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the results were satisfactory, the main program subroutine was written. In normal device operation,
this subroutine is run in an endless loop, which is automatically started at system boot as a cron job.
Figure 5 shows a simplified flow chart of the main subroutine.

START read velocity v1

from GPS
v1 > 30 km/h ?

read ds,closestand 
v2 from radar

calculate 
required safety 
distance ds,req

ds,closest< ds,req?

show alert on 
display END

Yes

Yes

No

No

Figure 5. Simplified flow chart of the main subroutine running on the device in an endless loop.

To determine the actual safety distance SDa, a list of detected targets in the measuring range
is acquired from the radar sensor. This is accomplished by sending a command to the DSP board
over serial connection. Upon receiving this command, the DSP board returns a text string, including
the positions and velocities of all of the detected targets. From these targets, the one closest to the
sensor (and thus, to the host vehicle) is determined, and its required safety distance ds,req is calculated
as follows:

ds,req “ v2 ˆ tR ` v2
2 ´ v2

1
2¨ a

, (1)

where v1 is the longitudinal velocity of the host vehicle, v2 is the longitudinal velocity of the trailing
vehicle, tR is the reaction time (constant at tR = 2 s) and a the achievable braking deceleration in wet
conditions (a = 4 m/s2). The host vehicle velocity v1 is acquired from the GPS sensor by continually
receiving and processing its output in the form of NMEA 0183 strings.

The distance to the closest target, ds,closest is continuously compared to the calculated required
safety distance. The alert on the LED-matrix display is initiated whenever the following condition
is true:

ds,closest ă ds,req, (2)

The alert is sent as a command string over the serial connection and interpreted by the matrix
display controller firmware. An animated double-arrow (Figure 6) is shown followed by the scrolling
“KEEP DISTANCE!” message. This sequence runs in a continuous loop until the condition in
Equation (2) becomes false again.

Figure 6. Double arrow shown on the LED-matrix display.
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2.6. Testing the Finished Prototype

Once the operating system and the initial version of the main program on the Raspberry Pi were
ready and running, the power consumption of the entire system under load was again tested connected
to a laboratory power supply. It was found out that the steady electrical current draw of the entire
system (including the Raspberry Pi) on the 5-V DC output of the regulator never exceeded 0.8 A,
which is why we decided to keep the 7805 linear voltage regulator rather than replacing it with a
switching type regulator. The prototype was tested on a vehicle in a controlled environment. For this
purpose, the following test protocol comprising several Pass/Fail criteria was developed:

1. The allowed relative measurement error of the host vehicle velocity (from the GPS module) in
the 30–200-km/h range is below 5%.

2. The allowed relative measurement error of the host vehicle velocity (from the radar sensor) in
the 30–200-km/h range is below 10%.

3. The allowed relative measurement error of the trailing vehicle velocity (from the radar sensor) in
the 30–200-km/h range is below 10%.

4. The measurement range of the radar sensor when measuring the distance to target is within
the 5–70-m range.

5. The allowed relative measurement error of the measured distance from the rear-most point of
the host vehicle to the front-most point of the trailing vehicle on the same traffic lane within
the 5–110-m range is below 10%.

6. The reliability of the alert activation when the measured safety distance of the trailing vehicle is
too short must not be below 95%; in other words, the alert shall activate in at least 19 of 20 cases
of safety distance rules violations.

7. The radar sensor must always provide reliable distance-to-target measurement without any
disturbances in the form of unexplained values or significant oscillations.

8. The radar sensor must be able to sense a vehicle abruptly cutting in onto the traffic lane on which
the host vehicle is driving.

9. The radar sensor must not sense objects outside the roadway or vehicles driving on other traffic
lanes as a trailing vehicle.

To test the criteria, several test scenarios were devised and carried out. All of the tests were
performed using one or two passenger cars on a closed road. The tests included measurements of
velocity (Criteria 1–3), distance (Criteria 4 and 5) and combined tests in simulated and real traffic
(Criteria 6–9).

3. Results

In the first test, the host vehicle velocity was simultaneously measured with the radar sensor and
the GPS. Figure 7 shows an excerpt from one of the measurements, where it can be observed that the
agreement between the two curves is generally very good. The slight time shift occurs due to the GPS
velocity being sampled only twice per second due to a limitation imposed by the GPS receiver used in
the prototype. The mean values of magnitude (excluding the radar sensor noise) follow each other
with an average relative error of 3.12%, which is well within the required 10% relative error margin.

In the second test, the distance from the host vehicle to several different stationary objects (a flat
wall, a shipping container, a car) was measured in order to determine the radar sensor range and
accuracy. The example measurement was performed with the device attached to a car slowly driving
away from a steel shipping container approximately 6 m wide and 2.6 m high. The points at 20, 30 and
50 m from the container were marked by using a calibrated measuring wheel. The car was stopped at
these points during the test in order to test the stability and accuracy of the measurement. Figure 8
shows that the measured distance is stable and accurate. All of the measurements are well within the
required 10% relative error; statistics for all of the tests are shown in Table 3. It is also obvious that the
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maximum reliable range of the measured distance is approximately 75 m. It is possible to increase this
value by adjusting the radar target sensing amplitude level, albeit at the expense of lower distance
measurement accuracy.
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Figure 7. Example host vehicle velocity measurement comparison.
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Figure 8. Example distance measurement from a stationary object.

Table 3. Distance-to-object measurement test statistics.

Measuring Wheel
Distance (m)

Average Radar
Measurement (m)

Average Absolute
Error (m)

Average Relative
Error (%)

20.00 20.65 0.72 3.49
30.00 29.79 1.08 3.62
60.00 59.59 0.95 1.59
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Similar measurements were done with a stationary passenger car as the target object. In those
measurements, the upper limit of the maximum reliable measurement range was also between
70 and 80 m.

One of the requirements was also a reliable, disturbance-free distance measurement throughout
the whole measuring range of the radar sensor. To test this, the device was mounted on the host
vehicle driving in a straight line at 30–40 km/h while the trailing vehicle was approaching it from
behind with a constant relative velocity of approximately 0.8 m/s. During the test, the distance of
the trailing vehicle to the host vehicle has thus approximately linearly decreased from 75 m down
to 15 m. The time vs. distance curve is shown in Figure 9. It can be observed that the otherwise
prevailingly straight curve contains three significant anomalies at approximately 71 m (reading 0 m),
at approximately 46 m (reading 23 m) and at approximately 23 m (reading 0 m). After some research
and discussion with the radar sensor manufacturer, it was determined that the interference most likely
comes from the MAX232 RS-232-to-TTL converter chip on the sensor DSP board. To remedy this,
the known false readings of 23, 46 and 71 m were filtered out in the final version of the device software
and substituted by interpolating the adjacent readings. This does not significantly hinder the device
performance, as the distance between vehicles in normal traffic is dynamic and, thus, the probability
of remaining at exactly the filtered-out values for any prolonged time is fairly low.
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Figure 9. Anomalies in the distance measurement.

The same test setup was also used to determine the influence of the driving surface itself
on the distance measurement. Due to the shape of the microwave propagation field of the radar
transceiver [18], it was expected that the nature of its mounting on the host vehicle may cause the
detection of the driving surface as one of the targets, thus causing false alert triggering. To determine
this, the signal amplitude vs. distance chart was drawn. Figure 10 shows an example where two
vehicles were located at distances of 12 m and 37 m from the radar sensor. The target sensing amplitude
threshold in this case was set to 3500 in order to reliably sense the targets, but this setting almost
always returned a target at the distance of just over 1 m, determined to be the reflection of the driving
surface. To overcome this, the targets closer than 3 m were subsequently programmed to be filtered
out in the final version of the device software.

The next test was performed in order to test the reliability of the alert message activation on the
LED-matrix display. To satisfy the sixth Pass/Fail criterion, a drive of two test vehicles on a closed
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road in simulated traffic was performed. The device was mounted on the host vehicle, and the trailing
vehicle was driving behind it with varying velocity and distance. During the test, the driver of the
trailing vehicle intentionally initiated a series of 20 obvious safety distance violations with different
severity (an example video is available as a supplement). The results of this test show that the alert
on the display was successfully activated in all 20 instances and that there were no false activations.
It was observed that the alert activated with slight delay whenever the trailing vehicle approached
the host vehicle very rapidly due to the low sampling rate of the GPS velocity readings. This test was
repeated on an open road with normal traffic and objects along the roadsides (an example video is
also available as a supplement). There, it was determined that in curves with a very small radius, it a
false alert can be triggered. Therefore, we had to declare the ninth criterion as a Fail, although the false
alerts triggered by the roadside stationary objects usually do not seriously affect the function of the
device in slow city traffic or on a motorway with large curve radii.

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,500

25,000

0 5 10 15 20 25 30 35 40 45 50

R
ad

ar
 s

en
so

r s
ig

na
la

m
pl

itu
de

 (n
V)

Distance from radar sensor (m)

Radar sensor reading

Target sensing amplitude

False target 
at 1 m

Figure 10. Target sensing level: problem of sensing the driving surface.

Table 4 shows the summary of the Pass/Fail criteria and their fulfilment. It is obvious that the
prototype device fulfils five out of nine test criteria; two criteria were not tested; and the device
fails two of the test criteria. We were not able to adequately test Criteria 1 and 3 due to the lack of
a reference measurement device for velocity and due to limited testing space not allowing vehicle
velocities over 50 km/h. It was assumed, based on previous research [24–26], that the GPS velocity
measurements are sufficiently accurate to be used as the velocity reference. For the criteria that had
to be declared as Fail (7 and 9), the cause of failure was determined and, in the case of Criterion 7,
corrected programmatically or, in the case of Criterion 9, found as not being heavily detrimental to the
function of the device.
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Table 4. Summary of Pass/Fail criteria and their fulfilment.

Criterion Description Pass Fail Remark

1 GPS host vehicle velocity measurement error under 5% - - not checked, GPS used as the reference

2 Radar host vehicle velocity measurement error under 10%
‘

3 Radar trailing vehicle velocity measurement error under 10% - - not checked, assumed OK due to
fulfilled Criterion 2

4 Radar measuring range 5–70 m
‘

5 Radar distance measurement error under 10%
‘

6 Alert activation rate over 95%
‘

7 Radar provides reliable, disturbance-free distance measurement x false targets due to electrical
interference

8 Radar senses trailing vehicle cutting in onto the host vehicle lane
‘

9 Radar must not sense objects outside the roadway or vehicles on
other lanes x false alerts in tight curves

4. Discussion

The research of the traffic accident statistics, on the one hand, and of the state-of-the-art devices, on
the other, yielded the conclusion that there is the need for a device for alerting the motor vehicle drivers
about following a particular vehicle on a too short of a safety distance. The market survey revealed
that a universal low cost device that would be suitable for the task does not yet exist. The analysis
of the traffic legislation proved that such a device can be made compliant with existing regulations.
These findings were the basis for the development of a self-contained device that can be attached to
almost any motor vehicle and automatically provide visual alert to the drivers of the trailing vehicles
violating the two-second safety distance rule.

The development started by setting out the functional requirements of the system. In the early
stages of the development, several concepts were synthesized. A morphological matrix was compiled
to define them, and the functional value analysis was carried out to evaluate the concepts and to
select the most appropriate one regarding their technical and economic value. The highest priority
evaluation criterion was the optimization of the cost while still satisfying the functional requirements.

After some initial considerations, the principal measurement method was selected to be a radar
sensor. The rationale behind this decision is the relative insensitivity to environment parameter
variations and sensors with suitable characteristics available at a relatively modest cost. In the
beginning of the actual sensor selection process, there were considerations whether to use a
readily-available adaptive cruise control sensor. While this is an attractive option as far as its price
and mounting possibilities are concerned, the lack of documentation describing electrical connections
and data transfer protocols prevented its implementation for the time being. Instead, a Doppler radar,
as found in adaptive traffic signage, was used.

From the beginning of the design process, a single-board computer was intended to be used for
sensor control, data processing and alert activation. Based on the research of the market and previous
positive experience, the Raspberry Pi Model B was chosen for the task. Throughout the design process,
from the initial data transfer tests to testing the finished prototype in real traffic, the Raspberry Pi
has continuously proven itself exactly the right choice. It owes its suitability mostly to the excellent
balance between the processing power and the flexibility of a Linux-running system, on the one
hand, and its small form factor and modest power requirements, on the other. This is the balance
that was almost impossible to achieve as recently as a few years ago when the gap between “classic”
microcontroller-based embedded systems and small PCs was still wide open. An added bonus of the
Raspberry Pi is its on-board interfaces, which eliminate the need for overly-complicated connection
interfaces required for communication with the system components.

The chosen components were integrated into a working prototype of the device. As per the
functional requirements, the device can be used on any vehicle, as long as it can provide on-board
electricity and a suitable surface to mount the sensor enclosure and the LED-matrix display.
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The control software is written in Python 2.x. In its basic version, the software consists of
modules for sensor data acquisition, data processing and comparison and for activating the visual
alert. These modules are called from the endless main loop, providing continuous operation without
the need for user intervention. Should additional functionality ever be required, the existing routines
can be altered and new ones added to the existing code. For debugging and service purposes, an SSH
connection over Ethernet can be used to connect an external computer to monitor the operation and/or
adjust the operating parameters.

The finished prototype was extensively tested. The first tests were performed in laboratory
conditions in order to test the compatibility and performance of sensors. After reviewing the
preliminary results, a series of Pass/Fail criteria was set out to test the function of the device in
expected conditions in traffic. A test protocol was devised to test these criteria. Generally, the test
results were satisfactory, passing five out of nine criteria. As expected, some of the tests yielded results
that required adjustments to the system. These were all implemented by software changes only and
included only minor additions to the data processing algorithms. With those adjustments, the system
proved itself reliable and robust in daily traffic. The cost of the components used in the final version of
the prototype was kept significantly under 1000 €, which is within the desired target budget, as well.
To display the alerts on the prototype device, a relatively small (150 ˆ 100 mm) 14 ˆ 9 LED-matrix
display was used as a proof-of-concept. To increase the visibility, a new, larger, transparent LED-matrix
display (Figure 11) has been designed and is currently awaiting prototype production.

(a) (b) 

Figure 11. Model of the proposed transparent display design. (a) LED-matrix detail; (b) mounting on
the rear window of a vehicle.

The prototype device as described is currently used on a road surveying vehicle during various
continuous measurements to keep the trailing vehicles at a safe distance in order to not disturb
the measurement. The direct benefit of this use is a reduced need for road closures, since the
measurements can now take place on the roads open for traffic even without employing a separate
distance-keeping vehicle.

Although the device has proven to perform soundly, there is, of course, always room for
improvement. The most apparent challenge is false alert triggering due to roadside objects in tight
curves. While it does not really affect the robustness and reliability of the operation on straight roads,
it is nevertheless an inconvenience that has to be considered and possibly addressed. The possibilities
of including target angle sensing are currently being studied, either from the existing vehicle steering
wheel sensors or by implementing lateral distance sensing by the radar. Before the device is ready
for wider implementation, its operation in unfavorable conditions will also have to be tested more
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thoroughly. This includes tests in extreme weather, such as rain and fog, and under the influence
of other radar devices (vehicles with adaptive cruise control, police speed guns, etc.). None of these
tests have yet been conducted, but are planned in the near future. Using the Raspberry Pi as the
processing unit makes the design of the prototype device ready for future functionality expansion by
employing additional sensors or by implementing additional software algorithms if the need arises.
The replacement of the originally-used Model B Raspberry Pi with one of the newly-available models
also opens new possibilities. By using a quad-core Raspberry Pi 2 or Raspberry Pi 3, it may be possible
to eliminate the radar DSP board by relegating the signal processing to the Raspberry Pi itself; by using
a Raspberry Pi zero, it is possible to minimize the physical dimensions and the power requirements of
the device. The design of the Raspberry Pi ensures the compatibility of the operating system and the
user software across the model range.

Supplementary Materials: The following are available online at http://dx.doi.org/10.5281/zenodo.50478:
Video S1: Test of the prototype device in simulated traffic; Video S2: Test of the prototype device in real traffic.
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The following abbreviations are used in this manuscript:

GPS Global Positioning System
LED Light-Emitting Diode
RADAR (also “radar”) RAdio Detection And Ranging
LIDAR LIght Detection And Ranging
LASER Light Amplification by Stimulated Emission of Radiation
LCD Liquid Crystal Display
accmtr. Accelerometer
GSM Global System for Mobile Communications
USB Universal Serial Bus
DSP Digital Signal Processor
UART Universal Asynchronous Receiver and Transmitter
OS Operating System
SDHC Secure Digital High-Capacity
MC Microcontroller
PC Personal Computer
IP Internet Protocol
SSH Secure Shell
NMEA National Marine Electronics Association
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Abstract: The Raspberry Pi and its variants have brought with them an aura of change in the world
of embedded systems. With their impressive computation and communication capabilities and low
footprint, these devices have thrown open the possibility of realizing a network of things in a very
cost-effective manner. While such networks offer good solutions to prominent issues, they are indeed
a long way from being smart or intelligent. Most of the currently available implementations of such a
network of devices involve a centralized cloud-based server that contributes to making the necessary
intelligent decisions, leaving these devices fairly underutilized. Though this paradigm provides for
an easy and rapid solution, they have limited scalability, are less robust and at times prove to be
expensive. In this paper, we introduce the concept of Agents on Raspberry Pi (AgPi) as a cyber solution to
enhance the smartness and flexibility of such embedded networks of physical devices in a decentralized
manner. The use of a Multi-Agent System (MAS) running on Raspberry Pis aids agents, both static
and mobile, to govern the various activities within the network. Agents can act autonomously or
on behalf of a human user and can collaborate, learn, adapt and act, thus contributing to embedded
intelligence. This paper describes how Tartarus, a multi-agent platform, embedded on Raspberry Pis
that constitute a network, can bring the best out of the system. To reveal the versatility of the concept
of AgPi, an application for a Location-Aware and Tracking Service (LATS) is presented. The results
obtained from a comparison of data transfer cost between the conventional cloud-based approach
with AgPi have also been included.

Keywords: Multi-Agent Systems; Cyber Physical Systems; Mobile Agents; Raspberry Pi; Internet of
Things (IoT); BLE (Bluetooth Low Energy); Fog Computing

1. Introduction

The advent of the Internet of Things (IoT) [1] has facilitated devices to be connected with ease
and enhanced to communicate and share data. Gartner Inc. (Stamford, CT, USA) [2] has predicted that
by 2020, the IoT will form the basis for most business processes and systems. It has also conjectured
that, by this year, more than 6.4 billion such devices will become connected. This drastic increase in
connected devices is bound to revolutionize and greatly enhance Information and Communication
Technologies (ICT) [3]. The Internet serves as an easy, reliable and accessible means for communication
but is not without issues. Two of the major issues that crop up in the implementation of a typical IoT
are security and the cost incurred in cellular communication. For applications such as a cab enquiry
and booking system, which involves devices spread across an enormous geographic area, the use of
the Internet can be traded off with some aspects in security. This may not be true for critical areas
such as in military applications, hospitals, industries, smart buildings, etc. where security could be
the major concern. Current IoT architecture [4,5] makes use of cloud-based solutions for imparting
services to the users. The integrity, safety and insecurity of data stored in a cloud, along with the
associated services for sensitive domains like medical and industrial ones, remain matters of concern.
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The other issue is that in the conventional cloud-based IoT architecture, a device communicates through
a central server supporting the cloud platform. This increases the cellular communication costs. A set
of devices within a networked infrastructure can communicate locally and also perform computations,
thus preventing a very large number of interactions with the cloud [6]. For scenarios such as an IoT for
military or health care application, an Intranet based solution could perform effectively. Issues like
security and communication expenses in an Intranet can be greatly contained. Another important
issue is data privacy which is crucial in the case of medical hospitals, government and also for a
consumer. Leakage of personal information and data ownership are at risk in a cloud-based centralized
architecture.

In cloud-based systems, most of the data and intelligence churning activities are performed by a
server hosted elsewhere in a centralized manner. For an Intranet-based solution, a framework that
can facilitate this in a decentralized manner needs to be evolved. The devices participating in such an
Intranet of Things, could include a range of connected embedded devices with their associated interfaces
that connect them to the real physical world through sensors and actuators. The word “things” in an IoT
refers to passive devices which seldom inherit any form of smartness within them. This is due to the
fact that it is the cloud which is responsible for the intelligence and not the actual device. What is thus
required to make an intelligent Intranet of Things is a cyber counterpart that can induce and embed
intelligence into these devices. Multi-Agent Systems (MAS) [7] can act and provide as a fitting solution
for realizing embedded intelligence. If such agents are made to operate on top of each embedded
device, they can make decisions autonomously at the lower levels, thus transforming a network of
such devices into a smart Cyber-Physical System (CPS). Figure 1 depicts such a CPS wherein the core
comprises the real physical world being sensed and controlled via the sensors and actuators. The actual
decision making and intelligence churning process is carried out by the agents (static and mobile)
within the cyber world. These agents are programs that run on the connected embedded devices.

Figure 1. An agent-based Cyber-Physical System.

The concept of using agents in an Intranet of Things is very similar to an implementation of
a Fog Computing environment [8]. The cloud is extended to the user side and constitutes a set of
distributed and decentralized computing nodes which form the edge of the network. Such a concept
has several advantages which include:

1. Privacy: Most of the cloud servers are owned by multinational corporations such as Amazon
(Seattle, WA, USA), Google (Mountain View, CA, USA), Microsoft (Redmond, WA, USA),
Cisco (San Jose, CA, USA), etc. which continuously receive data from the user side. Leakage of
personal information and data ownership becomes a critical issue when all of the user’s data
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is collected for analytics purpose in the cloud [6]. A safer solution would be to have a local
infrastructure on which the user has more control than the cloud server. This would allow local
data filtering and computation before sending it over to the cloud. An agent-based system could
be a better solution for ensuring privacy.

2. Cost: Cloud services follow a “Pay-as-you-go” model which adds to the cost as the storage and
network communication increases [8]. In a local computational infrastructure model, these costs
can be reduced if the data collected is filtered locally and only pertinent information is sent to
the cloud.

3. Network Latency: A cloud has inherent latency issues and thus may not be a viable solution for
applications such as live video streaming in connected vehicles, real-time data analytics in smart
grids [8], etc., all of which require a rapid response. An Intranet of Things that uses agents, on the
contrary, can provide fast local computations, thereby decreasing latency.

4. Energy: As already mentioned, agents in an Intranet of Things can filter the acquired data prior
to sending it over to the cloud. Since this reduces communication overheads, it also reduces
the energy consumed and consequently increases the battery life of the devices constituting the
network [9].

In this paper, we emphasize the importance of agents (both static and mobile) and describe
the use of Tartarus (Version 1.1, Robotics Lab., IIT Guwahati, India) [10], a Multi-Agent platform,
on the Raspberry Pi (Raspberry Pi Foundation, London, UK). With a Location-Aware and Tracking
Service (LATS) as a CPS application using Tartarus running on Raspberry Pi (henceforth, in this paper,
Pi strictly refers to the Raspberry Pi) boards, we demonstrate the viability and versatility of the use
of agents. The Tartarus agents are responsible for monitoring and tracking people within an indoor
environment. Providing LATS is a challenging task in a dynamic environment [11]. Such scenarios
call for queries that relate to where and when a person was or is in the area being monitored, what is
the direction of the person’s movement, etc. Firing queries to a database of related information stored
centrally is fairly simple. However, if the person being tracked is in continuous motion, the database
becomes dynamic in nature, which makes the task of querying, a complex one. This complexity further
increases when the devices that track and store the data are numerous and have limited computational
and storage resources. Data, in this case, is thus both dynamic and distributed across a network.
Furthermore, new queries may also need to be fired at any point of time, which adds to the complexity
of the system. This agent-based LATS portrays how agents, both static and mobile, can aid in satisfying
such queries.

The rest of the paper is organized as follows. Section 2 provides a brief overview of Multi-Agent
Systems (MAS) and the related platforms, while Section 3 gives the background on earlier realized
LATS applications. Section 4 describes the architecture of AgPi and is followed by the LATS application
in Section 5. The paper culminates with the results obtained and conclusions reached.

2. Multi-Agent Systems (MAS)

Agents are software entities that are capable of performing task(s) on behalf of a user [12]. They are
autonomous and possess the ability to make their own decisions and drive themselves towards a goal.
Maes et al. [13] refer to agents as computational systems that can sense and act autonomously in an
environment in order to realize a set of goals. Just as human beings and robots form entities in the
Physical world, these agents can be considered to be their counterparts in the Cyber world.

Multi-Agent Systems (MAS) can be defined as a compendium of different agents with their
own problem solving capabilities and goals [14]. An MAS aids in abstracting a complex system into
subsystems, each of which is represented by an agent. It is not just a collection of agents, but a system
where agents coordinate to achieve a common goal. An agent may in addition possess the ability to
migrate from one node to another in a network. Such Mobile Agents carry all their functionalities with
them to enable execution at remote locations. Since the work described herein exploits mobile agents

261



Electronics 2016, 5, 72

to accomplish data processing and dissemination, a brief description of such agents has been provided
in the next subsection.

2.1. Mobile Agents

A mobile agent [15] is basically a piece of code that has the ability to migrate from one node
in a network to another and carry out certain task(s). In addition to exhibiting mobility, a mobile
agent can also clone and multiply itself, carry a payload (data or a program), make local decisions,
execute a program on a remote site or node, etc. Mobile agents can also be used to churn out and
carry intelligence along with them as they migrate within a network [16]. They have been used
in a wide range of applications which include wireless sensor networks [17], robot control [18,19],
e-commerce [20], security [21,22], e-learning [23], robotics [24,25], IoT [10,26], etc. Some of the major
advantages of using mobile agents are:

1. Bandwidth and latency reduction: A mobile agent has the innate ability to carry the computation in
the form of code to a remote site. Instead of fetching the whole raw or unprocessed data from
a remote site, the mobility allows for the computing program or logic to migrate to this site and
process the data therein. This results in reducing network traffic and latency.

2. Discontinuous operation: In a dynamic network where the devices are mobile, it is rare that a
continuous connection is maintained between two nodes for a long time. In a conventional
client-server system, a sudden disconnection may cause the server to resend the whole data,
making it an expensive affair. On the contrary, in a mobile agent-based scenario, migration occurs
only when a connection is established. The mobile agent then resides in the new node till the
connection to the next node is available. Unlike the large amount of data to be processed, a mobile
agent is comparatively lightweight. Thus, a failure in migration does not compound into large
losses in bandwidth and time.

3. Adaptivity and flexibility: In a traditional centralized system, any upgrade would require the system
to be brought down, changes made and then restarted. In a mobile agent-based system, upgrades
could be packaged within the mobile agent and released into the network. This On-The-Fly
Programming (OTFP) [10] support facilitates a higher amount of flexibility. Agents have the ability
to sense and perceive their environment and change their behaviours accordingly. A mobile agent
can add new behaviours in the form of a payload and can also adapt to different situations.

Mobile agents thus have the potential to provide a viable distributed solution to problems related
to a network [27].

2.2. Multi-Agent Frameworks

Agent related processes such as its creation, programming, migration, cloning, etc., require a
software environment or framework that runs on the supporting hardware platform. A Multi-Agent
Framework (MAF) provides for such an environment and facilitates the rapid development and
deployment of agent-based systems. These frameworks allow users to create, program and release
mobile agents into a network and also aid the execution of the relevant programs within JADE [28],
JADE-LEAP [29], TACOMA [30], Agent TCL [31], AgentSpace [32], Aglets [33], etc., are Java
based MAFs. Mobile-C is an agent framework that is written purely in C/C++ programming
language. Its light footprint makes it ideally suited to small embedded systems. Some of the real
world deployments where such frameworks have been used include a taxi booking system developed
over JADE-LEAP (Multi-Agent Systems Group, University Rovira i Virgili (URV), Tarragona, Spain)
[34], a multi-agent traffic control system [35], etc. C/C++ and Java are basically structural and
functional programming paradigms on which such event-based applications are developed. A majority
of MAFs are based on such languages and thus do not inherit the semantic structure available
in logical languages such as Prolog [36]. Prolog is widely used in applications involving Artificial
Intelligence (AI) [37] techniques, natural language processing [38], intelligent searching in databases [39],
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rule based logical queries [40], etc. Some of the multi-agent platforms built over logical languages
include Jinni [41], ALBA [42], IMAGO [43], Typhon (Robotics Lab., IIT Guwahati, India) [44]
and Tartarus [10]. In this work, we have used Tartarus, a multi-agent platform developed using
SWI-Prolog (Version 7.2.3, University of Amsterdam, Amsterdam, Netherlands) [45]. Tartarus and
its former version Typhon has been used in a variety of applications ranging from multi-robot
synchronization [46], learning using sharing [47], realizing a green-corridor for emergency
services [48], rescue robots [10], monitoring from a remote base station [49], etc. It thus forms a fitting cyber
counterpart for applications that involve AI, distributed data processing and search.

3. Location-Aware and Tracking Service (LATS)

Since the work described herein uses LATS as an agent-based application embedded on Pi, a brief
survey on the same is presented below. Location-dependent services are part of a dynamic model
where either the object or the observer or both can be mobile with respect to their geo-location [50].
Some of the classical approaches for tracking of a moving object include the use of GPS, RFID, camera,
etc. The most popular method of positioning is by using a GPS on board a mobile phone. This method is
however, effective mainly outdoors where the device can reach out to the satellites. Indoor localization
using such GPS is unreliable due to the topology of the rooms and the erratic and low intensity
satellite signals received within. This calls for an efficient yet cost-effective solution to provide for a
reliable indoor positioning and tracking system. Catarinucci et al. [51] have proposed an IoT-aware
architecture for smart healthcare. They have leveraged the use of combining UHF RFIDs [52] and
WSNs [53] for deploying a healthcare system. Each patient has an RFID tag that transmits its data to an
RFID receiver, which, in turn, transmits the data to the associated doctor. Since RFID tags are passive
devices, the system uses minimum power and is thus quite efficient in terms of energy consumption.
The major drawback is that, for proper data transfer, the patient has to be in very close proximity to
the RFID receiver.

Bluetooth Low Energy (BLE) technologies [54] can offer a far more superior solution than RFIDs.
Yoshimura et al. [55] portray a system for analyzing the visitors’ length of stay in an art museum
through the use of non-invasive Bluetooth based monitoring. In their work, eight Bluetooth sensors
were installed in the busiest locations at the Denon wing of the Louvre museum. The data on the
number of visitors visiting these places was collected for a period of five months and then analyzed to
get meaningful results. They have claimed that the use of non-invasive technologies (such as Bluetooth)
allows them to gather honest results. This is so since visitors change their behaviours if they are aware
of the fact that they are being tracked.

Early work in location-aware services by Wolfson et al. [11] describe a mechanism for tracking
moving objects through the use of database. They present a Database for Moving Objects (DOMINO)
on top of an existing database, which allows the database management system to predict the future
location of the moving object. Every time the object in motion updates its location, its future location is
also predicted.

Wolfson et al. [56] has also proposed a trajectory location management system to model the
moving object. They highlight the critical issues associated with the point-location management model
[56]. A point-location model does not provide facilities for interpolation or extrapolation of location
data of the moving object and is not accurate.

In a trajectory location model, an estimate of the source and destination of a moving object
is determined. This information is coupled with an electronic map and a trajectory is constructed
based on the travel time information. In the real world, the relevant data is not always available at
a centralized location. Wolfson et al. [56] conclude that their model needs to be improved to suit
scenarios where data is available in a distributed form. In the latter part of this paper, we show how
LATS can be implemented when the data is distributed across a network of devices.
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4. AgPi: The Cyber and Physical Confluence

The Pi is an inexpensive low footprint mini-computing device. It boasts of a System-On-Chip
(SOC) architecture that includes a 64-bit microprocessor, a Graphical Processing Unit (GPU) and
peripherals, making it compact in size. It can be used in conjunction with a TV or a computer monitor.
The Pi has a range of peripherals to allow use of input and output devices [57]. It comes in different
versions, the more recent ones being the Raspberry Pi 3 (Raspberry Pi Foundation, London, UK) and
the Raspberry Pi Zero (Raspberry Pi Foundation, London, UK). The latter Zero version costs just
around US $5, possibly making it one of the cheapest and most affordable mini-computing devices [58].
The availability of General Purpose Input and Output (GPIO) pins along with multiplexed I2C, SPI
and UART pins, which can be easily accessed through an open source Linux operating system running
on it, makes the Pi an appropriate device to sense and control an environment. Such high end features
allow a user to create and deploy systems in the real world, making the Pi an ideal device for IoT
applications.

Features such as autonomous decision making, robustness, flexibility, intelligence, etc. which are
generally associated with agents are seldom found in current IoT solutions. In this paper, we have
described the working of a full-fledged MAS-based IoT application by leveraging the use of Tartarus
running on Pi. The application has been described with a view to enthuse Pi developers and users
to create new and intelligent applications using the concept of Agents on Pi (AgPi). The mobile agent
framework used, Tartarus plays the role of controlling the Cyber entities (agents), which, in turn,
command their physical counterparts (sensors and actuators). Tartarus comes with a dedicated plugin
to access peripherals within the Pi. This facility provides for a coupling between the Pi and its cyber
counterpart, Tartarus. Figure 2 shows how several Pis, each running Tartarus, are connected to form
a network. It also depicts static agents residing at some nodes and migrating mobile agents. It may
be noted that these mobile agents can move over to any node, sense the data within (as also actuate
a motor for instance, if required), take a decision and then move on in the network. Figure 2 thus
conforms to the agent-based CPS depicted in Figure 1. Unique behaviours could be programmed and
embedded within each agent, thus allowing for an autonomous or semi-autonomous control of the
physical world.

Figure 2. Top level architecture of AgPi (Agents on Pi).

In the next section, we describe an application that will throw more light on the benefits of using
agents on a network of Pis. This application is a multi-agent-based distributed and decentralized
solution for LATS for an indoor environment using the AgPi concept.
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5. AgPi in the Real World

A complex system can be divided into subsystems, each controlled by an agent. This form of
abstraction eases the designing and realization of systems. With Pi in the scenario, such complex
systems can now be deployed as real-world applications. One of these applications for LATS that uses
the AgPi concept is described below.

5.1. AgPi based LATS application

As a proof-of-concept, we have implemented an LATS for dynamic tracking of users in a corridor
of a building. The following subsections describe the detection mechanism and the main units that
comprise the application.

5.1.1. Detection Mechanism

The lower portion of Figure 3 portrays the manner in which Pi-nodes have been deployed along
the corridor. A Pi-node consists of a Pi interfaced to a BLE receiver and Wi-Fi adaptor. A Cyber
Computing Unit comprising Tartarus and its associated plugins runs on the Pi. Each Pi-node within
the corridor is connected to its neighbour(s) through Wi-Fi.

A person who is to be tracked (depicted as a stick figure with a red band on the wrist in the figure)
needs to wear a BLE tag that emits beacons at a certain rate. This BLE tag along with the Pi-node forms
a Wearable and Acquisition Unit (WAU).

Users who need to track a person(s) are provided with a User Interaction Unit (UIU) running
on their respective computing machine. The functioning of the WAU, CCU (Bluetooth Low Energy)
and UIU shown in the upper portion of the Figure 3 has been detailed in the subsequent subsections.
As can be seen in the lower portion of the figure, the corridor is divided into virtual zones (indicated
by different colours) whose areas are preset based on the RSS (Received Signal Strength) values from
the BLE tag received by the associated Pi-node.

Figure 3. AgPi based LATS (Location-Aware and Tracking Services) application.

When a person enters a zone within the corridor, the BLE receiver of the Pi-node within that
zone detects his/her presence in that zone. As the person moves away from this zone and enters the
neighbouring one, the RSS in the new zone increases while in the former’s decreases. This indicates
the transition of the user from one zone to another. Eventually, when the RSS detected at the previous
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zone becomes minimum and that at the next zone becomes maximum, the system detects the presence
of the person in the latter zone.

5.1.2. Wearable and Acquisition Unit (WAU)

This unit includes a wearable Bluetooth Low Energy (BLE) device (HM-10) that emits data packets
in the form of beacons at preset intervals. These packets are received by a BLE receiver interfaced to a
Pi via its on-board UART module. Figure 4a,b show a BLE tag (comprising a BLE device and a battery)
as a wearable unit (configured as a beacon transmitter) and a Pi-node comprising a Pi interfaced to a
BLE receiver as the acquisition unit. The Pi also has a USB Wi-Fi adaptor. Each data packet transmitted
by the wearable BLE device is 30 bytes long and contains five fields of information as given below:

1. Preamble: This read-only field is 9 bytes wide and contains the manufacturer’s data.
2. Universally Unique Identifier (UUID): This field, which is 16 bytes wide, can be preset to contain

the identity of the BLE device.
3. Major: This is a user writable field which helps in identifying a subset of such devices within a

large group.
4. Minor: It is also a writable field which is used for specifying a subset of the Major field.
5. Tx Power: This field is a calibrated 2’s complement value denoting the signal strength at 1 m from

the device. This field is compared with the measured signal strength at the receiving end in order
to ascertain the distance between the transmitter and receiver.

The BLE receiver extracts the information within these five fields and forwards it to the CCU.

(a) (b)

Figure 4. (a) a BLE (Bluetooth Low Energy) tag; (b) A Pi-node.

5.1.3. Cyber Computing Unit (CCU)

A CPS is a tight coupling between the physical and the cyber worlds. The Tartarus platform serves
the purpose of a cyber unit which runs on top of the physical unit (Pi in the present case). Tartarus comes
with a plugin to access the peripherals on board the Pi. A static agent named a Database agent within
a Tartarus instantiation running on a Pi fetches the beacon data from the buffer register within the
BLE receiver via the UART [59] interface. The Database agent then stores the data in an SQL database
along with the time-stamp on the memory card in the Pi. If a user remains within a zone for a long
period, there will be a large accumulation of data, most of which could be redundant. To avoid this,
beacon data is read always but stored only under some conditions. Thus, data is logged only when
there is considerable change in the RSS of the beacon. Furthermore, instead of making decision based
on the normally noisy RSS values, three regions—Beyond, Far and Near have been used to describe the
position of a user within a zone. The three regions can be defined as follows:
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(i) Beyond: When the RSS value is zero, it means that the person is not detected and is beyond the
concerned zone.

(ii) Far: This is a case when the person being tracked is far from the Pi-node. This is detected by a
weak RSS value at the Pi-node of the concerned zone and would mean that the person wearing
the BLE tag is in between 2 m to 5 m of the radial distance from the associated Pi-node.

(iii) Near: A strong RSS value indicates the person to be well within the range i.e., less than 2 m in the
present case.

Each SQL entry comprises a total of six fields of information — the Timestamp, UUID, Major,
Minor, RSS and Region. A sample snapshot of the data entered at a Pi-node is shown in Figure 5.

Figure 5. A sample snapshot of the part of the database maintained at a Pi-node.

An entry is made to the SQL database only when the value of the sixth field changes in terms of
the Region. For instance, if the sixth field changes from beyond to near, an entry is logged with the new
Region. If the next consecutive entry is also near, then no entry to the database is made. Similarly, if the
sixth field changes to either far or beyond, an entry is made. It may be observed that from the database
the information about the period of stay of a user in a particular region or zone can be easily computed.
Furthermore, a person may also be tracked as s/he moves from one zone to another. One may also
easily infer as to exactly when s/he entered a zone, the amount of time spent within that zone and
when s/he exited the same. Thus, as a person passes through a corridor comprising several such
zones, the respective Pi-nodes keep track of the next zone to which the person has moved. This is done
through the concept of a Motion Vector which has been described below.
Motion Vector: Let Z = ZP1 , ZP2 , ZP3 , . . . , ZPn be a set of zones, where Pj represents the jth Pi-node and

n is the total number of Pi-nodes in the network (one per zone). A Motion Vector (
−−→
MV) describes the

movement of a person wearing the BLE tag, from one zone to another and is given by,
−−→
MV = ZPa → ZPb ; a, b ε {1, 2, . . . , n}.

Each Pi-node in a CCU stores and updates two types of Motion Vectors—Motion Vector Forward
(
−−→
MVF) and Motion Vector Backward (

−−→
MVB). When a person wearing the BLE tag moves from the

far region to the beyond region of a certain zone, say ZPx , the corresponding Pi-node, Px within that
zone, sends a message to all its neighbouring Pi-nodes announcing that the person bearing the specific
UUID is now in the process of leaving its zone ZPx . If any of the neighbouring Pi-nodes, say Py,
detects this UUID within its zone, ZPy , it will acknowledge the presence of the person to the Pi-node,

Px. This causes the Pi-node, Px to update its Motion Vector Forward,
−−→
MVF = ZPx → ZPy , against the

associated person. Similarly, the Pi-node Py updates its
−−→
MVB = ZPx → ZPy and

−−→
MVF = ZPy → ZPy .

The
−−→
MVF = ZPy → ZPy represents a transition from ZPy to itself. This indicates that the user is

currently in that zone and acts as a presence indicator. Table 1 shows the Motion Vectors at Pi-nodes
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Px and Py after a user transits from zone ZPx to zone ZPy (zone ZPx is assumed to be the very first entry
zone). Here, INFINITY represents that a user is not traceable at any of the zones, and thus can be
considered to be outside of the infrastructure where agent-based LATS is deployed.

Table 1. Motion vectors at Pi (Raspberry Pi)-nodes Px and Py after an inter-zonal transition.

INFINITY → Zone ZPx → Zone ZPy

MVF ZPx → ZPy ZPy → ZPy

MVB INFINITY → ZPX ZPx → ZPy

The UUID and Major-Minor values allow for classifying a particular BLE device wearer.
For example, one can track the faculty members and students in an academic department using
the content within these fields. This makes the database contain finer details and thus allow a range of
queries to be satisfied. As can be seen, the database agent thus manages the database and the Motion
Vectors within the associated Pi-node.

5.1.4. User Interaction Unit (UIU)

This unit provides an interface for the users to access the tracking service of the agent-based LATS.
The interface could be in the form of a mobile app or a Graphical User Interface (GUI) running on
a Pi, a laptop or a PC, all connected to the same network as that of WAU. We have used a Tartarus
instantiation running on a Pi and a laptop to fire queries to the system. To fire a query, a user can
release an agent from the same Tartarus instantiation. The UIU was populated with mobile agent
programs for a set of queries. Since Tartarus facilitates agent programming [10], users and developers
could write custom mobile agent programs for a range of queries and add them to the UIU to improve
its functionality. The code for the agent of the associated query shall be already available with the
Tartarus as part of the UIU.

Querying: A mobile agent serves the purpose of query processing. Since the databases are distributed
over the various Pi-nodes, these mobile agents move from one such node to another and search and
retrieve the information that can satisfy the user’s query. The mobile agent then aggregates the relevant
data concerning the person being tracked and delivers it to the UIU for processing and rendering.
A user wearing the BLE device or a third party may wish to query this LATS to gather a range of
information which include:

1. Where am I?: Such a query invariably emanates from a person who is lost within the building
or does not know how to move around or needs to convey his/her bearings to someone else.
Under such conditions, the user can fire an SQL query packaged in a mobile agent to the nearest
one-hop neighbouring Pi-node. Once the mobile agent enters this Pi-node, it executes its code and
eventually lands up in the Pi-node of the zone in which the person is currently present. The agent
then retrieves the location information stored a priori within this Pi-node and provides it to the
user. A segment of the relevant mobile agent code is presented in Figure 6.

2. Where is X?: A query of this kind is required for a person to know whether X is within the
building under consideration and, if so, where. This agent-based LATS allows for a non-intrusive
mechanism to find the location of X. The user packs this query into a mobile agent and transmits
it onto the Tartarus platform of the closest Pi, the one within the zone s/he is in currently.
On reaching this Pi, the mobile agent scans the database within it to find whether X is/was in
this zone. (i) If it discovers that X is within a particular zone currently, it retrieves the location
information from the Pi-node and backtracks its path to the user’s system and provides the
information on X; (ii) if the agent finds a Motion Vector Forward for X in that zone, then it uses
the vector to find the next zone visited by X and migrates to the concerned Pi-node of this zone.
It continues to do so until it eventually lands in a Pi-node of a zone where X is currently present.
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On reaching this, it retrieves the relevant information and retraces its path back to the user’s
system to provide the information on X. In case X has left the place, the Motion Vector Forward
within the Pi-node in the zone where X was last present will point to INFINITY. The agent would
then assume that X is no more in the area and report accordingly to the user; (iii) if no trace
of X is found in the database, the mobile agent continues its migration along the Pi-nodes in a
conscientious manner [60] (Appendix A) until it eventually finds that X has been within the zone
of some Pi or left the place. It may be noted that a user who wishes to know the bearings of
another can alter his query to extract a range of information on the person being tracked.

3. Trace(X): This query will provide a list of locations associated with all those zones which X visited
in order. The query can again be packed into a mobile agent and sent to the network of Pi-nodes
to search the individual databases and retrieve the list. A mobile agent algorithm to trace the path
of a BLE tag bearer is shown in Algorithm 1 and an example of mobile agent routing for the same
is described in Appendix B.

Result: Path followed by X ; // X is a person whose path is to be traced

Stack S = Empty;
Queue Q = Empty;
while while Path followed by X is not retrieved by Agent ; // Agent continues the search

// until the total path traced by X is found

do

MVF(X) = Motion Vector Forward of X at visited Pi-node, Pv ;
MVB(X) = Motion Vector Backward of X at visited Pi-node, Pv ;
if (MVF(X) = Nil) OR (MVB(X) = Nil) ; // If trace is not found by the agent

then

Select a neighbouring node at random and migrate to it ; // Agent migrates

// to another node

else

if (MVF(X) = ZPv → ZPv ) OR (MVF(X) = ZPv → INFINITY) ; // If agent has found last node

// visited by X

then

insertStack(S , v) ; // Agent inserts the node ID into its internal stack

while X’s starting position is not found do

Use MVB of each earlier visited Pi-nodes to trace back the path;
insertStack(S , Pi-nodes visited before v );

end

Path followed by X = getStack(S);
return Path followed by X ; // Agent returns the path followed by X

else

if (MVF(X) = ZPv → ZPw ); // If Agent finds the intermediate node visited

// by X

then

while X’s starting position is not found do

Use MVB(X) of each earlier visited Pi-nodes to find the start position ;
end

while X’s last/current position is not found do

Use MVF(X) of each next visited Pi-nodes to reach the last/current position ;
insertQueue(Q , Pi-nodes visited from the start position);

end

Path followed by X = getQueue(Q);
return Path followed by X;

else

end

end

end

end

Algorithm 1: An algorithm performed by an agent to trace the path of a BLE tag bearer.
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Figure 6. Mobile Agent code snippet for the query, Where am I?.

6. Experiments and Results

Experiments conducted involved users who were asked to move from one zone to another.
In addition, experiments involving acquisition of raw BLE data were also conducted to get more
insights into the behavior of the device. In subsequent sub-sections, we discuss the experiments
conducted to acquire and store tracking information, which, in turn, are used and processed by mobile
agents to satisfy user queries.

6.1. Data Acquisition

A BLE tag bearer was asked to move back and forth across the radial axis of a Pi-node. The actual
RSS values received at the Pi-node nominally ranged from −40 dBm to +20 dBm (depending upon
the manufacturer, the actual raw RSS values for a BLE device may range from −80 dbm to +25 dbm).
In order to portray the graph in the 1st quadrant for clarity, we biased these values by adding +200 dBm
to each of the data points. Figure 7 shows the biased raw and filtered BLE data taken over a certain
number of sample points. As expected, a trend similar to a sinusoidal wave can be observed in the
figure thereby validating the performance of the BLE. The RSS received from a BLE device is subject to
noise due to various reasons such as multi-path propagation, signal absorption, signal interference,
etc. Based on the analysis by Faragher et al. [61], different filters may be applied to the raw BLE
data. After a series of empirical experimentation on data filtering, it was found that a moving average
filter with a window size of 6 samples at a time provides satisfactory results. Analysis revealed a
rule of thumb that indicates that as the window size increases, the filtered data becomes more stable.
However, this may take more time to produce tracking results. Hence, a compromise needs to be made
in terms of accuracy and reactiveness of the deployed tracking system.

An experiment wherein each user was made to wear a BLE tag and asked to move from one
zone to another in order to obtain their respective tracking profiles was performed. The experiment
was conducted at the ground floor of the Department of Computer Science and Engineering block of
the Indian Institute of Technology Guwahati. Since it is logical to assume that the profile generated
between two consecutive zones can be extended to other such multiple consecutive zones, we describe
herein the inter-zonal movement for a single user. The results portraying a user’s movement within
two zones, ZP1 and ZP2 along with the three regions, beyond, far and near, categorized on the basis of
RSS is shown is shown in Figure 8. As in Figure 7, the y-axis denotes the filtered and biased RSS values
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from the BLE receiver at the Pi-node, while the x-axis indicates the sampling index ranging from 1 to
the number of samples taken at a sampling rate of 1 s.

Figure 7. BLE raw and filtered data.

Figure 8. Graph showing inter-zonal movement for a single BLE tag bearer.

The graph shows two different coloured series each corresponding to the RSS at Pi-node within a
particular zone. The orange coloured series denotes the same for Zone 1 (ZP1 ) while the blue coloured
series indicates that for Zone 2 (ZP2 ). Initially, the user is outside the coverage area of both ZP1 and ZP2 .
As seen from Figure 8, when the user starts moving towards ZP1 , the RSS (orange colour) increases
from sample number 41 onwards and attains a maximum when the user is nearest to the associated
Pi-node of ZP1 . It then starts to decrease as the user moves away from the Pi-node in ZP1 . When the
user enters the periphery of ZP2 , where both the zones overlap to an extent, an increase in the RSS
at ZP2 is observed with a corresponding decrease of the same at ZP1 . A similar pattern is exhibited
when the user moves away from ZP2 to the next neighbouring zone. A similar experiment that was
conducted when the person moved from ZP2 to ZP1 is recorded with ZP2 as entrance zone and ZP1 as
the exit zone. The relevant plots are depicted in the latter part of Figure 8. It may be observed that
there are some random spikes generated due to noise and reflections. Since these peaks cross from the

271



MDPI AG 
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03842-580-9


