 2003, 307, 173–178.

[CrossRef]

21. Nong, G.; Zhang, S.; Chan, W.H. Linear suffix array construction by almost pure induced-sorting.

In Proceedings of the 2009 Data Compression Conference, Snowbird, UT, USA, 16–18 March 2009;

pp. 193–202.

22. Louza, F.; Smyth, W.; Manzini, G.; Telles, G. Lyndon array construction during Burrows–Wheeler inversion.

J. Discret. Algorithms 2018, 50, 2–9. [CrossRef]

23. Franek, F.; Liut, M.; Smyth, W. On Baier’s sort of maximal Lyndon substrings. In Proceedings of the Prague

Stringology Conference 2018, Prague, Czech Republic, 27–28 August 2018; pp. 63–78.

24. C++ Code for IDLA, TRLA and BSLA Algorithms. Available online: https://github.com/MichaelLiut/

Computing-LyndonArray (accessed on 3 November 2020).

25. Farach, M. Optimal suffix tree construction with large alphabets. In Proceedings of the 38th IEEE Symp.

Foundations of Computer Science, Miami Beach, FL, USA, 20–22 October 1997; pp. 137–143.

26. Nong, G. Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM Trans. Inf. Syst.

2013, 31, 1–15. [CrossRef]

27. Cooley, J.; Tukey, J. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965,

19, 297–301. [CrossRef]

42



Algorithms 2020, 13, 294

28. Franek, F.; Liut, M. Computing Maximal Lyndon Substrings of a String, AdvOL Report 2019/2,

McMaster University. Available online: http://optlab.mcmaster.ca//component/option,com_docman/

task,cat_view/gid,77/Itemid,92 (accessed on 1 March 2019).

29. Franek, F.; Liut, M. Algorithms to compute the Lyndon array revisited. In Proceedings of the Prague

Stringology Conference 2019, Prague, Czech Republic, 26–28 August 2019; pp. 16–28.

30. Liut, M. Computing Lyndon Arrays. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2019.

31. Lothaire, M. Combinatorics on Words; Cambridge University Press: Cambridge, UK, 2003.

32. Lothaire, M. Applied Combinatorics on Words; Cambridge University Press: Cambridge, UK, 2005.

33. Smyth, B. Computing Patterns in Strings; Pearson Addison-Wesley: Boston, MA, USA, 2003.

34. Louza, F.; Gog, S.; Telles, G. Construction of Fundamental Data Structures for Strings; Springer: Cham,

Switzerland, 2020.

35. Burkhardt, S.; Kärkkäinen, J. Fast Lightweight Suffix Array Construction and Checking. In Proceedings

of the 14th Annual Conference on Combinatorial Pattern Matching, Michoacan, Mexico, 25–27 June 2003;

Springer: Berlin, Heidelberg, 2003; pp. 55–69.

36. Paracha, A. Lyndon Factors and Periodicities in Strings. Ph.D. Thesis, McMaster University, Hamilton, ON,

Canada, 2017.

37. Kärkkäinen, J.; Sanders, P. Simple linear work suffix array construction. In Proceedings of the 30th International

Conference on Automata, Languages and Programming, Eindhoven, The Netherlands, 30 June–4 July 2003;

Springer: Berlin/Heidelberg, Germany, 2003; pp. 943–955.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

43





algorithms

Article

Re-Pair in Small Space †

Dominik Köppl 1,* , Tomohiro I 2 , Isamu Furuya 3 , Yoshimasa Takabatake 2 , Kensuke Sakai 2

and Keisuke Goto 4

����������
�������

Citation: Köppl, D.; I, T.; Furuya, I.;

Takabatake, Y.; Sakai, K.; Goto, K.

Re-Pair in Small Space. Algorithms

2021, 14, 5. https://dx.doi.org/10.3390/

a14010005

Received: 29 November 2020

Accepted: 18 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
2 Kyushu Institute of Technology, Fukuoka 820-8502, Japan; tomohiro@ai.kyutech.ac.jp (T.I.);

takabatake@ai.kyutech.ac.jp (Y.T.); k_sakai@donald.ai.kyutech.ac.jp (K.S.)
3 Graduate School of IST, Hokkaido University, Hokkaido 060-0814, Japan; furuya@ist.hokudai.ac.jp
4 Fujitsu Laboratories Ltd., Kawasaki 211-8588, Japan; goto.keisuke@fujitsu.com

* Correspondence: koeppl.dsc@tmd.ac.jp; Tel.: +81-3-5280-8626

† This paper is an extended version of our paper published in the Prague Stringology Conference 2020: Prague,

Czech Republic, 31 August–2 September 2020 and at the Data Compression Conference 2020: Virtual

Conference, 24–27 March 2020.

Abstract: Re-Pairis a grammar compression scheme with favorably good compression rates. The com-

putation of Re-Pair comes with the cost of maintaining large frequency tables, which makes it

hard to compute Re-Pair on large-scale data sets. As a solution for this problem, we present,

given a text of length n whose characters are drawn from an integer alphabet with size σ = nO(1),
an O(min(n2, n2 lg logτ n lg lg lg n/ logτ n)) time algorithm computing Re-Pair with max((n/c) lg n,

n⌈lg τ⌉) +O(lg n) bits of working space including the text space, where c ≥ 1 is a fixed user-defined

constant and τ is the sum of σ and the number of non-terminals. We give variants of our solution

working in parallel or in the external memory model. Unfortunately, the algorithm seems not prac-

tical since a preliminary version already needs roughly one hour for computing Re-Pair on one

megabyte of text.

Keywords: grammar compression; Re-Pair; computation in small space; broadword techniques

1. Introduction

Re-Pair [1] is a grammar deriving a single string. It is computed by replacing the
most frequent bigram in this string with a new non-terminal, recursing until no bigram
occurs more than once. Despite this simple-looking description, both the merits and the
computational complexity of Re-Pair are intriguing. As a matter of fact, Re-Pair is currently
one of the most well-understood grammar schemes.

Besides the seminal work of Larsson and Moffat [1], there are a couple of articles
devoted to the compression aspects of Re-Pair: Given a text T of length n whose characters
are drawn from an integer alphabet of size σ := nO(1), the output of Re-Pair applied to T is
at most 2nHk(T) + o(n lg σ) bits with k = o(logσ n) when represented naively as a list of
character pairs [2], where Hk denotes the empirical entropy of the k-th order. Using the
encoding of Kieffer and Yang [3], Ochoa and Navarro [4] could improve the output size to at
most nHk(T)+ o(n lg σ) bits. Other encodings were recently studied by Ganczorz [5]. Since
Re-Pair is a so-called irreducible grammar, its grammar size, i.e., the sum of the symbols on
the right-hand side of all rules, is upper bounded by O(n/ logσ n) ([3], Lemma 2), which
matches the information-theoretic lower bound on the size of a grammar for a string of
length n. Comparing this size with the size of the smallest grammar, its approximation
ratio has O((n/ lg n)2/3) as an upper bound [6] and Ω(lg n/ lg lg n) as a lower bound [7].
On the practical side, Yoshida and Kida [8] presented an efficient fixed-length code for
compressing the Re-Pair grammar.

Although conceived of as a grammar for compressing texts, Re-Pair has been suc-
cessfully applied for compressing trees [9], matrices [10], or images [11]. For different
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settings or for better compression rates, there is a great interest in modifications to Re-Pair.
Charikar et al. [6] (Section G) gave an easy variation to improve the size of the grammar.
Another variant, proposed by Claude and Navarro [12], runs in a user-defined working
space (> n lg n bits) and shares with our proposed solution the idea of a table that (a)
is stored with the text in the working space and (b) grows in rounds. The variant of
González et al. [13] is specialized to compressing a delta-encoded array of integers (i.e., by
the differences of subsequent entries). Sekine et al. [14] provided an adaptive variant
whose algorithm divides the input into blocks and processes each block based on the rules
obtained from the grammars of its preceding blocks. Subsequently, Masaki and Kida [15]
gave an online algorithm producing a grammar mimicking Re-Pair. Ganczorz and Jez [16]
modified the Re-Pair grammar by disfavoring the replacement of bigrams that cross Lempel–
Ziv-77 (LZ77) [17] factorization borders, which allowed the authors to achieve practically
smaller grammar sizes. Recently, Furuya et al. [18] presented a variant, called MR-Re-Pair,
in which a most frequent maximal repeat is replaced instead of a most frequent bigram.

1.1. Related Work

In this article, we focus on the problem of computing the grammar with an algorithm
working in text space, forming a bridge between the domain of in-place string algorithms,
low-memory compression algorithms, and the domain of Re-Pair computing algorithms.
We briefly review some prominent achievements in both domains:

In-place string algorithms: For the LZ77 factorization, Kärkkäinen et al. [19] presented
an algorithm computing this factorization with O(n/d) words on top of the input space
in O(dn) time for a variable d ≥ 1, achieving O(1) words with O(n2) time. For the suffix
sorting problem, Goto [20] gave an algorithm to compute the suffix array [21] with O(lg n)
bits on top of the output in O(n) time if each character of the alphabet is present in the
text. This condition was improved to alphabet sizes of at most n by Li et al. [22]. Finally,
Crochemore et al. [23] showed how to transform a text into its Burrows–Wheeler transform
by usingO(lg n) of additional bits. Due to da Louza et al. [24], this algorithm was extended
to compute simultaneously the longest common prefix (LCP) array [21] with O(lg n) bits
of additional working space.

Low-memory compression algorithms: Simple compression algorithms like run-length
compression can be computed in-place and online on the text in linear time. However, a
similar result for LZ77 is unknown: A trivial algorithm working with constant number
of words (omitting the input text) computes an LZ77 factor starting at T[i..] by linearly
scanning T[1..i− 1] for the longest previous occurrence T[j..j + ℓ− 1] = T[i..i + ℓ− 1] for
j < i, thus taking quadratic time. A trade-off was proposed by Kärkkäinen et al. [19],
who needed O(n lg n/d) bits of working space and O(nd lg lgn σ) time for a selectable
parameter d ≥ 1. For the particular case of d = ǫ−1 lg n for an arbitrary constant ǫ > 0,
Kosolobov [25] could improve the running time to O(n(lg σ + lg((lg n)/ǫ))/ǫ) for the
same space of O(ǫn) bits. Unfortunately, we are unaware of memory-efficient algorithms
computing other grammars such as longest-first substitution (LFS) [26], where a modifiable
suffix tree is used for computation.

Re-Pair computation: Re-Pair is a grammar proposed by Larsson and Moffat [1], who
presented an algorithm computing it in expected linear time with 5n + 4σ2 + 4σ′ +

√
n

words of working space, where σ′ is the number of non-terminals (produced by Re-Pair).
González et al. [13] (Section 4.1) gave another linear time algorithm using 12n + O(p)
bytes of working space, where p is the maximum number of distinct bigrams consid-
ered at any time. The large space requirements got significantly improved by Bille et al.
[27], who presented a randomized linear time algorithm taking (1 + ǫ)n +

√
n words on

top of the rewritable text space for a constant ǫ with 0 < ǫ ≤ 1. Subsequently, they
improved their algorithm in [28] to include the text space within the (1 + ǫ)n +

√
n words

of the working space. However, they assumed that the alphabet size σ was constant and

⌈lg σ⌉ ≤ w/2, where w is the machine word size. They also provided a solution for ǫ = 0
running in expected linear time. Recently, Sakai et al. [29] showed how to convert an
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arbitrary grammar (representing a text) into the Re-Pair grammar in compressed space, i.e.,
without decompressing the text. Combined with a grammar compression that can process
the text in compressed space in a streaming fashion, this result leads to the first Re-Pair
computation in compressed space.

In a broader picture, Carrascosa et al. [30] provided a generalization called iterative
repeat replacement (IRR) , which iteratively selects a substring for replacement via a scoring
function. Here, Re-Pair and its variant MR-Re-Pair are specializations of the provided
grammar IRR-MO (IRR with maximal number of occurrences)selecting one of the most
frequent substrings that have a reoccurring non-overlapping occurrence. (As with bigrams,
we only count the number of non-overlapping occurrences.)

1.2. Our Contribution

In this article, we propose an algorithm that computes the Re-Pair grammar in
O(min(n2, n2 lg logτ n lg lg lg n/ logτ n)) time (cf. Theorems 1 and 2) with max((n/c) lg n,
n⌈lg τ⌉) +O(lg n) bits of working space including the text space, where c ≥ 1 is a fixed
user-defined constant and τ is the sum of the alphabet size σ and the number of non-
terminals σ′.

We can also compute the byte pair encoding [31], which is Re-Pair with the additional
restriction that the algorithm terminates before ⌈lg τ⌉ = ⌈lg σ⌉ no longer holds. Hence, we
can replace τ with σ in the above space and time bounds.

Given that the characters of the text are drawn from a large integer alphabet with size
σ = Ω(n) the algorithm works in-place. (We consider the alphabet as not effective, i.e., a
character does not have to appear in the text, as this is a common setting in Unicode texts
such as Japanese text. For instance, n2 = Ω(n)∩ nO(1) 6= ∅ could be such an alphabet size.)
In this setting, we obtain the first non-trivial in-place algorithm, as a trivial approach on a
text T of length n would compute the most frequent bigram in Θ(n2) time by computing
the frequency of each bigram T[i]T[i + 1] for every integer i with 1 ≤ i ≤ n− 1, keeping
only the most frequent bigram in memory. This sums up to O(n3) total time and can be
Θ(n3) for some texts since there can be Θ(n) different bigrams considered for replacement
by Re-Pair.

To achieve our goal of O(n2) total time, we first provide a trade-off algorithm
(cf. Lemma 2) finding the d most frequent bigrams in O(n2 lg d/d) time for a trade-off
parameter d. We subsequently run this algorithm for increasing values of d and show that
we need to run it O(lg n) times, which gives us O(n2) time if d is increasing sufficiently
fast. Our major tools are appropriate text partitioning, elementary scans, and sorting steps,
which we visualize in Section 2.5 by an example and practically evaluate in Section 2.6.
When τ = o(n), a different approach using word-packing and bit-parallel techniques
becomes attractive, leading to an O(n2 lg logτ n lg lg lg n/ logτ n) time algorithm, which
we explain in Section 3. Our algorithm can be parallelized (Section 5), used in external
memory (Section 6), or adapted to compute the MR-Re-Pair grammar in small space
(Section 4). Finally, in Section 7, we study several heuristics that make the algorithm faster
on specific texts.

1.3. Preliminaries

We use the word RAM model with a word size of Ω(lg n) for an integer n ≥ 1.
We work in the restore model [32], in which algorithms are allowed to overwrite the input,
as long as they can restore the input to its original form.

Strings: Let T be a text of length n whose characters are drawn from an integer
alphabet Σ of size σ = nO(1). A bigram is an element of Σ2. The frequency of a bigram B
in T is the number of non-overlapping occurrences of B in T, which is at most |T|/2.
For instance, the frequency of the bigram aa ∈ Σ2 in the text T = a · · · a consisting of n a’s
is ⌊n/2⌋.

Re-Pair: We reformulate the recursive description in the Introduction by dividing a
Re-Pair construction algorithm into turns. Stipulating that Ti is the text after the i-th turn
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with i ≥ 1 and T0 := T ∈ Σ+
0 with Σ0 := Σ, Re-Pair replaces one of the most frequent

bigrams (ties are broken arbitrarily) in Ti−1 with a non-terminal in the i-th turn. Given this
bigram is bc ∈ Σ2

i−1, Re-Pair replaces all occurrences of bc with a new non-terminal Xi in

Ti−1 and sets Σi := Σi−1 ∪ {Xi} with σi := |Σi| to produce Ti ∈ Σ+
i . Since |Ti| ≤ |Ti−1| − 2,

Re-Pair terminates after m < n/2 turns such that Tm ∈ Σ+
m contains no bigram occurring

more than once.

2. Sequential Algorithm

A major task for producing the Re-Pair grammar is to count the frequencies of the
most frequent bigrams. Our work horse for this task is a frequency table. A frequency table
in Ti of length f stores pairs of the form (bc, x), where bc is a bigram and x the frequency of
bc in Ti. It uses f

⌈
lg(σ2

i ni/2)
⌉

bits of space since an entry stores a bigram consisting of two
characters from Σi and its respective frequency, which can be at most ni/2. Throughout
this paper, we use an elementary in-place sorting algorithm like heapsort:

Lemma 1 ([33]). An array of length n can be sorted in-place in O(n lg n) time.

2.1. Trade-Off Computation

Using the frequency tables, we present a solution with a trade-off parameter:

Lemma 2. Given an integer d with d ≥ 1, we can compute the frequencies of the d most fre-
quent bigrams in a text of length n whose characters are drawn from an alphabet of size σ in
O(max(n, d)n lg d/d) time using 2d

⌈
lg(σ2n/2)

⌉
+O(lg n) bits.

Proof. Our idea is to partition the set of all bigrams appearing in T into ⌈n/d⌉ subsets,
compute the frequencies for each subset, and finally, merge these frequencies. In detail,
we partition the text T = S1 · · · S⌈n/d⌉ into ⌈n/d⌉ substrings such that each substring has
length d (the last one has a length of at most d). Subsequently, we extend Sj to the left (only
if j > 1) such that Sj and Sj+1 overlap by one text position, for 1 ≤ j < ⌈n/d⌉. By doing so,
we take the bigram on the border of two adjacent substrings Sj and Sj+1 for each j < ⌈n/d⌉
into account. Next, we create two frequency tables F and F′, each of length d for storing the
frequencies of d bigrams. These tables are at the beginning empty. In what follows, we fill
F such that after processing Si, F stores the most frequent d bigrams among those bigrams
occurring in S1, . . . , Si while F′ acts as a temporary space for storing candidate bigrams
that can enter F.

With F and F′, we process each of the n/d substrings Sj as follows: Let us fix an
integer j with 1 ≤ j ≤ ⌈n/d⌉. We first put all bigrams of Sj into F′ in lexicographic order.
We can perform this within the space of F′ in O(d lg d) time since there are at most d
different bigrams in Sj. We compute the frequencies of all these bigrams in the complete
text T in O(n lg d) time by scanning the text from left to right while locating a bigram in
F′ in O(lg d) time with a binary search. Subsequently, we interpret F and F′ as one large
frequency table, sort it with respect to the frequencies while discarding duplicates such that
F stores the d most frequent bigrams in T[1..jd]. This sorting step can be done in O(d lg d)
time. Finally, we clear F′ and are done with Sj. After the final merge step, we obtain the d
most frequent bigrams of T stored in F.

Since each of theO(n/d)merge steps takesO(d lg d+n lg d) time, we need:O(max(d, n) ·
(n lg d)/d) time. For d ≥ n, we can build a large frequency table and perform one scan to
count the frequencies of all bigrams in T. This scan and the final sorting with respect to the
counted frequencies can be done in O(n lg n) time.

2.2. Algorithmic Ideas

With Lemma 2, we can compute Tm inO(mn2 lg d/d) time with additional 2d
⌈
lg(σ2

mn/2)
⌉

bits of working space on top of the text for a parameter d with 1 ≤ d ≤ n. (The variable τ
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used in the abstract and in the introduction is interchangeable with σm, i.e., τ = σm.) In the
following, we show how this leads us to our first algorithm computing Re-Pair:

Theorem 1. We can compute Re-Pair on a string of length n inO(n2) time with max((n/c) lg n,
n⌈lg τ⌉) + O(lg n) bits of working space including the text space as a rewritable part in the
working space, where c ≥ 1 is a fixed constant and τ = σm is the sum of the alphabet size σ and the
number of non-terminal symbols.

In our model, we assume that we can enlarge the text Ti from ni⌈lg σi⌉ bits to
ni⌈lg σi+1⌉ bits without additional extra memory. Our main idea is to store a growing
frequency table using the space freed up by replacing bigrams with non-terminals. In de-
tail, we maintain a frequency table F in Ti of length fk for a growing variable fk, which
is set to f0 := O(1) in the beginning. The table F takes fk

⌈
lg(σ2

i n/2)
⌉

bits, which is
O(lg(σ2n)) = O(lg n) bits for k = 0. When we want to query it for a most frequent bigram,
we linearly scan F in O( fk) = O(n) time, which is not a problem since (a) the number of
queries is m ≤ n and (b) we aim for O(n2) as the overall running time. A consequence is
that there is no need to sort the bigrams in F according to their frequencies, which simplifies
the following discussion.

Frequency table F: With Lemma 2, we can compute F inO(n max(n, fk) lg fk/ fk) time.
Instead of recomputing F on every turn i, we want to recompute it only when it no longer
stores a most frequent bigram. However, it is not obvious when this happens as replacing
a most frequent bigram during a turn (a) removes this entry in F and (b) can reduce the
frequencies of other bigrams in F, making them possibly less frequent than other bigrams
not tracked by F. Hence, the variable i for the i-th turn (creating the i-th non-terminal)
and the variable k for recomputing the frequency table F the (k + 1)-st time are loosely
connected. We group together all turns with the same fk and call this group the k-th round
of the algorithm. At the beginning of each round, we enlarge fk and create a new F with
a capacity for fk bigrams. Since a recomputation of F takes much time, we want to end a
round only if F is no longer useful, i.e., when we no longer can guarantee that F stores a
most frequent bigram. To achieve our claimed time bounds, we want to assign all m turns
to O(lg n) different rounds, which can only be done if fk grows sufficiently fast.

Algorithm outline: At the beginning of the k-th round and the i-th turn, we compute
the frequency table F storing fk bigrams and keep additionally the lowest frequency of F
as a threshold tk, which is treated as a constant during this round. During the computation
of the i-th turn, we replace the most frequent bigram (say, bc ∈ Σ2

i ) in the text Ti with a
non-terminal Xi+1 to produce Ti+1. Thereafter, we remove bc from F and update those
frequencies in F, which were decreased by the replacement of bc with Xi+1 and add each
bigram containing the new character Xi+1 into F if its frequency is at least tk. Whenever a
frequency in F drops below tk, we discard it. If F becomes empty, we move to the (k + 1)-st
round and create a new F for storing fk+1 frequencies. Otherwise (F still stores an entry),
we can be sure that F stores a most frequent bigram. In both cases, we recurse with the
(i + 1)-st turn by selecting the bigram with the highest frequency stored in F. We show in
Algorithm 1 the pseudo code of this outlined algorithm. We describe in the following how
we update F and how large fk+1 can become at least.

2.3. Algorithmic Details

Suppose that we are in the k-th round and in the i-th turn. Let tk be the lowest
frequency in F computed at the beginning of the k-th round. We keep tk as a constant
threshold for the invariant that all frequencies in F are at least tk during the k-th round.
With this threshold, we can assure in the following that F is either empty or stores a most
frequent bigram.

Now suppose that the most frequent bigram of Ti is bc ∈ Σ2
i , which is stored in F.

To produce Ti+1 (and hence advancing to the (i + 1)-st turn), we enlarge the space of Ti

from ni⌈lg σi⌉ to ni⌈lg σi+1⌉ and replace all occurrences of bc in Ti with a new non-terminal
Xi+1. Subsequently, we would like to take the next bigram of F. For that, however, we
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Algorithm 1: Algorithmic outline of our proposed algorithm working on a
text T with a growing frequency table F. The constants αi and βi are explained
in Section 2.3. The same section shows that the outer while loop is executed
O(lg n) times.

1 k← 0, i← 0
2 f0 ← O(1)
3 T0 ← T
4 while highest frequency of a bigram in T is greater than one do ⊲ during the k-th

round

5 F ← frequency table of Lemma 2 with d := fk

6 tk ← minimum frequency stored in F
7 while F 6= ∅ do ⊲ during the i-th turn

8 bc←most frequent bigram stored in F
9 Ti+1 ← Ti.replace(bc, Xi+1) ⊲ create rule Xi+1 → bc

10 i← i + 1 ⊲ introduce the (i + 1)-th turn

11 remove all bigrams with frequency lower than tk from F
12 add new bigrams to F having Xi as left or right character and a frequency

of at least tk

13 fk+1 ← fk + max(2/βi, ( fk − 1)/(2βi))/αi

14 k← k + 1 ⊲ introduce the (k + 1)-th round

15 Invariant: i = m (the number of non-terminals)

need to update the stored frequencies in F. To see this necessity, suppose that there is an
occurrence of abcd with two characters a, d ∈ Σi in Ti. By replacing bc with Xi+1,

1. the frequencies of ab and cd decrease by one (for the border case a = b = c (resp. b = c

= d), there is no need to decrement the frequency of ab (resp. cd)), and
2. the frequencies of aXi+1 and Xi+1d increase by one.

Updating F. We can take care of the former changes (1) by decreasing the respective
bigram in F (in the case that it is present). If the frequency of this bigram drops below the
threshold tk, we remove it from F as there may be bigrams with a higher frequency that are
not present in F. To cope with the latter changes (2), we track the characters adjacent to
Xi+1 after the replacement, count their numbers, and add their respective bigrams to F if
their frequencies are sufficiently high. In detail, suppose that we have substituted bc with
Xi+1 exactly h times. Consequently, with the new text Ti+1 we have additionally h lg σi+1

bits of free space (the free space is consecutive after shifting all characters to the left), which
we call D in the following. Subsequently, we scan the text and put the characters of Σi+1

appearing to the left of each of the h occurrences of Xi+1 into D. After sorting the characters
in D lexicographically, we can count the frequency of aXi+1 for each character a ∈ Σi+1

preceding an occurrence of Xi+1 in the text Ti+1 by scanning D linearly. If the obtained
frequency of such a bigram aXi+1 is at least as high as the threshold tk, we insert aXi+1

into F and subsequently discard a bigram with the currently lowest frequency in F if the
size of F has become fk + 1. In the case that we visit a run of Xi+1’s during the creation
of D, we must take care of not counting the overlapping occurrences of Xi+1Xi+1. Finally,
we can count analogously the occurrences of Xi+1d for all characters d ∈ Σi succeeding an
occurrence of Xi+1.

Capacity of F: After the above procedure, we update the frequencies of F. When F
becomes empty, all bigrams stored in F are replaced or have a frequency that becomes less
than tk. Subsequently, we end the k-th round and continue with the (k + 1)-st round by (a)
creating a new frequency table F with capacity fk+1 and (b) setting the new threshold tk+1

to the minimal frequency in F. In what follows, we (a) analyze in detail when F becomes
empty (as this determines the sizes fk and fk+1) and (b) show that we can compensate
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the number of discarded bigrams with an enlargement of F’s capacity from fk bigrams to
fk+1 bigrams for the sake of our aimed total running time.

Next, we analyze how many characters we have to free up (i.e., how many bigram
occurrences we have to replace) to gain enough space for storing an additional frequency.
Let δi := lg(σ2

i+1ni/2) be the number of bits needed to store one entry in F, and let
βi := min(δi/ lg σi+1, cδi/ lg n) be the minimum number of characters that need to be
freed to store one frequency in this space. To understand the value of βi, we look at the
arguments of the minimum function in the definition of βi and simultaneously at the
maximum function in our aimed working space of max(n⌈lg σm⌉, (n/c) lg n) +O(lg n) bits
(cf. Theorem 1):

1. The first item in this maximum function allows us to spend lg σi+1 bits for each
freed character such that we obtain space for one additional entry in F after freeing
δi/ lg σi+1 characters.

2. The second item allows us to use lg n additional bits after freeing up c characters.
This additional treatment helps us to let fk grow sufficiently fast in the first steps to
save our O(n2) time bound, as for sufficiently small alphabets and large text sizes,
lg(σ2n/2)/ lg σ = O(lg n), which means that we might run the first O(lg n) turns
with fk = O(1) and, therefore, already spend O(n2 lg n) time. Hence, after freeing up
cδi/ lg n characters, we have space to store one additional entry in F.

With βi = min(δi/ lg σi+1, cδi/ lg n) = O(logσ n) ∩ O(logn σ) = O(1), we have the
sufficient condition that replacing a constant number of characters gives us enough space
for storing an additional frequency.

If we assume that replacing the occurrences of a bigram stored in F does not decrease
the other frequencies stored in F, the analysis is now simple: Since each bigram in F
has a frequency of at least two, fk+1 ≥ fk + fk/βi. Since βi = O(1), this lets fk grow
exponentially, meaning that we need O(lg n) rounds. In what follows, we show that this is
also true in the general case.

Lemma 3. Given that the frequency of all bigrams in F drops below the threshold tk after replacing
the most frequent bigram bc, then its frequency has to be at least max(2, |F| − 1/2), where |F| ≤ fk

is the number of frequencies stored in F.

Proof. If the frequency of bc in Ti is x, then we can reduce at most 2x frequencies of
other bigrams (both the left character and the right character of each occurrence of bc
can contribute to an occurrence of another bigram). Since a bigram must occur at least
twice in Ti to be present in F, the frequency of bc has to be at least max(2, ( fk − 1)/2) for
discarding all bigrams of F.

Suppose that we have enough space available for storing the frequencies of αi fk

bigrams, where αi is a constant (depending on σi and ni) such that F and the working
space of Lemma 2 with d = fk can be stored within this space. With βi and Lemma 3 with
|F| = fk, we have:

αi fk+1 = αi fk + max(2/βi, ( fk − 1)/(2βi))

= αi fk max(1 + 2/(αiβi fk), 1 + 1/(2αiβi)− 1/(2αiβi fk))

≥ αi fk(1 + 2/(5αiβi)) =: γiαi fk with γi := 1 + 2/(5αiβi),

where we use the equivalence 1 + 2/(αiβi fk) = 1 + 1/(2αiβi)− 1/(2αiβi fk) ⇔ 5 = fk to
estimate the two arguments of the maximum function.

Since we let fk grow by a factor of at least γ := min1≤i≤m γi > 1 for each recomputa-
tion of F, fk = Ω(γk), and therefore, fk = Θ(n) after k = O(lg n) steps. Consequently, after
reaching k = O(lg n), we can iterate the above procedure a constant number of times to
compute the non-terminals of the remaining bigrams occurring at least twice.
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Time analysis: In total, we have O(lg n) rounds. At the start of the k-th round,
we compute F with the algorithm of Lemma 2 with d = fk on a text of length at most n− fk

in O(n(n− fk) · lg fk/ fk) time with fk ≤ n. Summing this up, we get:

O
(O(lg n)

∑
k=0

n− fk

fk
n lg fk

)

= O
(

n2
lg n

∑
k

k

γk

)

= O
(

n2
)

time. (1)

In the i-th turn, we update F by decreasing the frequencies of the bigrams affected by
the substitution of the most frequent bigram bc with Xi+1. For decreasing such a frequency,
we look up its respective bigram with a linear scan in F, which takes fk = O(n) time.
However, since this decrease is accompanied with a replacement of an occurrence of bc, we
obtain O(n2) total time by charging each text position with O(n) time for a linear search
in F. With the same argument, we can bound the total time for sorting the characters in
D to O(n2) overall time: Since we spend O(h lg h) time on sorting h characters preceding
or succeeding a replaced character and O( fk) = O(n) time on swapping a sufficiently
large new bigram composed of Xi+1 and a character of Σi+1 with a bigram with the lowest
frequency in F, we charge each text position again with O(n) time. Putting all time bounds
together gives the claim of Theorem 1.

2.4. Storing the Output In-Place

Finally, we show that we can store the computed grammar in text space. More
precisely, we want to store the grammar in an auxiliary array A packed at the end of the
working space such that the entry A[i] stores the right-hand side of the non-terminal Xi,
which is a bigram. Thus, the non-terminals are represented implicitly as indices of the
array A. We therefore need to subtract 2 lg σi bits of space from our working space αi fk

after the i-th turn. By adjusting αi in the above equations, we can deal with this additional
space requirement as long as the frequencies of the replaced bigrams are at least three (we
charge two occurrences for growing the space of A).

When only bigrams with frequencies of at most two remain, we switch to a simpler
algorithm, discarding the idea of maintaining the frequency table F: Suppose that we
work with the text Ti. Let λ be a text position, which is one in the beginning, but will be
incremented in the following turns while holding the invariant T[1..λ] that does not contain
a bigram of frequency two. We scan Ti[λ..n] linearly from left to right and check, for each
text position j, whether the bigram Ti[j]Ti[j + 1] has another occurrence Ti[j

′]Ti[j
′ + 1] =

Ti[j]Ti[j + 1] with j′ > j + 1, and if so,

(a) append Ti[j]Ti[j + 1] to A,
(b) replace Ti[j]Ti[j + 1] and Ti[j

′]Ti[j
′ + 1] with a new non-terminal Xi+1 to transform

Ti to Ti+1, and
(c) recurse on Ti+1 with λ := j until no bigram with frequency two is left.

The position λ, which we never decrement, helps us to skip over all text positions
starting with bigrams with a frequency of one. Thus, the algorithm spends O(n) time for
each such text position and O(n) time for each bigram with frequency two. Since there are
at most n such bigrams, the overall running time of this algorithm is O(n2).

Remark 1 (Pointer machine model). Refraining from the usage of complicated algorithms, our
algorithm consists only of elementary sorting and scanning steps. This allows us to run our
algorithm on a pointer machine, obtaining the same time bound of O(n2). For the space bounds, we
assume that the text is given in n words, where a word is large enough to store an element of Σm or
a text position.
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2.5. Step-by-Step Execution

Here, we present an exemplary execution of the first turn (of the first round) on
the input T = cabaacabcabaacaaabcab. We visualize each step of this turn as a row in
Figure 1. A detailed description of each row follows:

Row 1: Suppose that we have computed F, which has the constant number of entries f0 = 3
(in the later turns when the size fk becomes larger, F will be put in the text space).
The highest frequency is five achieved by ab and ca. The lowest frequency repre-
sented in F is three, which becomes the threshold t0 for a bigram to be present in F
such that bigrams whose frequencies drop below t0 are removed from F. This thresh-
old is a constant for all later turns until F is rebuilt (in the following round). During
Turn 1, the algorithm proceeds now as follows:

Row 2: Choose ab as a bigram to replace with a new non-terminal X1 (break ties arbitrar-
ily). Replace every occurrence of ab with X1 while decrementing frequencies in F
according to the neighboring characters of the replaced occurrence.

Row 3: Remove from F every bigram whose frequency falls below the threshold. Obtain
space for D by aligning the compressed text T1 (the process of Row 2 and Row 3 can
be done simultaneously).

Row 4: Scan the text and copy each character preceding an occurrence of X1 in T1 to D.

Row 5: Sort characters in D lexicographically.

Row 6: Insert new bigrams (consisting of a character of D and X1) whose frequencies are
at least as large as the threshold.

Row 7: Scan the text again and copy each character succeeding an occurrence of X1 in T1

to D (symmetric to Row 4).

Row 8: Sort all characters in D lexicographically (symmetric to Row 5).

Row 9: Insert new bigrams whose frequencies are at least as large as the threshold (sym-
metric to Row 6).

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

1 c a b a a c a b c a b a a c a a a b c a b ab: 5 ca: 5 aa: 3

2 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 ab: 0 ca: 1 aa: 3

3 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 aa: 3

4 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 c c c a c aa: 3

5 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 a c c c c aa: 3

6 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 cX 1 : 4 aa: 3

7 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 a c a c cX 1 : 4 aa: 3

8 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 a a c c cX 1 : 4 aa: 3

9 c X 1 a a c X 1 c X 1 a a c a a X 1 c X 1 cX 1 : 4 aa: 3

D

F

Figure 1. Step-by-step execution of the first turn of our algorithm on the string T =

cabaacabcabaacaaabcab. The turn starts with the memory configuration given in Row 1. Posi-

tions 1 to 21 are text positions, and Positions 22 to 24 belong to F ( f0 = 3, and it is assumed that a

frequency fits into a text entry). Subsequent rows depict the memory configuration during Turn 1.

A comment on each row is given in Section 2.5.

2.6. Implementation

At https://github.com/koeppl/repair-inplace, we provide a simplified implemen-
tation in C++17. The simplification is that we (a) fix the bit width of the text space to 16
bit and (b) assume that Σ is the byte alphabet. We further skip the step increasing the bit
width of the text from lg σi to lg σi+1. This means that the program works as long as the
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characters of Σm fit into 16 bits. The benchmark, whose results are displayed in Table 1,
was conducted on a Mac Pro Server with an Intel Xeon CPU X5670 clocked at 2.93 GHz
running Arch Linux. The implementation was compiled with gcc-8.2.1 in the highest op-
timization mode -O3. Looking at Table 1, we observe that the running time is super-linear
to the input size on all text instances, which we obtained from the Pizza&Chili corpus (
http://pizzachili.dcc.uchile.cl/). We conducted the same experiments with an implemen-
tation of Gonzalo Navarro (https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz)
in Table 2 with considerably better running times while restricting the algorithm to use 1
MB of RAM during execution. Table 3 gives some characteristics about the used data sets.
We see that the number of rounds is the number of turns plus one for every unary string

a2k
with an integer k ≥ 1 since the text contains only one bigram with a frequency larger

than two in each round. Replacing this bigram in the text makes F empty such that the
algorithm recomputes F after each turn. Note that the number of rounds can drop while
scaling the prefix length based on the choice of the bigrams stored in F.

Table 1. Experimental evaluation of our implementation and the implementation of Navarro described in Section 2.6. Table entries are

running times in seconds. The last line is the benchmark on the unary string aa · · · a.

Our Implementation Implementation of Navarro

Prefix Size in KiB

Data Set 64 128 256 512 1024 64 128 256 512 1024

ESCHERICHIA_COLI 20.68 130.47 516.67 1708.02 10,112.47 0.01 0.02 0.07 0.18 0.29
CERE 13.69 90.83 443.17 2125.17 9185.58 0.01 0.02 0.04 0.16 0.22
COREUTILS 12.88 75.64 325.51 1502.89 5144.18 0.01 0.05 0.05 0.14 0.29
EINSTEIN.DE.TXT 19.55 88.34 181.84 805.81 4559.79 0.01 0.04 0.08 0.10 0.25
EINSTEIN.EN.TXT 21.11 78.57 160.41 900.79 4353.81 0.01 0.02 0.05 0.21 0.51
INFLUENZA 41.01 160.68 667.58 2630.65 10,526.23 0.03 0.02 0.05 0.11 0.36
KERNEL 20.53 101.84 208.08 1575.48 5067.80 0.01 0.04 0.09 0.18 0.27
PARA 20.90 175.93 370.72 2826.76 9462.74 0.01 0.01 0.08 0.12 0.35
WORLD_LEADERS 11.92 21.82 167.52 661.52 1718.36 0.01 0.01 0.06 0.11 0.25

aa · · · a 0.35 0.92 3.90 14.16 61.74 0.01 0.01 0.05 0.05 0.12

Table 2. Experimental evaluation of the implementation of Navarro. Table entries are running times

in seconds.

Prefix Size in KiB

Data Set 64 128 256 512 1024

ESCHERICHIA_COLI 0.01 0.02 0.07 0.18 0.29
CERE 0.01 0.02 0.04 0.16 0.22
COREUTILS 0.01 0.05 0.05 0.14 0.29
EINSTEIN.DE.TXT 0.01 0.04 0.08 0.10 0.25
EINSTEIN.EN.TXT 0.01 0.02 0.05 0.21 0.51
INFLUENZA 0.03 0.02 0.05 0.11 0.36
KERNEL 0.01 0.04 0.09 0.18 0.27
PARA 0.01 0.01 0.08 0.12 0.35
WORLD_LEADERS 0.01 0.01 0.06 0.11 0.25
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Table 3. Characteristics of our data sets used in Section 2.6. The number of turns and rounds are

given for each of the prefix sizes 128, 256, 512, and 1024 KiB of the respective data sets. The number

of turns reflecting the number of non-terminals is given in units of thousands. The turns of the unary

string aa · · · a are in plain units (not divided by thousand).

Turns/1000 Rounds
Prefix Size in KiB Prefix Size in KiB

Data Set σ 26 27 28 29 210 26 27 28 29 210

ESCHERICHIA_COLI 4 1.8 3.2 5.6 10.3 18.1 6 9 9 12 12
CERE 5 1.4 2.8 5.0 9.2 15.1 13 14 14 14 14
COREUTILS 113 4.7 6.7 10.2 16.1 26.5 15 15 15 14 14
EINSTEIN.DE.TXT 95 1.7 2.8 3.7 5.2 9.7 14 14 15 16 16
EINSTEIN.EN.TXT 87 3.3 3.5 3.8 4.5 8.6 16 15 15 15 17
INFLUENZA 7 2.5 3.7 9.5 13.4 22.1 11 12 14 13 15
KERNEL 160 4.5 8.0 13.9 24.5 43.7 10 11 14 14 13
PARA 5 1.8 3.2 5.8 10.1 17.6 12 12 13 13 14
WORLD_LEADERS 87 2.6 4.3 6.1 10.0 42.1 11 11 11 11 14

aa · · · a 1 15 16 17 18 19 16 17 18 19 20

3. Bit-Parallel Algorithm

In the case that τ = σm is o(n) (and therefore, σ = o(n)), a word-packing approach
becomes interesting. We present techniques speeding up the previously introduced opera-
tions on chunks of O(logτ n) characters from O(logτ n) time to O(lg lg lg n) time. In the
end, these techniques allow us to speed up the sequential algorithm of Theorem 1 from
O(n2) time to the following:

Theorem 2. We can compute Re-Pair on a string of length n inO(n2 lg logτ n lg lg lg n/ logτ n)
time with max((n/c) lg n, n⌈lg τ⌉) + O(lg n) bits of working space including the text space,
where c ≥ 1 is a fixed constant and τ = σm is the sum of the alphabet size σ and the number of
non-terminal symbols.

Note that the O(lg lg lg n) time factor is due to the popcount function [34]
(Algorithm 1), which has been optimized to a single instruction on modern computer archi-
tectures. Our toolbox consists of several elementary instructions shown in Figure 2. There,
msb(X) can be computed in constant time algorithm using O(lg n) bits [35] (Section 5).
The last two functions in Figure 2 are explained in Figure 3.

3.1. Broadword Search

First, we deal with accelerating the computation of the frequency of a bigram in T by
exploiting broadword search thanks to the word RAM model. We start with the search of
single characters and subsequently extend this result to bigrams:

Operation Description

X ≪ j shift X j positions to the left
X ≫ j shift X j positions to the right
¬X bitwise NOT of X
X⊗Y bitwise XOR of X and Y
−1 bit vector consisting only of one bits
msb(X) returns the position of the most significant set bit of X, i.e., ⌊lg X⌋+ 1;
rmPreRun(X) sets all bits of the maximal prefix of consecutive ones to zero
rmSufRun(X) sets all bits of the maximal suffix of consecutive ones to zero

Figure 2. Operations used in Figures 4 and 5 for two bit vectors X and Y. All operations can be

computed in constant time. See Figure 3 for an example of rmSufRun and rmPreRun.
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rmPreRun(X)

Operation Example

X 11100110

¬X 00011001

1≪ (1 + msb(¬X)) 00100000

(1≪ (1 + msb(¬X)))− 1 00011111

((1≪ (1 + msb(¬X)))− 1) & X 00000110

rmSufRun(X)

Operation Example

X 01100111

¬X 10011000

¬X− 1 10010111

(¬X− 1) & X 00000111

¬((¬X− 1) & X) 11111000

¬((¬X− 1) & X) & X 01100000

Figure 3. Step-by-step execution of rmPreRun(X) and rmSufRun(X) introduced in Figure 2 on a bit

vector X.

Lemma 4. We can count the occurrences of a character c ∈ Σ in a string of length O(logσ n) in
O(lg lg lg n) time.

Proof. Let q be the largest multiple of ⌈lg σ⌉ fitting into a computer word, divided by

⌈lg σ⌉. Let S ∈ Σ∗ be a string of length q. Our first task is to compute a bit mask of
length q⌈lg σ⌉ marking the occurrences of a character c ∈ Σ in S with a ‘1’. For that, we
follow the constant time broadword pattern matching of Knuth [36] (Section 7.1.3); see
https://github.com/koeppl/broadwordsearch for a practical implementation. Let H and
L be two bit vectors of length ⌈lg σ⌉ having marked only the most significant or the least
significant bit, respectively. Let Hq and Lq denote the q times concatenation of H and L,
respectively. Then, the operations in Figure 4 yield an array X of length q with:

X[i] =

{

2⌈lg σ⌉ − 1 if S[i] = c,

0 otherwise,
(2)

where each entry of X has ⌈lg σ⌉ bits.

Operation Description Example

read S 101010000→ S
X ← S⊗ cq match S with cq; X[i] = 0 ⇔

S[i] = c ⊗
=

101010000 = S
010010010

111000010→ X

Y ← X− Lq

−
=

111000010 = X
001001001

101111001→ Y

X ← Y &¬X X[i] & 2⌈lg σ⌉ − 1 = 1 ⇔
S[i] = c &

=

101111001 = Y
000111101

000111001→ X

X ← X & Hq X[i] = 0⇔ S[i] 6= c
&
=

000111001 = X
100100100

000100000→ X

X ← (X− (X ≫ (⌈lg σ⌉ − 1))) | X X as in Equation (2)
−
=
|
=

000100000 = X
000001000

000011000

000100000

000111000→ X

Figure 4. Matching all occurrences of a character in a string S fitting into a computer word in constant

time by using bit-parallel instructions. For the last step, special care has to be taken when the last

character of S is a match, as shifting X ⌈lg σ⌉ bits to the right might erase a ‘1’ bit witnessing the

rightmost match. In the description column, X is treated as an array of integers with bit width ⌈lg σ⌉.
In this example, S = 101010000, c has the bit representation 010 with lg σ = 3, and q = 3.
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To obtain the number of occurrences of c in S, we use the popcount operation returning
the number of zero bits in X and divide the result by ⌈lg σ⌉. The popcount instruction
takes O(lg lg lg n) time ([34] Algorithm 1).

Having Lemma 4, we show that we can compute the frequency of a bigram in T in
O(n lg lg lg n/ logσ n) time. For that, we interpret T ∈ Σn of length n as a text T ∈ (Σ2)⌈n/2⌉

of length ⌈n/2⌉. Then, we partition T into strings fitting into a computer word and call
each string of this partition a chunk. For each chunk, we can apply Lemma 4 by treating
a bigram c ∈ Σ2 as a single character. The result is, however, not the frequency of the
bigram c in general. For computing the frequency a bigram bc ∈ Σ2, we distinguish the
cases b 6= c and b = c.

Case b 6= c: By applying Lemma 4 to find the character bc ∈ Σ2 in a chunk S
(interpreted as a string of length ⌊q/2⌋ on the alphabet Σ2), we obtain the number of
occurrences of bc starting at odd positions in S. To obtain this number for all even positions,
we apply the procedure to dS with d ∈ Σ \ {b, c}. Additional care has to be taken at the
borders of each chunk matching the last character of the current chunk and the first
character of the subsequent chunk with b and c, respectively.

Case b = c: This case is more involving as overlapping occurrences of bb can occur
in S, which we must not count. To this end, we watch out for runs of b’s, i.e., substrings of
maximal lengths consisting of the character b (here, we consider also maximal substrings
of b with length one as a run). We separate these runs into runs ending either at even or
at odd positions. We do this because the frequency of bb in a run of b’s ending at an even
(resp. odd) position is the number of occurrences of bb within this run ending at an even
(resp. odd) position. We can compute these positions similarly to the approach for b 6= c by
first (a) hiding runs ending at even (resp. odd) positions and then (b) counting all bigrams
ending at even (resp. odd) positions. Runs of b’s that are a prefix or a suffix of S are handled
individually if S is neither the first nor the last chunk of T, respectively. That is because
a run passing a chunk border starts and ends in different chunks. To take care of those
runs, we remember the number of b’s of the longest suffix of every chunk and accumulate
this number until we find the end of this run, which is a prefix of a subsequent chunk.
The procedure for counting the frequency of bb inside S is explained with an example in
Figure 5. With the aforementioned analysis of the runs crossing chunk borders, we can
extend this procedure to count the frequency of bb in T. We conclude:

Lemma 5. We can compute the frequency of a bigram in a string T of length n whose characters
are drawn from an alphabet of size σ in O(n lg lg lg n/ logσ n) time.

3.2. Bit-Parallel Adaption

Similarly to Lemma 2, we present an algorithm computing the d most frequent bigrams,
but now with the word-packed search of Lemma 5.

Lemma 6. Given an integer d with d ≥ 1, we can compute the frequencies of the d most fre-
quent bigrams in a text of length n whose characters are drawn from an alphabet of size σ in
O(n2 lg lg lg n/ logσ n) time using d

⌈
lg(σ2n/2)

⌉
+O(lg n) bits.

Proof. We allocate a frequency table F of length d. For each text position i with 1 ≤ i ≤ n−
1, we compute the frequency of T[i]T[i + 1] in O(n lg lg lg n/ logσ n) time with Lemma 5.
After computing a frequency, we insert it into F if it is one of the d most frequent bigrams
among the bigrams we have already computed. We can perform the insertion in O(lg d)
time if we sort the entries of F by their frequencies, obtaining O((n lg lg lg n/ logσ n +
lg d)n) total time.
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Operation Description Example

input S bbdbbdcbbbdbb = S
X ← find(b, S) search b in S 1101100111011→ X
X ← rmPreRun(X) erase prefix of b’s 0001100111011→ X
M← rmSufRun(X) erase suffix of b’s 0001100111000→ M
B← findBigram(01, M) & M starting of each b

run
0001000100000→ B

E← findBigram(10, M) & M end of each b run 0000100001000→ E
M← M &¬B trim head of runs 0000100011000→ M

X ← B− (E & (01)q/2) bit mask for all runs
ending at even posi-
tions

−

=

0001000100000 = B
(0000100001000&
0101010101010)
0001000011000→ X

X ← M & X occurrences of all
bs belonging to
runs ending at even
positions

&
=

0001000011000 = X
0000100011000 = M
0000000011000→ X

popcount(X & (01)q/2) frequency of all bbs
belonging to runs
ending at even po-
sitions

&
=

0000000011000 = X
0101010101010

0000000001000

X ← B− (E & (10)q/2) bit mask for all runs
ending at odd posi-
tions

−

=

0001000100000 = B
(0000100001000&
1010101010101)
0000100100000→ X

X ← M & X occurrences of all
bs belonging to
runs ending at odd
positions

&
=

0000100100000 = X
0000100011000 = M
0000100000000→ X

popcount(X & (10)q/2) frequency of all bbs
belonging to runs
ending at odd posi-
tions

&
=

0000100000000 = X
1010101010101

0000100000000

Figure 5. Finding a bigram bb in a string S of bit length q, where q is the largest multiple of 2⌈lg σ⌉
fitting into a computer word, divided by ⌈lg σ⌉. In the example, we represent the strings M, B, E,

and X as arrays of integers with bit width x := ⌈lg σ⌉ and write 1 and 0 for 1x and 0x, respectively.

Let findBigram(bc, X) := find(bc, X) | find(bc, dX) for d 6= b be the frequency of a bigram bc with

b 6= c as described in Section 3.1, where the function find returns the output described in Figure 4.

Each of the popcount queries gives us one occurrence as a result (after dividing the returned number

by ⌈lg σ⌉), thus the frequency of bb in S, without looking at the borders of S, is two. As a side note,

modern computer architectures allow us to shrink the 0x or 1x blocks to single bits by instructions

like _pext_u64 taking a single CPU cycle.

Studying the final time bounds of Equation (1) for the sequential algorithm of Section 2,
we see that we spend O(n2) time in the first turn, but spend less time in later turns. Hence,
we want to run the bit-parallel algorithm only in the first few turns until fk becomes so large
that the benefits of running Lemma 2 outweigh the benefits of the bit-parallel approach of
Lemma 6. In detail, for the k-th round, we set d := fk and run the algorithm of Lemma 6 on
the current text if d is sufficiently small, or otherwise the algorithm of Lemma 2. In total,
we obtain:
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O
(O(lg n)

∑
k=0

min

(
n− fk

fk
n lg fk,

(n− fk)
2 lg lg lg n

logτ n

))

= O
(

n2
lg n

∑
k=0

min

(
k

γk
,

lg lg lg n

logτ n

))

= O
(

n2 lg logτ n lg lg lg n

logτ n

)

time in total,

(3)

where τ = σm is the sum of the alphabet size σ and the number of non-terminals, and
k/γk > lg lg lg n/ logτ n⇔ k = O(lg(lg n/(lg τ lg lg lg n))).

To obtain the claim of Theorem 2, it is left to show that the k-th round with the bit-
parallel approach uses O(n2 lg lg lg n/ logτ n) time, as we now want to charge each text
position with O(n/ logτ n) time with the same amortized analysis as after Equation (1).
We target O(n/ logτ n) time for:

(1) replacing all occurrences of a bigram,
(2) shifting freed up text space to the right,
(3) finding the bigram with the highest or lowest frequency in F,
(4) updating or exchanging an entry in F, and
(5) looking up the frequency of a bigram in F.

Let x := ⌈lg σi+1⌉ and q be the largest multiple of x fitting into a computer word,
divided by x. For Item (1), we partition T into substrings of length q and apply Item
(1) to each such substring S. Here, we combine the two bit vectors of Figure 5 used for
the two popcount calls by a bitwise OR and call the resulting bit vector Y. Interpreting Y
as an array of integers of bit width x, Y has q entries, and it holds that Y[i] = 2x − 1 if
and only if S[i] is the second character of an occurrence of the bigram we want to replace.
(Like in Item (1), the case in which the bigram crosses a boundary of the partition of T
is handled individually). We can replace this character in all marked positions in S by a
non-terminal Xi+1 using x bits with the instruction (S & ¬Y) | ((Y & Lq) · Xi+1), where L
with |L| = x is the bit vector having marked only the least significant bit. Subsequently,
for Item (2), we erase all characters S[i] with Y[i + 1] = (Y ≪ x)[i] = 2x − 1 and move
them to the right of the bit chunk S sequentially. In the subsequent bit chunks, we can use
word-packed shifting. The sequential bit shift costs O(|S|) = O(logσi+1

n) time, but on an

amortized view, a deletion of a character is done at most once per original text position.
For the remaining points, our trick is to represent F by a minimum and a maximum

heap, both realized as array heaps. For the space increase, we have to lower αi (and γi)
adequately. Each element of an array heap stores a frequency and a pointer to a bigram
stored in a separate array B storing all bigrams consecutively. A pointer array P stores
pointers to the respective frequencies in both heaps for each bigram of B. The total data
structure can be constructed at the beginning of the k-th round in O( fk) time and hence
does not worsen the time bounds. While B solves Item (5), the two heaps with P solve Items
(3) and (4) even in O(lg fk) time.

In the case that we want to store the output in working space, we follow the description
of Section 2.4, where we now use word-packing to find the second occurrence of a bigram
in Ti in O(n/ logσi

n) time.

4. Computing MR-Re-Pair in Small Space

We can adapt our algorithm to compute the MR-Re-Pair grammar scheme proposed
by Furuya et al. [18]. The difference to Re-Pair is that MR-Re-Pair replaces the most
frequent maximal repeat instead of the most frequent bigram, where a maximal repeat is a
reoccurring substring of the text whose frequency decreases when extending it to the left
or to the right. (Here, we naturally extended the definition of frequency from bigrams to
substrings meaning the number of non-overlapping occurrences.) Our idea is to exploit
the fact that a most frequent bigram corresponds to a most frequent maximal repeat ([18],
Lemma 2). This means that we can find a most frequent maximal repeat by extending
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all occurrences of a most frequent bigram to their left and to their right until all are no
longer equal substrings. Although such an extension can be time consuming, this time is
amortized by the number of characters that are replaced on creating an MR-Re-Pair rule.
Hence, we conclude that we can compute MR-Re-Pair in the same space and time bounds
as our algorithms (Thms. 1 and 2) computing the Re-Pair grammar.

5. Parallel Algorithm

Suppose that we have p processors on a concurrent read concurrent write (CRCW)
machine, supporting in particular parallel insertions of elements and frequency updates in
a frequency table. In the parallel setting, we allow us to spend O(p lg n) bits of additional
working space such that each processor has an extra budget of O(lg n) bits. In our com-
putational model, we assume that the text is stored in p parts of equal lengths, which we
can achieve by padding up the last part with dummy characters to have n/p characters
for each processor, such that we can enlarge a text stored in n lg σ bits to n(lg σ + 1) bits in
max(1, n/p) time without extra memory. For our parallel variant computing Re-Pair, our
working horse is a parallel sorting algorithm:

Lemma 7 ([37]). We can sort an array of length n in O(max(n/p, 1) lg2 n) parallel time with
O(p lg n) bits of working space. The work is O(n lg2 n).

The parallel sorting allows us to state Lemma 2 in the following way:

Lemma 8. Given an integer d with d ≥ 1, we can compute the frequencies of the d most fre-
quent bigrams in a text of length n whose characters are drawn from an alphabet of size σ in
O(max(n, d)max(n/p, 1) lg2 d/d) time using 2d

⌈
lg(σ2n/2)

⌉
+O(p lg n) bits. The work is

O(max(n, d)n lg2 d/d).

Proof. We follow the computational steps of Lemma 2, but (a) divide a scan into p parts,
(b) conduct a scan in parallel but a binary search sequentially, and (c) use Lemma 7 for the
sorting. This gives us the following time bounds for each operation:

Operation Lemma 2 Parallel

fill F′ with bigrams O(d) O(max(d/p, 1))

sort F′ lexicographically O(d lg d) O(max(d/p, 1) lg2 d)

compute frequencies of F′ O(n lg d) O(n/p lg d)

merge F′ with F O(d lg d) O(max(d/p, 1) lg2 d)

The O(n/d) merge steps are conducted in the same way, yielding the bounds of this
lemma.

In our sequential model, we produce Ti+1 by performing a left shift of the gained space
after replacing all occurrences of a most frequent bigram with a new non-terminal Xi+1 such
that we accumulate all free space at the end of the text. As described in our computational
model, our text is stored as a partition of p substrings, each assigned to one processor.
Instead of gathering the entire free space at T’s end, we gather free space at the end of each
of these substrings. We bookkeep the size and location of each such free space (there are at
most p many) such that we can work on the remaining text Ti+1 like it would be a single
continuous array (and not fragmented into p substrings). This shape allows us to perform
the left shift in O(n/p) time, while spending O(p lg n) bits of space for maintaining the
locations of the free space fragments.
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For p ≤ n, exchanging Lemma 2 with Lemma 8 in Equation (1) gives:

O
(O(lg n)

∑
k=0

n− fk

fk

n

p
lg2 fk

)

= O
(

n2

p

lg n

∑
k

k2

γk

)

= O
(

n2

p

)

time in total.

It is left to provide an amortized analysis for updating the frequencies in F during
the i-th turn. Here, we can charge each text position with O(n/p) time, as we have the
following time bounds for each operation:

Operation Sequential Parallel

linearly scan F O( fk) O( fk/p)

linearly scan Ti O(ni) O(ni/p)

sort D with h = |D| O(h lg h) O(max(1, h/p) lg2 h)

The first operation in the above table is used, among others, for finding the bigram
with the lowest or highest frequency in F. Computing the lowest or highest frequency in F
can be done with a single variable pointing to the currently found entry with the lowest or
highest frequency during a parallel scan thanks to the CRCW model. In the concurrent read
exclusive write (CREW) model, concurrent writes are not possible. A common strategy lets
each processor compute the entry of the lowest or highest frequency within its assigned
range in F, which is then merged in a tournament tree fashion, causing O(lg p) additional
time.

Theorem 3. We can compute Re-Pair in O(n2/p) time with p ≤ n processors on a CRCW
machine with max((n/c) lg n, n⌈lg τ⌉) + O(p lg n) bits of working space including the text
space, where c ≥ 1 is a fixed constant and τ = σm is the sum of the alphabet size σ and the number
of non-terminal symbols. The work is O(n2).

6. Computing Re-Pair in External Memory

This part is devoted to the first external memory (EM) algorithms computing Re-Pair,
which is another way to overcome the memory limitation problem. We start with the
definition of the EM model, present an approach using a sophisticated heap data structure,
and another approach adapting our in-place techniques.

For the following, we use the EM model of Aggarwal and Vitter [38]. It features
fast internal memory (IM) holding up to M data words and slow EM of unbounded
size. The measure of the performance of an algorithm is the number of input and output
operations (I/Os) required, where each I/O transfers a block of B consecutive words
between memory levels. Reading or writing n contiguous words from or to disk requires
scan(n) = Θ(n/B) I/Os. Sorting n contiguous words requires sort(n) = O((n/B) ·
logM/B(n/B)) I/Os. For realistic values of n, B, and M, we stipulate that scan(n) <

sort(n)≪ n.
A simple approach is based on an EM heap maintaining the frequencies of all bigrams

in the text. A state-of-the-art heap is due to Jiang and Larsen [39] providing insertion,
deletion, and the retrieval of the maximum element in O(B−1 logM/B(N/B)) I/Os, where
N is the size of the heap. Since N ≤ n, inserting all bigrams takes at most sort(n) I/Os.
As there are at most n additional insertions, deletions, and maximum element retrievals,
this sums to at most 4 sort(n) I/Os. Given Re-Pair has m turns, we need to scan the text m
times to replace the occurrences of all m retrieved bigrams, triggering m ∑

m
i=1 scan(|Ti|) ≤

m scan(n) I/Os.
In the following, we show an EM Re-Pair algorithm that evades the use of complicated

data structures and prioritizes scans over sorting. This algorithm is based on our Re-Pair
algorithm. It uses Lemma 2 with d := Θ(M) such that F and F′ can be kept in RAM.
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This allows us to perform all sorting steps and binary searches in IM without additional
I/O. We only trigger I/O operations for scanning the text, which is done ⌈n/d⌉ times, since
we partition T into d substrings. In total, we spend at most mn/M scans for the algorithm
of Lemma 2. For the actual algorithm having m turns, we update F m times, during which
we replace all occurrences of a chosen bigram in the text. This gives us m scans in total.
Finally, we need to reason about D, which we create m times. However, D may be larger
than M, such that we may need to store it in EM. Given that Di is D in the i-th turn, we
sort D in EM, triggering sort(Di) I/Os. With the converse of Jensen’s inequality ([40],
Theorem B) (set there f (x) := n lg n), we obtain ∑

m
i=1 sort(|Di|) ≤ sort(n) +O(n logM/B 2)

total I/Os for all instances of D. We finally obtain:

Theorem 4. We can compute Re-Pair with min(4 sort(n), (mn/M) scan(n) + sort(n) +
O(n logM/B 2)) + m scan(n) I/Os in external memory.

The latter approach can be practically favorable to the heap based approach if m =
o(lg n) and mn/M = o(lg n), or if the EM space is also of major concern.

7. Heuristics for Practicality

The achieved quadratic or near-quadratic time bounds (Thms. 1 and 2) seem to convey
the impression that this work is only of purely theoretic interest. However, we provide here
some heuristics, which can help us to overcome the practical bottleneck at the beginning of
the execution, where only O(lg n) of bits of working space are available. In other words,
we want to study several heuristics to circumvent the need to call Lemma 2 with a small
parameter d, as such a case means a considerable time loss. Even a single call of Lemma 2
with a small d prevents the computation of Re-Pair of data sets larger than 1 MiB within a
reasonable time frame (cf. Section 2.6). We present three heuristics depending on whether
our space budget on top of the text space is within:

1. σ2
i lg ni bits,

2. ni lg(σi+1 + ni) bits, or
3. O(lg n) bits.

Heuristic 1. If σi is small enough such that we can spend σ2
i lg ni bits, then we can

count the frequencies of all bigrams in a table of σ2
i lg ni bits in O(n) time. Whenever we

reach a σj that lets σj lg nj grow outside of our budget, we have spent O(n) time in total
for reaching Tj from Ti as the costs for replacements can be amortized by twice of the
text length.

Heuristic 2. Suppose that we are allowed to use (ni − 1) lg(ni/2) = (ni − 1) lg ni −
ni +O(lg ni) bits in addition to the ni lg σi bits of the text Ti. We create an extra array F of
length ni − 1 with the aim that F[j] stores the frequency of T[j]T[j + 1] in T[1..j]. We can fill
the array in σi scans over Ti, costing us O(niσi) time. The largest number stored in F is the
most frequent bigram in T.

Heuristic 3. Finally, if the distribution of bigrams is skewed, chances are that one
bigram outnumbers all others. In such a case, we can use the following algorithm to find
this bigram:

Lemma 9. Given there is a bigram in Ti (0 ≤ i ≤ n) whose frequency is higher than the sum of
frequencies of all other bigrams, we can compute Ti+1 in O(n) time using O(lg n) bits.

Proof. We use the Boyer–Moore majority vote algorithm [41] for finding the most frequent
bigram in O(n) time with O(lg n) bits of working space.

A practical optimization of updating F as described in Section 2.3 could be to enlarge
F beyond fk instead of keeping its size. There, after a replacement of a bigram with a
non-terminal Xi+1, we insert those bigrams containing Xi+1 into F whose frequencies are
above tk while discarding bigrams of the lowest frequency stored in F to keep the size of F
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at fk. Instead of discarding these bigrams, we could just let F grow. We can let F grow by
using the space reserved for the frequency table F′ computed in Lemma 2 (remember the
definition of the constant αi). By doing so, we might extend the lifespan of a round.

8. Conclusions

In this article, we propose an algorithm computing Re-Pair in-place in sub-quadratic
time for small alphabet sizes. Our major tools are simple, which allows us to parallelize
our algorithm or adapt it in the external memory model.

This paper is an extended version of our paper published in The Prague Stringology
Conference 2020 [42] and our poster at the Data Compression Conference 2020 [43].
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Abstract: Text indexing is a classical algorithmic problem that has been studied for over four decades:

given a text T, pre-process it off-line so that, later, we can quickly count and locate the occurrences of

any string (the query pattern) in T in time proportional to the query’s length. The earliest optimal-

time solution to the problem, the suffix tree, dates back to 1973 and requires up to two orders of

magnitude more space than the plain text just to be stored. In the year 2000, two breakthrough

works showed that efficient queries can be achieved without this space overhead: a fast index be

stored in a space proportional to the text’s entropy. These contributions had an enormous impact

in bioinformatics: today, virtually any DNA aligner employs compressed indexes. Recent trends

considered more powerful compression schemes (dictionary compressors) and generalizations of

the problem to labeled graphs: after all, texts can be viewed as labeled directed paths. In turn, since

finite state automata can be considered as a particular case of labeled graphs, these findings created a

bridge between the fields of compressed indexing and regular language theory, ultimately allowing

to index regular languages and promising to shed new light on problems, such as regular expression

matching. This survey is a gentle introduction to the main landmarks of the fascinating journey that

took us from suffix trees to today’s compressed indexes for labeled graphs and regular languages.

Keywords: indexing; compressed data structures; labeled graphs

1. Introduction

Consider the classic algorithmic problem of finding the occurrences of a particular
string Π (a pattern) in a text T . Classic algorithms, such as Karp-Rabin’s [1], Boyer-Moore-
Galil’s [2], Apostolico-Giancarlo’s [3], and Knuth-Morris-Pratt’s [4], are optimal (the first
only in the expected case) when both the text and the pattern are part of the query: those
algorithms scan the text and find all occurrences of the pattern in linear time. What if
the text is known beforehand and only the patterns to be found are part of the query? In
this case, it is conceivable that preprocessing T off-line into a fast and small data structure
(an index) might be convenient over the above on-line solutions. As it turns out, this is
exactly the case. The full-text indexing problem (where full refers to the fact that we index
the full set of T ’s substrings) has been studied for over forty years and has reached a very
mature and exciting point: modern algorithmic techniques allow us to build text indexes
taking a space close to that of the compressed text and able to count/locate occurrences
of a pattern inside it in time proportional to the pattern’s length. Note that we have
emphasized two fundamental features of these data structures: query time and index space.
As shown by decades of research on the topic, these two dimensions are, in fact, strictly
correlated: the structure exploited to compress text is often the same that can be used also
to support fast search queries on it. Recent research has taken a step forward, motivated
by the increasingly complex structure of modern massive datasets: texts can be viewed as
directed labeled path graphs and compressed indexing techniques can be generalized to
more complex graph topologies. While compressed text indexing has already been covered
in the literature in excellent books [5,6] and surveys [7–9], the generalizations of these
advanced techniques to labeled graphs, dating back two decades, lack a single point of
reference despite having reached a mature state-of-the-art. The goal of this survey is to
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introduce the (non-expert) reader to the fascinating field that studies compressed indexes
for labeled graphs.

We start, in Section 2, with a quick overview of classical compressed text indexing
techniques: compressed suffix arrays and indexes for repetitive collections. This section
serves as a self-contained warm-up to fully understand the concepts contained in the next
sections. Section 3 starts with an overview of the problem of compressing graphs, with a
discussion on known lower bounds to the graph indexing problem, and with preliminary
solutions based on hypertext indexing. We then introduce prefix sorting and discuss its
extensions to increasingly complex graph topologies. Section 3.5 is devoted to the problem
of indexing trees, the first natural generalization of classical labeled paths (strings). Most
of the discussion in this section is spent on the eXtended Burrows-Wheeler Transform
(XBWT), a tree transformation reflecting the co-lexicographic order of the root-to-node
paths on the tree. We discuss how this transformation naturally supports subpath queries
and compression by generalizing the ideas of Section 2. Section 3.6 adds further diversity to
the set of indexable graph topologies by discussing the cases of sets of disjoints cycles and
de Bruijn graphs. All these cases are finally generalized in Section 3.7 with the introduction
of Wheeler graphs, a notion capturing the idea of totally-sortable labeled graph. This section
discusses the problem of compressing and indexing Wheeler graphs, as well as recognizing
and sorting them. We also spend a paragraph on the fascinating bridge that this technique
builds between compressed indexing and regular language theory by briefly discussing the
elegant properties of Wheeler languages: regular languages recognized by finite automata in
which state transition is a Wheeler graph. In fact, we argue that a useful variant of graph
indexing is regular language indexing: in many applications (for example, computational
pan-genomics [10]) one is interested in indexing the set of strings read on the paths of a
labeled graphs, rather than indexing a fixed graph topology. As a matter of fact, we will
see that the complexity of those two problems is quite different. Finally, Section 3.8 further
generalizes prefix-sorting to any labeled graph, allowing us to index any regular language.
The key idea of this generalization is to abandon total orders (of prefix-sorted states) in
favor of partial ones. We conclude our survey, in Section 4, with a list of open challenges in
the field.

Terminology

A string S of length n over alphabet Σ is a sequence of n elements from Σ. We use the
notation S[i] to indicate the i-th element of S, for 1 ≤ i ≤ n. Let a ∈ Σ and S ∈ Σ∗. We write
Sa to indicate the concatenation of S and a. A string can be interpreted as an edge-labeled
graph (a path) with n + 1 nodes connected by n labeled edges. In general, a labeled graph
G = (V, E, Σ, λ) is a directed graph with set of nodes V, set of edges E ⊆ V ×V, alphabet
Σ, and labeling function λ : E → Σ. Quantities n = |V| and e = |E| will indicate the
number of nodes and edges, respectively. We assume to work with an effective alphabet Σ

of size σ, that is, every c ∈ Σ is the label of some edge. In particular, σ ≤ e. We moreover
assume the alphabet to be totally ordered by an order we denote with ≤, and write a < b
when a ≤ b and a 6= b. In this survey, we consider two extensions of ≤ to strings (and,
later, to labeled graphs). The lexicographic order of two strings aS and a′S′ is defined as
a′S′ < aS if and only if either (i) a′ < a or (ii) a = a′ and S′ < S hold. The empty string ǫ is
always smaller than any non-empty string. Symmetrically, the co-lexicographic order of two
strings Sa and S′a′ is defined as S′a′ < Sa if and only if either (i) a′ < a or (ii) a = a′ and
S′ < S hold.

This paper deals with the indexed pattern matching problem: preprocess a text so
that, later all text occurrences of any query pattern Π ∈ Σm of length m can be efficiently
counted and located. These queries can be generalized to labeled graphs; we postpone the
exact definition of this generalization to Section 3.
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2. The Labeled Path Case: Indexing Compressed Text

Consider the text reported in Figure 1. For reasons that will be made clear later, we
append a special symbol $ at the end of the text, and assume that $ is lexicographically
smaller than all other characters. Note that we assign a different color to each distinct letter.

T = A T A T A G A T $
1 2 3 4 5 6 7 8 9

Figure 1. Running example used in this section.

The question is: how can we design a data structure that permits to efficiently find
the exact occurrences of (short) strings inside T ? In particular, one may wish to count the
occurrences of a pattern (for example, count(T , “AT”) = 3) or to locate them (for example,
locate(T , “AT”) = 1, 3, 7). As we will see, there are two conceptually different ways to
solve this problem. The first, sketched in Section 2.1, is to realize that every occurrence of
Π = “AT” in T is a prefix of a text suffix (for example: occurrence at position 7 of “AT”
is a prefix of the text suffix “AT”). The second, sketched in Section 2.2, is to partition the
text into non-overlapping phrases appearing elsewhere in the text and divide the problem
into the two sub-problems of (i) finding occurrences that overlap two adjacent phrases
and (ii) finding occurrences entirely contained in a phrase. Albeit conceptually different,
both approaches ultimately resort to suffix sorting: sorting lexicographically a subset of
the text’s suffixes. The curious reader can refer to the excellent reviews of Mäkinen and
Navarro [7] and Navarro [8,9] for a much deeper coverage of the state-of-the-art relative to
both approaches.

2.1. The Entropy Model: Compressed Suffix Arrays

The sentence every occurrence of Π is the prefix of a suffix of T leads very quickly to a
simple and time-efficient solution to the full-text indexing problem. Note that a suffix can
be identified by a text position: for example, suffix “GAT$” corresponds to position 6. Let
us sort text suffixes in lexicographic order. We call the resulting integer array the suffix array
( SA) of T ; see Figure 2. This time, we color text positions i according to the color of letter
T [i]. Note that colors (letters) get clustered, since suffixes are sorted lexicographically.

SA = 9 5 7 3 1 6 8 4 2
$ A A A A G T T T

G T T T A $ A A
A $ A A T G T
T G T $ A A
$ A A T G

T G $ A
$ A T

T $
$

Figure 2. Suffix Array (SA) of the text T of Figure 1. Note: we store only array SA and the text T ,

not the actual text suffixes.

The reason for appending $ at the end of the text is that, in this way, no suffix prefixes
another suffix. Suffix arrays were independently discovered by Udi Manber and Gene
Myers in 1990 [11] and (under the name of PAT array) by Gonnet, Baeza-Yates, and Snider
in 1992 [12,13]. An earlier solution, the suffix tree [14], dates back to 1973 and is more
time-efficient, albeit much less space efficient (by a large constant factor). The idea behind
the suffix tree is to build the trie of all text’s suffixes, replacing unary paths with pairs of
pointers to the text.

The suffix array SA, when used together with the text T , is a full-text index: in order
to count/locate occurrences of a pattern Π, it is sufficient to binary search SA, extracting
characters from T to compare Π with the corresponding suffixes during search. This
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solution permits to count the occ occurrences of a pattern Π of length m in a text T of
length n in O(m log n) time, as well as to report them in additional optimal O(occ) time.
Letting the alphabet size being denoted by σ, our index requires n log σ + n log n bits to be
stored (the first component for the text and the second for the suffix array).

Note that the suffix array cannot be considered a small data structure. On a constant-
sized alphabet, the term n log n is asymptotically larger than the text. The need for process-
ing larger and larger texts made this issue relevant by the end of the millennium. As an
instructive example, consider indexing the Human genome (≈3 billion DNA bases). DNA
sequences can be modeled as strings over an alphabet of size four ({A, C, G, T}); therefore,
the Human genome takes less than 750 MiB of space to be stored using two bits per letter.
The suffix array of the Human genome requires, on the other hand, about 11 GiB.

Although the study of compressed text indexes had begun before the year 2000 [15], the
turn of the millennium represented a crucial turning point for the field: two independent
works by Ferragina and Manzini [16] and Grossi and Vitter [17] showed how to compress
the suffix array.

Consider the integer array ψ of length n defined as follows. Given a suffix array
position i containing value (text position) j = SA[i], the cell ψ[i] contains the suffix array
position i′ containing text position (j mod n) + 1 (we treat the string as circular). More
formally: ψ[i] = SA−1[(SA[i] mod n) + 1]. See Figure 3.

SA = 9 5 7 3 1 6 8 4 2
ψ = 5 6 7 8 9 3 1 2 4

1 2 3 4 5 6 7 8 9

Figure 3. Array ψ.

Note the following interesting property: equally-colored values in ψ are increasing.
More precisely: ψ-values corresponding to suffixes beginning with the same letter form
increasing subsequences. To understand why this happens, observe that ψ[i] takes us
from a suffix T [SA[i], . . . , n] to suffix T [SA[i] + 1, . . . , n] (let us exclude the case SA[i] = n
in order to simplify our formulas). Now, assume that i < j and T [SA[i], . . . , n] and
T [SA[j], . . . , n] begin with the same letter (that is: i and j have the same color in Figure 3).
Since i < j, we have that T [SA[i], . . . , n] < T [SA[j], . . . , n] (lexicographically). But then,
since the two suffixes begin with the same letter, we also have that T [SA[i] + 1, . . . , n] <
T [SA[j] + 1, . . . , n], i.e., ψ[i] < ψ[j].

Let us now store just the differences between consecutive values in each increasing
subsequence of ψ. We denote this new array of differences as ∆(ψ). See Figure 4 for
an example.

SA = 9 5 7 3 1 6 8 4 2
∆(ψ) = 5 6 1 1 1 3 1 1 2

1 2 3 4 5 6 7 8 9

Figure 4. The differential array ∆(ψ).

Two remarkable properties of ∆(ψ) are that, using an opportune encoding for its
elements, this sequence:

1. supports accessing any ψ[i] in constant time [17], and
2. can be stored in nH0 + O(n) bits of space, where H0 = ∑c∈Σ(nc/n) log(n/nc) is the

zero-order empirical entropy of T and nc denotes the number of occurrences of c ∈ Σ

in T .

The fact that this strategy achieves compression is actually not hard to prove. Con-
sider any integer encoding (for example, Elias’ delta or gamma) capable to represent any
integer x in O(1 + log x) bits. By the concavity of the logarithm function, the inequality

∑
m
i=1 log(xi) ≤ m · log

(
∑

m
i=1 xi
m

)

holds for any integer sequence x1, . . . , xm. Now, note that

the sub-sequence x1, . . . , xnc of ∆(ψ) corresponding to letter c ∈ Σ has two properties:
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it has exactly nc terms and ∑
nc
i=1 xi ≤ n. It follows that the encoded sub-sequence takes

(asymptotically) ∑
nc
i=1(1 + log(xi)) ≤ nc · log(n/nc) + nc bits. By summing this quantity

over all the alphabet’s characters, we obtain precisely O(n(H0 + 1)) bits. Other encodings
(in particular, Elias-Fano dictionaries [18,19]) can achieve the claimed nH0 + O(n) bits
while supporting constant-time random access.

The final step is to recognize that ψ moves us forward (by one position at a time) in the
text. This allows us to extract suffixes without using the text. To achieve this, it is sufficient
to store in one array F = $AAAAGTTT (using our running example) the first character of
each suffix. This can be done in O(n) bits of space (using a bitvector) since those characters
are sorted and we assume the alphabet to be effective. The i-th text suffix (in lexicographic
order) is then F[i], F[ψ[i]], F[ψ(2)[i]], F[ψ(3)[i]], . . . , where ψ(ℓ) indicates function ψ applied
ℓ times to its argument. See Figure 5. Extracting suffixes makes it possible to implement
the binary search algorithm discussed in the previous section: the Compressed Suffix Array
(CSA) takes compressed space and enables us finding all pattern’s occurrences in a time
proportional to the pattern length. By adding a small sampling of the suffix array, one
can use the same solution to compute any value SA[i] in polylogarithmic time without
asymptotically affecting the space usage.

1 2 3 4 5 6 7 8 9
ψ = 5 6 7 8 9 3 1 2 4
F = $ A A A A G T T T

G T T T A $ A A
A $ A A T G T
T G T $ A A
$ A A T G

T G $ A
$ A T

T $
$

Figure 5. Compressed Suffix Array (CSA): we store the delta-encoded ψ and the first letter (under-

lined) of each suffix (array F).

Another (symmetric) philosophy is to exploit the inverse of function ψ. These indexes
are based on the Burrows-Wheeler transform (BWT) [20] and achieve high-order compres-
sion [16]. We do not discuss BWT-based indexes here since their generalizations to labeled
graphs will be covered in Section 3. For more details on entropy-compressed text indexes,
we redirect the curious reader to the excellent survey of Mäkinen and Navarro [7].

2.2. The Repetitive Model

Since their introduction in the year 2000, entropy-compressed text indexes have had a
dramatic impact in domains, such as bioinformatics; the most widely used DNA aligners,
Bowtie [21] and BWA [22], are based on compressed indexes and can align thousands of
short DNA fragments per second on large genomes while using only compressed space
in RAM during execution. As seen in the previous section, these indexes operate within
a space bounded by the text’s empirical entropy [16,17]. Entropy, however, is insensitive
to long repetitions: the entropy-compressed version of T · T (that is, text T concatenated
with itself) takes at least twice the space of the entropy-compressed T [23]. There is a
simple reason for this fact: by its very definition (see Section 2.1), the quantity H0 depends
only on the characters’ relative frequencies in the text. Since characters in T and T · T
have the same relative frequencies, it follows that their entropies are the same. The claim
follows, being the length of T · T twice the length of T .

While the above reasoning might seem artificial, the same problem arises on texts
composed of large repetitions. Today, most large data sources, such as DNA sequencers
and the web, follow this new model of highly repetitive data. As a consequence, entropy-
compressed text indexes are no longer able to keep pace with the exponentially-increasing
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rate at which this data is produced, as very often the mere index size exceeds the RAM limit.
For this reason, in recent years more powerful compressed indexes have emerged; these
are based on the Lempel-Ziv factorization [23], the run-length Burrows-Wheeler Transform
(BWT) [24–26], context-free grammars [27], string attractors [28,29] (combinatorial objects
generalizing those compressors), and more abstract measures of repetitiveness [30]. The
core idea behind these indexes (with the exception of the run-length BWT; see Section 3)
is to partition the text into phrases that occur also elsewhere and to use geometric data
structures to locate pattern occurrences.

To get a more detailed intuition of how these indexes work, consider the Lempel-
Ziv’78 (LZ78) compression scheme. The LZ78 factorization breaks the text into phrases with
the property that each phrase extends by one character a previous phrase; see the example
in Figure 6 (top). The mechanism we are going to describe works for any factorization-
based compressor (also called dictionary compressors). A factorization-based index keeps a
two-dimensional geometric data structure storing a labeled point (x, y, ℓ) for each phrase y,
where x is the reversed text prefix preceding the phrase and ℓ is the first text position of the
phrase. Efficient techniques not discussed here (in particular, mapping to rank space) exist
to opportunely reduce x and y to small integers preserving the lexicographic order of the
corresponding strings (see, for example, Kreft and Navarro [23]). For example, such a point
in Figure 6 is (GCA, CG, 4), corresponding to the phrase break between positions 3 and 4.
To understand how locate queries are answered, consider the pattern Π = CAC. All
occurrences of Π crossing a phrase boundary can be split into a prefix and a suffix, aligned
on the phrase boundary. Let us consider the split CA|C (all possible splits have to be
considered for the following algorithm to be complete). If Π occurs in T with this split,
then C will be a prefix of some phrase y, and CA will be a suffix of the text prefix preceding
y. We can find all phrases y with this property by issuing a four-sided range query on our
grid as shown in Figure 6 (bottom left). This procedure works since C and AC (that is, CA
reversed) define ranges on the horizontal and vertical axes: these ranges contain all phrases
prefixed by C and all reversed prefixes prefixed by AC (equivalently, all prefixes suffixed
by CA), respectively. In Figure 6 (bottom left), the queried rectangle contains text positions
13 and 11. By subtracting from those numbers the length of the pattern’s prefix (in this
example, 2 = |CA|), we discover that Π = CAC occurs at positions 11 and 9 crossing a
phrase with split CA|C.

With a similar idea (that is, resorting again to geometric data structures), one can
recursively track occurrences completely contained inside a phrase; see the caption of
Figure 6 (bottom right). Let b be the number of phrases in the parse. Note that our
geometric structures store overall O(b) points. On repetitive texts, the smallest possible
number b of phrases of such a parse can be constant. In practice, on repetitive texts
b (or any of its popular approximations [31]) is orders of magnitude smaller than the
entropy-compressed text [23,24]. The fastest existing factorization-based indexes to date
can locate all occ occurrences of a pattern Π ∈ Σm in O(b polylog n) bits of space and
optimal O(m + occ) time [32]. For more details on indexes for repetitive text collections, the
curious reader can refer to the excellent recent survey of Navarro [8,9].
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T = A | C | G | C G | A C | A C A | C A | C G G | T | G G | G T | $ |
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
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T
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Figure 6. (Top) Parsed text according to the LZ78 factorization. Text indices are shown in gray. (Bottom left) four-sided

geometric data structure storing one labeled point (x, y, ℓ) per phrase y, where x is the reversed text prefix preceding phrase

y and ℓ is the first position of the phrase. (Bottom right) given a pattern occurrence Π = T [i, j] (green dot), we can locate

all phrases that completely copy it. For each phrase T [t, t + ℓ − 1] for which source is T [i′, i′ + ℓ − 1], a labeled point

(i′, i′ + ℓ− 1, t) is inserted in the data structure. In the example: phrase Z = T [t, t′], red dot, copies T [i′, j′] which completely

contains Π. Note that Π = T [i, j] defines the query, while each phrase generates a point that is stored permanently in the

geometric structure.

3. Indexing Labeled Graphs and Regular Languages

Interestingly enough, most techniques seen in the previous section extend to more
structured data. In particular, in this section, we will work with labeled graphs, and
discuss extensions of these results to regular languages by interpreting finite automata
as labeled graphs. We recall that a labeled graph is a quadruple (V, E, Σ, λ) where V
is a set of n = |V| nodes, E ⊆ V × V is a set of e = |E| directed edges, Σ is the
alphabet and λ : E → Σ is a labeling function assigning a label to each edge. Let
P = (ui1 , ui2), (ui2 , ui3), . . . , (uik , uik+1

) be a path of length k. We extend function λ to
paths as λ(P) = λ((ui1 , ui2)) · λ((ui2 , ui3)) · · · λ((uik , uik+1

)), and say that λ(P) is the
string labeling path P. A node u is reached by a path labeled Π ∈ Σ∗ if there exists a
path P = (ui1 , ui2), (ui2 , ui3), . . . , (uik , u) ending in u such that λ(P) = Π.

The starting point is to observe that texts are nothing but labeled path graphs. As it
turns out, there is nothing special about paths that we cannot generalize to more complex
topologies. We adopt the following natural generalizations of count and locate queries:

• Count: given a pattern (a string) Π ∈ Σm, return the number of nodes reached by a
path labeled with Π.
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• Locate: given a pattern Π, return a representation of all nodes reached by a path
labeled with Π.

We will refer to the set of these two queries with the term subpath queries. The node
representation returned by locate queries could be an arbitrary numbering. This solution,
however, has the disadvantage of requiring at least n log n bits of space just for the labels,
n being the number of nodes. In the following subsections, we will discuss more space-
efficient solutions based on the idea of returning a more regular labeling (e.g., the DFS
order of the nodes).

3.1. Graph Compression

We start with a discussion of existing techniques for compressing labeled graphs.
Lossless graph compression is a vast topic that has been treated more in detail in other
surveys [33,34]. Since here we deal with subpath queries on compressed graphs, we only
discuss compression techniques that have been shown to support these queries on special
cases of graphs (mainly paths and trees).

Note that, differently from the string domain, the goal is now to compress two com-
ponents: the labels and the graph’s topology. Labels can be compressed by extending the
familiar entropy model to graphs. The idea here is to simply count the frequencies of each
character in the multi-set of all the edges’ labels. By using an encoding, such as Huffman’s,
the zero-order empirical entropy of the labels can be approached. One can take a step
further and compress labels to their high-order entropy. As noted by Ferragina et al. [35],
if the topology is a tree then we can use a different zero-order model for each context of
length k (that is, for each distinct labeled path of length k) preceding a given edge. This
is the same observation used to compress texts: it is much easier to predict a particular
character if we know the k letters (or the path of length k) that precede it. The entropy
model is already very effective in compressing the labels component. The most prominent
example of entropy-compressed tree index is the eXtended Burrows Wheeler transform [35],
covered more in detail in Section 3.5. As far as the topology is concerned, things get more
complicated. The topology of a tree with n nodes can be represented in 2n bits via its
balanced-parentheses representation. Ferres et al. [36] used this representation and the
idea that planar graphs are fully specified by a spanning tree of the graph and one of
its dual to represent planar graphs in just 4n bits per node. Recently, Chakraborty et al.
proposed succinct representations for finite automata [37]. General graph topologies are
compressed well, but without worst-case guarantees, by techniques, such as K2 trees [38].
Further compression can be achieved by extending the notion of entropy to the graph’s
topology, as shown by Jansson et al. [39], Hucke et al. [40], and Ganczorz [41] for the
particular case of trees. As it happens with text entropy, their measures work well under
the assumption that the tree topology is not extremely repetitive. See Hucke et al. [42] for
a systematic comparison of tree entropy measures. In the repetitive case, more advanced
notions of compression need to be considered. Straight-line grammars [43,44], that is,
context-free grammars generating a single graph, are the gold-standard for capturing such
repetitions. These representations can be augmented to support constant-time traversal
of the compressed graph [45] but do not support indexing queries on topologies being
more complex than paths. Other techniques (defined only for trees) include the Lempel-Ziv
factorization of trees [46] and top trees [47]. Despite being well-suited for compressing
repetitive tree topologies, these representations also are not (yet) able to support efficient
indexing queries on topologies more complex than paths so we do not discuss them further.
The recent tunneling [48] and run-length XBW Transform [49] compression schemes are the
first compressed representations for repetitive topologies supporting count queries (the
latter technique supports also locate queries, but it requires additional linear space). These
techniques can be applied to Wheeler graphs [50], as well, and are covered more in detail
in Sections 3.5 and 3.7.
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3.2. Conditional Lower Bounds

Before diving into compressed indexes for labeled graphs, we spend a paragraph on
the complexity of matching strings on labeled graphs. The main results in this direction
are due to Backurs and Indyk [51] and to Equi et al. [52–54], and we considered the on-
line version of the problem: both pre-processing and query time are counted towards
the total running time. The former work [51] proved that, unless the Strong Exponential
Time Hypothesis (SETH) [55] is false, in the worst case no algorithm can match a regular
expression of size e against a string of length m in time O((m · e)1−δ), for any constant δ > 0.
Since regular expressions can be converted into NFAs of the same asymptotic size, this
result implies a quadratic conditional lower-bound to the graph pattern matching problem.
Equi et al. [54] improved this result to include graphs of maximum node degree equal to
two and deterministic directed acyclic graphs. Another recent paper from Potechin and
Shallit [56] established a similar hardness result for the problem of determining whether
a NFA accepts a given word: they showed that, provided that the NFA is sparse, a sub-
quadratic algorithm for the problem would falsify SETH. All these results are based on
reductions from the orthogonal vectors problem: find two orthogonal vectors in two
given sets of binary d-dimensional vectors (one can easily see the similarity between this
problem and string matching). The orthogonal vectors hypothesis (OV) [57] states that
the orthogonal vectors problem cannot be solved in strongly subquadratic time. A further
improvement has recently been made by Gibney [58], who proved that even shaving
logarithmic factors from the running time O(m · e) would yield surprising new results
in complexity theory, as well as falsifying an hypothesis recently made by Abboud and
Bringmann in Reference [59] on the fine-grained complexity of SAT solvers. As noted
above, in the context of our survey, these lower bounds imply that the sum between the
construction and query times for a graph index cannot be sub-quadratic unless important
conjectures in complexity theory fail. These lower bounds, however, do not rule out
the possibility that a graph index could support efficient (say, subquadratic) queries at
the cost of an expensive (quadratic or more) index construction algorithm. The more
recent works of Equi et al. [52,53] addressed precisely this issue: they proved that no
index that can be built in polynomial time (O(eα) for any constant α ≥ 1) can guarantee
strongly sub-quadratic query times, that is, O(eδmβ) query time for any constants δ < 1
or β < 1. This essentially settles the complexity of the problem: assuming a reasonably
fast (polynomial time) index construction algorithm, subpath-query times need to be at
least quadratic (O(m · e)) in the worst case. Since these bounds are matched by existing
on-line algorithms [60], one may wonder what is the point of studying graph indexes at
all. As we will see, the answer lies in parameterized complexity: even though pattern
matching on graphs/regular expressions is hard in the worst case, it is indeed possible to
solve the problem efficiently in particular cases (for example, trees [35] and particular
regular expressions [51]). Ultimately, in Section 3.8 we will introduce a complete hierarchy
of labeled graphs capturing the hardness of the problem.

3.3. Hypertext Indexing

Prior to the predominant prefix-sorting approach that we are going to discuss in
detail in the next subsections, the problem of solving indexed path queries on labeled
graphs has been tackled in the literature by resorting to geometric data structures [61,62].
These solutions work in the hypertext model: the objects being indexed are node-labeled
graphs G = (V, E, Σ, λ), where function λ : V → Σ∗ associates a string to each node
(note the difference with our edge-labeled model, where each edge is labeled with a single
character). Let P = (ui1 , ui2), (ui2 , ui3), . . . , (uik−1

, uik ) be a path in the graph spanning k (not
necessarily distinct) nodes. With λ(P) we denote the string λ(P) = λ(ui1) ·λ(ui2) · · · λ(uik ).
In the hypertext indexing problem, the goal is to build an index over G able to quickly
support locate queries on the paths of G: given a pattern Π, determine the positions in
the graph (node and starting position in the node) where an occurrence of Π starts. This
labeled graph model is well suited for applications where the strings labeling each node
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are very long (for example, a transcriptome), in which case the label component (rather
than the graph’s topology) dominates the data structure’s space. Both solutions discussed
in Reference [61,62] resort to geometric data structures. First, a classic text index (for
example, a compressed suffix array) is built over the concatenation λ(u1) · # · · · # · λ(un) of
the strings labeling all the graph’s nodes u1, . . . , un. The labels are separated by a symbol #
not appearing elsewhere in order to prevent false matches. Pattern occurrences completely
contained inside some λ(ui) are found using this compressed index. Then, a geometric
structure is used to “glue” nodes connected by an edge: for each edge (u, v), a two-

dimensional point (
←−−
λ(u), λ(v)) is added to a grid as the one shown in Figure 6 (bottom left),

where←−w denotes the reverse of string w. Again, rank space techniques are used to reduce

the points (
←−−
λ(u), λ(v)) to integer pairs. Then, pattern occurrences spanning one edge are

found by issuing a four-sided geometric query for each possible pattern split as seen in
Section 2.2. The main issue with these solutions is that they cannot efficiently locate pattern
occurrences spanning two or more edges. A tweak consists in using a seed-and-extend
strategy: the pattern Π is split in short fragments of some length t, each of which is searched
separately in the index. If λ(ui) ≥ t for each node ui, then this solution allows locating all
pattern occurrences (including those spanning two or more edges). This solution, however,
requires to visit the whole graph in the worst case. On realistic DNA datasets this problem
is mitigated by the fact that, for large enough t, the pattern’s fragments of length t are
“good anchors” and are likely to occur only within occurrences of Π.

As seen, hypertext indexes work well under the assumption that the strings labeling
the nodes are very long. However, this assumption is often not realistic: for instance, in
pan-genomics applications a single-point mutation in the genome of an individual (that
is, a substitution or a small insertion/deletion) may introduce very short edges deviating
from the population’s reference genome. Note that here we have only discussed indexed
solutions. The on-line case (pattern matching on hypertext without pre-processing) has
been thoroughly studied in several other works; see Reference [60,63,64].

3.4. Prefix Sorting: Model and Terminology

A very natural approach to solve efficiently the graph indexing problem on arbitrary
labeled graphs is to generalize suffix sorting (Actually, for technical reasons we will use the
symmetric prefix sorting) from strings to labeled graphs. In the following, we will make a
slight simplification and work with topologies corresponding to the transition function of
nondeterministic finite automata (NFAs). In particular, we will assume that:

1. there is only one node, deemed the source state (or start state), without incoming
edges, and

2. any state is reachable from the source state.

We will use the terms node and state interchangeably. For reasons that will become
clear later, we will moreover assume that the set of characters labeling the incoming edges
of any node is a singleton. These assumptions are not too restrictive. It is not hard to see
that these NFAs can, in fact, recognize any regular language [65] (in particular, any NFA
can be transformed in polynomial time to meet these requirements).

We make a little twist and replace the lexicographic order of suffixes with the sym-
metric co-lexicographic order of prefixes. This turns out to be much more natural when
dealing with NFAs, as we will sort states according to the co-lexicographic order of the
strings labeling paths connecting the source with each state. As additional benefits of
these choices:

1. we will be able to search strings forward (that is, left-to-right). In particular, this
will enable testing membership of words in the language recognized by an indexed
NFA in a natural on-line (character-by-character) fashion ( traditionally, BWT-based
text indexes are based on suffix sorting and support backward search of patterns in
the text).
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2. We will be able to transfer powerful language-theoretic results to the field of com-
pressed indexing. For example, a co-lexicographic variant of the Myhill-Nerode
theorem [66] will allow us to minimize the number of states of indexable DFAs.

3.5. Indexing Labeled Trees

Kosaraju [67] was the first to extend prefix sorting to a very simple class of labeled
graphs: labeled trees. To do so, he defined the suffix tree of a (reversed) trie. To understand
this idea, we are now going to describe a simplified data structure: the prefix array of a
labeled tree.

3.5.1. The Prefix Array of a Labeled Tree

Consider the list containing the tree’s nodes sorted by the co-lexicographic order of
the paths connecting them to the root. We call this array the prefix array (PA) of the tree.
See Figure 7 for an example: node 5 comes before node 8 in the ordering because the path
connecting the root to 5, “aac”, is co-lexicographically smaller than the path connecting the
root to 8, “bc”. This node ordering is uniquely defined if the tree is a trie (that is, if each
node has at most one outgoing edge per label). Otherwise, the order of nodes reached by
the same root-to-node path can be chosen arbitrarily.

1

2 6

3

4 5

7 8

9

a b

a

a c

a c

b

Figure 7. Example of labeled tree. Nodes have been enumerated in pre-order. The list of nodes sorted

by the co-lexicographic order of the paths connecting them to the root (that is, the prefix array (PA) of

the tree) is: 1, 2, 3, 4, 7, 6, 9, 5, 8.

A nice property of the prefix array of a tree is that, together with the tree itself, it
is already an index; in fact, it is a straightforward generalization of the suffix array SA
introduced in Section 2 (in this case, we call it “prefix array” since we are sorting prefixes of
root-to-leaves paths). Since nodes are sorted co-lexicographically, the list of nodes reached
by a path labeled with a given pattern Π can be found by binary search. At each search step,
we jump on the corresponding node on the tree and compare Π with the labels extracted
on the path connecting the node with the root. This procedure allows counting all nodes
reached by Π, as well as subsequently reporting them in optimal constant time each, in
O(|Π| log n) time, n being the number of nodes.

3.5.2. The XBW Transform

One disadvantage of the prefix array is that, like the SA seen in Section 2.1, it does
not achieve compression. In addition to the n log n bits for the prefix array itself, the
above binary-search strategy also requires us to navigate the tree (for which topology
and labels must therefore be kept in memory). This is much more space than the labels,
which require n log σ bits when stored in plain format, and the tree topology, which can
be stored in just 2n bits (for example, in balanced-parentheses sequence representation).
In 2005, Ferragina et al. [35,68] observed that this space overhead is not necessary: an
efficient search machinery can be fit into a space proportional to the entropy-compressed
edge labels, plus the succinct (2n + o(n) bits) tree’s topology. Their structure takes the
name XBW tree transform (XBWT in the following), and is a compressed tree representation
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natively supporting subpath search queries. Consider the co-lexicographic node ordering
of Figure 7, denote with child(u) the multi-set of outgoing labels of node u (for the leaves,
child(u) = ∅), and with λ(u) the incoming label of node u (for the root, λ(u) = $, where
as usual $ is lexicographically smaller than all other characters). Let u1, . . . , un be the
prefix array of the tree. The XBWT is the pair of sequences IN = λ(u1) . . . λ(un) and
OUT = child(u1), . . . , child(un). See Figure 8 for an example based on the tree of Figure 7.
For simplicity, the tree of this example is a trie (that is, a deterministic tree). All of the
following reasoning, however, applies immediately to arbitrary labeled trees.

i 1 2 3 4 5 6 7 8 9

PA 1 2 3 4 7 6 9 5 8

IN $ a a a a b b c c

a a a a

OUT b b

c c

Figure 8. Prefix array (PA) and sequences IN and OUT forming the eXtended Burrows-Wheeler

Transform (XBWT). IN (incoming labels) is the sequence of characters labeling the incoming edge

of each node, while OUT (outgoing labels) is the sequence of multi-sets containing the characters

labeling the outgoing edges of each node.

3.5.3. Inverting the XBWT

As it turns out, the tree can be reconstructed from just OUT. To prove this, we show
that the XBWT representation can be used to perform a tree visit. First, we introduce the
key property at the core of the XBWT: edges’ labels appear in the same order in IN and
OUT, that is, the i-th occurrence (counting from left to right) of character c ∈ Σ in IN
corresponds to the same edge of the i-th occurrence c in OUT (the order of characters inside
each multi-set of OUT is not relevant for the following reasoning to work). For example,
consider the fourth ‘a’ in IN, appearing at IN[5]. This label corresponds to the incoming
edge of node 7, that is, to edge (6, 7). The fourth occurrence of ‘a’ in OUT appears in
OUT[6], corresponding to the outgoing edges of node 6. By following the edge labeled
‘a’ from node 6, we reach exactly node 7, that is, this occurrence of ‘a’ labels edge (6, 7).
Why does this property hold? precisely because we are sorting nodes co-lexicographically.
Take two nodes u < v such that λ(u) = λ(v) = a, for example, u = 2 and v = 7 (note
that < indicates the co-lexicographic order, not pre-order). Since u < v, the a labeling
edge (π(u), u) precedes the a labeling edge (π(v), v) in sequence IN, where π(u) indicates
the parent of u in the tree. In the example, these are the two ‘a’s appearing at IN[2] and
IN[5]. Let αu and αv be the two strings labeling the two paths from the root to u and v,
respectively. In our example, α2 = $a and α7 = $ba (note that we prepend the artificial
incoming label of the root). By the very definition of our co-lexicographic order, u < v
if and only if αu < αv. Note that we can write αu = απ(u) · a and αv = απ(v) · a. Then,
αu < αv holds if and only if απ(u) < απ(v), i.e., if and only if π(u) < π(v). In our example,
απ(2) = α1 = $ < $b = α6 = απ(7); thus, it must hold 1 = π(2) < π(7) = 6 (which, in
fact, holds in the example). This means that the a labeling edge (π(u), u) comes before
the a labeling edge (π(v), v) also in sequence OUT. In our example, those are the two
’a’ contained in OUT[1] and OUT[6]. We finally obtain our claim: equally-labeled edges
appear in the same relative order in IN and OUT.

The XBWT is a generalization to labeled trees of a well-known string transform—the
Burrows-Wheeler transform (BWT) [20]—described for the first time in 1994 (the BWT is
precisely sequence OUT of a path tree (To be precise, the original BWT used the symmetric
lexicographic order of the string’s suffixes). Its corresponding index, the FM-index [16] was
first described by Ferragina and Manzini in 2000. The property we just described—allowing
the mapping of characters from IN to OUT—is the building block of the FM-index and
takes the name LF mapping. The LF mapping can be used to perform a visit of the tree using
just OUT. First, note that OUT fully specifies IN: the latter is a sorted list of all characters
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appearing in OUT, plus character $. Start from the virtual incoming edge of the root, which
appears always in IN[1]. The outgoing labels of the roots appear in OUT[1]. Using the LF
property, we map the outgoing labels of the root to sequence IN, obtaining the locations
in PA of the successors of the root. The reasoning can be iterated, ultimately leading to a
complete visit of the tree.

3.5.4. Subpath Queries

The LF mapping can also be used to answer counting queries. Suppose we wish to
count the number of nodes reached by a path labeled with string Π[1, m]. For example,
consider the tree of Figure 7 and let Π = aa. First, find the range PA[ℓ, r] of nodes on
PA reached by Π[1]. This is easy, since characters in IN are sorted: [ℓ, r] is the maximal
range such that IN[i] = Π[1] for all ℓ ≤ i ≤ r. In our example, ℓ = 2 and r = 5. Now,
note that OUT[ℓ, r] contains the outgoing labels of all nodes reached by Π[1]. Then, we
can extend our search by one character by following all edges in OUT[ℓ, r] labeled with
Π[2]. In our example, Π[2] = a, and there are 2 edges labeled with ’a’ to follow: those at
positions OUT[2] and OUT[3]. This requires applying the LF mapping to all those edges.
Crucially, note that the LF mapping property also guarantees that the nodes we reach by
following those edges form a contiguous co-lexicographic range PA[ℓ′, r′]. In our example,
we obtain the range PA[3, 4], containing pre-order nodes 3 and 4. These are precisely the
occ = ℓ′ − r + 1 nodes reached by Π[1, 2] (and occ is the answer to the count query for
Π[1, 2]). It is clear that the reasoning can be iterated until finding the range of all nodes
reached by a pattern Π of any length.

For clarity, in our discussion above, we have ignored efficiency details. If implemented
as described, each extension step would require O(n) time (a linear scan of IN and OUT).
It turns out that, using up-to-date data structures [69], a single character-extension step

can be implemented in just O
(

log
(

log σ
log n

))

time! The idea is, given the range PA[ℓ, r]

of Π[1], to locate just the first and last occurrence of Π[2] in OUT[ℓ, r]. This can be im-
plemented with a so-called rank query (that is, the number of characters equal to Π[2]
before a given position OUT[i]). We redirect the curious reader to the original articles by
Ferragina et al. [35,68] (XBWT) and Belazzougui and Navarro [69] (up-to-date rank data
structures) for the exquisite data structure details.

As far as locate queries are concerned, as previously mentioned a simple strategy
could be to explicitly store PA. In the above example, the result of locate for pattern Π = aa
would be the pre-order nodes PA[3, 4] = 3, 4. This solution, however, uses n log n bits
on top of the XBWT. Arroyuelo et al. [70] Section 5.1 and Prezza [49] describe a sampling
strategy that solves this problem when the nodes’ identifiers are DFS numbers: fix a
parameter t ≤ n. The idea is to decompose the tree into Θ(n/t) subtrees of size O(t), and
explicitly store in O((n/t) log n) bits the pre-order identifiers of the subtrees’ roots. Then,
the pre-order of any non-sampled node can be retrieved by performing a visit of a subtree
using the XBWT navigation primitives. By fixing t = log1+ǫ n for any constant ǫ > 0, this
strategy can compute any PA[i] (i.e., locate any pattern occurrence) in polylogarithmic
time while using just o(n) bits of additional space. A more advanced mechanism [49]
allows locating the DFS number of each pattern occurrence in optimal O(1) time within
compressed space.

3.5.5. Compression

To conclude, we show how the XBWT (and, similarly, the BWT of a string) can
be compressed. In order to efficiently support the LF mapping, sequence IN has to be
explicitly stored. However, note that this sequence is strictly increasing. If the alphabet
is effective and of the form Σ = [1, σ], then we can represent IN with a simple bitvector
of n bits marking with a bit ‘1’ the first occurrence of each new character. If σ is small
(for example, polylog(n)), then this bitvector can be compressed down to o(n) bits while
supporting efficient queries [71]. Finally, we concatenate all characters of OUT in a single
string and use another bitvector of 2n bits to mark the borders between each OUT[i] in
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the sequence. Still assuming a small alphabet and using up-to-date data structures [69],
this representation takes nH0 + 2n + o(n) bits of space and supports optimal-time count
queries. In their original article, Ferragina et al. [35] realized that this space could be further
improved: since nodes are sorted in co-lexicographic order, they are also clustered by the
paths connecting them to the root. Then, for a sufficiently small k ∈ O(logσ n), we can
partition OUT by all distinct paths of length k that reach the nodes, and use a different
zero-order compressor for each class of the partition. This solution achieves high-order
compressed space nHk + 2n + o(n).

Another method to compress the XBWT is to exploit repetitions of isomorphic subtrees.
Alanko et al. [48] show how this can be achieved by a technique they call tunneling and
that consists in collapsing isomorphic subtrees that are adjacent in co-lexicographic order.
Tunneling works for a more general class of graphs (Wheeler graphs), so we discuss it more
in detail in Section 3.7. Similarly, one can observe that a repeated topology will generate
long runs of equal sets in OUT [49]. Let r be the number of such runs. Repetitive trees
(including repetitive texts) satisfy r ≪ n. In the tree in Figure 7, we have n = 9 and r = 7.
For an example of a more repetitive tree, see Reference [49].

3.6. Further Generalizations

As we have seen, prefix sorting generalizes quite naturally to labeled trees. There is
no reason to stop here: trees are just a particular graph topology. A few years after the
successful XBWT was introduced, Mantaci et al. [72–74] showed that finite sets of circular
strings, i.e., finite collections of disjoint labeled cycles, do enjoy the same prefix-sortability
property: the nodes of these particular labeled graphs can be arranged by the strings
labeling their incoming paths, thus speeding up subsequent substring searches on the
graph. Seven years later, Bowe et al. [75] added one more topology to the family: de
Bruijn graphs. A de Bruijn graph of order k for a string S (or for a collection of strings; the
generalization is straightforward) has one node for each distinct substring of length k (a
k-mer) appearing in S. Two nodes, representing k-mers s1 and s2, are connected if and only
if they overlap by k− 1 characters (that is, the suffix of length k− 1 of s1 equals the prefix
of the same length of s2) and their concatenation of length k + 1 is a substring of S. The
topology of a de Bruijn graph could be quite complex; in fact, one could define such a graph
starting from the k-mers read on the paths of an arbitrary labeled graph. For large enough
k, the set of strings read on the paths of the original graph and the derived de Bruijn graph
coincide. Sirén et al. [76] exploited this observation to design a tool to index pan-genomes
(that is, genome collections represented as labeled graphs). Given an arbitrary input labeled
graph, their GCSA (Generalized Compressed Suffix Array) builds a de Bruijn graph that is
equivalent to (i.e., in which paths spell the same strings of) the input graph. While this idea
allows to index arbitrary labeled graphs, in the worst case, this conversion could generate
an exponentially-larger de Bruijn graph (even though they observe that, in practice, due to
the particular distribution of DNA mutations, this exponential explosion does not occur
too frequently in bioinformatics applications). A second, more space-efficient version of
their tool [77] fixes the maximum order k of the target de Bruijn graph, thus indexing only
paths of length at most k of the input graph. Finally, repeat-free founder block graphs [78] are
yet another recent class of indexable labeled graphs.

In this survey, we do not enter into the details of the above generalizations since they
are all particular cases of a larger class of labeled graphs which will be covered in the
next subsection: Wheeler graphs. As a result, the search mechanism for Wheeler graphs
automatically applies to those particular graph topologies. We redirect the curious reader
to the seminal work of Gagie et al. [50] for more details of how these graphs, as well as
several other combinatorial objects (FM index of an alignment [79,80], Positional BWT [81],
wavelet matrices [82], and wavelet trees [83]), can be elegantly described in the Wheeler
graphs framework. In turn, in Section 3.8, we will see that Wheeler graphs are just the
“base case” of a larger family of prefix-sortable graphs, ultimately encompassing all labeled
graphs: p-sortable graphs.

78



Algorithms 2021, 14, 14

3.7. Wheeler Graphs

In 2017, Gagie et al. [50] generalized the principle underlying the approaches de-
scribed in the previous sections to all labeled graphs in which nodes can be sorted co-
lexicographically in a total order. They called such objects Wheeler graphs in honor of David
J. Wheeler, one of the two inventors of the ubiquitous Burrows-Wheeler transform [20] that
today stands at the heart of the most successful compressors and compressed text indexes.

Recall that, for convenience, we treat the special (not too restrictive) case of labeled
graphs corresponding to the state transition of finite automata. Indexing finite automata
allows us to generalize the ideas behind suffix arrays to (possibly infinite) sets of strings:
all the strings read from the source to any of the automaton’s final states. Said otherwise,
an index for a finite automaton is capable of recognizing the substring closure of the
underlying regular language. Consider the following regular language:

L = (ǫ|aa)b(ab|b)∗,

as well as consider the automaton recognizing L depicted in Figure 9.

sstart

q1

q2

q3

a

b

a

b

a

b

Figure 9. Automaton recognizing the regular language L = (ǫ|aa)b(ab|b)∗.

Let u be a state, and denote with Iu the (possibly infinite) set of all strings read from
the source to u. Following the example reported in Figure 9, we have Iq1

= {a}, Iq2 =
{b, bb, bab, babb, aab, . . . }, and Iq3 = {aa, aaba, aabba, . . . }. Intuitively, if the automaton is
a DFA, then we are going to sort its states in such a way that two states are placed in the
order u < v if and only if all the strings in Iu are co-lexicographically smaller than all the
strings in Iv (for NFAs, the condition is slightly more involved as those sets can have a
nonempty intersection). Note that, at this point of the discussion, it is not yet clear that
such an ordering always exists (in fact, we will see that it does not); however, from the
previous subsections, we know that particular graph topologies (in particular, paths, cycles,
trees, and de Bruijn graphs) do admit a solution to this sorting problem. The legitimate
question, tackled for the first time in Gagie et al.’s work, is: what is the largest graph family
admitting such an ordering?

Let a, a′ be two characters labeling edges (u, u′) and (v, v′), respectively. We require
the following three Wheeler properties [50] for our ordering ≤:

(i) all states with in-degree zero come first in the ordering,
(ii) if a < a′, then u′ < v′, and
(iii) if a = a′ and u < v, then u′ ≤ v′.

It is not hard to see that (i)–(iii) generalize the familiar co-lexicographic order among
the prefixes of a string to labeled graphs. In this generalized context, we deal with prefixes
of the recognized language, i.e., with the strings labeling paths connecting the source state
with any other state. Note also that rule (ii) implicitly requires that all labels entering a
state must be equal. This is not a severe restriction: at the cost of increasing the number of
states by a factor σ, any automaton can be transformed into an equivalent one with this
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property [65]. Figure 10 depicts the automaton of Figure 9 after having ordered (left-to-
right) the states according to the above three Wheeler properties.

sstart q1 q2q3
a

b
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b

Figure 10. The automaton of Figure 9, sorted according to the three Wheeler properties.

An ordering≤ satisfying Wheeler properties (i)–(iii) is called a Wheeler order. Note that
a Wheeler order, when it exists, is always total (this will become important in Section 3.8).
An automaton (or a labeled graph) is said to be Wheeler if its states admit at least one
Wheeler order.

3.7.1. Subpath Queries

When a Wheeler order exists, all the power of suffix arrays can be lifted to labeled
graphs: (1) the nodes reached by a path labeled with a given pattern Π form a consecutive
range in Wheeler order, and (2) such a range can be found in linear time as a function
of the pattern’s length. In fact, the search algorithm generalizes those devised for the
particular graphs discussed in the previous sections. Figure 11 depicts the process of
searching all nodes reached by a path labeled with pattern Π = “aba”. The algorithm
starts with Π = ǫ (empty string, all nodes) and right-extends it by one letter step by step,
following the edges labeled with the corresponding character of Π from the current set of
nodes. Note the following crucial property: at each step, the nodes reached by the current
pattern form a consecutive range. This makes it possible to represent the range in constant
space (by specifying just the first and last node in the range). Similarly to what we briefly
discussed in Section 3.5 (Subpath Queries on the XBWT), by using appropriate compressed
data structures supporting rank and select on strings, each character extension can be
implemented efficiently (i.e., in log-logarithmic time). The resulting data structure can be
stored in entropy-compressed space [50].
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Figure 11. Searching nodes reached by a path labeled “aba” in a Wheeler graph. Top left: we begin

with the nodes reached by the empty string (full range). Top right: range obtained from the previous

one following edges labeled ’a’. Bottom left: range obtained from the previous one following edges

labeled ’b’. Bottom right: range obtained from the previous one following edges labeled ’a’. This last

range contains all nodes reached by a path labeled “aba”

The algorithm we just described allows us to find the number of nodes reached by
a given pattern, i.e., to solve count queries on the graph. As far as locate queries are
concerned, Sirén et al. in Reference [76] proposed a sampling scheme that returns the labels
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of all nodes reached by the query pattern, provided that the labeling scheme satisfies a
particular monotonicity property (that is, the labels of a node are larger than those of its
predecessors). In practical situations, such as genome-graph indexing, such labels can
be equal to an absolute position on a reference genome representing all the paths of the
graph. In the worst case, however, this scheme requires to store Θ(n) labels of O(log n)
bits each. As another option, the sampling strategy described by Arroyuelo et al. [70]
Section 5.1 and Prezza [49] (see Section 3.5.4 for more details) can be directly applied to the
DFS spanning forest of any Wheeler graph, thus yielding locate queries in polylogarithmic
time and small additiona redundancy.

3.7.2. Compression

The nodes of a Wheeler graph are sorted (clustered) with respect to their incoming
paths, so the outgoing labels of adjacent nodes are likely to be similar. This allows applying
high-order compression to the labels of a Wheeler graph [50]. It is even possible to compress
the graph’s topology (together with the labels), if this is highly repetitive (i.e., the graph has
large repeated isomorphic subgraphs). By generalizing the tunneling technique originally
devised by Baier [84] for the Burrows-Wheeler transform, Alanko et al. [48] showed that
isomorphic subtrees adjacent in co-lexicographic order can be collapsed while maintaining
the Wheeler properties. In the same paper, they showed that a tunneled Wheeler graph
can be even indexed to support existence path queries (a relaxation of counting queries
where we can only discover whether or not a query pattern labels some path in the graph).
Similarly, one can observe that a repetitive graph topology will generate long runs of equal
sets of outgoing labels in Wheeler order. This allows applying run-length compression
to the Wheeler graph [49]. Run-length compression of a Wheeler graph is equivalent to
collapsing isomorphic subgraphs that are adjacent in Wheeler order and, thus, shares many
similarities with the tunneling technique. A weaker form of run-length compression of a
Wheeler graph has been considered by Bentley et al. in Reference [85]. In this work, they
turn a Wheeler graph into a string by concatenating the outgoing labels of the sorted nodes,
permuted so as to minimize the number of equal-letter runs of the resulting string. They
show that the (decision version of the) problem of finding the ordering of the Wheeler
graph’s sources that minimizes the number of runs is NP-complete. In the same work, they
show that also the problem of finding the alphabet ordering minimizing the number of
equal-letter runs in the BWT is NP-complete.

3.7.3. Sorting and Recognizing Wheeler Graphs

Perhaps not surprisingly, not all labeled graphs admit a Wheeler order of their nodes.
Intuitively, this happens because of conflicting predecessors: if u and v have a pair of
predecessors ordered as u′ < v′ and another pair ordered as v′′ < u′′, then a Wheeler
order cannot exist. As an example, consider any automaton recognizing the language
L′ = (ax∗b)|(cx∗d) (original example by Gagie et al. [50]). Since any string beginning with
letter ‘a’ must necessarily end with letter ‘b’ and, similarly, any string beginning with letter

‘c’ must necessarily end with letter ‘d’, the paths spelling axkb and axk′d must be disjoint
for all k, k′ ≥ 0. Said otherwise, the nodes reached by label ‘x’ and leading to ‘b’ must be
disjoint from those reached by label ‘x’ and leading to ‘d’. Denote with uα a state reached
by string α (read from the source). Then, it must be uax < ubx: from the above observation,
those two states must be distinct, and, from the Wheeler properties, they must be in this
precise order. For the same reason, it must be the case that ubx < uaxx < ubxx < uaxxx < . . . .
This is an infinite sequence of distinct states: no finite Wheeler automaton can recognize L′.

This motivates the following natural questions: given an automaton A, is it Wheeler?
if yes, can we efficiently find a corresponding Wheeler order? It turns out that these are
hard problems. Gibney and Thankachan showed in Reference [86] that deciding whether
an arbitrary automaton admits a Wheeler order is NP-complete. This holds even when each
state is allowed to have at most five outgoing edges labeled with the same character (which
somehow bounds the amount of nondeterminism). On the positive side, Alanko et al. [65]
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showed that both problems (recognition and sorting) can be solved in quadratic time when
each state is allowed to have at most two outgoing edges labeled with the same character.
This includes DFAs, for which, however, a more efficient linear-time solution exists [65].
The complexity of the cases in between, i.e., at most three/four equally-labeled outgoing
edges, is still open [87].

3.7.4. Wheeler Languages

Since we are talking about finite automata, one question should arise naturally: what
languages are recognized by Wheeler NFAs? Let us call Wheeler languages this class. First
of all, Wheeler languages are clearly regular since, by definition, they are accepted by
finite state automata. Moreover, all finite languages are Wheeler because they can be
recognized by a tree-shaped automaton, which (as seen in Section 3.5) is always prefix-
sortable. Additionally, as observed by Gagie et al. [50] not all regular languages are
Wheeler: (ax∗b)|(cx∗d) is an example. Interestingly, Wheeler languages can be defined both
in terms of DFAs and NFAs: Alanko et al. proved in Reference [65] that Wheeler NFAs and
Wheeler DFAs recognize the same class of languages. Another powerful language-theoretic
result that can be transferred from regular to Wheeler languages is their neat algebraic
characterization based on Myhill-Nerode equivalence classes [66]. We recall that two
strings α and β are Myhill-Nerode equivalent with respect to a given regular language L if
and only if, for any string γ, we have that αγ ∈ L ⇔ βγ ∈ L. The Myhill-Nerode theorem
states that L is regular if and only if the Myhill-Nerode equivalence relation has finite index
(i.e., it has a finite number of equivalence classes). In the Wheeler case, the Myhill-Nerode
equivalence relation is slightly modified by requiring that equivalence classes of prefixes of
the language are also intervals in co-lexicographic order and contain words ending with
the same letter. After this modification, the Myhill-Nerode theorem can be transferred to
Wheeler languages: L is Wheeler if and only if the modified Myhill-Nerode equivalence
relation has finite index [65,88]. See Alanko et al. [88] for a comprehensive study of the
elegant properties of Wheeler languages (including closure properties and complexity of
the recognition problem). From the algorithmic point of view (which is the most relevant
to this survey), these results permit to define and build efficiently the minimum Wheeler
DFA (that is, with the smallest number of states) recognizing the same language of a given
input Wheeler DFA, thus optimizing the space of the resulting index [65].

After this introduction to Wheeler languages, let us consider the question: can
we index Wheeler languages efficiently? Interestingly, Gibney and Thankachan’s NP-
completeness proof [86] requires that the automaton’s topology is fixed so it does not
rule out the possibility that we can index in polynomial time an equivalent automaton.
After all, in many situations, we are actually interested in indexing a language rather
than a fixed graph topology. Surprisingly, the answer to the above question is yes: it is
easier to index Wheeler languages, rather than Wheeler automata. Since recognizing and
sorting Wheeler DFAs is an easy problem, a first idea could be to turn the input NFA into
an equivalent DFA. While it is well-known that, in the worst case, this conversion (via
the powerset algorithm) could result in an exponential blow-up of the number of states,
Alanko et al. [65] proved that a Wheeler NFA always admits an equivalent Wheeler DFA
of linear size (the number of states doubles at most). This has an interesting consequence:
if the input NFA is Wheeler, then we can index its language in linear time (in the size of
the input NFA) after converting it to a DFA (which requires polynomial time). We can
actually do better: if the input NFA A is Wheeler, then in polynomial time we can build a
Wheeler NFA A′ that (i) is never larger than A, (ii) recognizes the same language as A, and
(iii) can be sorted in polynomial time [88]. We remark that there is a subtle reason why the
above two procedures for indexing Wheeler NFAs do not break the NP-completeness of the
problem of recognizing this class of graphs: it is possible that they generate a Wheeler NFA
even if the input is not a Wheeler NFA; thus they cannot be used to solve the recognition
problem. To conclude, these strategies can be used to index Wheeler NFAs, but do not
tell us anything about indexing Wheeler languages represented as a general (possibly
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non-Wheeler) NFA. An interesting case is represented by finite languages (always Wheeler)
represented as acyclic NFAs. The lower bounds discussed in Section 3.2 tell us that a
quadratic running time is unavoidable for the graph indexing problem, even in the acyclic
case. This implies, in particular, that the conversion from arbitrary acyclic NFAs to Wheeler
NFAs must incur in a quadratic blow-up in the worst case. In practice, the situation is
much worse: Alanko et al. showed in Reference [65] that the blow-up is exponential in the
worst case. In the same paper, they provided a fast algorithm to convert any acyclic DFA
into the smallest equivalent Wheeler DFA.

3.8. p-Sortable Automata

Despite its power, the Wheeler graph framework does not allow to index and compress
any labeled graph: it is easy to come up with arbitrarily large Wheeler graphs that lose
their Wheeler property after the addition of just one edge. Does this mean that such an
augmented graph cannot be indexed efficiently? clearly not, since it would be sufficient
to add a small “patch” (keeping track of the extra edge) to the index of the underlying
Wheeler subgraph in order to index it. As another “unsatisfying” example, consider the
union L = L1 ∪ L2 of two Wheeler languages L1 and L2. In general, L is not a Wheeler
language [88]. However, L can be easily indexed by just keeping two indexes (of two
Wheeler automata recognizing L1 and L2), with no asymptotic slowdown in query times!
The latter example is on the right path to a solution of the problem. Take two Wheeler
automata A1 and A2 recognizing two Wheeler languages L1 and L2, respectively, such
that L = L1 ∪ L2 is not Wheeler. The union automaton A1 ∪ A2 (obtained by simply
merging the start states of A1 and A2) is a nondeterministic automaton recognizing L.
Taken individually, the states of A1 and A2 can be sorted in two total orders. However,
taken as a whole, the two sets of states do not admit a total co-lexicographic order (which
would imply that L is Wheeler). The solution to this riddle is to abandon total orders
in favor of partial orders [89]. A partial order ≤ on a set V (in our case, the set of the
automaton’s states) is a reflexive, antisymmetric and transitive relation on V. In a partial
order, two elements u, v either are comparable, in which case u ≤ v or v ≤ u hold (both
hold only if u = v), or are not comparable, in which case neither u ≤ v nor v ≤ u hold. The
latter case is indicated as u ‖ v. Our co-lexicographic partial order is defined as follows.
Let a, a′ be two characters labeling edges (u, u′) and (v, v′), respectively. We require the
following properties:

(i) all states with in-degree zero come first in the ordering,
(ii) if a < a′, then u′ < v′, and
(iii) if a = a′ and u′ < v′, then u ≤ v.

Note that, differently from the definition of Wheeler order (Section 3.7), the implication
of (iii) follows the edges backwards. As it turns out, ≤ is indeed a partial order and, as
we show in the next subsections, it allows generalizing the useful properties of Wheeler
graphs to arbitrary topologies. A convenient representation for any partial order is a Hasse
diagram: a directed acyclic graph where we draw the elements of the order from the
smallest (bottom) to largest ones (top), and two elements are connected by an edge (u, v) if
and only if u ≤ v. See Figure 12 for an example.

The lower bounds discussed in Section 3.2 tell us that indexed pattern matching on
graphs cannot be solved faster than quadratic time in the worst case. In particular, this
means that our generalization of Wheeler graphs cannot yield an index answering subpath
queries in linear time. In fact, there is a catch: the extent to which indexing and compression
can be performed efficiently is proportional to the similarity of the partial order ≤ to a
total one. As it turns out, the correct measure of similarity to consider is the order’s width:
the minimum number p of totally-ordered chains (subsets of states) into which the set of
states can be partitioned. Figure 12 makes it clear that the states of the automaton can be
divided into p = 2 totally-ordered subsets. This choice is not unique (look at the Hasse
diagram), and a possible partition is s < q1 < q3 (in yellow) and q2 (in red). We call
p-sortable the class of automata for which there exists a chain partition of size p. Since the
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n states of any automaton can always be partitioned into n chains, this definition captures
all automata. The parameter p seems to capture some deep regularity of finite automata: in
addition to determining the compressibility of their topology (read next subsections), it
also determines their inherent determinism: a p-sortable NFA with n states always admits
an equivalent DFA (which can be obtained via the standard powerset algorithm) with at
most 2p(n− p + 1)− 1 states. This represents some sort of fine-grained analysis refining
the folklore (tight) bound of 2n [90] and has deep implications to several algorithms on
automata. For example, it implies that the PSPACE-complete NFA equivalence problem
is fixed-parameter tractable with respect to p [89]. To conclude, we mention that finding
the smallest p for a given labeled graph is NP complete, though the problem admits an
O(e2 + n5/2)-time algorithm for the deterministic case [89].

sstart q1
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q2
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a
b

s

q1 q2

q3

Figure 12. (Left) Automaton for the language L = a(aa)∗b. (Right) Hasse diagram of a co-

lexicographic partial order for the graph. The order’s width is 2, and the order can be partitioned

into two totally-ordered chains (yellow and red in the example; this is not the only possible choice).

3.8.1. Subpath Queries

Subpath queries can be answered on p-sortable automata by generalizing the forward
search algorithm of Wheeler graphs. In fact, the following property holds: for any pattern
Π, the states reached by a path labeled with Π always form one convex set in the partial
order. In turn, any convex set can be expressed as p intervals, one contained in each class of
the chain partition [89] (for any chain partition). The generalized forward search algorithm
works as follows: start with the interval of ǫ on the p chains (the full interval on each chain).
For each character a of the pattern, follow the edges labeled with a that depart from the
current (at most) p intervals. By the above property, the target nodes will still be contained
in (at most) p intervals on the chains. Consider the example of Figure 12. In order to find
all nodes reached by pattern ‘aa’, the generalized forward search algorithm first finds the
nodes reached by ‘a’: those are nodes q1 (a range on the yellow chain) and q2 (a range on
the red chain). Finally, the algorithm follows all edges labeled ‘a’ from those ranges, thereby
finding all nodes reached by ‘aa’: nodes (again) q1 and q2 which, as seen above, form one
range on the yellow chain and one on the red chain. See [89] for a slightly more involved
example. Using up-to-date data structures, the search algorithm can be implemented to
run in O(|Π| · log(σp) · p2) steps [89]. In the worst case (p = n), this essentially matches
the lower bound of Equi et al. [52–54] on dense graphs (see Section 3.2). On the other hand,
for small values of p this running time can be significantly smaller than the lower bound:
in the extreme case, p = 1, and we obtain the familiar class of Wheeler graphs (supporting
optimal-time subpath queries).

As far as locate queries are concerned, the sampling strategy described by
Arroyuelo et al. [70] Section 5.1 and Prezza [49] (see Section 3.5.4 for more details) can
be directly applied to the DFS spanning forest of any p-sortable graph (similarly to Wheeler
graphs), thus yielding locate queries in polylogarithmic time and small additional redun-
dancy. This is possible since the index for p-sortable graphs described in Reference [89]
supports navigation primitives, as well, and can thus be used to navigate the DFS spanning
forest of the graph.
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3.8.2. Compression

The Burrows-Wheeler transform [20] (also see Section 3.5) can be generalized to p-
sortable automata: the main idea is to (i) partition the states into p totally-sorted chains
(for example, in Figure 12, one possible such chain decomposition is {s, q1, q3}, {q2}), (ii)
order the states by “gluing” the chains in any order (for example, in Figure 12 one possible
such ordering is s, q1, q3, q2), (iii) build the adjacency matrix of the graph using this state
ordering and (iv) for each edge in the matrix, store only its label and its endpoint chains
(that is, two numbers between 1 and p indicating which chains the two edges’ endpoints
belong to). It can be shown that this matrix can be linearized in an invertible representation
taking log σ + 2 log p + 2+ o(1) bits per edge. On DFAs, the representation takes less space:
log σ + log p + 2 + o(1) bits per edge [89]. This is already a compressed representation of
the graph, since “sortable” graphs (i.e., having small p) are compressed to few bits per
edge, well below the information-theoretic worst-case lower bound if p≪ n. Furthermore,
within each chain the states are sorted by their incoming paths. It follows that, as seen in
Sections 3.5 and 3.7, high-order entropy-compression can be applied within each chain.

4. Conclusions and Future Challenges

In this survey, we tried to convey the core ideas that have been developed to date in
the field of compressed graph indexing, in the hope of introducing (and attracting) the
non-expert reader to this exciting and active area of research. As it can be understood
by reading our survey, the field is in rapid expansion and does not lack of stimulating
challenges. On the lower-bound side, a possible improvement could be to provide fine-
grained lower bounds to the graph indexing problem, e.g., as a function of the parameter
p introduced in Section 3.8. As far as graph compression is concerned, it is plausible that
new powerful graph compression schemes will emerge from developments in the field: an
extension of the run-length Burrows Wheeler transform to labeled graphs, for example,
could compete with existing grammar-based graph compressors while also supporting
efficient path queries. Efficient index construction is also a considerable challenge. As
seen in Section 3.7, Wheeler graphs can be sorted efficiently only in the deterministic case.
Even when the nondeterminism degree is very limited to just two equally-labeled edges
leaving a node, the fastest sorting algorithm has quadratic complexity. Even worse, in
the general (nondeterministic) case, the problem is NP-complete. The situation does not
improve with the generalization considered in Section 3.8: finding the minimum width p
for a deterministic graph takes super-quadratic time with current solutions, and it becomes
NP-complete for arbitrary graphs. Clearly, practical algorithms for graph indexing will
have to somehow sidestep these issues. One possible solution could be approximation: we
note that, even if the optimal p cannot be found efficiently (recall that p = 1 for Wheeler
graphs), approximating it (for example, up to a polylog(n) factor) would still guarantee
fast queries. Further challenges include generalizing the labeled graph indexing problem
to allow aligning regular expressions against graphs. This could be achieved, for example,
by indexing both the graph and an NFA recognizing the query (regular expression) pattern.
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Abbreviations

The following abbreviations are used in this manuscript:

BWT Burrows-Wheeler Transform

DFA Deterministic Finite Automaton

GCSA Generalized Compressed Suffix Array

NFA Nondeterministic Finite Automaton

PA Prefix array

SA Suffix Array

XBWT eXtended Burrows-Wheeler Transform

T Text (string to be indexed)

Π Pattern to be aligned on the labeled graph

Σ Alphabet

σ Size of the alphabet: σ = |Σ|
e Number of edges in a labeled graph

m Pattern length: m = |Π|
n Length of a text or number of nodes in a labeled graph

p Number of chains in a chain decomposition of the automaton’s partial order (Section 3.8)
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Abstract: We present linear-time algorithms computing the reversed Lempel–Ziv factorization

[Kolpakov and Kucherov, TCS’09] within the space bounds of two different suffix tree representations.

We can adapt these algorithms to compute the longest previous non-overlapping reverse factor table

[Crochemore et al., JDA’12] within the same space but pay a multiplicative logarithmic time penalty.
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1. Introduction

The non-overlapping reversed Lempel–Ziv (LZ) factorization was introduced by Kol-
pakov and Kucherov [1] as a helpful tool for detecting gapped palindromes, i.e., substrings
of a given text T of the form SRGS for two strings S and G, where SR denotes the reverse of
S. This factorization is defined as follows: Given a factorization T = F1 · · · Fz for a string T,
it is the non-overlapping reversed LZ factorization of T if each factor Fx, for x ∈ [1 . . z], is
either the leftmost occurrence of a character or the longest prefix of Fx · · · Fz whose reverse
has an occurrence in F1 · · · Fx−1. It is a greedy parsing in the sense that it always selects
the longest possible such prefix as the candidate for the factor Fx. The factorization can
be written like a macro scheme [2], i.e., by a list storing either plain characters or pairs
of referred positions and lengths, where a referred position is a previous text position
from where the characters of the respective factor can be borrowed. Among all variants
of such a left-to-right parsing using the reversed as a reference to the formerly parsed
part of the text, the greedy parsing achieves optimality with respect to the number of
factors [3] ([Theorem 3.1]) since the reversed occurrence of Fx can be the prefix of any suffix
in F1 · · · Fx−1, and thus fulfills the suffix-closed property [3] ([Definition 2.2]).

Kolpakov and Kucherov [1] also gave an algorithm computing the reversed LZ fac-
torization in O(n lg σ) time using O(n lg n) bits of space, by applying Weiner’s suffix tree
construction algorithm [4] on the reversed text TR. Later, Sugimoto et al. [5] presented an
online factorization algorithm running in O(n lg2 σ) time using O(n lg σ) bits of space. We
can also compute the reversed LZ factorization with the longest previous non-overlapping
reverse factor table LPnrF storing the longest previous non-overlapping reverse factor for
each text position. There are algorithms [6–10] computing LPnrF in linear time for strings
whose characters are drawn from alphabets with constant sizes; their used data structures
include the suffix automaton [11], the suffix tree of TR, the position heap [12], and the suffix
heap [13]. Finally, Crochemore et al. [14] presented a linear-time algorithm working with in-
teger alphabets by leveraging the suffix array [15]. To find the longest gapped palindromes
of the form SRGS with the length of G restricted in a given interval I , Dumitran et al. [16]
([Theorem 1]) restricted the distance of the previous reverse occurrence relative to the
starting position of the respective factor within I in their modified definition of LPnrF, and
achieved the same time and space bounds of [14]. However, all mentioned linear-time
approaches use either pointer-based data structures of O(n lg n) bits, or multiple integer
arrays of length n to compute LPnrF or the reversed LZ factorization.
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1.1. Our Contribution

The aim of this paper is to compute the reversed LZ factorization in less space while
retaining the linear time bound. For that, we follow the idea of Crochemore et al. [14]
([Section 4]) who built text indexing data structures on T · # · TR to compute LPnrF for
an artificial character #. However, they need random access to the suffix array, which
makes it hard to achieve linear time for working space bounds within o(n lg n) bits. We
can omit the need for random access to the suffix array by a different approach based on
suffix tree traversals. As a precursor of this line of research we can include the work of
Gusfield [17] ([APL16]) and Nakashima et al. [18]. The former studies the non-overlapping
Lempel–Ziv–Storer–Szymanski (LZSS) factorization [2,19] while the latter the Lempel–Ziv-
78 factorization [20]. Although their used techniques are similar to ours, they still need
O(n lg n) bits of space. To actually improve the space bounds, we follow two approaches:
On the one hand, we use the leaf-to-root traversals proposed by Fischer et al. [21] ([Sec-
tion 3]) for the overlapping LZSS factorization [2] during which they mark visited nodes
acting as signposts for candidates for previous occurrences of the factors. On the other
hand, we use the root-to-leaf traversals proposed in [22] for the leaves corresponding to
the text positions of T to find the lowest marked nodes whose paths to the root constitute
the lengths of the non-overlapping LZSS factors. Although we mimic two approaches for
computing factorizations different to the reversed LZ factorization, we can show that these
traversals on the suffix tree of T · # · TR help us to detect the factors of the reversed LZ
factorization. Our result is as follows:

Theorem 1. Given a text T of length n− 1 whose characters are drawn from an integer alphabet
with size σ = nO(1), we can compute its reversed LZ factorization

• in O(ǫ−1n) time using (2 + ǫ)n lg n +O(n) bits (excluding the read-only text T), or

• in O(ǫ−1n) time using O(ǫ−1n lg σ) bits,

for a selectable parameter ǫ ∈ (0, 1].

On the downside, we have to admit that the results are not based on new tools, but
rather a combination of already existing data structures with different algorithmic ideas.
On the upside, Theorem 1 presents the first linear-time algorithm computing the reversed
LZ factorization using a number of bits linear to the input text T, which is o(n lg n) bits
for lg σ = o(lg n). Interestingly, this has not yet been achieved for the seemingly easier
non-overlapping LZSS factorization, for which we have O(ǫ−1n logǫ

σ n) time within the
same space bound [22] ([Theorem 1]). We can also adapt the algorithm of Theorem 1 to
compute LPnrF, but losing the linear time for the O(n lg σ)-bits solution:

Theorem 2. Given a text T of length n − 1 whose characters are drawn from an integer al-
phabet with size σ = nO(1), we can compute a 2n-bits representation of its longest previous
non-overlapping reverse factor table LPnrF

• in O(ǫ−1n) time using (2 + ǫ)n lg n +O(n) bits (excluding the read-only text T), or

• in O(ǫ−1n logǫ
σ n) time using O(ǫ−1n lg σ) bits,

for a selectable parameter ǫ ∈ (0, 1]. We can augment our LPnrF representation with an o(n)-bits
data structure to provide constant-time random access to LPnrF entries.

We obtain the 2n-bits representation of LPnrF with the same compression technique
used for the permuted longest common prefix array [23] ([Theorem 1]), see [24] ([Defini-
tion 4]) for several other examples.

1.2. Related Work

To put the above theorems into the context of space-efficient factorization algorithms
that can also compute factor tables like LPnrF, we briefly list some approaches for different
variants of the LZ factorization and of LPnrF. We give Table 1 as an overview. We are
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aware of approaches to compute the overlapping and non-overlapping LZSS factorization,
as well as the longest previous factor (LPF) table LPF [25,26] and the longest previous
non-overlapping table LPnF [14]. We can observe in Table 1 that only the overlapping
LZSS factorization does not come with a multiplicative logǫ

σ n time penalty when working
within O(ǫ−1n lg σ) bits. Note that the time and space bounds have an additional multi-
plicative ǫ−1 penalty (unlike described in the references therein) because the currently best
construction algorithms of the compressed suffix tree (described later in Section 2) works
in O(ǫ−1n) time and needs O(ǫ−1n lg σ) bits of space [27] ([Section 6.1]).

Regarding space-efficient algorithms computing the LZSS factorization, we are aware
of the linear-time algorithm of Goto and Bannai [28] using n lg n +O(σ lg n) bits of work-
ing space. For ǫn bits of space, Kärkkäinen et al. [29] can compute the factorization
in O(n lg n lg lg σ) time, which got improved to O(n(lg σ + lg lg n)) by Kosolobov [30].
Finally, the algorithm of Belazzougui and Puglisi [31] uses O(n lg σ) bits of working space
and O(n lg lg σ) time.

Another line of research is the online computation of LPF. Here, Okanohara and
Sadakane [32] gave a solution that works in n lg σ +O(n) bits of space and needsO(n lg3 n)
time. This time bound got recently improved to O(n lg2 n) by Prezza and Rosone [33].

Table 1. Complexity bounds of related approaches described in Section 1.2 for a selectable parameter

ǫ ∈ (0, 1].

(1 + ǫ)n lg n +O(n) Bits of Working Space (Excluding the Read-Only Text T)
Reference Type Time

[21] ([Corollary 3.7]) overlapping LZSS O(ǫ−1n)
[34] ([Lemma 6]) LPF O(ǫ−1n)
[22] ([Theorem 1]) non-overlapping LZSS O(ǫ−1n)
[22]([Theorem 3]) LPnF O(ǫ−1n)

O(ǫ
−1n lg σ) Bits of Working Space

Reference Type Time

[21] ([Corollary 3.4]) overlapping LZSS O(ǫ−1n)
[34] ([Lemma 6]) LPF O(ǫ−1n logǫ

σ n)
[22] ([Theorem 1]) non-overlapping LZSS O(ǫ−1n logǫ

σ n)
[22] ([Theorem 3]) LPnF O(ǫ−1n logǫ

σ n)

1.3. Structure of this Article

This article is structured as follows: In Section 2, we start with the introduction of the
suffix tree representations we build on the string T · # · TR, and introduce the reversed LZ
factorization in Section 3. We present in Section 3.2 our solution for the claim of Theorem 1
without the referred positions, which we compute subsequently in Section 3.3. Finally, we
introduce LPnrF in Section 4, and give two solutions for Theorem 2. One is a derivation
of our reversed-LZ factorization algorithm of Section 3.2.2 (cf. Section 4.1), the other is a
translation of [14] ([Algorithm 2]) to suffix trees (cf. Section 4.2).

2. Preliminaries

With lg we denote the logarithm log2 to base two. Our computational model is the
word RAM model with machine word size Ω(lg n) for a given input size n. Accessing a
word costs O(1) time.

Let T be a text of length n− 1 whose characters are drawn from an integer alphabet
Σ = [1 . . σ] with σ = nO(1). Given X, Y, Z ∈ Σ∗ with T = XYZ, then X, Y and Z are
called a prefix, substring and suffix of T, respectively. We call T[i . .] the i-th suffix of T,
and denote a substring T[i]T[i + 1] · · · T[j] with T[i . . j]. For i > j, [i . . j] and T[i . . j] denote
the empty set and the empty string, respectively. The reverse TR of T is the concatenation

TR := T[n− 1]T[n− 2] · · · T[1]. We further write T[i . . j]R := T[j]T[j− 1] · · · T[i].
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Given a character c ∈ Σ, and an integer j, the rank query T. rankc(j) counts the
occurrences of c in T[1 . . j], and the select query T. selectc(j) gives the position of the j-th c

in T, if it exists. We stipulate that rankc(0) = selectc(0) = 0. If the alphabet is binary, i.e.,
when T is a bit vector, there are data structures [35,36] that use o(|T|) extra bits of space, and
can compute rank and select in constant time, respectively. There are representations [37]
with the same constant-time bounds that can be constructed in time linear in |T|. We say
that a bit vector has a rank-support and a select-support if it is endowed by data structures
providing constant time access to rank and select, respectively.

From now on, we assume that there exist two special characters # and $ that do not
appear in T, with $ < # < c for every character c ∈ Σ. Under this assumption, none of
the suffixes of T · # and TR · $ has another suffix as a prefix. Let R := T · # · TR · $. R has
length |R| = 2|T|+ 2 = 2n.

The suffix tree ST of R is the tree obtained by compacting the suffix trie, which is the
trie of all suffixes of R. ST has 2n leaves and at most 2n− 1 internal nodes. The string
stored in a suffix tree edge e is called the label of e. The children of a node v are sorted
lexicographically with respect to the labels of the edges connecting the children with v.
We identify each node of the suffix tree by its pre-order number. We do so implicitly such
that we can say, for instance, that a node v is marked in a bit vector B, i.e., B[v] = 1, but
actually have B[i] = 1, where i is the pre-order number of v. The string label of a node v
is defined as the concatenation of all edge labels on the path from the root to v; v’s string
depth, denoted by str_depth(v), is the length of v’s string label. The operation suffixlink(v)
returns the node with string label S[2 . . ] or the root node, given that the string label of v
is S with |S| ≥ 2 or a single character, respectively. suffixlink is undefined for the root node.

The leaf corresponding to the i-th suffix R[i . .] is labeled with the suffix number i ∈
[1 . . 2n]. We write sufnum(λ) for the suffix number of a leaf λ. The leaf-rank is the preorder
rank (∈ [1 . . 2n]) of a leaf among the set of all ST leaves. For instance, the leftmost leaf
in ST has leaf-rank 1, while the rightmost leaf has leaf-rank 2n. To avoid confusing the
leaf-rank with the suffix number of a leaf, let us bear in mind that the leaf-ranks correspond
to the lexicographical order of the suffixes (represented by the leaves) in R, while the suffix
numbers induce a ranking based on the text order of R’s suffixes. In this context, the
function suffixlink(λ) returns the leaf whose suffix number is sufnum(λ) + 1. The reverse
function of suffixlink on leaves is prev_leaf(λ) that returns the leaf whose suffix number is
sufnum(λ)− 1, or 2n if sufnum(λ) = 1 (We do not need to compute suffixlink(λ) for a leaf
with sufnum(λ) = 2n, but want to compute prev_leaf(λ) for the border case sufnum(λ) = 1.).

In this article, we focus on the following two ST representations: the compressed
suffix tree (CST) [23,38] and the succinct suffix tree (SST) [21] ([Section 2.2.3]). Both can be
computed in O(ǫ−1n) time, where the former is due to a construction algorithm given by
Belazzougui et al. [27] ([Section 6.1]), and the latter due to [21] ([Theorem 2.8]), see Table
2. These two representations provide some of the above described operations in the time
bounds listed in Table 3. Each representation additionally stores the pointer smallest_leaf

to the leaf with suffix number 1, and supports the following operations in constant time,
independent of ǫ:

leaf_rank(λ) returns the leaf-rank of the leaf λ;

depth(v) returns the depth of the node v, which is the number of nodes on the path
between v and the root (exclusive) such that root has depth zero;

level_anc(λ, d) returns the level-ancestor of the λ on depth d; and

lca(u, v) returns the lowest common ancestor (LCA) of u and v.

As previously stated, we implicitly represent nodes by their pre-order numbers such
that the above operations actually take pre-order numbers as arguments.
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Table 2. Construction time and needed space in bits for the succinct suffix tree (SST) and compressed

suffix tree (CST) representations, cf. [21] ([Section 2.2]).

SST CST

Time O(n/ǫ) O(ǫ−1n)
Space (2 + ǫ)n lg n +O(n) O(ǫ−1n lg σ)

Table 3. Time bounds for certain operations needed by our LZ factorization algorithms. Although

not explicitly mentioned in [21], the time for prev_leaf is obtained with the Burrows–Wheeler trans-

form [39] stored in the CST [38] ([A.1]) by constant-time partial rank queries, see [27] ([Section 3.4])

or [38] ([A.4]).

Operation SST Time CST Time

sufnum(λ) O(1/ǫ) O(n)
str_depth(v) O(1/ǫ) O(str_depth(v))
suffixlink(v) O(1/ǫ) O(1)
prev_leaf O(1/ǫ) O(1)

3. Reversed LZ Factorization

A factorization of T of size z partitions T into z substrings F1 · · · Fz = T. Each such
substring Fx is called a factor. A factorization is called reversed LZ factorization if each
factor Fx is either the leftmost occurrence of a character or the longest prefix of Fx · · · Fz

that occurs at least once in (F1 · · · Fx−1)
R, for x ∈ [1 . . z]. A similar but much well-studied

factorization is the non-overlapping LZSS factorization, where each factor Fx is either
the leftmost occurrence of a character or the longest prefix of Fx · · · Fz that occurs at least
once in F1 · · · Fx−1, for x ∈ [1 . . z]. See Figure 1 for an example and a comparison of both
factorizations. In what follows, let z denote the number of reversed-LZ factors of T.

a b b a b b a b a b
1 2 3 4 5 6 7 8 9 10

T =

(2,2)

(3,3)

(5,3)

Coding:
ab(2,2)(3,3)(5,3)

a b b a b b a b a b
1 2 3 4 5 6 7 8 9 10

T =

(2,1)

(1,3)

(1,2)

(1,2)

Coding:
ab(2,1)(1,3)(1,2)(1,2)

reversed LZ non-overlapping LZSS

Figure 1. The reversed LZ and the non-overlapping LZSS factorization of the string T = abbabbabab.

A factor F is visualized by a rounded rectangle. Its coding consists of a mere character if it has

no reference; otherwise, its coding consists of its referred position p and its length ℓ such that

F = T[p− ℓ+ 1 . . p]R for the reversed LZ factorization, and F = T[p . . p + ℓ − 1] for the non-

overlapping LZSS factorization.

3.1. Coding

We classify factors into fresh and referencing factors: We say that a factor is fresh
if it is the leftmost occurrence of a character. We call all other factors referencing. A
referencing factor Fx has a reference pointing to the ending position of its longest previous
non-overlapping reverse occurrence; as a tie break, we always select the leftmost such
ending position. We call this ending position the referred position of Fx. More precisely, the
referred position of a factor Fx = T[i . . i + ℓ− 1] is the smallest text position j with j ≤ i− 1

and T[j− ℓ+ 1 . . j]R = T[i . . i + ℓ− 1]. If we represent each referencing factor as a pair
consisting of its referred position and its length, we obtain the coding shown in Figure 1.
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Although our tie breaking rule selecting the leftmost position among all candidates for the
referred position seems up to now arbitrary, it technically simplifies the algorithm in that
we only have to index the very first occurrence.

3.2. Factorization Algorithm

In the following, we describe our factorization algorithm working with ST. This
algorithm performs traversals on paths connecting leaves with the root, during which it
marks certain nodes. One kind of these marked nodes are phrase leaves: A phrase leaf
is a leaf whose suffix number is the starting position of a factor. We say that a phrase
leaf λ corresponds to a factor F if the suffix number of ℓ is the starting position of F. We
call all other leaves non-phrase leaves. Another kind are witnesses, a notion borrowed
from [21] ([Section 3]): Witnesses are nodes that create a connection between referencing
factors and their referred positions. We formally define them as follows: given λ is the
phrase leaf corresponding to a referencing factor F, the witness w of F is the LCA of λ and

a leaf with suffix number 2n− j (with j ∈ [1 . . n− 1]) such that T[j− str_depth(w) + 1 . . j]R

is the longest substring in T[1 . . sufnum(λ)− 1]R that is a prefix of T[sufnum(λ) . .]. The
smallest such j is the referred position of λ, which is needed for the coding in Section 3.1.
See Figure 2 for a sketch of the setting. In what follows, we show that the witness of
a referencing factor F is the node whose string label is F. Generally speaking, for each
substring S of T, there is always a node whose string label has S as a prefix, but there
maybe no node whose string label is precisely S. This is in particular the case for the
non-overlapping LZSS factorization [22] ([Section 3.1]). Here, we can make use of the fact
that the suffix number 2n− j for a referred position j is always larger than the length of T,
which we want to factorize:

root

w

λ

i

F

2n− j

Figure 2. Witness node w of a referencing factor F starting at text position i. Given j is the referred

position of F, the witness w of F is the node in the suffix tree having (a) F as a prefix of its string label

and (b) the leaves with suffix numbers 2n− j and i in its subtree. Lemma 1 shows that w is uniquely

defined to be the node whose string label is F.

Lemma 1. The witness of each referencing factor exists and is well-defined.

Proof. To show that each referencing factor is indeed the string label of an ST node, we
review the definition of right-maximal repeats: A right-maximal repeat is a substring of R
having at least two occurrences R[i1 . . i1 + ℓ− 1] and R[i2 . . i2 + ℓ− 1] with R[i1 + ℓ] 6= R[i2 +
ℓ]. A right-maximal repeat is the string label of an ST node since this node has at least two
children; those two children are connected by edges whose labels start with R[i1 + ℓ] and
R[i2 + ℓ], respectively. It is therefore sufficient to show that each factor F is a right-maximal

repeat. Given j is the referred position of F = T[i . . i + |F| − 1], F = T[j− |F|+ 1 . . j]R =
R[2n− j . . 2n− j + |F| − 1]. If j = |F|, then T[i + |F|] 6= R[2n− j + |F|] = $, and thus F is
a right-maximal repeat. For the other case that j ≥ |F|+ 1, assume that F is not a right-
maximal repeat. Then T[i + |F|] = R[2n− j + |F|] = T[j− |F|]. However, this means that
F is not the longest reversed factor being a prefix of T[i . .], a contradiction. We visualized
the situation in Figure 3.
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Consequently, the referred position of a factor Fx = T[i . . i + ℓ− 1] is the smallest text
position j in T with j ≤ i− 1 and one of the two equivalent conditions hold:

• T[j− ℓ+ 1 . . j]R = T[i . . i + ℓ− 1]; or
• R[i . .] and R[2n− j . .] have the longest common prefix of length ℓ.

FRāR =

j − |F |+ 1

j − |F | j + 1

F a

i

i+ |F |

# $ā

2n− j + |F |

F

2n− j
2n− i

T TR

Figure 3. A reversed-LZ factor F starting at position i in R with a referred position j ≥ |F|+ 1. If a = ā

with a, ā ∈ Σ, then we could extend F by one character, contradicting its definition to be the longest

prefix of T[i . .] whose reverse occurs in T[1 . . i− 1]. Hence, a 6= ā and F is a right-maximal repeat.

3.2.1. Overview

We explain our factorization algorithm in terms of a cooperative game with two
players (We use this notation only for didactic purposes; the terminology must not be
confused with game theory. Here, the notion of player is basically a subroutine of the
algorithm having private and shared variables.), whose pseudo code we sketched in
Algorithm 1. Player 1 and Player 2 are allowed to access the leaves with suffix numbers
in the ranges [1 . . n] and [n . . 2n− 1], respectively. Player 1 (resp. Player 2) starts at the
leaf with the smallest (resp. largest) suffix number, and is allowed to access the leaf with
the subsequently next (resp. previous) suffix number via suffixlink (resp. prev_leaf). Hence,
Player 1 simulates a linear forward scan in the text T, while Player 2 simulates a linear
backward scan in TR. Both players take turns at accessing leaves at the same pace. To be
more precise, in the i-th turn, Player 1 processes the leaf with suffix number i, whereas
Player 2 processes the leaf with suffix number 2n − i. In one turn, a player accesses a
leaf λ and maybe performs a traversal on the path connecting the root with λ. For such a
traversal, we use level ancestor queries to traverse each node on the path in constant time.
Whenever Player 2 accesses the leaf with suffix number n (shared among both players), the
game ends; at that time both players access the same leaf (cf. Line 6 in Algorithm 1). In
the following, we call this game a pass (with the meaning that we pass all relevant text
positions). Depending on the allowed working space, our algorithm consists of one or two
passes (cf. Section 3.3). The goal of Player 2 is to keep track of all nodes she visits. Player 2
does this by maintaining a bit vector BV of length 4n such that BV[v] stores whether a
node v has already been visited by Player 2, where we represent a node v by its pre-order
number when using it as an index of a bit vector. To keep things simple, we initially mark
the root node in BV at the start of each pass. By doing so, after the i-th turn of Player 2 we

can read any substring of T[1 . . i]R by a top-down traversal from the suffix tree root, only
visiting nodes marked in BV. This is because of the invariant that the set of nodes marked
in BV is upper-closed, i.e., if a node v is marked in BV, then all its ancestors are marked in
BV as well.

The goal of Player 1 is to find the phrase leaves and the witnesses. For that, she
maintains two bit vectors BL and BW of length n and 4n, respectively, whose entries are
marked similarly to BV by using the suffix numbers (∈ [1 . . n]) of the leaves accessed by
Player 1 and preorder numbers of the internal nodes. We initially mark smallest_leaf in
BL since text position 1 is always the starting position of the fresh factor F1. By doing so,
after the i-th turn of Player 1 we know the ending positions of those factors contained in
T[1 . . i], which are marked in BL. To sum up, after the i-th turn of both players we know
the computed factors starting at text positions up to i thanks to Player 1, and can find the
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factor lengths thanks to Player 2, which we explain in detail in Section 3.2.2. There, we will
show that the actions of Player 2 allow Player 1 to determine the starting position of the
next factor. For that, she computes the string depth of the lowest ancestor marked in BV of
the previously visited phrase leaf. See Appendix A.

As a side note: since we are only interested in the factorization of T[1 . . n− 1] (omitting
the appended # at position n), we do not need Player 1 to declare the leaf with suffix
number n a phrase leaf. We also terminate the algorithm when both players meet at
position n without checking whether we have found a new factor starting at position n.

Algorithm 1: Algorithm of Section 3.2.2 computing the non-overlapping re-
versed LZ factorization. The function max_sufnum is described in Section 3.3.

1 ST← suffix tree of R = T · # · TR · $
2 λR ← prev_leaf(prev_leaf(smallest_leaf)) ⊲ sufnum(λR) = 2n− 1
3 λ← smallest_leaf

4 BV[root node]← 1 ⊲ at the beginning, only the root node is marked in BV

5 BL[1]← 1 ⊲ |F1| starts at text position 1

6 while λ 6= λR do ⊲ we stop after having parsed T[1 . . n]
7 if BL[sufnum(λ)] = 1 then ⊲ turn of Player 1
8 d← 0
9 while BV[level_anc(λ, d + 1)] = 1 do d← d + 1

10 w← level_anc(λ, d) ⊲ w is lowest node marked in BV

11 if w is the root then
12 output fresh factor
13 BL[sufnum(λ) + 1]← 1 ⊲ next factor starts directly after sufnum(λ)

14 else ⊲ w is the witness of λ
15 output length str_depth(w)
16 BL[sufnum(λ) + str_depth(w)]← 1
17 output referred position 2n−max_sufnum(w) ⊲ for the one-pass

variant
18 BW[w]← 1 ⊲ for the two-pass variant

19 λ← suffixlink(λ) ⊲ end of Player 1’s turn

20 foreach node v on the path from λR up to the root do ⊲ turn of Player 2
21 if BV[v] = 1 then break ⊲ end turn on reaching an already marked node
22 BV[v]← 1

23 λR ← prev_leaf(λR) ⊲ end of Player 2’s turn

3.2.2. One-Pass Algorithm in Detail

In detail, a pass works as follows: at the start, Player 1 and Player 2 select smallest_leaf

and prev_leaf(prev_leaf(smallest_leaf)), i.e., the leaves with suffix numbers 1 and 2n − 1,
respectively. Now the players take action in alternating turns, starting with Player 1.
Nevertheless, we first explain the actions of Player 2, since Player 2 acts independently of
Player 1, while Player 1’s actions depend on Player 2.

Suppose that Player 2 is at a leaf λR (cf. Line 20 of Algorithm 1). Player 2 traverses
the path from λR to the root upwards and marks all visited nodes in BV until arriving at
a node v already marked in BV (such a node exists since we mark the root in BV at the
beginning of a pass.). When reaching the marked node v, we end the turn of Player 2, and
move Player 2 to prev_leaf(λR) at Line 23 (and terminate the whole pass in Line 6 when
this leaf has suffix number n). The foreach loop (Line 20) of the algorithm can be more
verbosely expressed with a loop iterating over all depth offsets d in increasing order while
computing v ← level_anc(λR, d) until either reaching the root or a node marked in BV.
Subsequently, the turn of Player 1 starts (cf. Line 7). We depict the state after the first turn
of Player 2 in Figure 4.

98



Algorithms 2021, 14, 161

If Player 1 is at a non-phrase leaf λ, we skip the turn of Player 1, move Player 1 to
suffixlink(λ) at Line 19, and let Player 2 take action. Now suppose that Player 1 is at a
phrase leaf λ corresponding to a factor F. Then we traverse the path from the root to λ

downwards to find the lowest ancestor w of λ marked in BV. If w is the root node, then F is
a fresh factor (cf. Line 11), and we know that the next factor starts immediately after F (cf.
Line 13). Consequently, the leaf suffixlink(λ) is a phrase leaf. Otherwise, w is the witness
of λ, and str_depth(w) = |F| (cf. Line 14). Hence, sufnum(λ) + str_depth(w) is the suffix
number of the phrase leaf λ̃ that Player 1 will subsequently access. We therefore mark w and
sufnum(λ̃) = sufnum(λ) + str_depth(w) in BW and in BL, respectively (cf. Lines 16 and 18).
We depict the fifth turn of our running example in Figure 5, during which Player 1 marks a
witness node. Finally, we end the turn of Player 1, move Player 1 to suffixlink(λ) at Line 19,
and let Player 2 take action.
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Figure 4. Suffix tree of T# · TR · $ used in Section 3.2, where T = abbabbabab is our running example.

The nodes are labeled by their preorder numbers. The suffix number of each leaf λ is the underlined

number drawn in dark yellow below λ. We trimmed the label of each edge to a leaf having more than

two characters and display only the first character and the vertical dots ‘
...’ as a sign of omission. The

tree shows the state of Algorithm 1 after the first turn of both players. The nodes visited by Player 2

are colored in blue ( ), the phrase leaves are colored in green ( ). Player 1 and 2 are represented by

the hands ¯ and

¬

, respectively, pointing to the respective leaves they visited during the first turn.
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Figure 5. Continuation of Figure 4 with the state at the fifth turn of Player 1. Additionally to the

coloring used in Figure 4, witnesses are colored in red ( ). In this figure, Player 1 just finished her

turn on making the node with preorder number 32 the witness w of the leaf with suffix number 5.

With w we know that the factor starting at text position 5 has the length str_depth(w) and that the

next phrase leaf has suffix number 8. For visualization purposes, we left the hand (

¬

) of Player 2

below the leaf of her last turn.

Correctness. When Player 1 accesses the leaf λ with suffix number i, Player 2 has
processed all leaves with suffix numbers [2n − i + 1 . . 2n − 1]. Due to the leaf-to-root
traversals of Player 2, each node marked in BV has a leaf with a suffix number in [2n− i +
1 . . 2n− 1] in its subtree. In particular, a node w is marked in BV if and only if the string label

of w is a substring of R[2n− i + 1 . . 2n− 1]. Because R[2n− i + 1 . . 2n− 1]R = T[1 . . i− 1],
the longest prefix of T[i . .] having a reversed occurrence in T[1 . . i− 1] is therefore one of
the string labels of the nodes marked in BV. In particular, we search the longest string label
among those nodes, which we obtain with the lowest ancestor of λ marked in BV.

3.2.3. Time Complexity

First, let us agree on that we never compute the suffix number of a leaf since this is a
costly operation for CST (cf. Table 3). Although we need the suffix numbers at multiple
occasions, we can infer them if each player maintains a counter for the suffix number
of the currently visited leaf. A counter is initialized with 1 (resp. 2n− 1) and becomes
incremented (resp. decremented) by one when moving to the succeeding (resp. preceding)
leaf in suffix number order. This works since both players traverse the leaves linearly in
the order of the suffix numbers (either in ascending or descending order).

Player 2 visits n leaves, and visits only unvisited nodes during a leaf-to-root traversal.
Hence, Player 2’s actions take O(n) overall time.

Player 1 also visits n leaves. Since Player 1 has no business with the non-phrase leaves,
we only need to analyze the time spent by Player 1 for a phrase leaf corresponding to
a factor F: If F is fresh, then the root-to-leaf traversal ends prematurely at the root, and
hence we can determine in constant time whether F is fresh or not. If F is referencing, we
descend from the root to the lowest ancestor w marked in BV, and compute str_depth(w)
to determine the suffix number of the next phrase leaf (cf. Line 15 of Algorithm 1). Since
depth(w) ≤ str_depth(w), we visit at most |F| + 1 nodes before reaching w. Computing
str_depth(w) takes O(1/ǫ) time for the SST, and O(|F|) time for the CST. This seems costly,
but we compute str_depth(w) for each factor only once. Since the sum of all factor lengths
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is n, we spend O(n + z/ǫ) time or O(n) time for computing all factor lengths when using
the SST or the CST, respectively. We finally obtain the time bounds stated in Theorem 1 for
computing the factorization.

3.3. Determining the Referred Position

Up to now, we can determine the reversed-LZ factors F1 · · · Fz = T with BL marking
the starting position of each factor with a one. Yet, we have not the referred positions
necessary for the coding of the factors (cf. Section 3.1). To obtain them, we have two options:
The first option is easier but comes with the requirement for a support data structure on ST

for the operation

max_sufnum(v) returning the maximum among all suffix numbers of the leaves in the
subtree rooted in v.

We can build such a support data structure in O(ǫ−1n) time (resp. O(ǫ−1n logǫ
σ n)

time) using O(n) bits to support max_sufnum in O(ǫ−1) time (resp. O(ǫ−1 logǫ
σ n) time) for

the SST (resp. CST); see [22] ([Section 3.3]). Being able to query max_sufnum, we can directly
compute the referred position of a factor F when discovering its witness w during a turn of
Player 1 by max_sufnum(w). max_sufnum(w) gives us the suffix number of a leaf that has
already been accessed by Player 2 since Player 2 accesses the leaves in descending order
with respect to the suffix numbers, and w must have already been accessed by Player 2
during a leaf-to-root traversal (otherwise w would not have been marked in BV). Since
R[max_sufnum(w) . . max_sufnum(w) + str_depth(w)− 1] = FR, the referred position of F is
2n−max_sufnum(w). Consequently, we can compute the coding of the factors during a
single pass (cf. Line 17 of Algorithm 1), and are done when the pass finishes.

The second option does not need to compute max_sufnum and retains the linear time
bound when using CST. Here, the idea is to run an additional pass, whose pseudo code
is given in Algorithm 2. For this additional pass, we do the following preparations: Let
zW be the number of witnesses, which is at most z since there can be multiple factors
having the same witness. We keep BL and BW marking the phrase leaves and the wit-
nesses, respectively. However, we clear BV such that Player 2 has again the job to log her
visited nodes in BV. We augment BW with a rank-support such that we can enumerate
the witnesses with ranks from 1 to at most zW, which we call the witness rank. We addi-
tionally create an array W of zW lg n bits. We want W[BW. rank1(w)] to store the referred
position 2n−max_sufnum(w) ∈ [1 . . n− 1] for each witness w such that we can read the
respective referred position from W when Player 1 accesses w. We assign the task for
maintaining W to Player 2. Player 2 can handle this task by taking additional action when
visiting a witness (i.e., a node marked in BW) during a leaf-to-root traversal: When visiting
a witness node w with witness rank i from a leaf λ, we write W[i] ← 2n− sufnum(λ) if
w is not yet marked in BV (cf. Line 15 in Algorithm 2). Like before, Player 2 terminates
her turn whenever she visits an already visited node. The actions of Player 1 differ in
that she no longer needs to compute BL and BW: When Player 1 visits a phrase leaf λ, she
locates the lowest ancestor w of λ marked in BV, which has to be marked in BW, too (as a
side note: storing the depth of the witness of each phrase leaf in a list, sorted by the suffix
numbers of these leaves, helps us to directly jump to the respective witness in constant
time. We can encode this list as a bit vector of length O(n) by storing each depth in unary
coding (cf. [22] ([Section 3.4])). Nevertheless, we can afford the root-to-witness traversals
of Player 1 since we visit at most ∑

z
x=1 |Fx| = n nodes in total.). With the rank-support on

BW, we can compute w’s witness rank i, and obtain the referred position of λ with W[i] (cf.
Line 10 of Algorithm 2). We show the final state after the first pass in Figure 6, together
with W computed in the second pass.
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Figure 6. State of our running example at termination of Algorithm 1. We have computed the bit

vector BL of length n = 11 storing a one at the entries 1, 2, 3, 5, and 8, i.e., the suffix numbers of the

phrase leaves, which are marked in green ( ), and the bit vector BW of length 38 (the maximum

preorder number of an ST node) storing a one at the entries 20, 22, and 32, i.e., the preorder numbers

of the witnesses, which are colored red ( ). During the second pass described in Section 3.3, we

compute W storing the referred positions in the order of the witness ranks (left table).

Overall, the time complexity is O(ǫ−1n) time when working with either the SST or
the CST. We use o(n) additional bits of space for the rank-support of BW, but costly zW lg n
bits for the array W. However, we can bound zW by O(n lg σ/ lg n) since zW is the number
of distinct reversed LZ factors, and by an enumeration argument [40] ([Thm. 2]), a text
of length n can be partitioned into at most O(n/ logσ n) distinct factors. Hence, we can
store W in zW lg n = O(n lg σ) bits of space. With that, we finally obtain the working space
bound of O(ǫ−1n lg σ) bits for the CST solution as claimed in Theorem 1.

4. Computing LPnrF

The longest previous non-overlapping reverse factor table LPnrF[1 . . n] is an array
such that LPnrF[i] is the length of the longest prefix of T[i . .] · # occurring as a substring

of T[1 . . i− 1]R. (Appending # at the end is not needed, but simplifies the analysis for
T[1 . . n− 1] · # having precisely n characters.) Having LPnrF, we can iteratively compute
the reversed LZ factorization because Fx = T[kx . . kx + max(0, LPnrF[kx]− 1)] with kx :=
1 + ∑

x−1
y=1

∣
∣Fy

∣
∣ for x ∈ [1 . . z].

The counterpart of LPnrF for the non-overlapping LZSS factorization is the longest
previous non-overlapping factor table LPnF[1 . . n], which is defined similarly, but stores the
maximal length of the longest common prefix (LCP) of T[i . .] with all substrings T[j . . i− 1]
for j ∈ [1 . . i− 1]. See Table 4 for a comparison. Analogously to [34] ([Corollary 5]) or [24]
([Definition 4]) for the longest previous factor table LPF [22,26] ([Lemma 1]) for LPnF, LPnrF
holds the following property:

Lemma 2 ([14] (Lemma 2)). LPnrF[i− 1]− 1 ≤ LPnrF[i] ≤ n− i for i ∈ [2 . . n].

Hence, we can encode LPnrF in 2n bits by writing the differences LPnrF[i]− LPnrF[i−
1] + 1 ≥ 0 in unary, obtaining a bit sequence of (a) n ones for the n entries and (b)

∑
n
i=2(LPnrF[i] − LPnrF[i − 1] + 1) ≤ n many zeros. We can decode this bit sequence

by reading the differences linearly because we know that LPnrF[1] = 0.
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Algorithm 2: Determining the referred positions in a second pass described in
Section 3.3.

1 λR ← prev_leaf(prev_leaf(smallest_leaf)) and λ← smallest_leaf

2 clear BV and set BV[root node]← 1
3 W ← array of size z lg z

4 while λ 6= λR do
5 if BL[sufnum(λ)] = 1 then ⊲ turn of Player 1
6 d← 0
7 while BV[level_anc(λ, d + 1)] = 1 do d← d + 1
8 w← level_anc(λ, d)
9 if w is the root then output fresh factor

10 else output referred position W[BW. rank1(w)] ⊲ invariant: BW[w] = 1

11 λ← suffixlink(λ) ⊲ end of Player 1’s turn

12 foreach node v on the path from λR up to the root do ⊲ turn of Player 2
13 if BV[v] = 1 then break ⊲ end turn on reaching an already marked node
14 BV[v]← 1

15 if BW[v] = 1 then W[BW. rank1(v)] = 2n− sufnum(λR)

16 λR ← prev_leaf(λR) ⊲ end of Player 2’s turn

Table 4. LPnrF and LPnF of our running example. Both arrays are defined in Section 4. See Section 5

for the definition of LPrF.

i 1 2 3 4 5 6 7 8 9 10 11

T# a b b a b b a b a b #

LPnrF 0 0 2 1 3 3 2 3 2 1 0
LPnF 0 0 1 3 3 3 2 3 2 1 0
LPrF 0 6 5 5 4 3 2 3 2 1 0

4.1. Adaptation of the Single-Pass Algorithm

Having an O(n)-bits representation of LPnrF gives us hope to find an algorithm
computing LPnrF in a total workspace space of o(n lg n) bits. Indeed, we can adapt our
algorithm devised for the reversed LZ factorization to compute LPnrF. For that, we just
have to promote all leaves to phrase leaves such that the condition in Line 7 of Algorithm 1
is always true. Consequently, Player 1 performs a root-to-leaf traversal for finding the
lowest node marked in BV of each leaf. By doing so, the time complexity becomes O(n2),
however, since we visit at most ∑

n
i=1 LPnrF[i] = O(n2) many nodes during the root-to-leaf

traversals (there are strings like T = a · · · a for which this sum becomes Θ(n2)).
To lower this time bound, we follow the same strategy as in [22] ([Section 3.5]) or [34]

([Lemma 6]) using suffixlink and Lemma 2: After Player 1 has computed str_depth(w) =
LPnrF[i− 1] for w being the lowest ancestor marked in BV of the leaf with suffix number i−
1, we cache w̃ := suffixlink(w) for the next turn of Player 1 such that Player 1 can start the
root-to-leaf traversal to the leaf λ̃ with suffix number i directly from w̃ and thus skips the
nodes from the root to w̃. This works because w̃ is the ancestor of λ̃ with str_depth(w̃) =
LPnrF[i− 1]− 1, and w̃ must have been marked in BV since LPnrF[i] ≥ str_depth(w̃). See
Figure 7 for a visualization. By skipping the nodes from the root to w̃, we visit only
LPnrF[i]− LPnrF[i− 1] + 1 many nodes during the i-th turn of Player 1. A telescoping sum
together with Lemma 2 shows that Player 1 visits ∑

n
i=2(LPnrF[i]− LPnrF[i− 1] + 1) = O(n)

nodes in total.
The final bottleneck for CST are the n evaluations of str_depth(w) to compute the actual

values of LPnrF (cf. Line 15 of Algorithm 1). Here, we use a support data structure on CST
for str_depth [34] ([Lemma 6]), which can be constructed in O(ǫ−1n logǫ

σ n) time, uses O(n)
bits of space, and answers str_depth in O(ǫ−1 logǫ

σ n) time. This finally gives Theorem 2.
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str depth(w)
=LPnrF[i− 1]

λR

¯

w̃

λ̃

i

str depth(w)− 1

suffixlink(w)

suffixlink(λ) λ̃R

Figure 7. Setting of Section 4.1. Nodes marked in BV are colored in blue ( ). Curly arcs symbolize

paths that can visit multiple nodes (which are not visualized). When visiting the lowest ancestor

of λ marked in BV for computing LPnrF[i− 1], Player 1 determines w̃ = suffixlink(w) such that she

can skip the nodes on the path from the root to the leaf λ̃ for computing LPnrF[i] (these nodes are

symbolized by the curly arc highlighted in yellow ( ) on the right). There are leaves λR and λ̃R

with suffix numbers of at least 2n− i + 2 and 2n− i + 3, respectively, since otherwise w would not

have been marked in BV by Player 2.

4.2. Algorithm of Crochemore et al.

We can also run the algorithm of Crochemore et al. [14] ([Algorithm 2]) with our suffix
tree representations to obtain the same space and time bounds as stated in Theorem 2.
For that, let us explain this algorithm in suffix tree terminology: For each leaf λ with
suffix number i, the idea for computing LPnrF[i] is to scan the leaves for the leaf λ⋆ with
2n− sufnum(λ⋆) being the referred position, and hence the string depth of lca(λ, λ⋆) is
LPnrF[i]. To compute λ⋆, we approach λ from the left and from the right to find λL (resp.
λR) having the deepest LCA with λ among all leaves to the left (resp. right) side of λ

whose suffix numbers are greater than 2n − i. Then either λL or λR is λ⋆. Let ℓL[i] ←
str_depth(lca(λL, λ)) and ℓR[i] ← str_depth(lca(λR, λ)). Then LPnrF[i] = max(ℓL[i], ℓR[i]),
and the referred position is either 2n − sufnum(λL) or 2n − sufnum(λR), depending on
whose respective LCA has the deeper string depth. Note that the referred positions in this
algorithm are not necessarily always the leftmost possible ones.

Correctness. Let j be the referred position of the leaf λ with suffix number i such
that R[i . .] and R[2n − j . .] have the LCP F of length LPnrF[i]. Due to Lemma 1, there
is a suffix tree node w whose string label is F. Consequently, λ and the leaf with suffix
number 2n− j are in the subtree rooted at w. Now suppose that we have computed λL

and λR according to the above described algorithm. On the one hand, let us first assume
that ℓR[i] > LPnrF[i] (the case ℓL[i] > LPnrF[i] is treated symmetrically). By definition of
ℓR[i], there is a descendant w′ of w with the string depth ℓR[i], and w′ has both λR and λ in
its subtree. However, this means that R[i . .] and R[sufnum(λR) . .] have a common prefix
longer than LPnrF[i], a contradiction to LPnrF[i] storing the length of the longest such LCP.
On the other hand, let us assume that max(ℓL[i], ℓR[i]) < LPnrF[i]. Then w is a descendant
of the node w′ being the LCA of λ and λR. Without loss of generality, let us stipulate that
the leaf λ⋆ with suffix number 2n− j is to the right of λ (the other case to the left of λ works
with λL by symmetry). Then λ⋆ is to the left of λR, i.e., λ⋆ is between λ and λR. Since
j > 2n− i, this contradicts the selection of λR to be the closest leaf on the right hand side of
λ with a suffix number larger than 2n− i.

Finding the Starting Points. Finally, to find the starting points of λL and λR being ini-
tially the leaves with the maximal suffix number to the left and to the right of λ, respectively,
we use a data structure for answering.

maxsuf_leaf(j1, j2) returning the leaf with the maximum suffix number among all leaves
whose leaf-ranks are in [j1 . . j2].

We can modify the data structure computing max_sufnum in Section 3.3 to return
the leaf-rank instead of the suffix number (the used data structure for max_sufnum first
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computes the leaf-rank and then the respective suffix number). Finally, we need to take
the border case into account that λ is the leftmost leaf or the rightmost leaf in the suffix
tree, in which case we only need to approach λ from the right side or from the left side,
respectively.

The algorithm explained up to now already computes LPnrF correctly, but visits O(n)
leaves per LPnrF entry, or O(n2) leaves in total. To improve this bound to O(n) leaves, we
apply two tricks. To ease the explanation of these tricks, let us focus on the right-hand side
of λ; the left-hand side is treated symmetrically.

Overview for Algorithmic Improvements. Given we want to compute ℓR[i], we start
with a pointer λ′R to a leaf to the right of λ with suffix number larger than 2n − i, and
approach λ with λ′R from the right until there is no leaf closer to λ on its right side with a
suffix number larger than 2n− i. Then λ′R is λR, and we can compute ℓR[i] being the string
depth of the LCA of λR and λ. If we scan linearly the suffix tree leaves to reach λR with
the pointer λ′R, this gives us O(n) leaves to process. Now the first trick lets us reduce the
number of these leaves up to 2ℓR[i] many for computing ℓR[i]. The broad idea is that with
the max_sufnum operation we can find a leaf closer to λ whose LCA is at least one string
depth deeper than the LCA with the previously processed leaf. In total, the first trick helps
us to compute LPnrF by processing at most ∑

n
i=1 max(ℓL[i], ℓR[i]) = O(n2) many leaves. In

the second trick, we show that we can reuse the already computed neighboring leaves λL

and λR by following their suffix links such we process at most 2(ℓR[i + 1]− ℓR[i] + 1) many
leaves (instead of 2ℓR[i + 1]) for computing ℓR[i + 1]. Finally, by a telescoping sum, we
obtain a linear number of leaves to process.

First Trick. The first trick is to jump over leaves whose respective suffixes all share the
same longest common prefix with T[i . .]. We start with λR ← maxsuf_leaf(leaf_rank(λ) + 1,
2n) being the leaf on the right-hand side of λ with the largest suffix number. As long as
sufnum(λR) > 2n− i, we search the leftmost leaf λ′ between λ and λR (to be more precise:
leaf_rank(λ′) ∈ [leaf_rank(λ) + 1 . . leaf_rank(λR)]) with lca(λ′, λ) = lca(λR, λ). Having λ′,
we consider:

• If leaf_rank(λ′) = leaf_rank(λ) + 1 (meaning λ′ is to the right of λ and there is no leaf
between λ and λ′), we terminate.

• Otherwise, we set λ′R to the leaf with the largest suffix number among the leaves with
leaf-ranks in the range [leaf_rank(λ) + 1 . . leaf_rank(λ′)− 1]. If sufnum(λ′R) > 2n− i,
we set λR ← λ′R and recurse. Otherwise we terminate.

On termination, ℓR[i] = str_depth(lca(λR, λ)) because there is no leaf λ′′ on the right
of λ closer to λ than λR with str_depth(lca(λ′′, λ)) > str_depth(lca(λR, λ)) and sufnum(λ′′) >
2n− i. Hence, sufnum(λR) is the referred position, and we continue with the computation
of ℓR[i + 1]. See Figure 8 for a visualization.

root

u

v

λ

i

λ′

R
λ′

λR

maxsuf leaf

jump

Figure 8. Computing LPnrF with [14] ([Algorithm 2]) as explained in Section 4.2. Starting at the

leaf λR, we jump to the leftmost leaf λ′ with lca(λ′, λ) = lca(λR, λ). Then, we use the operation

max_sufnum(I) returning the leaf-rank of the leaf λ′R having the largest suffix number among the

query interval I = [leaf_rank(λ) + 1 . . leaf_rank(λ′) − 1]. If sufnum(λ′R) > 2n − i, we recurse by

setting λR ← λ′R. The LCA of λ′R and λ is at least as deep as the child v of u on the path towards λ

(the figure shows the case that v = lca(λ′R, λ)), and hence ℓR[i] is at least str_depth(v) if we recurse.
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Broadly speaking, the idea is that the closer λR gets to λ, the deeper the string depth
of lca(λR, λ) becomes. However, we have to stop when there is no closer leaf with a
suffix number larger than 2n − i. So we first scan until reaching a λ′ having the same
lowest common ancestor with λ, and then search within the interval of leaves between λ

and λ′ for the remaining leaf λ′R with the largest suffix number. We search for λ′ because
we can jump from λR to λ′ with a range minimum query on the LCP array returning
the index of the leftmost minimum in a given range. We can answer this query with an
O(n)-bits data structure in O(ǫ−1) or O(ǫ−1 logǫ

σ n) time for the SST or the CST, respec-
tively, and build it in O(ǫ−1n) time or O(ǫ−1n logǫ

σ n) time (cf. [22] ([Section 3.3]) and
[41] ([Lemma 3]) for details). However, with this algorithm, we may visit as many leaves
as ∑

n
i=1 2ℓR[i] ≤ ∑

n
i=1 2LPnrF[i] since each jump from λR to λ′R via λ′ brings us at least

one value closer to ℓR[i]. To lower this bound to O(n) leaf-visits, we again make use of
Lemma 2 (cf. Section 4.1), but exchange LPnrF[i] with ℓR[i] (or respectively ℓL[i]) in the
statement of the lemma.

Second Trick. Assume that we have computed ℓR[i − 1] = lca(λR, λ) with j :=
sufnum(λR) > 2n− i. We subsequently set λ← suffixlink(λ), but also λR ← suffixlink(λR).
Now λ has suffix number i. If ℓR[i − 1] ≥ 1, then the string depth of the lca(λR, λ) is
ℓR[i− 1]− 1, and R[sufnum(λR) . .] is lexicographically larger than R[sufnum(λ) . .]; hence
λR is to the right of λ with sufnum(λR) = j + 1 (generally speaking, given two leaves λ1

and λ2 whose LCA is not the root, then leaf_rank(λ1) < leaf_rank(λ2) if and only if
leaf_rank(suffixlink(λ1)) < leaf_rank(suffixlink(λ2)).). Otherwise (ℓR[i − 1] = 0), we reset
λR ← maxsuf_leaf(leaf_rank(λ), 2n). By doing so, we assure that λR is always a leaf to the
right of λ with sufnum(λR) > 2n− i (if such a leaf exists), and that we have already skipped
max(0, ℓR[i− 1]− 1) string depths for the search of λR with str_depth(lca(λR, λ)) = ℓR[i].
Since ℓR[i] ≤ LPnrF[i], the telescoping sum ℓR[1] + ∑

n
i=2(ℓR[i] − ℓR[i − 1] + 1) = O(n)

shows that we visit O(n) leaves in total.
In total, we obtain an algorithm that visits O(n) leaves, and spends O(ǫ−1) or

O(ǫ−1 logǫ
σ n) time per leaf when using the SST or the CST, respectively. We need O(n)

bits of working space on top of ST since we only need the values ℓL[i− 1 . . i], ℓR[i− 1 . . i],
λL, and λR to compute LPnrF[i]. We note that Crochemore et al. [14] do not need the suffix
tree topology, since they only access the suffix array, its inverse, and the LCP array, which
we translated to ST leaves and the string depths of their LCAs.

5. Open Problems

There are some problems left open, which we would like to address in what follows:

5.1. Overlapping Reversed LZ Factorization

Crochemore et al. [14] ([Section 5]) gave a variation of LPnrF that supports overlaps,
and called the resulting array the longest previous reverse factor table LPrF, where LPrF[i]

is the maximum length ℓ such that T[i . . i + ℓ − 1] = T[j . . j + ℓ− 1]R for a j < i. The
respective factorization, called the overlapping reversed LZ factorization, was proposed by
Sugimoto et al. [5] ([Definition 4]): A factorization F1 · · · Fz = T is called the overlapping
reversed LZ factorization of T if each factor Fx is either the leftmost occurrence of a character
or the longest prefix of Fx · · · Fz that has at least one reversed occurrence in F1 · · · Fx starting
before Fx, for x ∈ [1 . . z]. We can compute the overlapping reversed LZ factorization
with LPrF analogously to computing the (non-overlapping) reversed LZ factorization with
LPnrF. As an example, the overlapping reversed LZ factorization of T = abbabbabab is
a · bbabba · bab. Table 4 gives an example for LPrF.

Since LPrF[i] ≥ LPnrF[i] by definition, the overlapping factorization seems more likely
to have fewer factors. Unfortunately, this factorization cannot be expressed in a compact
coding like Section 3.1 that stores enough information to restore the original text. To see
this, take a palindrome P, and compute the overlapping reversed LZ factorization of aPa.

The factorization creates the two factors a and Pa. The second factor is Pa since (Pa)R = aP.
However, a coding of the second factor needs to store additional information about P to
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support restoring the characters of this factor. It seems that we need to store the entire left
arm of P, including the middle character for odd palindromes.

Besides searching for an efficient coding for the overlapping reversed LZ factorization,
we would like to improve the working space bounds needed for its computation. All algo-
rithms we are aware of [5,14] embrace Manacher’s algorithm [42,43] to find the maximal
palindromes of each text position. To run in linear time, Manacher stores the arm lengths
of these palindromes in a plain array of n lg n bits. Unfortunately, we are unaware of any
time/space trade-offs regarding this array.

5.2. Computing LPF in Linear Time with Compressed Space

Having a 2n-bit representation for four different kinds of longest previous factor
tables (we can exchange LPnrF with LPrF in the proof of Lemma 2), we wonder whether
it is possible to compute any of these variants in linear time with o(n lg n) bits of space.
If we want to compute LPF or LPnrF within a working space of O(n lg σ) bits, it seems
hard to achieve linear running time. That is because we need access to the string depth
of the suffix tree node w for each entry LPF[i] (resp. LPnrF[i]), where w is the lowest node
having the leaf λ with suffix number i and a leaf with a suffix number less than i (resp.
greater than 2n− i for LPnrF) in its subtree, cf. [34] ([Lemma 6]) for LPF and the actions of
Player 1 in Section 4.1 for LPnrF. While we need to compute str_depth(w) for determining
the starting position of the subsequent factor (i.e., suffix number of the next phrase leaf,
cf. Line 16) for the reversed LZ factorization, the algorithms for computing LPF (cf. [34]
([Lemma 6]) or [44] ([Section 3.4.4])) and LPnrF work independently of the computed factor
lengths and therefore can store a batch of str_depth-queries. Our question would be whether
there is a δ = O((n lg σ)/ lg n) such that we can accesses δ suffix array positions with a
O(n lg σ)-bits suffix array representation in O(δ) time. (We can afford storing δ integers
of lg n bits in O(n lg σ) bits.) Grossi and Vitter [45] ([Theorem 3]) have a partial answer
for sequential accesses to suffix array regions with large LCP values. Belazzougui and
Cunial [24] ([Theorem 1]) experienced the same problem for computing matching statistics,
but could evade the evaluation of str_depth with backward search steps on the reversed
Burrows–Wheeler transform. Unfortunately, we do not see how to apply their solution
here since the referred positions of LPF and LPnrF have to belong to specific text ranges
(which is not the case for matching statistics).

5.3. Applications in Compressors

Although it seems appealing to use the reversed LZ factorization for compression, we
have to note that the bounds for the number of factors z are not promising:

Lemma 3. The size of the reversed LZ factorization can be as small as lg n + 1 and as large as n.

Proof. The lower bound is obtained for T = a · · · a with |T| = 2z−1 since |F1| = |F2| =
1, |Fx| = 2|Fx−1| for x ∈ [2 . . z] with F1 · · · Fx = (F1 · · · Fx)

R being a (not necessarily
proper) prefix of T[|F1 · · · Fx| . .]. For the upper bound, we consider the ternary string
T = abc · abc · · · abc whose factorization consists only of factors of length one since
TR = cba · cba · · · cba has no substring of T of length 2 (namely, ab, bc, or ca) as a
substring (cf. [46] ([Theorem 5])).

Even for binary alphabets, there are strings for which z = Θ(n):

Lemma 4 ([46] (Theorem 9)). There exists an infinite text T whose characters are drawn from the
binary alphabet such that, for every substring S of T with |S| ≥ 5, SR is not a substring of T.
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Appendix A. Flip Book

In this appendix, we provide a detailed execution of the algorithm sketched in
Figures 4–6 by showing the state per turn and per player in Figures A1–A21. In our
running example, each player has 10 turns.
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Figure A1. Flip Book: Initial State.
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Figure A2. Flip Book: End of Turn 1 of Player 1.
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Figure A3. Flip Book: End of Turn 1 of Player 2.

1

2

22

$

3

11

#

.

.

.

4

a

5

21

$

6

b

7

9

#

.

.

.

8

a

b

9

7

#

.

.

.

10

13

b

.

.

.

11

b

a

12

18

$

13

b

14

4

a

.

.

.

15

b

a

16

15

$

17

1

b

.

.

.

18

b

19

10

#

.

.

.

20

a

21

20

$

22

b

23

8

#

.

.

.

24

a

b

25

6

#

.

.

.

26

12

b

.

.

.

27

b

a

28

17

$

29

b

30

3

a

.

.

.

31

14

b

.

.

.

32

b

a

33

19

$

34

b

35

5

a

.

.

.

36

b

a

37

16

$

38

2

b

.

.

.

17

38

1

4

5

¯

30

¬

Figure A4. Flip Book: End of Turn 2 of Player 1.
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Figure A5. Flip Book: End of Turn 2 of Player 2.
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Figure A6. Flip Book: End of Turn 3 of Player 1.
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Figure A7. Flip Book: End of Turn 3 of Player 2.

1

2

22

$

3

11

#

.

.

.

4

a

5

21

$

6

b

7

9

#

.

.

.

8

a

b

9

7

#

.

.

.

10

13

b

.

.

.

11

b

a

12

18

$

13

b

14

4

a

.

.

.

15

b

a

16

15

$

17

1

b

.

.

.

18

b

19

10

#

.

.

.

20

a

21

20

$

22

b

23

8

#

.

.

.

24

a

b

25

6

#

.

.

.

26

12

b

.

.

.

27

b

a

28

17

$

29

b

30

3

a

.

.

.

31

14

b

.

.

.

32

b

a

33

19

$

34

b

35

5

a

.

.

.

36

b

a

37

16

$

38

2

b

.

.

.

17

38

1

4

5

30

21

20

18

35

20

33

32

¯

¬

Figure A8. Flip Book: End of Turn 4 of Player 1.
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Figure A9. Flip Book: End of Turn 4 of Player 2.
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Figure A10. Flip Book: End of Turn 5 of Player 1.
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Figure A11. Flip Book: End of Turn 5 of Player 2.
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Figure A12. Flip Book: End of Turn 6 of Player 1.
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Figure A13. Flip Book: End of Turn 6 of Player 2.
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Figure A14. Flip Book: End of Turn 7 of Player 1.
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Figure A15. Flip Book: End of Turn 7 of Player 2.
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Figure A16. Flip Book: End of Turn 8 of Player 1.
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Figure A17. Flip Book: End of Turn 8 of Player 2.
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Figure A18. Flip Book: End of Turn 9 of Player 1.

1

2

22

$

3

11

#

.

.

.

4

a

5

21

$

6

b

7

9

#

.

.

.

8

a

b

9

7

#

.

.

.

10

13

b

.

.

.

11

b

a

12

18

$

13

b

14

4

a

.

.

.

15

b

a

16

15

$

17

1

b

.

.

.

18

b

19

10

#

.

.

.

20

a

21

20

$

22

b

23

8

#

.

.

.

24

a

b

25

6

#

.

.

.

26

12

b

.

.

.

27

b

a

28

17

$

29

b

30

3

a

.

.

.

31

14

b

.

.

.

32

b

a

33

19

$

34

b

35

5

a

.

.

.

36

b

a

37

16

$

38

2

b

.

.

.

17

38

1

4

5

30

21

20

18

35

20

33

32

12

11

6

23

32

28

27

22

37

36

34

16

15

13

3

22

31

29

¬

10

8

¯

Figure A19. Flip Book: End of Turn 9 of Player 2.
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Figure A20. Flip Book: End of Turn 10 of Player 1.
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Figure A21. Flip Book: End of Turn 10 of Player 2.
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