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Università degli Studi di

Modena e Reggio Emilia

Italy

Dario Tamascelli
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Preface to ”Transport and Diffusion in Quantum

Complex Systems”

The understanding of transport of energy, mass, charge or information in complex quantum

systems plays a key role from both a fundamental and technological point of view. As such, it is

triggering a large amount of theoretical and experimental research aimed to understand and exploit

quantum coherent phenomena for the development of quantum devices possibly outperforming their

classical counterpart.

Quantum interference is at the origin of a number of peculiar effects such as, for example, ballistic

transport along lattices and resonant tunneling. On the other side, the presence of unavoidable

interactions with surrounding environment typically leads to loss of coherence and to the emergence

of a diffusive behavior, closer to the classical scenario, and, in some cases, even enhancing the

transport efficiency. The control of such phenomena, together with the understanding of the

transition form microscopic to macroscopic or from single-particle to few- or many-particle systems,

is of utmost importance for the successful build-out of quantum technologies, and constitutes the

focus of this book.

Paolo Bordone, Dario Tamascelli

Editors
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Abstract: Simulating the non-perturbative and non-Markovian dynamics of open quantum sys-
tems is a very challenging many body problem, due to the need to evolve both the system and
its environments on an equal footing. Tensor network and matrix product states (MPS) have
emerged as powerful tools for open system models, but the numerical resources required to treat
finite-temperature environments grow extremely rapidly and limit their applications. In this study
we use time-dependent variational evolution of MPS to explore the striking theory of Tamascelli
et al. (Phys. Rev. Lett. 2019, 123, 090402.) that shows how finite-temperature open dynamics can
be obtained from zero temperature, i.e., pure wave function, simulations. Using this approach, we
produce a benchmark dataset for the dynamics of the Ohmic spin-boson model across a wide range
of coupling strengths and temperatures, and also present a detailed analysis of the numerical costs of
simulating non-equilibrium steady states, such as those emerging from the non-perturbative coupling
of a qubit to baths at different temperatures. Despite ever-growing resource requirements, we find
that converged non-perturbative results can be obtained, and we discuss a number of recent ideas and
numerical techniques that should allow wide application of MPS to complex open quantum systems.

Keywords: open quantum systems; tensor networks; non-equilibrium dynamics

1. Introduction

The physics of open quantum systems (OQS) plays a critical role in almost all aspects
of quantum science [1,2], and the emergent phenomena of dephasing, decoherence and dis-
sipation particularly limit our ability to initialise and control multi-partite quantum states.
As a direct result of this, the development of scalable quantum technologies is greatly
constrained by open system phenomena, and understanding how irreversibility arises
from microscopic system-environment interactions has become essential for finding ways
to mitigate deleterious noise effects [3]. However, alongside this goal of suppressing dissi-
pative noise—normally by making the systems less ‘open’—the theory of OQS also plays a
vital role in the design of systems where the exploitation of strong energy and information
exchange between a system and its environment is desirable: this is the world of quantum
thermodynamics and nanoscale energy harvesting, storage and transduction [4–6].

Any ‘machine’ or device capable of converting ambient energy into work must nec-
essarily be an open system. As these machines shrink to lengths where such energetic
transformations can become few-quanta, ultra-fast events, it becomes necessary to describe
their functional dynamics on timescales over which system-environment correlations—in
both space and time—may be highly relevant [7,8]. Unlike the perturbative OQS found,
for example, in atomic systems where dissipation can be characterised by simple decay
rates, quantum energy harvesting naturally focuses on the highly non-Markovian and
non-perturbative regime of OQS where the border between the ‘system’ and ‘environment’
degrees of freedom is ill-defined. Moreover, as systems capable of converting thermal

Entropy 2021, 23, 77. https://doi.org/10.3390/e23010077 https://www.mdpi.com/journal/entropy
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energy must also reject a certain amount of heat to a colder reservoir [6], the study of
quantum energy harvesting leads directly to a consideration of multi-environment OQS,
and the extended, inter-environmental quantum correlations that could be generated under
non-equilibrium operating conditions.

Molecular and biological light-harvesting systems provide a good example of such
nanoscale energy extraction, in which a non-thermal population of electronic excitations
(excitons, charge pairs, etc.) appears from the molecule-mediated connection of the ‘hot’
photon and ‘cold’ vibrational environments. In this context, much attention has been
placed on the complex physics due to the strong coupling and non-separable timescales
of electronic and environmental (vibrational) dynamics [9–11], which include potentially
exploitable effects such as transient breaking of detailed balance [12], noise-induced elec-
tronic coherence and cooperative multi-environment effects [13,14]. In such studies, the
effect of light is normally assumed to be weak, leading to the ‘additive’ approximation
that phenomenological terms describing excitation, emission and dephasing can be simply
added to the more complex equations of motion of the vibronic open system. However,
organic molecules often have very strong light-matter coupling and can show surprising
non-additive effects [15,16], including nonlinear polaritonic weakening of exciton-phonon
coupling in micro-cavity systems [17].

The example above highlights the theoretical challenges posed by some energy har-
vesting systems: non-perturbative and highly structured couplings, comparable dynamical
timescales and competing environmental processes. Under these conditions the dissipative
dynamics of the system’s reduced density matrix cannot be simply described by dephasing
and relaxation rates: the full real-time evolution of the system and its environments must
be accounted for on an essentially equal footing. This looks, a priori, like a hopeless task,
as each environment contains a continuum of quantum excitation modes, and the formal
number of quantum states in any computation will explode exponentially with the number
of such modes. However, things are not so desperate, and two broad responses to this
problem have emerged over recent years: one branch aims to efficiently simulate the propa-
gators of the system’s reduced density matrix [1,9,18,19], the other aims at representing and
evolving the entire system-environment wave function. Important contributions in this
latter domain are Density Matrix Renormalization Group (DMRG) techniques such as the
Time Evolving Density operator with Orthogonal Polynomials Approach (TEDOPA) [12,20],
Dissipation-Assisted Matrix Product Factorization [21], Time-Dependent Numerical Renor-
malisation Group techniques and the Multi-Layer Multi Configurational Time-Dependent
Hartree method (ML-MCTDH) developed in chemical physics [22,23].

The key to all of the wave function methods is the observation that, given a well-
defined initial condition, the quantum dynamics generated by typical system-environment
Hamiltonians leave the state inside a much smaller sub-space of the complete Hilbert space
of the problem. This suggests that the wave function can be parameterised by a potentially
tractable number of parameters, and—as we shall see—the effectively short-range, one-
dimensional structure of OQS Hamiltonians implies that Matrix Product States (MPS) will
provide an efficient and versatile format for many system-environment wave functions.
Viewed this way, the parameters (matrices) of an MPS can be considered as variational
degrees of freedom, leading to the powerful 1-site time-dependent variational principle
(1TDVP) algorithm for efficient propagation of large wave functions in real-time [24]. This
general technique can be used in any MPS and Tree-Tensor Network problem [14], but
its particular utility in open-system problems has only recently been appreciated. We
shall make use of this technique in this article, but a discussion of MPS, TDVP and other
computational aspects is left to the dedicated presentations in the literature [24–27].

Instead, the key issue that we wish to explore in this study is the remarkable recent
result of Tamascelli et al. [28] that allows wave function approaches to OQS to effec-
tively capture the effects of finite temperature environments through the simulation of
an equivalent zero-temperature proxy system. As already discussed above, in the non-
perturbative, non-Markovian regime of OQS, computing the evolution of the single wave
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function from a sharp initial condition can already be very demanding: converging results
over the astronomically large space of initial conditions in a thermal ensemble rapidly
becomes impossible. If we also wish to explore the role of non-classical effects in heat
flows between finite-temperature environments, the problem becomes exponentially worse.
The access to finite temperature properties from a single zero-temperature (pure) wave
function simulation thus opens up an entire class of powerful non-perturbative methods
for the study of novel open quantum systems. This work aims to establish the extent to
which Tamascelli’s ‘T-TEDOPA’ theory translates into affordable non-perturbative TDVP
simulations of thermal and non-equilibrium OQS dynamics, as well as to explore some of
the non-classical and non-additive aspects of heat exchange in OQS.

This article is organised as follows. In Section 2.1 we present the spin-boson Hamil-
tonians that we will simulate. Sections 2.2 and 2.3 give a summary of the T-TEDOPA
theory that we will employ in our numerical investigations. Section 2.4 then presents
a careful study of the non-perturbative spin-boson model at finite temperatures which
reveals some of the practical numerical costs implicit in this approach. Thanks to this
testing, we are able to offer a freely accessible dataset that can be used as a benchmark
for other numerical approaches to this model, as well as code packages that allow users
to perform their own TDVP calculations on finite-temperature open systems. In antici-
pation of the need to explore non-equilibrium states in a wide range of future contexts,
we go on to test the non-perturbative physics of a two-level system (TLS) coupled to two
environments at different temperatures in Section 2.5. Exploiting the information in the
many-body system-environment(s) wave function, we examine the microscopic behaviour
of the heat flows between the system and the environments as a function of environmental
coupling strength and temperature differences, and highlight a number of non-additive
effects arising from non-perturbative quantum polaron effects. Finally, we summarise and
discuss our findings in Section 3.

2. Results

2.1. Model, Parameters and Initial Conditions

We shall base our exploration of finite temperature open dynamics on numerical
simulations and analysis of a quantum two-level system that is strongly coupled to either
one or two baths of bosonic harmonic oscillators, as illustrated in Figure 1a. The two
baths are labelled a and b and are at different inverse temperatures βa and βb, respectively
(β = 1/(kbT)). The system-bath Hamiltonian is given by

Ĥ =
ω0

2
σz + Ĥa

I + Ĥb
I + Ĥa

B + Ĥb
B, (1)

where

Ĥa
I = σx ⊗ ∑

k
(g∗k âk + gkâ†

k) (2)

Ĥb
I = σx ⊗ ∑

k
(g∗k b̂k + gkb̂†

k ) (3)

Ĥa
B = ∑

k
ωk â†

k âk (4)

Ĥb
B = ∑

k
ωkb̂†

k b̂k. (5)

The TLS is described by the standard Pauli operators σ, while the âk(b̂k) are bosonic
anihilation operators for harmonic modes of frequency ωk in bath a(b). The corresponding
creation operators are denoted â†

k(b̂
†
k ). The k harmonic of each bath couples to the TLS with

a coupling strength denoted gk, which we take to depend on the index k but not on a or b.
The spectral density of the environment is defined as J(ω) ≡ π ∑k |gk|2δ(ω − ωk),

where δ(x) is the Heaviside Theta function. As a smooth, continuous function of frequency,
the spectral density can take various forms in specific physical realisations such as electron-
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phonon interactions, emitter-photon or exciton-vibration coupling in molecular systems. It
is well known that the qualitative behaviour of the TLS depends sensitively on the form of
J(ω), especially at low temperatures [1]. For simplicity, we assume identical system-bath
couplings for both environments and use the common linear frequency dependence that
defines an Ohmic environment

J(ω) = 2παωθ(ωc − ω), (6)

where α is a dimensionless coupling constant and we have introduced a hard frequency
cut-off ωc.

The initial condition ρ̂(0) for our numerical simulations is taken to be an uncorrelated
(product) state of the spin and baths, which—because of the baths’ finite temperatures—must
be described by a mixed state, i.e., a density matrix

ρ̂(0) = ρs ⊗ e−Ĥa
B βa

Tr{e−Ĥa
B βa}

⊗ e−Ĥb
B βb

Tr{e−Ĥb
B βb}

, (7)

where ρs is some arbitrary initial density matrix for the TLS.
Remarkably, despite the initial condition containing two statistically mixed thermal

density matrices, it has recently been shown by Tamascelli et al. that the reduced dynamics
of the spin can still be obtained from a single simulation of an equivalent pure, i.e., zero
temperature, system-environment wave function [28,29]. As this result is central for
generating our numerical results and our later discussion, we shall now give a brief
summary of the protocol first presented in Ref. [28].

2.2. Finite-Temperature Reduced Dynamics from Pure Wave Function Evolution

In this section we shall closely follow the original notation and presentation of
Tamascelli et al. [28] and, to simplify the presentation, we shall only consider the cou-
pling to a single environment denoted E. The procedure can be easily generalised to
multiple environments. Our starting point is the generic Hamiltonian for a system coupled
to a bosonic environment consisting of a continuum of harmonic oscillators

HSE = HS + HE + HI , (8)

where
HI = AS ⊗

∫ ∞

0
dωÔω, HE =

∫ ∞

0
dωωa†

ωaω. (9)

The Hamiltonian HS is the free system Hamiltonian and AS is a generic system operator
which couples to the bath. The environment’s free Hamiltonian is given by HE. For the
bosonic bath operators we take the displacements

Oω =
√

J(ω)(aω + a†
ω), (10)

thus defining the spectral density J(ω). This has been written here as an arbitrary continu-
ous function, but we note that the formulas can also be applied to the case of coupling to a
discrete set of vibrational modes by adding suitable structure to the spectral density, i.e.,
sets of lorentzian peaks or Dirac functions [30–32].

The state of the system+environment at time t is a mixed state described by a density
matrix ρSE(t). The initial condition is assumed to be a product of system and environ-
ment states ρSE(0) = ρS(0) ⊗ ρE(0) where ρS(0) is an arbitrary density matrix for the
system and ρE(0) = exp(−HEβ)/Z , with the environment partition function given by
Z = Tr{exp(−HEβ)}. Such a product state is commonly realised in non-equilibrium prob-
lems where the system is suddenly prepared or projected into an excited state from a
ground state in which the system and environment states are separable. This type of prepa-
ration is exemplified by the Franck-Condon principle in molecular photophysics, where
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the optical transition occurs without any change in the nuclear degrees of freedom, leaving
the subsequent relaxation dynamics to evolve from a product ‘initial’ condition [33,34]. The
environment thus begins in a thermal equilibrium state with inverse temperature β, and the
energy levels of each harmonic mode are statistically populated. For a very large number
(continuum) of modes, the number of possible thermal configurations grows extremely
rapidly with temperature, essentially making it impossible to obtain a converged sampling
of these configurations when each instance involves demanding wave function simulations.
We briefly note that some more efficient sampling methods involving sparse grids and/or
stochastic mean-field approaches have recently been proposed and demonstrated [35,36], as
well as some effective MPS techniques for capturing finite temperature effects in frequency
domain simulations [37].

The initial thermal condition of the environmental oscillators is also a Gaussian state,
for which it is further known that the influence functional [1]—which is a full description
of the influence of the bath on the system—will depend only on the two-time correlation
function of the bath operators

S(t) =
∫ ∞

0
dω〈Oω(t)Oω(0)〉. (11)

Any two environments with the same S(t) will have the same influence functional and thus
give rise to the same reduced system dynamics, i.e., the same ρS(t) = Tr{ρSE(t)}. That the
reduced density matrix’s dynamics are completely specified by the spectral density and
temperature of a Gaussian environment has been known for a long time [1], but the key idea
of the equivalence—and thus the possibility of the interchange—of environments with the
same correlation functions has only recently been demonstrated by Tamascelli et al. [29].

The time dependence in Equation (11) refers to the interaction picture so that the
bath operators evolve under the free bath Hamiltonian: Oω(t) = eiHEtOω(0)e−iHEt. Using
Equation (10) and 〈a†

ωaω〉 = nβ(ω) we have

S(t) =
∫ ∞

0
J(ω)[e−iωt(1 + nβ(ω)) + eiωtnβ(ω)]. (12)

Making use of the relation

1
2
(1 + coth(ωβ/2)) ≡

{
nω(β), ω ≥ 0
−(n|ω|(β) + 1), ω < 0

(13)

we can write Equation (12) as an integral over all positive and negative ω

S(t) =
∫ ∞

−∞
dωSign(ω)

J(|ω|)
2

(1 + coth(
ωβ

2
))e−iωt. (14)

However, Equation (14) is exactly the two-time correlation function one would get if the
system was coupled to a bath, now containing positive and negative frequencies, at zero
temperature! The effects of the finite, physical temperature now appear in a new effective
spectral density for the extended environment given by

Jβ(ω) = Sign(ω)
J(|ω|)

2
(1 + coth(

ωβ

2
)). (15)

Thus, we find that our open system problem is completely equivalent to the one governed
by the Hamiltonian

H = HS + Hext
E + Hext

I , (16)
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in which the system couples to an extended environment, where

Hext
I = AS ⊗

∫ ∞

−∞
dω
√

Jβ(ω)(aω + a†
ω),

Hext
E =

∫ ∞

−∞
dωωa†

ωaω,
(17)

and which has the initial condition ρSE(0) = ρS(0) ⊗ |0〉E 〈0|. This transformed initial
condition is now far more amenable to simulation as the environment is now described
by a pure, single-configuration wave function, rather than a statistical mixed state, and
so no statistical sampling is required to capture the effects of temperature on the reduced
dynamics!

Analysing the effective spectral density of Equation (15), it can be seen that the new
extended environment has thermal detailed balance between absorption and emission
processes encoded in the ratio of the coupling strengths to the positive and negative modes
in the extended Hamiltonian (see Figure 1c), as opposed to the operator statistics of a
thermally occupied state of the original, physical mode, i.e.

Jβ(ω)

Jβ(−ω)
=

〈aωa†
ω〉β

〈a†
ωaω〉β

= eβω (18)

Indeed, from the system’s point of view, there is no difference between the absorption
of a quantum from a thermally occupied, positive energy bath mode and the creation
(emission) of an excitation into an unoccupied, negative energy, bath mode. The extension
to negative frequencies essentially allows the process whereby the system would be heated
by the environment (absorbing pre-existing quanta in the thermal bath) to be mimicked by
spontaneous emission into a negative energy vacuum of states, as shown in Figure 1b.

T=0KT=0K

+EE

-E

0000

a b

E

000

β( )

c

(a)

(b)

(c)

Figure 1. (a) Two-level system (TLS) is coupled to two environments (a, b) with inverse temperatures
βa and βb. (b) The reduced state dynamics of the TLS can be obtained from a zero-temperature simu-
lation of an extended environment containing negative frequency excitation modes and temperature-
dependent couplings. (c) The effective spectral density Jβ(ω) encodes the principle of detailed
balance for absorption and emission of quanta between thermal transitions in the TLS. For the Ohmic
spectral density considered in this article, Jβ(ω) becomes flat over the entire range [−ωc, ωc] as the
temperature increases (β decreases). The plots shown are for ωcβ = 0.1 (Purple), ωcβ = 1 (Red),
ωcβ = 10 (Green), ωcβ = 50 (Yellow) and ωcβ = 100 (Blue).

In fact, the equivalence between these two environments goes beyond the reduced
system dynamics as there exists a unitary transformation which links the extended en-
vironment to the original thermal environment. This means that one is able to reverse
the transformation and calculate thermal expectations for the actual bosonic bath such as

6
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〈a†
ω(t)aω(t)〉β. This is particularly useful for molecular systems in which environmental

(vibrational) dynamics are also important observables that report on the mechanisms and
pathways of physio-chemical transformations [38–40]. In this article, we will use this capa-
bility later to look at the non-equilibrium heat flows between the TLS and its environments.
This is a major advantage of many-body wave function approaches, as full information
about the environment is available, cf. effective master equation descriptions which are
obtained after averaging over the environmental state.

2.3. Chain Mapping and Chain Coefficients

Following this transformation a further step is required to facilitate efficient simulation
of the many-body system+environment wave-function. This is to apply a unitary transfor-
mation to the bath modes which converts the star-like geometry of Hext

I into a chain-like
geometry, thus allowing the use of Matrix-Product-State (MPS) methods [10,41,42] (see
Figure 2). We thus define new modes c(†)n =

∫ ∞
−∞ Un(ω)a(†)ω , known as chain modes, via

the unitary transformation Un(ω) =
√

Jβ(ω)pn(ω) where pn(ω) are orthonormal polyno-

mials with respect to the measure dω Jβ(ω). Thanks to the three term recurrence relations
associated with all orthonormal polynomials pn(ω) [41], only one of these new modes,
n = 1, will be coupled to the system, while all other chain modes will be coupled only to
their nearest neighbours [41]. Our interaction and bath Hamiltonians thus become

Hchain
I = κAS(c1 + c†

1),

Hchain
E =

∞

∑
n=1

εnc†
ncn +

∞

∑
n=1

(tnc†
ncn+1 + h.c).

(19)

The chain coefficients appearing in Equation (19) are related to the three-term recurrence
parameters of the orthonormal polynomials and can be computed using standard numerical
techniques [41]. Since the initial state of the bath was the vacuum state, it is unaffected
by the chain transformation. We briefly note the evolution of the asymptotic values of
the chain parameters, as illustrated in Figure 3. For a smooth spectral density with a
hard cut-off, it is has been rigorously proven that εn → ωc/2, tn → ωc/4 as n → ∞ [41].
Figure 3 shows the dramatic changes in these asymptotic values as the temperature is
increased, which—from the numerical results—appear to be εn → 0, tn → ωc/2 as n → ∞
and β → 0. This can be naturally understood from the behaviour of the effective spectral
functions Jβ(ω) with increasing temperature, as illustrated in Figure 1c. The spectral
functions become symmetric and have finite values over the whole domain [−ωc, ωc]. The
asymptotic spectrum of the chain modes thus has a bandwidth of 2ωc centred on ω = 0,
which, for a uniform hopping chain, requires the numerically observed asymptotic chain
parameters. In the particular case of the Ohmic environment at high temperatures, it can
easily be seen that Jβ(ω) tends to a constant and so will have a chain representation derived
from the classical Legendre polynomials [41].

We have thus arrived at a formulation of the problem of finite-temperature open
systems in which the many-body environmental state is initialised as a pure product of
trivial ground states, whilst the effects of thermal fluctuations and populations are encoded
in the Hamiltonian chain parameters and system-chain coupling. These parameters must
be determined once for each temperature but—in principle—the actual simulation of the
many-body dynamics is now no more complex than a zero-temperature simulation!
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Figure 2. The positive and negative energy modes of each extended environment are mapped onto
1D chains with nearest-neighbour hopping, each coupled by their first site to the TLS with coupling
strength κ. The chain parameters εn and tn are determined such that the eigen-modes of the chains
are the original modes of the extended environments. The 1D geometry of the transformed system
and the fact that the chain modes all start in their vacuum states, means the system-environment
state can be described by a single (pure) matrix product states (MPS).

2.4. Spin-Boson Model Across the Complete α − β Space

In this section, we numerically verify that the finite-temperature approach set out
in Sections 2.2 and 2.3 captures the correct non-perturbative behaviour in the single-bath
spin-boson model. This will be illustrated with a few explicit examples, but the key result
of this section is the creation of a comprehensive dataset for the Ohmic spin-boson model
that allows arbitrary TLS initial conditions to be propagated in real-time and over a large
area of α − β space. This dataset has been made freely available online in citable form and
can be used to benchmark other methods and applications [43].

Figure 4a,b shows the temporal decay of an initially polarised spin 〈σz(0)〉 = +1
towards thermal equilibrium for varying coupling strengths α and inverse temperatures β.
The TLS energy splitting was ω0 = 0.2ωc. The key result in Figure 4b is the dependence
of the thermalized spin polarization at long times. In a simple, perturbative rate equation
treatment, this final polarization would be set by the energy gap ω0 and the temperature,
according to the Gibbs-Boltzmann distribution

〈σz〉β = − (1 − e−βω0)

(1 + e−βω0)
. (20)

The coupling strength α would only alter the rate at which this thermal distribution
is reached. However, Figure 4a shows a growing dependence of the final polarization
on the coupling strength, suggesting a non-perturbative effect. This is indeed the case:
strong coupling leads to polaron formation and non-perturbative renormalisation of the
TLS energy gap ω0. According to the variational theory of Silbey and Harris [44], the
renormalized gap ωr is approximately given by

ωr = ω0

(
ω0

ωc

) α
1−α

, (21)

8
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in the so-called scaling limit in which ωc is much larger than all other energy scales in the
problem. This renormalisation is highly non-perturbative, and can completely close the
TLS energy gap at a critical coupling αc = 1 [1]. Replacing ω0 with the the renormalized
energy gaps in Equation (20), 〈σz〉β is given

〈σz〉β = −
(

ω0

ωc

) α
1−α (1 − e−βωr )

(1 + e−βωr )
. (22)

where the prefactor in Equation (22) accounts for the suppressed expectation values of σz
in the polaronic eigenbasis.

Figure 5 shows this analytical prediction as a function of temperature, compared to
the results extracted from the real-time dynamics. As mentioned above, most analytical
predictions for the SBM are obtained deep in the scaling limit, while numerical results
necessarily involve only moderately large values of ωc. When comparing results, it is
common in the literature to evaluate analytical expressions with a re-scaled coupling
strength α̃ = cα to account for this [45–47], which we have applied in Figure 5. We found
that a constant factor c = 0.66 gave excellent agreement across the parameter space for
both one and two-bath SBMs, as shown in the inset of Figure 5.

n

c

n

c

c =

c = 100

c = 50

c = 20

Figure 3. Site energies en and hopping amplitudes tn as a function of chain distance n at different
environment temperatures.
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= 0.2
= 0.35
= 0.5

= 40= 2
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= 10

= 20

(a)

(b)

Figure 4. Relaxation of spin polarization as a function of time for (a) different temperatures and
α = 0.1 and (b) different coupling strengths with a fixed ωcβ = 100.

c

〈
z
(

)〉

= 0.0

= 0.1

= 0.2

〈
z
(

)〉

Figure 5. Analytical prediction of thermal steady state spin polarization as a function of inverse
temperature ωcβ. Inset compares these predictions with steady state values extracted from the
real-time dynamics shown in Figure 4. A re-scaled coupling strength α̃ = cα with c = 0.66 has been
applied when evaluating the anaytical formula (see main text).

As a final set of observations in this section, we now look at the behaviour of the
environment. In Figure 6 we present the occupations of the bath modes in the extended
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spectral representation used to account for finite temperatures. As anticipated in our
discussion in Section 2.2, we find that at low temperatures, the energy released from the
decay of the spin is absorbed by modes with positive frequencies matching the TLS energy
gap ω0. As the temperature increases, peaks appear at negative frequencies, corresponding
to the excitation of these modes due to ‘heating’ of the TLS, i.e., the TLS is thermally excited
and removes energy from the environment. As a function of temperature, the ratio of
the positive and negative occupations is a very close fit to eβω0 , as expected from detailed
balance. However, due to the presence of negative frequency modes, we find that the
populations in both the positive and negative frequency modes grow indefinitely during
the simulation time, as shown in the inset of Figure 6. The difference of these growing
populations plateaus at a finite value, corresponding to the thermal occupation of the
physical positive-frequency mode, but care must be taken to get converged results for
long-time (steady state) quantities due to the expanding local Hilbert spaces needed for the
environment modes in the simulations.

=2

=5

=10

=20

=40

=

-1.0 -0.5 0.0 0.5 1.0

0.

0.2

0.4

0.6

/ c

<
n
> 0 10 20 30 40

1

10

100

c

10 30 50

0

4

8

ct

Figure 6. Long-time occupations of the modes of the extended environment, following the thermal-
ization of the TLS at various temperatures. Inset shows the total number of quanta in the environment
as a function of time (left) for different temperatures. This population grows indefinitely at finite
temperatures. The inset (right) shows the long-time ratio of the peak heights in each curve of the
main figure. These give a very good fit to the exponential dependence expected for absorption and
emission rates obeying detailed balance.

Figure 7 shows the behaviour of the von-Neumann entropy obtained by bi-partitioning
the total N-site system-environment chain into chains of size n and N − n and computing
the singular values of either of the subsystems’ reduced density matrices [48]. The entan-
glement entropy directly reports on the size of the bond-dimensions required to represent
the state accurately in the MPS format, and our results show that this entropy also grows
continuously during the simulation. There is also a clear asymmetry in the rate of spreading
and magnitudes of entanglement, with correlations between sites in the hot environment
growing much faster. Again, these growing numerical resources for finite temperature
simulations should be handled with care, and we shall take this up again in Section 3.
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S(ρn)

c = 60

c = 30

c = 0

Figure 7. The time evolution of the von Neumann entanglement entropy for each bi-partition of the
system-environment chain at site n. The TLS is located in this example at site n = 59, with the hot
bath corresponding to sites 1 − 58 and remaining sites representing the cold bath.

2.5. Non-Equilibrium Heat Flows

In this section we simulate the non-equilibrium dynamics of the TLS connected to two
environments at different temperatures. For clarity we will designate environment a as
the ‘hot’ environment and b as the ‘cold’ one, using suffixes ‘h’ and ‘c’, respectively. We
note here that this elementary class of two-environment models has both wide-ranging
practical applications—such as studying heat and charge transfer in nano-devices and
molecules [6,49,50], as well as being of fundamental relevance for quantum thermodynam-
ics, decoherence, and non-equilibrium steady states [47,51–54].

Figure 8 shows the real-time excitation of a TLS initially prepared in its ground state
when connected at t = 0 to the cold environment with fixed ω0βc = 100 and the ‘hot’
environment at different temperatures. Figure 9 shows the steady-state spin polarization as
a function of the temperature difference between the hot and cold baths. To understand the
basic features of the steady state, let’s consider a perturbative set of rate equations for the
population of the spin-up level P↑(t). Assuming that the rates of absorption and emission
from each bath of TLS obey detailed balance, the dynamics of P↑(t) can be obtained from
the equation

dP↑(t)
dt

= −ΓP↑(t)(nc + nh + 2) + Γ(1 − P↑(t))(nc + nh), (23)

where ni = [exp(ω0βi) − 1]−1 By finding the steady state population P↑(∞), the non-
equilibrium value of the spin polarisation 〈σab

z (∞)〉 then takes the simple form

〈σab
z (∞)〉 = −1

2(nc + nh + 1)
. (24)

Once again, if renormalization effects are included, the agreement between the analytical
predictions is very good, as can be seen in Figure 9. Indeed, for the lowest temperatures,
the spin dynamics are entirely due to renormalization effects, as thermal occupation of the
excited level is negligible.
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〈 z( )〉
c

h = 2

h = 3

h = 10

h = 50

h = 100

Figure 8. Non-equilibrium relaxation of spin polarization as a function of time for fixed cold bath
temperature and varying hot bath temperatures.

〈 z( )〉

b( h − c) c

Figure 9. The change in 〈σz(∞)〉 as a function of the temperature difference between the baths (Tc is
kept constant). Analytical predictions are shown as dots, numerical data points as squares.

Interestingly, these two-bath results also reveal an intriguing non-additive effect due
to the coupling to two environments. The subject of non-additivity of environmental
interactions has recently attracted attention due to the role of multiple environments
in a wide range of ‘active’ quantum machines, such as the conversion of ambient solar
energy in room-temperature (phonon-coupled) devices [15,16,47], and also the highly co-
operative actions of different types of vibrational motion in molecular photo physics [14].
In the present case, the non-additive effects appear in the polaronic renormalisation,
which is mostly clearly seen in the case when the two baths have the same temperature.
This situation is indistinguishable from a coupling to a single bath with twice the coupling
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strength. The renormalisation can thus be obtained from Equation (21) with the replacement
α → 2α. However, the renormalisation arises from the overlap of the displaced mode
wave functions that are ‘fast’ enough to co-tunnel with the TLS as it transitions between
〈σx〉 = ±1 [44,45], and in an additive approximation the renormalization would be simply
be the product of the individual overlaps for each environment. However, as is clear form
Equation (21), this doubling of the coupling does not lead to a simple exponential doubling
of the renormalization, but instead leads to a nonlinear suppression of the energy gap
according to the exponent 2α/(1 − 2α).

Exploiting the access to the environmental state, we now show the transient dynamics
of the heat flow in the two baths during the establishment of the TLS steady state. We
define the following operators

Ĵc = σ̂y ⊗ (Â†
0 + Â0), (25)

and
Ĵh = σ̂y ⊗ (B̂†

0 + B̂0), (26)

which measure the heat flux from the spin to baths a and b respectively. The operators
Â(†)

0 (B̂(†)
0 ) refer to the creation and anihilation operators of the first site of chain a(b), i.e.

the site coupled to the TLS. Representative heat flows are shown in Figure 10 for large
and zero differences in the bath temperatures. In both cases, the initial dynamics involve
heating from both hot and cold environments, as the spin is initially in a pure (T = 0K)
ground state. As the dynamical steady state of the spin is obtained, a net heat current
appears from the hot to cold environment. This heat current vanishes as the temperature
difference of the baths is reduced, as we would expect. From the long-time solution of the
Pauli master equation given in Equation (23), the steady-state heat flux from the hot to cold
environment can be shown to be

J = Γ
nh − nc

1 + nh + nc
, (27)

and this is plotted alongside our numerical data in Figure 11. The simulations correctly
capture the essentially non-linear behaviour of heat flow through the quantum ‘heat leak’
TLS, although a linear regime where Fourier’s law of heat flow appears to hold can be
clearly observed before the flows saturate for large temperature differences.

c

c( c h = 2)

h( c h = 2)

h( c h = 100)
c( c h = 100)

Figure 10. Heat flows into the cold bath (Jc) and out of the hot bath (Jh) as a function of time for
varying hot bath temperatures and a fixed ωcβc = 100.
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b( h − c) c

( )

Figure 11. Net steady-state heat flux through the two-level system as a function of temperature
difference for a fixed βc = 100. Data extracted from MPS simulations (yellow squares) is compared
with the analytical expression in the main text (blue dots).

3. Discussion

The results presented in Section 2 demonstrate that accurate reduced system behaviour
in the spin-boson model can be obtained in the presence of both a single or two finite-
temperature environments. Non-perturbative effects related to system-bath entanglement
(polaronic dressing) are captured in transient relaxation and non-equilibrium steady states,
and we have shown how the T-TEDOPA transformation provides direct information related
to the energy and entanglement entropy flows in the environment. All of these results were
obtained from pure wave function evolution of an initial zero-temperature (vacuum) state,
and the onerous numerical cost of having to sample over a thermal distribution of initial
states was entirely avoided.

However, we did note that the numerical resources required to obtain these results
grew in an unbounded way as a function of simulation time. In the case of the one-bath
SBM, Figure 6 shows that the total number of bosonic excitation grows approximately
linearly in time and the growth rate increases with the bath temperature. The main panel
showing the populations of the environment in frequency space shows that this growth
is the result of growing populations at frequencies ≈ ±ω0. In Section 2.2 we made the
observation that creating an excitation in a negative frequency mode allows the TLS to be
excited with overall conservation of energy, and this is the process that accounts for the
‘heating’ expected of a finite-temperature bath. The constant growth of excitations in the
environment can be seen to arise from the constant cycling of the heating process sketched
in Figure 12 (a similar cycle for cooling also generates a net population of excitations).
Here the creation of a negative frequency excitation (or hole) excites the TLS and then is
de-excited by the creation of an excitation in the positive frequency environment.
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Figure 12. Due to the unbounded bosonic nature of the negative-frequency environment, thermal
transitions within the TLS lead to a constant creation of correlated, particle-hole-like excitations in
both environments with the same absolute energy ω0.

Interestingly, this pair creation goes beyond populations: the dynamics of thermal-
ization entangles the positive and negative frequency environments. This is perhaps
unsurprising in the context of the thermofield theory of De Vega et al. where the thermal
entanglement properties of two-mode squeezed states are used to create an effective fi-
nite temperature environment from two zero-temperature baths [55]. However, for our
open-system problem, it should be kept in mind that the ’dynamics’ of the positive and—
especially—the negative modes really only provide insight into the internal workings of
the simulation. The modes and their populations are proxy (non-physical) degrees of
freedom used to provide vacuum fluctuations that mimic the physical interactions of the
system with a strictly positive-frequency harmonic bath at finite-temperature. However, a
hopefully fruitful and more physical connection between the behaviour of the artifically
extended environment inT-TEDOPA can be made to very recent developments in the the-
ory of MPS and tensor networks for fermionic quantum transport. Here, non-equilibrium
particle flows between reservoirs at different chemical potentials lead to the constant
creation of entangled particle-hole pairs, leading to the exponential-in-time growth of
MPS bond dimensions. However, Rams and Zwolak have recently demonstrated that a
change in basis used for certain fermionic transport simulations can greatly suppress the
rapid growth of numerical resources [56], and it would be very interesting to see how
this might translate—or might to some extent already be implemented—in our current
approach to bosonic heat flow problems. Finally, we also point out that rapid growth
of bond dimensions and entanglement in non-equilibrium systems is potentially a prob-
lem for 1TDVP simulations, as these proceed at fixed bond-dimensions. Choosing large
bond-dimensions may allow one to reach long times, but much of the simulation is likely
to run slowly, as it will be using far more resources than are necessary for most of the
time. In a recent development, Dunnett and Chin have proposed an adaptive version of
1TDVP that is able to change bond-dimensions during the course of a single simulation
run, allowing the necessary resources to be deployed as needed [57]. We thus conclude
that recent insights and computational development have opened a whole new domain
of finite and multiple-temperature open system problems for wave function techniques,
and that creating numerically efficient finite-temperature simulations will inspire further
progress in tensor network theory, as applied to open systems.
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4. Materials and Methods

All numerical results were obtained using software packages that are available at
https://github.com/angusdunnett/MPSDynamics. The benchmark data for the Ohmic
Spin-Boson Model can be found at [43].
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Abstract: The chain mapping of structured environments is a most powerful tool for the simulation
of open quantum system dynamics. Once the environmental bosonic or fermionic degrees of
freedom are unitarily rearranged into a one dimensional structure, the full power of Density Matrix
Renormalization Group (DMRG) can be exploited. Beside resulting in efficient and numerically exact
simulations of open quantum systems dynamics, chain mapping provides an unique perspective on
the environment: the interaction between the system and the environment creates perturbations that
travel along the one dimensional environment at a finite speed, thus providing a natural notion of
light-, or causal-, cone. In this work we investigate the transport of excitations in a chain-mapped
bosonic environment. In particular, we explore the relation between the environmental spectral
density shape, parameters and temperature, and the dynamics of excitations along the corresponding
linear chains of quantum harmonic oscillators. Our analysis unveils fundamental features of the
environment evolution, such as localization, percolation and the onset of stationary currents.

Keywords: transport; open quantum systems; chain-mapping

1. Introduction

The thorough understanding of transport of energy, heat, particle, or mass in complex quantum
systems is of utmost importance both from a fundamental and technological point of view. Such a
relevance is witnessed by the enormous efforts invested by the scientific community over the last
decades on the theoretical and experimental investigation of the unique features of transport at the
quantum regime.

A variety of different topics can be put under the umbrella of quantum transport, such as
efficient energy transfer and conversion in biological systems [1–5], transport in low dimensional
quantum systems [6–11], quantum thermodynamics [12,13], and quantum information processing and
transmission [14–17].

Open quantum systems (OQS) formalism [18,19] has been widely employed for the description of
quantum transport in the, often unavoidable, presence of additional and uncontrollable degrees of
freedom interacting with the system under study. The tools provided by open quantum system theory
led to the derivation of fundamental results allowing to understand and control, or at least mitigate,
environmental effects. Such control, for example, is of utmost importance to preserve the quantum
resources, as entanglement and coherence, that could enable the development of quantum devices
possibly outperforming their classical counterparts. On the other side, the analysis of certain open
quantum systems has unveiled the delicate interplay between coherence and sources of decoherence,
as in the paradigmatic case of energy transport in disordered lattices [2,3,16,20].

The simulation of open quantum systems, on the other hand, represents a formidable task.
Even when a microscopic description of the environment surrounding a quantum system is available,
the derivation of the open quantum system dynamics requires the solution of a number of differential
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equations that scales exponentially with the number of environmental degrees of freedom. Analytic
solutions are not available but for very few cases [21–27] and numerical integration is not feasible,
unless more or less severe approximations are used. Such approximations, however, may fail to capture
the effects of the interaction of open systems with environments that are either structured, or evolve
on time-scales comparable to those characteristic of the open system. Electronic excitation or electron
transport in a vibrational environment, ubiquitous in solid state environments and bio-molecular
systems [28–31], is just an example of this class of problems, which are of fundamental importance in a
broad range of fields including the emergent quantum technology.

Over the last two decades, a variety of numerically exact approaches for the simulation of open
quantum systems have been proposed [31]. These methods allow for the description of features
that were not accurately described by approximate methods, such as the Markov, Bloch-Redfield or
perturbative expansion techniques [18]. Among them we mention the hierarchical equations of motion
(HEOM) [32–34], path integral methods [35–37], Dissipation-Assisted Matrix Product Factorization [38],
and pseudo-modes related transformations [23,39,40].

Time Evolving Density operator with Orthogonal Polynomials (TEDOPA) [41,42] algorithm
is a method for the non perturbative simulation of OQS. TEDOPA has been employed to study
a variety of open quantum systems [4,41,43]. TEDOPA belongs to the class of chain-mapping
techniques [41,42,44–47], based on a unitary mapping of the environmental modes onto a chain
of harmonic oscillators with nearest-neighbor interactions. The main advantage of this mapping is the
more local entanglement structure which allows for a straightforward application of density matrix
renormalization group (DMRG) methods [48]. Moreover, the availability of bounds on the numerical
errors introduced by the DMRG parametrization allows to certify the accuracy of the results generated
by TEDOPA [49].

As we will show, starting from the next section, after the transformation of the environmental
degrees of freedom into a linear chain of bosonic modes, the open system interacts only with the first
site of the chain, where it dynamically creates (and destroys) excitations that subsequently propagate
along the linear chain. A deeper understanding of excitation transport on bosonic chains obtained via
the unitary chain mapping transformation of a bosonic environment can shed light on the mechanism
that allows a linear structure to induce on the system the same dynamics of the original environmental
configuration, where each oscillator was directly interacting with the system. The same linear structure,
moreover, offers a unique point of view on the perturbations induced on the environment by the
interaction with the system, since it naturally introduces a hierarchy of modes over which such
perturbation propagate, or light-cone.

The paper is organized as follows. In Section 2 we briefly introduce the TEDOPA chain mapping
and fix our notation. In Section 3 we discuss the dynamical features of transport on TEDOPA chain
associated, respectively, to Lorentzian and Ohmic spectral densities in the single excitation subspace.
In Section 4 we extend the analysis by including the interaction with the open system. Section 5 is
devoted to conclusion and outlook.

2. Tedopa

Here and in what follows we consider a system interacting with a bosonic environment.
The complete Hamiltonian reads (h̄ = 1):

H = HS + HE + HI (1)

HE =
∫

dωωa†
ωaω

HI = AS

∫
dωh(ω)Oω,

where HS is the (arbitrary) free system Hamiltonian, HE describes the free evolution of the
bosonic environmental degrees of freedom, and HI is the bilinear system -environment interaction
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Hamiltonian [50], and AS, Oω are self-adjoint operators. This last assumption is necessary for
the Thermalized-TEDOPA (T-TEDOPA) mapping [51], that we will introduce later in this section.
We assume that h(ω) has finite support [ωmin, ωmax], with ωmin < ωmax, and define the spectral
density (SD), namely the positive valued function J : [ωmin, ωmax] → R+, as

J(ω) = h2(ω). (2)

As shown in References [41,42,46] the Hamiltonian (1) can be unitarily mapped into an equivalent
one through by defining a countably infinite set of new operators

b†
n =

∫ ωmax

ωmin

dωUn(ω)a†
ω (3)

bn =
∫ ωmax

ωmin

dωUn(ω)aω, (4)

where
Un(ω) = h(ω)pn(ω). (5)

The operators bn and b†
n satisfy the bosonic commutation relations [bn, b†

m] = δnm; moreover,
the polynomials pn(ω) are orthogonal with respect to the measure dμ = J(ω)dω and satisfy three-term
recursion relations [42,46]. Thanks to these properties, the Hamiltonian (1) is mapped into the one
dimensional Hamiltonian

HC = HS + κ0 As(b1 + b†
1)+ (6)

+∞

∑
n=1

ωnb†
nbn + κn(b†

n+1bn + b†
nbn+1)

= HS + HC
I + HC

E , (7)

where, for the sake of definiteness, we have specialized the operator Oω in (1) to Xω = aω + a†
ω.

After the mapping, the system interacts with the first site of a linear (infinite) chain of bosonic modes;
the system-chain interaction strength is given by [42,46]

κ2
0 =

∫ ωmax

ωmin

dω J(ω), (8)

whereas the frequency of the first TEDOPA chain oscillator is

ω1 =
∫ ωmax

ωmin

dωω
J(ω)

κ2
0

, (9)

namely the first moment of the normalized measure J(ω)/κ2
0dω on [ωmin, ωmax]. The remaining

coefficients ωn and κn are defined by the above mentioned three-terms recursion relations; while in
certain cases it is possible to analytically determine their value [42], a numerically stable procedure is
in general used [52,53].

For the following analysis, it is important to stress that the chain Hamiltonian HC
E is made

up of exchange terms bn−1b†
n + H.c. and therefore conserves the “number” operator, that is,

[N, HC
E ] = 0 where

N =
∞⊗

n=1

b†
nbn. (10)

Excitations can therefore be added or subtracted from the chain because of the interaction with
the system.
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The initial joint system-environment state is assumed factorized ρSE(0) = ρS(0) ⊗ ρE,β(0),
with ρE,β(0) a thermal state at inverse temperature β = 1/kBT, namely

ρE,β(0) =
⊗

ω

exp(−βωa†
ωaω)/Zω, (11)

with Zω = Tr[exp(−βωa†
ωaω)] the partition function. The initial state after the chain mapping is a

factorized state ρC
SE(0) = ρS(0)⊗ ρC

E,β(0) as well with

ρC
E,β = exp(−βHC

E )/ZC
E . (12)

If the environment is initially at zero temperature, its initial state is the vacuum state, and the initial
state of the chain is also a factorized vacuum state |0〉C

E (i.e., bk |0〉C
E = 0, k = 1, 2, . . .): the chain contains

therefore no excitations. This case provides us with the simplest setting where to analyze the transport
properties of the chain corresponding to some representative spectral densities. As recently shown in
Reference [51], however, by the spectral density transformation

Jβ(ω) =
J′(ω)

2

[
1 + coth

(
βω

2

)]
, (13)

with J′(ω) = sign(ω)J(|ω|), it is always possible to replace the thermal state of the original
environment with the vacuum state of an extended environment, comprising negative frequencies.
As the spectral density (13) is now temperature dependent, the TEDOPA chain coefficients ωn,β, κn,β
will be temperature dependent as well. In the following we will drop the β dependence wherever clear
from the context. From now on will therefore always consider the factorized vacuum state as the initial
chain state without loss of generality.

In our analysis we will consider, in particular, the Lorentzian spectral density

JL(ω) =
λ2

π

4γΩω

[γ2 + (ω + Ω)2] [γ2 + (ω − Ω)2]
, (14)

and Ohmic spectral densities

Js
O(ω) =

λ2

π

ωs

s!ωs−1
c

e−
ω
ωc , (15)

defining a very important class of environments entering in the study of many systems, such as
microscopic models leading to a Lindblad master equation for an harmonic oscillator in a weakly
coupled high temperature environment, or a particle undergoing quantum Brownian motion [18,54,55].
From now on frequencies will be in cm−1 and temperatures in Kelvin. We remark that, because of the
relation (8), if two spectral densities differ only for the overall coupling constant λ, their mappings
(i.e., all of the chain coefficients ωn, κn) will be identical, with the exception of κ0, namely the coupling
strength between the system ant the first TEDOPA chain mode. We also observe that the chain
coefficients ωn, kn, n ≥ 1 are independent of the specific system-environment interaction term, that is,
they are independent of the choice of AS, Oω of Equation (1). As customary for chain mappings,
in what follows, we will moreover impose a hard cutoff ωhc to the considered spectral densities,
thus limiting their support to the interval [0, ωhc] for T = 0 and to the interval [−ωhc, ωhc] for T > 0.
The value of ωhc is suitably chosen as to keep the neglected relative reorganization energy∫ ∞

ωhc
dω J(ω)/ω∫ ∞

0 dω J(ω)/ω

in the order of 10−4 for all the considered instances.
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If the considered spectral density belongs to the Szegö class, the asymptotic relations

ω∞ = lim
n→∞

ωn =
ωmax + ωmin

2
(16)

κ∞ = lim
n→∞

κn =
ωmax − ωmin

4

hold (see Theorem 47 of Woods et al. [46]). Clearly enough, in our setting ωmax (and, at finite
temperature, ωmin) depends on the imposed hard-cutoff ωhc so that both ω∞ and κ∞ are functions of
ωhc. For any suitably fixed ωhc, however, the relations (16) allow for the simple heuristic estimation
L = 2κ∞tmax of the maximal distance travelled within the time tmax by an excitation initially located at
the first TEDOPA chain site. For fixed time tmax, therefore, the effective environment is made up of L
oscillators within the “light-cone”. Interestingly enough, the width of such light cone depends only
on the “artificially” imposed hard cutoff and, as long as the choice ωhc is sensibly chosen, different
choices of the hard-cutoffs do not impact on the reduced dynamics of the system. On the other side,
different spectral densities with the same support will have the same asymptotic coefficients, and the
differences in the reduced dynamics of the system will be due to a (typically quite small) finite number
of modes, as we will see in the following sections.

3. Chain Dynamics

We start by analyzing the dynamics of a single excitation moving along the chain-mapped
environment produced by the (T-)TEDOPA mapping. To this end, we can disregard the system and
the interaction term HI , or equivalently set κ0 = 0, and restrict our attention to the single excitation
sector of the TEDOPA-chain Hilbert space. The set {|k〉 , k = 1, 2, ...}, where |k〉 indicates the Fock state
|n1 = 0, . . . , nk−1 = 0, nk = 1, nk+1 = 0, . . .〉 with the single excitation located at the k-th chain site, is a
basis for the considered single excitation subspace. In what follows we will assume that the excitation
is initially located at site 1, namely the initial state is |1〉.

3.1. Lorentzian Spectrum

The Lorentzian spectral density (14) provides a paradigmatic example. For γ/Ω � 1,
such spectrum well approximates that of an environment made up of a single harmonic oscillator with
frequency Ω and dissipating into the vacuum at rate γ [18,56]. In all the following examples a hard
cutoff frequency ωhc = 10Ω has been enforced.
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(a) (b)
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0.030
0.035

(c)

Figure 1. Lorentzian SD; in all frames ΩS = 10, T = 0; blue, green and red lines/marker refer
respectively to γ = 0.001, γ = 1 and γ = 10. (a) The chain parameters ωn (empty markers) and κn

(filled markers) for γ = 0.001 (blue circles), γ = 1 (green diamonds) and γ = 10 (red squares); the
couplings are shifted by 0.5 to the right to lie between n and n + 1. (b) The population p1(t) of the first
site as a function of time; the decay rates exp(−2γ) are shown as dashed lines as a guide to the eye.
(c) The population of px(t̄) at t̄ = 0.2 for x = 1, 2, . . . , 120.

Frame (a) of Figure 1 shows the frequencies ωn and couplings coefficients κn at T = 0 for Ω = 100
and γ = 0.001, 1, 10 (see (14)). We first observe that, for all values of γ, the first and the second TEDOPA
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chain modes are equally far detuned. The main difference between the three selected cases lies in the
coupling strength κ1 between the same two modes, which is directly proportional to γ. The effect
on the system dynamics is remarkable. As shown in Figure 1b the population of the first TEDOPA
chain is well approximated by p1(t) = exp(−2γt), namely the decay rate of an harmonic oscillator
damped into the vacuum at a rate γ. As frame (c) of the same figure shows, the portion of excitation
that propagates beyond the first site propagates on the TEDOPA chain at a speed which is independent
of γ: the chain coefficients are essentially equal to each other in the three cases for n ≥ 3, and their
value is determined by the hard cutoff frequency ωhc through (16).

We turn now our attention to the finite temperature case.
As exemplified in Figure 2a, after the thermalization procedure [51] the thermalized spectral

density (13) presents two peaks at ±Ω. The system will be thus effectively coupled to two damped
modes, with temperature dependent coupling strength proportional to 1 + nβ(Ω) resp. nβ(Ω).
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Figure 2. (a) The thermalized Lorentzian SD JL,β(ω) (see Equations (13) and (14)) for Ω = 100, γ = 10
at T = 0 (blue solid line), T = 77 (green dashed line) and T = 300 (red dotted line). In all the remaining
frames Ω = 10, γ = 0.001. (b) T = 77; the first (dashed blue line) and the second (magenta dashed
line) TEDOPA chain site populations p1,2(t) as a function of time. (c) Same quantities and line styles as
frame (b) at T = 300 (d–f): same quantities and styles as frames (a–c) of Figure 1 for T = 300.

It is thus not surprising that the chain dynamics for the case γ = 0.001 is essentially confined
to the first two chain modes, as frames (b) and (c) of Figure 2 show. Indeed, the same plots suggest
a clear relation between the temperature and the relative occupation of the modes: as T increase,
the difference between the maxima of the populations of the first and the second TEDOPA chain sites
decreases, and is expected to vanish as T → ∞, that is, when the thermalized spectral density becomes
symmetric with respect to the origin.

It is interesting to see that a mechanism very similar to the one discussed for the zero temperature
case is at play also at finite temperature. Frame (d) of Figure 2 shows the chain coefficients for
γ = 0.001, 1 and 10 at T = 300. This time the detuning between the first and the second TEDOPA
chain sites is relatively small and the coupling between the two sites is independent of γ. This time
it is the detuning between the second and the third chain site that is considerable, and the coupling
κ2 is monotone with γ. As shown in frame (e) of the same figure, the result is that the population of
the first TEDOPA chain site presents damped beatings: the excitation moves forth and back between
the first two chain sites, and percolates toward the right part of the chain at a rate exp(−2γt). In the
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zero temperature case, the “escaped” population travels toward the right part of the chain at a speed
which is independent of γ, and keeps trace of such beatings, as shown in Figure 2f, but this time
the propagation speed is twice that of the zero temperature case because of the enlarged support
[−ωhc, ωhc] (see (16)).

In order to provide an insight on how the chain dynamics depends on the temperature, in Figure 3
we show the population of the first TEDOPA chain site for different values of T. As already observed,
the decay rate and the frequency of the population oscillations are independent of T, which determines
instead the amplitude of such oscillations. This leads us to the conclusion that the oscillation frequency
must be determined by the parameter Ω, as expected.
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Figure 3. Lorentzian SD. The population p1(t) of the first TEDOPA chain as a function of time for
T = 0 (blue solid line), T = 77 (green dotted line) and T = 300 (red dashed line) for (a) γ = 0.001,
(b) γ = 1 and (c) γ = 10. In all plots exp(−2γt) is show as a black dot-dashed line as a guide to the eye.

3.2. Ohmic Spectrum

We now consider spectral densities belonging to the Ohmic family, defined as in Equation 15.
More in particular, we will study the chain dynamics on TEDOPA chains corresponding to the choice
s = 0.5, 1 and 2, representative, respectively, of sub-Ohmic, Ohmic, and super-Ohmic spectral densities.
In all the following examples we will set ωc = 100, and enforce a hard cutoff ωhc = 10ωc.

We start by the T = 0 case. Frames (a) and (b) of Figure 4 show Ohmic spectral densities for
the selected values of s and the corresponding chain coefficients. The chain dynamics shows that an
excitation leaves its initial location faster in the super-Ohmic case than in the Ohmic and sub-Ohmic
case (see Figure 4c). This can be justified by the higher coupling coefficient and smaller detuning
between the first sites of the TEDOPA chain in the s = 2 case with respect to the s = 0.5, 1 cases.
Moreover, even if the front of the excitation wavepacket travels at the same speed in the three cases,
the delocalization degree of the wavepacket is higher in the sub-Ohmic case, while it remains more
“compact” in the super-Ohmic case, as examplified by the inset of Figure 4c, showing the TEDOPA
chain site populations px(t) at t = 0.1. Considered that the chain coefficients for s = 0.5, 1, 2 are
very close to each other for n ≥ 4, this difference is explained by the first chain coefficients. Roughly
speaking, the higher coupling and smaller detuning between the first chain sites in the s = 2 case
allows for more compact evolution of the wavepacket in the momentum space.

In the high-temperature regime T = 300, the main features of the chain dynamics are preserved,
though with some differences. The decrease of population the first TEDOPA chain oscillator is still
slower in the sub-Ohmic case; for the Ohmic SD, the first site population decay is similar to the T = 0
case, whereas for the super-Ohmic SD such decay is faster than in the zero temperature scenario
(compare frames (c) and (f) of Figure 4). As already discussed before, this behaviour is mainly due
to the detuning |ω1 − ω2| and the coupling strength κ1 between the first and second TEDOPA chain
oscillators. Interestingly enough, for s = 0.5 part of the wavepacket remains localized at the first chain
site, as shown in the inset of Figure 4f and, as in the T=0 case discussed above, the wavepacket is more
delocalized in the sub-Ohmic case than in the super-Ohmic case, with the Ohmic case lying in between.
As a last remark, we observe that, similarly to the finite temperature Lorentzian case, the propagation
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speed of the wavepacket is about twice as large as in the zero temperature case; as already discussed,
this is due to the asymptotic relations (16).
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Figure 4. Ohmic SD. In all frames ωc = 100, and red markers/solid lines, blue markers/dashed lines,
green markers/dotted lines correspond, respectively, to the Ohmic (s = 1), sub-Ohmic (s = 0.5) and
super-Ohmic (s = 2) cases. (a) T = 0; the spectral density (15) for s = 0.5, 1, 2. (b) T = 0; the chain
coefficients ωn (empty markers), κn (filled markers). (c) The population of the first chain site as a
function of time; in the inset, the populations px(t̄) for t̄ = 0.1 as a function of x. (d) The thermalized
SD Js

O,β(ω) for s = 0.5, 1, 2 at T = 300. (e,f) Same quantities as frames (b,c) for T = 300.

Figure 5 provides more details. As we did for the Lorentzian SD case, we now inspect the
dynamics of the first TEDOPA chain population for the three considered spectral densities at different
temperatures. It clearly shows that, while for the Ohmic spectral density such population is only
slightly affected by the value of T, the temperature has opposite effects on super- and sub-Ohmic
SDs. As a matter of fact, whereas for the sub-Ohmic case, an increasing temperature leads to a
slower decrease of the first site population, in the for s = 2 the first site empties at a rate which is
directly proportional to the temperature. The snapshots on the populations px(t) for t = 0.02 in the
insets of frames (a)–(c) of the same figure, allows us to better appreciate the partial trapping at finite
temperature of the wavepacket at the first TEDOPA chain site and the more pronounced spreading of
the wavepacket in the s = 0.5 case.
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Figure 5. Ohmic SD. The population p1(t) of the first TEDOPA chain as a function of time for T = 0
(blue solid line), T = 77 (green dotted line) and T = 300 (red dashed line) for (a) s = 0.5, (b) s = 1 and
(c) s = 2. In the inset of all frames, the population px(t̄) at t̄ = 0.02.
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4. Full Dynamics

So far we focused our analysis on the dynamics of a single excitation moving along TEDOPA
chains. This allowed us to isolate the main features of such dynamics for representative spectral
densities and to investigate the dependence of the kinematic properties of TEDOPA chains on the
specific form of the SD and on the temperature. Clearly enough, the single excitation subspace
we restricted ourselves to is not suited to describe the chain dynamics in the presence of a system
interacting with the environment. As a matter of fact, the interaction with the system will dynamically
inject in (and subtract from) the chain excitation, at a rate that depends, among other things, on the
system-environment coupling strength.

In this section, therefore, we extend our analysis by considering a two-level system interacting
with a bosonic environment described by either Lorentzian or Ohmic spectral densities. Given the
spectral density, the spin-boson model is fully specified once the system and the system-environment
interaction Hamiltonian are fixed. In what follows, we specialize the Hamiltonian (1) to

HS = Δσx (17)

AS =
1 + σz

2
(18)

Oω = Xω = (aω + a†
ω), (19)

with σx, σz Pauli matrices, describing, for example, an homo-dimer interacting with a vibronic
environment [57]. The resulting dynamics is therefore not a pure dephasing dynamics, and is
representative of the class of physical systems for which numerically exact approaches are required.
Considered that the interaction term does not change the system’s populations but affects only its
coherences, we will initialize the system to the state |+〉 = 1/

√
2(1, 1)T , namely the eigenstate of

σx belonging to the eigenvalue +1, representative of the maximally coherent states in the σz basis.
The initial state of the environment will be instead a thermal state (11) at temperature T. In the
following examples we will set Δ = 70cm−1, and tune the parameter λ of Equations (14) and (15) so
that the system-TEDOPA chain coupling κ0 (see (8)) is the same at T = 0 for all the considered spectral
densities. More precisely, by definition, the k0 coefficient of the Ohmic spectral density is independent
of s so that, in the Ohmic cases, we set λ = 1; for Lorentzian spectral densities we set to λ = 60.

Before presenting our results it is important to remark that we are not so much interested in
the reduced dynamics of the system, but rather on the TEDOPA chain dynamics in the presence of
an interaction with the open system. In particular, we will try to understand which of the features
discussed in the preceding section persist in the presence of an interaction with the system. To this end
we will use the average occupation number

nk(t) = Tr(b†
k bkρC(t)) (20)

of the k-th chain oscillator where ρC(t) is the system+chain state at time t determined via
TEDOPA simulation.

We first discuss the chain dynamics for Lorentzian spectral densities. The γ = 0.001 case is still
paradigmatic. At T = 0 only the first TEDOPA chain oscillator is essentially involved in the dynamics.
By comparing the purple lines in frames (a) and (b) of Figure 6, we can clearly see the beatings between
the system and the first TEDOPA chain site. For T > 0 a the second TEDOPA chain mode enters into
play. The average occupation number n1,2(t) of the first two chain sites depend on the temperature.
Interestingly enough, in the high (T = 300) temperature regime the both n1(t) and n2(t) present small
and fast out of phase oscillations, imprinting on the system dynamics a much more erratic dynamics
than the T = 77 environment, for which such oscillations are slower and almost in phase.

Figure 7 shows instead the system and chain dynamics for γ = 10. Analogously to the γ = 0.001
the average occupation of the first two TEDOPA chain sites is temperature dependent. The larger
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value of γ implies that, loosely speaking, more environmental modes are interacting with the system.
While the first two sites are still the highest occupied ones, some excitations can percolate to the right
part of the chain, as we already observed in the chain dynamics analysis of the previous section (see
Figure 2f). Since the system-TEDOPA chain coupling is about the same for the two considered values
of γ, it is such percolation responsible for the faster relaxation of the system.
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Figure 6. Lorentzian SD, full dynamics. γ = 0.001 (a) The expectation of σx as a function of time for
T = 0 (purple dotted line) T = 77 (orange dashed line) and T = 300 (solid red line). (b) The average
occupation number p1,2(t) of the first (solid lines) and the second (dashed line) TEDOPA chain sites for
T = 0 (purple) T = 77 (orange) and T = 300 (red). (c) The average occupation number of the chain
sites k, k = 1, 2, . . . , 20 as a function of time for T = 300.
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Figure 7. Lorentzian SD, full dynamics. Same quantities as in Figure 6 for γ = 10. (a) The expectation
of σx as a function of time for T = 0 (purple dotted line) T = 77 (orange dashed line) and T = 300
(solid red line). (b) The average occupation number p1,2(t) of the first (solid lines) and the second
(dashed line) TEDOPA chain sites for T = 0 (purple) T = 77 (orange) and T = 300 (red). (c) The
average occupation number of the chain sites k, k = 1, 2, . . . , 20 as a function of time for T = 300.

Now we turn our attention to Ohmic spectral densities. As it happens for the Lorentian case
discussed above, the main features of the excitations dynamics presented in Section 3 provides a
key to understanding the results. We observed (see Figure 4c,f) that an excitation located at the first
chain site will leave its initial location more slowly in the sub-Ohmic case than in the Ohmic and
super-Ohmic case. Moreover, the excitation wavepacket tends for s = 0.5 to be more spread over the
chain than for s = 2, with the case s = 1 showing an intermediate behaviour. This features translate
to the chain dynamics in the presence of an interaction with the system, as comparison between
Figures 8–10 shows.

In more detail, we observe that at T = 0 the excitations leave the first chain sites almost ballisticaly
for s = 2 (Figure 10b), whereas for s = 0.5 there is an accumulation of excitations in the very first part
of the chain (Figure 8b). The diagonal fringes appearing in the sub-Ohmic (and less pronounced in the
Ohmic) case at zero temperature are easily explained in therms of the (moving in time) population
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profile shown in the inset of Figure 4c. The inclination of the fringes, is instead related the the coupling
coefficients beteween the TEDOPA chain oscillators that, as already pointed out, do not depend on s
but only on the spectral density support.

At finite T the situation changes quite drastically. First of all we observe that for all the chosen
values of s vertical fringes appear in frames (c) of Figures 8–10. Such vertical fringes can be associated
to a the alternation of higher and lower average occupation number in nearest-neighbor sites, and
allow to appreciate the onset of a stationary current when the state of the system gets close to its
stationary state. A comparison between frames (a) of the same figures shows that in the sub-Ohmic the
average occupation of the first TEDOPA chain sites is much higher than in the Ohmic and super-Ohmic
cases. It must be noticed that, while the system-TEDOPA chain coupling κ0 is equal for T = 0 for all
values of s, at finite temperature such coupling is inversely proportional to s. The sub-Ohmic TEDOPA
chain is therefore more strongly coupled to the system, and this justifies the faster system dynamics at
short times.
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Figure 8. Sub-Ohmic SD (s = 0.5). (a) The expectation of σx at different temperatures as a function
of time (same line styles as in Figure 6a); in the inset, the average occupation number of the first and
the second TEDOPA chain oscillators (same line styles as in Figure 6b). (b) The average occupation
number of the chain sites k, for k = 1, 2, . . . , 20 as a function of time at T = 0. (c) Same quantities as in
frame (b) for T = 300.
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Figure 9. Ohmic SD (s = 1). Same quantities as in Figure 8. (a) The expectation of σx at different
temperatures as a function of time (same line styles as in Figure 6a); in the inset, the average occupation
number of the first and the second TEDOPA chain oscillators (same line styles as in Figure 6b). (b) The
average occupation number of the chain sites k, for k = 1, 2, . . . , 20 as a function of time at T = 0.
(c) Same quantities as in frame (b) for T = 300.

31



Entropy 2020, 22, 1320

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.5

1.0

(a) (b) (c)

Figure 10. Super -Ohmic SD (s = 2). Same quantities as in Figure 8. (a) The expectation of σx

at different temperatures as a function of time (same line styles as in Figure 6a); in the inset, the
average occupation number of the first and the second TEDOPA chain oscillators (same line styles as in
Figure 6b). (b) The average occupation number of the chain sites k, for k = 1, 2, . . . , 20 as a function of
time at T = 0. (c) Same quantities as in frame (b) for T = 300.

5. Conclusions and Outlook

While chain mapping has been recognized as a powerful tool for the efficient simulation of open
quantum system dynamics, the subtle role of excitation dynamics on the determination of such reduced
dynamics has never been investigated in detail. This work represents a first step in this direction.
While the single excitation dynamics is unable to capture the full complexity of the evolution of
TEDOPA chains put in interaction with the system, it provides a most useful key to understand such
evolutions, as in the case of the Lorentzian spectral density we considered. It moreover provides a
mean to sensibly set DMRG parameters, such as the chain truncation length and the local dimension of
the chain oscillators: for super-Ohmic SDs, for example, the local dimension of the first TEDOPA chain
oscillators must be set large enough as to host all the excitations that will accumulate in proximity
of the system because of localization, while in the super-Ohmic case the local dimension of the first
chain oscillators can be kept much smaller, since there is no signature of localization. While an
analysis along the same lines for a specific spectral density was already presented [51], in this work
we systematically compared and contrasted the features of the chain and full dynamics for a larger
and very representative class of spectral densities. This allowed for example to shed light on the
mechanisms allowing oscillators chain obtained by the T-TEDOPA procedure, and therefore starting
from the vacuum state, to mimic an environment in the thermal state. For the Lorentzian case study
such mechanism emerged quite clearly, and provided an key for the interpretation of the chain
dynamics for SDs belonging to the Ohmic family.

We moreover observed that, while the asymptotic values of the TEDOPA coefficients determine
the maximum distance reachable within a given time by an excitation initially located at the beginning
of the TEDOPA chain, or light-cone, the features of a specific spectral density are typically determined
by a very small number of coefficients. Indeed, as it happens in the γ = 0.001 Lorentzian SD case,
the propagation of excitations in the light-cone can be hindered by an “effective” decoupling of the
first sites of the chain from the remaining one. The analysis of the Ohmic SD instances, on the other
side, showed that different (s-dependent) chain coefficients in the very fist part of the chain lead to
quite different occupation probability profiles of the sites within the light-cone.

One of the, so far unexploited, advantages of chain mapping is the possibility of acquiring
information on the state of the environment, something not meaningful when effective dynamics of
Lindblad or Bloch-Redfield type are employed. While the number of chain modes perturbed by the
interaction with the system is, in general, increasing with time, at any finite time it is in line of principle
possible to make measurements on the oscillators in the light-cone. This could allow to understand,
for example, which environmental modes are more involved in the dynamics and properly select
the environmental reaction coordinates [58]. Moreover, in the presence of a fast convergence of the
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chain coefficients toward the asymptotic values, one expects a very small number of such coordinates.
This represents a possible line of future research.

There are features of the TEDOPA chain evolution that remained quite obscure. For example,
the fringes that appear in the Ohmic scenario at finite temperature are not present in the Lorentzian
case. Considered that, as already observed, for γ/Ω � 1 a Lorentzian environment can be assimilated
to a damped harmonic oscillator undergoing a Lindblad-type dynamics, an therefore incoherently
dissipating into an memoryless environment, one could read the lack of fringes as a signature of
incoherent dynamics. A further analysis is therefore needed to better qualify the coherence dynamics
in structured environments, and will be the focus of future work.
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Abstract: Continuous-time quantum walk describes the propagation of a quantum particle (or an
excitation) evolving continuously in time on a graph. As such, it provides a natural framework
for modeling transport processes, e.g., in light-harvesting systems. In particular, the transport
properties strongly depend on the initial state and specific features of the graph under investigation.
In this paper, we address the role of graph topology, and investigate the transport properties of
graphs with different regularity, symmetry, and connectivity. We neglect disorder and decoherence,
and assume a single trap vertex that is accountable for the loss processes. In particular, for each
graph, we analytically determine the subspace of states having maximum transport efficiency. Our
results provide a set of benchmarks for environment-assisted quantum transport, and suggest
that connectivity is a poor indicator for transport efficiency. Indeed, we observe some specific
correlations between transport efficiency and connectivity for certain graphs, but, in general, they
are uncorrelated.

Keywords: transport on graph; quantum walk; transport efficiency; connectivity

1. Introduction

A continuous-time quantum walk (CTQW) is the quantum mechanical counterpart
of the continuous-time random walk. It describes the dynamics of a quantum particle
that continuously evolves in time in a discrete space, e.g., on the vertices of a graph,
obeying the Schrödinger equation [1,2]. The Hamiltonian describing a CTQW is usually
the Laplacian matrix L, which encodes the topology of the graph and it plays the role of the
kinetic energy of the walker. Experimentally [3], CTQWs can be implemented on nuclear-
magnetic-resonance quantum computers [4], optical lattices of ultracold Rydberg atoms [5],
quantum processors [6], and photonic chips [7]. The applications of CTQWs range from
implementing fast and efficient quantum algorithms [8,9], e.g., for spatial search [10] and
image segmentation [11], to implementing quantum logic gates by multi-particle CTQWs
in one-dimension (1D) [12], from universal computation [13] to modeling and simulating
quantum phenomena, e.g., state transfer [14–16], quantum transport, and for characterizing
the behavior of many-body systems [17,18].

Indeed, modeling quantum transport processes by means of CTQWs is a well-es-
tablished practice and an appropriate mathematical framework. Quantum transport has
been investigated with this approach on restricted geometries [19], semi-regular spider-
net graphs [20], Sierpinski fractals [21], and on large-scale sparse regular networks [22].
CTQWs have been used in order to model transport of nonclassical light in coupled
waveguides [23], coherent exciton transport on hierarchical systems [24], small-world
networks [25], Apollonian networks [26], and on an extended star graph [27], coherent
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transport on complex networks [28], and exciton transfer with trapping [29,30]. It is worth
noting that CTQWs do not necessarily perform better than their classical counterparts,
since the transport properties strongly depend on the graph, the initial state, and on the
propagation direction under investigation [31]. A measure of the efficiency of quantum and
classical transport on graphs by means of the density of states has been proposed in [32].

Biological systems are known to show quantum effects [33,34] and efficient transport
processes. Hence, the great interest in also studying CTWQs to model, e.g., exciton transport
on dendrimers [35], photosynthetic energy transfer [36], environment-assisted quantum
transport [37], dephasing-assisted transport on quantum networks and biomolecules [38],
excitation transfer in light-harvesting systems [39,40], and its limits [41]. There also stud-
ies concerning disorder-assisted quantum transport on hypercubes and binary trees [42],
because the latter can model a dendrimer-like structure for artificial light-harvesting sys-
tems [43,44].

Therefore, a full characterization of the transport properties on different structures is
desired. Formally speaking, the CTQW Hamiltonian modeling transport processes shows
similarities with the CTQW Hamiltonian adopted to study the spatial search. Both of them
consist of the sum, with proper coefficients, of the Laplacian matrix, which is accountable
for the motion of the walker on the graph, and the projector onto one or more specific
vertices. This projector is the trapping Hamiltonian in transport problems and the oracle
Hamiltonian in spatial search problems. The regularity, global symmetry, and connectivity
of the graph have proved to be unnecessary for fast spatial search [45–47] by invoking
certain graphs, e.g., complete bipartite graphs, strongly regular graphs, joined complete
graphs, and a simplex of complete graphs, as counterexamples of these false beliefs. In this
work, we address the transport by CTQW on the above mentioned graphs, which are
different in terms of regularity, symmetry, and connectivity, and we assess the transport
efficiency for initial states that are localized at a vertex and for an initial superposition of
two vertices. Our focus is on the role of connectivity, if any. Indeed, regularity and global
symmetry are not required for efficient transport, because removing some edges in the
complete graph and the hypercube, which are regular and highly symmetric graphs, has
been shown to improve the transport efficiency [48].

The paper is organized, as follows. In Section 2, we introduce CTQWs on a graph.
In Section 3, we review the dimensionality reduction method to analyze CTQW prob-
lems [48], according to which we obtain a reduced model of the Hamiltonian encoding
the problem that is considered and the reduced Hamiltonian still fully describes the dy-
namics that are relevant to the problem. In Section 4, we define the Hamiltonian modeling
the transport on graphs and the transport efficiency as a figure of merit to measure the
transport properties of the system. For each graph considered, we provide the reduced
Hamiltonian and compute the transport efficiency for different initial states. In Section 5,
we assess different measures of connectivity in order to characterize each graph considered.
Finally, we present our conclusions in Section 6. In Appendix A, we report and refine the
proof of the equality of the two subspaces that are required for computing the transport
efficiency. In Appendix B, we determine the basis states spanning such a subspace for each
graph considered.

2. Continuous-Time Quantum Walks

A graph is a pair G = (V, E), where V denotes the non-empty set of vertices and E
the set of edges. The order of the graph is the number of vertices, |V| = N. We define the
adjacency matrix

Ajk =

{
1 if (j, k) ∈ E,
0 otherwise,

(1)

which describes the connectivity of G, and D the diagonal degree matrix with Djj = deg(j),
the degree of vertex j. In terms of these matrices, we introduce the graph Laplacian
L = D − A, which is the matrix representation of the graph. According to this definition, L
is positive semidefinite and singular.
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The CTQW is the propagation of a quantum particle with kinetic energy when confined
to a discrete space, e.g., a graph. The CTQW on a graph G takes place on a N-dimensional
Hilbert space H = span({|v〉 | v ∈ V}), and the kinetic energy term (h̄ = 1) T = −∇2/2m
is replaced by T = γL, where γ ∈ R+ is the hopping amplitude of the walk. The state of
the walker obeys the Schrödinger equation

i
d
dt
|ψ(t)〉 = H|ψ(t)〉 , (2)

with Hamiltonian H = γL. Hence, a walker starting in the state |ψ0〉 ∈ H continuously
evolves in time, according to

|ψ(t)〉 = U(t)|ψ0〉 , (3)

with U(t) = exp[−iHt] the unitary time-evolution operator. The probability to find the
walker in a target vertex w is therefore |〈w| exp[−iHt]|ψ0〉|2.

3. Dimensionality Reduction Method

In most CTQW problems, the quantity of interest is the probability amplitude at
a certain vertex of the graph. The graph encoding the problem to solve often contains
symmetries that allow for us to simplify the problem, since the evolution of the system
actually occurs in a subspace of the complete N-dimensional Hilbert space H that is
spanned by the vertices of the graph. We can determine the minimal subspace that
contains the vertex of interest and it is invariant under the unitary time evolution via the
dimensionality reduction method for CTQW, as proposed by Novo et al. [48], which we
briefly review in this section for completeness. Such a subspace, also known as a Krylov
subspace [49], contains the vertex of interest and all powers of the Hamiltonian applied to
it. The relevance and the power of this method is that the graph encoding a given problem
can be mapped onto an equivalent weighted graph, whose order is lower than the order
of the original graph and whose vertices are the basis states of the invariant subspace.
The corresponding reduced Hamiltonian still fully describes the dynamics that are relevant
to the considered problem.

The unitary evolution (3) can be expressed as

|ψ(t)〉 =
∞

∑
k=0

(−it)k

k!
Hk|ψ0〉 , (4)

so |ψ(t)〉 is contained in the subspace I(H, |ψ0〉) = span({Hk|ψ0〉 | k ∈ N0}). This
subspace of H is invariant under the action of the Hamiltonian and, thus, also of the
unitary evolution. Naturally, dim I(H, |ψ0〉) ≤ dimH = N, but, if the Hamiltonian is
highly symmetrical, only a small number of powers of Hk|ψ0〉 are linearly independent, so
the dimension of I(H, |ψ0〉) can be much smaller than N.

Let P be the projector onto I(H, |ψ0〉), so we have that

U(t)|ψ0〉 = PU(t)P|ψ0〉 =
∞

∑
k=0

(−it)k

k!
(PHP)k|ψ0〉 = e−iPHPt|ψ0〉 = e−iHredt|ψ0〉 , (5)

where Hred = PHP is the reduced Hamiltonian, and we used the fact that P2 = P (projec-
tor), P|ψ0〉 = |ψ0〉, and PU(t)|ψ0〉 = U(t)|ψ0〉.

For any state |φ〉 ∈ H, which we consider to be the solution of the CTQW problem,
we have

〈φ|U(t)|ψ0〉 = 〈φ|PPU(t)P|ψ0〉 = 〈φ|Pe−iHredt|ψ0〉 = 〈φred|e−iHredt|ψ0〉 , (6)

39



Entropy 2021, 23, 85

where, the reduced state, |φred〉 = P|φ〉. Reasoning analogously with the projector P′ onto
the subspace I(H, |φ〉), we obtain

〈φ|U(t)|ψ0〉 = 〈φ|e−iH′
redt∣∣ψ0red

〉
, (7)

with H′
red = P′HP′ and

∣∣ψ0red
〉
= P′|ψ0〉.

An orthonormal basis of I(H, |φ〉), as denoted by {|e1〉, . . . , |em〉}, can be iteratively
obtained, as follows: the first basis state is |e1〉 = |φ〉, then the successive ones are obtained
by applying H on the current basis state and orthonormalizing with respect to the previous
basis states. The procedure stops when we find the minimum m such that H|em〉 ∈
span({|e1〉, . . . , |em〉}). The reduced Hamiltonian, i.e., H written in the basis of the invariant
subspace, has a tridiagonal form, so the original problem is mapped onto an equivalent
problem that is governed by a tight-binding Hamiltonian of a line with m sites.

4. Quantum Transport

The CTQW on a graph G(V, E) of N vertices provides a useful framework to model,
e.g., the dynamics of a particle or a quasi-particle (excitation) in a network. The quantum
walker moves under the Hamiltonian

H = γL = γ ∑
i∈V

deg(i)|i〉〈i| − γ ∑
(i,j)∈E

(|i〉〈j|+ |j〉〈i|) , (8)

which can be read as a tight-binding Hamiltonian with uniform nearest-neighbor couplings
γ and on-site energies γ deg(i). In the following, we set the units such that γ = h̄ = 1, so
hereafter time and energy will be dimensionless.

However, in general, an excitation does not stay forever in the system in which it
was created. In biological light-harvesting systems, the excitation gets absorbed at the
reaction center, where it is transformed into chemical energy. In such a scenario, the total
probability of finding the excitation within the network is not conserved. We assume a
graph in which the walker can only vanish at one vertex w ∈ V, known as trap vertex or trap.
The component of the walker’s wave function at the trap vertex is absorbed by the latter at
a trapping rate κ ∈ R+ [28]. Therefore, to phenomenologically model such loss processes
we have to change the Hamiltonian (8), so we introduce the trapping Hamiltonian

Htrap = −iκ|w〉〈w| , (9)

which is anti-hermitian. This leads to the desired non-unitary dynamics that are described
by the total Hamiltonian

H = L − iκ|w〉〈w| . (10)

This Hamiltonian has the same structure as the Hamiltonian for the spatial search
of a marked vertex w [10], i.e., it is the sum of the Laplacian matrix and the projector
onto |w〉, with proper coefficients. For spatial search, the projector onto |w〉 plays the
role of the oracle Hamiltonian and the search Hamiltonian is hermitian. For quantum
transport, the projector onto |w〉, because of the pure imaginary constant, plays the role of
the trapping Hamiltonian (9) and the transport Hamiltonian (10) is not hermitian.

The transport efficiency is a relevant measure for a quantum transport process [37],
which can be defined as the integrated probability of trapping at the vertex w

η = 2κ
∫ +∞

0
〈w|ρ(t)|w〉 dt = 1 − Tr

[
lim

t→+∞
ρ(t)
]

, (11)

where 2κ〈w|ρ(t)|w〉dt is the probability that the walker is successfully absorbed at the
trap within the time interval [t, t + dt] and ρ(t) = |ψ(t)〉〈ψ(t)| is the density matrix of the
walker. The second equality of Equation (11) is due to the following reason. The surviving
total probability of finding the walker within the graph at time t is 〈ψ(t)|ψ(t)〉 = Tr[ρ(t)]
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and it is ≤1 because of the loss processes at the trap vertex. Because the transport efficiency
is the integrated probability of trapping in the limit of infinite time, we can also assess the
transport efficiency as the complement to 1 of the probability of surviving within the graph,
which is the complementary event.

In this scenario, there is no disorder in the couplings or site energies of the Hamiltonian
or decoherence during the transport. In this ideal regime computing the transport efficiency
amounts to finding the overlap of the initial state with the subspace Λ(H, |w〉) spanned
by the eigenstates of the Hamiltonian |λk〉 having a non-zero overlap with the trap |w〉,
as proved by Caruso et al. [40]. Indeed, the dynamics are such that the component of the
initial state within the space Λ is absorbed by the trap, whereas the component outside
this subspace, i.e., in Λ̄ = H \ Λ, remains in the graph (see Figure 1). Let us expand the
initial state on the basis of the eigenstates of the Hamiltonian

|ψ0〉 =
m

∑
k=1

〈λk|ψ0〉|λk〉+
N

∑
k=m+1

〈λk|ψ0〉|λk〉 = |ψΛ〉+ |ψΛ̄〉 , (12)

where we assume the eigenstates form an orthonormal basis (in the case of degenerate
energy levels, we consider the eigenstates after orthonormalization) and are ordered in
such a way that Λ = span({|λk〉 | 1 ≤ k ≤ m}) and Λ̄ = span({|λk〉 | m + 1 ≤ k ≤ N}).
The components in Λ̄ are not affected by the open-dynamics that act at the trap vertex
w. The remaining components evolve in the subspace Λ that is defined by having a finite
overlap with the trap and are therefore absorbed at the trap. In the limit of t → +∞
the net result is the following: the total survival probability of finding the walker in
the graph is 〈ψΛ̄|ψΛ̄〉 ≤ 1, i.e., it is due to the part of the initial state expansion in Λ̄;
instead, the part of the initial state expansion in Λ is fully absorbed at the trap, and so
η = 〈ψΛ|ψΛ〉 = ∑m

k=1 |〈λk|ψ0〉|2. A further consequence of this is that, if the system is
initially prepared in a state |ψ0〉 ∈ Λ̄, then the walker will stay forever in the graph without
reaching the trap (η = 0); if the system is initially prepared in a state |ψ0〉 ∈ Λ, then the
walker will be completely absorbed by the trap (η = 1).

H

〈ψ0|ψ0〉 = 1

Subspace Λ

|ψΛ〉
|w〉

Subspace Λ̄

|ψΛ̄〉 t → +∞

H

〈ψ(∞)|ψ(∞)〉 ≤ 1

Subspace Λ

0

|w〉

Subspace Λ̄

|ψΛ̄(∞)〉

Figure 1. The quantum walker is in the initial state |ψ0〉 (12) and it has components in Λ(H, |w〉), the subspace spanned by
the eigenstates of the Hamiltonian having a non-zero overlap with the trap |w〉, and in Λ̄ = H \ Λ, the complement of Λ in
the complete Hilbert space H. In the limit of t → +∞, the dynamics are such that the component having non-zero overlap
with the trap is fully absorbed by the trap, i.e., |ψΛ̄(∞)〉 = 0, whereas the component in Λ̄ survives. The dynamics are not
unitary and the total survival probability of finding the walker within the graph is not conserved, i.e., 〈ψ(∞)|ψ(∞)〉 ≤ 1.

If, on the one hand, this analytical technique allows for one to compute the trans-
port efficiency without solving dynamical equations, on the other hand diagonalizing
the Hamiltonian might still be a hard task. The dimensionality reduction method in
Section 3 allows for one to avoid diagonalizing the Hamiltonian, since it can be proved that
Λ(H, |w〉) = I(H, |w〉) (see Appendix A). Hence, we compute the transport efficiency as

η =
m

∑
k=1

|〈ek|ψ0〉|2 , (13)
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i.e., as the overlap of the initial state |ψ0〉 with the subspace I(H, |w〉) = span({|ek〉 | 1 ≤
k ≤ m}).

We consider as the initial state either a state localized at a vertex, |ψ0〉 = |v〉, or a
superposition of two vertices, |ψ0〉 = (|v1〉+ eiθ |v2〉)/

√
2. The localized initial state is a

paradigmatic choice to take into account the fact that an excitation is usually created locally
in a system. We also considered a superposition in order to investigate possible effects of
coherence. The transport efficiency for the superposition of two vertices

ηs =
1
2

m

∑
k=1

∣∣∣〈ek|v1〉+ eiθ〈ek|v2〉
∣∣∣2 (14)

can be easily assessed, in some cases, when knowing the transport efficiency η1 and η2 for
an initial state localized at v1 and v2, respectively. If |v1〉 and |v2〉 have the same overlap
with the basis states, i.e., 〈ek|v1〉 = 〈ek|v2〉 for 1 ≤ k ≤ m, then η1 = η2 = η, and we have

ηs(θ) =
1
2

∣∣∣1 + eiθ
∣∣∣2η = (1 + cos θ)η , (15)

so 0 ≤ ηs(θ) ≤ 2η. Instead, if |v1〉 and |v2〉 have nonzero overlap with different basis states,
i.e., 〈ek|v1〉 �= 0 for 1 ≤ k ≤ m1 and 〈ek|v2〉 �= 0 for m1 + 1 ≤ k ≤ m2, with m2 ≤ m, then
we have

ηs =
1
2
(η1 + η2) , (16)

and it is does not depend on θ.
In the following sections, we study quantum transport on different graphs that are

relevant in terms of symmetry, regularity, and connectivity. For each graph, we determine
the basis of the subspace in which the system evolves, the reduced Hamiltonian (10),
and the transport efficiency (13) for an initial state localized at a vertex or a superposition
of two vertices that is not covered by Equation (15). To analytically deal with a graph, we
will group together the vertices that identically evolve by symmetry [45–47,50]. We mean
that such vertices behave identically under the action of the Hamiltonian, in the sense
that they are equivalent upon the relabeling of vertices, as well as, e.g., all of the vertices
in a complete graph are equivalent. This does not mean that the time evolution |v1(t)〉
of an initial state localized at a vertex v1 is exactly equal to the time evolution |v2(t)〉 of
another initial state localized at v2 �= v1, but it means that these two time evolutions are
the same upon exchanging the labels of the two vertices. Note that the Hamiltonian (10)
acts on a generic vertex as the Laplacian, except for the trap vertex, which, thus, forms a
subset of one element, itself. The equal superpositions of the vertices in each subset form a
orthonormal basis for a subspace of the Hilbert space and the Hamiltonian written in such a
basis still fully describes the evolution of the system. However, we point out that such basis
spans a subspace which, in general, is not the subspace I(H, |w〉) we need to compute the
transport efficiency. Nevertheless, this grouping of vertices provides a useful framework
to analytically deal with the system and, for this reason, we will introduce it. Clearly,
identically evolving vertices have the same transport properties. However, vertices that
are not equivalent for the Hamiltonian can provide the same transport efficiency. For this
reason, in the following, we will stress when this is the case.

4.1. Complete Bipartite Graph

The complete bipartite graph (CBG) G(V1, V2, E) is a highly symmetrical structure,
which, in general, is not regular. The CBG has two sets of vertices, V1 and V2, such that each
vertex of V1 is only connected to all of the vertices of V2 and vice versa. The set of CBGs is
usually denoted as KN1,N2 , where the orders of the two partitions N1 = |V1| and N2 = |V2|
are such that N1 + N2 = N, with N the total number of vertices. The CBG is non-regular as
long as N1 �= N2 (see K4,3 in Figure 2), and the star graph is a particular case of CBG with
N1 = N − 1 and N2 = 1. Without a loss of generality, we assume the trap vertex w ∈ V1.
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b

b

b

w

V1

a

a

a

V2

Figure 2. Complete bipartite graph K4,3. The trap vertex w ∈ V1 is colored red. Identically evolving
vertices have the same transport properties and are identically colored and labeled.

The system evolves in a 3-dimensional subspace (see Appendix B.1) that is spanned
by the orthonormal basis states

|e1〉 = |w〉 , |e2〉 = 1√
N2

∑
i∈V2

|i〉 , |e3〉 = 1√
N1 − 1 ∑

i∈V1,
i �=w

|i〉 . (17)

This is also the basis that we would obtain by grouping together the identically
evolving vertices in the subsets Va = V2 and Vb = V1 \ {w} (see Figure 2) [45]. In this
subspace, the reduced Hamiltonian is

H =

⎛
⎝(1 − α)N − iκ −√(1 − α)N 0
−√(1 − α)N αN −√(1 − α)(αN − 1)N

0 −√(1 − α)(αN − 1)N (1 − α)N

⎞
⎠ , (18)

where α = N1/N ∈ Q+, N2 = (1 − α)N, since N1 + N2 = N. Notice that, for G to be a
CBG, α must satisfy the condition 1/N ≤ α ≤ 1 − 1/N.

If the initial state is localized at a vertex v �= w, then the transport efficiency is

η =

⎧⎪⎪⎨
⎪⎪⎩

1
αN − 1

if v ∈ V1 ,

1
(1 − α)N

if v ∈ V2 ,
(19)

and we observe that

η1 < η2 ⇔ 2α > 1 +
1
N

, (20)

where η1(2) := η(v ∈ V1(2)). Instead, if the initial state is a superposition of two vertices,
each of which belongs to a different partition, i.e., v1 ∈ V1 \ {w} and v2 ∈ V2, then the
transport efficiency

ηs =
N − 1

2N(αN − 1)(1 − α)
(21)

follows from Equation (16), so clearly η2(1) ≤ ηs ≤ η1(2), where the alternative depends on
the condition (20). The transport efficiency depends on the parameters of the graph, N and
α, as well as on the initial state (see Figure 3). Whether we consider an initial localized state
or a superposition of two localized states, the asymptotic behavior is η = O(1/N) if N1
and N2 are both sufficiently large.
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Figure 3. Transport efficiency η as a function of the order N of the complete bipartite graph for different values of α = N1/N,
with N1 = |V1|, and different initial states. Transport efficiencies η1(2) (19) when the initial state is localized at a vertex in
V1(2), and ηs (21) when the initial state is the superposition of two vertices, one in V1 and the other in V2. The trap vertex
w ∈ V1.

4.2. Strongly Regular Graph

A strongly regular graph (SRG) with parameters (N, k, λ, μ) is a graph with N vertices,
not complete or edgeless, where each vertex is adjacent to k vertices; for each pair of
adjacent vertices, there are λ vertices adjacent to both, and for each pair of nonadjacent
vertices there are μ vertices that are adjacent to both [51,52]. If we consider the red vertex w
in Figure 4, this means that there are k yellow adjacent vertices, and N − k − 1 blue vertices,
all at distance 2. SRGs have a local symmetry, but most have no global symmetry [46].
The four parameters (N, k, λ, μ) are not independent and, for some parameters, there are
no SRGs. One necessary, but not sufficient, condition is that the parameters satisfy

k(k − λ − 1) = (N − k − 1)μ , (22)

which can be proved by counting, in two wayy, the vertices at distance 0, 1, and 2 from a
given vertex. Let us focus on the red vertex shown in Figure 4 and count the pairs of yellow
and blue vertices that are adjacent to it. On the left-hand side of Equation (22), the red
vertex has k neighbors, the yellow ones. Each yellow vertex has k neighbors, one of which
is the red one and λ of which are other yellow vertices, so it is adjacent to k − λ − 1 blue
vertices. Hence, the number of pairs of adjacent yellow and blue vertices is k(k − λ − 1).
On the right-hand side of Equation (22), we consider the blue vertices, which, by definition,
are not adjacent to the red vertex. There are N − k − 1 blue vertices, since there are N
total vertices in the graph, one of which is red and k of which are yellow. Each of the blue
vertices is adjacent to μ yellow vertices, so there are (N − k − 1)μ pairs of yellow and blue
vertices. The condition (22) comes from equating these expressions [46].

The system evolves in a 3-dimensional subspace (see Appendix B.2) spanned by the
orthonormal basis states

|e1〉 = |w〉 , |e2〉 = 1√
k

∑
(i,w)∈E

|i〉 , |e3〉 = 1√
N − k − 1 ∑

(i,w)/∈E
|i〉 . (23)

44



Entropy 2021, 23, 85

This is also the basis that we would obtain by grouping together the identically
evolving vertices in the subsets Va = {i | (i, w) ∈ E} and Vb = {i | (i, w) /∈ E} (see Figure
4) [46]. In this subspace, the reduced Hamiltonian is

H =

⎛
⎜⎝k − iκ −√

k 0
−√

k k − λ −√μ(k − λ − 1)
0 −√μ(k − λ − 1) μ

⎞
⎟⎠ . (24)

If the initial state is localized at a vertex v �= w, then the transport efficiency is

η =

⎧⎪⎨
⎪⎩

1
k

if (v, w) ∈ E ,

1
N − k − 1

if (v, w) /∈ E .
(25)

Instead, if the initial state is a superposition of two vertices one of which is adjacent to
w and the other is not, i.e., (v1, w) ∈ E and (v2, w) /∈ E, then the transport efficiency

ηs =
N − 1

2k(N − k − 1)
(26)

follows from Equation (16).

w
a

b

b

a a

b

b

a

(a)

a

b

b b

b

w

a

b b

a

(b)

Figure 4. Two strongly regular graphs: (a) Paley graph with parameters (9, 4, 1, 2) (parametrization
(27) for μ = 2); (b) Petersen graph with parameters (10, 3, 0, 1). The trap vertex w is colored red.
Identically evolving vertices have same transport properties and are identically colored and labeled.

A family of SRGs is the Paley graphs (see Figure 4a), which are parametrized by

(N, k, λ, μ) = (4μ + 1, 2μ, μ − 1, μ) (27)

where N must be a prime power (i.e., a prime or integer power of a prime [53]) such that
N ≡ 1 (mod 4). According to the parametrization (27), whether we consider an initial
localized state or a superposition of two localized states, the transport efficiency on a Paley
graph is η = 1/2μ (see Equations (25) and (26)), regardless of the fact that the vertices
considered are adjacent or not to w.

4.3. Joined Complete Graphs

The transport efficiency on a complete graph, when the initial state is localized at
a vertex v �= w, is η = 1/(N − 1) [40,48]. Here, we consider two complete graphs of
N/2 vertices that are joined by a single edge (see Figure 5). The two vertices, b1 and b2,
forming the “bridge” have degree N/2, whereas all of the others have degree N/2 − 1. We
denote each complete graph by K(k)

N/2 = (Vk, Ek), with k = 1, 2, where |V1| = |V2| = N/2.
Therefore, the resulting joined graph is such that V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {(b1, b2)}.
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b1
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K(1)
6 = (V1, E1)

c

cc

b2

c c

K(2)
6 = (V2, E2)

Figure 5. A graph with 12 vertices constructed by joining two complete graphs of 6 vertices by a
single edge (b1, b2), the bridge. The trap vertex w ∈ V1 is colored red. Identically evolving vertices
have same transport properties and are identically colored and labeled. The vertices b1 and b2 show
the same transport efficiency, even if they behave differently under the action of the Hamiltonian.

Grouping together the identically evolving vertices, we define the subsets Va =
V1 \ {w, b1} and Vc = V2 \ {b2} (see Figure 5). The system evolves in a 4-dimensional
subspace (see Appendix B.3) that is spanned by the orthonormal basis states

|e1〉 = |w〉 ,

|e2〉 = 1√
N/2 − 1

(
∑

i∈Va

|i〉+ |b1〉
)

,

|e3〉 = 1√
(N − 3)(N/2 − 1)

[
∑

i∈Va

|i〉 − (N/2 − 2)|b1〉+ (N/2 − 1)|b2〉
]

,

|e4〉 = 1√
(N − 3)[N(N/2 − 2) + 1]

[
∑

i∈Va

|i〉 − (N/2 − 2)(|b1〉+ |b2〉)− (N − 3) ∑
i∈Vc

|i〉
]

. (28)

We point out that this basis spans a subspace of dimension 4, thus smaller than the 5-
dimensional subspace spanned by the basis that is defined by grouping together the
identically evolving vertices [47]. In the subspace that is spanned by the basis states
{|e1〉, . . . , |e4〉}, the reduced Hamiltonian is

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N/2 − 1 − iκ −√
N/2 − 1 0 0

−√
N/2 − 1 N

N−2 −
√

N−3
N/2−1 0

0 −
√

N−3
N/2−1

1
N−3

(
N2

2 − 7 + 1
N/2−1

) √
(N/2−1)[N(N/2−2)+1]

N−3

0 0
√

(N/2−1)[N(N/2−2)+1]
N−3

N/2−1
N−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

If the initial state is localized at a vertex v �= w, then the transport efficiency is

η =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(N − 1)
N(N − 4) + 2

if v ∈ Va ,

1
2
+

N − 3
N(N − 4) + 2

if v ∈ {b1, b2} ,

2(N − 3)
N(N − 4) + 2

if v ∈ Vc .

(30)
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Assuming that each complete graph has N/2 ≥ 3 vertices, then ηc < ηa ≤ ηb, where the
subscript refers to an initial state localized at vertex in Vc, in Va, and in the bridge {b1, b2},
respectively. Instead, if the initial state is a superposition of two vertices, then

ηs(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(N − 2)[N + 4(1 + cos θ)]

4[N(N − 4) + 2]
=

1
4
+ O

(
1
N

)
if v1 ∈ Va ∧ v2 ∈ {b1, b2} ,

2(N − 2 − cos θ)

N(N − 4) + 2
=

2
N

+ O
(

1
N2

)
if v1 ∈ Va ∧ v2 ∈ Vc ,

(N − 2)[N − (N − 4) cos θ]− 4
2[N(N − 4) + 2]

=
1 − cos θ

2
+ O

(
1
N

)
if v1 = b1 ∧ v2 = b2 ,

N(N + 2) + 4(N − 4) cos θ − 16
4[N(N − 4) + 2]

=
1
4
+ O

(
1
N

)
if v1 ∈ {b1, b2} ∧ v2 ∈ Vc .

(31)

We observe that, for the superposition of v1 ∈ Va and v2 ∈ Vc, the transport efficiency
ηs(π) is equal to η for an initial state that is localized at v ∈ Va. For the superposition of b1
and b2, i.e., of the vertices of the bridge, we have ηs(π) = 1. This means that such a state
belongs to I(H, |w〉), indeed

1√
2
(|b1〉 − |b2〉) = 1√

N − 2
(|e2〉 −

√
N − 3|e3〉) . (32)

For an initial state localized at b1 or b2, we have the same transport efficiency ηb (30).
However, the two vertices b1 and b2 have different overlap with the basis states |ek〉, so the
transport efficiency (31) for the superposition of them is not given by Equation (15).

4.4. Simplex of Complete Graphs

We call M-simplex of complete graphs what is formally known as the first-order
truncated M-simplex lattice. The truncated M-simplex lattice is a generalization of the
truncated tetrahedron lattice [54] and it is defined recursively. The graph of the zeroth
order truncated M-simplex lattice is a complete graph of M + 1 vertices. The graph for
the (n + 1)th order lattice is obtained by replacing each of the vertices of the nth order
graph with a complete graph of M vertices. The truncated simplex lattice has been studied
in various problems, e.g., in statistical models [55], self-avoiding random walks [56],
and spatial search [47,57]. The M-simplex is, therefore, obtained by replacing each of the
M + 1 vertices of a complete graph with a complete graph of M vertices (see Figure 6).
Each of the new M vertices is connected to one of the edges coming to the original vertex.
The graph is regular, vertex transitive, and there are N = M(M + 1) total vertices.
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Figure 6. 5-simplex of complete graphs. The trap vertex w is colored red. Identically evolving
vertices have same transport properties and are identically colored and labeled. The vertices in
Vc and Vd show the same transport efficiency, even if they behave differently under the action of
the Hamiltonian.
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Grouping together the identically evolving vertices, we define the subsets Va, Vc,
Vd, Ve, and Vf (see Figure 6), having cardinality |Va| = |Vc| = |Vd| = |Ve| = M − 1,
and |Vf | = (M − 1)(M − 2). The yellow vertices a are adjacent to w and belong to the same
complete graph. The blue vertex b is adjacent to w, but it belongs to a different complete
graph. The orange vertices c are adjacent to b and belong to the same complete graph.
The green vertices d, even if, at distance 2 from w, like the vertices c, are adjacent to a,
and so they form a different subset. The magenta vertices e are adjacent to c and belong
to complete graphs other than the one the vertices c belong to. The cyan vertices f are
adjacent to e and d. Independent of M, the system evolves in a 5-dimensional subspace
(see Appendix B.4) that spanned by the orthonormal basis states

|e1〉 =|w〉 ,

|e2〉 = 1√
M

(
∑

i∈Va

|i〉+ |b〉
)

,

|e3〉 =
√

M√
(M − 1)(M2 − 2M + 4)

{
M − 2

M

[
∑

i∈Va

|i〉 − (M − 1)|b〉
]
+ ∑

i∈Vc∪Vd

|i〉
}

,

|e4〉 =
√

M2 − 2M + 4√
(M − 1)(M3 + 2M2 − 8M + 16)

⎧⎨
⎩ 2(M − 2)

M2 − 2M + 4

[
∑

i∈Va

|i〉 − (M − 1)|b〉
]

− (M − 2)2

M2 − 2M + 4 ∑
i∈Vc∪Vd

|i〉 − 2 ∑
i∈Ve

|i〉 − ∑
i∈Vf

|i〉
⎫⎬
⎭ ,

|e5〉 = 1
M
√
(M − 1)(M − 2)(M3 + 2M2 − 8M + 16)

⎧⎨
⎩− 4(M − 2)

[
∑

i∈Va

|i〉 − (M − 1)|b〉
]

+2(M − 2)2 ∑
i∈Vc∪Vd

|i〉 − M2(M − 2) ∑
i∈Ve

|i〉+ 2(M2 − 2M + 4) ∑
i∈Vf

|i〉
⎫⎬
⎭ . (33)

Note that, when the basis states include the vertices in Vc and Vd, they always involve
the equal superposition of all the vertices in Vc ∪ Vd. Thus, these vertices are equivalent for
quantum transport, even if they behave differently under the action of the Hamiltonian.
We point out that this basis spans a subspace of dimension 5, thus being smaller than
the 7-dimensional subspace spanned by the basis that is defined by grouping together
the identically evolving vertices [47,50]. In the subspace that is spanned by the basis
states {|e1〉, . . . , |e5〉}, the reduced Hamiltonian is a symmetric tridiagonal matrix with
cumbersome elements, so we store the main diagonal and the superdiagonal, as follows

⎛
⎜⎜⎜⎜⎜⎜⎝

H1,1 H1,2
...

...
Hn,n Hn,n+1

...
...

H5,5 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M − iκ −√
M

3M−2

M
−
√

(M−1)(M2−2M+4)

M

M4−2M3+4M2−4M+8

M(M2−2M+4)

√
M(M3+2M2−8M+16)

M2−2M+4

M(M4−2M3+20M2−40M+64)

(M3+2M2−8M+16)(M2−2M+4)

M(M+2)
√

(M−2)(M2−2M+4)

M3+2M2−8M+16

(M+2)(M3−4M+8)

M3+2M2−8M+16
∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

where the ∗ denotes the missing element, because its index exceeds the size of the matrix.
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If the initial state is localized at a vertex v �= w, then the transport efficiency is

η =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2 − 2
M2(M − 1)

if v ∈ Va ,

M2 − 2M + 2
M2 if v = b ,

2
M2 if v ∈ Vc ∪ Vd ,

1
M − 1

if v ∈ Ve ,

M2 − 2M + 4
M2(M − 1)(M − 2)

if v ∈ Vf .

(35)

Note that, for an initial state localized at b, which is the only vertex adjacent to w which
does not belong to the complete graph of w (see Figure 6), we have ηb ≈ 1 for large M.
Instead, if the initial state is a superposition of two vertices, then

ηs(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(M2 − 2M + 4)− 4 + 4(M − 1) cos θ

2M2(M − 1)
=

1
2
+ O

(
1
M

)
if v1 ∈ Va ∧ v2 = b ,

M2 + 2M − 4 + 2(M − 2) cos θ

2M2(M − 1)
=

1
2M

+ O
(

1
M2

)
if v1 ∈ Va ∧ v2 ∈ Vc ∪ Vd ,

1
M

+
1

M2 if v1 ∈ Va ∧ v2 ∈ Ve ,

M(M2 − M − 4) + 8 − 4(M − 2) cos θ

2M2(M − 1)(M − 2)
=

1
2M

+ O
(

1
M2

)
if v1 ∈ Va ∧ v2 ∈ Vf ,

M2 − 2M + 4 − 2(M − 2) cos θ

2M2 =
1
2
+ O

(
1
M

)
if v1 = b ∧ v2 ∈ Vc ∪ Vd ,

1
M2 − 1

M
+

M
2(M − 1)

=
1
2
+ O

(
1
M

)
if v1 = b ∧ v2 ∈ Ve ,

M(M3 − 5M2 + 11M − 12) + 8
2M2(M − 1)(M − 2)

+
2

M2 cos θ =
1
2
+ O

(
1
M

)
if v1 = b ∧ v2 ∈ Vf ,

1
M2 +

1
2(M − 1)

=
1

2M
+ O

(
1

M2

)
if v1 ∈ Vc ∪ Vd ∧ v2 ∈ Ve ,

3M2 − 8M + 8 + 2(M − 2)2 cos θ

2M2(M − 1)(M − 2)
=

3/2 + cos θ

M2 + O
(

1
M3

)
if v1 ∈ Vc ∪ Vd ∧ v2 ∈ Vf ,

1
M2 +

1
M

− 1
M − 1

+
1

2(M − 2)
=

1
2M

+ O
(

1
M2

)
if v1 ∈ Ve ∧ v2 ∈ Vf .

(36)

Whenever the superposition of two vertices involves the vertex b, we have ηs ≈ 1/2
for large M and, in particular, ηs(π) = 1/2 for v1 = b ∧ v2 ∈ Vc ∪ Vd, independent of M
(see Figure 7). Whenever the superposition involves a vertex in Ve, the transport efficiency
does not depend on θ. Moreover, we observe that the equal superposition of the vertices in
Ve belongs to I(H, |w〉, since

1√
M − 1 ∑

i∈Ve

|i〉 = − 1√
M3 + 2M2 − 8M + 16

(
2
√

M2 − 2M + 4|e4〉+ M
√

M − 2|e5〉
)

, (37)

and so this state provides η = 1.
In the M-simplex of complete graphs, the total number vertices is N = M(M + 1),

so the asymptotic behavior of the transport efficiency must be understood, according to
M = O(

√
N).
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Figure 7. Transport efficiency ηs(θ) (36) as a function of M for different initial states |ψ0〉 = (|v1〉+
eiθ |v2〉)/

√
2. M is the number of vertices in each of the M + 1 complete graphs forming the M-

simplex. The initial states are the possible equal superposition of two vertices, one of which is b.

5. Measures of Connectivity

The vertex connectivity v(G) and edge connectivity e(g) of a graph G are, respectively,
the number of vertices or edges that we must remove to make G disconnected [58]. These
are the two most common measures of graph connectivity, and

v(G) ≤ e(G) ≤ δ(G) , (38)

i.e., both v(G) and e(G) are upper bounded by the minimum degree of the graph δ(G) [59].
Another measure follows from the Laplace spectrum of the graph. The second-

smallest eigenvalue a(G) of the Laplacian of a graph G with N ≥ 2 vertices is the algebraic
connectivity [60,61] and, to a certain extent, it is a good parameter to measure how well a
graph is connected. In spectral graph theory it is well known, e.g., that a graph is connected
if and only if its algebraic connectivity is different from zero. Indeed, the multiplicity of
the Laplace eigenvalue zero of an undirected graph G is equal to the number of connected
components of G [52]. For a complete graph, we know that v(KN) = e(KN) = N − 1
and a(KN) = N. Instead, for a noncomplete graph G, we have a(G) ≤ v(G), and so
a(G) ≤ e(G) [58].

The results of the different measures of connectivity for each graph are shown in
Table 1. Vertex, edge, and algebraic connectivities for the complete and the complete
bipartite graphs are from [58]. The measures of connectivity for the M-simplex of complete
graphs are from [47].

The vertex connectivity of a SRG is v(G) = k [52] and the edge connectivity is e(G) = k.
The latter follows from Equation (38), since δ(G) = k, or using the fact that, if a graph has
diameter 2, as the SRG has [62], then e(G) = δ(G) [59]. We need the Laplace spectrum in
order to assess the algebraic connectivity. The eigenvalues of the adjacency matrix A are

1
2

[
λ − μ ±

√
(λ − μ)2 + 4(k − μ)

]
, k , (39)

and the scaling of them with N depends on the type of SRG. Indeed, SRGs can be classified
into two types [51,59,62]. Type I graphs, for which (N − 1)(μ − λ) = 2k. This implies
that λ = μ − 1, k = 2μ, and N = 4μ + 1. They exist if and only if N is the sum of two
squares. Examples include the Paley graphs (see parametrization (27)). Type II graphs,
for which (μ − λ)2 + 4(k − μ) is a perfect square d2, where d divides (N − 1)(μ − λ)− 2k,
and the quotient is congruent to N − 1 (mod 2). Type I graphs are also type II graphs if and
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only if N is a square [51]. The Paley graph (9, 4, 1, 2) is an example of this (see Figure 4a).
Not all of the SRGs of type II are known, only certain parameter families, e.g., the Latin
square graphs [51], and certain graphs, e.g., the Petersen graph (see Figure 4b), are. Hence,
we consider the algebraic connectivity only for the SRGs of type I. According to the
parametrization of the SRG of type I and to the fact that D = kI, the eigenvalues of
L = D − A are

0,
1
2
(N ∓

√
N) , (40)

from which the algebraic connectivity is a(G) = (N −√
N)/2, since μ = (N − 1)/4 and

k = (N − 1)/2.

Table 1. The minimum degrees and vertex, edge, and algebraic connectivities of the graphs with N
vertices that are considered in this work. For these graphs, the vertex and the edge connectivities are
equal. Note that, in the M-simplex of complete graphs, N = M(M + 1).

Graph G δ(G) v(G) = e(G) a(G)

Complete KN N − 1 N − 1 N
Complete bipartite KN1,N2 min(N1, N2) min(N1, N2) min(N1, N2)
Strongly regular (Type I) (N − 1)/2 (N − 1)/2 (N −√

N)/2
Joined complete KN/2 N/2 − 1 1 O(1/N)

M-simplex M = O(
√

N) M = O(
√

N) 1

For the joined complete graphs we have v(G) = e(G) = 1, because of the bridge (see
Figure 5) [63]. The Laplace spectrum is

0,
N
2

,
1
4

[
N + 4 ±

√
N(N + 8)− 16

]
, (41)

from which the algebraic connectivity is a(G) = [N + 4 −√N(N + 8)− 16]/4.
Subsequently, we assess whether connectivity of the graph may provide or not some

bounds on the transport efficiency for an initial state localized at a vertex. First, we focus on
the regular graphs considered in this work, for which δ(G) = v(G) = e(G), and this is equal
to the degree. For a complete graph, we have 1/a(G) ≤ η = 1/(N − 1), and 1/(N − 1) is
also the reciprocal of the degree. For a SRG of type I, we have η = 2/(N − 1) ≤ 1/a(G)
for μ ≥ 1, and 2/(N − 1) is also the reciprocal of the degree. Hence, from these two
examples, we see that the reciprocal of the algebraic connectivity does not provide a
common bound on η. For the M-simplex of complete graphs, we observe that a(G) = 1,
from whose reciprocal we obtain the obvious upper bound η ≤ 1. Note also that, in general,
the transport efficiency for an initial state that is localized at vertex of a regular graph is not
the reciprocal of the degree, as shown, e.g., by the transport efficiency on a general SRG
(25) (degree k) and on the M-simplex (35) (degree M).

Now, we focus on the non-regular graphs. For the joined complete graphs, the
reciprocal of the vertex and edge connectivity provides the obvious bound η ≤ 1, whereas
neither the reciprocal of δ(G) nor that of a(G) provide a unique bound on η. Indeed, they
are an upper or lower bound on η, depending on the initial state and the order of the
graph (see Equation (30)). For the CBG, the vertex, edge, and algebraic connectivity is
min(N1, N2) and its reciprocal is an upper or lower bound on the transport efficiency (19),
depending on the geometry of the graph. Indeed, we have η1 ≤ η2 ≤ 1/ min(N1, N2) for
α > 1/2, i.e., N1 > N2, and 1/ min(N1, N2) = η2 ≤ η1 for α ≤ 1/2, i.e., N1 ≤ N2.

In conclusion, just by focusing on the transport efficiency for an initial state localized
at a vertex, we observe that the connectivity is a poor indicator for the transport efficiency.
First, because it does not provide any general lower or upper bound for estimating the
transport efficiency, and transport efficiency and connectivity are generally uncorrelated
(see Figure 8). Second, because transport efficiency strongly depends on the initial state,
or, rather, on the overlap of this with the subspace spanned by the eigenstates of the
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Hamiltonian having non-zero overlap with the trap vertex, as shown in Section 4. Note
that, analogously, we have found no general correlation between the transport efficiency
and normalized algebraic connectivity, which is the second-smallest eigenvalue of the
normalized Laplacian matrix L of elements Ljk = Ljk/

√
deg(j)deg(k) [64].

Figure 8. Scatter plot of the correlation between the transport efficiency η and (a) the edge or vertex connectivity, e(G) and
v(G) respectively, or (b) the algebraic connectivity a(G) (see also Table 1). Same color denotes results for the same graph:
complete graph (CG, N = 6, 8, 10, 12), complete bipartite graph (CBG, N = 12, 18, 24, 30, α = 2/3), strongly regular graphs
of type I (SRG, N = 13, 17, 25, 29), joined complete graphs (JCG, N = 12, 18, 24, 30), and M-simplex of complete graphs
(SCG, M = 3, 4, 5, 6). For a given a graph, different markers denote initial states localized at different vertices v. Note that,
for the SRG of type I η = 1/2μ = 2/(N − 1), independent of the fact that (v, w) ∈ E or (v, w) /∈ E. We observe some specific
correlations between the transport efficiency and connectivity for a given graph, but, globally, among different graphs,
transport efficiency and connectivity are uncorrelated.

6. Conclusions

In this work, we have addressed the coherent dynamics of transport processes on
graphs in the framework of continuous-time quantum walks. We have considered graphs
having different properties in terms of regularity, symmetry, and connectivity, and we have
modeled the loss processes via the absorbing of the wavefunction component at a single
trap vertex w. We have adopted the transport efficiency as a figure of merit in order to assess
the transport properties of the system. In the ideal regime, as the one we have adopted,
where there is no disorder or decoherence processes during the transport, the transport
efficiency η can be computed as the overlap of the initial state with the subspace Λ(H, |w〉)
spanned by the eigenstates of the Hamiltonian having non-zero overlap with the trap vertex.
According to the dimensionality reduction method, we have determined the orthonormal
basis of such subspace with no need to diagonalize the Hamiltonian. Therefore, any initial
state that is a linear combination of such basis states provides the maximum transport
efficiency η = 1. We have considered, as the initial state, either a state localized at a vertex
or a superposition of two vertices, and computed the corresponding transport efficiency.
Overall, the most promising graph seems to be the M-simplex of complete graphs, since
it allows for us to have a transport efficiency that is close to 1 for large M for an initially
localized state. Transport with maximum efficiency is also possible on other graphs, if
the walker is initially prepared in a suitable superposition state. However, the coherence
of these preparations is likely to be degraded by noise, and the corresponding transport
efficiency may be hard to be achieved in practice.
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Our results suggest that connectivity of the graph is a poor indicator for the transport
efficiency. Indeed, we observe some specific correlations between transport efficiency and
connectivity for certain graphs, but in general they are uncorrelated. Moreover, transport
efficiency depends on the overlap of the initial state with Λ(H, |w〉), and the reciprocal
of the measures of connectivity that we have assessed does not provide a general and
consistent either lower or upper bound on η. However, the topology of the graph is
encoded in the Laplacian matrix, which contributes to defining the Hamiltonian. Thus,
connectivity somehow affects the transport properties of the system in the sense that it
affects the Hamiltonian.

On the other hand, the transport efficiency is the integrated probability of trapping in
the limit of infinite time, thus other figures of merit for the transport properties, such as the
transfer time, which is the average time that is required by the walker to get absorbed at the
trap, and the survival probability might highlight the role of the connectivity of the graph,
if any. Moreover, the role of the trap needs to be further investigated, when considering
more than one trap vertex, different trapping rates, and different trap location. Our
analytical results are proposed as a reference for further studies on the transport properties
of these systems and as a benchmark for studying environment-assisted quantum transport
on such graphs. Indeed, our work paves the way for further investigation, including the
analysis of more realistic systems in the presence of noise.
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The following abbreviations are used in this manuscript:

CTQW Continuous-time quantum walk
CBG Complete bipartite graph
SRG Strongly regular graph

Appendix A. Subspace of the Eigenstates of the Hamiltonian with Non-Zero Overlap

with the Trap

In this appendix, we show that the subspace Λ(H, |w〉) of the eigenstates of the
Hamiltonian having nonzero overlap with the trap is equal to the subspace I(H, |w〉) =
span({Hk|w〉 | k ∈ N0}) introduced in Section 3. This proof is from the Supplementary
information of [48]. We report it for sake of completeness and because we refine a key point,
not addressed in the original proof, about the right and the left inverse of a matrix.

Let Λ(H, |w〉) = span({|λ1〉, . . . , |λm〉}), where H|λk〉 = λk|λk〉 and m is the mini-
mum number of eigenstates of H having non-zero overlap with the trap, i.e., 〈w|λk〉 �= 0.
In case of a degenerate eigenspace, more than one eigenstate belonging to it can have a
non-zero overlap with |w〉, hence the need to find the minimum number m. The ambiguity
is solved as follows. We choose the eigenstate from this degenerate eigenspace having the
maximum overlap with |w〉, then we orthogonalize all the remaining eigenstates within
such eigenspace with respect to it. After orthogonalizing, these eigenstates have zero
overlap with |w〉 [40,48].
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Let dim(I(H, |w〉)) = m1, dim(Λ(H, |w〉)) = m2, and N the dimension of the com-
plete Hilbert space. First, we prove that I(H, |w〉) ⊆ Λ(H, |w〉), i.e., that any state
Hi|w〉 ∈ I(H, |w〉) also belongs to Λ(H, |w〉):

Hi|w〉 =
N

∑
k=1

〈λk|w〉Hi|λk〉 =
m2

∑
k=1

〈λk|w〉Hi|λk〉 =
m2

∑
k=1

〈λk|w〉λi
k|λk〉 , (A1)

since 〈λk|w〉 = 0 for m2 + 1 ≤ k ≤ N. Any state Hi|w〉 can therefore be expressed as a
linear combination of the eigenstates of the Hamiltonian having a non-zero overlap with
the trap, so Hi|w〉 ∈ Λ(H, |w〉)∀i ∈ N0. Second, we prove that Λ(H, |w〉) ⊆ I(H, |w〉),
i.e., that any state of Λ(H, |w〉) can be expressed as a linear combination of the states of
I(H, |w〉). We can write

∣∣λj
〉
=

m1

∑
i=1

cji Hi−1|w〉 =
m2

∑
k=1

m1

∑
i=1

cjiλ
i−1
k 〈λk|w〉|λk〉 =

m2

∑
k=1

m1

∑
i=1

cji Mik|λk〉 , (A2)

with matrix element Mik = λi−1
k 〈λk|w〉, provided that ∑m1

i=1 cji Mik = δjk. In terms of
matrices, this condition is Cm2×m1 Mm1×m2 = Im2×m2 , which means that C is the left inverse
of M, i.e., C = M−1

L . Analogously, rewriting Equation (A1) and then using the first equality
of Equation (A2), we have

Hj−1|w〉 =
m2

∑
i=1

〈λi|w〉λj−1
i |λi〉 =

m2

∑
i=1

Mji|λi〉 =
m2

∑
i=1

m1

∑
k=1

Mjicik Hk−1|w〉 , (A3)

provided that ∑m2
i=1 Mjicik = δjk. In terms of matrices, this condition is Mm1×m2 Cm2×m1 =

Im1×m1 , which means that C is the right inverse of M, i.e., C = M−1
R . Therefore, M has a

left and a right inverse, so M must be square, m1 = m2 = m, and M−1
L = M−1

R = M−1 = C
is unique [65]. The condition under which Λ(H, |w〉) ⊆ I(H, |w〉) is thus that M must be a
m × m invertible matrix. The matrix M is invertible if det(M) �= 0. We define two m × m
matrices, Vij = λi−1

j and the diagonal matrix Dij = δij
〈
λj
∣∣w〉, such that M = VD. Since〈

λj
∣∣w〉 = 0 for 1 ≤ j ≤ m, then det(V) �= 0. The matrix V is of the Vandermonde form,

so det(V) = ∏1≤i<j≤m(λi − λj). This determinant is non-zero, since all of the states |λk〉,
for 1 ≤ k ≤ m, belong to different eigenspaces, so all the λk are different from each other.
Hence, det(M) = det(V)det(D) �= 0, so M is always invertible and this condition ensures
that Λ(H, |w〉) ⊆ I(H, |w〉). This concludes the proof that Λ(H, |w〉) = I(H, |w〉).

Appendix B. Basis of I(H, |w〉) for Each Graph

In this appendixm we analytically derive the orthonormal basis {|ek〉} spanning
the subspace I(H, |w〉) for each graph considered. The first basis element is |e1〉 = |w〉,
the trap vertex, and the k-th element |ek〉 is obtained by orthonormalizing (O.N.) H|ek−1〉
with respect to the subspace spanned by {|e1〉, . . . , |ek−1〉}. The procedure stops when we
find the minimum m, such that H|em〉 ∈ span({|e1〉, . . . , |em〉}). The Hamiltonian (10) is
the sum of the Laplacian matrix, generating the CTQW on the graph, and the trapping
Hamiltonian (9), which projects onto the trap |w〉 with proper coefficient.

Appendix B.1. Complete Bipartite Graph

The Laplacian matrix of the CBG KN1,N2 is

L = N2 ∑
i∈V1

|i〉〈i|+ N1 ∑
j∈V2

|j〉〈j| − ∑
i∈V1

∑
j∈V2

(|i〉〈j|+ |j〉〈i|) , (A4)
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since deg(i ∈ V1) = N2 and deg(j ∈ V2) = N1 (see Figure 2). The basis states (17) are
obtained, as follows:

H|e1〉 = (N2 − iκ)|w〉 − ∑
j∈V2

|j〉 = (N2 − iκ)|e1〉 −
√

N2|e2〉 O.N.−−→ |e2〉 , (A5)

H|e2〉 = N1√
N2

∑
j∈V2

|j〉 − 1√
N2

∑
i∈V1

∑
j∈V2

|i〉 = N1|e2〉 −
√

N2 ∑
i∈V1,
i �=w

|i〉 −
√

N2|e1〉

= N1|e2〉 −
√

N2(N1 − 1)|e3〉 −
√

N2|e1〉 O.N.−−→ |e3〉 , (A6)

H|e3〉 = N2√
N1 − 1 ∑

i∈V1
i �=w

|i〉 − 1√
N1 − 1 ∑

i∈V1
i �=w

∑
j∈V2

|j〉 = N2|e3〉 −
√

N2(N1 − 1)|e2〉 . (A7)

In conclusion, any state Hk|w〉 ∈ span({|e1〉, |e2〉, |e3〉})∀k ∈ N0, thus the states (17)
form an orthonormal basis for the subspace I(H, |w〉).

Appendix B.2. Strongly Regular Graph

The Laplacian matrix of the SRG with parameters (N, k, λ, μ) is

L = kI − ∑
(j,i)∈E

|j〉〈i| , (A8)

where I = ∑i∈V |i〉〈i| is the identity. Indeed, in a SRG each vertex has degree k, so the
diagonal degree matrix is D = kI (see Figure 4). The basis states (23) are obtained, as
follows:

H|e1〉 = (k − iκ)|e1〉 − ∑
(j,w)∈E

|j〉 = (k − iκ)|e1〉 −
√

k|e2〉 O.N.−−→ |e2〉 . (A9)

A remark is due in order to address the computation of the next basis states. The di-
ameter of a connected SRG G, i.e., the maximum distance between two vertices of G, is
2 [62]. This means that, given a vertex w, we can group all the other vertices in two subsets,
as follows: the subset of the vertices at a distance 1 from w (adjacent); the subset of the
vertices at a distance 2 from w (nonadjacent). Because of the structure of the SRG, where
two (non)adjacent vertices have λ (μ) common adjacent vertices, in the following we face
summations with repeated terms.

To determine the third basis state, we consider

H|e2〉 = k|e2〉 − 1√
k

∑
(i,w)∈E

∑
(j,i)∈E

|j〉 = (k − λ)|e2〉 −
√

k|e1〉 −
√

μ(k − λ − 1)|e3〉 O.N.−−→ |e3〉 . (A10)

To explain this, we have to focus on ∑(i,w)∈E ∑(j,i)∈E|j〉. The index of the first summa-
tion runs over the vertices i adjacent to w, whereas the index of the second summation
runs over the vertices j adjacent to i. On the one hand, the vertex w is counted k times,
because it has k adjacent vertices i, each of which, in turn, has j = w among its adjacent
vertices. On the other hand, the index of the second summation runs over the vertices
adjacent and nonadjacent to w, because of the structure of the SRG. Each vertex j adjacent
to w, i.e., (j, w) ∈ E, is connected to other λ vertices adjacent to w, so it is counted λ times.
Each vertex j nonadjacent to w, i.e., (j, w) /∈ E, is connected to μ vertices adjacent to w, so it
is counted μ times. Thus, we have

∑
(i,w)∈E

∑
(j,i)∈E

|j〉 = k|e1〉+ λ ∑
(j,w)∈E

|j〉+ μ ∑
(j,w)/∈E

|i〉 = k|e1〉+ λ
√

k|e2〉+ μ
√

N − k − 1|e3〉 . (A11)
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Accordingly, according to Equation (22), we can write μ
√
(N − k − 1) =

√
μk(k − λ − 1),

from which Equation (A10) follows.
Subsequently, we consider

H|e3〉 = k|e3〉 − 1√
N − k − 1 ∑

(i,w)/∈E
∑

(j,i)∈E
|j〉 = μ|e3〉 −

√
μ(k − λ − 1)|e2〉 . (A12)

Again, to explain this, we have to focus on the term ∑(i,w)/∈E ∑(j,i′)∈E|j〉 in the second
equality. The index of the first summation runs over the vertices i nonadjacent to w, whereas
the index of the second summation runs over the vertices j adjacent to i. Each vertex j
nonadjacent to w, i.e., (j, w) /∈ E, is connected to other k − μ vertices nonadjacent to w, so it
is counted k − μ times. Each vertex j adjacent to w, i.e., (j, w) ∈ E, is connected to k − λ − 1
vertices nonadjacent to w, so it is counted k − λ − 1 times. Thus, we have

∑
(i,w)/∈E

∑
(j,i)∈E

|j〉 = (k − λ − 1) ∑
(i,w)∈E

|i〉+ (k − μ) ∑
(i,w)/∈E

|i〉

= (k − λ − 1)
√

k|e2〉+ (k − μ)
√

N − k − 1|e3〉 . (A13)

So, according to Equation (22), we can write (k−λ− 1)
√

k =
√

μ(N − k − 1)(k − λ − 1),
from which Equation (A12) follows.

In conclusion, any state Hk|w〉 ∈ span({|e1〉, |e2〉, |e3〉})∀k ∈ N0, thus the states (23)
form an orthonormal basis for the subspace I(H, |w〉).

Appendix B.3. Joined Complete Graphs

The Laplacian matrix of the two complete graphs KN/2 joined by a single edge
(b1, b2) is

L = L1 + L2 + |b1〉〈b1|+ |b2〉〈b2| − |b1〉〈b2| − |b2〉〈b1|︸ ︷︷ ︸
bridge

, (A14)

where

Lk =

(
N
2
− 1
)

∑
i∈Vk

|i〉〈i| − ∑
(i,j)∈Ek

|i〉〈j| (A15)

is the Laplacian matrix of the complete graph K(k)
N/2, with k = 1, 2. The bridge introduces

the edge between the vertices b1 and b2 and correctly makes the degree of such vertices
be N/2 (see Figure 5). Hence, L|v〉 = Lk|v〉 for any vertex v ∈ Vk \ {bk}. Instead, L|bk〉 =
(N/2)|bk〉 − ∑(i,bk)∈Ek

|i〉 − |bk̄〉, where k̄ is the complement of k in {1, 2}.
Reasoning by symmetry, we introduce the subsets of the identically evolving ver-

tices, i.e., the subsets containing the vertices that behave identically under the action of
the Hamiltonian:

H|w〉 = (N/2 − 1 − iκ)|w〉 − ∑
i∈Va

|i〉 − |b1〉 , (A16)

H ∑
i∈Va

|i〉 = 2 ∑
i∈Va

|i〉 − (N/2 − 2)(|w〉+ |b1〉) , (A17)

H|b1〉 = N/2|b1〉 − ∑
i∈Va

|i〉 − |w〉 − |b2〉 , (A18)

H|b2〉 = N/2|b2〉 − ∑
i∈Vc

|i〉 − |b1〉 , (A19)

H ∑
i∈Vc

|i〉 = ∑
i∈Vc

|i〉 − (N/2 − 1)|b2〉 , (A20)

where Va = V1 \ {w, b1} and Vc = V2 \ {b2}. Note that the results of H applied on the
vertices b1 or b2 are different, and this is the reason why they form different subsets.
According to these preliminary results, the basis states (28) are obtained, as follows:
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H|e1〉 =(N/2 − 1 − iκ)|w〉 − ∑
i∈Va

|i〉 − |b1〉 O.N.−−→ |e2〉 , (A21)

H|e2〉 = 1√
N/2 − 1

[
−(N/2 − 1)|w〉+ ∑

i∈Va

|i〉+ 2|b1〉 − |b2〉
]

O.N.−−→ |e3〉 , (A22)

H|e3〉 = 1√
(N − 3)(N/2 − 1)

[
N/2 ∑

i∈Va

|i〉 − (N2/4 − 3)|b1〉+ (N2/4 − 2)|b2〉

−(N/2 − 1) ∑
i∈Vc

|i〉
]

O.N.−−→ |e4〉 , (A23)

and it can be proved that

H|e4〉 =
√

N/2 − 1
N − 3

(√
N(N/2 − 2) + 1|e3〉+

√
N/2 − 1|e4〉

)
. (A24)

In conclusion, any state Hk|w〉 ∈ span({|e1〉, . . . , |e4〉})∀k ∈ N0, thus the states (28)
form an orthonormal basis for the subspace I(H, |w〉).

Appendix B.4. Simplex of Complete Graphs

The Laplacian matrix is defined as L = D − A. For a M-simplex of complete graphs
the diagonal degree matrix is D = MI, since the graph is regular, and the adjacency matrix
is A = ∑M+1

m=1 A(m)
intra + Ainter, where

A(m)
intra = ∑

(i,j)∈Em

|i(m)〉〈j(m)| (A25)

is the intra-graph adjacency matrix, i.e., within the complete graph K(m)
M , and

Ainter =
M+1

∑
m=1

M

∑
i=1

|i(m)〉〈(M + 1 − i)(m
′)| , (A26)

with m′ = 1 + mod(i + m − 1, M + 1), is the inter-graphs adjacency matrix, i.e., between
different complete graphs. The index m labels the complete graphs K(m)

M forming the M-
simplex. Note that Equation (A26) follows the labeling of the vertices in Figure A1 and it is
just one of the possible ways to computationally implement the inter-graphs contribution.

4

3 K(4)
5

2 1

5

5
4

3

K(3)
5

2

1
1

5

4 3

K(2)
5

2

21

5 4

3K(1)
5

3

K(6)
5

2

1
5

4

43

K(5)
5

2
1

5

w Vd = {d}
Va = {a} Ve = {e}
b Vf = { f }

Vc = {c}

Figure A1. Labeling of vertices in a 5-simplex of complete graphs. The trap vertex w is colored red

and assumed to be |1〉 in K(1)
5 . Same coloring denotes the subsets Vα of identically evolving vertices

α, with α = w, a, b, c, d, e, f (see also Figure 6). Note that each of the two vertices w and b forms a
subset of one element, itself.
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In this case, using the notion of adjacency and reasoning by symmetry to introduce
the subsets of the identically evolving vertices provide a framework which, analytically, is
simpler and clearer to deal with than explicitly using the Laplacian above defined. These
subsets contain the vertices which behave identically under the action of the Hamiltonian:

H|w〉 = (M − iκ)|w〉 − ∑
i∈Va

|i〉 − |b〉 , (A27)

H ∑
i∈Va

|i〉 = 2 ∑
i∈Va

|i〉 − (M − 1)|w〉 − ∑
i∈Vd

|i〉 , (A28)

H|b〉 = M|b〉 − |w〉 − ∑
i∈Vc

|i〉 , (A29)

H ∑
i∈Vc

|i〉 = 2 ∑
i∈Vc

|i〉 − (M − 1)|b〉 − ∑
i∈Ve

|i〉 , (A30)

H ∑
i∈Vd

|i〉 = M ∑
i∈Vd

|i〉 − ∑
i∈Va

|i〉 − ∑
i∈Ve

|i〉 − ∑
i∈Vf

|i〉 , (A31)

H ∑
i∈Ve

|i〉 = M ∑
i∈Ve

|i〉 − ∑
i∈Vc

|i〉 − ∑
i∈Vd

|i〉 − ∑
i∈Vf

|i〉 , (A32)

H ∑
i∈Vf

|i〉 = 2 ∑
i∈Vf

|i〉 − (M − 2)

(
∑

i∈Vd

|i〉+ ∑
i∈Ve

|i〉
)

. (A33)

Note that the results of H applied on the vertices in Vc or in Vd are different, and this
is the reason why they form different subsets. According to these preliminary results,
the basis states (33) are obtained, as follows:

H|e1〉 =(M − iκ)|w〉 − ∑
i∈Va

|i〉 − |b〉 O.N.−−→ |e2〉 , (A34)

H|e2〉 = 1√
M

(
2 ∑

i∈Va

|i〉 − M|w〉+ M|b〉 − ∑
i∈Vc∪Vd

|i〉
)

O.N.−−→ |e3〉 , (A35)

H|e3〉 =
√

M√
(M − 1)(M2 − 2M + 4)

⎡
⎣M − 4

M ∑
i∈Va

|i〉 − (M − 1)2|b〉

+
M2 − M + 2

M ∑
i∈Vc∪Vd

|i〉 − 2 ∑
i∈Ve

|i〉 − ∑
i∈Vf

|i〉
⎤
⎦ O.N.−−→ |e4〉 , (A36)

H|e4〉 = 1√
(M − 1)(M2 − 2M + 4)(M3 + 2M2 − 8M + 16)

⎧⎨
⎩(M2 − 4)

[
∑

i∈Va

|i〉 − (M − 1)|b〉
]

+2(M2 − M + 2) ∑
i∈Vc∪Vd

|i〉 − M(M2 − 2M + 8) ∑
i∈Ve

|i〉+ (M − 2)2 ∑
i∈Vf

|i〉
⎫⎬
⎭ O.N.−−→ |e5〉 , (A37)

and it can be proved that

H|e5〉 = M + 2
M3 + 2M2 − 8M + 16

[
M
√
(M − 2)(M2 − 2M + 4)|e4〉+ (M3 − 4M + 8)|e5〉

]
. (A38)

In conclusion, any state Hk|w〉 ∈ span({|e1〉, . . . , |e5〉})∀k ∈ N0, thus the states (33)
form an orthonormal basis for the subspace I(H, |w〉).
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Abstract: We address the scattering of a quantum particle by a one-dimensional barrier potential over
a set of discrete positions. We formalize the problem as a continuous-time quantum walk on a lattice
with an impurity and use the quantum Fisher information as a means to quantify the maximal possible
accuracy in the estimation of the height of the barrier. We introduce suitable initial states of the walker
and derive the reflection and transmission probabilities of the scattered state. We show that while the
quantum Fisher information is affected by the width and central momentum of the initial wave packet,
this dependency is weaker for the quantum signal-to-noise ratio. We also show that a dichotomic position
measurement provides a nearly optimal detection scheme.

Keywords: quantum walks; scattering; quantum metrology; quantum Fisher information; optimal
measurement

1. Introduction

Since the Rutherford experiment [1], scattering has played a central role in the study of unknown
interactions in many fields of physics [2–4]. At its core, a scattering experiment may be viewed as a
parameter-estimation problem. Indeed, the scattering potential can be modeled with a set of unknown
parameters that characterize the evolution of the quantum particles that impinge on it. Estimating the value
of those parameters then involves measurements that are performed on the scattered state, followed by a
collection of outputs that are used to build estimators for the parameters. If we consider scattering as an
estimation problem, we can study the maximum amount of information that can be extracted from a single
measurement on the quantum system, and we can assess the performance of feasible detection schemes.
All these questions find answers in the theory of local quantum estimation, which has the aim of quantifying
the best precision of an estimation procedure [5]. Indeed, in the past few years, local quantum estimation
theory has been applied to a variety of problems, such as the estimation of the relevant parameters of
quantum structured baths [6–10], graph and lattice properties [11–13], and classical processes [14].

In this work, we analyze the one-dimensional scattering of a quantum particle from a potential
barrier with the aim of inferring its height. The particle moves on a set of discrete positions, and it is thus
described as a continuous-time quantum walk (CT QW) on the line with a central barrier. The barrier is
implemented by a detuning of the energy of the central site with respect to the other sites. As a matter of
fact, the analysis of the evolution of a quantum walk in the presence of a barrier is strongly connected with
the study of defects and impurities in implementations of QW [15–18]. A detuning in the on-site energy
of a site can be interpreted as a defect that influences the dynamics and the scattering properties of the
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walker. Understanding the role of imperfections is of fundamental importance for a realistic description
of the QWs. In fact, knowing how a protocol or an algorithm [19–23] is affected by impurities and noise
allows us to hinder or even neutralize detrimental effects.

Inspired by previous works on the discretization of continuous-systems [24,25], we first derive
scattered states on the infinite line of discrete positions. In order to consider physically relevant states
for the walker, we initialize the particle in a Gaussian wave packet with central initial momentum k0 and
standard deviation σ. We evaluate the transmission probability through the barrier and the maximum
extractable information as a function of these two free parameters. We show that the quantum Fisher
information (QFI) is strongly affected by the value of the initial central momentum of the walker, but only
slightly by the initial spread of the wave packet. The quantum signal-to-noise ratio has a maximum
corresponding to the optimal value of the barrier height that can be better estimated. Finally, we consider
a feasible measurement, i.e., a dichotomic position measurement, and we compare its Fisher information
(FI) with the QFI. We show that this measurement is nearly optimal, i.e., its FI is close to the QFI in almost
all the parameter space we consider.

The paper is organized as follows: In Section 2, we introduce the concept of CTQW with inhomogeneous
on-site energies, and in Section 3, we briefly review the main concepts of local quantum estimation
theory. In Section 4, we introduce the free-particle scattering states, and then, we use them to build the
physically relevant wave packets, whose transmission and reflection probabilities are derived. In Section 5,
we compute the QFI for initial Gaussian wave packets, and we compare its value with the FI of a dichotomic
position measurement. Finally, in Section 6, we draw our conclusions.

2. Quantum Walks with Inhomogeneous On-Site Energies

A CTQW model describes the evolution of a quantum particle over a discrete set of positions,
continuously in time [26,27]. It evolves in an N-dimensional Hilbert space with orthonormal basis states
{|j〉}j∈Z, which represent the positions that can be occupied by the walker. The Hamiltonian of a CTQW
on the line with inhomogeneous on-site energies εj and uniform couplings J0 has the expression (h̄ = 1):

H = ∑
j

εj |j〉〈j| − J0 ∑
j

(
|j〉〈j + 1|+ |j + 1〉〈j|

)
. (1)

Without loss of generality, we fix J0 = 1, thus expressing time and εj in units of J0. If we set εj = 2 ∀j,
we recover the graph Laplacian L, i.e., H = −L. It is worth mentioning that for the one-dimensional lattice,
L represents the discretized version of Laplace operator ∇2, and −L is kinetic energy operator of a particle
with mass m = 1

2 constrained to a discrete set of positions [28].
Given a set of on-site energies {εj}, it is possible to separate the Hamiltonian into a kinetic and a

potential operator, L and V respectively. The Hamiltonian can thus be written as H = −L + V with:

L = ∑
j

[
− 2 |j〉〈j|+ |j〉〈j + 1|+ |j + 1〉〈j|

]
and V = ∑

j
Vj |j〉〈j| = ∑

j
(εj − 2) |j〉〈j| (2)

highlighting the fact that for εj = 2 ∀j, the unperturbed Laplacian Hamiltonian is obtained. Due to the
tridiagonal form of the matrix H, the eigenvalue equation H|ψ(k)〉 = Ek|ψ(k)〉 can be recast in the form of a
three-term recurrence relation. By explicitly writing H in terms of the Laplacian and potential parts and
projecting into a basis state |j〉, we obtain 〈j| − L + V|ψ(k)〉 = Ek 〈j|ψ(k)〉 and the recurrence relation:

−ψ
(k)
j+1 + 2ψ

(k)
j − ψ

(k)
j−1 + Vjψ

(k)
j = Ekψ

(k)
j , (3)
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where |ψ(k)〉 = ∑j ψ
(k)
j |j〉. Equation (3) is easily identifiable with the discretization in the position basis of

the time-independent Schrödinger equation for a particle of mass m = 1
2 .

In analogy with the continuous case, we introduce the momentum states as the Fourier series of the
countable orthonormal set of position eigenstates. In particular, we define the momentum state |k〉 through
a discrete-time Fourier transform (DTFT):

|k〉 = 1√
2π

∑
j∈Z

eikj |j〉 , k ∈ (−π, π] (4)

|j〉 = 1√
2π

∫ π

−π
e−ikj |k〉dk , j ∈ Z. (5)

If no external potential is considered, i.e., Vj = 0 ∀j, the states {|k〉} are solutions to Equation (3) with

ψ
(k)
j = eikj and corresponding energies Ek = 2 − 2 cos(k). The dispersion relation implies that the phase

velocity vp and the group velocity vg are:

vp =
Ek
k

=
2 − 2 cos(k)

k
, vg =

∂Ek
∂k

= 2 sin(k). (6)

Thus, the momentum states (4) are the discretization of the plane waves with the dispersion relation typical
of the tight-binding models [29]. We identify these states as free particle states because, in analogy with
the continuous case, plane waves are the eigenstates of a purely kinetic Hamiltonian. This suggests that
the separation of the QW Hamiltonian into a kinetic term and a potential one is indeed meaningful. In the
following, we are going to introduce an obstacle, i.e., an external potential that causes an inhomogeneity
on the on-site energies.

3. Tools of Local Quantum Estimation Theory

Before analyzing the QW scattering from a barrier, we review a few key concepts in the theory of local
quantum estimation. Consider a sample of M independent outcomes of a measurement {x1, x2, . . . , xM}
drawn from the probability distribution p(x|Δ), where Δ is an unknown parameter we wish to estimate.
The Cramèr–Rao (CR) inequality imposes a lower bound on the variance of any unbiased estimator
Δ̂({x1, x2, . . . , xM}) for such a parameter:

Var(Δ̂) ≥ 1
MF(Δ)

(7)

where F(Δ) is the Fisher information, defined as:

F(Δ) =
∫ (

∂ ln p(x|Δ)
∂Δ

)2

p(x|Δ)dx =
∫ (

∂p(x|Δ)
∂Δ

)2 1
p(x|Δ) dx . (8)

The quantum version of the CR bound is derived by generalizing the concept of FI. This is done by
maximizing the FI over all possible measurements, and the obtained quantity is called quantum Fisher
information H(Δ). A detailed derivation of the QFI can be found in [30]. The quantum CR bound takes
the following form:

Var(Δ̂) ≥ 1
MH(Δ)

. (9)

and follows from the inequality F(Δ) ≤ H(Δ), which provides the basis for the identification of the QFI
with the ultimate bound to precision of any unbiased estimator. The aim of local quantum estimation
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theory is to determine the maximum extractable information from a quantum probe, whose state depends
on the value of the parameter. If only pure states are considered as probes, i.e., a parameter-dependent
family of quantum states |ψΔ〉, the QFI can be explicitly written as [30]:

H(Δ) = 4
[
〈∂ΔψΔ|∂ΔψΔ〉 − |〈ψΔ|∂ΔψΔ〉|2

]
, (10)

where |∂ΔψΔ〉 represents the derivative of the state with respect to the parameter Δ. A suitable figure of
merit that can be used in order to evaluate the estimability of a parameter is the quantum signal-to-noise
ratio (QSNR):

R(Δ) = Δ2H(Δ) , (11)

which provides an upper bound to the signal-to-noise ratio Δ̂2/ Var(Δ̂) of any detection scheme.

4. Scattering in the Presence of an Obstacle

Let us now consider a situation where there is an obstacle placed in the middle of the chain.
The obstacle, or barrier, has the width of a single site, i.e., all sites have the same energy εj = 2, except for
the central one |0〉, which has a detuning Δ, such that ε0 = 2 + Δ. Thus, the Hamiltonian defined in
Equation (1) is modified by placing the obstacle at j = 0, and it becomes:

H = ∑
j∈Z

(
2 |j〉〈j| − |j + 1〉〈j| − |j〉〈j + 1|

)
+ Δ |0〉〈0| . (12)

The site j = 0 has on-site energy ε0 = 2 + Δ or, alternatively said, potential V0 = Δ. In order to study the
scattering properties of such model, we start by deriving the scattering states.

4.1. Scattering States

Scattering states for one-dimensional systems in the continuous-space case are known for a variety of
potentials [31]. We now want to derive such states for the discrete system under consideration. The generic
stationary scattering state |ψs〉 with fixed momentum k can be written as a linear combination of free
particle states, namely:

〈j|ψs〉 =
{

Aeikj + Be−ikj, j ≤ 0

Ceikj, j ≥ 0
, (13)

where the terms proportional to A, B, and C correspond to the incident, the reflected, and the transmitted
wave, respectively. The coefficients are calculated imposing that the two parts of the state (before and after
the obstacle) are properly connected at j = 0, i.e., by discretizing the continuity conditions, and using the
recurrence relations (3), i.e., 〈−1|ψs〉−Δ〈0|ψs〉+ 〈1|ψs〉 = 2 cos(k)〈0|ψs〉, which represent the discontinuity

introduced by the obstacle. Therefore, the reflection R = |B|2
|A|2 and transmission T = |C|2

|A|2 coefficients can be
easily calculated through:

{
A + B = C

Ae−ik + Beik = C(2 cos(k) + Δ − eik)
−→

⎧⎨
⎩

B = 1
2i sin k

Δ −1
A

C = 1
1− Δ

2i sin k
A

, (14)

and they have the expressions:

R(Δ, k) =
1

1 +
4 sin2(k)

Δ2

, T(Δ, k) =
1

1 +
Δ2

4 sin2(k)

. (15)
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These coefficients closely resemble those corresponding to a delta potential in a continuous system [31];
in particular, the coefficients only depend on Δ2, meaning that there is no difference between an attractive
or repulsive potential as concerns scattering. If Δ is fixed, T is maximum for k = π

2 , which corresponds to
the highest group velocity (but not to the highest energy). Consistently, at the same value of k, R has a
minimum. As the absolute value of Δ is increased, the transmission coefficient drops to smaller values,
as reported in Figure 1. For every incident |k〉, we may thus define:

S |k〉 = B
A
|−k〉+ C

A
|k〉 (16)

where we introduced a scattering matrix S whose elements give information on the reflection and
transmission coefficients [31]. If we set A = |A| and we highlight the phases of the reflected and
transmitted waves, we obtain:

S |k〉 = |B|
|A| e

iφB |−k〉+ |C|
|A| e

iφC |k〉 = eiφB

(√
R(Δ, k) |−k〉+

√
T(Δ, k)ei(φC−φB) |k〉

)
. (17)

The relative phase ei(φC−φB) can be computed from the ratio C
B from Equation (14) and is equal to π/2.

It follows that:

S |k〉 = eiφB(Δ,k)
(√

R(Δ, k) |−k〉+ i
√

T(Δ, k) |k〉
)

, (18)

with the phase φB(Δ, k) = arctan
(

2 sin(k)
Δ

)
.

Figure 1. Transmission and reflection coefficients T and R as a function of Δ and k.

It is possible to define the reflection and transmission coefficients for more general states. Given an
initial localized wave packed |ψ0〉 placed on the left of the obstacle, its time-evolved state is:

|ψ(t)〉 = e−iHt |ψ0〉 . (19)

We define the time-dependent probabilities:

ρ(t) = ∑
j<0

|〈j|ψ(t)〉|2, τ(t) = ∑
j>0

|〈j|ψ(t)〉|2, δ(t) = |〈0|ψ(t)〉|2. (20)
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The quantities ρ(t) and τ(t) are indeed the probability of finding the walker before and after the obstacle,
respectively. The defect coefficient δ(t) is the remaining probability, namely the probability of finding the
particle on the obstacle site. In particular, when the scattering is over, the coefficient δ(t) is expected to
vanish, and consequently, ρ(t) + τ(t) = 1.

4.2. Gaussian Wave Packets

The vector described by Equation (18) is the mathematical building block from which we derive the
asymptotic values of the quantities of interest; however, it is not normalizable and does not represent
a physical state. For this reason, we now introduce more realistic states that are spatially localized.
In particular, we consider a discretized version of a Gaussian wave packet:

∣∣Gk0

〉
= N ∑

j∈Z
e−

(j−μ)2

2σ2 eik0 j |j〉 . (21)

The probability distribution of this state is a discretized Gaussian function with mean μ and variance σ2

2 .
N is a normalization constant, while the parameter k0 ∈ (−π, π] represents the mean of the probability
distribution in the momentum basis. The

∣∣Gk0

〉
state in the momentum basis is still Gaussian under proper

assumptions, and it has the expression:

∣∣Gk0

〉
=
∫ π

−π
gk0(k) |k〉 dk, (22)

with gk0(k) =
〈
k
∣∣Gk0

〉 ≈ √ σ

π1/2 e−
(k−k0)

2 σ2

2 e−iμk. (23)

The detailed derivation of Expression (23) is shown in Appendix A. The crucial approximation made
to obtain this expression is to consider narrow wave packets in the reciprocal space (i.e., min(|k0 + π|,
|π − k0|) � 1/σ; see Appendix A). Therefore, the Fourier transform of the Gaussian wave packet is not
exactly a Gaussian in the momentum basis. Nevertheless, if the transformed state is sufficiently localized
in reciprocal space, Equation (23) is a reasonable approximation.

4.3. Scattering with Gaussian Wave Packets

Here, we want to analyze the asymptotic scattering properties of an incident Gaussian wave packet.
In order to do so, we exploit the results obtained for single momentum states |k〉. The Gaussian state in the
momentum basis has the expression (22) where the Gaussian weights are included in gk0(k).
We consider a wave packet incident on the obstacle from the left (j < 0). Using (18) and linearity,
the scattered Gaussian state can be written in the asymptotic limit as:

∣∣ψk0,Δ
〉
= S

∣∣Gk0

〉
=
∫ π

−π
gk0(k)S |k〉 dk

=
∫ π

−π
gk0(k)e

iφB(Δ,k)
(√

R(Δ, k) |−k〉+ i
√

T(Δ, k) |k〉
)

dk

=
∫ π

−π

(
e−iφB(Δ,k)

√
R(Δ, k)|g−k0(k)|eiμk + eiφB(Δ,k)i

√
T(Δ, k)|gk0(k)|e−iμk

)
|k〉 dk, (24)

where, in the last line, we used the equalities |gk0(−k)| = |g−k0(k)|, R(Δ, k) = R(Δ,−k), and φB(Δ, k) =
−φB(Δ,−k). By inspection of Equation (24), we learn that the original Gaussian wave packet is divided
into the superposition of two wave packets centered around opposite values of momentum k0 and −k0,
corresponding to the transmitted and reflected wave function, respectively. These two wave packets
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are not Gaussian anymore, since they are weighted with scattering coefficients that depend on k. It is
important to highlight that this description fails if the two wave packets overlap, which can happen if the
original state is spread in k-space or if its mean is k0 ≈ 0 (or any multiple of π). The assumption of a narrow
initial wave packet in k-space was already imposed in order to derive Equation (23), while asking for a
k0 �= 0 corresponds to considering a wave packet with the group velocity different from zero. With these
assumptions, the transmission and reflection coefficients can be calculated considering the probabilities of
the reflected and transmitted wave packets:

ρG(k0, Δ) =
∫ π

−π
R(Δ, k)

∣∣gk0(k)
∣∣2 dk, τG(k0, Δ) =

∫ π

−π
T(Δ, k)

∣∣gk0(k)
∣∣2 dk. (25)

This results are confirmed by numerical evaluation of the ρ(t) and τ(t) coefficients in Equation (20) and
shown in Figure 2. The dynamics of the walker is computed through Equation (19) for fixed values of
k0 and Δ. The figure shows that at long times, i.e., in the asymptotic limit, the transmission probability
achieves exactly τG(k0, Δ). A large transmission probability is associated with high values of k0 and small
values of Δ, while a small initial central momentum and a large barrier prevent good transmission.

Figure 2. Transmission probability τ(t). The left plot is for a fixed value of Δ = 1 and for decreasing values
of k0 = k1, k2, k3, with k1 = π/2 (black), k2 = π/4 (red), k3 = π/7 (blue). In the right plot, k0 = π/2 is
kept fixed while varying the disorder Δ = 1 (black), Δ = 2 (red), Δ = 3 (blue). The dashed lines correspond
to the value of the transmission coefficient τG (k0, Δ) in Equation (25). In both plots, we considered σ = 15.

5. Quantum Estimation of a Scattering Potential

After having derived the scattered expression of a Gaussian wave packet, we turn our attention to the
optimal estimation of the barrier height, i.e., of the parameter Δ. In order to do so, we prepare an initial
Gaussian wave packet with initial central momentum k0. In a scattering experiment, measurements can be
performed only on the scattered state, which has the expression of Equation (24), which we report here
for convenience:

∣∣ψk0,Δ
〉
=
∫ π

−π
gk0(k)e

iφB(Δ,k)
(√

R(Δ, k) |−k〉+ i
√

T(Δ, k) |k〉
)

dk.

In order to compute the QFI, Equation (10), we need the derivative:

∣∣∂Δψk0,Δ
〉
=
∫ π

−π
gk0(k)e

iφB(Δ,k)×

×
[

i∂ΔφB(Δ, k)
(√

R(Δ, k) |−k〉+ i
√

T(Δ, k) |k〉
)
+

(
∂ΔR(Δ, k)
2
√

R(Δ, k)
|−k〉+ i

∂ΔT(Δ, k)
2
√

T(Δ, k)
|k〉
)]

dk,
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and the inner products:

〈
∂Δψk0,Δ

∣∣∂Δψk0,Δ
〉
=
∫ π

−π

∣∣gk0(k)
∣∣2 ([∂ΔφB(Δ, k)]2 +

[∂ΔR(Δ, k)]2

4 R(Δ, k)
+

[∂ΔT(Δ, k)]2

4 T(Δ, k)

)
dk (26)

〈
ψk0,Δ

∣∣∂Δψk0,Δ
〉
= i
∫ π

−π

∣∣gk0(k)
∣∣2 ∂ΔφB(Δ, k) dk, (27)

with ∂ΔR(Δ, k) + ∂ΔT(Δ, k) = 0. We remind the reader that in this work, we always assume that the
reflected and transmitted wave packets of the post-scattering state do not overlap, neither in position nor
in momentum space. Notice that with this assumption, we also exclude slow states, i.e., those states with
k0 ≈ 0 or k0 ≈ π. The QFI for an initial Gaussian wave packet may be computed through Equation (10):

HG(k0, Δ) =
∫ π

−π

∣∣gk0(k)
∣∣2( [∂ΔR(Δ, k)]2

R(Δ, k)
+

[∂ΔT(Δ, k)]2

T(Δ, k)
+ 4[∂ΔφB(Δ, k)]2

)
dk

− 4
(∫ π

−π

∣∣gk0(k)
∣∣2∂ΔφB(Δ, k)dk

)2
(28)

=
16 sin2 k0

[2 + Δ2 − 2 cos(2k0)]2
+

gH(k0, Δ)
σ2 + O(1/σ3) , (29)

where the explicit expression of gH(k0, Δ) is reported in Appendix B.
The typical behavior of the QFI as a function of Δ and the initial central momentum k0 is shown in

Figure 3. Since we want to avoid overlaps of the reflected and transmitted wave functions in momentum
space, we exclude values for k0 in the neighborhood of k0 = 0 and k0 = π. The QFI is symmetric under the
exchange of the sign of the barrier, i.e., Δ → −Δ, and it has a maximum centered in Δ = 0. Small values of
the barrier height |Δ| � 1 have a larger QFI with respect to higher barriers. The spread of the wave packet
σ affects the maximum precision only for |Δ| � 1, as shown in the upper panel of Figure 4. From these
plots, we can also see that the initial central momentum has an important role: in fact, as k0 is increased
from small values to π

2 , the maximum of the QFI decreases.

Figure 3. Left: QFI HG (k0, Δ) for an initial Gaussian wave packet with σ = 5. Right: QSNR RG (k0, Δ) for
the same initial Gaussian wave packet.
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Figure 4. Comparison between the QFI (upper panel) and the QSNR (lower panel) with a large and a
narrow initial wave packet in k-space, as a function of Δ and for three different values of k0. The black solid
lines are for σ = 20, while the dashed red lines are for σ = 5. The considered values of initial momentum
are k0 = π

4 , π
3 , π

2 for the left, center, and right column, respectively.

In order to compare the error of an estimator with the true value of the parameter to be estimated,
we also address the QSNR, defined in Equation (11). Its behavior is shown in the right plot of Figure 3 and
in the lower panel of Figure 4, for three different values of the initial central momentum k0. The QSNR has
a maximum for Δ �= 0, which corresponds to the value of the barrier height that can be better estimated.
As the value of the initial central momentum is increased toward k0 = π

2 , the value of the optimal Δ slightly
increases. The dependency on σ is negligible when considering the QSNR, as shown in the lower plots,
where the behaviors for σ = 5 and σ = 20 are compared. Quite remarkably, the maximum value of the
QSNR is very similar, RG ≈ 1 for the considered values of k0, thus making the initial central momentum a
tool to fine tune the optimal value of Δ, but not the corresponding precision.

The behavior of the QSNR has an intuitive and straightforward physical interpretation. If the height
of the barrier is negligible (Δ � 1), then the walker is mostly transmitted anyway, and it is very difficult
to detect small variations of Δ itself. Similarly, if Δ � 1, the walker is mostly reflected independently of
the exact value of Δ. On the other hand, for intermediate values of Δ, the wavefunction of the walker
is very sensitive to its value, and measuring the walker indeed provides information. This picture is
confirmed if one looks at the zeroth order expression of the QFI in Equation (29), which says that the
maxima of the QSNR are located at Δ2 = 2[1 − cos(2k0)]. Notice that the values of (Δ, k0) satisfying this
relations are those making the reflection and transmission equal to each other R(

√
2[1 − cos(2k0)], k0) =

T(
√

2[1 − cos(2k0)], k0) =
1
2 .

Dichotomic Position Measurement

We now address the question of whether a realistic position measurement is optimal, i.e., its FI equals
the QFI defined in Equation (28). In particular, we consider a dichotomic measurement that just tells us if
the particle is located on the left or on the right side of the barrier. Since we know from the Equation (25)
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that the quantities ρG(k0, Δ) and τG(k0, Δ) correspond to the probabilities of finding the particle before or
after the obstacle, the FI takes the expression:

FG(k0, Δ) =
[∂ΔρG(k0, Δ)]2

ρG(k0, Δ)
+

[∂ΔτG(k0, Δ)]2

τG(k0, Δ)
=

[∂ΔτG(k0, Δ)]2

τG(k0, Δ)[1 − τG(k0, Δ)]
(30)

=
16 sin2 k0

[2 + Δ2 − 2 cos(2k0)]2
+

gF(k0, Δ)
σ2 + O(1/σ3) , (31)

where the explicit expression of gF(k0, Δ) is reported in Appendix B. As the value of σ is increased, i.e., the
wave packet is more localized in k-space, the FI of the dichotomic measurement approaches the QFI.
The second order coefficients gs(k0, Δ), s = H, F are different for the QFI and the FI (see Appendix B),
but in the range of parameters we explore (σ > 5, 0 < Δ ≤ 4, 0 < k0 < π), the ratio γ(k0, Δ) =

FG(k0, Δ)/HG(k0, Δ) is always larger than γ(k0, Δ) > 0.95. We conclude that a dichotomic position
measurement is nearly optimal to estimate the height of the potential barrier Δ.

6. Conclusions

In this work, we introduce and discuss a general probing scheme for scattering problems based on
continuous-time quantum walks. In particular, we consider a one-dimensional lattice, with an impurity
at its center, i.e., a potential barrier of height Δ, and discuss in details how to quantify the maximum
extractable information about the parameter Δ.

Using the continuous-space case as a guide for attacking the problem, we first introduce the
single-momentum scattered states S |k〉 and use them to compute the reflection and transmission
coefficients of the considered potential. From the scattered states, we build up the asymptotic Gaussian
states, i.e., physical states, that depend, in addition to Δ, on the initial central momentum k0 and the spread
of the wave packet in position space σ. We then derive the reflection and transmission probability of such
wave packets. Finally, we compute the QFI for the parameter Δ. We show that the QFI has a maximum for
Δ = 0, and it is strongly affected by the value of k0. In particular, values of k0 near π

2 lead to a smaller QFI.
Moreover, for |Δ| � 1, a small σ can increase the precision of the estimation. However, inspection of the
QSNR did not show a noticeable difference in its behavior depending on the value of σ or k0. The QSNR
has a maximum for Δ �= 0, indicating that given the value of the central momentum k0, there exists a value
for Δ that can be better estimated, leading to the unit QSNR independently of σ and k0.

Finally, we investigate the performances of a dichotomic position measurement, which is a binary
measurement that is just able to distinguish if a particle is located on the left (reflected) or on the right
(transmitted) of the potential barrier. We show that this measurement is optimal, i.e., its FI is equal to
the QFI, for large initial wave packets (in position space), while it is nearly optimal for narrow initial
wave packets.

Our work paves the way toward the characterization of more involved forms of potentials using a
single-particle continuous-time quantum walk as a probe. Extensions of this work may also include more
complex structures, such as multi-dimensional graphs, where imperfections created during the fabrication
process need to be estimated in order to better control the quantum dynamics over such networks.
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Abbreviations

The following abbreviations are used in this manuscript:

CTQW Continuous-time quantum walk
CR Cramér–Rao
FI Fisher information
QFI Quantum Fisher information
QSNR Quantum signal-to-noise ratio

Appendix A. Gaussian Wave Packet in K-Space

Consider the Gaussian wave packet in position space defined by Equation (21). Here, we show that its
expression in k-space, within certain approximations, is given by Expression (23). We start by considering
the the projection of Equation (21) into a state |k〉:

〈
k
∣∣Gk0

〉
=

N√
2π

∑
j∈Z

e−
(j−μ)2

2σ2 ei(k0−k)j. (A1)

The infinite sum can be calculated using the Poisson summation formula, which states that, for suitable
functions f : ∑j∈Z f (j) = ∑n∈Z f̂ (n) = ∑n∈Z

∫ +∞
−∞ f (x)e−i2πnx dx. In our particular case:

〈
k
∣∣Gk0

〉
=

N√
2π

∑
j∈Z

e−
(j−μ)2

2σ2 ei(k0−k)j =
N√
2π

∑
n∈Z

∫ +∞

−∞
e−

(x−μ)2

2σ2 ei(k0−k)xe−i2πnx dx . (A2)

The last integral is a continuous Fourier transform of a Gaussian function; therefore:

∫ +∞

−∞
e−

(x−μ)2

2σ2 ei(k0−k)xe−i2πnx dx =
√

2πσ2e
− (2πn+k−k0)

2

2 1
σ2 e−iμ(2πn+k−k0). (A3)

Inserting Equation (A3) into (A2) (discarding the constant global phase eiμk0 ), we obtain:

〈
k
∣∣Gk0

〉
= N σ ∑

n∈Z
e
− (2πn+k−k0)

2

2 1
σ2 e−iμ(2πn+k). (A4)

The transformed state is not a Gaussian state, but it is an infinite sum of Gaussian states periodically
displaced. However, if the wave packet is localized enough in reciprocal space, it is possible to approximate
the last infinite summation by keeping only the central term n = 0 (it is always possible to shift the
definition of k and k0 in the interval [−π, π) because they are defined modulo 2π). The localization
assumption is needed in order to consider only one term, otherwise the tails of adjacent Gaussian functions
could overlap. In other words, k0 should be far away from the boundaries of the interval [−π, π),
i.e., |k0 − π| and |k0 + π| should be much larger than the standard deviation in the reciprocal space.
Overall, the conditions read as min(|k0 − π|, |k0 + π|) � 1/σ. With this assumption:

Gk0(k) =
〈
k
∣∣Gk0

〉 ≈ N σe
− (k−k0)

2

2 1
σ2 e−iμk. (A5)
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Thus, a discrete Gaussian state in the position basis remains a Gaussian state in reciprocal space within the
considered approximation. The calculation of the normalization constant N reduces to the calculation of a
Gaussian integral:

1 =
∫ π

−π

∣∣Gk0(k)
∣∣2 dk ≈

∫ ∞

−∞

∣∣Gk0(k)
∣∣2 dk = |N |2σ

√
π, (A6)

with:

|N |2 ≈ 1√
πσ2

. (A7)

Appendix B. The Explicit Expression of the Functions gH(Δ, k0) and gF(Δ, k0)

We have:

gH(k0, Δ) =
4
[
3 cos 6k0 + 2(5Δ2 − 1) cos 4k0 + 3(3Δ4 − 19) cos 2k0 + Δ4 − 10Δ2 + 18

]
[
Δ2 + 2(1 − cos 2k0)

]4 , (A8)

gF(k0, Δ) =
8
[

cos 6k0 + 6Δ2 cos 4k0 + (Δ4 − 9) cos 2k0 − 6Δ2 + 8
]

[
Δ2 + 2(1 − cos 2k0)

]4 . (A9)

References

1. Rutherford, E.F. LXXIX. The scattering of α and β particles by matter and the structure of the atom. Philos. Mag. Ser.
1911, 21, 669–688. [CrossRef]

2. Franklin, R. Influence of the Bonding Electrons on the Scattering of X-Rays by Carbon. Nature 1950, 165, 71–72.
[CrossRef] [PubMed]

3. Chamberlain, O.; Segrè, E.; Wiegand, C.; Ypsilantis, T. Observation of Antiprotons. Phys. Rev. 1955, 100, 947–950.
[CrossRef]

4. Aad, G.Et Al.. Obs. A New Part. Search Stand. Model Higgs Boson ATLAS Detect. LHC. Phys. Lett. B 2012,
716, 1–29. [CrossRef]

5. Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976.
6. Gebbia, F.; Benedetti, C.; Benatti, F.; Floreanini, R.; Bina, M.; Paris, M.G.A. Two-qubit quantum probes for the

temperature of an Ohmic environment. Phys. Rev. A 2020, 101, 032112. [CrossRef]
7. Tamascelli, D.; Benedetti, C.; Breuer, H.P.; Paris, M. Quantum probing beyond pure dephasing. New J. Phys.

2020, 22, 083027. [CrossRef]
8. Salari Sehdaran, F.; Bina, M.; Benedetti, C.; Paris, M. Quantum Probes for Ohmic Environments at Thermal

Equilibrium. Entropy 2019, 21, 486. [CrossRef]
9. Mirkin, N.; Larocca, M.; Wisniacki, D. Quantum metrology in a non-Markovian quantum evolution. Phys. Rev. A

2020, 102, 022618. [CrossRef]
10. Wu, W.; Shi, C. Quantum parameter estimation in a dissipative environment. Phys. Rev. A 2020, 102, 032607.

[CrossRef]
11. Seveso, L.; Benedetti, C.; Paris, M. The walker speaks its graph: Global and nearly-local probing of the tunnelling

amplitude in continuous-time quantum walks. J. Phys. A Math. Theor. 2019, 52, 105304. [CrossRef]
12. Tamascelli, D.; Benedetti, C.; Olivares, S.; Paris, M.G.A. Characterization of qubit chains by Feynman probes.

Phys. Rev. A 2016, 94, 042129. [CrossRef]
13. Razzoli, L.; Ghirardi, L.; Siloi, I.; Bordone, P.; Paris, M.G.A. Lattice quantum magnetometry. Phys. Rev. A

2019, 99, 062330. [CrossRef]

72



Entropy 2020, 22, 1321

14. Benedetti, C.; Paris, M. Characterization of classical Gaussian processes using quantum probes. Phys. Lett. A
2014, 378, 2495–2500. [CrossRef]
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Abstract: The continued reduction of semiconductor device feature sizes towards the single-digit
nanometer regime involves a variety of quantum effects. Modeling quantum effects in phase space in
terms of the Wigner transport equation has evolved to be a very effective approach to describe such
scaled down complex systems, accounting from full quantum processes to dissipation dominated
transport regimes including transients. Here, we discuss the challanges, myths, and opportunities
that arise in the study of these complex systems, and particularly the advantages of using phase
space notions. The development of particle-based techniques for solving the transport equation
and obtaining the Wigner function has led to efficient simulation approaches that couple well to the
corresponding classical dynamics. One particular advantage is the ability to clearly illuminate the
entanglement that can arise in the quantum system, thus allowing the direct observation of many
quantum phenomena.

Keywords: nonlinearity; hysteresis; quantum transport; non-Hermitian behavior

1. Introduction

Over the past few decades, technological momentum has pushed semiconductors to the nanometer
scale and has even led to structural modifications of the basic field-effect transistor (FET), such as
replacing the planar FET with the finFET or Trigate FET using a vertical channel [1,2]. In such
devices, the active region is restricted to nanometer-scale dimensions in one or more directions, which,
depending on the involved time and energy scales, gives rise to quantum effects, such as energy
quantization, tunneling, position-momentum uncertainty, phase coherence, etc., and these make
the carrier transport quite complex. The complexity arises not merely from the need for a deeper
understanding of transport and behavior of such small systems, but also because these small devices
interact strongly with their environment. From a physical point of view, a small device comprises
an active region, which is open to the environment in which it is embedded (and thus exchanges
carriers is subject to interactions with this environment). This connection to the environment may be
through a set of portals, described as contacts, or through interactions with the phonon structure of the
lattice upon which the device lies, or through other types of interactions. The central feature of such
small devices is that the device micro-dynamics cannot be treated in isolation and must be considered
in conjunction with this environment [3]. This leads to a central tenet that the transport is now
heavily influenced by this coupling to the environment, and the basic Liouville equation and its causal
boundary conditions must be modified to account for the influence of this environment. In particular,
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the environment dramatically changes the quantum nature of the device, and the device similarly
must have an effect upon the environment, as measurements can only be made in the environment [4].
In considering transport in these small systems, further complexity arises because it has lost its time
reversible properties. A phase transition to irreversible behavior has occurred [5]. Hence, the device in
particular is now a far-from-equilibrium, complex system.

There is an additional problem in small semiconductor devices, which further complicates the
behavior. An analysis of the classical transport always gives us insight into the challenges that arise
in quantum transport models. In small devices, the time scale of carrier transport, within the device,
may well be dominated by the transient response characteristics of the carrier velocity and distribution
function [6,7]. Then, there may be excitation/relaxation effects in the environment, which affect the
transient behavior of the device itself through the device-environment interactions. Each of these
effects provides considerable complications and sets requirements upon any approach to quantum
transport to be applied in such nano-devices. This is not the least because the transient excitation
response is usually quite different from the relaxation response. As may be expected, this further
complicates the far-from-equilibrium treatment of the device.

When we drive a semiconductor system out of equilibrium, the resulting distribution function used
to characterize the transport does not simply evolve from the equilibrium version. Rather, it evolves
into a balance between the driving forces and the dissipative forces (assuming that a steady-state
balance can be achieved). There is a hierarchy of equations used to determine this distribution function,
as we move from large classical systems to smaller fully quantum mechanical systems, and, in fact,
there is a hierarchy of quantum mechanical approaches. The most detailed classical approach uses
the Boltzmann transport equation, and this transitions to several “Boltzmann-like” quantum analogs,
which arise from the density matrix, the Wigner function and non-equilibrium Green’s functions as
one moves down the hierarchy. Much has been written about quantum transport, especially with
regard to semiconductor devices. Unfortunately, a great deal of this material has not taken proper
account of the far-from-equilibrium behavior that these devices exhibit, the difficulties of short-time
response, or the complicated interactions between the environment and the device.

Our purpose in this article is not to review this entire body of work, but rather to try to illustrate
the nature of the problems that face someone trying to make sense of the complex system with which
one desires to work. In the next section, we will discuss some of the attributes of complex systems,
whether classical or quantum, as well as how classical and quantum systems differ. In Section 3,
we will explore the difficulties that arise due to the arrow of time and the resulting irreversibility.
Then, in the following sections, we discuss the leading methods of quantum transport and their
advantages and disadvantages. This will mention the nonequilibrium Green’s functions but mainly
rely upon phase-space Wigner functions. We will actually do these last two in the reverse order,
because we believe the former is limited in complex systems, while the latter allows us to utilize
numerical tools—the ensemble Monte Carlo particle methods—that are directly transferred from
classical transport. We will illustrate the methods with new results from four different applications,
some of which have never been studied with Monte Carlo methods previously.

2. The Nature of Complex Quantum Systems

A complex system may be regarded to be any system that is composed of multiple parts, many
of which are interacting with one another, which fits the above description of the device and its
environment perfectly. This assembly of various parts are typically both nonlinear and inhomogeneous,
especially when we also consider the environment in which the system is embedded. For our purposes,
we can thus regard any electronic nano-device as being a complex system, as this device certainly
interacts with its environment in a way that changes the properties of both the device and the
environment, a point we deal with below in detail.

To begin, let us consider the system itself without its environment. We know that the set of energy
levels for a quantum object allow us to express the Hamiltonian in terms of the extracted eigen-states
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for these levels; this is the energy eigen-state description and the Hamiltonian is diagonal in the absence
of interactions, as

H0ϕn(x, t) = E0nϕn(x, t), (1)

where the
{
ϕn(x, t)

}
form a complete set of basis functions as mentioned. For interactions within the

system, such as with scattering as an interaction, we treat the time-dependent perturbation with the
Fermi-golden rule. But, this does not conserve normalization of the state. To conserve normalization,
we have to use self-consistency, which in this case means accounting for the decay of the initial state [8].
When this is done, one determines a self-energy given as Σn = Δn + iΓn. The real part of the self-energy
corresponds to a shift downward of the energy (frequency shift due to the energy shift E0n → E0n − Σn ).
The imaginary part of the self-energy provides a damping of the state in time, which is the analog
of the classical resistive damping of a resonant circuit. The diagonal energies in the Hamiltonian
have this self-energy correction for each energy level (as indicated, Σ may be different for each energy
level), and the Hamiltonian has become non-Hermitian. In particular, an arrow of time has entered
the description of our quantum object. More importantly, the interaction leads to the view that states
which do not lie on the energy shell (described by the classical delta function between energy and its
evaluation in terms of momentum) can be important in the transport. So, there is no longer any single
energy shell, but a range of momentum values that can have the same energy. To describe this, one
defines a new quantity, which is called the spectral density, and describes the relationship between the
energy and the momentum, typically a Lorentzian line in equilibrium systems, just as in the classical
case. We will deal with the spectral density further below.

Let us now embed our quantum object, the device, within a surrounding environment as discussed
above. We can describe the states of the device by a density matrix ρD and the environment by a
density matrix ρE, which form a tensor product when the two parts are uncoupled. Our goal is to see
how they occur after the coupling and the interaction. The complex system can now be defined by a
Hamiltonian containing three terms:

H = HD + HE + Hint (2)

where HD describes the device, HE describes the environment, and Hint describes interactions between
the two. The composite density matrix for the entire system begins with the tensor product of the two
density matrices described above. There are two crucial steps in defining a reduced density matrix for
just the desired parts of the device. The first is to project out these states via a projection super-operator.
The second is to perform a trace over the environmental states which yields just the reduced set of
pointer states. This procedure has been known for a considerable time [9–11], and the derivations of
the following form have been discussed extensively [3,12,13]. The result is the transport equation for
the projected/desired part of the device

i�
∂ρPD

∂t
=
(
HPD + H′int

)
ρPD + ΣρPD (3)

where
H′intρPD = TrE

{
PHintPρD

}
ΣρPD = TrE

{
CρPD

}
C = i

�
PHQe−iQHQt/�QHP

, (4)

and P and Q = 1 − P are the projection super-operators that project the desired dynamics of the device
onto a reduced density matrix, or to its conjugate parts, respectively. Once again, the net Hamiltonian
is non-Hermitian. Moreover, the response of (3) is retarded, as is the usual case in projected systems.
More importantly, the second term in the parentheses of (3) may contain new processes that are not part
of either the device or the environment alone. Writing the second term in parentheses as separated, as
in (3), is a short-hand notation, since ρD cannot actually be separated from this interaction term. In that
sense, this term is an entanglement between environment and device, except that “entanglement” is
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also not a good description as this connection can appear even in classical systems (entanglement is
usually reserved for quantum systems). This term can be new processes depending upon both the
environment and the system. One such type is the resonant back-scattering trajectories from quantum
dots in a magnetic field [14–16], which depends critically upon the actual confinement structure of the
device and its contacts.

However, how does ρD differ from ρPD = PρD? The former density matrix contains all the
eigen-states of the entire device, given in (1), while the latter contains only those which can be used
e.g., for modeling and simulation of the entire system. The separation arises from the coupling to
the environment, which may well wash out a number of the quantum states. Those states which
are not washed out, termed the pointer states, provide the quantum effects within the device. In a
bulk semiconductor, this might just be the carrier dynamics of spatially quantized electrons (or holes).
For the device, it at least contains all eigen-states which are necessary to describe the response of the
device to excitations. For a counter example, the device contains the oxide, but the oxide polar modes
are usually not seen in the response directly, yet they provide intra-device scattering processes as does
the interface between the oxide and the semiconductor. These scattering processes are included above
in C, as are those processes arising from environmental effects, such as lattice phonons. The form of C
is standard perturbation theory where PHQ and QHP are versions of the matrix element coupling the
device to the phonons and its adjoint, respectively, while the exponential contributes to the energy
conservation through the appropriate frequencies. We now find that quantum transport, like classical
transport has distinctly far-from-equilibrium behavior which can lead to non-Hermitian Hamiltonians
and very nonlinear, inhomogeneous, and retarded transport, with new phenomena that are not present
in equilibrium systems.

2.1. Environmentally-Induced States

Classically, a well known environmentally-induced effect in the device world is drain-induced
barrier lowering [17]. Current injection into the MOS channel is governed by a potential barrier at
the source end of the channel. The barrier height is controlled by the gate-source potential difference.
Normally, there is enough scattering in the channel of the injected carriers, that the drain voltage is
“screened” from this barrier. But, if ballistic transport begins to occur as the size of the transistor is
reduced, the screening effect of the scattering is also significantly reduced. Then, the potential barrier
begins to be affected by the drain potential which, in turn, can act to lower the barrier itself, letting
more current into the channel [18]. We consider this as an environmentally-induced state as the drain
voltage is an environmental variable whose effect is transmitted through one of the contacts of the
device structure. The contacts themselves are a complex object whose properties are often not well
behaved. Hence, the device does not actually see the real drain voltage, but only some complex image
of it as transmitted into the actual device.

Now, let’s turn to a quantum interaction. We pointed out above that the coupling between the
environment and the device can lead to new states which do not exist in the device alone. We can
illustrate this with an array of quantum dots which are open to each other and to the environment.
Any two dots are coupled to each other via an open (non-tunneling) point contact-like structure, and
the end dots of the array are coupled similarly to the environment. It has been found that such a
structure supports new states that are localized on the quantum point contacts [14]. These states are
stable states and contribute strongly to the overall conductance through the device, and have been
shown to support the concept of quantum Darwinism [19], in which the exact same wave function
amplitude is seen in each mode that propagates through the quantum point contact.

2.2. Trajectories and Quantum Mechanics

Trajectories have been used in classical mechanics for centuries, where a particle trajectory follows
Hamilton’s equations of motion. And, this has been extended to transport theory through a particle
based simulation of the Boltzmann transport equation, which we normally call a kinetic Monte Carlo
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process [20]. But, shortly after the appearance of the Schrödinger equation [21], trajectories were
suggested for quantum mechanics as well. Physical observables retain the same appearance as their
classical counterparts, following the contributions of Madelung [22] and Kennard [23], who pointed
out the quantum dynamics would follow the classical potential plus any quantum potential.

In several simulations, we have compared classical trajectories with the full quantum mechanical
solutions [24–26]. In ballistic cases, the pointer states in classical simulations are located around
singularities called centers, as the eigenstate sits on a closed ring located at this point. The full quantum
simulation is, of course, smoothed out, due to uncertainty. Nevertheless, a Husimi function (which is
a smoothed Wigner function) for the quantum solution is located over the center corresponding to
the classical orbit. In the case of the environmentally-induced state, we term this classical state as a
bipartite state that is associated with a ring of attractors located in the quantum point contact region,
and the quantum state projects onto this same phase-space region. Most of these simulations actually
use an iterated form of the Schrödinger equation to obtain the quantum wave functions.

Over the past few decades, it has been realized that the Wigner function is particularly suited to
simulation with an ensemble of particles through the Monte Carlo procedure [27–29]. This is because
of the strong connection between the Wigner transport equation and the Boltzmann transport equation,
discussed below. A particle model to be evaluated with a Monte Carlo technique has been associated
with the Wigner and the Wigner–Boltzmann equation. This model makes the analogy between classical
and Wigner transport formalisms even closer, but is certainly in keeping with the approach of Kennard.
We will develop this more fully in Section 4 below.

3. Time Irreversibility

It was pointed out above that, when we apply fields or forces to the device, the entire complex
system undergoes a phase transition that breaks time-reversal symmetry. The device, within its
environment, then seeks a steady-state, far-from-equilibrium stable state that balances the driving
forces and the dissipative forces. During the transient response toward this stable state, if it exists,
the system may evolve though a number of intermediate phases, e.g., homogeneous, inhomogeneous,
linear, nonlinear, etc. When the forces are removed, the system response does not reverse its course
through these different phases, but seeks a relaxation toward the equilibrium steady-state from which
it initially deviated. The excitation process generates entropy [30]. The relaxation does not remove this
entropy from the system but generates even more as dissipation still occurs. We briefly will describe
such a case and then consider another, more complicated example.

To illustrate the difference between excitation and relaxation, consider the so-called Gunn diode,
composed of a bulk GaAs device. Typically, it is moderately doped in the 1014–1016 cm−3 region.
This device is an example of a negative-differential conductance (NDC) device [31]. The typical
current-voltage curve is illustrated in Figure 1. Here, there are regions of the curve where a single
current density can be supported by multiple values of electric field (see the dashed line). Hence, we
think of this curve as J(E), and thus of conductance. Thus, the use of NDC. It is important to note that,
for the dashed line, the central crossing of the J(E) curve, where J is decreasing while E is increasing, is
unstable and certainly is not a position of steady state.

When the device of Figure 1 is excited, the current increases along the blue curve until the peak is
reached in the current. Then, the operating point will try to jump to the high electric field region. But
the path it takes will not follow the blue curve, but one closer to the red curve marked “excitation”.
It may even move to a much higher current if the switching is fast, as any overshoot will appear as
a higher current. So, the exact red path followed depends upon how fast the device is driven to a
high-electric field. If the device reaches a steady-state, perhaps with a current between the peak and
the valley, an inhomogeneous electric field and charge density will exist in the device (the horizontal
dashed line in Figure 1 represents an average current for the inhomogeneous electric field). There will
be a high-electric-field region and a low-electric-field region, and an inhomogeneous charge density is
required to support this field difference through Gauss’ law. Now, it may turn out that it is not possible
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to reach a steady state, for the reason that the carriers are moving with the drift velocity appropriate
for the dashed curve. As the carriers reach the drain and exit the device, the field will try to become
homogeneous once again and this will trigger another high-field region near the cathode. This then
propagates through the device until it reaches the anode and starts the process over again. This leads to
current (and voltage) oscillations first observed by Gunn [32]. When the voltage excitation is removed,
the operating point does not pass back over the peak current density, but follows the lower red arrow
marked “relaxation” through the valley current density, then jumping back to the low-field current.
This leads to a hysteresis in the current-voltage characteristics. When the device and its environment
are considered, the nonlinear hysteretic behavior is considered to be an elegant example of catastrophe
theory [33], in which the effective potential generates a so-called fold catastrophe.

Figure 1. The current-field curve for an NDC device (blue curve). The red arrows indicate the
differences between excitation and relaxation, explained further in the text.

We conclude that carrier transport in complex quantum systems, such as nano-scale semiconductor
devices embedded within a complicated environment, requires a complex quantum description, which
takes into account quantum-coherent phenomena, as well as dissipative processes of scattering, with
both modified by the interaction with the environment. In the following, we will discuss the physically
intuitive Wigner phase-space function [34–36]. Our preferred focus is upon this function, mainly
because of its adaptability to ensemble Monte Carlo (EMC) simulations, and we will finally describe a
number of examples of this approach.

4. Wigner Functions

In general, we seek a formulation of many-body statistical quantum mechanics using the methods
of the interaction representation, perturbation theory, and second quantization in terms of expectation
values of field operators. To begin, we need to clarify just what this last sentence means in practice.
In Section 2, we broadly introduced the density matrix. The usefulness of this lies in the existence of an
entire set of basis functions, which are characteristic of the problem at hand. These lead to a density
matrix as

ρ(x, x′, t) =
∑

nm
cnmϕ

†
m(x

′, t)ϕn(x, t). (5)

Normally, the trace of the density matrix, which is the magnitude squared of the basis functions in the
absence of interactions, gives the average of a physical quantity as

〈A〉 = Tr
{
Aρ
}
. (6)

Temporal evolution of the density matrix is governed by the Liouville equation

i�
∂ρ

∂t
=

[
− �2

2m

(
∂2

∂x2 −
∂2

∂x′2

)
+ V(x) −V(x′)

]
ρ. (7)
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From this equation, one can develop an effective Boltzmann-like equation of motion, as is done below.
As with the wave function approach above, the density matrix is easy to couple to the self-consistent
Poisson equation for devices.

The Wigner function formalism presents a physically intuitive formulation of the quantum
mechanical theory, which retains most of the classical concepts and notions. The Wigner function,
which is defined in the phase space, is the quantum mechanical analog of the classical distribution
function. It is a real-valued function, often called a quasi-distribution, since physical averages are
obtained by classical, distribution function-based expressions. However, it allows for negative values
as a result of the uncertainty relation and quantum information/entanglement. The development of the
Wigner phase-space formulation of quantum mechanics, and the appropriate mathematics for operators
in this formulation, has been established historically [37]. This was followed by important contributions
from the work of Groenewold [38] and Moyal [39]. Importantly, the Wigner function formalism has
been established as an equivalent, autonomous alternative to operator mechanics; for a recent review
see [35]. A self-contained formulation of the quantum theory in terms of phase-space functions has
been attained by rules for filtering the admissible quantum states from the c-number functions of
the phase space. Operators in this phase-space formulation are related by novel non-commutative
algebraic rules given by Moyal. Important questions, like what discriminates classical from quantum
mechanical behavior in the phase space have been addressed. Indeed, in equilibrium, the Wigner
function is positive definite, which essentially couples it to the Boltzmann distribution function.
However, the onset of quantum effects leads to both negative excursions and non-Gaussian distribution
functions. Furthermore, it has been shown that phase-space quantum mechanics recovers the operator
mechanics, so that it is clear that there is a logical equivalence between the two theories [40].

We introduce the Wigner function in the historical manner, beginning with the mixed state,
single-time density matrix (5) and the Liouville equation governing it’s evolution (7). Then, we introduce
the center-of-mass coordinates for position,

R = 1
2 (x + x′) , s = x− x′. (8)

and construct the Fourier–Weyl transform in the difference variable as

fW(R, p, t) =
1

2π�

∞∫
−∞
ρ
(
R +

s
2

, R− s
2

)
e−isp/�. (9)

This leads to the Wigner transport equation as

∂ fW
∂t

+
p
m
∂ fW
∂R

=
1

2π�

∫
dp′VW(R, p− p′) fW(R, p′, t), (10)

where the Wigner potential is given by

VW(R, p) =
∫

ds sin
(

p′s
�

)[
V
(
R +

s
2

)
−V
(
R− s

2

)]
. (11)

The Wigner function is integrable with respect to position or momentum, and these integrals
give rise to momentum or spatial carrier density distributions, respectively. The Wigner transport
Equation (10) reveals an important analogy with the classical Boltzmann equation. The left hand
side represents the Liouville free-streaming operator. We recognize that the Wigner function is a
quasi-distribution, but it is sufficient to determine transport coefficients, given (10). That is, the
Wigner function plays the same role as the Maxwell–Boltzmann distribution classically; once the
Wigner function is known, all transport properties are determined from appropriate integrals over
the distribution.
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If the potential V in (11) is a linear or quadratic function, the right-hand side reduces to the
classical force acceleration term so that (10) reduces to the ballistic Boltzmann equation. If the potential
is a slowly varying function in the region where fw is sizable (characterized by a quantity called
coherence length), the latter approaches the classical distribution function. Thus, the first important
property is that the Wigner formalism ensures a seamless transition from quantum mechanical to
classical transport regimes. This also reveals the basic difference between classical and quantum
mechanical evolution in the phase space: The former (classical evolution) is governed by the normal
force, corresponding to the first derivative of the Wigner potential, while all potential derivatives are
involved in the latter (quantum evolution). Indeed, Wigner himself proposed that the leading term in
the quantum correction would be given by the second derivative of the total potential.

Furthermore, a scattering operator, analogous to the one used with the classical Boltzmann
equation, acting on fw may be added to the right-hand side of (10), giving rise to the Wigner-Boltzmann
equation [41]. This equation describes the electron evolution as a competition between the scales of the
involved physical quantities, e.g., the competition between the accelerating forces and the dissipative
forces. If one develops dimensionless parameters, corresponding to the relative strength of the energy
scales of the device, the potential, the phonon energy, and the electron–phonon coupling factor, these
are tied into a recently derived notion called the scaling theorem [42]. This theorem reveals a second
mechanism causing a seamless transition from quantum mechanical to classical transport. Scattering
causes a coherence length reduction and electron localization. An increase in the electron-phonon
coupling factor shrinks the spatial interval where the electronic state remains unperturbed or ballistic.
This gradually transforms, on a microscopic level, the Wigner-Boltzmann equation into the classical
Boltzmann counterpart. The second important property of the Wigner function formalism is that
quantum-coherent and scattering-dominated transport regimes are treated on equal footing.

4.1. Particle Approaches

We already noted above that there is a view of quantum mechanics that specifically incorporates
particle trajectories. Madelung took careful note of Schrödinger’s work, and immediately noted that
the probability density had all the appearances of a fluid flow. Kennard quickly learned of the new
developments in quantum mechanics as well, and found the quantum mechanics of a system of
particles came directly from the Schrödinger equation. Moreover, he found that the particles would
follow normal Hamiltonian dynamics, although the potential would have to be modified through
the addition of a quantum potential. One form of this potential is often called the Bohm potential
following his resurrection of the Madelung–Kennard hydrodynamic ideas [43]. Further, of course,
the quantum potential in which we are interested is the Wigner potential (11). Particles naturally move
in phase space, so the Wigner phase-space representation of quantum mechanics is a natural venue for
Monte Carlo particle dynamics. The key problem is just how to handle the complicated integral of the
Wigner potential that appears in the Wigner transport Equation (10). There have been many methods
developed, but we focus here on the pseudo-particle approaches that are used in Monte Carlo.

The weighted Monte Carlo approach was formally introduced in 1992 [44]. The paths considered
have the problem that there are regions in phase space in which the distribution function has little
weight, or is negative. This means that the particles in the Monte Carlo simulation have low probabilities
of reaching these areas and the consequent solutions are very noisy in these phase space areas. In some
sense, this approach arises from older ideas of variations in importance sampling to reduce variances
in Monte Carlo. The weighted Monte Carlo procedure has been shown to be especially useful in the
backward Monte Carlo, where one uses the series expansion to guide a propagation path from the
final state back to the initial state. The path integral is expanded in a Neumann series as above [45,46].
The use of this series then corresponds to a set of paths that contain a different number of scattering
interaction events. Since the paths involve a number of scattering events, each scattering event
introduces a phase proportional to
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2cos
[
q(x1 − x2) −ωq(t1 − t2)

]
, (12)

where q and ωq are the wave number and radian frequency of the phonon. Hence, because the
scattering is nonlocal, it goes beyond the Fermi golden rule used in Boltzmann transport. Presumably,
after many scattering events, multiple paths can be summed to provide the negative regions of the
Wigner function. Now, we note that there are two positions and two times required to formulate the
scattering process, and this is a complication for the method. Moreover, here the negative regions arise
solely from the scattering processes.

The affinity method is another approach where an affinity, which may be negative, is assigned to
each particle. This immediately solves the problem discussed in the last paragraph, since a negative
part of the Wigner function is clearly represented by particles whose affinity is also negative. The Monte
Carlo approach is set up so that two systems are solved simultaneously. The first system is the particle
system, which resembles a standard classical EMC. The second system is the wave properties of the
particles, the affinity. That is, all particles in the system are treated classically as whole particles, but the
method accounts for fully coherent transport, but has been further generalized to account for scattering.
They are scattered using normal EMC scattering techniques, and are drifted and accelerated using
the standard field term deriving from the solution of the Poisson equation in the presence of the real
potential, such as the tunneling barriers. However, the discontinuities in the potential are handled as
boundary conditions on the solutions of the Poisson equation. That is, the potential jump is introduced
in matching solutions from different regions of the solution space for the Poisson equation. Once the
above operations have completed, the Wigner distribution function is calculated from the particle’s
position and affinity according to [47–49]

fW(x, p) ∼
∑

i
αiδ(x− xi)δ(p− pi), (13)

where pi, xi, and αi are the momentum, position and affinity, respectively, and the sum i runs over the
set of particles used in the simulation. There are two points here. By using this in the Wigner equation
of motion, we see that one needs to update both the classical properties (position, momentum, etc.)
and the quantum properties (affinity). While the classical properties are updated by the classical forces,
the affinity is updated by the quantum, or Wigner, potential. Because the collisions are classical, they
have to be modified for the two times that occur in (12). Actual collision durations tend to be a few
femtosecond [50]. Once we have a distribution for these times, then the nonlocality of the scattering
can be easily introduced for each scattering event [51].

Another approach is the signed particle approach, in which the action of the Wigner potential
gives rise to generation and annihilation processes: Any particle, with sign a = ± 1, and momentum p,
generates two new secondary particles, with signs ±a and momenta (p ± p1). Both the generation rate
and the distribution of momentum offsets p1 are determined by the Wigner potential. Any of the three
particles can again generate new, secondary pairs, etc. An important property of the model is that two
particles with opposite sign, located in the same phase space point at the same time, annihilate each
other. However, in numerical applications, the phase space has to be decomposed into cells rather
than points, where the annihilation property gives rise to the concept of indistinguishable particles,
which are stored in cells at consecutive time steps, so that a single integer number per cell replaces
the ensemble of particle states within that cell. This greatly reduces the memory requirements in the
implementation of the model. The first two-dimensional Wigner function based simulations could only
be realized thanks to this approach but also due to novel parallelization strategies [52,53]. Because
of both accomplishments, the number of particles can be significantly increased while still retaining
feasible simulation times.

A variety of applications has been explored using the particle interpretation of the Wigner function
formalism. As already discussed, a comparison between NEGF and Wigner simulations of RTD has
been presented [54], showing how the Wigner function based approach bridges the gap between
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purely coherent and scattering dominated transport regimes. In the next section, we give some further
illustrative examples of the Wigner Monte Carlo method.

4.2. Why Not Non-Equilibrium Green’s Functions (NEGF)?

The NEGF has been widely applied to simulations of semiconductor devices, despite concerns
over the applicability of many of the approaches. Some of the more advanced approaches use atomistic
approaches to yield the full band structure. This has allowed the use of realistic band structures [55–57],
phonon spectra [58], strain effects [59], interface roughness [60], and material characteristics. For purely
ballistic problems, the NEGF formalism is the approach of choice, as it provides a tomography of
the generic physical quantities in terms of energy, although in this situation the problem reduces to
merely the retarded and advanced equilibrium Green’s functions [61]. In general, the NEGF approach
is efficient for stationary problems—determined by the boundary conditions—near the coherent limit.
This is because the center-of-mass coordinates (8) must also be generated in the two-time coordinates.
In nearly all work on NEGF, the average position R and the corresponding average time are totally
ignored. Hence, these NEGF are for homogeneous steady-state systems. They do not, and often cannot,
handle strongly inhomogeneous and transient systems.

There are further problems. Most modern approaches to the use of NEGF base their work on
that of Keldysh [62]. The scattering self-energies depend on the carrier G< and G> and on the greater
and lesser Green’s functions of the phonons, which account for the occupancy of the phonon states
and depend on the phonon energies. While this approach has been widely used, Keldysh points out
that it works only upon the assumption that the system is close to equilibrium, so that the normal
techniques can be used. For example, Keldysh assumes that the interaction representation, in which the
scattering-derived interaction representation is assumed to be a unitary translation operator. But, this
assumption fails when the energies contain self-energies so that the Hamiltonian, for example, (2), is
no longer Hermitian. Again, most approaches for devices use only the Dyson equation [63] to provide
a re-summation of interaction terms into a simple self-energy. With anisotropic scattering, such as that
by impurities or polar phonons, one needs to utilize the Bethe–Salpeter equation [64] to completely
evaluate the scattering. The onset of nonequilibrium phonon distributions [65], proper treatment of
the scattering in many cases, and full use of both the Bethe–Salpeter equation with vertex corrections,
increase tremendously the method’s computational effort. It is then easy to see that particle-based
Wigner functions allow a quicker route to the solution, as well as being more applicable than NEGF in
many cases, particularly when inhomogeneous and transient transport is desired.

5. Wigner Function Applications

The Wigner function has been applied to a great many fields of science, so that there are a great
many possible examples that could be discussed. Here, we will concentrate on four examples that
have been investigated by the authors in a great many studies, and with new results. The first deals
with electron tunneling, which has been discussed and treated with Wigner functions for some half a
century, but it still admits to new insights. The second example comes from the study of spin transport
in semiconductors, in which one common observable is the spin Hall effect, treated here for the first
time by Monte Carlo techniques. Our third study deals with Josephson junction circuits, which are of
interest to the quantum information and computing world, again treated for the first time by Monte
Carlo techniques. Finally, we deal in the fourth example with electron interference in which local
potentials, such as those arising from impurities, affect the quantum nature of scattering.

5.1. Tunneling

In Figure 2, we illustrate just how Wigner functions generate entanglement merely by passing
through a tunneling junctions. Here, the simulation is based on the signed-particle model, and can be
conveniently understood in classical terms thus enabling a deep physical insight about the evolution
process. An initial carrier state encounters a potential with a specifically engineered shape, splitting
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the initial packet to four well established density peaks. The evolution maintains the initial coherence
despite the fact that the peaks propagate in disparate directions. If time is reversed, the backward
evolution recovers the initial state. This means that if one of these peaks is modified by another potential,
the interaction will be felt by the whole state so that the rest of the peaks are modified too. Any such
interaction causes a momentum redistribution of the signed particles representing the carrier state, and
that is how we can establish an intuitive picture in which the peaks communicate via the momentum.
This picture remains valid as long as the involved physical processes maintain the initial coherence.
Phonons strive to redistribute the momentum of the signed particles towards equilibrium [66]. Then,
the evolution loses it’s quantum mechanical character in favor of the classical behavior, where an initial
carrier ensemble is scattered by the potential, which modifies the probability distribution of the carriers
in the phase space. These considerations illustrate processes that are important in, e.g., the area of
quantum cryptography, where the primary obstacles are decoherence processes.

Figure 2. An initial Wigner function corresponding to a minimum uncertainty wave packet encounters
a potential with a specifically engineered shape, splitting the initial packet into four well established
density peaks propagating in disparate directions. The evolution maintains the initial coherence.
The variations of the density in the potential region are related to the oscillations of the Wigner function,
which furthermore connote interference effects and entanglement.

5.2. Spin Filtering

Gaps that open in the free electron spectrum in semiconductors typically give band energies of the
Einstein (relativistic) form. This is especially true when the spin-orbit interaction is included. In the
layer compounds, and particularly in the transition metal di-chalcogenides (TMDCs), in the presence
of the spin-orbit interaction, the Hamiltonian can be written as [67]

H = at
(
τkxσx + kyσy

)
− λτ

2
(σz − 1)sz, (14)

where the various σ terms are the Pauli matrices for two pseudo-spin basis functions of the valleys
in the strange bands of the TMDC, τ is the valley pseudo-spin index, a is the lattice constant, t is
the nearest neighbor hopping energy, Δ is the energy gap, 2λ is the spin splitting at the valence
band top, and sz is the Pauli matrix for spin. These materials lack an inversion symmetry, and the
principal valence and conduction bands around the band gap derive primarily from the transition
metal d-states [68], and they tend to have a direct band-gap at the K and K’ points (corners of the
hexagonal shape) of the Brillouin zone. The spin–orbit interaction produces opposite spin splittings in
the two equivalent valleys of the valence band, and can lead to a valley-spin Hall effect, similar to the
usual spin Hall effect [69–71], arising from the presence of a Berry curvature [72]. The spin is coupled
to the valley pseudo-spin due to the difference in the orientation of the spin splitting [73]. This leads to

85



Entropy 2020, 22, 1103

a transverse velocity that is different in the two valleys and pushes the opposite spins to opposite sides
of the nanowire.

In light of the above, it is clear that if we represent the particle by a Gaussian wave packet, it will
move with a constant drift velocity that has a longitudinal component due to the applied electric field
and a transverse component due to the Berry curvature and effective magnetic field. The latter will
be oppositely directed for the two valleys. To illustrate this, we take the TMDC WS2. Because the
mobility of WS2 is only of the order of 10–100 cm2/Vs, the transverse velocity is not that much smaller
than the longitudinal velocity. For a longitudinal field of 1 kV/cm, a typical density of 1011 cm−2 of
free carriers, a mobility is 60 cm2/Vs, we find a drift velocity of about 3.6 × 104 cm/s. The transverse
velocity is generated by the Lorentz force arising from the effective magnetic field, and this gives
a transverse velocity of approximately 1.9 × 104 cm/s, using values in (15) from [74]. We will use
these values below in the simulations. For this system, the Wigner function for two spins starting
from the same location in the semiconductor will be entangled with a cross-term representing the
correlation of the two oppositely-directed spins [74], and this may be evaluated analytically. Using
the particle Monte Carlo approach, we can continue to use a simple model for the Wigner function,
formed initially from two Gaussian packets as in the analytical approach. However, we utilize a new
sampling technique [75] for the Wigner potential to evaluate the entanglement of the two packets.
In this approach, the wave-packet phase-space Monte Carlo method expands the wave-function in a
local basis set (e.g., a Gaussian), then acquires via Ehrenfest’s theorem a system of ordinary differential
equations similar to the classical Hamilton’s equations. Expectation values are then propagated in a
manner similar to classical statistical mechanics. An interference pattern concentrated between the
two arises from incorporating a phase related to the differences in real space and momentum space
between the two packets. Particles are accelerated by using Ehrenfest’s theorem for a real and quantum
potential, whose value is found from the parameters of a parabolic band model of WS2, and then
utilizing the Hamiltonian Monte Carlo technique for solving the Wigner equation. The results are
shown in Figure 3, and agree almost exactly with the analytical results. One may compare these results
with those of [74] to observe that the Monte Carlo procedure faithfully reproduces the analytical results.

Figure 3. Wigner function for a pair of opposite spin electrons propagating via the valley spin Hall
effect. The entanglement is clearly shown between the two main Gaussians. (a) shortly after the two
spins states separate, where the entanglement still overlaps the main pulses. (b) At a later time, when
the two main pulses are further separated and the entanglement is more distinct.

5.3. Superconducting Josephson Junction

The previous examples are known to be strongly connected to classical phase space solutions.
In many cases, the equation simply becomes the Boltzmann equation. The characteristics of the Liouville
operator are simply the classical trajectories. Now, we want to turn to non-quadratic Hamiltonians.
The only nonlinear Hamiltonian known in quantum mechanics to have an analytical solution is the
hydrogen atom. However, it would be of greater interest to see if the method can actually identify the
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eigenvalues and eigenfunctions for a Hamiltonian with unknown solutions, or at least not well-known
solutions. The simplest case to examine is the tilted washboard, given by

H(x, p) =
p2

2m
− α cos(βx) − γx. (15)

This is often referred to as the cosine-Gordon equation, although it occurs more commonly with a
sine term instead of the cosine term. Here, α is usually related to the d.c. Josephson current, which
exists in the absence of an electric field in the Josephson tunnel junction [76]. The term β is related to
the magnetic field, in which the Josephson current is oscillatory in the ratio of BA/Φ0, where B is the
magnetic field, A is the area of the junction, and Φ0 (=h/2e) is the flux quantum (the factor of 2 arises as
the tunneling particle is a Cooperon of paired electrons). The term γ = eE is an applied electric field
which gives a tilt to the periodice cosine potential. The cosine, or washboard, potential is commonly
used in Josephson based qubits in quantum information.

To study this, we use the normalized parameters m = 1.5625, β = 1.0 and α = 4.0. We use a
numerical eigen solver routine to estimate the first three eigenvalues to be E0 = 0.816, E1 = 3.25, and
E2 = 5.5, all in normalized relative units. Instead of sampling the phase space coordinates directly, we
instead sample the energy distribution and place the particles near the energy eigenvalue E3 of the
oscillator to generate the boson Fock state. For low values of γ, the system is essentially a bound well
and should have eigenstates similar to a Fock state. As γ increases, the asymmetry should tilt and shift
the eigen spectrum. We illustrate this with two values of γ, as shown in Figure 4. In panel (a), we
initiate the Wigner function using the n = 2 Fock state, then let the particles evolve until a steady state
Wigner function is reached. In panel (b), we raise the electric field to induce particles to diffuse into
adjacent minima of the cosine potential, thus leading to quantum diffusion. In each case, as the tilt is
increased, we see the Wigner function increasingly skewed from the excited harmonic oscillator we
initialize the particles with.

Figure 4. (a) Wigner function initialized near E3 in the cosine potential, for the cosine-Gordon equation.
Here, γ = 0.2. (b) Wigner function for γ = 1.2, illustrating quantum diffusion to adjacent cells of the
cosine potential.

It was mentioned above that the tilted washboard potential is a model of the superconducting
qubit Hamiltonian. It is straightforward to couple multiple qubits together with a pairwise interaction.
Quantum circuits for quantum computing, such as the one recently unveiled by Google, involve only a
small number of quantum particles, in their case 53 [77]. Generally, quantum simulation algorithms
scale at best O(exp(N)), where N is the number of particles. For the present algorithm, which is a full
solver for the Wigner equation, the scaling is O(Np

3), where Np is the number of pseudo-particles.
The number of pseudo-particles is very challenging to estimate. The Wigner function is not a positive
definite probability function, so one cannot use typical asymptotic convergence arguments to deduce
the Monte Carlo convergence rate. Moreover, the number of particles per quantum particle in the
present simulations is at least 105. In the worst case scenario, Google’s quantum circuit would require

87



Entropy 2020, 22, 1103

5.3 × 106 particles, assuming the qubit-qubit interaction does not necessitate far more particles for
convergence. Such a simulation would be tractable on a small number of compute nodes, suggesting
that simulating portions of the Google circuit using the above method is a plausible application to
explore in the future.

5.4. Magnetic Single-Electron Control in an Interfering Double-Well Potential

Coherent single electron control is critically important for quantum information processing and
advanced logic device operation principles based on the quantum character of the electron evolution
on the nanometer scale [78]. An interesting and novel mechanism to coherently control single electron
dynamics is provided by magnetic double-well potential structures [79]. Here, we investigate the effect
of a uniform magnetic field on the electron state interference pattern manifesting in a double-well
potential waveguide by means of full Wigner quantum transport simulations.

To be able to clearly investigate the electron quantum dynamics, we focus on coherent transport,
i.e., no scattering processes are considered. In extension to previous work, here we target a non-focusing
potential well setup, inspired by [80]. We consider the evolution of an initial electron state described
by the Wigner function in a two-dimensional phase space (r = x, y; p = kx, ky) in the presence of a
uniform magnetic field B [81] and simulated by the Wigner EMC method using the signed-particle
model via ViennaWD [82].

The governing evolution equation is obtained by introducing the magnetic component of the
Lorentz force in analogy with the classical (Boltzmann) equation. Indeed, it is not an approximation
but an exact quantum-coherent model obtained from the general magnetic Wigner theory for the case
of a spatially-dependent but near stationary electric field E(r) and a constant magnetic field B.

Figure 5 shows the principal details of the geometry of the simulated waveguide defined by
infinite potentials along the left and right boundary as well as the averaged electron density distribution
for symmetrically-sized potential wells and with, and without, a magnetic field. The boundaries in
the vertical transport direction (top and bottom) are open. Green isolines at −0.15 eV indicate the
potentials wells (Coulomb profile; peak potential at −0.35 eV). The initial state of the electron is the
Wigner function corresponding to a minimum uncertainty wave packet with a standard deviation of
σ = 16 nm . The central wave vector is

(
k0x, k0y

)
=
(
0, 0.837 nm−1

)
and corresponds to an energy of

0.14 eV . The initial state is centered at (x = 20 nm , y = 0 nm) and is injected at the bottom boundary,
directed upwards towards the wells. Electrons are injected every femtosecond and do not interact with
each other: The electron injections represent independent, identically distributed trials, similar to the
Young-type double-slit experiments.

As has been previously shown and as expected, symmetric potential wells give rise to a symmetric
electron density interference pattern. However, reducing a potential well by 50% bends the density
pattern to the right and shows how the pattern can be manipulated by a potential well induced electric
field (Figure 5a). A similar but stronger behavior is observed if the magnetic field is enabled: Figure 5b
corresponds to the symmetric double-well potential case with an applied magnetic field (B = −6 T ).
The magnetic field shifts the density pattern in a more pronounced way than the asymmetric case.
Both effects, the magnetic field and the asymmetric potentials, can be combined to work in tandem to
further shift the pattern to the right.

However, despite the similarity of the electric and magnetic effects on the quantum electron
density distribution, we observe that the electric and magnetic fields play a very different role in the
transport dynamics. Figure 6 illustrates the Wigner function negativity maps corresponding to the
setups shown in Figure 5. As previously mentioned, the Wigner function develops negative values in
regions of quantum correlation effects. The maps f−W(x, y) are created by integrating the negative values
of the corresponding Wigner functions over the momentum coordinates. As Figure 5 clearly shows, the
magnetic field destroys the coherence of the dynamics as the negativity is drastically reduced. This can
be linked to the role of the two responsible electromagnetic terms in the transport equation: The action
of E is independent from the particle momentum so that the particles in the ensemble are accelerated
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synchronously. To the contrary, the action of B explicitly depends on the momentum, which distorts
the evolution.

Figure 5. Averaged electron density (arbitrary units): (a) Asymetric potential wells and no magnetic
field; (b) Symmetric potential wells and applied magnetic field. Green isolines indicate potential wells.

Figure 6. Wigner function negativity map: (a) Asymetric potential wells and no magnetic field;
(b) Symmetric potential wells and applied magnetic field. Green isolines indicate potential wells.

6. Conclusions

Carrier transport in complex quantum systems, such as nanoscale semiconductor devices
embedded within a complicated environment, requires a complex quantum description, which
takes into account quantum-coherent phenomena, as well as dissipative processes of scattering, with
both modified by the interaction with the environment. The use of the Wigner function is particularly
useful in studies of these systems, as the Wigner function may explicitly illustrate the important
quantum effects and entanglement that is a signature of quantum interactions. Particle approaches
to Monte Carlo simulation of the quantum Wigner function provide an efficient approach to the
study of such methods. In these methods, it becomes clear how to study each process and establish
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its importance in the behavior of the overall system. The Wigner function allows one to clearly
identify the quantum effects, particularly the entanglement that arises between different parts of the
quantum system.
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Abstract: Without access to the full quantum state, modeling quantum transport in mesoscopic
systems requires dealing with a limited number of degrees of freedom. In this work, we analyze
the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the
simulated ones as a transition between single-particle pure states. First, we show that Bohmian
conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons
inside open quantum systems in terms of single-particle time-dependent pure states, either under
Markovian or non-Markovian conditions. Second, we discuss the practical application of the method
for modeling light–matter interaction phenomena in a resonant tunneling device, where a single
photon interacts with a single electron. Third, we emphasize the importance of interpreting such a
scattering mechanism as a transition between initial and final single-particle BCWF with well-defined
central energies (rather than with well-defined central momenta).

Keywords: quantum dissipation; Bohmian mechanics; collision; conditional wave function; decoher-
ence; open systems; many-body problem

1. Introduction

Due to the well-known many-body problem, electron transport in nanoscale devices
must be modeled as an open quantum system [1]. The contacts, cables, atoms, electro-
magnetic radiation, etc. are commonly considered part of the environment. The effect of
this environment on the dynamics of the simulated degrees of freedom, i.e., the electrons
in the active region, can be recovered using some type of perturbative approximation.
There are different formalisms in the literature to deal with such environmental perturbation
(Green’s functions [2–4], density matrix [5,6], Wigner distribution function [7–11], Kubo
formalism [12], Pauli quantum Master equation [13,14], pure states [15,16], etc). In this
work, we analyze the possibility of modeling the quantum nature of such simulated de-
grees of freedom with single-particle time-dependent pure states and their environmental
perturbation as a transition between such single-particle time-dependent pure states.

In particular, we are interested in modeling the collision of an electron with a phonon
or/and photon in an active region with tunneling barriers, i.e., in a scenario where the
energy and momentum operators do not commute. The path to achieve this goal requires
first the answer to the following question: Is it possible to model an open system in terms of
single-particle pure states?. Once this conceptual question is answered, the next practical
question that needs to be addressed is the following: How do we select the single-particle pure
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states before and after the collision? In this paper, we answer both questions. It will be shown
that the alternative Bohmian formulation of quantum transport [17] provides a rigorous
and versatile tool to describe collisions in open quantum systems in terms of single-particle
time-dependent pure wave functions. This work is part of a long-term research project
for the development of a general-purpose nanoelectronic device simulator, the so-called
BITLLES simulator [18], using Bohmian trajectories.

The structure of the paper is the following. In Section 2, the answer to the first question
about using single-particle pure states for open systems is provided from the Bohmian
description of quantum phenomena. In Section 3, we provide an exact model for matter–
light interaction in a closed system. Some simulation results are reported for different
conditions of the total energy and a final discussion on the interaction between active region
and environment to extend this description to an open system is provided. In Section 4, the
practical implementation of the transition between pre-selected and post-selected states
is discussed. This transition is performed for two different models: model A deals with
energy conservation, and model B deals with momentum conservation. In Section 5 these
two models, computed in a flat potential and in an arbitrary potential, are compared. Our
conclusions are summarized in Section 6.

2. Is It Possible to Model an Open System in Terms of Single-Particle Pure States?

As we have stated, the active region of an electron device is, strictly speaking, an open
quantum system interacting with the contacts, atoms in thermal motion, radiation, etc. As
a consequence, in principle, one is not allowed to describe the electron in the active region
in terms of pure states, but one has to rely on the use of the reduced density matrix.

Most approaches to open systems revolve around the reduced density matrix built
by tracing out the degrees of freedom of the environment [1]. The ability to describe open
systems with pure states can be partially justified when dealing with Markovian systems.
In a pragmatical definition of Markovianity [19], the correlations between system and
environment decay in a time scale that is much smaller than the observation (or relevant)
time interval of the system. Thus, it can be assumed that every time we observe the system,
it is defined by a pure state. For Markovian evolutions, the Lindblad master equation [20]
for the reduced density matrix is a standard simulation tool. In addition, in Markovian
scenarios where the off-diagonal terms of the reduced density matrix become irrelevant,
a quantum master equation can be implemented, dealing with transitions between pure
states [13,14].

In fact, it is possible to develop stochastic Schrödinger equations to unravel the
reduced density matrix in terms of a pure-state solution for either Markovian or non-
Markovian systems. The pure-state solution of stochastic Schrödinger equations can
be interpreted as the state of the Markovian system while the environment is under
(continuous) observation. However, such a physical interpretation cannot be given to
the solutions of the stochastic Schrödinger equations for non-Markovian systems [21–30],
where pure states can provide the correct one-time ensemble value but cannot be used to
compute time correlations.

Therefore, for general non-Markovian quantum processes, when we are interested in a
time-resolved description of the electron device performance, it is not possible to define the
open system in terms of orthodox pure states. As described in [31] and explained below, a
proper solution for treating electrons in non-Markovian open systems as single-particle
pure states comes from the Bohmian formalism.

To explain how the Bohmian theory allows for a general description of a many-body
quantum system in terms of wave functions, we consider a simplified scenario with only
two degrees of freedom: one degree of freedom x belonging to the system plus one degree of
freedom y belonging to the environment. Thus, the pure state in the position representation
solution of the unitary Schrödinger equation is Ψ(x, y, t). For each experiment, labelled
by j, a Bohmian quantum state is defined by Ψ(x, y, t) plus two well-defined trajectories,
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Xj[t] in the x-physical space and Yj[t] in the y-physical space. The role of the many-body
wavefunction Ψ(x, y, t) is guiding each trajectory Xj[t] with a velocity that reads [17,32,33]

vj
x[t] =

dXj[t]
dt

=
Jx(Xj[t], Yj[t], t)

|Ψ(Xj[t], Yj[t], t)|2 =
1

m∗
∂S(x, y, t)

∂x

∣∣∣∣
x=Xj [t],y=Yj [t]

, (1)

where Jx(x, y, t) = h̄ Im
(

Ψ∗(x, y, t) ∂
∂x

Ψ(x, y, t))
)

/m∗ is the current density with m∗ the
mass of the x-particle, and where S(x, y, t) is the phase of the wave function written in
polar form Ψ(x, y, t) = |Ψ(x, y, t)|eiS(x,y,t)/h̄. Analogous definitions are possible for the
Yj[t] trajectory. By construction, the two positions {Xj[t], Yj[t]} in different j = 1, ..., W
experiments are distributed (obeying quantum equilibrium [32,33]) at any time as

|Ψ(x, y, t)|2 =
1

W

W

∑
j=1

δ(x − Xj[t])δ(y − Yj[t]). (2)

The identity in (2) requires W → ∞. Numerically, we only require a large enough W to
reproduce ensemble values given by the Born law in agreement with the orthodox theory.
From a computational point of view, to ensure that (2) is satisfied at any time t, we only
have to select the initial position {Xj[0], Yj[0]} at time t = 0 according to the distribution
|Ψ(x, y, 0)|2.

The Bohmian theory opens the possibility to deal with a wave function of a subsystem
through the concept of Bohmian conditional wave function (BCWF) [33,34]. The BCWF is
defined for the x-degree of freedom during the j-th experiment as

ψj(x, t) ≡ Ψ(x, Yj[t], t). (3)

We emphasize that ψj(x, t) provides a rigorous (Bohmian) definition of a single-particle
wave function for an open system [32] that still includes the correlations with the other
degrees of freedom y. Notice that the reason why the BCWF has a relevant role in Bohmian
theory is because the trajectory Xj[t] is equivalently guided by Ψ(x, y, t) or by ψj(x, t). In
other words, the velocity vj

x[t] in (1) can be equivalently computed from the BCWF as

vj
x[t] =

dXj[t]
dt

=
J j
x(Xj[t], t)

|ψj(Xj[t], t)|2 =
1

m∗
∂sj(x, t)

∂x

∣∣∣∣
x=Xj [t]

, (4)

where |ψj(x, t)|2 = |Ψ(x, Yj[t], t)|2, J j
x(x, t) = h̄ Im

(
ψj,∗(x, t) ∂

∂x
ψj(x, t))

)
/m∗, and sj(x, t)

is the angle of the BCWF in polar form ψj(x, t) = |ψj(x, t)|ei sj(x,t)/h̄. Notice that we have
not performed any approximation about the Markovianity of the quantum system in the
definition of the BCWF. Thus, at the conceptual level, we conclude that any quantum
open system can be analyzed in terms of single-particle pure states (i.e., BCWF) using the
Bohmian formalism. This is a well-known result [31] and provides a definitive positive
answer to the initial question: Is it possible to model open system in terms of single-particle pure
states? Yes. Notice that the BCWF ψj(x, t) will be a time-dependent function either because
Ψ(x, y, t) is a time-dependent function or because the trajectory Yj[t] is moving.

Let us discuss now a more realistic scenario with N electrons inside the active region
with degrees of freedom {x1, x2, ..., xN} that we want to simulate explicitly (for simplicity,
each electron is assumed to be defined in a 1D space). There are, however, M envi-
ronmental degrees of freedom {y1, y2, ..., yM} that we do not want to simulate explicitly.
The new many-body wave function of such a scenario is Ψ(x1, x2, ..., xN , y1, y2, ..., yM),
which is numerically inaccessible. We define X̄j

i [t] = {xj
1[t], .., xi−1[t], xj

i+1[t], ..., xj
N [t]}

as the set of all Bohmian trajectories of the system except xj
i(t) for the i-particle in the

j-experiment. Notice that we are dealing now with a superindex j indicating the ex-
periment and subindex i indicating each particle in a given experiment. We also de-
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fine Yj[t] = {yj
1[t], ....., yj

M[t]} as the set of all trajectories of the environment for the j-
experiment. Then, the set of equations of motion of the resulting N single-electron BCWF
ψj(x1, t) ≡ Ψ(x1, X̄j

1[t], Yj[t], t), ..., ψj(xN , t) ≡ Ψ(xN , X̄j
N [t], Yj[t], t) inside the active region

can be written as follows:

ih̄
dψj(x1, t)

dt
=

[
− h̄2

2m
∇2

x1
+ Uj

e f f (x1, t)

]
ψj(x1, t)

... (5)

ih̄
dψj(xN , t)

dt
=

[
− h̄2

2m
∇2

xN
+ Uj

e f f (xN , t)

]
ψj(xN , t).

The effective single-particle potential Uj
e f f (xi, t) ≡ Uj

e f f (xi, X̄j
i [t], Yj[t], t) is

Uj
e f f (xi, t) = Uj(xi, t) + Vj(xi, t) +Aj(xi, t) + iB j(xi, t), (6)

where Uj(xi, t) is an external potential acting only on the system degrees of freedom xi,
Vj(xi, t) is the Coulomb potential between xi and the rest of particles at fixed positions X̄j

i [t]
and Yj[t], and Aj(xi, t) and B j(xi, t) are potentials responsible for the remaining of quantum
correlations between the degrees of freedom of the system and the environment [31]. A
mandatory clarification is needed here. Are the set of BCWFs in (5) solving the many-body
problem? No. If you want to use the coupled system of equations of motion of the N
BCWF in (5) to describe a given experiment, first, you have to solve the Poisson (Gauss)
equation to find Uj(xi, t) and Vj(xi, t) explicitly and, second, you have to know the exact
solution of the many-body wave function Ψ(x1, x2, ..., xN , y1, y2, ..., yM) to find Aj(xi, t)
and B j(xi, t) for all electrons [31]. The last step is numerically inaccessible. The merit of
the system of equations in (5) is showing that such a type of solution to the many-body
function exists and that we can look for educated guesses on the shape of Aj(x, t) and
B j(x, t) to provide reasonable approximations. Notice that a similar procedure is followed
in Density Functional Theory: it shows a method to rewrite the many-body wave function
in terms of single-particle wave functions, but the procedure requires knowledge of the
exchange-correlation functional, which is only known once the many-body wave function
is known. See further details and an explanation on Aj(x, t) and B j(x, t) in [18,31–33,35,36].

To better appreciate the details of this simulation technique for electron devices,
we notice that the total current I j(t) at time t for the j-experiment, after solving the set
of BCWF from (5) with the appropriate approximations for Aj(x, t) and B j(x, t), can be
defined from the Bohmian trajectories with the help of a quantum version of the Ramo–
Shockley–Pellegrini theorem [37] as follows:

I j(t) =
e
L

n(t)

∑
i=1

vj
xi (xj

i [t], X̄j
i [t], Yj[t]), (7)

where L is the distance between the two (metallic) contacts that define the active region,
e is the electron charge (with sign), and vj

xi (xj
i [t], X̄j

i [t], Yj[t]) is the Bohmian velocity of
the ith electron inside the active region in the j-experiment. Notice that the observables are
computed from the trajectories (not from the BCWF) and that they are linked to a particular
experiment j (which can be understood as a single configuration of the environment). The
different possible values of xj

i [t],X̄
j
i [t] and Yj[t] for the same (preparation of the) many-body

wave function Ψ(x1, x2, ..., xN , y1, y2, ..., yM) introduce the inherent quantum randomness in
any experiment. As such, if one is interested in ensemble average values, one can repeat the
calculation for all environment configurations Yj[t] and particle distributions xj

i [t] and X̄j
i [t].

Typically, in electronics, this ensemble average of the current I j(t) over many experiments
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j = 1, ..., ∞ is interesting in evaluating DC values of the electrical current under ergodic
assumptions. In the laboratory, however, a large time-average of the current I j(t) in a single
j-experiment is usually performed. If one is interested in noise or time-correlations of the
current at different times, I j(t1) and I j(t2), then the access to the individual experiment
offered by the BCWF is very relevant.

Finally, we mention which are the computational advantages of this simulation frame-
work. It is a microscopic description of the transport in the sense that it provides an
individual description for each electron inside the active region. It provides a rigorous
estimation (a part from the approximations for Aj(xi, t) and B j(xi, t)) to the quantum
dynamics of electrons in the active region (open quantum system) for Markovian and
non-Markovian systems. It is a versatile approach in the sense that it can simulate many
different scenarios, from steady-state DC to transient and AC, including fluctuations of the
current (noise). Notice that I j(t) in (7) includes the particle and displacement current, even
at THz frequencies, when multi-time measurements are implicit. In this sense, we argue
that the amount of information that this simulator framework can provide in the quantum
regime is comparable to the predicting capabilities of the traditional Monte Carlo solution
of the Boltzmann transport equation [38] in the semi-classical regime.

3. How Do We Select the Single-Particle Pure States Before and after the Collision?

To discuss how electron–photon scattering can be included in this simulation frame-
work, we provide, first, an exact computation of the interaction between a single electron
and a single photon in a closed system in terms of BCWF and Bohmian trajectories and,
second, some indications on how such interaction can be modeled in an open system.

3.1. Exact Solution in a Closed System

The full quantum Hamiltonian Ĥ = Ĥe + Ĥγ + ĤI that describes light–matter in-
teraction is given by the sum of the electron Hamiltonian Ĥe, the electromagnetic field
Hamiltonian Ĥγ, and the electron–photon interaction Hamiltonian ĤI . In particular, for
a single electron in a semiconductor, the position representation for Ĥe (assuming a 1D
system for the electron with degree of freedom x) is given by

He = − h̄2

2m∗
∂2

∂x2 + V(x), (8)

where V(x) includes both the internal and external electrostatic potentials. See the blue
electron wave packet and the scalar potential V(x) for a double barrier region of length
2Lx in the horizontal x-axis of Figure 1a.

We consider that the electromagnetic field is described by a single mode with angular
frequency ω inside a closed cavity of length 2LM. See the cyan mirrors in the horizontal x-
axis of Figure 1a,b. A typical description of the electric field will be E(x, t) ∝ q cos(kx − ωt)
with the wave vector k = 2π/λ related to the angular frequency as c = ω/k with c
being the speed of light. The variable q represents the instantaneous amplitude of the
electromagnetic field along the polarization vector. Under the assumption LM � Lx,
meaning that the wave-length for the electromagnetic wave (≈500 nm) is much larger than
the active region (≈20 nm), we can neglect the spatial dependence x of the electromagnetic
field. Then, the Hamiltonian of the electromagnetic field in second quantization can be
written as Ĥγ = h̄ω

(
1/2 + â† â

)
. The relationship between the now quantized amplitude

of the electric field q and the creation â† and annihilation operators â is given by

â =

√
ω

2h̄

(
q +

h̄
ω

∂

∂q

)
, â† =

√
ω

2h̄

(
q − h̄

ω

∂

∂q

)
. (9)
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Then, the q-representation of Ĥγ is

Hγ = − h̄2

2
∂2

∂q2 +
ω2

2
q2, (10)

where the electromagnetic vacuum state with zero photons |0〉 solution of Ĥγ corresponds
to the ground state of a harmonic oscillator ψ0(q) = 〈q|0〉, while the state solution of Ĥγ

with one photon corresponds to the first excited state of a harmonic oscillator ψ1(q) =
〈q|â†|0〉.

The interaction Hamiltonian in the dipole approximation can be written as ĤI = −ex̂Ê,
where e is the (unsigned) electron charge and the electrical field operator is given by
Ê = ε

(
â + â†), with ε the strength of the electric field, or explicitly as

HI = α′xq, (11)

where α′, which depends on ε and other parameters of the cavity, controls the strength of
the light–matter interaction. Finally, the wave function Ψ(x, q, t) that describes the quantum
nature of electrons and the electromagnetic field simultaneously in the q-representation is
the solution to the following two-dimensional Schrödinger equation:

ih̄
∂Ψ(x, q, t)

∂t
= − h̄2

2m
∂2Ψ(x, q, t)

∂x2 + V(x)Ψ(x, q, t)

− h̄2

2
∂2Ψ(x, q, t)

∂q2 +
ω2

2
q2Ψ(x, q, t)

+ α′xqΨ(x, q, t). (12)

To simplify our discussion on emission and absorption of a photon by an electron, let
us assume that only the zero photon state, ψ0(q) = 〈q|0〉 = 〈q|ψ0〉, and the one photon
state, ψ1(q) = 〈q|â†|0〉 = 〈q|ψ1〉, are relevant in our active region. Notice that we discuss
the interaction of a single electron with a single photon in a closed system. Then, we can
rewrite the wave function Ψ(x, q, t) solution of (12) as

Ψ(x, q, t) = ψA(x, t)ψ0(q) + ψB(x, t)ψ1(q), (13)

with

ψA(x, t) =
∫

ψ∗
0 (q)Ψ(x, q, t)dq, (14)

ψB(x, t) =
∫

ψ∗
1 (q)Ψ(x, q, t)dq. (15)

The equation of motion of ψA(x, t) and ψB(x, t) can be obtained by introducing the
definition (13) into (12) and by using the orthogonality of ψ0(q) and ψ1(q) as follows:

ih̄
∂ψA(x, t)

∂t
= − h̄2

2m
∂2ψA(x, t)

∂x2 +

(
V(x) +

1
2

h̄ω

)
ψA(x, t) + αxψB(x, t), (16)

ih̄
∂ψB(x, t)

∂t
= − h̄2

2m
∂2ψB(x, t)

∂x2 +

(
V(x) +

3
2

h̄ω

)
ψB(x, t) + αxψA(x, t), (17)

where we defined α = α′
∫

ψ0(q)qψ1(q)dq and we assumed
∫

ψ0(q)qψ0(q) dq =∫
ψ1(q)qψ1(q) dq = 0.
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Figure 1. Schematic representation of the time evolution of the wave function for an electron
impinging upon a double barrier region with electromagnetic radiation. In (a,b), we consider a cavity
small enough so that the electromagnetic light does not radiate and so that no interaction with an
environmental degree of freedom outside the active region is included. Only the information on
the electron degree of freedom x and the internal degree of freedom of the light q (not plotted) are
relevant. The Bohmian position of the electron X[t] is indicated as a solid black circle. The Q[t]
trajectory of the electromagnetic field is not indicated. Notice that, in (a), the initial electron wave
function is ψA(x, t = 0) �= 0 (blue curve for the electron) and ψB(x, t = 0) = 0 while, in (b), we get
ψB(x, t = t+s ) �= 0 (red curve) due to spontaneous emission.

We simulate now an initial electron impinging on a double barrier with a potential
energy V(x), as shown in Figure 2a. It corresponds to the conduction band of a typical
resonant tunneling diode (RTD) with a 10 nm-well width, barrier thickness of 2 nm, and
barrier height of 0.5 eV. In Figure 2b, the transmission coefficient of the double barrier is
plotted, showing two resonant energies inside the well at E1 = 0.058 eV and E2 = 0.23 eV.
The positive energies correspond to energy eigenstates impinging from the left and negative
energies from the right side of the RTD device.

Figure 2. (a) Potential profile and (b) transmission coefficient T in function of injection energy E of a
GaAs/AlGaAs resonant tunneling device (RTD) device with 10 nm well width. Positive energies
means eigenstates injected from the left and negative energies eigenstates injected from the right.

At the initial time, we assume that there are no photons inside the active region. In
other words, the (vacuum) electromagnetic field is given by an amplitude q with probability
|ψ0(q)|2. Thus, we define ψA(x, 0) as a Gaussian wave packet outside of the barrier
region with a central energy equal to the second resonant level of the double barrier
E2 and a spatial dispersion of 30 nm, as seen in the blue wave packet in the x-axis of
Figure 1a, and ψB(x, 0) = 0. Thus, the initial electron–photon wave function in Expression
(13) is given only by Ψ(x, q, t) = ψA(x, t)ψ0(q). When solving (16) and (17) together,
with α = 2.5 · 107 eV/m and ω = (E2 − E1)/h̄, we obtain that ψB(x, t) �= 0 so that the
global wave function in (13) becomes Ψ(x, q, t) = ψA(x, t)ψ0(q) + ψB(x, t)ψ1(q). This
process of spontaneous emission cannot be understood without the quantization of the
electromagnetic field performed in (12).
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Next, to compute how much probability inside the well can be assigned to ψA(x, t)
and ψB(x, t), at each resonant level, we define

PA,1(t) =
1
N

∫ E1+E2
2

0
|cA(E, t)|2dE , PA,2(t) =

1
N

∫ ∞

E1+E2
2

|cA(E, t)|2dE, (18)

with

c(E, t) =
∫ Lx

−Lx
ψ(x, t)φ∗

E(x)dx, (19)

The subindex A in c(E, t) and ψ(x, t) is assumed in (19). The functions φE(x) are the energy
eigenstates of the electron Hamiltonian He in (8). Notice that we are only interested in the
probability inside the barrier region with limits given by x = ±Lx. Identical definitions
can be provided for PB,1(t) and PB,2(t) with the normalization constant N, ensuring that
PA,1(t) + PA,2(t) + PB,1(t) + PB,2(t) = 1.

In Figure 3, we plot PA,1(t), PA,2(t), PB,1(t), and PB,2(t), showing the typical Rabi
oscillation. The initial value PA,2(0) ≡ 1 in Figure 3 indicates an electron injected with a
central energy equal to the second eigenvalue of the well without photons. The vertical
dashed lines in Figure 3 indicate two times when the system passes from one electron in
the first level and one photon (PA,2 ≈ 0 and PB,1 ≈ 1 in blue dashed line) to one electron in
the second level and zero photons (PA,2 ≈ 1 and PB,1 ≈ 0 in red dashed line).

Figure 3. Evolution of the PA,1, PA,2, PB,1, and PB,2 for the first (a) and second (b) eigenstates of the
quantum well described in Figure 2, when the Bohmian conditional wave function (BCWF) is injected
in the second eigenstate of the quantum well.

From the whole wave function Ψ(x, q, t) = ψA(x, t)ψ0(q) + ψB(x, t)ψ1(q), we can
compute the probability presence in the x-space as follows:

Pe(x, t) =
∫

dq|Ψ(x, q, t)|2 = |ψA(x, t)|2 + |ψB(x, t)|2. (20)

In Figure 4a, we show the evolution of Pe(x, t) computed from (20) as a function of time
together with some selected trajectories Xj[t]. Such trajectories Xj[t] are computed from
the guiding total wave function Ψ(x, q, t) = ψA(x, t)ψ0(q) + ψB(x, t)ψ1(q) together with
the trajectories Qj[t] belonging to the electromagnetic degree of freedom q following
the velocities defined in (1) for the same simulation presented before. The evolution of
Pe(x, t) inside the well shows qualitatively the alternate transition from one maximum
(first eigenstate) to two maxima (second eigenstate). The Bohmian trajectories follow this
evolution, since they alternatively move from one side to the center of the quantum well.
The trajectories show a velocity close to zero when each eigenstate is well-defined and
a large velocity during the transitions between the two eigenstates. All this dynamical
information is in agreement with the physics of the Rabi oscillations depicted in Figure 3
where the electron emits a photon into a single-mode electromagnetic cavity and then
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reabsorbs it. As a technical detail, we mention that, as expected, Bohmian trajectories do
not cross into the x − q space (not plotted) but they cross in the subspace x of Figure 4a. In
addition, one can expect some chaotic behavior in 2D systems [39,40] that is not present in
the 1D system that is shown in the Figure 4a.

In Figure 4b, we plot the probability of the energy states |c(E, t)|2 given by Equation (19)
at the two times indicated by horizontal read and blue dashed lines in Figure 4a that
correspond to the vertical dashed lines in Figure 3. The BCWF in Equation (19) has been
defined as ψ(x, t) = Ψ(x, Qj[t], t) = ψA(x, t)ψ0(Qj[t]) + ψB(x, t)ψ1(Qj[t]) for a selected
trajectory Qj[t] of the j-experiment. Notice that such a definition of the BCWF corresponds
to ψ(x, t) ≈ ψB(x, t) for the blue wave packet while the red wave packet corresponds to
ψ(x, t) ≈ ψA(x, t) because of the values of PA,2 and PB,1 indicated by vertical dashed lines
in Figure 3.

Figure 4. (a) Evolution of Pe(x, t) for the electron interacting with the RTD device described in
Figure 2, while emitting and absorbing electromagnetic radiation. The solid black lines show Bohmian
trajectories Xj[t] for a selected set of experiments. The green vertical lines indicate the position of the
potential barriers. (b) Probability distribution of the Hamiltonian eigenstates for the BCWF given by
ψ(x, t) = Ψ(x, Qj[t], t) = ψA(x, t)ψ0(Qj[t]) + ψB(x, t)ψ1(Qj[t]) for a selected trajectory Qj[t] at two
different times indicated by the horizontal dashed lines in (a). We define the scattering time ts as the
time of the blue horizontal dashed line.

As expected, the fact that the conservation of the total energy has to be satisfied from
(12) has important consequences on the type of electron–photon interaction allowed. We
now repeat the simulation when the electron (with no photon) is injected with a central
energy corresponding to the first resonant level. No electron transition (or spontaneous
emission) takes place, giving ψB(x, t) ≈ 0 because the initial energy E1 + h̄ω/2 cannot be
converted into a much higher final energy E2 + 3h̄ω/2. The result is shown in Figure 5.

Figure 5. Evolution of PA,1, PA,2, PB,1, and PB,2 for the first (a) and second (b) eigenstates of the
quantum well when the initial electron is injected in the first resonant level of the quantum well.
Because of the conservation of energy, no matter–light interaction is possible.
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We now repeat the same simulation done in Figure 3, where the initial electron had a
mean energy equal to the second eigenvalue of the well, E2, but considering a new photon
energy h̄ω = 0.26 eV much larger than E2 − E1 = 0.172 eV. In this case, no light–matter
interaction takes place since it would imply a violation of the conservation of whole energy.
The initial energy E2 + h̄ω/2 does not coincide with a possible final energy E1 + 3h̄ω/2.
This simulation is shown in Figure 6.

Figure 6. Evolution of PA,1, PA,2, PB,1, and PB,2 for the first (a) and second (b) eigenstates of the quan-
tum well when the BCWF is injected in the second eigenstate of the quantum well and h̄ω = 0.26 eV.
Because of the conservation of energy, no matter–light interaction is possible.

3.2. Approximate Solution with BCWF for an Open System

In the previous subsection, we discussed the interaction of a single electron with
a single photon in a closed system. Here, we discuss how such an interaction can be
generalized to include the possibility to detect a photon at a position y, far from the
active region.

The proper simulation of such a scenario as a closed system is far from the scope of
the present paper. Apart from considering the detector outside of the active region as a
new electron with degree of freedom y, the transition of the electromagnetic energy from
the active region to the environment will require an electromagnetic field with an arbitrary
shape different from the one considered in the previous section. A Fourier transform
of such an arbitrary electromagnetic field will imply dealing with several components
E(x, t) ∝ q cos(kx − ωt) at different frequencies. In any case, without an explicit solution
of such problem, only from the conservation of energy, we can anticipate what will be the
expected behavior of the whole system.

The process of spontaneous emission of a photon inside the active region and its
posterior detection far from the active region can be anticipated as follows:

• At the initial time, t = 0, we consider an electron in the active region, with degree of
freedom x with a central energy E2 linked to zero photons wave function ψ0(q) plus
another electron far from the active region with degree of freedom y and energy Eext
linked to zero photons ψ0(q). At this initial time, the total energy involved in such a
scenario is E2 + h̄ω/2 in the active region plus the energy Eext + h̄ω/2 outside.

• At the intermediate time, we consider that a spontaneous emission of a photon
happens inside the active region. As seen in Figure 3, such an internal process ensures
energy conservation. Therefore, the new photon inside the active region implies a
change in energy there, E2 + h̄ω/2 → E1 + 3h̄ω/2, while the energy outside of the
active region remains the same as before, Eext + h̄ω/2. The total energy is the same as
the initial one.

• At the final time t, we detect a photon at position y, far from the active region. Thus,
the electron at y is now linked to one photon wave function ψ1(q), which implies
an increment in the energy of h̄ω far from the active region, Eext + h̄ω/2 → Eext +
3h̄ω/2. The conservation of the total energy implies that the same amount of energy
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is eliminated in the active region when the photon leaves, E1 + 3h̄ω/2 → E1 + h̄ω/2.
The electron in the active region will have a new energy E1 linked to the zero photons
wave function ψ0(q). As we have seen in Figure 5, under such new energy conditions
in the active region, such an electron will no longer be able to generate spontaneous
emissions inside the RTD. Thus, the Rabi oscillations seen in Figure 3 for a closed
system will not be present when we assume that the photon leaves the cavity.

In summary, we conclude that the spontaneous emission in the active region can
be modeled by an initial BCWF ψ(x, 0) with central energy E2 that changes to a final
BCWF ψ(x, t) with energy E1. Such a process will be allowed as far as the photon energy
coincides with E2 − E1. Identically, absorption in the active region can be modeled by
an initial BCWF ψ(x, 0) with central energy E1 that changes to a final BCWF ψ(x, t) with
energy E2 with the photon energy given by E2 − E1. Notice that the conservation of energy
enables the photon absorption to be accompanied, for example, by a subsequent process of
spontaneous emission that returns the photon energy to the environment outside of the
active region.

4. Implementation of the Transition from Pre- to Post-Selected BCWF

In this section, we describe practical issues on how such types of transitions between
initial and final states can be implemented in a transport simulator for real electron devices
based on Bohmian mechanics.

To implement the transition from pre- to post-selected BCWF, a definition of the initial
|i〉 and the final | f 〉 states is needed. Although the contacts do not allow us to perfectly
prepare the wave description of electron, we can have some reasonable arguments to an-
ticipate some of its properties. One option could be to deal with Hamiltonian eigenstates,
which extend to infinite in both sides (left and right) of the device. Although these infinitely
extended states are useful tools to model (steady-state) DC transport properties of quantum
devices, they are less useful in describing other device performances, for example, the fluc-
tuations of the electrical current due to the partition noise in a tunneling barrier. The initial
electron, after impinging with the barrier, is either located to the left (reflection) or to the
right (transmission) of a barrier but not on both sides of it. Such randomness (transmission
or reflection) translates into current fluctuations. To model such fluctuations, a localized
wave function seems appropriate to model electrons. However, the wave function cannot
have a very narrow localization in position since the Heisenberg uncertainty principle
would lead to extremely large momentum and energy uncertainties (larger than thermal
energies). Thus, a definition of an electron, deep inside the contact, as a Gaussian wave
packet with well-defined central position and central energy seems reasonable. We add
that such a limited spatial extension of the electron wave function can be related to the
coherence length of the sample.

In classical mechanics, an electron with a well-defined energy is compatible with
an electron with a well-defined momentum. However, this is not the case for quantum
electrons. As a general rule, two properties can be simultaneously well-defined if their
operators commute. In our case, the energy (linked to the Hamiltonian operator Ĥ) and
the momentum (linked to the momentum operator p̂) can be simultaneously defined when
[Ĥ, p̂] = 0. In the position representation, knowing that the Hamiltonian operator is the
sum of the kinetic energy operator ( p̂)2/2m, which obviously commutes with p̂, plus the
potential energy operator V̂, momentum and energy are well-defined properties when

[
H,−ih̄

∂

∂x

]
=
[
V(x),−ih̄

∂

∂x

]
= ih̄

∂V(x)
∂x

= 0. (21)

Thus, only when dealing with flat potentials we can assume that a wave packet with
a reasonable well-defined energy has also a reasonable well-defined momentum. This
restriction seems relevant to transport models developed in phase-space (the Wigner
distribution function), where information on only momenta and positions are available.
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In the next two subsections, we discuss the implementation of the transition from a pre-
to a post-selected BCWF when using well-defined energies (model A) or momenta (model
B). In Section 5, we compare the numerical results of these two different implementations.

4.1. Model A: Change in the Central Energy

We consider an electron defined by a single-particle BCWF that, at time ts, undergoes
a scattering event. We define t−s = ts − Δts as the time just before and t+s = ts + Δts as
the time just after the scattering event. For simplicity, we consider Δts → 0, but we have
seen in Section 3 that such a transition between initial and final BCWFs takes a finite time
because, from a conceptual point of view, it has to guarantee the continuity of the BCWF
in space and time. The initial and final BCWFs are ψ(x, t−s ) and ψ(x, t+s ), which satisfy
〈E(t+s )〉 = 〈E(t−s )〉+ Eγ, with Eγ the energy of a photon. Within the energy representation,
the wave packet can be decomposed into a superposition of Hamiltonian eigenstates φE(x)
of the electron Ĥe in (8) as

ψ(x, ts−) =
∫

dE a(E, t−s ) φE(x), (22)

with a(E, t) =
∫

dx ψ(x, t) φ∗
E(x). The central energy 〈E(t−s )〉 is

〈E(t−s )〉 =
∫

dE E |a(E, t−s )|2, (23)

which can be increased to obtain the new central energy at t+s as

〈E(t+s )〉 = 〈E(t−s )〉+ Eγ =
∫

dE (E + Eγ) |a(E, t−s )|2 =
∫

dE′ E′ |a(E′ − Eγ, t−s )|2

=
∫

dE′ E′ |a′(E′, t+s )|2, (24)

where we have defined a′(E, t+s ) = a(E − Eγ, t−s ). Thus, the new wavepacket after the
collision is

ψ(x, ts+) =
∫

dE a′(E, t+s ) φE(x) =
∫

dE a(E′ − Eγ, t−s ) φE(x). (25)

This transition corresponds to the absorption of energy by the electron. Emission can be
identically modeled by using 〈E(t+s )〉 = 〈E(t−s )〉 − Eγ. If required, the technical discontinu-
ity between ψ(x, ts−) and ψ(x, ts+) can be solved by assuming that the change in energy is
produced in a finite time interval Δts = Nts Δt, with Δt being the time step of the simulation.
Then, at each time step of the simulation, the change in the wave packet central energy is
Eγ/Nts . A continuous change in both energy and wave packet will be obtained as far as
Δt → 0. This continuous evolution of the BCWF can be represented as a Schrödinger-like
equation, as explained in [31].

4.2. Model B: Change in Central Momentum

In Reference [34], we explain how a change in momentum pγ in a wave packet in
free space can be performed with a unitary Schrödinger equation. That algorithm can be
understood as a pre- and a post-selection of the initial BCWF, ψ(x, t−s ), and of the final
BCWF, ψ(x, t+s ), respectively. At time t−s , the BCWF can be written as a supersposition of
momentum eigenstates φp(x) (which are a basis of the electron in the x space) as

ψ(x, ts−) =
∫

dp b(p, ts−) φp(x), (26)

with b(p, ts−) =
∫

dxψ(x, ts−) φ∗
p(x). The central momentum 〈p(t−s )〉 is

〈p(t−s )〉 =
∫

dp p |b(p, ts−)|2, (27)

106



Entropy 2021, 23, 408

which can be increased to get the new central momentum 〈p(t+s )〉 = 〈p(t−s )〉+ pγ at t+s as

〈p(t+s )〉 = 〈p(t−s )〉+ pγ =
∫

dp (p + pγ) |b(p, ts−)|2 =
∫

dp′ p′ |b(p′ − pγ, ts−)|2

=
∫

dp′ p′ |b(p′, ts+)|2, (28)

where we have defined b(p, ts+) = b(p − pγ, ts−). In this particular scenario, we know the
explicit shape of the momentum eigenstates, φp(x) = 1/

√
2π exp(ipx/h̄), so that

ψ(x, t+s ) =
∫

dp b(p, ts+) φp(x) =
∫

dp b(p − pγ, ts−) φp(x)

=
∫

dp
∫

dx′ψ(x, ts−) φ∗
p−pγ

(x′)φp(x) (29)

=
∫

dp
∫

dx ψ(x, ts−)
1

2π
eip(x′−x)/h̄eipγx′/h̄ = eipγx/h̄ψ(x, ts−).

With the condition ψ(x, t+s ) = eipγx/h̄ψ(x, ts−), it can be easily found the unitary equation
satisfied by the BCWF. If we define ψ′(x, t) as the wave function solution of the following

Schrödinger equation, ih̄ ∂ψ′(x,t)
∂t = 1

2m∗
(
−ih̄ ∂

∂x

)2
ψ′(x, t) + V(x)ψ′(x, t), with initial condi-

tion at t = ts given by ψ′(x, ts) = ψ(x, t+s ), then the solution ψ′(x, t) for t > ts is identical

to the following Schrödinger equation, ih̄ ∂ψ(x,t)
∂t = 1

2m∗
(
−ih̄ ∂

∂x
+ pγ

)2
ψ(x, t) + V(x)ψ(x, t),

for the original ψ(x, t) and with its original initial condition for t > ts. Finally, a single
equation for ψ(x, t) valid for all times is simply

ih̄
∂ψ(x, t)

∂t
=

1
2m∗

(
−ih̄

∂

∂x
+ pγΘts

)2
ψ(x, t) + V(x)ψ(x, t), (30)

where Θts is a Heaviside function equal to 1 for t > ts and zero otherwise. Thus, a
description of the evolution of the wave function ψ(x, t) during the collision process can
be made from a unitary Schrödringer equation, where the momentum operator −ih̄ ∂

∂x
is

changed for the new momentum operator −ih̄ ∂
∂x

+ pγΘts , as indicated in [34]. Notice that
the probability presence of the scattered wave packet satisfies |ψ(x, ts+)|2 = |ψ(x, ts−)|2
because only a global phase eipγx/h̄ is added.

It is quite easy to see from (4) that the Bohmian velocity of the electron after the
collision computed from ψ(x, t+s ) is just the old velocity computed from ψ(x, t−s ) plus
pγ/m∗,

vj
x[t+s ] =

1
m∗

∂s(x, t+s )
∂x

|x=Xj [t] =
1

m∗
∂s(x, t−s )

∂x
|x=Xj [t] + pγ/m∗. (31)

The collision increases the velocity of the electron by the same amount that we add in
(30). Unfortunately, as discussed at the beginning of the section, a global mechanism of
scattering valid for scenarios with potential barriers requires dealing with a change in the
energy as presented in model A (not with change of the momentum as presented in this
model B).

5. Numerical Results

We present now the numerical results of our two models for the transition between
initial and final single-particle BCWF, as explained in the previous section. We first study
electron–photon collisions in free space, when energy and momentum operators commute,
and then electron–photon collisions in a scenario with a double barrier potential profile,
when energy and momentum operators do not commute. This last case will be compared
with numerical results of the exact model presented in Section 3 and used to verify the
physical soundness of the two models.
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5.1. Collisions in Flat Potentials

In this section, we study the interaction of an electron and a photon in free space. The
electron evolves in a flat potential. We consider the absorption of a photon by an electron. In
flat potential, the momentum and energy conservation is ensured during the collision. Thus,
since the momentum of the photon is negligible, in this section, we assume that the electron
interacts with a phonon and a photon. The phonon will not be needed in Section 5.2. We
consider that the final BCWF will be modeled by a final electron (post-selected state) with
an energy increase of h̄ω (Eγ > 0) plus the corresponding increase of momentum (provided
by the phonon) with respect to the initial electron energy (pre-selected state).

In Figure 7, we show the simulation of the electron–photon collision in a flat potential.
The collision is modeled by exchanging the energy Eγ = 0.1 eV in Figure 7a,b and by
exchanging the momentum pγ =

√
2Eγ/m∗ in Figure 7c,d. As expected, in this scenario,

both models give identical results. After the scattering event, the Gaussian wave function
evolves with a higher velocity, as indicated in (31). We notice that the wave function suffers
a continuous evolution during the collision because it is a solution of the Schrödinger-
like Equation (30). Analogous results (not shown) are obtained for emission. The main
conclusion of this subsection is that model A and model B are, as expected, numerically
equivalent in the case of a flat potential.

Figure 7. The evolution of the BCWF ψj(x, t), undergoing photon absorption with Eγ = 0.1 eV,
shown as function of position and time. The wavefunctions are simulated (a) without collision
and (b) with collision using model A, and (c) without scattering and (d) scattered using model B.
The trajectories Xj[t] guided by the BCWF ψj(x, t), where j = 1, . . . , 10, are some representative
experiments and are shown in black. In a flat potential, the results of models A and B are identical.
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5.2. Collisions in Arbitrary Potentials

As in Section 5.1, we study the absorption of a photon using an electron modeled by
a final electron (post-selected state) with an energy increase of h̄ω (Eγ > 0) with respect
to the initial electron energy (pre-selected state). Now, we use a double barrier potential
V(x) identical to the one mentioned in Section 3.1, with the same two resonant energies
E1 = 0.058 eV and E2 = 0.23 eV.

In Figure 8, the evolution of ψj(x, t) and the trajectories Xj[t] are shown when the
electron absorbs a photon while impinging on the potential barrier of the RTD. The position
of the barriers is shown by the green vertical lines. The energy of the photon is equal to the
difference of the resonant energies in the quantum well, Eγ = E2 − E1, and the BCWF is
injected with a central energy equal to the first resonant energy E = E1. A transition from
E1 to E2 is expected during the collision ψA(x, t−s ) → ψB(x, t+s ).

Figure 8. Gaussian wavefunctions interacting with a double barrier potential profile with and without
scattering with a photon: (a) a wavepacket and some selected trajectories with unitary evolution
(without scattering). (b) The same wave packet and the same selected trajectories when scattering
with energy Eγ = 0.186 eV using model A occurs. (c,d) are identical to (a,b) when model B is used.
In all figures, the Gaussian wave packet is injected from the left at energy E = E1 = 0.058 eV. The
trajectories Xj[t] guided by the BCWF ψj(x, t) are plotted in black. The set of trajectories in plot (a) is
different from the one in plot (c), with the goal of selecting those trajectories that interact most in the
quantum well in each case. The trajectories in plot (b) are the same as in plot (a), and the trajectories
in plot (d) are the same as in plot (c). The energy of the photon is equal to the distance between the
two first energy levels, Eγ = E2 − E1.
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In Figure 8a, we plot the time evolution of the electron interacting with the barrier
but without photon collision. In Figure 8b, an electron–photon collision is produced
at ts = 150 fs using model A. The wavepacket undergoes a shift in energy probability
distribution of the Hamiltonian eigenstates φE(x) towards higher values. As expected,
the evolution of ψ(x, t) is a transition from the first eigenstate of the well (with one peak
of probability in the middle of the well) to the second one (with two probability peaks).
The same trajectories Xj[t] that were first reflected by the barrier in Figure 8a are now
transmitted through the well in Figure 8b because the second resonant level has a wider
transmission probability, as shown in Figure 2b. The results in Figure 8b have a reasonable
agreement with the results in Figure 4a at times equivalent to the blue and red horizontal
lines of Figure 4a. Clearly, we also notice that the simulated result in Figure 4a belongs to a
simulation with the active region as a closed system, where the photon energy does not
disappear, and the electron is continuously emitting and absorbing such photon energy,
as explained in Section 3.1. On the contrary, Figure 8b corresponds to a simulation of the
active region as an open system, where the photon energy appears/disappears at/from
the active region only once, as explained in Section 3.2.

The same plots are reproduced in Figure 8c,d when using model B. Now, an oscillatory
behaviour on the BCWF and on the trajectories Xj[t] is shown after time ts = 250 fs. Such
results can be understood by noticing that model B produces an increase in velocity in the
Bohmian trajectories, but such faster Bohmian trajectories are not the natural behavior of
the trajectories in the well when associated with only one eigenstate (they are expected
to remain inside the well for a large time with a velocity close to zero). However, since
the eigenstates of the quantum well form a complete basis, the mentioned oscillatory
BCWF can be a solution to the Schrödinger equation there at the price of using many more
eigenstates (with higher energies) to describe the new accelerated wave packet. Thus, the
combination of several eigenstates in the well produces the oscillatory behaviour that we
see in Figure 8d.

To better understand that model A provides a natural transition while model B pro-
vides an unnatural one, we show in Figure 9 the probability of the energy states |c(E, t)|2
given by Equation (19) at t = 0 and t = t+s . The positive and negative energies only indicate
scattering states injected from the left (positive) and injected from the right (negative). The
blue line is the probability distribution of the energy eigenstates at the initial time c(E, 0),
while the red line is the same distribution but after scattering c(E, t+s ). In Figure 9a for
model A, we observe a natural shift in the central energy given by 〈E(t+s )〉 = 〈E(t−s )〉+ Eγ,
as expected. A definite argument in favor of model A (and against model B) is that the
results in Figure 9a have an almost perfect agreement with the results in Figure 4b that were
computed without approximation: the same transition happens from the first to the second
energy eigenvalues of the quantum well. On the contrary, in Figure 9b for model B, a large
amount of Hamiltonian eigenstates with negative energies (i.e., injection from the left) are
populated after the scattering process. As explained, these additional energy components
are the reason why we observe an oscillatory behaviour inside the well in Figure 8d. Model
B is nonphysical because it does not satisfy the requirement of conservation of energy in the
electron and photon collision. Since we deal with a wave packet (with some uncertainty on
its energy), some deviation in the requirement of conservation of energy in each experiment
is reasonable, but the deviations plotted in Figure 9b on the order of 1eV are not reasonable
at all.
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(a)

(b)

Figure 9. (a) Probability distribution of the Hamiltonian eigenstates for model A (spatial evolution
shown in Figure 8b). (b) Probability distribution of the Hamiltonian eigenstates for model B (spatial
evolution shown in Figure 8d). Blue lines represent the probability distribution of the Hamiltonian
eigenstates before the scattering at t < ts, while the red lines show it at t > ts.

In conclusion, model B can only describe electron collisions when an approximation
of flat potential is reasonable to describe the dynamic of the unperturbed electron. We get
exactly the same conclusions when evaluating the emission process (not plotted) instead of
the absorption process.

6. Conclusions

Quantum transport formalisms require modeling the perturbation induced by non-
simulated degrees of freedom (like photons or phonons) on degrees of freedom of the
simulated active region (the electrons). Among a number of different algorithms that allow
us to include scattering events, here, we explore the possibility of implementing such
scattering events as transitions between single-particle time-dependent pure states. We
have shown that the Bohmian theory, through the use of BCWFs, allows for a rigorous
implementation of transitions between pre- and post-selected single-particle pure states
in the active device that is valid for both Markovian and non-Markovian conditions.
Furthermore, we have shown that the practical implementation of such transitions requires
one to model scattering events as a shift in central energies of BCWFs instead of a shift in
central momenta. This last result seems to indicate dramatic consequences for quantum
transport formalisms that introduce collisions through changes in momentum, e.g., the
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Wigner function approach, when dealing with non-flat potential profiles where energy and
momentum are non-commuting operators. This paper is part of a global and long-term
research project that aims to develop the so-called BITLLES simulator [18]. We argue that
the amount of information that this simulator framework can provide (from steady-state
DC to transient and AC including the fluctuations of the current) in the quantum regime
is comparable to the predicting capabilities of the traditional Monte Carlo solution of the
Boltzmann transport equation in the semi-classical regime.
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Abstract: Routing quantum information among different nodes in a network is a fundamental
prerequisite for a quantum internet. While single-qubit routing has been largely addressed, many-
qubit routing protocols have not been intensively investigated so far. Building on a recently proposed
many-excitation transfer protocol, we apply the perturbative transfer scheme to a two-excitation
routing protocol on a network where multiple two-receivers block are coupled to a linear chain. We
address both the case of switchable and permanent couplings between the receivers and the chain.
We find that the protocol allows for efficient two-excitation routing on a fermionic network, although
for a spin- 1

2 network only a limited region of the network is suitable for high-quality routing.

Keywords: quantum state routing; many-body dynamics; quantum information; fermionic network

1. Introduction

The coherent transfer of excitations from a sender to a receiver, located at different
positions in a network, is of primary importance for many quantum-based technological appli-
cations, ranging from spintronics and atomtronics [1] to quantum-information processing [2].

While a great amount of work has been devoted to the routing of the quantum state of
a single qubit [3–11], where the fidelity of the transfer protocol can be expressed in terms of
the transition amplitude of a single excitation between a sender and a receiver location [12],
the routing of a multiple qubit state is a far less investigated scenario. Although several
protocols have been proposed both for two-qubit and multi-partite entangled quantum
state transfer [13–22], their extension to a routing configuration on an arbitrary network is
not straightforward. One reason being that almost all the proposed protocols rely on the
quantum channel possessing mirror-symmetry, which, allowing for multiple receivers at
arbitrary positions, is difficult to attain: in Ref. [23] it has been shown, e.g., that perfect
state routing between multiple sites with real Hamiltonians is impossible. Moreover, the
presence of a sender and a receiver block located at positions other than the edges of a
1D quantum channel, implies that the total system is no longer one-dimensional and the
fermionisation of the spin chain via the celebrated Jordan–Wigner mapping is not valid
anymore [24]. As a consequence, the full spectrum of the network’s Hamiltonian has to be
found in the Hilbert space sector with two excitations and this can become, for long chains,
quite cumbersome.

In this work we investigate the routing of two excitations by means of a linear chain,
acting as a quantum wire, to which receivers can connect at arbitrary positions. Following
the results of our recent work [25], we apply the weak-coupling protocol in order to route
fermionic excitations on a 2D network. We consider both the case of switchable and
permanent couplings of the receiver block to the quantum wire, obtaining the receivers’
locations which allow for perturbatively perfect two-excitation transfer. We then compare
the routing performance of fermions, which due to the non-interacting nature of the
Hamiltonian considered in our work, can be analyzed in terms of single-particle transition
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amplitudes, to the case where the network hosts spin- 1
2 particles interacting via the XX-

Heisenberg type Hamiltonian. We find that, although, a rigorous mapping of spins to
non-interacting fermions is not possible because of the 2D nature of the network, it is
indicated that several features of the free fermions dynamics can be retrieved also in the
spin dynamics.

The paper is organised as follows. In Section 2, a brief introduction to the many-body
dynamics in non-interacting fermion systems on a discrete lattice is given; in Section 3,
the proposed protocol of two-excitation routing, both with switchable and permanent
couplings, on a 2D lattice is presented; in Section 4, we analyze the case of spin- 1

2 particle
occupying the lattice positions of the network. Finally, in Section 5 we discuss the main
findings of our research and outline some future directions.

2. Many-Body Dynamics in Non-Interacting Fermions on a Discrete Lattice

Let us consider a discrete lattice model where each site can host one spinless fermion
and whose dynamics is governed by the hopping Hamiltonian

Ĥ = ∑
〈ij〉

Jij

(
ĉ†

i ĉj + h.c
)

, (1)

where ĉ†
i (ĉi) is the creation (annihilation) operator of a fermion on site i and Jij is the

kinetic term accounting for the hopping of a fermion between neighboring sites i and j.
This Hamiltonian conserves the total number of excitations (fermions) and can be block-
diagonalised in each fixed particle-number sector. Moreover, because of the quadratic
nature of the Hamiltonian, only the spectrum in the single-excitation subspace is needed
in order to retrieve the full energy spectrum. This is a consequence of the non-interacting
nature of the Hamiltonian witnessed by the absence of quartic terms accounting for particle-
particle interactions [26]. We report here, for the sake of completeness, the mains steps
for the derivation of the many-body dynamics in terms of single-body dynamics for non-
interacting fermions, which is standard procedure in the second-quantization formalism.

The diagonalized form of the Hamiltonian in Equation (1) in the single-excitation
sector reads

Ĥ =
N

∑
k=1

Ek|Ek〉〈Ek| = Ekĉ†
k ĉk (2)

where {Ek, |Ek〉} are the eigenvalues and eigenvectors of the N-dimensional adjacency
matrix of the graph with entries Jij. Expressed in the position basis, |n〉 ≡ ĉ†

n|0〉 =
|00 . . . 1n00 . . . 〉, where |0〉 represents the fermionic vacuum state and |1n〉 denotes the
presence of a fermion on site n, the energy eigenstates in the single-excitation sector read
|Ek〉 = ∑N

n=1 akn|n〉, with akn = 〈n|Ek〉. The single-particle transition amplitude of an
excitation from site s to site r is given by

f r
s (t) = 〈r|e−iĤt|s〉 =

N

∑
k=1

ar,ka∗s,ke−iEkt . (3)

Because of the non-interacting nature of the Hamiltonian in Equation (1), the energy
eigenstates in the Hilbert space with m fermionic excitations are given by

∣∣Ek1k2...km

〉
=

N

∑
n1<n2<···<nm=1

an1n2...nm ,k1k2...km |n1n2 . . . nm〉 , (4)

with eigenvalues Ek1k2...km = Ek1 + Ek2 + · · · + Ekm and an1n2...nm ,k1k2...km denoting the
Slater determinant.
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The many-body transition amplitude of m excitations from sites s = {s1, s2, . . . , sm} to
sites r = {r1, r2, . . . , rm} is readily obtained as a determinant of a matrix whose entries are
the single-particle transition amplitudes in Equation (3),

f r
s (t) = 〈r|e−iĤt|s〉 =

N

∑
k1<k2<···<km=1

e−i
(

Ek1
+Ek2

+···+Ekm

)
t〈r1r2 . . . rm

∣∣Ek1k2...km

〉〈
Ek1k2...km

∣∣s1s2 . . . sm〉

=

∣∣∣∣∣∣∣∣∣∣∣

f r1
s1 (t) f r2

s1 (t) · · · f rm
s1 (t)

f r1
s2 (t) · · · · · · f rm

s2 (t)
...

. . .
...

f r1
sm (t) · · · f rm

sm (t)

∣∣∣∣∣∣∣∣∣∣∣
. (5)

The expression given in Equation (5) holds for every fermionic quadratic model, whereas
if the operators in Equation (1) represent bosons, then, instead of the determinant, the
many-body transition amplitude is given by the permanent of the matrix [25,26].

3. The Model

In this section, we apply the formalism of Section 2 to determine the two-excitation
transition probability from a sender block to a receiver block, both composed of two sites,
that are connected to a linear chain. The aim is to derive the conditions for the routing
of the two excitations from the senders’ to the receivers’ location. We will analyze two
networks: (a) the receiver blocks have switchable couplings to the wire (Figure 1); (b) the
receiver blocks are permanently coupled to the wire and the hopping term Js in the sender
block is tunable (Figure 3).

We consider Hamiltonians of the type given in Equation (1), which, decomposed into
the different components of the network, i.e., sender S, wire W, and receivers R, read

Ĥ = ĤS + ∑
i

ĤRi + ĤW + ĤSW + ∑
i

ĤRiW . (6)

The Hamiltonian of the sender block and the i-th receiver block are, respectively

ĤS = Js

(
ĉ†

1 ĉ2 + h.c.
)

, ĤRi = Ji

(
ĉ†

ri
ĉri+1 + h.c.

)
, (7)

with ri denoting the position on the graph which will be given in the following. The
Hamiltonian for the quantum data bus reads

Ĥw = J
nw−1

∑
n=1

(
ĉ†

nĉn+1 + h.c.
)

. (8)

where nw denotes the length of the wire. Finally, the coupling between the sender block
and the data bus site is assumed to be in the weak-coupling regime, J0 � J, Js, Ji

ĤSw = J0

(
ĉ†

2 ĉ3 + h.c.
)

; (9)

as well as the coupling between the i-th receiver block at location ri and the corresponding
data bus site wi, where 1 ≤ wi ≤ nw

ĤRiw = J0

(
ĉ†

ri
ĉwi + h.c.

)
. (10)

For case (a) all couplings between the receiver blocks and the wire are switched off but
one, embodying the recipient of the routing protocol and we set ri = nw + 2; see Figure 1
for an instance of the numbering choice of the sites following the sender-wire-receiver
order; the same ordering is followed for case (b).

The whole system sender+wire+receivers is made up of N = nw + 2(nr + 1) sites with
r denoting the number of receiver blocks.
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From Equation (5), the two-body transition probability, with s = {s1, s2} and ri =
{ri,1, ri,2}, is given by

| f ri
s (t)|2 =

∣∣∣〈1, 2|e−itĤ |N − 1, N〉
∣∣∣2 =

∣∣∣∣ f N−1
1 (t) f N

1 (t)
f N−1
2 (t) f N

2 (t)

∣∣∣∣2 . (11)

For only one sender and one receiver block located at opposite edges of the quantum
wire, the model is one-dimensional and, using the Jordan–Wigner mapping from spin-
less fermions to spin- 1

2 particles, the Hamiltonian in Equation (6) with open boundary
conditions is equivalent to the XX spin- 1

2 model with nearest-neighbor coupling.

Ĥ =
N

∑
n=1

Jn

2

(
σ̂x

n σ̂x
n+1 + σ̂

y
n σ̂

y
n+1

)
. (12)

In such a case, it has been shown that two-qubit quantum state transfer [13–15] as
well as entanglement generation of two Bell states [27] is achieved with high fidelity.
Modifications of the one-dimensional geometry have been investigated too. In Refs. [17,18]
each spin of the sender (receiver) block is coupled to the edges of the 1D quantum wire
allowing for the transfer of a Bell state when operating in the single-excitation subspace.
A similar geometry is adopted in Refs. [4,6] with multiple sender (receiver) non-interacting
spins coupled to the wire at the edges.

1

2

3 4 5 6 7 8 9 10 11 12 13

14

15
Figure 1. Quantum routing of excitations by means of a linear chain quantum data bus with
switchable interactions. The sender and receiver sites are depicted in green and red, respectively,
while the quantum data bus sites are in blue. Continuous lines represent permanent couplings J = 1,
while dotted lines encode switchable weak couplings J0 � 1; also shown is the numbering choice of
the sites position adopted in Section 3.1.

3.1. Routing with Switchable Weak Couplings

Here we consider only one receiver block coupled to the wire for each execution of
the routing protocol and, as we shall see, this allows us to assume uniform coupling within
each component of the setup, i.e, the sender, the wire and the receiver blocks. We choose
Js = J = Jr = 1 as our energy and time unit. On the other hand, the couplings between the
sender (receiver) block and the wire will be in the weak-coupling regime, which we set
throughout the paper to J0 = 0.01.

The 1D-case where only one block of senders and one of receivers is each coupled at
the edge of the quantum wire has been addressed in Ref. [25]. There it has been shown that,
although each length of the quantum wire nw allows for high-fidelity excitation transfer,
for nw = 3l + 2 (l = 0, 1, 2, . . . ), resonances between the sender (receiver) and the wire
single-particle energy levels give rise to a faster transfer with respect to the instances
nw = 3l, 3l + 1 where off-resonant transfer takes place. In the former case, the single-
particle transfer occurs on a time scale of the order of J−1

0 , yielding to a two-excitation
transfer time scale of the order of 10 J−1

0 with the reason for the multiplicative factor being

118



Entropy 2021, 23, 51

that the transfer dynamics involves a difference between eigenenergies that are perturbed
to first-order in J0. On the other hand, for the off-resonant dynamics, the two-particle
transfer time is of order J−2

0 . Considering that the excitation transfer mechanism holds in
the perturbative regime J0 � 1, this may translate in severals of magnitude.

Here we address the case where the receiver block is coupled to the quantum wire at
a different position wi than the edge of the chain; see Figure 1. We also omit the suffix i
since only one receiver block is present in this protocol. We aim at finding the conditions
on the position w for which resonant transfer of the excitations from the sender to the
receiver block at takes place. Following the argument for faster (resonant) transfer in
Ref. [25], we set the length of the quantum wire nw = 3l + 2 so that perturbative transfer
is achieved for w = nw, i.e., a receiver block can be coupled to the edge of the wire.
For this wire length, we find that it is possible to couple a receiver block at each site
w �= 3p of nw, with p integer. The fact that these latter sites of the wire cannot act as
connection points for the receiver block can be explained by looking at the eigenstates
of the wire’s Hamiltonian ĤW (Equation (8)) that are resonant with the eigenstates of the
sender (receiver) block. For J = 1, the unperturbed energy level of the sender (receiver) is
Eres = ±1, and, because of the mirror-symmetry of the Hamiltonians in Equation (7), they
have the identical (absolute value) overlap on each site [28] so that it suffices to consider
only one of them. The unperturbed energy levels of the wire that are resonant with the
sender (receiver) are given by Ek = 2 cos kπ

nw+1 = 1. Therefore, we obtain that, ordering
E′

ks in decreasing order, the k = nw+1
3 -energy level of the wire is the resonant one, see left

panel of Figure 2 for a schematic representation of the resonance condition. Expressing the
corresponding energy eigenstate in the position basis

|Eres〉 =
√

2
nw + 1

nw

∑
m=1

sin
kmπ

nw + 1
|m〉 =

√
2

nw + 1

nw

∑
m=1

sin
mπ

3
|m〉 , (13)

meaning that the resonant energy level has no support on any site of the wire being
multiple of 3. As a consequence, at first-order perturbation theory, the resonant energy
level does not overlap with the receiver sites coupled to each third site of the wire, making
the latter not apt as connection points for a two-excitation transfer. Furthermore, the kres
eigenenergy state has constant spatial overlap with every other site m �= 3p. This translates
into a symmetric spatial distribution of the first-order perturbed eigenstates on the sender
and receiver block, thus enabling the excitation transfer. Hence, for a wire of length
nw = 3l + 2 with uniform couplings equal to those within the sender (receiver) block, a
total of nr = 2(l + 1) receiver points are possible. In Figure 2 an instance of such a protocol
is shown for l = 3 with the receiver pair nr6 coupled to the quantum wire. In the right
panel of Figure 2 an instance of the Rabi-like oscillations are shown for a wire’s length of
nw = 11 and connection point of the receiver block at w = 7. We found in our numerical
simulations for lengths of the wire in the order of the hundreds, that also for longer chains
the fidelity reaches F = 1 − O(J0) for a receiver block connected at w �= 3p with the first
peak of the oscillations occurring at a time of order 10 J−1

0 .

Figure 2. (left) Single-excitation energy levels in the switchable coupling configuration. (right) Two-excitation transfer
fidelity in the switchable configuration of Section 3.1 with nw = 11, r = 7, and J0 = 0.01.
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3.2. Routing with Permanent Weak Couplings

A much more desirable routing configuration would be one without the need of
switching on and off the couplings as described in the previous section. For the routing
of a single particle, this has been achieved in Ref. [3] where in both the linear and the
circular geometry, the sender chooses the receiver site tuning the only single-energy level
on resonance with the receiver (and the quantum wire) energy level by means of a local
magnetic field, i.e., the value of the local magnetic field acting on the receiver qubit is
the routing address. In the case of a sender block embodied by two particles, the same
strategy does not work as a local magnetic field produces an uniform shift of both of the
two energy levels and the simple sinusoidal excitation dynamics is lost. However, it is
still possible to perform resonant routing with a sender block of two sites by using the
intraspin coupling, which results in a symmetric energy shrinking or dilatation of the two
single-energy levels. In such a case, the routing address of each receiver block is given by
their intraspin coupling Jr; see Figure 3 for the geometry of the network and the left panel
of Figure 4 for the single-excitation energy levels.

In Section 3.1, we have shown that, for Js = 1, the wire’s k = nw+1
3 -energy level is

resonant with the sender block, and allows for the transfer of the two excitations to a
receiver block with intraspin coupling Jr = Js provided that the connection point along
the wire is w �= 3p. The very same argument can be applied by tuning Js to a different
value so that the single-energy levels of the sender block Es = ±2Js are resonant with two
(symmetric) energy levels of the wire. In order to match the resonance condition, an integer
solution for k has to satisfy the following equation

Js = cos
kπ

nw + 1
. (14)

That is, the k = nw+1
π arccos Js-th energy eigenvalue of the wire is resonant with the sender.

For example, for Js =
√

3
2 , k = nw+1

6 . Hence, the allowed contact points wi along the wire
have to fulfill the condition that the resonant eigenstate spatial component of the contact
point of the sender has to be equal to that of the receiver’s contact point, i.e.,√

2
nw + 1

sin
kressπ

nw + 1
=

√
2

nw + 1
sin

kreswiπ

nw + 1
. (15)

Figure 3. Quantum routing of excitations by means of a linear chain quantum data bus with
permanent interactions and assuming Js tuneable. The sender and receiver sites are depicted in green
and red, respectively, while the quantum data bus sites are in blue; also shown is the numbering
choice of the sites position adopted in Section 3.2.

To conclude this section, we recap the main results for routing a pair of excitations
across a wire with uniform couplings to a desired location, specifying the resonance
conditions on the sender and receiver couplings, respectively Js and Jri and the respective
allowed contact points.
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For a wire of length nw, the possible communication parties are nw
2 for even length

chain and nw−1
2 for odd length ones. Setting the intrawire coupling J = 1, the single energy

levels for which first-order excitation transfer occurs are Ek = 2 cos kπ
nw+1 , k = 1, 2, . . . , nw

2

(k = 1, 2, . . . , nw−1
2 for odd length chains). Each k determines the intraspin coupling of the

sender block via the relation Jri = 2 cos kiπ
nw+1 and the possible contact points wi along the

wire via
sin

kisπ

nw + 1
= sin

kiwiπ

nw + 1
. (16)

Assuming that the sender is attached to the first site of the wire s = 1, and exploiting the
periodicity of the sin function, |sin α| = |sin(α ± nπ)|, with n integer,

kiwi
nw + 1

=
kiπ

nw + 1
± nπ → wi =

∣∣∣∣1 ± n(nw + 1)
ki

∣∣∣∣ . (17)

Finally, the allowed contact points wi are the integers ∈ [1, nw] satisfying Equation (17).
An instance of these conditions is given in Figure 4 for nw = 11 and the corresponding
values of Jri and ri are given in Table 1.

Table 1. Values of the intraspin couplings for the receiver blocks and available wire’s connection sites
for the receiver block for a wire’s length nw = 11.

k Jr wi

1
√

3−1
2 1,11

2 1 1,2,4,5,7,8,10,11
3

√
2 1,3,5,7,9,11

4
√

3 1,5,7,11
5

√
3+1
2 1,11

Figure 4. (left) Single-excitation energy levels in the permanently coupled routing scheme. The sender’s energy level can
be tuned to be in resonance with a different pair of wire’s (and receiver’s) energy levels by tuning Js. (right) Excitation
transfer in the permanent coupling configuration of Section 3.2 with nw = 11, J0 = 0.01 and coupling scheme as in Figure 3.
The different curves correspond to the transfer fidelity of the two excitation to different receiver block by tuning Js to Jri .
The colors of the curves correspond to the enegy levels in the left panel.

4. Routing in Spin Systems

In the previous Sections, we have shown how, in the weak-coupling regime, routing
of two-excitations from a sender to a receiver block can be achieved both in a switchable
and a permanent coupling configuration in quadratic Hamiltonians. In this Section, we
will consider the case when the network is made up of spin- 1

2 particles interacting via an
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XX-type Heisenberg Hamiltonian. We will consider the switchable routing configuration
depicted in Figure 1 with Hamiltonian

Ĥ = ∑
〈ij〉

Jij

2

(
σ̂x

i σ̂x
j + σ̂

y
i σ̂

y
j

)
, (18)

where 〈〉 denotes the summation running over nearest-neighbor sites. Notice that
Equation (18) differs from Equation (12) because of the 2D nature of the network. By intro-
ducing the ladder operators σ̂± = σ̂x±iσ̂y

2 , the Hamiltonian of the system can be obtained
from Equations (6)–(10) by substitution of ĉ → σ̂− and ĉ† → σ̂+. As already stated in
Section 3, were the network one-dimensional, i.e., the receiver block coupled to the last
spin of the wire, then the Jordan–Wigner transformation would map Equation (18) to a
quadratic spinless fermion Hamiltonian. Such a case would constitute a special instance of
the analysis in Section 3.1 and several works on two-qubit quantum state transfer can be
found in the literature. However, in the general case, where the receiver block is coupled
to an arbitrary site of the wire, the Jordan–Wigner mapping does not apply as the system
looses its one-dimensional nature.

However, for a configuration such as the one depicted in Figure 1, there is only
one spin belonging to the wire that has three nearest-neighboring spins; therefore, the
one-dimensional nature of the model is only locally broken with the lowest possible
coordination number. It is therefore interesting to investigate if the routing properties of
the spinless non-interacting one-dimensional model of Section 3 still persist also when the
network is made of spins when a rigorous mapping to fermions is not possible.

Now, in order to evaluate the transition probability of two-excitations, we need
to diagonalise the Hamiltonian in Equation (18) in the two-excitations sectors, being
the reduction to one-particle transition amplitudes not possible. The dimension of the
Hamiltonian in the two-excitation Hilbert space is the binomial factor dim

[
Ĥ(2)

]
= (N

2 ) and
we diagonalise the Hamiltonian numerically for N = 306 using the QuSpin package [29].

From Figure 5 we see that, as for the free-fermion network in Section 3.1, the transition
probability of the two excitations from the sender block to the receiver block is negligible
whenever the latter is coupled to every third spin of the linear chain. Furthermore, high-
quality two-excitation transfer can be achieved, on a time-scale similar to that of the
free-fermion network, only if the receiver block is coupled to connection points of the
wire at the opposite edge with respect to the sender block. Moving away from that edge
causes a linear decrease of the quality of the transfer with a lower slope the longer the
wire. This may be seen as a consequence of the fact that the longer the wire, the more the
one-dimensional nature of the system becomes manifest.

-40 -30 -20 -10 0
n0.0

0.2

0.4

0.6

0.8

1.0

F

Figure 5. Transition probability for the switchable couplings protocol in Section 3.1 with spin- 1
2

particles sitting on the graph with N = 78 (red), N = 156 (gray), and N = 306 (blue) and interacting
via the XX Hamiltonian in Equation (18). The numbering on the x-axis is the distance from the edge
opposite the sender block n = 0,−1,−2, . . . . Notice that, for the receiver block coupled to each third
n of the wire, the transiton probability is negligible. Interestingly, the quality of the transfer increases
with the wire’s length.
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5. Discussion

In this paper, we have investigated the routing of two fermionic excitations across
a quantum network. In the proposed protocol we were able to show that two fermions,
initially located on a sender block composed of two sites, can be efficiently routed to a
receiver block of two sites, provided that both the former and the latter are weakly coupled
to a one-dimensional quantum wire, modeled by a fermionic nearest-neighbor hopping
Hamiltonian. We have proposed two different protocols: in the first one, we have assumed
switchable couplings and derived the connection points of the wire which yields high-
quality routing; in the second one we have assumed permanent couplings and envisaged
in the tunability of the sender’s intrasite coupling a mean to route the two excitations to
the desired location. In each considered configuration we obtained a perturbatively-perfect
fidelty, i.e., F = 1 − O(J0), where J0 is the weak coupling of the sender and receiver block
to the wire, with a transfer time scaling as O(10J−1

0 ). We also compared the fermionic
network with a spin- 1

2 network interacting via an XX-Heisenberg Hamiltonian. Due to the
2D nature of the network, the analysis had to rely on numerical evaluation and we found
that, apart from the scenario where the receiver blocks are located towards the end of the
wire, efficient routing is not achievable with qubits. However, our work hints towards the
possibility to utilise very long quantum wires for the proposed 2-qubit routing protocol as
we observed an enhancement of the routing fidelity by increasing the length of the wire.
In such a scenario, our protocol may be utilised also for two-qubit entanglement routing,
similarly to Refs. [17,18] where the tranfer is achieved between the edges of the chain.

For a realistic implementation of our protocol one should however consider possible
experimental imperfections in the couplings, the time-dependence of the sender/receiver
couplings to the chain, and decoherence due to interaction with the surrounding envi-
ronment. While an extensive analysis of the performance of our protocol under these
conditions has not been presented here, and may be left to future investigation, it is reason-
able to assume that similar analyses done for the one-particle transfer scenario may apply
also for two-particle routing as our results are derived from single-particle transition ampli-
tudes. In this regard, disorder in couplings [21,30–33], time-dependent couplings [34,35],
and decoherence [36,37] have been extensively addressed and several strategies to counter
the detrimental effect on the transfer quality have been devised which may find application
also in our two-particle routing protocol.
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Abstract: In quantum physics, two prototypical model systems stand out due to their wide range of
applications. These are the two-level system (TLS) and the harmonic oscillator. The former is often
an ideal model for confined charge or spin systems and the latter for lattice vibrations, i.e., phonons.
Here, we couple these two systems, which leads to numerous fascinating physical phenomena.
Practically, we consider different optical excitations and decay scenarios of a TLS, focusing on the
generated dynamics of a single phonon mode that couples to the TLS. Special emphasis is placed
on the entropy of the different parts of the system, predominantly the phonons. While, without any
decay, the entire system is always in a pure state, resulting in a vanishing entropy, the complex
interplay between the single parts results in non-vanishing respective entanglement entropies and
non-trivial dynamics of them. Taking a decay of the TLS into account leads to a non-vanishing
entropy of the full system and additional aspects in its dynamics. We demonstrate that all aspects of
the entropy’s behavior can be traced back to the purity of the states and are illustrated by phonon
Wigner functions in phase space.

Keywords: phonons; two-level system; entropy; Wigner functions; entanglement

1. Introduction

Entropy is one of the most fundamental concepts in physics. According to the second law of
thermodynamics, in a closed system, it never decreases, which has far reaching consequences, from the
limited efficiency of thermodynamic machines [1] to cosmological implications [2,3]. Under thermal
equilibrium conditions, it determines the state of a thermodynamic system: In a closed system,
the realized state is the one with maximal entropy; in a system in thermal contact with a heat bath,
the realized state results from an interplay between energy and entropy and is governed by the
minimum of the free energy [4]. Under nonequilibrium conditions, the second law of thermodynamics
prohibits the decrease of the entropy of a closed system; however, this does not hold for the entropy of
a subsystem which is interacting with other subsystems or with its surroundings [5,6]. In this case,
the study of the dynamics of the entropy of these subsystems provides valuable information on the
evolution of the nature of the system’s state [7].

From the point of view of information science, entropy is closely related to the imperfect
knowledge about a system [8,9]. As such, it plays a key role in all fields related to information
processing and communication, and, in particular, in the highly topical fields of quantum information
and communication, where the entropy is closely related to phenomena like purity of quantum states,
entanglement, and decoherence [10].

In this paper, we study the entropy dynamics in a prototypical model of quantum mechanics and
quantum information theory. It consists of two subsystems, a quantum-mechanical two-level system
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(i.e., a representation of a qubit) which can be manipulated by an external field (e.g., a light field) and
which is coupled to a harmonic oscillator (e.g., a single phonon mode or a nanomechanical oscillator).
The generation of specific quantum states of such a harmonic oscillator and the manipulation of
these states has recently attracted much interest [11–14]. Prominent examples are coherent states and
Schrödinger cat states, i.e., superpositions of coherent states. We analyze the entropy dynamics of
the two subsystems after excitation with a short optical pulse or a pair of such pulses. In particular,
we compare the case of a unitary evolution in the absence of damping processes, when the coupled
system remains in a pure state, with the case of a decaying two-level system resulting in a mixed state
also of the combined system. We will show that the analysis of the time-dependent entropy provides
interesting insight into the nature of the quantum state of the two subsystems.

2. Theory

We consider a two-level system (TLS) which can be excited and de-excited by a resonant optical
field E. Additionally, a pure dephasing coupling to a single phonon (ph) mode is taken into account.
Thus, the Hamiltonian reads [15]

H = h̄Ω |x〉 〈x| − [M · E(t) |x〉 〈g|+ M∗ · E∗(t) |g〉 〈x| ]+ h̄ωphb̂† b̂ + h̄g
(
b̂ + b̂†) |x〉 〈x| . (1)

The states |g〉 and |x〉 describe ground and excited state of the TLS with an energy splitting of
h̄Ω, respectively. The time dependent optical driving is mediated by the dipole matrix element M.
Phonons with the discrete energy h̄ωph are created and annihilated by b̂† and b̂, respectively.
For simplicity, the coupling constant of the exciton-phonon interaction g is supposed to be real.

Such a TLS system coupled to a single bosonic mode is a prototypical model that can be considered
for the description of various solid state systems. For the TLS, one might think of an exciton in a single
semiconductor quantum dot [16] or excitations of defects in insulators, like diamond [17] or hexagonal
boron nitride [18], while the phonon could be an optical mode [19], a local mode [20], a van Hove
singularity [21], or the mechanical excitation of a microresonator [22].

Phonon-induced transitions between the states |g〉 and |x〉 of the TLS are negligible because of the
strong energy mismatch between the exciton energy, which is of the order of one or a few electronvolts
(eV), while phonon energies range from a few micro-electronvolts (μeV) (for micromechanical
resonators) up to a few tens of milli-electronvolts (meV) (for optical phonon modes). The linear
coupling in the phonon displacement reflects typical electron-phonon interaction mechanisms
in solids like deformation potential coupling, piezoelectric coupling, or Fröhlich coupling [23].
Although extensions of this model have been considered that take a quadratic coupling to the phonons
into account [24–27], the original independent boson model [28] in Equation (1) is successfully
used in different contexts. It reproduces recent linear and nonlinear spectroscopy signals [18,29],
Rabi oscillations [30], and rotations [31] in excellent agreement with experiments, to name just a few.

The possible states of the entire system can be separated into the phonons forming product states
with the ground state of the TLS and those forming product states with the excited state

|g〉 ⊗ ∣∣phg
〉

and |x〉 ⊗ |phx〉 . (2)

From the full density matrix of the system ρ, we can calculate the one of a subsystem by tracing
over the respective other, i.e.,

ρTLS = Trph(ρ) and ρph = TrTLS(ρ) . (3)

In the same way as in Reference [32], we model a decay of the excited state with the rate Γ via the
Lindblad dissipator

D(ρ) = Γ
[
|g〉 〈x| ρ |x〉 〈g| − 1

2
{ |x〉 〈x| , ρ

}]
, (4)
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leading to the master equation for the density matrix:

d
dt

ρ =
1
ih̄
[H, ρ] +D(ρ) . (5)

We will not take an additional phenomenological pure dephasing of the TLS into account. We will
study different regimes of decay rates Γ compared to the characteristic phonon frequency ωph. On the
one hand, when describing, for example, optical phonons with energies in the range of tens of meV
the decay time of the TLS is typically much longer than a phonon period, i.e., Γ � ωph [18]. On the
other hand, when considering typical mechanical resonators with phonon energies in the μeV range
we have Γ > ωph [33].

As we have explained in Reference [32], the entire quantum state and especially the Wigner
function of the phonons can be calculated analytically when considering a series of ultrafast laser
pulses to drive the TLS. Especially if the pulse duration is much shorter than the phonon period,
the pulses can be approximated by delta-functions as

M · E(t)
h̄

= ∑
j

θj

2
exp

[
−i

(
Ω − g2

ωph

)
t + iφj

]
δ(t − tj) . (6)

The pulses excite the TLS at times tj with pulse areas θj and phases φj. By this choice and the
introduction of the generating functions

Yα(t) =
〈
|g〉 〈x| exp(−α∗ b̂†) exp(αb̂)

〉
, (7a)

Cα(t) =
〈
|x〉 〈x| exp(−α∗ b̂†) exp(αb̂)

〉
, (7b)

Fα(t) =
〈

exp(−α∗ b̂†) exp(αb̂)
〉

, (7c)

with
〈

Â
〉
= Tr

(
ρÂ
)

denoting the expectation value of an operator Â, a closed system of partial
differential equations for the time-evolution of the generating functions is obtained and all phonon
assisted density matrices can be calculated analytically without approximations. Note that Fα contains
the entire information on the phonon system, while Cα describes the phonon assisted occupation of
the excited state, i.e., the phonons in |x〉 ⊗ |phx〉, and Yα is the phonon assisted coherence.

Our analysis of the phonon quantum states is based on their Wigner function [34]

W(U, Π) =
1

4π

∞∫
−∞

〈
U +

X
2

∣∣∣∣ ρph

∣∣∣∣U − X
2

〉
exp
(
− i

2
XΠ
)

dX , (8)

which is a quasi-probability distribution in the phase space defined by the quadratures û and π̂ and
their respective eigenstates

û = b̂ + b̂† , π̂ =
1
i
(b̂ − b̂†) , (9a)

û |U〉 = U |U〉 , π̂ |Π〉 = Π |Π〉 . (9b)

Due to their definition by the phonon annihilation and creation operators, the quantities U
and Π directly correspond to the lattice displacement and momentum, respectively. The generating
function Fα, at the same time, is a characteristic function of the Husimi Q function [35]. From this,
we can directly calculate the instructive Wigner distribution analytically for a given pulse sequence
via [34]:

W(U, Π, t) =
1

4π2

∞∫∫
−∞

exp
(
−|α|2

2

)
Fα(t) exp {i [Re(α)Π + Im(α)U]} d2α . (10)
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In the same way, we can isolate the Wigner function Wx for the phonons associated with the
TLS being in the excited state |x〉 by choosing Cα instead of Fα in Equation (10). By doing the same,
but choosing Yα, we define Wp as the Wigner function of the phonon assisted coherence. In summary,
we have

Fα → W , (11a)

Cα → Wx , (11b)

Yα → Wp , (11c)

Fα − Cα → W − Wx = Wg , (11d)

where Wg is the Wigner function of the phonons associated with the TLS being in the ground
state |g〉 ⊗ ∣∣phg

〉
.

Following the original definition by von Neumann [36], we investigate the time-dependent
entropy of our coupled quantum system defined by

S = −Tr
[
ρ ln(ρ)

]
. (12)

In general, subadditivity states that the entropy of the full system is a lower boundary for the
sum of the entropies of the subsystems [37]:

S(ρ) ≤ S(ρTLS ⊗ ρph) = S(ρTLS) + S(ρph) . (13)

It is important to note that for every pure quantum state ρpure, the entropy vanishes, i.e.,

Spure = −Tr
[
ρpure ln(ρpure)

]
= 0 , (14)

and the entropies of the subsystems coincide if the state of the full system is pure [37]

Sph = S(ρph) = S(ρTLS) . (15)

To show this, following Reference [37] for an arbitrary composed system, we decompose the
pure state of the entire system |ψ〉 into an orthonormal basis |ψ〉 = ∑i,k Cik|φi〉|χk〉 with the coefficient
matrix C = (Cik). Here, |φi〉 and |χk〉 are basis states of the two subsystems, respectively. From the
complete density matrix ρ = (ρikjl), one obtains a reduced density matrix by tracing over the respective
other subsystem ρ1 = Tr2(ρ):

ρikjl = 〈φi|〈χk|ρ|χl〉|φj〉 = CikC∗
jl , (16a)

⇒ ρ1,ij = 〈φi|ρ1|φj〉 = ∑
k

CikC∗
jk = (CC†)ij . (16b)

Analogously the density matrix of the other subsystem is ρ2 = C†C. Any non-vanishing
eigenvalue λ of ρ1 with the eigenvector y is then also an eigenvalue of ρ2 with eigenvector
z = C†y because

CC†y = λy , (17a)

⇒ C†Cz = C†C(C†y) = C†(CC†)y = λC†y = λz , (17b)

and vice versa.
In our particular system, we can choose the TLS’s states as the |φi〉 ∈ {|g〉, |x〉} and a Fock basis

for the phonon system |χk〉 ∈ {|0〉, |1〉, . . .}. This means that the coefficient matrix C consists of 2 × ∞
elements. The entropy of the TLS, i.e., of its density matrix:
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CC† = ρTLS =

(
1 − c p

p∗ c

)
, with c = 〈|x〉 〈x|〉 , p = 〈|g〉 〈x|〉 , (18a)

can be easily calculated via [37]

S(ρTLS) = −λ+ln(λ+)− λ−ln(λ−) , (18b)

where

λ± =
1
2
±
√

1
4
+ c2 − c + |p|2 =

1
2
± 1

2
|v| (18c)

are the two eigenvalues of the TLS’s density matrix with the Bloch vector v =
(
2Re(p), 2Im(p), 2c − 1

)
.

For a pure state of the full system, according to Equation (17), the phonon density matrix has,
despite being a quadratic infinite dimensional matrix, only two non-vanishing eigenvalues λ±.
So, as long as the entire system is in a pure state and we know the entropy of the TLS via Equation (18b),
we can derive the entropy of the phonon system by Equation (15).

For an arbitrary, non-pure state of the entire system, the calculation of the entropy in a system with
infinite dimensions is far from being trivial. This is the case if, already, the initial state is a statistical
mixture, e.g., at non-vanishing temperature or when dephasing leads to a statistical mixture. Therefore,
approximations have been discussed and a reasonable version is given by the linear entropy [37]:

Slin = Tr
(
ρ
)− Tr

(
ρ2) = 1 − Tr

(
ρ2) = 1 − 〈ρ〉 . (19)

To get an impression of this approximation, Figure 1a shows the function of the full entropy
−ξln(ξ) and the one for the linear entropy ξ − ξ2; similar to the presentation in Reference [37], note that
Tr(ρ) = 1. We find that the function of the approximated linear entropy in red is always smaller than
the full entropy in blue. Therefore, we expect that the linear entropy under-estimates the full entropy.
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Figure 1. (a) Functions for the full entropy in blue and the linear entropy in red. (b) Entropies of the
two-level system (TLS) with p = 0, full entropy in blue and linear entropy in red.

We can directly compare the linear and the full entropy of the isolated TLS from Equation (18b),
as shown in Figure 1b. There, the full entropy is plotted in blue and the linear one in red as functions
of the excited state occupation c, both for p = 0. In the limiting cases of full inversion c = 1 and no
inversion c = 0, the state is pure and both entropies vanish. For all other occupations, the TLS is in a
statistical mixture, and the entropy is non-zero, and it is Slin � S. In the case of an equally distributed
mixture, i.e., c = 0.5, the entropies are maximal and reach values of Slin = 0.5 and S = ln(2) ≈ 0.7.

The biggest advantage of this linear entropy for our study is that it can be directly calculated from
the phonons’ Wigner functions due to the trace-product rule [38] via

Sph
lin = 1 − 4π

∞∫∫
−∞

W(U, Π)2 dU dΠ . (20)
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Note that the prefactor 4π depends on the definition of the quadratures U and Π, i.e., the scaling
of the phase space.

With the separation into TLS and phonon system, the linear entropy is calculated via

Slin = 1 − Trph

[
TrTLS

(
ρ2)] . (21)

For this, we again consider the density matrix of the full system as

ρ = (1 − c) |g〉 〈g| ⊗ ρph,g + c |x〉 〈x| ⊗ ρph,x + p∗ |g〉 〈x| ⊗ ρph,p + p |x〉 〈g| ⊗ ρ†
ph,p , (22a)

⇒ TrTLS(ρ
2) = (1 − c)2ρ2

ph,g + c2ρ2
ph,x + |p|2(ρph,pρ†

ph,p + ρ†
ph,pρph,p) , (22b)

leading to

TrTLS(ρ)− TrTLS(ρ
2) = (1 − c)ρph,g − (1 − c)2ρph,g

+ cρph,x − c2ρ2
ph,x

− |p|2(ρph,pρ†
ph,p + ρ†

ph,pρph,p) . (22c)

We can now use the separate parts of the Wigner function from Equation (11) to define entropies

Si
lin =

∞∫∫
−∞

[
Wi(U, Π)− 4πWi(U, Π)2

]
dU dΠ , with i ∈ {g, x} , (22d)

Sp
lin = −4π

∞∫∫
−∞

|Wp(U, Π)|2 dU dΠ . (22e)

Note that the polarization Wigner function Wp is a complex quantity. With this and the definitions
of the generating functions in Equation (7), we can write the linear entropy in Equation (21) as

Slin = Sg
lin + Sx

lin + 2Sp
lin . (23)

To briefly summarize, for pure states of the entire system, i.e., without dephasing or decay of the
TLS, we can calculate the full entropy of the phonon state Sph via Equation (15). If the state is not pure,
we can at least calculate the linear entropy from the Wigner functions. We can further distinguish
between the linear entropy of the full system Slin in Equation (23) and the one of the phonons Sph

lin in
Equation (20).

3. Results and Discussion

3.1. Single Pulse Excitation

We start our study with the most basic situation, where the TLS is excited by a single optical pulse.
It is well known from previous works that a single ultrafast excitation in general creates a statistical
mixture of coherent states in the phonon system. The excitation of the TLS means for the phonons a
shift of the equilibrium position determined by the dimensionless coupling strength γ = g/ωph. If not
stated differently, in the following, we fix this value to γ = 2 in order to separate the different parts of
the Wigner function in phase space, as will be seen later. Although γ = 2 is a rather large value for
quantum dots and optical phonons, the general physics explained in this paper will not depend on
this value. Some effects might be strengthened or weakened with a different choice of the coupling
strength, as will be highlighted later.
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3.1.1. Phonons Generated by a Non-Decaying TLS

In the first step, we neglect the decay of the excited state by choosing Γ = 0. In this situation,
the state of the full system, including the TLS and the phonons, is pure. Therefore, the full and the
linearized entropy are zero and Equation (15) holds, meaning that the entropy of the TLS and that
of the phonons is the same. Figure 2 recapitulates the phonon dynamics for a pulse area of θ = π/2,
i.e., an inversion of the TLS of 50% or c = 0.5, from Reference [13]. The phonon’s Wigner function reads:

W(U, Π, t) =
1

4π

{
exp
[
−1

2
(U2 + Π2)

]
(24)

+ exp
(
−1

2
{U − 2γ[1 − cos(ωpht)]}2 − 1

2
[Π − 2γ sin(ωpht)]2

)}
,

and its dynamics are shown at five different times in Figure 2a. Before the optical excitation,
the phonons are in the vacuum state represented by the Gaussian Wigner function in the center
of the phase space. Half of the weight of the phonon’s Wigner distribution is brought into the excited
state subspace by the optical pulse. This makes them move as a coherent state around the new
equilibrium position, which is shifted by 2γ in U-direction. This trajectory is marked as black circle
in the figure. The other half of the phonon state remains associated with the ground state of the TLS
and, therefore, stays in the vacuum state. The full phonon state after tracing over the TLS states is a
statistical mixture of the vacuum state and a coherent state moving around the shifted equilibrium
position. After a full phonon period at t = tph, the Wigner function agrees with the initial situation
because the coherent state moves through the origin and overlaps with the vacuum state. The phonon’s
influence on the properties of the TLS is shown in Figure 2b. While the occupation of the excited
state stays constant at c = 0.5, the polarization |p| starts at 0.5 directly after the optical excitation at
t = 0 and drops rapidly to almost zero in the following. This dephasing is inverted towards t = tph,
resulting in a full rephasing to |p| = 0.5. While the coherent states separate in phase space, coherence is
lost from the TLS, which already shows that the overlap of the different parts of the Wigner function
plays an important role for the properties of the entire system.

0.00 0.25 0.50 0. 5 1.00

ph

0.0

0.5

1.0

| |

( )

0.00 0.25 0.50 0. 5 1.00

ph

0

0 5

(2)

Sph
lin

Sph( )

−8−4 0 4 8

−8
−4
0
4
8 ph = 0+( )

−8−4 0 4 8

1 4

−8−4 0 4 8

1 2

−8−4 0 4 8

3 4

−8−4 0 4 8

1 1

Figure 2. (a) Dynamics of the phonon Wigner function after a single pulse excitation of the TLS. (b) TLS
dynamics with the excited state occupation c in red and the polarization |p| in blue. (c) Entropies of the
phonon system, Sph in green and Sph

lin in red.
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Finally, in Figure 2c, we show the entropy of the phonons which, as mentioned above, agrees with
the entropy of the TLS. As the initial phonon state is pure, both entropies, Sph in green and Sph

lin in red,

start at zero at t = 0. While the different parts in phase space separate, the entropy grows to Sph
lin ≈ 0.5

because the phonons are in a statistical mixture that must have a non-vanishing entropy. The full
entropy follows the same dynamics as the linear one but is always larger, as previously explained,
and grows to Sph ≈ ln(2) ≈ 0.7. Reaching t = tph, the entropies drop to zero again. The reason is
the recovered overlap of the two parts of the Wigner function. Finally, at t = tph, the phase space
representation cannot be distinguished from the vacuum state. Therefore, the entropy also has to agree
with the one of the pure vacuum state being zero.

3.1.2. Phonons Generated by a Decaying TLS

In the previous section, without any decay or additional pure dephasing of the TLS, the quantum
state of the entire system remained pure, resulting in a vanishing entropy of the full system. It also
allowed us to easily calculate the full entropies for TLS and phonons. In this section, we consider a
non-vanishing decay rate of the occupation of the excited state into the ground state, which naturally
results in a statistical mixture in the TLS’s quantum state that also imprints onto the phonons. Therefore,
for the phonons, we can only calculate linear entropies, according to Equation (20). In Reference [32],
we explained how the Wigner function evolves during the decay process in the TLS. Therefore,
we consider the same optical excitation with a pulse area of θ = π, which initially fully inverts the TLS.
Without any decay, the Wigner function would read

W(U, Π, t) =
1

2π
exp
(
−1

2
{U − 2γ[1 − cos(ωpht)]}2 − 1

2
[Π − 2γ sin(ωpht)]2

)
, (25)

being a single Gaussian moving on a circle around the shifted equilibrium position of the excited
state. In Figure 3a, Wigner functions for different decay rates Γ are shown at t = 10tph. We find
that the phonon state gets smeared out in phase space. For rapid decays on the left, the phonons
almost completely stay in the vacuum state and look more or less like a coherent Gaussian distribution.
When looking at the corresponding linear entropy dynamics in Figure 3b, in bright red, we see that
it only increases slightly after the optical excitation at t = 0. When slowing down the decay process,
i.e., moving in Figure 3a more to the right, the Wigner function smears out more and more. Accordingly
it looks less and less like a coherent state which also leads to increasing entropies in (b) when going
from bright to dark colors. Additionally, we find that the final entropy value is reached slower because
it follows the decay of the TLS. Especially for the slowest considered decay of Γ = 0.1ωph, where the
full decay takes several phonon periods, the dynamics of the linear phonon entropy develop minima
at full phonon periods t = ntph. These are the times when the Wigner function in Figure 3a starts
overlapping itself. This is exemplarily shown in Figure 3c for t = tph, where the thick Gaussian part
is the oscillating coherent state. This is the first time it intersects with the circular distribution that
has already decayed into |g〉. In agreement with the findings in Figure 2, this leads to the temporary
reduction of the entropy in Figure 3b.
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Figure 3. (a) Phonon Wigner function after a full decay of the TLS at t = 10tph for different decay rates
Γ as given in the picture. (b) Linear phonon entropy as a function of time after the pulse. The decay
rate decreases from bright to dark colors. (c) Exemplary Wigner function for a slow decay rate of
Γ = 0.1ωph at t = tph. (d) Same as (b) but for the full linear entropy. (e) Same as (b) but for the linear
entropy of the TLS. (f) Bloch sphere of the TLS to illustrate the purity of different states; blue shows
pure and red mixed states.

Comparing the linear entropy of the phonon system in Figure 3b with the linear entropy of
the entire system Slin in (d), we basically find the same overall behavior. The dynamics start at
zero, the final values increase for smaller decay constants, and the final values are reached later.
However, both for small and large Γ, we find qualitative differences. Starting with small Γ in dark blue,
especially for Γ = 0.1ωph, the curve constantly grows without developing any minima. This shows
that the reduction of phonon entropy due to the overlapping Wigner functions does not attain to the
full entropy. The reason for this is that the reduction of the phonon entropy due to overlapping parts
of the Wigner function only happens because the state information of the TLS has been traced out.
Taking the entire coupled system into account, the overlapping phonon parts belong to different states
of the TLS and can therefore be told apart. Therefore, the phonons do not lead to a depression of the
full linear entropy. Conversely, for large decay rates, in bright blue, especially Γ = 5ωph, we find that,
on a short timescale around t = 0.1tph, a pronounced maximum appears in Slin. This effect is not
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found in the phonon part in Figure 3b and therefore stems from the TLS contribution. To understand
this, in Figure 3e, we plot the linear entropy of the TLS as green lines. The bright and dark colors
agree with the ones in Figure 3b,d. In addition, we consider the schematic Bloch vector representation
of the TLS state from Equation (18c) in Figure 3f. The z direction of the Bloch sphere depicts the
occupation of the states, where the south pole is a pure ground state |g〉 and the north pole a pure
excited state |x〉. Between these points, all Bloch vectors that are on the surface of the sphere (blue
line) are superpositions |χ〉 = N(α |g〉+ β |x〉) and are therefore pure. In the other extreme case of the
line directly connecting north and south pole (red), the system is in a statistical mixture of |g〉 and
|x〉. In the center of the Bloch sphere, the TLS is in both states with equal probability, resulting in the
lowest purity. For the entropy of the TLS in Figure 3e, this means that, directly after the excitation into
the excited state and after the full decay, the entropy is zero. In between, the system evolved through
a statistical mixture, which has a non-vanishing entropy. The linear entropy reaches maxima with
STLS

lin = 0.5, in agreement with the result in Figure 1b.

If we want to determine the final linear entropy Sph,∞
lin = Sph

lin(t → ∞) of the phonon state after the
TLS is fully decayed into the ground state, we can investigate the dynamics in phase space. Note that
the final entropy is only carried by the phonon part because the TLS is in the pure ground state.
As schematically shown in Figure 4a, the movement of the coherent state on the circle in the excited
state subspace and the accompanied decay into the ground state leads to a distribution that can be
seen as a continuous distribution of coherent states with decreasing amplitude. We can parametrize
the circular motion of the Wigner function including the decay of the amplitude by

W∞(U, Π) = Γ
∞∫

0

exp(−Γt)W(U0(t),Π0(t)) dt , (26)

where W(U0(t),Π0(t)) is a Gaussian centered around (U, Π) = (U0(t), Π0(t)). With the circular trajectory
in Equation (25), we have to consider

U0(t) = 2γ[1 − cos(ωpht)] and Π0(t) = 2γ sin(ωpht) . (27)

Note that, to retrieve the Wigner distribution in the ground state in Figure 3a, one has to mirror the
schematic in Figure 4a. However, the final linear entropy remains unaffected because it only depends
on the general shape of the distribution. With this, the final linear entropy reads

Sph,∞
lin = 1 − 4π

∞∫∫
−∞

W2
∞(U, Π)dUdΠ

= 1 − 4πΓ2
∞∫∫

−∞

∞∫∫
0

exp
[−Γ(t + t′)

]
W(U0(t),Π0(t))W(U0(t′),Π0(t′)) dtdt′ dUdΠ . (28)

The integral over U and Π describes the overlap of two coherent states in phase space. In general,
two coherent states with a phase space distance of a have an overlap of [34]

4π

∞∫∫
−∞

W(0,0)W(a,0)(U, Π)dUdΠ = exp
[
− a2

4

]
. (29)

Therefore, the entropy becomes

Sph,∞
lin = 1 − Γ2

∞∫∫
0

exp
[−Γ(t + t′)

]
exp

(
−
{

2γ sin
[

1
2

ωph(t − t′)
]}2
)

dtdt′ . (30)
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The sine function in the exponent can be approximated by a linear function for small frequencies
or short times. Note that, although the integration is carried out up to t = ∞, the exponential decay
with Γ effectively limits the integrated time interval. Therefore, we expect this approximation to
work well for sufficiently large Γ. For the motion of the Wigner function, this corresponds to a linear
movement in phase space, as schematically shown in Figure 4b. The corresponding linear entropy can
then be calculated to

Sph,∞
lin ≈ 1 − Γ2

∞∫∫
0

exp
[−Γ(t + t′)

]
exp
{
−[γωph(t − t′)]2

}
dtdt′

= 1 −
√

π Γ
2γωph

exp

⎡
⎣( Γ

2γωph

)2
⎤
⎦ erfc

(
Γ

2γωph

)
, (31)

where erfc(x) = 1 − erf(x) and erf(x) are the error function.
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Figure 4. Final value of the entropy after the full decay of the TLS. (a) Schematic of the phase space
dynamics of the Wigner function during the decay. (b) Approximated dynamics as a straight line.
(c) Final linear entropy Sph,∞

lin as a function of the decay rate Γ, full simulation in solid and approximation
from Equation (31) in dashed lines. Different coupling strengths are shown in blue, red, and green.
The dotted green line shows the entropy for an expansion of the squared sine-function up to the
sixth order.

The results for the final entropy Sph,∞
lin are shown in Figure 4c as a function of the decay rate Γ,

where the full calculations according to the dynamics are shown as solid lines and the approximations
from Equation (31) are the dashed lines. We show the three different coupling strengths γ = 2
(blue), γ = 1 (red), and γ = 0.5 (green). Comparing the different coupling strengths, we find that
a stronger coupling leads to a larger final entropy because the Wigner function gets distributed
over a larger area of phase space. As explained before, the approximation in Equation (31) works
very good for large Γ, but we also see that the approximation works over a larger Γ range if the
coupling strength is larger. The reason for this is that, for larger γ, the circle of the Wigner function’s
trajectory is larger, meaning that its curvature can be better approximated by a linear motion. For the
smallest considered coupling strength γ = 0.5, in green, we additionally show the dotted line that
stems from an approximation of the squared sine function up to the sixth order, which is the next
non-divergent contribution in Equation (30). This curve is obviously a better approximation of the full
calculation, in particular, in the range 1 � Γ/ωph � 2. However, in agreement with all dashed lines,

it reaches Sph,∞
lin = 1 for Γ = 0, while all full linear entropies go to smaller values. This shows that any

approximation of the sine function will not give accurate results for very small decay rates. In fact,
it turns out that, for any finite (converging) order of the expansion of the squared sine function in
Equation (30), Slin,∞

ph = 1 is reached in the limit Γ → 0. This can be understood by realizing that, for any
finite order in the expansion of the trigonometric functions in Equation (27), the trajectory tends to
infinity for t → ∞, thus leading to a delocalized Wigner function. On the other hand, the correct
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Wigner function in this limit is the doughnut-shaped function similar to the rightmost function in
Figure 3a, for which the linear entropy can be calculated analytically, yielding

Slin,∞
ph = 1 − e−2γ2

I0
(
2γ2) , (32)

with the modified Bessel function of first kind and zeroth order I0, in perfect agreement with the
numerical results given in Figure 4c.

3.2. Two Pulse Excitation

The phonon quantum state gets more involved when a two-pulse excitation is considered.
As extensively studied in Reference [13,32], an excitation with two pulses having pulse areas of
θ1 = θ2 = π/2 and a delay of t2 − t1 = tph/2 leads to the generation of two Schrödinger cat states,
each in one TLS subspace. A Schrödinger cat state is a coherent superposition of two coherent states,
i.e., of the most classical states of a harmonic oscillator, and, as such, it is of high interest in all areas of
quantum optics [39–41] and, more recently, also phononics [11].

3.2.1. Phonons Generated by a Non-Decaying TLS

We assume the same excitation scheme as just described and again disregard any decays of
the TLS. The dynamics of the Wigner function are exemplarily shown in Figure 5a. Immediately
before the second laser pulse reaches the TLS, the phonons are in the statistical mixture previously
shown in Figure 2a. The second pulse creates a second coherent state in the excited state subspace
of the TLS, but it also makes half of the coherent state in |x〉 go back to the ground state. Therefore,
we end up with two coherent states in both subspaces, |g〉 and |x〉. As nicely seen in Figure 5a,
the corresponding Wigner function shows two of the classic dumbbell structures of the cat state,
two Gaussians and a striped structure of alternating positive (green) and negative (orange) values
between them. These stripes indicate the interference between the two coherent states. The Wigner
function in the ground state rotates around the origin, and the one in the excited state around the
shifted equilibrium at (U, Π) = (2γ, 0) = (4, 0) is marked by the black circle.
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Figure 5. Two pulse excitation without decay. (a) Snapshots of the Wigner function after the second
pulse. (b) Entropy dynamics after the second pulse, solid lines are the entropies of the cat states,
dashed lines the statistical mixture from Figure 2c. The full phonon entropy is green and the linear
one red.
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The entropies of the phonon state are shown in Figure 5b as solid lines. The linear entropy in
red starts at Slin = 0.5 in agreement with the entropy in Figure 2d at t = tph/2 because at this time
the second pulse excites the TLS. In contrast to the behavior after the first pulse, here, the entropy
drops very rapidly and forms a sharp minimum after the second pulse. In total, the entropy performs
two oscillations before remaining constant at the initial value. The same dynamics repeat themselves
in an inverted form before reaching a full period. Another striking feature is a smaller depression
around t = tph/2. Overall, we find that, by the second pulse, the entropy of the phonon is temporarily
reduced but never increased. The maximum entropy is here the one of a statistical mixture of two fully
separated coherent states (see Figure 2), which is obviously the same for a statistical mixture of two cat
states that are fully separated. This is the case during the times around t/tph = 1/4 and t/tph = 3/4
(see Figure 5a). Next, we discuss the reduced entropy around half a period in Figure 5b. Looking at
the corresponding Wigner function in Figure 5a, we find that this is the time when one of the coherent
states in the excited state system (moving on the circle) overlaps with the vacuum state (staying at the
origin). This is the same effect as discussed in the previous sections, where the entropy shrank when the
phonon states were overlapping in phase space. Finally, we have to understand the strong reductions
of the entropy for times around full periods. To do so, we examine the two insets in Figure 5b that
show snapshots of the Wigner function at the marked times, i.e., where the entropy is minimal and
maximal. The left one at the minimum depicts a time where each of the two Gaussians starts to split
into two, which cannot yet be resolved in the figure because their overlap is still too large. However,
the interference terms between them also move apart. At t = 0, their negative and positive values
are distributed in such a way that they exactly compensate each other (see t = 0+ in Figure 5a). But,
in the left inset, we see that at this time negative and positive values add up, respectively, making for
an accurate alternating pattern. Comparing this structure of the Wigner function with one of the cat
states in Figure 5a shows a strong resemblance. So, the reason for the strong decrease of the entropy is
that, at these times, the Wigner function can only hardly be distinguished from a single Schrödinger
cat state, which is a pure state. Likewise, we can analyze the Wigner function at a maximum of the
entropy oscillation in the right inset. In addition, here, the Gaussians have a large overlap, but the
stripes of the interferences are aligned in such a way that the line in the center has vanishing values.
This strongly disagrees with the natural structure of a cat state interference and makes it easily
distinguishable from that pure cat state. The full phonon entropy Sph is shown as a green solid line.
It follows the same dynamics as the linear one but is just scaled to larger values, as discussed before.
Finally, let us remark on the additionally plotted dashed lines, which are the respective entropy curves
from Figure 2c. They exactly form envelopes for the oscillations and therefore demonstrate that the
oscillating dynamics are again a result of the separation process of the different Wigner functions in
phase space.

The relative phase of the two laser pulses changes the phase in the cat states, i.e., the phase of the
striped structure of the Wigner function. As long as the different parts of the phonon state are separated
in phase space, the phase has no influence on the phonon entropy. The other crucial parameter of the
phonon system is the coupling strength γ that determines the distance of the coherent states and the
number of stripes in the interference term, as exemplarily shown in Figure 6a,b. The influence of an
increased coupling strength is presented in Figure 6c, where the linear phonon entropy Sph

lin is plotted
in the same way as in Figure 5b but only for times up to t/tph = 0.25. The red curve shows γ = 2 from
Figure 5b as a reference. Looking at the larger coupling in bright red (γ = 4) and a smaller coupling
in dark red (γ = 1.5), we clearly see that the oscillation of the entropy gets faster when γ grows and
more minima evolve. The reason is that the interference terms consist of more stripes that run through
each other. At the same time, the envelope gets shorter for a larger γ, which can be traced back to the
larger spread of the Wigner function in phase space. While the sizes of the interference terms and the
Gaussians stay the same, as shown in Figure 6a,b, the radius of the trajectory increases. Because the
angular frequency of the motion remains the same, the two interferences separate in a shorter time,
and this time determines the envelope of the entropy in Figure 6c.
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Figure 6. (a,b) Exemplary Wigner functions at t = tph/4 for γ = 2 in (a) (same as in Figure 5a) and

γ = 4 in (b). (c) Linear phonon entropy Sph
lin as a function of time after a two-pulse excitation as in

Figure 5b. The coupling strength γ increases from dark to bright red.

3.3. Phonon Cat State Entropy Dynamics in a Decaying TLS

Next, we increase the complexity of the considered phonon state by analyzing the influence of
the decay of the TLS on the entropy dynamics of cat states. For reasons of clarity, we consider a
single Schrödinger cat state entirely in the excited state |x〉 ⊗ |cat〉 as initial state without any optical
excitation and account for a decay of the TLS into its ground state. Although this state cannot directly
be prepared by optical pulses, in Reference [32] it is explained how it is constructed mathematically as
initial state for the simulated decay dynamics. Some snapshots of the corresponding Wigner function
dynamics are shown in Figure 7a for a small decay rate of Γ = 0.1ωph. As analyzed in Reference [32],
the combined rotation and shift of the phonon equilibrium position due to the decay of the TLS finally
leads to a Wigner function in the shape of an eight. Note that, for a slow decay where the coherent
parts lead to a homogeneously distributed eight-shape, two interference terms transferred into the
ground state at t/tph = (2n + 1)/4 survive the decay process.

The corresponding linear entropies are depicted in Figure 7b, where the blue curves show the
linear entropy of the full system Slin and the red ones the linear entropy of the phonons Sph

lin. The decay
rate increases from dark to bright colors. We find the same dependency on the decay rate as for a single
coherent state in Figure 3b,d, the final entropy increases for a slower decay. In addition, the behavior
for very fast decays, e.g., Γ = 5ωph, is approximately the same as in Figure 3. The entropy of the full
system (light blue) forms a sharp peak due to the evolution of the TLS through a statistical mixture,
while the phonon part (light red) basically just rises before reaching the stationary value. The dynamics
get more involved and new features appear for slow decays, e.g., for Γ = 0.05ωph. Here, the full
entropy in dark blue continuously increases to the stationary value at the end of the decay process,
while the phonon contribution in dark red is always slightly smaller and shows additional dynamics
developing multiple minima and maxima within each phonon period. While the dynamics are rather
irregular on shorter times t < 3tph, it becomes more periodic for longer periods of time.

To understand the origin of these dynamics in the phonon system, we take a closer look at the
different parts of the Wigner function. According to Reference [13], the Wigner function of a cat state
can be separated into

W = Wcoh + Wint , (33)

where Wcoh describes the two coherent states that have been studied previously, and Wint is the
interference showing up as striped structure in phase space. Under the assumption that the phonon
coupling strength, γ is large enough such that the different parts of the Wigner function do not
significantly overlap in phase space; the linear entropy can also be separated into two contributions,
Scoh

lin and Sint
lin, calculated from the respective contributions of the Wigner function, and we obtain

Sph
lin ≈ Scoh

lin + Sint
lin . (34)
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In Figure 7c, we show the different entropies for a short time window 4 � t/tph � 5. This already
clarifies the picture a bit. First of all, we find that Scoh

lin (green) and Sint
lin (blue) are approximately of the

same size and the sum of the two parts, shown in dashed blue, agrees perfectly with the full linear
phonon entropy (red line). The coherent part Scoh

lin has reduced values at times t/tph = n/2, and Sint
lin

develops minima exactly between those times, i.e., at t/tph = (2n + 1)/4. Because the shapes of the
minima in the two contributions are not the same, the sum appears quite involved.
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Figure 7. (a) Snapshots of the Wigner function during the decay into the ground state for a decay rate
of Γ = 0.1ωph. (b) Linear phonon entropies in red and full linear entropies in blue as functions of time
for different decay rates. Γ increases from bright to dark colors. (c) Zoom-in on one phonon period for
Γ = 0.05ωph. The coherent contribution Scoh

lin is green, the one from the interference Sint
lin is blue and

their sum dashed blue. Next to (c) are exemplary Wigner functions of the coherent part (bottom) and
the interference (top) for the respective minima marked by black lines.

After identifying the different dynamics, we have to understand their origin. Therefore, next to
Figure 7c, we plot the Wigner functions Wcoh and Wint for the respective minima, as marked by the
black lines. Starting with the coherent part at the bottom, we recognize that the situation is equivalent
to the one in Figure 3b,c. The entropy is always reduced when the rotating Wigner function of the
coherent states in the excited state subspace (marked by black circles) overlaps with parts of the Wigner
function in the ground state subspace. In the right example, at t = 4.75tph, the two Gaussians are
clearly separated from the decayed part in the ground state. In the left one, at t = 4.5tph, one of the
coherent states overlaps with the touching point of the two circles that are in the ground state |g〉.
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Because we start with two coherent states in |x〉, the periodicity of the minima is half the phonon
period. Moving on to the Wigner function of the interference contribution at the top, we only see the
expected striped patterns. The times where Sint

lin is reduced agree with the times t/tph = (2n + 1)/4,
where the interference terms that survive the decay process and remain also after the full decay are
transferred into the ground state system (see discussion in Reference [32]). As seen in the depicted
Wigner function on the right, at these times (e.g., t = 4.75tph) in Figure 7c, one of the interference
terms that were already transferred into |g〉 perfectly overlaps with the single interference that is
still in the excited state, resulting in the two separated structures in phase space. For all other times,
three contributions appear, two in |g〉 and one in |x〉, as exemplarily shown on the left for t = 4.5tph.
Thus, the fundamental reason for the reduction of the entropy is that a mixture of two cat states is
more pure than a mixture of three. The perfectly overlapping interferences on the right make the
corresponding Wigner function look more like a mixture of two states than of three.

3.3.1. Phonons Generated by a Decaying TLS

To conclude the discussion, we now take a look at the two pulse excitation discussed in
Section 3.2.1 and consider a non-vanishing decay rate of the TLS. In Reference [32], it was shown that
the final phonon state is in good agreement with the eight-shaped Wigner function of the decayed
single cat state previously analyzed. However, now the phonon generation leads to a statistical mixture
of two cat states that are additionally smeared out in phase space. This is exemplarily shown by the
Wigner functions in Figure 8a. Although the quantum state of the system is more involved, the linear
entropy of the phonons depicted as red line in Figure 8b evolves in a well-structured manner. Especially
after the excitation with the second pulse, marked by the dashed black line, the dynamics resemble
the ones in Figure 5b with an additional increase of the curve according to the decay process. We find
the same broad depressions for half periods and stronger oscillating ones for full periods. The small
additional entropy reductions discussed in Figure 7 are also found here, as shown by the zoom-in in
Figure 5c. However, compared to the effects of the two overlapping cat states, as previously mentioned,
they almost disappear. The linear entropy of the full system shown as a blue line in Figure 5b is always
smaller than the phonon part and grows smoothly. This is in agreement with the situation without any
decay, where the entropy of the full system was always zero while the phonon part was non-vanishing.
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(b) Dynamics of the linear phonon entropy in red and the linear entropy of the full system in blue.
(c) Zoom-in on the marked short time window from (b).
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4. Conclusions

In summary, we analyzed the entropy dynamics of a single phonon mode coupled to an
optically-driven TLS. We presented a theoretical framework that allowed us to calculate entropies of the
different parts of the system when the quantum state of the entire system is pure and linear entropies
when it is not pure. Additionally, the concept of Wigner functions for the representation of phonon
quantum states was used. We started our discussion with the most basic optical excitation, i.e., a single
ultrafast pulse, that generated a mixture of two coherent states in the phonon system and assumed a
non-decaying TLS. From this, we further increased the complexity of the generated phonon state by
including non-vanishing decay rates and two-pulse excitations of the TLS. This led to Wigner functions
that smeared out in phase space and the generation of Schrödinger cat states, respectively. While the
decay of the TLS, in general, led to an increase of the system’s entropy, the complex dynamics of the
phonon states resulted in temporally significant reductions of the phonon entropy. All these effects
could be traced back to the purity of the quantum states and the entanglement between phonons and
TLS. This extensive study on the phonon’s entropy led to a thorough understanding of the fundamental
interplay between the dynamics of the two separate parts and their combined influence on the quantum
state purity.
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