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Evidence of the rapid degradation of the Earth’s natural environment has grown in
recent years. Sustaining our planet has become the greatest concern faced by humanity.
Of the 17 Sustainable Development Goals (SDGs) in the 2030 Agenda for Sustainable
Development, Earth observations have been identified as major contributors to nine of
them: 2 (Zero Hunger), 3 (Good Health and Well-Being), 6 (Clean Water and Sanitation),
7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Sustainable
Consumption and Production), 13 (Climate Action), 14 (Life Below Water), and 15 (Life on
Land). Achieving the SDGs by turning knowledge into action is the critical challenge for
scientists and other subject matter experts throughout the world. This monograph, Earth
Observations for Environmental Sustainability for the Next Decade, gathers original viewpoints
and knowledge advances in the use of Earth observations to address a number of urgent
issues of great concern for humanity, including land use/land cover (LULC) classifica-
tion [1], debris-flow assessment [2,3], precipitation estimates [4], drought assessment [5],
hyperspectral image classification [6], Kuroshio-induced wakes [7], sea water primary
production [8], weather system (tropical cyclone) interaction [9], and habitat suitability and
biodiversity conservation [10]. In this editorial, a brief overview of the collected papers
is presented.

Land cover and how people use land are important determining factors that affect
a wide range of key surface parameters (evaporation, transpiration, runoff, land surface
temperature, etc.). Accordingly, LULC change has been recognized as one of the most
important issues with wide-ranging effects, from Earth system functioning to global envi-
ronmental change. In view of the significance of land cover and its change, there is a strong
demand for high-quality geospatial information on LULC classification and its dynamics
at different temporal and spatial scales. Remote sensing with the aid of machine learning
has been instrumental for the study of LULC change. Talukdar et al. [1] examined the
accuracy of various algorithms for LULC mapping to identify the best classifier for further
applications. In the article, six machine learning algorithms, namely random forest (RF),
support vector machine (SVM), artificial neural network (ANN), fuzzy adaptive resonance
theory-supervised predictive mapping (fuzzy ARTMAP), spectral angle mapper (SAM),
and Mahalanobis distance (MD) were examined. Results showed that all these classifiers
had a similar accuracy level with minor variations, but the RF algorithm had the highest
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accuracy of 0.89, and the MD algorithm (parametric classifier) had the lowest accuracy of
0.82. Further evaluations of the RF algorithm in different morphoclimatic conditions will
certainly be worthwhile in the future.

Humans and their possessions are vulnerable to debris flows wherever they occur, par-
ticularly in populated areas with a harsh natural environment and deforestation. Therefore,
assessment of debris-flow susceptibility (DFS) is useful for mitigating debris flow risks.
Zhang et al. [2] assessed the main triggering factors of debris flows and investigated the
DFS in the Shigatse area of Tibet using machine learning methods. Remote-sensing data sets
and geographic information system (GIS) techniques are used to obtain influential variables
of topography, vegetation, human activities, and soil for local debris flows. Five machine
learning methods, i.e., back-propagation neural network (BPNN), one-dimensional convo-
lutional neural network (1D-CNN), decision tree (DT), random forest (RF), and extreme
gradient boosting (XGBoost) were utilized to examine the relationship between debris-flow
triggering factors and occurrence. The results revealed that the XGBoost model exhibited
the best mean accuracy (0.924) on 10-fold cross-validation, and that its performance was
significantly better than the other machine learning methods, although the performance
of the XGBoost did not significantly differ from the 1D-CNN (0.914). These methods can
potentially be used to assist in the prevention of the casualties and economic losses caused
by debris flows. Furthermore, the relevant authorities can use the XGBoost model in
combination with satellite remote sensing and GIS spatial data processing to create feature
maps and high-precision, area-sensitive maps to provide guidance and preparation for
debris-flow prevention and mitigation.

In addition, machine learning algorithms have been widely used in disaster prevention
in recent years. Due to human development and global change, debris flows have become
an important issue in environmental disasters. Sichuan Province in China is an area where
debris flows occur frequently and cause many dangerous incidents. Xiong et al. [3] utilized
four machine learning algorithms, namely logistic regression, support vector machines,
random forest, and boosted regression trees, to conduct a debris-flow sensitivity analysis
in Sichuan Province to understand which algorithm was the most suitable for debris-
flow analysis and assistance in evaluation of debris-flow hazards. Combined with the
application of remote sensing and geographic information systems, the authors found that
the average altitude, altitude difference, aridity index, and groove gradient played the
most important roles in the assessment. The research results also showed that all four
algorithms could generate accurate and effective debris-flow sensitivity maps, which can
be used to provide useful data for assessing and mitigating debris-flow hazards.

An evaluation of two widely used satellite precipitation estimates—the U.S. National
Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center
morphing technique (CMORPH) and the Japan Aerospace Exploration Agency’s (JAXA)
Global Satellite Mapping of Precipitation (GSMaP)—has been conducted over Australia
using an 18-year data set (2001–2018) [4]. Overall, statistics demonstrated that satellite
precipitation estimates were of high accuracy for Australia, and that gauge-blending
yielded a notable increase in performance. The dependence of performance on geography,
season, and rainfall intensity was also investigated. It was found that the skill of satellite
precipitation detection was reduced in areas of elevated topography and where cold frontal
rainfall was the main precipitation source. Areas where rain-gauge coverage was sparse
also exhibited reduced skill. The skill of the satellite precipitation estimates was highly
dependent on rainfall intensity. The highest skill was obtained for moderate rainfall
rates (2–4 mm/day). Low rainfall rates were overestimated, and large rainfall rates were
underestimated, both in frequency and amount. Overall, CMORPH and GSMaP datasets
were evaluated as useful sources of satellite precipitation estimates over Australia.

To address drought events in Ethiopia, several techniques and data sets were an-
alyzed to study the spatiotemporal variability of vegetation in response to a changing
climate [5]. In this study, 18 years (2001–2018) of Moderate Resolution Imaging Spectro-
radiometer (MODIS) Terra/Aqua, normalized difference vegetation index (NDVI), land

2



Remote Sens. 2021, 13, 2871

surface temperature (LST), Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) daily precipitation, and the Famine Early Warning Systems Network (FEWS
NET) Land Data Assimilation System (FLDAS) soil-moisture data sets were processed.
Pixel-based Mann–Kendall trend analysis and the Vegetation Condition Index (VCI) were
used to assess drought patterns during the crop growth season. Results indicated that the
central highlands and northwestern part of Ethiopia, which have land cover dominated by
cropland, had experienced a decreasing trend in both precipitation and NDVI. This study
provides valuable information for identifying locations of potential concern for drought
and planning for immediate action of relief measures. Furthermore, this paper presents the
results of the first attempt to apply a recently developed index, the Normalized Difference
Latent Heat Index (NDLI), to monitor drought conditions. NDLI successfully captures
historical droughts and shows a notable correlation with climatic variables.

It has been shown previously that the discriminative capability of the general nearest
feature line embedding (FLE) transformation was successful for numerous applications;
however, there are certain limitations to this methodology. For example, the conventional
linear-based principle component analysis (PCA) preprocessing method in FLE cannot
be used to effectively extract nonlinear information. To overcome this deficiency of FLE,
a novel multiple kernel FLE (MKFLE) method was proposed and applied to classify
hyperspectral images [6]. The proposed MKFLE dimension-reduction framework was
performed in two stages. In the first multiple-kernel PCA stage, the multiple-kernel
learning method based on between-class distance and support vector machine was used
to find the kernel weights. Based on these weights, a new weighted kernel function was
constructed as a linear combination of valid kernels. In the second FLE stage, the FLE
method, which can preserve the nonlinear manifold structure, was applied for supervised
dimension reduction using the kernel function obtained in the first stage. The effectiveness
of the proposed MKFLE method was evaluated using three benchmark data sets: Indian
Pines, Pavia University, and Pavia City; it was demonstrated that the performance of the
MKFLE was superior compared to other methods.

Island wakes may induce ocean upwelling in the lee of the island and bring nutrition
to the upper ocean, increasing the chlorophyll-a concentration. The increase in chlorophyll-
a concentration in the upper ocean can affect carbon cycles and hence global changes. An
improved understanding of ocean current-induced island waves is needed in the study
of oceanic environments. Using high-temporal-resolution imagery from the Himawari-
8 satellite, the study in [7] presented the temporal variation and spatial structure of the
Kuroshio-induced Green Island wakes. Green Island is a small island located near southeast
Taiwan that is on the main path of the Kuroshio. Using the Himawari-8 imagery, the authors
found that the structure of the wake changed quickly, and the water mixed into different
wake states. The results suggested that satellite imagery can help build up an island wake
database to assist with ocean sustainability.

Evaluating the accuracy of satellite remote-sensing products is very important for
their further application. A match-up data set of satellite remote-sensing observations with
in situ measurements is quite useful for algorithm validation. The study in [8] evaluated
the primary production derived from MODIS onboard the Aqua and Terra satellites using
a vertically generalized production model with in situ data on the waters around Taiwan.
The authors suggested the combined primary production product from MODIS of the
Aqua and Terra satellites was more accurate than that from only one satellite. Using the
product, the author concluded that the China coastal water and the Kuroshio water had the
highest and the lowest primary production, respectively, in the waters adjacent to Taiwan.

Exploring dual-vortex interactions between typhoons is crucial to understanding the
behaviours of typhoons during their journeys [9]. The differential averaging technique,
based on the Normalized Difference Convection Index (NDCI) operator and filter, de-
picted differences and generated a new set of clarified images. During the first set of
dual-vortex interactions, Typhoon Noru (2017) experienced an increase in intensity and a
U-turn in its direction after being influenced by adjacent cooler air masses and air flows.
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Triple interactions between Noru–Kulap–Nesat and Noru–Nesat–Haitung were analyzed
using geosynchronous satellite infrared (IR1) and IR3 water vapor (WV) images. The
results demonstrated that the generalized Liou–Liu formulas for computing threshold
distances between typhoons successfully validated and quantified the triple-interaction
events. Through the unusual and combined effects of the consecutive dual-vortex inter-
actions, Typhoon Noru lasted for 22 days from 19 July to 9 August 2017, and migrated
approximately 6900 km. Typhoon Noru consequently became the third-longest-lasting ty-
phoon on record for the Northwest Pacific Ocean. A comparison was made with long-lived
Typhoon Rita in 1972, which experienced similar multiple Fujiwhara interactions with three
other concurrent typhoons. During the first set of dual-vortex interactions, Typhoon Noru
experienced an increase in intensity and a U-turn in its direction after being influenced by
adjacent cooler air masses and air flows. Thereafter, in spite of a distance of 2000–2500 km
separating Typhoon Noru and the newly formed Typhoon Nesat, the influence of middle
air flows and jet flows caused an “indirect interaction” between these typhoons. Evidence
of this second interaction included the intensification of both typhoons and changes in
their track directions. The third interaction occurred subsequently between Tropical Storm
Haitang and Typhoon Nesat.

Many species’ habitats have significantly declined or become extinct in recent decades
for various reasons. It is vital to detect potential habitats based on habitat-suitability
analyses to enhance biodiversity conservation. The study in [10] proposed a novel scheme
for assessing habitat suitability based on a two-stage ensemble approach. First, a deep
neural network (DNN) model was constructed to predict habitat suitability based on
environmental data. Second, an ensemble model employing various methods for habitat-
suitability estimation was developed based on observational and environmental data.
Crowdsourced databases were utilized, and observational and environmental data were
used for four amphibian species and seven bird species in South Korea. The authors
demonstrated that the proposed scheme provided a more accurate estimation of habitat
suitability compared to previous approaches. For example, the proposed scheme achieved
a true skill statistic (TSS) score of 0.886, which was higher than previous approaches (TSS =
0.725 ± 0.010).

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Rapid and uncontrolled population growth along with economic and industrial
development, especially in developing countries during the late twentieth and early twenty-first
centuries, have increased the rate of land-use/land-cover (LULC) change many times.
Since quantitative assessment of changes in LULC is one of the most efficient means to understand
and manage the land transformation, there is a need to examine the accuracy of different algorithms
for LULC mapping in order to identify the best classifier for further applications of earth observations.
In this article, six machine-learning algorithms, namely random forest (RF), support vector machine
(SVM), artificial neural network (ANN), fuzzy adaptive resonance theory-supervised predictive
mapping (Fuzzy ARTMAP), spectral angle mapper (SAM) and Mahalanobis distance (MD) were
examined. Accuracy assessment was performed by using Kappa coefficient, receiver operational
curve (RoC), index-based validation and root mean square error (RMSE). Results of Kappa coefficient
show that all the classifiers have a similar accuracy level with minor variation, but the RF algorithm
has the highest accuracy of 0.89 and the MD algorithm (parametric classifier) has the least accuracy
of 0.82. In addition, the index-based LULC and visual cross-validation show that the RF algorithm
(correlations between RF and normalised differentiation water index, normalised differentiation
vegetation index and normalised differentiation built-up index are 0.96, 0.99 and 1, respectively, at
0.05 level of significance) has the highest accuracy level in comparison to the other classifiers adopted.
Findings from the literature also proved that ANN and RF algorithms are the best LULC classifiers,
although a non-parametric classifier like SAM (Kappa coefficient 0.84; area under curve (AUC)
0.85) has a better and consistent accuracy level than the other machine-learning algorithms. Finally,
this review concludes that the RF algorithm is the best machine-learning LULC classifier, among
the six examined algorithms although it is necessary to further test the RF algorithm in different
morphoclimatic conditions in the future.

Keywords: land use/land cover (LULC); Earth observations; machine learning algorithm; random
forest; artificial neural network
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1. Introduction

Knowledge of land-use/land-cover (LULC) change is essential in a number of fields based on the
use of Earth observations, such as urban and regional planning [1,2], environmental vulnerability and
impact assessment [3–7], natural disasters and hazards monitoring [8–13] and estimation of soil erosion
and salinity, etc. [14–17]. Quantitative assessment and prediction of LULC dynamics are the most
efficient means to manage and understand the landscape transformation [18]. Mapping LULC change
has been identified as an essential aspect of a wide range of activities and applications, such as in
planning for land use or global warming mitigation [19,20]. Consequently, assessment in LULC change
is inevitably required for a variety of purposes for the welfare of human beings in the context of rapid
and uncontrolled population growth along with economic and industrial development, especially in
developing countries with intensified LULC changes [20–23]. These changes have a series of impacts
on both human society and environment in many ways like increasing flood and drought vulnerability,
environmental degradation, loss of ecosystem services, groundwater depletion, landslide hazards, soil
erosion and others [14,15,24–27].

Several techniques have been developed to map LULC patterns and dynamics from the satellite
observations, including traditional terrestrial mapping, as well as satellite-based mapping. Terrestrial
mapping, known as a field survey, is a direct way of mapping in which the map can be produced
at various scales incorporating information with different levels of precision, although it is a
manpower-based, time- and money-consuming way to map large areas [28]. Moreover, there is
a chance of subjectivity in mapping. On the other hand, the satellite- and aerial photograph-based
mapping of LULC are cost-effective, spatially extensive, multi-temporal, and time-saving [29]. Earlier,
the spatial resolution of satellite data was comparatively less than that of the maps prepared through
terrestrial surveys. With the advancement of remote-sensing (RS) techniques and microwave sensors,
satellites provide data at various spatial and temporal scales [30–32]. RS provides the opportunity for
rapid acquisition of information on LULC at a much reduced price compared to the other methods
like ground surveys [33,34]. The satellite images have the advantages of multi-temporal availability
as well as large spatial coverage for the LULC mapping [35,36]. In the past few decades, studies on
mapping, monitoring and forecasting of LULC dynamics have been carried out using medium- and
low-resolution observations from satellites, such as Landsat, Satellite Pour l’Observation de la Terre, or
Satellite for observation of Earth (SPOT), Indian Remote Sensing (IRS) Satellite Resourcesat, Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate Resolution Imaging
Spectroradiomete (MODIS) and others [18,31,37–40]. With the advancement of hyperspectral satellite
sensors, the importance of RS has increased many times in the research field and for planning purposes.

Recently, the application of machine-learning algorithms on remotely-sensed imageries for LULC
mapping has been attracting considerable attention [41,42]. The machine-learning techniques have
been categorized into two sub-types; supervised and unsupervised techniques [43,44]. The supervised
classification techniques include support vector machine (SVM), random forest (RF), spectral angle
mapper (SAM), fuzzy adaptive resonance theory-supervised predictive mapping (Fuzzy ARTMAP),
Mahalanobis distance (MD), radial basis function (RBF), decision tree (DT), multilayer perception
(MLP), naive Bayes (NB), maximum likelihood classifier (MLC), and fuzzy logic [45,46], while the
unsupervised classification techniques include Affinity Propagation (AP) cluster algorithm, fuzzy
c-means algorithms, K-means algorithm, ISODATA (iterative self-organizing data) etc. [41,47].

Over the last decade, more advanced methods, such as artificial neural networks (ANN), SVM, RF,
decision tree, and other models, have gained exceptional attention in remote sensing-based applications,
such as LULC classification. Thus, numerous studies on the LULC modelling have been carried out
using different machine-learning algorithms [14,48–51] as well as comparing the machine-learning
algorithms [52–54]. Furthermore, a few studies have been carried out to identify the best suited
and accurate algorithm among used machine-learning classifiers for LULC mapping [52–55]. Each
machine-learning technique has different types of accuracy levels. It has been found that ANN,
SVM, and RF generally provide better accuracy as compared with the other traditional classifier
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techniques [56], while SVM and RF are the best techniques for the LULC classification compared to all
other machine-learning techniques [57,58]. However, the sensor characteristics and image data-related
factors, such as spatial and temporal resolution, processing software and hardware, etc. determine the
accuracy of LULC classification [59].

Several studies found that the LULC classification using medium- and low-resolution observations
from satellites has several spectral and spatial limitations that affect its accuracy [24,60–62]. Therefore,
researchers have been applying machine-learning algorithms to reduce the aforementioned limitations
and obtain high-precision LULC images. Furthermore, all machine-learning techniques do not always
produce a high-precision LULC map because good results depend on the machine-learning model
set-up, training samples and input parameters. Up to the present, numerous studies have been
conducted on land-use classification using machine-learning algorithms [20,63], but the performance of
models is not well examined. In this article, we utilized six machine-learning techniques to understand
which method can produce a high-precision LULC map based on accuracy statistics.

2. Materials and Methods

2.1. Study Area

We selected a stretch of riparian landscape of the river Ganga from Rajmahal to Farakka barrage in
India emphasizing three major dynamic river islands (locally, charland) dominated by patches. LULC
classification in relatively stable areas is easier than highly dynamic landscape like charland and such
work is undertaken by many scholars. How far the advanced methods are useful for delineating LULC
units in such a dynamic area was given emphasis with different approaches of accuracy assessment.
Successful application of one method in different similar sites proves its usability. Hence, to test the
precision of the applied methods three such patches from the study stretch were used. The study
area covers parts of Jharkhand and the West Bengal states of India. More precisely, it covers some
parts of Sahibganj District of Jharkhand and Malda and the Murshidabad districts of West Bengal
(Figure 1). The topography of the study area is dominated by alluvial plain, which is formed by the
sediments deposited by Ganga, Mahananda and Kalindi rivers. The elevation of the region varies
between approximately 12 meters to 90 meters. The regular flooding makes the region suitable for
agriculture with seasonal water scarcity. The climate of the region is of sub-humid monsoon type
(Koppen-Cwg) with average annual rainfall more than 1500 mm and temperature ranges from 10
and 38 ◦C. The rapidly increasing population causes large-scale landscape transformation by the
expansion of agricultural land and human settlement along with well-defined riverbank erosion and
flood hazards. Riverbank erosion has caused significant changes in the LULC pattern in the area for a
long time. The frequent flooding and riverbank erosion have caused large-scale displacement of the
human settlements in the region during the first decade of the 21st century [64].

2.2. Materials

In this work, the Landsat 8 Operational Land Imager (OLI) image (path/row 139/43) downloaded
from the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov) ) has been
used to map the LULC using different machine-learning algorithms (Figure 2). Six first-order LULC
classes have been identified based on a comprehensive literature survey and expert-based knowledge
about the study area (Table 1). The acquisition date of the Landsat data downloaded was 03 October
2019. Furthermore, the Google Earth image and field-based observations have been used for the
accuracy assessment of the LULC maps prepared.
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Figure 1. Location map and details of the study area.

Table 1. Description of the land-use/land-cover (LULC) classes identified.

Class Name Class Description Class Description Example

Agricultural land Area covered by agricultural crops

Built up area Area covered by settlement, road

Sand bar Land on the river bed

Fallow land Area without vegetation

Vegetation Area covered by forest, sparse
trees, mango orchard

River and wetlands Area covered by water
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Figure 2. Flowchart of the methodology.

2.3. Methods for Land-Use/Land-Cover (LULC) Modelling

The LULC classification was performed using the six most popular machine-learning classifiers.
The descriptions of the parameters for optimizing the models and software used to perform the LULC
classification are given in Table 2.

Table 2. Optimized parameters for different classifiers used for the LULC modelling.

S. No. Methods
Software Used for

Modelling
Optimized Parameters

1 Artificial neural network
TerrSet Geospatial

monitoring and
modelling system

Hidden layer-1, input layer-1, output
layer-1, nodes-6, learning rate-0.01,
momentum factor-0.5, sigmoid constant-1

2 Support vector machine
Environment for

Visualizing Images
(ENVI 5.3)

Kernel type-radial basis function, gamma in
kernel function-1, penalty parameter-100,
pyramid level-1, pyramid reclassification
threshold-0.90

3 Fuzzy ARTMAP
TerrSet Geospatial

monitoring and
modelling system

F1 layer neurons-12, F2 layer neurons-385,
map field layer neurons-6, choice parameter
for ARTa-0.01, learning rate and vigilance
parameter for ARTa- 1 and 0.98, learning
rate and vigilance parameter for ARTb- 1
and 1, iteration 3338

4 Spectral Angle mapper
Environment for

Visualizing Images
(ENVI 5.3)

Wavelength units-micrometers, Y data
multiplier-1, set maximum angle (radiance)-
single value, maximum angles
(radians)-0.100

5 Random Forest R programming
language (R 3.5.3) -

6 Mahalanobis Distance
Environment for

Visualizing Images
(ENVI 5.3)

-
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2.3.1. Methods for Machine-Learning Classifiers

1. Artificial Neural Network (ANN)
The ANN is the most widely applied machine-learning technique, which can be efficiently used

in non-linear phenomena such as parameter retrieval [65–67], LULC changes with the ability to work
on big data analysis. It is currently one of the most used non-parametric classification techniques [68].
It does not depend on any assumption of generally distributed data [69].

The ANN is a forward structure black-box model, which is trained by back propagation algorithm
(supervised training algorithm). The ANN is functioned like a human brain or nervous system
containing nerve fibres with many interconnections through other axons [70]. It can learn and produce
meaningful results from examples, even when the input data having error or complexity and incomplete.
Therefore, it can simulate exactly like the human nervous system. However, the ANN has one input
layer, at least one hidden layer and one output layer. Each layer is formed by neurons (like brain
nerves) (Figure 3). These neurons are non-linear processing units. However, all the neurons in a layer
are interconnected to all other neurons in the adjacent layers and formed networks. In addition, the
connection between neurons in successive layers are weighted. This process (transferring information
from one neuron to another or one layer to other layer) is called forward connection. This automatic
learning is accomplished through a dynamic adjustment of network inter-connection associated with
each neuron [66].

One of most important algorithms that ANN usually uses is the back propagation algorithm,
which is a gradient-decent algorithm. The main function of it is to minimize the error between the
actual network outputs and the outputs of training input/output pairs [71]. The network repeatedly
receives the numbers of input/output pairs and the error is propagated from the output back to the
input layer. The learning rate and update rule renew the weights of the backward paths [72,73].
In addition, the default processing unit, training and learning rate cannot uniquely specify the ANN.
Therefore, the trial and error process of changes of model parameters can only be the best way to
obtain better result. In this review article, the multilayer perceptron (MLP) ANN architecture used in
the LULC classification is modelled using a layered feed-forwarded model in the TerrSet Geospatial
Modelling Software.

The MLP architecture can be explained mathematically. In MLP architecture, the input layer
comprises the n0 neurons, which collect a normalized set of input variables of xi (i = 1, 2 . . . . . . n0).
The second layer is also known as the hidden layer that contains the n1 neurons and receives a set of
variables of yj(j = 1, 2 . . . . . . ...n1), which are the output of the first layer. Each of the layers receive a
bias value of 1 in each of the neurons that rectify their outputs. The third or output layer consists of the
n2 neurons with number equal to output variables of zk(K = 1, 2 . . . ., n2). A continuous non-linear
mapping is performed in the n0 neurons of xi variables in the output layer to the yi variables in the
hidden layer after summing them up using an activation function. The parameter of this function
is also defined as weights of neurons in each hidden layer for each result of neurons of the input
layer [74]. One of the most common methods for ANN training is the back-propagation algorithm
defined by minimizing the cost function as presented in Equation (1).

m =
1
2

n∑
i = 1

(ai − bi)
2 (1)

where n represents the number of classes, ai denotes the expected output, and bi is the response of
designed ANN from the i neuron of the total n neurons in the output layer.
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Figure 3. Schematic architecture of land use land cover classifiers (a) random forest, (b) support vector
machine, (c) spectral angle mapper, (d) artificial neural network, and (e) fuzzy ARTMAP.

2. Support Vector Machine (SVM)
SVM is a non-parametric supervised machine learning technique and initially aimed to solve

the binary classification problems [41,75]. It is based on the concept of structural risk minimization
(SRM), which maximizes and separates the hyper-plane and data points nearest the spectral angle
mapper (SAM) of the hyper-plane. It separates data points into various classes using a hyper-spectral
plane. In this process, the vectors ensure that the width of the margin will be maximized [76]. SVM
can support multiple continuous and categorical variables as well as linear and non-linear samples in
different class membership. The training samples or bordering samples that delineate the margin or
hyper-plane of SVM are known as support vectors [46]. In remote sensing, the polynomial and radial
basis function (RBF) kernel has been used most commonly [41], but for LULC classification RBF is the
most popular technique and gives better accuracy than the other traditional methods.

The original SVM method has been launched with a set of data, and its objective is to find the
hyper-plane that can separate the datasets into a number of classes, as the aim of SVM is to find the
optimal separating hyper-plane from the available hyper-planes [77]. Furthermore, the SVM algorithm
needs a proper kernel function to establish the hyper-planes accurately and minimize the classification
errors [78]. The essential part of the SVM technique is the kernel type used. The functionality of the
SVM mainly depends on the kernel size, and the similarity of a smooth surface depends on the more
significant kernel density. For simulated and real-world hyperspectral satellite data, the genetically
optimized SVM using the support vectors shows the best performance [79]. The primary function of
SVM is to find the optimal boundary, which will increase the separation between the entire support
vectors. The RBF and polynomial function kernel were performed on ENVI software version 5.3 for
LULC mapping.
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3. Fuzzy ARTMAP (FA)
The fuzzy ARTMAP technique is based on the similarity of the fuzzy subset calculation as well as

the adaptive and vibrant category selection through the feature space search. The structure of fuzzy
ARTMAP includes two modules, i.e., ARTa and ARTb. These two modules can be further sub-divided
into two sub-modules in the function (attention and orientation subsystem). The attention subsystem
has several functions. For example, it deals with the modules, establishes the exact internal illustration,
and creates fine-tuning for the modules. In contrast, the orientation subsystem is used for dealing
with the newly appeared module [80]. Each module of the fuzzy ARTMAP consists of three layers,
namely F0 as input layer, F1 as comparison layer and F2 as recognition layer. These characteristics of
fuzzy ARTMAP are identical to the artificial neural network. Furthermore, each layer has its respective
neuron units M, M, N as well as the control connections associated with the layers. F1 is used for the
detection of features and it has adequate nodes for the mode coding, while the nodes of F2 show the
categories concerning the input.

Based on the comprehensive investigation of fuzzy ARTMAP as well as the characteristics of
remote-sensing data, a simplified fuzzy ARTMAP algorithm has been applied using the Terrset software.
It comprises two layers in which the first is used for the feature data input and the second for the
classification of remote-sensing data. In the first layer, the numbers of neurons are equal to the feature
dimensions of the data, while in the second layer, the numbers of neurons are decided by the user as
per the trial and process results [81]. The fuzzy ARTMAP firstly calculates the comparison between
the new pattern and the existing active pattern. Then all active values are arranged in ascending order
to degree of matching and compared with warning values. If the warning values are exceeded by the
matching degree, the pattern of the training sample will be the same as the output layer. The fuzzy
ARTMAP combines the pattern of output layer neurons and uses the weight between the output-input
layers and the radius. If all the output layer neurons do not meet the matching requirements, a new
output layer neuron will be built to store the new pattern and, thus, the results of classification become
more accurate with more output layers.

4. Random Forest
RF is a new non-parametric ensemble machine-learning algorithm developed by Breiman [82].

The RF algorithm has been widely applied for solving the environmental problems, like water resource
management and natural hazard management. It can handle a variety of data, like satellite imageries,
and numerical data [83]. It is an ensemble learning method based on a decision tree, which combines
with massive ensemble regression and classification trees. For setting up the RF model, two parameters
are needed and called the base of the method. These parameters are (1) the number of trees, which
can be explained by ‘n-tree’ and (2) many features in each split, which can be explained by ‘m-try.’
Classification trees provide an individual choosing power or vote and accurate classification in
regulating the majority vote from trees in the entire forest.

In recent times, several studies have shown a satisfactory performance for LULC classification
using RF in the field of remote-sensing applications [42,52,57]. A vast number of trees of this method
provide better accuracy in the field of image classification [84] and land-use modelling. Breiman [82]
stated that using more trees compared to required trees is an unnecessary and time-consuming process,
but it does not hamper the entire model. Furthermore, Feng et al. [85] selected 200 decision trees in
their study and noted that the performance of RF was accurate. The RF technique has been benefited
with the two more powerful algorithms: bagging and random, which are called the powerhouse of
this method. In our study, the ‘randomForest’ package in R has been used to produce the LULC map.
As suggested by Feng et al. [85], 200 decision trees have been used with 3 input features (m-try) in
our study.

2.3.2. Method for Parametric Classifier

1. Mahalanobis Distance (MD)
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Supervised image classification is performed to detect the quantitative approach in the
remote-sensing image. The prime goals of supervised classification are to segment the spectral domain
into the areas that match the ground cover interest classes for a particular purpose. The Mahalanobis
distance (MD) supervised image classification algorithm was developed by an Indian applied statistician
Mahalanobis in the 1930s [86]. In MD classification, training data are given to specify the spectral
classes of the pixel based on the user-defined classes. MD classification is same as maximum
likelihood classification where statistics have been used for each class and it considers only equal
class coefficients. The MD method measures the distance between two or more than two correlated
variables. In mathematical term, MD distance is equal to Euclidean distance (ED) when the covariance
matrix is the unit matrix. The small value of MD increases the chance of an observation being closer to
the group’s centre. For each feature vector, the MD (D2

k) towards class means is calculated as in the
following equation:

D2
k = (xi − xk)

TS−1
k (xi − xk) (2)

where xi is the vector showing the pixel of image data, xk is the sample mean vector of the kth class,
S−1

k V is the variance/covariance matrix for class i; and T represents transpose of the matrix.

2.3.3. Method for Non-Parametric Classifier

1. Spectral Angle Mapper (SAM)
SAM is an auto-generated supervised spectral classifier machine learning technique that is used

to determine the spectral similarity between the given image spectra and reference spectra in an n (here
n denotes the spectral band number) dimensional space using the calculation of the angle between
the spectra [87]. In recent times, a large number of bands have been used in hyper-spectral remote
sensing to identify the different objects accurately and the SAM is able to analyse all bands together.
Reference spectra refer to the spectra that can be taken either by field investigation or directly from
satellite images. For LULC classification, reference spectra can be taken as a signature from the satellite
image [88].

In SAM, only angular information can be used to identify the pixel spectra. Thus, SAM uses only
angular information to identify the pixel spectra, which assumes that an observed reflectance spectrum
in a vector format is a multidimensional space with the number of dimensions equal to the number
of bands. The difference between image spectra and reference spectra is shown as the level of angle
where a small angle indicates high similarity and a high angle indicates low similarity. The maximum
threshold limits of tolerance of angle are not classified. Hence, it is better to define a threshold angle
limit (in radians) under which a pixel cannot be classified. In our study, SAM has been applied using
the ENVI 5.3 image processing environment for LULC classification. This technique is comparatively
intensive for illumination and albedo conditions while calibrating reflectance information. The SAM is
auto-generated supervised classification.

2.3.4. Similarity Test among the Classifiers

For representing the difference of performance of the algorithms for delineating LULC, similarity
ratio (SR) is computed. It is simply the ratio between proportions of area of a given LULC computed
by two algorithms. SR = 1 signifies the absolute similarity of the areal proportion of LULC computed
by two algorithms. A value >1 or <1 means growing dissimilarity.

2.3.5. Accuracy Assessment and Correlation among the Classifiers

The post-classification accuracy assessment has been considered as the most vital part of validating
the LULC maps produced by the models [61,89]. The high-precision LULC map can generate
fundamental grounds for successful planning and management. The statistics only can tell about
the accuracy assessment and the Kappa coefficient is a statistical technique that has been applied in
the present study for assessing the accuracy. Monserud and Leemans [90] suggested five levels of

13



Remote Sens. 2020, 12, 1135

agreement, poor or very poor, fair, good, very good, and excellent corresponding to the values lower
than 0.4, from 0.4 to 0.55, from 0.55 to 0.70, from 0.70 to 0.85, and higher than 0.85, respectively, between
images and ground reality. Thus, the Kappa coefficient has been calculated using 200 randomly selected
sample ground control points in order to evaluate the accuracy of LULC maps produced by using
different algorithms (the random points are shown in Figure 1). The sample points have been selected
from the field observation and using Google Earth Pro for the remote and inaccessible areas.

The receiver operating characteristics (RoC) curve graph was plotted to validate the performance
of LULC classifiers for detecting the different features of LULC. The graph was plotted between
sensitivity and specificity being on y and x axes, respectively. The sensitivity of a model represents
the proportion of correctly predicted positive pixels (i.e., the pixels belonging to a particular LULC
class were correctly predicted or identified), while the specificity refers to the proportion of correctly
predicted negative pixels (i.e., the pixels not belonging to a particular LULC class was correctly
predicted or identified). The sensitivity and specificity were calculated following Equations (3) and (4):

Sensitivity =
a

a + c
(3)

Speci f icity =
d

b + d
(4)

where a represents true positive, d refers to true negative, b means false positive, and c represents
false negative.

The area under curve (AUC) of the RoC curve depict the performance of classifiers for predicting
the LULC. The value of AUC ranges from 0–1, while the AUC close to 1 represents the high degree of
model performances.

The root mean square error (RMSE) was computed to evaluating the performance of machine
learning classifiers using the observed and prediction sample points. The RMSE was calculated by
using Equation (5). The lower the RMSE, the higher the accuracy of LULC prediction:

RMSE =

n∑
i = 1

(Observedi − Predicted1)
2

n
(5)

where n represents the number of sample points.
The “index-based technique” has been introduced to evaluate and select the best machine-learning

technique for LULC mapping. Thus, three satellite data-derived indices; normalized differential
vegetation index (NDVI), normalized differential water index (NDWI) and normalized differential
built-up index (NDBI), have been calculated for this purpose. Each index has been classified based
on a manual threshold. For better visualization, LULC classes (water, vegetation-agricultural land,
built-up area) and threshold-based NDWI, NDVI, NDBI have been masked out from the study area
using the selected three windows. The closeness of the area between the index-derived area and
classifier-derived LULC area could be considered as a good result and vice versa. Then, we used
correlation matrix among the area of land use classes of six LULC models and satellite data-derived
indices to statistically validate the index-based methods:

NDVI =
(IR band−R band)
(IR band + R band)

(6)

NDWI =
(Green band−NIR band)
(Green band + NIR band)

(7)

NDBI =
(MIR−NIR)
(MIR + NIR)

(8)
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We also used a visual interpretation procedure to evaluate the accuracy assessment of LULC
models. Furthermore, Karl Pearson’s coefficient of correlation technique was applied to understand
the association among the results of area coverage of land use classes obtained from the six LULC
models. Higher correlation coefficient values indicate conformity of the models.

3. Results

3.1. LULC Classification

The spatial analysis of the LULC map shows that the built-up area, and rivers and wetland are
more prominent and clearer in the outputs of SVM and random forest classifiers, while they are least
prominent in the output of SAM. On the other hand, the fallow land and agricultural land are more
prominent in the output of ANN, followed by fuzzy ARTMAP and Mahalanobis distance classifiers.
The vegetation cover and sand bar are fairly classified in all classifiers. In RF and SVM, they are
excellently classified (Figure 4). Overall, maximum coverage of built-up land was classified by the
SVM and fuzzy ARTMAP methods, whereas least coverage of built-up land was classified by SAM and
random forest. On the other hand, the highest coverage of vegetation is found by the SAM classifier,
followed by RF and SVM classifiers, while the least coverage is found by ANN. The coverage of
fallow land is completely reciprocal to the vegetation cover and the ANN classifier has the highest
coverage, followed by fuzzy ARTMAP and MD classifiers, while SAM has the least coverage (Table 3).
The coverage of rivers and wetland and sand bar are almost equally classified in all classifiers.

Table 3. Percentage of areal coverage of different LULC classes.

Land Use Class
Agriculture
Land (%)

Fallow
Land (%)

Sand Bar
(%)

Settlement
(%)

Vegetation
(%)

River and
Wetlands (%)

Total (%)

Artificial neural network
(ANN) 10.88 18.29 1.3 14.03 44.07 11.43 100

Fuzzy adaptive resonance
theory-supervised
predictive mapping
(ARTMAP)

6.72 14.34 1.74 19.59 46.31 11.3 100

Mahalanobis distance
(MD) 8.25 13.65 1.2 17.66 45.48 13.75 100

Support vector machine
(SVM) 12.27 10.4 1.5 17.95 48.31 9.57 100

Random forest (RF) 18.2 5.37 0.94 12.68 53.92 8.89 100

Spectral angle mapper
(SAM) 12.54 6.16 1.84 9.99 58.62 10.86 100

Average (%) 11.47 11.36 1.42 15.32 49.45 10.96

Standard deviation (SD) 4.01 5.02 0.34 3.67 5.65 1.69

Coefficient of variation
(CV) (%) 34.93 44.15 23.95 24.02 11.43 15.44

Table 3 shows the percentage share of each LULC class with respect to the total land coverage in
the study area for each classifier. Vegetation cover is the most dominant land-use class in the region
classified by all classifiers. It covers about half of the total land surface, while the sand bar has the
least share in the total land surface area. The percentage share of vegetation cover in total area varies
from 44.07% by ANN to 58.62% by SAM. The built-up area (from 9.99% by SAM to 19.59% by fuzzy
ARTMAP) and fallow land (from 5.37% by RF to 18.29% by ANN) and agricultural land (from 6.72%
by fuzzy ARTMAP to 18.20% by RF) are at the second, third and fourth positions in terms of areal
share, while sand bar has the least percentage share with respect to the total surface area by all the
classifiers used (from 0.94% by RF to 1.84% by SAM).
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Figure 4. LULC map with different machine-learning techniques.

Computed standard deviation (SD) and coefficient of variation (CV) among the percentage share
of area in a single LULC class by different classifiers are also displayed in Table 3. This vividly exhibits
that vegetation, river and water bodies are classified more accurately as all the classifiers accounted for
quite uniform areas with very low coefficient of variation. In contrast, fallow land and agricultural
land are less well classified as all the classifiers accounted areal extent with considerable differences.
Based on the result of similarity test, it can be stated that fuzzy ARTmap and MD, fuzzy ARTmap and
SVM methods are quite similar in their performance. The difference is found to be maximum between
ANN and SAM algorithms (Table 4).
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Table 4. Similarity ratio matrix of the proportion of LULC between two algorithms.

Land Use Class ANN Fuzzy ARTMAP MD SVM RF SAM

Artificial neural network
(ANN) 1

1.61 i,
1.28 ii,
0.72 iii,
0.95 iv,
1.01 v,
1.11 vi

1.31 i,
1.34 ii,
0.79 iii,
0.97 iv,
0.83 v,
1.05 vi

0.88 i,
1.75 ii,
0.78 iii,
0.91 iv,
1.19 v,
1.10 vi

0.59 i,
3.04 ii,
1.11 iii,
0.82 iv,
1.29 v,
1.37 vi

0.86 i,
2.97 ii,
1.40 iii,
0.75 iv,
1.05 v,
1.41 vi

Fuzzy adaptive resonance
theory-supervised

predictive mapping
(ARTMAP)

1

0.81 i,
1.05 ii,
1.11 iii,
1.02 iv,
0.83 v,
0.96 vi

0.54 i,
1.38 ii,
1.09 iii,
0.96 iv,
1.18 v,
1.03 vi

0.34 i,
2.67 ii,
1.54 iii,
0.86 iv,
1.27 v,
1.34 vi

0.5 i,
2.33 ii,
1.96 iii,
0.79 iv,
1.04 v,
1.32 vi

Mahalanobis distance (MD) 1

0.67 i,
1.31 ii,
0.98 iii,
0.94 iv,
1.44 v,
1.07 vi

0.45 i,
2.54 ii,
1.39 iii,
0.84 iv,
1.55 v,
1.35 vi

0.66 i,
2.21 ii,
1.77 iii,
0.78 iv,
1.27 v,
1.34 vi

Support vector machine
(SVM) 1

0.67 i,
1.94 ii,
1.42 iii,
0.9 iv,
1.08 v,
1.2 vi

0.98 i,
1.69 ii,
1.8 iii,
0.82 iv,
0.88 v,
1.23 vi

Random forest (RF) 1

1.45 i,
0.87 ii,
1.27 iii,
0.92 iv,
0.82 v,
1.07 vi

Spectral angle mapper
(SAM) 1

i = agriculture land, ii = Fallow land, iii = Settlement, iv = vegetation, v = River and wetlands, vi = Average of all
land-use classes.

3.2. Validation of the LULC Classification

The overall accuracy (in percentage) using Kappa coefficient (K) for all the classifiers is shown in
Table 5. The RF classifier has been detected as the highly accurate LULC model with Kappa coefficient
of 0.89 among all the classifiers followed by ANN (K = 0.87), SVM (K = 0.86), fuzzy ARTMAP (K = 0.85),
SAM (K = 0.84) and MD (K = 0.82). RF, ANN and SVM models exhibit excellent agreement and the
other models show very good agreement between classified LULC map and ground reality. All the
models can be treated as useful but the RF algorithm can be recommended as the best suited classifier
of LULC. However, the agricultural land and river and wetland were classified better by using the
RF and ANN algorithms (user’s accuracy of RF and ANN: 94%, 92%) in comparison to the other
algorithms. Similarly, most of the LULC classes were well classified by using RF, fuzzy ARTmap and
ANN (See details in supplementary Table S1). The computed area under curve (AUC) of ROC and
RMSE stated in Table 5 also yield the same result as identified when using the Kappa coefficient.

Table 5. Overall accuracy level of the classifiers used in this study.

Methods Kappa Coefficient (K)
Area Under Curve

(AUC)
Root Mean Square

Error (RMSE)

ANN 0.87 0.89 0.09
MD 0.82 0.83 0.28

Fuzzy ARTMAP 0.85 0.86 0.17
SVM 0.86 0.87 0.11
RF 0.89 0.91 0.006

SAM 0.84 0.85 0.23
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The areas of the three spectral indices; normalized differential water index (NDWI), normalized
differential vegetation index (NDVI), and normalized differential built-up index (NDBI) have been
computed and compared with the areas of water body, vegetation-agricultural land and built-up of
LULC maps by using the six classifiers. Results show that the RF classifier performs better than the
other classifiers because the total area of three spectral indices is strongly correlated with the area
of three LULC classes (Table 6). It is thus considered as the best-fit classifier for preparing LULC
in the present study area. Table 6 shows the departure of the area between spectral indices (NDWI,
NDVI, and NDBI) and maximum likelihood (ML) algorithms of three LULC units (Figure 5). The total
area of NDVI-based vegetation and agricultural land in the three windows is 155.87 km2 and the
departure of the area is −0.68 km2. It is very close to the area detected by the RF classifier (156.55 km2).
The NDWI-based water body area is 79.57 km2 and departure of area is 0.78km2 in the selected window.
It is the most similar with the water body area computed by the RF classifier (78.79 km2) (Table 6).
A similar result is found in the case of NDBI-based built-up area.

Figure 5. Validation of LULC of different classifiers with satellite data-derived indices (normalized
differential vegetation index (NDVI), normalized differential water index (NDWI), and normalized
differential built-up index (NDBI)).

The earlier analysis of closeness between the LULC models and satellite data-derived indices is
based on the comparison of the absolute values, but it does not assure robustness. Similarity in area
coverage does not always refer to the identical geographical location of any feature. Therefore, we
conducted correlation matrix analysis between all LULC models and satellite data-derived indices.
Figure 6a presents the correlation between the vegetation and agricultural land by the six classifiers
and NDVI in window 1, where the maximum correlation (0.99) can be found by the RF classifier and
NDVI at 0.001% significance level, followed by ANN (0.98), Fuzzy ARTMAP (0.97) and SVM (0.97),
while the least correlation can be found by the Mahalanobis distance (0.87) with NDVI. The highest
correlation (0.96) between water body by RF and NDWI can be found in window 2 at a significance
level of 0.001% (Figure 6b), followed by Fuzzy ARTMAP (0.95), SVM (0.94) and ANN (0.93), while the
least correlation (0.88) can be detected between SAM and NDWI (Figure 6b). The highest correlation (1)
is found between built-up area by RF classifier and NDBI at a significant level of 0.001% followed by
Fuzzy ARTMAP (1) at 0.01% of significance level, SVM (0.99) and ANN (0.93) in window 3 (Figure 6c).
The lowest correlation (0.91) between SAM and NDBI has been detected (Figure 6c).
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Figure 6. The correlation among the six LULC classifiers and satellite data-derived indices (NDWI,
NDVI and NDBI) for (a) window 1, (b) window 2, and (c) window 3. (*, ** and *** are the significant
levels at 0.001, 0.01, and 0.05, respectively).

We validated the LULC modelling using six classifiers by comparing the high-resolution images
provided by Google Earth. The aforementioned three sites were selected for comparison (Figure 5).
The water bodies and wetlands have been classified very well and they can be matched with the Google
Earth images in three sites, whereas both vegetation and agricultural land have been prominently
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visualized by all classifiers. In the cases of RF, fuzzy ARTMAP and SVM, the land-use features were
classified very well as proved by comparing with the Google Earth images. Although it is very difficult
to model a built-up area with 30-meter resolution images, machine-learning algorithms with good
training sites can perform predictions very well. Therefore, in the present study, some classifiers like
MD and fuzzy ARTMAP generated more built-up area than the other classifiers and even the reality.
However, the ANN, RF and SAM have classified built-up area as found in Google Earth images and
even similar to what we have found in the field survey.

4. Discussion

4.1. Variation in LULC in the Output of Classifiers Used

Several studies reported that the areas of LULC classes are not equal in all the classification
techniques, whether machine-learning algorithms or traditional classification techniques are
adopted [54,91,92]. In this study, the variation is also found in the results of six classifiers (Figure 5).
The area under any land-use class of a classifier does not exactly match with the area under the same
land-use class of another different classifier. The area under each land-use class for the same region also
varied in the different satellite data due to the atmospheric, illumination and geometric variations [92].
However, the differences in area under LULC classes of different classifiers occur due to the differences
in the parameter optimization of the models, techniques and the accuracy differences in the algorithms
used [42,92]. Furthermore, a few studies reported that the machine-learning techniques do not have
significant difference in the results [42,52]. In our study, we also found similar kinds of result with
small variation in a few land-use classes but not in every case. The coefficient of variation showed
significant difference of area computed under various LULC classes. The chi square value clearly
exhibited that as the difference in result produced in applied classifiers is significantly high, it is not due
to random chance. Hence, we need to justify the suitability of any one or two model(s) adopted here.

4.2. Comparison of Accuracy Assessment of Different Classifiers with the Literature

The accuracy of a classification varied with methods, techniques, time and space [41,52,93,94].
Several studies reported minor to moderate fluctuation in the accuracy of the LULC classification using
different classifiers [95–98]. The accuracy assessment in this study shows a small variation among the
outputs of the classifiers used in the present case. The accuracy of a LULC classification does not only
vary with classifier but also with space and time. This is possibly due to the influence of atmospheric,
surface and illumination variations [53,61]. The Kappa coefficient is the most popular technique used
to analyse the accuracy. The result shows that the maximum accuracy has been observed in the case
of the RF classifier (0.89). Previous studies like Adam et al. [42] and Ma et al. [57] noted that the
accuracy levels were 0.93 and 0.90, respectively, for the RF classifier. On the other hand, the minimum
accuracy has been found in the case of MD (0.82). The previous studies on LULC classification using
MD classifier reported the accuracy level of 0.89 [99], which is higher than the result of the present
study. A small difference is found between the previous study and the present study on the accuracy
levels of ANN, SAM, fuzzy ARTMAP and SVM [75,100,101]. In this study, the validation of LULC
models using satellite image-derived indices is novel and the findings show that RF has modelled
LULC in a very good manner, followed by Fuzzy ARTMA, SVM and ANN. However, on the basis of
Kappa coefficient, index-based accuracy assessment and empirical observations, it can be concluded
that RF is the best classifier for LULC classification. A number of studies from literature also noted
that SVM and RF have the highest accuracy in LULC classification (Table 7), while SAM and MD have
the lowest accuracy levels. Furthermore, Li et al. [53] noted that the accuracy of SVM and RF has very
little difference, but the difference increases between either SVM and ANN or RF and ANN. The result
shows that the difference between accuracies of RF and SVM is more than that between RF and ANN.
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Table 7. Suitability of classifier in LULC modelling as per the previous works.

S. No.
Methods Used for LULC

Classification
Best Method Study area Authors

1
Random forest (RF), K-nearest
neighbor (KNN), Support vector
machine (SVM)

SVM Red river delta, Vietnam [93]

2 RF, SVM RF Eastern suburbs of Deyang
city, Chaina [57]

3
naïve Bayes (NB), Decision trees
J-48, RF, Multilayer perception,
SVM

SVM Brazialian Tropical Savana [52]

4 SVM, NB, Decision trees (DT),
KNN SVM Haidian District of Beijing,

Chaina [100]

5
Maximum likelihood classifier
(MLC), SVM, Artificial neural
network (ANN)

ANN Walnutcreek, Lowa, USA [77]

6 SVM, ANN, Classification and
regression tree (CART) SVM Albemarle-Pamlico Estuary

System, [63]

7 Bagging, Boosting, RF,
Classification tree Boosting and RF Cape cod, Massachusetts, USA [102]

8 MLC, ANN, SVM SVM Koh Tao, western Gulf of
Thailand [101]

9 RF, SVM RF Eastern Coast of
KwaZulu-Natal, South Africa [42]

10 DT, RF, ANN, SVM RF Granada, Spain [93]

11 MLC, SVM, DT DT Kibale Sub-county, Eastern
Uganda [103]

12 NB, AdaBoost, ANN, RF, SVM RF Riau, Jambi and West Sumatra,
Indonesia [104]

13 SVM, RF, ANN ANN
North Western part of

Karkonosze National Park,
Poland

[105]

14 MLC, SVM SVM Johor, Malaysia [106]

15 SVM, MLC, ANN SVM Klang District, Malaysia [107]

17 RF, MLC MLC Sihu Township of Yun-Ling,
Taiwan [108]

18 ANN, SVM ANN Abbottabad, Pakistan [109]

19 ANN, SVM, Rotation Forest, RF,
Meta Classifier

RF and Meta
Classifier Gomukh, Uttarakhand, India [110]

5. Conclusions

This study was conducted to examine the accuracy of different machine-learning classifiers
for LULC mapping for satellite observations. The aim was to suggest the best classifier.
Six machine-learning algorithms were applied on the Landsat 8 (OLI) data for the LULC classification.
Accuracy assessments were undertaken by using the Kappa coefficient, an index-based technique
and empirical observations. Results suggest that the area under each LULC class varies under
different classifiers. The maximum variation is observed for the agricultural and fallow lands, while
the minimum for the water bodies and wetlands. Such variation requires a need to prove the best
suited classifier.

Furthermore, the Kappa coefficient and index-based analysis also show variation in the accuracy of
each LULC classifier. The variation in the accuracy of the classifiers used is found to be minor, but this
minor variation has very important significance in the area of LULC mapping and planning. Both the
Kappa coefficient and index-based analysis show that the RF has the highest accuracy of all classifiers
applied in this study. To justify the result, previous literature on this was taken into consideration
and most of the studies concluded that either RF or ANN is the best classifier. Although the previous
studies found a higher accuracy for RF and ANN than this study, this study concludes that RF is the
best machine-learning classifier for LULC modelling in the highly dynamic charland-dominated areas.
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Furthermore, numerous studies suggested that the accuracy of LULC mapping varies with time and
location. Thus, for future research, it is suggested to analyse the accuracy of the classifiers for different
morphoclimatic and geomorphic conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/7/1135/s1,
Table S1: The accuracy assessment of LULC mapping of six classifiers using Kappa coefficient.
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Abstract: Debris flows have been always a serious problem in the mountain areas. Research on the
assessment of debris flows susceptibility (DFS) is useful for preventing and mitigating debris flow
risks. The main purpose of this work is to study the DFS in the Shigatse area of Tibet, by using
machine learning methods, after assessing the main triggering factors of debris flows. Remote sensing
and geographic information system (GIS) are used to obtain datasets of topography, vegetation,
human activities and soil factors for local debris flows. The problem of debris flow susceptibility
level imbalances in datasets is addressed by the Borderline-SMOTE method. Five machine learning
methods, i.e., back propagation neural network (BPNN), one-dimensional convolutional neural
network (1D-CNN), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost)
have been used to analyze and fit the relationship between debris flow triggering factors and
occurrence, and to evaluate the weight of each triggering factor. The ANOVA and Tukey HSD
tests have revealed that the XGBoost model exhibited the best mean accuracy (0.924) on ten-fold
cross-validation and the performance was significantly better than that of the BPNN (0.871), DT (0.816),
and RF (0.901). However, the performance of the XGBoost did not significantly differ from that of
the 1D-CNN (0.914). This is also the first comparison experiment between XGBoost and 1D-CNN
methods in the DFS study. The DFS maps have been verified by five evaluation methods: Precision,
Recall, F1 score, Accuracy and area under the curve (AUC). Experiments show that the XGBoost has
the best score, and the factors that have a greater impact on debris flows are aspect, annual average
rainfall, profile curvature, and elevation.

Keywords: debris flow susceptibility; remote sensing; GIS; oversampling methods; back propagation
neural network; one-dimensional convolutional neural network; decision tree; random forest; extreme
gradient boosting

1. Introduction

Debris flows involve gravity-driven motion of solid-fluid mixtures with abrupt surge fronts,
free upper surfaces, variably erodible basal surfaces, and compositions that may change with position
and time [1]. They can cause great damage to the safety of people’s lives and property, public facilities
and ecological environment. Due to the harsh natural environment and deforestation caused by
over-exploitation of human beings, Shigatse is a typical area with active debris flows in the Tibet
Autonomous Region. Debris flows can cause very high damages because the study area is densely
populated. Therefore, mitigating and reducing the disasters caused by debris flows are critical to
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the local authorities. Most of Shigatse mountainous area is inaccessible and characterized by very
steep slope such that it is very difficult to carry out field surveys. The installation and maintenance
of sufficient monitoring facilities in these areas are also very challenging. Therefore, zoning debris
flow susceptibility (DFS) maps through spatial data can be used to prevent and mitigate casualties and
economic losses caused by debris flow events.

Susceptibility mapping of debris flow is prominent for early warning and treatments of regional
debris flows. DFS assessment is based on the spatial characteristics of debris flow events and relevant
factors (topography, soil, vegetation, human activities and climate). It aims to estimate the spatial
distribution of future debris flow probability in a given area [2]. Some studies have discussed and
analyzed debris flows in the study area [3,4], focusing on the residential settlements and vicinity of
roads. Assessing the susceptibility of debris flows in the whole study area is difficult due to the vast
size of land (exceeding 180,000 square kilometers). The detailed spatial information on the debris
flow triggering factors is also quite limited. In this case, satellite remote sensing has good application
prospects because it can describe the characteristics of a large area, such as terrain, vegetation, and
climate of the place where debris flow events occur. Therefore, compared with the traditional field
geological survey, which requires a lot of work and resources, data from remote sensing represented in
a GIS environment can fill the gap of on-site monitoring data. That is, it can be applied for the DFS
researches in a more effective and economical way.

In recent years, GIS and remote sensing data have been used to conduct many studies of disasters
in mountains. Researchers built their methodology analyzing data of known occurred debris flows
and tested it through unknown debris flow events. Gregoretti et al. [5] proposed a GIS-based model
tested against field measurements for a rapid hazard mapping. Kim et al. [6] used a high-resolution
light detection and ranging (LiDAR) digital elevation model to calculate the volume of debris flows.
Kim et al. [7] developed a GIS-based real-time debris flow susceptibility assessment framework for
highway sections. Alharbi et al. [8] presented a GIS-based methodology for determining initiation area
and characteristics of debris flow by using remote sensing data. At present, the DFS assessment methods
can be mainly divided into two categories: qualitative and quantitative models. The qualitative model
assigns a weight (0–1) to each debris flow triggering factor based on expert experience and knowledge
or heuristics to assess the DFS [9]. Common qualitative analysis methods include fuzzy logic [10],
analytic hierarchy [11] and network analysis [12] and so on. While these models have achieved a lot in
the study of debris flows, they still suffer for some shortcomings, such as a high degree of subjectivity
and limited applicability to specific areas [13].

Quantitative methods usually include two types: deterministic and statistical models based on
physical mechanisms. Deterministic methods are used to study the physical laws of debris flows and
establish the corresponding models to simulate the DFS [14]. The disadvantages of these models are in
that they require detailed inspection data for each slope. Thus, they are only suitable for smaller areas.
Statistical models are data-driven. The DFS assessment from them combines the past debris flow events
with environmental characteristics. It is assumed that the environmental characteristics of the past debris
flows events will lead to debris flows in the future. The models for the DFS quantitative assessment
include information model [15], evidence weight method [16], frequency ratio [17] and so on.

In recent years, data mining and machine learning techniques have also received extensive
attention because they can more accurately describe the nonlinear relationship between DFS and
triggering factors [18], and there is no special requirement for the distribution of triggering factors.
Machine learning algorithms are often superior to traditional statistical models [19] for the following
reasons. First of all, machine learning can adapt to larger datasets, while traditional statistical learning
methods are more suitable for small datasets. Secondly, machine learning has better controllability
and extensibility than traditional statistical models. Moreover, traditional statistical models are in
general limited to certain requirements and assumptions on data, whereas machine learning methods
are not. In the past three decades, common machine learning methods used for studying DFS mapping
include back propagation neural network (BPNN) [20], decision tree (DT) [21], Bayesian network [22],
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and support vector machine [23]. With the advancement of researches, more and more models have
been developed with better fitting performance. Under such circumstances, continuous verification
and evaluation are still necessary for constructing and selecting a DFS evaluation model. Therefore,
comparisons among various models to investigate DFS have become hot topics in academia. Since
the information about debris flow occurrence is very limited and different, stability and accurate
predictive power are the primary requirements for selecting the appropriate method to achieve better
modeling results.

Among machine learning methods, BPNN is widely used because it carries the excellent nonlinear
fitting and complex learning abilities to extract the complex relationship between debris flow triggering
factors and DFS [24]. Convolutional neural network, a classical deep learning method, has been
rapidly developed in the past decade and is widely used in pattern recognition and medicine It is
generally used for classification and recognition of two-dimensional images. In recent years, artificial
intelligence scholars have made the convolutional neural network one-dimensional, so as to perform
the speech recognition [25], fault diagnosis [26] and data classification [27]. As an end-to-end model,
the one-dimensional convolutional neural network can extract and classify different characteristics of
debris flows directly from raw data without expert guidance. DT is another powerful prediction model
with three major advantages: the model is easy to build; the final model is easy to interpret; and the
model provides clear information about the relative importance of input factors [28]. These advantages
have motivated researchers to develop new DT models to better utilize the debris flow information.
At the same time, integrated learning algorithms based on decision trees have also been widely
concerned. Among them, the more representative ones are bagging and boosting. Kadavi et al. [29]
used four integrated algorithms: Adaboost, Bagging, LogitBoost, and Multiclass classifier to calculate
and plot the DFS map. They proved that the Multiclass classifier had the best performance by verifying
the AUC value of the test set.

Due to the complex terrain, geology and other mountain conditions in the study area,
the multi-source and multi-data are used as much as possible to characterize the terrain and geological
conditions of debris flows. Although machine learning methods have been demonstrated to achieve
results with satisfactory to some extent, this paper further discusses whether they can be applied to
examine the DFS. Its most important contributions are described as follows. (a) We collected debris
flow events data and a variety of original remote sensing data related to topographic factors, such as
soil factors, human factors and vegetation factors, and performed pre-processing operations, including
projection, registration and sampling based on remote sensing and GIS technology (ArcGIS v.10.2
software). (b) We obtained the characteristics of the study area where debris flow occurred and used
the data generation algorithm to merge the collected debris flow events data. (c) Based on the Python
language, using the keras framework and the scikit-learn module, five DFS models (BPNN, 1D-CNN,
DT, RF, and XGBoost) were constructed for the training set. The applicability of these models was
examined for the Shigatse region. It is notable that this is the first comparative experiment of XGBoost
and 1D-CNN in the study of DFS. (d) Cross-validation methods were used to compare the performance
of artificial neural networks and tree-based models to reduce the bias and variance. (e) Statistical
analyses of the comparative algorithm were done to verify whether the performance is significantly
different. (f) The test set was used to evaluate the models’ prediction ability in combination with the
five evaluation methods of classical Recall, Precision, F1 score, Accuracy, and AUC [30]. (g) At the end
of the study, the tree-based “feature importance” ranking was used to evaluate the main characteristic
factors affecting the DFS.

2. Material and Methods

2.1. Study Area

The study area covers an area of 182,000 square kilometers in the southwestern part of China.
It is located in the southwest of the Tibet Autonomous Region (27◦23′~31◦49′N, and 82◦00′~90◦20′E).
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As shown in Figure 1, the Shigatse area is mainly located between the central Himalayas and central
part of the Gangdise-Nyqinqin Tanggula Mountains. Its elevation is high in the northern part and
southern part, including the southern Tibetan Plateau and Yarlung Zangbo River basin. The overall
terrain of the Shigatse region is complex and diverse, mainly consisting of mountains, wide valleys
and lake basins with a maximum elevation of over 8700 m. The study area belongs to semi-arid
monsoon climate zone of inland plateau. It is featured with dry climate, less precipitation, rainy season
coincident with hot season, and annual average sunshine hours of 3240 h.

The transportation mainly includes three main lines: China-Nepal (Zhongni) Highway, 318 National
Road and Largo Railway passing through the study area. The geological disasters in the study area are
serious, mainly including debris flows, rock collapses, and landslides. Among them, the debris flow is
the most common one. A large number of debris flows exist in many parts of the study region. They
directly threaten the safety of the three major transportation lines and residents’ lives and properties.
According to the collected data and previous studies [31], the debris flows in the study area are mostly
caused by heavy rain.

Figure 1. Location of the study area. Site maps of (a) China, (b) Tibet Autonomous Region, and (c) the
study area.

2.1.1. Debris Flow Dataset

Collection and analysis of debris flow event datasets are prerequisites for the DFS assessment.
There are 1944 debris flow sites in the study area from 1998 to 2008. Each case includes information
obtained from field disaster investigation, such as time, debris flow susceptibility level, and geographic
location. The information on debris flows is provided by the Tibet Meteorological Bureau. These
events can be viewed through the geological cloud portal [32].
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2.1.2. Debris Flow Triggering Factors

It is significant to analyze the environmental characteristics of the debris flow events for the DFS
estimation. Due to the complexity of the environment and various development stages of debris flows,
the causes of debris flows are controversial. Researchers have done a lot of studies on the relationship
between debris flows and triggering factors, such as topography, soil, climate, and human activities.
Therefore, we have classified 15 environmental factors into five categories as shown in Table 1.

Table 1. Data layer related to debris flows susceptibility (DFS) in the study area.

Category Factor Scale Data

Topography

Slope

30 m SRTM DEM

Aspect
Elevation

Plan curvature
Profile curvature
Total curvature

Anthropogenic Land cover
30 m

Land cover map
Distance to road Road vector

Soil
Soil type

1000 m
Spatial distribution data of soil texture

Soil texture Spatial distribution data of soil erosion
Soil Erosion Spatial distribution data of soil types

Vegetation NDVI 500 m MODIS

Climate Rainfall 25,000 m TRMM

Topographic factors that include elevation, slope, aspect, and curvature are extracted from
the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) using the ArcGIS
platform [33]. The vegetation coverage is represented by the normalized difference vegetation index
(NDVI), calculated from the obtained 2000–2008 MODIS images and averaged to generate the thematic
layer of the annual average NDVI. Rainfall data are collected from the Tropical Rainfall Measurement
Task (TRMM) [34]. We use a rainfall dataset (No: 3B42v7) with a time interval of three hours
and a spatial resolution of 0.25 degree during 1998–2008 to construct a thematic layer of annual
average precipitation. The 15 types of land use information layers are provided by National Earth
System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China
(http://www.geodata.cn) [35,36]. In addition, the road vector data provided by OpenStreetMap (OSM)
(https://www.openstreetmap.org/#map=11/22.3349/113.76000) is used to calculate the distance from
the road. Soil factors are provided by the Resource and Environmental Science Data Center (RESDC)
of the Chinese Academy of Sciences.

Higher resolution is conducive to the topographic analysis of single-ditch debris flow, but in this
work, our research focuses on the use of multiple attribute factors to analyze the disaster susceptibility
of the entire study area. Golovko [2] and Ahmed [9] believe that 30M resolution Digital Elevation
Model (DEM) can be used for the analysis of the susceptibility to mountain disasters. Therefore, DEM
data with a pixel size of 30 m is used (Figure 2a). The slope angle is a fundamental factor calculated
by the DEM data and the range of it obtained by statistics is wide (0–89◦) (Figure 2b). The aspect of
the slope is another key factor affecting the DFS. Because the slope surface in different directions is
exposed to the wind and rain in different degrees. The aspect thematic layers are reclassified into nine
categories: flat (−1), north (337.5–360◦, 0–22.5◦), north-east (22.5–67.5◦), east (67.5–112.5◦), south-east
(112.5–157.5◦), south (157.5–202.5◦), south-west (202.5–247.5◦), west (247.5–292.5◦), and north-west
(292.5–337.5◦) (Figure 2c). The second derivative of the slope, i.e., the curvature, helps us understand
the characteristics of the basin runoff and erosion processes. In this study, three curvature functions are
used to show the shape of the terrain (Figure 2d–f). They are the curvature of the profile, the curvature
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of the plane, and the total curvature of the surface defined as the curvature of the maximum slope,
the curvature of the contour, and the combination of the curvatures, respectively.

Human activities affect the geographical environment, which in turn influences the occurrence of
debris flows. The land cover thematic map shows how human production can change natural land,
and 14 land use types including farmland and forest can be identified (Figure 2g). The DFS assessment
often takes the distance from the road into account, because the road construction and maintenance
cause certain change and damage to the local morphology. This variable is calculated by using the
Euclidean distance calculation technique in the spatial analysis tool of ArcGIS 10.2 (Figure 2h).

The vegetation coverage is one of the important parameters to evaluate the DFS. NDVI extracted
from remote sensing images is a commonly used vegetation index for inferring the vegetation density.
It is very sensitive to the presence of chlorophyll on vegetation surface (Figure 2i). We calculated the
NDVI value using the following formula:

NDVI = (NIR − RED)/(NIR + RED) (1)

where NIR and RED represent the near-infrared and red-band, respectively, and they are the second
and first channels of the MODIS image. The NDVI value ranges between −1 and 1. The negative value
indicates that the ground cover is an object highly reflective to visible light such as clouds, snow, water,
etc. 0 means bare land. A positive value represents a vegetation coverage area and it increases with the
vegetation coverage density.

Debris flows are usually influenced by changes in humidity caused by rainfall infiltration.
Permeability can be expressed by soil type (Figure 2j), soil texture (Figure 2k–m) and soil erosion
(Figure 2n). Since the particle distribution determines the shape of soil water characteristic curve and
affects the soil hydraulic characteristics, the soil type and texture have a great influence on the DFS.
Most of the study area is covered by alpine soil, including grass mat soil, cold soil, and frozen soil.
According to statistics, most of the alpine soil is brown and has a strong acidity. The alpine soil is
mainly composed of silt, sand and clay fine sand, and has fast permeable and low moisturized ability.
Soil erosion is sometimes used as a synonym for soil and water loss, and areas with severe erosion are
susceptible to debris flows. The external causes of soil erosion are mainly hydro, wind, and freeze-thaw.
Clearly, fragile soil characteristics accompanied by concentrated rainfall usually result in debris flows.

Rainfall is the main factor leading to debris flows. The study area is affected by the monsoon climate
with rare precipitation and an annual average precipitation less than 1300 mm (Figure 2o). However,
statistical analyses of the geological hazard points occurring in the study area show that heavy rain and
continuous rainfall are important external factors leading to geological disasters in the Shigatse area.
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Figure 2. Cont.
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Figure 2. Spatial distribution of debris flow characteristics; (a) elevation, (b) slope angel, (c) aspect,
(d) total curvature, (e)profile curvature, (f) plan curvature, (g) landcover, (h) distance to road, (i) NDVI,
(j) soil type, (k) sand, (l) silt, (m) clay, (n) erosion, and (o) rainfall.

2.2. Methods

The main purpose of our research is to fit the relationship between the triggering factors and
occurrence of debris flows. The problem can be expressed as a multi-class classification. Given a set of
input quantities, the classification model attempts to label the DFS level for each pixel in the study
area. The input quantities to the models are the triggering factors of the debris flow events that were
collected by the local Chinese Geological Survey researchers after many years of field investigation.
According to the researchers’ investigation of the debris flow sites, we obtain the values of 15 triggering
factors at the corresponding positions through the value extraction function of ArcGIS v10.2 software.
That is, the input of the model is a one-dimensional vector form [×1, ×2, . . . , ×15]. The output value of
the model is the DFS level, indicating the occurrence probability of debris flows. The division criteria
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of regional DFS are based on the detailed survey and specification of landslide collapse debris flows by
the China Geological Survey as shown in Table 2.

Table 2. DFS level classification.

DFS Level Frequency of Debris Flow

Very low No debris flow occurs within 100 years
Low Debris flow occurs once within 10–100 years

Medium Debris flow occurs once in within1–10 years
High 1-10 debris flow events occurred with a year

According to statistics, the number of moderately susceptible units in the study area is much
higher than that of the other susceptible grades (Figure 3). Therefore, before constructing a debris
flow assessment model, the oversampling technique Borderline-SMOTE algorithm should be used to
eliminate the classification imbalance in the dataset. The number of each debris flow susceptibility
level after oversampling is shown in Figure 3. The original dataset is divided into training sets and
test sets according to a percentage of 75 and 25%, respectively. The training set of the debris flow
triggering factors is used to learn the ability to fit the actual DFS classification, and the validation set is
used for adjusting the model parameters to prevent over-fitting or under-fitting. In this study, five DFS
models have been established using DT, BPNN, 1D-CNN, RF, and XGBoost. Among them, the DT
and BPNN have been the most commonly used machine learning models in the past few decades.
The one-dimensional convolutional neural network (1D-CNN) has achieved remarkable results in
one-dimensional signal processing, such as fault diagnosis and speech recognition. RF is based on
the DT. It is a typical integrated algorithm in machine learning algorithms. The XGBoost is also a
tree-based integration model, which counts on the residuals generated by the last iteration. To the best
of our knowledge, the XGBoost and 1D-CNN have not been used for the DFS. Based on the above
introductions, the research framework for the DFS in Shigatse is shown in Figure 4.

 

Figure 3. Statistics of debris flow events with different susceptibility.

 

Figure 4. The research framework for DFS mapping.
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In addition, we have also implemented other traditional machine learning algorithms, such as
support vector machine, logistic regression, and naive Bayesian model, but the results are disappointing.
Therefore, these methods are not introduced here. The following part is a brief introduction to the data
sampling generation algorithm and five classifiers used in this paper.

2.2.1. Borderline-SMOTE

It is well known that in the model training process, when a certain class in the classified data
set is of a high proportion, the classifier performance will be seriously affected. Synthetic Minority
Oversampling Technique is often referred to as SMOTE that has been improved for its application
in solving data imbalance problems [37]. It is used to artificially generate vector data to achieve the
consistency among each category in the dataset. In the study, it is common that most units are with
moderate susceptibility. In the classification process, the scarcity of the category data with fewer
samples (the minority class) is one of the main factors for over-fitting and inaccuracy. This paper
chooses the boundary-based SOMTE algorithm (Borderline-SMOTE) to handle the imbalance of the
data. Specifically, the k-nearest neighbor algorithm is used to calculate the nearest neighbor sample
in the minority sample set in the training set. The boundary sample set is constructed according to
whether the majority class in the nearest neighbor sample set is dominant. The k-nearest neighbors
of the sample Ti in the boundary sample set are calculated, and the sample Tj is randomly selected.
The SMOTE algorithm is used to randomly insert the feature vector between the selected neighbor
samples and the initial vector. The SMOTE algorithm is shown in Equation (2),

Tnew = Ti + random(0, 1) ∗
∣∣∣Ti − Tj

∣∣∣ (2)

Finally, the generated new sample is added to the original sample set.

2.2.2. Back Propagation Neural Network

Back propagation neural network (BPNN) is a mathematical model that simulates the processing
information of the biological nervous system. The BPNN, as the most classic part of artificial neural
network, usually has three or more network structures, including input layer, output layer and hidden
layer. The main structural functions of the BPNN are the forward propagation of the signal and the
back propagation of the error. The neurons between the layers are fully connected, while the neurons
of each layer are not connected to each other. The network is a gradient descent method, using gradient
search technology to minimize the cost function of the network. It has strong nonlinear mapping ability
and is especially suitable for dealing with the intricate relationship between debris flow triggering
factors and DFS susceptibility. The general operation of the network is as follows. The input sample
leaves the input layer and enters the hidden layer. After being activated by the transfer function (such
as Tanh, Relu, Sigmoid and Tanh used in this article.), it passes to the next hidden layer until the output
layer. The output formula for each layer is as follows:

zi = fθ(
∑

j

wijxj − bi) (3)

where f (θ) represents the transfer function; θ = {w, b} represents the network parameter; w is the
weight; and b is the threshold.

2.2.3. One-Dimensional Convolutional Neural Network

As a feedforward neural network, one-dimensional neural network (1D-CNN) is inspired by the
mammalian visual cortex receptive field. The network perceives the local features and integrates the
local features in high-dimensional space, and finally obtains global information. The basic structure
of the convolutional neural network includes an input layer, alternating convolution layers, pooling
layers, and a fully connected layer. The convolutional layer captures the information of the local
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connections in the input features through the convolution kernel and reduces the parameters of the
model using the weight sharing principle. The convolution formula is:

xj
l = f (

M∑
i=1

xi
l−1 ∗ kij

l + bj
l) (4)

where f () represents the transfer function, xj
l represents the j-th feature map of convolutional layer l,

M represents the number of feature maps, xi
l−1 represents the ith feature map of the l-1 layer, ∗ represents

convolution operation, kij
l represents trainable convolution kernel, and bj

l represents bias. The shape
and number of one-dimensional convolution kernels can largely determine the feature-extraction ability
of the overall network. The shape of the convolution kernel affects the fineness of feature extraction.
The number of convolution kernels corresponds to the size of the feature layer, affecting multiple ways
of feature extraction and the computational scale of the network. The pooling layer combines multiple
adjacent nodes to merge similar features and performs down-sampling operation on the feature layer
extracted by the convolutional layer, thereby reducing training parameters and preventing network
over-fitting to enhance the generalization ability of the network. At present, the main pooling methods
include maximum pooling, mean pooling, and L2-norm pooling. After the convolutional layer and
pooling layer are located, the fully connected layer trains the weights and biases of the convolution
kernels in the entire convolutional neural network based on the back-propagation principle. The fully
connected layer structure is similar to the BP neural network mentioned in the previous section, which
has a hidden layer and uses the Softmax activation function to complete the classification. The structure
of the entire network is shown in Figure 5.

Figure 5. One-dimensional neural network structure used in this research.

2.2.4. Decision Tree

DT is a common machine learning algorithm similar to the tree structure, often used to find
pattern structures in data. It aims to establish correct decision rules and determine the relationship
between feature attributes and target variables without expert experience. Usually DT contains a root
node, multiple internal nodes, and a set of leaf nodes from top to bottom. The leaf node corresponds
to the prediction result, and the node contains all samples. The key to DT learning is to divide the
best attributes. At present, the algorithms for constructing DT mainly include CART, C4.5 and ID3.
This study uses a CART algorithm with better performance and efficiency [38]. CART uses the Gini
coefficient to divide the node properties and establish a DT by selecting the attributes that minimize the
Gini coefficient after dividing the nodes. The Gini index is shown in Equation (5) where k is the category
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and t is the node. Finally, pruning techniques are used to deal with the over-fitting problem of the
model. Upon completing the entire algorithm, we can clearly understand the internal decision-making
mechanism and thus get a more objective knowledge of debris flow triggering factors.

Gini(t) = 1−
∑

k

[p(ck
∣∣∣t)] 2

(5)

2.2.5. Random Forest

As an integrated classification algorithm of machine learning, RF aims to improve the flexibility
and accuracy of classification trees. In RF, a large number of trees are generated by constructing a base
DT on multiple bootstrap sample sets of data during the running of the algorithm. Because the feature
attributes of each node are randomly selected, the node characteristics are effectively reduced without
increasing the deviation. Each feature subset is much smaller than the total number of features in the
input space so that each DT is decorrelated. Finally, the output of the classification task is predicted by
a simple voting method. RF has been constructed with a number of DTs. It has been greatly improved
compared with a single DT. However, RF is as complex as the single basic DT. Therefore, RF is also a
fairly effective integrated learning algorithm.

2.2.6. XGBoost

XGBoost, also known as extreme Gradient Boosting, is a gradient-enhanced integration algorithm
based on classification trees or regression trees. It works the same way as Gradient Boosting, but adds
features similar to Adaboost. The algorithm combines multiple DT models in an iterative way to form
a classification model with a better structure and higher precision. It has achieved impressive results
in many international data mining competitions and won more than two championships in the Kaggle
competition. In the DFS analysis experiment, the XGBoost can classify the DFS level according to the
environmental characteristics of the Shigatse region and rank the importance of the triggering factors.

The XGBoost uses both the first and second derivatives to perform Taylor expansion on the loss
function and adds a regular term to it. Therefore, while considering the model accuracy, the model
complexity is also well controlled. Finally, the predictive power of the model is trained by minimizing
the total loss function [39]. The objective function of the model can be expressed as Equation (6):

J( ft) =
n∑

i=1

L
(
yi, ŷi

(t−1) + ft(xi)
)
+ Ω( ft) + C (6)

where i represents the ith sample, ŷi
(t−1) represents the predicted value of the (t − 1)th model for the

sample i, ft(xi) represents the newly added tth model, Ω( ft) represents the regular term, C represents
some constant terms, and the outermost L() represents the error.

The optimizer aims to calculate the structure and the leaf score of the CART tree. XGBoost
accelerates existing lifting tree enhancement algorithms through the cache-aware read-ahead technology,
distributed external memory computing technology and AllReduce fault-tolerant tools. It can also be
trained by using a graphics processing unit to provide a very high speed boost.

In this work, we can import the XGBoost toolkit in Python. The training process controls the
establishment of DT by adjusting five hyper-parameters: the number of iterations, the number of trees
generated, the learning rate, the maximum depth of each tree, and the L2 regularization. The Gamma
hyper-parameter limits the gain amount required for segmentation.

2.3. Evaluation Measures

DFS mapping should have the ability to effectively predict the probability of future debris flows
in the study area. In order to evaluate the predictive power of several machine learning algorithms,
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five common evaluation methods are used to quantify model performances, including Precision, Recall,
F1 score, Accuracy and AUC. Finally, 293 debris flow events are applied as a test set.

In the case of the binary classification problem, four elements, i.e., TP, TN, FP and FN, are defined
as follows.

TP: True Positive. Samples belonging to the TRUE class are correctly marked as positive by the model.
TN: True Negative. Samples belonging to the TRUE class are incorrectly marked as negative by

the model.
FP: False Positive. Samples belonging to the FALSE class are incorrectly marked as positive by

the model.
FN: False Negative. Samples belonging to the FALSE class are correctly marked as negative by

the model.

2.3.1. Precision

In the binary classification task, precision represents the ratio of the correct labeled True class
samples to the total number of predicted values labeled true. The formula is as follows:

Precision = TP/(TP + FP) (7)

Precision is expressed as a weighted average of the precision of each class in a multivariate
classification task.

2.3.2. Recall

The Recall rate is the ratio of the correct labeled True sample to the total number of True samples,
expressed as Equation (8) in the binary classification task.

Recall = TP/(TP + FN) (8)

The Recall rate represents the weighted average of the Recall rates for each category in a
multivariate classification task.

2.3.3. F1 Score

The F1 score is represented by Precision and Recall, with values between 0 and 1, which represent
the worst and best, respectively. The relative contributions of accuracy and recall to the F1 score are
equal. The formula is defined as follows:

F1 score = 2 * (Precision * Recall)/(Precision + Recall) (9)

In a multivariate classification task, the F1 score represents a weighted average of F1 scores for
each category.

2.3.4. Accuracy

In a multivariate classification task, accuracy represents the ratio of correctly classified samples to
the total number of samples.

2.3.5. Area Under the Curve (AUC)

The AUC method is defined as the area under the receiver operating characteristic curve (ROC),
which can give different distributions of each class. It can be used to judge classifiers’ performance.
The ROC curve is plotted as the relationship between the true positive rate (TPR) and false positive
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rate (FPR). TPR represents the ratio of the positive instance correctly classified to the total number of
all the positive instances, as represented by Equation (10):

TPR = TP/(TP+ FN) (10)

FPR is the ratio of the positive instance misclassified to the total number of all the negative
instances, as represented by Equation (11):

FPR = FP/(FP + TN) (11)

The AUC method is also designed to evaluate the binary classification. First, we need to convert
the multivariate classification task into multiple binary classification, and then separately calculate the
AUC values of the respective categories. Finally, the multivariate classification result is obtained by
obtaining the average of the total AUC values [40].

2.4. Cross-Validation

In this paper, the cross-validation method is used to complete the parameter optimization.
Specifically, based on the error-based verification evaluation index, the training set is divided into
k pairs of mutually equal exclusion subsets, where k − 1 pairs are used as the training sets and the
remaining subset are used as the verification set. The experiment is performed by rotating the subset k
times in turn, and the k verification results are averaged. In this paper, the GridSearchCV module via
the scikit-learn and the cv function via the XGBoost library are used to optimize the parameters of the
decision tree, random forest and the XGBoost model. In the Keras framework, the cross-validation
method based on the GridSearchCV module is also used to search in the parameter space, and the
optimal parameter estimation of the model in the data set is given.

2.5. Statistical Analysis

In order to compare the performance differences between the models, we conducted a statistical
analysis. One-way ANOVA can be used to test whether there is a statistically significant difference in
two or more unrelated groups [41]. Model performance is evaluated by the accuracy of test results
during the model training. Therefore, the accuracy group obtained by cross-validation of different
algorithms is used for one-way ANOVA. The null hypothesis given by H0 tested by One-way ANOVA
is as follows.

H0: The accuracy of all algorithms is not significantly different.
H1: There are significant differences in the accuracy of at least two or more algorithms.
The One-way ANOVA results in a P-value, and the P-value is the risk of rejecting the hypothesis H0.
The results can only determine whether there is a significant difference between at least one

group of samples and other groups, but it is impossible to judge whether there is a difference between
the two groups. Therefore, comparisons between specific groups are often performed after one-way
ANOVA. The honestly significant difference (HSD) method was developed by Tukey and is favored by
researchers as a simple and practical pairwise comparison technique. The main idea of HSD is to use
the statistical distribution to calculate the true significant difference between two mean values and call
it q-distribution [42]. This distribution gives an exact sampling distribution of the largest difference
between a set of mean values in the same population. All pairwise differences were evaluated by
using this distribution. This paper uses HSD as a post-hoc analysis to test the variance homogeneity of
performance indicators from different algorithms.

All statistical analyses were completed by using the Statistical Package for Social Sciences (IBM
SPSS Statistics for Windows Version 22.0).
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2.6. Feature Importance

The tree-based machine learning approach in this study provides a “feature importance” toolkit
for ordering index factors based on the function strength of a particular problem [43]. In the basic
decision tree, feature attributes are selected for the node segmentation, and the number of times
measures the importance of the attribute. For a single decision tree T, Equation (12) represents the
score of importance for each predictor feature xl, and the decision tree has J − 1 internal nodes.

w2
l (T) =

J−1∑
t=1

τ̂2
t (12)

The selected feature is the one that provides maximal estimated improvement τ̂2
t in the squared

error risk over that for a constant fit over the entire region. The following formula represents the
importance calculation over the additive M trees.

w2
l (T) =

1
M

M∑
m=1

τ̂2
t (Tm) (13)

In reality, a frequently used attribute often has a good distinguishing ability. In this study,
the importance of the factors affecting the debris flows occurrences is ranked from high to low
according to the characteristic attribute of the decision-making process of DFS.

3. Results

In this section, a specific implementation of five machine learning algorithms is introduced. Using
Python as the development language, the BPNN and the 1D-CNN are constructed based on the Keras
learning framework. The DT and the RF are implemented by API provided by the scikit-learn module,
and the XGBoost algorithm is implemented by the Python-based code provided by its official website.
The performance of DFS model depends largely on the choice, adjustment and optimization of its
parameters. Therefore, the optimization of the model structure and parameters requires multiple
experiments. The cross-validation method is used to complete the parameter optimization. After many
experiments, the optimal parameters of the five DFS models are obtained as shown in Table 3.

Table 3. Calculated parameters of the algorithms.

Algorithm Parameter

BPNN

Number of iterations: 3000;
Learning rate: 0.01;
Activation function: tanh, softmax;
Number of nodes: input layer = 15, hidden layer = (30,30),
output layer = 4;
Optimization function: Adam;
Loss: Logarithmic Loss Function;
Alpha:0.005

DT

Criterion: gini;
Min_samples_split = 2;
Mat_depyh: 38;
Splitter: random

1D-CNN

Convolutional Layer: Filter = 8, Kernel_size = 3, Stride = 1,
activation = Relu;
Pooling Layer: max_pooling;
Fully connected layer: node =15, activation = Relu;
Output layer: node = 4, activation = Softmax
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Table 3. Cont.

Algorithm Parameter

RF

Number of iterations: 30;
Max_feature = sprt
Max_depth: 20;
Criterion:gini;
Min_samples_split = 0.8;
Min_samples_leaf = 1

XGBoost

Number of iterations: 39;
Max_depth:15;
colsample_bytree: 0.5;
subsample: 0.9;
Eval_metric: mlogloss;
Objective:multi: softmax;
Eta: 0.1;
Lamda:0.2
Alpha = 0.005
Min_child_weight: 0.6;
Num_class: 4

3.1. Performance Metrics Evaluation

Cross-validation produces a list of accuracy, which can be seen from the first row in Table 4.
The poor accuracy value in the second line indicates the performance of the model under the non-SMOTE
data set.

Table 4. Performance metrics.

Model BPNN 1D-CNN DT RF XGBoost

Accuracy 0.871 ± 0.017 0.914 ± 0.01 0.816 ± 0.023 0.901 ± 0.011 0.924 ± 0.011
Accuracy(non-SMOTE) 0.664 ± 0.011 0.683 ± 0.023 0.671+0.005 0.684 ± 0.013 0.695 ± 0.01

In order to obtain robust verification results, we use the One-way ANOVA method to test whether
there is a significant difference between the methods. The ANOVA method is used according to the
five groups of accuracy, and the results are shown in Table 5.

Table 5. ANOVA results for five groups of accuracy.

Sum of Squares df Mean Square F Sig

Between Groups 0.076 4 0.019 167.683 0
Within Groups 0.005 45 0

Total 0.081 49

The F value in the table indicates the ratio of the mean square between the groups to the mean
square within the group. The corresponding P value is found according to the F value through the
lookup table. Sig represents the P value, which is 0 and less than 0.05, indicating that we can reject
the null hypothesis H0. We can think that there are significant differences between at least two sets
of models. Significant differences are calculated according to post-hoc Tukey’s HSD for all pairwise
comparisons between accuracies as shown in Table 6.
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Table 6. Means for groups in homogeneous subsets.

Model N
Subset for Alpha = 0.05

1 2 3 4

DT 10 0.817
BPNN 10 0.871

RF 10 0.901
1D-CNN 10 0.914 0.914
XGBoost 10 0.924

According to statistics, XGBoost performs best in terms of accuracy, and there is a significant
difference (p < 0.005) from BPNN, DT and RF. There is no significant difference between XGBoost and
CNN, but the average accuracy of XGBoost is higher than that of 1D-CNN.

3.2. DFS Map Construction

In this study, the relationships between the debris flow triggering factors and the DFS levels are
fitted by training the BPNN, CNN, DT, RF and XGBoost models to predict the susceptibility index of
each pixel in the study area, and to establish a pixel-based DFS classification map (Figure 6). The result
is a raster map with each raster pixel assigned a unique susceptibility index value. The susceptibility
index values are divided into four categories: 0, 1, 2 and 3, indicating very low, low, medium and high
debris flow levels, respectively.

In the debris flow map constructed by the BPNN model, about 2% of the study area is not
susceptible to debris flow, and the other 19.8%, 68.1%, and 9.6% are low, medium and high probability
DFS levels, respectively, as shown in Figure 6a.

The debris flow susceptibility map predicted by 1D-CNN is shown in Figure 6c. Among them,
the medium-prone area accounts for the vast majority of the study area. The other 11.12%, 21.02% and
3.35% are very low, Low and high probability DFS levels, respectively.

The DFS map generated by the DT model is shown in Figure 6b. 11.2% of the study area is not
susceptible to debris flows, 21.8% is seldom affected by debris flows, while the medium probability
debris flow area accounts for 56.5%, and the remaining 10.3% is high-probability area (Figure 6b).

The proportion of each RF susceptibility level in the DFS map fitted by the RF model is very low
(2.1%), low (34.5%), medium (62.8%), and high (0.27%), as shown in Figure 6d.

Finally, based on the XGBoost model, a DFS map is generated as shown in Figure 6e. The results
of DFS level distribution are very similar to those based on the random forest model. The medium
susceptibility is the main debris flow level, which accounts for 52.5%; the second large area corresponds
to the low susceptibility level, 37.2%. Very low and highly susceptible areas are small, accounting for
6.6% and 3%, respectively (Figure 7).
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6. DFS maps based on the models of (a) BPNN, (b) DT, (c) 1D-CNN (d) RF, and (e) XGBoost in
Shigatse area.
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Figure 7. Susceptibility level distributions in DFS maps constructed by the five models.

46



Remote Sens. 2019, 11, 2801

3.3. Model Evaluation

After successfully constructing the DFS model, we evaluated its performance using five traditional
evaluation methods, i.e., Recall, Precision, F1 score, Accuracy, and AUC. We also calculated the
time required to forecast the entire study area. The results of each model are shown in Table 7.
In particular, because the ROC curve corresponding to the AUC index of each model can directly reflect
the advantages and disadvantages of the model, it is drawn in Figure 8. As seen from Table 7 and
Figure 8, the following findings are listed.

(1) The values of the Recall, Precision, F1 score, Accuracy, and AUC evaluation score of the five
algorithms are quite different. That is, the performances of different algorithms show great
differences in the test set.

(2) Despite large differences in the evaluation index values, their differences show the same trend.
That is, the algorithm is superior when each evaluation index is superior to the other algorithms.

(3) The AUC evaluation scores of the five algorithms are very high, indicating that they are excellent
for evaluating the DFS in our study area. The AUC values of the BPNN, 1D-CNN, DT, RF and
XGBoost are 0.946, 0.976, 0.911, 0.976 and 0.988, respectively. It can be seen that XGBoost has the
best performance.

(4) From the results of the five indicators, the evaluation scores of the BPNN and DT models are
similar, and the 1D-CNN, RF and XGBoost models also take approximate scores, but the former
has a large gap with the latter.

(5) The models in this manuscript are all operated on Intel (R) Core (TM) i7-6800K CPU @ 3.4 GHz
with 64 RAM servers. In terms of predicting the time of the entire area, the DT model takes the
shortest time. XGBoost and 1D-CNN models take about the same time, and the calculation time
is at a medium level. The prediction speed of the BPNN model is slow, which takes about 20 min
for a single prediction. Finally, it can be seen that the RF calculation takes the longest time.

Table 7. Various assessment scores for five debris flow-prone models.

Model F1 Score AUC Precision Accuracy Recall Prediction Time/min

BPNN 0.783 0.946 0.723 0.795 0.914 20
DT 0.77 0.855 0.709 0.782 0.911 1.2
RF 0.859 0.976 0.813 0.852 0.934 28

XGBoost 0.9124 0.988 0.878 0.912 0.955 12
1D-CNN 0.901 0.976 0.914 0.906 0.906 11.2

Figure 8. ROC curve of five models.
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3.4. Importance of Triggering Factors

After successfully implementing the five evaluation algorithms, it is concluded that the XGBoost
model performs the best in the DFS mapping, and the model can be used to fit the relationship between
the debris flow triggering factors and the susceptibility. However, not all selected debris flow triggering
factors have a good predictive power. Different triggering factors have different contributions to the
model. Therefore, it is necessary to understand the contribution of each triggering factor. The practical
significance of this research is that we can provide suggestions and references for local governments
and researchers on site selection for public facilities by studying the importance of different debris flow
triggering factors characteristics.

As shown in Figure 9, the ordinate represents fifteen index factors for evaluating the DFS, and the
abscissa is expressed as the ratio of the number of times each feature attribute used for DT node
segmentation to that all attributes used for node segmentation. It can be clearly seen that the aspect is the
most important factor affecting the occurrence of debris flows, closely followed by the rainfall, and the
impacts of elevation and slope curvature are ranked the third and fourth, respectively. According
to these main characteristics, topographic and climatic factors are the main triggering factors for the
occurrence of debris flows in Shigatse. The last few debris flow triggering factors ranked by feature
importance have relatively little impact on debris flow events especially soil factors.

Figure 9. Relative importance of DFS triggering factors.

4. Discussion

This study aims to estimate the regional DFS by using five highly representative machine learning
models, i.e., BPNN, 1D-CNN, DT, RF, and XGBoost. According to literature, such investigations are
rare in Shigatse, particularly based on 1D-CNN and XGBoost.

4.1. Model Performance

First, as seen from Table 4, category imbalances have caused over-fitting problems on all of the
above machine learning models, resulting in poor model performance. The data generated by the
interpolation method is close to the original data, and we will adopt better interpolation methods to
obtain more reasonable data and use other methods to alleviate the over-fitting problem of machine
learning for unbalanced data [44] in the future studies.

As shown in Table 7, among the five evaluation methods (Recall, Precision, F1 score, Accuracy and
AUC), the results show that there is a gap in performance among different algorithms. The performance
rankings of the five models from high to low are XGBoost, 1D-CNN, RF, BPNN and DT. In addition,
ANOVA and Tukey HSD test results show that XGBoost is significantly different from the RF, BPNN,
and DT models. This also shows that XGBoost’s generalization performance and predictive ability are
significantly better than RF, BPNN and DT.
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In the early days, BPNN showed excellent performance in a variety of classification tasks. However,
this research only demonstrates its accuracy to outperform a single DT. XGBoost is not only better than
BPNN in terms of accuracy, but also in terms of speed, because BPNN has too many parameters to be
adjusted. Especially, XGBoost can generate “feature importance” that allows researchers to analyze the
data and BPNN is a black box model, for which much research has been done to explain the internal
structure. Although XGBoost has not been used for debris flow susceptibility analysis, some scholars
in the field of mountain disaster study have similar conclusions that the boost model exceeds the
accuracy of BPNN by 8% [18].

RF and XGBoost are integrated machine learning algorithms based on DT. The corresponding
evaluation scores are higher than that of a single DT. Such a result shows that the integrated algorithm
can make up the lack of fitting ability of a single DT. Although RF and XGBoost are both integrated
machine learning algorithms, XGBoost’s overall performance is better than the RF algorithm. The RF
algorithm focuses on the final voting results of all DTs, which can reduce variance, while XGBoost
focuses on the residuals generated by the last iteration which can reduce both variance and bias.
Performance comparisons between XGBoost and RF have been commonly obtained in many research
areas. Usually, XGBoost is in the leading position [39,45].

Like XGoost, 1D-CNN has not been used in debris flow susceptibility, and little literature is
concerned about them. The cross-validation results show that the accuracies of XGBoost and 1D-CNN
are not significantly different, but the average accuracy of XGBoost is better than that of 1D-CNN.
The test performance of the two models is also led by XGBoost. The main reason for this result is
that CNN can capture things like image, audio and possibly text quite well by modeling the spatial
temporal locality, while tree-based models solve tabular data very well.

When considering the model classification performance comprehensively, we can find that
XGBoost has the best comprehensive performance with high classification accuracy, good prediction
effect and less calculation time. Therefore, the XGBoost research method should attract more attention
in the future evaluation of DFS.

4.2. Feature Importance

Based on the selected model to construct the DFS map, the following conclusions can be drawn
from Figure 4. The DFS in the study area is mainly medium and low, accounting for more than 50% of
the entire study area. The feature attribute scores provided by the tree-based machine learning method
are important for analyzing the cause of debris flows. The results have shown that the aspect, profile
curvature, annual average rainfall and DEM are the main factors affecting the occurrence of debris
flows in the study area. The other triggering factors such as vegetation cover and human activities also
have a certain impact on debris flow, while the contribution of soil factors to the modeling is relatively
weak. According to the evaluation results of the model feature attributes, the targeted analysis and
investigation of the debris flow triggering factors in the study area can be carried out. Based on
historical data statistics, analysis of the main triggering factors is conducted.

In the study area, different slope directions lead to differences in hydrothermal conditions, which in
turn affect the geographical element distributions such as vegetation, hydrology, soil, and topography.
Some Chinese scholars have also examined the relationship between vegetation and debris flow
erosion and suggested that the slope direction largely determines the vegetation type and soil type [46].
Feature selection show that the slope aspect has the greatest impact on the distribution of debris flows.
According to the actual debris flow events statistics (Figure 10a), the distribution of debris flow events
in each aspect is given, and the number of debris flows on the southwest slope and the east slope are
relatively large. Among them, the debris flow events on the southwest slope are the densest as well as
the distribution location of highly occurrence-prone debris flow events.

The curvature of the slope describes its shape, which controls the formation of debris flow events
by affecting the gravitational potential energy and water collection conditions. The feature selection
results show that the profile curvature can be better used to estimate the DFS than the plane curvature
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and total curvature. The shape of the slope is usually linear, concave or convex, indicating the mid-term
evolution of the landscape, the maturity of the landscape and the period of violence of the landscape,
respectively. According to the statistic (Figure 10b), the debris flows are mainly concentrated in the
area where the curvature is negative, i.e., the surface of the pixel is convex. This statistical result is
consistent with the results of Guo et al. [47] on mountain debris flow events.

The overall elevation of the Shigatse region is very high and the valley is deep. Statistics on the
distribution of debris flow events at different altitudes indicate that debris flow events are mainly
distributed at altitudes between 3600–4600 m (Figure 10c). High-susceptibility and medium-susceptibility
levels are distributed at the altitude of about 4000 m. The reason is that the region at the altitude
between 3600 and 4600 m is very steep and densely populated. As a result, human activities have a huge
impact on it. In addition, the area within this altitude is mainly eroded by flowing water with serious
accumulation of loose materials and debris flow events particularly develop. Tang et al. [31] also got
similar conclusions for the investigation of the study area.

Rainfall is the main triggering factor for debris flows. It mainly promotes the mountain debris
flows by increasing soil bulk density and reducing cohesion and internal friction. The study area is
mainly a rain-sparing region with annual average rainfall less than 1350 mm (Figure 10d). However,
the debris flow has a very significant correlation with the rainfall season in Shigatse. Although the
annual precipitation is not high, the temporal distribution is concentrated. That is, heavy rain season is
also the season when debris flows frequently occur. According to statistics, debris flows in the flood
season in Shigatse accounts for more than 70% of the total debris flows.

  
(a) (b) 

  
(c) (d) 

Figure 10. Major triggering factors data obtained from the initial region of the debris flow: (a) Aspect;
(b) Profile curvature; (c) Rainfall; and (d) Elevation.

Machine learning algorithms can handle large-scale data. In addition, they are more objective than
the traditional qualitative evaluation methods and can support making decisions without expert system
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support. However, there are some inherent problems. For example, the data preprocessing workload
is large and time-consuming, and the data processing results have a great impact on the classifier.

5. Conclusions

In this study, multi-source satellite data and GIS are used to characterize the gestation environment
of debris flows in the study area, and then input these environmental characteristics into the machine
learning methods to establish the DFS model. The role and weight of the triggering factors shown by
the training process are analyzed for the purpose of further studying the main causes of debris flow.
In the entire research process described above, the four main findings are described as follows:

(1) Satellite remote sensing can provide data for regional DFS analysis, especially for mountainous
areas such as the southwestern Tibet with steep terrain where the sites are not always accessible
for investigation. Higher resolution does allow the image to better describe the terrain where the
debris flow occurs [48] and potentially improve further analysis. It is important and necessary to
use topographical factors, human activities, vegetation cover, climatic and soil elements provided
by satellite remote sensing to estimate regional debris flow susceptibility.

(2) Five machine learning algorithms were used to construct DFS map in Shigatse. The results
confirm that all five methods can be used to analyze the susceptibility of debris flows. According
to the performance, XGBoost ranks the first, and 1D-CNN is the second, followed by RF, BPNN,
and DT. XGBoost has the best predictive performance with the highest score among the five
evaluation methods. The ANOVA method and the Tukey’s HSD test showed that the accuracy of
XGBoost is significantly better than those of RF, BPNN, and DT, but it is not significantly different
from 1D-CNN. In terms of the time required for prediction, DT takes the least time, and the time
required for 1D-CNN is moderate and close to XGBoost. RF and BPNN are slower to calculate.
It is notable that this is the first comparative experiment of XGBoost and 1D-CNN in the study of
DFS. The ranking of the model based on the “feature importance” indicates that the slope aspect,
rainfall, profile curvature and DEM have a greater impact on the debris flows. The results of
this study are significant for the local public facility construction and the residential property
protection. Therefore, the XGBoost method has good prospects in estimating the DFS.

(3) By comparing the debris flow susceptibility maps of the five prediction algorithms, it is found that
the prediction results of five models all show that the moderately susceptible areas account for a
large proportion. This experiment has not yet explained the reasons for the different prediction
results. The causes will be explored in the subsequent studies. There may be some shortcomings
in the use of susceptibility in statistics as a label in experiments. In the follow-up study, we are
going to use the clustering algorithm first to obtain the location where the debris flow is not easy
to occur and use it together with the existing debris flow data for the classification of debris flow
susceptibility. With the development of machine learning technology, we will strive to further
improve the performance of the model for DFS by modifying and optimizing the algorithm.

(4) Debris flows are common in mountain areas. Five machine learning models are used to analyze
the debris flow events in the study. The results show that the XGBoost model has the best
predictive performance, which can be used to prevent casualties and economic losses caused by
debris flows. For local land planning and land use, relevant departments can use the XGBoost
model in combination with satellite remote sensing and GIS spatial data processing to create
feature maps and high-precision area-sensitive maps to provide guidance and preparation for
debris flow prevention and mitigation.
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Abstract: Debris flow susceptibility mapping is considered to be useful for hazard prevention and
mitigation. As a frequent debris flow area, many hazardous events have occurred annually and
caused a lot of damage in the Sichuan Province, China. Therefore, this study attempted to evaluate
and compare the performance of four state-of-the-art machine-learning methods, namely Logistic
Regression (LR), Support Vector Machines (SVM), Random Forest (RF), and Boosted Regression Trees
(BRT), for debris flow susceptibility mapping in this region. Four models were constructed based on
the debris flow inventory and a range of causal factors. A variety of datasets was obtained through
the combined application of remote sensing (RS) and geographic information system (GIS). The mean
altitude, altitude difference, aridity index, and groove gradient played the most important role in the
assessment. The performance of these modes was evaluated using predictive accuracy (ACC) and the
area under the receiver operating characteristic curve (AUC). The results of this study showed that all
four models were capable of producing accurate and robust debris flow susceptibility maps (ACC and
AUC values were well above 0.75 and 0.80 separately). With an excellent spatial prediction capability
and strong robustness, the BRT model (ACC = 0.781, AUC = 0.852) outperformed other models and
was the ideal choice. Our results also exhibited the importance of selecting suitable mapping units
and optimal predictors. Furthermore, the debris flow susceptibility maps of the Sichuan Province
were produced, which can provide helpful data for assessing and mitigating debris flow hazards.

Keywords: debris flow; susceptibility mapping; machine learning; remote sensing; geographical
information system

1. Introduction

Debris flow, a serious geological hazard, is defined as a mixture of water and a large number of
loose materials like sediments, detritus, and muds, that cause great casualties and economic losses
in mountainous areas all over the world [1–3]. Due to the complex natural conditions, South-West
China is a typical area with active debris flow. About half of these debris flows took place in the high
mountain zone of South-West China [4]. Geomorphological variations, heavy rainfalls, frequent seismic
activities, and unreasonable land uses are responsible for triggering such a large number of debris flow
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in this region. Especially in the Sichuan Province, dense residential areas scattered in mountainous
areas are exposed to severe risks during the flood season. For example, large-scale debris flows have
caused enormous harm to the human settlements, infrastructures, and ecological security in the Danba
County (2003), Dechang County (2004), and Qingping Township (2010) [5,6]. However, there is little
understanding of the detection of the potentially prone areas. Thus, appropriate disaster mitigation
and prevention solutions should be determined based on the debris flow susceptibility zoning.

Susceptibility maps are useful tools that show the likelihood of occurrence of an event in a specific
area based on the local environmental conditions [7]. Field survey and dynamic monitoring in remote
mountains are very challenging, therefore, susceptibility zoning is a prominent alternative. Plenty
of susceptibility analyses have been performed and published during the last several decades [8].
Multifarious classification methods have been applied, from qualitative assessment to quantitative
assessment, such as heuristic methods [9], physical methods [10–12], and data-driven methods [13,14].
Heuristic methods determine the impact of causal factors on debris flow by relying on subjective
experience, and then zone susceptibility, descriptively, so that the accuracy of heuristic studies is
instable due to their high subjectivity. In the physical methods, debris flow models are formulated based
on mechanical principles, physical laws, and simplified physical assumptions. However, constructing
physical models on a medium or large scale is quite complex. Physical models are more suitable for
understanding such hazards in an individual gully rather than a whole region. In recent years, with
the innovation of algorithms and the boom of data, data-driven methods, especially machine learning
methods, are more popular.

Machine learning methods aim to analyze the spatial relationship between past events and causal
factors by studying data characteristics and predicting the spatial probability of debris flow occurrence.
Most of these methods, including Back Propagation Neural Network (BPNN), Logistic Regression (LR),
Decision Tree (DT), Random Forest (RF), Boosted Regression Trees (BRT), Bayesian network (BN), and
Support Vector Machines (SVM), were developed one after another. In many regions, these methods
have been applied to the susceptibility mapping of landslides [15–17], gully erosion [18,19], debris
flow [13,14,20], and ground subsidence [21] by integrating environmental remote sensing (RS) data
under the Geographic Information System (GIS). These studies indicate that several machine-learning
methods provide a good predictive performance. Unlike other algorithms, multilayer BPNN has a
distinctive structure and ability to implement deep mining of data. It should be studied separately and
carefully due to training difficulties. Whereas, DT and BN have been rarely used for the mapping of
debris flow susceptibility, in previous investigations. Therefore, in this study, we ignored the three
algorithms mentioned above.

Overall, advanced machine learning algorithms have been used for solving problems of all sorts,
but only a few of these research objects were debris flows, therefore, more investigations are needed.
Additionally, it is highly important to compare different machine learning methods for susceptibility
mapping as each method has its own characteristics and finding an optimal method might have a large
impact on real applications. Which method is most suitable for the spatial prediction of debris flows is
still debated upon. Therefore, the objective of this study was to compare and analyze four machine
learning methods, including LR, RF, SVM, and BRT, for debris flow susceptibility mapping. The
Sichuan Province, which is well-known in China as the region with the most frequent and severe debris
flow, was therefore selected as a case study. The study was implemented with the help of GIS tools and
multifarious remote sensing datasets of the study area, such as environmental and sociometric factors.
The results of our study can provide support and help assess and mitigate debris flow hazards.

2. Study Area

Southwest China’s Sichuan Province is located in the upper reaches of the Yangtze River, between
the latitudes of 26◦03′N to 34◦19′N and longitudes of 97◦21′E to 108◦33′E, which covers an area of
486,000 square kilometers, at altitudes ranging from 212 m to 6904 m above sea level (Figure 1). The
topography of the whole province includes mountainous areas, basins, and plateaus. Terrains are
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complex and various. Three active faults run through the study area, namely the Longmenshan
fault, the Xianshuihe fault, and the Anninghe fault. Complex geological and geomorphological
characteristics play an important role to trigger heavy geological hazards in this region, because of
complex interactions between the Qinghai–Tibet Plateau and the Sichuan Basin [22]. The study area
belongs to the subtropical monsoon zone with an annual average rainfall of 1000 mm; over 80% of
precipitation usually takes place in the monsoon season (between April and October) [5]. The average
temperature in January ranges from 3 ◦C to 8 ◦C and the average temperature in July is 25 ◦C~29 ◦C [5].
Landslides, debris flow, and mountain torrents are widespread here. In particular, debris flows
triggered by heavy rains pose the greatest threat in the study area.

Figure 1. Study area and debris flow location map. Each dot represents the geographic coordinate of a
debris flow.

The Sichuan Province is an important node of the “One Belt and One Road” where many important
projects such as the Sichuan–Tibet Railway and the Baihetan Hydropower Station exist in the region.
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To promote sustainable development of society and economy, it is always important to conduct debris
flow susceptibility analyses to understand the surface dynamics and climatic variability.

3. Materials and Methods

To achieve debris flow susceptibility mapping, four main stages were adopted; illustrated in
Figure 2. First, the debris flow inventory was prepared and the causal factors were selected. Then, they
were separated into two independent groups, namely the training set and the validation set, using
the validation set approach. Second, four debris flow susceptibility models were set up based on the
LR, RF, SVM, and BRT algorithms. Third, we applied the constructed models to develop debris flow
susceptibility maps of the study area. Finally, these models were evaluated and compared using two
widely used criteria, including predictive accuracy (ACC) and the area under the receiver operating
characteristic curve (AUC).

Figure 2. Methodological flowchart of this study.

3.1. Preparation of Data Sets

3.1.1. Compilation of Debris Flow Inventory

Debris flow inventory is an important prerequisite for the analyses of debris flow susceptibility
because there is an assumption that past events have a great influence on the future [2]. In this study,
detailed information of 3839 rainfall-triggered debris flow events in the Sichuan Province, from 1949 to
2017 was collected, based on historical records collection, aerial photographs, satellite remote sensing
images interpretation, and field verification. Some of the information was obtained from government
departments in Sichuan. Therefore, the inventory is reliable in both quality and completeness. The
locations of debris flows are shown as points (Figure 1). As can be seen in the diagram, these events
were concentrated in the mountainous and hilly areas of the mid-Sichuan region.

3.1.2. Selection of Debris Flow Causal Factors

The selection of debris flow causal factors is also an important task for susceptibility modeling
and mapping. Investigators have been using diverse geo-environmental factors in previous studies
and have been trying to explore their relationship with debris flows. Based on the general cause of
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debris flows, six clusters of factors were initially determined for modeling in this study, including
topographical, geological, edaphic, meteorological, land-cover, and sociometric factors (Table 1).
All factors were prepared with the help of GIS and RS. The topographical factors, including mean
slope angle, slope aspect, mean altitude, altitude difference, and groove gradient, were derived from
the Digital Elevation Model (DEM). Notably, the groove gradient referred to the ratio of the height
difference of gully to its length and was an elemental parameter for the initiation and motion of debris
flows. Geological factors, namely seismic intensity and lithology, were prepared in a GIS environment
using a seismic information map and lithological composition map, respectively. Similarly, edaphic
factors (soil texture and soil erosion) and meteorological factors (moisture index, aridity index, mean
annual temperature, accumulated temperature of 10 ◦C, and annual precipitation) were acquired from
the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC)
and were pre-processed by GIS technology [23]. Additionally, sociometric factors (population density
and road density) were obtained from the remote sensing datasets provided by RESDC and the
OpenStreetMap [24]. Land cover factors (Normalized Difference Vegetation Index and land use)
constructed from remote sensing images were also commonly used [25].

Watersheds were selected as mapping units to avoid problems of raster grid-cells, such as lack of
physical relations with debris flows [26]. Watershed units have significant conceptual and operational
advantages [8]. We used the Hydrological Analysis Tool of ArcGIS v.10.2 software to divide the study
area into watersheds. Figure 3 exhibits 2471 mapping units ranging from 8.26 km2 to 1829.68 km2.
We excluded a few regions (e.g., plateau and plain areas) of the Sichuan Province in susceptibility
mapping because of the inadequate conditions to trigger a debris flow.

Figure 3. Watersheds map of the Sichuan Province, China.

The raw data of the causal factors were resampled based on the mapping units, using the Zonal
Statistics Tool in the ArcGIS v.10.2 software. The following factors took the average value in the
watershed—mean slope angle, mean altitude, moisture index, aridity index, mean annual temperature,
accumulated temperature of 10 ◦C, annual precipitation, and NDVI. Moreover, other factors took the
mode value in the watershed, including slope aspect, seismic intensity, lithology, soil erosion, and
land use. In particular, five factors had sub-factors. (1) The seismic intensity was reclassified into five
groups (<VI, VI, VII, VIII, and ≥IX), and the area of each group was also taken as a factor. (2) The
lithology was constructed with five groups based on hardness (extremely soft, soft, moderate hard,
hard, and extremely hard), and the area of each group was also taken as a factor. (3) The soil texture
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included three factors—clay content, sand content, and silt content. (4) Soil erosion was reclassified
into six groups (micro, mild, moderate, serious, drastic, and very drastic), and the area of each group
was also taken as a factor. (5) Land use was interpreted as six groups (cropland, woodland, grassland,
waterbody, construction land, and unused land), and the area of each type was also taken as a factor.
Therefore, 42 initial causal factors were prepared.

Table 1. Initial debris flow causal factors and their sources 1.

No. Causal Factors Clusters Sources

1 Mean slope angle

Topographic
ASTER GDEM (Spatial resolution of

30 m × 30 m)
(http://earthexplorer.usgs.gov)

2 Slope aspect

3 Mean altitude

4 Altitude difference

5 Groove gradient

6 Seismic intensity * Geological

China seismic information (Scale of
1:4,000,000)

(http://www.csi.ac.cn)

7 Lithology *
Lithological composition map of

Sichuan Province (Scale of 1:200,000)
(http://www.csi.ac.cn)

8 Soil texture * Edaphic

Spatial distribution datasets of soil
texture in China (Spatial resolution

of 1 km × 1 km)
(http://www.resdc.cn)

9 Soil erosion *

Spatial distribution datasets of soil
erosion in China (Spatial resolution

of 1 km × 1 km)
(http://www.resdc.cn)

10 Moisture index (Calculated by
Thornthwaite method)

Meteorological
Meteorological datasets in China

(Spatial resolution of 500 m × 500 m)
(http://www.resdc.cn)

11 Aridity index

12 Mean annual temperature

13 Accumulated temperature of 10 ◦C
14 Annual precipitation

15 Population density
Sociometric

Spatial distribution datasets of
population in China (Spatial
resolution of 1 km × 1 km)

(http://www.resdc.cn)

16 Road density OpenStreetMap Data
(http://planet.openstreetmap.org)

17 Normalized Difference Vegetation
Index (NDVI) Land cover

MODIS images (Spatial resolution
of 500 m × 500 m)

(https://modis.gsfc.nasa.gov)

18 Land use *

The land use and land cover change
database in China (Spatial
resolution of 1 km × 1 km)

(http://www.resdc.cn)
1 The factors with “*” in the table have the following sub-factors: (1) The seismic intensity was reclassified into five
groups (<VI, VI, VII, VIII, and ≥IX), and the area of each group was also taken as a factor. (2) The lithology was
constructed with five groups based on hardness (extremely soft, soft, moderate hard, hard, and extremely hard),
and the area of each group was also taken as a factor. (3) The soil texture included three factors—clay content, sand
content, and silt content. (4) Soil erosion was reclassified into six groups (micro, mild, moderate, serious, drastic,
and very drastic), and the area of each group was also taken as a factor. (5) Land use was interpreted as six groups
(cropland, woodland, grassland, waterbody, construction land, and unused land), and the area of each type was also
taken as a factor.

An excellent debris flow susceptibility model relies on a set of suitable factors, so the above
factors should be further evaluated and selected [8]. For this study, we adopted the backward variable
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selection method based on the RF algorithm to select the optimal factors and improve the predictive
capability [27]. First, we constructed and evaluated an RF model with all factors, where the model
performance and variable importance were recorded. Then, the factor with the lowest importance was
eliminated and a new model was implemented. This procedure was repeated until there was only one
factor left. Finally, a set of factors with the highest performance was chosen for the final prediction,
and the rest were removed. In Figure 4 it can be seen that only 15 factors were selected as the optimal
predictors for assessing the susceptibility of debris flow in this study.

Figure 4. Cont.
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Figure 4. Optimal causal factors used for final debris flow susceptibility mapping. (a) mean slope angle,
(b) mean altitude, (c) altitude difference, (d) groove gradient, (e) seismic intensity, (f) area of moderately
hard lithology in each watershed, (g) clay content of each watershed, (h) area of moderate soil erosion
in each watershed, (i) area of severe soil erosion in each watershed, (j) NDVI, (k) moisture index, (l)
aridity index, (m) accumulated temperature of 10 ◦C, (n) population density, and (o) road density.

3.1.3. Partition of Data Sets

Of the 2471 watersheds in the study area, 772 watersheds were positive cases (debris flows had
occurred) and the remaining 1699 watersheds were negative cases (debris flows had not occurred).
According to previous studies, the size of the types of cases selected for a model should be similar [28,29].
Therefore, 772 negative cases were selected randomly along with the same number of positive
cases, to train and validate the models. In general, approximately 70% of the data was randomly
selected for model training, meanwhile the remaining 30% was used for model validation. This data
partitioning method, namely the validation set approach, was easy to implement. However, the
ratio of training/validation set needed to be chosen carefully. The inappropriate ratio might cause
potential problems in the procedure of data mining, such as overfitting or deficient model training,
which significantly affects the predictive performance of the model. A split of 70%–30% is a common
choice adopted by many investigators for coping with this challenge [17,22,30,31]. Therefore, 1082
watersheds consisted of 541 positive cases and 541 negative cases were used to train the models, while
462 watersheds contained 231 positive cases and 231 negative cases served the output validation.
The positive/negative cases were labeled as 1/0 for modeling. To obtain more robust conclusions, the
sampling procedure was repeated three times. All three sample datasets participated in the model
operation. Lastly, the values of causal factors were resampled for each watershed.
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3.2. Model Construction Using Machine Learning Algorithms

After preparing datasets, we constructed and trained four debris flow susceptibility models using
machine learning algorithms. The statistical tool R version 3.4.4 was used for the model training [32].
We paid more attention to adjust and optimize the parameters based on the cross-validation approach,
for improving the effectiveness of the models. The model output was the occurrence probability of
debris flow and was used to simulate susceptibility.

3.2.1. Logistic Regression (LR)

Logistic Regression (LR) is a multivariate regression algorithm that has been extensively used
for the susceptibility assessment [22,33,34]. LR is suitable to understand the relationship between a
binary variable (whether the debris flow will occur or not) and several causal factors, and estimate the
probability of an event [35]. The logit–natural logarithm of LR can be expressed as below:

log
(

p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp (1)

Therefore, in this study, the probability p of a debris flow occurrence in each watershed could be
estimated by using the following equation:

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
(2)

where X = (X1, . . . , Xp) are the debris flow causal factors, β0 represents the intercept, (β1, . . . , βp) are
the regression coefficients. LR uses the maximum likelihood method to estimate (β1, . . . , βp). Finally,
the probability of a debris flow occurring varies from 0 to 1.

3.2.2. Random Forest (RF)

Random Forest (RF) is a multivariate model that belongs to one of the ensemble-learning
techniques [36]. The algorithm is also suitable for debris flow susceptibility assessment. According to
the decision rules, a series of decision trees were established, and final decision (whether the debris
flow will occur or not) was determined based on the majority vote [37]. When constructing these
decision trees, each time a split in a tree was considered, a random sample containing m causal factors
was selected as the split candidates, among all factors. Forcing each split to consider only a subset of
all factors helped to overcome the weakness of overfitting and improved the stability. This process was
thought of as de-correlating trees, thereby, making the results more reliable. There were two important
parameters, namely the number of trees and the tree depth, which needed to be tuned when modeling.
Additionally, to assess factor importance, the mean decrease accuracy and mean decrease Gini were
calculated [38–40].

3.2.3. Support Vector Machines (SVM)

Support Vector Machines (SVM) was developed in the 1990s [41] and has grown into a popular
approach for classification because of its superior empirical performance in a variety of settings [30,42,43].
In this study, debris flow causal factors were mapped into a high-dimensional feature space. Then,
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the model struggled to detect a hyperplane to separate positive cases and negative cases, as much as
possible [44]. The optimal hyperplane can be obtained by solving the following optimization problem:

maximize
β0,β11,β12,··· ,βp1,βp2,ε1,ε2,··· ,εn

M

subject to yi

⎛⎜⎜⎜⎜⎝β0 +
p∑

j=1
β j1xij+

p∑
j=1
β j2x2

ji

⎞⎟⎟⎟⎟⎠ ≥M(1− εi)

n∑
i=1
εi ≤ C, εi ≥ 0,

p∑
j=1

2∑
k=1
β2

jk = 1

(3)

where C is a non-negative tuning parameter, M is the width of the margin, ε1, ε2, . . . , εn are slack
variables. Later, to classify new data, the decision function can be written as below:

f (x) = sgn

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

yiαiK
(
xi, xj

)
+ b

⎞⎟⎟⎟⎟⎟⎠ (4)

where K is the function that we will refer to as a kernel, b represents the offset from the origin of the
hyperplane, n means the number of causal factors, and αi are positive real constants. The radial basis
kernel function was adopted in this study due to its robustness, as reported by Rahmati et al. [30] and
Kavzoglu et al. [45]. The core parameters of SVM modeling included gamma and cost.

3.2.4. Boosted Regression Trees (BRT)

Boosted Regression Trees (BRT) is an approach of combining gradient boosting algorithm with
classification and regression trees [46]. BRT adopts a method similar to RF to implement the debris flow
susceptibility assessment. The difference is that smaller trees are typically sufficient in BRT, because
of their slow learning process. Additionally, each tree in BRT is created based on the modification of
previous trees, unlike the RF algorithm. The core of training the BRT model is to select the optimal
value of three pivotal parameters—the shrinkage coefficient, the number of trees, and splits in each tree.
They control the rate at which boosting learns, the model’s scale, and the complexity of the boosted
ensemble, respectively. The optimal parameters were automatically set through cross-validation.

3.3. Evaluation and Comparison Methods

In this study, two commonly used criteria, including the predictive accuracy (ACC) and receiver
operating characteristic (ROC) curve were applied to quantify and compare the performance of models.
ACC is a statistical metric that relies on the components of the confusion matrix [30,47]. As Table 2
shows, the confusion matrix reveals the discrepancy between the model results and the actual observed
outcomes. ACC can be estimated by the following equation:

ACC =
TP + TN

TP + TN + FP + FN
(5)

where TP and TN refer to the number of watersheds that are correctly classified, while FP and FN refer
to the number of watersheds classified incorrectly.

Table 2. Confusion Matrix.

Observed
Predicted

Debris-Flow Non-Debris-Flow

Debris-flow True positive (TP) False negative (FN)

Non-debris-flow False positive (FP) True negative (TN)
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The ROC curve, which elucidates the alterations of true positive rate (TPR) and false positive rate
(FPR) when the discrimination threshold changes [48,49], is also a widely used technique to measure
the goodness-of-fit and the predictive power of probabilistic models. TPR is the ratio of positive cases
that are correctly identified under a specific threshold value. FPR means the ratio of all negative cases
that are incorrectly predicted to be positive, under the same threshold value. They also rely on the
confusion matrix and can be obtained from following equations:

TPR = TP/(TP + FN) (6)

FPR = FP/(FP + TN) (7)

This popular graph visualizes the confusion matrix under various thresholds and tracks two
kinds of classification errors [50]. The overall performance of debris flow susceptibility models is
quantified by the area under the curve (AUC). An ideal ROC curve should be close to the upper-left
corner, usually the higher the AUC value the better the model. According to the previous studies, the
performance of a model based on the AUC value can be classified as several levels: 0.5~0.6 = poor,
0.6~0.7 =moderate, 0.7~0.8 = acceptable, 0.8~0.9 = excellent, and 0.9~1 = almost perfect [19,30].

4. Results

4.1. Development of Debris Flow Susceptibility Maps

The core of LR modeling was the estimation of the regression coefficients using the maximum
likelihood method. During the RF modeling, the number of trees and the tree depth were determined as
1000 and 5. For the SVM model, the parameters, gamma and cost, were tuned to 1 and 10, respectively.
The important parameters in the BRT model, i.e., the shrinkage coefficient, the number of trees, and
splits in each tree, were identified to be 0.2, 1000, and 4, respectively. After model building and
operation, we averaged the model outputs of three sample datasets to generate the results. Repeated
sampling was helpful to reduce sampling error and gain more robust analysis results. Four models
were applied to calculate the debris flow susceptibility index for each watershed in the Sichuan
Province. According to the computed index, ranging from 0 to 1, susceptibility levels were reclassified
into five categories (very low, low, moderate, high, and very high) using the natural break classification
method in the GIS environment [17]. Then, susceptibility maps were produced in the GIS platform for
visualization (Figure 5). The results of the assessment showed that watersheds with high and very
high debris flow susceptibility were chiefly distributed in the central mountainous region of the study
area. Whereas there was lower susceptibility in the western plateau districts as well as the eastern
plain districts, with a gentle topography fluctuation.

Figure 6 depicts the relative distribution of the susceptibility classes calculated for each model. In
the LR model, the low class had the largest proportion (22.42%). 21.57%, 17.44%, 16.35%, and 22.22%
of watersheds which fell into the ‘very low’, ‘moderate’, ‘high’, and ‘very high’ susceptibility classes,
respectively. For the debris flow susceptibility maps of the RF and SVM model, the percentages of each
class were very similar to those acquired by the LR model. Furthermore, the percentage of very high
class in the BRT model (12.59%) was small, which was lower than that based on other models. The
moderate and lower debris flow susceptibilities were the main levels in the study area.
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Figure 5. The debris flow susceptibility maps of the Sichuan Province based on the (a) Logistic
Regression (LR), (b) Random Forest (RF), (c) Support Vector Machines (SVM), and (d) Boosted
Regression Trees (BRT) models.
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Figure 6. Proportions of the different debris flow susceptibility classes from the four models.

Overall, the susceptibility map intuitively describes the prone distribution of future debris flows.
The establishment of a large-scale prediction system based on machine learning methods has extremely
high application values and broad application prospects. More comprehensive analyses of debris flow
prediction system should be conducted to guide the practice of disaster prevention and reduction in
the future.

4.2. Evaluation and Comparison of Machine Learning Models

The performance of the four models was evaluated and compared using the criteria chosen
in Section 3.3. Analyses of the ACC and AUC using the training set are shown in Figure 7a and
Table 3. The highest AUC value belonged to the BRT model (AUC = 0.907), followed by the RF model
(AUC = 0.870), the SVM model (AUC = 0.865), and the LR model (AUC = 0.843), respectively. Similarly,
it could be found that the BRT model had the highest ACC value (0.823), other models followed it. The
criteria showed a high goodness-of-fit for all models in the training step. However, performance in
the training step was not enough to assess the prediction capacity of the model [51]. Therefore, we
paid more attention to the performance of models in the validation set. Table 4 and Figure 7b show
the ACC and AUC values on the validation set. The highest ACC and AUC values belong to the BRT
model (ACC = 0.781, AUC = 0.852), followed by the RF model (ACC = 0.779, AUC = 0.849), the SVM
model (ACC = 0.781, AUC = 0.849), and the LR model (ACC = 0.762, AUC = 0.829), respectively. The
ACC values of these models are far above 75% and the AUC values range from excellent to almost
perfect. According to these, all four machine-learning models performed well, considering the above
factors for debris flow susceptibility mapping. The BRT model was superior to the rest of the models.
This reiterates the fact that a data-driven classification model that learns slowly shows impressive
performance [48].
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Figure 7. The ROC curves of four debris flow susceptibility models using (a) training set and (b)
validation set.

Table 3. The ACC and AUC values of the four models on the training set.

Evaluation Criteria
Models

LR RF SVM BRT

ACC 0.762 0.791 0.785 0.823

AUC 0.843 0.870 0.865 0.907

Table 4. The ACC and AUC values of the four models on the validation set.

Evaluation Criteria
Models

LR RF SVM BRT

ACC 0.762 0.779 0.781 0.781

AUC 0.829 0.849 0.849 0.852

4.3. Assessment of Factor Importance

To evaluate the effect of factor selection, BRT was utilized. The AUC value of BRT experienced
improvement after removal of unimportant factors. Therefore, a careful analysis of causal factors
before modeling is indispensable. Considering the relevance and their corresponding weights, and
discarding unimportant factors, result in better forecasting performance.

A variety of factors can trigger occurrences of debris flows. Under the premise that the main
controlling factors of debris flow are still controversial, the assessment of factor importance is valuable
for interpreting and diagnosing the contribution of different predictor variables. The relative importance
of the fifteen factors used to build the models and produce the debris flow susceptibility maps are
presented in Figure 8. The results are shown based on the mean decrease of the Gini index in
the RF model and are expressed relative to the maximum value. The Gini index is regarded as a
commonly-used measurement of total variance across all classifications, and is suitable for assessing
the factor importance [48]. A large mean decrease value of the Gini index by splits over a given factor
shows a significant predictor. The classification tree models (RF and BRT) have the same mechanism for
assessing the relative importance of factors. While LR and SVM rank the factor importance by relying
on the regression coefficients and weight vectors, respectively. One of the advantages of applying the
Gini index in the RF or BRT model is that it is easier to interpret these results than the SVM or LR.
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As this figure shows, we can deem that all fifteen factors have positive contributions to debris flow
susceptibility modeling. The mean altitude, altitude difference, aridity index, and groove gradient
have the largest mean decrease in the Gini index, followed by others. There were four topographical
factors, three meteorological factors, three edaphic factors, two geological factors, two sociometric
factors, and one land-cover factors. That is, the topography, meteorology, and edaphology were
the most important factor clusters. Previous studies also illustrated that by explaining the general
cause of debris flows—surface rock and soil gradually lose their strength because of earthquakes or
weather conditions, which are potentially unstable in the steep slopes, and finally, seepage forces
formed by rainfall cause them to slide, the slide distance depends on the topography and strength loss
amount [52–54].

Figure 8. Importance of causal factors in the RF model. Values are arranged based on the mean decrease
in Gini index and the expressed relative to the maximum value.

The susceptibility map derived from the BRT model has been combined with the factor maps to
analyze the relationship between the causal factors and debris flow occurrences. The distribution of
watersheds with high and very high susceptibility classes (737 watersheds) on four most important
factor maps (mean altitude, altitude difference, aridity index, and groove gradient) is shown in
Figure 9. It can be seen that there are obvious regularities. Most watersheds with high and very high
susceptibility classes are highly associated with the following conditions—mean altitude varying from
2000 to 3000 m, altitude difference varying from 2000 to 3000 m, aridity index varying from 0.85 to 1.35,
and groove gradient varying from 100% to 200%. According to this case, prevention and mitigation of
debris flow risk should be paid more attention to in these types of highly coupled areas.
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Figure 9. Distribution of watersheds with high and very high debris flow susceptibility derived from
the BRT model on (a) mean altitude map, (b) altitude difference map, (c) aridity index map, and (d)
groove gradient map.

5. Discussion

On the basis of the remote sensing data, GIS tools, and machine learning algorithms, debris flow
susceptibility assessment of the Sichuan Province was implemented. The final four susceptibility maps
did not vary considerably between the models and had a consistent spatial distribution pattern. There
were obvious regional characteristics exhibited in the susceptibility maps. The transition belt of the
Qinghai–Tibet Plateau to the Sichuan Basin concentrates most watersheds of high and very high debris
flow susceptibility, where the topography varies enormously. Additionally, this region is coupled with
dry valleys and fault zones. Severe soil erosion and frequent earthquakes provide abundant loose
materials for debris flows. Similarly, we should also blame the hazard prone on the engineering dregs
generated by high-intensity road and hydropower development. Through a combined analysis of
factor importance, we identified the high-risk areas and major causal factors that were conducive to
preferable hazard prevention. Some factors, such as NDVI and seismic intensity, were always regarded
as necessary factors. However, the analyses of factor importance revealed that they were not highly
important in this particular application. Hence, we inferred that some factors were site-specific. This
inference was in agreement with the investigation conducted by Chen et al. [55].

In this study, all models exhibited good performance and was suitable for constructing debris
flow susceptibility maps. Among them, the BRT model was the most reliable and accurate in the study
area. As shown in Figure 4, proportions of the different debris flow susceptibility classes from the four
models were not exactly the same. From this empirical observation, we concluded that the predictions
of the BRT model tended to be optimistic, even though there was no structural evidence. There was
no universal agreement on which algorithm performed best on various environments. Each machine
learning method has its pros and cons, and the performance of one method is not always better than
the other. Rahmati et al. [30] applied seven machine learning methods to analyze the susceptibility
of gully erosion and found that the BRT model exhibited a better performance than SVM. However,
Garosi et al. [19] illustrated that the BRT and ANN models obtained similar outstanding performance in
their research. This might result from the lack of uniform criteria for the selection of factors. Although
advanced machine learning methods have slightly different performance in various studies, they
always have good predictive abilities and are suitable for the study of susceptibility. Based on the
above analyses, we recommend that governors and investigators obtain an optimal susceptibility map
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by comparing and combining multiple models in practical applications. Therefore, further comparison
and ensemble studies are necessary to guide the method selection for predicting debris flows.

6. Conclusions

Comparative studies of multiple machine learning models for debris flow susceptibility mapping
are very useful to predict future events. The important contributions of our comparative research
are summarized below. In this study, all four machine-learning models showed great performance.
The BRT model obtained the optimal goodness-of-fit and predictive capability as compared to the
other models, in terms of both AUC and ACC, while it was also stable and did not show any
overfitting. Therefore, these models, especially BRT, show promising techniques for producing debris
flow susceptibility map. This map of the study area shows that the distribution of the watersheds with
high and very high susceptibility is coupled with an extreme topography transition zone. Additionally,
environmental data based on RS and GIS provide important data sources for regional analyses of
debris flow susceptibility. Proper selection of the optimal factors and appropriate mapping units not
only improved the prediction performance of the models but also helps avoid the arbitrariness of the
factors used. The topographical factors, meteorological factors, and edaphic factors played the most
important role in this case. These study results provide a comprehensive perspective on debris flow
susceptibility in the Sichuan Province, which are essential for policymakers to implement sustainable
disaster mitigation in high debris-flow-prone areas.
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Abstract: This study evaluates the U.S. National Oceanographic and Atmospheric Administration’s
(NOAA) Climate Prediction Center morphing technique (CMORPH) and the Japan Aerospace
Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation
estimates over Australia across an 18 year period from 2001 to 2018. The evaluation was performed
on a monthly time scale and used both point and gridded rain gauge data as the reference dataset.
Overall statistics demonstrated that satellite precipitation estimates did exhibit skill over Australia
and that gauge-blending yielded a notable increase in performance. Dependencies of performance on
geography, season, and rainfall intensity were also investigated. The skill of satellite precipitation
detection was reduced in areas of elevated topography and where cold frontal rainfall was the main
precipitation source. Areas where rain gauge coverage was sparse also exhibited reduced skill.
In terms of seasons, the performance was relatively similar across the year, with austral summer
(DJF) exhibiting slightly better performance. The skill of the satellite precipitation estimates was
highly dependent on rainfall intensity. The highest skill was obtained for moderate rainfall amounts
(2–4 mm/day). There was an overestimation of low-end rainfall amounts and an underestimation in
both the frequency and amount for high-end rainfall. Overall, CMORPH and GSMaP datasets were
evaluated as useful sources of satellite precipitation estimates over Australia.

Keywords: satellite precipitation estimates; Australia; rain gauge precipitation measurements;
satellite precipitation validation

1. Introduction

Precipitation is an essential climate variable and is one of the most important climate variables
affecting human activities [1]. Variations in the intensity, duration, and frequency of precipitation
directly impact water availability for many millions of people and industries. Measuring rainfall over
broad areas enables efficient water management and disaster response and recovery.

The conventional method of using rain gauges to estimate spatial patterns of rainfall provides
a direct measurement of surface rainfall but spatial density can be an issue across many parts of
the world, including over the oceans, where the installation of an adequate rain gauge network is
economically or physically unfeasible [2]. This greatly affects the ability to accurately assess rainfall
across a region as it is a variable that exhibits a high degree of spatial variation and a point-based
measurement may not provide an ideal representation of an area. Rain gauge estimates are subject
to instrumental errors with many relying on manual sampling methods. Clock synchronization and
mechanical faults are examples of potential issues [3]. Furthermore, they are also affected by localised
effects including wind (precipitation can be prevented from entering the gauge), evaporation (some
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of the precipitation is evaporated before it can be recorded), wetting (some of the precipitation can
be left behind in the gauge) and splashing effects (precipitation can incorrectly splash in and out of
the gauge) [4,5]. For example, Groisman and Legates (1994) found biases due to wind-induced effects
could be quite significant, especially around mountainous areas where the bias was as large as 40% [6].

Alternative physical-based precipitation datasets include those derived from ground-based radars
and satellites. Radar estimates are derived from the detected reflectivity of hydrometeors but suffer from
problems such as topography blockage, beam ducting, range-related and bright band effects [7,8]. Van
De Beek et al. (2016) found that for a 3-day rainfall event in the Netherlands, the radar underestimated
rainfall amount by over 50%, though after correction the difference was only 5-8% [9]. Correction
to rain gauges is critical but this means radars are likely to perform poorly in areas that lack gauge
coverage, hindering their ability to replace gauges. As a ground-based source, they are also affected by
the same physical and economical limitations that are applicable to installation of rain gauge networks.

The use of meteorological satellites to monitor rainfall was introduced in the 1970s, providing a
means to estimate rainfall across most of the globe. The first methods inferred precipitation intensity
based on visible or infrared (IR) data by linking cloud-top temperature or reflectivity to rain rates
through empirical relationships. Later methods used passive microwave (PMW) sensors that detect
the radiation from hydrometeors and link this to rainfall rates, thereby providing a more direct
interpretation of precipitation. However, the coverage of PMW satellites is much less than that of their
IR counterparts.

Consequently, techniques have been developed to combine the increased accuracy of PMW
estimates with the coverage provided by IR satellites. One method which can be referred to as the
cloud-motion advection method involves using IR images to derive cloud-motion vectors and then
using these vectors to advect PMW-based precipitation estimates to cover areas lacking in PMW
coverage. The Climate Prediction Center morphing technique (CMORPH) developed by the National
Oceanic and Atmospheric Administration (NOAA) was the first product of this kind and was followed
by the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation
(GSMaP) dataset [10,11]. CMORPH and GSMaP have undergone multiple advancements since their
inception. The key improvements have been the introduction of the Kalman filter to modify the
shape and intensity of the advected rainfall and the implementation of bias-correction using gauge
data [10,12,13].

Many past verification studies have been performed with modern-day satellite technology,
showing that, at least on a monthly basis, the technology can possess good potential [14]. However,
few studies have been performed over Australia, with even fewer, if any, using the latest CMORPH
and GSMaP datasets.

Continental studies in the past have indicated that performance varies greatly with rainfall type,
amount, and season, with performance tending to be better for heavier rainfall regimes including
those during summer and in the tropics [15,16]. Ebert et al. (2007) evaluated the performance of
multiple satellite datasets, including CMORPH, over Australia for a two-year period and found the
estimates were relatively unbiased over summer but the accuracy greatly deteriorated in winter [15].
Pipunic et al. (2015) examined Tropical Rainfall Measuring Mission (TRMM) 3B42RT satellite data over
mainland Australia across a nine-year period and found a similar conclusion with detection of light
rainfall (<3 mm/day) being unreliable while the most reliably detected regime was heavier rainfall
associated with warm season convective systems, especially in the tropics [17]. Factors that make light
rain detection difficult include subcloud evaporation and the poor recognition of clouds with warm
cloud-top temperatures [18].

In general, CMORPH and GSMaP display an overestimation (underestimation) for low (high)
rainfall rates. For example, Habib (2012) compared CMORPH data to seven rain gauges in southern
Louisiana, USA from August 2004 to December 2006 and found a consistent positive (negative) bias for
rainfall rates less (more) than 3 mm/h [19]. Ning et al. (2017) evaluated gauge-corrected GSMaP data
against a gauge-based analysis (China daily Precipitation Analysis Product) over eastern China from
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April 2014 to March 2016 and showed that GSMaP overestimated light precipitation (<16 mm/day)
while underestimating heavier precipitation (>32 mm/day) [20]. Hit bias rather than false or missed
event bias was noted as the major error with false event bias also being more significant than missed
event bias. The introduction of a bias-correction scheme is largely able to correct a positive bias by
scaling down the magnitudes, but the inability to correct missed events means there has been much
less success in correcting the negative bias [13].

Previous studies have also indicated that a significant degradation of performance occurred over
orography, with satellites underestimating rainfall over higher elevations [18,21]. The bias can be
worse during winter where the poor detection of snowfall, as well as rainfall, over cold surfaces leads
to both missed events and an underestimation of intensity [22]. Derin et al. (2016) performed an
evaluation over the western Black Sea region of Turkey, an area featuring complex topography in the
form of a mountain range, from 2007 to 2011, and found that CMORPH exhibited a bias of −54% for the
windward side of the region during the warm season, increasing to −82% during the cold season [21].

Kubota et al. (2009) found that the greatest biases in GSMaP were over coastal areas with frequent
orographic rainfall and that estimates were generally better over the ocean than over the land [23].
Coastal regions are likely to present difficulties as the retrieval algorithm struggles to account for both
ocean and land surfaces in a single grid point.

This study aims to contribute to the validation of satellite rainfall data. It differs from earlier
studies by evaluating satellite precipitation estimates over a relatively long period of record (18 years)
with a focus on Australia, which has a relatively dense rain gauge network over a large area when
compared to other world regions [15]. The use of a percentile-based verification statistic is an innovative
feature of this study, while the use of both gridded and point gauge data as a reference adds additional
insight compared to using just one. The CMORPH and GSMaP datasets were chosen due to their
provision as part of the World Meteorological Organization (WMO) Space-based Weather and Climate
Extremes Monitoring Demonstration Project (SEMDP) [24]. This project aims to introduce operational
satellite rainfall monitoring products based on these two datasets, to East Asia and Western Pacific
countries, of which many lack adequate rainfall monitoring capabilities due to the absence of an
extensive and accurate rain gauge network. The verification of these datasets is thus an important step
for the creation of these products. Moreover, the cloud-motion advection method used to blend PMW
and IR data ranks amongst the best in terms of performance across various satellite methods used
to estimate precipitation [25]. The variance of the errors in the satellite precipitation estimates with
location, season, and rainfall intensity was investigated.

The paper is organised as follows. Section 2 describes the study area, datasets, and methods used
in the study. Section 3 presents the results while Section 4 discuss the findings. Section 5 summarises
the major findings and provides directions for future work.

2. Materials and Methods

2.1. Study Area

Australia has a land area of around 8.6 million km2, making it the sixth-largest country in the
world by land size. Its large geographical size means that it experiences a variety of climates, including
temperate zones to the south east and south west, tropical zones to the north, and deserts or semi-arid
areas across much of the interior [26]. The main orographic feature occurs in the form of the Great
Dividing Range (GDR), a mountain range along the eastern side of the country that extends more than
3500 km from the north-eastern tip of Queensland, towards and along the coast of New South Wales,
and into the eastern and central parts of Victoria. The width of the GDR ranges from about 160 to 300
km with a maximum elevation of 2228 m, though the typical elevation range for the highlands is from
300 to 1600 m [27]. In Figure 1, the domain of analysis is shown, with the stations used in the study
also marked.
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 (a)                                            (b)  

Figure 1. Domain of analysis. (a) Stations are marked as blue dots; (b) scale of topography.

2.2. Datasets

As part of the WMO SEMDP, access to GSMaP and CMORPH data were provided by JAXA and
NOAA, respectively. Both datasets of satellite precipitation estimates employ the cloud-advection
technique introduced in Section 1. The GSMaP version used was GSMaP Gauge-adjusted
Near-Real-Time (GNRT) Version 6. To allow for a faster data latency, gauge adjustment over land was
performed against the gauge-calibrated version (GSMaP gauge) from the past period, which, itself,
is calibrated by matching daily satellite rainfall estimates to a global gauge analysis, CPC Unified
Gauge-Based Analysis of Global Daily Precipitation (CPC Unified) [28]. Further details can be found
in the GSMaP technical documentation [28].

Two versions of CMORPH were used. These were the bias-corrected CMORPH (CMORPH
CRT) and the gauge-blended CMORPH (CMORPH BLD) datasets. Bias correction over land was also
performed using the CPC Unified analysis but using a different algorithm that involves matching to
probability distribution function (PDF) tables from the past 30 days. The gauge-blended version uses
the bias-corrected version as a first guess and then incorporates the gauge data based on the density of
the observations; further details can be found in [10,13].

Consequently, this study used two gauge-corrected sets (GSMaP and CMORPH CRT) and one
that had been further processed by combining CMORPH CRT with gauge data (CMORPH BLD).

The reference datasets used were both based on the Bureau of Meteorology (BoM) rain gauges
with the Australian Water Availability Project (AWAP) analysis being used as the reference dataset
for the gridded comparison and the values from the stations themselves being used for the point
comparison. The AWAP rainfall analysis is generated by decomposing the field into a climatology
component and an anomaly component based on the ratio of the observed rainfall value to the
climatology [29]. The Barnes successive-correction technique is applied to the anomaly component and
added to the monthly climatological averages, which were derived using a three-dimensional smooth
splice approach [29]. The climatological averages were generated from 30 years of monthly totals [29].
For the point comparison, only ‘Series 0’ stations were chosen as these stations are Bureau-maintained
and conform to International Civil Aviation Organization (ICAO) standards. The minimum number
of stations used across the period was 4764. As discussed earlier, even though rain gauge network
measurements can be taken as ‘truth’, they still contain errors, which will artificially inflate the errors
attributed to satellite measurements.

Details on the spatial and temporal resolutions of the gridded datasets along with their domains
are shown in Table 1.
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Table 1. Details about dataset used.

Dataset Resolution (◦) Start of Temporal Domain Latitude Range (◦) Longitude Range (◦)
CMORPH BLD 0.25 Jan 1998 (−45, 40) (50, 200)
CMORPH CRT 0.25 Jan 1998 (−45, 40) (50, 200)

GSMaP 0.25 Apr 2000 (−45, 40) (50, 200)
AWAP 0.05 Jan 1900 (−44.525, −9.975) (111.975, 156.275)

The longest common period across the datasets using full years was chosen for the analysis (i.e.,
January 2001 to December 2018). A spatial domain of latitude from −44.625◦N to −10.125◦N and
longitude from 112.125◦E to 156.125◦E was chosen as this domain centers on Australia. Ocean data
were masked.

2.3. Method

The satellite datasets were compared against the gauge-based datasets. Both a gridded comparison
and point comparison were performed. When performing the comparisons, all the datasets were
linearly interpolated to the same spatial resolution. An interpolation to the coarsest resolution was
chosen (i.e., 0.25◦). Values at each grid box from these interpolated grids could then be compared
against each other for the gridded comparison.

For the point comparison, values corresponding to the location of a station were linearly
interpolated from each grid. These values could then be compared to the actual station value. Inclusion
of the AWAP dataset was done to provide an additional reference. A complication arose from the fact
that the gauge-based data values were 24 h accumulated values to 0900 local standard time (LST), while
the satellite data values were values to 00 UTC. As this study is focused on monthly comparisons, the
longer period greatly reduces the impact of this timing inconsistency. An elementary remedy would
be to have shifted the gauge and AWAP values one day ahead of their satellite counterparts, reducing
the inconsistency to two hours or less. Doing this adjustment resulted in improvements of less than 2%
and so the unadjusted datasets were used for simplicity.

Both continuous and percentile-based statistics were calculated. The continuous statistics
calculated were the mean bias (MB), root-mean-square error (RMSE), mean average error (MAE),
and the Pearson correlation coefficient (R). The MB is the average difference between the estimated
and observed values, which gives an indicator of the overall bias. The MAE measures the average
magnitude of the error. To remove the effect of higher rainfall averages leading to larger errors, the
MAE was also normalised through division by the average rainfall producing the normalised mean
average error. The RMSE also measures the average error magnitude but is weighted towards larger
errors. R is commonly known as the linear correlation coefficient as it measures the linear association
between the estimated and observed datasets.

In addition to continuous verification statistics, a percentile-based verification can also be
performed to measure how well the datasets reproduce the occurrence of low- and high-end values.
This is a novel verification metric that the authors have deemed useful to assess because, even if the
satellites performs poorly in terms of absolute values, they may still produce accurate values relative
to their own climatology, meaning there is the potential to produce percentile-based products. Such
products have already been produced (e.g., both NOAA and JAXA have generated satellite-derived
versions of the Standardized Precipitation Index, as well as rainfall values expressed as high-end
percentiles). The quintile for an observed month at a location could be derived by ranking that value
against the same month but for different years across the verification period. The ranking can then be
converted to a percentile through linear interpolation. If a bottom or top quintile was observed, the
value from the satellite dataset was then investigated. If it was also registered in the same quintile, this
was recorded as a success; otherwise, it was recorded as a failure. The number of successes was then
converted to a hit rate. This hit rate was only calculated for the gridded comparison as the varying
number of stations across the verification period made a point-based comparison more difficult. The
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use of quintiles provided greater differentiation of extreme values than terciles or quartiles, while the
record length was considered too short for the use of deciles.

The equations for the metrics are summarised in Table 2 with Ei representing the estimated value
at a point or grid box i, Oi being the observed value, and N being the number of samples (across the
whole domain and period) for the continuous metrics.

Table 2. Summary of metrics used.

Metric Equation Range Perfect Value Unit

Mean bias (MB) 1
N

N∑
i=1

(Ei −Oi) (−∞,∞) 0 mm/day

Mean average error (MAE) 1
N

N∑
i=1
|Ei −Oi| [0,∞) 0 mm/day

Normalised mean average error 1
N

∑N
i=1

∣∣∣Ei−Oi

∣∣∣
1
N

∑N
i=1 Ei

[0,∞) 0

Root-mean-square error (RMSE)

√
1
N

N∑
i=1

(Ei −Oi)
2 [0,∞) 0 mm/day

Pearson correlation coefficient (R)

∑N
i=1[(Ei−E)(Oi−O)]√∑N

i=1(Ei−E)
2
√∑N

i=1(Oi−O)
2 [−1, 1] 1

3. Results

The results of the gridded continuous comparison against AWAP data are presented in Figure 2.
The linear correlation of the satellite rainfall estimates ranges from 0.77 to 0.88, while the MAE ranges
from 0.61 to 0.43 mm/day. The trend amongst all the metrics is the same with performance being the
best for CMORPH BLD, then CMORPH CRT, and lastly GSMaP. CMORPH CRT and GSMaP display
similar performances, while there is a clear increase in performance for CMORPH BLD.

Figure 2. Gridded continuous comparison of satellite datasets against Australian Water Availability
Project (AWAP) from January 2001 to December 2018. Mean bias (MB), root-mean-square error (RMSE),
mean average error (MAE), Pearson correlation coefficient (R) and normalised mean average error
(Norm. MAE) are displayed.

The gridded percentile-based comparison against AWAP data is shown in Figure 3. The satellite
datasets obtain around a 70%–80% hit rate for the bottom quintile whilst scoring around 10% less for
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the top quintile. This suggests the rainfall values produced by the satellites are relatively accurate in
terms of climatological occurrence, with better performance exhibited for low-end extremes. There
appears to be potential in generating percentile-based products from satellite data.

Figure 3. Gridded percentile-based comparison of satellite datasets against AWAP from January 2001
to December 2018. Bottom- and top-quintile hit rates are displayed.

Figure 4 displays the continuous statistics using point gauge data as truth. The comparison
against point gauge data supports the gridded comparison with the CMORPH BLD error being about
50% larger than the AWAP error and CMORPH CRT and GSMaP being about 150% larger. The MB is
negative for all the satellite datasets, indicating a slight tendency for underestimation of overall rainfall.

Figure 4. Comparison of satellite datasets against point gauge data from January 2001 to December 2018.

The ranking of performance between the satellite datasets remains the same for both the continuous
and the percentile-based statistics. The benefit of blending in gauge data is again displayed, with
CMORPH BLD showing significant improvement over the unblended datasets and skill comparable to
AWAP. As the trend between MB, MAE, RMSE, and R is the same, future references to continuous
statistics will refer to just MAE, normalised MAE and R for brevity.

The values and residuals of the datasets against point gauge data are shown in Figure 5. There
appears to be a tendency towards an overestimation for low rainfall months and an underestimation
for high rainfall months. AWAP and, to a lesser extent, CMORPH BLD were able to capture the
high-end rainfall months more accurately, with observation of months where more than 40 mm/day
was recorded, being distinctly better. All datasets appear to struggle with very high-end rainfall months
(>60 mm/day). These gauge totals sit along the lower boundary, which indicates that the datasets
observed little rainfall while the gauges observed a significant amount. The fact that even AWAP does
not depict these totals well suggests that gridded datasets systematically struggle with these very
high-end values. A likely reason is that the gridded datasets smooth down point values as part of their
objective analysis process and so it is expected that high-end totals will be underrepresented by the
grids. The impact from this effect would be worse if there were nearby gauges with low totals.
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Figure 5. Scatterplot comparisons of satellite datasets against point gauge data from January 2001 to
December 2018.

3.1. Variation with Geography

A gridded comparison was performed over the Australian domain with the geographical
representations of the MB and MAE shown in Figure 6. The CMORPH CRT and CMORPH BLD datasets
were chosen to allow an investigation into the effects of gauge correction. Generally, the satellite-derived
data overestimate rainfall, except over western Tasmania where there is a significant underestimation.

 

 

Figure 6. Cont.
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Figure 6. Mean bias, mean average error, and normalised mean average error for bias-corrected Climate
Prediction Center morphing technique (CMORPH CRT) and gauge-blended CMORPH (CMORPH
BLD) datasets from January 2001 to December 2018 using AWAP as truth.

The effects of normalisation are indicated along the northern coast of Australia and in western
Tasmania where the unnormalised errors were previously the greatest but improve to about average
after the adjustment, at least for the CMORPH BLD dataset.

The effect of gauge correction is especially evident around western Tasmania, as well as around
western parts of Western Australia, the southern Australian coastline, the northern coastline of New
South Wales, the Australian Alps, and the southwestern coast of Western Australia. In these areas, there
are significant improvements in the normalised errors from the uncorrected dataset to the corrected
one, indicating that there is a problem with satellite rainfall detection that cannot be accounted for by
higher rainfall averages. Possible reasons will be discussed in the next section.

A point-based comparison using rain gauges categorised by states supported the gridded
comparison with the results shown in Figure 7. The unnormalised MAE values suggest that performance
is decreased in the tropical regions and in Tasmania, but after normalisation, the performance is much
more even across the states. The performance is slightly worse in Queensland and South Australia,
while gauge correction appears to have the greatest effect in Tasmania.

Figure 7. Point-based comparison categorised by states from January 2001 to December 2018 using
station gauges as truth.
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3.2. Variation with Seasons

A seasonal analysis was completed by categorising the data into four seasons with December,
January, and February (DJF); March, April, and May (MAM); June, July, and August (JJA); and September,
October, and November (SON) representing austral summer, autumn, winter, and spring respectively.

A gridded comparison showing the normalised MAE from the CMORPH BLD dataset is displayed
in Figure 8. The greatest seasonal variation of the error is observed towards the interior and around
the northern coastline with winter possessing the worst performance and summer having the best.

Figure 8. Gridded comparison categorised by seasons from January 2001 to December 2018 using
AWAP as truth. Normalised mean average error from CMORPH BLD is displayed.

An analysis using point gauge data was also performed with the results shown in Figure 9.
The MAE is the smallest in SON and largest in DJF where the error is approximately 50% greater.
Normalisation of the errors results in the smallest relative error occurring in DJF and the largest in
MAM and JJA, supporting the gridded comparison. The linear correlation coefficients across the
seasons also suggest that DJF has the best performance across the seasons. The performance increase is
more prominent in the non-gauge blended datasets, where the improvement is at least 10%.

Figure 9. Cont.
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Figure 9. Point-based comparison categorised by seasons from January 2001 to December 2018 using
station gauges as truth. Mean average error (MAE), normalised MAE, and R are displayed.

Overall, the performance appears to be relatively similar across the seasons with the exception of
DJF, which shows a somewhat superior performance to the rest.

3.3. Variations with Rainfall Intensity

The effects of the intensity of the rainfall on the accuracy of the data were also analysed. The data
were categorised into these bins: 0–0.2, 0.2–1, 1–2, 2–3, 3–4, 4–6, 6–9, and >9 mm/day. These rainfall
ranges were chosen to ensure there were a reasonable amount of values in each bin with the values of
0.2 and 1 mm being specifically chosen as they correspond to the rainy-day threshold for BoM and
a commonly used value in contingency statistics studies, respectively [15]. Continuous statistics for
these bins were calculated along with a comparison of occurrence frequencies and cumulative volumes.
These are shown in Figure 10.

Figure 10. Point-based comparison categorised by rainfall intensities from January 2001 to December
2018 using station gauges as truth. Occurrence frequencies, cumulative volumes, mean average error
(MAE), and normalised MAE are displayed.
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The datasets appear to capture the correct frequency best for rainfall amounts between 3 and
6 mm/day. For higher amounts, the satellite-derived data underestimate the frequency, while for
lower amounts, the frequency is underestimated for very low values (<0.2 mm/day) but overestimated
between the range of 0.2 and 3 mm/day. The change in sign of the bias from 0–0.2 to 0.2–1 mm/day
may indicate that very-low-rainfall events are being incorrectly attributed to the higher ranges. For
values above 1 mm/day, the frequency matches the gauge data quite well.

Analysis of the cumulative volumes demonstrates that below 1–3 mm/day, the satellite-derived data
overestimate the gauge amount, while above this range, they underestimate the amount. Combining
this result with the frequency analysis suggests that although the frequency of very-low-rainfall events
is underestimated, each event is an overestimation of reality.

The MAE suggests decreasing skill as the rainfall rate increases. The normalised MAE was
calculated by normalising the MAE by the mean rainfall amount for each bin. It indicates that the
relative error was the largest for very small values (<0.2 mm/day).

Overall, satellite-derived data appears to be most reliable for low-moderate rainfall totals
(2–4 mm/day), with a significant underestimation of amounts occurring for high-end totals and an
underestimation of frequency and overestimation of amounts occurring for very low totals.

4. Discussion

It is important to acknowledge the effect of the errors in the reference datasets. The errors in
the quality-controlled gauge network used for the point comparison are minor; however, the same
cannot be said for the AWAP dataset used for the gridded comparison. Jones et al. (2009) performed
a cross-validation of AWAP against station observations and found the monthly rainfall mean bias,
RMSE, MAE, and normalised MAE to be 0.016, 0.7, 0.38, and 0.21 mm/day, respectively [29]. The RMSE
and MAE for the satellite datasets ranged between 0.79 to 1.08 and 0.43 to 0.61 mm/day respectively,
indicating that the errors in AWAP are comparable to those in the satellite datasets using AWAP as
truth. To gain a better idea of the true error of the datasets, the satellite datasets along with AWAP
were compared to a climate reanalysis (ERA5). A climate reanalysis is a numerical representation
of meteorological fields created by combining meteorological observations with climate models. A
gridded comparison using ERA5 as the reference was completed and is presented in Figures 11 and 12.
The results demonstrate comparable performance across the datasets. CMORPH BLD and AWAP
displayed remarkably similar performances.

Figure 11. Gridded comparison of satellite datasets and AWAP against ERA5 reanalysis from January
2001 to December 2018. Mean bias (MB), root-mean-square error (RMSE), mean average error (MAE),
R and normalised MAE are displayed.
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Figure 12. Gridded comparison of satellite datasets and AWAP against ERA5 reanalysis from January
2001 to December 2018. Quintile comparison is displayed.

The results of the error analysis of the gridded comparison are supported by the point-based
comparison where both satellite datasets and AWAP were compared to station gauges with the errors
in AWAP being smaller but still within the same order of magnitude as those from the satellite dataset.
This highlights the caution needed in understanding that the gridded comparison results are unlikely
to be a proper depiction of the true error of the satellite datasets.

There are certain regions where the performance of satellite rainfall detection is decreased. Past
studies have indicated that the detection of cold frontal-based rainfall is poor [15,17]. The absence of
ice crystals in the relatively low precipitating clouds typically associated with frontal rainfall hinders
the ability of satellites to detect rainfall via scattering [15]. This is a likely factor behind the large errors
over Tasmania, Western Australia, South Australia, and central Australia, areas where the prevalent
rainfall generation mechanism is cold frontal systems. Errors are pronounced over the western half
of Tasmania and the southwestern coast of Western Australia, areas of relatively high rainfall due to
increased exposure to westerly flow and associated cold fronts.

Performance is also known to be decreased over topography [18,21]. Decreased performance is
observed along the eastern coastline near the Great Dividing Range. The errors are greatest along the
northern NSW coastline and the Australian Alps where the Great Dividing Range is at its highest
elevations, leading to a strong orographic influence on rainfall.

A high-quality rain gauge network is extremely valuable for improving the accuracy of
satellite-derived rainfall estimates as satellite estimates rely on gauges to calibrate or correct their raw
values. The significantly greater number of gauges towards the coastline where most of Australia’s
population resides allows for a much greater improvement from gauge correction in contrast to the
interior of the continent. Consequently, areas towards the coastlines that experience problematic
regimes such as cold-frontal rainfall and orographically influenced rainfall greatly benefit from gauge
correction, resulting in a performance similar to unproblematic regimes. However, the lack of rain
gauges towards the interior means there are still large normalised errors in this region, even in the
gauge-corrected dataset. This is compounded by the tendency of rainfall to be lighter towards the
interior compared to the coast as light rainfall has been shown to be a problematic regime as well [17,18].

Low mean rainfall is another factor that would contribute to a large normalised MAE. Some
areas of large normalised MAE around the interior of the continent can be seen to generally align
with areas of low mean rainfall values, as seen in Figure 13, which depicts the seasonal mean rainfall
across Australia. This is especially true during the austral winter ‘dry’ season for central Australia and
northwards towards the Northern Territory coast.
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Figure 13. Mean CMORPH BLD rainfall by season from January 2001 to December 2018.

The importance of gauge correction is reduced for unproblematic regimes. For example, the
normalised errors for the corrected and uncorrected datasets around the northern coastline of Australia
are relatively similar, highlighting how the raw satellite algorithms exhibit decent performance in these
areas, leading to gauge correction being less crucial. Tropical-based rainfall has been noted to be one of
the better-performing regimes for satellite rainfall detection [15].

Satellite-derived precipitation estimates for austral winter demonstrate the worst performance, a
result that agrees with past studies [15]. The difficulty of detecting cold-frontal rainfall, which is more
frequent during winter, is most likely a key factor. The introduction of snow is another challenge for
satellite detection of precipitation and is likely a contributing factor to the poor performance observed
in western Tasmania and the Australian Alps. By contrast, the greater prevalence of convective-based
rainfall in summer is a reason for this season performing the best [15,17].

An overestimation (underestimation) of low (high) rainfall rates was observed and is consistent
with past literature [19,20].

It is natural to expect that CMORPH BLD (a gauge-blended dataset) should have at least equal
performance to AWAP (a gauge-based analysis) as it relies on using gauges where the data exist
whilst depending more heavily on satellites where there is little to no gauge data. However, the key
assumption here is that satellite depiction of rainfall is superior to interpolation methods in areas with
little to no data. This is not necessarily true, as, even though satellites are sourcing their data through a
physical sensor, this process still relies heavily on calibration to rain gauge data. For locations where
there is little to no gauge data, calibration and, subsequently, performance will be severely hindered.
Furthermore, AWAP used a minimum number of stations exceeding 3000 while the satellite datasets
are calibrated to the CPC Unified gauge analysis, which has a minimum number of stations across
Australia at least an order of magnitude less than that of AWAP [29,30]. The ingestion of less data is
likely to contribute to the discrepancies observed.
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5. Conclusions

The high spatial variation of rainfall along with the issue of installing a sufficiently dense network
of rain gauges in many areas around the world make satellites an attractive option in terms of
their ability to provide a continuous estimate of near-surface rainfall. Numerous verifications of
satellite-estimated rainfall have been performed in the past, but few studies have focused on Australia
using a relatively long data record. This study aimed to fill that gap by performing a validation over
Australia using monthly CMORPH (both the bias-corrected CMORPH CRT and the gauge-blended
CMORPH BLD) and GSMaP (gauge-corrected) data across an 18 year period from 2001 to 2018.

Station data were used as a point of reference, both in the form of the AWAP analysis along with
individual stations in order to enable both a gridded and point-based comparison, respectively. Both
continuous statistics (MB, MAE, RMSE, and R) and percentile-based statistics (hit rate for bottom and
top quintiles) were chosen. General performance along with the geographical, seasonal, and intensity
dependencies were subsequently investigated.

Overall statistics showed that satellite performance was decent and, in the case of CMORPH BLD,
somewhat comparable to the AWAP analysis used as truth. CMORPH BLD performed best followed
by CMORPH CRT and then GSMaP. Linear correlations from 0.71 to 0.90 and a bottom quintile hit rate
from 70% to 80% were especially encouraging.

A geographical analysis of the error dependency was completed by plotting the gridded errors
over Australia, as well as by breaking down the point comparison into states. Western Australia,
western Tasmania, central Australia, and the Australian Alps displayed large errors in the uncorrected
datasets. Orographically influenced rainfall and cold frontal rainfall have been identified as problematic
regimes by past studies and are applicable to these regions. The blending of gauge data was beneficial,
especially for regions that had problematic rainfall regimes. However, a dense rain gauge network is
also needed for accurate calibration, and it is likely that the lack of rain gauges towards the interior of
the continent was probably the reason why little to no improvement was seen in the gauge-blended
dataset over these areas.

Categorising the results by seasons demonstrated that the performance was relatively similar
across the seasons, with satellite-derived precipitation estimates in austral summer performing best
and those in austral winter performing worst. A categorisation by rainfall intensity suggested that the
performance was best for moderate rainfall amounts (2–4 mm/day). The frequency of high-end rainfall
was captured well but the amount was severely underestimated while low-end rainfall amounts
were overestimated.

The main results from this study agree with past literature reconciling the performance of
satellite-derived precipitation estimates over Australia with those seen around other regions in the
world. The results obtained in this study are generally better than past studies. For example, Jiang et
al. (2016) evaluated CMORPH CRT and CMORPH BLD over China on a monthly time scale from 2000
to 2012 and obtained slightly lower correlation coefficients of 0.72 and 0.83 respectively [16]. Possible
reasons may be that satellite technology has continued to improve over the years, as well as Australia
having a relatively high-quality and dense rain gauge network that allows for improved performance
of gauge correction and blending.

The study supported the finding that orographically influenced rainfall and cold frontal rainfall
are problematic regimes for satellite rainfall detection. Advancement in the detection of these regimes
would be very beneficial. Gauge-blending was shown to be a worthy process; however, its performance
is strongly tied to the availability of high-quality rain gauge network data, which do not exist in many
regions. Considering that one of, if not, the most valuable use of satellite rainfall monitoring is in areas
without rain gauges, an accuracy that is dependent on gauge-blending should not be relied on. The
unblended datasets do demonstrate skilful performance, which would be useful for areas that lack a
rain gauge network, but there is still a considerable amount of progress needed to bring unblended
datasets to a level comparable to that of rain gauges.
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To conclude, evaluation of satellite precipitation estimates (CMORPH and GSMaP) is an essential
scientific contribution to WMO activities in assisting countries in Asia and the Pacific with improving
precipitation monitoring (including accumulated heavy precipitation and drought monitoring) which
WMO provides through its flagship initiatives such as the Space-based Weather and Climate Extremes
Monitoring [24] and the Climate Risk and Early Warning Systems [31], among others.
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Abstract: The recent droughts that have occurred in different parts of Ethiopia are generally linked
to fluctuations in atmospheric and ocean circulations. Understanding these large-scale phenomena
that play a crucial role in vegetation productivity in Ethiopia is important. In view of this, several
techniques and datasets were analyzed to study the spatio–temporal variability of vegetation in
response to a changing climate. In this study, 18 years (2001–2018) of Moderate Resolution Imaging
Spectroscopy (MODIS) Terra/Aqua, normalized difference vegetation index (NDVI), land surface
temperature (LST), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) daily
precipitation, and the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS) soil moisture datasets were processed. Pixel-based Mann–Kendall trend analysis
and the Vegetation Condition Index (VCI) were used to assess the drought patterns during the
cropping season. Results indicate that the central highlands and northwestern part of Ethiopia, which
have land cover dominated by cropland, had experienced decreasing precipitation and NDVI trends.
About 52.8% of the pixels showed a decreasing precipitation trend, of which the significant decreasing
trends focused on the central and low land areas. Also, 41.67% of the pixels showed a decreasing
NDVI trend, especially in major parts of the northwestern region of Ethiopia. Based on the trend
test and VCI analysis, significant countrywide droughts occurred during the El Niño 2009 and 2015
years. Furthermore, the Pearson correlation coefficient analysis assures that the low NDVI was mainly
attributed to the low precipitation and water availability in the soils. This study provides valuable
information in identifying the locations with the potential concern of drought and planning for
immediate action of relief measures. Furthermore, this paper presents the results of the first attempt
to apply a recently developed index, the Normalized Difference Latent Heat Index (NDLI), to monitor
drought conditions. The results show that the NDLI has a high correlation with NDVI (r = 0.96),
precipitation (r = 0.81), soil moisture (r = 0.73), and LST (r = −0.67). NDLI successfully captures the
historical droughts and shows a notable correlation with the climatic variables. The analysis shows
that using the radiances of green, red, and short wave infrared (SWIR), a simplified crop monitoring
model with satisfactory accuracy and easiness can be developed.

Keywords: drought; NDVI; NDLI; VCI; ENSO; time series analysis

1. Introduction

In the era of climate change, there is a continuous need to thoroughly assess vulnerabilities
caused by complex environmental, ecological, and anthropogenic factors. Drought, as a natural
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phenomenon, creates numerous multidimensional effects on agriculture, human health, and disease
prevalence [1]. Various drought management and vulnerability schemes were thus developed to
mitigate the influences of natural and human-made disturbances at regional [2,3] and global scales [4,5].
Vulnerability assessment of natural disasters has become a necessity for policy-makers and practitioners
in reducing the impacts associated with them [6,7].

Drought is dryness due to an acute shortage of water, which lasts for several months or years.
Drought considerably endangers food and water security. As a complex natural event, it stems from a
lack of precipitation over a prolonged period of time, and its effect can be only witnessed slowly over a
period of time [8,9]. Besides the shortages of precipitation, droughts are associated with differences
between actual and potential evapotranspiration, soil moisture deficits, and reduced groundwater
or reservoir levels. These characteristics make the definition of drought complex and, thus, there is
no single universally accepted definition. Owing to the lack of comprehensiveness of a single agreed
definition, the identification and monitoring of key characteristics of drought is difficult.

Several studies have provided comprehensive reports on indices that are used to monitor
the impacts of droughts [10–15]. Generally, a variety of drought indices were developed from
climatic and satellite data. The most widely used indexes include the Palmer Drought Severity
Index (PDSI), Standardized Precipitation Index (SPI) [16], normalized difference vegetation index
(NDVI) [17], Normalized Difference Water Index (NDWI) [18], Vegetation Condition Index (VCI), and
Temperature Condition Index (TCI) [13]. Remote sensing data-based indices have been widely used
and compared with the other approaches for assessing drought, as they are among the best in detecting
the onset of drought and measuring the intensity, duration, and impact of drought globally [19].
The remote-sensing based indices for quantifying the state of vegetation, namely the combination
of visible and infrared bands, provide unique characterization for the vegetative area, including
biomass, growth status, and leaf area coverage, and serve as a basis for the estimation of vegetation
condition [20]. Surface temperature may serve as a basis for the estimation of vegetation condition and
evapotranspiration [21]. The performance of drought indices generated based on MODIS reflectance
and land surface temperature (LST), in association with the standardized precipitation index (SPI),
were extensively investigated to assess drought conditions on a global scale to regional scale in the
southern Great Plains, USA [22], China [23], in eastern Africa, and in southern and southeastern
Africa [24–28].

Ethiopia faces drought conditions every eight–ten years [29]. The country has been facing drought
at a growing incidence throughout the past many decades [30]. Among these, the 1984–1985 drought
affected the lives of more than two hundred thousand people and millions of livestock [31]. The climate
in Ethiopia is changing, even though significant trends are not clear [32]. OXFAM reports that according
to the survey made questioning local people in Ethiopia, the climate is experiencing an increase in
the rate of drought [33]. The farmers report that good harvests are less common due to an extended
extreme dry season and strong rain in the wet season, followed by a prolonged absence of precipitation,
which is likely due to a manifestation of global warming. Both the rise in temperature and the long
absence of precipitation are major factors for causing droughts. The projected increase of weather
events such as droughts due to climate change derails the availability of water and will lead to a cut in
agricultural production.

Ethiopia’s economy is essentially dependent on rain-fed agriculture, which is vulnerable to climate
change [34]. 2015 was one of the driest years in large parts of Ethiopia [35]. The main rain season, locally
called ‘kiremt’, was late and below normal conditions [36]. Consequently, the government called for
emergency assistance for 10.2 million people [37]. The ultimate causes of this drought event originated
from great distances, through atmospheric and oceanic circulations. The El Niño–Southern Oscillation
(ENSO) phenomenon hugely impacts Ethiopian rainfall [38]. In particular, the warm-phase El Niño is
closely linked with reserved rains during kiremt, over northern and central Ethiopia [39]. Under these
circumstances, the evapotranspiration needs of plants were not met, leading to an intense reduction
in vegetative production. Thus, the need to assess long-term vegetation trends and investigate the
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relationship between these changes and the variability in climatic conditions is increasingly important
in Ethiopia.

The specific objectives of this research are: (i) to detect any long-term hydro-meteorological trends
using the Mann–Kendall statistical test; (ii) to assess the drought patterns using the vegetation condition
index; and (iii) to identify the main causes of NDVI change in relation to rainfall, soil moisture, LST, and
ENSO. Additionally, this paper will be the first to attempt to incorporate the Normalized Difference
Latent Heat Index (NDLI) as a proxy to evapotranspiration needs of the plant. NDLI, a combination of
the green, red, and SWIR channels of the electromagnetic spectrum, has been found to be useful for
the detection of plant water content [40]. It is highlighted that a better analysis of drought allows for
the development and implementation of successful policies to better understand disruptive climate
change in the region, to improve food security and strengthen climate resilience.

2. Study Area and Data

2.1. Study Area

The study area, Ethiopia, is located between 3◦00′ to 15◦00′N and 32◦00′ to 48◦00′E in the
inner part of the Horn of Africa, as shown in Figure 1. The country has a total area of 1.1 million
square kilometers, is landlocked, and has the second largest population in Africa, second to Nigeria.
The elevation ranges from 194 to 4539 m above mean sea level. The highland, with an altitude of
1500 m or above, is located at the central and northern parts of the country and constitutes roughly
35% of the country [41]. In a traditional way, based on elevation, at least three climatic zones are
identified—the tropical (lowland zone), which is below 1830 m in elevation and has mean annual
temperatures of 20–28 ◦C; the subtropical zone, which includes the highland areas of 1830–2440 m in
elevation and with mean annual temperatures of 16–20 ◦C; and the cool zone, which is above 2440 m
in elevation and with mean annual temperatures of 6–16 ◦C [42].

Figure 1. Location of the study area: the administrative boundary of Ethiopia, constituting the nine
regional states, with a background showing an Advanced Spaceborne Thermal Emission and Reflection
Radiometer digital elevation model of 30 m resolution.

Due to its complex topographical and geographical features, the climate of Ethiopia exhibits
strong spatial variation and different rainfall regimes [43]. Thus, rainfall shows considerable spatial
heterogeneity in Ethiopia [44]. Much of the region is generally bimodal, with long rains in JJAS
(June–September) and short rains during OND (October–December). The meridional translation of the
Intertropical Convergence Zone (ITCZ) across the equator is the main factor of the MAM (March–May)

95



Remote Sens. 2019, 11, 1828

and OND seasons [45]. Topography also plays a role in affecting the annual cycle of precipitation.
The highland areas receive an annual rainfall of about 1200 mm, with the least temperature variation,
whereas the lowland areas (Afar and Somali regions) receive an annual rainfall of less than 500 mm
with larger temperature variations [41]. The spatial distribution of Ethiopian drought indicates that
most of the drought and food crises events are concentrated in the central and northern highlands,
extending from North Shewa through Wollo to Tigray [46].

Based on the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) daily
precipitation data obtained from the Climate Hazards Group at the University of California, Santa
Barbara (UCSB) [35], the main rainfall season from June to September, locally called kiremt, accounts
for 60–80% of the annual rainfall, with the remaining falling in the dry season, from October to May,
Figure 2.

Figure 2. Long-term seasonal average of rainfall (mm), land surface temperature (LST, ◦C), normalized
difference vegetation index (NDVI), and soil moisture (m3m−3) for the period from 2001 to 2018.

The rainfall significantly varies between the northeastern and the western highlands of Ethiopia,
where orographic rainfall is substantial. Figure 2 additionally depicts that an average seasonal LST
of the land derived from the solar radiation (MOD11A2 Terra v.006 product) of Ethiopia is between
10 ◦C and 54 ◦C, with maximum temperatures concentrated on the lowland areas. Similarly, the soil
moisture (derived from the FLDAS Noah Land Surface Model L4) distribution for the top 0–10 cm
layer increases in the western and northern parts of the country. Moreover, NDVI distributions derived
from the MOD13Q1 Terra v.006 product confirm healthy vegetation and forests, mainly located in the
western parts of Ethiopia, which match with the rainfall, LST, and soil moisture patterns.

The land cover types for Ethiopia extracted from the European Space Agency (2016) Global Land
Cover map are shown in Figure 3. The most dominant cover types are grassland, cropland, and shrubs,
covering 29%, 26%, and 21% of the whole study area, respectively. The land cover in the highlands
continually changes because of the persistent agricultural activities and higher population density as
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compared to the lowlands [47]. Large areas of agricultural farms, where people largely depend on the
rain-fed farms, are of major concern due to recurrent drought incidents.

Figure 3. Land cover map of Ethiopia at 20 m spatial resolution during 2016, extracted from the
European Space Agency.

2.2. Datasets

The data for this study were acquired from four sources. With extensively high temporal
and spatial resolution as compared to the other satellites, the products of MODIS onboard NASA
Terra and Aqua satellites were suited for this study because of their large geographic coverage.
We used the monthly averaged MODIS Terra 16 day datasets for the period from 2001 to 2018
(18 years) that are archived in the Google Earth Engine (GEE) image collection. Time series NDVI
and LST covering the whole study area at 250 m and 1 km spatial resolution were generated from
MODIS/006/MOD13Q1 and MODIS/006/MOD11A1 version 6 surface reflectance composite, respectively.
Similarly, surface reflectance products of MODIS/006/MOD09GA were generated for computing the
NDWI and NDLI [40]. The data were extracted and processed using the JavaScript code editor in
the GEE platform (https://earthengine.google.com/Mountain View, CA, USA), which offers a parallel
computing environment for processing large datasets. For monitoring the spatial and temporal
conditions of drought, we chose NDVI, but we also included the other parameters that trigger dry
conditions. NDVI, the most common index for remote sensing of vegetation, is known to be saturated
over areas with high leaf area indexes. Numerous vegetation indexes using the same set of near-infrared
and red channels have been developed, even though these indices do not enjoy the same popularity as
NDVI, which is known for its capability to distinguish vegetation from other types of land cover, but is
not really designed to sense the water content in the vegetation canopy. Nevertheless, remote sensing
of the water content has important implications in agriculture and forestry. For the detection of plant
water content, the near-infrared region (NIR) and shortwave infrared regions (SWIR) have been found
to be useful. Thus, NDWI is defined in a similar way to NDVI but uses the near-infrared channel to
monitor the water content of the vegetation canopy. Fluctuations in the vegetation canopy are indicators
of drought stress [18]. Besides NIR and SWIR, two spectral regions of the electromagnetic spectrum
have been found to be useful for the detection of plant water content: the green and red channels.
Liou et al. [40] recently developed the NDLI, which uses the green, red, and SWIR channels. NDLI is
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sensitive to water availability for different land covers at the land–air interface and outperforms the
different versions of NDWI indexes. The spectral indices are calculated using the following formulas:

NDVI =
NIR−R
NIR + R

NDWI =
NIR− SWIR
NIR + SWIR

NDLI =
G−R

G + R + SWIR

where G, R, NIR, SWIR are the spectral reflectance for MODIS band 4 (545–565 nm), band 1
(620–670 nm), band 2 (841–876 nm), and band 6 (1628–1652 nm), respectively.

The other data source used to generate time series rainfall data for the period from 2001 to 2018
was CHIRPS. CHIRPS is a 30+ year quasi-global rainfall dataset combining satellite observations from
the Climate Prediction Center (CPC) and the National Climate Forecast System version 2 (CFSv2) and
in situ precipitation observations [35,37]. It is widely used in Ethiopia for drought monitoring [38].
It is well demonstrated that CHIRPS can complement the sparse rain gauge network and provide high
spatial and temporal resolution for trend analysis [48,49]. The CHIRPS data were accessed from the ftp
server (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0).

The monthly soil moisture (0–10 cm) was generated from the Famine Early Warning Systems
Network (FEWS NET) Land Data Assimilation System (FLDAS) dataset, developed to assist food
security assessments in data-sparse developing countries [50]. This is a natural tool to monitor drought
conditions and was accessed from https://earlywarning.usgs.gov/fews/product/308.

In this study, we used the multivariate ENSO index (MEI) and the dipole mode index (DMI) to
observe how vegetation responds to climatic conditions. The monthly mean MEI time series were
retrieved from the National Oceanic and Atmospheric Administration (NOAA) website (https://www.
esrl.noaa.gov/psd/enso/mei/, Washington, DC, USA). The MEI time series was calculated by taking
the leading principal component time series of the empirical orthogonal function of the five variables,
namely the sea level pressure, sea surface temperature, surface zonal winds, surface meridional winds,
and Outgoing Longwave Radiation within the 30◦S–30◦N and 100◦E–70◦W region. Besides this,
the DMI was calculated by taking the differences between the sea surface temperature anomalies in the
western (50◦E–70◦E, 10◦S–10◦N) and eastern (90◦E–110◦E, 10◦S–0◦N) portions of the Indian Ocean [51].
The monthly DMI data was accessed from the Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) website (http://www.jamstec.go.jp/frcgc/research/d1/iod/iod/dipole_mode_index.html).
The data used in these study are summarized on Table 1.

Table 1. Datasets characteristics and source.

Data Source Characteristics

Precipitation CHIRPS Monthly precipitation at 0.05 × 0.05 from Jan. 2001 to Dec. 2018
NDVI MODIS Monthly NDVI at 250 m from Jan. 2001 to Dec. 2018
LST MODIS Monthly LST at 1 km from Jan. 2001 to Dec. 2018

NDWI MODIS Estimated from surface reflectance at 500 m from Jan. 2001 to Dec. 2018
NDLI MODIS Estimated from surface reflectance at 500 m from Jan. 2001 to Dec. 2018

Soil Moisture FLDAS Noah Monthly soil moisture (0–10cm) at 0.10 × 0.10 from Jan. 2001 to Dec. 2018
MEI NOAA Monthly MEI time series from Jan. 2001 to Dec. 2018
DMI JAMSTEC Monthly DMI time series from Jan. 2001 to Dec. 2018
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3. Methodology

3.1. Identification of Drought

A common way to calculate anomalies is to apply the Standardized Anomaly Index (SAI). SAI is a
standardized departure from the long term mean and is calculated as:

SAIi =
xi − x
σ

where xi is the seasonal mean of variable x, x is the long term seasonal mean and σ is the standard
deviation of the seasonal mean of all data. The anomaly maps were created by subtracting the
seasonal climatology mean from the seasonal values and then dividing this by the standard deviation.
The resulting maps depict the intensity of how good or bad the current season is compared with the
average situation. Seasonal anomaly maps of precipitation, NDVI, LST, and soil moisture for the years
2015–2018 from the 2001–2014 climatology were computed to identify and quantitatively measure
which part of Ethiopia was severely affected in the year 2015 and its recovery to normal conditions.

Besides the common SAI, another method to compare the current NDVI with historical values
is the Vegetation Condition Index [52]. The VCI has been extensively used to monitor vegetation
conditions [53]. It normalizes NDVI on a pixel-by-pixel basis, scaling between the minimum and
maximum values of NDVI:

VCI = 100 ∗
(

NDVI −NDVImin
NDVImax −NDVImin

)

where NDVI, NDVImin, and NDVImax are the mean seasonal NDVI, and its absolute long-term minimum
and maximum NDVI values, respectively, for each pixel. VCI varies in the range of 0 to 100 percent,
reflecting relative changes in the vegetation condition from extremely low to high VCI [52]. As
proposed by [52] and recently applied by [54], a threshold value of below 35% is used to indicate
drought conditions as shown in Table 2.

Table 2. Drought categories derived from the Vegetation Condition Index (VCI).

VCI Percentage Drought Severity Level

>35 No drought
20–35 Moderate drought
10–20 Severe drought
<10 Extreme drought

3.2. Mann–Kendall Trend Analysis

The Mann–Kendall method is a non-parametric rank-based test method, which is commonly used
to identify a monotonic trend in climate, by using remote sensing and hydro-metrological data [55].
The usefulness of a non-parametric test relies on its resilience to outliers, non-normality, missing values,
and seasonality and, hence, it is necessary for this study [56–58]. The univariate Mann–Kendall statistic
S for time series data (Xk, k = 1, 2, . . . , n) is given as:

S =
n∑

j< 1

sgn
(
Xi −Xj

)

where Xi and Xj are the seasonal mean values in years i and j, respectively, i > j, and n is the length of
the time series. The sign of all possible differences Xi −Xj is computed as:

sgn
(
Xi −Xj

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+ 1, i f Xi −Xj > 0
0, i f Xi −Xj = 0
−1, i f Xi −Xj < 0
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When n ≥ 8, the statistic S is approximately normally distributed with mean E[S] = 0, and
variance σ2 given by the following equation:

σ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩n(n− 1)(2n + 5) −
p∑

j=1

tj
(
tj − 1

)(
2tj + 5

)⎫⎪⎪⎪⎬⎪⎪⎪⎭/18

where tj is the number of data points in the jth tie group, and p is the number of tie group in the time
series. The test statistics z is computed as:

z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S−1
σ , i f S > 1
0, i f S = 0

S+1
σ , i f S < 1

Now, Z follows a standard normal distribution whereby its positive (negative) value indicates
an upward (downward) trend. If Z is greater than Zα/2, where α represents the significance level,
the trend is considered as significant. In this regard to the z-transformation, this study is considered
a 9.5% confidence level, where the null hypothesis was no trend was rejected if |z| > 1.96, and the
alternative hypothesis that increasing or decreasing monotonic trend exists in the series was accepted.
The magnitude of the linear trend was then predicted by the Sen’s slope estimator [59], i.e., the change
per unit time of a trend was computed as:

Sen′s slope = Median
{(

xi − xj
)
/(i− j)

}
, i > j,

where xi and xj are the changing values of the variable at time steps i and j, respectively. A value
close to zero means there is not much variation through time. A negative value of the slope depicts a
negative trend, whereas a positive value indicates a positive trend. This method is recommended for
remote sensing time series analysis and has been used for vegetation trend analysis [60]. The trend
analysis described above was applied to the seasonal rainfall, NDVI, LST, and soil moisture values
using the “spatialEco” package in R-project.

3.3. Multiple Linear Regression

Multiple linear regression is an extension of simple linear regression. It is used when to predict
the value of a variable based on the value of two or more other variables. For instance, for analyzing a
dependent variable (in this case NDVI) in light of related independent variables (precipitation, soil
moisture, LST, NDWI, NDLI, MEI, DMI). It allows us to determine the overall fit of the model and
the relative contribution of each of the predictors to the total variance explained. In this paper, we
tried to quantify the susceptibility of NDVI to changes in climatic and hydro-metrological variables.
Mathematically, a multiple linear regression model with k predictor variables x1, x2, . . . , xk and a
response can be written as:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + εwhere i = 1, 2, . . . , k ,

and ε is the residual terms of the model, which tries to minimize, y is the dependent variable in this case
NDVI, xi represents the independent variables (precipitation, soil moisture, LST, NDWI, NDLI, MEI,
DMI), β0 is the intercept, and β1, β2, · · · , βk are the coefficients of xi. Before we chose to analyze our
data using multiple regression, we made sure that assumptions required for multiple regression were
met. We checked the existence of a linear relationship by inspecting the scatter and partial regression
plots between NDVI and each of the independent variables. By using the variance inflation factor (VIF)
values, we further checked whether the explanatory variables were highly correlated with each other
or not. A VIF measures the extent to which multicollinearity has increased the variance of an estimated
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coefficient. It looks at the extent to which an explanatory variable can be explained by all the other
explanatory variables in the equation.

4. Results and Discussion

The most recent ENSO, which was developed in 2014 and strengthened in the summer, has
caused global impacts [61]. In Ethiopia, the dry kiremt seasons are closely linked to the significantly
warmer Pacific sea surface temperatures [39]. Figure 4 depicts that the strongest kiremt precipitation
anomalies derived from the CHIRPS datasets are located in the central and northwestern parts of
Ethiopia, with maximum −4.6 standardized deviations anomalies around −460 mm/year in 2015.
Vegetation in Ethiopia is sensitive to water availability and severely affected by low precipitation.
Correspondingly, large area negative NDVI deviations are a result of water stress concentrated in the
western, northern, and central parts of Ethiopia, with maximum NDVI departures by approximately
−2.5 standardized anomalies below average. In the same way, the 10 cm soil moisture and LST follow
the same patterns as those of the precipitation anomalies, by approximately −3 and 3.5 standardized
deviations from their corresponding normal conditions, respectively. During 2016, due to the dry
conditions linked with La Niña, the negative precipitations of the southern and eastern parts of Ethiopia
persisted, with maximum −4.0 standardized deviations anomalies around −305 mm/year. The dry
conditions evolved from the north and central regions to the south and east parts. Across the region,
however, NDVI did not follow the same pattern and the vegetation productivity did not quickly
decline. This may have been due to the extended availability of water stored in soils for growing
crops [62]. Following the return of ENSO to neutral conditions in 2017, the central and northern regions
of Ethiopia become more favorable for crop development. During this period, the cropland areas
experienced enhanced precipitation and vegetation, which was also closely linked to the increase in
soil moisture. The agricultural data obtained from the annual agricultural sample survey of the Central
Statistics Agency indicated increments from 7.32 to 28.93 quintals per hectare for maize, from 5.05 to
26.76 quintals per hectare for Teff, and from 2.28 to 29.67 quintals per hectare for wheat [63].

Figure 4. Standardized seasonal precipitation, LST, NDVI, and soil moisture anomalies from the
2001–2014 climatology averaged over June–September.
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While in 2018 the precipitation showed negative anomalies, the maximum soil moisture and
NDVI anomalies were about two standardized deviations above the average conditions. Similarly,
the minimum LST departure was about −3 standardized deviations above the average conditions. It
is worth mentioning that in 2018, compared to 2017, a higher precipitation in the southeast part of
Ethiopia was observed, which was well-matched with increased NDVI.

4.1. Drought Patterns Based on VCI

Figure 5 depicts the spatio–temporal persistence of drought detected by VCI during the growing
season in Ethiopia over the past two decades. It is shown that the growing season signifies the
maximum vegetation growth, and demonstrates the suitability of VCI to detect drought and assist the
measures of vegetation health.

Figure 5. The spatio–temporal variability droughts detected by the NDVI-based vegetation condition.
index for the growing season in Ethiopia for the period 2001 to 2018.

In this figure, regions which are greener indicate vegetation levels higher than the average
conditions, whereas the red colors indicate poor conditions. Severe to extreme droughts were identified
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in the years 2002, 2003, 2004, 2009, 2010, 2012, and 2015 for the north, central, west, and southwest
parts of the country, where the land is mainly covered by rain-fed agriculture. The results show a
direct influence of ENSO on the vegetation of Ethiopia, especially during the El Niño years 2009–2010
and 2014–2015. During El Niño years, the NDVI values gradually declined and remained marginally
below average. On the other hand, the years 2001, 2005, 2006, 2007, 2013, 2016, and 2018 reflect the
near-normal NDVI throughout most of the rain-fed agriculture regions. In Ethiopia, an El Niño event
would cause suppressed rainfall during the kiremt season, causing serious reductions in cereal yields
and output [64]. On the other hand, when a La Niña event followed on from an El Niño, favorable and
above average vegetation conditions were observed, for instance 2010–2011 and 2016–2017 La Niña
events, which followed on from the 2009–2010 and 2014–2015 El Niño events, respectively.

4.2. Spatial and Temporal Trends

The spatial and temporal variability of the trends, together with the significance of the trends in
precipitation, NDVI, soil moisture, and LST, are presented in Figures 6 and 7. The Mann–Kendall test
was carried out to observe whether the mentioned variables changed over space during the 18 years
period in the country. The areas in green (positive slope value) indicate an increasing monotonic trend
in precipitation, NDVI, soil moisture, and LST, whereas areas in red (negative slope value) indicate a
decreasing monotonic trend in precipitation, NDVI, soil moisture, and LST.

Figure 6. Spatial and temporal trends of seasonal precipitation, and NDVI in Ethiopia from 2001 to
2018. Positive slope values indicate an increasing monotonic trend, while negative slope values indicate
a decreasing monotonic trend.
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Figure 7. Spatial and temporal trends of seasonal LST and soil moisture in Ethiopia from 2001 to 2018.
Positive slope values indicate an increasing monotonic trend, while negative slope values indicate a
decreasing monotonic trend.

The pixel-based trend analysis shows the growing season trend values of precipitation range from
−26 to 11 mm, with significant changes occurring in the central and northern parts of the country.
Specifically, the northern, central, and rift valley regions of Ethiopia experienced a decreasing rainfall
trend, whereas western Benshangul and the highlands of the central Amhara region show an increasing
trend. On the other hand, the lowland pastoral regions of Somali region did not show a significant
trend. Generally speaking, 52.8% of all pixels in the country show a decreasing trend and significant
trends concentrate on the central and lowlands regions of the country.

With respect to the NDVI trend, the northern and northwestern areas of the Tigrai and Amhara
region, as well as the southern region, showed a decreasing trend during the study period. The growing
season NDVI values ranged from −0.0142 to 0.0213, and overall 41.67% of the country indicated a
decreasing trend. The significant decreasing trends were located in the northwestern part. Similar
pixel-based trend analysis for LST depicted in Figure 7 showed that LST increased for the northwestern,
central highland, and southern parts of the country, whereas there was an estimated 11% significance
decrease concentrated on the western parts of the Gambella region. These results are in agreement with
the recent findings of Workie et al. [65], who used a linear regression approach to detect trends. Similar
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procedures performed for soil moisture convey that decreasing significant trends can be observed in the
central and lowland areas of Afar and Somali regions, whereas the southwestern part of Benshangul
and western part of the Gambela region are experiencing a greening trend.

4.3. Multi Linear Regression and Correlation Statistics

To facilitate relationships between NDVI and other parameters, a small box region (38E–39E,
9N–10N) which experienced significant decreasing trends, presented in Figure 4, Figure 6, and Figure 7
was extracted. Figure 8 shows the monthly anomalies time series plots for NDVI and soil moisture
(Figure 8a), precipitation and LST (Figure 8b), and NDLI and NDWI (Figure 8c). Basically, the anomalies
calculated by subtracting monthly climatology values from each month provide additional information
about the variations present. The periods of severe droughts that resulted in countrywide drought
conditions during the growing seasons are shaded with a box in Figure 8.

Figure 8. The monthly mean anomaly time series values of (a) NDVI and soil moisture, (b) precipitation
and LST, and (c) NDLI and NDWI for 38E–39E, 9N–10N.

NDVI anomalies in this region were near normal for several years. In contrast, it showed slight
green up in 2010 and late 2016, as conditions translate to weak La Niña. Maximum NDVI departures
were observed in 2009 and 2015, where NDVI gradually decreased and remained slightly below average.
In particular, the 2015 events were accompanied by higher precipitation anomalies of about −100 mm.
There is an exact resemblance between the other parameters, with a clear identification of the drought
and normal years. Considering the spatial drought patterns derived from VCI (Figure 5), the intense
drought years certainly resulted in a decline in soil moisture and water availability. The water stress
situations in the root zone were well captured by soil moisture values. The NDWI and NDLI indicate a
similar pattern to that of NDVI, where they reached peaks in 2010 and 2016.

The Pearson correlation coefficients between NDVI and other factors (precipitation, soil moisture,
LST, NDWI, NDLI, MEI, and DMI) on a seasonal time scale for the whole study record were computed
to assess the relationship between them. The Pearson correlation coefficient was conducted using
the statistics package in R. Figure 9 shows the heatmap, which summarizes the linear relationships
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between the parameters. There was a strong correlation between NDVI and precipitation (r = 0.83)
soil moisture (r = 0.83), NDLI (r = 0.96), and NDWI (r = 0.63). The positive correlation between
precipitation and NDVI implies that an enhanced precipitation supports vegetation growth and vice
versa [66]. On the contrary, a significant negative correlation between NDVI and LST (r = −0.76) was
observed. Furthermore, a less notable negative correlation of (r = −0.43, r = −0.39) was observed
between NDVI and the two climatic indices MEI and DMI, respectively.

Figure 9. The heat map of Pearson correlation coefficients for NDVI, Precipitation, LST, soil moisture,
NDLI, NDWI, MEI, and DMI.

Since there are substantial correlations among NDVI, Precipitation, LST, soil moisture, NDLI,
NDWI, MEI, and DMI (Figure 9), the detection of multicollinearity is crucial before plugging data into
a regression model. Multicollinearity denotes predictors that are correlated with other predictors. The
most widely-used diagnostic for multicollinearity is the VIF. We can see from Table 3 that the VIFs are
all down to satisfactory values; they are all less than 5. Even though there is some multicollinearity in
our data, it is not severe enough to warrant further corrective measures.

The results in Table 3 reveal the statistically significant relationship between NDVI, NDLI, and
NDWI and MEI, with p-values of < 2.00 × 10−16, 2.86 × 10−6, and 0.0576, respectively. The significant
relationships between NDVI, and NDLI and NDWI make it clear that an increase in water availability
causes an upward trend in NDVI, which implies a decline in drought [67]. The results indicate
that water availability in the soil was the main influencing factor on the spatially averaged NDVI.
The significantly negative correlation between MEI and NDVI reaffirms the claim that ENSO variability
plays a major role in the climatic conditions and control vegetation growth conditions of central
and northern parts of Ethiopia [68]. The overall multiple linear regression is significant, with a
multiple R-squared value of 0.978 and adjusted R-squared value of 0.962. However, precipitation,
soil moisture, and LST have insignificant regression coefficients due to their p-values, which are far
greater than 0.05. This is due to the interaction (correlation) between the independent variables, and
often since p-value is a function of sample size, as well as variance, there is no single rule for setting
the “significance” threshold [69]. The insignificant association observed between precipitation and
NDVI could also be due to the delayed response of vegetation to precipitation [70], where a time lag
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effect was not considered in this study. For future prediction, an optimal regression equation (NDVI =
−7.01 × 10−5 + 3.75 × NDLI + 0.518 × NDWI − 1.386 × 10−3 ×MEI) was obtained via the backward
elimination procedure in a stepwise regression analysis, which was achieved by dropping the least
significant feature.

Table 3. The output of the multiple linear regression (MLR) model, in which NDVI was the dependent
variable and precipitation, LST, soil moisture, NDWI, NDLI, MEI, and DMI were independent variables.

Variable Estimate Std. Error t-Value p-Value Sig VIF

Precip. −2.215 × 10−5 3.788 × 10−5 −0.585 0.5594 2.387
LST 4.577 × 10−4 6.140 × 10−4 0.745 0.456 3.433
SM 5.505 × 10−2 6.104 × 10−2 0.902 0.368 4.622

NDLI 3.697 1.363 × 10−1 27.125 <2.00 × 10−16 *** 3.407
NDWI 0.528 1.097 × 10−1 4.813 2.86 × 10−6 *** 2.804

MEI −1.470 × 10−3 7.704 × 10−4 −1.909 0.0576 . 1.089
DMI −4.552 × 10−4 5.439 × 10−3 −0.187 0.852 1.099

Significance. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

5. Conclusions

This study assessed the spatio–temporal variability of drought during the growing season in
Ethiopia through VCI, anomaly maps, and trend analysis for the past two decades, from 2001 to 2018.
The VCI results identified that severe to extreme countrywide droughts were identified in 2002, 2003,
2004, 2009, 2012, and 2015. On the other hand, the years 2001, 2005, 2006, 2007, 2013, 2016, and 2018
reflected near-normal NDVI throughout most of the rain-fed agriculture regions. These results are
coherent with the findings of previous studies in indicating the onset, spatial, and temporal dynamics of
agricultural drought in Ethiopia [18]. Pixel-based trend analysis showed that a significant precipitation
decrease in the central areas is accompanied by a significant increase in LST. The increase in temperature
in the growing season is of major concern, as it implies an increase in evapotranspiration and, thus,
affects crop yields. Also, the browning in northwestern parts as estimated from NDVI trends was due
to low rainfall and an increase in soil temperature. Furthermore, the anomaly maps for precipitation,
soil moisture, and LST help us identify the locations and areas of potential concern regarding reduced
crop harvest. We found that large areas of the central highland agricultural farms where people largely
depend on rain-fed farms are of major concern due to recurrent drought incidents. Moreover, NDLI
has a high correlation with NDVI, precipitation, LST, and soil moisture and successfully captured
historical droughts (Figure 8). Additionally, the results of multilinear regression indicate that NDLI,
NDWI, and MEI play a significant role in the variability of vegetation health. The analysis shows that
using the radiances of green, red, and SWIR, a simplified crop monitoring model with satisfactory
accuracy and easiness can be developed. Thus, NDLI can be a tool to help us better understand the
vegetation vigor and moisture availability, and subsequently effectively assess large-scale temporal
and spatial characteristics of drought.

This analysis can serve as an important input for food security studies and the planning of
potential relief measures. However, this approach suffers from the low spatial and temporal resolution
satellite images utilized, as this hugely impacts the quality of the trend analysis. Further research
on detecting and assessing temporal and spatial trends is needed to offer essential information for
planning agencies and government policies to monitor factors that trigger drought and to minimize
their impact.
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Abstract: In this study, a novel multple kernel FLE (MKFLE) based on general nearest feature line
embedding (FLE) transformation is proposed and applied to classify hyperspectral image (HSI) in
which the advantage of multple kernel learning is considered. The FLE has successfully shown its
discriminative capability in many applications. However, since the conventional linear-based principle
component analysis (PCA) pre-processing method in FLE cannot effectively extract the nonlinear
information, the multiple kernel PCA (MKPCA) based on the proposed multple kernel method was
proposed to alleviate this problem. The proposed MKFLE dimension reduction framework was
performed through two stages. In the first multple kernel PCA (MKPCA) stage, the multple kernel
learning method based on between-class distance and support vector machine (SVM) was used to
find the kernel weights. Based on these weights, a new weighted kernel function was constructed
in a linear combination of some valid kernels. In the second FLE stage, the FLE method, which can
preserve the nonlinear manifold structure, was applied for supervised dimension reduction using the
kernel obtained in the first stage. The effectiveness of the proposed MKFLE algorithm was measured
by comparing with various previous state-of-the-art works on three benchmark data sets. According
to the experimental results: the performance of the proposed MKFLE is better than the other methods,
and got the accuracy of 83.58%, 91.61%, and 97.68% in Indian Pines, Pavia University, and Pavia City
datasets, respectively.

Keywords: manifold learning; hyperspectral image classification; feature line embedding;
kernelization; multiple kernel learning

1. Introduction

In this big data era, deep learning has shown its convincing capabilities for providing effective
solutions to the crucial areas such as hyperspectral image (HSI) classification [1], object detection [2],
and face recognition [3]. Deep learning algorithms can extract substantial information and features
from huge amount of data; however, if there is not a suitable dimensionality reduction (DR) algorithm
to reduce the dimension of the training data effectively, the performance of deep learning algorithms
could be seriously impacted [1]. Therefore, the DR algorithm has potential to improve the performance
and explainability of deep learning algorithms.

Since most of the HSI are with high-dimensional spectral and abundant spectral bands, DR in HSI
classification has been a critical issue. The major problem is that the spectral patterns of HSI are too
similar to identify them clearly. Therefore, a powerful DR which can construct a high-dimensional
discriminative space and preserve the manifold of discriminability in low-dimensional space is an
essential step for HSI classification.
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Recently, abundant DR schemes have been presented which could be grouped into three categories:
global-based analysis, local-based analysis, and kernel-based analysis. In the global-based analysis
category, those using subtracting the mean of population or mean of class from individual samples to
obtain the scatter matrix, and try to extract a projection matrix to minimize or maximize the covariance
matrix, include principal component analysis (PCA) [4], linear discriminant analysis (LDA) [5], and
discriminant common vectors (DCV) [6]. In these methods, all the scatters of samples are demonstrated
in the global Euclidean structure, which means that while samples are distributed in a Gaussian function
or are linearly separated, these global-based analysis algorithms demonstrate superior capability in
DR or classification. However, while the scatter of samples is distributed in a nonlinear structure, the
performance of these global measurement algorithms would be seriously impacted since that in a space
with high-dimension, samples’ local structure is not apparent. In addition, the critical issue about
global-based analysis methods is that, while the decision boundaries are predominantly nonlinear, the
classification performance would decline sharply [7].

In the local-based analysis category, those using subtracting one sample from the other neighboring
sample to obtain the scatter matrix, which is also termed manifold learning, can preserve the structure
of locality of the samples. He et al. [8] presented the locality preserving projection (LPP) algorithm to
keep the structure of locality of training data to identify faces. Because LPP applies the relationship
between neighbors to reveal sample scatter, the local manifold of samples is kept and outperforms
those in the category of global-based analysis methods. Tu et al. [9] proposed the Laplacian eigenmap
(LE) algorithm, in which the polarimetric synthetic aperture radar data were applied to classify the land
cover. The LE method preserves the manifold structure of polarimetric space with high-dimension
into an intrinsic space with low-dimension. Wang and He [10] applied LPP as a data pre-processing
step in classifying HSI. Kim et al. [11] proposed the locally linear embedding (LLE)-based method
for DR in HSI. Li et al. [12,13] proposed the local Fisher discriminant analysis (LFDA) algorithm
which considers the advantages of LPP and LDA simultaneously for reducing the dimension of
HSI. Luo et al. [14] presented a neighborhood preserving embedding (NPE) algorithm, which was a
supervised method for extracting salient features for classifying HSI data. Zhang et al. [15] presented a
sparse low-rank approximation algorithm for manifold regularization, which takes the HSI as cube
data for classification. These local-based analysis schemes all preserve the manifold of samples and
outperform the conventional global-based analysis methods.

The kernel-based analysis category, in spite of the local-based analysis methods, has achieved a
better result than those global-based ones. However, based on Boots and Gordon [16], the practical
application of manifold learning was still constrained by noises due to that the manifold learning could
not extract nonlinear information. Therefore, those using the idea of kernel tricks to generate nonlinear
feature space and improve extracting the nonlinear information are kernel-based analysis methods.
Since a suitable kernel function could improve a given method on performance [17]. Therefore, both
categories of global-based and local-based analysis methods adopted the kernelization approaches
to improve the performance of classifying HSI. Boots and Gordon [16] investigated the kernelization
algorithm to mitigate the effect of noise to manifold learning. Scholkopf et al. [18] presented a
kernelization PCA (KPCA) algorithm which can find a high-dimensional Hilbert space via kernel
function and extract the salient non-linear features that PCA missed. In addition to single kernel,
Lin et al. [19] proposed a multiple kernel learning algorithm for DR. The multiple kernel function was
integrated, and the revealed multiple feature of data was shown in a low dimensional space. However,
it tried to find suitable weights for kernels and DR simultaneously, which leads to a more complicated
method. Therefore, Nazarpour and Adibi [20] proposed a kernel learning algorithm concentrating
only on learning good kernel from some basic kernel. Although this method proposed an effective,
simple idea for multiple kernel learning, it applied the global-based kernel discriminant analysis (KDA)
method for classification, therefore, it could not preserve the manifold structure of high dimensional
multiple kernel space; moreover, a combined kernel scheme, where multiple kernels were linearly
assembled to extract both spatial and spectral information [21]. Chen et al. [22] proposed a kernel
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method based on sparse representation to classify HSI data. A query sample was revealed by all
training data in a generated kernel space, and pixels in a neighboring area were also described by all
training samples in a linear combination. Resembling the multiple kernel method, Zhang et al. [23]
presented a multiple-features assembling algorithm for classifying HSI data, which integrated texture,
shape, and spectral information to improve the performance of HSI classification.

In previous works, the idea of nearest feature line embedding (FLE) was successfully applied in
reducing dimension on face recognition [24] and classifying HSI [25]. However, the abundant nonlinear
structures and information could not be efficiently extracted using only the linear transformation
and single kernel. Multple kernel learning is an effective tool for enhancing the nonlinear spaces
by integrating many kernels into a new consistent kernel. In this study, a general nearest FLE
transformation, termed multple kernel FLE (MKFLE), was proposed for feature extraction (FE) and DR
in which multiple kernel functions were simultaneously considered. In addition, the support vector
machine (SVM) was applied in the proposed multiple kernel learning strategy which uses only the
support vector set to determine the weight of each valid kernel function. Moreover, three benchmark
data sets were evaluated in the experimental analysis in this work. The performance of the proposed
algorithm was evaluated by comparison with state-of-the-art methods.

The rest of this study is organized as follows: The related works are reviewed in Section 2.
The proposed multple kernel learning method is introduced and incorporated into the FLE algorithm
in Section 3. Some experimental results and comparisons with some state-of-the-art algorithms for
classifying HSI are conducted to demonstrate the effectiveness of the proposed algorithm as introduced
in Section 4. Finally, in Section 5, conclusions are given.

2. Related Works

In this paper, FLE [24,25] and multple kernel learning were integrated to reduce the dimensions of
features for classifying the HSI data. A brief review of FLE, kernelization, and multple kernel learning
are introduced in the following before the proposed methods. Assume that N d-dimensional training
data X = [x1, x2, . . . , xN] ∈ Rd×N consisting of NC land-cover classes C1, C2, . . . , CNC . The projected
samples in low-dimensional space could be obtained by the linear projection yi = wTxi, where w is an
obtained linear transformation for dimension reduction.

2.1. Feature Line Embedding (FLE)

FLE is a local-based analysis for DR in which the sample data scatters could be shown in a form of
Laplacian matrix to preserve the locality by applying the strategy of point-to-line. The cost function of
FLE is minimized and defined as follows:

O =
∑

i

(∑
i�m�n ‖yi − Lm,n(yi)‖2lm,n(yi)

)
O =

∑
i

( ∑
i�m�n

‖yi − Lm,n(yi)‖2lm,n(yi)

)
=

∑
i
‖yi −∑

j
Mi, jyj‖2

= � tr
(
Y(I −M)T(I −M)Y

)
= tr

(
wTX(D−W)XTw

)
= tr

(
wTXLXTw

)
,

(1)

where point Lm,n(yi) is a projection sample on line Lm,n for sample yi, and weight lm,n(yi) (being 0 or
1) describes the connection between point yi and the feature line Lm,n which two samples ym and yn

passes through. The projection sample Lm,n(yi) is described as a linear combination of points ym and
yn:Lm,n(yi) = ym + tm,n(yn − ym), that tm,n = (yi − ym)

T(ym − yn)/(ym − yn)
T(ym − yn), and i � m � n.

Applying some simple operations of algebra, the discriminant vector from sample yi to the projection
sample Lm,n(yi). could be described as yi −∑

j
Mi, jyj, where two elements in the ith row in matrix

M are viewed as Mi,m = tn,m, Mi,n = tm,n, and tn,m + tm,n = 1, while weight lm,n(yi) = 1. The other
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elements in the i’th row are set as 0, if j � m � n. In Equation (1), the mean of squared distance for
all training data samples to their nearest feature lines (NFLs) is then extracted as tr

(
wTXLXTw

)
, that

L = D −W, and matrix D expresses the column sums of the similarity matrix W. According to the
summary of Yan et al. [26], matrix W is expressed as Wi, j =

(
M + MT −MTM

)
i, j

, while i � j is zero

otherwise;
∑
j

Mi, jyj = 1. Matrix L in Equation (1) could be expressed as a Laplacian form. More details

could be referred to [24,25].
In supervised FLE, the label information is considered, and there are two parameters, N1 and N2,

determined manually in obtaining the within-class matrix SFLEw and the between-class matrix SFLEb,
respectively:

SFLEw =
∑NC

c=1

(∑
xi∈Cc

∑
Lm,n∈FN1 (xi,Cc)

(xi − Lm,n(xi)) (xi − Lm,n(xi))
T
)
, and (2)

SFLEb =
∑NC

c=1

(∑
xi∈Cc

∑NC

l=1,l�c

∑
Lm,n∈FN2 (xi,Cl)

(xi − Lm,n(xi)) (xi − Lm,n(xi))
T
)
, (3)

where FN1(xi, Ck) represents the set of N1 NFLs within the same class, Cc, of point xi, i.e., lm,n(yi) = 1,
and FK2(xi, Cl) is a set of N2 NFLs from different classes of point xi. Then, the Fisher criterion
tr
(
wTSFLEbw/wTSFLEww

)
is applied to be maximized and extract the transformation matrix w, which is

constructed of the eigenvectors with the corresponding largest eigenvalues. Finally, a new sample
in the low-dimensional space can be represented by the linear projection y = wTx, and the nearest
neighbor (one-NN) template matching rule is used for classification.

2.2. Kernelization

Kernelization is a function that maps a linear space X to a nonlinear Hilbert space H,
ϕ : x ∈ X→ ϕ(x) ∈ H , the conventional within-class and between-class matrix of LDA in space
H can be represented as:

SϕLDAw =
∑NC

k=1

(∑
xi∈Ck

(
ϕ(xi) −ϕk

)(
ϕ(xi) −ϕk

)T
)
, and (4)

SϕLDAb =

NC∑
k=1

(
ϕk −ϕ

) (
ϕk −ϕ

)T
. (5)

Here, ϕk =
1
nk

∑nk
i=1 ϕ(xi) and ϕ = 1

N
∑N

i=1 ϕ(xi) indicate mean of the class and mean of population
in space H, respectively. In order to generalize the within-class and between-class scatters to the
nonlinear version, the dot product kernel trick is used exclusively. The representation of dot product
on the Hilbert space H is given by the kernel function in the following: k

(
xi, xj

)
= ki, j = ϕ

T(xi)ϕ
(
xj

)
.

Considering the symmetric matrix K of N by N be a matrix constructed by dot product in high
dimensional feature space H, i.e., K

(
xi, xj

)
=

〈
ϕ(xi) ·ϕ

(
xj

)〉
=

(
ki, j

)
and, i, j = 1, 2, . . . , N. Based on

the kernel trick, the kernel operator K makes the development of the linear separation function in
space H to be equivalent to that of the nonlinear separation function in space X. Kernelization can
be applied in maximizing the between-class matrix and minimizing the within-class matrix, too, i.e.,
max

(
wTSϕLDAbw/wTSϕLDAww

)
. This maximization is equal to the conventional eigenvector resolution:

λSϕLDAww = SϕLDAbw, in which a set of eigenvalue α for w =
∑N

i=1 αiϕ(xi) can be found so that the
largest one obtains the maximum of the matrix quotient λ = wTSϕLDAbw/wTSϕLDAww.

3. Multiple Kernel Feature Line Embedding (MKFLE)

Based on the analyses mentioned above, a suitable DR scheme can effectively generate discriminant
non-linear space and preserve the discriminability of manifold structure into low dimensional feature
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space. Therefore, multiple kernel feature line embedding (MKFLE) was presented for classifying the
HSI. The original idea of MKFLE is integrating the multiple kernel learning with the manifold learning
method. The combination of multiple kernels not only effectively constructs the manifold of the
original data from multiple views, but also increases the discriminability for DR. Then, the following
manifold learning-based FLE scheme preserves the locality information of samples in the constructed
Hilbert space. FLE has been applied in classifying HSI successfully. High-degree non-linear data
geometry limits the effectiveness of locality preservation of manifold learning. Therefore, multiple
kernel learning is applied as introduced in the following to mitigate the problem.

3.1. Multiple Kernel Principle Component Analysis (MKPCA)

In general, the multiple kernel learning is to transform the representation of samples in original
feature space into the optimization of weights

{
βm

}M
m=1 for a valid set of basic kernels {km}Mm=1 based

on their importance. The aim is to construct a new kernel K via a linear combination of valid kernels
as follows:

K =
M∑

m=1

βmkm, βm ≥ 0 and
M∑

m=1

βm = 1. (6)

Then, a new constructed combined kernels function can be described as below:

k
(
xi, xj

)
=

M∑
m=1

βmkm
(
xi, xj

)
, βm ≥ 0. (7)

In this study, eight kernel functions all of the type Radial basis function (RBF), but with different
distance functions and different parameters, are used as basic kernels. Therefore, there is no need
to perform the kernel alignment or unify different kernels into the same dimension. While the
optimization weights

{
βm

}M
m=1 are determined, a new constructed kernel K would be obtained.

Let ϕ : x ∈ X→ ϕ(x) ∈ H be a mapping function of kernel K from feature space in low-dimension
to Hilbert space H in high-dimension. Denote Φ = [ϕ(x1),ϕ(x2), . . . ,ϕ(xN)], and ϕ = 1

N
∑N

i=1 ϕ(xi).
Without loss of generality, suppose that the training data are normalized in H, i.e., ϕ = 0, then the
total scatter matrix is described as Sϕt =

∑N
i=1(ϕi −ϕ) (ϕi −ϕ)T = ΦΦT. In the proposed MKPCA, the

criterion demonstrated in Equation (8) is applied to extract the optimal projective vector v:

J(v) =
N∑

i=1

‖vTϕ(xi)‖ = vTSϕt v. (8)

Then the solution for Equation (8) would be the eigenvalue problem: λv = Sϕt v where λ ≥ 0 and
eigenvectors v ∈ H. Therefore, Equation (8) could be described as an equal problem:

λq = Kq, (9)

in which K = ΦTΦ is the kernel matrix. Assuming that
{
q1, q2, . . . qb

}
are the corresponding b eigenvalues

to the Equation (9); then vi = Φqi is the solution of Equation (8). Since the proposed MKPCA algorithm
is a kind of modified KPCA, its kernel is a constructed ensemble of multiple kernels via a learned
weighted combination. Therefore, the MKPCA based FE or DR needs only kernel functions in the
input space instead of applying any nonlinear mapping ϕ as kernel method. Furthermore, since
each different data set has the nature of data itself, applying a fixed ensemble kernel for different
applications would limit the performance. Therefore, an optimal weighted combination of all valid
subkernels based on their separability is introduced in the following.
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3.2. Multiple Kernel Learning based on Between-Class Distance and Support Vector Machine

In the proposed MKPCA, the new ensemble kernel function K applied in Equation (6) is obtained
through a linear combination of M valid subkernel function, and βm is the weight of ‘m′th subkernel in
the combination, which should be learned from the training data. Applying multiple kernels improves
to extract the most suitable kernel function for the data of different applications. In this study, a new
multiple kernel learning method is proposed to determine the kernel weight vector β = [β1, β2, . . . , βM]

based on the between-class distance and SVM.
Since the goal of the proposed MKFLE is for discrimination, our idea for optimization of the

kernel weight vector β is based on the maximizing between-class distance criterion as follows:

J1(β) = tr
(
Sϕb

)
, (10)

with

tr
(
Sϕb

)
= tr

⎛⎜⎜⎜⎜⎜⎜⎝
Nc−1∑
i=1

Nc∑
j=i+1

(
ϕi −ϕ j

)(
ϕi −ϕ j

)T
⎞⎟⎟⎟⎟⎟⎟⎠. (11)

With tr(AB) = tr(BA), Equation (11) could be described as follows:

tr
(
Sϕb

)
=

Nc−1∑
i=1

Nc∑
j=i+1

(
ϕi −ϕ j

)T(
ϕi −ϕ j

)
�=

Nc−1∑
i=1

Nc∑
j=i+1

rirj

[
1T

i Ki,i1i − 21T
i Ki, j1 j + 1T

j Kj, j1 j

]

�=
M∑

m=1

Nc−1∑
i=1

Nc∑
j=i+1

rirj

[
1T

i Km
i,i1i − 21T

i Km
i, j1 j + 1T

j Km
j, j1 j

]
βm = BTβ,

(12)

in which ri = ni/N, ni is the amount of samples in i’th class, and Ki, j, Km
i, j, 1i, are described as follows:

Ki, j =
M∑

m=1

βmKm
i, j, βm ≥ 0 and

M∑
m=1

βm = 1, (13)

Km
i, j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
km

(
xi

1, xj
1

)
· · · km

(
xi

1, xj
nj

)
...

. . .
...

km
(
xi

ni
, xj

1

)
· · · km

(
xi

ni
, xj

nj

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

1i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1/ni

...
1/ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ni×1

, (15)

where B is a M × 1 vector, in which the elements are the traces of the between-class matrices of M
different kernels, and β is a vector, in which the elements are the weights of subkernels.

The between-class distance is well for measurement of discrimination, however, while the ni
and nj increase, the generalization of ϕi −ϕ j would decrease. To solve this problem, inspired from
the SVM, support vectors between two classes are taken into consideration for computation of the
between-class distance. In other words, since the support vectors are much more representative of
the class for discrimination, only the support vectors between two classes are used for computation
of the between-class distance to improve the generalization of ϕi −ϕ j. Thus, based on the criterion
in Equation (10), the integration of between-class distance and SVM is used as a criterion to find the
optimal β, defined as follow:

J2(β) = tr
(
Sϕ SV

b

)
, (16)
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where Sϕ SV
b is the between-scatter matrix formed by the support vectors between classes. Therefore,

in a similar manner, the optimization problem in Equation (12) could be re-described as follows:

tr
(
Sϕ SV

b

)
=

M∑
m=1

Nc−1∑
i=1

Nc∑
j=i+1

rSV
i rSV

j

[
1TSV

i KmSV
i,i 1SV

i − 21TSV
i KmSV

i, j 1SV
j + 1TSV

j KmSV
j, j 1SV

j

]
βm = BTβ, (17)

where rSV
i = nSV

i /NSV, nSV
i is the amount of support vectors of i’th class, and NSV is the amount

of support vectors in all classes. The difference between criterion J2(β) and J1(β) is that the J2(β)
applies only the support vectors between classes while the J1(β) uses all samples in the classes.
Using Equation (17), the optimization problem is formulated as follows:

max
β

BTβ, subject to βm ≥ 0 and
M∑

m=1

βm = 1. (18)

In the optimization problem mentioned in Equation (18), each kernel is supposed to be a Mercer
kernel. Therefore, the linear combination of these kernels is still a Mercer kernel. In addition, the
sum of these weights is subject to be equal to one. Thus, the optimization problem of (18) is a linear
programming (LP) problem which could be solved by a Lagrange optimization procedure. In this
study, the proposed MKPCA applies J2(β) as multiple kernel learning criterion to find the optimal
weights for subkernels.

In addition, radial basis function (RBF) kernel with Euclidian distance is applied as the kernel
function of the method of single kernel function, such as Fuzzy Kernel Nearest Feature Line Embedding
(FKNFLE), and KNFLE in [25]. In the proposed MKL scheme, eight kernel functions all of the RBF
type [20] are applied with different distance measurements and different kernel parameters. The RBF
kernel is defined as follows:

Km(i, j) = km
(
xi, xj

)
= exp

⎛⎜⎜⎜⎜⎜⎜⎝−d2
m

(
xi, xj

)
σ2

m

⎞⎟⎟⎟⎟⎟⎟⎠, (19)

where d(., .) represents the distance function. There are four distance functions applied in the proposed
MKL scheme, the first is the Euclidean distance function as follows:

dm
(
xi, xj

)
=

√(
x1

i − x1
j

)2
+ · · ·

(
xd

i − xd
j

)2
. (20)

The second is the L1 distance function defined as follows:

dm
(
xi, xj

)
=

d∑
l=1

∣∣∣∣xl
i − xl

j

∣∣∣∣. (21)

The third is the cosine distance function defined as follows:

dm
(
xi, xj

)
= cos(θ) =

xi·xj

‖xi‖‖xj‖ . (22)

The fourth is the Chi-squared distance function defined as follows:

dm
(
xi, xj

)
=

d∑
l=1

(
x1

i − x1
j

)2

(
x1

i + x1
j

)2 . (23)
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In Equation (19), σm is the kernel parameter, which could be obtained by the method in [20]. In this
study, four kernels of Equations (20)–(23), their kernel parameter σm are obtained by homoscedasticity
method [20], and the other four kernels also apply the Equations (20)–(23) but with the mean of all
distances as kernel parameters.

3.3. Kernelization of FLE

In the proposed MKFLE algorithm, the MKPCA is firstly performed to construct the new kernel
via the proposed multiple kernel learning method. Then, all training points are projected into the
Hilbert space H based on the new ensemble kernel. After that, the FLE algorithm based on the manifold
learning is performed to compute the mean of squared distance for total training samples to their
nearest feature lines in high-dimensional Hilbert space, and which can be expressed as follows:

∑
i
‖ϕ(yi) − Lm,n(ϕ(yi))‖(2) = ∑

i

∥∥∥∥∥∥ϕ(yi) −∑
j

Mi, jϕ
(
yj

)∥∥∥∥∥∥
2

����= tr
(
ϕT(Y)(I −M)T(I −M)ϕ(Y)

)
��= tr

(
ϕT(Y)(D−W)ϕ(Y)

)
�����= tr

(
wTϕ(X)LϕT(X)w

)
.

(24)

Then, the object function in Equation (24) could be described as a minimum problem and
represented in a Laplacian form. The eigenvector problem of kernel FLE in the Hilbert space is
represented as: [

ϕ(X)LϕT(X)
]
w = λ

[
ϕ(X)DϕT(X)

]
w. (25)

To expand the applications of FLE algorithm to kernel FLE, the implicit feature vector, ϕ(x), has no
necessity to be calculated practically. The inner product representation of two data points in the Hilbert
space is exclusively used with a kernel function as follows: K

(
xi, xj

)
=

〈
ϕ(xi),ϕ

(
xj

)〉
. The eigenvectors

of Equation (25) are described by the linear combinations of ϕ(x1), ϕ(x2),. . ., ϕ(xN). The coefficient
αi is w =

∑N
i=1 αiϕ(xi) = ϕ(X)α where α = [α1,α2, . . . ,αN]

T ∈ RN. Then, the eigenvector problem is
represented as follows:

KLKα = λKDKα. (26)

Assuming that the solutions of Equation (26) are the coefficient vectors, α1,α2, . . . ,αN in a column
format. Given a querying sample, z, and its projection on the eigenvectors, wk, are computed by the
following equation:

(
wk ·ϕ(z)

)
=

∑N

i=1
αk

i
〈
ϕ(z),ϕ(xi)

〉
=

∑N

i=1
αk

i K(z, xi), (27)

where αk
i is the ith element of the coefficient vector, αk. The kernel function RBF (radial basis function)

is used in this study. Thus, the within-class scatters and the between-class scatters in a kernel space are
defined as follows:

SϕFLEw =
∑NC

c=1

(∑
ϕ(xi)∈Cc

∑
Lm,n∈FN1 (ϕ(xi),Cc)

(ϕ(xi) − Lm,n(ϕ(xi))) (ϕ(xi) − Lm,n(ϕ(xi)))
T
)
, and (28)

SϕFLEb =
∑NC

c=1

(∑
ϕ(xi)∈Cc

∑NC

l=1,l�c

∑
Lm,n∈FN2 (ϕ(xi),Cl)

(ϕ(xi) − Lm,n(ϕ(xi))) (ϕ(xi) − Lm,n(ϕ(xi)))
T
)
. (29)

Since the Hilbert space H constructed by the proposed MKPCA is an ensemble kernel space from
multiple subkernels, there would be abundant useful non-linear information from different views for
discrimination. Hence, applying the kernelized FLE to preserve those non-linear local structure in
MKPCA would improve the performance of FE and DR. The pseudo-codes of the proposed MKFLE
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algorithm are tabulated in Table 1. In this study, it is proposed that a general form of the FLE method
using the SVM-based multple kernel learning be used for FE and DR. The benefits of the proposed
MKFLE are twofold: the multple kernel learning scheme based on the SVM strategy can generalize the
optimal combination of weights; and the kernelized FLE algorithm based on the manifold learning can
preserve the local structure information in high dimensional constructed multple kernel space as well
as the manifold local structure in the dimension reduced space.

Table 1. The procedures of MKFLE (multple kernel feature line embedding) algorithm.

Input: A d -dimensional training data X = [x1, x2, . . . , xN ] consists of Nc classes.
Output: The projection transformation w.
Step 1: Create M kernels using Equation (19).
Step 2: Apply the SVM algorithm to extract support vectors between classes for the criterion (16).
Step 3: Determine the vector β via solving the LP optimization problem of Equation (18).
Step 4: Create a new kernel as linear combination of subkernels using Equation (7).
Step 5: Project the X into the new created kernel space ϕ(X) = [ϕ(x1),ϕ(x2), . . . ,ϕ(xN)].

Step 6: PCA projection: Data points are projected from a space with high-dimension into a subspace with
low-dimension by matrix wPCA.

Step 7: Calculation of the within-class matrix and between-class matrix using Equations (28) and (29),
respectively.

Step 8: Maximization of Fisher criterion: Fisher criterion w∗ = arg maxSϕFLEb/SϕFLEw is maximized to extract
the best projection matrix, which is composed of γ eigenvectors with the largest eigenvalues.

Step 9: Output the projection matrix: w = wPCAw∗.

4. Experimental Results

4.1. Data Sets Description

In this sub-section, in order to evaluate the effectiveness of the proposed MKFLE algorithm,
some experimental results are conducted for classifying HSI. Three classic HSI benchmarks are
applied for evaluation. The use-case of the three chosen images for evaluation are framed
into the HSI analysis for land covers. The first data set was obtained from AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer), obtained by the Jet Propulsion Laboratory and NASA/Ames
in 1992, and termed Indian Pines Site (IPS) image. This IPS image was collected from six
miles in the western area of Northwest Tippecanoe County (NTC). A false color IR image of
IPS dataset was shown in Figure 1a. The are 16 land-cover classes with 220 bands in the
IPS dataset, e.g., Corn-notill(1428), Alfalfa(46), Corn(237), Corn-mintill(830), Grass-pasture(483),
Grass-trees(730), Grass-pasture-mowed(28), Hay-windrowed(478), Oats(20), Soybeans-notill(972),
Soybeans-mintill(2455), Soybeans-cleantill(593), Woods(1265), Wheat(205), Stone-Steel-Towers(93),
and Bldg-Grass-Tree-Drives(386). The numbers shown in the parentheses were the pixel numbers
in this IPS dataset. There were 10,249 pixels in the IPS dataset, and the ground truths for each pixel
were labeled manually for testing and training. To evaluate the effectiveness of various algorithms,
10 classes with more than 300 samples were used in the experiments, e.g., a subset IPS-10 of 9620 pixels.
There were nine hundred training samples in this IPS-10 subset chosen randomly from 9620 pixels,
and the other remaining samples were applied for testing. In addition, all the tests were executed on a
twelve-core intel i7-8700k CPU, Matlab (Mathworks) 2016b, Microsoft Win10, and 32gb ram.
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(a) (b) (c) 

Figure 1. Datasets (a) Indian Pines Site (IPS); (b) Pavia University; and (c) Pavia City Center in false
color of IR images.

The other two data sets, Pavia University, and Pavia City Center, were both the scenes covering
the City of Pavia, Italy, obtained from the Reflective Optics System Imaging Spectrometer (ROSIS).
They have 103 and 102 data bands, both with a spatial resolution of 1.3 m and a spectral coverage from
0.43 to 0.86 um. The dimension of these two images were 610 × 340 and 1096 × 715 pixels, respectively.
The false color IR image of these two image were illustrated as Figure 1b,c. There were nine land-cover
classes in each data set, and in each data set, the samples were divided into training and testing part,
respectively. For example, in the Pavia University data set, there were 90 training samples in each class
selected randomly for training, and the remaining 8046 samples were used for testing the performance.
Based on the same manner, there were 810 training and 9529 testing samples used for the Pavia City
Center data set, respectively.

4.2. Classification Results

The proposed MKFLE algorithm was compared with three state-of-the-art schemes, i.e., KNFLE,
FNFLE, and FKNFLE [25]. The training samples were chosen randomly for computation of the
transformation matrix, and the testing samples were applied to the nearest neighbor (NN) matching
rule to matched with the training samples. The obtained average rates for each algorithm were run
30 times. In order to extract the suitable reduced dimensions of MKFLE, the obtained training samples
were applied to measure the reduced dimensions versus the overall accuracy (OA) in the experimental
datasets. As demonstration in Figure 2, the proposed MKFLE for datasets IPS-10, Pavia University,
and Pavia City Center has the most suitable dimensions in 25, 65, and 65, respectively. From the
classification results as shown in Figure 2, the proposed MKFLE outperforms all the other algorithms
at the specific reduced dimensions on three datasets and with lower variant OA rates than the single
kernel-based FKNFLE algorithm, which demonstrates the effectiveness of the proposed MKFLE. Based
on observing Figure 2, a simple analysis was also done. When only fuzzy or single kernel method was
applied in FLE, such as FNFLE and KNFLE, both of them obtained lower variant OA rates, and the
kernel method was much more helpful than the fuzzy method since KNFLE outperformed FNFLE.
Although FKNFLE outperformed the FNFLE and KNFLE, the variant OA of FKNFLE is large. Since
the FKNFLE combined two different types of nonlinear and non-Euclidean information, it might cause
the higher variant OA rates. In the meanwhile, multiple kernels applied in the proposed MKFLE
used only nonlinear information with various parameters, which could improve the performance and
obtain lower variant OA rates. In addition, since the MKL strategy was applied in the MKFLE training
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phases, which embedded different views of manifold structures from multiple kernel feature space, the
reduced space obtained by the proposed MKFLE could be more general than FKNFLE, and obtained
lower variant OA rates. From this analysis, the proposed MKFLE is much more superior than the
FKNFLE, KNFLE, and FNFLE in HSI classification.

(a) 

 
(b) 

(c) 

Figure 2. The reduced dimension versus the classification accuracy on three datasets applying various
algorithms: (a) IPS-10; (b) Pavia University; (c) Pavia City Center.
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Figure 3a shows the effect of changing the number of training samples on the average classification
rates on dataset IPS-10; the proposed MKFLE algorithm has better performance than the other
algorithms. The accuracy of MKFLE was 0.24% better than that of FKNFLE, which demonstrates
that the proposed MKL strategy effectively enhanced the discriminative power of FLE. Figure 3b,c
also shows the effect of changing the number of training samples on the overall accuracy on the
benchmark datasets of Pavia University and Pavia City Center, respectively. Based on the overall
accuracy in these two datasets, the proposed algorithm MKFLE outperforms the other algorithms. Next,
Figure 4 demonstrates the classification results maps for the IPS-10 dataset. The various algorithms
MKFLE, FKNFLE, KNFLE, and FNFLE are performed and obtained classification results on the maps of
145 × 145 pixels describing the ground truth. The proposed MKFLE obtained fewer speckle-like errors
than those of the other algorithms. In the same manner, Figures 5 and 6 demonstrate the classification
results maps for Pavia University and Pavia City Center datasets, respectively. Similarly, the proposed
MKFLE obtained fewer speckle-like errors than in the case of the other algorithms.

 
(a) 

 
(b) 

Figure 3. Cont.
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(c) 

Figure 3. The number of training samples versus the accuracy rates for various datasets: (a) IPS-10; (b)
Pavia University; and (c) Pavia City Center.
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(d) (e) 

Figure 4. The maps of classification results on IPS dataset applying various algorithms: (a) The ground
truth; (b) MKFLE; (c) FKNFLE; (d) KNFLE; (e) FNFLE.
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(d) (e) 

Figure 5. The classification results maps on Pavia University dataset applying various algorithms:
(a) The ground truth; (b) MKFLE; (c) FKNFLE; (d) KNFLE; (e) FNFLE.
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(d)  (e) 

Figure 6. The maps of classification results on Pavia City Center dataset applying various algorithms:
(a) the ground truth, (b) MKFLE; (c) FKNFLE; (d) KNFLE; (e) FNFLE.

Moreover, in order to evaluate the performance of the proposed MKFLE algorithm, the user’s
accuracy, producer’s accuracy, kappa coefficients, and overall accuracy which were defined by the
error matrices (or confusion matrices) [27] were tabulated in Tables 2–4. These four measures are
briefly defined in the following. The user’s accuracy and the producer’s accuracy are two commonly
applied measures for classification accuracy. The user’s accuracy is the ratio of the number of pixels
classified correctly in each class by the amount of pixel in the same class. The user’s accuracy is a
commission error, while the producer’s accuracy measures the errors of omission and expresses the
probability that some samples of a given class on the ground are actually identified as such. The kappa
coefficient, which is also termed the kappa statistic, is defined as a measure of the difference between
the changed agreement and the actual agreement. The proposed MKFLE algorithm achieved overall
accuracies of 83.58% in IPS-10, 91.61% in Pavia University, and 97.68% in Pavia City Center with 0.829,
0.913, and 0.972 in kappa coefficients, respectively.

Furthermore, the main difference of computational complexity between MKFLE and FKNFLE
is the SVM. Although the computational complexity of SVM is O

(
N2

)
, which means that while the

number of training samples increases, the training process of MKFLE would be time-consuming.
However, since the training process is offline, the testing process is unaffected, and as aforementioned
that if there is not a good DR algorithm to find a suitable lower dimensional representation for the
training data, the performance of deep learning algorithms would be seriously impacted. Therefore,
the proposed MKFLE is still competitive.

Table 2. The error matrix of classification for the IPS-10 dataset (in percentage).

Classes
Reference Data User’s

Accuracy1 2 3 4 5 6 7 8 9 10

1 79.45 3.25 0.21 0.35 0 5.46 9.73 1.54 0 0 79.45
2 5.90 82.04 0 0.12 0 1.33 6.25 4.24 0 0.12 82.04
3 0 0 96.73 1.21 0.21 0.41 0 0.21 0.42 0.81 96.73
4 0 0 0.23 96.54 0 0 0 0 0 3.22 96.54
5 0 0 0.42 0 99.58 0 0 0 0 0 99.58
6 5.04 0.21 0.10 0.41 0 89.09 4.32 0.72 0 0.10 89.09
7 10.58 5.54 0.29 0.33 0.04 9.58 70.22 3.30 0 0.12 70.22
8 1.35 4.03 1.52 0.34 0 1.69 1.65 88.75 0 0.67 88.75
9 0 0 3.27 0.16 0 0 0 0 90.98 5.59 90.98
10 0 0 3.89 5.50 0 0 0 0.26 10.83 79.52 79.52

Producer’s Accuracy 77.64 86.29 90.69 91.97 99.75 82.82 76.18 89.62 88.99 88.20
Kappa Coefficient: 0.829 Overall Accuracy: 83.58%
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Table 3. The error matrix of classification for the Pavia University dataset (in percentage).

Classes
Reference Data User’s

Accuracy1 2 3 4 5 6 7 8 9

1 90.18 3.15 0 0 0 3.24 1.35 1.26 0.81 90.18
2 2.31 92.82 0 2.31 0 1.55 0 1.01 0 92.82
3 0 0 90.39 2.38 1.38 0.99 2.88 0.99 0.99 90.39
4 0 1.23 2.84 90.55 1.42 1.42 1.31 1.23 0 90.55
5 0.63 1.13 0.75 1.26 92.22 0.63 1.44 0.81 1.13 92.22
6 1.01 1.09 1.28 1.56 1.19 92.86 0.55 0.46 0 92.86
7 0 1.12 0.51 0.61 2.09 0 93.58 1.07 1.02 93.58
8 0.47 1.42 0.95 1.33 2.18 1.90 0 91.09 0.66 91.09
9 1.14 0 2.06 2.01 0 2.09 0 2.15 90.55 90.55

Producer’s Accuracy 94.19 91.03 91.50 88.76 91.77 88.73 92.55 91.02 95.15
Kappa Coefficient: 0.913 Overall Accuracy: 91.61%

Table 4. The error matrix of classification for the Pavia City Center dataset (in percentage).

Classes
Reference Data User’s

Accuracy1 2 3 4 5 6 7 8 9

1 98.69 0.14 0.51 0.33 0.33 0 0 0 0 98.69
2 1.04 97.58 0.43 0 0 0.29 0.17 0.48 0 97.58
3 0.59 0.76 96.31 0.69 0.99 0 0 0 0.67 96.31
4 0 0.52 0.66 96.79 0.37 0.47 0.66 0.53 0 96.79
5 0 0 0.39 0.34 97.86 0.21 0.34 0.34 0.52 97.86
6 0.33 0.26 0.54 0 0 98.26 0 0.26 0.35 98.26
7 0.34 0.25 0 0.35 0 0.38 98.33 0.35 0 98.33
8 0 0 0.37 0.30 0.37 0.49 0.45 97.55 0.46 97.55
9 0.39 0.55 0.75 0.29 0.29 0 0 0 97.73 97.73

Producer’s Accuracy 97.34 97.52 96.34 97.67 97.65 98.16 98.38 98.03 97.99
Kappa Coefficient: 0.972 Overall Accuracy: 97.68%

5. Discussion

The proposed MKFLE dimension reduction algorithm was applied in HSI classification. Since
the MKFLE algorithm applies the multiple kernel, which could extract much more useful nonlinear
information, and accordingly obtained a better accuracy than that of FKNFLE to the value of 0.24%,
0.3%, and 0.09% for IPS-10, Pavia City Center, and Pavia University datasets, respectively. Although
the improvements were few percentage, and increase the complexity of the algorithm. However, since
the training process of MKFLE including the SVM process are offline, the testing process is unaffected.
Besides, MKFLE is with lower variant OA rate. Therefore, the proposed MKFLE algorithm is suitable
for dimension reduction.

6. Conclusions

In this study, a dimension reduction MKFLE algorithm based on general FLE transformation has
been proposed and applied in HSI classification. The SVM-based multiple kernel learning strategy
was considered to extract the multiple different non-linear manifold locality. The proposed MKFLE
was compared with three previous state-of-the-art works, FKNFLE, KNFLE, and FNFLE. Three classic
datasets, IPS-10, Pavia University, and Pavia City Center, were applied for evaluating the effectiveness
of variant algorithms. Based on the experimental results, the proposed MKFLE had better performance
than the other methods. More specifically, based on the 1-NN matching rule, the accuracy of MKFLE
was better than that of FKNFLE to the value of 0.24%, 0.3%, and 0.09% for IPS-10, Pavia City Center,
and Pavia University datasets, respectively. Moreover, the proposed MKFLE has higher accuracy and
lower accuracy variant than FKNFLE. However, since SVM was applied in the training process of
MKFLE, more training time than the FKNFLE was needed. Therefore, more efficient computational
schemes for selecting the support vectors will be investigated in further research.
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Abstract: Dynamics of ocean current-induced island wake has been an important issue in global
oceanography. Green Island, a small island located off southeast of Taiwan on the Kuroshio path
was selected as the study area to more understand the spatial structure and temporal variation of
well-organized vortices formed by the interaction between the Kuroshio and the island. Sea surface
temperature (SST) and chlorophyll-a (Chl-a) concentration data derived from the Himawari-8 satellite
and the second generation global imager (SGLI) of global change observation mission (GCOM-C)
were used in this study. The spatial SST and Chl-a variations in designed observation lines and the
cooling zone transitions on the left and right sides of the vortices were investigated using 250 m spatial
resolution GCOM-C data. The Massachusetts Institute of Technology general circulation model
(MITgcm) simulation confirmed that the positive and negative vortices were sequentially detached
from each other in a few hours. In addition, totals of 101 vortexes from July 2015 to December
2019 were calculated from the 1-h temporal resolution Himawari-8 imagery. The average vortex
propagation speed was 0.95 m/s. Totals of 38 cases of two continuous vortices suggested that the
average vortex shedding period is 14.8 h with 1.15 m/s of the average incoming surface current speed
of Green Island, and the results agreed to the ideal Strouhal-Reynolds number fitting curve relation.
Combined with the satellite observation and numerical model simulation, this study demonstrates
the structure of the wake area could change quickly, and the water may mix in different vorticity
states for each observation station.

Keywords: island wake; vortex; sea surface temperature; chlorophyll-a; Himawari-8; GCOM-C

1. Introduction

1.1. Background

Island wakes have been studied for many years in the global oceans. Different driving forces
cause this phenomenon and these wakes have different characteristics according to the island’s scale
and water depth [1–4]. Green Island, a small island located off southeast of Taiwan, is on the path of the
Kuroshio to the East China Sea (Figure 1). Green Island is an obstacle on the “ocean highway”. Kuroshio
passes Green Island and causes a change in flow fields, such as the Von Kármán vortex street [5–9]. In
the lee of the island, a high chlorophyll-a (Chl-a) concentration and low sea surface temperature (SST)
wake region can be formed [8]. This recirculation area contained a cyclonic/anticyclonic vorticity pair
accompanied by a density overturn and water upwelling [9]. The increased surface Chl-a concentration
and decreased SST are induced by upwelling from deep-layer waters in the island wakes [5,9]. Like a
supply depot for marine life, the SST fronts between the wake area and the Kuroshio could provide
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favorable conditions for marine fishing grounds. The island wake induced upwelling, downstream
mixing and eddies could result in phytoplankton biomass and chlorophyll concentrations increased
near the island, which is called the island mass effect [10]. Enhanced phytoplankton can elicit a
biological response in fishes, carbon cycles and food web. There are more than 600 species of fish
around Green Island [11]. It is also an important habitat for a coral reef [12]. Therefore, studying the
wake of the island is an important issue.

 
Figure 1. The bottom topography around Green Island and the path of the Kuroshio (red line and arrow).

Previous researches have used high-resolution satellite imagery, acoustic Doppler current profilers,
cruise observations, and numerical models to analyze the Green Island wakes [5,8,9]. An island-induced
ocean vortex train (IOVT) [7] is formed leeward of Green Island by the incoming Kuroshio [8]. When
an ocean vortex forms, observations from the moored acoustic Doppler current profiler (ADCP)
suggest that the velocity on the western side of Green Island increases [8]. In addition, the IOVT
shows variability under wind forcing [8,13]. Southerly wind helps the wake expand because it lies in
the same direction as the incoming current, while the northerly wind compresses the development
of the wake [8,13]. The island wakes influence the area of SST drops, which could extend 35 km
downstream of Green Island, and vortex shedding could propagate as far as 80 km downstream
of the island [9]. Research on underwater island wakes suggests that a depth range with a high
inverted Reynolds number is supposed to have density overturns and a high Thorpe scale with
a turbulent kinetic energy dissipation rate of O(10−6–10−5)W/kg, which corresponds to an eddy
diffusivity of O(10−2–10−1)m2/s [9]. Numerical model research has suggested that the vortex street
features are adapted by inertial and barotropic instabilities [14], and the shedding period of the vortex
is synchronized to a tidal period [15].

1.2. Objectives

Although there are many studies on the Green Island wakes, the dynamics of these wakes
remain difficult to be determined. Cruise and instrument observations can measure detailed data on
the underwater wakes, but the advantages of remote sensing could be used to obtain accurate and
simultaneous data for sea surface wakes. Before the next measurement, it is necessary to clarify the
spatial scale and dynamic processes of the wakes on the island surface using satellite data. Only by
determining the feedback of the surface seawater to the wake can a researcher accurately design the
observation line and measurement frequency by cruise.
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The purpose of this study is to use the satellite data to obtain novel results of the Green Island
wake in order to make up for the shortcomings of in-situ measurements and the inability for the model
to be measured. They include (1) designing the imaginary lines to describe the Chl-a and SST response
to the wake from the second generation global imager (SGLI) data on the global change observation
mission (GCOM-C), (2) using the Himawari-8 SST data to calculate the wake vortex detachment
propagating speed and using the maximum cross-correlation (MCC) method to estimate the incoming
velocity of the wake, (3) calculating and discussing the Strouhal number–Reynolds number relationship
of wake dynamics.

Understanding the spatial structure of surface wakes can help determine the biological hotspots
in the wake area and improve knowledge of oceanic wakes. The evolution process of a wake can be
separated into four types, including a wake occurring alone, a wake occurring with a tail stretching
downstream, an S-shaped meandering wake, and a wake with a small cyclonic/anticyclonic vortex
pair downstream [9]. However, the detailed spatial structures of each type of wake remain unknown.
The SGLI observations with 250 m spatial resolution will improve our understanding of ocean change
mechanisms through long-term monitoring. The use of imaginary design observation lines helps to
understand the sea surface characteristics of the wake region at the same time but different locations.

Using high spatial resolution sun-synchronous satellite data could successfully detect the SST
drop in the cold wake area but could not further track the process of vortex movement in continuous
an hour interval due to the lack of a high temporal resolution [9]. To study the dynamics of island
wakes, the most important factor is to solve the setting of the two major parameters, the Strouhal
number (St) and the Reynolds number (Re), as well as the propagation velocity of the cold vortex
(Ue). However, it is very difficult to measure these two parameters with a cruise observation in the
ocean. For the Green Island area, there must be a certain number of research surveys to measure the
current velocity and SST variations in front of and downstream of the island. Previous studies applied
parameters such as the estimated distance between two consecutive vortices and the radius of vortices
from Synthetic Aperture Radar (SAR) images to the empirical equation to obtain the incoming current
velocity and the propagation velocity of the vortex [16]. However, SAR imagery is a snapshot image,
which does not have a high temporal resolution or a sufficient image, making it difficult to engage
in a long-term observation of wake dynamics. With advances in satellite imagery, the Himawari-8
geostationary satellite data provide a useful solution to the small cold vortex detachment process and
detect the vortex trajectory in wake dynamics. Understanding the relationship between St and Re and
the speed and period of cold vortex detachment can be useful for improving numerical simulations.

Recognizing the Green Island wake not only requires us to physical discuss wake dynamics but
also to investigate the development of ocean environmental sustainability. The results could help
marine fisheries and chemists better understand the status of this area.

2. Materials and Methods

The process of this study was divided into three steps. Firstly, the in-situ observations were used
to present the underwater structure in the wake region. Secondly, the detailed structure of the surface
wake was analyzed using the SGLI data from the GCOM project. Finally, the Himawari-8 imagery
was used to analyze the vortices movement process, and the MITgcm (Massachusetts Institute of
Technology General Circulation Model) numerical model was used to simulate the wake variation.

The MCC method was applied to hourly Himawari-8 SST images to calculate the incoming surface
current velocity for Green Island (22.5◦–22.7◦N, 122.3◦–122.5◦E). The principle of the MCC method is
to find the maximum correlation between a template image of SST patterns and the selected search
image in the next time interval. In this way, we can determine how far the center point of the template
image has moved in an hour and estimate the flow velocity. The MCC method needs to adjust the
parameter selection settings for different research scopes [17–19]. In this study, the pixel resolution of
2 km was increased to 1 km by interpolation. Considering the complex flow field variations and spatial
scale of the SST variation in southeast Taiwan, the four template images (7 × 7, 9 × 9, 11 × 11, and
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13 × 13 pixels) and the sides of the search image (7 km to each direction from the center of the template
image) were chosen. In this study, the acceptance criteria for the cross-correlation coefficient should
be larger than 0.9. With this parameter set, the minimum and the maximum speeds in the estimate
were about 0.28 m/s and 1.94 m/s, respectively. The maximum flow velocity per template image was
selected as the flow velocity in this area. Finally, the average maximum speed of the four template
images during each vortex shedding case was calculated.

2.1. Sea Surface Temperature and Chlorophyll-a Concentration

The GCOM-C, carrying an SGLI conducts surface and atmospheric measurements, such as
measurements of clouds, aerosols, ocean color, vegetation, and snow and ice. The SGLI is an optical
sensor capable of multi-channel observations at wavelengths from near-UV to thermal infrared and
obtains global observation data once every 2 or 3 days. The SGLI data are provided by the Japan
Aerospace Exploration Agency/National Aeronautics and Space Administration. The data are available
from January 2018, with a 250 m spatial resolution. The standard product and algorithm handbooks
can be found on https://suzaku.eorc.jaxa.jp/GCOM_C.

Himawari-8 is the 8th of the Himawari geostationary Japanese weather satellites operated by
the Japan Meteorological Agency. Himawari-8 carries the Advanced Himawari Imager with a wide
spectral range and very high spatial and 10-minute temporal resolutions. The research products of
SST and Chl-a used in this paper were supplied by the P-Tree System, Japan Aerospace Exploration
Agency (JAXA). The standard product can be found on https://www.eorc.jaxa.jp/ptree/index.html. The
SST data (2 km spatial resolution) and Chl-a (5 km spatial resolution) are available from 7 July 2015,
with a 1-h temporal resolution. The Himawari-8 data have good accuracy and have been applied to
calculate short-term sea surface currents [17,20].

2.2. Ocean Currents

OSCAR (Ocean Surface Current Analysis Real-time) contains near-surface ocean current estimates
derived using quasi-linear and steady flow momentum equations and combining geostrophic, Ekman,
and Stommel shear dynamics, and a complementary term from the surface buoyancy gradient, detailed
calculations can be referred to the User’s Handbook [21]. These data were collected from various
satellites and in situ instruments and directly estimated from the sea surface height, surface vector
wind, and SST. These data were generated by the Earth Space Research (ESR) and are available from
October 1992 to present, with a 1/3 degree spatial resolution and a 5-day temporal resolution. The
OSCAR third-degree resolution ocean surface currents (OSCAR_L4_OC_third-deg) data which can
be accessed through the https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg from NASA
PODAAC (Physical Oceanography Distributed Active Archive Center). The OSCAR data are highly
associated and accurate with the global tropical moored buoy array, and it has also been successfully
used to explore the island wake around Palau in the western tropical North Pacific Ocean [1,22,23].

2.3. Numerical Model

MITgcm is a numerical model designed for the study of the atmosphere, ocean, and climate. The
source code for this model can be download from http://mitgcm.org/. We used this model to solve the
Navier–Stokes equations under hydrostatic and Boussinesq approximations using the finite volume
method [24]. The south, north, and east directions of the model domain are open boundaries that use
the Orlanski radiation condition [25]. The HYbrid Coordinate Ocean Model and the Navy Coupled
Ocean Data Assimilation (HYCOM + NCODA) Global 1/12 degree analysis (GLBu0.08) was used
for the initial background data and the boundary driving force in the model. In this study, the case
of the summer season was based on the average of June to August from 2013 to 2018. These data
can be download from https://www.hycom.org/. The study area in the model set is from 120.85◦E to
122.5◦E and from 22.25◦N to 23.5◦N. The horizontal resolution is 500 m. The model uses z-coordinates.
There are 80 levels in the vertical direction. The top layer’s thickness is 5 m, and the other thicknesses
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increase at a 5.26% increase rate for each layer. The maximum depth is 5513 m. The horizontal eddy
viscosity is 40 m2/s. The Laplacian diffusion of heat and salt laterally is 4 m2/s. The vertical diffusion
of temperature and salt depends on the buoyancy frequency [26].

2.4. In-Situ Observation

In-situ observations were conducted in November 2012 using R/V Ocean Researcher I (OR1) in
the lee of Green Island (the datasets are available from http://www.odb.ntu.edu.tw/en/). Seven stations
(A1–A7) were selected to detect the vertical layer of the island wake from the southeast coast of Taiwan
across the Kuroshio and the wake area north of Green Island (see Figure 2a). The shipboard acoustic
Doppler current profiler (Sb-ADCP) and Conductivity Temperature Depth (CTD) surveys were also
collected during the cruise. The AquaTracka III fluorometer is used for in-situ detection of Chl-a,
dissolved compounds re-emit a fraction of this energy as fluorescence at longer wavelengths when
they absorb light and the intensity of fluorescence is directly proportional to the concentration. The
measurement range of the 75 kHz Sb-ADCP on board R/V OR1 was 16.56–650 m, with a bin size of 8 m.
It recorded the current velocity with 2 min ensembles averaged over 30 pings.

 
Figure 2. (a) The cruise experiment results with (b,c) velocity (U component positive in the east, V
component positive in the north), (d) temperature, (e) salinity, and (f) Chl-a from stations A1 to A7 on
10 November 2012.
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3. Results

3.1. Field Experiment

In this field experiment, the area between A4 and A5 was significantly affected by the island
wake (Figure 2b,c), the isotherms and isohalines were uplifted from a depth of 100–120 m to the
surface and the high Chl-a concentration water also upwelled from a depth of 70 m to the surface
(Figure 2d–f). The wake water has lower SST, higher salinity, and higher Chl-a than the Kuroshio
water. Moreover, the cruise observations could not measure the whole area of the wake at the same
time, and the hydrological structure may be changed due to the dynamic nature of the island wakes.
Therefore, remote sensing data with high temporal and spatial resolutions are recommended to discuss
the surface structures of wakes.

3.2. Spatial Structure of Island Wake

In this section, GCOM-C SGLI data with a 250 m grid resolution are used to clarify these properties.
Notably, these high-resolution cloud-free images are used to observe the spatial changes of SST and
Chl-a at different locations throughout the wake region at the same time, and we designed imaginary
observation lines for each case. In case 1, the classic and most common wake type with ten east-west
observation lines is used to discuss the wake from the lee of Green Island to downstream (Figures 3
and 4). In case 2, an S-shaped meandering wake with three lines along the wake and one imaginary
line are used to discuss the spatial–structural differences between two cold vortices (Figure 5). Case
3 offers a good comparative example to show the change of vorticity in the wake region during the
vortex transition (Figure 6). A numerical model simulation is used to illustrate this phenomenon
(Figure 7). Case 4 presents a typical theoretical von Kármán vortex street, but such phenomena rarely
occur in an SST response (Figure 8).

 
Figure 3. Case of the island vortex obtained from the global change observation mission (GCOM-C)
second-generation global imager (SGLI) data taken at 02:12 (UTC), 25 April 2019. (a) Sea surface
temperature (SST) (◦C), (b,c) zoom in on vortices of (a,d) Chl-a (mg/m3), (e,f) zoom in on vortices
of (d). The black arrow in (a) is the current velocity from the OSCAR data. The first arrow (22.33◦N,
121.33◦E) has a speed of 0.58 m/s, and the second arrow (22.67◦N, 121.67◦E) has a speed of 0.66 m/s.
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Figure 4. SST and chlorophyll-a (Chl-a) of L1 to L10 in Figure 3e.

Figure 5. Case of the island vortex obtained from GCOM-C SGLI image taken at 02:22 (UTC), July 13,
2019. (a,b) SST (◦C), (c,d) Chl-a (mg/m3), (e) SST, and Chl-a values of L1 to L4 in (b). The black arrow
in (a) is the current velocity from the OSCAR data. The first arrow (22.33◦N, 121.33◦E) has a speed of
0.46 m/s, and the second arrow (22.67◦N, 121.67◦E) has a speed of 0.59 m/s.
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Figure 6. Two different spatially distributed vortices with (a,b) Chl-a (mg/m3) and (c,d) SST (◦C). Two
cases obtained from GCOM-C SGLI data taken at 02:07 (UTC) 27 July 2018 (left) and at 02:04 (UTC) 21
June 2019 (right), (e,f) SST and Chl-a values of L1 and L2.

Figure 7. Results of the MITgcm numerical mode lasting one day. The background is the dimensionless
parameter Ro.
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Figure 8. Case of the island vortex train with (a) SST (◦C) and (b) Chl-a (mg/m3) obtained from
GCOM-C SGLI data taken at 02:07 (UTC), 27 July 2018 (UTC). (c,d) are zoom in on SST and Chl-a of
vortex 3. (e,f) same as (c,d), but for vortex 4. (g–j) are SST and Chl-a values of L1 to L4. The black arrow
(22.67◦N, 121.67◦E) in (a) is the current velocity from the OSCAR data with a speed of 0.51 m/s.

The typical Green Island wake (Figure 3) presents with a cold wake extending about 25 km behind
the island. We assumed that the 10 lines cross the wake (L1 to L10 in Figure 3e). If a cruise survey is
performed, only one of these lines could be observed in one hour due to the speed limit of the voyage.
The lowest SST and the highest Chl-a concentration in the wake region were found at the imaginary
lines of L1 to L4. L1 is about 1 km behind the island, and the SST of the wake area (27.3 ◦C) can reach
2.1 ◦C lower than that of the Kuroshio water (29.4 ◦C) as seen in Figure 4. The Chl-a concentration
reached 0.23 mg/m3, which was three times that of the Kuroshio water (0.07 mg/m3). We can use
this case to quantify the magnitude of the horizontal gradient of SST and Chl-a. From L1 to L4, the
SST gradient is about 0.5 ◦C/km, and the Chl-a concentration is about 0.025 mgm−3/km. Notably, the
dynamic process of a wake can change rapidly, and the seawater structure of the entire wake area
will likely change drastically within one hour. It can be seen here that from L7 to L10, there is a small
vortex that may detach soon and propagate downstream. Around 23◦–23.2◦N, 121.7◦–121.8◦E, two
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small vortices were captured (Figure 3c,f). However, we are unsure whether this was caused by the
shedding of the vortex train or by the coastal current.

Unlike the low-SST wake in Figure 3, which was concentrated only in a certain range behind
the island, Figure 5 shows a case of a vortex train, which the low SST and high Chl-a concentration
continue to extend downstream. The imagery line L1 in Figure 5b has the same purpose as L1 in
Figure 3e. In this case, a Chl-a concentration of 0.66 mg/m3 was observed, which was eight times the
Kuroshio water, and the difference in SST was 2 ◦C. The distance between the two vortices is about
30 km (L2 to L4 in Figure 5e). L3 and L4 lines in Figure 5b passed through two vortices. The data
sequence shows the situation of a low–high–low SST and high–low–high Chl-a concentration. Since
the downstream vortex is affected by seawater mixing, the SST is usually higher than that of the wake
close to the island.

A classic state in wake dynamics is illustrated in Figure 6, which was not captured in previous
studies on Green Island. With high-resolution satellite data, we can observe the cooling zone transitions
on the left and right side of the island wake region (usually corresponding to the magnitude of the
vorticity). From the data in Figure 6e, it can be seen that there are two peaks in the low-SST wake
region, 28.8 ◦C and 28.9 ◦C, respectively, and the corresponding Chl-a concentrations are 0.24 mg/m3

and 0.20 mg/m3. The left side of the wake region has a lower SST and a higher Chl-a concentration.
From the data in Figure 6f, two peaks in the low-SST wake region can be found (28.3 ◦C and 27.5 ◦C),
and the corresponding Chl-a concentrations are 0.14 mg/m3 and 0.16 mg/m3. The right side of the
wake region has lower SST and higher Chl-a concentration. To understand the wake evolution more
clearly, we used the MITgcm model to present the variations in Rossby number (Ro) during the wake’s
dynamic process (Figure 7):

Ro =
U
fL
∼ ζ

f
(1)

ζ =
∂∂∂v

∂∂∂x
− ∂∂∂u
∂∂∂y

(2)

where U and L are the velocity and length scales of the phenomenon, f is the Coriolis frequency,
and ζ is the relative vorticity. The quantified vorticity using Ro helps to interpret the eddy strength.
A very small Ro is typical to general circulation. A very high Ro can be seen in rapidly rotating
eddies. The simulation results show that positive and negative vorticity are sequentially detached from
each other in a few hours. This clearly illustrates the results we captured from the GCOM-C images
(Figure 6). This also demonstrates the importance of being careful when making cruise measurements,
because each wake can change quickly, and the water may mix in different vorticity states for each
observation station.

An ideal von Carmen vortex street can be seen in Figure 8a,b. Four sub-mesoscale vortices
detached from the island to downstream. Vortex 3 (Figure 8c,d) and vortex 4 (Figure 8e,f) were selected
for observations, and two imaginary lines that crossed the highest Chl-a position of the vortex were
designed. The size of the vortex’s core is about 5 km, which is close to the size of Green Island. The
maximum Chl-a concentration in both vortices was 0.22 mg/m3. An interesting phenomenon was
also seen here. In the vortex core, the Chl-a concentration did not exactly match that of the SST. As a
rotating vortex, the SST may increase during the propagation process due to the mixing of the Kuroshio.
The SST variation of the vortex in the model experiment is difficult to simulate because it is not known
which factors alongside seawater mixing could affect the vortex when it detaches downstream. In the
satellite observations, it was often found that vortex street rarely appeared, which was very different
from the model simulations [9]. In the next section, the geosynchronous Himawari-8 satellite data
were used to analyze and discuss the dynamic process of the vortex train.

3.3. Temporal Variation and Vortex Trajectory

The previous section presented the spatial structure of biological hotspots in the wake area, and
the dynamic process of the vortex is mentioned in this section. To study the dynamics of island wakes,
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the most important factor is to solve the setting of the two major parameters, the Strouhal number
(St) and the Reynolds number (Re), as well as the propagation velocity of the vortex (Ue). The St is a
dimensionless number describing the oscillating flow mechanisms as:

St =
L

TU0
(3)

where T is the vortex shedding period, U0 is the incoming current speed, and L is the characteristic
length. The Re is an important dimensionless quantity in fluid mechanics used to help predict the flow
patterns in different fluid flow situations as:

Re =
U0L
νh

(4)

where νh is the horizontal eddy viscosity.
With continuous cloud-free data, the trajectory and velocity of the vortex could be tracked and

calculated. A vortex has the characteristics of a closed isotherm of SST, and the lowest SST in the
eddy can represent its center position [9]. In this way, the trajectory of the vortex can be tracked.
An example of two consecutive vortices within 24 h of SST images is shown in Figure 9, with the
temporal ranging from 21:00 (UTC) on 12 July 2016 to 20:00 (UTC) on 13 July 2016. We can see how
the wake vortex detached and passed downstream. The first vortex was formed at 23:00 (UTC) on
12 July 2016 (the red star in Figure 9), and the second vortex was formed at 11:00 (UTC) on 13 July
2016 (the red dot in Figure 9), the shedding time interval was 12 h. The vortex detaching happens
when the instability disturbances by background flow. The average speeds of the two vortices were
1.21 m/s and 1.45 m/s, respectively. To understand the variations of the sub-mesoscale Green Island
vortices, a total of 101 vortex cases from July 2015 to December 2019 were calculated. A total of 78 cases
occurred in the summer (June to August). In 101 cases, the average vortex propagation velocity was
0.95 ± 0.28 m/s, and the maximum and minimum values were 1.82 m/s and 0.31 m/s, respectively. A
total of 101 vortex trajectories and their probability distributions are shown in Figure 10a,b. Figure 10c
presents a histogram of property velocity statistics for 101 vortex cases. As mentioned in previous
studies [8], the angle of the vortex distribution and the angle of the incoming velocity in front of the
island are highly correlated. Therefore, based on the trajectory distribution in Figure 10a, the angle of
the incoming current field in front of the island can be estimated. More than half of the vortex cases
have propagation velocities between 0.8 and 1.2 m/s. The probability distribution of the trajectory is
shown in Figure 10b. Most of the vortices with low SST and high Chl-a concentrations are concentrated
within 30 km northeast of Green Island. The biological hotspots in the wake area mainly appear in this
area of 900 km2 and propagate downstream with the vortex stream. Based on the MCC method, the
calculation results show that the average incoming flow velocity U0 that caused the vortex shedding
cases in Figure 10a is 1.15 ± 0.22 m/s.
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Figure 9. The 24-h continuous Himawari-8 SST images from 21:00 UTC on 12 July 2016 to 20:00 UTC
on 13 July 2016. Red stars and red dots represent the center positions of the two vortex cases.

 
Figure 10. (a) trajectory of 101 vortex cases, (b) the distribution probability (%) of the vortices for 101
cases, and (c) a histogram of the property speed statistics for 101 vortex cases.

Next, we use the case of vortex shedding to calculate St, and we must determine the time interval
between two continuous vortices. Therefore, a total of 38 cases were provided in this study for
calculations. The results show that the average vortex shedding period is 14.8 h. Based on the settings
of L = 5500 m and νh = 100 m2/s, the average St and Re are 0.114 and 64, respectively, which are
consistent with the fitted curve values [27] as shown in Figure 11.
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Figure 11. The Strouhal number (St) versus the Reynolds number (Re ) diagram. The point for this
study is expressed as the mean value with one standard deviation.

4. Discussion

4.1. The Relationship Between Re and St

The relationship between Re and St plays a major role in determining island wake patterns,
evolution, and vortex shedding. The fitting curve relation between Re and St for cylinder wakes were
formulated as [27]:

St = 0.273 − 1.11Re− 1
2 + 0.482Re−1 (5)

In theory, the Re value depends only on the size of U0 when focusing on the same obstacle.
However, Green Island is an irregular island, and there were differences in the choice of the diameter
(L) of the obstacle. According to the measurements from the National Land Surveying and Mapping
Center, Taiwan, the size of Green Island is 15.09 km2, 4.6 km wide, 5.2 km long, and the longest side is
about 6 km. Therefore, it is appropriate to choose L = 5–6 km for research on Green Island. However,
some researchers have instead chosen L = 7 km, which indicates a width of 100 m for the island in the
water [5,14,15]. It is worth noting that the choice of L will significantly affect the values of St and Re.
In addition, the value selection of horizontal eddy viscosity (νh) when calculating the Re value is a
difficult problem to be solved. Since this value is not easy to measure with observations, previous
studies have used estimated values. In the open ocean, the νh varies from 102 to 105 m2/s [28]. For
the mesoscale or sub-mesoscale ocean processes, the νh is generally chosen as 103 to 104 m2/s [16].
Next, we sort the data of various researchers and recommend what types of values are most suitable
for studying Green Island. Table 1 shows the corresponding data for each point in Figure 11. In this
study, L and νh were selected as 5500 m and 100 m2/s, respectively. The results of 38 cases showed
that the cases fit the equation of the fitted curve. With the average U0= 1.15 m/s, the average Re is 64,
and the average St is 0. 114. We recommend that L be selected from 5–6 km. If a larger value of L is
selected, the St may be too large (>0.3). A νh value of 100 m2/s is suitable, as a νh value that is too small
may cause the Re value to be too large. Although previous studies were based on observational data,
there was only one sample. Take the case of this study as an example. If the νh value was chosen to be
15 m2/s [14] or even 0.2–7 m2/s [15], the points of the case could be far from the fitted curve equation.
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Table 1. Corresponding values for each point in Figure 10.

L (m) U0 (m/s) νh (m2/s) Re St Reference

7000 1.3 100 91 0.24 [5]

5000 1 50
100
200
500

0.17
0.18
0.20

[6]

7000 0.675 15 315 0.24 [14]

5500 U0 = 1.15 100 Re = 64 St = 0.114 This study

Next, we will discuss the cases in our sample with Re> 40 (vortex street occurrence) but St < 0.1095
(the minimum value of the fitted curve equation). According to our parameter settings, if Re is greater
than 40, U0 must be larger than 0.73 m/s. The minimum U0 in 38 cases is 0.85 m/s. To make St > 0.1095,
when U0 = 1 m/s, T < 13.95 h, when U0 = 1.2 m/s, T < 11.62 h, when U0 = 1.4 m/s, T < 9.96 h. According
to the field observation data [14], the vortex shedding period is 12 h. However, there are many cases in
this study that showed a longer period for vortex shedding, which results in a lower St. According to
our observations, a low SST vortex formed over a long period of time, but it did not detach for a long
time. This verifies the results of previous studies that have used about 15 years of MODIS SST data
to determine that about 87% of cases feature wakes occurring alone [9]. However, the cause of this
situation is still unknown. It may be due to local wind, or it may be due to the seawater mixing at
lower depths.

Another interesting feature is the vortex propagation velocity. According to numerical
simulations [6], Ue is between 0.3 and 0.51 m/s. Based on a near-shore observation [15], Ue is
0.347 m/s. These two results indicate that Ue is only 1/3 to 1/2 of U0. However, this study indicates
that the average Ue is 0.95 m/s, which is about 83% of the U0 value. In the island vortex of the Luzon
Strait, a previous study calculated that Ue is about 89% of U0 [16]. We believe that the calculations in
this study are reasonable. The previous results may be greatly underestimated because the complete
period of the vortex movement is not measured.

4.2. Seasonal Changes in U0 and Chlorophyll-a Concentrations

The velocity data for OSCAR based on the satellite altimeter, temperature gradients, and wind
fields, it can explore seasonal variations. In addition to the Kuroshio being possibly affected by
mesoscale eddy invasions [29], the seasonal variation of velocity also significantly affects wake
evolution. Figure 12a–c show the distribution of the flow field of the Kuroshio annually and in summer
and winter, respectively. Figure 12d shows the velocity changes each month. Table 2 summarizes the
incoming flow speeds from 2010 to 2019. The fastest incoming flow speed was in July, which was 2.4
times the slowest in November. The Kuroshio is variable in different seasons. In addition to analyzing
the changes in SST when observing the development of wakes [9], it is also important to observe
changes in Chl-a concentration in the wake region, which may affect the aggregation of phytoplankton
and fish populations. Based on the average Chl-a concentration (0.15 mg/m3) in the wake region,
we analyzed the percentage of data that exceeds this value in different seasons (Figure 13). Since the
surface water is relatively cold, and the wind is relatively strong in winter, more nutritious seawater
in the deeper layer was mixed into the euphotic zone near the surface of the ocean, which nourishes
the growth of phytoplankton. Therefore, such a broadly high Chl-a concentration is not related to the
wake development. In summer, due to the vigorous development of wakes, there is a good chance that
high Chl-a concentration could be produced within 15 km of the lee of the island.
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Figure 12. The OSCAR sea surface current velocity from 2010 to 2019, (a) the annual mean for (b)
summer and (c) winter and (d) the average of the incoming current velocity for each month.

Table 2. The statistics for incoming speed (m/s) in front of Green Island for the years of 2010 to 2019.

Average Maximum Minimum

Spring 0.47 ± 0.10 0.82 0.27
Summer 0.56 ± 0.13 0.94 0.28

Fall 0.36 ± 0.18 0.84 0.02
Winter 0.34 ± 0.13 0.63 0.02

 
Figure 13. The probability distribution of the Chl-a concentration (>0.15 mg/m3) in different seasons.

Of the 101 vortex trajectories in this study, 78 cases appeared in summer (June to August). Velocity
and many missing values in winter due to clouds may be the main factors behind this phenomenon.
According to theoretical experiments, when 5 < Re < 40, a fixed pair of symmetric vortices occurred,
which is also the most commonly observed cold wake formations in the lee of Green Island, when
40 < Re < 200, a laminar vortex street occurred, which corresponds to the vortex shedding trains
observed in this study. We used the MITgcm model to establish the SST of wake under the same
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ocean conditions in summer but with different incoming speeds (Figure 14). The three incoming speed
conditions correspond to Re values of 70, 118, and 156, respectively. When Re = 70, no cold wake is
generated, when Re = 118, the vortex street is generated, when Re = 156, the area of a cold wake is
significantly expanded, and the SST drop is also significantly increased. The physical parameters
obtained in this study can improve the establishment of numerical models of wakes. In addition to
changes in the incoming speed, the ocean conditions, which include the values of the sea temperature,
seawater stratified structures, Kuroshio meander [29], and local wind effects can affect the evolution of
wakes. We will conduct simulation studies of different situations in a future study.

 
Figure 14. The island wake development from the MITgcm simulation for different Reynolds numbers.
(a) Re = 70, (b) Re = 118, (c) Re = 156. The sub-image represents the change in speed (m/s) along 22.6◦N.

4.3. Uncertainties, Errors, and Accuracies

The data of SST and Chl-a used in this study were processed by JAXA. The SST algorithm is based
on the method developed for Himawari-8 SST [30]. SGLI SSTs were validated by the comparison with
buoy data with 0.8 K difference, the Himawari-8 had an average SST difference of 0.18 K with a tropical
atmosphere-ocean array [20]. The Chl-a concentration algorithm is developed based on the empirical
algorithms for convenient use with the other sensor products, the estimated errors are −60 to +150%
with in-situ data and MODIS data (https://suzaku.eorc.jaxa.jp/GCOM_C/). In this study, GCOM-C
data presented significant variations in SST and Chl-a concentrations in the wake region, and the SST
drop and changes in Chl-a were similar to previous in-situ measurements [9]. In addition, this study
objectively used the lowest SST in the vortex to track its movement, which was hardly affected by the
accuracy of the data. All data have been well managed based on cloud masking classification and
decision. In this study, we chose cloud-free data for analysis.

5. Conclusions

This study used 250 m spatial resolution GCOM-C data and 1-h temporal resolution Himawari-8
imagery to analyze the surface structure and dynamic processes of the Green Island wakes. These
two sets of satellite data help us more understand the characteristic of sub-mesoscale eddies in the
Kuroshio region. Based on the GCOM-C data, we designed observation lines that were different from
the cruise observations because every point on the imaginary lines was certain to occur at the same time.
Details of the spatial structure of the wake are revealed in this study, including detailed SST and Chl-a
changes, the fronts of SST and Chl-a between the wake and Kuroshio water, the distance between two
consecutive vortices, the vorticity transition response to sea surface characteristics, and the different
structures of SST and Chl-a in the same vortex. Based on the Himawari-8 imagery, the incoming current
speed and the propagation speed of the vortex could be calculated. In total, 101 vortex cases from July
2015 to December 2019 were calculated. About 77% of the cases appeared in summer. The average
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vortex propagation speed was 0.95 m/s. More than half of the vortices had propagation speeds between
0.8 and 1.2 m/s. The average incoming surface current speed of Green Island was 1.15 m/s, which was
calculated by the maximum cross-correlation method. In the 38 cases which have two continuous
vortices, the average vortex shedding period was 14.8 h, the corresponding average Strouhal number
was 0.114, and the Reynolds number was 64. In this study, the St-Re fitting curve relation was used to
discuss the calculation results of the Green island wake compared to previous studies, and the results
suggest that the size of Green Island is suitably selected from 5 to 6 km. Further, the 100 m2/s of the
horizontal eddy viscosity is still suitable. FIn addition, there is a good chance that a Chl-a larger than
0.15 mg/m3 will be produced within 15 km at the lee of the island. This study used new remote sensing
data to successfully observe and analyze the dynamic processes of the sub-mesoscale vortices. In the
future, Himawari-8, the SGLI of GCOM-C, and the Sentinel-3 data will help establish a wake database
to be used for ocean sustainability development and assistance in the protection of fishery resources.

Author Contributions: P.-C.H. conceived the project, conducted research, performed initial analyses, visualized
data, and wrote the manuscript draft; P.-C.H. and C.-Y.L. processed scientific computing; C.-Y.H. and H.-J.L. Built
and processed numerical model; P.-C.H. and C.-R.H. discussed, revised and corrected the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research and the APC was funded by the Ministry of Science and Technology of Taiwan through
grants MOST 108-2611-M-019-019 and MOST 108-2811-M-019-506.

Acknowledgments: The authors appreciate all the data use provided from each open database. The Himawari-8
SST and Chl-a data were supplied by the P-Tree System, Japan Aerospace Exploration Agency (JAXA) (http://www.
eorc.jaxa.jp/ptree/); the GCOM-C SGLI data were supplied form the Japan Aerospace Exploration Agency/National
Aeronautics and Space Administration; the OSCAR ocean currents data were download from NASA PODAAC
(https://doi.org/10.5067/OSCAR-03D01); the Sentinel-3 data provided by EUMETSAT for Copernicus; the open
historical CTD data obtained from the Ocean Data Bank of the Ministry of Science and Technology of Taiwan
(http://www.odb.ntu.edu.tw/en/); and the open source of MITgcm were provided by http://mitgcm.org/.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zeiden, K.L.; Rudnick, D.L.; MacKinnon, J.A. Glider observations of a mesoscale oceanic island wake. J.
Phys. Oceanogr. 2019, 49, 2217–2235. [CrossRef]

2. St. Laurent, L.; Ijichi, T.; Merrifield, S.T.; Shapiro, J.; Simmons, H.L. Turbulence and vorticity in the wake of
Palau. Oceanography 2019, 32, 102–109. [CrossRef]

3. Kodaira, T.; Waseda, T. Tidally generated island wakes and surface water cooling over Izu Ridge. Ocean Dyn.
2019, 69, 1373–1385. [CrossRef]

4. Tanaka, T.; Hasegawa, D.; Yasuda, I.; Tsuji, H.; Fujio, S.; Goto, Y.; Nishioka, J. Enhanced vertical turbulent
nitrate flux in the Kuroshio across the Izu Ridge. J. Oceanogr. 2019, 75, 195–203. [CrossRef]

5. Chang, M.H.; Tang, T.Y.; Ho, C.R.; Chao, S.Y. Kuroshio-induced wake in the lee of Green Island off Taiwan. J.
Geophys. Res. Ocean. 2013, 118, 1508–1519. [CrossRef]

6. Huang, S.J.; Ho, C.R.; Lin, S.L.; Liang, S.J. Spatial-temporal scales of Green Island wake due to passing of the
Kuroshio current. Int. J. Remote Sens. 2014, 35, 4484–4495. [CrossRef]

7. Zheng, Z.W.; Zheng, Q. Variability of island-induced ocean vortex trains, in the Kuroshio region southeast of
Taiwan Island. Cont. Shelf Res. 2014, 81, 1–6. [CrossRef]

8. Hsu, P.C.; Chang, M.H.; Lin, C.C.; Huang, S.J.; Ho, C.R. Investigation of the island-induced ocean vortex
train of the Kuroshio Current using satellite imagery. Remote Sens. Environ. 2017, 193, 54–64. [CrossRef]

9. Hsu, P.C.; Cheng, K.H.; Jan, S.; Lee, H.J.; Ho, C.R. Vertical structure and surface patterns of Green Island
wakes induced by the Kuroshio. Deep-Sea Res. Part I 2019, 143, 1–16. [CrossRef]

10. Gove, J.M.; McManus, M.A.; Neuheimer, A.B.; Polovina, J.J.; Drazen, J.C.; Smith, C.R.; Merrifield, M.A.;
Frienlander, A.M.; Ehses, J.S.; Young, C.W.; et al. Near-island biological hotspots in barren ocean basins. Nat.
Commun. 2016, 7, 1–8. [CrossRef]

11. Chen, T.C.; Ku, K.C.; Ying, T.C. A process-based collaborative model of marine tourism service system–The
case of Green Island area, Taiwan. Ocean Coast. Manag. 2012, 64, 37–46. [CrossRef]

149



Remote Sens. 2020, 12, 883

12. Denis, V.; Soto, D.; De Palmas, S.; Lin, Y.T.; Benayahu, Y.; Huang, Y.; Liu, S.L.; Chen, J.W.; Chen, Q.; Sturaro, N.;
et al. Mesophotic Coral Ecosystems. In Coral Reefs of the World; Loya, Y., Puglise, K., Bridge, T., Eds.; Springer:
Cham, Switzerland, 2019; Volume 12, pp. 249–264. [CrossRef]

13. Hsu, T.W.; Doong, D.J.; Hsieh, K.J.; Liang, S.J. Numerical study of monsoon effect on Green Island wake. J.
Coast. Res. 2015, 31, 1141–1150. [CrossRef]

14. Liu, C.L.; Chang, M.H. Numerical studies of submesoscale island wakes in the Kuroshio. J. Geophys. Res.
Ocean. 2018, 123, 5669–5687. [CrossRef]

15. Chang, M.H.; Jan, S.; Liu, C.L.; Cheng, Y.H.; Mensah, V. Observations of island wakes at high Rossby
numbers: Evolution of submesoscale vortices and free shear layers. J. Phys. Oceanogr. 2019, 49, 2997–3016.
[CrossRef]

16. Zheng, Q.; Lin, H.; Meng, J.; Hu, X.; Song, Y.T.; Zhang, Y.; Li, C. Sub-mesoscale ocean vortex trains in the
Luzon Strait. J. Geophys. Res. Ocean. 2008, 113. [CrossRef]

17. Taniguchi, N.; Kida, S.; Sakuno, Y.; Mutsuda, H.; Syamsudin, F. Short-Term Variation of the Surface Flow
Pattern South of Lombok Strait Observed from the Himawari-8 Sea Surface Temperature. Remote Sens.-Basel
2019, 11, 1491. [CrossRef]

18. Liu, J.; Emery, W.J.; Wu, X.; Li, M.; Li, C.; Zhang, L. Computing Coastal Ocean Surface Currents from MODIS
and VIIRS Satellite Imagery. Remote Sens. 2017, 9, 1083. [CrossRef]

19. Hu, Z.; Qi, Y.; He, X.; Wang, Y.H.; Wang, D.P.; Cheng, X.; Liu, X.H.; Wang, T. Characterizing surface circulation
in the Taiwan Strait during NE monsoon from Geostationary Ocean Color Imager. Remote Sens. Environ.
2019, 221, 687–694. [CrossRef]

20. Ditri, A.L.; Minnett, P.J.; Liu, Y.; Kilpatrick, K.; Kumar, A. The Accuracies of Himawari-8 and MTSAT-2
sea-surface temperatures in the tropical western Pacific Ocean. Remote Sens. 2018, 10, 212. [CrossRef]

21. ESR. OSCAR Third Degree Resolution Ocean Surface Currents; Ver. 1; PO.DAAC: Pasadena, CA, USA, 2009.
[CrossRef]

22. Bonjean, F.; Lagerloef, G.S.E. Diagnostic model and analysis of the surface currents in the tropical Pacific
Ocean. J. Phys. Oceanogr. 2002, 32, 2938–2954. [CrossRef]

23. Johnson, E.S.; Bonjean, F.; Lagerloef, G.S.; Gunn, J.T.; Mitchum, G.T. Validation and error analysis of OSCAR
sea surface currents. J. Atmos. Ocean. Technol. 2007, 24, 688–701. [CrossRef]

24. Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier Stokes
model for studies of the ocean on parallel computers. J. Geophys. Res. Ocean. 1997, 102, 5753–5766. [CrossRef]

25. Orlanski, I. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 1976, 21, 251–269.
[CrossRef]

26. Klymak, J.M.; Legg, S.M. A simple mixing scheme for models that resolve breaking internal waves. Ocean.
Model. 2010, 33, 224–234. [CrossRef]

27. Williamson, C.H.K.; Brown, G.L. A series in 1/
√

Re to represent the Strouhal–Reynolds number relationship
of the cylinder wake. J. Fluids Struct. 1998, 12, 1073–1085. [CrossRef]

28. Apel, J.R. Principles of Ocean Physics; Academic Press: London, UK, 1987.
29. Hsu, P.C.; Lin, C.C.; Huang, S.J.; Ho, C.R. Effects of cold eddy on Kuroshio meander and its surface properties,

east of Taiwan. IEEE J.-STARS 2016, 9, 5055–5063. [CrossRef]
30. Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary

meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

150



remote sensing 

Article

Validation of a Primary Production Algorithm
of Vertically Generalized Production Model Derived
from Multi-Satellite Data around the Waters
of Taiwan

Kuo-Wei Lan 1,2, Li-Jhih Lian 3, Chun-Huei Li 4,*, Po-Yuan Hsiao 1 and Sha-Yan Cheng 1

1 Department of Environmental Biology Fisheries Science, National Taiwan Ocean University, 2 Pei-Ning Rd.,
Keelung 20224, Taiwan; kwlan@mail.ntou.edu.tw (K.-W.L.); 10831005@mail.ntou.edu.tw (P.-Y.H.);
eric@mail.ntou.edu.tw (S.-Y.C.)

2 Center of Excellence for Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd., Keelung 20224, Taiwan
3 Taiwan Cross-Strait Fisheries Cooperation and Development Foundation,

100 Heping W. Rd, Taipei 10070, Taiwan; juno516874@gmail.com
4 Marine Fisheries Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Rd,

Keelung 20246, Taiwan
* Correspondence: chli@mail.tfrin.gov.tw; Tel.: +886-2-24622101 (ext. 2304)

Received: 24 March 2020; Accepted: 17 May 2020; Published: 19 May 2020
��������	
�������

Abstract: Basin-scale sampling for high frequency oceanic primary production (PP) is available
from satellites and must achieve a strong match-up with in situ observations. This study evaluated
a regionally high-resolution satellite-derived PP using a vertically generalized production model
(VGPM) with in situ PP. The aim was to compare the root mean square difference (RMSD) and relative
percent bias (Bias) in different water masses around Taiwan. Determined using light–dark bottle
methods, the spatial distribution of VGPM derived from different Chl-a data of MODIS Aqua (PPA),
MODIS Terra (PPT), and averaged MODIS Aqua and Terra (PPA&T) exhibited similar seasonal patterns
with in situ PP. The three types of satellite-derived PPs were linearly correlated with in situ PPs,
the coefficients of which were higher throughout the year in PPA&T (r2 = 0.61) than in PPA (r2 = 0.42)
and PPT (r2 = 0.38), respectively. The seasonal RMSR and bias for the satellite-derived PPs were in the
range of 0.03 to 0.09 and−0.14 to−0.39, respectively, which suggests the PPA&T produces slightly more
accurate PP measurements than PPA and PPT. On the basis of environmental conditions, the subareas
were further divided into China Coast water, Taiwan Strait water, Northeastern upwelling water,
and Kuroshio water. The VPGM PP in the four subareas displayed similar features to Chl-a variations,
with the highest PP in the China Coast water and lowest PP in the Kuroshio water. The RMSD was
higher in the Kuroshio water with an almost negative bias. The PPA exhibited significant correlations
with in situ PP in the subareas; however, the sampling locations were insufficient to yield significant
results in the China Coast water.

Keywords: primary productivity; vertically generalized production model; waters around Taiwan;
MODIS Aqua and Terra

1. Introduction

Primary production (PP) refers to the production of organic carbon during photosynthesis [1].
It sets the upper limit for ocean productivity and is an essential measure of the ocean’s capacity to
transform carbon dioxide into particulate organic carbon at the base of the food web [2–4]. From a
bottom-up perspective [2,5,6], PP is also a good predictor of the potential yield of the world’s oceans.
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In the marine environment, in situ measurements of PP are taken using materials such as 14C [7],
13C [8], chlorophyll a (Chl-a) fluorescence [9], and oxygen isotopes [10]. These shipboard measurements
of the snapshot sections vary over short temporal and spatial scales [7–10]. Furthermore, it can be
time-consuming to represent minute fractions of ecosystems [6,11]. Scaling these relatively separate in
situ measurements of the snapshot sections to a regional scale, let alone basin or global scale projections,
therefore remains a significant challenge and needs to rely on remote sensing data and models [11–14].

Basin-scale sampling for high-frequency PP is available from satellites [13]. Ocean color images
derived from remote sensing are ideal for assessing PP on a regional to global scale, and provide
high-quality spatial and temporal coverage that give daily estimations of the attenuation coefficient,
phytoplankton biomass, and photosynthetically available radiation (PAR) [14]. Remote sensing of
ocean color cannot provide adequate information on oceanic PP without the support of models and sea
truth data [15,16]. Several analytical, empirical, and bio-optical models are currently used to determine
ocean PP [2,15,17,18]. Chl-a based models were chosen for this study; a large archive of regional
pigment data is available for use [19,20] and only a limited amount of bio-optical data is. The vertically
generalized production model (VGPM) formulated by Behrenfeld and Falkowski [19] is among the
most commonly used and simplest models for estimating PP from Chl-a data obtained from satellites.

The VGPM is a vertically integrated and light-dependent model that characterizes the
environmental factors affecting PP into those that control the optimal efficiency of the productivity
profile and influence the relative vertical distribution of PP [19]. The advantage of the VGPM is that it
incorporates satellite remote sensing data and employs minimal parameterization of input variables
to derive PP [16]. Despite the understanding and knowledge of the ocean optics that determine
ocean color signals and the photosynthetic process, PP derived from satellite data often have limited
success in reproducing the variability observed in PP data [18,20,21]. Comparisons of PP models
have shown that modeled estimates are twice as accurate as that of the carbon-based estimates [22,23].
Their application yields different results; choosing the most realistic one is therefore often a regional
issue and the regional dependence of photosynthetic efficiency on hydro-optical and biochemical
conditions must be taken into account [21–23]. Consequently, to obtain an appropriate match with in
situ observations of PP, satellite-derived models must consider the peculiarities of regional ecosystems.

The Taiwan Strait is an important channel that transports water along the western part of
Taiwan and chemical constituents between the South China Sea and East China Sea. Its alternating
monsoon-forcing, complex bottom topography, and the conjunction of several current systems means
that its ecosystem dynamics and biogeochemical and physical processes vary substantially in space
and in time [24–26]. The warm Kuroshio current flows through the eastern part of Taiwan, and a cold
dome can often be observed over the edge of the continental shelf’s northeast sides [27,28]. In a review
of previous studies, four major upwelling regions were identified around Taiwan, namely along the
northwestern and southwestern coast of the Taiwan Strait, on the Taiwan Bank, and near the Penghu
Islands [27–29]. The seasonal variation and spatial distribution of PP and phytoplankton biomass
are largely controlled by the input of nutrients from various water masses [28]. The typhoon and
tropical storms led to strong vertical water mixing enhanced nutrients and derived a diatom bloom
around the waters of Taiwan in summer [26,30]. In particular, large-scale climatic oscillations, such
as the ENSO events, also can cause sea surface temperature (SST) and PP changes on an interannual
scale [28,31]. PP is an essential component of both terrestrial and aquatic ecosystems. The total fish
and invertebrate production in an ecosystem-based approach to fisheries management is ultimately
limited by ecosystem PP [5,6]. The high PP around the waters of Taiwan also sustains commercially
important species of fish and cephalopod which develop their life cycle [28,32–34]. The development
of site-specific models to estimate PP is therefore extremely desirable. Although in situ measurements
of PP have been presented in previous studies (e.g., [24,26,28,35]), high-resolution PP distributions
and estimations around Taiwan are rare. The objectives of this study were (1) to evaluate a regionally
modified version of the VGPM using high-resolution (1.1 km2) SST and Chl-a derived from satellite
remote sensing data with in situ PP, and (2) to compare high-resolution VPGM PP and in situ PP for
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different water masses around Taiwan to compute the root mean square difference (RMSD) and relative
percentage bias (Bias). The high-resolution VPGM PP calculated from satellite data that correspond to
15 cruises provides the first view of PP around Taiwan.

2. Data and Methods

2.1. In Situ Measurements and Water Sampling

Hydrographic, optical, and biogeochemical properties were investigated in 62 sampling locations
around Taiwan in ranges between 21.5◦–26◦N and 119◦–123◦E (Figure 1). These covered the period
2009 to 2013 during different seasons on the vessels of Fisheries Research I (Table 1). We defined
December, January, and February as winter; March, April, and May as spring; June, July, and August
as summer; and September, October, and November as autumn.

Figure 1. Sixty-two sampling locations of Fisheries Research I cruises around the waters of Taiwan
between 21.5◦–26◦N and 119◦–123◦E.

Table 1. Cruise numbers, data, season, and number of PP measurement stations of Fisheries Research I
from 2009 to 2013.

Cruise No. Date of the Cruise Season No. of PP Measurement Stations

FR1-2009-08-25 25 August–5 September, 2009 Summer 62
FR1-2010-01-07 7 January–18 January, 2010 Winter 62
FR1-2010-04-08 8 April–19 April, 2010 Spring 62
FR1-2010-09-27 27 September–6 October, 2010 Autumn 62
FR1-2011-01-13 13 January–24 January 2011 Winter 36
FR1-2011-04-21 21 April–26 April, 2011 Spring 36
FR1-2011-08-09 9 August–18 August, 2011 Summer 61
FR1-2011-10-17 17 October–27 October, 2011 Autumn 62

FR1-2011-12-28 28–31 December, 2011
1–8 January, 2012 Winter 59

FR1-2012-04-18 18 April–30 April, 2012 Spring 62
FR1-2012-08-19 19 August–4 September, 2012 Summer 55
FR1-2012-11-02 2 November–11 November, 2012 Autumn 61
FR1-2013-01-04 4 January–15 January, 2013 Winter 62
FR1-2013-05-08 8 May–18 May, 2013 Spring 62
FR1-2013-10-03 3 October–14 October, 2013 Autumn 61
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In situ primary production was determined by light–dark bottle methods through incubation
in 300 mL dissolved oxygen (DO) bottles. This technique was modified using Winkler’s method.
We prepared two types of DO bottles, one of which was transparent (light bottle) and the other was
wrapped in aluminum foil (dark bottle). Seawater samples were collected at depths of 5, 25, and 50
m using 10 L Niskin bottles in each station, and water samples were filtered using a 300 μm filter
cloth. The filtered sample was then packed into two DO bottles: one light bottle and one dark bottle.
Each bottle was filled with 300 mL of seawater, following which, measurements were taken of the
temperature and dissolved oxygen using a dissolved oxygen meter (YSI Model 52).

One light bottle was placed in the incubator (constant temperature of 25 °C, 4000 lux light).
The dark bottle was set in the incubator, which was dark. After one day, the temperature and DO of
the three bottles were measured. The PP was the difference in dissolved oxygen between the light and
dark bottles, the formula for which was as follows:

In situ PP = ([O2]L−[O2]D) × carbon atom weight/dissolved oxygen atom weight/1 day.

[O2]L: the dissolved oxygen in the light bottle after incubating for 1 day.
[O2]D: the dissolved oxygen in the dark bottle after incubating for 1 day.
The PP (mg C m−2 d−1) was then integrated in terms of depth (m).
The depth ranged from 0–50 m.

2.2. Satellite-Derived PP Estimates

The PP model of the VGPM used in this study was based on Chl-a concentration, and the
formulation and parameterization were recommended by Behrenfeld and Falkowski [19]. Maximum
photosynthetic efficiency in VGPM is described as an optimal rate of photosynthesis (PB

opt) in a water

column normalized to Chl-a concentration (mg·C·mg·Chl−1·h−1). The VGPM estimates the daily
integrated PP in a water column of euphotic depth (PPeu, mg C m−2 day−1) as follows:

PPeu = 0.66125×Chla× PB
opt ×

PAR
PAR + 4.1

×Zeu ×DP (1)

Photosynthetically available radiation (PAR) denotes daily averaged surface photosynthetic
active radiation at 400–700 nm (E·m−2·day−1), Zeu denotes euphotic depth, and DP denotes a day
photoperiod. Zeu was calculated from satellite surface chlorophyll-a concentration for lower and higher
total chlorophyll conditions following Morel and Berthon [36]. PB

opt is expressed as a seventh-order
polynomial function of SST [19], which is formulated as follows:

PB
opt = 1.2956 + 2.749× 10−1SST + 6.17× 10−2SST2 − 2.05× 10−2SST3+2.462× 10−3SST4 − 1.348× 10−4SST5+3.4132× 10−6SST6 − 3.27× 10−8SST7 (2)

The satellite data used in VGPM during the study period of 2009–2013 are SST, Chl-a, and PAR.
MODIS Aqua/Terra daily Level 1A were downloaded from the NASA Ocean Color website. SeaDAS
v6.2 was used to process high-resolution (1.1 km) local area coverage images and Chl-a data (OC3Mv6
algorithm). Daily PAR product data were downloaded from the Ocean Productivity database. Daily
SST data were extracted from NOAA AVHRR SST images and had a spatial resolution of 1.1 km.
The NOAA HRPT data, including AVHRR scenes, were received at a ground station at National Ocean
Taiwan University. Daily DP data were produced by the Central Weather Bureau using a Precision
Spectral Pyranometer. The three categories of satellite-derived PP were calculated using different
MODIS Chl-a data as follows: (1) MODIS Terra evaluated primary production (PPT), (2) MODIS Aqua
evaluated primary production (PPA), and (3) the averaged MODIS Aqua and Terra evaluated primary
production (PPA&T).

The divisions of waters around Taiwan also have different oceanographic characteristics. They
were divided into 1◦ gridded areas across 36 sites (Figure 2a). Cluster analysis with normalized
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Euclidean distances was used to measure levels of similarity in gridded areas in the waters around
Taiwan in 2009–2013, including monthly Chl-a, SST, and PAR. Ward’s method was used to illustrate the
relationships between them in a dendrogram. The cluster analysis was conducted using STATISTICA
8 statistical software.

Figure 2. (a) The waters around Taiwan were divided into 1◦ gridded areas for 36 sites. The subareas
for the China Coast water, Taiwan Strait water, Northeastern upwelling water, and Kuroshio water
were divided by the cluster tree diagram results using the monthly Chl-a, SST, and PAR during study
period (2009–2013) in (b). The monthly mean PPA&T image in 2009 was used as an example in (a).

2.3. Match-Up Data and the Assessment of Satellite PP Models

To evaluate the satellite-derived PP with in situ PP, we produced pairs of collocated satellite
overpasses and in situ sampling was extracted with a time difference shorter than ± 12 h. The satellite
observations have spatial averages of 3 × 3 pixels around each sample site location and were compared
with field measurements.

The PP values derived from the VPGM model were regressed against in situ data and a type II linear
regression model was applied, as both field and modeled data are subject to errors. The slope, intercept,
and the correlation coefficient (r) were then determined. For Chl-a, the regression was performed
between log-transformed values. The RMSD statistic assesses model skill such that models with lower
values have higher skill, and the model bias assesses whether a model over- or underestimates PP [11].
We calculated the RMSD for n samples of PP:

RMSD =

√∑n
i=1 [ log(PPmodel,i) − log(PPin situ,i

)
]2

n
(3)

where (PPmodel,i) modeled PP and (PPin situ,i) represents in situ PP estimates at each site. To assess
whether a model over- or underestimated PP, we calculated the bias of each model as follows:

Bias = log(PP model) − log(PPin situ) (4)

3. Results

Annual and Seasonal Trends in PP

The spatial distribution of VPGM-based production derived from AVHRR SST and MODIS Chl-a
in the waters around Taiwan showed similar seasonal spatial patterns to in situ PP (Figures 3 and 4).
The highest concentration of PPs was observed along the Mainland China Coast and four major upwelling
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regions (southwestern and northwestern coast, Taiwan Bank, and Penghu Islands) around the waters of
Taiwan. Lower PP values were obtained across the whole year within the Kuroshio-influenced region
in eastern parts. During the study periods, the total numbers of colocated satellite overpasses and in
situ sampling sites were extracted with a time difference shorter than ± 12 h. This contained 102 sets for
PPA&T, 151 for PPA, and 150 for PPT, respectively (Table 2).

Figure 3. Spatial distribution of in situ PP determined using light–dark bottle methods in 2011:
(a) winter, (b) spring, (c) summer, and (d) autumn.

Table 2. Extracted number of satellite-derived PPs with in situ PPs, correlation coefficients (r2), and p
values for PPA&T, PPA, and PPT for whole years and different seasons. The RMSD and bias for PPA&T,
PPA, and PPT for whole years.

Extracted Number Correlation Coefficients p

PP

(A&T)
PP A PP T

PP

(A&T)
PP A PP T

PP

(A&T)
PP A PP T

Years 102 151 150 0.61 0.42 0.38 <0.05 <0.05 <0.05
Spring 18 26 23 0.74 0.55 0.46 <0.05 <0.05 <0.05

Summer 25 49 48 0.54 0.25 0.37 <0.05 <0.05 <0.05
Autumn 52 55 59 0.51 0.46 0.42 <0.05 <0.05 <0.05
Winter 7 21 20 0.33 0.14 0.07 0.31 0.22 0.41

RMSD Bias

PP
(A&T)

PP A PP T
PP

(A&T)
PP A PP T

Years 0.37 0.34 0.34 −0.24 −0.197 −0.174
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Figure 4. Monthly mean spatial distributions of VPGM PP derived from PPA&T in 2011: (a) January,
(b) April, (c) July, and (d) October.

4. Comparison of Satellite-Derived and in Situ PP

To validate the model results, the three satellite-derived PP values (PPA&T, PPA, PPT) were
compared with in situ PP values. They were linearly correlated with the situ PP and the coefficient was
higher in PPA&T (r2 = 0.61) than in PPA (r2 = 0.42) and PPT (r2 = 0.38) throughout the year (Table 2).
The highest correlations were observed in spring, especially for PPA&T (r2 = 0.74) (Figure 5).

Figure 5. Relationship between the VPGM PPA&T and in situ PP for (a) the whole year, (b) spring,
(c) summer, (d) autumn, and (e) winter during the study period.
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The lowest correlations were observed in winter and were nonsignificant. Relative to the in situ
PPs, the modeled PPs (PPA&T, PPA, PPT) had a RMSD of 0.37, 0.34, and 0.34, and a bias of −0.24, −0.197
and −0.174, respectively (Table 2). The seasonal RMSR and bias were in the range of 0.03–0.09 and
−0.14–0.39, respectively, for the three satellite-derived PPs. This implied that the three PPs had similar
results; however, the PPA&T algorithm produced slightly more accurate PP measurements than the
PPA and PPT algorithm.

5. Cluster Analysis and Characteristics in the Subareas

The cluster analysis showed that the waters around Taiwan can be divided according to
environmental conditions into four subareas: China Coast water (CCW), Taiwan Strait water (TSW),
Northeastern upwelling water (NUW), and Kuroshio water (KW) (Figure 2b). In terms of the
relationship between SST, MODIS Aqua Chl-a, and PPA in four subareas for each 1 ◦C gridded,
the monthly mean SSTs were in the range of 7–30 ◦C in CCW, 13–30 ◦C in TSW, 17–25 ◦C in NUW,
and 22–30 ◦C in KW, and had no clear relationships with PPA were revealed (Figure 6a). The strong
correlation between PPA and MODIS Aqua Chl-a in subareas is shown in Figure 6b. The monthly mean
PPA and Chl-a were in the ranges of 600–2500 mg·C·m−2·day−1 and 2–5 mg·m−3 in CCW, 500–1500 mg
C m−2·day−1 and 1–3 mg·m−3 in TSW, 500–1000 mg C m−2·day−1 and 1–2 mg·m−3 in NUW, and 0–500
mg C m−2·day−1 and 0–1.5 mg·m−3 in KW.

Figure 6. Relationship between the monthly mean of (a) AVHRR SST and VPGM PPA, and (b) MODIS
Aqua Chl-a and VPGM PPA for each 1 ◦C gridded area in the four subareas of CCW (green circles),
TSW (blue circles), NUW (red circles), and KW (yellow circles) from 2009 to 2013.

The comparison of in situ data and model data for each subarea is presented in Table 3. The PPA

had significant correlations with in situ PP in the TSW (r2 = 0.26), NUW (r2 = 0.37) and KW (r2 = 0.14).
PPA+T only had significant correlations with in situ PP in the TS, and PPT had no significant correlations
in any of the subareas. The RMSD values were higher in the KW, ranging between 0.06–0.87, with an
almost negative bias in the range of −0.74 to 0.38 (Figure 7). The RMSD in the TSW, NUW, and CCW
were in the range of 0.07–0.67 with bias in the range of −0.49 to 0.27.

Table 3. Extracted number (n) of satellite-derived PPs with in situ PPs, correlation coefficients (r2),
and p values for PPA&T, PPA, and PPT for whole years in four subareas.

China Coast Taiwan Strait Northeast Upwelling Kuroshio

n r2 p n r2 p n r2 p n r2 p

PPA&T 3 0.16 0.51 39 0.08 <0.05 12 0.01 0.79 48 0.02 0.07
PPA 4 0.33 0.31 52 0.26 <0.05 12 0.37 <0.05 83 0.14 <0.05
PPT 3 0.44 0.54 50 0.04 0.09 14 0.01 0.7 83 0.02 0.13
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Figure 7. (a) RMSD and (b) bias for the 62 sampling locations in the four subareas of the CCW (green
circles), TSW (blue circles), NUW (red circles), and KW (yellow circles).

6. Discussion

Primary producers reside at the base of food webs, and thus, drive ecosystem dynamics through
bottom-up forcing [11]. The global biogeochemical cycles of major elements, particularly the carbon
cycle, are greatly influenced by primary producers [2]. The primary producers convert the inorganic
to organic carbon by photosynthesis in the light environment, and the carbon production is referred
to as gross PP [37]. Net PP is gross PP minus the phytoplankton’s respiration, and it supplies to all
heterotrophs in the oceans. Net community production is gross PP minus respired by autotrophs and
heterotrophs [37]. Both net PP and net community production play an important factor for biological
carbon circulation. Therefore, understanding the spatial and temporal dynamics of PP is invaluable in
earth and life science research [38,39].

The present study provided the first assessment of a satellite-derived VPGM PP model with
in situ PP estimates in the regional waters around Taiwan. In light–dark oxygen methods, not
only phytoplankton but also heterotrophic bacteria and zooplankton are in the bottles. The charge
in dissolved oxygen of the light bottle is affected by photosynthesis and community respiration,
and the gross PP can be estimated by net community production and community respiration [37].
The light–dark oxygen method used in the present study and the 14C method are often used to measure
in situ marine PP. The light–dark oxygen method was the main approach to measure PP before the 14C
method was invented [1], the latter of which is more sensitive and offers good precision, although
a radioisotope needs to be added to the water samples. The acquisition, use, and disposal of the
radioisotope requires specific procedures and incurs high costs. Nevertheless, it yields reliable data
through a careful process using oxygen electrodes [1].

In situ measurements of PP are spatially and temporally limited and require multiple integrated
sampling approaches. The use of ocean color data in PP models provides an attractive alternative
to field estimations as it offers an estimation at a high spatial and temporal resolution. AVHRR SST
and MODIS Chl-a have long been used to study marine characteristics; however, their availability is
seriously reduced by cloud coverage. The coverage provided by AVHRR SST and MODIS Chl-a daily
images in the current study were in the range 20%–80% (Figure 8 as examples), and notably lower
in wintertime (<30%). Although the availability of data from microwave observations was almost
100% [40], the disadvantage of a low spatial resolution meant that it was not appropriate for use in
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coastal areas. The limited match-up data between the satellite-derived data and in situ measurements
were relaxed to within ± 12 h in the present study, and this time difference may have affected the
matching accuracy. For example, Lee et al. [41] compared the MODIS SSTs with in situ SSTs and
suggested that if the time difference was ± 3 h, this would produce the smallest bias but with a lower
match-up of usable data.

Figure 8. Daily spatial distribution maps of (a–d) PPA&T, (e–h) PPA, and (e–h) PPT in May, August,
October, and December 2009.

To make best use of this technique, it is essential to assess the accuracy of the satellite-derived
products to determine the uncertainty of the data input into the models [14]. The bias and RMSD
between AVHRR SST and in situ data were 0.01 and 0.64 ◦C and high accuracy than the MODSI SST
(bias = 0.03 ◦C, RMSD = 0.75 ◦C) in the waters around Taiwan [41,42]. For the MODIS Chl-a data,
the previous study suggested that in coastal or upwelled waters, the blue region of the water that
left a radiance signal used in standard Chl-a satellite algorithms was affected by colored dissolved
organic matter and detrital material in addition to phytoplankton. This resulted in the decreasing
accuracy of Chl-a and therefore PP [18,20]. The matching accuracy OC3M algorithm was within 11%
of in situ Chl-a in the Arabian Sea and performed better than the Garver Siegel Maritorena Model and
Generalized Inherent Optical Property Chla algorithms [43]. The satellite Chl-a estimates tended to be
larger than in situ reference values, and also revealed that a nonuniform Chl-a distribution in the water
column can be a factor alongside the documented overestimation tendency when larger optical depth
match-up stations are considered [44].

When the Chl-a derived from MODIS Aqua and Terra is compared, the MODIS Terra is more
accurate in the coastal waters of the Arabian Sea [45], possibly due to differences in sensor design and
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time differences between the satellites’ overpasses. Applying standard products of satellite-derived PP
for research in the open ocean is acceptable; however, using such products in regional studies remains
questionable. This is especially so when the shelf sea areas are dominated by large rivers containing a
large amount of suspended particles and color-dissolved organic matter [26,35]. The estimation errors
of satellite-derived PP were often the result of incorrectly applying ocean color chlorophyll algorithms
and inaccurate PP data [46]. In our case, the highest correlation coefficients were obtained in the PPA+T

around the waters of Taiwan in the spring. However, the highest significant correlation coefficients in
the four subareas were observed for PPA. The lowest correlations for PPA+T, PPT, and PPA all occurred
in wintertime. Although the RMSD and bias were lowest in PPA, the difference was not significant.
We found that VPGM estimated PPs were always underestimated with satellite-derived PPs, which
may be due to errors in the PB

opt calculated as a function of SST [47]. However, this photosynthetic
parameter also strongly depends on factors such as nutrient supply, irradiance, and dominating
phytoplankton species.

Satellite SST represents temperature only in the uppermost ocean layer and PB
opt, being a function

of SST, differs in the lower layers, providing different photosynthetic efficiency [21]. The VGPM is one
of the most widely known and applied depth-integrated/wavelength-integrated models. However, it
has rarely been applied to coastal waters. Lobanova et al. [21] compared the accuracy of PP derived
from the VPGM, the Platt and Sathyendranth model, and the Absorption-Based Model with in situ
data in the North East Atlantic Ocean. The results revealed that the Platt and Sathyendranth model and
VPGM had similar accuracy, whereas the Absorption-Based Model was not suitable for the study region.
Although using in situ PB

opt and Zeu may have significantly improved the estimation of VPGM PP [16],
the scales of in situ measurements were too short to provide adequate coverage of high-quality regional
temporal and spatial variations. Improvements in the accuracy of Chl-a from other ocean color sensors,
including Medium Spectral Resolution Imaging Spectrometer and Ocean-Colour Climate Change
Initiative data, will ultimately lead to an improvement in satellite PP algorithms for further research.

The VPGM PP in the four subareas of CCW, TSW, NUW, and KW also displayed similar features
to Chl-a variations with the highest PP in the CCW and lowest in the KW. The RMSD was higher in
the KW with an almost negative bias. The PPA had significant correlations with in situ PP in the TS,
NUW, and KW; however, the sampling locations were insufficient to provide significant results in
the CCW. The availability of light, the source of energy for photosynthesis; mineral nutrients, (the
building blocks for new growth); and temperature, which affects metabolic rates, play crucial roles in
regulating PP in the ocean [48,49]. The dominant primary producers in the Taiwan Strait are nano- and
pico-phytoplankton [28]. The contribution of the microbial food web to the traditional food web is
estimated to be approximately 30%, implying it has fundamental significance in the Taiwan Strait [28].
The high salinity and temperature with low nutrients originate from the TSW source in the South China
Sea and KW in summertime; the strong northeastern winds then push the fresh, cold, nutrient-rich
CCW southward along the western part of the Taiwan Strait [28,50]. In addition, the KW flowing
through the eastern part of Taiwan is relatively deficient in nutrients, and the PP is also lower than in
the other currents around Taiwan [51]. However, the nutrients increase from a depth of 200 m under
short-term climatic variations such as typhoons [52], and may cause higher RMSD and bias in KW.
The spatial distribution and seasonal variation of phytoplankton biomass and primary productivity
are largely controlled by the input of nutrients from various water masses.

7. Conclusions and Future Research

The present study provided the first assessment of a satellite-derived VPGM PP model with in
situ PP estimates in the regional waters around Taiwan. Understanding the PP of waters affected by
global warming is critical. In particular, the East China Sea is among the large marine ecosystems that
are warming most rapidly. Furthermore, from the 1950s to 2000s, the increased SST has caused 20 ◦C
isotherms in the Taiwan Strait to gradually shift northward in the winter [53]. Climate change caused
by global warming along with changes in water temperature also affect the productivity, catchability,
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and fishing pressure of fish species. It is important to quantify and understand the sources of variation
in marine PP and increase confidence in the predictions of future fisheries yielded under uncertainty
over future PP and its transfer to higher trophic levels [54]. Our results revealed that the VGPM PP
derived from AVHRR SST and three types of MODIS Chl-a were linearly correlated with in situ PPs, as
determined by light–dark bottles. The correlation coefficients were highest in the PPA&T around the
waters of Taiwan, especially in springtime. However, the highest significant correlation coefficients in
the four subareas were observed in PPA and wintertime.

Satellite models underestimate in situ PP, probably due to the depth of the phytoplankton in the
water column, short-term climatic variations, and optically complex shelf waters. To better understand
the PP around Taiwan with complex current systems, substantially more measurements are required
across multiple years and seasons. Although initially, these can be used to quantify the productivity of
different water masses, they are eventually required to further validate the available biogeochemical
models in order to scale up relatively sparse measurements through time and space [18]. Additional
studies include making a further comparison of in situ marine PP with the 14C method and multi
satellite-derived data, such as Ocean-Colour Climate Change Initiative (OC-CCI) data obtained from
merged information derived from ocean color sensors. The VPGM is a commonly used model and
exhibited significant correlations with in situ data in the present study. However, the simplest model
formulation of the Eppley-Square-Root model [15] was tested as the highest skill and lowest bias model
in the western boundary of East Australia [18]. The other VPGM-based models, the VGPM-Eppley
model [2], and VGPM-Kameda model [17], will provide the crucial next step in conducting more
comprehensive investigations by re-parameterizing the original relationships in accordance with in
situ data.
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Abstract: This study utilizes remote sensing imagery, a differential averaging technique and empirical
formulas (the ‘Liou–Liu formulas’) to investigate three consecutive sets of dual-vortex interactions
between four cyclonic events and their neighboring environmental air flows in the Northwest Pacific
Ocean during the 2017 typhoon season. The investigation thereby deepens the current understanding
of interactions involving multiple simultaneous/sequential cyclone systems. Triple interactions
between Noru–Kulap–Nesat and Noru–Nesat–Haitung were analyzed using geosynchronous satellite
infrared (IR1) and IR3 water vapor (WV) images. The differential averaging technique based on
the normalized difference convection index (NDCI) operator and filter depicted differences and
generated a new set of clarified NDCI images. During the first set of dual-vortex interactions, Typhoon
Noru experienced an increase in intensity and a U-turn in its direction after being influenced by
adjacent cooler air masses and air flows. Noru’s track change led to Fujiwhara-type rotation with
Tropical Storm Kulap approaching from the opposite direction. Kulap weakened and merged with
Noru, which tracked in a counter-clockwise loop. Thereafter, in spite of a distance of 2000–2500 km
separating Typhoon Noru and newly-formed Typhoon Nesat, the influence of middle air flows
and jet flows caused an ‘indirect interaction’ between these typhoons. Evidence of this second
interaction includes the intensification of both typhoons and changing track directions. The third
interaction occurred subsequently between Tropical Storm Haitang and Typhoon Nesat. Due to
their relatively close proximity, a typical Fujiwhara effect was observed when the two systems began
orbiting cyclonically. The generalized Liou–Liu formulas for calculating threshold distances between
typhoons successfully validated and quantified the trilogy of interaction events. Through the unusual
and combined effects of the consecutive dual-vortex interactions, Typhoon Noru survived 22 days
from 19 July to 9 August 2017 and migrated approximately 6900 km. Typhoon Noru consequently
became the third longest-lasting typhoon on record for the Northwest Pacific Ocean. A comparison
is made with long-lived Typhoon Rita in 1972, which also experienced similar multiple Fujiwhara
interactions with three other concurrent typhoons.

Keywords: Typhoons; Fujiwhara effect; cyclone–cyclone interaction; vortex interaction; Liou–Liu
formulas; tropical depression (TD)
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1. Introduction

1.1. Tropical Cyclone Hazards

Tropical cyclones (TCs), including typhoons and hurricanes, are considered to be among the
most destructive natural hazards in terms of their severity, duration and areas affected. Every year in
various parts of the world, they cause loss of human lives, crops and livestock, and extensive damage
to infrastructure, transport and communication systems. Information on the distribution and variation
of TCs, along with the effects of climate variability and global warming on their occurrence, is therefore
crucial for assessing vulnerability and for disaster prevention [1–4]. The Asia region is especially
prone to TC occurrence and their negative impacts. Nguyen et al. [4], for example, used 21 indicators
to identify vulnerability to typhoons using geospatial techniques by implementing a conceptual
framework modified from an eco-environmental vulnerability assessment, suitable for implementation
at regional to global scales [5–8]. Accurately predicting the migratory track, intensity and rainfall
of TCs is a key research focus for meteorologists and weather forecasters [9]. Factors influencing
track orientation, shape, sinuosity, and ultimately points of landfall are of particular interest [10,11].
Satellite-based cloud images are useful for analyzing TC cloud structure and dynamics [12–16].

1.2. Dual-Vortex Interactions

When two TCs approach one another, they can influence each other through a cyclone–cyclone
vortex interaction. The dual-vortex interaction, known as the ‘Fujiwhara effect’ (also referred to as
the Fujiwhara interaction or a binary interaction), occurs between two TC systems that are close
enough (generally less than 1400 km apart) to affect each other significantly and cause a tendency
towards mutual rotation. Studying the various possible behavior patterns of a dual-vortex interaction
is important as it offers the potential to improve weather forecasting. Several such dual-vortex
interactions have been studied in the past [17–20]. For instance, Hart and Evans [21] simulated
the interaction of dual vortices in horizontally-sheared environmental flows on a beta plane, and
the intensification of Hurricane Sandy in 2012 during the warm seclusion phase of its extratropical
transition was investigated by Galarneau et al. [22].

The interaction between TCs and other types of adjacent weaker cyclonic systems such as tropical
depressions (TDs) and tropical storms (TSs) has further been identified as an additional type of
interaction. For example, Wu et al. [23] proposed that the position of TS Bopha in 2000 between
typhoons Saomai and Wukong caused these two systems to interact. Similarly, Liu et al. [24] examined
the interaction between typhoons Tembin and Bolaven in 2012. TDs sandwiched between them resulted
in an indirect cyclone–cyclone interaction. However, modelling the impacts of a TD positioned between
two mature cyclones is problematic and profoundly complicates the numerical weather predictions for
such conditions. To characterize multiple dual-vortex interactions, Liou et al. [25] proposed empirical
formulas (hereinafter referred to as the ‘Liou–Liu formulas’) for determining threshold distances
between them. The formulas are empirically related to the size factor, height difference, rotation factor,
and the current intensity (CI) that takes into account maximum wind speed and intensity. The Liou–Liu
formulas successfully predicted and quantified the impacts of intermediate TDs and are therefore
adopted in this paper. Nonetheless, because various types of dual-vortex interactions may exist, much
further investigation is needed to deepen our understanding of such phenomena and to improve
cyclone track predictions in future.

The Northwest Pacific (NWP) is the most active ocean basin for TC (typhoon) formation in the
world. Studying the influence of cooler air masses, air flows and outflow jets on typhoons is especially
important in the NWP basin because upper cooler air masses exert a temperature gradient to the north,
while lower air flows transfer warm and humid air to south of any typhoons that form. Air flow
behaves in a fluid manner, meaning air naturally flows from areas of higher pressure to where the
pressure is lower. Like any fluid, air flow may exhibit both laminar and turbulent flow patterns.
Laminar flow (‘air flow’ mentioned in this paper) occurs when air can flow smoothly. Turbulent flow
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(‘jet flow’ mentioned in this paper) occurs when there is an irregularity which alters the direction of
movement. The simultaneous existence of both upper cool air masses and lower warm and humid
air flows can greatly affect typhoon intensity. Lee et al. [26], for example, reported that during the
winter seasons of 2013 and 2014, typhoons Haiyan and Hagupit both intensified into super-typhoons
through their interactions with cold fronts in the NWP Ocean. Cold fronts at the leading edge of
cooler air masses were found to exert greater temperature gradients between fronts and the main
body of typhoon circulation, assisting typhoon enhancement. During summer over the NWP Ocean,
southwest air flows may also play a role in amplifying typhoon intensity [27]. A better visualization of
such influences is clearly necessary in studying typhoon intensification processes. Liou et al. [28] built
upon earlier work on super-typhoon formation in winter to investigate the seasonal dependence on
distribution and profiles. Their findings are potentially helpful in advancing the understanding and
predictability of super-typhoons in order to reduce their impacts on human lives and wellbeing.

1.3. Aims

The observation and quantification of dual-vortex interactions are important for weather prediction
models and forecasts. The present study documents a case of successive dual-vortex interactions
from the perspective of satellite observations. It aims to validate cyclonic interactions based on the
generalized Liou–Liu formulas, which calculate threshold distances between the centers of two cyclonic
systems required for their interaction, as developed by Liou et al. [25] in an earlier study. This is
accomplished through investigating an unusual case involving three consecutive interactions in the
Pacific region east of Taiwan in 2017. Three sets of dual-vortex interactions occurred between (1)
Typhoon Noru and TS Kulap; (2) Typhoon Noru, Typhoon Nesat, and jet flows and air flows separating
them; and (3) Typhoon Nesat and TD Haitang. The consecutive phenomena all demonstrate different
varieties of dual-vortex interactions. The abovementioned aims are tackled by performing three specific
tasks: (1) Examining the main features of multiple TC interactions through a study of quadruple
typhoons Noru, Kulap, Nesat and Haitang in 2017; (2) applying useful empirical equations that have
the potential to quantify the interactions observed as a function of distance, size, height difference and
rotation factors; and (3) highlighting the satellite image analyses techniques that were applied.

2. Overview of Typhoons Noru, Kulap, Nesat and Haitang in 2017

When multiple TCs develop in proximity to one another, either simultaneously or in close
succession, a triple or quadruple sequence of cyclone–cyclone interactions may occur. The primary
focus of our study here is on the life cycle of typhoons Noru, Kalup, Nesat and Haitang in 2017.
The goal was to improve our understanding of interactions between simultaneously occurring cyclone
systems and the effects of nearby cooler air masses, jet flows and air flows that influenced them.
Attention was directed especially on typhoon intensity, corresponding distances between typhoons
and influential environmental cooler air masses and air flows, characteristics of a mutual interaction,
the induction of outflow jets, and the observed effects on typhoon intensification. Cloud disturbances
were used to analyze typhoon development and movement.

Tracks of cyclonic systems Noru, Kulap, Nesat and Haitang over the period 19 July–09 August
2017 are presented in Figure 1. Initially, on 23 July 2017, Typhoon Noru was affected by adjacent
environmental cooler air masses and jet flows, and it made a U-turn in its track direction. Over 25–27
July, another system, TS Kulap, then approached Noru in the opposite direction. The interaction
weakened Kulap, which resulted in its merger with Noru following another track U-turn. Over 27–28
July, although typhoons Noru and newly-formed Nesat laid some 2000–2500 km apart, it was seen that
both typhoons experienced rotation on 28 July 2017 and changed direction after that time. This was
therefore regarded as an ‘indirect’ dual-vortex interaction between Noru and Nesat. Subsequently,
from 29 to 31 July, Typhoon Haitang, the last system to form within the study period, tracked close to
Typhoon Nesat. A typical effect was observed as the two systems began orbiting cyclonically, creating
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the third in the observed sequence of dual-vortex interactions. The typhoon positions and timings of
the three dual-vortex interactions are noted for 25, 28 and 31 July in Figure 1.

 
Figure 1. Tracks of cyclonic systems Noru, Kulap, Nesat and Haitang over the period 19 July–09 August
2017. Typhoon positions and timings of dual-vortex interactions are indicated on 25, 28 and 31 July.

Owing to this complex sequence of multiple interactions, it is important to locate and clearly
recognize the four tropical cyclones of interest over the timeframe of 23 July–01 August. In addition,
because a jet flow in the region between typhoons Noru and Nesat exerted a strong influence during
this period, the effects of the jet flow on the development and behavior of the two typhoons needed to
be examined.

3. Data and Methodology

3.1. Himawari-8 Geostationary Weather Satellite Images

By utilizing images of the Himawari-8 geostationary weather satellite (longitude 140.7◦E), a new
empirical technique was recently introduced for the automatic determination of the center of a tropical
cyclone system. The data were obtained from the visible (0.55–0.75μm), water vapor absorption (6.2μm)
and thermal infrared (10.4 μm) channels at thirty (30) minute time intervals. This innovative technique
determines the point around which the fluxes of the gradient vectors of brightness temperature (BT)
tend to converge [27].

To calculate the variables for measuring an individual typhoon’s cloud system, center and intensity,
the spectral features of the geostationary satellite IR window and water vapor channel data were used.
Hourly data were utilized from two infrared channels: IR1 (10.5 to 11.5 μm) and IR2 (11.5 to 12.5 μm),
along with IR3, which is a set of water vapor channels (WV 6.5 to 7.0 μm) [24]. Shortwave infrared
(SIR) channels are capable of detecting ice-clouds or ice-covered surfaces within clouds [29–34]. This is
achieved by observing cloud effective temperatures and optical depths with detectors at 3.7 [32] or
3.8 μm wavelengths [29,30], thereby facilitating the crude characterization of a cloud vertical structure
through a variety of empirical methods [29,30]. Using both IR1 (10.5–11.5 μm) and IR3 (WV 6.5–7.0 μm)
channels, which provide cloud images useful for typhoon observation and analysis, an algorithm was
proposed to extract cloud systems and spiral TC patterns in the IR images [35].
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3.2. Differential Averaging Technique

Methods of comparison in microwave technology rely on the comparison of an unknown value
of a quantity with a measured quantity using a well-known functional relationship. Among the
advantages are a high sensitivity to environmental disturbance. The differential averaging technique is
considered as one kind of functional relationship [36]. In applications, the difference values of two
quantities are obtained by the differential mode (DM), and the average values of the two quantities are
obtained by the common mode (CM). Comparisons are then made using the difference values divided
by the average values (DM/CM). Consequently, the desired quantities (as objects) are detected, and the
undesired quantities (as background noise) are cancelled through the comparison.

Recently, observations of weather systems began to take measurements at 30-minute intervals
within four channels: Visible (0.55–0.75 μm), thermal infrared windows IR1 (10.5–11.5 μm) and IR2
(11.5–12.5 μm), water vapor absorption IR3 (5.6–7.2 μm), and shortwave infrared (SIR) (3.7, 3.8 or
4.0 μm). In many applications requiring the analysis of cloud structure and dynamics, optical cloud
images are obtained from the visible channel, cloud-top images from the IR1 and IR2 infrared window
channels, cloud water vapor images from the water vapor absorption channel, and ice-cloud images or
ice-covered surfaces in clouds from the SIR channels [29–34].

Furthermore, a new set of NDCI (normalized difference convection index) images was generated
to provide additional information from satellite images [35]. For analyzing complex weather systems
such as typhoons, which are formed from clouds, ice-clouds and water vapor, cloud-image extraction
techniques are needed to acquire as much detail as possible on the desired features. One of the available
techniques for extraction is the differential averaging technique, which involves the NDCI operator and
the filter. The NDCI operator was applied here to geosynchronous satellite infrared (IR1) images (AIR1)
and IR3 water vapor (WV) images (AWV). The NDCI images generated are the output results from
differences between the differential mode images and the summary average images in the common
mode. The differential mode extracts the water vapor from the IR1 images, whereas the common mode
takes the average among IR1 images and WV images. The NDCI operator thus improves the operation
by providing clearer images and by depicting the differences better. The differential mode and the
common mode are written as:

DM =
AIR1 −AWV

2
(1)

CM =
AIR1 + AWV

2
(2)

The equation of the NDCI operator is therefore expressed as:

NDCI =
DM
CM

=
AIR1 −AWV

2
÷ AIR1 + AWV

2
=

AIR1 −AWV

AIR1 + AWV
(3)

where NDCI values lie between −1 and +1. The NDCI value equals +1 when WV = 0, and it equals −1
when IR1 = 0. A clear sky or atmosphere with thin cloud and dry air will have 0 ≤ NDCI ≤ +1. Cloud
systems, on the other hand (wet air), will have −1 ≤NDCI ≤ 0. Generally, a typhoon system exhibits
convection with deep vertical development, so it consists of both dry and wet air and thus generates a
value of −1 ≤ NDCI ≤ +1.

3.3. Application of the Liou–Liu Formulas

The Liou–Liu formulas are helpful because they describe TC interactions in a quantitative way,
which should improve the numerical modelling of weather forecasting. Moreover, they can characterize
both specific and generalized dual-vortex interactions. For two simultaneous individual cyclones
named TC1 and TC2, values CI1 and CI2 are used to represent their current intensities, corresponding
to the maximum central wind speed and intensity at the sea surface (Table 1). The pressure–wind
relationship for intense TCs was examined with a particular focus on the physical connections between
the maximum surface wind and the minimum sea-level pressure [37]. The effects of vortex size,

171



Remote Sens. 2019, 11, 1843

background environmental pressure and the presence of complex vortex features were generally
omitted. For a maximum wind speed of 50 km/hr, for example, CI was therefore determined to be
1.346 by using the look-up Table 1, CI = 1 + [(50 − 41) / (54 − 41)] × (1.5 − 1.0).

Table 1. Current Intensity values.

CI Values Maximum Wind Speed at Center (km/hr) Intensity at the Sea Surface (hPa)

1.0 41 1005
1.5 54 1002
2.0 67 998
2.5 80 993
3.0 93 987
3.5 106 981
4.0 119 973
4.5 132 965
5.0 145 956
5.5 157 947
6.0 172 937
6.5 185 926
7.0 198 914
7.5 213 901
8.0 226 888

The application of the Liou–Liu formula [25] for the threshold distance dth (km) indicates whether
TC1 and TC2 experience a dual-vortex interaction with each other, as follows:

dth = 1000 + 100
(CI1

4
+

CI2

4

)
. (4)

In some situations, a tropical depression (TD) or a tropical storm (TS) (i.e., an area of low pressure)
occupies the region lying between two individual cyclone systems. A cyclone’s interaction with an
intervening TD or TS is a different situation from a regular cyclone-to-cyclone interaction. Upward
convection in between may occur because a TD or TS is smaller in size than a cyclone. Such upward
convections may strengthen the cyclone and sustain its rotation. Thus, it becomes important to include
size ratios, height differences, and rotation in calculating threshold distances. Under such conditions,
the Liou–Liu formulas for threshold distances dth1 and dth2 can determine whether or not two sets of
dual-vortex interactions can be identified, between TC1 (CI1) and TD (CId) and between TC2 (CI2) and
TD (CId), respectively. Following this method, the Liou–Liu formula for the threshold distance D to
quantitatively define the dual-vortex interaction can be written as:

D = dth1 + dth2 = 2000 + 100
(CI1

4
+

CId
4

)
F1 + 100

(CI2

4
+

CId
4

)
F2 (5)

Note here that, in a case of two or more cyclonic interactions (Equation (4)), the symbol dth

represents the threshold distance between respective cyclone centers, whereas in Equation (5), the
same symbols (dth1 or dth2) represent the threshold distance between TD or TS and the cyclone centers.
F1 and F2 are tuning factors dependent on the size factors and are related to height-difference and
rotation factors.

F1(q1,h1, τ1) =
1
q1
× 1
h1
× τ1 (6)

F2(q2,h2, τ2) =
1
q2
× 1
h2
× τ2 (7)

where q1,2 the size factor = size (TD or TS)/size(TC1,2); h1,2 is the height difference between TC1,2
and TD or TS, where h1,2 = (h(TC1,2) − h(TD) or h(TS))/ (h(TC1,2); and τ1,2 is the rotation factor, with
τ1,2 = +1 for counter-clockwise rotation between TC1,2 and TD or TS, or −1 for clockwise rotation [20].
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3.4. Cold Front Detection

In meteorology, a cold front is defined as the transition zone where a cold air mass is replacing
a warmer air mass. It is accompanied by a strong temperature gradient and frontal cloud bands.
A meteorological cold front can be identified from distinctive reflectance characteristics in IR imagery
owing to the large temperature contrast along the frontal cloud bands. It is noticeable that the cold
cloud top is located near the leading edge of the front where the cold air mass interacts with adjacent
warm air.

A technique to detect cold air masses and to delimit the position of a cold front in IR cloud
imagery is proposed as follows. IR cloud imagery is a type of thermal imagery in which the cloud-top
temperature is detected by an IR sensor. For low temperatures (e.g., −70 ◦C at a cloud top) the image
brightness limit is obtained. For high temperatures (e.g., 25 ◦C at the sea surface) the image darkness
limit is obtained. The IR sensor is saturated with a designated lowest saturation temperature (e.g.,
from −75 ◦C to −77 ◦C). The summed values of the saturation temperature and the cold air masses
then determine the brightness contours on the cloud imagery. A cold front is the boundary of the
low temperature cold air mass, while higher temperature air flow is located in advance of the cold
front. Therefore, the position of the cold front is delimited as the abrupt discontinuity in temperature
distribution at the leading edge of the cold air mass. The technique described above was used here to
mark the cold front position and for calculating its shortest distance from a cyclone center in order to
analyze their mutual interaction over time.

4. Observations on Dual-Vortex Interactions

4.1. Advantages of NDCI Images over IR Images

Before describing the characteristics of the sequence of dual-vortex interactions observed during
the study period, it is useful to highlight the advantages of using NDCI images to complement the
use of IR1 and IR3 images for analysis. From Figures 2 and 3, the advantage of NDCI images over
the individual channel images IR1 and IR3 can be seen. The NDCI images are able to enhance the
differences between the individual IR images. The IR1 image exhibits not only the desired objects
(typhoons Noru, Nesat, and cooler air masses and jet flows) but also the undesired background noise.
In contrast, the NDCI image shows the desired objects more clearly while reducing the undesired
background noise.

The best way to demonstrate is to give examples of cloud structural features that are easily
visible in the NDCI images (i.e., the third subplot of Figures 2–4), but which are not as clear in the
corresponding IR1 or IR3 images. Three examples are provided to serve as illustration. First, in
Figure 2, the IR1 image suggests that the cloud associated with the cooler air mass in the north east
quadrant appears to be divided into two major sections with a notable gap separating them. However,
this apparent gap is much less pronounced in the NDCI image, thus indicating the strong coupling
of the two cloud masses that is not obvious from IR1. Note also that the signatures of these cloud
masses can hardly be distinguished in IR3. In Figure 3, the second example refers to the southern
peripheral spiral cloud arm of Typhoon Noru. The superiority of the NDCI image over the IR1/IR3
images is again clear. In Figure 4, the air flow pattern in the south east quadrant provides a third
example which shows the contrast between the relative lack of clarity in the IR3 image compared with
the much improved visibility in the NDCI image.
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(a) (b) 

 
(c) 

Figure 2. Images at 00:00 on 24 July 2017 showing Typhoon Noru, a cooler air mass and jet flow to
the north, and Typhoon Nesat to the south. (a) IR1 image, (b) IR3 (water vapor (WV)) image, and (c)
normalized difference convection index (NDCI) image.

  
(a) (b) (c) 

Figure 3. Images of tropical storm (TS) Kulap starting to merge with Typhoon Noru at 02:30 on 25 July
2017: (a) IR1 image, (b) IR3 (WV) image and (c) NDCI image.

4.2. First Dual-Vortex Interaction

Tropical Storm Noru formed on 21 July 2017, tracking west to northwest on 22 July. Noru
intensified significantly over two days until being upgraded to a severe tropical storm on 23 July.
Subsequently, Noru slowed down and remained stationary, owing to a dominant steering environment
of high pressure ridges on both sides. The steering flows derived from cooler air masses to the west
and predominant air flows to the south of the system. Noru rapidly intensified into a typhoon and
started to track east-southeastward under the steering influence to the south. Meanwhile, Tropical
Storm Kulap moved westward, as shown in Figure 1.

On 24 July, typhoons Noru and Nesat lay some 3100–3200 km apart, while TS Kulap was located to
the east of Noru near 33◦N 162◦E (outside the frame shown). Typhoon Noru and TS Kulap approached
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one another from opposite directions. A straight-line colder cloud top was observed flowing towards
Typhoon Noru in a clear V-shaped pattern. This is the outward jet flow from cooler air masses to
the north, as seen in Figure 2. Typhoon Noru was probably influenced by adjacent environmental
cooler air masses and jet flows, and it made a U-turn in its track. Noru’s directional change facilitated
its continuing interaction with these adjacent cooler air masses. The first observed Fujiwhara-type
dual-vortex interaction then commenced on 24 July between Noru and Kulap. The interaction caused
Kulap to migrate to the north of Noru early on 25 July. Thereafter, Kulap completely merged with
Noru. The beginning of the merger of TS Kulap with Typhoon Noru at 02:30 on 25 July is shown in
Figure 3.

Air flow to the south became the primary steering influence on Noru, turning the system
northeastward and then northward on 26 July. The typhoon then began to track westward along the
southern periphery of air flow to the northeast on 27 July. The complex combination of cooler air
masses and air flows that surrounded Noru are seen in Figure 4.

 
(a) (b) 

 
(c) 

Figure 4. Images at 10:00 on 28 July 2017 of Typhoon Noru, Typhoon Nesat, TS Haitang, and a cooler
air mass to the north. Note in particular the location of the areas of jet flow and air flow occupying the
region between typhoons Noru and Nesat. (a) IR1 image, (b) IR3 (WV) image and (c) NDCI image.

4.3. Second Dual-Vortex Interaction

Air flow and jet flow occupying the region (23◦N, 133–137◦E) between typhoons Noru and Nesat
affected both typhoons over 28–29 July. Though Noru and Nesat were separated by a considerable
distance of 2000–2500 km, the effects of mid-level air flows and upper jet flows in between the two
typhoons can be discerned. The intervening middle air flows and jet flows (900–1100 km) likely
had some influence on the intensity and movement of both typhoons. The outward jet flow was the
turbulent air flow that occurs between typhoons Noru and Nesat. This is therefore considered to be
a special case of an ‘indirect’ dual-vortex interaction. Evidence suggests that that typhoons Noru
and Nesat each intensified to become stronger typhoons, and both experienced changes in their track
directions as a result of their mutual interaction (refer to Figure 1). The track behavior incorporating
effects of the intervening air flows and jet flows is shown in Figures 5 and 6.
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(a) (b) 

 
(c) 

Figure 5. Images at 20:00 on 28 July 2017 of Typhoon Noru, Typhoon Nesat, TS Haitang, a cool air
mass to the north, and dominant air flow to the south east. (a) IR1 image, (b) IR3 (WV) image and (c)
NDCI image.

 
(a) (b) 

 
(c) 

Figure 6. Images at 22:50 on 29 July 2017 of Typhoon Noru, Typhoon Nesat, TS Haitang, a cooler air
mass to the north, and dominant air flow to the south east. (a) IR1 image, (b) IR3 (WV) image and (c)
NDCI image.
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4.4. Third Dual-Vortex Interaction

In Figure 5, a new cyclonic system, named Tropical Storm Haitang, formed on 27 July.
The subsequent interaction between Typhoon Nesat and TS Haitang produced the third consecutive
dual-vortex interaction during the period of interest, in Figure 6, specifically the twin circulation of
the two typhoons around a common center, shown for 22:50 on 29 July. TS Haitang then crossed
south-western Taiwan and made landfall in Fujian Province of mainland China. Simultaneously,
Typhoon Noru took on annular characteristics with a symmetrical ring of deep convection surrounding
a well-defined 30 km diameter eye, as shown for 09:00 on 31 July in Figure 7. After 2 August, Noru
travelled northwards to Japan and made landfall on Kyushu Island. Long-lived Noru hit Japan with
heavy rain.

 
(a) (b) 

 
(c) 

Figure 7. Images at 09:00 on 31 July 2017 showing typhoons Noru, Haitang and Nesat, and a dominant
area of air flow to the south. (a) IR1 image, (b) IR3 (WV) image and (c) NDCI image.

5. Analysis and Discussion

Details of the triple consecutive dual-vortex interaction described above are next tabulated for
further analysis. Table 2 shows the results calculated for interactions between Typhoon Noru and TS
Kulap over three consecutive three-day intervals (20–23 July, 23–25 July and 25–27 July). Tabulated
values for CI (current intensity) and d (measured distance) were calculated using Equation (4). It was
found that a dual-vortex interaction was demonstrated during the interval of 25–27 July 2017. During
this period, the measured distances (1100–1000 km) between the two systems remained marginally
shorter than the calculated threshold distance dth required for an interaction (1133 km). It might be
argued that the 25–27 July interactions between Typhoon Noru and TS Kulap cannot be quantitatively
confirmed because the threshold distance (1133 km) was only 3% greater than the measured distance,
which may have been similar in scale to errors inherent in measurement. Yet, even if it is the case, the
threshold distance calculated from the Liou–Liu formula may still be used qualitatively to indicate to
possibility of a cyclone interaction.
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Table 2. Results of the first dual typhoon interaction.

20–23 July 23–25 July 25–27 July

Typhoon Noru Pressure (hPa) 1005–985 985–970 970
CI 1–3.1 3.1–4.1 4.1

Tropical Storm Kulap Pressure (hPa) 1002 1002 1002
CI 1.2 1.2 1.2

Measured distance between Noru and Kulap (d, km) 1700–1900 1900–1800 1100–1000
Calculated threshold distance (dth, km) 1055–1108 1108–1133 1133

Cyclone–cyclone interaction No No Yes

It was next possible to determine the threshold distances for interaction between typhoons Noru
and Nesat over the three intervals: 27–28 July, 28–29 July and 29–31 July. This was accomplished
using Equation (5) by substituting F1 = F2 = 1 for approximation and CI = 1 for the middle jet
flows (an unclassified TD at 22◦N 136◦E). For F1 = F2 = 1, the variations of size factors (size(TD
or TS)–size(TC1,2)) and related height-difference (h(TC1,2) >> (h(TD) or h(TS))) and rotation factors
(τ1,2 = +1 counter-clockwise rotation) were considered [20]. Otherwise, applying the wavenumber-one
perturbation technique [38] and the vertical maximum values of radar reflectivity with geopotential
height [39] were used to obtain the values of F1 and F2. The results are listed in Table 3. The measured
distances (2500–2000 km) between two typhoons for the first interval were slightly greater than the
calculated threshold distances (2217–2226 km). This means that only a weak interaction was possible
between typhoons Noru and Nesat. During the second and third intervals, however, an indirect
dual-vortex interaction was indicated, because the measured distances (2000–1600 and 1600–1700 km)
between the two typhoons were shorter than the calculated threshold distances (2226–2258 and
2258–2287 km). Thus, the second in the sequence of dual-vortex interactions was clearly demonstrated.

Table 3. Results of the second dual typhoon interaction.

27–28 July 28–29 July 29–31 July

Typhoon Noru Pressure (hPa) 970–975 975–980 980–940
CI 4.1–3.9 3.9–3.5 3.5–5.8

Typhoon Nesat Pressure (hPa) 990–985 985–960 960–980
CI 2.6–3.1 3.1–4.8 4.8–3.5

Measured distance between Noru and Nesat (km) 2500–2000 2000–1600 1600–1700
Measured distance between Noru and intervening jet

flows (km) 1000–900 900–700 700–750

Measured distance between Nesat and intervening jet
flows (km) 1500–1100 1100–900 900–950

Calculated threshold distance (D, km) 2217–2226 2226–2258 2258–2287
Cyclone–cyclone interaction Partial Yes Yes

Table 4 shows the interactions between Typhoon Nesat and TS Haitang over three consecutive
intervals (26–28 July, 28–29 July and 29–31 July). Tabulated CI and d values were again calculated
using Equation (4). It was seen that the second and third intervals demonstrated clear dual-vortex
interactions, when the measured distances (1000–1200 and 700–900 km) between the two typhoons
were shorter than the calculated threshold distances (1155–1198 and 1198–1155 km).
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Table 4. Results of the third dual typhoon interaction.

26–28 July 28–29 July 29–31 July

Typhoon Nesat Pressure (hPa) 1005–985 985–960 960–985
CI 1–3.1 3.1–4.8 4.8–3.1

Tropical Storm Haitang Pressure (hPa) - 985 985
CI - 3.1 3.1

Measured distance between Nesat and Haitang (km) - 1000–1200 700–900
Calculated threshold distance (km) - 1155–1198 1198–1155

Cyclone–cyclone interaction No Yes Yes

As a result of the triple consecutive sets of dual-vortex interactions described, Typhoon Noru
survived to become a long-lasting system and travelled approximately 6900 km over 22 days from
19 July to 9 August. Typhoon Noru consequently attained the third longest longevity on record for
tropical cyclones in the NWP Ocean, ranked only behind typhoons Rita and Wayne in 1972 and 1986,
respectively, as indicated in Table 5.

Table 5. Comparing the three longest-lasting typhoons on record for the Northwest Pacific (NWP) Ocean.

Typhoon Rita Typhoon Wayne Typhoon Noru

Year 1972 1986 2017
Timing 5–30 July 16 August–6 September 19 July–9 September

Duration (days) 25 22 22
Minimum pressure (hPa) 910 955 935
Distance travelled (km) 7100 7800 6900

Dual-vortex interactions
Quadruple system

interactions between Rita,
Susan, Phyllis and Tess

None
Quadruple system

interactions between Noru,
Kalup, Nesat and Haitang

Typhoons Rita, Phyllis, Tess and Susan during the typhoon season of 1972 belonged to a remarkable
quadruple-typhoon interaction event, as seen from the track map in Figure 8. Table 6 gives details on
three consecutive dual-vortex interactions between typhoons Phyllis and Tess (10 July), typhoons Rita
and Susan (12 July), and typhoons Rita and Tess (23 July), as characterized using Equations (4) and (5).

 
Figure 8. Tracks of typhoons Rita, Phyllis, Tess and Susan over 4–27 July 1972.
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Table 6. Quantifying interactions between typhoons Rita, Phyllis, Tess, Susan and a tropical depression
in July 1972.

1st Interaction 2nd Interaction 3rd Interaction

Date 10 July 12 July 23 July
Interacting typhoons Phyllis / Tess Rita / Susan Rita / Tess

Positions of typhoons (latitude and
longitude)

14◦N 154◦E /
14.5◦N 164◦E

16◦N 133◦E /
22◦N 118◦E

28◦N 128◦E /
30◦N 132◦E

Pressure (hPa) 945 / 970 910 / 945 960 / 970
CI 5.4 / 4.2 7.2 / 3.5 4.8 / 4.1

Measured distance between two
typhoons (km) 1000 1400 750

Calculated threshold distance for
interaction (dth, km) 1240 1250 1220

Measured distance between Rita
and intervening TD / Susan and

intervening TD
— 900 / 500 —

Calculated threshold distance for
interaction (D, km) — 2273 —

Track response behavior Tess changed direction Susan executed a small loop Rita executed a large loop

The first dual-vortex interaction occurred between typhoons Phyllis and Tess on 10 July 1972.
The interaction was possible because the measured distance separating the typhoons (1000 km) was
shorter than the calculated required threshold distance (1240 km). The interaction caused Typhoon
Tess to change direction.

Typhoons Rita and Susan were separated by a measured distance of 1400 km on 12 July 1972.
According to Equation (4) (Table 6), this exceeded the calculated threshold distance for an interaction
of 1250 km. However, the presence of an intervening tropical depression (TD) (i.e., a low pressure
area) between the typhoons was influential, because it facilitated an indirect dual-vortex interaction
between Rita and Susan in spite of their large separation. Approximating using the tuning factors
F1 = F2 = 1 and a value of CI = 0.1 for the low pressure disturbance (unclassified TD at 27◦N 125◦E),
Equations (4) and (5) are thus able to predict the interaction between Rita and Susan. The measured
distances between Typhoon Rita and the TD (900 km) as well as Susan and the TD (400 km) were
shorter than the calculated threshold distance (2480 km). This second interaction resulted in Typhoon
Susan executing a small loop in its track.

The third interaction occurred between typhoons Rita and Tess on 23 July 1972. The measured
distance (750 km) between them was much shorter than the calculated threshold distance (1220 km)
according to Equation (4). In consequence, the resulting strong Fujiwhara-type rotation caused Rita to
execute a large loop in its track. Thus, a consecutive triple sequence of dual-vortex interactions can be
demonstrated between the four typhoons Rita, Phyllis, Tess and Susan, and their intervening areas of
tropical depressions.

From the above discussion, the following points emerge and should be highlighted:

1. Special cases of quadruple typhoons, simultaneously forming in the same region or in quick
succession, can give rise to a triple sequence (‘trilogy’) of dual-vortex interactions.

2. Middle air flows or intervening low pressure areas (tropical depressions) are important
environmental influences that should not be ignored in assessment of cyclone interaction behavior.

3. The Liou–Liu formulas (based on current intensity values) can be applied to verify and quantify
dual-vortex interactions by comparing measured distances between typhoons with calculated
threshold distances required for interaction.

4. Dual-vortex interactions are frequently associated with an increase in typhoon track sinuosity
through changes in track direction and/or the execution of complex/looping tracks.

5. The longevity (survival time) of an individual typhoon may be significantly enhanced through a
sequence of multiple dual-vortex interactions during its lifespan.
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6. Conclusions

The integration of remote sensing imagery, a differential averaging technique, and the Liou–Liu
formulas was used to identify a ‘trilogy’ of consecutive dual-vortex interactions between typhoons
Noru, Kulap, Nesat, Haitang and environmental air flows in the Northwest Pacific basin during the
2017 typhoon season. Analyzing the satellite imagery of the interaction between typhoons benefits
from the application of a differential averaging technique. The NDCI operator and filter applied to
geosynchronous satellite IR1 infrared images and IR3 water vapor images were able to depict the
differences and generate a processed set of NDCI images with suitable clarity for investigation.

Three distinct dual-vortex interactions among four cyclone systems (and neighboring cooler
environmental air masses, air flows and jet flows) occurred in a consecutive sequence. The interactions
were validated using the Liou–Liu empirical formulas, which are used for calculating threshold
distances for interactions as related to current intensity (CI) values.

The first dual-vortex interaction caused Typhoon Noru to experience Fujiwhara rotation and to
merge with the approaching TS Kulap. In the second interaction, typhoons Noru and Nesat were
possibly strengthened through the influence of intervening air flows and jet flows, even though a
considerable distance separated the typhoons. It has been suggested that this is a special type of
‘indirect’ cyclone–depression–cyclone interaction, which can nonetheless be influential in mutual
typhoon intensification. The third interaction between Haitang and Nesat again resulted in Fujiwhara
rotation and changes in typhoon track directions.

Examining the main characteristics of Typhoon Noru in particular, the time series of pressure
(intensity) and saturation area shows that a relationship through time exists with distance from other
interacting typhoons. Long-lived Typhoon Noru survived from 19 July to 9 August and followed a
complex track, with a loop and several U-turns resulting from the sequence of interactions described.
On 31 July, Noru became a super-typhoon attaining an intensity of 930 hPa before striking Japan with
torrential rain.

Additionally illuminating is the comparison with Typhoon Rita in 1972, which similarly
experienced complex multiple interactions with typhoons Phyllis, Tess and Susan. Coincidentally,
the 1972 Rita and the 2017 Noru events both involved a sequential trilogy of interactions among
four individual typhoon systems, with the interactions leading to significantly enhanced typhoon
longevity. It is recommended that further quantitative observations using satellite cloud images
of interactions between multiple synchronous/sequential typhoons be undertaken, as this should
eventually lead to improved track forecasting and weather prediction in these particularly unusual
synoptic circumstances.
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Abstract: Biodiversity conservation is important for the protection of ecosystems. One key task for
sustainable biodiversity conservation is to effectively preserve species’ habitats. However, for various
reasons, many of these habitats have been reduced or destroyed in recent decades. To deal with this
problem, it is necessary to effectively identify potential habitats based on habitat suitability analysis
and preserve them. Various techniques for habitat suitability estimation have been proposed to date,
but they have had limited success due to limitations in the data and models used. In this paper, we
propose a novel scheme for assessing habitat suitability based on a two-stage ensemble approach.
In the first stage, we construct a deep neural network (DNN) model to predict habitat suitability
based on observations and environmental data. In the second stage, we develop an ensemble model
using various habitat suitability estimation methods based on observations, environmental data, and
the results of the DNN from the first stage. For reliable estimation of habitat suitability, we utilize
various crowdsourced databases. Using observational and environmental data for four amphibian
species and seven bird species in South Korea, we demonstrate that our scheme provides a more
accurate estimation of habitat suitability compared to previous other approaches. For instance, our
scheme achieves a true skill statistic (TSS) score of 0.886, which is higher than other approaches
(TSS = 0.725 ± 0.010).

Keywords: habitat suitability estimation; deep neural network; two-stage modeling; ensemble approach

1. Introduction

For decades, the importance of biodiversity conservation has been emphasized globally because
high biodiversity offers a variety of natural services that support sustainable human living [1]. Despite
this importance, ecosystem services have rapidly declined for a variety of reasons, such as indiscriminate
resource development, rapid urban expansion, and global climate change. The loss of biodiversity can
have adverse consequences on the ecosystem because of the complex interactions that exist among
species [2,3]. To maintain biodiversity levels, ecologists have devised and applied various methods to
protect habitats by analyzing the characteristics of target species and their habitats [4,5].

Habitat suitability models, also known as species distribution models (SDMs), environmental
niche models (ENMs), and predictive habitat distribution models, have been used to predict the
habitat of target species based on various environmental factors, such as temperature, precipitation,
seasonality, and terrain [2,3,6]. Habitat suitability models can be used to assess not only the relationship
among various environmental factors, such as global climatic conditions, landscape information, and
species habitats, but also landscape management and the conservation of endangered species [6–9].
With the development of remote sensing technology, the performance of habitat suitability models
has improved significantly. Until a few decades ago, the prediction of habitat suitability for particular
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species over a wide range of areas with reasonable accuracy was very challenging. This is because
remote sensing technology at that time had several limitations, including high costs, poor spatial
resolution, complicated digital maps at scales larger than remote sensing images, and human error
during interpretation analysis. Recently, state-of-the-art remote sensing technologies have overcome
previous data-processing issues, making it possible to obtain reliable temporal and spatial data for
factors such as land cover and the climate and to subsequently construct inference models for habitat
suitability that can cover very small to large areas.

Based on remote sensing data, several ecological researchers have attempted to construct effective
habitat suitability models using a profile, statistical, and machine learning methods (Table 1). The surface
range envelope (SRE) model, a profile approach, has been used to estimate habitat suitability [7–9].
Araújo et al. [7] introduced a series of surface envelop models based on the associations between
climatic variables and the distributions of species to determine suitable conditions for the maintenance
of a viable population. Heikkinen et al. [8] presented several critical methodological issues that may
lead to uncertainty in predictions based on bioclimatic modeling. They concluded that bioclimatic
envelop models have several advantages, one of which is that the modeling results are simple and easy
to understand.

Statistical methods, such as flexible discriminant analysis (FDA), the multivariate adaptive
regression spline (MARS), and the generalized linear model (GLM), investigate multiple linear
relationships between species distributions and environmental layers. Statistical methods all have
advantages and disadvantages, so various statistical methods are often employed together to improve
habitat suitability estimation [10–14]. To determine the potential habitat and distribution of species,
Elith et al. [10] presented a practical guide that included how to efficiently use statistical methods.
They compared 16 modeling methods, including the MARS and GLM, using 226 species from six
regions of the world. They found that the GLM, and BIOCLIM outperformed the other profile and
statistical modeling methods. Leathwick et al. [11] utilized two statistical modeling methods, the
generalized additive model (GAM) and MARS, to analyze the relationships between the distributions
of 15 freshwater fish species and the corresponding environment. They reported that the MARS model
performed strongly with low-prevalence species and that it could be used to analyze a large dataset.

Recently, habitat suitability modeling has been conducted using machine-learning methods, such
as the generalized boosting model (GBM), maximum entropy (MAXENT), and random forest (RF).
These machine-learning methods have been reported to produce more accurate predictions than profile
and statistical methods [15–27]. For instance, Phillips et al. [15] utilized various machine-learning
methods for the habitat modeling of ocean sunfish species. They used observations of ocean sunfishes
and a number of environmental variables to conduct species distribution modeling using MARS,
the SRE model, classification tree analysis (CTA), FDA, RF, and GLM. Reiss et al. [16] predicted the
distribution of benthic species in the North Sea. They compared nine different methods: the support
vector machine (SVM), GLM, GAM, GBM, MAXENT, FDA, BIOCLIM, and MARS. In their experiments,
the machine-learning methods MAXENT, GBM, and RF produced a better predictive performance
than the profile and statistical methods. Guisan et al. [17] employed various machine learning-based
prediction methods to determine a suitable model for species habitats using remote sensing data. They
examined multiple steps in predictive modeling by considering the conceptual model and its statistical
formulation and calibration. Phillips et al. [18] employed maximum entropy-based modeling to predict
the habitat of the Bradypus variegatus. They used two remote-sensed datasets, climate, and elevation
that were derived from the Intergovernmental Panel on Climate Change (IPCC) and the United States
Geological Survey (USGS), respectively. They evaluated the effectiveness of the model by comparing
it to a rule-set-based genetic algorithm. Heikkinen et al. [19] conducted species habitat modeling
for endangered butterfly species and predicted the distribution of Apollo butterflies using various
machine-learning methods such as GLM, GAM, CTA, a shallow neural network (SNN), MARS, and
boosted regression tree (BRT). They concluded that statistical analysis and machine-learning methods
were useful for conservation planning and protecting endangered species.
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More recently, habitat modeling based on deep neural networks (DNNs) has been investigated in
ecological research [28–31]. In general, DNNs provide more accurate predictions in terms of identifying
potential habitats for target species than conventional models such as GLM, GAM, MARS, and BRT. This
is because DNNs can automatically extract features and learn complex non-linearities from extracted
features [32]. For instance, Rademaker et al. [28] determined the niches of wild and domesticated
ungulate species using modeling schemes based on a DNN. They focused on the applicability of
the DNN and employed it in habitat estimation modeling. In their experiment, they showed that
DNN could effectively identify potential habitats using sufficient observational data. Botella et al. [29]
proposed a deep-learning approach for SDM. They applied a convolution neural network (CNN) and
DNN to overcome the shortcomings of the traditional SDM. To evaluate its performance, they used
part of the GBIF dataset and 46 environmental layers, including climate, digital elevation, and land
cover. They subsequently found that both models performed better than traditional models such as
the GAM and MAXENT.

However, despite the versatility of DNNs [30–35], a DNN-based habitat model trained on a
small observational dataset for a species has been shown to produce inferior estimations to traditional
machine-learning models, such as MAXENT and RF. Thus, constructing an accurate habitat suitability
model is challenging because obtaining observational data is difficult [28]. Collecting sufficient
observational data is particularly crucial when constructing habitat suitability models for endangered
species. To overcome these problems, in this paper, we propose a novel two-stage based ensemble
model called TSEM for the development of an effective habitat suitability model using an ensemble of
various habitat suitability estimation techniques and DNN. Our TSEM was trained and tested on the
crowdsourced datasets composed of volunteers’ observation data. Strictly speaking, the observation
data may indicate where the species actually lives or where the observations were made. As a result,
the estimation results of our model could have similar characteristics. To improve the performance
of habitat suitability models, we focus on three major issues, which are the main contributions of
this paper.

• Using crowdsourcing databases [36–39] and a diverse range of environmental data, we employ
data pre-processing to generate framed data, which consist of observation data for the target
species and related environmental data.

• We propose a two-stage modeling scheme. In the first stage, we construct a DNN model using
framed data. Then, we build an ensemble model using a diverse range of habitat suitability
estimation methods and the results of the DNN model in the first stage to improve estimation
performance in the second stage.

• We compare our ensemble model with other estimation models based on a variety of evaluation
metrics and statistical analysis and verify the superiority of our model.

The rest of this paper is organized as follows. We first introduce the steps required to construct
the TSEM in Section 2. Then, we present several experiments conducted to evaluate the performance
of our proposed model and visualize the results using a map-overlay function in Section 3. Finally, we
summarize the major findings and provide directions in Section 4.

2. Materials and Methods

2.1. Overview of Two-Stage Habitat Suitability Estimation Model

We describe in detail our two-stage habitat suitability estimation model with the overall structure
(Figure 1). Observational, global climatic [40], and Korean land cover data [41] were initially collected
to configure the independent variables for our model. In the first stage of the model, we constructed a
DNN model as a sub-model. Next, a stacking ensemble-based estimation model was constructed using
the results of the DNN sub-model as input to improve estimation performance. Finally, the habitat
suitability results and other widely used evaluation metrics, including area under the curve (AUC),
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sensitivity, specificity, the kappa statistic, and the TSS were visualized for a performance comparison
between the TSEM and previously reported models [42–47].

Figure 1. Overall process of the TSEM.

2.2. Dataset Construction

In general, the performance of a DNN-based estimation model depends on the quality and size
of the dataset used for training. To construct our dataset, we first reviewed several crowdsourced
databases that contain global observations of various species, selected 11 target species that were
primarily found in South Korea, and then collected observational data for these species. These
species are all considered conservation targets in Korean wildlife conservation projects. We listed the
target species and their number of observations, as reported in the global biodiversity information
facility (GBIF), VertNet, biodiversity information serving our nation (BISON), and Naturing databases
(Table 2). Species habitats are closely related to the climate and land conditions [42–47]. Therefore,
to construct a valid habitat model, we collected various layers of environment information from
Worldclim Bioclimatic [40] and a land cover dataset for South Korea [41], which are both widely used for
ecological modeling. The land cover dataset for South Korea was generated using Korea multi-purpose
satellite No. 2, also known as KOMPSAT No. 2 or Arirang 2, and satellite pour l’observation de
la terre 5 (SPOT 5) remote sensing images from 2009. KOMPSAT No. 2, which is equipped with a
1-m high-resolution multi-spectral camera (MSC), has orbited Earth approximately 46,800 times in
nine years, capturing approximately 75,400 high-quality satellite images of Korea, while SPOT 5 can
capture satellite images with a coverage of 60 km × 60 km and a resolution of 5 m. Compared to
the GlobCover, the land cover dataset for South Korea provides more detailed information due to
its higher resolution. Because this land cover dataset consists of categorical variables, we converted
them into proximity distance layers, which have continuous values. Proximity distance for land cover
layers is regarded as crucial for modeling because the unique survival traits of species and their habitat
characteristics are closely related. Indeed, several studies have improved the performance of habitat
suitability estimation models by considering the distance between the environmental layers and species
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observations. For this reason, we also employed proximity distance as an input variable. In total, we
used 41 environmental layers as input variables for our habitat suitability modeling (Table 3).

Table 2. Target species and their observations.

Target Species
(Scientific Name)

Image
IUCN

Red List
Number of Observations

in South Korea
Suitable Habitats

Streptopelia
orientalis

Least
Concern 1523

Shrubland,
Terrestrial,

Forest

Passer montanus Least
Concern 1498

Shrubland,
Terrestrial,

Forest

Ardea cinerea

 

Least
Concern 1116

Marine neritic,
Forest,

Wetlands,
Grassland

Hypsipetes amaurotis Least
Concern 1162 Terrestrial,

Forest

Hynobius leechii Least
Concern 1336 Wetlands,

Forest

Anas zonorhyncha Least
Concern 856

Wetlands,
Artificial/Aquatic and

Marine, Terrestrial,
Marine coastal

Rana huanrenensis

 

 

Least
Concern 906

Wetlands,
Forest,

Grassland

Anas platyrhynchos

 

 

Least
Concern 714

Wetlands,
Artificial/Aquatic and

Marine

Cyanopica cyanus Least
Concern 679 Forest,

Terrestrial

Rana dybowskii

 

Least
Concern 511

Wetlands,
Aquatic and Marine,

Terrestrial, Vegetation,
Shrubland, Forest

Hyla japonica

 

 

Least
Concern 1261

Wetlands,
Aquatic and Marine,

Terrestrial, Vegetation,
Shrubland, Forest

190



Remote Sens. 2020, 12, 1475
T

a
b

le
3

.
Li

st
of

in
pu

tv
ar

ia
bl

es
.

V
a

ri
a

b
le

N
a

m
e

D
e

sc
ri

p
ti

o
n

T
y

p
e

BI
O

_1
A

nn
ua

lm
ea

n
te

m
pe

ra
tu

re
C

on
ti

nu
ou

s
BI

O
_2

M
ea

n
di

ur
na

lr
an

ge
C

on
ti

nu
ou

s
BI

O
_3

Is
ot

he
rm

al
it

y
C

on
ti

nu
ou

s
BI

O
_4

Te
m

pe
ra

tu
re

se
as

on
al

it
y

C
on

ti
nu

ou
s

BI
O

_5
M

ax
.t

em
pe

ra
tu

re
of

th
e

w
ar

m
es

tm
on

th
C

on
ti

nu
ou

s
BI

O
_6

M
in

.t
em

pe
ra

tu
re

of
th

e
co

ld
es

tm
on

th
C

on
ti

nu
ou

s
BI

O
_7

Te
m

pe
ra

tu
re

an
nu

al
ra

ng
e

C
on

ti
nu

ou
s

BI
O

_8
M

ea
n

te
m

pe
ra

tu
re

of
th

e
w

et
te

st
qu

ar
te

r
C

on
ti

nu
ou

s
BI

O
_9

M
ea

n
te

m
pe

ra
tu

re
of

th
e

dr
ie

st
qu

ar
te

r
C

on
ti

nu
ou

s
BI

O
_1

0
M

ea
n

te
m

pe
ra

tu
re

of
th

e
w

ar
m

es
tq

ua
rt

er
C

on
ti

nu
ou

s
BI

O
_1

1
M

ea
n

te
m

pe
ra

tu
re

of
th

e
co

ld
es

tq
ua

rt
er

C
on

ti
nu

ou
s

BI
O

_1
2

A
nn

ua
lp

re
ci

pi
ta

ti
on

C
on

ti
nu

ou
s

BI
O

_1
3

Pr
ec

ip
it

at
io

n
of

th
e

w
et

te
st

m
on

th
C

on
ti

nu
ou

s
BI

O
_1

4
Pr

ec
ip

it
at

io
n

of
th

e
dr

ie
st

m
on

th
C

on
ti

nu
ou

s
BI

O
_1

5
Pr

ec
ip

it
at

io
n

se
as

on
al

it
y

C
on

ti
nu

ou
s

BI
O

_1
6

Pr
ec

ip
it

at
io

n
of

th
e

w
et

te
st

qu
ar

te
r

C
on

ti
nu

ou
s

BI
O

_1
7

Pr
ec

ip
it

at
io

n
of

th
e

dr
ie

st
qu

ar
te

r
C

on
ti

nu
ou

s
BI

O
_1

8
Pr

ec
ip

it
at

io
n

of
th

e
w

ar
m

es
tq

ua
rt

er
C

on
ti

nu
ou

s
BI

O
_1

9
Pr

ec
ip

it
at

io
n

of
th

e
co

ld
es

tq
ua

rt
er

C
on

ti
nu

ou
s

D
is

ta
nc

e_
1

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

a
re

si
de

nt
ia

la
re

a
(d

et
ac

he
d

re
si

de
nt

ia
la

nd
co

m
m

on
re

si
de

nt
ia

la
re

as
)

C
on

ti
nu

ou
s

D
is

ta
nc

e_
2

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

an
in

du
st

ri
al

ar
ea

C
on

ti
nu

ou
s

D
is

ta
nc

e_
3

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

a
co

m
m

er
ci

al
ar

ea
(c

om
m

er
ci

al
/b

us
in

es
s

an
d

m
ix

ed
re

si
de

nt
ia

l/b
us

in
es

s
ar

ea
s)

C
on

ti
nu

ou
s

D
is

ta
nc

e_
4

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

a
le

is
ur

e
fa

ci
lit

y
ar

ea
C

on
ti

nu
ou

s

D
is

ta
nc

e_
5

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

a
tr

an
sp

or
ta

ti
on

ar
ea

(a
ir

po
rt

,h
ar

bo
r,

ra
ilw

ay
,r

oa
d,

an
d

ot
he

r
tr

an
sp

or
ta

ti
on

an
d

co
m

m
un

ic
at

io
n

fa
ci

lit
ie

s)
C

on
ti

nu
ou

s

D
is

ta
nc

e_
6

Pr
ox

im
ity

di
st

an
ce

fr
om

ea
ch

ce
ll

to
a

pu
bl

ic
fa

ci
lit

y
ar

ea
(b

as
ic

en
vi

ro
nm

en
ta

l,
ed

uc
at

io
n/

ad
m

in
is

tr
at

iv
e,

an
d

ot
he

r
pu

bl
ic

fa
ci

lit
ie

s)
C

on
ti

nu
ou

s
D

is
ta

nc
e_

7
Pr

ox
im

it
y

di
st

an
ce

fr
om

ea
ch

ce
ll

to
pa

dd
y

fie
ld

s
(l

an
d

co
ns

ol
id

at
io

n
su

cc
es

s
an

d
un

de
rg

oi
ng

la
nd

co
ns

ol
id

at
io

n
in

pa
dd

y
fie

ld
s)

C
on

ti
nu

ou
s

D
is

ta
nc

e_
8

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

dr
y

fie
ld

s
(l

an
d

co
ns

ol
id

at
io

n
su

cc
es

s
an

d
un

de
rg

oi
ng

la
nd

co
ns

ol
id

at
io

n
in

dr
y

fie
ld

s)
C

on
ti

nu
ou

s
D

is
ta

nc
e_

9
Pr

ox
im

it
y

di
st

an
ce

fr
om

ea
ch

ce
ll

to
a

gr
ee

nh
ou

se
C

on
ti

nu
ou

s
D

is
ta

nc
e_

10
Pr

ox
im

it
y

di
st

an
ce

fr
om

ea
ch

ce
ll

to
an

or
ch

ar
d

C
on

ti
nu

ou
s

D
is

ta
nc

e_
11

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

ot
he

r
pl

an
ta

ti
on

s
(p

as
tu

re
la

nd
an

d
ot

he
r

pl
an

ta
ti

on
s)

C
on

ti
nu

ou
s

D
is

ta
nc

e_
12

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

br
oa

dl
ea

ff
or

es
t

C
on

ti
nu

ou
s

D
is

ta
nc

e_
13

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

co
ni

fe
ro

us
fo

re
st

C
on

ti
nu

ou
s

D
is

ta
nc

e_
14

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

m
ix

ed
fo

re
st

C
on

ti
nu

ou
s

D
is

ta
nc

e_
15

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

na
tu

ra
lp

as
tu

re
C

on
ti

nu
ou

s
D

is
ta

nc
e_

16
Pr

ox
im

it
y

di
st

an
ce

fr
om

ea
ch

ce
ll

to
ar

ti
fic

ia
lp

as
tu

re
(g

ol
fc

ou
rs

e,
ce

m
et

er
y,

an
d

ot
he

r
pa

st
ur

es
)

C
on

ti
nu

ou
s

D
is

ta
nc

e_
17

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

in
la

nd
w

et
la

nd
C

on
ti

nu
ou

s
D

is
ta

nc
e_

18
Pr

ox
im

it
y

di
st

an
ce

fr
om

ea
ch

ce
ll

to
co

as
ta

lw
et

la
nd

(t
id

al
m

ud
fla

ta
nd

sa
lt

er
n)

C
on

ti
nu

ou
s

D
is

ta
nc

e_
19

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

na
tu

ra
lly

ba
rr

en
ar

ea
s

(b
ea

ch
es

,r
iv

er
ba

nk
s,

an
d

ro
ck

s)
C

on
ti

nu
ou

s
D

is
ta

nc
e_

20
Pr

ox
im

it
y

di
st

an
ce

fr
om

ea
ch

ce
ll

to
ar

ti
fic

ia
lly

ba
rr

en
ar

ea
s

(m
in

in
g

ar
ea

,p
la

yg
ro

un
d,

an
d

ot
he

r
ba

rr
en

s)
C

on
ti

nu
ou

s
D

is
ta

nc
e_

21
Pr

ox
im

it
y

di
st

an
ce

fr
om

ea
ch

ce
ll

to
in

la
nd

w
at

er
(r

iv
er

s
an

d
la

ke
s)

C
on

ti
nu

ou
s

D
is

ta
nc

e_
22

Pr
ox

im
it

y
di

st
an

ce
fr

om
ea

ch
ce

ll
to

oc
ea

n
w

at
er

C
on

ti
nu

ou
s

191



Remote Sens. 2020, 12, 1475

2.3. Data Preprocessing

To conduct habitat suitability estimation, preprocessing of the collected observation data and
environmental variables was required, consisting of a number of steps. We carried out this data
preprocessing using Quantum Geographic Information System (QGIS) 3.8.1. We present the steps used
to prepare the training and testing datasets in Figure 2. First, we set the resolution to 3000 × 3000
pixels and cropped the collected layers based on the study area, which corresponded to a rectangle
on the map. For this, we used the World Geodetic System 1984 (WGS84), which is an Earth-centered,
Earth-fixed terrestrial reference system and a geodetic datum. In this system, the entire South Korea
region is represented by the latitude and longitude coordinates (125.000, 38.083), (129.583, 38.083),
(125.000, 33.166), and (129.583, 33.166). Because the bioclimatic and land cover layers (i.e., the classified
land cover in South Korea) are all in a shape (.shp) file format, we converted them into a gridded data
(.grd) file format, which consists of scalar values on a regular rectangular grid, either in longitude or
latitude space.

Figure 2. The overall preprocessing process for the present study.

We configured each pixel of the raster to have a coverage of approximately 135 m, which produces
900 M grids if we convert the entire South Korean region into a grid space. We then applied min-max
normalization to all variables in the cropped bioclimatic layers. For the preprocessing of the land
cover layer, we first divided it into multiple layers according to the land cover labels and conducted
rasterization. We then calculated the proximity distance based on the separate single rasters and applied
min-max normalization to each distance raster. Finally, we stacked all of the rasters to generate a data
frame that included labeled presence and absence, and that matched the values of the environmental
rasters in the given presence and absence locations.
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2.4. Stage 1: Habitat Suitability Estimation Based on a DNN

Recently, several DNN-based habitat suitability models have been proposed and have performed
well when compared with previous methods [28–30]. Hence, we constructed a DNN model in the
first stage to determine the probability of a species’ presence or absence, with a higher probability of
presence for a species indicating higher habitat suitability. In general, DNNs consist of three types
of layers: an input layer, one or more hidden layers, and an output layer. The input layer receives
input variables, while the hidden layers are involved in hidden feature processing. The output layer
then produces the final prediction. The prediction performance of a DNN model is determined
by the configuration of each layer and the model design. For example, it has been shown that the
learning rate, the optimizer, regularization, and the activation function significantly affect prediction
performance [33]. To obtain the best performance from the DNN model, we carefully determined
the optimal hyperparameters using grid search and considering related research [28]. We used the
GridSearchCV function of the scikit-learn library [48]. The number of repetitions of grid search was
set to infinite, and the number of cross-validations was set to five times. Consequently, when we
constructed our DNN model, we used four hidden layers containing 250, 200, 150, and 100 neurons
(Figure 3). We set the batch size to 75 and the number of epochs to 5000 with early stopping to optimize
model training. To decide the batch size in the training stage, we carefully considered the results of the
grid search. For training optimization, we tested three optimizers, including the stochastic gradient
descent (SGD), root mean square propagation (RMSprop), adaptive moment estimation (ADAM), and
then selected the ADAM as the best optimizer. In addition, we utilized the he-normal (HE) initialization
to sort initial weights for individual inputs in a neuron model. The activation function controls the
non-linearity of individual neurons. We tested five popular activation functions: linear, soft-max,
rectified linear unit (ReLU), tangent, and sigmoid. Through the grid search, we selected ReLU as the
activation function of our training model. The learning rate is a hyper-parameter that controls how
much we are adjusting the weights of our network with respect to the loss gradient. If the learning
rate is set too small, it might take a long time to converge on the performance goal. On the contrary, if
the learning rate is set too large, the average loss will increase. To obtain the optimal learning rate,
we performed a grid search with ADAM as the optimizer and ReLU as the activation function. Our
training model was able to achieve optimal learning efficiency when the learning rate was 0.001.

Figure 3. Construction of the DNN model used in Stage 1 of the present study.

The finished DNN model was to generate the probability of both presence and absence for a
species. The more suitable an area was as habitat for a particular species, the closer the probability of
that species’ presence was to 1, while the probability of absence followed the opposite trend.
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2.5. Stage 2: Ensemble-Based Habitat Suitability Estimation

Ensembles of machine-learning techniques have been widely adopted to solve various prediction
problems in past research [43–47]. Compared to one machine-learning model, ensembles can improve
prediction performance by combining several models. In the field of ecological modeling, ensemble
models are widely known as a useful approach for the construction of potential habitat estimation
models [43–47]. Therefore, in the second stage, we developed an ensemble-based habitat suitability
estimation model using the BIOMOD2 package [49] for R programming. We present the overall
construction process for our ensemble model in Stage 2 in Figure 4.

Figure 4. Construction of the ensemble model employed in Stage 2 of the present study.

According to the authors of [28,50], a low number of observations (i.e., n < 100) can degrade the
estimation performance of a habitat model because using very few observations in model construction
leads to overfitting and bias [8–10]. To solve this issue, we used 41 environmental layers and the results
of habitat suitability from the DNN in Stage 1 as input variables for the ensemble model in Stage 2.
This modeling method is known as stacking and can effectively avoid the possibility of overfitting and
bias [51]. We built our ensemble model by combining GLM, GBM, CTA, SNN, FDA, MARS, RF, the
SRE model, and MAXENT and used a weighted-average algorithm, which returns a weighted value for
each model based on selected evaluation scores. Therefore, an accurate estimation model will have a
relatively high weighted value when it combines all of the models. Because the TSS has been proven to
be a reliable evaluation metric when measuring and assessing the performance of habitat models [47],
we used the TSS to calculate the weighted value. Equation (1) was used to calculate the final estimation
using the weighted average value for each model, in which i and j represent the class label for presence
and absence and the number of models, respectively, ŷ indicates the estimated class label, and pij is
the calculated probability of the jth model. In addition, wj is the weighted value of the jth model,
which was calculated using Equation (2). We evaluated each model using five-fold cross-validation
and obtained the final TSS value as the average of the TSSs generated by the individual models.

ŷ = argmax
i

m∑
j = 1

wj ∗ pij (1)

wj =
TSSj −Min(TSS)

Max(TSS) −Min(TSS)
(2)

3. Results and Discussion

We evaluated our proposed model and compared its performance with other approaches to habitat
suitability modeling. We first explained the evaluation metrics used to assess the quality of habitat
suitability estimation and then evaluated the performance of our proposed model and other commonly
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used models using these metrics. We also visualized the results for habitat suitability analysis using
map overlays.

3.1. Evaluation Metrics

To evaluate the performance of our model, we used five metrics: sensitivity, specificity, the kappa
statistic, AUC, and TSS. These have all been regularly used to assess habitat modeling performance
in ecology [47]. The percentage of correctly predicted sites was excluded as a measure of prediction
accuracy for the proposed model because, even though it is simple to calculate, its usefulness is severely
limited for rare species [19]. To evaluate the estimation results, we used a confusion matrix in which a,
b, c, and d indicate true positive, false positive, false negative, and true negative, respectively (Table 4).
For instance, when the ground truth is the presence and the prediction result from the proposed model
is also the presence, then we counted it as a true positive. Sensitivity, specificity, the kappa statistic,
and TSS were calculated using Equations (3)–(6), respectively, based on this confusion matrix.

Sensitivity =
a

a + c
(3)

Speci f icity =
d

b + d
(4)

Kappa statistic =

(
a + d

n

)
− (a + c)(a + b) + (b + d)(c + d)

n2

1− (a + c)(a + b) + (b + d)(c + d)
n2

(5)

TSS = sensitivity + specificity − 1 (6)

Table 4. Confusion matrix for the evaluation of our presence–absence model.

Predicted
Observed

Presence Absence

Presence a b
Absence b d

Sensitivity represents the probability that a model will correctly predict the presence of a species,
while specificity measures the probability of a model accurately predicting the absence of a species. TSS
normalizes overall accuracy [47,50]. AUC is widely used to assess the accuracy of habitat suitability
models because it is easy to interpret, thus allowing comparison between models. ROC curves are
frequently used as a single threshold-independent measure for model performance. In previous studies
designed to predict habitat suitability [52–54], models with an AUC greater than 0.8 were considered
valid as predictive models. The kappa statistic is also a common evaluation metric used for habitat
suitability estimation models, but it has been criticized for being heavily dependent on prevalence.
TSS, on the other hand, avoids this problem while offering the advantages of the kappa statistic. In
general, most ecological modeling research uses sensitivity, specificity, the kappa statistic, and TSS
together to analyze the performance of habitat suitability models [51–55]. Thus, we used these five
metrics together to compare their weaknesses, strengths, and commonalities.

3.2. Performance Evaluation

We described the comparison results for the habitat suitability models using the five metrics
discussed in Section 3.1. We compared as many estimation models as possible, including GLM, GBM,
CTA, SNN, FDA, MARS, RF, SRE, DNN, ensemble models not including DNN (EMED), and our
proposed approach. As mentioned above, EMED has demonstrated satisfactory performance in the
previous studies. We constructed the EMED model in the present study using GLM, GBM, CTA, SNN,
FDA, MARS, RF, and SRE. All of these models were trained and tested using the BIOMOD2 package in
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R and were verified using five-fold cross-validation. We used 80% of the species observation as the
training set and 20% as the test set. We present the selected parameters and training strategies for each
model in the following (Table 5).

Table 5. Selected parameters and training strategies for the estimation models.

Estimation Model Selected Parameters and Training Strategies

GLM Quadratic-type regression
Akaike information criterion (AIC) for environmental layer selection

GBM Bernoulli distribution, 2500 trees, 7 depths, 5 terminal nodes, 0.001 learning rate
CTA Categorical classification, Default tree parameter (auto-optimized by BIOMOD2)
SNN Single hidden layer, Auto-optimized neuron size, 200 iterations
FDA Mars method

MARS Simple pricewise linear, 0.001 threshold, Backward pruning method
RF Maximum of 500 trees, Default number of variables at each split (auto-optimized by BIOMOD2), 5 nodes

SRE 0.025 quantile for environmental variable selection

MAXENT Maximum of 200 iterations, Linear and quadratic variables
Default parameters for threshold and hinge (auto-optimized by BIOMOD2)

EMED Assigning weights using TSS evaluation, Weighted average-based model assembly, 0.7 for the ensemble
threshold, Committee averaging

We calculated the estimation performance of various models for target species using five metrics
and present their averages in Table 6. Detailed experimental results, including sensitivity, specificity,
AUC, kappa statistic, and TSS, can be found in the Supplementary Materials (Tables S1–S5). To
objectively assess the estimation results, we show the evaluation criteria of AUC, kappa statistic, and
TSS in Table 7. We can observe that our proposed model showed the best performance, while the DNN
exhibited weak performance because model training was insufficient due to the lack of training data.
Likewise, the SRE model showed a poor performance for the prediction (AUC < 0.6). Even though
the SRE model is intuitive and fast, it does not fully reflect the interactions between environmental
conditions and species distributions in modeling. All other models except the DNN and SRE models
performed reasonably well in terms of predicting the presence of a species. In contrast, in terms of
specificity, DNN was the best performing model. The AUC has long been regarded as the standard
metric for assessing the performance of habitat suitability models. In most cases, TSEM demonstrated
the best estimation performance, while EMED also generated high AUC values, with an average
of 0.972. This demonstrates that the two-stage based ensemble approach can improve estimation
performance. While TSEM performed best for kappa statistic and TSS, SRE was the worst-performing
model. For Hyla japonica, EMED yielded a higher TSS (EMED = 0.786 and TSEM = 0.783) than TSEM
because the DNN model in the first stage produced very poor estimation results. However, for all
other species, our model outperformed the other models. In summary, based on these comparisons,
clearly TSEM is more suitable for deriving ecological insights related to habitat suitability estimation.

To confirm whether the estimation results of our model are valid, we selected Rana huanrenensis
as a visualization case. The visualizations of the results for other target species can be found in
the Supplementary Materials (Figures S1–S10). Rana huanrenensis, also known as the Korean stream
brown frog, lives mainly in Korea and Japan, and its habitats are identified as wetland, forest, and
grassland (Table 2). Due to the low number of confirmed populations of this species, it could be listed
as vulnerable (VN) under the IUCN Red List criterion, but is listed as least concern (LC) based on the
assumption of widespread occurrence, especially in Korea. The Rana huanrenensis lives in valleys in
high montane regions, above 500 m in elevation [56]. This species is mainly observed from March to
April, which is very closely related to the breeding season of this species. Rana huanrenensis breeds in
slow-moving montane streams and rivers, and their eggs are laid in moderately small masses that are
attached to submerged rocks [57]. Indeed, the distribution of observation data for Rana huanrenensis
fits well with their habitat characteristics. We marked the blue points as a training set and yellow
points as a test set. The areas marked in black represent the entire coniferous forest, mixed forest,
and broad-leaved forest (Figure 5). In Figure 6, green indicates suitable species habitats and blue
indicates uninhabitable areas. In evaluating the habitat suitability estimation of Rana huanrenensis,
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TSEM showed a better estimation performance (TSS = 0.949) than other estimation models. Although
EMED and RF performed slightly worse than TSEM (TSS of EMED = 0.819 and TSS of RF = 0.822), these
models showed excellent estimation performance based on evaluation criteria. The distribution of
Rana huanrenensis habitat estimated by TSEM is very similar to the mountainous terrain of South Korea.
The SNN, MARS, GBM, EMED, and RF also showed the distribution of habitat estimations similar to
mountainous terrain. However, we confirmed that the MARS, GBM, EMED, and RF estimated that
the Rana huanrenensis was suitable for habitation in some regions, including residential, industrial,
and commercial areas. The TSEM estimated that the areas of mixed forests, coniferous forests, and
broad-leaved forests were relatively more suitable as the Rana huanrenensis habitat. Even though the
TSEM was trained and tested on crowdsourced datasets of the Rana huanrenensis, the estimation results
matched well with their actual habitats because most of the observation data for the Rana huanrenensis
were near the main habitats such as wetland, montane streams, and forest. We demonstrated that the
habitat suitability results estimated by the TSEM are well-matched when compared with the existing
studies of the Rana huanrenensis habitats [56,57].

Table 6. Performance comparison of estimation models.

Estimation
Model

Evaluation Metrics (Avg.)

Sensitivity Specificity AUC Kappa Statistic TSS

GLM 0.855 0.833 0.888 0.662 0.689
GBM 0.879 0.906 0.950 0.780 0.785
CTA 0.854 0.884 0.901 0.724 0.738
SNN 0.857 0.880 0.920 0.723 0.738
FDA 0.865 0.892 0.938 0.750 0.758

MARS 0.859 0.871 0.927 0.711 0.731
RF 0.885 0.947 0.967 0.838 0.832

SRE 0.567 0.904 0.735 0.499 0.470
MAXENT 0.781 0.816 0.862 0.665 0.658

DNN (Stage 1) 0.757 0.957 0.886 0.753 0.759
EMED 0.905 0.911 0.972 0.862 0.816

TSEM (Stage 2) 0.966 0.920 0.983 0.887 0.886

The highest values are in bold.

Table 7. Evaluation criteria of AUC, kappa statistic and TSS.

AUC Kappa Statistic TSS

Excellent ≥ 0.9 ≥ 0.9 ≥ 0.8
Good 0.8− 0.9 0.8− 0.9 0.6− 0.8
Fair 0.6− 0.8 0.7− 0.8 0.4− 0.6

Poor or no predictive ability ≤ 0.6 ≤ 0.6 ≤ 0.4

 
Figure 5. Observations of Rana huanrenensis in South Korea.
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      (a)        (b)       (c)  

   
      (d)       (e)        (f)  

   
      (g)        (h)        (i)  

   
      (j)        (k)       (l) 

Figure 6. Habitat suitability visualization of Rana huanrenensis–(a) GLM; (b) GBM; (c) CTA; (d) SNN;
(e) FDA; (f) MARS; (g) RF; (h) SRE; (i) MAXENT; (j) DNN; (k) EMED; (l) TSEM.
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3.3. Statistical Evaluation

To demonstrate the superiority of our proposed method, we performed Wilcoxon signed-rank
and Friedman tests [58,59]. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis
test used to compare two related samples [58]. It can be used as an alternative to the t-test when one or
more of the samples are not normally distributed. It establishes a null hypothesis to determine whether
there is a significant difference between the two samples. If the p-value is less than a certain significance
level, the null hypothesis is rejected, and the two samples are assumed to be significantly different.
In the statistical hypothesis testing, the p-value is the probability of obtaining test results at least as
extreme as the results actually observed during the test, assuming that the null hypothesis is correct.
The Friedman test is a multiple comparison test that aims to identify significant differences between
three or more samples [59]. It first ranks each row (block) together, and then considers the values of the
ranks by column. The data are organized into a matrix with B rows (blocks) and T columns (treatments)
with a single operation in each cell of the matrix. To verify the results of these tests, we used AUC, the
kappa statistic, and TSS for each machine-learning method. The results of the Wilcoxon signed-rank
test, for which the significance level was set to 0.05, and the Friedman test are listed in Table 8. Based
on these tests, our proposed method exhibited significantly better prediction performance than the
other machine-learning methods because the p-value was below the significance level in most cases.

Table 8. The results of the Wilcoxon signed-rank and Friedman tests for our proposed method.

Estimation
Models

Wilcoxon Signed-Rank Test (p-Value < 0.05) Friedman Test

AUC Kappa TSS AUC Kappa TSS

GLM 0.00098 0.00098 0.00098

2.236× 10−17 1.446× 10−18 2.236× 10−17

GBM 0.00379 0.00098 0.00384
CTA 0.00384 0.00098 0.00384
SNN 0.00382 0.00098 0.00098
FDA 0.00098 0.00098 0.00382

MARS 0.00381 0.00382 0.00382
RF 0.00379 0.00384 0.00384

SRE 0.00379 0.00098 0.89390
MAXENT 0.00098 0.00098 0.00098

DNN (Stage 1) 0.00098 0.00098 0.00098
EMED 0.00368 0.00382 0.00195

AUC, area under the curve; Kappa, kappa statistic; TSS, true skill statistic.

4. Conclusions

In this study, we focused on a two-stage modeling scheme that can be applied to habitat suitability
estimation for various species. First, we investigated and selected 11 species that are present in South
Korea and regarded as targets for species conservation research. To obtain a sufficient number of
observations for the target species, we extracted observational data for these species from several
crowdsourced databases and added them to our database. Since spatial bias is a well-known problem
in crowdsourced data, we tried to alleviate this bias by using three global datasets and one domestic
dataset. In particular, the domestic dataset, Naturing database, contains data of target species observed
quite evenly across South Korea. We also employed 41 environmental layers that included information
on the global climate and the land cover of South Korea as input variables. To effectively estimate
habitat suitability, we used a DNN model and an ensemble of habitat suitability estimation models
in the first and second stages, respectively. To evaluate the effectiveness of the proposed model, we
compared it with previously employed models and visualized these results using a suitability map
overlay. The experimental results demonstrate that the proposed model has significant potential for
use in estimating habitat suitability.

For model training and testing, we used crowdsourced datasets. This implies that there could be
some bias in the observation data and the estimation results, as mentioned above. Hence, even though
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our model showed better performance than other models, estimation results might indicate where the
observation was made, in other words, the species can be observed. To the best of our knowledge,
it is an inevitable limitation of prediction models based on crowdsourced data. In future work, to
ensure the reliability of our habitat suitability model, we plan to develop a method that can alleviate
the potential biases of crowdsourcing datasets.
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