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Having been at the center of technological progress for thousands of years, metals
continue to be a primary material in our lives today. Investigations of the plasticity of
crystalline solids, to which conventional metallic materials belong, were marked in the 20th
century by a success in the understanding of microscopic mechanisms of plastic flow. This
breakthrough was notably due to the development of experimental techniques allowing for
the observation of individual defects, dislocations par excellence. The concurrent develop-
ment of high-performance computers and numerical techniques gave rise to the hope that
it would soon be possible to predict the mechanical behavior of bulk material by averaging
the motions of individual defects, even if the sample contains myriads of defects.

However, investigations made during the last decades have shown that a fundamental
property of plastic flow of solids is the self-organization of crystal defects. As a result,
plastic flow is inherently heterogeneous and associated with complex dynamics and the
formation of spatial structures in a mesoscopic scale range. Therefore, the understanding
of the micro–macro transition inevitably implies investigation of local heterogeneities
pertinent to the collective behavior of defects. On the other hand, the same period has
seen considerable progress in the development of high-performance metals and alloys that
possess enhanced mechanical properties ensured by complex microstructures. Ultrafine-
grain materials, metallic glasses, gradient microstructures, etc. are gaining an increasing
role in the industry. Therefore, the problem of the self-organization of defects comes to the
fore as the characteristic lengths of the microstructure become comparable to the respective
scales imposed by the collective deformation processes.

These challenges were a driving force for the development of sophisticated experimen-
tal techniques (in situ TEM, electron channeling contrast imaging, digital image correlation
(DIC), nano-indentation, etc.), advanced multiscale modeling (molecular dynamics, discrete
dislocation dynamics, strain gradient models, etc.), and methods of analysis of the observed
and simulated complex spatiotemporal behaviors from the viewpoint of self-organization,
with an aim of establishing process–microstructure–property links and filling gaps between
the elementary atomic-scale mechanisms and the scale of a laboratory sample.

This Special Issue is composed of ten works presenting several topics within this
huge and constantly developing domain. However, they touch upon all its basic pillars:
new approaches to long-standing questions and traditional model materials allowing a
deeper understanding of the underlying physical mechanisms, novel materials obtained
by various processing routes, and advanced experimental and modeling techniques.

Paper [1] revisits a long-standing problem of work hardening processes and the
possibility of reaching a steady state in unidirectional plastic deformation. This problem
has recently received strong impetus due to the techniques of severe plastic deformation,
which have made it possible to extend the attainable Von Mises equivalent strains from
a unity value, limiting conventional tensile tests, to extraordinary values of 105 in high
pressure torsion. The paper provides a comprehensive review of the question and proposes
an explanation for a new strain hardening stage revealed in such deformation processes.
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Achieving large strains and the elaboration of materials with complex microstructures
put forward the need to take into account rotational modes of deformation, associated with
disclinations. A review of field dislocation and disclination mechanics—a crystal plasticity
model suggested about fifty years ago in a form based on continuous distributions of defects
and developed to further include here the dynamics of rotational discontinuities—is given
in [2]. Furthermore, the paper considers the application of this concept for modeling grain
boundary-mediated plasticity.

Two works concern new approaches to the problem of fatigue behavior of materi-
als [3,4]. In [3], the combination of the digital image correlation and electron backscatter
diffraction techniques allows revealing the strong heterogeneities of strain and lattice
rotation at the free surface of a tantalum polycrystalline aggregate during low cycle fatigue.
The crystal plasticity finite element simulation confirms the strongly heterogeneous local
ratcheting. These results allow the proposal of a new criterion for the initiation of local
fatigue crack based on the local amount of ratcheting plastic strain. A cyclic plasticity
model predicting strain range-dependent behavior is proposed and verified for austenitic
steels in [4]. The model considers a virtual back stress, a new internal variable that allows
the handling of the material behavior at large strain amplitudes.

Paper [5] revisits the problem of the mechanical characterization of ductile materials
via compression tests and the limits of equivalence of tensile and compression test curves.
This question being particularly essential in the case of alloys for medical purposes, the
proposed compression test method is validated for several biomedical alloys.

Three papers then concern strain localization effects, each work considering this multi-
faceted problem under different angles and for distinct scale ranges [6–8]. The “autowave”
phenomenon manifested by the occurrence of waves of strain localization during constant-
rate deformation is addressed in [6]. Such waves, usually characterized by rather low
velocities (<0.1 mm/s), have been observed in a large number of materials. To explain this
phenomenon, a general approach based on the wave–particle duality is suggested with
the aid of a quasi-particle representation relating waves and quasi-particles through the
de Broglie equation. A dual character of self-organized deformation processes manifests
itself directly, with no recourse to quantum theory, when a millisecond time resolution is
attained. This is the case of [7], devoted to the investigation of the statistics of the local
strain-rate field during the Portevin–Le Chatelier effect in an AlMg alloy. In addition to
the large deformation bands that are characteristic of plastic instability, the high-frequency
one-dimensional DIC technique reveals a wave–intermittency duality manifested by a
wavy spatial organization of local plastic strain-rate bursts, which obey power-law statistics
tantamount to avalanche-like deformation behavior. Strain localization at a considerably
finer spatial scale pertaining to slip bands is considered in [8] for an Al–Cu–Li alloy prone
to significant strain localization effects. By virtue of the interferometry technique, which
allows the quantification of strain localization by assessing the surface roughness and
computer simulations using discrete dislocation dynamics, the authors find evidence that
the presence of Mn and Zr dispersoids may drastically homogenize the plastic strain in the
investigated material.

Finally, two papers are devoted to nonconventional materials which are attracting
strong attention in view of elaborating lighter materials and simultaneously improving
mechanical properties [9,10]. A crystalline silver alloy with a complex microstructure as-
sociated with nanometric-size porosity obtained by selective chemical etching is studied
in [9]. Using electron tomography and a nanoindentation technique, the paper aims at
interpreting a highly heterogeneous mechanical behavior characterized by a complex rela-
tionship between the indenter penetration depth, the porosity, and the microstructure. The
case of non-crystalline metallic materials is considered in [10], where nanoscale plasticity
of bulk metallic glasses is studied theoretically for the case of a spherical nano-indenter.
The work shows that plastic strain rearrangements, which describe plasticity in the absence
of a long-range order, depend on the choice of the disorder. In particular, the conditions for
the spatial organization leading to the formation of macroscopic shear bands are discussed.
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Abstract: This paper presents an outline of the quest for the mechanical steady state that an unlimited
unidirectional plastic strain applied at low to moderate temperature is presumed to develop in
single-phase crystalline materials deforming by dislocation glide, with particular emphasis on its
athermal strength limit. Fifty years ago, the study of crystalline plasticity was focused on the
strain range covered by tensile tests, i.e., on true strains less than unity; the canonic stress–strain
behavior was the succession of stages I, II, and III, the latter supposedly leading to a steady state
defining a temperature and strain rate-dependent flow stress limit. The experimentally available
strain range was increased up to Von Mises equivalent strains as high as 10 by the extensive use
of torsion tests or by combinations of intermittent deformations by wire drawing or rolling with
tensile tests during the 1970s. The assumed exhaustion of the strain-hardening rate was not verified;
new deformation stages, IV and V, were proposed, and the predicted strength limit for deformed
materials was nearly doubled. Since the advent of severe plastic deformation techniques in the 1980s,
such a range was still significantly augmented. Strains of the order of several hundreds were routinely
reached, but former conclusions relative to the limit of the flow stress were not substantially changed.
However, very recently, the plastic strain range has allegedly been expanded to 105 true strain
units by using torsion under high pressure (HPT), surprisingly for some common metals, without
experimental confirmation of having reached any steady state. This overview has been motivated by
the scientific and technological interest of such an open-ended story. A tentative explanation for the
newly proposed ultra-severe hardening deformation stage is given.

Keywords: plastic deformation; strain hardening; deformation stages; dynamic steady state;
crystalline materials; dislocation density limit

1. Introduction

This paper presents an overview of the quest for the mechanical steady state that an unlimited
unidirectional plastic strain applied at low to moderate temperature is presumed to develop in
single-phase crystalline materials which deform by dislocation glide, with particular emphasis on its
athermal strength limit. An enormous research work has been undertaken on this subject during the
past 50 years.

The plastic deformation of single-phase crystalline materials induces structural changes that
bring about important changes of mechanical properties: strain hardening, ductility, toughness, etc.
At (approximately) low to moderate homologous temperatures relative to the melting temperature
(T/TM <̃ 0.3) and at Von Mises equivalent (VME) strain rates outside the creep or the high strain rate

regimes (10−5 s−1 <̃
.
ε<̃ 102 s−1), the strain contribution of deformation mechanisms requiring long-range

Metals 2020, 10 , 66 ; doi:10.3390/met10010066 www.mdpi.com/journal/metals5
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self-diffusion is not relevant. Deformation takes place mainly by dislocation glide on crystallographic
slip systems (in some cases complemented by deformation twinning) and the VME flow stress (σ)
versus VME plastic strain (ε) response shows several well-known “deformation stages” (see [1–3] for
reviews).

Most often, the strain-hardening rate, SHR, θ = ∂σ/∂ε, steadily decreases from a transient high
initial value, particularly when the starting structure is polycrystalline or in general, when the strain is
resolved at the meso level by the combined activation of several non-coplanar slip systems (multiple
slip). Beyond a short (in terms of strain) elastic–plastic transient, the initial stress–strain curve fits the
so-called Voce equation rather well:

σs − σ
σs − σ0

= exp
(
− θ0·ε
σs − σ0

)
. (1)

The three parameters of the Voce equation are an ideal elastic limit, σ0 (the back extrapolation
of the flow stress to zero strain), the SHR extrapolated to zero strain, θ0 and an ideal saturation flow
stress that would be reached after infinite strain, σs. This regime of deformation is identical to the
so-called Stage III observed in single crystals, as will be explained below.

In the low temperature/high strain rate range of the T −
.
ε sub-space here considered, single

crystals may show another two deformation stages before Stage III. High-purity single crystals oriented
for single slip show an “easy glide” Stage I of very weak SHR relative to the shear modulus G* (θI/G∗ ≈
3 × 10−3) (shear modulus appropriate for the calculation of the dislocation line tension with account
of the elastic anisotropy of the crystal). After some strain (implying crystal rotation toward multiple
slip regions in orientation space), the easy-glide Stage I gives way to a new stage, Stage II, of high
and constant SHR. Multicrystals, i.e., polycrystals (usually of big grain size) whose smallest physical
dimension L of the deforming specimen is less than about 10 times the grain size, L<̃10D, show a
composite Stage I+II before Stage III fully develops (their crystals deform under relaxed constraints
relative to a grain within a true polycrystal). Stage II of single crystals is an athermal hardening stage
that is not always present but always detectable as asymptotic behavior. It is followed by another
strain stage of the steady decrease of SHR, Stage III. Both the transition from stages II to III and

the evolution of the SHR in Stage III are dependent on T and
.
ε (and, of course, on the material: its

chemical composition, crystallographic structure, lattice friction stress level, melting temperature TM,
and stacking-fault energy, SFE, in particular).

Although it is true that such three-stage behavior is much better documented for face-centered
cubic (fcc) metals of medium or high SFE than for other materials, it is typical of any crystalline
materials deforming exclusively by crystallographic slip (dislocation glide) up to moderate VME strains
of the order of 1. Of course, it is masked (it becomes irrelevant) in intrinsically hard materials, i.e.,
materials with high values of lattice friction stress, because their work hardening weakly contributes to
their flow stress.

At the microscopic level, the observed three-stage flow stress curve stems mainly from quasi-
athermal interactions of gliding dislocations with other gliding or stored dislocations and with grain
boundaries (giving way to statistically stored dislocations, SSD) counteracted in Stage III by thermally
activatable dynamic recovery mechanisms of dislocation annihilation. They are the main contributors
to the SHR of stages I (from self-interactions in single glide), II of single crystals (chiefly from attractive
non-coplanar interactions in multiple glide), and III of single crystals or polycrystals [4]. The interaction
with grain boundaries is at the origin of strengthening by the Hall–Petch effect, mostly from the storage
of geometrically necessary dislocations, GND, related with the plastic heterogeneity of neighboring
grains [2,5]. Therefore, at least if one is interested in the broad picture and not (on this occasion) in the
details, for understanding the flow stress–strain evolution, one must confront it with the evolution
of two structural variables, the dislocation density and the grain size (setting aside the evolution of
crystallographic texture, incorporated in an often weakly changing orientation factor). This will be

6
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the scheme followed in this paper; it turns out that revising the plastic behavior at increasing strains
amounts to follow the story of this subject in chronological order.

Finally, a mention of the effect of deformation twinning on the stress–strain behavior at large
strains should be given. When deformation twinning complements dislocation glide, the original
grains are progressively fragmented by the boundaries separating the increasing number of twins from
their grain matrix. As a result, a nearly constant SHR due to a dynamic Hall–Petch effect reinforces the
dislocation density-related SHR during the strain range where deformation twinning is significant.
Such behavior is blatant in the so-called TWIP steels, but it is evident in other easily twinning materials,
too (hexagonal close-packed (hcp) and low SFE fcc metals and alloys) [6–8]. The TWIP regime ends
when deformation twinning becomes exhausted in the highly deformed refined microstructure; then,
the stress–strain returns to Stage III and other possible ensuing stages. At large strains, the effect of
deformation twinning is a shift of the SHR versus the flow stress curve to the right. Figure 1 is an
example of the described behavior.

Figure 1. Fe-22%Mn-0.6%C twinning-induced plasticity (TWIP) steel. Strain-hardening rate (SHR) in
shear vs. macroscopic shear flow stress from torsion tests at several temperatures and 1.4 × 10−3 s−1

shear strain rate. At room temperature (RT), the TWIP activity starts after a short Stage III activity and
produces a transient SHR increase. Deformation twinning at this strain rate is irrelevant for T > 150 ◦C.
See ref. [6] for more results on this steel.

2. Small to Moderate Plastic Strains

In the absence of intense deformation twinning or excluding nanograin materials, the strain-
induced flow stress change in a single-phase material is largely governed by the strain-induced change
of its statistically stored dislocation density, ρs, which most often represents the main fraction of the
total dislocation density, ρ.

2.1. Statistical Dislocation Storage

Assume a mobile dislocation line that would glide in the absence of any activity of dynamic
recovery through the three-dimensional structure of dislocation lines present in a cubic crystal volume
lxlylz with z being the direction normal to the slip plane and x the slip direction. Its crossing of the
volume element would lead to

(a) a macroscopic finite strain increment of amount

Δε = Δux/Mlz = b/Mlz (2)

where b is the modulus of the Burgers vector of the mobile dislocation (the shear displacement
increment Δux) and M ≈ 3 is the texture-dependent orientation factor relating tensile strain with

7
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crystallographic slip shear. As deformation texture evolves the value of the orientation factor
changes. However, in general, the influence of such a change is not as important as that of
the other strain-induced structural changes. Reference [9] treats in detail the evolution of the
orientation factor through several strain paths.

(b) an increment of the stored dislocation length per unit volume that, from geometrical reasons,
scales with

√
ρ (geometrical similitude implies that the dislocation length stored per unit area

swept by the dislocation, ΔLS, is proportional to the forest dislocation density piercing the slip
plane, ρ/2, times a characteristic length of such density, 1/

√
ρ):

Δρ+ = lxlyΔLS/lxlylz = β
√
ρ/lz (3)

The scaling factor β is independent of strain as far as the dislocation structure maintains geometrical
similitude independently of ρ [2,3].

Now, on account of the so-called “Taylor relationship”, between dislocation density and flow stress

σ− σ0 = MαG∗b√ρ (4)

it is possible to derive the strain-hardening rate, SHR, in such circumstances.
In Equation (4), σ0 is the flow stress limit of the structure at zero stored dislocation density (it

includes the contributions of lattice friction stress and solution strengthening, i.e., it depends on
temperature and strain rate), G* is the shear elastic modulus at the test temperature, and α � 0.3 is the
quasi-athermal and quasi-universal strengthening factor of three-dimensional dislocation structures.

The macroscopic SHR for strain deprived of any dynamic recovery activity would be

θ0 �
M2αβ

2
G∗ ≈ βG∗ (5)

i.e., a constant SHR as far as the assumptions made are valid, which is in good agreement with
experimental findings.

In fact, this is not quite true: the factor α in the Taylor equation slightly depends (through a
logarithmic factor) on the dislocation density (it visibly decreases as the dislocation density increases
by several orders of magnitude). Similarly, α is mildly sensitive to the spatial distribution of local
dislocation density that changes from near-uniform to cellular to subgranular as plastic strain goes on,
increasing in that order [2]. Thus, the two effects somewhat compensate each other, and Equation (5) is
an acceptable approximation.

The storage parameter β also depends on the spatial distribution of the local dislocation density,
as stated above, and plastic deformation does not strictly maintain structural similitude (as strain
goes on, the spatial heterogeneity of the dislocation density increases). Nevertheless, the simple
dislocation storage model without recovery explains well enough both the experimental observations
of the athermal stage II observed in single crystals deforming by multiple slip at low flow stresses and
temperatures (insignificant activation of dynamic recovery processes) and the athermal low-temperature
asymptotic Stage II of polycrystals.

2.2. Dynamic Recovery

Thermomechanically activatable recovery processes are inherent to plastic strain by dislocation
glide. The constant SHR given by Equation (5) is an idealization; together with the process of athermal
dislocation density storage given by Equation (3), dynamic processes of dislocation density annihilation
are active. Due to the composition of the two effects, the SRH steadily decreases as strain goes on: it is
the deformation Stage III mentioned in the introduction.

8
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Empirically, the SHR evolution, which is strongly dependent on temperature and weakly
dependent on strain rate, is very well described by the equation:

θ

θ0
= 1− σ− σ0

σIII
s

(
T,

.
ε
)
− σ0

(6)

As strain increases, the SHR decreases linearly with the flow stress from an upper athermal
limit value θ0 to zero. The flow stress grows monotonically and asymptotically tends to a saturation

flow stress σIII
s = σIII

s

(
T,

.
ε
)
. The integration of Equation (6) leads to the Voce stress–strain shown in

Equation (1).
In terms of the underlying evolution of the dislocation density and on account of Equation (4),

Equation (6) corresponds to the Kocks–Mecking equation of evolution of dislocation density in Stage
III [3]:

dρ/(dε) = M(β

√ρ
b
− ηρ) (7)

where the parameter η = η
(
T,

.
ε
)

depends on the temperature and strain rate in parallel with the

behavior of the saturation flow stress. Kocks and Mecking [3] have discussed in detail such dependence:
the process of dynamic recovery occurs via the interaction of mobile dislocations with specific sites of the
stored dislocation structure under the action of the local flow stress (the effective stress, superposition
of the macroscopic flow stress, and the local internal stress) and thermal activation. The activation
energy, constant all along Stage III, shows a logarithmic dependence on effective stress.

The recovery processes intervening in Stage III are most probably more than one. One of them
is a partial collapse of stored Orowan loops (remnants of gliding dislocations encircling regions of
dislocation density higher than the mean) under the forward stress of gliding dislocations of the same
sign; another obvious one is the annihilation of segments of the gliding dislocations with segments of
opposite sign from the stored or mobile dislocation density.

Surely cross-slip plays a decisive role in those dynamic recovery processes, hence the observed
influence of SFE. A close examination of the two terms of Equation (7) supports this idea: when a
dislocation sweeps a surface S when gliding across a crystal volume, the number of storage sites per
unit surface determine a stored length per unit volume scaling with the current density of dislocations,

i.e., Equation (3). Simultaneously, the gliding dislocation explores a volume of S·h(T,
.
ε) above and

below the swept surface, where several activatable recovery sites per unit volume reside, each one
determining the annihilation of a dislocation length. On account of Equations (2) and (7), the dislocation
length eliminated per unit volume should be

Δρ− = −ηbρ√ρ (8)

which is dimensionally compatible with the product of the explored volume times a number of
activatable sites per unit volume related with the dislocation structure, i.e., scaling as N ∼ ρ3/2, times
a fixed annihilated length per site, i.e., a length independent of the scale of the structure.

The Kocks–Mecking model for Stage III is astonishingly simple, effective, and convincing, hence
its widespread use in simulations of crystalline plasticity using dislocation densities as internal
variables [4].

For a given material, all stress–strain curves collapse in a straight line linking two points, θ/θ0 = 1

on the ordinate with (σ− σ0)/
[
σIII

s

(
T,

.
ε
)
− σ0

]
= 1 on the abscissa in a normalized SHR versus flow

stress diagram, as shown in Figure 2. Of the two parameters defining Stage III, the quasi-universal
value of the first one [2,3] is:

θ0/G∗ � 0.05. (9)
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The temperature and strain rate dependence of the second term,
[
σIII

s

(
T,

.
ε
)
− σ0

]
, needs to be

characterized for each material, although its functional form has been given by Kocks and Mecking [3].

 
( − 0) / ( ΙΙΙ − 0)

Figure 2. Sketch of Stage III of plastic deformation according to the model of Kocks and Mecking [3].

It is interesting to know, at least approximately, the upper (athermal) limit of the flow stress,
governed by the athermal saturation value of Stage III dislocation density. For pure Cu, such a limit
flow stress value is: [(

σIII
s

)
0
− σ0
]
/G∗ � 0.015. (10)

It corresponds to a dislocation density of the order of(
ρIII

s

)
0
� 1016·m−2. (11)

These two limit values are probably valid for other crystals too, at least as order of magnitude
figures, particularly for body-centered cubic (bcc) metals deformed at temperatures above their
low-temperature threshold (more in general, when their flow stress is not dominated by the lattice
friction stress) and for hexagonal close-packed (hcp) metals.

Fifty years ago, those limits were thought to be the intrinsic limits of strain-induced strengthening
of single-phase crystalline materials, at least in many academic backgrounds.

3. “Large” Strains (1 <̃ ε <̃ 10)

Interest in exploring and understanding the microstructural basis of the mechanical effects of
large strains in crystalline materials arose in the 1960s. Useful strains in tension and compression tests
that were most often used earlier for studying plastic behavior were limited by gross deviations from
the near-uniform strain and strain rate: the development of localized deformation (necking in tension)
or barreling (from friction) in compression.

Scientific interest in large strains was preceded by the technical need of reliable knowledge of
stress–strain behavior for improving large-strain processes such as cold rolling, wire drawing, forging,
or sheet-forming (reliable input for numerical simulations and knowledge of the structural state of
the product). Torsion tests (no external geometry changes in the deforming specimen) or intermittent
tension tests during the incremental accumulation of strain by well-designed rolling or wire drawing
passes (quasi-free of strain heterogeneities and redundancies [10]) were already extensively used for
such purpose since the 1950s (see [9] for a review). As a result, the domain of large plastic strains
became available for study, at least for relatively ductile materials.

It soon became evident that no saturation occurs after Stage III, but that a new deformation stage
appears at large plastic strains, “Stage IV”, which maintains a weak and decreasing SHR well inside
the large strain range, 1<̃ε<̃10 [2,3,9,11,12]. Stage IV was inaccessible to studies based on tensile tests
because the stage III–IV transition occurs for θ � 0.3σ [13], i.e., for strains larger than the tensile strain
determining the onset of mechanical instability in tension, which is given by the Considère criterion,
θ = σ.
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Figure 3 shows a good set of stress–strain curves of commercial purity copper measured in torsion
inside the temperature and strain rate range considered in this paper. The characteristics of the stages
III–IV are conspicuous. By using the same scaling employed for Stage III (Figure 2), the stress–strain
curves of three fcc metals of varying SFE, measured at different temperatures, collapse rather well in a
single master curve encompassing both Stages III and IV (Figure 4). This means that although the
athermal mechanisms of dislocation storage in Stage IV differ from those of Stage III (they are much
weaker), the temperature dependence of Stage IV is nearly the same as that in Stage III.

G

Figure 3. Shear strain-hardening rate vs. shear flow stress in torsion of 99.98% Cu (77, 198, 293, 373,

and 473 K) deformed at a Von Mises equivalent (VME) strain rate
.
ε = 8 × 10−3 s−1. The inset shows the

shear strain vs. shear flow stress curves. Replotted from Alberdi [11].

Figure 4. Torsional work-hardening rate vs. flow stress data of 99.98% Cu (77, 198, 293, 373, and 473 K),

1050 Al (77, 198, 293, and 373 K), both deformed at
.
ε = 8 × 10−3 s−1 and austenitic SS321 stainless

steel (20 ◦C and 200 ◦C) deformed at
.
ε = 2.3 × 10−3 s−1. The numerical data inserted in the figure

correspond to crystallographic slip strain vs. CRSS (critical resolved shear stress) behavior; a Taylor
orientation factor M = 3 should be employed to transform them into VME values (i.e., factors M and
M2 for respectively the flow stress and the SHR). Replotted results from Alberdi [11].
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For copper or aluminum, as shown in Figure 5, the asymptotic athermal limit at the apparent end
of Stage IV is: [(

σIV
s

)
0
− σ0
]
/G∗ � 0.024. (12)

It approximately corresponds to a dislocation density:(
ρIV

s

)
0
� 2.6 × 1016 m−2. (13)

τ
G

T/T

Figure 5. Normalized crystallographic slip shear flow stress (from torsion tests, VME strain rate
.
ε = 8

× 10−3 s−1) at the (apparent) saturation of Stage IV of commercial purity copper and aluminum as a
function of homologous test temperature. The athermal limit is about 0.008 G*. Using an orientation
factor M = 3, the VME athermal saturation flow stress for these two face-centered cubic (fcc) metals
would be 0.024 G*. Data from Alberdi [11].

Either structural damage (precursor of ductile failure) or the emergence of another stage endowed
with a powerful dynamic recovery mechanism that soon annihilates the SHR (a possible Stage
V, [12]) precludes experimentally approaching those limits in the realm of “large strains”. However,
a retardation of the apparent reaching of the saturation flow stress by performing the plastic deformation
under a hydrostatic pressure (at the basis of the “severe plastic deformation” processes to be described
in the next two sections of this paper) was experimentally observed. Thus, it seems that “Stage V”
might be a spurious plastic deformation stage, at least for single-phase metallic alloys (however,
an unrelated Stage V has been observed in diamond-cubic semiconductors Ge and Si deformed at high
temperature, T ≥ 0.65TM [14]).

The explanation of Stage IV is far from complete. The strain-induced processes of dislocation
storage and recovery do not maintain the geometrical similitude-based storage law conducive to
Equation (3) or the dynamic annihilation law, as shown in Equation (8). Consequently, a progressive
deviation from the Voce stress–strain law as Stage III goes on is expected. Furthermore, the existence of
processes additional to the main process responsible for Stage III but weakly contributing to hardening
is very plausible; their effect would be only detectable when dynamic recovery has nearly neutralized
the main hardening contribution to Stage III. Two of them are as follows.

• Continuous accumulation of debris (e.g., dipolar debris) ancillary to the main process of statistical
storage and the dynamic recovery of dislocations (the interaction of mobile dislocations with the
current total dislocation density present and with other defects of any dimension) [13],

• Accumulation of a slowly increasing density ρg of geometrically necessary dislocations (GND)
coupled to the mesoscopic plastic strain gradients inherent to the heterogeneity of the evolving
structure [15,16].

However, other authors explain the evolution of hardening along the III–IV–V stages without
resorting to any micromechanistic transition affecting the storage or annihilation of dislocation density,
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i.e., as the deviation from the ideal Stage III mentioned earlier. For instance, Estrin et al. assume that the
apparent transition defining the stages is merely the result of a “concerted action” of the deformation
of cell interiors and cell walls considered as two phases of a composite, each with their own hardening
and softening mechanisms, under the condition of a continuous independent shrinking of the cell
size and of the thickness of the cell walls [17]. It may be that Stage IV stems from a combination of
factors. The similarity of the thermal activation of the recovery processes working in Stages III and IV
deserves further analysis, particularly for explaining the recovery of ρg at a microscopic level, as GND
density is linked to the presence of (very real) mesoscopic strain gradients. Either the strain gradients
tend to disappear as deformation goes on or the GNDs within dislocation cells walls disappear by the
transformation of subgrains in grains whose highly misoriented boundaries are not anymore built
with lattice dislocations but with GBD, grain boundary dislocations; perhaps, what we observe is a
superposition of both phenomena.

4. The Case of Large Strains by Axisymmetric Elongation of BCC and HCP Polycrystals

Stage IV and the limits of strength and dislocation density expressed by Equations (12) and
(13) are not the whole story of stress–strain behavior at large strains: the behavior is strain-path
dependent. For instance, axisymmetrically elongated (by wire drawing) bcc and hcp metals display
a constant SHR beyond the usual Stage III, which is concomitant with the development of a unique
structure of elongated cells, subgrains, and grains with ribbon-shaped cross-sections that require a
characteristic curling for maintaining the compatibility of the polycrystalline aggregate (“Van Gogh sky”
structure [18,19]). Such curling amounts to the axial bending of these ribbons that, combined with their
structural refining, amounts to a continuous increase of the mesoscopic gradients, i.e., a continuous
increase of GND density contributing to sustaining the SHR up to the largest technologically possible
deformations accessible to wire drawing (ε ≈ 10). Such peculiar behavior is due to the development of
a crystallographic texture that promotes the deformation of the crystal units by plane-strain elongation,
despite the axially symmetric deformation imposed to the wires. The same metals (e.g., iron [20])
behave differently when deformed through other strain paths. The phenomenon of a combined
continuous injection of GND density and enhanced structural refining makes it possible to reach
and often surpass the above-stated Stage III athermal limits of flow stress and dislocation density in
wire-drawn bcc and hcp metals of high melting point.

The extension of the constant SHR stage of bcc and hcp metals beyond its current wire drawing
limit is an interesting question that is not exempt of practical implications, because the sustained
SHR would allow for reaching flow stresses and dislocation densities in fine wires well beyond the
maximum values available today [21,22].

5. SPD, “Severe Plastic Deformations” (ε >̃ 10)

5.1. ECAP

Largely strained bulk specimens are both desirable for the macroscopic testing of properties
and attractive for many possible technical applications. The accumulation of a big number of passes
leading to ε <̃ 10 by wire drawing or rolling only furnish thin filaments or foils less than 100 μm thick;
technological constrains preclude the processing of thicker sections of very hard materials. Moreover,
often the processing is limited by ductile or brittle fracture nucleated from strain-induced structural
damage, because deformation in rolling or wire drawing is imparted under hydrostatic pressure levels
below the current VME flow stress value. Similarly, although the torsion of cylindrical bulk specimens
does not introduce important shape or size changes of the test specimens, the hydrostatic pressure in
free torsion is zero; VME strains of 5 are rarely reached before fracture in free torsion.

Before the 1980s, Segal and co-workers developed in the Soviet Union a process allowing
for, ideally, indefinite accumulation of extrusion passes imparting about 1 VME strain per pass to
bulk bar-shaped specimens under high pressure without significantly changing their external shape.
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The process, which was dubbed ECAE or ECAP, acronyms of equal-channel angular extrusion or
pressing, is extrusion through a channel of uniform section with a sharp kink of about 90◦ [23,24].
When the material goes through the kink of the channel, it endures a simple shear under a hydrostatic
compression of the order of the flow stress of the material. Deformation per pass is about unity for a
90◦ kink, and in practice, the extrusion can be repeated up to near 20 passes, i.e., ε<̃ 20 (most materials
become so strong after those strains that fail by ductile or brittle fracture further in the process).
The process and its potential for modifying the material structure by “severe plastic deformation”,
SPD, was soon intensively exploited by Valiev and co-workers [25,26]. The possibilities offered by the
ECAP process and its variants for exploring the response of materials to very large plastic strains made
a big impact, stimulated the invention of other new SPD processes, and triggered the production of a
tremendous amount of related bibliography in the last 40 years. Many comprehensive reviews on the
subject have been published, e.g., [27–29].

The extension of the stress–strain analysis provided by ECAP does not change the most important
conclusions reached from studies in the “large strain” range: Stage IV carries on toward its asymptotic
limit without signs of any Stage V. Figure 6 shows results for commercially pure Cu, Ni, Fe, and Ti
deformed by ECAP at room temperature (data from refs. [30–46]). Although there is much scatter in
the results (inherent to the ECAP process and its analysis: the plastic heterogeneity of the deformed
samples, different variants of the strain path used by different authors, testing by tension or by
hardness), it seems clear that an apparent saturation of the flow stress occurs near a VME strain of 7.
Averaging the available flow stresses beyond ε > 7 for each metal, the values compare well with the
saturation flow stress of Stage IV,

(
σIV

s

)
300 K

, obtained by extrapolation to zero SHR, the results from
conventional torsion tests, or from rolling at 300 K, e.g., [2,3,9,11,12] and Figures 4 and 5.

The obvious question now was to go beyond the maximum feasible ECAP strains in order to
verify whether the saturation of Stage IV is the true dynamic steady state in low/medium temperature
plasticity. Surprisingly, an elegant deformation process was available since the early 1930s to settle this
question: HPT, torsion under (very) high pressure.

5.2. HPT

Percy Bridgman’s main research subject was the physical behavior of materials under high
hydrostatic pressure (Nobel prize, 1946). Among many other topics, he was interested in the
high-pressure effects on plastic deformation and fracture ([47] is the synthesis of his work on this
subject). He developed many devices for high-pressure studies and specially the “Bridgman anvils”,
where a coin-shaped sample is squeezed in a shallow cavity between two otherwise flat anvils acted by
an axial compressive force. The sample diameter matches that of the cavity, and its thickness lightly
exceeds the height of the cavity when the two anvils are in contact. Under enough compressive force,
material flows plastically and is extruded through the thin spacing between the anvils, which is a
situation that creates a hydrostatic stress state in the material that grows exponentially as the spacing
decreases, so that hydrostatic pressures of several GPa are easily reached. Applying now a rotation to
one of the anvils, you have a torsion test of the disk (dragged by friction) into which in contrast with
most other SPD processes, the hydrostatic compression is decoupled from the torque performing the
torsion, i.e., it can be controlled by the axial compressive force applied to the anvils independently of
the flow stress of the material being tested.
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Figure 6. VME flow stress data (ultimate tensile strength, UTS or a third of the Vickers hardness, HV/3)
of fcc 99.95% Cu [30–35] and 99.98% Ni [36–39], body-centered cubic (bcc) 99.95% Fe [40–44] and hcp
99.5% (grade 1) Ti [45,46] as a function of the number of equal-channel angular pressing (ECAP) passes
performed at 300 K (one pass imparts about one unit of VME strain). Dotted lines are the average of
values of flow stress between 8 and 16 passes for each metal; an apparent saturation stress is reached at
300 K beyond 7 ECAP passes for at least Cu, Ni, and Fe.

With enough pressure, the structural damage and crack propagation in the sample can in principle
be suppressed, and indefinite simple shear strains can be applied. Moreover, recording the torque
versus rotation angle offers the possibility of directly deriving the shear stress–strain curve. On the
other hand, shear strain increases linearly from zero at the center of the disk to a maximum at its
periphery. By measuring the hardness along the radius of a single deformed sample, many discrete
points of the stress–strain curve from zero to the maximum deformation at the outer surface of the
sample can easily be obtained.

Bridgman studied the HPT behavior of many materials. However, its device and results were
practically overlooked by materials scientists (with the noteworthy exception of the rediscovery of
the method made by Erbel, which was virtually overlooked for a long time, too [48,49]), until the
publications of Valiev and co-workers, who had started using the HPT device in the 1980s [25,50].

A wealth of studies on the stress–strain, structure, and properties of materials severely strained
by HPT has since then inundated the bibliography, VME strains larger than 100 being easily attainable
even in materials of poor ductility [29,50–55].

Although ideally indefinite shear strain can be applied by HPT, several experimental problems
arise after the application of a few rotations to the mobile anvil (mainly, the maintenance of the
geometry of the disk without damage starting from its periphery); the consequence is that most HPT
studies are restricted to VME strains smaller than 50. In that strain range and for the materials and test
conditions considered in this paper, the stress–strain behavior does not qualitatively differ from that
seen with the ECAP process (e.g., see in the reviews cited above [29,49,51–55]). However, quantitatively,
the saturation stresses estimated from ECAP are only apparent, the very weak SHR of the terminal
Stage IV continues its decline much longer than expected, and the saturation stresses estimated from
HPT tests are up to 20% larger (no wonder if one accepts for Stage IV the validity of the Kocks–Mecking
model or one of its variants, leading to a Voce-type equation that only asymptotically approaches a
steady state).

6. Ultra-SPD, “Ultra-Severe Plastic Deformations” (ε>̃500)

Quite recently, Edalati [56] has published the microhardness versus strain results of pure fcc (Ni),
bcc (Fe), and HCP (Ti) deformed by HPT well beyond 1000 units of shear strain at room temperature
(0.155 ≤ T/Tm ≤ 0.174 for these metals), which is a realm that he has dubbed “ultra-SPD strains”. Edalati
and co-workers have found that around ε>̃ 500, the stress–strain curves of the three metals present an
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inflection point giving access to what looks to be a new deformation stage that significantly strengthens
the material over the Stage IV saturation flow stress if the strain is continued far enough (Figures 7
and 8). The strengthening is not due to any pressure-induced phase change (the pressure employed for
HPT straining αTi, 2 GPa, is well below that required for its transformation to ωTi). The pattern of
behavior is similar for the three metals. The stronger the metal (because of its homologous deformation
temperature and SFE), the earlier appears the SHR after the Stage IV saturation plateau.

Figure 7. The stress–strain behavior of pure fcc Ni, bcc Fe, and hcp Ti ultra-deformed by torsion under
(very) high pressure (HPT) (respectively 2, 6, and 2 GPa applied pressure) at room temperature beyond
VME strains of 1000. The VME flow stress has been measured as HV/3, which is one-third of the
Vickers microhardness. Replotted from Edalati [56]. The HPT curve of fcc Cu (6 GPa axial pressure)
is from Edalati et al. [57]. Dotted lines are the average Stage IV apparent saturation flow stress of
metals of similar composition deformed by ECAP in the range 8 ≤ ε ≤ 16 (Figure 6). Homologous
deformation temperatures are indicated in the figure. The SFE of the four materials at RT increase
in the inverse order of their homologous deformation temperature from approx. 45 mJ/m−2 of Cu to
approx. 180 mJ/m−2 of Ti.

Figure 8. Normalized VME strain hardening rate, SHR/G* vs. normalized VME flow stress, σ/G∗ for
pure Ni, Fe, and Ti ultra-SPD deformed by HPT at room temperature. Derived from the stress–strain
curves measured by Edalati [56], as shown in Figure 7. Saturation of Stage IV and emergence of a new
hardening stage.

Confirmation that we are dealing with a genuine deformation stage demands further
research. However, let us speculate about possible microstructural sources that could explain
the observed behavior.
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We should first point out that the ultra-SPD SHR is awfully weak: less than 10−5 G* for Ni, Fe or
Ti at 300 K, i.e., two orders of magnitude smaller than the weak SHR observed in Stage I of easy-glide
single crystals.

Secondly, as this new stage appears only after the saturation of Stage IV, the origin of it cannot
anymore be related with the new statistical storage of gliding dislocation lengths, which were fully
annihilated by concurrent Stage III dynamic recovery.

Possible origins of such weak SHR are:

• An artefact of the HPT process: as told before, the simple shear of disks by HPT develops a
macroscopic gradient of shear strain. The accommodation of such a gradient requires a continuous
storage of a density of redundant GND. The gradient is enormous after ε > 500. The gradient can
be avoided by using rings of appropriate geometry (as used by Erbel [48]).

• Hardening from accumulation of an increasing density of point defects or their clusters arising
by the interaction of gliding dislocations with other dislocation lines or from the processes of
dynamic recovery of dislocation lengths. Such point-like defects, i.e., vacancy clusters, represent
weak obstacles for gliding dislocations.

• A sudden transition from a laminar shear plastic flow to a turbulent one at the mesoscopic
microstructural level; it would trigger the accumulation of a density of GND until reaching some
new steady state.

• A transition from the control of the flow stress by the average dislocation density to its control by
the current grain size (refined by fragmentation and by the imposed deformation, counteracted by
specific recovery mechanisms). The transition would take place at some critical size of the grains.

The first of these four tentative contributions to ultra-SPD behavior cannot be discarded. After a
macroscopic shear strain γ at the periphery of the disk, the shear strain gradient in the HPT sample
amounts to

χ = γ/R (14)

where R is the sample radius. The accommodation of a plastic gradient by redundant dislocations
requires the storage of a GND density of about

ρg = Mg·(χ/b) (15)

with Mg ≥ 1 is an orientation-dependent factor accounting for resolving a simple shear by a combination
of dislocations from different slip systems. In the HPT case,(

ρg
)
HPT

= Mg·(χ/b) = Mg(γ/bR) �Mg(Mshearε/bR). (16)

The orientation factor for macroscopic shear strain is Mshear � 1.5. We can roughly estimate the
VME flow stress for ultra-SPD at room temperature for a material such as Fe (i.e.,

(
σIV

s

)
RT

/G∗ = 0.017),
ignoring any possible dynamic recovery of the GND density as the effect of the addition of the two
dislocation densities:

(σuSPD)RT/G∗ =

√
0.0172 +

[
Mtensionαb

√(
ρg
)
HPT

]2
. (17)

Assuming Mg � 1.5 (the orientation factor for simple shear), Mtension � 3, α � 0.3, R = 5 mm,
and b = 0.25 × 10−9 m, the result is shown in Figure 9 together with the experimental Fe curve from
Edalati [56]. The hardening in excess of the Stage IV saturation flow stress is of the right order of
magnitude, but the pattern of behavior does not match the experimental one; the gradient contribution
to the flow stress follows a continuous power law right from the approach of the flow stress to its
saturation value at strains smaller than 100.
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Figure 9. Expected behavior at ultra-severe plastic deformation (SPD) by assuming flow stress control
from either (a) saturated statistically stored dislocation density plus geometrically necessary dislocations
(GND) density from the HPT shear gradient, Equation (17) or (b) from the 3D dislocation density (cells
or subgrains) during Stage IV and from the grain size beyond Stage IV (ultra-SPD range).

The ultra-SPD burst of hardening is only manifest after a long stress plateau indicative of a
transition of the process controlling the strain hardening. This points to the third and fourth origins of
the ultra-SPD hardening as plausible explanations, because the second one also represents, as the first,
a continuous increase of hardening obstacles as far as dislocation interactions occur.

A hypothetical transition from a laminar to a turbulent shear flow needs experimental confirmation;
besides microstructural evidences (in the form, perhaps, of shear bands), probably it would be
accompanied by a transition of crystallographic texture, too.

Finally, the fourth explanation looks most interesting: one of the main scientific and technical
fascinations of SPD processes is their capability of nanostructuring initially single-crystalline or
coarse-polycrystalline materials. It is well known since the seminal work of Langford and Cohen [58],
which has been many times confirmed thereafter, that the structure of dislocation cells developed
in Stage III shrinks in size and develops an increasing misorientation between neighboring cells;
the cells progressively sharpen its walls until becoming low-angle boundaries (subgrain walls) and
finally, with the progression of Stage IV, the majority of them become high-angle boundaries of new
grains of near-nanometric size that SPD continues refining [9,29,51]. The grain size evolution shows
an exponential decline until an apparent temperature-dependent saturation grain size sets in after
shear strains of the order of 50 [59–62]. Such an alleged terminal grain size is in the nanometric range
(≈100 nm). Only by ultra-SPD processing has the absence of flow stress saturation been detected;
it may be that the grain size is still decreasing at a very slow pace and becomes only conspicuous when
the colossal ultra-SPD strain range is explored. Quantitative microstructural studies are needed in
order to confirm a decrease of grain size concomitant with the ultra-SPD hardening stage. Anyway,
if we assume that it is the case, we can advance an explanation.

The classical static Hall–Petch relationship (σ ∼ D−1/2), which is mainly justifiable by the
strengthening from a grain-size-dependent intragranular dislocation density level, deviates toward a
σ ∼ D−1 relationship upon further grain size refining. Something akin to it could be at the base of the
ultra-SPD transition.

As the strain progresses in Stage IV, most microstructural boundaries have converted into true
grain boundaries (misorientation larger than ≈ 12◦), and grain size has become sub-micrometric.
The flow stress is controlled by the stress for long-range dislocation glide through the intragranular
dislocation forest, as shown in Equation (4), which is equivalent to a critical dislocation line curvature.
If the grain size is big enough relative to the effective inter-dislocation distance, the mobile dislocation
line ends by reaching the grain boundary where it is either integrated as an extrinsic defect there
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or totally or partially penetrates the neighboring grains. The maximum curvature required for the
intragranular travel of mobile dislocation lines is imposed by the Stage IV dislocation density at
saturation. If the grain size was being continuously refined upon straining through a monotonic strain
path, a critical grain size would be reached for which the fitting of the curvature of its cross-section
would be more flow stress demanding for the dislocation than its gliding through the intragranular
dislocation density. From that point on, the flow stress would be controlled by the dynamically
evolving grain size through an approximate σ ∼ D−1 relationship [22,63,64]. This possible behavior is
sketched in Figure 9, too.

Once the Stage IV saturation is approached, the grain fragmentation processes related with new
net dislocation storage are not anymore operative. The further evolution of grain size merely comes
from its size and shape change resulting from the strain path-dependent mesoscopic strain (very
effective in a wire drawing of bcc or hcp metals but very inefficient in the simple shear deformation),
which is counteracted by processes of dynamic annihilation of the GB surface. For instance, the process
of shear-coupled boundary migration, SCBM, both significantly contributes to the plastic deformation
and to the GB surface annihilation at low temperature when grain size is in the nanometric range,
particularly in macroscopic shear [59]. It happens likewise with grain boundary sliding, GBS, which is
particularly favored in simple shear because of the progressive orientation of the GB toward the
macroscopic shear plane (contributes to strain and weakens the shape change relative to the macroscopic
one), but very ineffective in wire drawing, which orients the microstructure in the axial direction.
For our explanation to be valid, these dynamic GB recovery processes should not be able to completely
suppress grain refining coming from the effect of the macroscopic strain.

Figure 10 compares the stress–strain evolution of “pure” iron and “pure” titanium either deformed
by wire drawing [58,65] or by HPT [56,60,66]. The trend of curves qualitatively agrees with the above
given description [22,58,63,64,67]. In large-strain simple shear (HPT) of bcc iron, the minimum average
dimension of deforming grains would evolve, in the absence of dynamic recovery processes, as

D
Dc
�

1√
3(ε− εc)

. (18)

In wire drawing, instead,

e−(ε−εc)/2 ≥ D
Dc
≥ e−(ε−εc). (19)

The suffix c indicates the transition of control of the flow stress by glide of the mobile dislocations
through the dislocation forest to dislocation bowing-controlled glide. In fact, both Equations (15) and
(16) must incorporate a lag factor that is much smaller than 1 for shear and about 1 for axisymmetric
drawing, on account of the GB-related processes contributing to strain and dynamic recovery. It is easy
to see that the shear lag factor must be very small in order to match the SHR observed in ultra-SPD
(θuSPD < 10−5 G*). It is interesting to remark that Hosokawa et al. [68] who, as noted by Edalati [56],
first observed SHR after a large plateau of the HPT stress–strain curve of Fe, also related such SHR
revival with the hardening of iron by large-strain wire drawing and its relationship with the grain size
evolution enforced by the macroscopic shape change.
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(a) (b) 

Figure 10. Stress–strain of (a) Fe and (b) Ti deformed by axisymmetric drawing (Fe-0.007%C, Langford
and Cohen [58], 99.15% and 99.6% Ti, Biswas [65], UTS from tensile tests) and by simple shear
(HPT, 99.96% Fe and 99.5% Ti, Edalati [56,66], HV/3). Notice the logarithmic scale of the abscissa.
The difference in the flow stresses at small/moderate strains may be due to differences in the friction-like
flow stress fraction (chemical composition, interstitial content in particular) and initial grain size of the
materials, the different testing method for flow stress determination, and the unaccounted compressive
deformation of the HPT disk at the beginning of the HPT shear test.

The case of fcc nickel is remarkable. No conclusive information can be obtained from available
wire drawing stress–strain curves (a maximum VME strain of about 2 [69]). However, two independent
flow stress versus rolling strain curves (plane strain elongation) do show an awakening of strain
hardening after a Stage IV plateau reminiscent of the transition observed in HPT deformation at very
much larger strains [70,71]. Figure 11 displays one of these rolling deformation stress–strain results
together with a wire-drawing curve and the HPT results previously shown. The similarity with the
behavior exhibited by iron or titanium (Figure 10) is evident. In rolling, in the absence of dynamic
recovery, the evolution of the minimum average dimension of deforming grains would be:

D
Dc

= e−(ε−εc). (20)

(a) (b) 

Figure 11. Stress–strain of commercial purity nickel (Ni 200, 99.4% Ni) deformed by (a) wire drawing
(replotted from [69] and rolling (replotted from) [71]) compared with (b) the behavior of 99.996% Ni
deformed by HPT (ultra-severe SPD) (replotted from [56]). In figure (b) arrows point to the seeming
ultra-SPD transition.
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According to our tentative explanation, the critical grain size for the ultra-SPD transition would
be obtained from equating the critical bowing stress in the grain [22] with the saturation flow stress
due to the terminal dislocation density of Stage IV given by Equation (12):

Mτc

G∗ =
ϕM

2π(1− ν)
b

Dc

(
ln

Dc

ϕb
+ 0.7

)
= 0.024. (21)

A shape-factor ϕ>̃ 1 relating the required local critical bowing dislocation diameter with the
average grain size has been introduced in Equation (21). With a Poisson ratio of ν = 0.3, b = 0.25 nm,
and M = 3, the predicted average critical grain size would be Dc = 40 ϕ nm.

7. Beyond Current Ultra-SPD?

One may now wonder what would happen with the strength and structure of materials if strains
by wire drawing or by HPT were continued still much further, to 100,000 or more in the latter case
(Edalati [56] has imparted HPT shear strains up to 105 to several materials). Difficulties for guaranteeing
experimental results free from artifacts after such enormous strain levels surely are considerable.
However, theoretical and numerical simulations can shed some light on this question [21,22,72]:

(a) About the strengthening by statistically stored dislocations in the absence of macroscopic
(externally imposed) plastic strain gradients, we have the athermal limits of dislocation density
and flow stress given by Equations (12) and (13). Those values are extrapolations of experimental
results. Experimental values of dislocation densities obtained after plastic deformation in
conditions close to athermal are in the same range: 1016 m−2 after shock experiments or 1017 m−2

after deformation at 4.2 K. Similarly, atomistic simulations of shock deformation of pure Cu or
Ni show peak non-equilibrium dislocation densities up to 1018 m−2 that decrease to 1016 m−2

after relaxation (for references, see [21]). Thus, the figures given by Equations (12) and (13) are
reasonably confirmed.

(b) Non-redundant geometrically necessary dislocation density is immune to most of the recovery
mechanisms to which statistically stored dislocation density is vulnerable (mechanisms involving
the annihilation of dislocation segments of opposite sign). However, the GND density can also be
absorbed and digested in high-angle grain boundaries to the price of a change in their defect
structure and associated intergranular misorientation. Disregarding such possible recovery,
an absolute “natural” limit to dislocation density of any kind, redundant or not, is inherent to
the discrete, atomistic constitution of the crystals. Surprisingly, a variety of different criteria for
establishing such limits (geometric, mechanical, thermodynamic) yield a very narrow interval for
its value [21]:

0.2 ≤ ρmax·b2 ≤ 0.3 (22)

i.e., about 4 × 1018 m−2 for the metals considered in this paper. From Equation (3) with the α

value adequate to the high figure of the dislocation density, the maximum athermal flow stress
associated to such dislocation density would be

[(σ− σ0)max/G∗]T=0 � 0.3. (23)

However, remember that as explained above, such a limit cannot be reached by the plastic
deformation of single-phase crystalline materials developing Stage IV because of the emergence
of a nanograin structure after large strains and its control of the flow stress (Figure 9).

What should we expect to happen in an alloy where the saturation of Stage IV does not occur?
The obvious answer is amorphization. It does not seem casual that the absolute limit value given
above for the flow stress coincides with the ideal strength for the irreversible deformation of
metallic glasses [21].
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(c) However, increasing the dislocation density does not seem to be the actual microstructural path
for amorphization by deformation. Amorphization by deformation is experimentally observed in
many alloys with a high glass-forming ability as a transition from a nanograined to a disordered
glassy structure.

Increasing the strains by ultra-SPD HPT or by wire drawing, etc., beyond their current top highs
(Figures 7 and 10) is certainly leading to a strength limit, but which one?

Many materials seem to reach a steady state too before amorphization—for instance, pure metals or
its dilute alloys. For instance, iron powders deformed by high-energy ball milling at room temperature
(high strain rate, non-monotonic strain path) saturate at about 3.5 GPa (0.05 G*), well above the
apparent saturation value for Stage IV. Its structure is constituted of equiaxed nanograins.

The structure of iron wires drawn to ε = 10 after the accumulation of a big number of passes
is constituted of axisymmetrically oriented elongated nanograins of an equiaxed section randomly
rotated about the 〈110〉 crystallographic direction. If such a structure were geometrically perfect (ideal
crystallographic domains of infinite axial length and separated by perfect, flat intergranular axially
oriented walls), it would be unable to develop elongation-coupled grain boundary migration or grain
rotation, i.e., it would be resistant to dynamic recovery in the ultra-SPD stage; continued elongation
would lead to further strengthening until reaching some critical structural refinement for attaining the
disordered state. However, the real structure is far from ideal, and given its extraordinarily fine grain
size, it offers opportunity for recovery mechanisms to significantly contribute to arrive at a steady
state of a limited GB surface per unit volume. Numerical MD simulations intended to emulate the
observed imperfect fibrous structure of drawn Fe wires up to grain sizes in their cross-section as fine as
3 nm (Figure 12) suggest that the VME flow stress of pure iron wires would saturate at about 5 GPa
(0.08 G*) [22]. This is an estimation of the athermal VME flow stress limit of iron following this unique
strain path (the MD result is 6.75 GPa for the saturation stress, of which 1.75 GPa corresponds to a
dynamic friction stress because of the very high strain rate employed in the MD simulations (108 s−1),
as stated in the caption of Figure 12).

σ

μ

Figure 12. Experimental VME flow stress vs. grain size in the cross-section of <110> textured
axisymmetrically drawn iron wires (Fe-0.007%C, from Langford and Cohen [58]) and MD results
(molecular dynamics simulations) of similar (but finer) structures of pure iron from ref. [22]. Superposed:
the critical stress for bowing a dislocation to the curvature of the grains (the Orowan equation) plus a
100 MPa additive term representing the friction stress from the lattice (appropriate for Fe-0.007%C) or a
1.75 GPa dynamic friction stress (appropriate for the MD simulations because of the very high strain
rate employed in the calculations, 108 m−1 [22]).

22



Metals 2020, 10 , 66

8. Conclusions

• SPD processes have extended the experimental study of deformation of materials to levels of VME
strains unimaginable half a century ago: from 1 to 105 VME strain.

• The effect of plastic deformation on the flow stress and internal structure of materials is
path-dependent. One must be aware that both ECAP and HPT, the most performant SPD
processes for attaining very large strains in bulk samples, impart simple shear deformation
(similar to conventional torsion tests). It is convenient to compare the ECAP or HPT results with
results from other more traditional processes imparting large strains, such as rolling (plane-strain
elongation, equivalent to pure shear) and wire drawing (axisymmetrical elongation).

• For bcc or hcp materials, wire drawing is much more effective at strengthening or structural
refining than SPD processes, because of the unique internal mesoscopic strain pattern associated
to a texture that strongly favors internal plane strain elongation, requiring grain interfolding.
Ultra-SPD strained Fe or Ti by HPT to a VME of 4000 do not achieve the strength levels obtained
by drawing to a VME strain of 10.

• The results of SPD processes applied to metals refute the existence of a true deformation Stage V,
prematurely putting an end to the slow progression of Stage IV toward its alleged steady state.
Under the high hydrostatic pressures of SPD processes, such progression continues its path much
further than expected from the behavior observed in conventional tension or torsion tests.

• Recently published results of ultra-SPD stress–strain behavior of several pure metals show that
a hardening transition occurs after a very large plateau of constant flow stress. The SHR of the
new deformation stage is very weak, but after enormous shear strains of the order of 103, the flow
stress significantly increases above the plateau stress of Stage IV. If the authenticity and generality
of the new stage is confirmed, it will offer the possibility of strengthening bulk materials by HPT
to unforeseen levels.

• One plausible explanation (among others) for the ultra-SPD transition has been proposed in this
paper: In Stage IV, the previous cellular and subgrain structure evolves to a near-exclusively grain
structure of shrinking average size as deformation goes on. Inside the grains, the dislocation
density is limited to the maximum value allowed in Stage IV as far as its crossing requires a
curvature of the gliding dislocations larger than the average curvature of the encircling grain
cross-section. Beyond that point, fully crossing the whole grain section requires a flow stress
that exceeds the critical stress for cutting through the intragranular dislocation density unable to
increase its value, i.e., the grain size takes control of the flow stress. In wire drawing, the reduction
of the grain cross-section is very rapid and the SHR is very high; in HPT, the decline is very weak,
and the SHR is very small.

Table 1 summarizes the approximate maximum (athermal) values of the saturation VME flow
stress of single-phase polycrystals according to this paper.

Table 1. Approximate athermal values of the saturation VME flow stress and their associated
determinant microstructural features of plastically deformed single-phase polycrystals.

Stage [(σs−σ0)/G∗]T=0 ρs, m−2 Comments

III 0.015 1016

Limited by max. disloc. density
IV 0.024 2.6 × 1016

ultra-SPD Probably ≤ 0.08 2.6 × 1016

Limited by sat. grain size, Ds ≈ 3 nmbcc and hcp
wire-drawing 0.08 2.6 × 1016

absolute ideal limit 0.3 4 × 1018 Limited by amorphization

The room-temperature shear moduli used for normalizing the flow stresses in this figure and throughout this paper
are 42.1, 78.9, 64, and 43.6 GPa for, respectively, Cu, Ni, Fe, and αTi [73].
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9. Suggestions for Further Research Work

Despite the big amount of research published on the topic of this paper, many open questions
remain. Some very obvious among others are:

(a) The detailed mechanistic explanation of the recovery processes of Stage III responsible for the
validity of the Voce stress–strain equation;

(b) The systematic study and characterization of the structural basis of Stage IV and its dependence
of on temperature, strain rate, and SFE;

(c) Confirmation of the authenticity of the recently proposed ultra-SPD stage and study of its
micromechanistic origin is, of course, crucial.

(d) If the authenticity of the new stage is confirmed, its full characterization will be an excellent
research opportunity. The influence of chemical composition on this hardening transition should
be indeed addressed; the influence of both purity and alloying also call for study. Similarly,
the influence of the homologous deformation temperature, strain rate, and SFE on the emergence
as well as the stability of the strength after the strains imparted would merit a the research effort.
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Abstract: We review the mechanical theory of dislocation and disclination density fields and its
application to grain boundary modeling. The theory accounts for the incompatibility of the elastic
strain and curvature tensors due to the presence of dislocations and disclinations. The free energy
density is assumed to be quadratic in elastic strain and curvature and has nonlocal character.
The balance of loads in the body is described by higher-order equations using the work-conjugates of
the strain and curvature tensors, i.e., the stress and couple-stress tensors. Conservation statements
for the translational and rotational discontinuities provide a dynamic framework for dislocation and
disclination motion in terms of transport relationships. Plasticity of the body is therefore viewed as
being mediated by both dislocation and disclination motion. The driving forces for these motions are
identified from the mechanical dissipation, which provides guidelines for the admissible constitutive
relations. On this basis, the theory is expressed as a set of partial differential equations where
the unknowns are the material displacement and the dislocation and disclination density fields.
The theory is applied in cases where rotational defects matter in the structure and deformation of the
body, such as grain boundaries in polycrystals and grain boundary-mediated plasticity. Characteristic
examples are provided for the grain boundary structure in terms of periodic arrays of disclination
dipoles and for grain boundary migration under applied shear.

Keywords: plasticity; disclination; dislocation; grain boundary

1. Introduction

Disclinations and dislocations were simultaneously introduced by Volterra, more than a century
ago [1]. Dislocations are crystal defects arising from translational lattice incompatibility, as measured
by the Burgers vector. Disclinations are defects originating in the rotational incompatibility of the
lattice characterized by the Frank vector [2]. Disclinations have long been neglected in the field theory
of crystal defects, due to their diverging elastic energy, which precludes their occurrence as single
defects [3]. However self-screened configurations, such as disclination dipoles, involve bounded
elastic energy and may appear frequently [4,5]. Indeed, they have been proposed for describing grain
boundaries in various polycrystals, by deriving the disclination density field from crystal orientation
maps, as obtained by electron backscattered diffraction [6,7]. Disclination dipoles were also exhibited
in planar configurations formed by C60 molecular layers on WO2/W(110) substrates [8]. Generally,
disclinations are liable for complementing dislocations in the description of the lattice structure when
single-valued elastic rotation fields do not exist, as in polycrystals. Disclination dipoles were shown to
provide a good description of grain boundaries [9–12].

In addition to obstacles to plastic deformation by dislocation glide and twinning, grain boundaries
can also contribute to plastic deformation. In ultra-fine-grained metals or in materials lacking
dislocation slip systems, they can become plasticity mediators, not only by supplying dislocation
sources, but also via migration mechanisms. For example, when a shear stress is applied to a bicrystal,
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one crystal can grow at the expense of the other by the normal motion of the boundary, inducing
plastic shear in the crystal traversed by the boundary. Such shear/migration coupling is characterized
by the ratio β of the displacements parallel and normal to the boundary. Surface-dislocation-based
models [13,14] captured well the variations of this coupling factor as a function of the misorientation
from the Burgers vector’s content of the interface. Molecular dynamics methods [14–16] provided
elementary mechanisms for boundary migration under stress. As considered here, field models
involving dislocation and disclination densities are also candidates for the modeling of grain
boundaries and their plasticity. The size of the investigated microstructures can be of the order
of (but can be larger than) the dimensions typically considered in atomistic simulations. The field
models allow analyzing the fine structure of the grain boundaries and the distribution of elastic energy
at an atomic resolution length scale. It is also possible to model boundary migration by the motion of
arrays of disclination dipoles, and to model dissipative and diffusive phenomena using disclination
and dislocation transport equations [17].

In the present paper, we provide a review of the mechanical theory of dislocation and disclination
fields [18] and show its interest in dealing with crystalline bodies subject to grain boundary-mediated
plasticity. We limit the presentation to infinitesimal transformations. A more complete presentation of
the model may be found in the framework of generalized disclinations [19]. By a field theory, we mean
a theory of continuously distributed crystal defect densities using the tools of the mathematical
theory of partial differential equations and boundary problem solving. As such, we capitalize on the
earlier elasto-static theories of dislocation fields [20,21] and of dislocation and disclination fields [2].
Both theories are strongly connected: the latter reduces to the former when the disclination density
field vanishes. We also benefit from the mechanical theory of dislocation fields [22], which additionally
deals with dislocation-mediated plasticity. In the latter, the material displacement and dislocation
density fields are derived from a set of partial differential equations complemented with initial and
boundary conditions, provided constitutive information for the elastic behavior and dislocation
motion is supplied [23]. This theory was shown to capture well complex features of elasto-plastic
deformation such as size effects [24,25], directional hardening [24,26], plastic strain localization [27],
dislocation cores [28,29] and patterning of dislocation ensembles [30,31].

When the dislocation velocity vanishes, the mechanical theory of dislocation fields [22] reduces to
the elasto-static theory of dislocations [20,21]. The present framework of disclination and dislocation
fields reduces to the mechanics of dislocation fields when the disclination density is ignored. It also
reduces to the elasto-static crystal theory of dislocations and disclinations [2] when the velocities
of dislocations and disclinations are ignored. A previous theory of plasticity accounting for both
the translational and rotational aspects of lattice incompatibility was proposed by Kossecka and
deWit [32,33]. Driving forces for disclination motion were discussed in [34]. The theory offered
kinematic guidelines, but it was not used to solve realistic boundary value problems. In the present
work, we try to use the field disclination and dislocation mechanics model in situations where the
dynamic interplay between dislocations and disclinations is essential to the understanding of the
plastic deformation of the material.

The outline of the paper is the following. Mathematical notations are provided in Section 2.
A review of the incompatible elastic dislocation and disclination model [2] is given in Section 3.
Static coupling between dislocations and disclinations occurs at this level, due to the continuity
condition for dislocation densities. The equations of balance of momentum and moment of momentum
are given in Section 4, which further includes the presentation of nonlinear nonlocal elastic constitutive
laws that can be of interest for core problems. Section 5 is devoted to the transport properties of
dislocations and disclinations. Dynamic coupling occurs at this stage, because disclination mobility
yields a source/sink term for dislocations. In Section 6, guidance of the Clausius–Duhem inequality
allows defining the driving forces for dislocation and disclination motion, and helps providing
appropriate constitutive relations between the driving forces and defects velocities. Section 7 shows
possible algorithms used for the solution of the model equations. A plane “edge-wedge” model is

30



Metals 2020, 10 , 1517

detailed in Section 8, and used in Sections 9 and 10 to investigate the structure and mobility of grain
boundaries seen as periodic arrays of disclination dipoles.

2. Mathematical Notations

A bold symbol is used for a tensor, as in: A. To avoid possible ambiguities, an upper arrow can be
used for a vector: �V. The transpose of a tensor A is At. Tensor subscript indices are expressed with
respect to a basis (ei , i = 1, 2, 3) of a rectangular Cartesian coordinate system. Arrays of one/two dots
denote contraction of the respective number of “adjacent” indices on two immediately neighboring
tensors. For instance, the tensor A.B with components AikBkj comes from the dot product of tensors A

and B, and A : B = AijBij is the inner product. The cross product of a second-order tensor A and a
vector V, the div and curl operators acting on second-order tensors are defined by:

(A × V)ij = ejkl AikVl (1)

(div A)i = Aij,j (2)

(curl A)ij = ejkl Ail,k . (3)

where ejkl = ej · (ek × el) is a component of the Levi–Civita tensor X. It is 1 if the jkl permutation
is even, −1 if it is odd, 0 otherwise. The comma followed by a component index denotes a spatial
derivative with respect to the Cartesian coordinate. A vector �A is associated with tensor A through the
inner product of A with the tensor X:

(�A)k = −1
2

(X : A)k = −1
2

ekij Aij (4)

(A)ij = −(X · �A)ij = −eijk(�A)k . (5)

The trace of the second-order tensor A is tr(A) = Aii. The symmetric/skew-symmetric parts are
Asym and Askew. The hydrostatic part is Ahyd = 1

3 tr(A)I, where I is the identity tensor, and its deviatoric
part: Adev = A − Ahyd. An upper dot represents a material time derivative.

3. Review of the Incompatible Elasto-Static Defect Theory

3.1. Incompatibility in the Dislocation Model

In the proposed framework, continuity of the displacement vector field u, along with continuity
of its derivatives, is assumed at any point, including between atoms, in a simply connected body that
is elasto-plastically deformed, except perhaps along interfaces where continuity of the derivatives may
not hold. The rotation vector

�ω =
1
2

curl u (6)

is also defined at any point. These statements assume in a dual way that the material is capable of
transmitting stresses and couple stresses, possibly below inter-atomic length scales. Such continuity
was very early proposed [35,36] when defining pressure and stresses in quantum systems. It was later
used by [37] when defining the stress tensor in quantum mechanics. By definition, couple stresses
(moments of stress) at a point come from mechanical stresses existing at distant material points. As such,
couple stresses introduce nonlocality in the mechanical description of the material. The distortion
tensor is the gradient of the displacement U = grad u. It is curl-free:

curl U = 0. (7)

If dislocations are present, the elastic Ue and plastic Up components of U contain incompatible
parts, which are not curl-free, but are div-free. Indeed, if dislocations thread a patch S in the body,
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a constant discontinuity b in the elastic displacement exists across S, which manifests itself as a closure
defect along the circuit C surrounding S:

b = �ue� =
∫

C
Ue · dl. (8)

b is referred to as the resulting Burgers vector of this dislocation ensemble. Applying Stoke’s
theorem yields:

b =
∫

C
Ue · dl =

∫
S

curl Ue · ndS, (9)

where n is the unit normal to S. The discontinuity b is also characterized in a pointwise continuous
manner by introducing Nye’s dislocation density tensor α:

curl Ue = α (10)

such that
b =

∫
S

α · ndS. (11)

Thus, dislocation lines threading S and having a non-zero resulting Burgers vector induce the
existence of an incompatible part U⊥

e of the elastic distortion tensor. Applying the Stokes-Helmholtz
decomposition of square-integrable tensor fields with square-integrable first order derivatives [38],
we can uniquely define the square-integrable tensor and vector χ and z such that the elastic distortion
Ue reads:

Ue = curl χ + grad z. (12)

The curl of Ue extracts curl χ and removes grad z while, conversely, taking the divergence extracts
grad z and removes curl χ. Thus, Equation (10) involves only curl χ, and

curl U⊥
e = curl curl χ = α. (13)

The term grad z is the compatible (curl-free) part U
‖
e of the elastic distortion Ue, and z is the

compatible elastic displacement u
‖
e , up to a constant. However, Equation (13) is insufficient to identify

U⊥
e from a given dislocation field α. To ensure completeness of the identification, U⊥

e must vanish if
α = 0. Following [38,39], we thus augment Equation (13) with the supplementary condition div U⊥

e = 0
together with U⊥

e · n = 0 on the external boundary with unit normal n. This allows ensuring that the
solution does not contain any gradient part. Applying the curl operator to Equation (13), we have:

curl curl U⊥
e = grad div U⊥

e − div grad U⊥
e = curl α. (14)

Then, using the side condition div U⊥
e = 0, we get:

div grad U⊥
e = −curl α. (15)

Equation (15) is a Poisson-type equation for the unique determination of the unknown tensor
U⊥

e . We could have demonstrated in a similar way the existence of an incompatible part of the
plastic distortion, U⊥

p , which is opposite to the incompatible elastic distortion U⊥
e to ensure the

compatibility of the distortion U and the continuity of the displacement u. An additional compatible
component U

‖
p may also exist, together with a compatible plastic displacement u

‖
p. We can then write

the following equations:
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U = Ue + Up (16)

Ue = U⊥
e + U

‖
e (17)

Up = U⊥
p + U

‖
p (18)

0 = U⊥
e + U⊥

p . (19)

From the above, we see that:
α = −curl U⊥

p (20)

similarly to Equation (13). The continuity condition:

div α = 0 (21)

derives naturally from Equations (10) and (13). The divergence-free character of α reflects the fact that
dislocation lines cannot end within the material. They should either exit the material, or be closed
lines. As will be shown later in Section 3.2, dislocation lines may possibly end on disclination lines.
Now, in view of defining disclinations in the next section, we introduce curvatures and examine how
they appear in the present dislocation model. The strain tensor ε is the symmetric part of U, the rotation
tensor ω its skew-symmetric part, corresponding to the rotation vector �ω through the relation:

ω = −X · �ω, �ω = −1
2

ω : X. (22)

With this, Equation (7) yields:

curl ε + div(�ω)I − gradt�ω = 0 (23)

where grad�ω is the curvature tensor κ:
κ = grad �ω. (24)

The trace of Equation (23) yields:
div(�ω) = 0, (25)

and implies that tr(κ) = 0, meaning that the curvature tensor is deviatoric. Please note that transposing
Equation (23) and then taking the curl yields:

curl curlt ε = 0. (26)

This is the Saint-Venant compatibility condition. Applying the above procedure to Equation (10),
we find:

curl εe + div(�ωe)I − gradt�ωe = α (27)

and:

η = curl curltεe = curl (αt − 1
2

tr(α)I). (28)

The incompatibility tensor η is a possible measure of the incompatibility due to the presence of
dislocations. To terminate this section, we introduce the elastic curvature tensor κe as the gradient of
the elastic rotation �ωe:

κe = grad �ωe, (29)
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which reflects both the continuity of the rotation vector and the curl-free character of the tensor κe:

curl κe = 0. (30)

Using κe, Equation (27) can be expressed as:

curl εe + tr(κe)I − κt
e = α. (31)

It is important to note for what follows that the above equation holds even if κe is not a gradient.
Finally, relations similar to Equations (29) and (31) can be obtained by using Equation (19) for the
plastic strain εp, rotation �ωp and curvature κp:

κp = grad �ωp (32)

−curl εp − tr(κp)I + κt
p = α. (33)

3.2. Incompatibility in the Dislocation and Disclination Model

We now assume that elastic rotation discontinuities ��ωe� exist in addition to the displacement
discontinuities �ue� = b reflected by the dislocation densities. Thus, the elastic curvature tensor κe is
not a gradient anymore. This is the situation met along grain boundaries in polycrystals. Integrating
κe along closed circuits in the manner of Equation (9) leads to the angular closure defect φ known as
the Frank vector:

φ = ��ωe� =
∮

C
κe · dr =

∫
S

curl κe · ndS. (34)

We introduce a tensor field θ such that:

curl κe = θ (35)

and
φ =

∫
S

θ · ndS. (36)

θ is the disclination density tensor [2]. In the presence of disclinations, the elastic displacement
discontinuity reads:

�ue� =
∮

C
[εe − (κt

e × r)t] · dr + φ × r0 = b + φ × r0. (37)

Thus, the discontinuity �ue� derives from the motion of a rigid body with translation b and
rotation φ, in agreement with Weingarten’s theorem [40]. The Burgers vector can also be expressed as
a function of dislocation and disclination density tensors:

b =
∫

S
(α − (θt × r)t) · ndS. (38)

When both dislocations and disclinations exist, the incompatibility tensor η is:

η = curl curlt εe = curl (αt − 1
2

tr(α)I) + θ. (39)

As similarly detailed above for U⊥
e , we must ensure that the incompatible part κ⊥

e of the curvature
tensor is null if θ = 0. In this aim, Equation (35) must be replaced with:

curl κe
⊥ = θ, (40)

together with the side condition div κ⊥
e = 0 and boundary condition κ⊥

e · n = 0 on external boundaries.
These conditions provide a unique solution κ⊥

e of the Poisson equation:
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div grad κ⊥
e = −curl θ. (41)

A compatible part κ
‖
e can also exist, but it is not involved in Equations (40) and (41). Therefore,

one has the following equations:

κe = κ⊥
e + κ

‖
e (42)

κp = κ⊥
p + κ

‖
p (43)

κ = κ
‖
e + κ

‖
p (44)

0 = κ⊥
e + κ⊥

p . (45)

The incompatible plastic curvature is opposed to the incompatible elastic curvature to ensure that
the total curvature is compatible and the material continuous. Then:

curl κp
⊥ = −θ (46)

div grad κ⊥
p = curl θ. (47)

The continuity equation for disclinations:

div θ = 0 (48)

derives from Equations (35) and (40). It mathematically expresses that disclination lines should not end
within the body and form closed loops. The continuity equation for dislocations Equation (21) becomes:

div α = θ : X. (49)

It means that dislocations may now terminate on twist-disclination lines. Please note that if the
disclination density is null, Equations (31), (35), (38) and (49) reduce to Equations (11), (21), (27) and (30),
and the elasto-static model of dislocations and disclinations reduces to the above dislocation model.

4. Elasticity in Incompatible Media Containing Dislocations and Disclinations

4.1. Field Equations

We consider describing the mechanical equilibrium of a simply connected body of volume V
and external surface S containing dislocations and disclinations, and submitted to external loading.
Since the disclination densities are associated with the incompatibility of the elastic curvatures, we are
interested in a framework involving, in addition to stresses, the work-conjugates of the curvatures,
i.e., the couple stresses. We therefore follow the footsteps of [41] to derive the mechanical balance
equations. Let n be the outward unit normal to S, t be the traction vector (force per unit area)
and m the moment vector (couple per unit area) acting on S. As they are non-essential for the
present purposes, body forces and couples are neglected for the sake of simplicity, as well as inertia
forces. The conservation of momentum and moment of momentum of the body therefore imposes the
following conditions:

∫
S

tdS = 0 (50)
∫

S
(m + r × t) = 0. (51)

Assuming that the tractions and moments at boundaries can be written as t = T · n and m = M · n,
where T and M are respectively the stress and couple-stress tensors, we find by substituting in
Equations (50) and (51) and applying the divergence theorem:
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∫
V

div Tdv = 0 (52)
∫

V
(div M − X : T)dv = 0. (53)

Assuming sufficient continuity, the pointwise local equations are:

div T = 0 (54)

div M − X : T = 0. (55)

Equations (54) and (55) are balance of momentum and moment of momentum equations where
the stress tensor T is not necessarily symmetric. These two equations can be combined to form
a higher-order balance equation coupling the symmetrical part of the stress tensor Tsym and the
deviatoric part of the couple-stress tensor Mdev [41]:

div Tsym +
1
2

curl div Mdev = 0, (56)

but involving neither the skew-symmetric part Tskew of the stress tensor nor the hydrostatic part Mhyd of
the couple-stress tensor. Tskew may be obtained from Equation (55), but Mhyd is altogether absent from
the mechanical balance equations and is therefore indeterminate in such a couple-stress theory [41–43].
A more general presentation of the theory involving not only curvatures and couple stresses but also
strain gradients and their work-conjugates (“hyper-stresses” or “double-stresses”) allows avoiding
such indeterminacy. It features crystal defects more general than disclinations, and referred to as
generalized disclinations. The differences between a couple-stress disclination theory involving only
curvatures and a hyper-stress generalized disclination theory involving both curvatures and strain
gradients are discussed in [44].

The mechanical dissipation in the material is the difference between the power of the applied
forces and the rate of change of the stored energy:

D =
∫

S
(v · T + �̇ω · M) · ndS −

∫
V

ψ̇dv =
∫

S
(viTij + ω̇i Mij)njdS −

∫
V

ψ̇dv. (57)

Here, v is the material velocity and ψ the specific free energy density. Using the balance
Equations (54) and (55) together with the divergence theorem, we can write:

D =
∫

D
[(viTij + ω̇i Mij),j − viTij,j − ω̇i(Mij,j − eiklTkl) − ψ̇]dv. (58)

Then we use ωi = −eimnωmn/2 to substitute the rotation vector for the rotation tensor through
Equation (22), and progressively derive:

D =
∫

D
(Tijvi,j + Mijω̇i,j − 1

2
eikleimnω̇mnTkl − ψ̇)dv (59)

D =
∫

D
(Tijvi,j + Mijω̇i,j − 1

2
(δkmδln − δknδlm)ω̇mnTkl − ψ̇)dv (60)

D =
∫

D
(Tijvi,j + Mijω̇i,j − Tijω̇ij − ψ̇)dv (61)

D =
∫

D
(Tij ε̇ij + Mijω̇i,j − ψ̇)dv (62)

D =
∫

D
(Tsym : ε̇ + Mdev : κ̇ − ψ̇)dv. (63)

The Clausius–Duhem inequality imposes that the dissipation be positive, or zero for reversible
processes: D ≥ 0. In Equation (63) the inner product between symmetric and skew-symmetric tensors
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is null. Hence the strain rate tensor ε̇ extracts the symmetric part of the stress tensor T, and the
deviatoric curvature rate tensor κ̇ extracts the deviatoric part of the couple-stress tensor. A free energy
density function ψ is taken as:

ψ = ψ(εe, κe), (64)

with contributions from the elastic strain εe and curvature κe. A more detailed description of this free
energy will be given below in Section 4.3. For the time being, it is sufficient to note that, differentiating
Equation (64) on the one hand, and considering elastic reversible processes such that D = 0 in
Equation (63) on the other hand, leads to identifying the symmetric part of the stress tensor Tsym and
deviatoric part of the couple-stress tensor Mdev with the partial derivatives of the free energy density
with respect to the elastic strain and curvature:

ψ̇ =
∂ψ

∂εe
: ε̇e +

∂ψ

∂κe
: κ̇e (65)

ψ̇ = Tsym : ε̇e + Mdev : κ̇e (66)

Tsym =
∂ψ

∂εe
(67)

Mdev =
∂ψ

∂κe
. (68)

Equations (67) and (68) will be the constitutive relationships describing the elastic behavior of
the material.

4.2. Solving the Incompatible Elasticity Problem

Consider again a simply connected body of volume V containing dislocations and disclinations,
submitted to tractions and moments on its external surface S with outward unit normal n. Tractions are
imposed on a part St of S and rotations/displacements on a part Su:

T · n = td on St (69)

ue = ud on Su (70)

ωe = ωd on Su. (71)

We are interested in describing the state of stress and couple-stress in the body in the presence of
dislocation and disclination density fields (α, θ). The incompatible elastic strain and curvature (ε⊥e , κ⊥

e )
are assumed to be known from the solution of the Poisson Equations (15) and (41). They usually do
not allow satisfying the balance Equation (56). Recalling the decomposition of the elastic strain and
curvature in the sum of incompatible, (ε⊥e , κ⊥

e ), and compatible, (ε‖e , κ
‖
e ), components, Equation (56)

can be written as:

0 = div Tsym(ε‖e , κ
‖
e ) +

1
2

curl divMdev(ε‖e , κ
‖
e ) + f⊥, (72)

f⊥ = div Tsym(ε⊥e , κ⊥
e ) +

1
2

curl divMdev(ε⊥e , κ⊥
e ). (73)

f⊥ is to be seen as a volumetric density of body forces associated with dislocations and
disclinations. In Equations (72) and (73), the symmetric part of the stress tensor and the deviatoric
part of the couple-stress tensor are obtained from the constitutive relations Equations (67) and (68).
The solution of Equation (72) is the compatible elastic displacement field.

4.3. Elasticity in Dislocation/Disclination Cores

Elastic constitutive laws usually relate the elastic strain tensor to the stress tensor, both taken at
the same material point. As such, they are referred to as “local” constitutive laws. They are valid in
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a statistical sense if the characteristic size of the volume element actually envisioned at the material
point is large enough to include a large number of atoms in a perfectly ordered crystal. Local laws
may fail at describing correctly elasticity if this characteristic size reduces to the order of a few atomic
lattice spacings, particularly if the volume element involves crystal defects such as dislocations and
disclinations. Since the mechanical behavior of a particular atom depends on its interactions with all
neighboring atoms, whose location is strongly disturbed by the presence of these defects, defining
the stress tensor in such a local manner may then become impossible. Nonlocal elastic laws are
then needed. Nonlocal elastic laws are relationships using convolution integrals, where the stresses
at a given material point depend on the deformation state in some neighborhood, whose extent is
controlled by a nonlinear kernel function [45–49]. Such nonlocal elastic laws have been successful
in retrieving phonon dispersion curves and regularizing elastic fields in the core region of crystal
defects. Convolution integrals can be coupled with higher-order elastic laws to derive nonlocal elastic
constitutive laws that are of interest in the core regions of dislocations and disclinations, while local
laws may be sufficient in the non-defected regions. The occurrence of different elastic behavior
in non-defected and defected regions was already assumed in grain and phase boundaries [50–53].
Following [54] and relying on Eringen-type convolution integrals applied to strains and curvatures,
we propose below nonlocal laws describing the elastic behavior in the core region of dislocations and
disclinations, and reducing to local laws in the perfectly ordered parts of the crystal.

Nonlocal Convolution Integrals

We introduce a free energy density functional at a point r in a body V in the form:

ψ(r) =
1
2

Cijkl(r)εe
ij(r)εe

kl(r) +
1
2

Aijkl(r)κe
ij(r)κe

kl(r) + ... (74)

... +
1
2

εe
ij(r)

∫
V
K(R′)Dijkl(r, r′)εe

kl(r
′)dV′ + ...

... +
1
2

κe
ij(r)

∫
V
K(R′)Bijkl(r, r′)κe

kl(r
′)dV′.

The first two pointwise terms on the r.h.s. include symmetric positive-definite quadratic forms
with A and C given at point r. This leads to the linear elastic laws used and discussed in [2,18,54]
in the framework of models for dislocations and disclinations. Nonlocal contributions are added in
the form of Eringen-type convolutions, which are the last two terms of the r.h.s. [55]. In such terms,
the location vectors r′ are points distinct from point r. The difference vectors R′ = (r′ − r) and their
norms R′: = (R′.R′)1/2 are also defined. The spatial range of nonlocality is controlled by the nonlocal
kernel K(R′), while the elasticity tensors B and D depend on (r, r′) and the elastic curvatures/strains
are taken at points r′. The proposed nonlocality is motivated by the strong coupling existing in the
core region of defects between displacement/strain and rotation/curvature at distant locations r and
r′ (see Figure 1). One can express the strain induced at point r′ by the curvature at point r:

εe
kl(r

′) = −ekmnκe
ml(r)R′

n, εe(r′) = −(κt
e(r) × R′)t. (75)

Note the presence of the above nonlocal term in the definition of the Burgers vector in Equation (37)
above. Similarly, we can express the curvature at point r′ due to the strain at point r:

κe
kl(r

′) = −ekmnεe
ml(r)

R′
n

R′2 , κe(r′) = − 1
R′2 (εe(r) × R′)t. (76)
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Figure 1. Nonlocal strains and curvatures. (A) Nonlocal shear strain at location r′ induced by the
rotation dωe arising from a curvature tensor at location r; (B) Nonlocal rotation and curvature at
location r′ from the displacement du induced by a shear strain tensor at location r.

The above nonlocal relations between strains and curvatures can be used to substitute curvatures
and strains at points r for strains and curvatures at points r′, respectively. This allows greatly
simplifying the convolutions in the free energy functional Equation (74), in such a way that nonlocality
applies only to elasticity tensors while all strains and curvatures are defined at point r (the reader is
referred to ref [55] for more details):

ψ =
1
2

Cijklε
e
ijε

e
kl +

1
2

Aijklκ
e
ijκ

e
kl +

1
2

Dijklε
e
ijκ

e
kl +

1
2

Bijklκ
e
ijε

e
kl , (77)

D(r) =
∫

V
K(R′)(Dt × R′)tdV′, (78)

B(r) =
∫

V
K(R′)(B × R′

R′2 )tdV′. (79)

By differentiating Equation (77) with respect to the elastic strain and curvature tensors, we find
the stress and couple-stress tensors:

Tsym
ij =

∂ψ

∂εe
ij

= Cijklε
e
kl +

1
2

(Dijkl + Bklij)κ
e
kl (80)

Mdev
ij =

∂ψ

∂κe
ij

= Aijklκ
e
kl +

1
2

(Bijkl + Dklij)ε
e
kl . (81)

Using finally Eijkl = 1
2 (Dijkl + Bklij), we can write:

Tsym
ij =

∂ψ

∂εe
ij

= Cijklε
e
kl + Eijklκ

e
kl (82)

Mdev
ij =

∂ψ

∂κe
ij

= Aijklκ
e
kl + Eklijε

e
kl . (83)

We end up with relationships similar to those proposed in [54], except that the present elastic
tensors (B, D, E) involve nonlocal integrals. As proposed by Eringen [47,48], we assume D = C.
We also impose Bijkl = Dklij, which allows ensuring that the free energy functional is symmetric
positive-definite and that the elastic solution is stable. Interestingly, stability of the elastic strain and
curvature fields is expected at the convoluted level from the nonlocal character of the formulation,
whereas instability would occur in the limit of a purely local formulation [55].
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5. Transport of Dislocations and Disclinations

In this Section, we are interested in the kinematics of dislocations and disclinations in the context
of the continuous setting set forth in Section 3 for their representation by smooth density fields. In this
aim, we take advantage of the transport framework for the spatio-temporal evolution of the defects
density fields that derives from the conservation of the Burgers and Frank vectors during their motion.
Being unquestionable from a kinematic point of view, this framework, referred to as transport of
dislocation and disclination densities, provides a natural basis for the dynamic description of plasticity
through dislocation and disclination motion. Since disclinations are mainly distributed along grain
boundaries in polycrystals, it provides in particular a basis for describing the contribution to plasticity
of grain boundary motion.

Consider a material surface S delimited by a closed circuit C. Let f be the disclination flux used to
measure the rate of inflow into S of disclination lines, carrying along with them their corresponding
Frank vectors φ, through a line element dx of curve C. Let Vθ be the velocity of the disclinations with
respect to the material, and l the unit vector along the disclination lines. Then the disclination tensor is:
θ = φ ⊗ l. In the absence of a disclination source term, the conservation of the Frank’s vector content
demands that the rate of change of the Frank’s vector of all disclination lines threading S be equal to
the total disclination flux across C:

d
dt

∫
S

θ · ndS =
∫

C
f · dx. (84)

For small transformations, the pointwise statement corresponding to Equation (84) is:

θ̇ = curl f (85)

where θ̇ represents the time derivative of the disclination density tensor. The rate of inflow of Frank
vectors across the surface l × dx is:

f.dx = φ(Vθ .(l × dx)). (86)

Indeed, suppose first that the disclination velocity Vθ is in the plane (l, dx). Then, the disclination
does not enter (or exit) surface S, and it is clear from Equation (86) that the flux f is zero as it should
be. Conversely, f is always non-zero when Vθ has a non-zero component normal to the plane (l, dx),
i.e., when the disclination enters or exits surface S, and it changes sign according to whether the
disclination enters or exits S. We can then obtain from Equation (86):

f = −φ ⊗ l × Vθ = −θ× Vθ . (87)

Consequently, the local statement of balance Equation (85) becomes:

θ̇ + curl (θ× Vθ) = 0. (88)

Equation (88) is a transport law for the disclination density tensor θ. It can be understood
as an evolution equation for θ, provided the disclination velocity Vθ is known as a function of
the stress/couple-stress state from constitutive statements. Its meaning is that through the curl
term, the incompatible part of the disclination flux incrementally feeds the disclination density.
Comparing Equations (46) and (88) it follows, after time differentiation of Equation (46) that the
cross product θ× Vθ can be identified with the plastic curvature rate tensor κ̇p, up to a gradient:

κ̇p = θ× Vθ + grad ω̇∗
p. (89)

At mesoscale, the term κ̇∗
p = grad ω̇∗

p can be given the significance of a statistical plastic curvature
rate, meaning that a non-vanishing plastic curvature rate may be obtained even when the disclination
density θ vanishes at this scale [56]. Indeed, using space-time running averages of the disclination
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density tensor, disclination velocity Vθ and plastic curvature rate tensor κ̇p over a domain of mesoscopic
size, allows writing the mesoscopic plastic curvature rate κ̇p as:

κ̇p = θ× Vθ = θ× Vθ + κ̇∗
p, (90)

where overbars indicate averaged variables. It is seen that κ̇p may be non-zero when the net disclination
density vanishes at mesoscale (θ = 0), in which case it becomes:

κ̇p = κ̇∗
p . (91)

Dropping the overbars for convenience, the plastic curvature rate may be generally written as:

κ̇p = θ× Vθ + κ̇∗
p. (92)

As we shall discuss below, the compatible part κ̇
‖
p of κ̇p increments the history-dependent

compatible plastic curvature produced by the motion of dislocations and disclinations. Equation (92)
accounts for plasticity processes in relation to the mobility of grain boundaries that cannot be described
by a pure dislocation-based model.

In the theory of dislocations, the dislocation density tensor α satisfies a transport equation similar
to Equation (88), in the absence of a source term [22,57]:

α̇ + curl (α × Vα) = 0. (93)

Here, Vα denotes the dislocation velocity, and the cross product α × Vα can be identified with
the plastic distortion rate U̇p, up to a gradient. However, U̇p is undefined in a theory of disclinations,
because its skew-symmetric part ω̇p has discontinuities. Hence, the dislocation transport Equation (93)
does not account for curvature incompatibility and has to be modified in a disclination theory. For small
transformations, a version correctly accounting for curvature incompatibility is readily obtained from
the time derivative of Equation (33):

α̇ = −curl ε̇p + κ̇t
p − tr(κ̇p)I = −curl ε̇p + sθ . (94)

Here the plastic strain rate ε̇p is

ε̇p = (α × Vα)sym + ε̇∗p, (95)

where ε̇∗p is a gradient tensor acquiring significance at mesoscale, as discussed above for the mesoscopic

plastic curvature rate tensor κ̇∗
p. The compatible part of the plastic strain rate, ε̇

‖
p, is not involved in

Equation (94) but it nevertheless increments the compatible plastic strain produced by the motion of
dislocations through the lattice. Note importantly in Equation (94) the presence of a dislocation
source/sink term, sθ = κ̇t

p − tr(κ̇p)I, due to the mobility of disclinations. Such a term offers
supplementary relaxation mechanisms [4,58], and will be shown to be useful later on in the prediction
of shear-coupled boundary migration. When the dislocation/disclination velocities and mesoscopic
contributions to plasticity (κ̇∗

p, ε̇∗p) are known from the stress/couple-stress state through constitutive
relations, Equations (88), (92), (94) and (95) can be used as evolution equations for the disclination and
dislocation densities. Please note that Equations (88) and (94) are first order hyperbolic equations,
which implies that their solutions have propagative character, as experimentally verified in [31].
Furthermore, hyperbolicity of these equations as a strong impact on the algorithms devoted to their
numerical solution from finite elements or spectral approximations [59–61], as detailed below in
Section 7.3.
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6. Constitutive Relations for Dislocation and Disclination Mobility

In this Section, we account for thermodynamic requirements on positiveness of the mechanical
dissipation to formulate constitutive relations for the mobility of dislocations and disclinations by
following a procedure proposed in [62]. Substituting Equations (65) and (66) in Equation (63),
and using the additivity of elastic and plastic strain rates and curvature rates tensors, we find the
dissipation to be:

D =
∫

D
(Tsym : ε̇p + Mdev : κ̇p)dv ≥ 0. (96)

To identify driving forces associated with dislocation and disclination velocities, we write down
the plastic strain and curvature rate tensors (ε̇p, κ̇p) in terms of dislocation and disclination fluxes as in
Equations (92) and (95) and substitute in Equation (96):

D =
∫

D
(Tsym : (α × Vα)sym + Tsym : ε̇∗p + Mdev : (θ× Vθ) + Mdev : κ̇∗

p)dv, (97)

which reads in component form:

D =
∫

D
(
1
2

Tsym
ij (ejklαikVα

l + eiklαjkVα
l ) + Tsym

ij ε̇
p,∗
ij + Mdev

ij ejklθikVθ
l + Mdev

ij κ̇
p,∗
ij )dv, (98)

or also:

D =
∫

D
(ejklT

sym
ij αikVα

l + Tsym
ij ε̇

p,∗
ij + ejkl Mdev

ij θikVθ
l + Mdev

ij κ̇
p,∗
ij )dv. (99)

Equivalently, Equation (99) is in intrinsic form:

D =
∫

D
(Fα · Vα + Tsym : ε̇∗p + Fθ · Vθ + Mdev : κ̇∗

p)dv, (100)

where we wrote:

Fα = Tsym · α : X; Fα
l = ejklT

sym
ij αik (101)

Fθ = Mdev,t · θ : X; Fθ
l = ejkl Mdev

ij θik . (102)

Fα and Fθ are the driving forces for dislocation and disclination motion. Using the dyadic notation
α = b ⊗ t for the dislocation density (b is the Burgers vector, t the line vector), Fα can be expressed
as: Fα = Tsym · b × t, a form similar to the Peach-Köhler force for discrete dislocations. Similarly for
the disclination density tensor, θ = φ ⊗ l (φ is Frank’s vector, l the line vector), and Fθ = Mdev,t · φ × l.
This is a Peach-Köhler-type relationship for disclinations. Thus, Fθ drives grain boundary motion in
the present disclination theory. It is produced by the couple stresses, the stresses being not directly
involved, and is normal to the disclination line. Positiveness of the mechanical dissipation rate
Equation (99) can be satisfied by choosing the simple constitutive relations:

Fα = BαVα; Bα ≥ 0 (103)

Fθ = BθVθ ; Bθ ≥ 0 (104)

ε̇∗p = λεTsym; λε ≥ 0 (105)

κ̇∗
p = λκMdev; λκ ≥ 0, (106)

where (Bα, Bθ , λε, λκ) are positive material parameters. Equations (103)–(106) have the form of
Newtonian viscous drag relationships, but (Bα, Bθ , λε, λκ) are generally not simple constants. They may
involve non-linearity, or/and hardening laws reflecting for example thermally assisted obstacle
overcoming through adequate constitutive statements. Please note that both the glide and climb
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components of the Peach-Köhler force are included in Equation (103). λε describes plasticity through
both dislocation glide and climb at mesoscale. Similarly, λκ describes plasticity induced by grain
boundary motion at mesoscale and driven by Mdev in Equation (106). Possible expressions for λκ were
proposed in [56] by averaging Equation (104).

7. Solution Algorithms

In the present Section, we propose two algorithms for the numerical solution of the model.
The first version solves for the incompatible plastic strains and curvatures at each time step. The second
version is a reduced, rate form of the latter, numerically faster, but where incompatible fields are not
determined at each step.

7.1. Complete Algorithm

The complete model involves the following equations, gathered from the above sections:

curl κ⊥
p = −θ (107)

curl ε⊥p = −α + κt
p − tr(κp)I (108)

T = C : (ε − εp) + D : (κ − κp) (109)

Mdev = A : (κ − κp) + B : (ε − εp) (110)

0 = div Tsym +
1
2

curl div Mdev (111)

κ̇p = θ× Vθ + κ̇∗
p (112)

ε̇p = (α × Vα)sym + ε̇∗p (113)

θ̇ = −curl κ̇p (114)

α̇ = −curl ε̇p + κ̇t
p − tr(κ̇p)I (115)

Vα =
1

Bα
Tsym · α : X (116)

Vθ =
1
Bθ

Mdev,t · θ : X (117)

ε̇∗p = λεTsym (118)

κ̇∗
p = λκMdev, (119)

with the boundary conditions:

T · n = td on St (120)

u = ud on Su (121)

ω = ωd on Su. (122)

The unknowns are the displacement field u and the dislocation/disclination density fields (α, θ).
They are known at the initial time. The incompatible component κ⊥

p of κp is solution of Equation (107),
with the side conditions mentioned in Equation (40). ε⊥p can be determined from Equation (108),

with the side conditions div ε⊥p = 0, ε⊥p · n = 0 on S. Being history-dependent, κ
‖
p and ε

‖
p are initially set

to zero without loss of generality. Furthermore, using the constitutive laws Equations (109) and (110),
the balance of momentum and moment of momentum problem Equation (111) can be solved
for the compatible displacement, as shown in Section 4.2. Then, the plastic strain rate and
curvature rate (ε̇p, κ̇p) are found from Equations (112) and (113), where Equations (116)–(119) have
been used to evaluate the dislocation/disclination velocities and the mesoscopic terms. Only the
compatible parts (ε̇‖p, κ̇

‖
p) are employed for updating the plastic strain and curvature tensors. Finally,
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the dislocation/disclination densities are updated using Equations (114) and (115) and the procedure
is iterated at the next time step.

7.2. Reduced Algorithm

Using the rate form of the model equations leads to a simpler and faster incremental algorithm.
The main reason and difference is that the decomposition of plastic strains and curvatures into
incompatible and compatible parts is possibly accounted for at the initial time, but not later. By taking
the time derivative of Equations (109)–(111) and ignoring Equations (107) and (108), the algorithm uses
the following equations:

0 = div Ṫsym +
1
2

curl div Ṁdev (123)

Ṫ = C : (ε̇ − ε̇p) + D : (κ̇ − κ̇p) (124)

Ṁdev = A : (κ̇ − κ̇p) + B : (ε̇ − ε̇p) (125)

κ̇p = θ× Vθ + κ̇∗
p (126)

ε̇p = (α × Vα)sym + ε̇∗p (127)

θ̇ = −curl κ̇p (128)

α̇ = −curl ε̇p + κ̇t
p − tr(κ̇p)I (129)

Vα =
1

Bα
Tsym · α : X (130)

Vθ =
1
Bθ

Mdev,t · θ : X (131)

ε̇∗p = λεTsym (132)

κ̇∗
p = λκMdev, (133)

with the boundary conditions:

Ṫ · n = ṫd on St (134)

u̇ = u̇d on Su (135)

ω̇ = ω̇d on Su. (136)

All fields (u, α, θ) are given at the initial time, as well as the plastic strain and curvature (εp, κp)
arbitrarily set to zero without inconvenience. All fields can then be updated using the above rate
equations. Clearly, the solutions obtained from these two algorithms may differ substantially because
their continuity and differentiability properties are different.

7.3. Numerical Implementation

The finite element implementation couples a conventional Galerkin scheme for the solution
of the equilibrium problem with a mixed Galerkin-Least Squares (GLS) scheme for the numerical
approximation of the dislocation/disclination transport equations. Applying a standard Galerkin
method to the convective transport equations leads to high frequency, propagating, numerical
instabilities arising at sharp gradients. The Least-Squares (LS) finite element method, based on
minimizing the norm of the residual, has the potential for eliminating such drawbacks, because it
damps high frequency oscillations. Explicit LS methods have been considered so far [60,61]. However,
damping is also a drawback of LS methods, because it leads to undue solution relaxation in the
long-term. Therefore, an explicit Galerkin-Least-Squares (GLS) method involving convenient linear
combinations of the Galerkin and LS algorithms has been proposed [60,61].

A constant drawback of finite element methods is that three-dimensional simulations are
exceedingly demanding on computational resources. Spectral methods based on Fast Fourier
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Transform (FFT) algorithms were shown to be efficient at solving three-dimensional problems in
periodic media and therefore appear as attractive alternatives to finite elements. However, the Gibbs
oscillations they inherently produce in regions of strong spatial gradients reinforce the numerical
instability of the solutions to the transport equations with respect to high frequency perturbations.
Spectral low-pass filters in the Fourier space were shown to be efficient at damping these perturbations,
and consequently at providing accurate and stable solutions to the transport problem [59].
FFT algorithms for the solution of the equilibrium problems are also available [55,63].

8. A Plane Edge-Wedge Model

As an illustration of the model and a basis for the next two Sections, we consider a
bi-dimensional model with a distribution of wedge disclinations first discussed in [18]. In the
orthonormal frame (e1, e2, e3), we take the disclination tensor to be: θ = θ33e3 ⊗ e3. The continuity
Equation (48) then implies that the disclination density θ33 only depends on the coordinates (x1, x2).
Thus, the incompatibility Equation (46) reduces to:

θ33 = κ
p,⊥
31,2 − κ

p,⊥
32,1, (137)

and the Poisson Equation (47) is:

κ
p,⊥
31,11 + κ

p,⊥
31,22 = +θ33,2 (138)

κ
p,⊥
32,11 + κ

p,⊥
32,22 = −θ33,1. (139)

The involved plastic curvatures are only (κp
31, κ

p
32) and the disclination transport

Equation (88) reads:
θ̇33 = κ̇

p
31,2 − κ̇

p
32,1. (140)

We ignore the mesoscopic plastic curvature rate κ̇∗
p in Equation (92) as we want to deal with

nanoscale problems. Therefore, the plastic curvature rates are:

κ̇
p
31 = −θ33Vθ

2 (141)

κ̇
p
32 = +θ33Vθ

1 . (142)

The constitutive relation Equation (104) for the disclination velocities then yields:

Vθ
1 = +

1
Bθ

Mdev
32 θ33 (143)

Vθ
2 = − 1

Bθ
Mdev

31 θ33, (144)

and the plastic curvature rates read:

κ̇
p
31 =

1
Bθ

Mdev
31 θ2

33 (145)

κ̇
p
32 =

1
Bθ

Mdev
32 θ2

33, (146)

while the transport equation becomes:

θ̇33 =
1
Bθ

(Mdev
31 θ2

33),2 − 1
Bθ

(Mdev
32 θ2

33),1. (147)
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In the dislocation transport Equation (94), the source/sink term sθ generates only edge dislocations
(α13, α23). Ignoring also the mesoscopic plastic strain rate ε̇∗p in Equation (95), the motion of these edge
dislocations produces the plastic strain rates:

ε̇
p
11 = −α13Vα

2 (148)

ε̇
p
12 = ε̇

p
21 =

1
2

(α13Vα
1 − α23Vα

2 ) (149)

ε̇
p
22 = +α23Vα

1 , (150)

and the plastic rotation rate:

ω̇
p
3 = −1

2
(α13Vα

1 + α23Vα
2 ). (151)

The above relations Equations (148) and (150) show that climb of edge dislocations (α13, α23)
produces the extension rates (ε̇p

11, ε̇
p
22), while their glide produces the shear ε̇

p
12 in Equation (149).

The dislocation transport Equation (94) therefore yields:

α̇13 = ε̇
p
11,2 − ε̇

p
12,1 + κ̇

p
31 (152)

α̇23 = ε̇
p
21,2 − ε̇

p
22,1 + κ̇

p
32. (153)

Using Equations (141), (142), (148), (149) and (150), these edge dislocation generation rates read:

α̇13 = −(α13Vα
2 ),2 − 1

2
(α13Vα

1 − α23Vα
2 ),1 − θ33Vθ

2 (154)

α̇23 = −(α23Vα
1 ),1 +

1
2

(α13Vα
1 − α23Vα

2 ),2 + θ33Vθ
1 . (155)

If all other dislocation densities are initially absent, the model therefore involves only α13 and
α23 densities. The continuity condition Equation (49) then implies a planar distribution of these
dislocations. The relation Equation (103) provides the dislocation velocities for climb:

Vα
1 = +

1
Bα

Tsym
22 α23 (156)

Vα
2 = − 1

Bα
Tsym

11 α13, (157)

and glide:

Vα
1 = +

1
Bα

Tsym
12 α13 (158)

Vα
2 = − 1

Bα
Tsym

12 α23. (159)

The corresponding plastic strain rates are:

ε̇
p
11 =

1
Bα

Tsym
11 α2

13 (160)

ε̇
p
12 = ε̇

p
21 =

1
Bα

Tsym
12 (α2

13 + α2
23) (161)

ε̇
p
22 =

1
Bα

Tsym
22 α2

23, (162)

while the transport equation can be reformulated as:
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α̇13 = +
1

Bα
(Tsym

11 α2
13),2 − 1

2Bα
(Tsym

12 (α2
13 + α2

23)),1 +
1
Bθ

Mdev
31 θ2

33 (163)

α̇23 = − 1
Bα

(Tsym
22 α2

23),1 +
1

2Bα
(Tsym

12 (α2
13 + α2

23)),2 +
1
Bθ

Mdev
32 θ2

33. (164)

The relevant stress and deviatoric couple-stress components in the model are (T11, T12, T21, T22)
and (Mdev

31 , Mdev
32 ). The balance of momentum Equation (56) read here:

Tsym
11,1 + Tsym

12,2 +
1
2

(Mdev
31,12 + Mdev

32,22) = 0 (165)

Tsym
21,1 + Tsym

22,2 − 1
2

(Mdev
31,11 + Mdev

32,21) = 0. (166)

Thus, the loading applied at the boundaries of the domain may include shear/tension/
compression in the directions (e1, e2). Couple stresses and rotations along e3 can also be prescribed.
The elastic constitutive laws Equations (82) and (83) yield:

Tsym
ij =

∂ψ

∂εe
ij

= Cijklε
e
kl + Dijklκ

e
kl (167)

Mdev
ij =

∂ψ

∂κe
ij

= Aijklκ
e
kl + Bijklε

e
kl . (168)

Substituting (εij − ε
p
ij, ωi,j − κ

p
ij) for (εe

ij, κe
ij) in the constitutive Equations (167) and (168),

and introducing the resultant stresses and couple stresses in the balance Equations (165) and (166),
one obtains two fourth-order partial differential equations for the material displacements (u1, u2).
As already mentioned, the boundary conditions comprise the prescription of tractions and moments,
or/and displacements and rotations on the surface of the body. Please note that no boundary condition
is specified on the disclination and dislocation densities.

9. Structure and Elastic Energy of Symmetric Tilt Boundaries

Copper bi-crystals with ∑ 37(610) and ∑ 5(310) symmetrical tilt boundaries of misorientation 18.9◦

and 36.9◦ were simulated in [64]. The bi-crystals are free of loads and periodic boundary conditions
are imposed on the vertical boundaries in Figure 2. The characteristic size of the finite element mesh is
0.5Å. The wedge disclination density fields are shown in Figure 2, where they are superimposed on
the relaxed atomic structure as predicted by atomistic calculations [14]. They consist of periodic arrays
of wedge-disclination dipoles located at the edges of the structural units. Dilatations/contractions
regions are associated with negative/positive disclinations. The local occurrence of large elastic strains
suggests that a finite strain setting could be in order. Nevertheless, the predicted elastic fields are in
good agreement with atomistic simulations and experiment. The elastic energy is essentially located in
the dilatation/contraction areas in the core region of defects. In agreement with atomistic simulations,
the energy is contained in the first atomic rows forming the grain boundary, essentially at structural
units. Comparing the elastic fields of the ∑ 37(610) boundary and of the ∑ 5(310) boundary in Figure 2
shows that energy is more localized near the interface when the structural units are close to each
other, due to elastic screening effects. Furthermore, the continuous description predicts features such
as the shear deformation and curvature across/along the grain boundaries. As shown in Figure 3,
there is a good agreement between quantitative estimates of the excess energy of grain boundaries
using our model, and measurements from atomistic simulations and experiment [65–67]. Satisfactory
agreement is obtained for all misorientations. Notably, the energy cusps predicted for the ∑ 5(310)
and ∑ 5(210) grain boundaries originate in the self-screening of the elastic fields when the separation
distance between structural units becomes small.
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Figure 2. Disclination model for a ∑ 37(610) symmetrical <001> tilt boundary of misorientation
18.9◦ (left column) and of a ∑ 5(310) symmetrical <001> tilt boundary of misorientation 36.9◦

(right column). The wedge-disclination density θ33 (rad/m2) is shown on top of the relaxed atomic
structure (a,f); Elastic dilatations/contractions (b,g); Shear stress field T12 (Pa) (c,h); Elastic curvature
κ32 (rad/m) (d,i); Elastic energy density (J/m3) (e,j). Atomic structures are taken from reference [14].
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Figure 3. Excess energy of <001> tilt grain boundaries in copper bi-crystals. Black diamonds: present
work; Gray triangles/squares: experimental measurements/molecular statics predictions [65]; Gray
circles: molecular statics predictions [66].

10. Shear-Coupled Migration of Symmetric Tilt Boundaries

As already suggested above, shear-induced normal grain boundary migration is a fascinating
example of grain boundary-mediated plasticity. It was experimentally observed at moderate
temperature in Al [68,69]. Following [17], we illustrate this mechanism by submitting the
copper bicrystal featuring the ∑ 5(310) symmetric <001> tilt boundary studied above to shear
parallel to the boundary. In Figure 4, the wedge-disclination dipoles array is observed to move
downward. This motion generates edge dislocation dipoles α13 (line direction normal to the figure,
Burgers vector along the boundary). Due to the shear stress T12 these edge dipoles glide along the
boundary, generate the plastic shear strain field ε

p
12 seen in Figure 4c and annihilate at mid-distance,

as Figure 4a,b show. Meanwhile, the downward migration of the disclination dipoles produces a plastic
tilt rotation ω

p
3 shown in Figure 4d. Striking similitude is observed between the heterogeneity of the

plastic shear/rotation fields presented in Figure 4 and those obtained by post-processing atomistic
simulations [16,70,71]. Because the boundary moves downward while positive shear is produced,
the shear-coupling factor β, which corresponds to the ratio between the parallel translation of the two
crystals and the normal migration of the boundary, is negative. The value β ≈ −0.94 measured in
Figure 4b is in reasonable agreement with atomistic simulations and experiments [14,68]. The predicted
variations of the shear-coupling factor in the full range of misorientations are presented in Figure 3e.
The model retrieves the two <001> and <110> branches found in experiments [68] and obtained by
molecular dynamics simulations and surface-dislocation-based models [13,14].
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Figure 4. Disclination model for shear-coupled boundary migration. (a,b): Wedge-disclination
density θ33 (rad/m2) (color coded) and edge dislocation density α13 (m−1) (black/white contours),
during migration of a ∑ 5(310) symmetric <001> tilt grain boundary of misorientation 36.87◦.
Two snapshots are shown at 1 ms (a) and 10 ms (b); (c,d): Plastic shear strain ε

p
12 (c) and plastic rotation

ω
p
3 (◦) (d) generated during the migration. In (a–d), the black dashed-line shows the initial position

of the grain boundary. (e): Shear-coupling factor as a function of grain boundary misorientation.
The circles show values obtained with the disclination model while the solid lines show the <001> and
<110> shear deformation modes proposed in [14].

To further analyze the role of disclinations in plasticity, the model was used for simulating
shear-coupled migration in forsterite. More specifically, we have used a periodic wedge-disclination
array in the particular case of a (011)/<100> tilt boundary with misorientation 60◦. This boundary
was previously modeled at the atomic scale [72]. Figure 5 presents the disclination density field used
to model the grain boundary structure [73]. Wedge-disclination densities are placed on the edges of
structural units identified in [72]. The disclination arrangements result in a self-screening quadrupolar
configuration, such that most of the energy is contained within the quadrupoles (see Figure 5b).
The predicted excess energy of 1.3 J/m2 is in good quantitative agreement with the value 1.28 J/m2

measured from atomistic calculations [72]. When a shear stress is applied, the disclination array moves
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normal to the boundary, as shown in Figure 5. As detailed above for copper bi-crystals, the migration
generates dislocation dipoles whose glide parallel to the boundary generates plastic shear within the
region swept by the boundary. A more comprehensive study of the disclination structure, energy and
mobility of grain boundaries as a function of their misorientation is clearly needed to eventually reach
an accurate description of the rheology of olivine aggregates. EBSD-based disclination field imaging,
as introduced in [6,7], applied to naturally deformed olivine aggregates should also be helpful in firmly
establishing such models.

Figure 5. Disclination model for a (011)/<100>, 60◦ tilt boundary in forsterite. (a) Initial
wedge-disclination density (rad·m−2) superimposed on top of the atomic structure. Triangles
show the structural units; (b) Elastic energy (J/m3); (c) Migration of the (011)/<100> tilt boundary.
The wedge-disclination density θ33 (rad·m−2) is shown in color. The plastic shear generated by
migration is shown with gray contours.

11. Concluding Remarks

The elasto-plastic model of dislocations and disclinations essentially consists of a set of partial
differential equations, where the unknowns are the material displacement and dislocation/disclination
density fields resolved at an atomic resolution length scale, and evolving at the time scale of the
elementary dissipative mechanisms [18]. It is nonlocal in space and time in the conventional
variables of compatible continuum mechanics and it provides a nonlocal incompatible generalization
of the latter leading to well-posed problems in dislocation and disclination dynamics. It extends
the elasto-plastic model of dislocations [22] by dealing, in addition to translational discontinuities
and dislocations, with rotational discontinuities and disclinations. which allows grain boundary
modeling in polycrystals. It also extends the elasto-static model of dislocations and disclinations [2],
by dealing with plasticity mediated by transport of dislocations/disclinations within a consistent
thermomechanical framework.

It has been sometimes believed that the assumption of continuity of the field variables is no
longer valid at nanoscale and below, when the discrete atomistic nature of matter becomes apparent,
and that continuum mechanics consequently fails to capture the physical phenomena at the scale of
a few lattice spacings. In our opinion, the present results demonstrate instead that an incompatible,
nonlocal continuum description involving fields of displacement and crystal defect densities that are
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smooth at this scale can be adequate for the purpose of describing such phenomena, in complement
to atomistic representations. Indeed, the continuous disclination and dislocation theory proposed
here was satisfactorily used to model the core structure of grain boundaries as well as the resulting
elastic fields and excess energies. It was also shown to predict the complex interactions between
disclinations/dislocations at work in the generation of plastic rotations/strains during shear-coupled
boundary migration.

A continuous description of lattice defects may be more attractive than discrete approaches for
various reasons. First, smoothness is desirable from the point of view of mathematical analysis and
numerical computation, and because it allows dealing with defects’ core properties. When viewed
at a small scale, lattice defects and the corresponding distributions of elastic strain and energy are
certainly better described by smooth density fields than by singularities. Building on this point of view,
recent work [16,70,71,74–76] has been devoted to the construction of field representations of the lattice
deformation from the atomic displacements resulting from molecular dynamics simulations.

Secondly, such descriptions do not have to resolve atomic vibrations in the manner of atomistic
simulations. The kinetic energy of atomic vibrations is time-averaged over periods of microseconds
and rendered as dissipation, which results in higher computational efficiency. As a practical result,
finite element or spectral FFT numerical approximations may allow considering the dynamics of
crystal defect ensembles over time scales in the μs or more, under realistic loading rates and stresses.

Finally, continuous approaches of crystal defects at nanoscale offer a convenient basis for
seamless coarse-graining by using appropriate averaging techniques, which allows building mesoscale
continuous theories of grain boundary-mediated plasticity in grain aggregates [56]. This ability could
allow investigating alternative disclination-based mechanisms for plasticity, e.g., triple junction motion
or emission/absorption of dislocations at grain boundaries, in media where dislocation-based plasticity
is limited, either by scarcity of the slip systems, as in olivine, or because dislocation glide is restricted,
as in polynanocrystals.
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Abstract: This work provides an experimental and computational analysis of low cycle fatigue of a
tantalum polycrystalline aggregate. The experimental results include strain field and lattice rotation
field measurements at the free surface of a tension–compression test sample after 100, 1000, 2000,
and 3000 cycles at ±0.2% overall strain. They reveal the development of strong heterogeneites of
strain, plastic slip activity, and surface roughness during cycling. Intergranular and transgranular
cracks are observed after 5000 cycles. The Crystal Plasticity Finite Element simulation recording
more than 1000 cycles confirms the large strain dispersion at the free surface and shows evidence of
strong local ratcheting phenomena occurring in particular at some grain boundaries. The amount
of ratcheting plastic strain at each cycle is used as the main ingredient of a new local fatigue crack
initiation criterion.

Keywords: tantalum; crystal plasticity; slip lines; fatigue; polycrystal; ratcheting; crack initiation;
finite element

1. Introduction

Polycrystalline tantalum, a refractory material used in several industrial applications
such as nuclear, biomedical, and chemical engineering, has been the subject of intensive
research dealing with the understanding of plastic deformation modes, mainly at large
strain and strain rates [1–3]. Modern experimental and computational techniques have
been applied to body centered cubic (BCC) metals at the grain level [4]. They include Elec-
tron Back-Scatter Diffraction (EBSD) analysis of crystal lattice orientation and its evolution
during deformation, Digital Image Correlation (DIC) analysis for the determination of
strain fields [5], as well as Crystal Plasticity Finite Element simulations (CPFEM) at the
continuum level relying on appropriate constitutive equations [6], and molecular dynamics
simulations [7]. These techniques have been applied to tantalum polycrystals and oligocrys-
tals in [8,9]. They give access to plastic slip mechanisms by identification of the traces
of slip lines [10], to the lattice curvature and identification of Geometrically Necessary
Dislocations (GND) densities [11], and to damage mechanisms [12].

All previous referenced works deal with the monotonic behavior of tantalum. In con-
trast, the cyclic behavior of tantalum has attracted only limited interest from the scientific
community. Fatigue life assessment of polycrystalline tantalum is of the utmost importance
in biomedical applications [13]. Reported results on High Cycle Fatigue (HCF) and Low
Cycle Fatigue (LCF) behavior of tantalum seem to be limited to those in [14,15], respec-
tively. In the latter reference, a macroscopic constitutive model was proposed to simulate
the hysteresis stress–strain loops obtained experimentally. The shown experiments and
proposed model include specific strain aging effects exhibited by pure tantalum in the
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form of a peak stress at the early plastic flow, due to interactions between dislocations and
solute atoms like oxygen. An important feature of the cyclic response of metallic alloys
is the ratcheting behavior which results from locally or globally non-symmetric stress
loading conditions [16]. The authors of [17] provide unique computational results evalu-
ating the amount of ratcheting inside the grains of a tantalum polycrystalline aggregate.
The approach is based on the identification of tantalum single crystal model from single
crystal monotonic and cyclic curves. An alternative single crystal model incorporating the
effect of GNDs was proposed recently [18]. A major result in [17] is the clear evidence of
a free surface effect in the ratcheting behavior which has implications in the initiation of
fatigue cracks. Crystal plasticity-based fatigue initiation criteria make use of appropriate
indicators involving the effects of resolved shear stress on the slip systems, cumulative
slip and effect of normal to slip, or cleavage planes [19–23]. Statistical probabilistic fatigue
criteria can then be proposed based on these indicators [24,25]. As an example, a fatigue
crack nucleation criterion was developed for titanium Ti-6242 using accelerated crystal
plasticity FEM simulations in [26].

The objectives of the present work is (i) to provide the first experimental results
on plasticity and cracking at the free surface of a tantalum polycrystal by combining
EBSD, DIC, and CPFEM, and (ii) to propose a novel fatigue crack initiation model at the
continuum level of crystal plasticity. For that purpose, the results of an interrupted cyclic
tensile–compression test are documented in terms of plastic slip activity, strain, and lattice
rotation field measurements and detection of intergranular and transgranular cracks at
the free surface of a tantalum polycrystalline aggregate. These results are compared with
a unique CPFEM simulation of more than 1000 cycles on a semi-periodic polycrystalline
aggregate. The experimentally observed and computed polycrystalline aggregates are
distinct. The authors of [27,28] show that the full 3D grain structure is needed to make
meaningful predictions of the plasticity at the surface by CPFEM. The experimental analysis
is limited here to the surface description. No FIB image of the sample was available.

The original results of the present contribution deal with (i) evolution of the surface
roughness, correlated with local EBSD and strain fields evolutions; (ii) dominance of
intergranular or transgranular crack initiation observed after 5000 cycles; (iii) numerical
estimation of strain heterogeneities at the surface and in the bulk of a polycrystalline
aggregate and ratcheting effects at the free surface; and (iv) design of a new fatigue crack
initiation criterion at the mesoscale of the polycrystalline aggregate.

The paper is organized as follows. The experimental methods and results are pre-
sented in Section 2. Section 3 deals with the description of the FE simulation of a polycrys-
talline aggregate and the design of the fatigue crack initiation criterion. Experimental and
computational results are discussed and compared in Section 4.

The index notation is used throughout the work to denote vectors and tensors: Carte-
sian coordinates xi of the material point and of the strain and stress tensors εij, σij, within
the small strain framework.

2. Experimental Approach

2.1. Material and Experimental Methods

Tantalum is a refractory material used in several industries such as nuclear, capacitors,
lighting, biomedical, and chemical processing. The material studied is a commercially
pure tantalum (99.95% w.) coming from Cabot Performance Materials (USA). The sheet
used has been recrystallized during 2 h between 1000 and 1200 ◦C and under 10−4 to
10−5 mbar. After recrystallization, the mean grain size is close to 120 μm and the initial
dislocation density is rather high, between ρd ≈ 1013 m−2 and ρd ≈ 1014 m−2 [29–33].
These values are in agreement with measurements of GND densities deduced from EBSD
data for recrystallized tantalum in the references [9,34].

The tantalum purity is characterized by the following composition of solute atoms:
C: 10, N: <10, O: 19, H: 6 ppm. Some of these elements are responsible for strain aging
effects studied in [15].
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The EBSD map over a large area on Figure 1 shows quasi-equiaxial grains without
marked crystallographic texture. The fact that no predominant direction is observed is
due to cross rolling of the sheets. Some curved grain boundaries are present, probably
due to sub-optimal recrystallization conditions. The pole figure analysis on raw data does
not show a significant crystallographic texture (cf. Figure 2). Thus, the hypothesis of an
isotropic texture is adopted in the following work, particularly for the input data of the
polycrystalline aggregate generation.

The macroscopic cyclic behavior of the considered polycrystalline tantalum has been
investigated for various amplitudes and strain rates in another article by the same au-
thors [15]. In the present paper, the attention is focused on the observation of local plasticity
events at the surface of one single sample. An interrupted cyclic tension–compression
test has been performed on a thick enough flat sample to avoid potential buckling. The
dogbone specimen had a gauge part with dimensions 15 × 10 × 8 mm3, see Figure 1b
in [15] for the detailed sample geometry. The specimen geometry is not a standard one but
allows for DIC and microstructural observations on the flat surfaces. The strain rate was
ε̇ = 10−3 s−1 for a strain amplitude of Δε/2 = 0.2%.

Figure 1. EBSD map of tantalum polycrystal over a large area in the center of a sample.

59



Metals 2021, 11 , 416

(a) (b)

Figure 2. (a) Direct <100> pole figure and (b) inverse pole figure of tantalum over a large zone in the center of a sample.

The sample was polished before Electron Beam Lithography deposition. Several grids
have been spread along the sample, consisting in 500 nm markers, with a 5 μm pitch on a
400 × 400 μm2 zone.

The cyclic test has been interrupted after 100, 1000, 2000, and 3000 cycles. Each time,
the sample was unloaded from the test machine and placed into a SEM for secondary,
backscattered, and EBSD analyses of each grid. The testing machine used is a servo-
hydraulic Instron 8800. All the SEM observations have been done using the same beam
parameters and adjustments and the same magnification.

The shape of the hysteresis loops does not evolve significantly during the test, with a
marked Bauschinger effect. The isotropic hardening of about 20 MPa reaches a satura-
tion point after ≈50 cycles. The sample is unloaded at zero force, with an increment of
macroscopic plastic strain about 〈ε22〉 = 0.001 after each sequence.

2.2. Local Evolution of the Surface during Cycling

At each step, the load was decreased to zero in order to observe the specimen ex situ
in a SEM. The SEM pictures give some information about the surface evolution.

The pictures of Figure 3 show the roughness evolution after 100, 1000, 2000, and
3000 cycles. The roughness gradually increases, with a stronger effect close to grain
boundaries. Grains encircled in blue, for instance, are subjected to the progressive formation
of a step along grain boundaries. This can induce some stress concentration or notch
effect, and lead to microstrucural ratcheting, as discussed later [35]. The images also
show numerous curved slip lines associated with the easy cross slip characteristic of BCC
materials [36]. Such sinuous or wavy slip lines are also referred to as pencil glide [37].

Moreover, most of the grains exhibit slip bands that look like Persistent Slip Bands
(PSB). They progressively intensify with increasing cycle numbers. PSBs are stopped at
grain boundaries, except for the area circled in red, where PSBs spread on both sides of the
grain boundary, probably because of the weak misorientation between the two grains. This
has been observed in previous work [38].
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100 1000

2000 3000

Figure 3. Roughening of a 400 × 400 μm2 zone at the surface for several cycles during a fatigue test at ±0.2% and
ε̇ = 10−3 s−1. Loading direction is horizontal. The small dots of the deposited grid are visible on the SEM pictures. The
upper left bar is 100 μm long.

The green circle on Figure 3 denotes a zone of a large grain that progressively becomes
concave. This grain also presents PSB-like structures.

Thus, the surface activity is very intense. It can be characterized by local strain fields
measurements provided by Digital Image Correlation (DIC) and also by lattice rotation
fields given by EBSD.
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2.3. Strain Field Measurements

The strain control loading is characterized by the half-amplitude Δε/2 and the loading
ratio R = −1. Four successive sequences of cyclic loading are carried out: The first
sequence between 0 and 100 cycles, the second until 1000 cycles, the third until 2000, and
the fourth until 3000 cycles. After each loading sequence, the sample is unmounted in
order to observe the specimen ex situ in a SEM equipped with an EBSD detector. SEM
data are used in order to build the displacement field of an area between two loading
sequences using Vic-2D digital image correlation (DIC) software in the sequential mode
(the first picture is used as a reference in any case). The spatial resolution of the acquired
SEM images about 100 nm per pixel.

The ZNSSD method proposed by the Vic-2D 5 software (Zero-mean Normalized Sum
of Squared Differences) has been used to handle the images because it accounts for both
the lightening scale factor and the gray level offset [39]. This method is especially suitable
for SEM pictures with significant gray level variations.

The measurement uncertainty associated with the strain field calculation from SEM
pictures is due to three main factors: the magnification, the scanning, and the drift of the
beam. In any case, the maximum cumulated error is about 1 pixel [40–43]. Moreover,
the out-of-plane displacements and the system alignment compared to the surface can
induce significant errors that are not taken into account. A quantification and a correction
procedure have been proposed by Sutton [44]. However, the correction levels are smaller
than our resolution and are thus not taken into account here.

The grid of nano-markers is built in six successive steps, as described in previous
works [45,46]. The markers are made of nickel in order to have a sufficient contrast with
tantalum. Several grids of 400 × 400 μm2 have been spread along the sample gauge
length. The markers have a 500 nm diameter and a 5 μm periodic pitch. The Electron
Beam Lithography method is quite time consuming for large scale patterns, and thus a
compromise between insolation time and covered surface versus spatial resolution has
been chosen. The grids are not directly used for the DIC, but they are useful to mark
the area of interest. Instead, the DIC is based on the gray level variations of the surface
(including the variations due to the presence of the grids). DIC from natural contrast
associated with varying gray levels due to surface roughness for example in SEM images
has been used extensively in the past during in situ testing, see, for instance, the work
in [47].

Experimental strain fields ε11, ε12 and ε22 for several sequences are presented in
Figure 4, where the loading direction is 2. They have been computed using Vic-2D from
back-scattered electrons pictures, with a correlation window 100 × 100 pixels and a 50 pixel
grid spacing. When applied to a strain value of 5%, this gives a displacement of 2.5 pixel.
Correlation errors in our measurements range from 0.1 pixel to 1 pixel maximum, which
leads to errors from 0.1% to 1% in absolute strain values.

Strongly heterogeneous strain fields are observed with local strain values reaching a
few percents in spite of 0.2% macroscopic prescribed half-amplitude. This strain heterogen-
ity increases with the cycle number culminating at the final observed stage of 3000 cycles.
Strain discontinuities are visible at some grain boundaries resulting from strain incompat-
ibilities from grain to grain due to different crystallographic orientations. The red circle
points out a zone of strong strain discontinuities on both sides of several grain boundaries.
Zones of rather homogeneous strain are observed that encompass several grains. Their
size corresponds to grain clusters of 150–200 μm.
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Figure 4. Local residual strain evolution during a fatigue test at ±0.2% and ε̇ = 10−3 s−1: (a) After 100 cycles, (b) 1000 cycles,
(c) 2000 cycles, and (d) 3000 cycles. Loading direction is horizontal (direction 2). The picture size is 400 × 400 μm2.

The green circle indicates an area of strong intragranular strain in a zone of two large
grains with low misorientation, as is indicated on the EBSD maps of the top pictures of
Figure 4. The EBSD maps show the evolution of lattice orientation during cycling. Lattice
curvature clearly develops inside the grain as a result of heterogeneous plastic strain [48].
The building-up of rotation gradient inside the grains is particularly visible in the green
circled region. The evolution of lattice orientation changes inside the grains is illustrated
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in Figure 5. The grain orientation spread (GOS) is computed in each grain at each cycle
number, as the averaged misorientation range inside each grain. Orientation spreading
clearly increases with cycle numbers reaching values of a few degrees. After 3000 cycles,
lattice spreading exceeds 5◦ in some regions circled in the black and white zones. As a
rule of thumb, crystal plasticity teaches us that one degree of lattice rotation is associated
with a plastic strain of typically 0.01. These suggested local strain levels are confirmed by
the strain field measurements. On the other hand, a misorientation of typically 5◦ over
100 micron can be associated to a GND density in the range 1012–13 m−2 which is expected
in annealed tantalum. Note, however, that statistically stored dislocations (SSD) also
contribute to the overall dislocation density and cannot be derived solely from EBSD maps.

(a) Initial (b) 10 cycles

(c) 100 cycles (d) 1000 cycles

Figure 5. Cont.
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(e) 2000 cycles (f) 3000 cycles

(degrees)

Figure 5. Evolution of the lattice orientation spreading (GOS) per grain with increasing cycle numbers. The loading direction
is horizontal.

Histograms are provided for each strain components at 4 cycle numbers in Figure 6.
The strain distributions correspond to the zone observed in Figure 4. A spreading of the
strain distribution is observed for increasing cycle numbers. This illustrates quantitatively
the strain heterogeneities discussed in the previous paragraphs. A significant part of the
distribution is located at high values of surface strains, in spite of the low applied global
amplitude. This corresponds to the visible roughening of the surface, a well-known effect
in fatigue [49,50]. Significant errors in the measured strain values are expected due to the
out of plane displacement component which limits the validity of the 2D correlation. This
is especially the case after 3000 cycles where surface roughening is very pronounced. A
remarkable feature of the ε22 and ε11 histograms is the shift toward larger mean values
after 2000 and 3000 cycles. This indicates that considered region made of about 60 grains
behaves as a whole differently from macroscopic straining conditions. This means that the
representative volume element size for fatigue loading conditions must be larger than this
observed zone. Maximal values for the ε11 and ε12 components are greater than 5% up to
11% after 3000 cycles. After 3000 cycles, the computed ε11 and ε22 strain values are strongly
affected by errors induced by surface roughing. These high values are in agreement with
the literature, where similar strains are calculated from experimental data [51] in stainless
steels. Similar maximal local strains have been calculated in the literature for different
loading conditions from the present case [45,52,53] in Nickel-based superalloys.

For the ε22 component after 3000 cycles, the distribution becomes highly scattered
around a mean strain close to 3%. The zones of maximum strain correspond to areas
including sliding grain boundaries (see the red circles in Figure 4 and blue circles in
Figure 3). Clear evidence of grain boundary sliding (GBS) can be seen in Figure 3 after 1000
and 2000 cycles in the form of an inclined white line in the lower right part of the pictures
indicating out of plane sliding of one grain boundary.
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(a) (b)

(c)

Figure 6. Strain histograms for a fatigue test at ±0.2%. (a) ε11, (b) ε12, and (c) ε22 at the surface. The histograms are given
after 10, 1000, 2000, and 3000 cycles.

2.4. Fatigue Crack Initiation

Crack initiation is observed mainly at grain boundaries, thus indicating an intergran-
ular cracking mechanism. Intergranular crack branching is observed at triple junctions
in Figure 7. Transgranular cracking is also observed as a competing mechanism, see the
red circle in Figure 7. Severe extrusion–intrusion zones are visible in the blue circle of the
same figure. They are associated with numerous intense slip lines visible in some grains.
Crack branching from a grain boundary to some PSB is found to take place in a grain
circled in red in Figure 7. As the fatigue test has been interrupted after 5000 cycles, it is
not known whether the final fracture is due to inter- or trans-granular cracks. In previous
studies at CEA (unpublished), a combined intergranular–transgranular fracture has been
reported [38,54]. After 5000 cycles, the minimum crack size observed is about ≈10 μm and
the maximal one is ≈120 μm.

The presented cyclic test was carried out until the appearance of the first stage I crack
at the surface, as defined by Forsyth [55]. In that case, the cracks have a length similar to the
grain size and can be both intergranular or transgranular. This corresponds to micro-crack
initiation for which a criterion will be proposed in the following.
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Figure 7. Pictures of the surface after 5000 cycles at ±0.2% and ε̇ = 10−3 s−1. They illustrate the occurrence of grain
boundary sliding (top left), intragranular cracks (top), and intergranular cracks (bottom).

3. Finite Element Simulation

The Finite Element simulation described in the following has been introduced in the
reference [17]. The computational method and the constitutive model are only briefly
recalled. The remainder of this section concentrates on results not presented in [17] that
can be compared to the experimental data explored in the previous section.

3.1. Description of Semi-Periodic Polycrystalline Aggregates

The simulation is based on a synthetic polycrystalline aggregate because a one-to-
one mapping to the experimentally observed zone was not possible due to the ignorance
of the sub-surface grain morphology. The polycrystalline aggregates considered in this
work is characterized by two parallel flat surfaces perpendicular to the space direction 3,
and four lateral surface displaying periodicity of grain morphology along the directions
1 and 2, as shown in Figure 8. The through-thickness view on Figure 8 shows that the
grain morphology of the parallel flat surfaces are not periodic. The aggregate on Figure 8
contains 250 grains with 4 to 5 grains through the thickness in average. The construction of
such semi-periodic polycrystalline aggregates starting from a classical Voronoi tesselation
follows the strategy proposed by J. Guilhem in [56]. By construction, grain boundaries
are flat surfaces ensuring continuity of displacement and reaction forces in finite element
simulations. This is a simplification compared to the real curved grain boundaries visible
in Figure 1.
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The three-dimensional finite element mesh is made of quadratic tetrahedral elements
with full integration. The mesh of Figure 8 contains 55,089 nodes and 37,595 quadratic
elements. The authors of [27,28] address the question of suitable mesh size for proper
representation of surface field. We have used these recommendations in the current work,
even though the computational cost lead us to use rather coarse elements.

The number of grains in the polycrystalline volume and the mesh refinement have
been chosen as a compromise between computational cost for cycling testing and sufficient
representativity of the polycrystalline response according to previous studies of Represen-
tative Volume Element size for f.c.c. crystals [57–59]. In particular, the thickness was chosen
following the works in [27,28] that show that the strain field at a free surface of a cubic
polycrystal is affected mainly by the three layers of grains below the surface. A discussion
on the Representative Volume Element size for polycrystals under cyclic loading conditions
can be found in [17] based on the few works in this field [58,60] where polycrystalline
agregates made of 100 grains were considered. Finally, it must be noted that only one Finite
Element simulation was carried out in this work due to the fact that more than 1000 cycles
were simulated leading to computation times not compatible with a statistical analysis for
several realizations of the microstructures.

Figure 8. Synthetic semi-periodic aggregate made of 250 grains: general view (top left), free surface (top right), and view
through the thickness (bottom), after the work in [17].

The detailed boundary conditions are described in [17]. They amount to prescribing
the mean strain in the tension–compression direction 2 with vanishing mean stress compo-
nents (except < σ22 >). The two flat surfaces of the polycrystalline aggregate of Figure 8 are
called z = 0 and z = H. The surface z = 0 is subjected to the Dirichlet boundary condition
u3 = 0 where u3 is the displacement component along the direction 3, see the coordinate
frame in Figure 8. The remaining boundary conditions for this surface z = 0 are vanishing
traction components along 1 and 2. The surface z = H is traction-free in all 3 directions,
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corresponding to a free surface, as in the experiment. The strain fields on this free surface
will be analyzed and compared, in a statistical sense, with the experimental results.

Periodicity conditions are prescribed for the remaining four lateral surfaces. Such
conditions are known to limit boundary layer effects in the simulation of material volume
elements in contrast to homogeneous Dirichlet or Neumann conditions, see the works
in [58,61–63].

The average stress and strain components over the whole polycrystalline volume
element V are computed as

Σij =< σij >=
1
V

∫
V

σij dV, Eij =< εij >=
1
V

∫
V

εij dV (1)

The macroscopic strain component E22 = ±0.2% is imposed. The loading conditions
therefore correspond to a simple tension–compression test with one free surface, four
periodic surfaces, and one flat surface.

The results presented in this work correspond to the simulation of more than 1000 cy-
cles on the previously described polycrystalline aggregate. They represent 11 months of
computation time on a 12 core Intel Xeon 3 GHz processor with 25 GB RAM. 1250 time
steps were saved for 70 variables (stress, strain, and plastic strain tensor components; slip
amounts; accumulated slip amounts; kinematic hardening variables; accumulated plastic
strain ...) at each integration point, which amounts to 250 GB disk space.

3.2. Crystal Plasticity Model and Identification of Material Parameters

The constitutive equations of the crystal plasticity model used for tantalum are now
given. The Cailletaud crystal plasticity model [64] is extended here to include static strain
aging effects as displayed by tantalum crystals [15]. The strain tensor is the sum of the
elastic and plastic contributions:

εij = εe
ij + ε

p
ij (2)

The local elastic behavior is cubic, with an elasticity tensor defined by the three
independent elastic moduli: C11 = 267 MPa, C12 = 159 MPa, and C44 = 83 MPa, after the
work in [65].

The plastic strain tensor results from plastic slip processes with respect to all slip
systems. In the present work, 12 slip systems are considered on {110} slip planes with
slip directions <111> corresponding to the b.c.c. structure. This choice represents a
simplification as more slip planes are known to be available in b.c.c. crystals [66]. An
alternative approach would be to introduce the pencil glide mechanism as done in [37].
Motivations for the present choice can be found in [67] where the selection of {110} vs. {112}
slip planes is discussed. The viscoplastic strain rate tensor is written as

ε̇
p
ij = ∑

s
γ̇sms

ij, with ms
ij =

1
2
(�s

i ns
j + ns

i �
s
j ) (3)

where ns
i are the components of the normal vector to the slip plane and �s

j that of the slip
direction vector, for the slip system s. The slip rate for each slip system is evaluated using
the following model equation:

γ̇s = v̇0 sinh
(
< |τs − xs| − rs − ra >

σ0

)
sign (τs − xs), v̇s = |γ̇s| (4)

where τs = σijms
ij is the resolved shear stress for slip system s and vs is the cumulative slip

variable. The parameters v̇0 and σ characterize the viscosity effects. The Macaulay brackets
< • >= Max(•, 0) were used. The isotropic hardening law describing the evolution of the
critical resolved shear stress (CRSS) follows a nonlinear evolution law:

rs = r0 + Q ∑
r

hsr(1 − exp(−bvr)) (5)
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where r0 is the initial CRSS. Q and b are material parameters; hsr is the interaction matrix
which characterizes both self-hardening and cross(latent)-hardening between the different
slip systems.

The kinematic hardening term is the main ingredient for the description of inter-
nal stresses building up inside the grains, for instance due to dislocation pile–ups and
dislocation structure formation. It is decomposed into two contributions:

xs = xs
1 + xs

2 (6)

The evolution equation of each component is

ẋs
i = ciγ̇

s − dixs
i v̇s, i ∈ {1, 2} (7)

where ci and di are kinematic hardening material parameters. The reason for introduc-
ing two components xs

1 and xs
2 is a better description of the hysteresis loops at various

strain amplitudes.
The previous crystal plasticity model was enhanced in [17] by the addition of a

resistance term associated with static strain aging, namely, the component ra in Equation (4).
This strain aging effect is not discussed here as it concerns mainly the first hysteresis loops,
whereas the focus of the present work is crack initiation at larger cycle numbers.

The values of the model parameters were identified from tensile and cyclic tests
carried out on tantalum single crystals. The identification procedure was detailed in [17].
Table 1 provides the list of parameter values found in the latter reference and used for the
present simulation.

Table 1. Parameter values of the single crystal model identified for tantalum at room temperature,
after the work in [17].

v̇0 5 × 10−5 s−1 c1 360 × 103 MPa
σ0 5 MPa D1 8000
r0 0 MPa C2 250 MPa
Q 1 MPa D2 1.5
b 1.5 hrs 1

The single crystal model has been implemented in the implicit finite element code
Zset [68], following the procedure presented in [69]. Global equilibrium is solved using a
Newton–Raphson algorithm and the constitutive equations are integrated using a second
order Runge–Kutta method with adaptive time stepping.

3.3. Simulation of the Mechanical Fields at the Free Surface

The overall stress–strain loops, i.e., the < σ22 >–< ε22 > curves, of the studied cyclic
test on the considered polycrystalline aggregate are given in Figure 9 for various cycle
numbers from the CPFEM simulation. The stress and strain amplitudes are clearly visible.
The loops at 66, 466, and 1066 are almost identical showing that no macroscopic ratcheting
takes place for the considered loading. The first loop is strongly different due to the initial
peak stress associated with static strain aging discussed in [15,17]. Comparison between
experimental initial and stabilized loops can be found in the latter reference. It is not
reported here since the present work concentrates on cycle numbers from 100 to 5000.

The evolution of several mechanical variables on the free surface of the polycrystal
is now discussed with respect to the number of cycles. All surface fields are provided for
a vanishing value of the mean axial stress Σ22 = 〈σ22〉 = 0 MPa in accordance with the
experimental observation conditions.
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Figure 9. Macroscopic stress-strain loops of the cyclic test on the studied polycrystalline aggregate,
as predicted by the CPFEM simulation.

3.3.1. Surface Strain Field

The fields of the strain components ε11, ε22, and ε12 at the free surface of the polycrys-
talline aggregate are shown in Figures 10–12, respectively. Three snapshots are presented at
the cycle numbers 66, 666, and 1066 for each component. The residual strain field is strongly
heterogeneous with values from −0.003 to more than 0.003, to be compared to the loading
amplitude ±0.002. The deformation structures extend over several grains as observed
under monotonic conditions [57,59]. This heterogeneity is found to increase significantly
between Ncycle = 66 and Ncycle = 666, with certain grains localizing more deformation,
especially at some grain boundaries. The localization remains the same after 400 additional
cycles but the contrast intensifies between tensile and compressive zones. The heterogene-
ity culminates for the shear component. Moreover, some areas close to grain boundaries
and triple junctions display discontinuous strain values due to change in crystallographic
orientation. This strain localization close to grain boundaries is shown to increase with
the number of cycles. The dramatic development of strain heterogeneities under cyclic
loading is in qualitative agreement with the experimental results. However, the local strain
values predicted after 1000 cycles significantly underestimate the corresponding strain
field measurements of Figure 4b. There are several reasons to explain such a discrepancy,
which will be discussed later in this work.

Figures 10–12 show the strain components predicted at the free surface but also at
the mid-section parallel to the flat surfaces and also in a cross-section perpendicular to the
loading axis. They show a significant free surface effect as strain values are considerably
more heterogeneous at the free surface than in the bulk. Note that strain values shown at
the free surface correspond to values computed at the integration (Gauss) points close of the
surface whereas values at mid-sections are interpolated which may lead to some smoothing
effect due to the relatively coarse mesh. This surface effect has dramatic consequences on
ratcheting phenomena discussed in [15].

Significant roughening of the surface is predicted in qualitative agreement with the
observations of Figure 3, and with previous cyclic behavior simulations of copper in [70].
This is illustrated by Figure 13 showing the out of plane displacement field at the free
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surface for 6 cycle numbers. After 466 cycles, specific zones of raising or sinking-in material
points are observed. Their location, mainly at triple junctions and grain boundaries but also
in the interior of some grains, does not change until 1000 cycles. Increasing the cycle num-
bers leads to further raising or sinking of the material points, as observed experimentally.
The existence, general location, characteristic size and wave length roughness develop-
ment at the free surface are in qualitative agreement with experimental observations of
Figure 3. However statistical analysis of the results would require several simulations
and experiments, which are not available due to the high cost of both computation and
experiment. Compared with the experimental observations, the predicted absolute values
of the roughness induced by heterogeneous straining of the free surface are significantly
lower. The reasons are the same as for the underestimation of strain values predicted by
the FE simulation compared to DIC results. They will be discussed later in this work. The
presented experimental and computational results presented in this work are the first of
this kind for low cycle fatigue in tantalum. Future work is needed to consolidate them and
add measurements like roughness and out of plane displacement.
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Figure 10. Simulation of a cyclic test at ±0.2%. Evolution of the strain component ε22 at (a) cycle 66, (b) cycle 666, and
(c) cycle 1066 at the free surface (top) and at two mid-sections perpendicular to directions 3 (middle) and 2 (bottom). The
loading direction 2 is vertical for the top and middle pictures.
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Figure 11. Simulation of a cyclic test at ±0.2%. Evolution of the strain component ε11 at (a) cycle 66, (b) cycle 666, and
(c) cycle 1066 at the free surface (top) and at two mid-sections perpendicular to directions 3 (middle) and 2 (bottom). The
loading direction 2 is vertical for the top and middle pictures.
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Figure 12. Simulation of a cyclic test at ±0.2%. Evolution of the strain component ε12 at (a) cycle 66, (b) cycle 666, and
(c) cycle 1066 at the free surface (top) and at two mid-sections perpendicular to directions 3 (middle) and 2 (bottom). The
loading direction 2 is vertical for the top and middle pictures.
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1 266 466

666 866 1066

Figure 13. Fields of the displacement component in the direction 3 at the free surface showing the evolution of surface
rougness with cycle numbers. Displacement in mm, to be compared to the specimen thickness used in the FE simulation,
namely, 0.5 mm.

3.3.2. Plastic Slip Evolution

The sum of plastic slip contributions, ∑s |γs|, is a variable characterizing the intensity
of plastic slip activity inside the grains. The corresponding field is shown in Figure 14
at three different cycle numbers. According to the proposed model, the slip variables γs

can take positive or negative values depending on the sign of the effective stress τs − xs.
This variable must be distinguished from cumulative slip vs which always increases. Blue
zones indicate some unfavorably oriented grains where no (or low) plastic slip activity
is observed after 1000 cycles. In contrast, red zones point out regions where plastic slip
reaches high values, sometimes more than 0.03. Strong heterogeneities from grain to grain
are circled by black lines in the top right of Figure 14. They are in qualitative agreement
with the experimentally observed zones of strong plastic slip gradients in Figure 3. The
slip activity is found to increase drastically over the more than thousand cycles. Significant
evolution in plastic slip activity is observed between the cycles 666 and 1066. This is in
qualitative agreement with the experimental observations of Figure 3, for instance between
1000 and 2000 cycles. The effect is stronger than for the strain fields of Figures 11 and 12.
When the number of cycles increases, the slip increments decrease but remain positive and
strongly heterogeneous. These features of plastic slip accumulation are discussed in the
next section.
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Figure 14. Total slip evolution ∑s |γs| for several cycles during a fatigue test simulation at ±0.2%.

4. Discussion

The salient features of the computational results are now discussed, namely, compari-
son between experimental and simulation results, local ratcheting phenomena at the free
surface, and the development of a fatigue crack initiation criterion.

4.1. The FE Model Underestimates Strain Heterogeneities and Roughness in Fatigue

Experiment and simulation agree in showing strong strain heterogeneities developing
at the free surface of a tantalum polycrystaline aggregate after a few thousands of cycles,
even for a moderate cyclic total strain amplitude of 0.2%. Strain localization and roughness
evolution are observed at grain boundaries, triple junctions but can also cross several grains.
In particular the FE model predicts highly contrasted fields of plastic activity in some
grains where high values of plastic slip are found, more than ten times the prescribed strain.
However, FE simulations quantitatively underpredicts the strain levels at the free surface.
Several reasons can be put forward. First, the proposed model assumes continuity of the
displacement components at grain boundaries where strain and roughness effects tend to
localize as shown in the experiment and simulations. The experiment shows that significant
grain boundary sliding (GBS) takes place in some grains as noticed in several observations
of polycrystalline plasticity [71]. GBS is an important deformation and damage mechanism
which has been observed in the present work but not sufficiently documented. Instead, we

76



Metals 2021, 11 , 416

provide more evidence of grain boundary cracking after 5000 cycles, see Figure 7. Second,
sharp slip lines and intense intrusion and extrusion bands are observed in the experiments
that cannot be accounted for by the proposed continuum mechanics approach. These
discontinuities are characteristic of crystal plasticity physical mechanisms and can lead to
strong local strain levels. Alternative modeling approaches are needed to capture these
mechanisms like discrete dislocation dynamics simulations [72]. Third, the local strain
levels also depend on the mesh resolution, which is definitely too coarse in the presented
simulations in order to spare computational time and make the simulation possible over a
large number of cycles. Finally, the experiment reveals that some cluster of 50 to 100 grains
can undergo average strain levels that significantly exceed the prescribed overall strain level.
In contrast, the overall mean strain is prescribed to the simulated volume of 250 grains,
which strongly limits the development of strain heterogeneities from grain to grain. This
pleads for the consideration of larger Volume Element sizes than the one considered in this
work, which represents a challenging task for fatigue simulations. Strain heterogeneities
and roughness development are closely related to ratcheting phenomena occurring close
to and at the free surfaces, as evidenced and discussed in [17]. Only 1000 cycles were
simulated here but extrapolations are possible to 3000 cycles based on local established
ratcheting rates.

4.2. Local Ratcheting Behavior

The accumulation of plastic slip at some specific locations of the aggregate plays a
major role in crack initiation. This accumulation is enhanced by local ratcheting phenomena,
i.e., the existence of a strain component increment of given sign and magnitude after each
cycle [73]. The evidence of such ratcheting effects has been demonstrated using the present
simulation results in [17]. A major result of this analysis was that ratcheting values are
significantly higher at the free surface than in the bulk, which is an essential feature of
fatigue crack initiation correctly reproduced by the analysis. Some further results are
presented here that serve for the definition of a fatigue criterion in the next subsection.

From the previous observation of the free surface, 6 nodes have been selected in order
to document the local cyclic response of material points, see Figure 15. Among the 6 nodes,
3 are located in plastically active zones (nodes 1–3), whereas the three others are situated
in less active areas (nodes 4–6). This can be inferred from the cyclic stress–strain σ22–ε22
loops of Figure 16. All nodes display largely open cyclic loops revealing significant plastic
deformation. The first loop is characterized in each case by the peak stress associated with
static strain aging typical of this material [15]. Then, the loops become symmetric with
respect to the stress, due to relaxation of the mean stress. In contrast, the minimal and
maximal strain levels are not symmetric. The loops are not saturated after 1000 cycles and
strain accumulates either in tension or compression, which corresponds to local ratcheting
phenomena. Significant tensile ratcheting is found for the nodes 1–3, meaning that the
mean strain is positive and increases monotonically, whereas more limited compressive
ratcheting is observed for the nodes 4–6. The local stress–strain loops strongly differ from
the macroscopic loop of Figure 9 which is fully symmetric. Local stress levels σ22 depend
on the crystallographic orientation of each grain and of its neighbors. They are generally
lower than the macroscopic stress (150 vs. 200 MPa), except for node 5 (300 MPa).

The ratcheting phenomenon (also called cyclic creep) occurs when the plastic strain
increment is not fully reversed for a cyclic loading [74]. One-dimensional ratcheting occurs
for instance for non-vanishing mean stress loadings: a positive (resp. negative) ratcheting
occurs for a positive (resp. negative) mean stress [75–77]. However, the mean stress is
found here to relax to zero in all the plotted loops after less than 100 cycles. The origin
of the continuing ratcheting is the multiaxial loading experienced by the material points.
The σ11–ε11 loops in Figure 17 show that the transverse stress component is significant
for the six selected nodes. Transverse strain ratcheting is observed for nodes 1–3. Similar
observation was made for the shear component so that it can be concluded that the material
points experience multiaxial ratcheting, responsible for plastic strain accumulation and
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ultimately crack initiation. The multiaxial stress–strain state is induced by the complex
plastic strain incompatibilities from grain to grain.

Figure 15. Selected nodes for the local study, after the work in [17].

(a) (b)

(c) (d)

Figure 16. Strain loops σ22–ε22 for the six nodes defined in Figure 15 at several cycle numbers: (a) cycle 1, (b) cycle 66, (c)
cycle 466, and (d) cycle 1066.
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node 1 node 4

node 2 node 5

node 3 node 6

Figure 17. Local curves σ11–ε11 for several cycles at 6 different finite element nodes, after the work in [17].

The previous results are used to define a

Ratcheting Indicator

The progressive accumulation of plastic strain at the surface during strain-controlled
cycling is regarded in this work as the relevant physical mechanism for fatigue crack
initiation in the grains of a polycrystal. It has been reported that it can lead to crack
nucleation and finally to the global failure of a structure (see the works in [35,73,74,77]),
and is in accordance with the experimental observations of the present work. A measure
of local ratcheting has been proposed in the reference [77] for the analysis of plasticity
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induced by fretting contact. For that purpose, the local plastic strain increment (Δε
p
ij)ratch

is defined at each material point for each component of the plastic strain tensor as

(Δε
p
ij)ratch = ε

p
ij|end o f the cycle − ε

p
ij|start o f the cycle (8)

The effective plastic strain increment is then computed as

Δε
p
ratch,e f f =

√
2
3
(Δε

p
ij)ratch(Δε

p
ij)ratch (9)

where repeated indices are summed up. It is computed for each individual cycle at each
material point. It is regarded as an indicator of local ratcheting as departure of Δε

p
ratch,e f f

from zero is a signature of accumulation of plastic staining. Fields of this variable were
provided at various cycle numbers in [15] to demonstrate the significance of ratcheting at
the free surface of the polycrystal. The highest ratcheting values are reached mainly close
to grain boundaries and at triple junctions.

4.3. Fatigue Criterion

According to the micrographs of Figure 7, about 5000 cycles are required for the
nucleation of the first cracks under the considered loading conditions. These cracks are
found to be mainly intergranular. The experimental observations of Section 2.2 also
show the strong local strain heterogeneity, with intense surface roughening occurring at
some grain boundaries with corresponding peaks and sinks. The previous finite element
simulations have shown that strain gradients and crystal misorientations develop on both
sides of some grain boundaries and that they are leading to local ratcheting at several places.
These experimental and numerical observations are in accordance with grain boundary
behavior in BCC metals reported in [35].

Local fatigue criteria at the grain scale have been proposed and discussed in [19,21] and
in the references quoted therein. They take into account the crystallographic deformation
processes, the accumulation and the amplitude of plastic slip, mean resolved shear and
normal stresses. The Dang–Van criterion applied to slip systems is based on the hydrostatic
stress and the resolved shear stress, and thus predicts crack initiation in the bulk and not
at the surface [78]. However, in the present case, it has been shown that crack initiation
occurs at the surface, see Figure 7. Thus, such criteria are inappropriate for our application.

The accumulated slip at the local level in polycrystals was used by [23,79,80] to predict
microcrack propagation, including the evaluation of the crack length increment and its
direction. In the present work, it is proposed to use the previously defined ratcheting
indicator as the main ingredient of the fatigue crack initiation criterion. Using the local
plastic strain increment Δε

p
ratch,e f f (xi, t) at material point xi at time t allows to determine

the most active plastic zones. In addition, based on the local data, the local equivalent
plastic strain is defined at each material point located at xi at time t as

ε
p
eq(xi, t) =

√
2
3

ε
p
ij(xi, t)εp

ij(xi, t) (10)

A critical strain threshold ε
p
c is defined, as proposed in the literature on tantalum as a

first indicator [81].
The plastic strain increment Δεratch,e f f (xi, t) at every material point xi is assumed to

have reached a constant value after 1000 cycles, but the local heterogeneity in the aggregate
is preserved.

A crack is then assumed to initiate at the material point xi at cycle number N as soon as

ε
p
eq(xi, N) = ε

p
c (11)
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where ε
p
eq(xi, N) must be extrapolated from the value at the 1000th cycle. Considering

that the plastic strain increment is constant at that time, i.e., Δεratch,e f f (xi, N > 1000) ≈
Δεratch,e f f (xi, 1000), the local equivalent plastic strain value is estimated as

ε
p
eq(xi, N) = ε

p
eq(xi, 1000) + Δε

p
ratch,e f f (xi, 1000)(N − 1000) (12)

It follows that the number of cycles for crack initiation at the material point xi is

Ninitiation(xi) = 1000 +
ε

p
c − ε

p
eq(xi, 1000)

Δε
p
ratch,e f f (xi, 1000)

(13)

A postprocessing of the FE results has been applied in order to calculate an average
value of the fatigue criterion around each integration point in a set of elements. This
volume average value is then assigned to each integration point. A value of 10% of the
grain size is chosen as the radius of the spherical averaging domain, as proposed in the
literature for crack initiation, for instance, in [82]. Half a sphere is used for points lying at
the free surface. This local averaging procedure is used to avoid artifacts associated with
local extremal values that may be due to poor element shape or size. This also allows for the
consideration of process zone size depending on the fatigue crack initiation mechanisms.

In [83] it is proposed to consider that the critical local strain in fatigue ε
p
c at a material

point in the aggregate is chosen identical to the overall ultimate strain for a monotonic
tensile stress. Thus, the local strain needed for the nucleation of a crack is the same as
the macroscopic ductility. This is a rough estimation that needs to be refined if sufficient
experimental data is available. According to a recent study by Nadal [81] on tantalum, the
macroscopic critical strain has been assessed for several strain amplitudes as ε f = ε

p
c = 0.07.

This critical value has been selected for the evaluation of the present fatigue crack initia-
tion criterion.

Figure 18 presents the prediction of the number of cycles required for crack initiation
as defined by Equation (13) using ε

p
c = 0.07. Crack initiation occurs in areas studied earlier

for nodes 1–3, especially for node 3 where the ratcheting was very intense. This figure
can be compared to the maps of effective plastic strain increments at the free surface and
mid-section in Figure 6 from the work in [17]. The lowest values of cycle numbers are
listed in red in Figure 18 indicates the locations where fatigue cracking is expected to start.
They correspond to the locations of maximal ratcheting. Some areas present a strong strain
discontinuity on both sides of grain boundaries and are preferential crack initiation sites.
The predominant crack initiation close to grain boundaries predicted by the simulation
is in agreement with the previous experimental observations. Moreover, the comparison
of Figure 18a,b demonstrates that crack initiate earlier at the free surface than in the bulk,
which is a well-known feature of fatigue in pure metals. This is related to the fact that
ratcheting phenomena were also found to be dominant at the free surface [17].
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(a) (b)

Figure 18. Prediction of cycle numbers to crack initiation per element for the fatigue test simulation at ±0.2%: (a) surface
prediction and (b) half thickness prediction.

Figure 19 shows the histogram of the number of cycles to crack initiation for each node
of the aggregate. The smallest values are reached at the surface close to node 3 identified on
Figure 15. The analysis of this histogram shows that the lowest value is about 5000 cycles,
and that the maximal value is 4.2 × 105 cycles. The mean value is 3.7 × 104 cycles and the
standard deviation is 1.65 × 104 cycles. The found lowest value is in good agreement with
the experimental observations of first cracks in Figure 7 already observed after 5000 cycles
for stage I fatigue crack initiation. More accurate determination of crack initiation cycle
numbers requires the choice of two additional quantities: a threshold for the statistical
definition of crack initiation in the histogram of Figure 19 and the definition of a crack
length for macro-initiation cracking, for instance, 300 μm, which are not reached after
5000 cycles in our experiment.
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Figure 19. Histogram of cycle numbers for crack initiation for the whole aggregate at ±0.2%.

5. Conclusions

The main findings of the present work are the following:

• Unique experimental results from an interrupted cyclic tension–compression test have
been provided. They show the development of plastic activity in the form of sinuous
slip lines and intense slip bands. The development of lattice curvature resulting from
inhomogeneous plastic slip inside the grains was illustrated after 100, 1000, 2000, and
3000 cycles.

• Strain field measurements reveal local strain values of a few percents even though
the overall loading was ±0.2%. These values are compatible with observed local
amounts of lattice rotation. This results in significant roughening of the free surface
during cycling.

• Fatigue cracks were shown to initiate between 3000 and 5000 cycles mainly in the
form of intergranular cracks.

• Unique FE simulation results of crystal plasticity in a semi-periodic polycrystalline
aggregate were provided for more than 1000 cycles. They confirm but underestimate
the strain heterogeneity that develops at the free surface.

• An original fatigue criterion was proposed for stage I crack initiation at the grain
level. It is based on the local determination of a multiaxial ratcheting indicator to
be compared with a critical plastic equivalent strain value. The criterion indirectly
incorporates the effects of resolved shear stresses and mean stress through the induced
multiaxial plastic slip.

In this contribution, the hypothesis that local ratcheting phenomena in the surface
grains of a tantalum polycrystal are responsible for fatigue crack initiation has been tested
quantitavely. This is a well-known phenomenon contributing to the formation of extru-
sion/intrusion bands at the surface of many cyclically loaded metals and alloys. The
ratcheting values deduced from the full-field simulations were used to make lifetime
assessments in terms of number of cycle to initiation of fatigue cracks of given length.
The experimentally observed surface roughness induced by cyclic loading, especially at
some grain boundaries, corroborates the ratcheting phenomenon as a plausible fatigue
crack initiation mechanism. More detailed microscopic analyses remain however to be per-
formed to investigate the dislocation structures in such zones of accumulated plastic strain.
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In this first step, it was not possible to have a one to one mapping between the experi-
mentally investigated zone and the polycrystalline aggregate used in the FE simulation.
Such a correspondence requires a precise knowledge of the 3D grain structure that can be
obtained using Focused Ion Beam techniques. This remains to be done in the future for
a more detailed analysis of the plastic behavior of tantalum. Guidelines to perform such
one to one mapping can be found in [84]. Note that only one sample was experimentally
tested and only one polycrystalline aggregate was simulated, so that a more complete
statistical analysis of the results should be the objective of future work in this field. In
particular, a larger number of cracks should be considered to confirm the predominance
of intergranular fatigue cracking. Such additional analysis is necessary to draw definitive
conclusions on the cracking mechanisms and on the validity of the proposed fatigue crack
initiation model.

Improvements of the used crystal plasticity model are possible to include more sophis-
ticated dislocation evolution equations for cyclic plasticity [85]. It must be acknowledged
that the used modeling framework cannot account for grain boundary sliding (or cracking)
or PSB formation. Validation of the presented fatigue crack initiation model is necessary
for other loading conditions including non-vanishing mean stress loading and various
loading ratios. The proposed fatigue crack initiation criterion could be combined with a
more specific intergranular cracking model based on the alternating traction vector acting
locally at grain boundaries. It is not sure that the consideration of a competition between
transgranular and intergragranular crack initiation will give a better description of the
experimental results as the proposed model predicts, in any case, crack initiation close to
grain boundaries and triple junctions. More importantly, coupled fatigue damage–plasticity
models could then be used to describe the local propagation of such initiated cracks. In that
case, intergranular and transgranular cracks can be distinguished. Such a coupled crystal
plasticity and damage model was proposed and applied to crack initiation and propaga-
tion in single crystal superalloys in [86]. This includes a gradient damage term which is
necessary to obtain mesh-independent crack simulation results. Such a regularization was
used in [87,88].
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Abstract: This paper deals with the development of a cyclic plasticity model suitable for predicting
the strain range-dependent behavior of austenitic steels. The proposed cyclic plasticity model uses the
virtual back-stress variable corresponding to a cyclically-stable material under strain control. This new
internal variable is defined by means of a memory surface introduced in the stress space. The linear
isotropic hardening rule is also superposed. First, the proposed model was validated on experimental
data published for the SS304 material (Kang et al., Constitutive modeling of strain range dependent
cyclic hardening. Int J Plast 19 (2003) 1801–1819). Subsequently, the proposed cyclic plasticity
model was applied to our own experimental data from uniaxial tests realized on 08Ch18N10T at
room temperature. The new cyclic plasticity model can be calibrated by the relatively simple fitting
procedure that is described in the paper. A comparison between the results of a numerical simulation
and the results of real experiments demonstrates the robustness of the proposed approach.

Keywords: cyclic plasticity; cyclic hardening; finite element method; austenitic steel 08Ch18N10T;
stainless steel 304

1. Introduction

The SS304 material, which includes 18 percent chromium and eight percent nickel, is the most
widely-used austenitic stainless steel. It has good drawability and welding properties together with
strong corrosion resistance. Austenitic stainless steel 08Ch18N10T is a chrome-nickel steel that is
stabilized by titanium. This steel is widely used in the nuclear industry for piping systems and reactor
internals in the Russian-designed VVERwater-water power reactors for nuclear power plants (NPP).
Reactor internals are the part of an NPP that provides support, guidance, and protection for the reactor
core and for the control elements. The block of guided tubes, the core barrel, the core barrel bottom,
and the core shroud are some of the internal components that are exposed to very harsh operating
regimes. The operating regime, e.g., heating and shut-downs, has a significant influence on the service
life of the components. The vibration and pressure pulsation of the water pumps also have to be taken
into account. These regimes expose the reactor internals to cyclic loading.

In practice, cyclic loading of structural parts can lead to the formation and propagation of cracks
through the process referred to as fatigue. In all areas of industry, the operational safety of machinery
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depends on an appropriate design process, which includes an analysis of all possible critical states.
In the low-cycle fatigue domain, seismic analysis and the simulation of operational tests of the piping
systems of NPPs may be used as an example. In these cases, it is crucial to have an accurate description
of the stress–strain behavior of the material that is being considered.

Phenomenological models [1] are the most widely-used models in practical applications.
Their goal is to provide an as accurate as possible description of the stress–strain behavior of the
material, which is found on the basis of experiments [2]. The stress–strain behavior of structural
materials under cyclic loading is very diverse, and a case-by-case approach is required [3].

The most progressive group of cyclic plasticity models, which are commonly encountered in
commercial finite element method programs, is the single yield surface models based on differential
equations. Their development is closely linked to the creation of a nonlinear kinematic hardening rule
with a memory term, introduced by Armstrong and Frederick in 1966 for the evolution of back-stress [4]
and the discovery by Chaboche [5] of the vast possibilities offered by the superposition of several
back-stress parts.

Developments in the field of non-linear kinematic hardening rules were mapped in detail in [1].
In the current paper, we will mention only the most important theories. In 1993, Ohno and Wang [6]
proposed two nonlinear kinematic hardening rules. For both models, it was considered that each
part of the back-stress had a certain critical state of dynamic recovery. Ohno–Wang Model I leads
to plastic shakedown under uniaxial loading with a nonzero mean axial stress value (no ratcheting),
and under multiaxial loading, it gives lower accumulated plastic deformation values than have been
observed in experiments. The memory term of Ohno–Wang Model II [6] is partially active before
reaching the critical state of dynamic recovery, which allows a good prediction of ratcheting under
uniaxial loading and also under multiaxial loading. The Abdel-Karim–Ohno nonlinear kinematic
hardening rule [7] was published in 2000. This rule is in fact a superposition of the Ohno–Wang I and
Armstrong–Frederick rules. The proposed model was designed to predict the behavior of materials
that exhibit a constant increment of plastic deformation during ratcheting. Other modifications to
this kinematic hardening rule, leading to a better prediction of uniaxial ratcheting and also multiaxial
ratcheting, were proposed by one of the authors of the paper [8]. In order to capture the additional
effects of cyclic plasticity, the concept of kinematic and isotropic hardening has been further modified.
Basically, the available theories can be divided into two approaches. The first approach is related to the
actual distortion of the yield surface [9–11], while the second approach is related to the memory effect
of the material [5,12]. The effect of cyclic hardening as a function of the size of the strain amplitude is
usually assumed in the second approach.

The first comprehensive model of cyclic plasticity with a memory surface was proposed by
Chaboche and co-authors in [5]. Chaboche’s memory surface was established in the principal plastic
strain space and captures the influence of plastic strain amplitude and also the mean value of the
plastic strain. The memory surface is associated with a non-hardening strain region in a material point,
as was explained by Ohno [12] for the general case of variable amplitude loading. Memory surfaces
established in the stress space have also been developed. Their main advantage is that they enable
more accurate ratcheting strain prediction to be achieved, as presented by Jiang and Sehitoglu in their
robust cyclic plasticity model [13].

It should be mentioned that both of these memory surface concepts lead to an increase in the
number of material parameters and in the number of evolution equations, which complicates their use
in engineering practice.

The original application of the memory surface, introduced by Jiang and Sehitoglu, was extended
by some authors of the present paper to capture the memory effect of ST52 material, in [14].
Uniaxial experiments indicated that, in the case of a cyclically-softening/hardening material, larger
strain amplitudes cause a significant change in the shape of the hysteresis loops. Only a very small
number of researchers in the field of cyclic plasticity have investigated the influence of strain amplitude
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on the cyclic hardening effect. Good agreement with experiments has been achieved in the case of steel
SS304 [15], but at the cost of defining more than 70 material parameters.

Some of the material models have been used to capture cyclic material behavior. To describe
the cyclic behavior of SAE4150 martensitic steel [16], Schäfer et al. considered three kinematic
hardening models, i.e., the Chaboche [5], Armstrong-Frederick [4] and Ohno–Wang [6] models.
They used these kinematic approaches to simulate the micromechanical behavior of the selected
material. Moeini et al. [17] used the Chaboche model [5] to predict the low cyclic behavior of
dual-phase steel. The selected kinematic hardening model provided good agreement with experimental
results. Msolli used the unified viscoplastic model [18] developed by Chaboche when modeling
the elastoviscoplastic behavior of JLF-1 steel at higher temperatures (400 °C and 600 °C). In this
study, the Chaboche model was slightly modified to capture cyclic hardening followed by cyclic
softening. The material model also falls into the category of coupled damage models. The material
model showed good agreement with the experimental results. The effect of torsional pre-strain on
low cycle fatigue performance of SS304 was studied in [19]. Kang et al. [20] used the viscoplastic
constitutive model with the extended Abdel-Karim–Ohno nonlinear kinematic hardening rule
with some temperature-dependent terms. This constitutive model was verified on uniaxial and
non-proportional multiaxial ratcheting experimental results at room temperature and at elevated
temperatures. Another viscoplastic constitutive model was used by Kang, Gao, and Yang [21] in their
study to simulate uniaxial and multiaxial ratcheting of cyclically-hardening materials. They used the
Ohno–Wang kinematic hardening rule with the critical state of dynamic recovery. The effect of loading
history was also considered by introducing a fading memorization function for the maximum plastic
strain amplitude.

This paper shows the advantages of using the memory surface established by Jiang and Sehitoglu
in 1996 [13] to treat the impact of the strain amplitude on the material stress response. The new
theory is shown on the kinematic hardening rule based on Chaboche’s model with three back-stress
parts, but it can also easily be applied to the Abdel-Karim–Ohno model or its modified version with
promised ratcheting prediction [8]. Recently, an approach was introduced that takes into account a
new internal variable referred to as virtual back-stress, corresponding to a cyclically-stable material.
This provides an easy way to identify the parameters and to use fewer material parameters than in
earlier models, for example [21]. New experimental results from uniaxial fatigue tests realized on
08Ch18N10T at room temperature are presented and subsequently used for the validation of the new
cyclic plasticity model.

2. New Constitutive Model

In this paper, isothermal conditions are considered, and the influence of the strain rate is neglected.
However, the model can be extended by standard techniques for use in the area of viscoplasticity [7].

2.1. Yield Surface and Flow Rule

In this work, the concept of a single yield surface for metallic materials is used, based on the von
Mises yield function, which can be expressed for the general mixed hardening model as:

f =

√
2
3
(s − a) : (s − a)− Y = 0, (1)

where s is the deviatoric part of stress tensor σ, a is the deviatoric part of back-stress α, and the current
size of yield surface (or the actual yield stress) Y is defined as the sum of the isotropic variable R and
the initial size of the yield surface σy (the yield strength) by the equation:

Y = σy + R. (2)
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It should be mentioned that the colon between the second-order tensors in Equation (1) denotes
their inner product x : y = xijyij (considering the Einstein summation convention).

The associative plasticity is considered, so the normality flow rule is considered in the case of
active loading:

dεp = dλ
∂ f
∂σ

. (3)

This expresses mathematically that the plastic strain increment dεp is collinear with the exterior
normal to the yield surface for the current stress state. In associative plasticity, the scalar multiplier dλ

is equal to the accumulated plastic strain increment dp, which is defined as:

dp =

√
2
3

dεp : dεp. (4)

2.2. Virtual Back-Stress

A new internal variable is established to provide an easy way to calibrate the model. The variable is
the back-stress of a cyclically-stable material corresponding to the response of the material investigated
under a large strain range. It will be referred to as the virtual back-stress. The Chaboche superposition
of the back stress parts is used in the following form:

αvirt =
M

∑
i=1

αi
virt (5)

taking into consideration the nonlinear kinematic hardening rule of Armstrong and Frederick [4] for
each part:

dαi
virt =

2
3

Cidεp − γiα
i
virtdp, (6)

where Ci and γi are material parameters. For all calculations in this paper, the superposition of three
kinematic hardening rules (M = 3) will be used.

It should be mentioned that the virtual back-stress is used only in the definition of the memory
surface, which will be described in the next section. Zero components of the virtual back-stress are
considered in the initial state. The increment of the virtual back-stress is calculated according to
Equations (5) and (6) assuming the current increment of accumulated plastic strain dp and the current
increment of plastic strain tensor dεp in each iteration of the local problem. Further details of the
implementation algorithm that is used can be found in [22], where a more complex model with the
memory surface of Jiang and Sehitoglu [13] was considered.

2.3. Memory Surface

To provide a correct description of the cyclic hardening for various strain ranges, a memory surface
in the stress space is established. The concept is analogous to the theory of Jiang and Sehitoglu [13].
A scalar function is introduced to represent the memory surface in the deviatoric stress space:

g = ‖αvirt‖ − RM ≤ 0, (7)

where RM is the size of the memory surface and ‖αvirt‖ is the magnitude of the total virtual back-stress,
which is defined as ‖αvirt‖ =

√
αvirt : αvirt. The evolution equation ensuring the possibility of memory

surface expansion, Figure 1, is therefore:

dRM = H(g) 〈L : dαvirt〉 , (8)
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where

L =
αvirt

‖αvirt‖ . (9)

Contraction of the memory surface is not allowed in this paper. It can be implemented according
to the stress space-based memory surface concept of Jiang and Sehitoglu [13].

(a) (b)

Figure 1. Expansion of the memory surface and the stabilized memory surface. (a) Equation (13) is not
active; (b) Equation (13) is active.

2.4. Kinematic Hardening Rule

Consistent with the previous sections, the back-stress is composed of M parts:

α =
M

∑
i=1

αi, (10)

but the memory term is dependent on the size of memory surface RM and accumulated plastic strain
p; thus:

dαi =
2
3

Cidεp − γiφ(p, RM)αidp, (11)

where Ci and γi are the same as in Equation (6). The multiplier φ of parameters γi is composed of a
static part and a cyclic part:

φ(p, RM) = φ0 + φcyc(p, RM), (12)

where φ0 has the meaning of a material parameter, while the cyclic part is variable and can change
only in the case of ṘM = 0. In this case, the evolution equation is defined in the following way:

dφcyc = ω(RM) · (φ∞ + φcyc(p, RM)
)

dp. (13)

φ∞(RM) = A∞R4
M + B∞R3

M + C∞R2
M + D∞RM + F∞, (14)

ω(RM) = Aω + BωR−Cω
M for RM ≥ RMω, (15)
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ω(RM) = Aω + BωR−Cω
Mω otherwise, (16)

where A∞, B∞, C∞, D∞, F∞, Aω, Bω, Cω, RMω, and RM0 are additional parameters to Chaboche’s
material parameters Ci and γi. The evolution parameter ω directs the rate of cyclic hardening behavior
according to the current size of memory surface RM.

2.5. Isotropic Hardening Rule

Continuous cyclic hardening has been observed for austenitic stainless steels for a large strain
range under uniaxial loading [15]. To capture this behavior, we introduce the linear isotropic
hardening rule:

dR = R0(RM)dp, (17)

where parameter R0 is dependent on the size of the memory surface:

R0(RM) = ARR2
M + BRM + CR for RM ≥ RM0, (18)

R0(RM) = ARR2
M0 + BRM0 + CR otherwise, (19)

because of the strong dependence on the strain range observed in the experiments [15].

3. Identification of Material Parameters and Model Verification on SS304 Data

The cyclic plasticity model was implemented in the ANSYS FE code, using the algorithm described
in [22]. The methodology for calibrating the proposed material model will be explained according to
the classical Chaboche material model, which requires the following parameters to be identified: σy, E,
μ, C1, C2, C3, γ1, γ2, and γ3, where E is the Young modulus and μ is the Poisson ratio.

Generally, 14 additional parameters have to be specified for the proposed cyclic plasticity model:
φ0, A∞, B∞, C∞, D∞, F∞, Aω, Bω, Cω, RM0, RMω, AR, BR, CR.

It is customary to determine the Young modulus E from cyclic curves rather than from a tensile
test. The Poisson ratio μ can be determined by standard procedures. The material parameter E was
established from the elastic region of the largest available hysteresis loop, using a linear regression.
The initial yield strength σy was chosen to get the best possible description of the static stress–strain
curve using Equation (23).

A sequence of steps is retained that should be applied in the following description of the
calibration of the proposed model. The sections are named according to the required experimental data.
The parameters are identified on the basis of the experimental set of stainless steel SS304, available at [15].

3.1. Uniaxial Large Hysteresis Loop

It is well known that the material parameters of the Chaboche model can be determined (under
cyclic loading) from the cyclic strain curve or from the large uniaxial hysteresis loop [23]. Figure 2
shows us the results for identifying the parameter in the case of stainless steel 304. According to [24],
it is possible to use a relation that defines the loading part of the stabilized hysteresis loop in the
stress—plastic strain diagram:

σx = σy + αvirt, (20)

σx = σy +
C1

γ1

(
1 − 2e−γ1(εp−(−εpL))

)
+

C2

γ2

(
1 − 2e−γ2(εp−(−εpL))

)
+ C3εp, (21)
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where εpl is the plastic strain corresponding to the compressive peak strain and σx is the axial stress.
Relation (21) is valid in the case of γ3 = 0 and for a large hysteresis loop.

If the Chaboche model is calibrated using the large hysteresis loop (Δε = 6%), it predicts a higher
stress amplitude for small strain amplitudes than was observed in the experiments. This phenomenon
is shown for 1% strain amplitude in Figure 2. For this reason, a new cyclic plasticity model is needed.
Parameters Ci and γi can be obtained for the newly-proposed model after applying Relation (21) to
data from the largest available hysteresis loop, while parameter γ3 = 0. In our case, we have used the
Levenberg–Marquardt algorithm of the nonlinear least squares method. It is now clear that material
parameters Ci and γi in the new model can be estimated on the basis of a single uniaxial hysteresis
loop. The applicability of the new model to different strain ranges is given by the multiplier φ in
Equation (11). Its evolution depends on memory surface size RM and accumulated plastic strain p.
How the necessary parameters are identified will be explained below.

Figure 2. Prediction of two uniaxial hysteresis loops of SS304 (experimental data were taken from [15]).

3.2. Static Strain Curve

Under monotonic loading, the kinematic hardening rule of the proposed model is reduced to:

dαi =
2
3

Cidεp − γiφ0αidp. (22)

If isotropic hardening is neglected, the material parameter φ0 can be determined by a constitutive
relation commonly used for the Chaboche model:

σ = σy +
C1

γ1φ0

(
1 − e−γ1φ0εp

)
+

C2

γ2φ0

(
1 − e−γ2φ0εp

)
+ C3εp. (23)

For stainless steel SS304, the value of the parameter is φ0 = 4.5. The material model prediction of
the static stress–strain curve is depicted in Figure 3.
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Figure 3. Prediction of static and cyclic uniaxial stress–strain curves; the experimental data for SS304
were reproduced from [15].

3.3. Cyclic Stress–Strain Curve

For the Chaboche model, the relation between stress amplitude and plastic strain amplitude can
be derived, in accordance with [23], in the form:

Δσ/2 = σy +
C1

γ1
tanh

(
γ1Δεp/2

)
+

C2

γ2
tanh

(
γ2Δεp/2

)
+ C3Δεp/2. (24)

By analogy, the relation for the cyclic hardening curve can be obtained for the proposed
constitutive model. Neglecting the isotropic part, we can write,

Δσ/2 = σy +
C1

γ1φ∞
tanh

(
γ1φ∞Δεp/2

)

+
C2

γ2φ∞
tanh

(
γ2φ∞Δεp/2

)
+ C3Δεp/2.

(25)

This is a scalar nonlinear equation, which can be solved for selected experimental points,
for example by the successive substitution method. Afterwards, the φ∞ values for each peak of
the hysteresis loop are fitted by the approximate function (13).

The experimental cyclic stress–strain curve data considered without linear isotropic hardening
(published in [15]) and the predicted data corresponding to the proposed model are also shown in
Figure 3. The cyclic stress–strain curve of the classic Chaboche model, calibrated using the large
hysteresis loop (Δε = 6%), is also presented in Figure 3. It is again clear that a more robust model
is needed.

3.4. Cyclic Hardening Curves

In order to provide a good description of the cyclic hardening properties for a wide range of strain
amplitudes, it is necessary to identify the isotropic hardening and kinematic hardening functions.

The remaining parameters Aω, Bω, Cω, RMω, RM0, AR, BR, and CR were estimated by a fitting
procedure, using the nonlinear relations between the peak stress and the accumulated plastic strain
p for all available cases of constant strain amplitude tests for the particular type of stainless steel
(Δε = 1, 2, 4, 6, and 8%).

The isotropic hardening parameters were determined from the slope of each cyclic
hardening/softening curve in a saturated state. More precisely, a unique value for each case of a strain
range was obtained, which was afterwards used for approximation by (18) and (19). The estimated
material parameters of the proposed cyclic plasticity model are stated in Table 1.
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Note that parameter γ3 was equal to 10, which corresponds more to the behavior of metallic
materials, e.g., if ratcheting occurs under stress-controlled loading with a nonzero mean axial
stress value.

Table 1. Material parameters of the proposed model for SS304.

E [MPa] ν σy [MPa] C1 [MPa] γ1 C2 [MPa]

196,000 0.3 150 150,000 622 19,827
γ2 C3 [MPa] γ3 A∞ B∞ C∞

128 2000 10 0 1.15 × 10−7 −1.23 × 10−4

D∞ F∞ AR [MPa−1] BR CR [MPa] RM0 [MPa]

0.032 −3.6 0.000915 −0.5 60.7 305
Aω Bω Cω RMω [MPa] φ0

0 4.02 × 10−17 6.424 344 4.5

3.5. Prediction Results for SS304

For implementation in ANSYS, the user subroutine called USERMAT1D.F, which was originally
distributed for bilinear isotropic hardening. It was necessary to modify the user subroutine according
to the used radial return algorithm [22]. A single LINK180 element was used for all analyses in ANSYS,
because only uniaxial loading cases are considered in this paper. Material SS304, which was used
as an example to explain the calibration procedure, exhibited very strong cyclic hardening at larger
amplitudes of plastic strain. All investigated cases corresponded to the uniaxial experiments published
by Kang et al. [15]. Predictions of cyclic hardening, corresponding to the proposed model, are shown
together with the results of experiments in the form of peak tensile stress values as a function of the
number of cycles (Figure 4).

Figure 4. A comparison of simulations and experiments in the form of tensile peak stress variation;
uniaxial strain controlled tests (the experiment was taken from [15]).

The results of the prediction of the transition behavior of the SS304 steel material during uniaxial
cyclic loading (Figure 4) were supplemented by hysteresis loops for strain amplitudes of 1% and
6%, respectively (Figures 5 and 6). These results can be compared with the experimentally-obtained
hysteresis loops published in [15].
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Figure 5. Prediction of the uniaxial test with Δε = 1% (experimental data were taken from [15]).

Another simulation was of a cyclic test with a linearly-increased/-decreased strain amplitude
composed of five identical blocks. In each block, the strain range was increased within 20 cycles to a
value of 5%, and subsequently, it was reduced, with the same increment. The resulting stress–total
strain dependence for the strain range increasing stage is shown in Figure 7. The increasing amplitude
of the stress was more progressive in the prediction than in the experiment, as can also be seen in
Figure 8.

Figure 8 presents a comparison with an experiment, in which the peaks of the hysteresis loops are
plotted for the first and fifth loading block. The relative error of the prediction was about 12.3% in the
first block (for amplitude of strain 2.5%), but it was reduced to 6.7% in the fifth loading block.

The proposed model was able to capture the static and cyclic stress–strain curve for SS304 correctly.
It also simulated well the shapes of the stress–strain hysteresis loops in all investigated cases, as well
as the Bauschniger effect, which became weaker for higher strain ranges. The non-Masing behavior of
the SS304 material was very strong, and this can be modeled better with superposition of the kinematic
hardening and isotropic hardening, as in the proposed constitutive model. For the incremental test,
the prediction was very good, especially in the fifth loading block. The overprediction of the peak
stresses in the first block of loading can be reduced, for example, by introducing memory surface
contraction, as was proposed in the original model of Jiang and Sehitoglu [13].
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Figure 6. Prediction of the uniaxial test with Δε = 6%(experimental data were taken from [15]).

Figure 7. Prediction of the incremental test with the linearly-increasing amplitude of the axial stress:
(a) experiment (experimental data were taken from [15]); (b) prediction.
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Figure 8. Comparison between a prediction and an experiment in the form of the variation in tensile
peak stress for the incremental test (the experiment was taken from [15]): (a) first block, (b) fifth block.

4. Application to Uniaxial Cyclic Tests of 08Ch18N10T Stainless Steel

4.1. Identification of the Material Parameters for 08Ch18N10T Stainless Steel

The model was also calibrated for original experimental data on austenitic steel 08Ch18N10T [25].
A total of 12 uniaxial specimens were used for the material parameters’ identification process (marked
by the abbreviation IDF in the following text, each specimen representing a different level of loading).
According to the ASTM standard [26], the classic uniform-gauge geometry of the specimen is limited up
to the amplitude of the total strain εa = 0.5%. For higher strain levels, an hour-glass type geometry is
required. According to this standard, the IDF specimens were compiled from uniform-gauge geometry
(specimens IDF1–IDF5) and hourglass geometry (specimens IDF6–IDF12); see Figure 9.

12

R20

6 10

Lext = 10

a)

ellipse

18

6

6 10

Lext = 20

b)

Figure 9. Specimen geometries: (a) uniform-gauge; (b) hourglass.

Another 17 uniaxial specimens (all with hourglass geometry) were used to verify the prediction
ability of the model.

The loading force F applied to the IDF specimen was known, as was the strain field of the surface
of the specimen. The strain field was measured by the extensometer in the case of uniform-gauge
geometry, or by the digital image correlation method in the case of hourglass geometry. Considering
the uniaxial stress field in the cross-section of a specimen, the stress can be determined as σ = F/A,
where A is the cross-section surface of the specimen. This allowed the use of a different calibration
process, based on knowledge of the shape of the stress–strain hysteresis loops in all cycles during the
experiment to failure.

Let us select one hysteresis stress–strain loop of a point on the specimen representing one loading
cycle. This can be optimally simulated by a set of material parameters C1, γ1, C2, γ2, C3, γ3, and σy.
However, in the next cycle, the optimal set of these parameters can be slightly different, as can the set
of parameters of a specimen with different loading conditions. This material model uses the memory
surface concept by setting these material parameters as functions of RM and making these coefficients
dependent on the loading history and the loading level conditions.
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The material model did not include a simulation of the material damage process, so only
experimental data up to damage were used for the calibration. The number of cycles used was
Nd, and this number corresponded to the drop in the loading force during the experiment by 2%, due
to crack initiation and propagation, leading to failure.

First, the fatigue life was divided into about 10 evenly-spaced parts by selecting hysteresis loops
(SHLs), and the cycle number of each selected hysteresis loop (SHL) is given as n � Nd/k, where
k = 1, 2, . . . , 10. The Young modulus E, the Poisson ratio ν, and the yield strength σy were determined
from the tensile test according to the ISO standard [27].

σy can be interpreted as the point where the linear part of the tensile curve turns into the non-linear
part (see Figure 10). The root mean squared error method (RMSE) can be applied to find the point.
In the tensile test (or in the first cycle of the cyclic test), the yield strength σy corresponded to RMSE ≈ 8.
Applying RMSE = 8 to each SHL, the actual yield stress Y was found. This shows the development of
the actual yield stress Y during the fatigue life; see Figure 11.

∝ RMSE

ε[−]

σ[MPa]

Figure 10. Actual yield stress determination.

Two SHLs were chosen, the bigger one and the smaller one, each with cycle number n = Nd (the
last cycle). The Chaboche material model parameters C1, γ1, C2, γ2, C3, and γ3 were found using an
optimization process. The target function was set to the optimal shape match between the simulation
and experiment of the two SHLs. The result is shown in Figure 12.

Knowing the Chaboche material parameters, a first guess of the memory surface size for each
specimen was determined, using Equations (5)–(9). The formulation of RM and the constant amplitude
of the loading conditions resulted in fast saturation of the RM value for each specimen (after the
first cycle), which made the calibration process easier.

The yield stress was now fitted as a function of RM, using Equations (17)–(19), by finding material
parameters AR, BR, and CR. Using the tensile test experimental data and performing a simulation
of this test, parameter φ0 was found using Equation (11) as an optimal value of φ for the tensile
test simulation. The value of function φ from Equation (11) was found for SHLs, using a similar
optimization process as for determining the Chaboche material parameters. φ∞ was the value of φ for
n = Nd, and from Equation (14), φ∞ was then set as a function of RM by finding material parameters
A∞, B∞, C∞, D∞, and F∞. Function ω determined the transition of function φ between its border
values φ0 and φ∞. Knowing the course of function φ during the fatigue life, ω was determined as a
function of RM by finding material parameters Aω, Bω, and Cω from Equation (15). This result was
not necessarily optimal, so one more optimization was performed to find better φ∞ and ω material
parameters. The target function was set to the best possible match of the amplitude stress response
between simulation and experiment during the whole fatigue life (not only SHLs).
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Figure 11. Actual yield stress development during fatigue life evaluated for 08Ch18N10T.

Figure 12. Chaboche coefficients fitting: (a) small loop; (b) large loop.

The RM value for each specimen was determined only as a first guess, so a number of iterations
of the whole calibration process had to be carried out to find the final and optimal set of material
parameters. The optimal material parameters are presented in Table 2.

Table 2. Material parameters of the proposed model for 08Ch18N10T.

E [MPa] ν σy [MPa] C1 [MPa] γ1 C2 [MPa]

210,000 0.3 150 63,400 148.6 10,000
γ2 C3 [MPa] γ3 A∞ B∞ C∞

911.4 2000 0 −1.441 × 10−9 1.911 × 10−6 −8.951 × 10−4

D∞ F∞ AR [MPa−1] BR CR [MPa] RM0 [MPa]

1.688 × 10−1 −10.6 1.264 × 10−4 −4.709 × 10−2 3.801 225.4
Aω Bω Cω RMω [MPa] φ0

0 3.456 × 10−11 −4.197 130.5 2.318
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4.2. Uniaxial Prediction for 08Ch18N10T Stainless Steel

The proposed model was used for an FE simulation of the uniaxial experimental program.
The error of the amplitude of the force between experiment and simulation is formulated as:

Error =
Fa exp − Fa sim

Fa exp
· 100[%] (26)

The mean error over the specimen is defined as:

Mean Error =
1

Nd

N

∑
n=1

Errorn (27)

where Errorn is the error in cycle n and N is the overall number of cycles in the simulation. The total
error over all specimens is calculated as:

Total Error =
1
S

S

∑
s=1

Mean Errors = 4.83% (28)

where Mean Errors is the mean error of specimen number s and S = 17 is the total number of specimens.
The results of the experiments and the FEA simulations of all 17 uniaxial specimens are shown in
Figures 13–29.
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Figure 13. Specimen E9-1.
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Figure 14. Specimen E9-2.
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Figure 15. Specimen E9-3.
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Figure 16. Specimen E9-4.
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Figure 17. Specimen E9-5.
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Figure 18. Specimen E9-6.
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Figure 19. Specimen E9-7.
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Figure 20. Specimen E9-8.
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Figure 21. Specimen E9-9.
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Figure 22. Specimen E9-10.
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Figure 23. Specimen E9-11.
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Figure 24. Specimen E9-12.
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Figure 25. Specimen E9-13.
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Figure 26. Specimen E9-14.
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Figure 27. Specimen E9-15.
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Figure 28. Specimen E9-16.
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Figure 29. Specimen E9-17.
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5. Discussion

As was shown in the previous section, the proposed model was able to capture the static curve and
the cyclic stress–strain curve of SS304 very well. It also simulated well the shapes of the stress–strain
hysteresis loops in all investigated cases, as well as the Bauschniger effect. The non-Masing behavior
of the SS304 material was very strong, and this can be modeled better by superposing the kinematic
and isotropic hardening, as proposed in the new constitutive model.

For the incremental test, the prediction was very good, especially in the fifth loading block, where
it outperformed Kang’s model [15]. Overprediction of the peak stresses in the first block of loading
can be reduced, e.g., by introducing the memory surface contraction, as was proposed in the original
model of Jiang and Sehitoglu [13].

The proposed model also provided a good description of the uniaxial tests of austenitic steel
08Ch18N10T. It captured the strain range-dependent cyclic hardening of this material, with an average
simulation error of 4.83%. The proposed model slightly overestimated the initial phase of hardening.
Furthermore, the model was unable to describe the softening at the end of the fatigue life caused by
the fatigue crack growth. This phenomenon was not included in the model.

Figure 14 (Specimen E9-2) shows the attentive reader what seems to be a jump on the error axis
at about 8200 cycles. Zooming on the data shows that the amplitude of the force predicted by the
simulation was constant, while there was a relatively small gradual increase in the amplitude of the
force in the experiment that took place over dozens of cycles. This is a common phenomenon in
cyclic testing. Along with the relatively small value of the error between experimental prediction and
simulation in that area, it optically intensified the jump effect in the graph.

6. Conclusions

In this paper, a new model of cyclic plasticity was proposed for describing the cyclic hardening of a
material, when there is an influence of strain amplitude, based on the Jiang–Sehitoglu memory surface
stated in the stress space. The introduction of a new internal variable in the form of virtual back-stress,
which characterizes the behavior of the material in the case of a large strain amplitude, significantly
reduced the number of material constants. Moreover, these parameters were now relatively easy
to identify. Particular effects of cyclic plasticity could be described thanks to the introduction of
dependency between selected parameters of the Chaboche kinematic hardening rule and the nonlinear
isotropic hardening rule and the radius of memory surface RM. The model contained 23 parameters in
total, two of which were considered as zero for the SS304 material used here. The number of required
parameters was less than one-third of the number required for the Kang model [15], while maintaining
the accuracy of the description of the stress–strain behavior. Acceptable results were also obtained
by the new cyclic plasticity model in simulations of our own experimental data for austenitic steel
08Ch18N10T. The idea of a stress-based memory surface applied to a virtual back-stress can also be
used with other nonlinear kinematic hardening rules. The authors will focus on incorporating the
modified Abdel-Karim–Ohno hardening rule [8] into the proposed model to get a better prediction of
the ratcheting and stress relaxation of stainless steels in future works. Some interesting results of the
Abdel-Karim–Ohno model enhanced by a memory surface can be found in [28].
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Abstract: The mechanical properties of ductile metals are generally assessed by means of tensile
testing. Compression testing of metal alloys is usually only applied for brittle materials, or if the
available specimen size is limited (e.g., in micro indentation). In the present study a previously
developed test procedure for compressive testing was applied to determine the elastic properties
and the yield curves of different biomedical alloys, such as 316L (two different batches), Ti-6Al-7Nb,
and Co-28Cr-6Mo. The results were compared and validated against data from tensile testing. The
converted flow curves for true stress vs. logarithmic strain of the compressive samples coincided well
up to the yield strength of the tensile samples. The developed compression test method was shown
to be reliable and valid, and it can be applied in cases where only small material batches are available,
e.g., from additive manufacturing. Nevertheless, a certain yield asymmetry was observed with one
of the tested 316L stainless steel alloys and the Co-28Cr-6Mo. Possible hypotheses and explanations
for this yield asymmetry are given in the discussion section.

Keywords: biomedical alloys; yield asymmetry; compressive testing; flow curve

1. Introduction

The origins of the theory of plasticity go back more than 100 years. A complete work can be
found in Hill [1], originally published in 1950. The ductile properties of alloys including their flow
curve during yielding are commonly determined with tensile testing, which is a well-standardized
procedure. Compressive testing may be the appropriate material test for characterizing a ductile alloy,
if the data are used to dimension a structure dominantly loaded under compression, or if the sample
size and the physical constraints do not allow standard tensile testing. Kulagin et al. [2] applied
compressive testing to analyze the effect of severe plastic deformation (SPD) on the microstructure
and mechanical properties of a pure titanium. With even further reduced sample size, testing with
micro or nano-indentation may be justified, where yield strength and tensile strength can be deduced
recursively by fitting with numerical models.

In an earlier project for the development of hard coatings on biomedical alloys, a test procedure
was developed by the present authors [3] in accordance to two standards:

• DIN 50106: originally from 1960, revised in 1978 and recently in 2016. It was mainly written
for the determination of the compressive strength of brittle (cast) alloys, and it says very little
about the allowable type of strain or displacement measurement. The standard is not particularly
designed for the measurement of Young’s modulus or yield strength [4].
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• ASTM E9-09 describes in particular the adequate test setup with respect to axial alignment and
parallelism of two hardened bearing blocks, and it addresses the problems related with buckling
of slender test samples and ‘barrelling’ (the non-uniform deformation in the sample’s end region
due to friction; [5]).

The new test protocol allowed the determination of Young’s modulus, yield strength and the
entire flow curve (stress–strain curve in the plastic domain), and it was validated in a Round Robin on
a 316L (DIN 1.4441 according to [6]) material against standard tensile testing [3]. The compressive
test has an additional benefit, because tensile samples tend to undergo necking after a few percent of
plastic strain, which will dictate the ultimate tensile strength (when necking has started, the true local
stress may still increase, but the evaluated nominal stress drops). The yield curve in compression may
evolve to plastic strains far above the strain At (ultimate strain at rupture) of a tensile test.

The hard coatings made of diamond-like carbons (DLC) developed in a previous project were
investigated by micro indentation [7]: A conical imprint in the coating was produced, superimposing
plastic strains and high stresses onto the already existing residual stresses from the coating process.
The simultaneously created damage in the DLC-coating lead to a high delamination rate at the interface
DLC—Substrate and allowed investigation of different types of coating agents and interlayers. The
numerical simulation of the micro indentation tests required the actual flow curve of the different
substrate materials, in order to predict the residual stresses, the plastic strain, and finally the energy
release rates during delamination. As the available material batches were small and the results were
used to simulate an indentation experiment (with dominantly compressive and hydrostatic stresses), the
tests were performed on relatively small samples in compression, considering the relevant standards.

When tensile or compressive test data are produced, they are generally evaluated as ‘nominal
stress’ vs. ‘nominal strain’. These curves have to be converted to true stress vs. logarithmic strain for
many state-of-the-art Finite Element (FE) codes such as Abaqus from Simulia/3DS [8]. The true stress
can be derived as follows:

σtrue = σnom (1 + εnom), (1)

and the logarithmic strain measure is defined as

εln = ln(1 + εnom) (2)

The conversion of tensile and compression test curves of identical material batches should result
in coinciding flow curves at least up to the start of necking in the tensile experiment (at strain Ag).
Differences may indicate inappropriate test setups or even wrong boundary conditions.

In the present project, different biomedical alloys were tested in compression, and where the size
of the material batch allowed it, tensile tests were performed for comparison. The elastic properties
could be determined as well as the entire flow curve under tension/compression, and the conversion
of the flow curves to true stress vs. logarithmic strain allowed further interpretation and assessment
of the materials. Although the applied methodology in this study is not fully new, the yield curves
presented and the verification against tensile data are difficult to find in literature and may be of
interest to researchers employing numerical simulation. The observed yield asymmetry in two of the
studied alloys was further examined and partly explained.

In the test setup used for this study, the influence of friction could be reduced to a minimum,
as shown in [3]. Robinson et al. showed in a previous study how the friction coefficient affects the
outcome of compression tests on ring samples [9]: The deformation pattern and the change of the inner
ring diameter depend strongly on friction, and the results can be used to recursively determine the
friction coefficient or material parameters by means of the Finite Element Method (FEM).
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2. Materials and Methods

2.1. Test Method and Mechanical Setup

The method for the compressive tests was in accordance with ASTM E9-09 and DIN 50106, with
some specific considerations concerning strain measurement, friction, and evaluation [3]. A setup
was chosen, where the two hardened and polished bearing block surfaces can be set to parallel under
preload by means of a spherical calotte, but it was an important requirement to fix the block’s surface
orientation after reaching the preload such that the calotte cannot further rotate under increased load.
Two hardened cones were used to increase the working space between the parallel bearing block
surfaces such that the clip-on gauge for strain measurement could be placed on the specimen after
the cylindrical sample had been aligned in the machine axis and set under preload (cone material:
DIN 1.3351; hardened to a Rockwell hardness ≥65 HRC). The chosen setup is shown schematically
in Figure 1. The strain measurement was performed symmetrically on two sides of the cylindrical
samples with a gauge type “Mini MFA-2” (from MF Mess- & Feinwerktechnik GmbH, Velbert, Germany).
At a total strain of approx. 4% the transducer was removed and the following deformation was
measured via the crossbar displacement to calculate the plastic strain. As described in [3] the load
does not change substantially anymore, hence the distortion of the surrounding test setup can be
assumed to be almost constant for increased plastic deformation, and the resulting flow curve will not
be significantly influenced.

  

Figure 1. Schematic view of the mechanical setup (left) and installation with prepared sample in the
test machine (right), with large plates adjusted and fixed in parallel.

The tensile tests were performed according to DIN EN ISO 6892-1:2009, and the strains were
measured with a transducer type multiXtens from Zwick (Ulm, Germany) of class 0.5 according to EN
ISO 9513. The strain rates for both test procedures were adjusted carefully, such that the strain rate in
the elastic domain for tension was similar to the rate in the elastic domain for compression. The strain
rates during plastic deformation were set higher by an order of magnitude, but again were comparable
for tension and compression

2.2. Materials

The materials involved in this experimental study were two types of stainless steel 316L, a titanium
alloy and a cobalt chromium molybdenum (CoCrMo), defined by the following specifications:

• A grade AISI 316L stainless steel (DIN 1.4441, implant quality), with further specifications as
follows: X2CrNiMo 18-15-3 (ISO 5832-1 UNS S31673, ASTM F138), tensile strength between 930
and 1100 MPa. Polished rod with circular cross section (diameter Ø = 10 mm; tolerance h6). The
material will simply be called ‘1.4441’.
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• A second batch of medical grade 316L stainless steel (Ø = 18 mm), where the supplier and more
detailed specifications are not known, hereafter called ‘316L’.

• A titanium alloy type Ti-6Al-7Nb, hereafter called ‘TAN’.
• A cobalt based Co-28Cr-6Mo, hereafter called ‘CCM’.

The material first used for the development of the test procedure and the validation against tensile
tests was the 1.4441 stainless steel in implant quality. All tensile and compressive samples had been
produced from the same batch of a polished round rod (diameter Ø = 10.00 mm). Out of this rod, and
also with the other materials, the following test samples were manufactured:

• Tensile test: according to DIN 50125, type “F 10 × 50” with rod lengths between 330 and 500 mm,
or type “B 6 × 30” for shorter samples, where the outer diameter is given by the M10-thread. The
316L samples were of type “B 10 × 50” as the raw material was available with larger diameter.

• Compressive test: on the basis of DIN 50,106 and ASTM E9-09 with cylindrical shape, d0 = 10 mm,
and h = 15 mm which resulted in a h/d0 ratio of 1.5.

All results were evaluated as nominal stress vs. nominal strain. From each set of tensile and
compressive tests, the mean curves were taken and converted to true stress vs. logarithmic strain (cf. [8]).
The conversion of the measured nominal strain provides a shift of the data points in the horizontal
direction, in addition to the vertical shift for stress.

3. Results

All tests were performed carefully and the data digitally collected for conversion and comparison.
Figure 2 shows an overview of all flow curves for plastic yielding, each graph providing the comparison
between tensile and compressive tests. For some materials only a limited number of samples was
available which does not allow a statistics for the relevant material parameters. For TAN no tensile
samples were available at all, hence the test data of the compression tests had to be compared to
literature data from Polyakova et al. (‘Initial’, coarse-grained in [10]).

 
Figure 2. Cont.
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Figure 2. All test data, presented as nominal stress vs. nominal strain.

The most relevant material parameters are provided in Table 1. The results for Young’s modulus
E and yield strength Rp0,2 are in all cases comparable between tension and compression. Only the
batches of 316L and CCM show a certain discrepancy in the yield strength, which is already indicated
in the test curves. TAN was the only material showing a distinct yield limit. For all other materials, the
yield strength is determined at the point of 0.2% permanent plastic deformation (Rp0,2).

Table 1. Overview of material parameters with statistics and comparison of the test results.

Material 1.4441 316L CCM TAN
Type of Testing Tension Compr. Tension Compr. Tension Compr. Tension Compr.

Young’s Modulus E [MPa] 178,714 174,370 179,847 179,085 228,292 220,398 105,000 (lit.) 101,618
Rp0,2 [MPa] 778.8 777.2 760.4 842.0 1102.3 973.9 975 990.3
Rm [MPa] 970.7 n.a. 977.6 n.a. 1323.7 n.a. 1020 n.a.
εUlt. [%] 18.4 n.a. 17.5 n.a 13.4 n.a 13 n.a

No. of samples 3 4 4 6 3 2 (1, lit. 1) 2
1 from literature [10].

For a further analysis a mean curve was taken from each set of resulting test curves, and these
curves were then converted to true stress vs. logarithmic strain (according to Equations (1) and (2), see
also [8]) which is a common and established procedure for the numerical simulation of ductile (plastic)
materials. Figure 3 provides for each material a set of converted curves (continuous) versus the original
curves (dashed).
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Figure 3. Cont.
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Figure 3. Test data displayed as True Stress vs. Logarithmic Strain.

The only material showing a fast fracture without antecedent necking of the tensile sample is the
Co-28Cr-6Mo (CCM), all other materials show necking of the tensile sample during plastic deformation,
which leads to the drop of the tensile curve. This drop is also observed in the converted ‘true stress’
curve due to the purely mathematical conversion process (as the true local stress in the necking area
actually could not be measured).

4. Discussion

When looking at the converted flow curves for tension and compression in the range between
yield strength and tensile strength (true stress vs. log strain), both curves usually run parallel up to the
tensile strength Rm, where necking of the tensile sample begins (at strain Ag). This is especially true for
the two materials 1.4441 and CCM; the stainless steel 1.4441 shows slightly higher strength in tension,
CCM on the other hand has a higher strength in compression. TAN shows a similar behavior, but both
flow curves start rather tangentially from the yield strength and progress with different curvature.

316L showed another behavior than the three previous materials, as necking of the tensile samples
seemed to start shortly after reaching the material’s yield strength. Both converted flow curves rather
had a horizontal envelope in common at approx. 1000 MPa (cf. Figure 3). For this 316L batch even
the yield strength was very different in tension and compression, respectively, see also Table 1. This
‘yield asymmetry’ could also be observed with CCM, though Rp0,2 of 316L was higher in compression,
but for CCM higher in tension. A detailed look at the flow curves of these two materials is shown in
Figure 4 in the transition between elastic and plastic behavior (up to 6% total strain).
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Figure 4. Asymmetry in steel 316L (top) and Co-28Cr-6Mo (bottom).

There are different possible explanations for the yield asymmetry in the 316L stainless steel.
Implant quality 316L has preferred a pure austenitic microstructure. Cold working (or machining and
mechanical treatment with consequent heating/thermal treatment) may lead to a martensite phase
transformation [11]. Martensite is undesirable for implants as it is a highly magnetic phase [12].
Another mechanism which may lead to yield asymmetry is the creation of ‘twin’ crystals during plastic
deformation. The creation of twins is different under tension and compression, which may also lead to
an asymmetric behavior during yielding. Phase transformations then occur simultaneously to grain
boundary sliding. Magnetism could not be observed in the tested samples, hence martensite phase
transformation seems unlikely in the present case.

In order to further reveal the origin of the yield strength asymmetry of 316L, its microstructure
was compared with the microstructure of 1.4441 which does not show a yield strength asymmetry. 316L
and 1.4441 have the same chemical composition, and both materials show a high degree of deformation
twinning in the as-received state, as shown in Figure 5. Alloy 1.4441 has a larger grain size than 316L.
The high density of deformation twins in the as-received state is attributed to large plastic deformations
of both materials. Due to the difference of grain size and the high amount of deformation twinning
it can be expected that both materials have undergone different thermo-mechanical treatments. The
reduced grain size in 316L might be the reason for the yield asymmetry favoring yielding under tension.
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Figure 5. Microscopy using backscattered electrons reveals the microstructures in the as-received state
of (a) 316L and (b) 1.4441.

The different thermo-mechanical treatments can cause textures which can both be responsible
for the yield asymmetry in 316L. Texture might have an impact on the yield strength asymmetry. In
the present case 316L shows a reduced yield strength for tension. XRD and EBSD results show that
316L has a texture where preferentially grains with a <111> orientation are aligned parallel to the
loading direction (Figure 6, left). Twinning for <111> orientated grains is easier for tension than for
compression [13,14]. Thus the observed texture is in accordance with the observed yield strength
asymmetry. However, since both materials 316L and 1.4441 show a <111> texture, texture does not
fully explain the observed asymmetry, as it is not present in the case of 1.4441 (Figure 6, right).

Figure 6. Plot (IPF) and EBSD measurement of the two stainless steel materials.

To obtain insights into the microstructural changes of 316L during compression and tension, XRD
measurements were done. The measurements were done at a cross-section of the round specimens
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which were unstrained and strained to +1.5% and −1.5%. The planes of diffraction of the measurements
shown in Figure 7 had their normal axis parallel to the loading direction. In a texture-free sample the
(200) peak would have around 50% of the intensity of the (111) peak. Thus in the present case, due to
the strong (111) peak, a (111) texture is present as confirmed by the pole figure measurements. The
XRD measurements show that the intensity of the (111) peak decreases for tension and increases for
compression. This indicates that during tension new twins are formed or existing twins grow. On the
other hand during compression it seems that detwinning takes place. That means that existing twins
shrink and thus the measured (111) intensity increases.

Figure 7. XRD measurements of 316L taken at 0% strain, +1.5% and −1.5% strain. The normal vector of
the diffraction planes is aligned parallel to the loading direction.

A final explanation may be that the raw material was inhomogeneous. The rods from which the
316L test samples were machined had an outer diameter of 18 mm, the ones for the 1.4441 samples
10 mm. If the tensile and the compressive test specimen had a differing diameter, and if there was
a changing grain size or phase composition from the core to the outside of the rods, i.e., a radial
inhomogeneity, then machining might lead to a different microstructure through the tested cross
sections of tensile and compression samples, respectively, or it might affect (release) internal stresses.
However, tensile and compressive samples had identical diameters for both material batches.

5. Conclusions

Yield curves were produced for different biomedical alloys by means of tensile and compressive
testing, and the curves were cross-validated. The new compression test method ([3]) was shown to
be reliable and valid, and it can be applied in cases where only small material batches are available.
The occurrence of a yield asymmetry with 316L and CoCrMo could not fully be explained by the
microstructural analysis. However, the presented curves are a valuable input for future research and
applied R&D (implant development) supported by numerical simulation.

Following recommendations can be given for the implementation of plasticity in finite element
modelling: Most of the FE codes will require a flow curve defined as true stress vs. (logarithmic) plastic
strain. It is appropriate to implement an averaged curve from tension and compression test data, if both
results are available, and if the load case can result in tensile and compressive strains (e.g., in a bending
load case). For dominantly compressive load cases it is advantageous to implement a test curve from a
compressive test (e.g., simulation of indentation tests). It is particularly inappropriate to implement
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the declining right branch of the flow curve which results from necking in the tensile samples. It is
simpler and finally more accurate to extend the approximately linear part of the (averaged) flow curve
before necking.
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Abstract: This paper is the first attempt to use the quasi-particle representations in plasticity physics.
The de Broglie equation is applied to the analysis of autowave processes of localized plastic flow in
various metals. The possibilities and perspectives of such approach are discussed. It is found that
the localization of plastic deformation can be conveniently addressed by invoking a hypothetical
quasi-particle conjugated with the autowave process of flow localization. The mass of the quasi-particle
and the area of its localization have been defined. The probable properties of the quasi-particle have
been estimated. Taking the quasi-particle approach, the characteristics of the plastic flow localization
process are considered herein.

Keywords: metals; plasticity; autowave; crystal lattice; phonons; localization; defect; dislocation;
quasi-particle; dispersion; failure

1. Introduction

The autowave model of plastic deformation [1–4] admits its further natural development by the
method widely used in quantum mechanics and condensed state physics. The case in point is the
introduction of the quasiparticle exhibiting wave properties—that is, application of corpuscular-wave
dualism [5]. The current state of such approach was proved and illustrated in [5].

Few attempts of application of quantum-mechanical representations are known in plasticity
physics. They were focused, for example, on direct quantum-mechanical treatment of specific details
of plastic flow mechanisms unexplained by traditional approaches. Thus, Bell [6] paid attention to
possible quantization of elastic modules of materials, and Steverding [7] introduced the representation
about quantization of elastic waves accompanying a destruction process. Later on, this problem in
expanded interpretation was considered by Maugin [8] with application to solitons in elastic media.
Gilman [9] and then Oku and Galligan [10] tried to use the tunnel effect to explain the dislocation
breaking from obstacles at low temperatures when the thermal activation ceased to operate and
estimated the probability of tunneling under these conditions. Petukhov and Pokrovskii [11] presented
the well-founded and exact analysis of this phenomenon for dislocations moving in the Peierls potential
relief. Recently, these problems have been repeatedly addressed in [12].

The other group of studies was apparently initiated by Morozov, Polak, and Fridman in their
crucial work [13]. These authors analyzed the kinetics of growth of a fragile crack in a deforming
medium and postulated the existence of a quasiparticle which they associated with the end of the
growing fragile crack and called crackon. This idea was further used and developed to study
mechanisms of strain-induced microdefects. Thus, Zhurkov [14] introduced the concept of elementary
crystal excitation—dilaton—representing a negative density fluctuation. Olemskoi and Katsnelson [15]
discussed the occurrence of the shear or destruction nuclei they called frustron.
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These works were the first attempts to introduce the quantum representations into plasticity
physics. They were crucial, because the existing plastic flow models in actual crystals with defects
were completely based on principles of classical mechanics. At the same time, the crystal lattice theory
is, generally speaking, quantum-mechanical in character. Such different approaches, obviously, make it
difficult to construct a complete and physically well-founded plastic flow pattern.

The idea of the existence of the quasi-particle corresponding to the localized plastic flow autowave
arises naturally against this background. Some aspects of this promising problem are studied in the
present work. The approach developed here supplements the autowave mechanics of plasticity [1] and
in our opinion, can be fruitful for an explanation of the main features of the plastic flow phenomenon.

The present study initiates the use of a quasi-particle model for the explanation of the localized
plastic flow development in solids. A similar step matches the main directions in physics of solids [5].

2. Materials and Methods

The studies of localized plastic flow were performed for nineteen metals from the 3rd, 4th, 5th,
and 6th periods of the Periodic Table of Elements (see the Table 1). The autowave characteristics
of the localized plastic strain required for an analysis were obtained from visual pattern of their
localized plasticity recorded by the speckle-photographic method (SPM) of analysis of deformation
fields during elongation of flat samples described in detail in [1–4]. SPM has a field of vision of about
100 mm and resolution of about 1 μm comparable to that of optical microscopy. The method was
realized using an Automatic Laser Measuring Complex (ALMEC), which enables one to reconstruct the
displacement vector fields r(x, y) for the deforming flat sample and calculate all the plastic distortion
tensor components—i.e.,

βi j = ∇r(x, y) =
(
εxx εxy

εyx εyy

)
+ωz,

where
(
εxx εxy

εyx εyy

)
is the plastic deformation tensor for plane specimen and ωz is the rotation

about the axis z. The plastic distortion tensor components are: longitudinal extension
εxx = ∂u/∂x, lateral contraction εyy = ∂v/∂y, shear εxy = εyx = 1/2(∂v/∂x + ∂u/∂y), and rotation
ωz = 1/2(∂v/∂x− ∂u/∂y). Here, u = r cosφ and v = r sinφ are, respectively, the longitudinal and the
transverse components of the displacement vector r; φ is the angle the vector r makes with the sample
extension axis, x. A computer program was written for creating data files εxx(x, y), εyy(x, y), εxy(x, y)
and ωz(x, y). The results of calculations can be presented as components of the plastic distortion tensor
distributed over the sample (see example in Figure 1).

Values of the parameters the wavelengths λ and the velocities Vaw were evaluated from the X − t
diagrams (X is the coordinate of the localized strain center in the laboratory system of coordinates
and t is time), as described in [1–4] (see example in Figure 2), and the interplanar distance χ and the
transverse ultrasonic wave rate in crystal Vt values were borrowed from the handbooks.

Table 1. Effective mass values (amu), calculated by Equation (1).

Mass Metals

m(emp)
e f

Cu Zn Al Zr Ti V Nb α-Fe 7-Fe Ni Co
1.8 1.1 0.5 2.0 1.1 1.4 2.3 1.8 1.8 1.9 1.3

m(emp)
e f

Sn Mg Cd In Pb Ta Mo Hf - - -
1.3 4.0 4.2 1.6 1.3 0.6 0.3 4.0 - - -
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Figure 1. Spatial distribution of local elongations εxx over the test sample Al.

 
Figure 2. Localized plastic flow pattern: distribution of local elongations εxx observed for the sample
midline; pattern observed for different times (dark and light bands correspond to active and passive
material volumes, respectively); illustration of the method X− t diagrams for measuring λ and T values.

3. Results

The results presented below and their interpretations are based on the experimental data obtained
previously in the study of the autowave character of plastic flow development in materials of various
kinds [1–4].

3.1. On the Possibility of Introduction of the Quasi-Particle

3.1.1. Mass Associated with the Localized Plasticity Autowave

The first well-known attempt of direct application of quantum-mechanical models for
interpretation of localized plastic flow autowaves was undertaken by Billingsley [16]. He applied the
de Broglie equation m = h/λV, written for the mass, to the characteristics of the autowaves described
in our works [17–19] and demonstrated that the calculated value correlates with the atomic mass of
the investigated metal. In the above equation, h is the Planck constant and λ and V are the autowave
wavelength and velocity, respectively.

129



Metals 2020, 10 , 1446

This idea was further developed by us in [20,21], including an increase in the number of investigated
materials and a more correct interpretation of the autowave characteristics of the deformation process.
In [16], we wrote the de Broglie equation for the mass in the form

m(emp)
e f =

h
λVaw

(1)

where the wavelengths λ and the velocities Vaw of autowaves observed at the stages of linear
work hardening of metals investigated by the present time we took from our investigations of the
development of localized plasticity in nineteen metals. As follows from Table 1, the empirical effective

masses calculated from Equation (1) lie within comparatively narrow limits 0.3 ≤ m(emp)
e f ≤ 4.2 amu

(1 amu = 1.66 × 10−27 kg is the atomic mass unit).

The average effective mass calculated in this way was
〈
m(emp)

e f

〉
= 1.7±0.3 ≈ 2 amu. The comparatively

small variation of this value demonstrates that the masses calculated from Equation (1) are not occasional
in character and are determined by the development of the localized plastic flow.

3.1.2. Nature of the Effective Mass

To elucidate the physical meaning of me f , we took into account that separate regions of a
deforming material are involved in the process of plastic flow in a particular, serial order, one by
one, during propagation of the phase localized plasticity autowave. Hence, the plastic deformation
carriers–dislocations move with acceleration. In this case, the parameter me f can be interpreted as
the attached mass caused by accelerated motion of dislocations in a viscous medium [22]. Such a
medium in the case of plastic deformation can be the phonon and electronic gases of a metal crystal
the viscosity of which was studied by Al’shits and Indenbom [23]. The dislocation motion dynamics
during plastic flow is controlled by the viscous drag force (per unit length) Fvis ∼ BVdisl determined
by the viscosity B of the phonon and electronic gases in a crystal [23]. This is correct, if Vdisl = const,
but when Vdisl � const, the inertial term Fin proportional to the dislocation acceleration

.
Vdisl � 0 is

added to the force Fvis [22]. In this case,

FΣ = Fvis + Fin ∼ BVdisl +
B
ν
· .
Vdisl ∼ B

⎛⎜⎜⎜⎜⎝Vdisl +

.
Vdisl
ν

⎞⎟⎟⎟⎟⎠ (2)

In metals, the contributions of the phonon and electronic gases to the viscous drag coefficient of
dislocations are additive—that is, B = Bph + Be [23]. In this case, from Equation (2), it follows that

FΣ ∼ (BphVdisl + BeVdisl +
Bph

ν

.
Vdisl +

Be

ν

.
Vdisl). (3)

If ν is the frequency of deformation acts, the parameter B/ν can be interpreted as the attached
mass per unit dislocation length. This coincides with the result obtained by Eshelby [24] according to
which the dislocation motion is described by the same equation, as the motion of the Newton particle.
Thus, the third and fourth terms in the right-hand side of Equation (3) are the attached mass—that is,

Fin ∼
Bph + Be

ν

.
Vdisl ∼

(Bph

ν

.
Vdisl +

Be

ν

.
Vdisl

)
. (4)

The factors by the acceleration
.

Vdisl are the attached mass including, obviously, the contributions
of the phonon, mph ∼

(
Bph/ν

)
, and electron gases, me ∼ (Be/ν), respectively. The phonon

contribution depends weakly on the metal nature, because at T > TD, where TD is Debye’s
temperature [25], the metal properties are almost independent of the special features of its phonon
spectrum. Thus, for example, the lattice (phonon) heat capacity at these temperatures is independent
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of the material and temperature [25]. Based on the foregoing, we can set F(ph)
in ∼

(
Bph/ν

) .
Vdisl ≈ const

and mph ∼
(
Bph/ν

)
≈ const. The contribution of electronic gas drag differs from the one described.

According to [23], Be ≈ B0 + κn, where n is the electronic gas density (the number of conduction
electrons per unit cell), and B0 and κ are constants. Then, Equation (4) can be written in the form

F(e)
in ∼

Be

ν
· .
Vdisl ∼ B0 + κn

ν
· .
Vdisl. (5)

In this case, the effective mass is (B0 + κn)ν−1 ∼ n, which is confirmed by the experimental data
presented in [20] and shown in Figure 3. In this figure, by analogy with [20], the dimensionless mass

s = m(emp)
e f /A is used instead of m(emp)

e f , where A is the atomic mass of the corresponding element.
From Figure 3, it is evident that the proportionality s~n is satisfied for two periods of the Periodic Table
of Elements. This result emphasizes a relationship of the macroscopic characteristics λ and Vaw of
localized plastic deformation with the parameters of the electronic structure of a metal. The existence
of the above-considered relationship of the kinetics of moving dislocations with the properties of the
electronic gas is indirectly confirmed, for example, by the data presented in [26–28]. In these works,
the authors have related the electric potential on the surface of a deforming metal sample with the
entrainment of conduction electrons by moving dislocations during jump-like plastic deformation.

 
Figure 3. Dimensionless mass of autolocalizon as a function of the of electron number per unit cell:
� for metals from 4th period; • for metals from 5th period of the Periodic Table of Elements.

3.1.3. Nature of the Effective Mass

Let us consider instead of masses m(emp)
e f found from Equation (1), masses m(cal)

e f = ρr3
ion close in

values but calculated independently from reference data. Here, ρ is the density of the material, rion is
the ionic radius, and r3

ion is the volume per ion in the crystal lattice of a metal. In that case, Equation (1)
assumes the form

λVawm(cal)
e f = (λVaw) · (ρr3

ion) = ς, (6)

relating the characteristics of the autowave processes of the localized plastic flow λ and Vaw,
found experimentally [29], and the material characteristics ρ and rion of the deformable medium,
determined independently by other researchers.

Results of calculations of the parameter ς of Equation (6) for the investigated metals are given in

Table 2. The average parameter 〈ς〉 = 19∑
i=1
ςi/19 =(6.9 ± 0.45) × 10−34 J·s appears unexpectedly close to

the known Planck constant h = 6.63 × 10−34 J·s [30]; moreover, the ratio 〈ς〉/h = 1.04 ± 0.06 ≈ 1.
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Table 2. The values ς, calculated by Equation (6).

Parameter Metals

ς ·
1034

Cu Zn Al Zr Ti V Nb α-Fe 7-Fe Ni Co
11.9 9.3 2.8 6.1 4.9 3.5 4.9 4.6 4.6 6.1 7.1

ς ·
1034

Sn Mg Cd In Pb Ta Mo Hf - - -
8.9 4.9 7.4 9.9 18.4 5.5 3.0 7.3 - - -

The result according to which 〈ς〉 and h are close to each other needs statistical testing. The standard
statistical procedure used for this purpose consists in calculation of the Student’s t-criterion [31]

t̂ =
〈ς〉 − h√
σ̂2
·
√

n1 · n2

n1 + n2
(7)

and its subsequent comparison with the chosen standard criterion t̂0.05 = for a 0.95 confidence level.
In Equation (7), n1 = 19 is the number of ςi values obtained from Equation (6), and n2 = 1. The last
condition means that the Planck constant was determined with high accuracy—that is, with zero
variance [30]. Under such circumstances, the estimated total variance of 〈ς〉 and h is calculated as

σ̂2 =

n1∑
i=1

(ςi − 〈ς〉)2 +
1∑
1
(h− h)2

n1 + n2 − 2
=

n1∑
i=1

(ξi − 〈ς〉)2

n1 + n2 − 2
. (8)

From Equations (7) and (8), it follows that t̂ = 0.046 << t̂0.05 = 2.13, where t̂0.05 is the value of the
Student’s criterion for a 0.95 confidence level, and the number of degrees of freedom is n1 + n2 − 2 = 18.
Hence, the difference between 〈ς〉 and the Planck constant h is statistically insignificant, and the
corresponding samples belong to one general population. Thus, 〈ς〉 calculated from Equation (6)
is the Planck constant, and the plastic deformation phenomenon acquires formal relationship with
the quantum-mechanical phenomena. The possibility itself of determining the Planck constant from
rather rough measurements of the length and velocity of the localized strain-induced autowave seems
surprising. However, this fact suggests that quantum-mechanical laws play a more important role in
plasticity physics than it is customary to consider.

Nowadays, it is natural to postulate the existence of the quasi-particle associated with the
autowave process [5] considering that the effective mass defined by Equation (1) is indeed its mass.
This quasi-particle is called autolocalizon [32,33]. Here, it must be taken into account that the developing
reasons can be applied only to the phase autowave of the localized plastic flow for which it is possible
to measure sufficiently reliably the parameters λ and Vaw [29]. The autolocalization characteristics,
estimated from their relationships with the localized plastic flow autowaves, are given in Table 3.

Table 3. The principal characteristics of autolocalizon.

Characteristic Formula Value

Dispersion law ω(k) ∼ 1 + k2 -
Mass (amu) ma−l ≡ me f = h/λVaw 1.7 ± 0.2

Velocity (m/s) Va−l ≡ Vaw 10–5 . . . 10–4
Momentum (J·s/m) p = �k = h/λ (6 . . . 7)·10–32

3.2. Autolocalizon and Localized Plastic Flow

Now it is necessary to demonstrate that the introduction of the autolocalizon simplifies the
explanation of the special features of plastic flow kinetics, in particular, associated with stress or strain
jumps. Here, we use the quasi-particle approach to reach some of these goals.
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3.2.1. Some Characteristics of Autowave Plastic Flow

First, it is necessary to discuss some details of the Portevin–Le Chatelier effect manifested
through jump-like stress increments and decays of the deforming stress caused by them. This effect is
often observed during deformation of binary Al-Cu or Al-Mg alloys and has been studied in ample
detail [6,28,34–38]. During jump-like deformation, the sample lengthens discretely, and the amplitude
of each jump is determined by the properties of the deforming material.

Analyzing this phenomenon, we use the natural assumption that an integer number m = 1, 2, 3, . . .
of autowaves with length λ fits into the sample length. In this case (see Figure 4), Equation (1) is
written in the form

λ =
h

ρr3
ionVaw

(9)

so that with strain growth, the sample length increases by

δL ≈ λm ≈ h
ρr3

i Vaw
·m ∼ m. (10)

Figure 4. Verification of Equation (9). Values of the wavelengths λ and velocities Vaw were evaluated
from the X − t diagrams (see Figure 2), and values of ion radius ri and density ρ were borrowed from
the handbooks.

Equation (10) can be used to estimate the jump-like sample elongation δL if m = 1,
Vaw ≈ 3 × 10−3 m/s, and ρ·ri

3 ≈ 1.7 amu ≈ 3 × 10−27 kg. Under these conditions, δL ≈ 10−4 m.
This is in agreement with the experimentally observed jump length caused by the Portevin–Le Chatelier
effect [28].

It follows from Equation (10) that the sample length changes discretely. This means that the
jump-like deformation can be considered as a process of fine tuning of the sample length to the existing
autowave pattern of plastic strain localization, and Equation (10) becomes obligatory in character.
In addition, from Equation (10) it follows that δL~Vaw

−1. The data presented by us in [29] demonstrate
that the autowave velocity is proportional to the velocity of the traverse of a test machine—that is,
Vaw~Vmach In this case, a decrease in the jump amplitude should be expected with increasing stretching
rate. There are convincing experimental evidences of such change—for example, in [39] for deformation
of aluminum at the temperature of 1.4 K.

3.2.2. Autowave Length as the Free Path Length of the Autolocalizon

It is well-known that all the quasi-particles are unobservable in principle. Their existence can be
verified by the calculations of the quantities founded experimentally. The example of similar evaluation
is considered below for the length of localized plastic flow autowave.
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In the context of the quasi-particle approach, a deforming medium can be considered as a binary
mixture of quasi-particles of two kinds: phonons and autolocalizons. In this case, quantitative laws of
plastic flow can be explained by the Brownian motion of autolocalizons in the viscous phonon gas.
Such characteristic, as the autowave length λ ≈ 10−2 m, important for autowave processes of plastic

flow localization, can be identified with the length of the resultant displacement R =

(
i=n∑
i=1

r2
i

)1/2

[40]

in the process of the Brownian random walk of autolocalizons in the phonon gas during the time
τ = 2π/ω ≈ 103 s. Thus, according to [40],

R ≈
√

kBT
πBra−l

· τ ≈
√

2kBT
ωBri

(11)

where kB is the Boltzmann constant. If we accept that the autolocalizon radius is ra−l ≈ rion ≈ 10−10 m
and that the dynamic viscosity of phonon gas is B ≈ 10−4 Pa·s [23], then the displacement at Т = 300 K
will be R ≈ 10–2 m—that is, it will agree with the length λ of the localized deformation autowave.

3.2.3. Elastic-Plastic Invariant of Deformation and Autolocalizon

From Equation (11) it follows that the quantity

R2ω
2π
≈ kBT

πBra−l
≈ 1.3 · 10−7m2/s (12)

can be identified with the product λVaw with which it coincides by dimensionality and value [29].
In that case, the basic equation of autowave mechanics of plasticity—the elastic-plastic invariant of
deformation (see Figure 5)—can be re-written as

Ẑcalc ≡ λVaw

χVt
=

kBT

πBrionχVt
≈ hωD

πBrionχVt
. (13)

Figure 5. Verification of the elastic-plastic invariant of deformation (13).

Here, χ is the interplanar distance and Vt is the transverse ultrasonic wave rate in a crystal [1].
Equation (13) is valid by T > TD, when all thermal vibrations have been excited in the crystal, and it is
possible to set kBTD ≈ �ωD.

Evidently, the value Ẑcalc calculated with the help of Equation (13) is defined only by the material
(lattice) constants. Results of its calculations are given in Table 4.

The average calculated value is
〈
Ẑ
〉

calc
= 0.48 ± 0.1, and the ratio

〈
Ẑ
〉

exp
/
〈
Ẑ
〉

calc
= 0.97 ≈ 1—that is,

it almost coincides with the experimentally observed value.
This conclusion is important, because it demonstrates that the elastic-plastic strain invariant is a

versatile characteristic of the deforming medium. Equation (13) can be used to calculate this parameter,
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knowing in fact only one characteristic of the plastic deformation process, namely, the phonon gas
viscosity B. Thus, by introduction of the autolocalizon, some problems of solid state plasticity have
been solved. This proves the correctness of the idea being developed.

Table 4. Calculated and experimentally founded values Ẑ.

Value Metals

Cu Zn Al Zr Ti V Nb α-Fe 7-Fe Ni Co
Ẑcalc 0.75 0.31 1.05 0.55 0.32 0.45 0.33 0.54 0.34 0.35 0.5
Ẑexp 0.42 0.5 4.47 0.33 0.42 0.85 0.44 0.46 0.48 0.35 0.38

Sn Mg Cd In Pb Ta Mo Hf
Ẑcalc 0.65 0.63 0.27 1.18 1.4 2.7 0.4 0.33
Ẑexp 0.48 0.98 0.24 0.78 0.5 1.1 0.2 0.24

4. Discussion

4.1. Elementary Excitation Spectrum of a Plastically Deforming Medium

In general, the deformation processes involve interrelated elastic waves and plastic autowaves
whose interaction provides the basis for the construction of the two-component localized plastic flow
model proposed in [29]. The well-known dispersion relations characterize both components. The close
relationship between the elastic and plastic deformation components allows us to potentially obtain a
common dispersion law for the elastic and plastic strains.

4.1.1. Hybridized Spectrum of an Elastic-Plastic Medium

The model relating the acoustic and deformation processes in solids envisages the possibility
of hybridization of the elementary excitation spectra of the elastic (phonon) and deformation
(autolocalizon) subsystems. The hybridized spectrum can be obtained by overlaying the
linear dispersion relation for transverse phonons ω ≈ Vtk far away from the Brillouin zone
boundary—i.e., at ω→ ωD [25]—and the parabolic curve of the dispersion relation for localized
plasticity autowaves (autolocalizons) [29]. The result of such overlay for polycrystalline aluminum is
shown in Figure 6.

Figure 6. Generalized dispersion law for localized plastic flow autowaves (ω ∼ 1 + k2) and elastic
waves (ω ∼ k ); in the insert, the high-frequency range of spectrum is represented.

The estimate shows that the coordinates of the intersection point of the plots for high-frequency
range are physically justified: ω̂ ≈ ωD ≈ 1013 Hz, and the wave number k̂ = 2π/λ̂ corresponds to
the minimal possible wavelength λmin = λ̂ ≈ 2χ. This confirms the applicability of the plastic flow
description by the interaction of the phonon gas and the quasi-particles (autolocalizons).

The situation near the point of intersection of the linear and parabolic dependences in the
low-frequency region is more interesting at small values of the wave number where the hybridized
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dependence ω(k) has a local maximum. Its existence can be due to dislocations induced by elastic
nonlinear strain of initially defect-free crystal according to the mechanism of condensation of
long-wavelength phonons proposed in [41]. Individual dislocations appearing because of this
process are unstable, but their energy decreases with decreasing or increasing wave number k. We can
assume that the first case corresponds to the formation and development of the low-energy dislocation
structures [42] (in the limit of the localized plastic strain autowaves), and the second case leads to the
origin of fragile microcracks because of interaction of a small number of dislocations.

According to the dispersion relation for autowaves of localized plastic flow, in the vibrational
spectrumω(k) there is a gap at 0 ≤ ω0 ≈10−2 Hz. Since at any temperature �ω0 << kBT, the spontaneous
plastic strain localization should be excited at temperatures as low as is wished. Indeed, the jump-like
deformation associated with flow localization was repeatedly observed at T ≤ 1 K [39]. The hybridized
dependence ω(k) shown in Figure 6 demonstrates its striking similarity to the dispersion curve E(k) of
superfluid helium [5]. The minimum in the parabolic branch of this curve corresponds to the creation
of rotons–elementary excitations in the medium with a quadratic dispersion law. This suggests that
the autolocalizon is an analog of the roton created by the localized plastic strain and determines the
kinetics of this process.

4.1.2. Autolocalizon Dispersion and Effective Mass

Using the dispersion relation for the localized plasticity autowaves [1,29], it is possible to calculate
by the standard method [5] the effective autolocalizon mass corresponding to the localized plastic flow
of the autowave:

ma−l = �
∂2

∂k2
[ω(k)], (14)

equal to 0.1 amu for Al and 0.6 amu for Fe. The effective masses calculated from Equation (1)
me f = h/λVaw and given in Table 1 are 0.5 and 1.8 amu for aluminum and iron, respectively—that is,
they have the same orders of magnitude. These estimates confirm the correctness of the assumption
that quasi-particles (autolocalizons) with an average mass of ~1.7 amu are associated with the aotowave
processes of plastic flow localization. According to [5], the effective roton mass is mrot =0.64 amu.
The close values of the effective masses of the autolocalizon and the roton also testify in favor of the
above-discussed hypothesis.

4.1.3. Condensation of Quasi-Particles during Plastic Flow

There is interesting possibility to refine the nature of the elastic-plastic strain invariant.
Equation (13) for the elastic-plastic invariant written in the form (see Figure 7)

h
λVaw

= 2
h
χVt

(15)

makes sense of the equality of masses, where h/λVaw = ma−l is the de Broglie autolocalization mass
and h/χVt = mph is the phonon mass.

Figure 7. Correlation dependence of phonon and autolocalizon masses for Equation (15).
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In this case, Equation (15) is reduced to the equality ma−l ≈ 2mph that can be considered as the
condition of creation of the autolocalizon with the momentum

pa−l = (ma−lVaw) =
[
2
(
mphVt

)2
(1 + cosα)

]1/2
=
√

2mphVt(1 + cosα)1/2, (16)

as shown in Figure 8. Here, 2 is the angle between the momenta of phonons.

Figure 8. A scheme of autolocalizon generation in a two-phonon process. Pa-l is a momentum
of autolocalization.

The probability of this process was first calculated in [43] to explain the creation of rotons in
superfluid helium. Reissland [44] considered the process of combining two phonons into one in detail.
The process discussed in the present work is close to the quantum mechanism of defect formation
in crystals considered in [41]. It was demonstrated in this work that the creation of dislocations and
dislocation ensembles (dislocation walls, grain boundaries, and other defects) in an ideal crystal is
the result of Bose’s condensation of long-wavelength phonons under the influence of deformation
or temperature.

The foregoing provides the basis for the development of new representations on the stages of the
localized plastic flow of solids. According to these representations, quasi-particles of definite types
correspond to each deformation stage. The collapse of the localized plastic flow autowave observed
at the stage of prefailure of materials described in [29] is a typical example of this condensation
of quasi-particles in a plastic flow. This process can be considered as the production of the
crackon [13]—that is, as the beginning of the failure process.

Experimental data allow us to describe qualitatively the process of generation of structural defects.
At the stage of elastic deformation, only phonons, which redistribute the elastic stresses over the crystal,
exist in the crystal. In the process of phonon condensation, according to the mechanism proposed
by us in [41], the plastic shear quanta (dislocations) are formed in the crystal, thereby giving rise to
the plastic flow. The intermediate stages at which the defects of the above-mentioned types, such as
dilatons, frustrons, or the so-called dislocation precursors [45–47], can precede the stage of dislocation
formation. Finally, the collapse of the localized plastic flow autowaves can be considered as the process
of condensation of the autolocalizons with formation of the destruction quantum–crackon and its
further motion during cracking.

4.1.4. General Meaning of Autolocalizon Introduction

The amazingly close values of the parameter 〈ς〉 calculated from Equation (6) considered above,
which contains the macroscopic parameters λ and Vaw that are determined experimentally, to the
reference value of the Planck constant h indicate a direct relationship of the macroscopic localization
phenomena of plastic flow with the properties of the lattice. With application to the process of localized
plastic flow, this means that the spatiotemporal microstructural inhomogeneity of the deforming
medium (the dislocation submicrostructure) defines much less the measurable macromechanical
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characteristics, such as the flow stress, yield point, work hardening coefficient, and plastic flow
localization pattern than it is supposed in traditional dislocation models.

For these reasons, we can determine that the mechanical properties are substantially controlled
by the lattice characteristics of the elastic medium and hence, by the laws of quantum mechanics.
From this point of view, the obvious importance of Equation (6) relating the quantities that are
traditionally considered as diverse is additionally confirmed. The existence of such relationship
has been conventionally neglected in different plastic flow models; however, Equation (6) explicitly
indicates wrongfulness of this opinion.

4.1.5. Plastic Flow as a Macroscopic Quantum Phenomenon

The consistent development of representations stated above suggests the opportunity to refer
the localized plastic flow to a series of macroscopic quantum phenomena, such as superfluidity,
superconductivity [48], and quantum Hall’s effect [49]. The quantization of the corresponding
characteristics of the medium in these phenomena is manifested on the macroscopic scale and can
be observed directly (Table 5); the macroscopic equations describing these characteristics involve the
Planck constant.

Table 5. Macroscopic quantum phenomena.

Phenomenon
Quantum Characteristic

Value Formula

Superconductivity [5] Magnetic flux Φ = π�c
e ·m

Superfluidity [5] Rotational velocity of vortices in
superfluidity HeII v = �

AHe
· 1

r ·m
Quantum Hall effect [49] The Hall resistance RH = h

e2 · 1
m

Serrated plastic deformation Elongation during deformation jump δL = h
ρr3

ionVaw
·m

Notation: е is the electron charge, с is the speed of light, r is the radius of the vortex, m = 1, 2, 3 . . . .

Formally, the possible quantum character of the plastic flow is indicated by the close analogy
between the forms of dispersion curves for the plastic flow autowaves and for superfluid helium [5]
shown in Figure 6. Moreover, it can be noted that the quadratic dispersion curve of the localized
plasticity autowaves is similar to the spectrum of elementary excitations in a superconductor [5].

The similarity of physical natures of the macroscopic phenomena is because the effects underlying
them do not admit a description in the context of models based largely on the additive properties of
individual strain carriers. For the plastic flow, the dislocations, each of which describes “the shear
quantum”, can be considered as such carriers [50].

There are some additional reasons in favor of the above-considered formal similarity between
the plastic flow and the superfluidity. Indenbom [51] first paid attention to the analogy between
the dislocations and quantum vortices in superfluid helium or quantized flows in the second-order
superconductors. This analogy can be expanded if we consider that in a deforming material, as well as
in superfluid helium, two regimes of motion co-exist with different velocities. First, this is slow motion
of separate volumes accompanying the change of the body shape as a whole, and second, this is motion
of dislocations with high velocities providing this change of the body shape. The high viscosity of
the crystal material η ≈ 106 Pa·s [6] corresponds to the first of them, whereas the low viscosity of the
phonon gas B ≈ 10−4 Pa·s [23] corresponds to the second of them. It is well known that the velocity of
viscous motion is proportional to the applied force and inversely proportional to the viscosity [23].
Hence we can write down that V = F1/B or V = F1/η, where F1 = σL is the Peach-Kehler force
per unit length of a dislocation [52]. For the phase autowave at the stage of linear work hardening,
σ >> 100 MPa, L ≈ λ ≈ 10−2 m, and η ≈ 106 Pa·s. The estimated velocity is in agreement with Vaw ≈
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10−5 m/s observed in [28]. At low viscosity B ≈ 10−4 Pa·s, we obtain Vdisl ≈ 102 m/s, which is in
agreement with the velocity of dislocation motion over the barrier [23].

A similar approach based on the quantum-mechanical representations seems surprising for experts
in plasticity physics, since the spatial scale of the macroscopic plasticity phenomena considerably
exceeds the scales for which the quantum approach is traditionally used. Thus, the ratio of the
autowave (λ ≈ 10−2 m) and dislocation (b ≈ 10−10 m) scales λ/b ≈ 108. However, already on the
dislocation level, the strain quantization seems natural, at least because of the stepwise behavior of the
crystal lattice, and the Burgers vector b can be interpreted as a shear strain quantum, as pointed out by
many authors [24,41,50]. Thus, the use of the wave-quasi-particle dualism for a description of strain
localization processes is quite justified.

5. Conclusions

The close relationship of the plasticity effects with the crystal lattice characteristics during
macroscopic plastic deformation is a possible reason for the existence of quantum effects in
the macroscopic strain processes. In other words, generation of the localized plastic flow
autowaves—self-organization of the deforming medium—is realized in the elastic medium whose
behavior is governed by laws of the quantum mechanics. Therefore, the energy redistribution in the
process of forming the localized plasticity autowaves in the system capable of self-organization is also
subordinate to the quantum nature of crystals.

Experimental results and their interpretation indicate the importance of the consideration of the
close interrelation of defect ensembles with the phonon subsystem in crystals. Such interrelation can
be described correctly both by the mechanism of interaction of waves and autowaves and by the
mechanism of interaction of quasi-particles, phonons and autolocalizons. The two-component model
of the plastic flow developed on this basis correctly explains the correlations of the macroscopic scale
during plastic flow localization in deforming metals and alloys. Thus, the quasi-particle approach
completes the traditional analysis of plastic flow phenomenon. This suggests that auto-localizon can
be used for the development of the physical theory of plasticity.
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Abstract: Jerky flow in alloys, or the Portevin-Le Chatelier effect, presents an outstanding example
of self-organization phenomena in plasticity. Recent acoustic emission investigations revealed that
its microscopic dynamics is governed by scale invariance manifested as power-law statistics of
intermittent events. As the macroscopic stress serrations show both scale invariance and characteristic
scales, the micro-macro transition is an intricate question requiring an assessment of intermediate
behaviors. The first attempt of such an investigation is undertaken in the present paper by virtue of a
one-dimensional (1D) local extensometry technique and statistical analysis of time series. The data
obtained complete the missing link and bear evidence to a coexistence of characteristic large events
and power laws for smaller events. The scale separation is interpreted in terms of the phenomena of
self-organized criticality and synchronization in complex systems. Furthermore, it is found that both
the stress serrations and local strain-rate bursts agree with the so-called fluctuation scaling related
to general mathematical laws and unifying various specific mechanisms proposed to explain scale
invariance in diverse systems. Prospects of further investigations including the duality manifested by
a wavy spatial organization of the local bursts of plastic deformation are discussed.

Keywords: Portevin-Le Chatelier effect; aluminum alloys; local extensometry; avalanches;
self-organized criticality; synchronization; fluctuation scaling

1. Introduction

Plastic flow of alloys is prone to instability caused by the interaction of mobile dislocations with
solute atoms diffusing in their elastic fields, or dynamic strain aging (DSA) [1]. In the mathematical
sense, the instability stems from the DSA transforming the monotonous dependence of the flow stress
on the plastic strain rate, σ(

.
ε), into an N-shaped function with an interval of negative strain-rate

sensitivity (SRS). In tensile tests with a constant applied strain rate,
.
εa, this nonlinearity must give rise

to stress serrations caused by repetitive strain-rate jumps within localized deformation bands [2–13].
Such jerky flow is observed in various alloys and is well-known as the Portevin-Le Chatelier, or PLC,
effect [14]. It is generally agreed that the PLC effect is governed by the DSA mechanism. Were the
motion of all dislocations identical, it would result in periodic relaxation oscillations [2,3]. The intrinsic
strain heterogeneity leads to complex behaviors of real materials.

The application of various methods of time-series analysis to serrated deformation curves
showed that jerky flow cannot be described as random fluctuations about the ideal case of periodic
oscillations [15–21]. Moreover, distinct kinds of complex dynamics arise when experimental conditions
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are varied. In particular, whereas power-law distributions of stress drop amplitudes and durations,
tantamount to scale-free dynamics, are found close to the high-strain rate boundary of the instability
domain, peaked histograms reflecting intrinsic scales of deformation processes are reported for lower
strain rates [15,17]. The latter behavior is neither random but is characterized by various scaling
properties. For example, dynamic chaos was detected for strain rates in the middle of the instability
domain using such model objects as CuAl single crystals and AlMg polycrystals [16,17]. Multifractal
features of stress serration series were identified at all strain rates for AlMg alloys [17,21].

In view of the persisting scaling behaviors, the further step to the comprehension of the plastic
flow in the instability conditions implies similar analyses with resolutions higher than that of the
mechanical tests. At the same time, high-resolution measurements carried out on materials not subject
to macroscopic instability, e.g., by measuring strain bursts during the deformation of microsamples
or recording acoustic emission (AE) in the case of bulk samples, revealed ubiquitous scale-free
statistics testifying to inherently intermittent or, more exactly, avalanche-like deformation processes
in a microscopic scale range [22–27]. Application of the AE technique to jerky flow showed that AE
events occur in the same range of amplitudes both at the instants of stress serrations and during
stable flow, either before the critical strain εcr for the onset of the PLC effect or during reloading
between stress drops [28,29]. Moreover, in contrast to the diverse statistics of stress serrations, the AE
amplitudes obey power-law distributions at all strain rates, in agreement with the avalanche dynamics
conjectured to be general for various materials [30–32]. This apparent contradiction was solved due
to the observation of a correlation between the occurrence of macroscopic stress serrations and the
clustering (chaining) of AE events [29]. Accordingly, taking into account a relationship between the
relaxation oscillations and the phenomenon of synchronization in lattice models [33,34], the transition
from power-law distributions of AE to distinct kinds of statistics of stress serrations was ascribed to
the synchronization of dislocation avalanches, depending on the strain rate [35,36].

An important consequence of this complexity, almost unexplored so far, is that the apparent
behavior may depend on the scale of observation. This statement is also confirmed by another body of
studies, based on optical methods of recording the local displacement field on the specimen surface,
e.g., digital image correlation [37] or speckle interferometry [38], and developed independently of
the research into intermittence. The spatial and/or temporal resolutions of these methods occupy a
somewhat intermediate position with regard to the AE and mechanical tests. It occurs that they reveal
another ubiquitous feature of the macroscopically smooth flow, namely, wavy patterns in the time
evolution of the spatial repartition of plastic strain [39–43]. Moreover, a few recent works reported on
a duality in the sense that the strain-rate bursts obey scaling distributions and, at the same time, are
organized in wavy structures in the spatiotemporal maps [44–46].

As far as the PLC effect is concerned, although the macroscopic instability is caused by exceptional
strain heterogeneities, the intermittence reflected in the evolution of the local strains has not been examined
so far. The studies applying optical (and also thermal) methods of surveying local strains were mainly
focused on the kinematics and evolution of the average parameters of PLC bands [4–12]. In particular,
it was established for various alloys that the fast straining is characterized by a quasi-continuous
propagation of deformation bands along the tensile axis, and this pattern is progressively replaced
by a correlated and finally random occurrence of short-term localized bands when

.
εa is decreased,

although a quasi-continuous band propagation may take place at low
.
εa in alloys with complex

microstructures. [47,48].
The present work was aimed at a statistical analysis of the intermittence revealed in the local

strain-rate maps during jerky flow of a model AlMg alloy. The choice of the object of investigation was
not only motivated by the availability of a large amount of literature data on the properties of jerky
flow and AE for such materials, but also by the robustness of these properties regarding the Mg content
in a range from 2% to 5%. To provide the best basis for the comparison of behaviors on different scales,
experiments were done on the same Al-3%Mg alloy as in [28,29]. The interest to such an analysis is
twofold. On the one hand, both the stress serrations and AE represent a global temporal response of the
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sample to deformation processes taking place in its various parts. It is known that in nonlinear systems,
the relationship between the global and local responses may not be trivial [49]. Therefore, to assess
spatiotemporal behavior is essential for the understanding of the dislocation dynamics during jerky
flow. Besides seizing the spatial aspect, the interest of this method is motivated by its intermediate
time and amplitude resolution, enabling filling the gap between the scale ranges pertinent to the AE
and deformation curves.

The first analysis reported here was realized in the high strain-rate regime. This type of jerky flow
attracts particular interest due to the observation of power-law statistics for both these scale ranges.
Therewith, the respective exponents do not take on the same values for the AE and stress serrations
but are considerably higher in the former case [50]. Thus, it is meaningful to perform the analysis in an
intermediate scale range. Besides, the nature of such scale-free statistics is a matter of current debate.
Alternative interpretations in terms of either self-organized criticality (SOC)—a paradigm of avalanche
dynamics first suggested to explain earthquakes statistics [51,52]—or turbulent flow were suggested to
explain this regime of the PLC effect [15–17,53,54]. Recently, it has been argued that SOC is related to a
general phenomenon known as a fluctuation scaling and stating on a power-law relationship between
the average and variance of fluctuations in complex systems [55,56]. The present study allowed for a
verification of such scaling in the conditions of jerky flow.

2. Materials and Methods

2.1. Experiment

Polycrystalline tensile samples with a dog-bone shape and a 25 × 6.8 × 2.5 mm3 gage part were cut
from a cold-rolled sheet of Al-3% Mg in the rolling direction, solution treated by annealing at 400 ◦C
for two hours and quenched in water. Polycrystalline grains had an approximately equiaxed shape
and size between 30 and 100 μm [57]. Mechanical tests were implemented using a Zwick 1476 testing
machine (Zwick, Ulm, Germany) with a software package testExper. The specimens were deformed at
room temperature at a constant crosshead velocity corresponding to the nominal (i.e., referred to the
initial specimen length) applied strain rate

.
εa = 6 × 10−3 s−1.

The local extensometry technique was described in detail earlier (e.g., [58]) and is briefly presented
below. Using a mask, a sequence of 20 1-mm wide black and white stripes was painted normal to the
tensile axis on one side of the specimen. A charge-coupled device (CCD) Line Scan Sensor ZS16D (H.D.
Rudolph GMBH, Reinheim, Germany) with a sampling frequency of 103 Hz and pixel size of 1.3 μm
was set to record the longitudinal displacements of the intersections of black-and-white transitions
with the centerline of the specimen, xi(t), where index i designates such successive survey points,
starting from the upper edge of the field of vision. Thus, the so obtained spatiotemporal kinematic
field corresponds to the Lagrangian representation [59]. With a 20 mm field of vision of the CCD
camera, this setup implements a series of 20 local extensometers. As the total strain before necking
was about 25% for all samples, usually about 15 upper extensometers remained in the field of vision
during the test.

To avoid any bias caused by a possibly unequal sensitivity of the CCD camera to black-white and
white-black transitions, local strains εi,i+2(t) were calculated using next-nearest-neighbor transitions
corresponding to the same kind of light contrast:

εi(t) = ln
xi+2(t) − xi(t)
xi+2(0) − xi(0)

(1)

where the second index in the strain notation is omitted for simplification. The local strain rate field
.
εi(t) was calculated by the numerical derivation of the local strains.

As described previously [58], digital noise in xi(t) records was reduced using the running-average
technique. It was found that the optimum window size for denoising at the strain rate explored
in the present work corresponds to the average duration of stress drops, about 80 ms. This value
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allowed for revealing strain heterogeneities without smoothing out the steep fronts of such intense
strain localizations as the PLC bands (see the spatiotemporal maps presented below). To avoid
arbitrariness, the same running-average window was used for all the tested samples. It was checked
that a variation of the window size by one-third does not reduce the scaling interval nor lead to a
noticeable biasing of the estimate of the power-law exponent, which would exceed the experimental
uncertainty. The reduction of the window down to 20 ms did not bias this estimate either. However, it
was impractical because of a considerable increase in the scatter of the calculated distributions.

It is noteworthy that although such measurements are limited to one dimension, their advantage
is due to a favorable combination of the time and space resolution. Even more importantly for the
present study, the method based on the direct measurement of the markers positions is free from the
approximations that are inevitable in the techniques using the local strain field calculation from the
displacements of a randomly deposited speckle pattern.

2.2. Statistical and Fluctuation Scaling Analysis

The processing of stress serrations was presented in detail in previous works (e.g., [17,29,50]).
The main precaution consists of taking into account a slow average increase in the size Δσ of stress
drops, which may accompany the material work hardening. Various approaches have been tested
earlier, e.g., the normalization of Δσ values by a polynomial fit of their time dependence, Δσ(t), or,
alternatively, normalization of the deformation curve itself by either a running average or a polynomial
fit. In the present work, the latter approach with polynomial fitting was applied so that serrations were
determined using the curves ς(t) = σ(t)/σ(t).

As will be seen in the next section, the local strain-rate fluctuations did not noticeably evolve
in the strain interval of interest (before the onset of necking). Due to this stationarity, the analysis
was applied directly to the as-measured

.
εi(t) signal. The procedure was the same as in the case of

ς(t) signals, i.e., drops on a
.
εi(t) curve were taken as a characteristic of its intermittence. It was also

checked that the distributions are virtually the same for downward and upward serrations (drops and
rises in the signal).

To simplify the notations, the amplitudes of
.
εi(t) serrations are further designated as A; τ is used

for durations; Δς and Δt respectively denote such characteristics of stress serrations. Hereinafter,
histograms of a variable u, where u refers to any of these four quantities, will be traced for the data
rescaled by their average value, i.e., u/<u>. This reduction makes it possible to compare statistical
distributions of different quantities by bringing together their probability density functions (PDF).
Besides, it allows avoiding arbitrariness in the choice of the bin size by using a unique dimensionless
bin in all cases.

Since power-law statistics mean that large values are rare, various approaches were suggested
to correctly handle the high-scale limit [60–62]. To provide a basis for comparison with the earlier
statistical studies of stress and AE signals accompanying the PLC effect [29,50], the direct method of
calculation of PDF by counting the fraction n(u)/N of events within intervals u ± δu/2 was applied.
Here, n is the number of events within the corresponding bin, and N is the total number of events in
the dataset. The bin size δu was taken as a constant in the intervals rich of events, but it was increased
in the deprived regions until gathering a meaningful number of events (five in this work). Accordingly,
the probability density was calculated to take into account the bin variation,

PDF(u) =
n

Nδu
. (2)

More exact methods of detecting power-law distributions in empirical data have been developed
during the last decade [61,62]. As verified for stress serrations and acoustic emission (e.g., [50]),
the direct calculation with the varied-bin correction renders satisfactory estimates of the power-law
exponents for the signals characterizing the PLC effect, in the sense that the deviation from the values
obtained by the exact methods does not exceed the experimental uncertainty. Accordingly, this method
was adapted in the present work.
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The fluctuation scaling was tested following the procedure described in [56]. The measured
signals, ς(t) or

.
εi(t), are represented by times series with equidistant data points. Let us designate the

studied series as Yi, where i = 1 . . . K, K is the number of data points in the analyzed time interval
T = Kδt, and δt is the sampling time for the corresponding signal. Fluctuations yi of the signal about its
mean value Y are calculated as yi =

∣∣∣Yi −Y
∣∣∣. The scaling analysis is started by covering the interval T

with a grid of k non-overlapping bins with an equal size r. The members of the new time series zk(r)
are defined as the sum of yi-values within the kth bin. The fluctuation scaling is verified if a power-law
relationship between the variance var[zk(r)] and the mean E[zk(r)],

var[zk(r)] ∝ E[zk(r)]
p (3)

is satisfied when the bin size r is varied. In the present work, linear and logarithmic bin expanding
rules were tested and rendered close results.

3. Results

3.1. Spatiotemporal Maps

An example of mapping of the evolution of local strains and strain rates onto a serrated σ(t) curve
is presented in Figure 1. Figure 1a displays stress fluctuations that are typical of the high-

.
εa behavior

of the PLC effect and are often considered as a signature of the propagative nature of deformation
bands. Indeed, the propagation is explicitly demonstrated in plots (c), (b), and (d): Figure 1b shows a
step-wise character of εi(t) dependences for three local extensometers (data for other extensometers, as
well as raw xi(t) records, are not shown); Figure 1c presents the corresponding

.
εi(t) curves. Then, the

ensemble of data for all the local extensometers is used to build up a spatiotemporal map (t, xi(t),
.
εi(t))

in Figure 1d. The propagative character of deformation bands may already be assumed from the
observation that each step in εi(t) and the respective intense peak in

.
εi(t), which reflect the passage

of a deformation band through the ith extensometer, are systematically shifted in time for successive
extensometers. Indeed, the map of Figure 1d visualizes the onward passage of PLC bands through
the entire sequence of extensometers. Their progression is seen as inclined bright lines imaging the
(quasi)continuous shift of the local region with the highest

.
εi value —a PLC band—along the tensile

axis. The nucleation of each band is known to require a rise in the stress, followed by a drop back
to the general stress level when the band has been formed [2–13], as can be traced, e.g., at t ≈ 32.5 s,
when a band is nucleated within the field of vision of the CCD camera. In other cases, when the
band occurs outside the visible part (the nucleation often takes place near the specimen head), the
corresponding stress peak slightly precedes the band entering the field of vision. The lower-amplitude
stress fluctuations between two subsequent stress rise/drop events accompany the deformation band
propagation along the gage length (see [4–12,47,48]).

147



Metals 2020, 10 , 134

Figure 1. Example of synchronization of stress and strain responses. (a) Portion of a stress-time
curve σ(t) corresponding to serrated deformation. (b) Evolution of strains εi(t) measured by three
local extensometers selected near the opposite ends and in the middle of the field of vision of the
charge-coupled device (CCD) camera. (c) The corresponding local strain rates

.
εi(t). (d) The strain-rate

map constructed using 14 local extensometers remaining within the field of vision during the entire
test. xi(t) gives the position of the center of the ith extensometer. The color bars quantify the strain-rate
scale (s−1). The peak

.
εi value within bright lines exceeds

.
εa by a factor of about 7 (cf. [9,47,48]).

The description of high-
.
εa behavior in the literature was often reduced to such sequences of

stress rises and drops, the so-called type A serrations, whereas the intervals of band propagation
were considered as smooth plastic flow (e.g., [63]). In other words, smaller and rather irregular stress
fluctuations accompanying the band propagation were believed to be caused by the experimental
noise and disregarded as a part of the collective dislocation dynamics. However, the statistical analysis
proved that the entire set of stress fluctuations obeys power-law distributions and therefore cannot be
ascribed to random noise [15,17,29]. In the cited works, these small irregularities were interpreted
as being due to fluctuations in the width and velocity of the propagating PLC bands. Figure 1c,d
testify that there may be another source of small stress variations. Indeed, besides the PLC bands,
these plots reveal heterogeneity at finer scales. Even if the bright lines dominate the overall contrast in
Figure 1d, the presence of weaker heterogeneities, which must also contribute to the irregular stress
fluctuations, can be discerned outside them. Although the analysis of stress serrations presented in the
next section does not allow for separating different contributions because of the global character of the
stress response, such discrimination becomes possible by virtue of the local extensometry. The small
strain heterogeneities will be analyzed in Section 3.3.

3.2. Statistics of Stress Serrations

A comprehensive statistical analysis of both the amplitude and time characteristics of stress
serrations for similar alloys was reported elsewhere (e.g., [15,17,29]). The data succinctly presented
below are aimed to verify the conclusions on the scale-free distributions of stress drop size at high

.
εa and,

notably, provide a basis for comparison with the local strain-rate statistics. Figure 2a shows a typical
statistical sample of Δς values for one of the deformed specimens in a time interval corresponding
to a stabilized jerky flow. For each specimen, the processed dataset comprised more than 100 data
points (up to 200 values). It can be recognized in the figure that the data scatter is denser in the range
of small Δς and becomes rarer far from the ordinate origin. This qualitative observation agrees with
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the results of the statistical analysis illustrated in Figure 2b. Indeed, the examples of PDF bear witness
to a power law, PDF(Δς)~Δς−β, over more than two orders of magnitude of Δς, with β values close to
1, in consistence with the β-range between 1 and 1.5 reported in the papers cited above.

Similar to [17,29,54], the power-law nature of the probability law was also verified for the
durations, PDF(Δt)~Δt−α, although in a narrower scale range, this lack is common with the previous
investigations, perhaps because of a typically worse time resolution provided in mechanical tests in
comparison with the force resolution. According to the constraints imposed by such probability laws,
it was also verified that the conditional averages of Δς for a given Δt (here designated as [Δς]) and the
corresponding duration values are also related by a power law, [Δς]~Δth, with the exponents satisfying
the scaling relation [64]:

α = h(β − 1) + 1. (4)

A quantitative example of such a relation will be illustrated below for the case of the local
strain-rate serrations.

 
(a) (b) 

Figure 2. Example of processing of stress serrations. (a) Scatter of normalized values of stress serrations,
Δς, in a time interval corresponding to a stabilized jerky flow for one of the samples. (b) Examples of
probability density functions (PDF) of Δς serrations for three samples. A dashed line is traced as a guide
for the eye to show the slope β of the power-law distributions in log-log coordinates. The least-square
evaluation renders the following mean and standard deviation for the estimates of β: 1—1.00 ± 0.07;
2—1.03 ± 0.07; 3—1.04 ± 0.06.

3.3. Statistics of Local Strain-Rate Serrations

Similar to the representation of stress serrations, Figure 3a gives an example of the scatter of
amplitudes A of

.
ε oscillations (index i is omitted when its omission is not misleading) gathered by one

local extensometer in a strain range corresponding to jerky flow, i.e., beyond εcr. Figure 3b displays
examples of PDF functions for two extensometers in different cross-sections of the same specimen.
Although the extensometers gather information from short sections of the deforming material, as
contrasted with the global stress response, the

.
ε signals are significantly richer due to the high sensitivity

of the CCD camera to the markers’ displacements. The analyzed datasets typically comprised 350
to 550 events. The other two charts present examples of verification of the power-law behavior for
the probability of durations and the scaling relation between the amplitudes and durations of the
events (see Section 3.2). As in the case of stress serrations, the power-law is much less convincing
for the durations than for amplitudes. The direct reason for this, namely the worse accuracy of time
measurements, was mentioned above in relation with the analysis of stress serrations. However,
this problem was also reported for the AE that provides a much higher time resolution [29]. It was
suggested that the deviations may also be caused by a possible overlapping of dislocation avalanches,
whereas amplitude distributions were shown to be rather robust with regard to this effect [65]. Despite
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these difficulties, the estimates of various exponents satisfy Equation (4) quite well (see the legend of
Figure 3).

The local extensometry also provides an additional view on the relationship between local and
global aspects of the plastic flow heterogeneity and intermittence. When strain is calculated using
distant markers, i.e., on a larger base covered by more than one local extensometer, the number of the
recorded

.
ε bursts gradually decreases with increasing the width of such a “composed” extensometer.

The decrease may be caused by two factors. First, the time intervals during which the PLC bands
propagate through the extensometer and overshadow the weak heterogeneities become more important.
Their fraction with regard to the total examined period is more significant the larger the extensometer.
Second, the local

.
ε bursts occurring quasi-simultaneously in its different sites would give rise to a sole

event in the resultant signal. As a matter of example, the number of bursts recorded over a 16-mm
wide base is typically less than 200. It should be underlined that although it is similar to the number of
stress serrations, the information provided even by the largest extensometer is not equivalent to that
stemming from the stress signal. In particular, most of the PLC band nucleation events occur outside
the field of vision of the CCD camera.

Figure 3. Processing of the local strain-rate responses. (a) Scatter of amplitudes of local strain-rate
fluctuations, A, gathered by a local extensometer in the middle part of a specimen. The time interval
corresponds to jerky flow (ε ≥ εcr). (b) Examples of PDF for two separate extensometers. Similar to
Figure 2, a dashed line is traced as a guide for the eye. The least-square evaluation renders the following
mean and standard deviation for the estimates of the power-law exponent: 1—1.09 ± 0.04; 2—1.11 ±
0.04. (c) PDF of durations τ of serrations recorded by the extensometer 1 of Figure 3b. The respective
slope α = 1.05 ± 0.11. (d) Amplitude–duration relationship for the same extensometer. The slope
calculated for the conditional averages h = 1.65 ± 0.04.

Figure 4 brings together examples of PDF for three kinds of signals, namely, stress (cf. Figure 2b),
strain rate from the shortest extensometer (cf. Figure 3b), and from the largest 16-mm wide extensometer.
The latter was calculated using a similar procedure as in the case of the local extensometers. Namely,
the highest amplitudes of

.
ε bursts occurring during the PLC band propagation and characterized by

an intrinsic scale were disregarded. It can be seen that although the three kinds of signals highlight
different aspects of the intermittence, the corresponding PDF dependences are quite close. Similar to
the case of stress serrations, some tendency to a shallower slope for

.
ε fluctuations measured by large
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extensometers, as compared with the individual ones, could be conjectured. However, the accuracy of
the estimates does not allow for a certain conclusion.

Figure 4. Comparison of PDF for local and global responses: 1—Strain-rate response over a 16-mm
base, β = 1.05 ± 0.06. 2—One local extensometer, β = 1.11 ± 0.04. 3—Stress serrations, β = 1.03 ± 0.07.
Dashed line is traced for the local extensometer; dash-and-dot line for stress serrations.

Since the examined
.
ε fluctuations occur all over the surveyed gage length and also at any time, it

would be enlightening to perform a similar analysis before the onset of the PLC instability. Indeed,
similar fluctuations already occurred in the seemingly elastic region, thus corroborating an important
role of microplastic flow on the early stages of deformation [66]. However, the number of events
recorded by each local extensometer in relatively short intervals before εcr was statistically insufficient.
To provide a significant dataset for a given specimen, the data were collected from all its extensometers.
Figure 5 presents the calculation results in two ways. Curves 1 and 2 display examples of PDF obtained
for one of the specimens at the macroscopically elastic stage and at the stage of the elastoplastic
transition, respectively. Curve 3 shows the PDF obtained using the entirety of these data for both
stages together. The data bear evidence that the dependences obtained for ε < εcr also obey a power
law with the exponent close to 1.

Figure 5. PDF dependences for local strain-rate fluctuations before the onset of the Portevin–Le
Chatelier (PLC) instability: 1—Macroscopically elastic part, β = 1.04 ± 0.05. 2—Elastoplastic transition,
β = 0.98 ± 0.04. 3—The totality of data for ε < εcr, β = 1.06 ± 0.04.

To verify that this result is not biased by the blending of data from various local extensometers,
the same procedure was applied to the interval ε ≥ εcr, and the statistical analysis was repeated for the
blended dataset. The results of such processing are presented in Figure 6, which are to be compared
with the dependences for individual extensometers in Figure 3b. The PDF shows clear power-law
behavior with β = 1.04 (±0.05), which agrees with the results illustrated in Figure 3b, thus corroborating
the validity of the analysis of blended datasets in the interval ε < εcr.
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Figure 6. Example of a PDF calculated for one of the specimens using data from all extensometers
(ε > εcr). The dashed line indicates the slope β = 1.04 ± 0.05.

Figure 6 highlights two additional nuances that are vaguely discernible in the dependences
obtained for individual extensometers. First, it shows a clear cutoff at large scales, which is typical
of empirical power-law statistics and is considered as evidence for the existence of natural limits of
scale-invariant behavior in real systems [30,31]. Second, the cutoff is preceded by a bump leading
to a distinction between small events obeying scale invariance and large events deviating from
the extrapolation of the power-law dependence. Hints to this deviation can also be recognized in
Figures 3–5, but it has become clear due to blending of many signals. Such a deviation from SOC-like
behavior at large scales was reported for earthquake models and attributed to the triggering of a
sequence of avalanches, providing that the triggering avalanche is powerful enough to store sufficient
elastic energy [67].

3.4. Fluctuation Scaling

Figure 7 presents examples of verification of the fluctuation scaling for two samples and different
kinds of signals. To provide a general view, both linear (Figure 7a) and logarithmic (Figure 7b) bin
expanding rules are illustrated. The major result of this section is that the entirety of examples allows
for a conclusion that all dependences exhibit fluctuation scaling in a significant scale range.

(a) (b) 

Figure 7. Examples of fluctuation scaling for two specimens. (a) Linear bin expansion. (b) Logarithmic
bin expansion. The designations are unique for both charts: 1—Deformation curve; 2—Large
extensometer; 3 and 4—Examples for local extensometers. The units are not shown explicitly and
simply correspond to the processed signal. All slope values are close to 1.8 (see the body of the text),
except for the large-scale behavior of curve 1 in Figure 7b, corresponding to p = 1.34 ± 0.05.
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Some specific observations are noteworthy. The analysis of deformation curves leads to a
distinction of two qualitatively different cases, one corresponding to a single power-law dependence
and another revealing a crossover between two power laws. Curve 1 in Figure 7a illustrates the first
case. Indeed, it verifies the power-law behavior for the normalized deformation curve ς(t) over the
entire scale range covering three orders of magnitude of the mean value. The index p (see Equation (3))
is approximately 1.86 ± 0.02. A similar slope is also observed at small scales for another sample
presented by the example of Figure 7b, while the right-hand part is characterized by a lower p value,
p = 1.34 ± 0.05. The

.
ε signals from both narrow and large extensometers show one power-law in each

case, with a gradual deviation at large scales. Moreover, the respective slopes agree well with each
other and also with the former of the above values obtained for ς(t)-curves. More exactly, the totality
of estimates varies between approximately 1.73 and 1.9.

4. Discussion and Conclusions

As recalled in the Introduction, the high-
.
εa plastic flow of alloys prone to the PLC effect

is characterized by power-law statistical distributions on multiple scales. Whereas for materials
non-subject to plastic instability, avalanche-like intermittent behavior is only visible on fine scales
revealed by the AE [25–27] or the local extensometry technique [44–46]; it engrosses deformation
curves in the DSA conditions, giving rise to a macroscopically unstable deformation. At the same time,
there is no consensus in the literature on the PLC effect as to which of the observed serrations should be
taken into consideration in the analysis of jerky flow. In the early research, only stress rises followed by
sharp drops were believed to pertain to plastic instability at high

.
εa (type A serrations). Such serrations

are caused by the nucleation of new PLC bands which then propagate along the specimen. Taken alone,
they would be described by some characteristic scale [63]. However, the deformation curves display
a much larger spectrum of stress fluctuations that, taken together, manifest power-law distributions
of both amplitudes and durations [15,17,29,50]. Recent studies showed that the AE accompanying
the plastic deformation of alloys obeys such critical-type statistics at all strain rates, even though the
decrease in

.
εa results in a transition to peaked distributions of stress drops [29,36]. Therewith, the AE

does not only occur at the instants of stress drops but also during reloading periods corresponding to
macroscopically stable deformation. It was conjectured that at high

.
εa values, the avalanche mechanism

of plastic flow may extend to a wide scale range, including serrated deformation curves. However, the
AE and stress fluctuations pertain to two outermost scales, while a large intermediate interval remained
unexplored so far. One of the major aims of the present work was to fill this gap by virtue of the local
extensometry technique. Moreover, this approach opens a way to assess the spatiotemporal dynamics
of dislocations, as compared with the only temporal aspect revealed by the AE or deformation curves.
The first results obtained for an AlMg alloy confirm the scale-free statistics of plastic deformation and
therefore corroborate the hypothesis of a critical-type dislocation dynamics controlling the plastic flow
of dynamically strain-aging alloys in the high-

.
εa regime.

At the same time, two aspects of experimental observations need clarification. First, Figure 3 bears
evidence that not all events obey scale invariance, but there exists a distinction between small and large
.
ε-bursts. Whereas scale-free distributions characterize small events, strong bursts corresponding to the
passage of the PLC bands reveal a characteristic scale. Second, whereas the power-law exponents are
close to 1 for the bursts of σ and

.
ε, the literature data report on β values varying from about 1.5 to

almost 3 for the AE energy in the same experimental conditions [29].
Let us first consider the former question. To explain the transition from scale-free to peaked

distributions of stress drops with a decrease in
.
εa, a hypothesis of the coexistence of SOC and

synchronization phenomena was advanced in [29]. It can be highlighted as follows. A PLC band
generates a strong strain heterogeneity giving rise to incompatibility stresses that may relax via small
deformation events. At low

.
εa, small events effectively smooth out the heterogeneities. As a result,

many sections of the specimen reach the instability threshold (the top of the N-shaped SRS-function)
quasi-simultaneously, and a new intense PLC band is formed. Its development is stopped by the
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elastic unloading of the machine-specimen system, this process being the main factor determining the
characteristic scale of stress serrations. This reasoning was confirmed by the observation of bimodal
distributions of stress drops at low

.
εa, i.e., a power law with β about 1 at small scales and a peak for

deep stress drops. Very similar behavior was found in seismicity models revealing SOC for small
earthquakes but also characteristic catastrophic earthquakes [67]. The data of Figure 6 in the present
paper testify to a general character of the trend to scale separation. Indeed, the

.
ε signal does not

only display a characteristic scale corresponding to the PLC bands, but the smaller events also show
a tendency to a deviation from the scale-invariant distribution and the formation of a bump on its
right-hand side, which is clearly revealed by summing signals from many local sources.

The application of the AE method to the PLC effect provided an explicit explanation of the scale
separation [29,36]. It occurred that despite the coexistence of two scale ranges for stress fluctuations at
low

.
εa, there is virtually no distinction between the amplitudes of AE events occurring at the instants

of stress drops and during smooth reloading. Instead, a distinction occurs between their durations
because stress serrations are accompanied by clustering of the AE, giving rise to events in a millisecond
range for deep stress drops, while individual AE events accompanying the reloading have durations
in the microsecond range. Based on these observations, abrupt serrations with a characteristic size
were attributed to a brief synchronization of many dislocation avalanches, proceeding through their
successive triggering [29,36,50].

It is clear which changes to this picture may occur when
.
εa is increased. The faster loading must

be accommodated by a more intense plastic deformation and, therefore, lead to a globally stronger
clustering and also the superposition of dislocation avalanches, as was confirmed by virtue of the
AE technique [29,36]. At the same time, the smoothing of the recurrent heterogeneities becomes less
efficient because of shorter reloading periods, so that there constantly exist some parts of the material
close to the instability threshold. This has two consequences. On the one hand, the strain gradient
sustained at the front of the deformation band leads to its propagation along the specimen. On the
other hand, avalanches of any size may occur, and the critical behavior of both amplitudes and the
durations of events is virtually observed in the entire scale range spreading from the AE to stress
serrations. This conjecture is consistent with the observation of scale-free distributions of

.
ε fluctuations

in the present work. However, it should be noted that there is an essential difference between the
global σ and AE responses and the local

.
ε response. Namely, while the scale separation disappears

from the former ones due to a strong overall plastic activity, it persists in the local response because of
the recurrent propagation of the PLC bands.

The supposed effect of
.
εa conforms to the observation made in [29] that the exponent β of

AE distributions is lesser at higher
.
εa, which is in agreement with the higher probability of larger

(composed) events. Moreover, as pointed out in [50], the same factor may be responsible for lower β
values in the case of σ and

.
ε in comparison with the AE, because the time resolution of these signals

does not allow resolving microsecond events. Thus, it may be suggested that the β values correctly
characterizing dislocation avalanches in the DSA conditions are provided by the AE technique, while
the apparent value of 1 rendered by σ and

.
ε signals should be considered with precaution. Thus, it

would be challenging to verify this suggestion by drastically increasing the time resolution of the
local extensometry.

Another challenge concerns the choice between the specific mechanisms that can be responsible
for critical-type statistics. The entirety of the results discussed above, including the literature data, may
be explained within the framework combining the SOC and synchronization phenomena. In particular,
it explains the paradox noticed in the first studies of statistical distributions of stress serrations. Namely,
SOC models require vanishing driving rates [51,52]. Even if the high

.
εa values necessary for type A

behavior still correspond to quasi-static tests, the fact that peaked distributions were found at slow
loading and scale-invariant behavior at a relatively fast loading remained puzzling. The above results
bear evidence to SOC manifestations in the entire strain-rate range corresponding to the PLC domain,
although the synchronization of dislocations avalanches gives rise to scale separations depending on

.
εa.
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An alternative interpretation of scale-free statistics was proposed in [53,54] on the basis of the
analysis of Lyapunov exponents [68] for type A serrations in a physically-based model of the PLC
effect, considering the reactions and dynamics of distinct dislocation ensembles. It was found that the
Lyapunov spectrum, which quantifies the rate of divergence of close trajectories of dynamical systems,
is similar to that characterizing turbulent flow [69,70]. However, while this model successfully predicts
the transitions from the states with a characteristic scale of stress serrations to scale-invariant behavior
when

.
εa is varied, it does not account for the scale separation at the same strain rate.

In view of these alternative hypotheses, the question of the specific mechanism of the critical-type
behavior of the PLC effect needs further investigation. A special interest deserves a conceptually
different approach to the power-law statistics proposed recently [55,56]. Among various issues, it
conjectures that the SOC-type behavior may be related to a general feature of complex systems of various
nature, which are known as fluctuation scaling or Taylor’s law (after investigations in ecology [71]) and
are expressed by Equation (3). Moreover, it states that although numerous system-specific dynamical
models were proposed with more or less success in each discipline, the statistical power laws emerging
in such systems may be explained on a general basis as stemming from the mathematical convergence
toward the so-called Tweedie distributions [72]. In the spirit of this concept, fluctuation scaling was
verified in Section 3.4 for the experimental data obtained in the present paper. It was found that both σ

and
.
ε signals obey approximately the same power law with the slope p about 1.8, which is similar to

p-values obtained for some sandpile models [55,56]. From the general point of view, this result attests
to the behavior of the PLC effect at high

.
εa as belonging to a certain class of complex dynamical systems.

Namely, the exponent 1 < p < 2 corresponds to compound Poisson–gamma distributions, which are
particularly used to mimic the process of capturing clusters in ecological data such as biomasses [73].
Therewith, the observation of a crossover in the scaling for some deformation curves (Figure 7b)
may be indicative of multifractality [74], which is in consistence with multifractal behaviors detected
for the PLC effect [17,21,28]. More specifically, since the sandpile models serve as a paradigm of
SOC, the above-mentioned similarity between p-values corroborates the conclusion that the statistical
distributions presented here are compatible with the conjecture of SOC-like behavior. On the whole,
the first results of such an analysis attest to the PLC effect as a candidate for the investigation of the
applicability of these general concepts to collective behaviors in plastic deformation.

In summary, it may be concluded that the local extensometry brings information that is
complementary to the AE or mechanical tests. This new angle of view of the problem of plastic
heterogeneity requires extending such investigations to a wide strain-rate range, in particular, to verify
alternative interpretations of a strikingly rich pattern of various dynamical regimes of plastic flow
in model binary alloys. Furthermore, this approach is also promising for investigations of plastic
deformation in such novel materials as metallic glasses and high-entropy alloys that are also prone to
jerky flow [75–77].

Finally, although the present paper was devoted to a statistical analysis of the intermittence of
plastic flow in the conditions of plastic instability, a qualitatively different phenomenon arising from
these experiments is worth noting. Similar to several other materials for which similar data have been
reported [44–46], the scale of observation provided by the local extensometry reveals both intermittent
and wavy patterns of local strain heterogeneities beyond the PLC bands (see Figure 1). Therewith, the
intermittence manifests itself as localized bright spots corresponding to

.
εi bursts, and the arrangement

of such bursts along inclined straight lines reveals the propagation of strain localizations. Such a duality,
unstudied so far, presents a great interest for the understanding of correlations between temporal
instabilities and spatial heterogeneities in the system of crystal defects.
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Abstract: Strain localization in aluminum alloys can cause early failure of the material. Manganese
and zirconium dispersoids, often present in aluminum alloys to control the grain size, have been
found to be able to homogenize strain. To understand the effects of dispersoids on strain localization,
a study of slip bands formed during tensile tests is carried out both experimentally and through
simulations using interferometry and discrete dislocations dynamics. Simulations with various
dispersoid size, volume fraction, and nature were carried out. The presence of dispersoids is proven
to homogenize strain both is the experimental and numerical results.

Keywords: plasticity; slip bands; discrete dislocations dynamics; Al-Cu-Li alloys; Mn dispersoids;
Zr dispersoids

1. Introduction

The aerospace industry has largely benefited from the development of optimized
aluminum alloys, which could maximize the performances of structural parts for minimum
weight. Recently developed Al-Cu-Li alloys optimally meet these challenging aeronautic
specifications requiring both improved strength and damage tolerance [1,2].

One important factor influencing damage tolerance is strain localization. In the case
of cyclic loading, it has been shown that planar slip can be advantageous to prevent fatigue
crack propagation, since it leads to more reversibility in the accumulated plastic strain [3].
On the other hand, in the case of monotonic loading, strain localization should be avoided,
since the stress concentration induced at the grain boundaries could lead to premature
failure. Strain localization is influenced by different microstructural parameters, such as
hardening precipitation, solid solutions, grain size, and orientation (texture).

In Aluminum alloys, Li addition leads to the formation of the strengthening δ’-Al3Li
precipitates, while the addition of Cu together with Li leads to the additional formation
of the more stable T1-Al2CuLi phase. Both phases are reported to be shear-able, but the
shearing mechanism differs—leading to significant differences in the strain localization
process [4]. These localization mechanisms and the resulting properties regarding of fatigue
life and toughness have been widely studied [5,6].

Certain addition elements like Zr, Mn, Sc, or Cr are used to control the grain morphol-
ogy. They precipitate into dispersoids, which consist of fine intermetallic particles [7]. They
typically form during the homogenization process, and their size varies from 10 nm to 200
nm depending on their nature and the homogenization parameters [8]. The main purpose
of the dispersoids is to pin the grain boundaries to control grain size and recrystallization
of the material during the various stages of the alloy fabrication and to form, but they also
play a major role in toughness and fatigue resistance as they influence strain localization
through their interactions with dislocations [1,2,8,9]. This paper investigates the effect
of these dispersoids on strain localization. In this work, we will focus on Mn and Zr
dispersoids as they are the most commonly found in commercial Al-Cu-Li alloys.
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Manganese dispersoids are present in aluminum alloys in the form of Al20Cu2Mn3
ellipsoidal particles that can be up to 500 nm long by 100 nm large. Manganese being a
eutectic, manganese dispersoids are concentrated at the grain boundaries [8]. In rolled
samples, manganese dispersoids are mostly aligned and can act as nucleation sites for
precipitates [10]. Manganese dispersoids are reported to spread and homogenize the
plastic strain in aluminum alloys, increasing the toughness of said alloy [11]. Manganese
dispersoids are incoherent with the matrix, which can lead to microvoid coalescence
reducing the fracture toughness [11–13], and thus, counterbalancing the positive effect of
manganese on the mechanical properties of the alloys.

Zr-containing dispersoids, in the from Al3Zr, vary in number density within a given
aluminum alloy, creating precipitate rich and precipitate free zones (PFZ) around the cast
grain boundaries, due to zirconium’s peritectic behavior in aluminum alloys. These disper-
soids are usually sphere-shaped with a radius of about 20 nm [14]. Due to their small size,
when the applied strain is increased, they are first by-passed by the dislocations forming
Orowan loops around them, and they are later sheared when the applied strain/stress
becomes high enough [15]. Zirconium effect on strain localization is less known. Due to
the small size of the zirconium dispersoids, their effect on strain homogenization is less
prominent than the manganese dispersoids [16].

Strain localization is associated with the formation of slip bands inside the material.
The slip bands are shown by the slip traces printed on the surface of the specimen [17,18].
They are formed by dislocation activity in close slip planes. Due to its high stacking fault
energy (150 mJ·m−2 [19]), the thermally activated cross-slip mechanism is very frequent in
Aluminum. This mechanism augments the number of slip systems available to achieve
large strains, which increases the ductility. Obviously, the cross-slip probability strongly
affects the mechanisms of slip band multiplication. As an example, double cross-slip will
give the possibility of dislocations to by-pass particles. It will also grow the slip bands by
forming Koehler sources.

As said before, the formation of slip bands is controlled by many parameters related
to the alloy composition. Texture and loading direction are other influential parameters.
For aluminum alloys, texture components Brass, Copper, R, and S form more slip bands
than Goss, Q, or P [20]. It has also been shown that the orientation of the tensile axis has
an effect on the evolution of the slip bands [21]. AFM observation of Al single crystal has
demonstrated that [001] uniaxial loading leads to a saturation in the slip band activity
after a few percent of plastic strain. Inversely, [112] loading direction leads to continuously
increasing localization in the slip bands.

This paper aims to elucidate the individual contribution of Mn and Zr dispersoids
on the strain localization in Al-Cu-Li alloys using a combination of experiments and
simulations. The experiments consist of tensile tests performed on Al-Cu-Li alloys specially
designed to contain the investigated Zr and Mn dispersoids. The simulations are performed
using 3D Discrete Dislocations Dynamics (DDD). DDD is indeed the ideal tool to address
the complex dislocation/particle interaction mechanism [22], since it intrinsically contains
the physics of the cross-slip mechanism as opposed to Finite Element of full field Fast
Fourier Transform modeling, which could only take care of cross-slip via ad-hoc equations
in the constitutive model. As an example, DDD simulations have successfully shown the
role of particles in strain localization in fatigue [23].

The effect of each type of dispersoids, their size, and volume fraction on the strain
localization will be investigated and compared to experiments. Both for the simulations
and the experiments, the slip localization is measured from line profiles.

2. Materials and Methods

2.1. Experimental Procedure

Four alloys of the Al-Cu-Li alloy family in T8 condition were used in this study.
The strain localization of “high Li” extruded products and “Low Li” rolled products
was examined containing either only Zr dispersoids, or both Zr and Mn dispersoids, as
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indicated in Table 1. The microstructure was mainly unrecrystallized for all of them, and
they presented typical deformation texture. Four samples were tested as described in the
following table.

Table 1. Composition of the four samples investigated in the experiments.

Name
Zr Mn wt%

Dispersoids Dispersoids Li Cu Mn Zr

Low Li, Zr-Mn Yes Yes 0.9 4.3 0.33 0.13
Low Li, Zr Yes No 0.9 4.3 - 0.14

High Li, Zr-Mn Yes Yes 1.6 3.0 0.31 0.14
High Li, Zr Yes No 1.6 3.0 - 0.14

In order to observe slip bands, sample surfaces were mirror-polished prior to their
deformation to eliminate the sample’s preexisting roughness and to ensure that the slip
bands measured are independent of the surface state. First, 160 mm long aluminum samples
were machined in a TOP 11 shape with a gauge length of 54 mm and a 12 mm × 2 mm
section. The samples, coming from rolled products, were machined with the observation
plane corresponding to the L-TL plane. This surface orientation was chosen due to the
larger grain size in that particular plane, which visualizes longer slip bands.

To study the effect of dispersoids, other factors impacting the slip band formation
need to be controlled. Textures found in rolled samples are limited, making it easier to find
grains with similar orientations on different samples.

A tensile strain is then applied along the L direction of the samples at a displacement
rate of 20 mm/min up to a total tensile strain of 4.3%. This strain was chosen to be high
enough to induce visible slip bands at the free surface but low enough for the sample to
not be overrun by slip bands.

Once the slip bands are visible, the samples are observed with differential interference
contrast microscopy to qualitatively study the slip band organization and to select zones of
interest to be further studied. As shown in Figure 1, slip bands are easily observed, and
their direction and intensity depend on the grain orientation. These selected zones were
first scanned in EBSD to determine the grain orientations. Once the orientation was known,
those zones were mapped using an interferometer to quantify the roughness induced by
the slip bands at the surface. Ten profiles perpendicular to the slip bands are then taken
and analyzed in each grain.

Figure 1. Typical slip bands formed in Aluminum alloy after 4.3% straining observed with differential
interference contrast microscopy.
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It is worth mentioning that the signal treatment of the interferometry results was kept
to a minimum to ensure slip bands remained visible. Finally, the mean height of profile
elements (Pc) is calculated together with the spacing between the bands Psm (See Figure 2).
The magnitude of the strain localization is finally quantified by the local shear, γloc, defined
as the ratio Pc/Psm.

Figure 2. Interferometric mapping of a High-Li aluminum alloy. (a) 0.8 mm × 0.8 mm 3D surface mapping. (b) In plane
projection of the surface heights. (c) zoom on a 100 μm × 100 μm area. (d) Typical line profile is taken perpendicular to the
slip bands from which the quantities Pc and Psm are evaluated.

2.2. Dislocation Dynamics Simulations

DDD simulations are performed using the edge-screw model TRIDIS [24] with the
material parameters corresponding to Aluminum recalled in Table 2. Note that this code is
precisely the one that was previously used to address dislocation-precipitate interactions
in Reference [22], and applied to the case of fatigue of Waspaloys [23] and creep of Ni
Superalloys [25].

Table 2. Discrete dislocations dynamics (DDD) simulation parameters.

Burgers Vector Shear Modulus Time Step Cross-Slip Parameters

b [Ang.] G [GPa] δt [s] τIII [MPa] V [b3] T [K]

2.86 32 10−10 32 350 300

The DDD principle is detailed in Reference [24], but the main ingredient used in
TRIDIS are recalled hereafter. Dislocation lines are discretized in piece-wise edge and screw
segments. At each time step, the effective resolved shear stress is evaluated at the segment
centers as the superposition of the applied stress and the internal stress induced by all the
segments contained in the simulated volume. In the present simulations, the applied stress
tensor is taken as homogeneous and corresponds to a pure tensile load.

The enforced boundary conditions aim at representing an isolated grain embedded
in a much bigger polycrystalline sample. The grain boundaries consist of sets of facets
that prevent the dislocations from escaping the simulated box. Here the simulated volume
consists of a spherical grain of 5 μm of diameter approximated by a set of 24 facets. The
particles are also geometrically defined by sets of triangular facets acting as impenetrable
obstacles. The simulated volume contains distributed spherical particles representing
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zirconium dispersoids, and ellipsoidal particles representing manganese dispersoids, as
shown in Figure 3.

Figure 3. Initial and final configuration of a typical DDD simulation of a spherical volume of 5 μm diameter containing
an assortment of small spherical zirconium dispersoids, elongated manganese dispersoids, and Frank Read dislocation
sources. Strain localization will be estimated from the plastic steps printed in the probing plane inserted in the middle of
the simulated volume.

The load is applied as a homogeneous tensile stress tensor applied along the [−101]
direction. The loading sequence is defined as a plastic strain rate monitoring mode at a
rate

.
εp = 80 s−1 along the tensile direction. Such a strain rate is low enough to allow the

dislocations to reach an equilibrium position during the entire loading stage.
For each particle type, the dimension and volume fraction are varied. Configurations

containing one type, both types, or no particles are systematically studied to understand
the effect of each particle individually and together. To determine the effect of each particle,
simulations are always carried out with the exact same configurations, i.e., with the same
positions of the dispersoids and dislocation sources. Simulations with the same parameters
but different configurations are used to determine the reproducibility of the results. The
ranges of the investigated parameter values are presented in Table 3, together with the
associated figures where the simulation results are presented.

Table 3. Range of the particle radii and volume fractions investigated in the DDD simulation
campaign. The last column gives the figure where the results will be presented.

Dispersoid Volumic Fraction Size (μm) Results

Zr 0.00003 0.02 Figure 6
Mn 0.00045 0.5 × 0.2

Zr 0 0
Figure 7Zr 0.00003 0.025

Zr 0.00003 0.035

Zr 0 0

Figure 8Zr 0.00002 0.025
Zr 0.00003 0.025
Zr 0.00004 0.025

Mn 0 0
Figure 9Mn 0.00045 0.5 × 0.2

Mn 0.00045 0.075 × 0.3

Mn 0 0

Figure 10Mn 0.0003 0.5 × 0.2
Mn 0.00045 0.5 × 0.2
Mn 0.0006 0.5 × 0.2
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Particles are placed randomly in the volume, while avoiding overlapping each other.
As for the manganese dispersoids, their orientation is randomly selected. While the random
orientation does not represent what is usually found in aluminum alloys, it allows the
results to be independent of the particle orientation.

Each simulation is run for about 15,000 steps to ensure that the plastic strain cumulated
along the [−101] loading direction is larger than 10−4. Analyses are all performed for a
cumulated tensile strain of 0.01%. Since the amount of cumulated plastic strain simulated
by DDD is much smaller than in the experiments (a few percent), the absolute values of the
local shear cannot be compared. However, we think that the slip localizations found by
DDD are the premises of the slip bands that will further develop for higher strains. Thus,
DDD can help in the understanding of the strain localization mechanism.

The applied stress direction is [−101], which simultaneously activates the dislocations
from the slip systems C1, C5, A2 and A6 (See Table 4 for the slip system nomenclature).
Those four slip systems are gliding on two different slip planes (A and C), which is
evidenced at the probing plane by the two families of slip traces (see Figure 4).

Table 4. Slip system nomenclature following Schmid and Boas notation [26]. The letter indicates the
slip plane normal, and the number corresponds to the Burgers vector direction.

Vector C1 C5 A2 A6

normal (−1−11) (11−1) (−111) (−111)

Burgers [011] [1−10] [0−11] [110]

Figure 4. Typical plastic steps printed on the 5 μm × 5 μm probing plane defined in Figure 3 after
10−4 cumulated plastic tensile strain obtained by a DDD simulation. Scale is in nanometers. Colors
correspond to the projection of the dislocation displacement field along the plane normal [0−11].

Initially, all simulations contain the same number and type of dislocations, but those
are placed in the volume randomly according to the particle position to avoid overlap.
There are 24 dislocations initially introduced in the volume, six dislocations per each of the
four active slip systems C1, C5, A6, and A2. These dislocations are 260 nm long, and their
initial direction and type are randomly selected. A typical DDD simulation lasts 2.5 h on a
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single Intel Xeon E5405 processor with eight threads. Once the simulations are completed,
a 5 μm squared (0–11) calculation plane is inserted in the volume (see Figure 3) to visualize
the spreading of the plastic strain inside the grain. The calculation plane is discretized into
a grid of 100 × 100 points.

As shown in Figure 4, the plastic steps printed by the dislocations crossing the probing
plane are then calculated using the optimized formula of the dislocation’s displacement
field from Fivel and Déprés [27]. Finally, five line profiles crossing the slip traces are
extracted from the surface relief to quantify the magnitude of the strain localization. The
local shear is then estimated at each grid point as the derivative of the profile height with
the coordinate along with the line profile.

3. Results and Discussion

3.1. Experimental Results

Interferometric mapping results were post-treated, and ten surface profiles were
extracted for each studied grain. For each profile, the mean height of the profile elements,
Pc, is calculated. Pc represents the height of the slip band extrusions. The higher Pc is, the
more the strain is concentrated on said bands. For each sample, the measurements were
performed on a Brass oriented grain to avoid introducing an additional effect, due to the
activation of different slip systems.

Results are pictured in Figure 5. For both alloys, samples containing both Zr and
Mn dispersoids have lower Pc values, showing that the simultaneous presence of both
dispersoids tends to homogenize the plastic strain. With the addition of Mn dispersoids,
the extrusion height is reduced by 14.7% for Li-Zr alloys and 18.8% for Li-Zr alloys showing
that Mn is beneficial to reduce slip activity in slip bands.

Figure 5. Average slip band extrusion height on slip bands measured for two aluminum alloys with
two configurations of dispersoids on brass grains using interferometry.

Unexpectedly, it is also observed that the high lithium alloys have a slightly lower
strain localization magnitude than the low lithium alloys (8% reduction for Li-Zr and 3.7%
for Li-Zr-Mn). As discussed before, δ’ (Al3Li) precipitates are supposed to promote strain
localization so that the measured effect might come from either a precision error, or from
the fact that we study a single specific orientation, for which T1 (Al2CuLi) precipitation
might be significantly sheared. Other material parameters, including the effect of Cu
and Li content in solid solution, are not taken into account in this study and could also
impact strain localization. It can be mentioned that other grain orientations can lead to the
activation of different slip systems, and thus, different slip patterns.

Table 5 gives the measurements of the local shear (defined as Pc/Psm) in the case of
High Lithium alloys. Here, again, it is found that the presence of Mn dispersoids reduces
the strain localization by 28%.
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Table 5. Local shear is estimated from the experimental measurements.

Measured Quantities No Mn With Mn

Psm (μm)
Standard Deviation

5.3
1.6

6.3
3.3

Pc (μm)
Standard Deviation

81.8
18.6

69.8
26.3

Local shear = Pc/Psm 15.4 11.1

3.2. Simulation Results

As for the simulations, three simulations are first conducted to verify if the experimen-
tal observations could be reproduced by DDD. A first simulation containing both Zr and
Mn dispersoids is performed. Then a second simulation is run with only the Zr dispersoids,
and finally, a third one is run with only Mn dispersoids. Size and volume fractions are
given in Table 3.

Five line profiles taken along direction [0−11] are then extracted from the probing
plane. The profile direction is chosen so that it is parallel to the slip traces of systems C1
and C5 so that it will give an estimate of the dislocation activity on systems A2 and A6,
similarly to the experimental procedure where the line profile was perpendicular to a given
slip band orientation.

The histograms of the local shear are plotted in Figure 6 together with the cumula-
tive percentages, which better indicate the average values. The simulation with only Zr
dispersoids admits an average local shear of γloc = 0.001. The local shear measured from
the simulation with only Mn dispersoids is decreased by 30%: 0.0007, and when both
particles are present, the local shear reduces to γloc = 0.0002 which is 5 times less than
the case of solely Zr dispersoids. It can be concluded that the combined presence of Mn
and Zr dispersoids is the most efficient manner to reduce the strain localization, which is
consistent with the experiments presented in the previous section.

 

Figure 6. Local shear distribution from DDD simulations at ε = 0.01% for three comparable simulations to identify the effect
of each dispersoid type. For each of the three simulations, the position of the dispersoids and Frank–Read sources are kept
the same.
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In order to identify the effect of the volume fractions and the size of each dispersoid
type, a DDD simulation campaign is now conducted. To access more data, the post-
treatment of the surface relief is slightly modified: The direction of the line profiles is
chosen so that it can intercept both slip traces. Figure 7 shows the effect of the size of the Zr
dispersoids for two values of the sphere particle radius: 25 nm and 35 nm and for the given
volume fraction fv = 0.00003. The case of a simulated volume without any dispersoids is
also plotted for reference (labeled as 0 In Figure 7). It is shown that the smaller particle
size (R = 25 nm) has nearly no effect on the local shear distribution. On the other hand,
the bigger particles induce a decrease of the local shear by a factor 2. It can be concluded
that there is a minimum particle size that can reduce strain localization. This could be
explained by the role of the cross slip, which can be triggered on the Orowan dislocation
loops deposited around the particles. When the particles are bigger, the curvature of the
dislocation loops is bigger, and the cross-slip probability is increased. The dislocations
emitted from the Frank–Read sources can then populate new slip planes that homogenize
the plastic strain.

Figure 7. Local shear distribution from DDD simulations showing the isolated effect of Zr dispersoid size (fv = 0.003%).
Radii are in μm. Label 0 refers to a simulation without any particle.

In Figure 8, the size of the Zr dispersoid is fixed to 25 nm, and the volume fraction is
now increased to verify if there is a possibility to modify the local shear when the number
of small Zr particles becomes high enough. It can be seen that for this small size of the
Zr particle, changing the volume fraction from 0.002% to 0.004% has no effect on the slip
dispersion. It is concluded again that the particle radius is too small to have an impact on
the dislocation activity.

The same investigations are now conducted in the case of the Mn dispersoids, without
the presence of Zr. Figure 9 shows the effect of the particle sizes on the local shear
distribution for a fixed volume fraction fv = 0.045%. It is shown that increasing the particle
size from 200 nm × 50 nm to 300 nm × 75 nm does not affect the strain localization. Looking
at the simulation details, we could observe that the Orowan loops deposited around the
particles are difficult to unpin because of the large shape factor of the Mn particles. When
cross slip happens, the cross-slip segments are immediately in contact with the dispersoid
and cannot escape. This locking phenomenon is enhanced when the size of the dispersoids
is increased. In other words, the Mn dispersoids play the role of forest obstacles for the
dislocation motion so that the strain is spread in the volume.
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Figure 8. Local shear distributions from DDD simulations, showing the effect of Zr dispersoid volume fraction for particle
size R = 25 nm. Label 0 refers to a simulation without any particle.

Figure 9. DDD simulation results from Mn dispersoid size on the local for fv = 0.0045%. Sizes are in μm. Label 0 refers to a
simulation without any particle.

Finally, the volume fraction of Mn dispersoids is increased with a particle size fixed to
200 nm × 50 nm. Results are given in Figure 10 where it is shown that all the investigated
volume fractions have a similar positive effect on the strain localization. One possible
explanation is that when particles are more numerous, the decrease of strain localization
induced by cross-slip and by-passing the particles is counterbalanced by the fact that the
possible paths for the dislocations to move between the particles is limited in number, thus
leading to strain localization within these paths.

Although the geometry of the Zr and Mn dispersoids is largely different, their impact
on slip band behavior is similar. As mentioned beforehand, both dispersoids have a similar
effect on the dislocation activity: The bigger they are, the more they can spread the plastic
strain. The elongated shape of the Mn dispersoids is locking the by-passing mechanism by
cross-slip. For zirconium spherical dispersoids, they can easily be looped by dislocations
and promote cross-slip for the bigger sizes, which also leads to strain dispersion.
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Figure 10. DDD simulation results from the volume fraction of Mn dispersoids on the local shear for a size 200 nm × 50 nm
for the ellipsoid particles. Label 0 refers to a simulation without any particle.

4. Conclusions

In aluminum alloys, dispersoids affect the strain localization; the combined presence
of Mn and Zr dispersoids in Al-Cu-Li alloys reduces the plastic strain amplitude in the slip
bands by 28%. Discrete dislocations dynamics simulations show the same trend as in the
experiments. It is also found that there exists a critical size for the Zr dispersoids that can
lead to a decrease in the strain localization. Because of their aspect ratio, Mn dispersoids
always tend to homogenize the plastic strain, thus reducing the strain localization. The
best results should be achieved when both zirconium and manganese dispersoids are
present in the alloy. The effect of the Mn volume fraction is negligible, but large Zr particles
(R > 35 nm) are recommended.
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Abstract: A silver-based nanoporous material was produced by dealloying (selective chemical
etching) of an Ag38.75Cu38.75Si22.5 crystalline alloy. Composed of connected ligaments, this material
was imaged using a scanning electron microscope (SEM) and focused ion-beam (FIB) scanning electron
microscope tomography. Its mechanical behavior was evaluated using nanoindentation and found to
be heterogeneous, with density variation over a length scale of a few tens of nanometers, similar to the
indent size. This technique proved relevant to the investigation of a material’s mechanical strength,
as well as to how its behavior related to the material’s microstructure. The hardness is recorded as
a function of the indent depth and a phenomenological description based on strain gradient and
densification kinetic was proposed to describe the resultant depth dependence.

Keywords: nanoporous metallic alloy; nanoindentation; hardness; strain gradient

1. Introduction

Metallic nanoporous (NP) materials present interesting perspectives owing to their nanometric-size
microstructure and large specific surface (extremely high open-porosity level). From the first feature,
mechanical strength, unique plasticity, and multiphysical properties are expected [1–5]. The second
is related to surface interactions and chemical reactivity, with perspectives in domains such as
electrochemical energy storage and conversion, catalysts [6,7], biomedical implants [8], and filtering
and purification [9]. Based on its design and fabrication, this novel material family has been the
subject of intensive fundamental research [10–12], as well as characterization at various levels of
microstructure, topology, and morphology [13–16].

In this article, we report on the mechanical behavior of silver nanoporous materials via the analysis
of instrumented nanoindentation measurements. Materials were produced by dealloying (selective
chemical etching) of the Ag38.75Cu38.75Si22.5 crystalline alloy, initially studied for its electrocatalytic
properties [17]. Usually, indentation testing provides a preliminary insight into the mechanical
properties of materials (strength, ductile/fragile character, toughness) [18,19]. For crystalline solids,
the strength σs is simply derived from the Tabor rule for metallic alloys: H ≈ 3σs where H is the
Vickers hardness.
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The specific feature of indentation investigated in this paper was the dependence between the
hardness measured and the indent size [20]. Such dependence can be explained using the Ashby
rule: a non-symmetric plastic deformation (as in an indentation where deformation is confined)
generates a strain gradient in the deformation zone. For crystalline solids, the strain gradient leads to
extra hardening, which Ashby described in terms of geometrically necessary dislocations (GND) [21].
Using this approach, Nix and Gao showed that the depth-dependence hardness for crystalline and
ductile solids follows the rule: H/H0 =

√
1 + h∗/h where h∗ is a material constant and H0 the hardness

at a hypothetical infinite indent size [22].
For non-crystalline solids, the rule is obviously different since dislocations are nonexistent. In

metallic glasses, deformation is localized in thin shear bands leading to the absence of macroscopic
plasticity when they are tested using tension or compression. However, plasticity can be observed in
the indentation owing to the confined character of the testing. Similarly with crystalline solids, a depth
dependence of the hardness was observed but with a slightly different rule: H/H0 = 1 +

√
h∗/h [23].

Whatever the material and defects involved in the plastic deformation, it was observed that the
Ashby rule on strain gradient is generalized. As far as a strain gradient is defined, size dependence
can be analytically expressed as this was demonstrated for metallic glasses [24]. Here we report
on depth dependence in the nanohardness testing of nanoporous silver, with the rule that follows:
H/H0 = 1 + h∗/h. A phenomenological description of the nanohardness variation with regard to
indent size was proposed, fitting the experimental observations. The modeling was based on the strain
gradient induced by local densification, which was related to ligament rearrangement. This analysis
provided a proper evaluation of the mechanical strength of nanoporous metal, as well as giving an
insight into material dynamical evolution during deformation.

2. Experiments

2.1. Formation of Nanoporous Materials

Ag-based polycrystalline alloy with the composition Ag38.75Cu38.75Si22.5 was prepared by arc
melting pure Ag, Cu, and Si (99.99% purity, Alfa Aesar, Kandel Germany) in a helium atmosphere.
Five successive melting steps were employed to ensure alloy homogeneity, and then rapid solidification
casting of the alloy was performed on a rotating copper wheel. Foils with thicknesses ranging from 20
to 60 μm were produced by varying the rotating speed of the copper wheel. As reported in [17], the
cast ribbon analyzed by X-ray diffraction was constituted by fcc Ag(Si) solid solution and hexagonal
Cu3Si. Dealloying of the as-cast ribbons was performed at ambient temperature using two chemical
etchants [25]: 13.4 wt% 2.12 M of HNO3, and 0.67 M of HNO3 and 0.64 M of HF in deionized water.
The second etchant was used to accelerate the dissolution of Si atoms, resulting in a more regular
microstructure and composition of the matrix, minimizing the content of residual Si and Cu elements.
Full details of the materials’ synthesis and characterization are reported in [17].

The materials were characterized using SEM (Zeiss Ultra 55, Oberkochen, Germany) complemented
by tomographic imaging, using focused ion-beam slice cutting and image reconstruction (Carl ZEISS
Cross Beam NVision FIB, Ga ion with an acceleration voltage of 30 kV and current intensity of 300 pA).
After each etching, imaging of the freshly exposed material cross-section was recorded using the
SEM. The stack of images was processed to generate the dissected volume of interest, producing a
three-dimensional representation of the alloy’s microstructure. To capture the nanostructure with an
average length scale of about 50 nm, slices of 5 nm were cut (voxel of 5 × 5 × 5 nm3) and the thickness
analyzed was of the order of 250 nm.

Reconstruction of the 3D images were performed using ImageJ/Fiji (NIH, Bethesda, MD, USA)
and Avizo software (Thermo Scientific, Waltham, MA, USA) as well as a homemade plugin [26].
Nanoindentations were performed using a HysitronTI950 (Bruker, Eden Prairie, MN, USA) with a
Berkovitch diamond tip. The surface topography and indents were imaged using the scanning-probe
microscopy mode of the nanoindenter, which consisted of scanning the sample surface with the
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nanoindenter tip. Focused ion-beam (FIB) cutting of an indented zone of the material was also
performed for detailed analysis and modeling.

First, quasistatic measurements, with a maximum load of 900 and 10,000 μN, a loading rate of
100 μN/s, and a holding time of 2 s, were performed. Second, dynamic mechanical analysis (DMA),
which is also known as the continuous stiffness measurement (CSM), was used to continuously measure
hardness and the Young modulus as a function of depth. A constant strain-rate loading of 0.15 s−1 was
applied—up to a maximum load of 10,000 μN—and was maintained for 2 s, after which unloading at a
constant rate was then performed. The oscillating frequency was set to 220 Hz.

In this study, two nanoporous materials NP1 and NP2 were compared. They were dealloyed for
45 and 180 min, respectively, and showed different structures in terms of density, ligament size, and
connectivity. The average size and diameter of ligaments was estimated from a series of measurements
using the Straight Line function of ImageJ and statistical analyses. The apparent porosity level was
estimated from the surface of the SEM image after thresholding and evaluation of a fraction of the
white pixels present. With these materials, multiple nanoindentation experiments at various positions
on the samples’ surface were carried out and averaged. Finally, the hardness and Young’s modulus
were determined using the Oliver–Pharr method [27].

2.2. Nanoporous Structure

Comparison between nanoporous metals NP1 and NP2 (Figure 1) was made in an attempt to
reveal structural characteristics involved in nanoindentation size effect. This approach was consistent,
as the materials showed different sizes in their microstructure but similar microstructural characteristics
(morphology and topology). From a nanoporous formation, where coarsening is controlled by the
surface diffusion, self-similarity (scale independent microstructure) is usually expected, although the
existence of phenomenon is still subject to debate. Here the self-similarity is the ability of the material
to coarsen during dealloying while maintaining its structural characteristics. This is seldom observed,
however, because the time scale of the experiments usually places them in a transient domain of the
process [16].

 
Figure 1. SEM (scanning electron microscope) secondary electron images of a nanoporous (NP) material
and corresponding threshold patterns as a binary generated image: (a) NP1, dealloying time of 45 min
and (b) NP2, dealloying time of 3 h.
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A FIB tomographic image of a nanoporous silver similar to NP1 and NP2 showed the
microstructural complexity in terms of morphological and topological characteristics. This type
of analysis provided us with the local surface shape (Figure 2a) and curvedness level (Figure 2b), and
from them a surface shape–curvedness statistical distribution (Figure 2c). This was a useful structural
function of the material for properties analysis (shape index and curvedness are calculated from the
principal curvatures κ1 and κ2)

S =
2
π

arctan
κ1 + κ2

κ1 − κ2
and C =

√
κ2

1 + κ
2
2

2

These parameters were of particular interest in the understanding and modeling of an NP
material’s properties. For example, its curvature ended up affecting its mechanical properties through
the Laplace law and chemical properties through the Gibbs-Thomson law, with a dominant effect
at the nanoscale level. This complexity makes it rather difficult to prove a real similarity between
different specimens.

However, to help in our work, simple visual comparison was made between NP1 and a rescaled
NP2, though differences in porosity did not allow for full adaptation. The scaling factor used was the
ratio between different porosities, and the superimposition in Figure 3 makes a convincing case for
near-similarity, at least on the 2D SEM images.

Figure 2. Tomographic perspective views of the nanoporous silver via focused ion-beam (FIB) scanning
electron microscope slice cutting and computer image reconstruction. Color mapping surface according
to its classification of shape index (a); and curvedness (b); (c) 2D view of the surface shape and
curvedness distributions.
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Figure 3. Visual evaluation of self-similarity between NP1 and NP2 by superimposition after rescaling
NP1 by a factor of 1.2.

2.3. Nanoindentation

With a probe (indentation tip) size in the order of the length scale of the cellular microstructure,
interpretations and quantitative analyses from the nanoindentation of nanoporous materials were
challenging and subject to debate. Preliminary studies were undertaken to evaluate these length–scale
issues. A series of more than 50 nanoindentations in quasistatic condition were performed on NP1 and
NP2. A selection of 4 different indentations taken from the NP2 series and compared with a bulk silver
sample were as seen in Figure 4. Every loading curve (see the inset of Figure 4) exhibited 2 successive
extended bumpy regions (diffuse serrations).

The first region had a penetration depth of ~30 nm, which was probably not relevant and likely
due to the Berkovitch tip edge imperfections (roughness, irregularities). The second one extended
from about 50 to 150 nm, which was of the order of the NP microstructure length scale and over which
the tip was alternately probing pores and ligaments. Despite fluctuations in the loading curves, it is
interesting to observe from Figure 5, that an indent was already clearly formed at an approximate
depth of 70 nm in the bumpy region, and likely useable throughout our statistical series analyses.

Figure 4. Selection of indentation curves on various positions of the sample of NP2. The inset shows
the details of the diffuse serrations at an early stage of deformation and its comparison with bulk silver.

As usual, an apparent (size-effect affected) hardness was drawn from the maximum load Fmax and
depth h using H = Fmax/24.5× h2, averaged over the indentation series for NP1 and NP2, respectively,
and thus giving HNP1 = 250 ± 2 MPa and HNP2 = 240 ± 10 MPa. From the unloading part of the curves,
Er =

dF
dh × 1

C
√

Amax
, which was a good estimation of the elastic modulus of the material. The modulus

values were ENP1 = 20.7 ± 3.2 GPa and ENP2 = 12.7 ± 5.5 GPa for NP1 and NP2, respectively.
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Figure 5. Scanning probe microscopy of the surface, and profile image of the slow-rate quasistatic
indent, which reached a final depth of 70 nm after elastic relaxation.

The depth dependence was investigated using the DMA mode of the indenter, allowing us to
keep an ongoing measurement of the hardness as a function of depth. In Figure 6a,b, the overall plot
of H as a function of 1/h showed a maximum value at about 30 nm, which was of the order of the
lower limit for a relevant measure due to tip imperfections (Figure 6a,b). H as a function of 1/h was
suggested as the best linear plot for the test series seen in Figure 6c,d. For h larger than 40–50 nm,
which corresponded to the upper part of the bumpy region, the data are plotted Figure 6c,d for NP1
and NP2, respectively. From the linear fit, hardness at a hypothetical infinite indent size (h→∞ )
when none were affected by size effect was obtained respectively for NP1 and NP2, H01 = 58 ± 10 MPa
and H02 = 163 ± 18 MPa. The slope (α) related to the size-effect sensitivity informed other deformation
dynamics of the NP metal: α1 = 67 ± 8 GPa·nm and α2 = 47 ± 15 GPa·nm for NP1 and NP2, respectively.

 
(a) (b) 

 
(c) (d) 

Figure 6. Plots of series of hardness as a function of 1/h from dynamic mechanical analysis (DMA)
analyses for NP1 (a,c) and NP2. (b,d). (c,d) are zoomed in at a low 1/h of (a,b). Linear fittings of the
curves were plotted as straight or dashed lines on (c,d).
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3. Depth Dependence of Hardness

An analytical description of the size effect in a phenomenological approach was proposed to
interpret the hardness value in the experimental data. The hardness H was the ratio of the applied
load F to the area A(h) produced by the penetration of the indent in the materials. F was arbitrarily
fixed and the resulting area A(h) was such that H became a function of h. This could be written as the
sum of a constant hardness and an additional variable hardness dependent on h:

H = F
A(h) =

F0(h)
A(h) +

f (h)
A(h)

with, and ∀h, F0(h)
A(h) = H0 , H→ H0 or f (h)

A(h) → 0 for h→∞ (1)

The projected area was A(h) = Ah2 with A = 24.56 for Berkovitch indent geometry (Figure 7).
Then, the local force on an infinitesimal surface dA(h) at height h was derived as:

d f (h) = σ(h) × 2Adh (2)

where σ(h) was the local back stress induced by the confinement of the deformation. The Ashby rule
regarding strain gradient [21] predicted the stress σ(h) at height h, following: (σ(h)/σ0)

2 = lγ/h,
where σ0 and l were the stress and length scale parameters, respectively.

Figure 7. Scheme of a Berkovitch indent with the strained zone denoted in grey. (a) Top view,
(b) cross-section view of a third of the indent. The parameters used in this modeling are as shown:
indent shear X applied at height h, and the resulting shear displacement x of an NP infinitesimal
thickness e. σ(h) was the resulting back stress produced at height h from the strain gradient.

For highly porous materials made of plastic ligaments, densification was the main deformation
mechanism when compressed. In this way, the strain gradient could be readily attributed to the
variation in densification along the indent surface. This assumption was verified qualitatively by
cutting an indent using the FIB technique and analyzing ligament distributions at various heights.
This was imaged by plotting the greyscale distribution, along with a line scan for two different zones
of the indent (Figure 8). We observed that the frequency of the greyscale variation was larger at more
profound locations than when compared to the zone just below the sample surface.
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Figure 8. SEM image displaying the FIB (focused ion-beam) cross-section of an indent made on an
NP1, up to 1.4 μm in depth. The insets show grey-level variation along lines 1 and 2 that correspond to
the less and more densified regions of the deformed volume under the indent.

Our modeling consisted of defining the pertinent expression for the Ashby strain gradient to the
insert in Equation (1) of the hardness. At the height h, strain was defined as γ = 1 − x

X (as seen in
Figure 7a,b). X was the displacement produced by the indent, and x the resulting displacement in the
material. The difference between X and x was due to densification which varied as a function of h
as shown on Figure 8. In a thin slice e at height h, densification was evaluated via volume variation.
Considering the relative density D = ρ/ρ0, with ρ and ρ0 representing, respectively, the volume
weight of the nanoporous and bulk materials, it can be shown that (The width of the impacted zone
was proportional to h, with p a proportionality factor depending on the indent shape, v the volume of
the densified region (Figure 7), and with v = phex, at h, the volume variation in the thin slice e was
dv = phedx. Dividing by the weight of the slice and introducing the volume weight ρ it becomes, and
eventually dD

D = dγ)
dD
D

= dγ (3)

The densification, which was a positive variation of D in the porous media, could be attained
by the densification dynamics of powders proposed by Shapiro and Kolthoff et al. [28]. It has been
conjectured that the porosity (1−D) variation as a function of the applied pressure follows a 1st-order
kinetics law, which at a constant stress rate can be written:

− d(1−D)

dσ
= k(1−D) (4)

and with (3): dγ
dσ = k( 1

D − 1).
Deriving the Ashby rule, 2σ(h)dσ(h)/σ0

2 = ldγ/h gave us an equation for the back stress generated

by the densification gradient: σ(h) = σ0
2l

2h × dγ
dσ(h) . Combined with Equation (4) gave us:

σ(h) =
σ0

2lk
2
× ( 1

D
− 1) × 1

h
(5)

It was easily shown (see [24]) that f (h)
A(h) = σ(h), and with Equation (1) the hardness dependence in

relation to the indent depth was eventually derived:

H = H0 +
σ0

2lk
2
× ( 1

D
− 1) × 1

h
(6)
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As observed experimentally, this relation shows the dependance the material hardness on the
inverse of the depth considered.

4. Discussion

The mechanical properties of foam, cellular, or porous materials as a function of their porosity
were systematically examined with respect to the Gibson–Ashby scaling law on hardness and elastic
modulus [29]. In our analyses, the hardness of NP1 and NP2 could not be evaluated because the
hardness of the material (Ag) forming ligament was unknown. In contrast to this, elastic modulus was
could be well evaluated from quasistatic nanoindentation experiments.

From the Gibson–Ashby law ENP = E×D2 and with an elastic modulus of bulk Ag measured
under the same conditions E ≈ 76 ± 2.5 GPa, the moduli of NP1 and NP2 were calculated respectively
as Ecalc

NP1 ≈ 22.6 GPa and Ecalc
NP2 ≈ 16.8 GPa, and compared to measured values ENP1 = 20.7 ± 3.2 GPa and

ENP2 = 12.7 ± 5.5 GPa.
Our work mainly focused on the size dependence of hardness in nanoindentation of NP metals

where their analytical description brought some interesting insights into NP deformation as controlled
by densification. The parameters in Equation (6) describing H as a function of 1/h are hereafter
discussed. First and most satisfactorily of all, was our finding that parameter ( 1

D − 1) implied that the
material was porous and had densification ability. A drastic limitation on this finding, however, was
that to uphold linear dependence this parameter must be also nearly constant, which meant that the
variation of the relative density produced during deformation was negligible before D.

From the Ashby rule on strain gradient, σ0 was the stress scaling parameter and was related to the
elastic properties of the ligament material. l was a scaling length parameter and comes from the rule
that for a given strain gradient, the back stress is as large as l is large. This indicated that l was related
to the densification ability of the NP material. Similarly, the parameter k from the Shapiro–Kolthoff
relation also characterizes the ability of the porous material to increase in density under a given
incremental stress. We showed that k correlated to the yield strength of the ligament material in its
bulk form, following k ∝ 1/σy where σy was the yield strength [30] (Note: In the original work, this
was the powder particle’s material strength in its bulk form).

Comparing NP1 and NP2, the measured slopes (α1 = 67 ± 8 GPa·nm and α2 = 47 ± 15 GPa·nm.)
show that NP1 had a larger propensity for densification than NP2. This was in contrast to the respective
porosity levels of the NPs. The porosity of NP2 was greater, (( 1

D − 1) = 0.83 and 1.13 for NP1 and NP2,
respectively) and the resultant larger space should therefore allow for a greater degree of densification.
Assuming σ0 was nearly the same for both NPs, the dominant effect was related to the NPs ability for
densification (characterized by k× l) which was shown as larger for NP1. From a structural point of
view, it was obvious that the presence of smaller ligaments also meant a larger ligament density and
therefore a greater possibility for ligament rearrangement and densification.

For the indent-size effect on hardness, a greater ability for densification meant that a larger, more
pronounced gradient density had developed in the deformation zone. We emphasize here that use of a
bad practice during nanoindentation can lead to an incorrect evaluation of the materials’ properties.
Of course, first, the depth dependence may lead to overestimation of the materials’ hardness (this
is true for all materials). Second, and probably much more detrimental, is misleading comparisons.
In our research, NP1 softer than NP2 shows a larger slope in the plot of H as a function of 1/h
(Figure 6c,d). This leads to an inversion in apparent hardness; NP1 has a higher hardness when
compared to NP2 below an average critical depth of around 150 nm. A similar trend was observed for
metallic glasses [24].

5. Conclusions

The depth dependence of an NP’s hardness, as measured using nanoindention in DMA mode, was
studied for nanoporous silver prepared by dealloying an Ag38.75Cu38.75Si22.5 precursor. Two near-similar
NPs were analyzed and compared. These materials were composed of connected ligaments with various
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levels of surface shape and curvedness, which was revealed in our experiment by tomographic imaging.
For the two NPs, the hardness-dependence indent depth followed a rule of the form H/H0 = 1 + h∗/h,
first identified empirically and then compared to a description based on the strain-gradient approach
proposed by Ashby and the densification rule for granular materials proposed by Shapiro–Kolthoff.

From these analyses, two main conclusions must be emphasized. First, heterogeneity of NPs at
the length scale of the indent probe produced significant scattering in the results but systematic linear
dependence of H as a function of 1/h. This enabled us to evaluate the relevant hardness with far less
scattering and by extrapolating at an infinite indent size (1/h→ 0) . Second, the proposed analytical
description confirmed that the porosity level (as in the Gibson–Ashby scaling law) was not the only
essential parameter controlling densification during the NPs’ plastic deformation process.

The length scale was derived from the Ashby strain-gradient approach and the kinetic constant
from the 1st order law of Shapiro–Kolthoff, which became dominant at the nanometer scale. These two
parameters were both related to the local structure of ligaments and their ease of rearrangement, which
also included their size and overall topological features. Nanoindentation was proven to be a useful
technique for investigating the structural properties of NPs but further analysis should be performed
in connection with 3D tomography characterization so as to relate NP structural characteristics with
their mechanical behavior.
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Abstract: The case of a frictionless contact between a spherical body and a flat metallic glass is studied
using a mesoscopic description of plasticity combined with a semi-analytical description of the
elastic deformation in a contact geometry (code ISAAC). Plasticity is described by irreversible strain
rearrangements in the maximum deviatoric strain direction, above some random strain threshold.
In the absence of adhesion or friction, the plastic deformation is initiated below the surface. To
represent the singularities due to adhesion, initial rearrangements are forced at the boundary of the
contact. Then, the structural disorder is introduced in two different levels: either in the local strain
thresholds for plasticity or in the residual plastic strains. It is shown that the spatial organization
of plastic rearrangements is not universal, but it is very dependent on the choice of disorder and
external loading conditions. Spatial curved shear bands may appear below the contact but only for a
very specific set of parameters, especially those characterizing the random thresholds compared to
externally induced strain gradients.

Keywords: metallic glasses; plasticity; contact mechanics; shear banding

1. Introduction

Bulk metallic glasses are made of a disordered assembly of metallic atoms. Thus, they
exhibit an atomic structure that is very close to the liquid one, but below the glass transition
temperature, they are trapped into a metastable mechanical equilibrium identified by
the absence of significant viscous flow at rest (viscosity larger than 1013 poise). This
similarity to the liquid structure and the absence of both long-range order and characteristic
length, despite the interatomic distance, is characteristic of amorphous materials. The
original microstructure of amorphous materials bestows them very specific properties,
such as a very smooth and moldable surface, low rigidity, but very high hardness, and
a strong capacity to withstand very high loads before failure [1]. Indeed, the atomistic
disorder precludes the formation of extended linear defects such as dislocations and thus
forces to maintain irreversible deformation restricted to point-like defects. This makes
them highly interesting for their ability to withstand heavy loads while maintaining their
elasticity [2]. However, these properties are very dependent on the temperature: they can
change drastically at the glass transition temperature, which is between 100 and 1000 K
depending on the composition [3]. At finite temperatures [4] or under high-frequency
acoustic waves [5], some metallic glasses can even exhibit superplasticity, with up to 160%
irreversible plastic flow strain without breaking, at centimeter scales. Moreover, at low
temperature or strain rate, irreversible (plastic) deformation is observed at small scale, and
it can organize along macroscopic shear bands, which break the apparent homogeneity of
the deformation and are the precursors of catastrophic failures [6–8]. Thus, it is important
to understand the origin of the plastic deformation (irreversible non-viscous deformation)
and its spatial organization.

The microscopic origin of plastic deformation in metallic glasses was initially related
to the emergence and diffusion of local voids described successfully within the framework
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of the free volume theory [9,10] and then to isochoric shear transformation zones analogous
to dislocation loops [11]. Recently, it was proved that the constitutive laws of plastic flow
results from the accumulation of plastic deformations described as Eshelby inclusions [12].
These Eshelby inclusions result from a loss of material stability [13–15]. Thus, they unfold
in the direction of instability. The latter depends on the glass composition. In metallic
glasses, it is mainly due to the local shear. It is generally given by the direction of the
maximum deviatoric strain [16].

The occurrence of shear bands may have two origins: either the unfolding of the initial
instability along a plane (elementary shear bands [17–19]), or the progressive accumulation
of damage encouraged by the self-sustainability of the shear bands [20–22]. The accumu-
lation of plasticity without self-sustainability can also give rise to the sparse distribution
of shear bands, allowing the occurrence of a yielding transition appearing as a universal
critical phenomenon [23,24] but without permanent shear banding. Finally, the nucleation
of the shear bands may be intrinsic (with a volumetric origin) or extrinsic (from surface
defects at the free surfaces, for example) [20], the later favoring permanent shear banding.
Thus, under the same loading conditions, the presence of interfaces and specific boundary
conditions may induce shear bands that would be absent elsewhere [25,26].

In this paper, we focus on the nucleation of shear bands under a nanoindenter. It
was shown that under such a loading condition, glasses with low free volume, such as
metallic glasses, and contrary to pure silica for example, have a tendency to develop shear
bands [7,8]. In Zr-based metallic glasses, Su and Anand [27] have shown a nice and regular
pattern of curved shear bands that was interpreted with the help of a specific constitutive
equation. This continuum constitutive law was supposed to relate the local shearing rate
to the local shear stresses, weighted by the local pressure, and also to give rise to a kinetic
increase of the free volume and consequently to post yield–strain softening [27]. The
crossing between the shear bands was characterized by an angle of 84◦. Budrikis et al. [28]
have observed similar features in a mesoscopic modeling of plasticity under a nanoindenter.
They related them to a universal critical phenomenon for shear bands nucleation at the
yield strain for macroscopic plastic flow. This critical phenomenon would be similar to what
happens under more simple loadings such as pure shear or hydrostatic compression [23,24].
However, Shi and Falk [29] have shown using molecular dynamics simulations that this
pattern depends indeed on the processing history of the glass (cooling rate) and also on
the strain rate. Moreover, Amon and Crassous [30] have observed in granular materials a
progressive transition from initially curved shear band patterns to straight bands across
the sample. Thus, it is not clear whether the shape of such a shear band is universal or
not, and how it is nucleated. To understand the necessary ingredients for curved shear
band nucleation, we have run a mesoscopic model of local plasticity based on microscopic
known processes and a realistic description of long-range elastic couplings.

In Section 2, we will describe the model used and the parameters involved. In
Section 3, we will discuss the results, more specifically the role of disorder in the plastic
transformation compared to the role of disorder in the local plastic threshold. Section 4 will
discuss the conditions for getting shear bands in a contact problem. Section 5 summarizes
the results.

2. Materials and Methods

The material studied is a typical bulk metallic glass. The material is not studied at the
atomic scale, nor at a continuous scale, but the numerical model (combining the software
ISAAC with local fortran programs, following the steps described in Figure 1 (right) used
in this article is inspired from a set of mesoscopic models proposed in the last twenty years
to model plasticity in disordered materials at intermediate length-scales (nm–μm) [31].
These models keep the necessary ingredients for local plasticity in solids, inspired from
continuum mechanics with local criteria for the nucleation of plastic rearrangements [32],
or more recently fed by molecular dynamics data concerning the details involved in the
local criteria when they exist [33]. These models can indeed be shown as a good description
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of the atomistic modeling, but at a slightly larger coarse-graining length scale [34]. In
these models, the effect of disorder is mainly located near the plastic rearrangements, and
the elastic couplings are described within the framework of continuous linear isotropic
and homogeneous elasticity. We will describe in this part the local plastic criteria and
plastic events, then the numerical tools used for long-range elasticity in a contact mechanics
problem, and finally the details of the contact conditions.

2.1. Local Plastic Criteria and Plastic Transformations

Plasticity is clearly related to an instability process [35], that is, a loss of mechanical
stability due to the crossing of an energy barrier, and revealed by the loss of positive defi-
niteness of the dynamical matrix of the full system (3N × 3N matrix of the second-order
derivatives of the potential energy with N the number of atoms). In amorphous materials,
such a loss of stability manifests itself by the nucleation of a high local strain concen-
tration [13] that becomes unstable, and whose unfolding gives rise to a single Eshelby
inclusion, or to a bidimensional alignment of Eshelby inclusions along elementary (embry-
onic) shear bands [12]. Although the instability process is a collective one (occurrence of a
negative eigenvalue in the dynamical matrix of the full system), in the presence of disor-
der, the unstable mode can be described as a set of Eshelby inclusions, only one of them
being the initiator of the mechanical instability. Thus, the mesoscopic models [31,32,36,37]
are based on the nucleation of local Eshelby inclusions, interacting through long-range
isotropic elasticity characteristic of the mechanical response of amorphous solids at large
scale [38]. The nucleation criteria are still debated [33], since the instability process is
indeed not local but global. However, a pragmatic analysis of the numerical data at the
atomic scale shows that the nucleation of the local Eshelby inclusion may be related to
large local strains, or low local elastic modulus. In the case of bulk metallic glasses, the
plastic rearrangement has mainly a shear component. Thus, the nucleation criterion is
related to the maximum local deviatoric strain, and naturally, the direction of the instability
unfolding is the eigendirection related to this maximum deviatoric strain in the deviatoric
part of the local strain tensor.

The implementation of the model is the following. The first two materials of Hertzian
geometry are put in contact with a vertical load Fz giving rise to a spherical contact area
with a radius a (see Section 2.3). Starting from this initial configuration, a threshold εd

thresh
is chosen as detailed later. If the maximum local deviatoric strain becomes larger than
εd

thresh, then an Eshelby inclusion is nucleated at this place. εd
thresh is random with

εd
thresh(i) = ε0

thresh + Q.r(i) (1)

where ε0
thresh is a homogeneous strain threshold, and r(i) is a Gaussian random number with

zero average and variance unity, which is characteristic of the site i before rearrangement
occurs. Q is a parameter: it is the amplitude of the random contribution to the local strain
threshold. In the paper, we varied Q between 0 and 10−1 (the maximum value is one order
of magnitude larger than the maximum deviatoric strain induced by the Hertzian contact
for the chosen load Fz). ε0

thresh is chosen in order to allow for a progressive nucleation
of plastic events, with only a limited number of sites. It is adjusted to the external load
in order to get a given number of sites (5, 10, or 100) with a deviatoric strain larger than
εd

thresh, that is to nucleate a fixed number of plastic events (5, 10, or 100 respectively) at
each step. This allows imposing an average constant plastic strain rate. In practice, the
sample is discretized into sites with lateral size r0 corresponding to the size of the local
rearrangements. r0 is chosen to be equal to 10−3 times the radius of curvature R at the
contact (that is 1 nm for R = 1 μm). At each deformation step, the deviatoric strain will be
computed on every site in the sample. The random value (—Q.r (i)) will be added at each
site i to quantify the departure from the local plastic threshold. A fixed number of sites
(5, 10, or 100) with the largest value of (εd

i − Q.r(i)) is identified, and these sites undergo a
plastic rearrangement. After a plastic rearrangement occurred, a new value of r(i) is chosen
at this site.
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The unfolding of the plastic rearrangements thus nucleated gives rise to a spherical
Eshelby inclusion with radius r0. After the nucleation sites have been identified, an
eigenstrain ε*(i) is attributed to each site i. The strain fields are computed again, taking
into account the presence of the (5, 10, or 100) newly nucleated Eshelby inclusions, and the
procedure is repeated with the calculation of the largest deviatoric strains—Q.r (i) in the
new configuration. The method is summarized in Figure 1 (right).

The residual plastic strain inside the inclusion is the eigenstrain ε*. In the absence of
disorder, the residual plastic strain is proportional to (εd

i − εd
thresh) (see Figure 1 (left)) with

εd
i the deviatoric strain measured at site i. In the presence of disorder, the eigenstrain ε* is

chosen as
ε ∗ (i) = S.max(εd

i − εd
thresh, 0) + Q ∗ .r ∗ (i) (2)

with r*(i) another gaussian random number with zero average and variance unity, and S
and Q* are two parameters of the model. S quantifies the exceeding of the local threshold.
It is chosen in the absence of disorder in order to get similar values in the maximum
deviatoric strain after the first nucleations of plastic rearrangements (too small values will
stop the plastic deformation in the absence of disorder, and too large values will drive
too much plastic rearrangement in the next step). For example, in the case of the contact
problem described in Section 2.3, the values of the maximum deviatoric strain obtained
after a given number nsites of plastic events have been nucleated simultaneously in the first
step, as summarized in Table 1.

Table 1. Values of the maximum local deviatoric strain εd
1 in a contact problem without disorder

after the first step, compared to the initial value of the maximum deviatoric strain εd
0. The contact

problem is described in Section 2.3, here for different values of the parameter S and different numbers
nsites of simultaneously nucleated sites.

nsites S = 0.01 S = 0.10 S = 1.00

5 ~0.015 εd
0 ~0.99 εd

0 ~1.5 εd
0

10 ~0.015 εd
0 ~0.99 εd

0 ~1.5 εd
0

100 ~0.015 εd
0 ~0.98 εd

0 ~1.5 εd
0

It appears in Table 1 that the value S = 0.10 allows staying at the same values of
deviatoric strains as in usual mesoscopic models [28] and will thus be kept in the following.
Thus, Q and Q* are the only remaining parameters of the model. They will allow discussing
the role of disorder in the organization of plastic events in our system.

 

 

Figure 1. (left) Schematic description of residual plastic strain in a linear elastic–perfectly plastic model. (right) Schematic
diagram of the mesoscopic model.
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2.2. A Semi-Analytical Method for Long-Range Elasticity

We face to solve here the calculation of elastic strain in a contact problem and in the
presence of Eshelby inclusions. The contact problem is first considered as a purely elastic
contact between two linear elastic bodies with neither friction nor adhesion. One surface is
flat, while the other has a radius of curvature R: it is a Hertz contact [39]. The calculation
of the strain field beneath the contact can be performed with the help of superposition
theorem and green functions for any given or computed pressure applied at the surface
(similar to a Hertzian pressure) [40]. The Eshelby inclusions [41,42] can be computed
thanks to the use of images symmetric to the interface, in order to still fulfill the limit
boundary conditions [43].

The method was implemented in the software ISAAC (Version 2020, LaMCoS, Villeur-
banne, France) [44] developed by D. Nélias et al. and adapted by T. Chaise, among others,
for the calculation of residual plastic strain [45]. The semi-analytical method proposed
to solve the contact problem is based on Eshelby’s formalism but uses 3D Fast Fourier
Transforms to speed up the computation. Thus, the time and memory necessary are greatly
reduced in comparison with the classical finite element method. It allows a realistic com-
putation of the stress and strain fields, taking into account the exact boundary conditions.
Here, only an elastic contact is studied, but the same method can be extended to frictional
contacts [46] and to adhesive contacts [47]. The only approximation used is that the only
interface that matters is the contact surface: the bodies are considered as semi-infinite
and treated within the framework of linear elasticity. The Eshelby inclusions and the
corresponding heterogeneous solution are described using enrichment fields that are super-
imposed to the homogeneous problem [43]. To perform the simulations, a standard Young
modulus E = 115 GPa and Poisson’s ratio ν = 0.3 is used for both materials. These values
correspond to the elastic moduli of Ti-based and Fe-based metallic glasses, the range of
Young moduli spanning generally from 40 (La-based glasses) to 150 GPa approximately [1],
and the Poisson’s ratio being between 0.3 and 0.4 in bulk metallic glasses. The discretization
of space is made through N = 65,559 nodes, which are separated by a distance dx = dy = 2r0
horizontally and dz = r0 vertically. Note that our goal here is not to describe precisely a
given material but to highlight the disorder-induced mechanisms of localization of plastic
deformation in a contact geometry.

2.3. Contact Problem

The initial contact problem is represented in Figure 2. It is made of a flat surface with
Young modulus E and Poisson ration ν in contact with a spherical surface having a radius
of curvature R and the same elastic properties. The bodies are pressed together using a
normal force Fz. Only the strain field inside the flat surface is studied here. The scaling
relations in the Hertz contact are the following [39]:

The radius of the spherical contact surface is

a =
3

√
3RFz(1 − ν2)

2E
. (3)

The vertical displacement in the center is

Uz =
a2

R
. (4)

The maximum shear stress appears below the surface, at a distance zmax ≈ 0.48 a for
ν = 0.3, and its value is

τmax ≈ 0.31
aE

πR(1 − ν2)
. (5)

corresponding to a maximum deviatoric strain

εd
max ≈ 0.31

a
πR(1 − ν)

. (6)
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Figure 2. (a): Hertzian contact and resulting deviatoric strain field inside the flat body compared to the same configuration
(b): but with a friction coefficient μ = 0.3 at the interface between the two bodies and with a tangential load Tx = 0.24 Fz.

In our case, the initial force is imposed, thus fixing the initial contact radius a, and
then the deformation is induced by the succession of plastic rearrangements.

In the case of a purely elastic contact, the initiation of plasticity cannot appear at the
surface, because the maximum shear stress τmax is below the surface. In the absence of
structural heterogeneities, the nucleation of shear bands is necessarily homogeneous in
this case and located close to the depth zmax. However, as soon as some adhesion or a
sufficiently high static friction coefficient (μ ≥ 0.3) is present, then the shear stress becomes
maximum at the surface [39,48]. Thus, the nucleation of plasticity and of shear banding is
heterogeneous (i.e., from the surface) in these cases.

In order to allow heterogeneous nucleation or to modelize the effect of structural
disorder, we have compared two cases: the case of isotropic and homogeneous linear
elastic solids, and the case where two Eshelby inclusions are already located, close to the
boundary of the contact, that is at a distance a from the center of the contact zone. In this
latter case, in order to get a real competition between the nucleation in the center and
nucleation at the surface, the Eshelby inclusions have a shear eigenstrain slightly larger
than εd

max.

3. Results

We will now compare the shape in the organization of the successive plastic events
taking place in the flat solid for the different parameters studied.

3.1. Homogeneous vs. Heterogeneous Nucleation

The deviatoric stress induced by the presence of pre-existing inclusions competes
with the deviatoric stress due to the Hertz contact. Figure 3 gives an idea of the spatial
distribution of deviatoric strain (that is, the proximity to the local plastic yield strain
assumed constant here as a first step) for different strengths of the two pre-existing defects.
From left to right, the role of the two defects on the strain field increases. In the last case,
where the deviatoric strain field at the defects is 10 times stronger than εd

max, the plastic
deformation should localize on the defects, but in the two first cases with lower strain field,
a connection is expected between the pre-existing defects at the surface and the subsurface
zone of high shear strain due to the strain gradients induced by the Hertz contact.

190



Metals 2021, 11 , 257

Figure 4 shows the position of the first plastic events in three cases: without defects,
with defects comparable to the Hertz fields, with defects far stronger (10.1 times) than
the Hertz fields. In the first two cases, the initial plastic events tend to localize all near
zmax ≈ 0.48 a, and there is no reason for the occurrence of shear bands. However, in the
case of very strong defects, the simultaneous accumulation of plastic events near the defects
and at zmax suggests a future connection between them, for example along plastic bands.
Clearly, from Figure 4, it appears that when the defects are not sufficiently strong, the
plastic activity remains grouped below the surface at zmax, while the presence of strong
defects favors shear banding between zmax and the surface. Thus, in the following, we will
always keep the pre-existing defects at their highest value (with εxy = 10.1 εd

max).
Here, we have not taken into account the effect of disorder neither in the local yield

strain nor on the eigenstrain characterizing the core of the unfolded inclusion. We will now
discuss the effect of disorder on the strain fields and consequently on the nucleation of
plastic events in the metallic glasses.

 
Figure 3. Deviatoric strain in the flat solid with two inclusions located very close to the surface. The shear eigenstrain
supported by the inclusions is (from left to right): εxy = 0.101 εd

max, εxy = 1.01 εd
max and εxy = 10.1 εd

max.

 

Figure 4. Deviatoric strain and position of the inclusions (white or black circles). Top: at the first deformation step, for
nsites = 10 new inclusions per step, without pre-existing defects at the surface (left), with pre-existing defects at the surface
shown as Eshelby inclusions with the shear eigenstrain εxy = 1.01 εd

max (middle), and with pre-existing defects at the surface
shown as Eshebly inclusions with the shear eigenstrain εxy = 10.1 εd

max (right). Bottom: at step 10 of the deformation
(nsites = 10) with pre-existing defects with the shear eigenstrain εxy = 1.01 εd

max (left) and εxy = 10.1 εd
max (right).
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3.2. Role of Disorder in the Residual Plastic Eigenstrain

Figure 5 shows the effect of the two parameters S and Q* on the position of plastic
events after 250 plastic rearrangements took place (25 steps with 10 rearrangements at each
step). In these figures, there is no disorder in the yield strain (Q = 0), and the pre-existing
defects are 10 times stronger than the Hertz field, as detailed in the previous part. It appears
clearly from this figure that the parameter S, which is used to counterbalance the lack of
precision on the determination of the local yield strain and allow for a better definition
of plastic flow, induces spatial correlations in the location of plastic events: the deviatoric
strain is higher close to the Eshelby inclusions, thus giving rise to higher eigenstrains
that will contribute to self-sustain the process. The location of the plastic events shows a
better alignment close to the pre-existing defects, and it looks more sparse close to zmax.
As discussed in Section 2.1 for the disorder-free case, the value of S = 0.1 will be kept in
the following.

Let’s look now at the effect of the disorder through the parameter Q*. In Figure 6,
the distribution of deviatoric strains in the sample is shown for different values of Q*.
Increasing Q* not only contributes to enlarging the distribution of deviatoric strains as
compared to the disorder-free Hertz case, but it can even give rise to very large cumulated
deviatoric strains, up to 10% strain for Q* = 0.01 at the 25th step (Figure 6 bottom). Let
us remind that Q* = 0.01 corresponds to a Gaussian distribution of eigenstrains with
variance Q* = 1%, owing in our case at the 25th step extreme eigenstrains of about 3.5%
only (Figure 6 top). In Figure 5, increasing Q* up to the 1% strain clearly contributes to
counterbalance the role of the Hertz fields and of their spatial gradients. The plastic
rearrangements localize close to the pre-existing defects. The resulting shear aligns along
large shear bands, propagating straightly from the surface defects. While the role of defects
is clearly enhanced in this case, it does not gives rise to curved shear bands, but only to
straight bands initiated from the surface, even after a large number of events.

Figure 5. Effect of S and Q*, parameters characterizing the eigenstrain ε* of the nucleated events Equation (2), on the
localization of plastic rearrangements at the 25th step of deformation with 10 events at each step, for Q = 0 (no disorder in
the local thresholds) and initial defects εxy = 10.1 εd

max. With our choice of loading Fz, the maximum deviatoric strain εd
max

due to Hertz contact in the absence of disorder is equal to 0.65 × 10−2 here.
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Figure 6. Top: Distribution of eigenstrains ε* in the sample for different values of Q*, at steps 25 with 10 events at each steps,
with S = 0.10 and Q = 0. Bottom: Global distribution of deviatoric strains εd in the sample, for the same conditions. With
our choice of loading Fz, the maximum deviatoric strain εd

max due to Hertz contact in the absence of disorder was equal to
0.65 × 10−2 here.

3.3. Role of Disorder in the Local Plastic Thresholds

Let us now look at the effect of disorder in the yield strains. Figure 7 summarizes
the effect of the disorder induced by the increase in the parameter Q in the random part
of the local nucleation threshold of Eshelby inclusions. The colored map shows the local
deviatoric strain —Q.r (i). Thus, the plastic events always take place at the brightest colors
(maximum values) in this map. While for low values of Q, the gradients of the Hertz field
are visible, they progressively disappear for large disorder values. The previous values of
S = 0.10 and Q* = 0.01 are kept in this case.

For low disorder Q = 10−3, large shear bands are initiated from the surface defects, as
discussed before in Section 3.2. When Q increases, the nucleation of plastic events is less
focused on the surface defects, and some of them become sensitive to the Hertz fields and
nucleate preferentially close to zmax. When the disorder is very strong and far larger than
the maximum deviatoric strain εd

max induced by the Hertz contact, the events are sparse
and can occur everywhere. However, the Hertz fields will introduce a bias that will favor a
nucleation close to zmax. In this latter case, the plastic events do not organize clearly along
shear bands, and more importantly, they do not show any sensitivity to the surface that
appears completely ignored in this organization.

Interestingly, between these two extreme cases, for a contribution of the disorder to
the local yield strain that is comparable to εd

max, a connection is made between events
nucleated at the surface, and events deeper below the surface. For Q ≈ 2εd

max ≈ 10−2, the
characteristic shape of curved shear bands initiated from the strongest defects at the surface
is recognizable.
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Figure 7. Effect of Q characterizing the disorder in the yield strain from Equation (1), on the localization of plastic
rearrangements, for different number of steps, with Q* = 0.01 and S = 0.100 and initial defects with εxy = 10.1 εd

max. With
our choice of loading Fz, the maximum deviatoric strain εd

max due to Hertz contact in the absence of disorder is equal to
0.65 × 10−2 here.

4. Discussion

We have studied here with the help of a mesoscopic model the spatial organization of
plastic events inside a disordered material in a contact geometry. The results obtained in this
context underline the fact that the sliding conditions at the surface play an important role on
the plasticity pattern when the structural disorder is sufficiently low. The role of adhesion
or friction at the interface is modeled with the help of pre-existing inclusions located near
the free surface of the solid and at the boundary of the contact zone. Indeed, adhesion or
friction with small tangential load induces very strong deviatoric strains at the boundary
of the contact [39]. It has been shown (Figure 4) that the presence of initial defects—or
equivalently non sliding conditions—is crucial to force the emergence of shear bands at the
surface, as observed experimentally in many cases [27–29,49]. These pre-existing defects
are also representative of the possible role played by a very inhomogeneous structural
disorder or by surface defects. This is in agreement with the possibility to generate extrinsic
nucleation of shear bands [20], and this enhanced surface sensitivity can be used for specific
materials design [26], for example to prevent subsurface damage. We have discussed in the
present paper the role of the eigenstrains included in these pre-existing defects, and we
focused mainly on the case of defects whose eigenstrain is about 10 times larger than the
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maximum deviatoric strain induced by the Hertz contact beneath the surface. Indeed, this
high value appears necessary to avoid a concentration of plasticity only below the surface.
Moreover, we have shown (Figure 5) that when the same amount of disorder appears as
well in the local strain rearrangements (value of Q* in the eigenstrains), then plasticity
localizes along straight lines initiated from the initial defects. However, this type of disorder
is not sufficient to induce curved shear bands, as sometimes observed [27–29,49,50].

The occurrence of curved shear bands is shown here to result only from a specific
set of parameters in the random local strain thresholds for plasticity. To get well marked
permanent shear bands (Figure 7), it is necessary to have an amount of disorder in the
local strain threshold that is comparable to the maximum deviatoric strain due to the Hertz
contact between curved surfaces. However, this one depends not only on the contact
geometry (radius of curvature R) but also on the external load (Equation (6)). Thus, the
occurrence of curved shear bands is not universal as initially affirmed [28] but depends on
the comparison between intrinsic heterogeneities (local strain thresholds for plasticity) and
extrinsic parameters (geometry, external load). It is very important here to note that the
structural disorder in itself is not sufficient to predict the shape of shear bands but must be
put in perspective of the loading conditions: size of the contact area, radius of curvature,
and external load, as detailed in Equation (6). The respective role of the disorder in the
eigenstrains of the unfolded defects and in the strain thresholds may also explain why the
curved shape of initial shear bands is not maintained for higher loads in easily rearranging
materials [30]. The disorder in the eigenstrain or some kind of self-sustainability [20–22]
may finally dominate and move away from the initial range of parameters. This may
also explain the variety of the plasticity patterns observed in metallic glasses under a
nanoindentor [29].

These effects were not discussed in [28], aiming at proving the universal character of
plastic yield in amorphous solids for any kind of load. However, indeed, many assumptions
were made in [28] concerning the relative values of disorder. First, the yield strains and the
eigenstrains are not chosen independently, but the eigenstrain is assumed to be proportional
to the yield strain. Moreover, non-sliding contact, meaning very strong solid friction, has
been assumed that favors nucleation at the surface and finite size effects, as discussed in
our article.

The disorder in the strain thresholds is usually related to the structural disorder
characteristic of amorphous materials [33,51,52]. Experimentally, the amount of disorder
depends on the preparation protocol, such as the quenching rate or the annealing for
example [53,54], the free volume [9,55], or even defects induced by neutron irradiation [56].
The amount of disorder is known to affect the elastic and the plastic properties of the
glass [57]. In all cases, increasing the effective temperature of the glass, or the amount of
soft—equivalently less relaxed—zones [58] will make the glass more ductile, less fragile,
and contribute to homogenize the deformation. In case of very strong disorder, the role
of surface defects becomes negligible (Figure 7). Thus, the extreme values of strains are
sensitive again to the Hertzian field. Consequently, the deformation, while irregular,
concentrates below the surface, at the maximum deviatoric strain due to the Hertz contact.
Such a kind of deformation without shear bands was already observed experimentally
with in situ X-ray diffraction in Zr-based metallic glass samples [59]. However, the disorder
was unfortunately not characterized in these samples. Thus, the absence of shear bands
may also be simply due to perfectly sliding conditions at the surface.

In general, very different kinds of plasticity patterns have been observed below an
indentor. Perepezko et al. [60] have identified experimentally on the same sample at least
two kinds of events: at the surface and below the surface. Luo et al. [6] have observed
different plasticity patterns depending on the amount of free volume induced by chemical
strengthening in silicate glasses. The decrease in the free volume always favors localization
along shear banding; this may result from a lower quenching rate [29] or the increase in the
relaxation induced by longtime annealing, for example [51,53]. This effect also appears in
our analysis of the role of the amplitude of disorder in the local strain thresholds: a strong

195



Metals 2021, 11 , 257

disorder will make every site equivalent, thus masking the role of surface or isolated defects
and preventing the nucleation of shear bands. Then, the average mechanical response
becomes that of a homogeneous sample.

Note that the size of the samples is shown in experiments to play a role on the ductile
behavior of bulk metallic glass samples [61,62]. In general, diminishing the size of the
sample, as in films or in micropillars, will induce a more homogeneous repartition of plastic
deformation. In this case, the increased role of surface defects (due to the large surface
over volume ratio of the samples) may be counterbalanced by the lack of disorder or low
effective temperature of the sample, due to its small size. However, on the contrary, the
enhanced ductile behavior could also be due to an increase in the effective temperature
due to the pressure increase and the confinement. As suggested in this paper, contact force
experiments with different friction coefficients, or with different radius of curvature, could
help disentangle these explanations by looking at the shear band patterns.

In our mesoscopic model, the formation of shear bands results only from the succes-
sion of discrete Eshelby events. Instantaneous shear bands (also called elementary shear
bands [17] or embryonic shear bands [20]) are not properly described here, as it is the case
in all mesoscopic models [31]. Elementary shear bands result indeed from a specific out-
of-equilibrium unfolding process with a collective kinetic alignment of events. However,
mesoscopic models are able to reproduce some characteristics of these bands: the resulting
spatial organization of plastic deformation is finally not very far from quasi-static atomistic
simulations [51]. This may be due to the fact that the driving force in the unfolding of
the instability is the elastic force, as in the mesoscopic models. However, kinetic effects
may play a role. For example, inertial effects could affect the results, as already discussed
in [58]. The goal of the present paper is to focus on the primary role of disorder. To compare
different shear rates, we have imposed a different number of simultaneous plastic events
at each step in the model before redistributing the elastic energy. This does not induce
any significant difference in the results, at least in the low disorder case. Thus, we have
chosen to keep, in the majority of the simulations presented here, an intermediate number
of simultaneous plastic events corresponding to a low shear rate. However, the role of the
shear rate should be deepened, since it is known to induce different spatial organizations of
events [63]. The role of inertia and of shear rates should deserve further studies if needed.

5. Conclusions

The choice of the approximate mesoscopic model used in this study allows keeping
the main ingredients for the nucleation and succession of plastic events in an amorphous
material: amorphous materials are linear elastic at large scale, with homogeneous and
isotropic elasticity [38], and plastic rearrangements are described as Eshelby inclusions in
agreement with recent molecular dynamics simulations [12].

In this work, two important effects were evidenced that have never been discussed
in previous studies: the first one is the role of initial defects, and the second one is the
relative role of disorder vs. Hertz mechanical inhomogeneities. Concerning the role of
initial defects, it is clear that if these defects are absent, then the plastic deformation will
be self-sustained below the contact at the maximum deviatoric strain location due to the
Hertzian contact, as in homogeneous solids. When the deviatoric strain supported by the
pre-existing defects becomes comparable or larger to the maximum Hertzian deviatoric
strain, then the extrinsic nucleation of shear bands occurs, and new processes take place.
We saw in Section 3.2 that the role of initial defects is reinforced when the residual plastic
strain (eigenstrain of the nucleated Eshelby inclusions) has a random component. However,
this type of disorder is not sufficient to induce well-defined curved shear bands inside
the sample. It only contributes to enlarging the plastic zone around an initial one. We
saw also in the simple model used here that the sensitivity of the residual plastic strain
on the amount of deviatoric strain at the nucleation of the plastic event induces a small
memory effect, tending to localize the plastic activity around its initial place. Concerning
the role of disorder, we compared different sources of disorder in the amorphous sample.
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Interestingly, we saw that the spatial organization of the plastic activity and the connection
between different places inside the sample (that would correspond to extended shear
bands) depend mainly on the amount of disorder in the local yield strain only.

This can be understood by the fact that the high strain disorder due to structural
origins should counterbalance the strain inhomogeneities induced by the external load.
For very high disorder, the differences in extreme values responsible for the nucleation
of plastic events will be reinforced by Hertzian inhomogeneities and become certainly
insensitive to surface effects. Two simple cases have been easily identified: the case of low
disorder where pre-existing defects will control the nucleation of shear bands (initiated at
the surface when these defects represent adhesive or frictional contact). In this case, the
shear band extends straight inside the sample. The second limit case is the case of very
high disorder where plasticity is sparse and insensitive to surface defects. At intermediate
values of disorder, more precisely when the contribution of disorder in the yield strain
becomes comparable to the maximum Hertzian deviatoric strain, well-defined curved
shear bands connecting the surface and the subsurface are shown. This latter case occurs
for different amounts of disorder, depending on the geometry and on the external load:
as shown in Equation (3), increasing the load or decreasing the radius of curvature at
the contact increase the deviatoric strain to which the amount of disorder in the strain
threshold must be compared. However, the disorder that is needed to nucleate shear bands
and inhomogeneous deformation has less influence on strain when the contact radius of
curvature is smaller. Note that in the absence of surface defects, the plastic activity also
remains located at the place of maximum Hertzian deviatoric strain without extended
shear banding.

These different cases were all observed in experiments: less relaxed, fast quenched, or
irradiated samples giving rise to more homogeneous plastic deformation, as observed here
in the strong disorder case. However, it is difficult to have a more quantitative estimation
of the degree of structural disorder needed. Indeed, in bulk metallic glasses, species
are mixed, and it is quite difficult in general to characterize the disorder [53], unless in
very specific cases [64]. In sodo-silicate glasses, at least the nanoporous silicon skeleton
and channels of mobile ions give some keys of spatial characterization of the mattering
structural disorder [65–67].

To conclude, boundary conditions, and also the relative amount of intrinsic strain
disorder (to some extend in the residual plastic strain, but more importantly in the local
yield strain), compared to the maximum Hertzian deviatoric subsurface strain, have a sig-
nificant impact on the spatial organization of plasticity in amorphous materials in a contact
geometry. The boundary conditions as well as the Hertzian strain depend on the external
load, making the mechanical behavior of glasses non-universal in a contact geometry.
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