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Preface to ”Applications of Fuzzy Optimization and

Fuzzy Decision Making”

During the last decades, fuzzy optimization and fuzzy decision making have gained significant

attention, with researchers aiming to provide robust solutions for complex optimization and decision

problems characterized by non-probabilistic uncertainty, vagueness, ambiguity and hesitation. The

aim of this Special Issue is to expand the applicability of fuzzy optimization and decision making

by applying state-of-the art techniques based on fuzzy technology, computational intelligence

and soft-computing methodologies for solving real-life problems. The response of the scientific

community has been significant, as many papers have been submitted for consideration; finally,

eighteen (18) papers were accepted, after a careful peer-review process based on quality and

novelty criteria.

The paper by Zhang et al. [1] proposes a case-based reasoning method for the judgment of

a debtor’s hidden property analysis, which employs crisp and interval numbers as well as fuzzy

linguistic variables and develops a hybrid similarity measure to improve the efficiency of handling

law enforcement cases.

The paper authored by Wu et al. [2] studies the energy-saving effects brought about by yield

improvement in a factory and proposes a two-stage fuzzy approach to estimate the energy savings.

The actual case of a dynamic random-access memory factory was used to illustrate that product yield

learning can greatly reduce electricity consumption.

The work by Lefevr et al. [3] studied HIV spread with fuzzy-based simulation scenarios

by employing the observation and analysis of real-world networks and by introducing a fuzzy

implementation of epidemic models. The simulation results demonstrate that the existence of

fuzziness plays an important role in analyzing the effects of the disease spread.

In the paper by Yiğit et al. [4], the performance and efficiency of energy supply companies

with respect to productivity is examined with reference to a case study of an electricity distribution

company. The factors and their corresponding weights were determined using the analytical

hierarchy process (AHP) and the fuzzy AHP methods.

In the paper authored by Poczeta et al. [5], the main idea was to systematically create a nested

structure, based on a fuzzy cognitive map (FCM), in which each element/concept at a higher map

level is decomposed into another FCM that provides a more detailed and precise representation of

complex time series data.

Drakopoulos et al. [6] studied cognitive graphs, which are effective tools for simultaneous

dimensionality reduction and visualization in deep learning. In this paper, fuzzy cognitive graphs are

proposed for representing maps with incomplete knowledge or errors caused by noisy or insufficient

observations. The study presents the construction of a cognitive map with a tensor distance metric,

as well as a fuzzy variant of the map.

Wu et al. [7] propose a varying partial consensus fuzzy collaborative intelligence approach

for assessing an intervention strategy for tackling the COVID-19 pandemic. In the varying

partial consensus fuzzy collaborative intelligence approach, multiple decision makers express their

judgments on the relative priorities of factors critical for an intervention strategy.

The paper authored by Kim and Jung [8] proposes an α-level estimation algorithm for

ridge fuzzy regression modeling, addressing the multicollinearity phenomenon in the fuzzy linear

regression setting. By incorporating α-levels in the estimation procedure, a fuzzy ridge estimator that
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does not depend on the distance between fuzzy numbers is constructed.

The paper authored by Čubranić-Dobrodolac et al. [9] aims to examine a relationship between

the speed and space assessment capabilities of drivers associated with the occurrence of road traffic

accidents. The method is based on the implementation of the interval type-2 fuzzy inference systems

(T2FIS) and was tested on empirical data.

The work in the paper authored by Carnero [10] studied segregation in health care waste

management and intended to produce a classification of failure modes. It applied failure mode and

effects analysis (FMEA), by combining an intuitionistic fuzzy hybrid weighted Euclidean distance

operator, and the multi-criteria method Potentially All Pairwise RanKings of all possible Alternatives

(PAPRIKA).

Wu et al. [11] propose the piecewise linear fuzzy geometric mean (PLFGM) approach to improve

the accuracy and efficiency of estimating the fuzzy priorities of criteria. The PLFGM approach was

applied to the identification of critical features for a smart backpack design.

Kokkinos and Karayannis [12] performed a comparative analysis of low-carbon energy planning,

evaluating different multicriteria decision-making methodologies. The methodologies were applied

on a case study in Thessaly Region, Greece. The application of fuzzy goal programming (FGP) ranked

four energy types in terms of feasibility, the stochastic fuzzy analytic hierarchical process (SF-AHP)

evaluated the criteria, and the F-TOPSIS technique assessed these criteria.

The paper authored by Abosuliman et al. [13] examines decision-theoretical rough sets (DTRSs).

The proposed model is based on the loss function of DTRSs. Based on the grade of positive, neutral

and negative membership of fractional orthotriple fuzzy numbers (FOFNs), various methods are

established for addressing the expected loss expressed in the form of FOFNs.

Chiu et al. [14] propose an interval fuzzy number (IFN)-based mixed binary quadratic

programming–ordered weighted average (OWA) approach for forecasting the productivity of a

factory. The methodology has been applied to a real case indicating that it was superior to several

existing methods in terms of various metrics for evaluating the forecasting accuracy.

The paper authored by Pérez [15] examines technological tables in electrical discharge machining

to determine optimal operating conditions for process variables. The study presents a methodology

based on a fuzzy inference system aiming to assist in selecting the most appropriate manufacturing

conditions in advance.

Gavalec et al. [16] aimed to investigate the eigenvectors for maximum and minimum matrices

with interval coefficients. In this study, the properties of EA/AE-interval eigenvectors were

examined and characterized by equivalent conditions. Numerical recognition algorithms working

in polynomial time are described, and the results are illustrated by numerical examples.

Tuan et al. [17] propose a new Mamdani complex fuzzy inference system with rule reduction

using complex fuzzy measures in granular computing (M-CFIS-R) along with fuzzy similarity

measures, which are integrated in the form of granular computing. Experiments on various

decision-making datasets demonstrate that the proposed M-CFIS-R performs better than M-CFIS.

The paper authored by Moslem et al. [18] aims to evaluate and prioritize the significant driver

behavioral factors related to road safety. The suggested method integrates the best–worst method

(BWM) with triangular fuzzy sets for optimizing the complex decision-making problem.

As the Guest Editor of this Special Issue, I am grateful to all the authors who contributed their

articles. I would also like to express my gratitude to all the reviewers for their valuable comments

for the improvement of the submitted papers. The goal of this Special Issue was to attract quality
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and novel papers in the field of “Fuzzy Optimization and Fuzzy Decision Making”. It is hoped that

these selected research papers will be found impactful by the international scientific community and

that these papers will motivate further research on fuzzy techniques for solving complex problems in

various disciplines and application fields.
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4. Yiğit, V.; Demir, N.N.; Alidrisi, H.; Aydin, M.E. Elicitation of the Factors Affecting

Electricity Distribution Efficiency Using the Fuzzy AHP Method. Mathematics 2021, 9, 82,

doi:10.3390/math9010082.
5. Poczeta, K.; Papageorgiou, E.I.; Gerogiannis, V.C. Fuzzy Cognitive Maps Optimization for

Decision Making and Prediction. Mathematics 2020, 8, 2059, doi:10.3390/math8112059.
6. Drakopoulos, G.; Kanavos, A.; Mylonas, P.; Pintelas, P. Extending Fuzzy Cognitive Maps with

Tensor-Based Distance Metrics. Mathematics 2020, 8, 1898, doi:10.3390/math8111898.
7. Wu, H.-C.; Wang, Y.-C.; Chen, T.-C.T. Assessing and Comparing COVID-19 Intervention

Strategies Using a Varying Partial Consensus Fuzzy Collaborative Intelligence Approach.

Mathematics 2020, 8, 1725, doi:10.3390/math8101725.
8. Kim, H.; Jung, H.-Y. Ridge Fuzzy Regression Modelling for Solving Multicollinearity.

Mathematics 2020, 8, 1572, doi:10.3390/math8091572.
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Abstract: Many judgment debtors try to evade, confront, and delay law enforcement using concealing
and transferring their property to resist law enforcement in China. The act of hiding property
seriously affects people’s legitimate rights and interests and China’s legal authority. Therefore, it
is essential to find an effective method of analyzing whether a judgment debtor hides property.
Aiming at the hidden property analysis problem, we propose a case-based reasoning method for the
judgment debtor’s hidden property analysis. In the hidden property analysis process, we present
the attributes of the enforcement case by crisp symbols, crisp numbers, interval numbers, and fuzzy
linguistic variables and develop a hybrid similarity measure between the historical enforcement
case and the target enforcement case. The results show that the recommendations obtained with the
information and knowledge of similar historical cases are consistent with judicial practice, which
can reduce the work pressure of law enforcement officers and improve the efficiency of handling
enforcement cases.

Keywords: law enforcement; case-based reasoning (CBR); similarity measure; hidden property;
judgment debtor

1. Introduction

Due to the influence of the whole society’s low legal consciousness, lack of the social
credit system, imperfections of the property supervision system, and other factors, a large
number of judgment debtors try their best to evade, confront, and delay law enforcement
by concealing and transferring their property and even resort to violent means to resist law
enforcement. In China, valid legal instruments are difficult to implement, and we call it
“difficulty in law enforcement.” The problem of “difficulty in law enforcement” seriously
affects the realization of people’s legitimate rights and interests and promotes credibility
and power of China’s justice. Moreover, the Supreme People’s Court’s statistical data
show that from 2016 to 2018, there were about six million enforcement cases per year on
average, and every law enforcement officer needed to handle about 150 enforcement cases
every year. The existing staffing is far from meeting the needs of judicial enforcement.
Therefore, it is essential to study an effective method to analyze whether a judgment
debtor hides property, which improves the efficiency of enforcement cases and reduces law
enforcement costs.

The decision whether hidden property analysis of a judgment debtor is needed mainly
relies on the law enforcement officers’ own case handling experience to judge whether
the judgment debtor has concealed property. Still, the process of handling cases is often
restricted by subjective and objective factors such as information asymmetry and personal
prejudice. Besides, hidden property analysis information comes from the Supreme People’s

Mathematics 2021, 9, 1559. https://doi.org/10.3390/math9131559 https://www.mdpi.com/journal/mathematics
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Court’s inspection and control system. The system is connected with the Ministry of Public
Security, the Ministry of Transport, the People’s Bank of China, and banking financial
institutions. It can include the real estate, deposits, ships, vehicles, and other judgment
debtor information. It can cover the main property forms and relevant information on the
judgment debtor. The existing inspection and control system involves various data forms,
such as crisp symbols, crisp numbers, interval numbers, and fuzzy variables. For example,
the gender of the judgment debtor is male or female, expressed as a crisp symbol, and
the annual income is a crisp number. When describing the value of the attribute “frozen
property,” it is impossible to accurately estimate the exact amount of frozen property such
as houses and vehicles according to the market value. Generally, an interval value is more
reasonable than describing the attribute by a crisp number. Meanwhile, considering there
are no unified quantitative methods to express attributes such as credibility, consumption
level, and work, fuzzy linguistic variables provide a suitable tool for presenting the attribute
values given by expert judges. Thus, fuzzy logic is implemented to express the imprecision
and vagueness of the enforcement cases’ attributes.

The existing method of hidden property analysis has four aspects of characteristics
and is shown as follows. Firstly, there is no unified and feasible method to facilitate the
operation in the decision-making process of enforcement cases; it mainly depends on
the law enforcement officers’ experience to deal with enforcement cases. Secondly, law
enforcement officers are under high pressure and have to deal with many enforcement
cases. Therefore, there is no effective analysis method to preliminarily judge the possibility
of concealment of the judgment debtor’s property. It is impossible to find out the hidden
property of a judgment debtor. Thirdly, the existing inspection and control system involves
various forms of data, such as text data, crisp symbols, crisp numbers, interval numbers,
and fuzzy variables. Fourthly, it mainly depends on the law enforcement officers to screen
the data, which need to be processed quantitatively.

We developed a case-based reasoning (CBR) approach to hidden property analysis
of a judgment debtor through the above analysis. CBR is a methodology that imitates
the reasoning and thinking process of human beings. It mainly uses specific knowledge
of historical cases to solve new problems by searching for historical cases similar to new
problems, which provides a useful technology for analyzing the possibility of property
hidden by a judgment debtor. The main idea of the CBR approach to hidden property
analysis is to extract the experience of historical enforcement cases to analyze whether
the judgment debtor has concealed property or not. Specifically, the significant attributes
of the historical enforcement case and the target enforcement case, such as credibility
and consumption level, are presented. Then, the hybrid similarity between the historical
enforcement case and the target enforcement case are calculated. Moreover, the hybrid
similarity is used to extract several similar historical enforcement cases with reference
significance for the target enforcement case. The historical case set’s empirical knowledge
helps to analyze and assess whether the judgment debtor conceals property in the target
enforcement case. The case reasoning process is shown in Figure 1.

The contributions of our work are as follows. Firstly, we develop the framework of
CBR-based hidden property analysis of a judgment debtor which provides a fast and useful
tool to analyze the possibility of the property concealed by a judgment debtor. It solves
the decision-making problem of the target enforcement case according to the experience
of historical cases, assists law enforcement officers in finding out the hidden property of
judgment debtors, and improves the accuracy and efficiency of the enforcement cases’
judgments. Secondly, in the enforcement case presentation process, we use four types of
data transformed from the Supreme People’s Court’s inspection and control system: crisp
symbols, crisp numbers, interval numbers, and fuzzy linguistic variables. Thirdly, we
propose a hybrid similarity measure method including the four types of data, which is
simple and effective. Finally, we give the optimal recommendations for hidden property
analysis, including the four types of data in CBR, not just case retrieval.
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Figure 1. Flowchart of CBR for hidden property analysis of judgment debtors.

The rest of our work is constructed as follows. Section 2 reviews some related literature
about hidden property analysis and CBR. Section 3 develops a CBR model for hidden
property analysis of a judgment debtor. The framework of the CBR-based model for hidden
property analysis, enforcement case presentation, a measure of hybrid similarity between
a historical case and the target case, extraction of similar historical cases, and generation
of recommendations are introduced. Section 4 provides a case study concerning hidden
property analysis of a judgment debtor. Some conclusions are presented in Section 5.

2. Literature Review

At present, China is still in the primary stage of socialism. There are some prob-
lems, such as weak awareness of the rule of law, lack of social integrity, severe lag in the
implementation of the legal system, laws and regulations, resulting in the phenomenon
of “difficulty in law enforcement.” The problem of “difficulty in law enforcement” se-
riously affects the social harmony and stability, the fairness and justice of the law, and
the authority of justice, which the society is widely concerned about. Hidden property
analysis of a judgment debtor acts as an essential link to solve the problem of “difficulty in
law enforcement.”

Scholars have been paying more attention to the use of computers and information
technology to detect fraud and money laundering of criminal suspects. Bell [1] analyzed
and summarized the cases of concealment or transfer of property in the United States.
Meanwhile, billions of dollars of losses are caused by credit card transaction fraud every
year in the United States; the key to reducing these losses is to study practical fraud de-
tection algorithms. In the face of the characteristics of nonstationary distribution, high
imbalance, and dispersion of data, Dal Pozzolo et al. [2] developed a credit fraud detection
approach based on the machine learning technology to assist fraud investigators. However,
there is still no public dataset on the credit card fraud that can be used to test the effec-
tiveness of the algorithm. For online payment fraud, van Vlasselaer et al. [3] proposed an

3
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extended method for detecting fraudulent credit card transactions at online stores. The
method mainly adopts the basic principle of RFM (recency, frequency, monetary), combines
the characteristics of transaction behavior and the internal characteristics of historical
customer transaction data, and verifies the algorithm through online transaction data. The
results show that the algorithm considers transaction behavior characteristics and customer
history and has a better prediction effect than other methods. Based on the financial trans-
action data, the Polish police identified the money laundering mode of a criminal suspect.
Based on the case handling experience of the Polish police, Dreżewski et al. [4] developed
a set of money laundering detection systems using the Apriori algorithm, the PrefixSpan
algorithm, the FP growth algorithm, and the Eclat algorithm. They visualized the analysis
results, which were used to detect the capital flow of criminal suspects to assist in polishing
police investigations of money laundering crimes. Van Vlasselaer et al. [5] put forward
a time-weighted network algorithm to identify enterprises that evade paying taxes and
intentionally go bankrupt. The results show that the recognition accuracy of the algorithm
is as high as 55%. Aiming at fraud in electronic payments, Carcillo et al. [6] proposed an
extensible real-time fraud detection system which combines big data tools (Kafka, Spark,
and Cassandra) with the machine learning method. The method can solve the problems of
imbalance, instability, and feedback delay. The experimental results on a large number of
original credit transaction datasets show that the framework can effectively detect fraud
in a large number of credit card transactions. Recently, some researchers have focused on
judgment debtors. Zhang et al. [7] analyzed the possibility of law enforcement on the basis
of the judgment debtor’s credibility and number of transferred assets and constructed a
hybrid TODIM framework to assess which the judgment debtor is more likely to repay the
debt. Wu et al. [8] used a hesitant fuzzy linguistic distance method to measure whether the
judgment debtor conceals property. He et al. [9] developed a novel probabilistic linguis-
tic three-way multi-attribute decision-making method to analyze whether the judgment
debtor features a concealing property behavior and ways of concealing property.

From the above analysis, a set of feasible and practical models and methods have
not been formed to solve the problem of hidden property analysis of a judgment debtor.
The primary purpose of hidden property analysis of a judgment debtor is to quickly and
effectively assess whether the judgment debtor is likely to conceal their property. It is more
efficient to extract a set of similar historical enforcement cases using the CBR technology
to decide whether the judgment debtor has hidden property. The CBR technology is a
useful tool to solve such problems. The main idea of the model is to analyze and assess
whether the judgment debtor is likely to conceal property by extracting similar case sets
from the historical enforcement case database. For complex problems with characteristics
that are challenging to express and inability of establishing mathematical models, the CBR
method has a perfect effect on solving such problems by imitating the human reasoning and
thinking process [10–14]. So far, the research on CBR has mainly focused on the research
framework and the calculation method of the similarity measure.

In the research of the CBR research framework, Wei and Dai [15] expressed the uncer-
tainty of emission characteristics of traffic pollution sources by interval-valued intuitionistic
fuzzy sets. They put forward the framework of traffic emission prediction based on the CBR
method. Facing case presentation with mixed multiformat attribute values, Zheng et al. [16]
transformed crisp numbers, interval numbers, and multigranularity linguistic variables
into intuitionistic fuzzy numbers to present the attributes of gas explosion accidents and
developed a new hybrid multi-attribute case retrieval method to extract similar historical
cases. Construction risk identification mostly depends on expert knowledge or prior knowl-
edge of the project. Somi et al. [17] introduced a new risk identification framework for
renewable energy projects based on CBR. In the CBR model, fuzzy logic is used to describe
the uncertainty in the process of risk identification, and similar historical renewable energy
projects are extracted, which is conducive to improving the level of risk management in
the construction stage. Cai et al. [18] established a case base, extracted the features of
EEG, and established a CBR method for depression recognition, and the accuracy rate of
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the developed CBR approach is 91.25%. Hu et al. [19] point out that CBR is widely used
in engineering cost estimation, project bidding, bidding procurement, environment and
sustainable management. Pla et al. [20] developed a distributed medical diagnosis decision
support tool by using the CBR method, which significantly improved the efficiency of
medical diagnosis under joint operation. El-fakdi et al. [21] used CBR to evaluate the case
specificity in complex surgery or minimally invasive surgery and used 82 patients with
aortic valve implantation in the Affiliated Hospital of Renne University as samples for
demonstration. Ramos et al. [22] proposed a CBR framework based on gradient boosting
feature selection and applied it to the differential diagnosis of squamous cell carcinoma
and adenocarcinoma to improve the accuracy of diagnosis. The generalization ability of the
method was verified by training and evaluating two independent datasets. To simulate the
memory process of the human brain, Herrero [23] introduced a bottom-up CBR-learning
framework and trained a group of cooperative/competitive reaction behaviors of the Aibo
robot in the RoboCup environment to test the effectiveness of the proposed framework.

Similarity measure plays a significant role in CBR, which directly affects the accuracy
of analysis results. In the research of similarity measure, Gilboa et al. [24–26] proposed that
the similarity of cases mainly consists of average similarity and action similarity, considered
the decision scheme by pairing the problem with the decision scheme, and introduced the
weighted utility function to test the consistency of the preference order. Caramuta et al. [27]
divided the complex decision-making problem into several nodes and obtained similarity
of the decision-making problem using the graph theory method. To express the uncertainty
of features in cases, Fan et al. [28,29] developed a comprehensive similarity measure to
solve the problem of data diversification in the CBR method. The data types included
crisp numbers, interval numbers, intuitionistic fuzzy numbers, hesitant fuzzy numbers,
interval type-2 fuzzy numbers. Besides, Zhang et al. [30–34] introduced some similarity
measures for the fuzzy environment. Chergui [35] studied the semantic similarity method
in the community question-answering system and proposed a semantic Bayesian reasoning
method for the semantic uncertainty implied in a natural language text, which had an
excellent experimental effect in the community question-answering system.

Considering the advantages of the CBR method in solving complex decision-making
problems, the CBR method has been extended to the legal field. Through the analysis and
summary of users’ transaction behavior, Adedoyin [36] proposed an improved CBR method
for mobile remittance fraud detection, trying to detect abnormal patterns in transactions.
The performance of this method is better than that of the single feature method. To solve the
problem of employee information leakage, Boehmer [37] proposed a method of employee
behavior identification based on the CBR technology, directed acyclic graphs, and the
Hamming similarity measure. To crack down on illegal immigration, Chang [38] put
forward a method combining CBR and expert systems to classify and analyze the patterns
of illegal smuggling and restore the investigation system of cracking down on illegal
smuggling. Han et al. [39] extracted the characteristics of network crime and used the CBR
technology to identify hackers.

Although significant achievements have been reached in the existing research, there
are still some areas to be improved.

(1) So far, there is no research on hidden property analysis of a judgment debtor. Consid-
ering the complex and changeable decision-making environment, the difficulty in fea-
ture extraction, and the difficulty in establishing a decision-making model, it is urgent
to study a fast and effective method of analyzing the possibility of hidden property.

(2) In the process of case presentation, attribute values are mainly expressed by crisp
numbers. With the diversification of data types, the existing case presentation in CBR
cannot satisfy the needs of case presentation. It is necessary to fully consider various
forms of data, such as crisp symbols, crisp numbers, interval numbers, and fuzzy
linguistic variables.

(3) The similarity measure in CBR considers one data type or two and has no considera-
tion on various types of data.
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(4) The existing CBR research has focused on case retrieval and cannot provide recom-
mendations.

3. CBR Approach to Hidden Property Analysis of a Judgment Debtor

3.1. The Framework of the CBR-Based Hidden Property Analysis of a Judgment Debtor

In this section, we introduce the research framework of hidden property analysis
of a judgment debtor based on CBR, as shown in Figure 2. The research framework
consists of two parts: the research content and the relevant theoretical methods, which
are placed on the left and right sides of the frame diagram, respectively. The research
content includes the preparation stage and the stage of hidden property analysis. In the
preparation stage, we prepare the current hidden property analysis problem and regard
it as the target case. Besides, we collect some similar enforcement cases and regard them
as historical cases. The stage of hiding possibility analysis mainly includes four steps:
(1) case presentation structurally presents the attributes of the target case and the historical
case; (2) hybrid similarity measure calculation of the similarity measure under various
attributes represented by different types of data between the target case and the historical
case and aggregation thereof to form the hybrid similarity measure; (3) extraction of similar
historical enforcement cases, ination of the similarity threshold, and selection of a historical
enforcement case set with high similarity based on the threshold value; (4) generation
of a recommendation regarding the hidden property analysis problem according to the
extracted similar historical enforcement cases and decision whether the judgment debtor
may be concealing their property.

Figure 2. The framework of CBR for hidden property analysis of a judgment debtor.

3.2. Enforcement Case Presentation

In the process of hidden property analysis of a judgment debtor, case presentation
mainly presents the historical enforcement cases and the target enforcement case according
to a specific format, which provides the basis for the CBR process. Therefore, the appropri-
ate and effective case presentation is essential for hidden property analysis. An appropriate
case presentation method can improve the efficiency of extracting historical enforcement
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cases and enhance the accuracy of the results of hiding property analysis. The enforcement
case presentation is as follows:

The CBR-based hidden property analysis approach includes historical enforcement
cases and target cases. The case can be presented as “Case = {Enforcement case situation,
hidden property analysis result}.”

Case: C = {C1, C2, . . . , Cn} and C0 represent the set of historical enforcement cases
and the target enforcement case, respectively, where Ci represents the ith historical enforce-
ment case, i ∈ N = {1, 2, . . . , n}. In the target case C0, the result of hidden property
analysis is unknown, which needs to be solved by the proposed method.

Enforcement case situation: Let Q = {Q1, Q2, . . . , Qm}, q0 = {q01, q02, . . . , q0m},
qi = {qi1, qi2, . . . , qim} be the collection of the attributes of enforcement cases, historical en-
forcement cases, and target enforcement cases, respectively, where Qj, qij, q0j, respectively,
represent the jth attribute of enforcement cases, historical enforcement cases, and target
enforcement cases, j ∈ M = {1, 2, . . . , m}. Let wP =

{
wP

1 , wP
2 , . . . , wP

m
}

be the weight
vector of the attributes of the enforcement case, where wP

j is the weight of the jth attribute
of the enforcement case.

Meanwhile, the attribute values of target enforcement cases q0j and the attribute
of historical enforcement cases qij can be expressed in the form of crisp symbols, crisp
numbers, interval numbers, and fuzzy linguistic variables. For example, when the attribute
is “gender”, the value can be expressed as male or female. The value of the attribute
“annual income” can be expressed as a crisp number. When describing the value of the
attribute “frozen property,” it is impossible to accurately estimate the exact amount of
frozen property such as houses and vehicles. An interval value is more reasonable than
describing the attribute by a crisp number. Meanwhile, considering there are no unified
quantitative methods to express attributes such as credibility, consumption level, and work,
fuzzy linguistic variables provide a suitable tool for presenting the attribute values given
by the expert judges.

To distinguish between different data types, the attribute set of the enforcement case
includes four subsets: crisp symbol attribute set QI , crisp number attribute set QII , interval
number attribute set QIII , and fuzzy linguistic variable attribute set QIV , satisfying Q = QI ∪
QII ∪ QIII ∪ QIV , where QI = {Q1, Q2, . . . , Qm1}, QII =

{
Qm1+1, Qm1+2, . . . , Qm2

}
,

QIII =
{

Qm2+1, Qm2+2, . . . , Qm3

}
, QIV =

{
Qm3+1, Qm3+2, . . . , Qm

}
, and the corre-

sponding subscript sets are MI = {1, 2, . . . , m1}, MII = {m1 + 1, m1 + 2, . . . , m2},
MIII = {m2 + 1, m2 + 2, . . . , m3}, MIV = {m3 + 1, m3 + 2, . . . , m}, satisfying MI ∪MII ∪
MIII ∪ MIV = M.

Hidden property analysis result: Let D = {D1, D2, . . . , Dh} be the attribute set of
the results of hidden property analysis, where Dl represents the lth attribute of the result,
l ∈ H = {1, 2, . . . , h}. Let di = {di1, di2, . . . , dih} and d0 =

{
d0,1, d0,2, . . . , d0,h

}
be the

eigenvalue vectors of the judgment results of the hidden property of historical enforcement
case Ci and target enforcement case C0, then d0 =

{
d0,1, d0,2, . . . , d0,h

}
needs to be solved

in the problem.
To sum up, the presentation of historical enforcement case Ci and target enforcement

case C0 is shown in Table 1, in which X represents the results of hidden property analysis
in target enforcement case C0.

Table 1. Presentation of historical enforcement cases Ci and target enforcement case C0.

Attributes of the Enforcement Case Situation Attributes of the Results of
Hidden Property AnalysisQI . . . QIV

Q1 Q2 . . . Qm1 . . . Qm3 Qm3+1 . . . Qm D1 D2 . . . Dh

C1 q11 q12 . . . q1m1 . . . q1m3 q1m3+1 . . . q1m d11 d12 . . . d1h
C2 q21 q22 . . . q2m1 . . . q2m3 q2m3+1 . . . q2m d21 d22 . . . d2h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cn qn1 qn2 . . . qnm1 . . . qnm3 qnm3+1 . . . qnm dn1 dn2 . . . dnh
C0 q01 q02 . . . q0m1 . . . q0m3 q0m3+1 . . . q0m X

7
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3.3. Hybrid Similarity Measure between Historical Enforcement Cases and the Target
Enforcement Case

In enforcement cases, the attribute values mainly include four data types: crisp
symbols, crisp numbers, interval numbers, and fuzzy linguistic variables. The similarity
measures of different data types are also different. Here, we introduce the similarity
measures of attribute values of the four different data types.

(1) Crisp symbols

When the attribute value is a crisp symbol, that is, Qj ∈ QI , all the possible values
of the attribute can be provided by a simple enumeration method. For example, when
the attribute is “gender,” the value can be expressed as male or female. Let qI

ij, qI
0j be

the attribute values of historical enforcement case Ci and target enforcement case C0,
respectively, represented by crisp symbols; then, similarity measure sim(C0, Ci) under
attributes QI between historical enforcement case Ci and target enforcement case C0 is
defined as follows:

sim(C0, Ci) =

{
1, qI

ij = qI
0j,

0, qI
ij �= qI

0j,
i ∈ N, j ∈ MI (1)

(2) Crisp numbers

When the attribute value is a crisp number, that is, Qj ∈ QII , if qII
ij , qII

0j are, respectively,
the attribute values of historical enforcement case Ci and target enforcement case C0
represented by the crisp number, the calculation formula of the different degree under
attribute QII between historical enforcement case Ci and target enforcement case C0 is
as follows.

δ
(

qII
ij , qII

0j

)
=

1
ΔI Imax

j

√(
qII

ij − qII
0j

)2
, i ∈ N, j ∈ MII (2)

where ΔI Imax
j = max

{√(
qII

ij − qII
0j

)2
|i ∈ N

}
, δ
(

qII
ij , qII

0j

)
∈ [0, 1].

Under attribute QII , similarity measure sim(C0, Ci) between historical enforcement
case Ci and target enforcement case C0 is based on the distance measure considering the
reflexivity, symmetry, and other properties of the similarity and constructed using the
negative exponential function [40–42]. Therefore, the calculation formula is as follows:

sim(C0, Ci) = exp
[
−δ
(

qII
ij , qII

0j

)]
, i ∈ N, j ∈ MII (3)

(3) Interval numbers

When the attribute value is an interval number, that is, Qj ∈ QIII , the interval number
has certain advantages in describing the uncertainty of the attribute value. For example,
when representing the attribute value of “frozen property,” the specific amount of frozen
property, such as houses and vehicles, cannot be accurately estimated according to the
market circulation value. Generally, the attribute value is expressed with an interval
number, which is more reasonable than the crisp number. Suppose qII I

ij and qII I
0j are the

attribute values of historical enforcement case Ci and target enforcement case C0 expressed
by interval numbers, where qII I

ij =
[
qij, qij

]
, qII I

0j =
[
q0j, q0j

]
; then, the calculation formula

of the different degree between historical enforcement case Ci and target enforcement case
C0 is as follows:

δ
(

qII I
ij , qII I

0j

)
=

1
ΔI I Imax

j

√(
qII I

ij − qII I
0j

)2
+
(

qII I
ij − qII I

0j

)2
, i ∈ N, j ∈ MIII (4)
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where ΔI I Imax
j = max

{√(
qII I

ij − qII I
0j

)2
+
(

qII I
ij − qII I

0j

)2
|i ∈ N

}
, δ
(

qII I
ij , qII I

0j

)
∈ [0, 1].

Under attribute QIII , similarity measure sim(C0, Ci) is as follows:

sim(C0, Ci) = exp
[
−δ
(

qII I
ij , qII I

0j

)]
, i ∈ N, j ∈ MIII (5)

(4) Fuzzy linguistic variables

When the attribute values are fuzzy linguistic variables, that is, Qj ∈ QIV , fuzzy lin-
guistic variables have certain advantages in the expression of uncertainty and fuzziness of
the attribute values. For example, there is no unified quantitative standard for the attribute
“credibility,” and fuzzy linguistic variables such as “poor,” “medium,” and “good” are usu-
ally used. Suppose that qIV

ij and qIV
0j are the attribute values of historical enforcement case

Ci and target enforcement case C0 represented by fuzzy triangular numbers, respectively,
where q̃IV

ij =
(

da
ij, db

ij, dc
ij

)
, q̃IV

0j =
(

da
0j, db

0j, dc
0j

)
. Different degree δ

(
qIV

ij , qIV
0j

)
between

historical enforcement case Ci and target enforcement case C0 is as follows:

δ
(

qIV
ij , qIV

0j

)
=

1
Δ̃max

j

√(
qa

ij − qa
0j

)2
+
(

qb
ij − qb

0j

)2
+
(

qc
ij − qc

0j

)2
, i ∈ N, j ∈ MIV (6)

where Δ̃max
j = max

{√(
qa

ij − qa
0j

)2
+
(

qb
ij − qb

0j

)2
+
(

qc
ij − qc

0j

)2
|i ∈ N

}
, δ
(

qIV
ij , qIV

0j

)
∈

[0, 1].
Under attribute QIV , similarity measure sim(C0, Ci) is

sim(C0, Ci) = exp
[
−δ
(

qIV
ij , qIV

0j

)]
, i ∈ N, j ∈ MIV (7)

(5) Calculate the hybrid similarity measure between historical enforcement cases and the
target enforcement case

Using Equations (1)–(7), similarity measure simj(C0, Ci) of attribute Qj between his-
torical enforcement case Ci and target enforcement case C0 can be obtained, and the hybrid
similarity measure can be obtained by aggregating similarity measure simj(C0, Ci) of at-
tribute Qj.

Suppose that Sim(C0, Ci) is the hybrid similarity measure between historical enforce-
ment case Ci and target enforcement case C0; then, the calculation formula of the hybrid
similarity measure is as follows:

Sim(C0, Ci) =

M
∑

j = 1
simj(C0, Ci)wj

M
∑

j = 1
wj

(8)

Obviously, Sim(C0, Ci) ∈ [0, 1] and the larger Sim(C0, Ci), the higher the similarity
between historical case Ci and target case C0.

3.4. Extraction of Similar Historical Enforcement Cases

Usually, similar historical enforcement cases are extracted by the hybrid similarity
measure. The higher the hybrid similarity measure between a historical case and the
target case, the more referential it is to the target case. Therefore, it is necessary to extract
historical enforcement cases and construct a set of similar historical cases. To obtain a more
reasonable similar historical case set, we need to set the hybrid similarity threshold.

9
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Let τ be the similarity threshold, then the calculation formula of similarity threshold
τ, according to the principle in [28], is defined as follows:

τ = Sim(+) − Sim(+) − Sim(−)

3
(9)

where Sim(+) = max{Sim(C0, Ci)|i ∈ N }, Sim(−) = min{Sim(C0, Ci)|i ∈ N }.
When Sim(C0, Ci) > τ, it means that the historical enforcement case has a high similar-

ity with the target enforcement case and can be used for reference, so historical enforcement
cases with high similarity are extracted. According to this principle (Equation (9)), all the
historical enforcement cases greater than similarity threshold τ are extracted, and set CSim

of similar historical enforcement cases is constructed as follows:

CSim =
{

Ci

∣∣∣i ∈ NSim
}

(10)

where NSim = {i|Sim(C0, Ci) > τ , i ∈ N}, NSim being the subscript set of similar historical
enforcement cases with vital reference significance. Obviously, CSim ⊂ C, NSim ⊂ N.

3.5. Generation of Recommendations for Hidden Property Analysis

As a result of hidden property analysis, the attribute value can be composed of crisp
symbols, crisp numbers, interval numbers, or fuzzy linguistic variables. When the attribute
value is a crisp symbol, the most frequent opinion is considered the recommendation
opinion. For example, among the five similar enforcement cases extracted, in four of the
extracted cases, the judgment debtors concealed property. In one of the extracted cases the
judgment debtor had no hidden property. Therefore, we can judge that the judgment debtor
in the target case also concealed their property. When the attribute value is a crisp number,
an interval number, or a fuzzy linguistic variable, the attribute of the recommendation of
hidden property analysis is aggregated with the attribute values from similar enforcement
cases, and the weight of each similar historical case is converted using the hybrid similarity
measure. The calculation method of the attribute value as a result of hidden property
analysis in the target enforcement case is as follows:

(1) If attribute value d0l of the result of hidden property analysis is a crisp symbol,
attribute value d0l is defined as follows

d0l =

{
dkl

∣∣∣∣k =

{
i
∣∣∣∣max

i
(Sim(Ci, C0)), i ∈ NSim

}}
(11)

(2) If attribute value d0l of the results of the analysis of the possibility of hidden
property is a crisp number, an interval number, or a fuzzy linguistic variable, attribute
value d0l is defined as follows:

d0l =

i = NSim

∑
1

dilSim(Ci, C0)

i = NSim

∑
i

Sim(Ci, C0)

(12)

To sum up, the steps of the CBR approach for hidden property analysis of a judgment
debtor are as follows:

Step 1: calculate similarity measure sim(Ci,C0) of attribute Qj between historical
enforcement cases Ci and target enforcement case C0 using Equations (1)–(7).

Step 2: give the weight vector W of the attributes of the enforcement case situation.
Step 3: calculate hybrid similarity measure Sim(Ci,C0) between historical enforcement

cases Ci and target enforcement case C0, using Equation (8).
Step 4: ensure similarity threshold τ with Equation (9).

10
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Step 5: extract historical cases with vital reference significance according to the extrac-
tion rules of similar enforcement cases (Equation (10)) and construct set CSim of similar
historical enforcement cases.

Step 6: using Equation (11) or (12), calculate attribute value d0l of the results of hidden
property analysis and give optimal recommendation.

4. Case Study

4.1. The Process of Hidden Property Analysis

The CBR-based approach is a useful tool to extract similar historical cases and use the
information and knowledge of similar historical cases to generate the recommendation of
the target enforcement case effectively. To improve the efficiency of handling enforcement
cases, we took the decision-making of enforcement cases as an example to demonstrate
effectiveness of the proposed method.

Considering that a judgment debtor is the subject of the enforcement case, we selected
some features of the judgment debtor as the attributes of the enforcement case, including
gender (Q1), age (Q2), annual income (Q3, 10,000 yuan/year), frozen property/enforcement
target amount (Q4), educational background (Q5), comprehensive family strength (Q6),
work nature (Q7), transaction behavior (Q8), consumption level (Q9), and credibility (Q10).
The data types of each attribute are shown in Table 2. For fuzzy linguistic variables, the
linguistic term set used is shown in Table 3. W = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)T

is the weight of the attributes of enforcement cases given by the experts. We collected 15
historical cases (C1, C2, . . . , C15) shown in Table 4.

Table 2. The meanings of the attributes and their corresponding data types.

Attributes Meanings of Attributes Data Type of the Attributes

Q1 Gender Crisp symbol
Q2 Age Crisp number
Q3 Annual income Crisp number
Q4 Frozen property/enforcement target Interval number
Q5 Educational background Fuzzy linguistic variable
Q6 Comprehensive family strength Fuzzy linguistic variable
Q7 Work Fuzzy linguistic variable
Q8 Trading behavior Fuzzy linguistic variable
Q9 Consumption level Fuzzy linguistic variable
Q10 Credibility Fuzzy linguistic variable

Table 3. Linguistic terms of fuzzy linguistic variables and their corresponding triangular fuzzy numbers.

Linguistic
Terms

Educational
Background

Comprehensive
Family

Strength
Work

Trading
Behavior

Consumption
Level Credibility

Corresponding
Triangular

Fuzzy Number

s0 - Extremely
bad

Extremely
unstable

Extremely
risk

preference

Extremely
high

Extremely
bad (0, 0, 0.17)

s1
Middle school

degree Very bad Very unstable Very high risk
preference Very high Very bad (0, 0.17, 0.33)

s2
High school

degree Bad Unstable Risk
preference High Bad (0.17, 0.33, 0.5)

s3
Senior college

degree Medium Medium Medium Medium Medium (0.33, 0.5, 0.67)

s4
Bachelor’s

degree Good Stable Risk-averse Low Good (0.5, 0.67, 0.83)

s5
Master’s
degree Very good Very stable Very

risk-averse Very low Very good (0.67, 0.83, 1)

s6
Doctor’s
degree

Extremely
good

Extremely
stable

Extremely
risk-averse

Extremely
low

Extremely
good (0.83, 1, 1)
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Table 4. Attribute value Qj of historical enforcement cases Ci and target enforcement case C0.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Recommendation

C1 M 52 15.6 [0.00, 0.00] s4 s3 s2 s2 s2 s3 D1
C2 M 28 10.3 [0.05, 0.15] s2 s3 s2 s3 s2 s2 D1
C3 M 32 12.1 [0.10, 0.14] s4 s4 s3 s2 s3 s3 D1
C4 M 46 17.5 [0.00, 0.12] s5 s4 s4 s4 s4 s4 D3
C5 M 57 7.6 [1.30, 1.40] s3 s5 s2 s1 s1 s2 D3
C6 M 39 12.3 [0.00, 0.06] s4 s4 s3 s3 s3 s2 D1
C7 M 32 13.5 [0.05, 0.11] s4 s3 s4 s3 s3 s3 D1
C8 M 36 10.6 [0.01, 0.01] s3 s2 s3 s2 s2 s2 D2
C9 M 41 5.0 [0.02, 0.02] s2 s3 s1 s2 s1 s2 D2
C10 M 44 13.0 [0.00, 0.08] s3 s2 s3 s2 s2 s2 D1
C11 M 43 4.7 [0.01, 0.01] s1 s2 s1 s1 s0 s1 D2
C12 M 48 16.1 [0.10, 0.20] s5 s2 s5 s4 s4 s4 D1
C13 F 33 8.7 [0.05, 0.09] s3 s3 s2 s2 s2 s2 D1
C14 F 35 12.5 [1.20, 1.28] s3 s5 s3 s4 s3 s3 D3
C15 F 42 10.5 [0.20, 0.24] s4 s4 s4 s3 s4 s3 D1

C0 M 41 12.0 [0.05, 0.15] s3 s3 s2 s3 s3 s2 -

Remark: “M” represents male and “F” represents female.

For target enforcement case C0, the judgment debtor was 41 years old, male; the
detailed information of the judgment debtor is shown in Tabel 4. We assessed whether the
judgment debtor concealed property or not by calculating the hybrid similarity measure
between the target enforcement case and historical enforcement cases. The recommendation
of hidden property analysis mainly includes the judgment debtor’s refusal to perform the
legal instrument by hiding property (D1), the judgment debtor’s lack of ability to perform
the legal instrument (D2), and the judgment debtor’s performance of the legal instrument
(D3). The information on the attributes of historical enforcement cases and the target
enforcement case are shown in Table 4.

According to the above information, hidden property analysis of the judgment debtor
in the target enforcement case was carried out, and the steps were as follows:

Step 1: using Equations (1)–(7), calculate similarity measure sim(Ci, C0) under each
attribute Qj between historical enforcement cases Ci and target enforcement case C0, as
shown in Table 5.

Table 5. Similarity measures of attribute Qj between historical enforcement cases Ci and target
enforcement case C0.

sim(Ci,C0) Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

C1 1.00 0.50 0.61 1.00 0.61 0.92 1.00 0.61 0.72 0.61
C2 1.00 0.44 0.61 1.00 0.79 1.00 1.00 1.00 0.72 1.00
C3 1.00 0.57 0.61 0.61 0.99 0.98 0.72 0.61 1.00 0.61
C4 1.00 0.73 0.37 0.61 0.47 0.97 0.51 0.61 0.72 0.37
C5 1.00 0.37 1.00 0.37 0.55 0.37 1.00 0.37 0.51 1.00
C6 1.00 0.88 0.61 0.61 0.96 0.95 0.72 1.00 1.00 1.00
C7 1.00 0.57 0.61 1.00 0.81 0.98 0.51 1.00 1.00 0.61
C8 1.00 0.73 1.00 0.61 0.83 0.93 0.72 0.61 0.72 1.00
C9 1.00 1.00 0.61 1.00 0.38 0.94 0.72 0.61 0.51 1.00
C10 1.00 0.83 1.00 0.61 0.87 0.95 0.72 0.61 0.72 1.00
C11 1.00 0.88 0.37 0.61 0.37 0.93 0.72 0.37 0.37 0.61
C12 1.00 0.65 0.37 0.61 0.57 0.96 0.37 0.61 0.72 0.37
C13 0.37 0.61 1.00 1.00 0.64 0.98 1.00 0.61 0.72 1.00
C14 0.37 0.69 1.00 0.37 0.93 0.40 0.72 0.61 1.00 0.61
C15 0.37 0.94 0.61 0.61 0.81 0.91 0.51 1.00 0.72 0.61

Step 2: calculate hybrid similarity measure Sim(Ci, C0) between historical enforce-
ment cases Ci and target enforcement case C0 using Equation (8) as shown in Table 6.
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The results show that historical case C6 was the most similar to target enforcement
case C0, Sim(C6, C0) = 0.87. The second and third similar cases were C2 and C10,
Sim(C2, C0) = 0.86, Sim(C10, C0) = 0.83, and the most dissimilar cases were C11 and C12,
Sim(C11, C0) = Sim(C12, C0) = 0.62.

Table 6. Hybrid similarity measure Sim(Ci,C0) between historical enforcement cases Ci and target
enforcement case C0.

Similarity Measure
Historical Cases

C1 C2 C3 C4 C5 C6 C7 C8

Sim(Ci,C0) 0.76 0.86 0.77 0.63 0.65 0.87 0.81 0.81

Similarity Measure
Historical Cases

C9 C10 C11 C12 C13 C14 C15

Sim(Ci,C0) 0.78 0.83 0.62 0.62 0.79 0.67 0.71

Step 3: similarity threshold τ calculated using Equation (9) was 0.79. That is, if
similarity measure Sim(Ci, C0) between historical cases Ci and target case C0 is more
significant than 0.79, it can be added to the set of similar historical cases.

τ = Sim(+) − Sim(+) − Sim(−)

3
= 0.87− 0.87− 0.62

3
= 0.79.

Step 4: similarity threshold τ was 0.79. Using Equation (10), historical cases with vital
reference significance were extracted, and a similar historical enforcement case set was
constructed as CSim = {C2, C6, C7, C8, C10}.

Step 5: using Equation (11) or (12), calculate the attribute value of the recommendation
and give recommendations.

The recommendation of hidden property analysis includes three kinds: the judgment
debtor refuses to perform the legal instrument by hiding property (D1), the judgment
debtor has no ability to perform the legal instrument (D2), or the judgment debtor performs
the legal instrument (D3), which can be regarded as crisp symbols. According to set CSim

of similar historical cases, there were only two recommendations: D1 and D2, as shown in
Table 7.

Table 7. Similar historical cases.

Similar Historical Case Similarity Recommendation

C2 0.86 D1
C6 0.87 D1
C7 0.81 D1
C8 0.81 D2
C10 0.83 D1

Therefore, the probabilities of these two kinds of recommendations were calculated
using Equation (10):

p(D1) =

∑
i∈D1

Sim
Sim(Ci, C0)

∑
i∈NSim

Sim(Ci, C0)
=

0.86 + 0.87 + 0.81 + 0.83
0.86 + 0.87 + 0.81 + 0.81 + 0.83

= 0.81

p(D2) =

∑
i∈D2

Sim
Sim(Ci, C0)

∑
i∈NSim

Sim(Ci, C0)
=

0.81
0.86 + 0.87 + 0.81 + 0.81 + 0.83

= 0.19
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The above analysis shows that the recommendation was that the judgment debtor
in the target enforcement case refused to perform the legal instrument by hiding prop-
erty. According to the detailed information in Table 4, the judgment debtor in the target
enforcement case was 41 years old and had unstable work, low credibility. Five similar
historical enforcement cases {C2, C6, C7, C8, C10} were extracted using the hybrid similarity
measure. Four of those judgment debtors featured a hidden property behavior, and one of
them was unable to perform the legal instrument. Therefore, the judgment debtor in the
target enforcement case was likely to hide property and needed to be tracked. Actually, the
recommendation of CBR-based hidden property analysis was consistent with the practical
judicial implementation. The result showed that the developed CBR method can provide a
clear and effective way to quickly assess the possibility of property being hidden, reduce
the work pressure on law enforcement officers, and improve the efficiency of handling
enforcement cases.

4.2. Comparative Analysis

To illustrate effectiveness and novelty of the developed CBR method for hidden
property analysis of a judgment debtor, we compared the developed CBR method with the
distance-based method for hidden property analysis [8]. The main idea of Wu’s method [8]
is to judge whether the judgment debtor hides property by calculating the distance between
the judgment debtor in the target case and in historical cases. Here, hybrid distance measure
Dis(Ci, C0) between historical enforcement case Ci and target enforcement case C0 was
defined as follows:

Dis(C0, Ci) =

M
∑

j = 1
disj(C0, Ci)wj

M
∑

j = 1
wj

(13)

Then, the hybrid distance result was shown in Table 8. The judgment debtor in target
case C0 was closest to the judgment debtor in historical case C6. Namely, Dis(C6, C0) = 0.13.
The recommendation was D1—the judgment debtor in C0 hides property.

Table 8. Hybrid distance measure Dis(Ci,C0) between historical enforcement cases Ci and target
enforcement case C0.

Distance Measure
Historical Cases

C1 C2 C3 C4 C5 C6 C7 C8

d(Ci,C0) 0.24 0.14 0.23 0.37 0.35 0.13 0.19 0.19

Distance Measure
Historical Cases

C9 C10 C11 C12 C13 C14 C15

d(Ci,C0) 0.22 0.17 0.38 0.38 0.21 0.33 0.29

Although the recommendation obtained by Wu’s method [8] was the same as that
obtained with the developed CBR method, the developed CBR method was more rea-
sonable than Wu’s method. Wu’s method suggests extracting only one judgment debtor
with the closest distance, while five historical enforcement cases are extracted when using
the developed CBR method. The assessment refers to just one judgment debtor’s recom-
mendation, which will greatly increase the hidden property analysis error rate. Expert
judges will assess whether the judgment debtor hides property according to the similar
cases’ recommendations, which will improve reliability of the analysis result. Therefore,
the analysis result obtained using the developed CBR method was more reasonable than
that obtained with Wu’s method.
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5. Conclusions

Aiming at the hidden property analysis problem, we developed the CBR method for
hidden property analysis of a judgment debtor. We introduced the research framework
of the developed method, the presentation of enforcement cases, the calculation method
for case similarity, the extraction of a similar enforcement case set, and the generation
of recommendations. Besides, a case study concerning hidden property analysis of a
judgment debtor is provided to illustrate effectiveness of the developed method. The
conclusions of our work are as follows.

Firstly, the framework of CBR-based hidden property analysis of a judgment debtor is
regarded as a useful tool to assess whether the judgment debtor in the target enforcement
case hides property or not. We extracted similar historical cases and used the information
and knowledge of similar historical cases to provide the recommendation of hidden prop-
erty analysis of the judgment debtor. The recommendation of hidden property analysis
was consistent with the actual law enforcement. Thus, it can be seen that the developed
method has high accuracy.

Secondly, considering the information from the inspection and control system con-
structed by the Supreme People’s Court of China, the enforcement case’s attributes are
represented by crisp symbols, crisp numbers, interval numbers, and fuzzy linguistic
variables, and a hybrid similarity measure between a historical enforcement case and
the target enforcement case is developed. The similarity measure method is feasible
and straightforward.

Thirdly, the extraction method for similar historical enforcement cases can reduce
the slope of case retrieval. The extraction method extracts the five most similar historical
enforcement cases out of the 15 enforcement cases selected by manual screening, which
can reduce law enforcement officers’ work pressure and improve efficiency of handling
enforcement cases.

Fourthly, we not only search for similar historical enforcement cases but also give
the optimal recommendations. Moreover, the attributes of the recommendations consider
different data types and are different from the previous work.

However, many aspects need to be further improved. Firstly, due to the research
conditions’ limitations, the sample size of the data collected in the research process on
hidden property analysis is small. We hope to further improve the research results’ accuracy
using a sufficiently large data sample. First, we will try nonparametric methods after testing
covariability/rejection rates considering real data to make a conclusion about the quality
of the results. Second, machine learning or deep learning may solve these problems well.
We explore machine learning or deep learning methods to analyze whether the judgment
debtor hides property or not provided that there are sufficient data. Third, there still
remain many deficiencies in the quantitative presentation of some attributes, such as
credibility, which need to be further improved. Fourth, the case presentation method
proposed cannot meet the legal instrument description requirements, so it is necessary to
study case presentation based on ontology and the method of extraction of similar case sets.
Fifth, considering neutrosophic statistics have some advantages in dealing with vague,
indecisive, or fuzzy sample data [43–45], we will apply neutrosophic statistics to the hidden
property analysis problem.
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Abstract: Analyzing energy consumption is an important task for a factory. In order to accomplish
this task, most studies fit the relationship between energy consumption and product design features,
process characteristics, or equipment types. However, the energy-saving effects of product yield
learning are rarely considered. To bridge this gap, this study proposes a two-stage fuzzy approach to
estimate the energy savings brought about by yield improvement. In the two-stage fuzzy approach,
a fuzzy polynomial programming approach is first utilized to fit the yield-learning process of a
product. Then, the relationship between monthly electricity consumption and increase in yield was
fit to estimate the energy savings brought about by the improvement in yield. The actual case of
a dynamic random-access memory factory was used to illustrate the applicability of the two-stage
fuzzy approach. According to the experiment results, product yield learning can greatly reduce
electricity consumption.

Keywords: electricity consumption; yield learning; fuzzy forecasting; green manufacturing

1. Introduction

Factories all over the world are striving to reduce energy consumption in order to
pursue green and sustainable manufacturing [1–5]. For this reason, evaluating the effects
of various treatments on reducing energy consumption is a crucial task [6–9], which is the
basis of the necessity for this research.

In the literature, many studies focused on determining the relationship between energy
consumption and product design features, process characteristics, or equipment types [10–12].
However, improvement in product yield reduces the amount of rework and additional inputs,
thereby saving energy [13,14]. However, this issue was rarely investigated, and this is a
research gap that needs to be filled.

This study estimates the reduction in energy consumption on the basis of the reduction
in monthly electricity consumption (MEC) brought about by the yield-learning process
of a product. The novelty of this research lies in the following: in past studies, other
performance measures were used for the same purpose, including production efficiency
index (PEI; annual electricity consumption normalized by annual production area) and
electrical utilization index (EUI; annual electricity consumption normalized by production
units) [15–17]. Most existing indicators are annually measured. However, because the yield
of a product is usually tracked on a monthly basis [18], MEC was more suitable for our
purposes and replaced the existing annual indicators.

The research question was as follows: taking into account the inherent uncertainty
in the yield-learning process of a product, how would one model the effect of improving
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yield on reducing MEC? To answer this question, a two-stage fuzzy approach is proposed
in this study.

In the two-stage fuzzy approach, a fuzzy polynomial-programming (FPP) method is
proposed to fit the yield-learning process of a product, so as to predict the future yield in
consideration of the inherent uncertainty. In theory, there are other ways to deal with yield
uncertainty, such as probabilistic methods or fuzzy rules. However, the planning horizon
spans dozens of months, and it is difficult to estimate the probability distribution functions
of variables over such a long time. In addition, fuzzy rules are suitable for modelling
the effects of multiple factors on yield. When there is only one factor (i.e., time), a fuzzy
yield-learning process is more appropriate. Further, the FPP method can generate fuzzy
yield forecasts that are very likely to contain actual values [19]. This property may eliminate
the need to learn a new example, which is beneficial to the scalability of the two-stage
fuzzy approach. For these reasons, the FPP method was applied instead of probabilistic
methods or fuzzy rules. Subsequently, in the second stage, the relationship between MEC
and yield was fit to estimate the energy savings brought about by the increase in yield. In
the two-stage fuzzy approach, polynomial-programming problems were solved that could
be easily realized using existing optimization software (e.g., Lingo and MATLAB).

The practical case of a dynamic random-access memory (DRAM) product in a wafer-
fabrication (wafer fab) plant was used to illustrate the applicability of the two-stage fuzzy
approach. Many researchers attempted to estimate the electricity consumption of DRAM
fabs by fabricating DRAM products [18,20]. However, these studies were static because
only annual electricity consumption was observed, while long-term electricity consumption
was not estimated. In addition, none of the existing methods was able to quantify the
reducing effects of yield learning on electricity consumption. Compared with existing
methods, the two-stage fuzzy approach has the following advantages:

(1) The original yield value is considered when evaluating forecasting performance. In
contrast, existing methods usually consider the logarithmic value of yield.

(2) The reduction in MEC is measured once a month, which is consistent with the progress
of yield improvement. In contrast, existing methods usually measure the reduction in
power consumption once a year.

The main contributions of this study include:

(1) An FPP method, proposed to improve the precision and accuracy of tracking a yield-
improvement process.

(2) A systematic procedure, established to estimate the energy savings brought about by
the increase in yield.

The rest of this article is organized as follows: Section 2 is dedicated to a literature
review; Section 3 introduces the two-stage fuzzy approach, and a practical case is used to
illustrate the applicability of the two-stage fuzzy approach. In addition, existing methods
within the field were applied to the case for comparison. In Section 4, experiment results
are presented and discussed; then, conclusions are drawn in the last section.

2. Literature Review

There are two ways to analyze the energy consumption of a factory; the top–down
and the bottom–up methods [10]. In fact, the energy consumption of a product is affected
by many factors, e.g., equipment type, product type, and yield [10,11,13,14].

Reducing energy consumption is an important task for a factory [1]. In order to
accomplish this task, factories take the following measures [15,21–32]:

(1) Designing products that require less energy or help to save energy.
(2) Switching to new manufacturing technologies that feature lower energy consumption.
(3) Acquiring new equipment with lower energy consumption.
(4) Solving quality problems that lead to energy waste.
(5) Shifting more production to locations or time periods with lower electricity rates.
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(6) Using relatively cheap and environmentally friendly long-term green electricity (such
as wind and solar energy).

Many studies used multiple measures at the same time. Table 1 shows the comparison
results of some related references.

Table 1. Comparison of relevant references.

Reference

Designing
Green

Products

Green
Manufacturing
Technologies

Green
Equipment

Solving
Quality

Problems

Green
Production
Scheduling

Green
Electricity

Gong et al.
[21]

√

Jo et al. [22]
√

Golpîra et al.
[23]

√

Wu and Chen
[24]

√

Dai et al. [25]
√

Hu et al. [15]
√

Liang et al.
[26]

√

Gao et al. [27]
√

Golpîra [28]
√ √

Wang et al.
[29]

√ √

Chang et al.
[30]

√

Kumar et al.
[32]

√ √

This study
√

DRAM is an electronic component that is widely used in computers, mobile phones,
medical equipment, robots, etc. [33]. DRAM manufacturing can be divided into four stages:
wafer fabrication, sorting, packaging, and final testing [34]. Among these four stages, wafer
fabrication is the most energy-consuming stage [35,36]. Wafer fabrication involves very
complex and difficult-to-control operations [37,38]. Each job in a wafer fab consists of
20–25 wafers, and goes through hundreds of steps. The processing steps can be divided
into several categories, including photolithography, etching, and stripping. Some of
these steps are energy-consuming heating and cooling operations. In addition, the same
operation is performed on a job many times. As a result, the cycle time for all operations
to complete in a job is usually as long as several months, during which a large amount of
energy is consumed. Therefore, fabs aim to reduce energy consumption and pursue green
manufacturing [39]. The expected benefits include lowering the unit costs of products and
reducing the environment impact [30].

3. Two-Stage Fuzzy Approach

The proposed methodology comprises two stages: fitting the uncertain yield-learning
process and estimating the reduction in MEC. Figure 1 presents the flowchart of the
procedure of the two-stage fuzzy approach. A nomenclature is provided in Appendix A.
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Figure 1. Procedure of two-step fuzzy approach.

3.1. Uncertain Yield-Learning Process

A yield-learning process describes the increase in yield due to various learning activi-
ties [40,41]. For example,

• As time goes by, operators become increasingly skilled, which can help to avoid
misoperation.

• Quality-control engineers are increasingly experienced in solving quality-related issues.
• Equipment engineers gradually learn how to optimize machine settings.

The general yield model [42] is usually used to describe a yield-learning process:

Yt = Y0e−
b
t +r(t), (1)

where

• Yt is the yield at time t; 0 ≤ Yt ≤ 1; t = 1 − T;
• Y0 is the asymptotic or final yield (a real-valued function of the point defect density

per unit area, chip area, and a set of parameters unique to the specific yield model);
0 ≤ Y0 ≤ 1;

• b is the learning constant; b > 0;
• r(t) is a homoscedastic serially uncorrelated error term that can be ignored.

However, because learning activities are subject to human intervention [43], a yield-
learning process involves a lot of uncertainty [44]. This uncertainty can be modelled
by defining yield as a probability function or fuzzy set. It is necessary to estimate the
parameters of a probability function, which is not easy in the long run. A fuzzy set, on
the other hand, is easy to define and calculate. For these reasons, in the two-stage fuzzy
approach, the yield is defined as a fuzzy set.

In the two-stage fuzzy approach, parameters in Equation (1) are given as fuzzy values.
As a result, the following fuzzy yield-learning model is constructed [45]:

Ỹt = Ỹ0e−
b̃
t +r(t), (2)

where
Ỹ0 = (Y01, Y02, Y03) (3)
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b̃ = (b1, b2, b3) (4)

are triangular fuzzy numbers (TFNs). TFNs in this study could be symmetric or asymmetric.
In addition, other types of fuzzy numbers are applicable.

According to the fuzzy arithmetic operations of TFNs [46],

Ỹt = Ỹ0e−
b̃
t

= (Y01, Y02, Y03)e−
(b1,b2,b3)

t

∼= (Y01, Y02, Y03)(×)(e−
b3
t , e−

b2
t , e−

b1
t )

∼= (Y01e−
b3
t , Y02e−

b2
t , Y03e−

b1
t )

= (Yt1, Yt2, Yt3)

, (5)

where (×) indicates fuzzy multiplication. The fuzzy multiplication of TFNs is not a TFN
anymore. However, most studies approximated the fuzzy multiplication result with a
TFN [47–51]. In Equation (5), fuzzy multiplication result Ỹt is also approximated with a
TFN. A possible issue is the precision of such approximation. Ỹ0, the final yield of a product,

is a value very close to 1. e−
b̃
t is also a value less than 1, and it gradually approaches 1

through learning. The multiplication of the two fuzzy variables can be very precisely
approximated with a TFN, as illustrated in Figure 2. Approximation error was less than
0.002. Therefore,

Yt1 = Y01e−
b3
t (6)

Yt2 = Y02e−
b2
t (7)

Yt3 = Y03e−
b1
t . (8)

μ
Y t

Yt

Figure 2. Approximation of fuzzy multiplication result (Ỹ0 = (0.85, 0.92, 0.97); b̃ = (0.10, 0.13, 0.17); t = 6).

To derive the values of fuzzy parameters, the FPP method is proposed, as follows.

3.2. Deriving Values of Fuzzy Parameters

In this research, an FPP method is proposed to derive the values of fuzzy parameters in
the fuzzy yield-learning model. This method involves solving two nonlinear-programming
(NLP) problems:

(NLP Problem I)

Min Z1 =
1
T

T

∑
t=1

|Yt −Yt2|
Yt

(9)

subject to

Yt2 = Y02e−
b2
t (10)
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b2 ≥ 0 (11)

0 ≤ Y02 ≤ 1 (12)

The objective function is to minimize the mean absolute percentage error (MAPE) to
maximize forecasting accuracy.

(NLP Problem II)

Min Z2 =
1
T

T

∑
t=1

(Yt3 −Yt1) (13)

subject to

Yt3 = Y03e−
b1
t (14)

Yt1 = Y01e−
b3
t (15)

Yt ≥ Yt1 (16)

Yt ≤ Yt3 (17)

0 ≤ b1 ≤ b∗2 ≤ b3 (18)

0 ≤ Y01 ≤ Y∗02 ≤ Y03 ≤ 1 (19)

The objective function minimizes the average range to maximize forecasting preci-
sion. However, these two NLP problems include intractable absolute value functions or
exponential equations, so they must be converted into more easily solvable forms [52,53].

First, the objective function of NLP Problem I is equivalent to

Min Z1 =
1
T

T

∑
t=1

ϑt

Yt
, (20)

where
ϑt ≥ Yt −Yt2 (21)

ϑt ≥ Yt2 −Yt (22)

Subsequently, the exponential function can be approximated as [45]

ex ∼= 1 + x +
x2

2
+

x3

6
+

x4

24
(23)

when x ≤ 1.97.
As a result, the two NLP problems are replaced by the following easy-to-solve

polynomial-programming (PP) problems [54]:
(PP Problem I)

Min Z1 =
1
T

T

∑
t=1

ϑt

Yt
(24)

subject to
ϑt ≥ Yt −Yt2 (25)

ϑt ≥ Yt2 −Yt (26)

Y02 = Yt2 +
b2Yt2

t
+

b2
2Yt2

2t2 +
b3

2Yt2

6t3 +
b4

2Yt2

24t4 (27)

b2 ≥ 0 (28)

0 ≤ Y02 ≤ 1 (29)

(PP Problem II)

Min Z2 =
1
T

T

∑
t=1

(Yt3 −Yt1) (30)
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subject to

Y03 = Yt3 +
b1Yt3

t
+

b2
1Yt3

2t2 +
b3

1Yt3

6t3 +
b4

1Yt3

24t4 (31)

Y01 = Yt1 +
b3Yt1

t
+

b2
3Yt1

2t2 +
b3

3Yt1

6t3 +
b4

3Yt1

24t4 (32)

Yt ≥ Yt1 (33)

Yt ≤ Yt3 (34)

0 ≤ b1 ≤ b∗2 ≤ b3 (35)

0 ≤ Y01 ≤ Y∗02 ≤ Y03 ≤ 1 (36)

Table 2 presents the comparison of the FPP method with existing methods for the same
purpose. When the original value of yield is considered, only the two-stage fuzzy approach
can minimize the forecasting error. In addition, most methods except the artificial-neural-
network (ANN) [41] and two-stage fuzzy approaches require defuzzification.

Table 2. Comparison of FPP approach with existing methods for the same purpose.

Method Type Objective Functions Characteristics

Guo and Tanaka [55] Linear
programming (LP)

• Minimization of sum of ranges

• Using symmetric fuzzy
parameters

• Considering logarithmic yield
value

Donoso et al. [56] Quadratic
programming (QP)

• Minimization of the weighted
sum of the squared deviations
from cores and the squared
deviations from the estimated
ranges

• Considering logarithmic yield
value

Chen [57] LP • Minimization of sum of ranges

• Using asymmetric fuzzy
parameters

• Considering logarithmic yield
value

Chen and Lin [58] Nonlinear
programming (NLP)

• Minimization of high-order sum
of ranges

• Maximization of geometric
mean of satisfaction levels

• Considering logarithmic yield
value

Peters et al. [59] LP
• Maximization of average

satisfaction level
• Considering logarithmic yield

value

Chen and Wang [60] NLP

• Minimization of high-order sum
of ranges

• Maximization of geometric
mean of satisfaction levels

• Using agents
• Considering logarithmic yield

value

Chen [61] Artificial
neural network (ANN)

• Minimization of sum of squared
errors

• Considering log-sigmoid yield
value

Proposed methodology Polynomial
programming (PP)

• Minimization of average range
• Maximization of mean absolute

percentage error (MAPE)

• Considering original yield value
• Defuzzification not required

3.3. Estimating MEC Reduction

Some wafers in a wafer fab are scrapped due to poor quality. Therefore, the number of
wafers that could be successfully completed is usually less than the number of wafers that
are input into the wafer fab. For this reason, assuming that the monthly production target
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of a product is Q wafers per month, the number of raw wafers that need to be released into
the wafer fab is

Ñt =

⌈
Q
Ỹt

⌉
(37)

per month.
According to the statistics of historical data, it was assumed that the electricity con-

sumption of each wafer used to fabricate the product is about E. Then, the MEC used to
fabricate the product is

MEC = E·Ñ
= E·

⌈
Q
Ỹt

⌉
= E·( Q

Ỹt
+ εt)

= EQ
Ỹ0

e
b
t + Eεt

, (38)

where εt is the residue when rounding up the result to the nearest integer; 0 ≤ εt ≤ 1. Since
Q is usually in the thousands, term Eεt is negligible, which leads to

MEC ∼= EQ
Ỹ0

e
b
t (39)

This is also a learning process, where the asymptotic value is equal to EQ/Ỹ0 and the
learning rate is equal to b̃.

From month t to month t + 1, yield improves from Ỹt to Ỹt+1, so MEC reduces by

ΔMEC =
EQ
Ỹt

(−) EQ
Ỹt+1

, (40)

where (−) indicates fuzzy subtraction. ΔMEC is approximated with a TFN as

ΔMEC ∼= (ΔMEC1, ΔMEC2, ΔMEC3)

= ( EQ
Yt3
− EQ

Yt+1,1
, EQ

Yt2
− EQ

Yt+1,2
, EQ

Yt1
− EQ

Yt+1,3
)

= (
Yt+1,1−Yt3
Yt3Yt+1,1

, Yt+1,2−Yt2
Yt2Yt+1,2

, Yt+1,3−Yt1
Yt1Yt+1,3

)EQ
(41)

4. Actual Case

4.1. Background

The actual case of a DRAM product [62] was used to illustrate the two-stage fuzzy
approach. Because the energy consumed by DRAMs in a large computer system accounts
for a large part of the total energy consumption, DRAM has received much attention in
energy-saving research [63]. The DRAM product was fabricated in an 8 inch wafer fab
located in Hsinchu Scientific Park, Taiwan. There were more than 40 memory products
fabricated in the wafer fab. All operators, engineers, and managers were committed to im-
proving the efficiency of the operation and management of the wafer fab, including energy
consumption. If the wafer fab was a static environment, then these efforts could reduce total
energy consumption. However, the wafer fab was actually a dynamic environment because
new products were continuously released into it. New products were usually related to low
yields and poor operating efficiency. As a result, there was no significant trend to reduce
the total energy consumption of the wafer fab, which was frustrating for the operators,
engineers, and managers. It was also difficult to distinguish the energy consumption of
old and new products. To solve this problem, the two-stage fuzzy approach was a viable
option because it could estimate the energy savings by fabricating a single product.

In order to apply the two-stage fuzzy approach, the following tasks were completed:

(1) The electricity consumption of the wafer fab in the previous year was known.
(2) The number of wafers fabricated in previous years was known.
(3) The latest yield data of the target product were collected.
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The actual case included 15 months of yield data, as shown in Table 3. The yield
fluctuated greatly, which was caused by machine failures, operator misoperations, lack
of experience in solving quality-related problems, unoptimized machine settings, etc. As
a result, a crisp yield-learning model could not perfectly fit the collected yield data. As
an alternative, many studies [41,42,57–60] used fuzzy-valued parameters to model the
learning process of yield to generate fuzzy yield forecasts with ranges. Since there was only
one factor (i.e., time) that affected the yield, and all data related to energy consumption
were given, the analytical results in this study can be full replicated in another study.

Table 3. Practical case.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Yt 0.789 0.892 0.915 0.87 0.879 0.887 0.892 0.892 0.904 0.939 0.928 0.896 0.883 0.939 0.911

4.2. Fitting the Uncertain Yield-Learning Process

Time-split cross-validation [64] was applied to evaluate forecasting performance as
shown in Figure 3.

Figure 3. Time-split cross-validation.

When building the PP models using data from the first five months, the optimal
solutions are as follows:

(Model PP I) b∗2 = 0.131, Y∗02 = 0.948
(Model PP II) b∗1 = 0.131, b∗3 = 0.131, Y∗01 = 0.877, Y∗03 = 0.958

Fuzzy yield forecasts are compared with actual values in Figure 4. The fitted fuzzy
yield-learning model was applied to generate fuzzy yield forecasts for Months 6–10. Then,
the forecasting precision was measured in terms of the average range, while the forecasting
accuracy was evaluated in terms of mean absolute error (MAE), MAPE, and root mean
squared error (RMSE):

The average range =

T
∑

t=1
|Yt3 −Yt1|

T
(42)

MAE =

T
∑
t
|Yt −Yt2|

T
(43)

MAPE =

T
∑
t

|Yt−Yt2|
Yt2

T
·100% (44)

RMSE =

√√√√√ T
∑
t
(Yt −Yt2)

2

T
(45)
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Y t

t

Figure 4. Comparing fuzzy yield forecasts to actual values.

Results are summarized below:

• Average range = 0.080;
• MAE = 0.019;
• MAPE = 2.08%;
• RMSE = 0.019.

Subsequently, the data of the first 10 months were used to construct the PP models to
obtain the optimal solutions as

(Model PP I) b∗2 = 0.101, Y∗02 = 0.946
(Model PP II) b∗1 = 0.101, b∗3 = 0.146, Y∗01 = 0.878, Y∗03 = 0.946

Forecasting results are shown in Figure 5. The fitted fuzzy yield-learning model was
applied to generate fuzzy yield forecasts for Months 11 to 15. Forecasting performance was
evaluated as

• Average range = 0.070;
• MAE = 0.018;
• MAPE = 2.06%;
• RMSE = 0.021.

Y t

t

Figure 5. Forecasting results.

After time-split cross-validation, forecasting performance using the two-stage fuzzy
approach was evaluated as
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• Average range = 0.075;
• MAE = 0.019;
• MAPE = 2.07%;
• RMSE = 0.020.

4.3. Comparison

For comparison, six existing methods in this field, namely, the LP model of Guo and
Tanaka [55], the QP model of Donoso et al. [56], the two NLP models of Chen and Lin [58],
the QP model of Peters et al. [59], and the ANN approach proposed by Chen [61] were
also applied to this case. The two NLP models of Chen and Lin [58] are represented by CL
I and CL II. Table 4 summarizes the parameter settings in these methods. A fuzzy yield
forecast was defuzzified using the center-of-gravity (COG) method [65,66]. Chen’s ANN
approach [61] directly compares the core of a fuzzy yield forecast with actual value, so
defuzzification is not required. All methods were implemented using MATLAB 2017 on
a PC with i7-7700 CPU 3.6 GHz and 8 GB RAM to ensure fair comparison. In addition,
the value of the same parameter in various methods was set to the same value. The initial
values of solutions (or parameters) in these methods were randomized.

Table 4. Parameter settings in existing methods.

Method Parameter Setting

Guo and Tanaka [55] s = 0.3,
where s is the required satisfaction level.

Donoso et al. [56]

w1 = 0.5
w2 = 0.5
s = 0.3,

where w1 and w2 are the weights of the two terms in the
objective function, respectively; s is the required

satisfaction level.

CL I [58]

o = 2
s = 0.3,

where o is the order of the range of a fuzzy yield
forecast; s is the required satisfaction level.

CL II [58]

o = 2
m = 2

d = 0.2,
where o is the order of the range of a fuzzy yield

forecast; m is the order of the satisfaction level; d is the
required range.

Peters et al. [59] d = 0.2,
where d is the required range.

Chen [61]

η = 0.2
ω1 = 0.7

θ2 = −0.051,
where η is the learning rate; ω1 is the connection weight;

θ2 is the threshold on the output node.

Forecasting performance using various methods is compared in Table 5.
Compared with existing methods, the PP models achieved better forecasting per-

formance by minimizing MAE, MAPE, RMSE, and average range, which laid a good
foundation for subsequent electricity-consumption estimation. Their complexities and
execution times are compared in Table 6.
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Table 5. Forecasting performance using various methods.

Method
Average
Range

MAE MAPE RMSE

Guo and Tanaka [55] 0.082 0.019 2.11% 0.021

Donoso et al. [56] 0.081 0.019 2.12% 0.021

CL I [58] 0.079 0.020 2.17% 0.022

CL II [58] 0.110 0.021 2.33% 0.025

Peters et al. [59] 0.110 0.021 2.33% 0.025

ANN [61] 0.139 0.019 2.10% 0.023

Two-stage fuzzy approach 0.075 0.019 2.07% 0.020

Table 6. Complexity and execution-time comparison results.

Method Complexity Computation Time (s)

Guo and Tanaka [55] LP (global optimal) <1

Donoso et al. [56] QP (local optimal) 1

CL I [58] NLP (local optimal) 2

CL II [58] NLP (local optimal) 2

Peters et al. [59] QP (local optimal) 1

ANN [61] NLP (local optimal) 10

Two-stage fuzzy approach PP (local optimal) 5

4.4. Estimating MEC Reduction

According to the historical statistics of the wafer fab, the electricity consumption
to fabricate an 8 inch wafer was about 1.4 kW-h/cm2 or 453.8 kW-h per wafer. This
product accounted for approximately 60% of the wafer fab’s capacity, which is equivalent
to 12,000 wafers per month. On the basis of these statistics, MEC reduction due to yield
learning was estimated according to Equation (40). The result is shown in Figure 6.

Figure 6. MEC reduction due to yield learning.
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According to the experiment results:

(1) As far as yield learning is concerned, the amount of electricity that may be saved by
reducing MEC may be as high as 400,000 kW-h per month.

(2) The increase in electricity consumption due to yield loss can be avoided, which means
that the MEC reduction estimated in Figure 6 can be achieved.

(3) If yield is already very satisfactory (100%), on the other hand, unless other production
conditions are changed, the consumed electricity for fabricating wafers cannot be
saved [67,68].

(4) In addition, the reduction in MEC decreased with time, but converged to a certain
minimal level.

(5) A larger learning constant means a faster yield-learning process, which can save
energy waste owing to quicker yield loss. In this case, MEC drops faster, meaning
that more energy can be saved within the planning horizon.

(6) Results here only apply to a single product. By taking into account all products in the
wafer fab, it further saves power consumption.

5. Conclusions

There are different levels of green manufacturing. On a higher level of green manufac-
turing when a certain monthly output is produced, the consumed energy and generated
waste should be as low as possible [69]. In low-level green manufacturing, the additional
(and unnecessary) consumption of energy and additional (and unnecessary) waste should
be avoided by eliminating yield loss, inefficiency, and other aspects [70]. This study esti-
mated the energy-saving effect of the yield-learning process in a wafer fab. To this end, a
two-stage fuzzy approach was proposed. In the first stage, an FPP method was proposed
to fit the yield-learning process of a product to predict future yield. Subsequently, the
relationship between MEC and yield was fit to estimate the energy saving brought by
the increase in yield. In addition, there are other factors that affect product energy con-
sumption, such as the type of wafer-fabrication equipment and product type. The same
analysis could be performed to model their effects. This study is one of the first attempts to
link improvement in product yield with the reduction in electricity consumption, and to
quantify the long-term relationship by considering potential uncertainties.

Taking the actual case of a DRAM product as an example, the applicability of the
two-stage fuzzy approach is illustrated. According to the experiment results:

(1) The two-stage fuzzy approach was very effective in fitting the yield-learning process
of the DRAM product. Compared with existing methods for the same purpose,
the FPP approach achieved higher forecasting accuracy in terms of MAE, MAPE,
or RMSE.

(2) The two-stage fuzzy approach also established a very narrow range of yield. On the
basis of precise and accurate yield forecasts, the energy saved by reducing MEC could
be reliably estimated.

(3) Electricity consumption was reduced by fabricating the product in the wafer fab.

However, the focus of this research was to reduce the MEC of a single semiconduc-
tor product. There are usually many products in a wafer fab. The MEC reductions of
all products need to be aggregated in some way. In addition, the two-stage fuzzy ap-
proach can be applied to a situation where the number of released wafers to fabricate a
specific product types fluctuates. Further, other data-preprocessing mechanisms can be
used, such as input-data analysis mechanisms [71] or outlier-filtering mechanisms [72], to
improve the credibility of the input data, thereby enhancing the reliability of the two-stage
fuzzy approach.
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Appendix A

Table A1. Nomenclature.

Variable/Symbol Meaning

(×) Fuzzy multiplication

εt Residue

ϑt Dummy variable

b or b̃ Learning constant

E Electricity consumption per wafer

MAE Mean absolute error

MAPE Mean absolute percentage error

MEC Monthly electricity consumption

ΔMEC Reduction in MEC

Ñt Number of raw wafers that need to be released during period t

Q Monthly output

r(t) Homoscedastic serially uncorrelated error term

RMSE Root mean squared error

t Period

T Planning horizon

Y0 or Ỹ0 Asymptotic/final yield

Yt or Ỹt Yield at period t
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Abstract: Complex networks constitute a new field of scientific research that is derived from the
observation and analysis of real-world networks, for example, biological, computer and social
ones. An important subset of complex networks is the biological, which deals with the numerical
examination of connections/associations among different nodes, namely interfaces. These interfaces
are evolutionary and physiological, where network epidemic models or even neural networks can be
considered as representative examples. The investigation of the corresponding biological networks
along with the study of human diseases has resulted in an examination of networks regarding
medical supplies. This examination aims at a more profound understanding of concrete networks.
Fuzzy logic is considered one of the most powerful mathematical tools for dealing with imprecision,
uncertainties and partial truth. It was developed to consider partial truth values, between completely
true and completely false, and aims to provide robust and low-cost solutions to real-world problems.
In this manuscript, we introduce a fuzzy implementation of epidemic models regarding the Human
Immunodeficiency Virus (HIV) spreading in a sample of needle drug individuals. Various fuzzy
scenarios for a different number of users and different number of HIV test samples per year are
analyzed in order for the samples used in the experiments to vary from case to case. To the best of
our knowledge, analyzing HIV spreading with fuzzy-based simulation scenarios is a research topic
that has not been particularly investigated in the literature. The simulation results of the considered
scenarios demonstrate that the existence of fuzziness plays an important role in the model setup
process as well as in analyzing the effects of the disease spread.

Keywords: fuzzy models; complex networks; biological networks; neural networks; epidemic
models; Acquired Immunodeficiency Syndrome (AIDS); Human Immunodeficiency Virus (HIV)

1. Introduction

Graphs are appropriate mathematical structures to represent and analyze complex
networks, and graph theory is a field in mathematics that deals with the study of graphs [1].
Graph theory supports the visualization and analysis of complex network structures. The
World Wide Web (WWW) and the human brain, as it is studied in medical informatics, are
representative examples of complex networks [2]. The graph representation and analysis
of complex networks have been extended in numerous areas, such as biology, computer
science, epidemiology, mathematics, physics, sociology and telecommunications [3]. In
terms of the human brain, a graph structure represents a network of connected nerve
cells, where corresponding cells can make up on their own a network and their task is
to cause and create biochemical reactions [4]. Complex networks, represented as graphs,
allow researchers to analyze their structural and behavioral properties. The comprehensive
knowledge of a complex network structure may contribute to the extraction of valuable
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information with the aim of further assessing and enhancing methodologies, tools, as well
as the outcomes of shaped examinations. All of these reasons contribute to the motivation
of the present work, which deals with analyzing the problem of HIV spreading in a sample
of needle drug individuals.

In the relevant literature, the epidemic spreading problem has attracted high attention
towards the awareness of the dynamic procedures that are generated in corresponding
complex networks [5]. The authors of [6] review and present various solved and open
problems in the development, analysis, and control of complex epidemic models. Moreover,
a detailed review of the extensive research that has been conducted on epidemic procedures
is presented in [7]. Another representative research in the same area is presented in [8],
where the authors study infections spreading in complex heterogeneous networks based
on a Systemic Inflammatory Response Syndrome (SIRS) epidemic model with birth and
death rates. The SIRS epidemic model is utilized in clustered networks with the aim of
analyzing the impact of the network community structure on the epidemic spreading and
dynamics. Besides human epidemic spreading, an additional issue studied with the use of
complex network models is related to the impact of different types of animal movements
regarding the conditions for the spread of an infectious disease [9].

In a relevant survey [10], the authors review and unify theoretical methods regarding
epidemic spreading, in terms of escalating the complexity of the equations used by various
methods. In this survey, the authors analyze various methods, including the mean-field
approach and various variations of the mean-field approach, such as the heterogeneous
mean-field and the quench mean-field. Moreover, the authors examine methods that
involve pairwise approximation, link percolation and dynamic message-passing. The
authors of [11] introduce effective algorithms for implementing complex networks, which
have concrete statistical properties that are non-homogeneous. The authors also suggest a
pseudo-code for reproducing complex directed or undirected networks by performing sim-
ulations of human brain functions. Regarding sexually transmitted diseases, such as AIDS,
the work presented in [12] focuses on the early transmission, the following dissemination,
and finally, the establishment of the HIV-1 virus in a human population. The authors
claim that the outcomes of their evolutionary analyses are capable of rebuilding the initial
dynamics of the HIV-1 virus and, as a result, draw attention to the role of social changes
and transport networks within the establishment of this virus in a human population.

Nowadays, within the field of biosciences, a number of levels regarding imprecision
and uncertainty, particularly in epidemiological studies, are involved in disease diagno-
sis [13]. A single disease could affect numerous patients in various ways, and a single
symptom may be indicative of various diseases. More importantly, the occurrence of some
diseases in a patient may disrupt the expected symptom pattern of any of them. As a
result, this may cause a tremendous amount of uncertainty and imprecision towards the
interpretation of impact measures. Fuzzy set theory, since its beginning in 1965 [14] as
an abstraction of dual rationale and/or classical set theory, has progressed to an effec-
tive scientific theory [15]. It contributes a strict scientific (or specifically mathematical)
framework in which unclear conceptual phenomena can be absolutely and thoroughly
considered [14,16]. Specifically, fuzzy set theory can also be viewed as a modeling language,
which is efficient for circumstances where fuzzy criteria and imprecise phenomena are
taken into consideration.

In the current work, we analyze the structure and advancement of complex networks
by means of an extensive study regarding graph theory by presenting their fundamental
types (initially presented in [17]). Concretely, an epidemic model, which is based on
fuzzy logic and is expected to set up a relation among the viral load as well as the clinical
evolution to Acquired Immunodeficiency Syndrome (AIDS) in HIV contaminated users, is
proposed. It is worth mentioning that HIV can be transmitted in different ways, although
sexual intercourse is considered the most common and widespread. Nevertheless, HIV
can also be transmitted through blood transfusions, through HIV-infected women who
transmit the virus to their babies before or during birth, or even later through breastfeeding.
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However, in the present study, a special way of transmitting the virus is used, that is, with
use of syringes that drug users inject. The proposed model is based on the Erdös–Renyi
model and simulates the spread of HIV in an isolated human population. Furthermore, we
tried to incorporate the basic principles of random graphs in order to favor certain types of
graphs. Although this paper focuses on the context of epidemics, the same model can be
directly applied to many different spreading processes in complex networks.

The remainder of the work is structured in the following way: In Section 2, basic
preliminaries, complex networks models and epidemic models are introduced. In Section 3,
we discuss issues related to fuzzy epidemics, while Section 4 introduces the datasets for
validating our framework. Additionally, Section 5 overlooks the experiments that were
conducted in order to evaluate our work and claim our findings along with the results
assembled. Section 6 concludes the work by focusing on conclusions and considers aspects
related to future work. Finally, the notation of this work is summarized in Table 1.

Table 1. Basic notation.

Symbol Meaning

k Node’s Degree

pk Degree Distribution

L Average Shortest Path Length

b Betweenness Node

T Transitivity

C Clustering Coefficient

ci Local Clustering Coefficient of Node i

r Probability Distribution Function related to Fuzzy Logic Setting

U Universe of Discourse

F Fuzzy Set

u Support Value

μF(u) Membership Function

x Linguistic Variable

T(x) The Set of Names of x

M(x) Semantic Rule

2. Theoretical Framework

This section presents the basic preliminaries of current work along with an introduction
to complex network models and epidemic models that are considered in biological networks.

2.1. Basic Definitions

A graph G presents the connections/associations among the data of a system, which
comprises nodes N as well as edges E. Concretely, a graph comprises a collection of data
objects, entitled nodes. A number of these items are related with links named edges [18,19].
Specifically, in the event that the edges are considered towards one direction, then at that
point, the graph is regarded as a directed graph [20]; otherwise, the graph is regarded
as an undirected graph. An undirected graph is a complete graph where all nodes are
interconnected in pairs [18].

In numerous applications, each graph is assigned with a related numeric value, en-
titled weight. In this particular case, the edges constitute non-negative integers, and as a
result, the graph can be regarded as a weighted graph. In order for the definitions to be
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correlated, this graph can be directed or undirected while the edge’s weight is regularly
alluded to as the “cost” of an edge.

In addition, a path constitutes a coherence of nodes, which keep the status of each con-
secutive pair (Vi, Vi+1), i.e., a graph’s edge. Except for the inclusion of the corresponding
nodes, the path involves the coherence of edges that associate these nodes. In a number of
cases, paths with repeated nodes can also be considered; however, in most cases, paths with
non-repeated nodes are preferred. Specifically, in cases where a non-simple path traverses a
particular node, this fact is emphasized as it is referred to as a normal non-simple path [18].

An important aspect that can be derived from graph structure concerns the type of
the graph edges; if it is known, a diversity of valuable metrics that depict the graph’s
characteristics in a more detailed way can be computed. Specifically, the notion of centrality
is utilized to identify the specific graph nodes that are considered critical [21]. There are a
number of possible ways for defining the importance of a node, but the simplest measure
of centrality in a network is to observe the number of edges that are associated with each
vertex-node. This specific definition is referred to as the degree centrality.

In more detail, the node’s degree i in an undirected graph consisting of N nodes is
denoted by ki; assuming an adjacency matrix, this degree can be considered as the sum of
the ith row of the adjacency matrix [20], as presented in the following Equation (1):

ki =
N

∑
j=1

Aij (1)

In network topology, three measures are considered as the most robust; namely, the
degree distribution, the average path length and the clustering coefficient, which will
be presented in the following paragraphs. Initially, one of the major properties in terms
of a graph is the degree distribution, as discussed in [2]. The amount of nodes of the
corresponding network maintaining a degree with a number equal to k is indicated with
pk and is presented in Equation (2). The overall fraction of these values pk produces the
degree distribution with the aim of plotting this distribution of a specific network as a
function of degree k as follows:

pk =
number of nodes with degree k

n
(2)

Another feature that plays a vital part in terms of the graph’s dissemination, as
well as transmission, is the shortest path. The shortest paths are of great importance in
characterizing the internal structure of the graph [19]. Thus, the majority of length values
of the shortest paths of a given graph G needs to be provided so that when considering a
corresponding table A, the input aij can be associated with its length between nodes i and
j. An important aspect of the graph is its diameter, which is defined as the maximum value
of aij.

A representative partition among a number of nodes in a concrete graph is identified
with the use of the average length of the shortest paths, which is typically introduced as the
typical path length. The average path length is considered a concept in network topology
that is defined as the average number of steps along the shortest paths for all possible pairs
of network nodes. It is a measure of the efficiency of information or mass transport on a
network. As an example, one can consider the average number of clicks that will lead you
from one website to another. It should not be confused with the diameter of the network,
which is defined as the longest geodesic, i.e., the longest shortest path between any two
nodes in the network. The average shortest path length L is characterized as the average of
the geodetic lengths over all pairs of nodes as presented in Equation (3):

L =
∑i,j∈N dij

∑i,j∈N pij
(3)
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where dij denotes the shortest distance between nodes i and j; if i = j or j cannot be reached
from i then dij = 0. In addition, pij denotes if there is a path between nodes i and j; if
i = j or if there is no path from i to j then pij = 0 and if there is a path from i to j then
pij = 1. The value of the all-pairs shortest-path length of a particular graph is denoted by
∑i,j∈N dij, whereas ∑i,j∈N pij constitutes the number of paths that exist in this graph. For a
connected undirected graph, ∑i,j∈N pij = N(N − 1) because paths exist between any pair
of nodes [22].

The communication between two non-adjacent nodes depends on the other nodes
that belong to each path and connect them. Consequently, we can obtain whether a given
node can communicate with a non-neighboring one by measuring the geodetic number,
also known as a betweenness node.

More importantly, a betweenness node bi of a node i, often typically referred as load,
is computed from the following Equation (4):

bi = ∑
j,k∈N,j �=k

njk(i)
njk

(4)

where njk constitutes the number of the paths that connect faster node j with node k,
whereas njk(i) is the number of paths that connect the same nodes with the detailed
information traversing through node i via the shortest path [23].

Furthermore, betweenness is considered as a metric that can be further expanded so
as to be applied to the graph’s edges. In this case, the definition is slightly alternated, and
thus, the edge betweenness constitutes the quantity of shortest paths among the pairs of
nodes traversing the corresponding edge [24].

The method of clustering, which is as well declared as transitivity, constitutes a
representative feature of contact networks. As contact networks, one can consider the
example of two people having a mutual friend [19]. This may be evaluated by determining
the clustering T of a graph as a respective quantity of triplets; namely, the fraction of the
three connected triads as in Equation (5) [2]. The factor 3 in the numerator accounts for
the aspect that each triangle, consisting of three nodes, is actually contributing three times,
which is the connected triads, and guarantees that 0 ≤ T ≤ 1, with T = 1.

T =
3 × number of triangles in G

number of connected triples of vertices in G
(5)

Another option that can be regarded as a factor is the utilization of the clustering
coefficient C of the corresponding graph [25]. That is, given a concrete node i, this metric is
equal to the quantity ci, which is the local clustering coefficient. This quantity expresses
the probability of ajm to become equal to 1 for two connected nodes to node i, namely j
and m. More importantly, the definition of the local clustering coefficient can be estimated as
the fraction among the quantity of edges ei and the maximum feasible number of edges
ki(ki−1)

2 in one graph, as follows in Equation (6) [26]:

ci =
2ei

ki(ki − 1)
=

∑j,m aijajmami

ki(ki − 1)
(6)

In the following, the clustering coefficient of the graph can be computed as the average
of value ci for the entire number of nodes of the graph, as in Equation (7). By default,
0 ≤ ci ≤ 1, as well as 0 ≤ C ≤ 1.

C =
〈
c
〉
=

1
N ∑

i∈N
ci (7)

2.2. Models of Complex Networks

The structure and the characteristics of complex networks can be analyzed and un-
derstood by rigorously examining their corresponding modeling. Specifically, some major
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issues associated with the analysis and prediction of process behavior in the following
simulation are found in the information retrieval, propagation and transmission.

2.2.1. Erdös–Renyi Model

The Erdös–Renyi [27] model is considered among the initial network models with the
characteristic that it corresponds to the random graph. Concretely, regarding the model of
a random graph, two major aspects of the nodes are represented, namely their quantity as
well as the probability that two arbitrarily selected nodes are associated. For every pair of
nodes, an equal probability is associated, which is independent of the remaining pairs, as
stated in [20,27].

One of the critical reasons for which the Erdös–Renyi model has been widely accept-
able is its attributes that encourage the process of modeling the network. Moreover, a
special category of graphs, namely random graphs, does not efficiently correspond to
the structure of real networks, since the majority of the node degrees in terms of this
graph category results from the power-law distribution (Retrieved 27 April 2021, from
https://necsi.edu/power-law) [28] rather than from Poisson distribution. In this way, the
Erdös–Renyi model does not take into account the impact of the clustering process, while
a random graph can be considered as an ideal model option for investigating complex
networks [27].

2.2.2. Barabási–Albert Model

The most popular model, having degree distribution in power-law edges, is the
Barabási–Albert model [29]. Concretely, the corresponding graphs are constructed under a
dynamic process where the edges are added one by one to a core. The probability of a new
edge to be linked with an existing one is proportional to the degree of the latter. According
to the above, the edges with a high degree of distribution are more likely to be selected
as adjacent to the new edges. Once this occurs, the degree of all edges will be increased
so that there are more possibilities to be chosen in the future. This process creates a graph
with a degree distribution that is characterized by a power-law tail as the number of edges
tends to infinity.

The Barabási–Albert model presents a very small average-shortest-path length of a
random graph as well as a clustering coefficient. This coefficient decreases with the size
of the network and is lower than in real networks. The representation of the community
structure of the actual complex networks is properly introduced in Figure 1.

Figure 1. The Barabási–Albert model.
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2.3. Epidemic Models in Biological Networks

As a second category of complex networks, biological neural networks of living
organisms along with their epidemic networks, are considered. More specifically, two main
types of biological networks exist. In addition, we propose a reference to networks based
on the heritage/legacy of individuals by utilizing the genetic material (deoxyribonucleic
acid—DNA) in conjunction with common attributes that these corresponding individuals
come up with from their predecessors. Additionally, the epidemic activity of complex
networks utilized by the nodes sensitivity is presented. Furthermore, different scenarios are
investigated, like the transferable filial diseases (airborne or sexually transmitted) among
humans, which is propagated through different categories of networks, like complex
internet ones, or social networks, or even among computers.

This category of networks is also similar to biological networks in terms of utilizing
networking either among communities in living organisms or among organism functions.
For example, the ecosystem, subsections, and nervous system of the brain, which is perhaps
the most studied by scientists.

3. Fuzzy Epidemics

Biological pathogens, such as influenza, measles, as well as sexually transmitted
diseases, can result in infectious and contaminating diseases, especially in cases where epi-
demic diseases are considered. These diseases have the major characteristic of transmitting
among individuals. Epidemics are capable of massively contaminating the population or
can be dormant for a long time without any evidence of their presence. In extraordinary
cases, one unique disease outburst can have a considerable and critical impact on a whole
culture; for example, one can consider the entity of epidemics activated by the entry of
Europeans in America or even the deadly epidemic of smallpox as featured by the British
during the 15th century.

3.1. Transmitted Diseases in Networks

An infectious disease can be spread among individuals within a population of a
complex network, as thoroughly displayed in [30]. The network of contacts can lead to the
spread and expansion of a corresponding contamination. If these individuals physically
encounter each other, then they are likely to catch the disease. Therefore, the precision of
the model in terms of the inherent network is of major importance in order to identify the
epidemic spreading. A number of comparable works constitute the research of malware
spread among computers [31].

3.2. Branching Processes

The branching process is considered as the elementary model of disease propagation,
especially with respect to an airborne illness. These kinds of networks are often mentioned
as trees, as presented in Figure 2. Transmission waves utilize the specific tree model by
taking into consideration the following information: when a number of infections get
involved in a healthy population by a group of individuals, at that point there exists a
plausibility for the disease to be transmitted to a sensitive portion of this populace, in
accordance with a random transmission possibility of the disease [18].
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Figure 2. A Tree Network of an Epidemic Spread.

3.3. Susceptible–Infectious–Susceptible Model (SIS)

A basic variation regarding the epidemic models permits the hypothesis that people
influenced by an epidemic can be infected a number of times. This characteristic epidemic
model is deemed when the nodes interchange among the two phases, namely, the sus-
ceptible S and infectious I. In this specific model, there is no third phase and the model
returns back to susceptible (S). This is the reason for the naming of the SIS model. More
importantly, SIR model information is taken into account when considering this process.
More specifically, some individuals of the model are within the infectious phase, while the
remaining are within the susceptible phase.

On the other hand, every individual that comes into the infectious phase stays infected
for a steady time. For the specific period, the contaminated individuals can maintain the
plausibility of reaching the infection from any sensitive neighbor. After this period of time,
the infectious individuals, in other words, those that are not infected anymore, can return
to the susceptible phase once more.

The SIS model, similar to the above-mentioned SIR model, can be extended so as
to efficiently manage more complicated sorts of epidemic cases [5]. Specifically, these
types include either diverse transmission possibilities among diverse node individuals,
or possibilities of disease reclamation, where each infected node returns to the sensitive
situation with some probability, and finally, multiple stages of infection with varying
properties of disease between them [18].

3.4. Transient Contact Model

In the previous subsections, we have presented outbreak models that have rapidly
evolved. The diseases, for example, sexually transmitted ones (e.g., HIV/AIDS), are
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expanding into a large portion of individuals over longer time scales. However, this
spreading takes several years to evolve in a network. This fact is a direct result of their
course and, thus, depends mostly upon the quality of the sexual relationship of each
pair. The majority of individuals have occasionally contacted a few times, whereas the
properties of these concrete contacts may alternate amid disease propagation. As a result,
novel connections and couples are considered, while others are broken up [18].

It is of major importance to identify that the sexual contacts, for this kind of correlating
network, are temporary/transient. This fact lasts for a small period of time and through
the total life of the epidemic.

3.5. Network Fuzzy Logic

A fuzzy epidemic is considered as a major aspect in disease transmission and epi-
demiology. More importantly, in recent works, users that are evidently sheltered or not to
a specific illness are regarded to be in perilous situations of being categorized as diseased
or non-diseased [13,32].

In our present manuscript, a different approach is introduced as we incorporate the
concepts of fuzzy logic as well as atomic outcomes. People are deemed to be exposed to a
considerable fuzzy aspect in terms of concrete functions of a fuzzy set membership; in the
following, their reaction is classified by taking into account supplementary functions of a
fuzzy set membership. As a next step, fuzzy set theory along with maximum likelihood
were applied, and individual heterogeneity was calculated, thus giving us more realistic
estimators than their classical counterparts.

Furthermore, assuming the case where hypothetical possibilities are taken into con-
sideration, hypothetical probabilities under fuzzy logic settings can be determined. A
probability distribution function r related to a fuzzy subset F is numerically equivalent to
its degree of fuzzy membership function μF [33], which is:

r(x) = μF(x) ∀x ∈ X (8)

We shall briefly introduce basic components in a traditional fuzzy logic system (for
detailed discussion, please refer to [34,35]) and then propose our connectionist model [36].
Such models, also known as parallel distributed processing (PDP) models, are essentially
computational models used to model aspects of human thought through the perception,
knowledge, and behavior of learning processes [37]. This results in the storage and retrieval
of information from the system memory.

Often the architecture of such models substantially differs among different applica-
tions; however, all models present specific assumptions that collectively characterize the
"connection" approach to cognitive science. It is also important that connectionist models
maintain the style of human thinking as in vague logical systems.

We shall define fuzzy sets and linguistic variables. A fuzzy set F defined in a universe
of discourse U is characterized by a fuzzy membership function μF(x) : U→ [0, 1]|x ∈ U.

Thus, a fuzzy set F in U may be represented as a set of ordered pairs. Each ordered pair
consists of a generic element u and the degree of membership of any element of discourse
to the fuzzy set. It is estimated by employing any fuzzy membership function as

F = {(u, μF(u))|u ∈ U} (9)

where u is called a support value if μF(u) > 0.
If U is a continuous universe and F is normal and convex (i.e., maxu∈UμF(u) = 1 and

μF(λu1 + (1− λ)u2) ≥ min(μF(u1), μF(u2)), where (u1, u2) ∈ U and λ ∈ [0, 1], then F is a
fuzzy number.

A linguistic variable x in a universe of discourse U is characterized by T(x) =
{T1

x , T2
x , . . . , Tk

x} and M(x) = {M1
x, M2

x, . . . , Mk
x}, where T(x) is the term set of x. That

is the set of names of linguistic values of x with each value T, where T is a fuzzy number
with membership function Mi

x defined on U. So M(x) is a semantic rule for associating
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each value with its meaning; for example, if x indicates a potential infection, then T(x)
may have values equal to {Infected, Susceptible (IS)}.

3.6. Contact Structure and Partnership Dynamics

Numerous utilized models of HIV eco-evolutionary dynamics utilize implied models
that include the normal impacts of sexual contact given a concrete couple without imper-
sonating the unequivocal dynamics of the configuration of a partner relationship [38]. Since
our motivation stems from the fact that we are interested in exploring the way that issues
around virulence evolution rely on the modeled contact structure, we examine a model
with growing complexity levels in the contact structure, but at the same time, rearrange
several of the remaining epidemiological forms (like the history of HIV as a within-host).

Figure 3 presents a schematic representation of the proposed model with explicit
contact structure considering explicitly partnership dynamics [39]. Non-instantaneous
partnership formation, which concerns people that are without any partner and spend a
period as uncoupled, is presumed in the above schematic representation and comprises five
categories related to different types of disease as well as values of partnership. Concretely,
the five states are the following:

• Single (uncoupled) susceptible (or sensitive) individuals (S);
• Single infected (or contaminated) individuals (I);
• Concordant negative couples (i.e., susceptible–susceptible, SS) when both partners

are susceptible;
• Discordant couples (i.e., susceptible–infected, SI);
• Concordant positive couples (i.e., infected–infected, I I) when both partners are infectious.

Figure 3. Schematic representation of model with explicit contact structure.

Regarding schematic representation, solid arrows represent infection transitions (e.g.,
S towards I), dotted arrows exhibit partnership dialysis and configuration (e.g., S towards
SI) and dashed arrows represent impacts on the rate of the infection, indicating transmis-
sion among the nodes of the pair (with blue color) as well as transmission among the nodes
of an uncoupled pair (with red color).

The values of single (i.e., uncoupled) susceptible and infected people generate the rate
of the configuration of each pair. Furthermore, associations and relationships among two
individuals can either be suspended or even be modified into other types of relationships by
infecting one out of two individuals. This corresponding model also incorporates another
type of contact, namely when both individuals are uncoupled as well as individuals related
to other partnerships. This means that these susceptible partners and susceptible uncoupled
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individuals in any sort of association can also be contaminated by infected partners or
infected uncoupled individuals in any sort of association.

4. HIV Transmission Simulation of Biological Network

The propagation of the AIDS syndrome, triggered by the HIV virus, in a sample of
infusing drug users, is introduced and thoroughly discussed in this section. Several virus
propagation scenarios with various diverse parametric transmission modes as well as
syndrome investigations during this propagation are comprehensively utilized.

4.1. Proposed Model

In the European Union, it has been shown that 18 million of its population are drug
users, which is 5% of the entire population (Retrieved 27 April 2021, from https://www.
emcdda.europa.eu/). It is worth noting that out of 5%, a percentage equal to 0.63% is
attributed to individuals that are HIV infected via shared needles [40]. In light of the above
information, the present work examines the propagation of the virus through all injected
drug users, with the average transmission of the epidemic being multiple syringes used by
various users.

The proposed model addresses the following issues by utilizing Boolean variables:

• Is the individual aware of carrying the infection or not?
• Has the syringe been given to more than one individual or not?
• Is the individual aware of being infected or not?

This proposed model simulates the spread of HIV through sexual transmission within
a small isolated human population. HIV can be transmitted in several ways, where sexual
contact can be considered as the most common and widespread. However, HIV can also be
transmitted with the use of syringes shared through blood transfusions of injecting drug
users. Another transmission type could be through women with HIV that can transmit the
virus to their babies before or during birth, or even later through breastfeeding.

The proposed method also determines, by means of a variable, the portion of the
population that will be manually infected. As a result, when simulating the alternations
of input data, new questions and potential problems arise as well as more distinctive
outcomes occur. In this study, we based our proposed model by taking into consideration
the following aspects:

• For how long will the individual use the syringe?
• How many individuals will use clean (new) needles?
• How many individuals share simultaneously the same needle?
• How often are individuals tested by a physician?

There are auxiliary input variables in the system, which provide the possibility to
manually change the data of the model in order to come up with different outcomes and
outputs. As a result, the model displays during the simulation the number of infected
individuals and is aware of the disease percentage as well as the rate of infection on a
weekly basis.

4.2. Random Graph

The equal probability of each pair of individuals concerning the aspect of contact,
regardless of the other pairs, is based on the theory of the Erdös–Renyi random graph, as
depicted in Algorithm 1. However, an epidemic needs even more time for the spreading
to be achieved, so we alternated the transmission of the syndrome into the epidemic
transiently contact model accordingly our proposed model, which is more appropriate.
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Algorithm 1 Epidemic Transiently Contact Model.

1: input All possible edges are considered and included in the graph with equal probabil-
ity p

2: input Variable d that specifies the possibility of the unidirectional edges to be equally
modified, i.e., if they are reciprocal

3: for each node i do

4: for each node j = i + 1 . . . N do

5: Set a random number u between 0 and 1 uniformly

6: if p > u then

7: Create a mutual (reciprocal) edge between node i and node j
8: else

9: if d > u then

10: Create a directed edge from node i to node j
11: Create a directed edge from node j to node i
12: else

13: Create a directed edge from node i to node j
14: Set a randomly chosen node h from the set of all nodes except for i and j

uniformly
15: Create a directed edge from node h to node i
16: end if

17: end if

18: end for

19: end for

The overall time complexity of the algorithm to generate a random graph of N nodes
under the epidemic transiently contact model is Θ(N2) as this is the time complexity to
execute the two "for" loops. Specifically, for each new step, the algorithm acts in Θ(N) if
one max directed edge per new node is created; otherwise, the complexity is Θ(NM) if M
the max directed edges per new node is created.

As aforementioned, we have modified the Erdös–Renyi random graph in the way that
there is some dependence on whether or not the edges are present. This approach is taken
into consideration because in many practical problems, the vertices are in fact randomly
positioned in some geometric space (usually Euclidean). Furthermore, two vertices are
adjacent if and only if the distance between them (in some specified norm) is less than a
certain quantity. These corresponding points are usually uniformly distributed in [0, 1]n.

In the present manuscript, we tried to incorporate some basic notations from the
random-duster model by biasing the formula for the probability of a set of edges in order
to favor certain kinds of graphs arising. In this kind of model, given a graph G = G(V, E)
and a set of edges A ⊆ E, let c(V, A) denote the number of components of the graph in
which the vertices are denoted by V and the corresponding set of edges is denoted by A.
Then, the probability that the edges that arise are exactly those in A is [41]:

p|A|(1− p)|E|−|A|qc(V,A)

∑F⊆E p|F|(1− p)|E|−|F|qc(V,F)
(10)

where q is a positive integer used for favoring specific elements of a concrete graph. Namely,
observe that when q is equal to 1, the Erdös–Renyi model is recovered. In addition, if q > 1,
graphs with many components are favored, whereas if q < 1, the connected graphs are
favored. Notice that the study of this model is closely linked to percolation theory and
statistical physics.
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4.3. Implementation

In the current paper, the problem of the transmission of HIV through injectable drugs
in Europe is presented. Thus, according to the data presented by the European Drug Report,
a small sample was adapted to the simulation due to the decrease in percentage of users in
Europe in recent years. More specifically, the percentage of injecting drug users diagnosed
with AIDS has dropped by almost 40% as compared to the previous decade (Retrieved 27
April 2021, from https://www.emcdda.europa.eu/system/files/publications/11364/2019
1724_TDAT19001ENN_PDF.pdf). The sample used in the implementation is 300 as well as
500 users.

In addition to these samples, according to the study aforementioned [17], we consider
a 0.63% disease possibility for the AIDS virus; based on the above, the percentage of the
population that is initially infected and enters the model, corresponds to 0.63% of the entity.
An important part of the application is considered the sharing of the same needle among
drug individuals of the sample, which is implemented by the system’s random selection;
if a person uses a syringe that “carries” the virus, there is 100% probability of becoming
infected. Another issue that has to be taken into account is that after about two years (i.e.,
100 weeks), the symptoms of the syndrome begin to appear.

For the verification of our proposed methodology, four different scenarios have been
implemented, as shown in Table 2. More specifically, Tables 2 and 3 present the percentages
of fuzziness, which has been studied during the experiments. In the first part (out of four)
of Table 3, no fuzziness was applied, while in the other three examples, percentages of
fuzziness equal to 10%, 30%, and 50%, respectively, were applied. The primary research
reason for choosing the specific scenarios is twofold. First, the comparison between the
absence of fuzziness and different percentages of fuzziness will provide us with impor-
tant insights. Second, the three different percentages are thoroughly selected until the
percentage of 50% because, if the results exceed this upper bound, the results will not be
meaningful in terms of the problem we are trying to resolve.

From the two above-mentioned tables, the results shown in Tables 4–7 are depicted.
Concretely, Tables 4 and 5 introduce the outcomes of the first two scenarios where the
sample is 300 individuals and they are obliged to carry out one and two tests per year,
respectively. On the other hand, Tables 6 and 7 present the results of the last two scenarios
where the sample is 500 individuals and are obliged to carry out one and two tests per
year, respectively.

Table 2. Four different scenarios.

Scenario 1 2 3 4

Number of Users 300 300 500 500
Number of Tests per Year 1 2 1 2

Table 3. Data of the twelve examples for four different scenarios.

Features 1 2 3 4 5 6 7 8 9 10 11 12

Percentage of Fuzziness 0% Fuzzy 10% Fuzzy 30% Fuzzy 50% Fuzzy

Shared Syringe 10 0 7 9 0 7 7 0 6 5 0 4
New Syringe 0 10 3 0 9 2 0 7 1 0 5 1
Fuzzy 0 0 0 1 1 1 3 3 3 5 5 5
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Table 4. People regarding the first scenario for a different number of weeks.

Option of Illness 100 390 1390 2390 3930

0% Fuzzy—1st example

AIDS- 298 290 240 142 126
AIDS+ 0 2 41 138 174
AIDS? 2 8 19 20 0

0% Fuzzy—2nd example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

0% Fuzzy—3rd example

AIDS- 297 288 200 135 119
AIDS+ 0 5 63 156 181
AIDS? 3 7 37 9 0

10% Fuzzy—4th example

AIDS- 293 288 191 135 130
AIDS+ 3 5 74 162 170
AIDS? 4 7 35 3 0

10% Fuzzy—5th example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

10% Fuzzy—6th example

AIDS- 296 285 217 148 128
AIDS+ 0 9 55 141 172
AIDS? 4 6 28 11 0

30% Fuzzy—7th example

AIDS- 297 288 234 178 145
AIDS+ 0 4 54 109 155
AIDS? 3 8 12 13 0

30% Fuzzy—8th example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

30% Fuzzy—9th example

AIDS- 292 290 258 189 138
AIDS+ 2 4 32 88 162
AIDS? 4 6 10 23 0

50% Fuzzy—10th example

AIDS- 294 285 213 153 136
AIDS+ 2 5 64 134 164
AIDS? 4 10 23 13 0

50% Fuzz—11th example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

50% Fuzzy—12th example

AIDS- 296 294 277 264 210
AIDS+ 0 2 16 31 90
AIDS? 4 4 7 5 0
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Table 5. People regarding the second scenario for a different number of weeks.

Option of Illness 100 390 1390 2390 3930

0% Fuzzy—1st example

AIDS- 295 294 290 284 284
AIDS+ 2 4 4 16 16
AIDS? 3 4 6 0 0

0% Fuzzy—2nd example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

0% Fuzzy—3rd example

AIDS- 295 292 291 291 291
AIDS+ 0 5 9 9 9
AIDS? 5 3 0 0 0

10% Fuzzy—4th example

AIDS- 295 290 258 254 254
AIDS+ 1 4 39 46 46
AIDS? 4 6 3 0 0

10% Fuzzy—5th example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

10% Fuzzy—6th example

AIDS- 296 292 273 273 273
AIDS+ 1 3 27 27 27
AIDS? 3 5 0 0 0

30% Fuzzy—7th example

AIDS- 296 288 261 244 244
AIDS+ 0 5 35 56 56
AIDS? 4 7 4 0 0

30% Fuzzy—8th example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

30% Fuzzy—9th example

AIDS- 294 288 278 278 278
AIDS+ 2 5 22 22 22
AIDS? 4 7 0 0 0

50% Fuzzy—10th example

AIDS- 295 288 259 253 253
AIDS+ 0 5 36 47 47
AIDS? 5 7 5 0 0

50% Fuzzy—11th example

AIDS- 298 298 298 298 298
AIDS+ 0 2 2 2 2
AIDS? 2 0 0 0 0

50% Fuzzy—12th example

AIDS- 296 294 293 293 293
AIDS+ 0 4 7 7 7
AIDS? 4 2 0 0 0
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Table 6. People regarding the third scenario for a different number of weeks.

Option of Illness 100 390 1390 2390 3930

0% Fuzzy—1st example

AIDS- 491 489 385 260 211
AIDS+ 2 3 78 214 289
AIDS? 7 8 37 26 0

0% Fuzzy—2nd example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

0% Fuzzy—3rd example

AIDS- 491 483 312 190 172
AIDS+ 1 4 131 294 328
AIDS? 8 13 57 16 0

10% Fuzzy—4th example

AIDS- 492 482 384 235 219
AIDS+ 2 5 78 247 281
AIDS? 6 13 38 18 0

10% Fuzzy—5th example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

10% Fuzzy—6th example

AIDS- 491 477 292 183 171
AIDS+ 1 5 141 311 329
AIDS? 8 18 67 6 0

30% Fuzzy—7th example

AIDS- 491 479 283 169 173
AIDS+ 1 4 140 322 329
AIDS? 8 17 77 9 0

30% Fuzzy—8th example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

30% Fuzzy—9th example

AIDS- 492 475 294 231 223
AIDS+ 1 8 151 261 275
AIDS? 7 17 55 8 0

50% Fuzzy—10th example

AIDS- 491 483 312 190 172
AIDS+ 1 4 131 294 328
AIDS? 8 13 57 16 0

50% Fuzzy—11th example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

50% Fuzzy—12th example

AIDS- 494 487 326 241 221
AIDS+ 0 3 114 246 279
AIDS? 6 10 60 13 0
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Table 7. People regarding the fourth scenario for a different number of weeks.

Option of
Illness

100 390 1390 2390 3930

0% Fuzzy—1st example

AIDS- 487 477 417 391 376
AIDS+ 3 13 74 106 123
AIDS? 10 10 9 2 0

0% Fuzzy—2nd example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

0% Fuzzy—3rd example

AIDS- 486 481 413 343 318
AIDS+ 4 14 70 141 182
AIDS? 10 5 17 16 0

10% Fuzzy—4th example

AIDS- 488 487 446 412 395
AIDS+ 4 9 45 80 105
AIDS? 8 4 9 8 0

10% Fuzzy—5th example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

10% Fuzzy—6th example

AIDS- 493 485 435 365 331
AIDS+ 0 10 57 115 169
AIDS? 7 5 8 17 0

30% Fuzzy—7th example

AIDS- 488 485 448 422 400
AIDS+ 5 10 43 73 100
AIDS? 7 5 9 5 0

30% Fuzzy—8th example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

30% Fuzzy—9th example

AIDS- 489 486 420 352 340
AIDS+ 3 9 62 140 160
AIDS? 8 5 18 8 0

50% Fuzzy—10th example

AIDS- 492 478 417 392 380
AIDS+ 2 14 74 105 120
AIDS? 6 8 9 3 0

50% Fuzzy—11th example

AIDS- 497 497 497 497 497
AIDS+ 0 3 3 3 3
AIDS? 3 0 0 0 0

50% Fuzzy—12th example

AIDS- 492 486 461 454 443
AIDS+ 0 9 36 45 57
AIDS? 8 5 3 1 0
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5. Results

In the following, Tables 4–7 present the results for the four above-mentioned scenarios.
Please notice the following three categories of users.

• AIDS-: users not infected by HIV.
• AIDS+: users infected by HIV and they know it (they have been tested).
• AIDS?: users who have no knowledge if they are (or not) infected by HIV and they

have not passed the one year time limit in order to be tested.

First Scenario: Table 4 shows that examples 2, 5, 8, and 11 achieve the same results.
This is due to the fact that all users use a new syringe for every drug use, thus resulting in
the same percentage of infection in the sample, for example, 0.67%. Moreover, in examples
1, 4, 7, and 10, users sharing illegal substances are many and no one uses a new syringe. As
a result, we can observe that the disease spreading increases rapidly in all four examples,
although there is a large percentage of fuzziness in examples 4 (with 10%), 7 (with 30%)
and 10 (with 50%). In these examples, the rates of infection range from 40% to 56% as
we do not know what the whole sample is doing; that is, when we have a percentage of
fuzziness equal to 30%, we actually do not know what 3 out of 10 users are doing (sharing
or using a new syringe in each contact).

Regarding examples 3, 6, 9, and 12, the simulation in the sample is closer to reality;
that is, some of the users are using illicit substances with a new syringe. An increase in
the spread of the virus is depicted, as disease spreading rates range from 25% to 55%. In
addition, the largest value is presented in example 6 with the percentage of fuzziness equal
to 10%, whereas the lowest value is presented in example 12 with a percentage of fuzziness
equal to 50%. These results are justified as the percentage of fuzziness in example 6 is less
than the corresponding value in example 12.

It should be noted that, in these examples, each user has been forced to do an HIV test
once a year.

Second Scenario: Table 5 shows, similarly to Table 4, that examples 2, 5, 8, and
11 achieve the same results. As a result, the percentage of infection in the sample remained
the same, for example, 0.67%. Moreover, in examples 1, 4, 7, and 10, users sharing illegal
substances are 10, 9, 7 and 5 out of 10 (according to Table 3 and the corresponding fuzziness)
and no one uses a new syringe. Thus, it is observed that the disease spreading increases in
an even more rapid way, in all four examples, than in Table 4.

Furthermore, this increase reaches its biggest value in a shorter time, for example,
2390 weeks in all four examples, despite the fact that fuzziness plays an important role in
the last three examples. In these examples, the rates of infection range from 5% to 20% and
this decrease, compared to Table 4, is due to the number of mandatory HIV test samples
submitted over time, which are two instead of one.

As in Table 4, results in examples 3, 6, 9, and 12 present a sharp decrease in virus
spreading. The disease spreading values range from 1.3% to 9%, with the largest value
being in example 6 with the percentage of fuzziness equal to 10%. On the other hand, the
lowest values are presented in examples 1 and 12 with the percentage of fuzziness equal to
0% and 50%, respectively.

Third Scenario: The examples 2, 5, 8, and 11 in Table 6 perform exactly like the
corresponding ones in previous Tables 4 and 5. The only difference lies in the rate of
infection, which has a value equal to 0.8% (the infection rate has a starting value equal
to 0.8% and not 0.63% as the probability of infection lies between 3.15 and 500 under the
500× 0.0063 = 3.15). This is justified as all users use a new syringe in every drug use.

Examples 1, 4, 7, and 10 perform similarly to Table 5, whereas the rates of infection
range from 50% to 62%. We also anticipated that examples 3, 6, 9, and 12 would be closer
to reality, and the values prove our assumptions. In addition, a marked increase in the
spread of the virus is observed where the rates of infection range from 52% to 68%. More
specifically, the highest value is achieved in example 9 with the percentage of fuzziness
equal to 30%, while the lowest value is achieved in example 12 with the percentage of
fuzziness equal to 50%.
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Fourth Scenario: As we anticipated, the results in examples 2, 5, 8, and 11 in Table 7
perform in the same way as in previous Tables. Moreover, the rate of infection has a value
equal to 0.8%, as in Table 6. In examples 1, 4, 7, and 10, no new syringe is used and the
number of users sharing illegal substances is 10, 9, 7 and 5 out of 10, respectively. It is
also observed that the increase in the disease spread does not rise in a quick way and
thus, it achieves more promising results for all the corresponding examples. The values
of infection in the sample range from 13% to 25%, and this is presented due to the two
mandatory HIV test samples submitted over time.

Finally, we noticed a pronounced decrease in the spread of the virus in terms of the
corresponding results of Table 5, regarding examples 3, 6, 9, and 12. More specifically,
the rates of infection range from 9.5% to 36%, where the highest value is achieved when
the percentage of fuzziness is equal to 0%, and the lowest value is achieved when the
percentage of fuzziness is equal to 50%.

5.1. Comparing All Four Scenarios

Tables 8–11 depict the results from the virus spreading scenarios with the most plausi-
ble values (i.e., some users use illegal substances with a new syringe while others share the
same); that is, we have used the results from examples 3, 6, 9 and 12. The results are grouped
by the value of fuzziness, and both population samples (i.e., 300 and 500 individuals) are
displayed in order for the comparison to be manifested.

Table 8. Comparison between the four scenarios for a different number of weeks by considering the 3rd example with
0% fuzzy.

Option of Illness 100 390 1390 2390 3930 100 390 1390 2390 3930

1st scenario—1 test—300 users 3rd scenario—1 test—500 users

AIDS- 297 288 200 135 119 491 483 312 190 172
AIDS+ 0 5 63 156 181 1 4 131 294 328
AIDS? 3 7 37 9 0 8 13 57 16 0

2nd scenario—2 tests—300 users 4th scenario—2 tests—500 users

AIDS- 295 292 291 291 291 486 481 413 343 318
AIDS+ 0 5 9 9 9 4 14 70 141 182
AIDS? 5 3 0 0 0 10 5 17 16 0

Table 9. Comparison between the four scenarios for a different number of weeks by considering the 6th example with
10% fuzzy.

Option of Illness 100 390 1390 2390 3930 100 390 1390 2390 3930

1st scenario—1 test—300 users 3rd scenario—1 test—500 users

AIDS- 296 285 217 148 128 491 477 292 183 171
AIDS+ 0 9 55 141 172 1 5 141 311 329
AIDS? 4 6 28 11 0 8 18 67 6 0

2nd scenario—2 tests—300 users 4th scenario—2 tests—500 users

AIDS- 296 292 273 273 273 493 485 435 365 331
AIDS+ 1 3 27 27 27 0 10 57 115 169
AIDS? 3 5 0 0 0 7 5 8 17 0

In more detail, in Table 8, with a fuzziness of 0%, the increase in the spread of the
virus as the number of weeks increases is clearly visible since this spread in the results
concerning the one mandatory blood test per year (scenarios 1 and 3), for both samples,
is fairly fast with spread rates ranging from 34% to 52%. On the other hand, assuming
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two mandatory blood tests per year (scenarios 2 and 4), the rates of the virus spread range
from about 1.3% to 36%, respectively.

The results in Table 9 with fuzziness of 10% are almost the same as in Table 8. Specif-
ically, for scenarios 1 and 3, the increase in the virus spreading is fast where the spread
percentages present values from about 25% to 55%, respectively. On the other hand, in
scenarios 2 and 4, we notice that the virus spreading does not increase so rapidly as it
presents values from about 9% to 17%, respectively.

Table 10 presents the results where the percentage of fuzziness is equal to 30%. We
can observe that the values are identical with the ones of the previous tables. Concretely,
for scenarios 1 and 3, the increase in the spread of the virus in both samples ranges from
about 45–68%, respectively. While in scenarios 2 and 4, we notice that these percentages
are adequately lower, presenting values from about 1.3–8%, respectively.

Finally, Table 11 depicts the results with a percentage of fuzziness equal to 50%. As
mentioned above, the increase for all four scenarios are almost identical, as in the three
previous tables. The increase in virus spreading, for scenarios 1 and 3, ranges from about
25–52%, respectively, whereas when considering scenarios 2 and 4, the increase takes values
from about 1.3–9.5%.

Table 10. Comparison between the four scenarios for a different number of weeks by considering the 9th example with
30% fuzzy.

Option of Illness 100 390 1390 2390 3930 100 390 1390 2390 3930

1st scenario—1 test—300 users 3rd scenario—1 test—500 users

AIDS- 292 290 258 189 138 492 475 294 231 223
AIDS+ 2 4 32 88 162 1 8 151 261 275
AIDS? 4 6 10 23 0 7 17 55 8 0

2nd scenario—2 tests—300 users 4th scenario—2 tests—500 users

AIDS- 294 288 278 278 278 489 486 420 352 340
AIDS+ 2 5 22 22 22 3 9 62 140 160
AIDS? 4 7 0 0 0 8 5 18 8 0

Table 11. Comparison between the four scenarios for a different number of weeks by considering the 12th example with
50% fuzzy.

Option of Illness 100 390 1390 2390 3930 100 390 1390 2390 3930

1st scenario—1 test—300 users 3rd scenario—1 test—500 users
AIDS- 296 294 277 264 210 494 487 326 241 221
AIDS+ 0 2 16 31 90 0 3 114 246 279
AIDS? 4 4 7 5 0 6 10 60 13 0

2nd scenario—2 tests—300 users 4th scenario—2 tests—500 users

AIDS- 296 294 293 293 293 492 486 461 454 443
AIDS+ 0 4 7 7 7 0 9 36 45 57
AIDS? 4 2 0 0 0 8 5 3 1 0

5.2. Discussion

Studying complex networks can solve various real-world problems and can be applied
to a variety of scientific fields. They make it possible to investigate any scientific network
according to the requirements of each real-world area and, of course, based on the input
data of each concrete network. Complex networks also provide a view of the composition
entities of a network resulting in the creation of arbitrarily configured networks. Addi-
tionally, it is possible for these entities to be at any moment removed from the network.
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Because of their efficiency described above, complex networks are becoming both popular
and attractive.

It is of major importance to notice that studying and understanding the processes
utilized in complex networks presents new horizons for researchers to investigate and
solve many problems (e.g., diseases diffusion and propagation, mutations) in terms of
these networks. The science of molecular biology considers distinct complex networks
consisting of numerous interacting parts with different structures, such as enzymes, genes,
and proteins. In addition, in the area of epidemiology, beyond the examination of complex
networks, the corresponding complex networks are initially analyzed, then modeled and
finally simulated in the form of toolboxes.

Any similar approaches in the context of epidemics fail in understanding the principles
of random graphs and especially in the corresponding problem we are investigating.
Regarding fuzzy estimators, let us assume that we are interested in answering the question
“What is the fuzzy probability that a very sexually active individual will develop AIDS?”.
Then, the fuzzy ratio is considered as we are dealing with the conditional probability that
this specific individual will develop AIDS with a certain speed given that he/she is subject
to a certain risk due to his/her sexual activity level.

According to the individuals who make up each society (300 and 500 people), a
significant difference regarding the results was observed. More specifically, when a run
of our proposed technique was performed in a larger sample of people and after many
tests, it was found that the sample with the 500 individuals proportionally achieved the
greatest improvement in the results in terms of virus transmission with respect to the
same conditions and parameters. This results in greater precision of the model in samples
approaching the real world.

6. Conclusions and Future Work

In this paper, a fuzzy implementation based on complex network theory was intro-
duced. In particular, the propagation of a corresponding disease (e.g., AIDS) to a sample
of individuals with specific characteristics was simulated by implementing two different
models of complex networks. The first scheme utilized the Erdös—Renyi model con-
sidering that the sample was selected from the original population and assuming that
the relationships between individuals follow the random graph; also, in this model, the
virus transmission is based on the epidemic contact transient model. On the other hand,
in the second scheme utilized, different scenarios were investigated and performed and
also different conditions within the sample were measured in order to obtain the results
through the process of fuzzy simulations, which cannot be effectively implemented in the
real world. These results depict the evolution of formalism among the individuals of the
concrete population. Furthermore, we can argue that this tool, according to the information
obtained, can also be a preventive application to various diseases.

The study of multi-virus networks as well as the investigation of different epidemic
models are some of the future expansions of our work. In addition, another future work
that can extend our proposed application is the integration of distinctive algorithmic
analytic methods along with the introduction of the theory of dynamic systems. Further
analytical experimental evaluation of the application can be considered as a critical point
since the system provides new examples through its auxiliary input variables. Finally, after
simulating the model, we explored the notion that incorporating effective heuristics in
terms of temporal graphs is something to be outlined and attracts a lot of interest.
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Abstract: Efficient and uninterrupted energy supply plays a crucial role in the quality of modern
daily life, while it is obvious that the efficiency and performance of energy supply companies has a
significant impact on energy supply itself and on determining and finetuning the future roadmap of
the sector. In this study, the performance and efficiency of energy supply companies with respect
to productivity is investigated with reference to a case study of an electricity distribution company
in Turkey. The factors affecting the company’s performance and their corresponding weight have
been determined and obtained using the analytical hierarchy process (AHP) and the Fuzzy AHP
methods, two well-known multi-criteria decision-making methods, which are widely used in the
literature. The results help demonstrate that the criteria obtained to evaluate the company’s energy
supply performance play a crucial role in developing strategies, policies and action plans to achieve
continuous improvement and consistent development.

Keywords: electricity distribution; factor elicitation for efficiency; fuzzy analytical hierarchical
process (F-AHP)

1. Introduction

With the developments that took place after the industrial revolution and the rapid
growth in the world’s population, the need for energy consumption has been increasing
on a daily basis, which forces scientific research in this direction and helps to trigger
the emergence of new technologies. With the developing forms of technology, electricity
has gained functions beyond providing light and has become indispensable for human
beings in transportation, communications, industry, education, health, defense and many
other fields. With the importance gained, the use of energy, particularly electricity, has
become one of the important criteria not only in daily life but also in the progress of
civilizations. With this in mind, it is believed that electrical energy will be at the basis of
many developments in the future.

The increasing demand for and dependency on electricity has caused the consumption
share of electricity to expand rapidly compared to other energy sources. In addition to
electrical energy being a type of energy whose demand is rapidly increasing worldwide,
it notably must be transmitted quickly and with high quality. With the energy crises in
the 1970s and the effects of energy demand on the economy, the importance of electricity
production, supply and the supply–demand balance have been recognized by everyone,
and the work on the subject has continued [1]. Electricity consumption, with its ever-
growing importance, seems to affect many different sectors directly or indirectly. It is often
considered as one of the criteria or performance indicators for measuring the development

Mathematics 2021, 9, 82. https://doi.org/10.3390/math9010082 https://www.mdpi.com/journal/mathematics

61



Mathematics 2021, 9, 82

levels and economic growth of countries, as is proved by the case of the Turkish Electricity
Joint Stock Company in Turkey.

A privatization process started in the Turkish energy sector two decades ago and
finalized in 2008, in which electricity distribution services to customers were delegated to 21
distribution companies in Turkey. Even though distribution companies are in a dominant
position given the scope of their licenses, they are audited by different independent and
governmental channels such as TEDAŞ, EPDK and the Ministry of Energy and Natural
Resources. Hence, the concepts of performance and efficiency have gained more importance
for distribution companies [2]. After moving from public ownership to private, energy
supply companies started to be exposed to serious competition, which was not in place
before. In addition, electricity distribution (energy supply) companies must follow the
corporate strategies imposed by the Ministry of Energy and work to reach pre-set efficiency
targets in order to ensure customer satisfaction and change public perception towards the
companies, as they are no longer public institutions. These energy supply companies have
previously been assessed and monitored with respect to financial measures but have never
been evaluated with respect to the efficiency of management, performance of operations
and customer satisfaction, since they were serving as public companies and were not subject
to serious competitions and compliance audits. In order to keep these companies standing
firm in the market, all qualitative and quantitative assessments are inevitably required.
Following up from this need, this study proposes an approach to identify the performance
criteria of energy supply—particularly electricity distribution—companies in performance
and efficiency studies as extracted from companies’ daily practices. It is paramount to
indicate that the best performance and efficiency studies can be conducted through a
bottom-up approach, which significantly involves daily practices. There are few studies
that have been done on the efficiency of energy companies in different countries—including
Turkey—using data-driven techniques such as data envelopment analysis (DEA) [3,4]. It is
well-known that the assessments with DEA can only be made with quantitative data and
are hard to apply to qualitative data, while non-financial assessments of companies have to
rely on qualitative data.

The main aim of this study was to investigate how to assess the performance and
efficiency of energy supply companies in the post-privatization Turkish market using
expert views, which constitute qualitative data. To the best knowledge of the authors,
this is the first study conducted to take qualitative data on board—collected from expert
views—for assessing the performance and efficiency of electricity distribution companies in
Turkey following the major privatization. Performance and efficiency assessment problems
are multi-criteria decision-making (MCDM) problems by their nature. Analytical hierarchy
process (AHP) and fuzzy analytical hierarchy process (F-AHP) approaches are known
as success-proven and easily implementable qualitative assessment methods for MCDM
problems. AHP is a powerful method to identify the impact of the factors affecting
the quality of service provided by companies. It is helpful mainly when working with
qualitative data and lets the evaluators consider the sub-criteria alongside the main criteria,
unlike many other MCDM methods. It is a fact that qualitative data are not crisp by
nature and keep overlapping aspects with neighboring value ranges. In order to take such
overlapping boundary values into account, which would help contribute to the richness
of the data in use, it has previously been decided to use F-AHP in evaluations. It is more
reasonable to compare the results gained with a fuzzy model with its crisp version.

This paper reports a study that conducted a comprehensive performance assessment
for an electricity distribution company operating in the Eastern Anatolia Region of Turkey.
It started by determining the primary factors affecting the efficiency of such a company.
Then, the determined factors were prioritized using AHP and F-AHP methods as two
prominent multi-criteria decision-making approaches; AHP uniquely and primarily assists
in conducting assessments with criteria composed of sub-criteria while F-AHP facilitates
encompassing more human expertise with Fuzzy sets and grammar to perform much more
realistic assessments. Within the scope of the study, a unique case study has been carried
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out for one of major energy distribution firms functions in north-east of Turkey, namely
Aras Elektrik Dağıtım AŞ (EDAŞ), operating as service provider for 7 provinces: Ağrı,
Ardahan, Bayburt, Erzincan, Erzurum, Iğdır and Kars.

The rest of the paper is structured as follows. A relevant literature review is provided
in Section 2, while the steps of the Fuzzy AHP method as the proposed approach is
introduced in Section 3. The details of expert view capturing process to apply the evaluation
and elicit the assessment criteria, and the use of AHP and Fuzzy AHP in conducting the
efficiency study is overviewed in Section 4. Section 5 presents the results and findings with
relevant discussions while Section 6 briefs the conclusions.

2. Literature Review and Background

The main studies related to electricity distribution companies in Turkey generally, the
history of the distribution companies, the privatization process, privatization of electricity
companies and examinations before and after their study investigated the structure of the
energy sector are [2–5]. The Data Envelopment Analysis (DEA) method was generally used
in studies where efficiency analysis of electricity distribution companies was conducted.

Filippini et al. [6] studied the efficiency of electricity distribution companies in Slovenia
in which the relationship between efficiency and energy prices was investigated; it was
concluded that electricity distribution companies are not efficient, and a more efficient
map would be formed by merging small companies. Odyakmaz [7] found that the current
performance measurement systems for electricity distribution companies have been set up
based on operating costs while the other efficiency and productivity parameters have not
been considered. The study uses a DEA approach to calculate the efficiencies and identifies
that environmental, structural and quality factors have had impacts on the activities of
electricity distribution companies. Düzgün [8] has used a DEA method for measuring the
performance of a few electricity distribution companies in Turkey in which the number of
personnel, line length and operating expenses were primarily taken as inputs and then the
inverse density index and line length index were added to the model in order to measure
the impact of environmental factors upon company efficiencies. It concluded the companies
with less than 1 million customers or more than 2 million customers in the optimum model
are inefficient. In addition, it also found that socio-economic data have a direct effect on the
efficiency. Dönmezçelik [9] investigated the efficiency of electricity distribution companies
using the DEA method. Two models have been created using 5-year data covering the
years 2007–2011. In the first model, data for the factors such as operating costs, loss and
leakage rates and income per subscriber are used, while in the second model, input and
output values such as the number of personnel, line length, the number of breakdowns and
interruptions and transformer power are used. Other studies evaluating the efficiency of
electricity distribution companies using the DEA method included: performance evaluation
of Iranian electricity distribution companies [10–12]; efficiency analysis of the electricity
distribution companies in Turkey [13,14]; efficiency analysis of East and West German
electricity distribution companies [15], etc.

Winter et al. [16] have used the KEMIRA-M method to select a warehouse location for
an electricity distribution company. Environmental and company-related criteria have been
determined for the evaluation of 20 warehouse location alternatives. Janackovic et al. [17]
have discussed the selection of key indicators using the F-AHP method to improve the
occupational safety system in electricity distribution companies using a number of quali-
tative factors describing the organizational specificity affecting the safety system. Çelen
and Yalçın [18] have studied the quality of service in the electricity distribution companies
in Turkey using F-AHP, TOPSIS and DEA methods. The relative importance levels of
different quality indicators were determined with a F-AHP method. Then, the TOPSIS
method was used to create/estimate the service quality variable. Finally, this variable
was used as an output in the DEA stage and the efficiency performances of electricity
distribution services were determined, accordingly. Saulo et al. [19] presented an overview
of electricity distribution system planning by comparing the short-term planning approach
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with the long-term vision-oriented planning approach. In the comparison of short- and
long-term plans, it has used a simple multi-attribute rating (SMART) technique as a multi-
criterion decision-making method. Another recent performance assessment study for
energy companies is reported in [20] that used DEA using quantitative data. More recently,
Zavadskas et al. [21] have considered F-AHP in procedure development for supplier se-
lection in the steel industry, while Blagojević et al. [22] have merged F-AHP with DEA in
a performance assessment and efficiency assessment of a railway company. The authors
of [23] have used AHP with other multi criteria decision making state-of-art approaches
in displaying the product selection. Recent more studies introduce a few other MCDM
approaches including the fuzzy best-worst [24], full-consistency method [25] and fuzzy
SWARA methods [26,27], but none of them cover assessments of energy companies, while
each seem to be computationally more complicated with AHP for implementation and do
not promise a very compromising performance.

AHP has been seen and reviewed as one very prominent multi criteria decision
making approach offering qualitative evaluation [28]. The literature review suggests
that the majority of performance assessment and efficiency studies covering the post-
privatization of the Turkish energy sector have been conducted using the variants of the
DEA method as a hard numerical assessment approach using quantitative data. It is known
that qualitative data is fuzzy by its nature and that it needs to be quantified to produce
consistent and numeric data, but, in many cases, various types of qualitative data could
not be satisfactorily converted into numbers. In particular, evaluations based on expert
views are preferable to retain in qualitative form; therefore, AHP and its fuzzy form have
been usefully and easily implemented for many selection and assessment problems [29–33].
In addition, AHP variants provide assessments without disregarding subcategories and
it is not complicated to implement, unlike many other multi-criteria decision-making
approaches. All of these facts and reasons have led to the choice to use AHP methods,
classical AHP and F-AHP in this study, since all the assessment data used are qualitative
and heavily reliant on expert views.

3. Materials and Methods

Case studies on efficiencies with AHP and F-AHP have been examined in the previous
section and it is seen that AHP and F-AHP were used in a wide range of subjects [29–33].
Decisions made without concrete data in all sectors with different dynamics pose a signifi-
cant problem. For example, while determining the criteria that affect productivity, criteria
such as operating expenses and income sources can be determined with concrete numbers,
but criteria such as workforce opportunities, fringe benefits and the reliability level of the
enterprise cannot be expressed with numerical data. Since this situation creates an obstacle
preventing the decision makers from reaching a conclusion, it has been observed that the
use of multi-criteria decision-making methods in studies on productivity and efficiency
contributes to the literature. In addition, reaching a single result in studies with classical
AHP sometimes limits the range of action of the decision maker [34]. For example, when an
AHP application is made to decide the title of the personnel according to the performance
system, the result value for a single title will be reached. However, the decision maker is
not given the opportunity to take the initiative in situations that may cause uncertainty,
such as the optimum result of the placement of two different personnel for the same title.
In the case of similar situations, the solution points with upper and lower values in the
solutions made with F-AHP are provided to get rid of the uncertainty for the decision
makers. In addition, in previous studies, it was seen that the productivity and efficiency
of distribution companies were measured mostly with the DEA method rather than with
other MCDM approaches, including the F-AHP method. Following on from this fact,
this study has been conducted to determine the efficiency criteria of an energy supply
company using data collected on the 2018–2019 form on Aras EDAŞ practices. The data
were first evaluated with the AHP method first and then with F-AHP for identifying the
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factors affecting the efficiency of the company in a wider qualitative sense and under a
multiple-criteria decision-making point of view.

Fuzzy AHP plays an important role in establishing a hierarchical structure consisting
of main and sub-criteria, addressing the problem clearly and determining the importance
of the criteria relative to each other. In addition, it helps to digitize the expressions that
belong to a single person or a group of experts, reflecting both subjective and objective
views without any numerical value, to reach an analytical solution. Fuzzy AHP, which is
used in problem solutions in many different fields, produces simple solutions to complex
criteria, while accelerating the decision-making process and offering the opportunity to
reach systematic results.

In this study, triangular fuzzy numbers were used to digitize verbal expressions.
Since triangular fuzzy numbers allow subjective data to be digitized objectively, they are
frequently used in decision problems. In addition, trapezoidal numbers are preferred in
fuzzy logic problems due to the fact that they allow operations in a range closer to real
values in comparison to other fuzzy numbers, while their graphical representation and
operations are easier.

Unlike classical set theory, where the membership of an element in a set is represented
by two terms (i.e., 0 or 1), fuzzy set theory allows for partial membership; this means
it includes items with varying degrees of membership in the set; it monitors a range
of membership functions with values within [0, 1]. Fuzzy Set Theory was proposed by
Zadeh in 1965 to reflect reality by using approximate values in ambiguous and uncertain
environments due to the nature of human reasoning [35]. Fuzzy set theory has been applied
to a wide variety of fields, and produces especially useful results when information is
incomplete or uncertain. Fuzzy logic is derived from fuzzy set theory. It is capable of
handling concepts that are inherently imprecise (i.e., ambiguous, imprecise, vulgar or false).
Both fuzzy set theory and fuzzy logic thus have widespread applications [36].

AHP structures the problem in a hierarchical fashion, from goal to criteria, sub-criteria
and alternatives at successive levels [37]. The hierarchy provides experts with an overview
of the complex relationships inherent in context and helps them evaluate whether elements
of the same level are comparable. The items are then compared in pairs against the 9 level
scale to estimate their weights. However, binary comparison, which is the essence of AHP,
causes vagueness and uncertainty in experts’ judgment. In practical situations, experts may
not be able to assign exact numerical values to their preferences due to limited knowledge
or ability [38,39]. To overcome the ambiguity in AHP, the exact numbers are replaced by
fuzzy numbers that represent linguistic expressions in F-AHP. This tolerates ambiguous
judgments by assigning degrees of membership to exact numbers in order to explain that
to what extent these numbers belong to an expression [40].

AHP is a multi-criteria decision-making technique. In most cases, it is difficult to mea-
sure or prioritize decision-making criteria because they are subjective and not measurable.
One of the advantages of AHP is that this method can systematically convert abstract and
non-measurable criteria into numerical values [41]. In addition, one of the most important
benefits provided by the AHP method is that this method can measure the consistency
degree of binary comparisons.

In this study, AHP and F-AHP based on Fuzzy grammar were used in the case study
detailed in the next section to help make decisions on the efficiency of the electricity
distribution company studied. An algorithm, suggested by Chang and called extent
analysis [42,43], has been used for the purpose of implementing F-AHP using fuzzy
grammar.

Let X = {x1, x2, . . . , xn} be an object set, and U = {u1, u2, . . . , um } be a goal set.
According to this method, each object is taken and extent analysis for each goal is performed,
respectively. Therefore, m extent analysis values for each object can be obtained, with the
following signs:

M1
gi, M2

gi, . . . , Mm
gi, i = 1, 2, . . . , n (1)
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where all the Mj
gi(j = 1, 2, . . . , m) are triangular fuzzy numbers. The steps of Chang’s

extent analysis can be given as follows [44]:
Step 1: The value of fuzzy synthetic extent with respect to the ith object is defined as

in Equation (2):

Si =
m

∑
j=1

Mj
gi ⊗

[
n

∑
i=1

m

∑
j=1

Mj
gi

]−1

. (2)

To obtain ∑m
j=1 Mj

gi, the fuzzy addition operation of m extent analysis values for a
particular matrix is performed as in Equation (3):

m

∑
j=1

Mj
gi =

(
m

∑
j=1

lj,
m

∑
j=1

mj,
m

∑
j=1

uj

)
. (3)

Then to obtain
[
∑n

i=1 ∑m
j=1 Mj

gi

]−1
, the fuzzy addition operation of Mj

gi values is
performed as in Equation (4):

n

∑
i=1

m

∑
j=1

Mj
gi =

(
n

∑
i=1

lj,
n

∑
i=1

mj,
n

∑
i=1

uj

)
. (4)

Then the inverse of the vector above is computed as in Equation (5):[
n

∑
i=1

m

∑
j=1

Mj
gi

]−1

=

(
1

∑n
i=1 ui

,
1

∑n
i=1 mi

,
1

∑n
i=1 li

)
. (5)

Step 2: As M1 and M2 are two triangular fuzzy numbers, the degree of possibility of
M2 = (l2, m2, u2) ≥ M1 = (l1, m1, u1) is defined as

V(M2 ≥ M1) = sup
y≥x

(min(μM1(x), μM2(y))) (6)

and can be equivalently expressed as follows:

V(M2 ≥ M1) = hgt(M1 ∩ M2) = μM2(d) =

⎧⎪⎨⎪⎩
1 i f m2 ≥ m1,
0 i f l1 ≥ u2,

l1−u2
(m2−u2)−(m1−l1)

otherwise
(7)

where d is the ordinate of the highest intersection point D between μM1 and μM2 . Equation (8)
is illustrated in Figure 1 [44]. The values of both V(M1 ≥ M2) and V(M2 ≥ M1) are needed
to compare M1 and M2.

Figure 1. The intersection between M1 and M2.
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Step 3: The degree of possibility for a convex fuzzy number to be greater than k convex
fuzzy numbers Mi(i = 1, 2, . . . , k) can be defined by Equation (8):

V(M ≥ M1, M2, . . . , Mk) = V[(M ≥ M1) and (M ≥ M2)] and . . . and (M ≥ Mk)
= minV(M ≥ Mi), i = 1, 2, 3, . . . , k

. (8)

Assume that
d′(Ai) = minV(Si ≥ Sk) (9)

For k = 1, 2, . . . , n; k �= i. Then the weight vector is given by

W ′ = (d′(A1), d′(A2), . . . , d′(An))
T , (10)

where Ai(i = 1, 2, . . . , n) are n elements.
Step 4: With normalization, the normalized weight vectors are

W = (d(A1), d(A2), . . . , d(An))
T . (11)

4. Case Study

This case study aims to implement the F-AHP method explained in the previous
section for eliciting factors affecting the efficiency of Aras EDAŞ Co. as an energy supply
company operating in the north-east of Turkey. The implementation was endorsed to go
through the following steps: (1) Defining the problem and purpose, (2) determining the
decision-making group-experts, (3) determining the criteria, (4) creating a hierarchical
structure, (5) obtaining the criterion weights with the AHP and F-AHP methods.

4.1. Defining the Problem and Purpose

Electricity is produced by power plants and transported over long distances via
transmission lines and short distances via distribution lines and sold/supplied to the end
users by retail sales companies.

As a result of the need to manage electricity generation, transmission, distribution
and trade from a single source, targets have been set for the electricity sector within the
development plans.

Turkey Electricity Distribution Corporation (known as TEDAŞ) was/is a public energy
supply company in charge of electricity distribution across the whole country. Its service
coverage area has been divided in 21 regions and the decision was made to delegate its
distribution service per region to a private distribution company back in 2004 under the
scope of privatization established by the Privatization High Council. As part of this process,
distribution and retail sales companies were established and started to operate in 21 regions
with a license period of 49 years. Aras EDAŞ Co. constitutes one of these distribution
regions (Figure 2).

The study was carried out on Aras EDAŞ, an electricity distribution company that
provides services in 7 provinces, 58 districts and a 70.554 km2 area with 1715 personnel,
allowing sample application data to be used in the academic study for the analysis of
factors affecting efficiency and productivity in enterprises with the F-AHP method.

Aras EDAŞ Co. operates in one area of activity covering 52 districts, 2033 villages and
1593 settlements (neighborhoods, hamlets, etc.) in an area of 71.007 km2 within the borders
of the Erzurum, Erzincan, Bayburt, Kars, Ağrı, Ardahan and Iğdır provinces. There are
58 enterprises in total within the 7 provinces in the covered area: 20 are in Erzurum, 9 are
in Erzincan, 3 are in Bayburt, 8 are in Kars, 6 are in Ardahan, 8 are in Ağrı and 4 are in
Iğdır. The General Directorate, which is affiliated with the board of directors, serves with
the Provincial Coordinators in Ağrı, Ardahan, Bayburt, Erzurum, Erzincan Iğdır and Kars
provinces and with the District Operation Chiefs in the districts.
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Figure 2. Electricity distribution companies in Turkey.

As of 2018, Aras EDAŞ provides electricity distribution services with 1715 personnel,
including 462 of its own personnel who work in service procurement. The company had a
total of 1,001,044 subscribers in Turkey at that time.

Aras EDAŞ makes investments in network improvement, technological infrastructure,
quality and uninterrupted energy in order to increase customer satisfaction and efficiency
in its management. After considering the investment needs of the region and the projected
investment plans, the distribution service investment expenditure for the 2011–2015 im-
plementation period was approved by the Energy Market Regulatory Board (EPDK) as
352,180,435 TL in total. For the implementation period of 2016–2020, it was approved by
EPDK for a total of 595,420,985 TL, or 119,084,197 TL per year.

Although the efficiency aims of distribution companies including Aras EDAŞ are
generally focused on cost, they have been directed to work on customer satisfaction by the
Ministry of Energy and Natural Resources in recent years. In this context, Aras EDAŞ has
moved away from being a public institution and has worked on reorganizing the existing
and usual structure for years and ensuring customer satisfaction by reviewing all processes.
Examining the studies conducted by Aras EDAŞ and other distribution companies, where
customer satisfaction gains more importance day by day, it has been observed that process
or person-based efficiency studies are carried out, but there is no work being done to
determine the basic criteria that affect the efficiency of the entire company.

The literature review suggests that the studies on the productivity and efficiency
of energy supply companies have been mostly conducted using DEA, while the F-AHP
method has frequently been used in selection problems such as performance studies of
various companies excluding energy supply enterprises. The privatization process has
brought a new era to the Turkish energy sector due to the fact that companies supplying
energy services have been made subject to competition. In order to address emergent
issues during post-privatization, the companies need to measure their efficiency for staying
competitive in the market and improving customer satisfaction.

As a relatively new company, Aras EDAŞ sets out an aim to look at its processes and
the complete efficiency and productivity; hence, it was revealed that the criteria affecting
productivity and their weights should be determined. Once revealed, it is expected to shed
light on the actions required to be taken towards improving the efficiency of the entire
enterprise.

4.2. Determination of Decision-Making Group-Experts

The large area of activity of Aras EDAŞ and the high number of enterprises to serve
and number of personnel within the enterprise require the corporate management to stay
firm. In addition, due to the nature of the work performed, it has been observed that
the personnel, who generally constitute the management staff, are graduates of technical
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departments and have a good command of management training. For this reason, a total
of 150 managers were interviewed at the levels of Chief, Chief Engineer and Manager and
Coordinator in order to benefit from their experience and opinions for the hierarchical
structure formed by group decision-making.

4.3. Determination of Criteria

The purpose of this study was to express the productivity in enterprises. The first
criteria were expressed as Customer Satisfaction, Uninterrupted Energy and the Quality of
Energy, which are the main criteria affecting the efficiency of distribution companies.

Customer Satisfaction (C1): There is an understanding of competition when electricity
distribution companies operate for public service purposes but do not focus on profit. Each
distribution company is obliged to provide infrastructure services to all its customers
in its own service area. Since it is not possible for any distribution company to serve
customers in the region of another distribution company, there is no competition between
companies. However, the company needs a good customer satisfaction for renewal of
their license in the following periods. Although electricity distribution companies operate
in a monopoly far from competition, they have adopted a customer satisfaction-oriented
approach after privatization. In addition, distribution companies operating under the
Ministry of Energy and Natural Resources are evaluated at certain periods in terms of
customer satisfaction criteria through surveys and analyses conducted by authorities such
as the Ministry, TEDAŞ and EPDK. For this reason, customer satisfaction, which is accepted
as an indicator of efficiency in electricity distribution companies, has been included as one
of the main criteria in our study.

Uninterrupted Energy (C2): Uninterrupted energy is expressed as the capacity to
provide electrical energy to customers served at economically acceptable costs and with the
minimum possible downtime. Distribution companies, which have major responsibilities to
provide uninterrupted electricity supply for customers, make maximum efforts to provide
uninterrupted energy. In addition, all interruptions that occur in all or part of the network
must be recorded. This covers all outages regardless of criteria such as the recording
duration and number of outages. Notified outages made within the scope of works such as
maintenance and repair and shared with customers at the latest 48 hours in advance are
subject to inspections by authorities such as TEDAŞ and EPDK in cases of instantaneous
interruptions due to failures. For these reasons, uninterrupted energy, which is considered
to be an indicator of efficiency in electricity distribution companies, is also one of the main
criteria in our study.

Quality of Energy (C3): This refers to the presentation of energy to customers without
technical problems such as harmonic disorders and voltage problems with quality energy,
also called technical quality. Electricity distribution companies must measure the technical
quality of the energy they offer and record this in accordance with the relevant standards.
All processes and data belonging to the records received are subject to inspections by
authorities such as TEDAŞ and EPDK as efficiency criteria. For these reasons, quality of
energy, which is regarded as an indicator of efficiency in electricity distribution companies,
is adopted as one of the main criteria in this study.

After the determination of the main criteria, sub-criteria of the main criteria were de-
termined. Its sub-criteria were considered as Service Region, Management and Employees.

Service Area: 21 distribution companies operate across the whole country in Turkey
serving customers in different geographic regions. Aras EDAŞ, where the study was
conducted, is one of the distribution companies serving the widest geographical area
with a service area of 71,007 km2, which is mostly very mountainous. Such geographical
conditions were included in the study as one of the criteria affecting the efficiency of
distribution companies due to the fact that field studies are predominant due to the nature
of the study.

Similarly, after the determination of the service region criteria, other criteria belonging
to the sub-criteria were obtained based on expert opinions. The sub-criteria of the Service
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Region criteria were determined as Number of Customers (C11), Geographical Conditions
(C12), Climatic Conditions (C13), Network Size (C14), Line Length (C15), Energy Losses
(C16) and Investment Amount (C17).

Management: Although many definitions have been developed about management
staff and managers in businesses, if we summarize, managers play an auxiliary role in
reaching the targets of their enterprise by using all resources with high performance and
thus increasing productivity. For this reason, “Management” has been considered as one of
the sub-criteria, based on the importance of the role of managers in order for businesses to
be successful.

Following the determination of the management criteria other criteria belonging to the
sub-criteria similarly were obtained based on expert opinions. The sub-criteria of manage-
ment are: Determination of Goals (C21), Participation of Personnel in Decision Processes
(C22), Ensuring Ergonomic Conditions (C23), Supporting Employee Development (C24),
Giving Importance to Occupational Health and Safety (C25), Flexible Working Hours (C26),
Existence of Integrated Management System Certificates (C27) and Employee Promotion
and Advancement Opportunities (C28).

Employees: No matter how high the technological and technical investments are in
the enterprises, it will not be possible to increase productivity unless there are personnel
managing these investments and technological infrastructures. As a result of similar
opinions expressed by the experts, employees were included in the study as one of the
sub-criteria.

After the determination of the employee criteria other criteria belonging to the sub-
criteria were similarly obtained based on expert opinions. Sub-criteria of the employee
criteria are: Employee Adoption of Goals (C31), Staff Education Level (C32), Employee
Motivation (C33), Wages and Benefits (C34), Teamwork (C35), Awareness of Responsibility
(C36), Average Service Time of Personnel (C37) and Number of Personnel (C38).

4.4. Creating the Hierarchical Structure

A hierarchical structure was created as a result of the criteria determined by the group
decision making method and explained in detail. It is specified as in Figure 3.

Figure 3. Problem hierarchical structure.

70



Mathematics 2021, 9, 82

The questionnaire method was used to compare the criteria and sub-criteria, which
are indicated in Figure 3 in a hierarchical structure. The questionnaire was sent online to
150 managers at the level of team leads, leads of engineers, managers and coordinators,
who previously contributed to the creation of the hierarchical structure by providing expert
opinions. While filling in the questionnaire, Aras EDAŞ’s internal software survey system
was used.

While determining the number of questionnaires to be made, similar studies have been
examined and it is seen that although care has been taken to select the sample representing
the main population, no special study has been done for the number of questionnaires.
For example, in the shipyard efficiency study conducted by Kırdağlı in 2010, the study
was completed with only 9 expert opinions [33]. In this study, it was thought that the
survey should be conducted with 150 managers or team leads at Aras EDAŞ, while all
the personnel at the executive level who were involved in the projects related to efficiency
measurements and had an impact on the decision processes were interviewed.

In the survey, experts (managers and team leads in this case) were asked to make
pairwise comparisons of the criteria. Verbal expressions, which correspond to fuzzy
numbers, were used when taking opinions from the managers. Fuzzy triangle numbers
used in binary comparison are given in Table 1.

Table 1. Fuzzy triangular numbers table used for binary comparison.

Point
Fuzzy Triangle Numbers

Verbal Eexpresion Number Pair

1 Equally Important 1.000 1.000 1.000 1.000 1.000 1.000
2 A little more important 0.667 1.000 1.500 0.667 1.000 1.500
3 Strongly Important 1.500 2.000 2.500 0.400 0.500 0.667
4 Very Strongly Important 2.500 3.000 3.500 0.286 0.333 0.400
5 Absolutely Important 3.500 4.000 4.500 0.222 0.250 0.286

When the studies conducted with Order Analysis Management were examined, it was
seen that the geometric mean was preferred because the arithmetic mean was not sufficient
to create comparison matrices. It was observed that geometric mean methods were used to
make the survey results similar to triangle fuzzy number values and to include conjugate
expressions in the study [45]. Therefore, the views of 150 experts are combined with the
geometric mean and the decision matrix formed on these basis is given in Table 2.

Table 2. Pairwise comparison matrix for main criteria.

C1 (SC1 ) C2 (SC2 ) C3 (SC3 )

C1 (SC1 ) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500)
C2 (SC2 ) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500)
C3 (SC3 ) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000)

The operations performed according to the Rank Analysis steps of Chang’s method [43]
are given below.

Step 1: The value of the fuzzy synthetic extent with respect to the ith object has been
determined in Equation (2) by using Equations (3)–(5). Calculation of the value of C1
criterion is as follows:

SC1
= (4.000, 5.000, 6.000)⊗ [8.134, 10.000, 12.334]−1 = (0.324, 0.500, 0.738).

The SC2 and SC3 values can be calculated in the same way as follows:

SC2
= (0.168, 0.250, 0.389)
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SC3
= (0.168, 0.250, 0.389).

Step 2: For triangular fuzzy numbers, the degree of possibility is expressed equiva-
lently in Equation (7) and is determined using Equation (6):

• Conditions that satisfy the V(M2 ≥ M1) = 1 property for m2 ≥ m1;

V
(

SC1
≥ SC2

)
= 1V

(
SC1

≥ SC3

)
= 1V

(
SC2

≥ SC3

)
= 1V(SC3 ≥ SC2) = 1.

• It is seen that there is no case that satisfies the V(M2 ≥ M1) = 0 property for l1 ≥ u2.
• For other cases, the l1−u2

(m2−u2)−(m1−l1)
value was calculated using the formula V(M2 ≥ M1).

V
(

SC2
≥ SC1

)
= V

(
SC3

≥ SC1

)
= (0.324− 0.389)/((0.250− 0.389)− (0.500− 0.327)) = 0.206

Step 3: The degree of possibility for a convex fuzzy number to be greater than k convex
fuzzy numbers using Equation (8) is:

minV
(

SC1
≥ SC2

, SC3

)
= 1; minV

(
SC2

≥ SC1
, SC3

)
= 0.206; minV

(
SC3

≥ SC1
, SC2

)
= 0.206.

Step 4: With normalization, the normalized weight vectors are shown as:

W = (0.708, 0.146, 0.146)T .

The F-AHP steps given above have been repeated for the decision matrices given in
Tables 3–11.

Table 3. Paired comparison matrix of ‘service area’ sub-criteria for customer satisfaction.

C11 C12 C13 C14 C15 C16 C17

C11 (1.000, 1.000, 1.000) (2.500, 3.000, 3.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (0.286, 0.333, 0.400) (0.222, 0.250, 0.286)

C12 (0.286, 0.333, 0.400) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500)

C13 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500)

C14 (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C15 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500)

C16 (2.500, 3.000, 3.500) (2.500, 3.000, 3.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500)

C17 (3.500, 4.000, 4.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000)

Table 4. Paired comparison matrix of ‘management’ sub-criteria for customer satisfaction.

C21 C22 C23 C24 C25 C26 C27 C28

C21 (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500)

C22 (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667)

C23 (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500)

C24 (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500)

C25 (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C26 (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500)

C27 (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667)

C28 (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000)

Table 5. Paired comparison matrix of ‘employees’ sub-criteria for customer satisfaction.

C31 C32 C33 C34 C35 C36 C37 C38

C31 (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C32 (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500)

C33 (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C34 (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C35 (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500)

C36 (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500)

C37 (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500)

C38 (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (1.500, 2.000, 2.500) (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000)
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Table 6. Paired comparison matrix of ‘service area’ sub-criteria for uninterrupted energy.

C11 C12 C13 C14 C15 C16 C17

C11 (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C12 (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400)

C13 (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500) (0.400, 0.500, 0.667) (2.500, 3.000, 3.500)

C14 (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (0.286, 0.333, 0.400) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500)

C15 (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C16 (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.286, 0.333, 0.400)

C17 (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (1.000, 1.000, 1.000)

Table 7. Paired comparison matrix of ‘management’ sub-criteria for uninterrupted energy.

C21 C22 C23 C24 C25 C26 C27 C28

C21 (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.286, 0.333, 0.400) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500)

C22 (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667)

C23 (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500)

C24 (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C25 (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500)

C26 (2.500, 3.000, 3.500) (2.500, 3.000, 3.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500)

C27 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667)

C28 (0.286, 0.333, 0.400) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000)

Table 8. Paired comparison matrix of ‘employees’ sub-criteria for uninterrupted energy.

C31 C32 C33 C34 C35 C36 C37 C38

C31 (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C32 (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C33 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500)

C34 (0.667, 1.000, 1.500) (0.286, 0.333, 0.400) 0.400, 0.500, 0.667) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C35 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500)

C36 (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500)

C37 (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667)

C38 (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000)

Table 9. Paired comparison matrix of ‘service area’ sub-criteria for quality energy.

C11 C12 C13 C14 C15 C16 C17

C11 (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C12 (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.286, 0.333, 0.400)

C13 (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C14 (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667)

C15 (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667)

C16 (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (1.500, 2.000, 2.500)

C17 (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (1.000, 1.000, 1.000)

Table 10. Binary comparison matrix of ‘management’ sub-criteria for quality energy.

C21 C22 C23 C24 C25 C26 C27 C28

C21 (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (2.500, 3.000, 3.500) (1.500, 2.000, 2.500)

C22 (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500)

C23 (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (1.500, 2.000, 2.500)

C24 (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C25 (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500)

C26 (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (1.500, 2.000, 2.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500)

C27 (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500) (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.286, 0.333, 0.400)

C28 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (0.400, 0.500, 0.667) (2.500, 3.000, 3.500) (1.000, 1.000, 1.000)
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Table 11. Paired comparison matrix of ‘employees’ sub-criteria for quality energy.

C31 C32 C33 C34 C35 C36 C37 C38

C31 (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C32 (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (2.500, 3.000, 3.500) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (2.500, 3.000, 3.500)

C33 (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C34 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400)

C35 (0.400, 0.500, 0.667) (0.667, 1.000, 1.500) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000) (0.667, 1.000, 1.500) (1.500, 2.000, 2.500) (1.500, 2.000, 2.500)

C36 (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (0.400, 0.500, 0.667) (1.500, 2.000, 2.500) (0.667, 1.000, 1.500) (1.000, 1.000, 1.000) (2.500, 3.000, 3.500) (2.500, 3.000, 3.500)

C37 (0.286, 0.333, 0.400) (0.667, 1.000, 1.500) (0.286, 0.333, 0.400) (2.500, 3.000, 3.500) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (1.000, 1.000, 1.000) (0.400, 0.500, 0.667)

C38 (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (0.286, 0.333, 0.400) (2.500, 3.000, 3.500) (0.400, 0.500, 0.667) (0.286, 0.333, 0.400) (1.500, 2.000, 2.500) (1.000, 1.000, 1.000)

After applying the F-AHP method steps, criterion weights were obtained in three
separate groups: These are the weights of the “Service Region”, “Management” and
“Employees” sub-criteria for customer satisfaction (1), uninterrupted energy service (2)
and quality of energy service provision. In Table 12, “Service Area”, “Management” and
“Employees” sub-criteria are given weights to cover customer satisfaction towards elec-
tricity distribution companies. In Table 13, the weights of “Service Area”, “Management”
and “Employees” sub-criteria for providing uninterrupted energy service in electricity
distribution companies are given.

Table 12. Weights of efficiency criteria for customer satisfaction in electricity distribution companies.

In Terms of Customer Satisfaction

‘Service Region’ Sub-criteria Weight Rank ‘Management’ Sub-Criteria Weight Rank ‘Employees’ Sub-Criteria Weight Rank

The number of customers (C11) 0.173 4 Setting goals (C21) 0.184 2 Staff adoption of goals (C31) 0.189 2

Geographical conditions (C12) 0.050 5 Staff participation in decision
processes (C22) 0.102 6 Training level of staff (C32) 0.167 5

Climatic conditions (C13) 0.040 6 Ensuring ergonomic working
conditions (C23) 0.236 1 Employee motivation (C33) 0.198 1

Network size (C14) 0.036 7 Supporting employee
development (C24) 0.129 4 Wages and benefits (C34) 0.028 7

Line length (C15) 0.177 3 The importance given to OHS
(C25) 0.137 3 Teamwork (C35) 0.179 3–4

Energy losses (C16) 0.262 1–2 Flexible hours (C26) 0.081 7 Responsibility awareness (C36) 0.179 3–4

Investment amounts (C17) 0.262 1–2 Presence of EYS certificates
(C27) 0.006 8 Average service time of the

staff (C37) 0.046 6

Employee promotion and
advancement opportunities

(C28)
0.122 5 Personal number (C38) 0.015 8

Table 13. Weights of efficiency criteria for uninterrupted energy service in electricity distribution companies.

In Terms of Providing Uninterrupted Energy Service

‘Service Region’ Sub-criteria Weight Rank ‘Management’ Sub-Criteria Weight Rank ‘Employees’ Sub-Criteria Weight Rank

The number of customers (C11) 0.011 6 Setting goals (C21) 0.122 4 Staff adoption of goals (C31) 0.226 2

Geographical conditions (C12) 0.024 5 Staff participation in decision
processes (C22) 0.078 5–6 Training level of staff (C32) 0.259 1

Climatic conditions (C13) 0.280 1 Ensuring ergonomic working
conditions (C23) 0.057 7 Employee motivation (C33) 0.153 3

Network size (C14) 0.074 4 Supporting employee
development (C24) 0.211 1–2 Wages and benefits (C34) 0.009 8

Line length (C15) 0.114 The importance given to OHS
(C25) 0.191 3 Teamwork (C35) 0.097 5

Energy losses (C16) 0.249 2–3 Flexible hours (C26) 0.211 1–2 Responsibility awareness (C36) 0.105 4

Investment amounts (C17) 0.249 2–3 Presence of EYS certificates
(C27) 0.078 5–6 Average service time of the

staff (C37) 0.066 7

Employee promotion and
advancement opportunities

(C28)
0.053 8 Personal number (C38) 0.087 6
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The weights of “Service Area”, “Management” and “Employees” sub-criteria for
providing quality energy service in electricity distribution companies are given in Table 14.

Table 14. Weights of efficiency criteria for quality energy service in electricity distribution companies.

In Terms of Providing Quality Energy Service

‘Service region’ Sub-criteria Weight Rank ‘Management’ Sub-Criteria Weight Rank ‘Employees’ Sub-Criteria Weight Rank

The number of customers (C11) 0.026 6 Setting goals (C21) 0.109 5 Staff adoption of goals (C31) 0.235 1

Geographical conditions (C12) 0.002 7 Staff participation in decision
processes (C22) 0.045 8 Training level of staff (C32) 0.203 2

Climatic conditions (C13) 0.136 4 Ensuring ergonomic working
conditions (C23) 0.084 6 Employee motivation (C33) 0.171 3

Network size (C14) 0.074 5 Supporting employee
development (C24) 0.214 1 Wages and benefits (C34) 0.029 7

Line length (C15) 0.240 2 The importance given to OHS
(C25) 0.163 3 Teamwork (C35) 0.124 5

Energy losses (C16) 0.228 3 Flexible hours (C26) 0.204 2 Responsibility awareness (C36) 0.133 4

Investment amounts (C17) 0.293 1 Presence of EYS certificates
(C27) 0.115 4 Average service time of the

staff (C37) 0.057 6

Employee promotion and
advancement opportunities

(C28)
0.064 7 Personal number (C38) 0.007 8

5. Results and Discussions

In this study, the criteria that affect electricity distribution companies and the weights
of these criteria are emphasized. Fuzzy logic has been used in distribution companies
because efficiency is only understandable with its reflections on customer behavior, and
their behavior is complex due to human nature and does not show a clear and linear
tendency. However, in order to help validate the achievements, the calculated results
should be compared with a state-of-art approach, which is decided in this study to be
the classical AHP; the following is the results by AHP determined and comparatively
discussed accordingly.

First of all, a hierarchical structure has been established by making interviews with
Aras EDAŞ experts, which are the subject of the implementation, and determining the main
and sub-criteria affecting productivity. The criteria determined were evaluated on the same
group by using the questionnaire method and verbal expressions. Weights were obtained
by using unified decision matrices obtained by combining decision makers’ opinions with
the geometric mean and Chang’s Order Analysis Method.

Considering customer satisfaction, uninterrupted energy and quality of energy main
criterion weights, it is seen that uninterrupted and high-quality energy is considered to
be equal, but rather less important than customer satisfaction. As seen in Figure 4, cus-
tomer satisfaction has the highest importance for the efficiency of electricity distribution
companies, as observed from the studies that the company keeps conducting. In addi-
tion, the independent surveys conducted outside of the company suggest that the most
important criterion in the measurement of efficiency in distribution companies is customer
satisfaction.

Figure 4 reveals that the customer satisfaction criterion has much higher importance
over the other two criteria in the solutions made with AHP as well. However, uninterrupted
and quality energy criteria were not found to be equal unlike for F-AHP results, where
uninterrupted energy is at a higher level of importance than quality of energy.
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Figure 4. Main criterion weights comparison.

Paired comparisons of the “service region”, “management” and “employees” criteria,
which are the main customer satisfaction criteria affecting the productivity in distribution
companies, were revealed through the analysis. As seen in Figures 5–7, the most important
sub-criteria in customer satisfaction are “investment amounts” and “loss and leakage rates”.
It is seen that the investments made in technical and technological infrastructure work
have a priority of ensuring efficiency in customer satisfaction. In addition to the technical
investments made in the field services offered to the customers, ensuring that customers can
reach the relevant person quickly to solve their problems by increasing the communication
channels, appointment systems and online payment facility available will prevent the
wasting of consumers’ time waiting for service for long hours, the establishment of systems
where online requests, complaints and suggestions can be received would be useful. It has
been observed that technological investments such as the establishment of management
information systems, in which the customer information is kept and customer experiences
and trends can be analyzed, have an important priority in customer satisfaction.

Figure 5. Comparison of ‘service area’ sub-criterion weights for customer satisfaction.
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Figure 6. Comparison of ‘management’ sub-criterion weights for customer satisfaction.

Figure 7. Comparison of ‘employees’ sub-criterion weights for customer satisfaction.

The issue that the cost of losses and illegal energy use is reflected on customers’ bills
who pay regularly is frequently mentioned in the national press and causes criticism on
social media platforms. This situation creates a prejudice against the service offered by
electricity distribution companies in customers and poses a question mark in their minds,
no matter how good the service quality is. In addition, the high rate of loss and leakage
causes particularly high dissatisfaction in regions where the use of illegal use is intense,
while technical scans and technological investments in the field to reduce leakage cause
fluctuations in energy demands. For this reason, high loss and leakage rates have become
one of the primary criteria affecting customer satisfaction.

Another criterion that has priority is “ergonomic working conditions” as part of the
“management” criterion. Employees of the electricity distribution sector, where intense
field work is carried out, have to perform breakdown, repair and maintenance works on
the powerlines. Depending on the type of pole, it is important to climb from time to time
and to provide ergonomic conditions during repair works using basket vehicles from time
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to time. In addition to working with the help of basket vehicles, most of the employees
need to have improved ergonomic conditions in order to provide customer satisfaction
to the 75 personnel working in the call centers established to provide faster solutions to
customers.

In the electricity distribution sector, field personnel work in shifts, ensuring continuity
in field work in order to instantly respond to breakdowns and customer demands, and
working overtime from time to time causes a lack of motivation in employees. One of
the conditions affecting field workers is that the winter season in provinces such as Erzu-
rum, Ardahan and Kars is difficult. In these provinces, the temperature drops down to
−30 degrees centigrade in winter and access to households becomes difficult due to heavy
snowfall, making it necessary for the households that cannot be reached by vehicles to
be accessed by using tracked vehicles or by walking. Employee motivation is a priority,
as the work carried out in electricity distribution services can be achieved by transferring
employees who are in direct contact with customers to those customers through correct
communication. It is expected that electricity distribution companies will show a positive
tendency to increase their efficiency with employee motivation-oriented management
approaches.

The results of AHP were analyzed to compare the dual comparisons of “service area”,
“management” and “employees” criteria, where these are found as the main customer
satisfaction criteria affecting the efficiency of distribution companies with F-AHP. As seen
in Figure 5, the results of the “service area” sub-criterion for the main criterion of cus-
tomer satisfaction show similar characteristics with AHP, while the “investment amount”,
“climatic conditions” and “network size” criteria were found to be more important than
F-AHP suggests, where “energy losses”, “number of customers” and “line length” were
found to be less important. The “Geographical conditions” criterion seems to have ap-
proximately the same value suggested by both methods. Figure 6 plots the results of
“management” sub-criterion evaluations, where AHP found “ensuring ergonomic work
conditions”, “determining flexible working hours” and “existence of EYS certificates” to
be more important than what F-AHP suggests, while “determining targets”, “importance
given to OHS”, “giving promotion opportunities to personnel” and “personal participa-
tion in decision-making processes” to look less important. The criterion of “supporting
employee development” seems to have approximately the same importance determined by
both methods. In Figure 7, the results of evaluations obtained by both approaches for the
“employee” sub-criteria indicate that the “personnel not adopting the targets”, “average
number of personnel” and “average service time” criteria seem to be more important for
AHP than for F-AHP, while “employee motivation”, “team spirit”, “personnel responsibil-
ity awareness” and “education level of the personnel” seem to have the opposite results.
The “Staff wages and benefits” criteria has been found to be equally important by both
methods.

Binary comparisons were made for the main criteria of “uninterrupted energy” affect-
ing efficiency in distribution companies with the criteria of “service region”, “management”
and “employees”. As seen in Figures 8–10, the most important criteria to achieve “unin-
terrupted energy” seem to be “climatic conditions”, “investment amount” and “loss and
leakage ratios”, “personnel’s adoption of the targets”, “education level of the personnel”
and “support of employee development”, with equally weighted “flexible working hours”.
Network improvement studies, including the work of taking the cables underground, are
among the areas where meticulous work has been carried out by the electricity distribution
companies in order to meet the demands of their customers and to provide uninterrupted
energy. Heavy rain and snowfall, strong winds and increased soil water levels as a result
of melting snow constitute an obstacle to uninterrupted energy. In order to deal with
these situations completely independently of human influence, an underground network
is emphasized and there is an aim to eliminate malfunctions in a short time by using
cable and route detection devices. However, factors such as the height of snow and the
number of days that soil spends under the snow negatively affect the uninterrupted energy
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criteria. For this reason, the primary weighted criterion of “uninterrupted energy” criteria
is “climatic conditions”.

“Investment amount” and “leakage rate” have a significant impact on “uninterrupted
energy” as well as the “customer satisfaction” criteria. Since the increase in “illegal usage”
causes excessive load in the network and imbalances in energy demand, it creates an
obstacle to “uninterrupted energy”. For this reason, distribution companies focus on field
scans and technological investments in combating illegal electricity. With the increase
in investments, there is an aim to reduce the use of illegal electricity and to provide
uninterrupted energy. In Aras EDAŞ Co., where applications are carried out through the
PLC project based on communication over electricity lines, investments aimed at protecting
the rights of customers, preventing the damage to the country’s economy and reducing the
use of illegal electricity are being realized.

Figure 8. ‘Service region’ sub-criterion weights comparison for uninterrupted energy.

Figure 9. ‘Management’ sub-criterion weights for uninterrupted energy.
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Figure 10. Comparison of ‘employees’ sub-criterion weights for uninterrupted energy.

The lack of “employee participation” in the enterprises or “lack of knowledge of the
targets by the personnel” makes it difficult for the enterprises to reach their goals. Although
“uninterrupted energy” is the basic criterion for electricity distribution companies, they
have frameworks drawn in accordance with legislation to outline how this should be
achieved. For example, these companies need to notify customers in advance of a certain
scheduled hour and not conduct any interruptions without notice for beyond a certain
hour. However, since these requirements are not adopted by the personnel, this will be
reflected in the practices carried out in the field, and it becomes difficult to reach the targets
set up within the enterprise or to act in accordance with the legislation. For this reason,
the adoption of the rules to be followed or the goals created by the personnel has a high
priority weighting.

In order to provide uninterrupted energy, it is necessary to increase maintenance work
and to instantly intervene in the uninterrupted energy supply. This situation requires
the employees to keep up with developing technologies and to intervene with solution-
oriented approaches. This can only be achieved by increasing the technical and personal
training of the personnel and supporting their vocational training with trainings suitable
for today’s conditions. When all these factors are taken into consideration, it has been
observed that besides the importance of the education levels of the employees, a parallel
approach is needed with the emphasis on supporting employee development over other
criteria. In addition, as the standards set the requirements for instant repair of malfunctions
and responding to customer requests on a 24/7 basis, flexible working hours are prioritized
for uninterrupted energy.

With the analysis made, the AHP results were examined in order to compare the
dual comparisons of the “uninterrupted energy” main criterion that affect efficiency in
distribution companies with F-AHP and the dual comparisons of the “service region”,
“management” and “employees” criteria. As seen in Figure 8, the F-AHP results of the
“service region” sub-criterion examination for “uninterrupted energy” main criterion are
similar to for AHP, while “geographical conditions” and “number of customers” criteria
are found to be more important by AHP than by F-AHP, while the criteria for “line length”
and “network size” are determined to be less important. It is seen that the criteria for
“climatic conditions”, “energy losses” and “investment amount” have approximately the
same values for both methods. The results of the “management” sub-criterion reviewed
for the main criterion of “uninterrupted energy”, which is seen in Figure 9, show more im-
portance than the results provided by F-AHP, while “supporting employee development”,
“providing ergonomic working conditions” and “providing personnel with promotion
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and advancement opportunities”, “flexible working hours”, “importance given to OHS”,
“goals determination”, “participation in decision-making processes” and existence of EYS
certificates” were all determined as being less important by F-AHP. Figure 10 presents
the comparative results provided by both methods, which suggested that “employee”
sub-criteria for the main criterion of “uninterrupted energy” prioritizes “education level of
the personnel”, “personnel wages and benefits”, and “not to adopt the personnel targets”
obtained higher importance for AHP than for F-AHP. On the other hand, “employee moti-
vation”, “team spirit”, “personnel responsibility awareness”, “average personnel number”
and “average service time” were found to be less important for AHP.

Pairwise comparisons were made for the main criterion of “quality of energy” affect-
ing efficiency in distribution companies with the criteria of “service region”, “management”
and “employees”. Figures 11–13 demonstrate the comparative results, where the most
important criteria affecting “quality of energy” were weighted as “investment amount”,
“line length”, “energy losses”, “staff’s adoption of goals”, “support of employee develop-
ment”, “training level of the staff” and “flexible working hours”, respectively, similar to
other comparisons.

Figure 11. Comparison of ‘service region’ sub-criterion weights for quality energy.

Figure 12. Comparison of ‘management’ sub-criterion weights for quality energy.
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Figure 13. ‘Employees’ sub-criterion weights for quality energy.

In order to evaluate the pairwise comparisons of “service region”, “management” and
“employees” criteria for the main criterion of “quality of energy” that affects efficiency in
distribution companies, the AHP results were analyzed in comparison with the F-AHP. As
presented in Figure 11, the results of “service region” sub-criterion for the “uninterrupted
energy” show similar characteristics with AHP, while “energy losses”, “network size”
and “geographical conditions” criteria seem more important with AHP than with F-AHP,
while “investment amount” and” climatic conditions” criteria were determined to be less
important. It is seen that the criteria of “line length” and “number of customers” obtained
approximately the same values by both methods. While the criteria for “supporting
employee development”, “flexible working hours”, “the importance given to OHS” and
“ensuring ergonomic working conditions” are more important under AHP than under
F-AHP, as seen in the Figure 12, “giving the personnel the opportunity to promote and
progress”, “the existence of EYS certificates” have been determined as less important
by AHP. As in Figure 13, while “training level of the personnel”, “personnel wages and
benefits” criteria were more important under the AHP results than the F-AHP results, the
evaluation of “employees” sub-criteria for the main criterion of “uninterrupted energy”,
“personnel’s failure to adopt the targets”, “employee motivation”, “team spirit”, “personnel
responsibility awareness”, “average personnel number” and “average service time” were
suggested to be less important by AHP.

6. Conclusions

This study has aimed to investigate the best performance measurement approach
and identification of factors affecting the efficiency of electricity distribution companies
operating in the post-privatization era in Turkey. The main concern was how to set up
competition among the companies operating in the Turkish energy market and to enforce
changes in public perception towards distribution companies. Performance assessments
with respect to customer satisfaction play the most crucial role in this process. The study has
been conducted with an energy supply firm which operates in the north-eastern region of
Turkey using AHP and F-AHP methods as two renown qualitative assessment approaches.
Each method was separately implemented and used for the case undertaken and the results
were compared, where F-AHP demonstrates and exhibits a better qualitative assessment
as it let us encompass more expertise within the process.

The results obtained with F-AHP reveals that topmost criterion affecting the effi-
ciency of electricity distribution companies is “customer satisfaction” while the next most
prominent one is “sustainable and uninterrupted energy supply”. In addition, the other
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highly prioritized criteria have been observed to be “the amount of investments”, “loss
and leakage rates”, “climatic conditions”, “support provided to employees for education
and development”, “employee motivation” and “flexible working hours”. Similarly, it has
been determined that criteria such as “employee wages and benefits”, “average service
duration” and “presence of EYS certificates” have exhibited lower priorities. This study
has been conducted for a typical energy supply company operating in Turkey, which
can be generalized for all companies in this kind. It can be a guide to apply the same
approaches to the firms that are similarly operating, taking the case-specific details, e.g.,
hierarchies, etc., into account and identifying the impactful factors on efficiency and on
performance assessments. The managers have been made aware of the results of the study
highlighting the key findings, which are the elicited impactful factors on the company’s
efficiency and their priority list to help revise and implement strategy and policies for near
future, midterm and long term improvements.

The study can be extended by integrating more expert views supplying approaches
and incorporating it with other renown multi criteria decision making approaches and
their fuzzified forms such as DEMATEL, TOPSIS, SWARA, BWM, etc.
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28. Popovic, M.; Kuzmanović, M.; Savić, G. A comparative empirical study of Analytic Hierarchy Process and Conjoint analysis:
Literature review. Decis. Mak. Appl. Manag. Eng. 2018, 1, 153–163. [CrossRef]

29. Kuruüzüm, A.; Atsan, N. The Analytic Hierarchy Process Approach and its Applications in Business. J. Akdeniz İ.İ.B.F. 2001, 1,
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Abstract: Representing and analyzing the complexity of models constructed by data is a difficult
and challenging task, hence the need for new, more effective techniques emerges, despite the
numerous methodologies recently proposed in this field. In the present paper, the main idea is
to systematically create a nested structure, based on a fuzzy cognitive map (FCM), in which each
element/concept at a higher map level is decomposed into another FCM that provides a more detailed
and precise representation of complex time series data. This nested structure is then optimized by
applying evolutionary learning algorithms. Through the application of a dynamic optimization
process, the whole nested structure based on FCMs is restructured in order to derive important
relationships between map concepts at every nesting level as well as to determine the weights of
these relationships on the basis of the available time series. This process allows discovering and
describing hidden relationships among important map concepts. The paper proposes the application
of the suggested nested approach for time series forecasting as well as for decision-making tasks
regarding appliances’ energy consumption prediction.

Keywords: fuzzy cognitive maps; optimization; forecasting time series; evolutionary algorithms;
decision making; appliances energy prediction

1. Introduction

In recent years, fuzzy cognitive maps (FCMs) have become increasingly popular [1]. An FCM can
be defined as a type of recurrent neural network, carrying the main aspects of fuzzy logic. An FCM
allows mimicking a system or a phenomenon with the use of key concepts and causal relationships
among them. FCM models are suitable and particularly useful for modeling and decision-making in
the case of complex systems. They have been used in various application domains, e.g., for pattern
recognition [2], in risk analysis and crisis management [3], as a decision support tool for political
decisions [4], to model an undersea virtual world of dolphins, fish, and sharks [5], for sustainable
socio-economic development planning [6], and to support the decision- making process for photovoltaic
solar energy sector development [7].

FCMs have also been proved as an effective technique for numerical [8] and linguistic [9] forecasting
of time series. In Reference [10], a novel approach based on FCMs and a granular fuzzy set-based
model of inputs were proposed for realizing time series prediction at the linguistic and numerical
levels. In Reference [11], a methodology that joins FCMs with a moving window approach to time
series prediction was developed. The simulation analysis was performed on three different time series
datasets: rainfall in London, number of births per month in New York City, and Campito tree rings.
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In Reference [12], the analysis of FCMs usage was focused to predict water demand based on historical
time series. In addition, recently there have been some novel approaches in the literature attempting to
solve time series prediction problems by combining FCMs with neural networks [13,14].

The initial information of an FCM model is based either on expert knowledge or by using learning
algorithms. In standard methods of FCM learning, concepts are chosen by experts or selected based
on all available data attributes. An enormous amount of data and a big number of concepts may
complicate analysis and decision-making. In this direction, various modifications to standard methods
have been applied aiming to simplify FCM models by reducing the number of concepts [14–16] and the
connections between them [17,18]. These approaches allow obtaining a balance between data accuracy
and model readability. To reduce the complexity and increase the readability of FCMs with a large
number of concepts, clustering methods have been used with the aim to combine similar concepts
based on their dynamic behavior. The related studies have been carried out on ready-made models
of FCMs: FCMs initialized by experts [19] or constructed based on data [6]. Simplifying models,
by reducing the number of concepts as well as clustering them, allows the creation of legible structures
more similar to those created by humans, and making FCMs easier to be analyzed. In the case of a
large number of concepts, a decision-making and analysis problem can be described in the form of a
nested FCM that allows for a more readable representation of knowledge than the classic FCM [5].
For example, in Reference [20], this type of structure was used to evaluate water quality failures.
Nested FCMs could help to understand the underlying problem, support the user to choose at what
level of detail he/she wants to analyze the problem of interest, and represent complex systems in a
more accurate way. Such an approach, as regards the FCMs construction, can provide more readable
and easier to interpret structures, which are closer to human reasoning and inference.

The aim of the current study is to develop an approach for constructing a nested FCM-based
structure that will represent a problem’s complex data in a more elaborate way. The suggested approach
involves the decomposition of each concept at a higher map level into another FCM. The first stage of
the proposed methodology is to cluster concepts (data attributes) based on similarities between them
with the use of the k-means clustering approach [21]. Next, two popular evolutionary algorithms for
learning FCMs (i.e., the Real-Coded Genetic Algorithm (RCGA) [22] and the Structure Optimization
Genetic Algorithm (SOGA) [12]) are applied to find important relationships between concepts at
every nesting level and determine weights of these relationships on the basis of the available data.
The paper recommends applying the proposed nested approach for time series forecasting as well as
for decision-making tasks in the field of appliances’ energy consumption prediction.

Specifically, energy use forecasting has a vital role in energy planning and energy consumption
reduction. As energy costs increase, more effective tools are needed to analyze, manage, and propose
energy use reduction and optimization [23]. In Reference [24], support vector machines have been
deployed for energy consumption prediction in buildings, while in Reference [25], various regression
models were utilized for energy prediction, including multiple linear regression, support vector
machines with radial kernel, random forests, and gradient boosting machines. Gradient boosting
machines and random forests outperformed the multiple linear regression and support vector machines
with the radial kernel, in terms of achieving lower forecasting errors. Additionally, artificial neural
network (ANN), autoregressive integrated moving average (ARIMA), and multiple linear regression
(MLR) models were used in Reference [26] for energy consumption prediction. In Reference [27],
a deep learning model based on an autoencoder was developed that predicts future energy demand
according to different situations.

Moreover, evolutionary FCMs have recently found significant applicability in energy forecasting
and optimization. For example, in Reference [14], historical time series involving energy consumption
data were utilized along with the application of the Structure Optimization Genetic Algorithm
(SOGA) [12] for the automatic construction of an evolutionary FCM. SOGA is an extension of the
Real-Coded Genetic Algorithm (RCGA) [28], which provided the decision-makers with the ability to
identify the most significant concepts of an examined system and the corresponding relationships

88



Mathematics 2020, 8, 2059

among them. Considering any available historical data, FCM models can be automatically produced
and optimized with the help of the SOGA algorithm application. For example, a two-stage prediction
model for forecasting was introduced in Reference [14], which exploits the competent characteristics
of evolutionary FCMs enriched with those of SOGA and ANNs. Recently, in Reference [13], a new
ensemble-based forecasting approach was proposed for time series analysis, which deals with the
problem of natural gas demand prediction, case studying three major cities in Greece. In this study,
the outstanding capabilities of FCMs and ANNs were highlighted, through the investigation of an
ensemble of the related methods, applied to multivariate time series prediction in natural gas demand
forecasting. Moreover, in Reference [29], an approach based on high order FCMs and high order fuzzy
time series was developed to predict solar energy. Public data from Brazilian solar stations, from the
year 2012 to 2015, were used in simulations. The produced results confirmed the usefulness of the
developed approach.

Traditional energy prediction models mainly focus on the prediction accuracy; however, it is also
important to determine and monitor various other variables (concepts) that affect energy consumption
in order to better understand the energy use behavior and find ways to reduce it. The innovation of
the present work lies on the following issues that highlight the research contribution of the article:

• The paper suggests the construction of an efficient FCM-based nested structure in which each
concept at a higher map level can be decomposed into another more detailed FCM for analyzing
complex data. The proposed approach for optimizing the FCM nested structure is characterized by
high performance and flexibility, especially in problems with a large number of variables/concepts.

• The paper proposes the application of the rigorous SOGA algorithm to fine-tune and determine
the most appropriate nested FCM architecture aiming at an enhanced prediction performance.
Implementing SOGA algorithms allowed the authors to optimize the nested structure by selecting
the most significant concepts from all possible concepts at every nesting level.

A simulation analysis regarding the utilization of the nested structure based on FCMs in appliances
energy use prediction has been also performed. To evaluate the performance of the developed approach,
a detailed comparison between the nested FCM and the standard FCM was conducted. The experiments
were performed with the use of an appliances’ energy consumption prediction dataset [25].

The outline of the paper is as follows. Section 2 describes an overview of the FCM method.
In Section 3, the proposed approach for constructing a nested structure based on FCMs is described.
Section 4 presents the simulation analysis results, which were obtained from applying the proposed
approach to an appliances’ energy prediction dataset. The section also presents a comparative analysis
between the proposed technique and the standard FCM in terms of forecasting performance. Section 5
presents a discussion of the results as well as summarizes the main conclusions of the paper.

2. Fuzzy Cognitive Maps Overview

A fuzzy cognitive map (FCM) has the form of a knowledge graph consisting of nodes (concepts)
and links among them [1]. The concepts are nonlinear and represent variables in a causal system.
They can take values in the range [0, 1]. The directed links that define the relationships between
concepts can be positive or negative taking values between [−1,1]. Figure 1 presents an example of an
FCM for exploring the development of the photovoltaic solar energy sector in Brazil [30], in economic
and political terms.
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Figure 1. Example of a fuzzy cognitive map created from a group of specialists for Brazilian photovoltaic
solar energy development. Republished with permission from Papageorgiou et al. [7]; Published by
MDPI, 2020.

Due to the causal nature of the relationships between the concepts, FCMs are an effective tool for
modeling decision support systems and time series prediction. Concepts’ values undergo a change
over time due to the dynamics of the model. In the current research study, the following popular
nonlinear dynamics model is applied to calculate the values of concepts:

Xi(t + 1) = F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Xi(t) +

n∑
j = 1
j � i

Xj(t)·wj,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

where Xi(t) is the value of the i-th concept at the t-th iteration of the FCM execution, t is discrete
time, i,j = 1, 2, . . . , n, n is the number of concepts, wj,i is the weight that determines the linkage
strength between the j-th concept and the i-th concept taking value in the interval [−1,1], and F(x) is the
sigmoidal transformation function normalizing the concept values to the range [0,1]. Certain concepts
can be defined as decision (output) concepts that should be excluded from further analysis.

FCMs can be created taking into account the experts’ knowledge or using machine learning
algorithms. FCM learning aims at the determination of the weights of the existing linkages between
concepts where data are available. Among the FCM learning methods is the Real-Coded Genetic
Algorithm (RCGA) [10,22], in which each individual in a population is determined according to
a floating-point vector that contains the weights of the connections (linkages) between concepts.
Each individual is then decoded into an FCM model and a fitness function, as described below, is used
for its evaluation [10,22]:

f itnessp(erorrl) =
1

a·erorrl + 1
(2)

where p is the number of an individual in the population, p = 1, . . . , P, P is the population size, l is
the number of a generation, l = 1, . . . , L, L is the maximum number of generations, a is a parameter,
and erorrl is the learning error that can be described as follows:

erorrl =
1
T

T∑
t=1

(Z(t) −X(t))2 (3)
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where t = 1, . . . , T, T is the number of learning records, X(t) is the forecasted value of the decision
(output) concept at the t-th iteration, and Z(t) is the actual normalized value of the decision (output)
concept at the t-th iteration.

The Structure Optimization Genetic Algorithm (SOGA) constitutes a partial extension of the
RCGA algorithm [28]. SOGA allows optimizing the structure of an FCM, during its learning process,
by selecting the most significant concepts and the relationships between them. Each individual in
SOGA is represented by a floating-point vector containing the weights of the relationships between
concepts and by a binary vector of size n containing the information about the concepts incorporated
into the candidate FCM model. The evaluation of a candidate FCM is based on a new learning error.
A large number of concepts and the non-zero relationships between them increase the FCM complexity
providing an additional penalty. The learning error is given by the following function [28]:

erorr′l = erorrl + b1
nr

n2 erorrl + b2
nc

n
erorrl (4)

where erorrl is the learning error type, b1, b2 are the learning parameters, nr is the number of the existing
linkages between concepts, nc is the number of the concepts in the analyzed fuzzy cognitive map,
and n is the number of all possible concepts.

3. The Proposed Approach for Constructing Nested Structure Based on Fuzzy Cognitive Maps

This section describes the proposed approach for constructing a nested FCM structure in which
each concept of a higher level can be decomposed into another FCM model illustrating a more detailed
image of complex data.

3.1. Data Clustering

The first stage of the proposed approach is to cluster data attributes (concepts) based on the
similarity between their values with the use of k-means clustering [21]. It contains the following steps:

1. Determine the number of clusters K via trial and error.
2. Set the output concept as a separate cluster.
3. Initialize K − 1 cluster centers from available data attributes (excluding the output concept).
4. Calculate the distance between concepts values and cluster centers based on the Euclidean distance:

d(A, C) =

√√√ T∑
t=1

(xA(t) − xC(t))
2 (5)

where t = 1, . . . , T, T is the number of records, xA(t) is the value of concept A at the t-th iteration,
and xC(t) is the value of cluster center C at the t-th iteration. The output concept is omitted in
this step.

5. Assign concepts to the closest cluster center.
6. Update the cluster centers based on the values assigned to them.
7. Repeat steps 4–6 until convergence.

3.2. Constructing the First Level of the Nested Structure

The next stage of the proposed approach regards the construction of the most general level of the
nested structure (i.e., the first level of the nested structure). It contains the following steps:

1. For each cluster, calculate the average values for concepts within one group according to the
following formula:

xk(t) =
1
nk

nk∑
i=1

xk
i (t) (6)
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where t = 1, . . . , T, T is the number of records, xk(t) is the general value of the k-th cluster at
the t-th iteration, k = 1, . . . , K, K is the number of clusters, xk

i (t) is the value of the i-th concept
assigned to the k-th cluster at the t-th iteration, and i = 1, . . . , nk, nk is the number of concepts
assigned to the k-th cluster.

2. Normalize the calculated values into the interval [0,1] using the standard min–max normalization.
3. Divide the averaged normalized data into learning records and testing records.
4. Initialize the general FCM with K concepts based on the clustered data attributes.
5. Learn the general FCM with the use of the RCGA and SOGA algorithms based on learning records

in order to determine the relationships between concepts at the first level of the nested structure.

3.3. Constructing the FCM Models for the Second Level of the Nested Structure

The next stage of the proposed approach is to construct the FCM models at the second level of
the nested structure (i.e., the more detailed level of the nested structure). A separate FCM model is
constructed for each cluster (excluding the cluster that corresponds to the output concept) and is used
to predict the output concept. If the first level is sufficient for a given concept, it does not have to be
decomposed into another FCM at the second level. The values for the output concept based on the k-th
FCM model (i.e., the k-th cluster) are calculated according to the following formula:

Xk(t + 1) = F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Xk(t) +

nk∑
i=1

Xi(t)·wi,o +
K−1∑

j = 1
j � k

Xj(t)·wj,o

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

where Xk(t) is the value of the output concept at the t-th iteration, t = 1, . . . , T, T is the number of
learning records, i = 1, 2, . . . , nk, nk is the number of concepts assigned to the k-th cluster, wi,o is the
weight that determines the strength of the relationship between the i-th concept and the output concept
in the k-th FCM model, Xi(t) is the value of the i-th concept in the k-th FCM model, j = 1, 2, . . . , K− 1, K
is the number of clusters, wj,o is the weight that determines the strength of the relationship between
the j-th general concept (cluster j) and the output concept in the k-th FCM model, and Xj(t) is the value
of the j-th general concept of the first level at the t-th iteration.

The learning process of the FCM models at the second level is achieved with the use of the RCGA
and SOGA algorithms considering learning records, in order to determine the relationships between
concepts at the second level of the nested structure [14]. In the case of a large number of concepts in
individual FCM models at the second level, we can further extend the nested FCM by another level.

3.4. Calculating the Forecasted Values for the Second Level of the Nested Structure

Additionally, the FCM models from the second level of the nested structure are proposed to be
used for the calculation of the forecasted values of the output concept (at the second level). The simple
average method was used to calculate the forecasted values of the output concept based on values
generated by the FCM models belonging to the second level. This method assigns the same weight to
every single model [31], whereas it can improve the average accuracy when increasing the number of
the combined single models.

3.5. Testing and Evaluation

The evaluation of the resulting models is accomplished with the use of testing data, which are
unknown to the models. In order to evaluate the one-step-ahead prediction, three common statistical
indicators were used: mean square error (MSE), root mean square error (RMSE), and mean absolute
error (MAE), whose mathematical equations are described below:
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1. Mean Squared Error:

MSE =
1
T

T∑
t=1

(Z(t) −X(t))2 (8)

2. Root Mean Squared Error:

RMSE =
√

MSE (9)

3. Mean Absolute Error:

MAE =
1
T

T∑
t=1

∣∣∣Z(t) −X(t)
∣∣∣ (10)

where X(t) is the forecasted value of the output concept at the t-th iteration, Z(t) is the normalized
actual value of the output concept at the t-th iteration, and t = 1, . . . , T is the number of
the iteration.

3.6. Software

The simulation analysis of the proposed approach for constructing nested FCMs was implemented
in ISEMK (Intelligent Expert System based on Cognitive Maps), a software tool that has been developed
to construct and analyze FCMs [14,28]. The ISEMK tool is a C# application that allows users to construct
FCMs with the use of evolutionary algorithms. In the context of the current research study, a new
module has been implemented in the ISEMK tool, which enables:

• reading data from .data file,
• setting the number of clusters,
• clustering similar concepts with the use of k-means method,
• showing results of clustering,
• calculating the average values for concepts within one group in order to construct the first level

(the most general level) of the nested structure,
• exporting these values to the .data file in order to use them to construct the most general FCM

model with the use of RCGA and SOGA algorithms, and
• exporting the original values of the concepts in each group to separate .data files in order to

construct the FCM models on the second level (the more detailed level) of the nested structure.

Figure 2 presents the implemented module for data clustering.
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Figure 2. Screenshot of the implemented ISEMK (Intelligent Expert System based on Cognitive Maps)
module for data clustering.

4. Case Study

For the purposes of this study, in order to show the functionality of the proposed methodology,
a specific appliances’ energy prediction dataset was considered and analyzed [25]. This dataset contains
energy data recorded for a period of four and a half months from a low energy house, which has been
used as a testbed. A wireless sensor network (ZigBee) was used to monitor house temperature and
humidity conditions, whereas m-bus energy meters were collecting the energy data every 10 min.
Additionally, weather data were provided by a public data repository connected to an airport weather
station nearby. The used data contained the following attributes (concepts):

• Appliances—energy consumption (Wh),
• Lights—light fixtures energy consumption (Wh),
• T1—kitchen temperature (Celsius),
• RH1—kitchen humidity (%),
• T2—living room temperature (Celsius),
• RH2—living room humidity (%),
• T3—laundry room temperature (Celsius),
• RH3—laundry room humidity (%),
• T4—office temperature (Celsius),
• RH4—office humidity (%),
• T5—bathroom temperature (Celsius),
• RH5—bathroom humidity (%),
• T6—outside the building temperature (north side) (Celsius),
• RH6—outside the building humidity (north side) (%),
• T7—ironing room temperature (Celsius),
• RH7—ironing room humidity (%),
• T8—teenager room 2 temperature (Celsius),
• RH8—teenager room 2 humidity (%),
• T9—parents room temperature (Celsius),

94



Mathematics 2020, 8, 2059

• RH9—parents room humidity (%),
• Tout—outside temperature (Celsius),
• Pressure—pressure (mm Hg),
• RHout—outside humidity (%),
• Windspeed—wind speed (m/s),
• Visibility (km), and
• Tdewpoint—due point temperature (Celsius).

In what follows, the application of the proposed approach for constructing a nested structure
based on FCMs is presented by utilizing this appliances’ energy prediction dataset [25]. “Appliances”
is set as the output concept of the FCM. The normalized data were divided into learning records
(15,000 otal in number) and testing records (4735 total in number). Table 1 presents the sample results
of the clustering data related to the use of the appliances’ energy dataset into 5 clusters.

Table 1. Results of clustering.

Cluster Attributes (Concepts)

Cluster 1 T1 T2 T3 T4 T5 T7 T8 T9
Cluster 2 RH1 RH2 RH3 RH4 RH5 RH6 RH7 RH8 RH9 RHout Visibility
Cluster 3 Pressure
Cluster 4 Lights T6 Tout Windspeed Tdewpoint

Cluster 5 (output) Appliances

The FCM models were constructed with the use of two evolutionary learning algorithms: RCGA
and SOGA. The learning parameters were selected by trial and error in order to minimize prediction
errors. The learning process was repeated 10 times for each parameter configuration. The average values
of the evolution criteria with standard deviation were produced accordingly. Uniform crossover [32]
with crossover probability equal to 0.6, random mutation with mutation probability equal to 0.1,
and ranking selection for parent selection were used in the simulations. The parents of one generation
are completely replaced with the offspring. Elite strategy was applied and the single best individual
was kept. Both population size and the maximum number of generations in the respective case study
were set equal to 100.

Table 2 shows the calculated prediction errors (MAE, MSE, RMSE) for the first and second levels
of the nested FCM. To evaluate the performance of the proposed approach, an extensive comparative
analysis between the nested FCM and the standard FCM was performed. The best models in terms of
having the lowest MSE value were further analyzed so the forecasted values of energy use of appliances
for the second level of the nested structure (second level) would be calculated. Table 3 shows the
obtained prediction errors (MAE, MSE, RMSE) for the best FCM models.

Table 2. Comparison results among the nested fuzzy cognitive map and standard fuzzy cognitive map.

Model Algorithm MAE MSE RMSE

First level SOGA 0.0423 ± 0.0140 0.0058 ± 0.0017 0.0754 ± 0.0099
RCGA 0.0370 ± 0.0015 0.0052 ± 0.0006 0.0720 ± 0.0039

Cluster 1 SOGA 0.0454 ± 0.0099 0.0067 ± 0.0019 0.0814 ± 0.0104
RCGA 0.0424 ± 0.0038 0.0060 ± 0.0006 0.0772 ± 0.0038

Cluster 2 SOGA 0.0453 ± 0.0077 0.0064 ± 0.0009 0.0801 ± 0.0054
RCGA 0.0409 ± 0.0051 0.0060 ± 0.0007 0.0774 ± 0.0045

Cluster 3 SOGA 0.0423 ± 0.0140 0.0058 ± 0.0017 0.0754 ± 0.0099
RCGA 0.0370 ± 0.0015 0.0052 ± 0.0006 0.0720 ± 0.0039

Cluster 4 SOGA 0.0414 ± 0.0036 0.0061 ± 0.0008 0.0778 ± 0.0050
RCGA 0.0373 ± 0.0022 0.0054 ± 0.0005 0.0731 ± 0.0036

Standard FCM SOGA 0.0485 ± 0.0135 0.0072 ± 0.0015 0.0845 ± 0.0086
RCGA 0.0426 ± 0.0025 0.0065 ± 0.0007 0.0807 ± 0.0041
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Table 3. Best results for the nested fuzzy cognitive map and standard fuzzy cognitive map.

Model Algorithm MAE MSE RMSE

First level SOGA 0.0348 0.0045 0.0671
RCGA 0.0348 0.0045 0.0667

Cluster 1 SOGA 0.0369 0.0048 0.0692
RCGA 0.0398 0.0053 0.0731

Cluster 2 SOGA 0.0401 0.0053 0.0730
RCGA 0.0344 0.0052 0.0722

Cluster 3 SOGA 0.0348 0.0045 0.0671
RCGA 0.0348 0.0045 0.0667

Cluster 4 SOGA 0.0351 0.0048 0.0690
RCGA 0.0342 0.0044 0.0666

Second level SOGA 0.0354 0.0047 0.0682
RCGA 0.0334 0.0045 0.0673

Standard FCM SOGA 0.0389 0.0055 0.0740
RCGA 0.0397 0.0054 0.0736

Please notice that the bold values in the above tables represent the best results associated with the
least values of prediction error measures.

Figure 3 depicts the sample nested structure obtained with the use of the RCGA and SOGA
algorithms. The proposed approach based on a genetic algorithm optimization allowed us to construct
the nested fuzzy cognitive map in which each node is an independent FCM model containing similar
concepts. The appliances’ energy usage prediction can be analyzed at the first (the most general) level
or at a more detailed level (with the use of the detailed FCM models constructed for each cluster).
Additionally, the use of SOGA allowed the optimization of the nested structure through the selection
of the most significant concepts in each cluster.

More specifically, clusters 1, 2, and 4 in Figure 3a contain more variables than those in Figure 3b,
which have been selected by applying the SOGA algorithm for FCM learning. Furthermore, the number
of weighted relationships among clusters is less in the optimized nested FCM structure as depicted
in Figure 3b, producing a less complex model for making a prediction. Figure 3b presents the
most significant concepts for the prediction automatically selected by the SOGA algorithm in the
sample experiment.

The most important concepts in each cluster in the nested FCM, as they were produced by the
SOGA optimization approach, are the following: T1- temperature in the kitchen area, in Celsius, T3-
temperature in laundry room area, T5- temperature in bathroom, in Celsius, and T7- temperature
in ironing room, in Celsius (Cluster 1), RH9- humidity in parents room, in %, and RHout- humidity
outside, in %, (Cluster 2), Press (Cluster 3) and Lights, and T6- temperature outside the building
(north side), in Celsius, (Cluster 4). These concepts have a significant impact on appliances to predict
their behavior.

Figure 4 presents the sample results for the forecasting of energy use of appliances. The nested
FCM outperformed the standard FCM in terms of achieving better forecasting results overall.
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Figure 3. Sample nested fuzzy cognitive map obtained with the use of (a) real-coded genetic algorithm
(RCGA) and (b) structure optimization genetic algorithm (SOGA).
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Figure 4. Forecasting results for the best model obtained with the use of the SOGA algorithm.

5. Discussion of Results and Conclusions

In this work, various FCM-based nested architectures were explored, considering the variables that
were carefully determined by using the FCM models defined in Section 3. Through the experimental
analysis, which involved learning and optimization processes, the optimum nested FCM structure was
identified in terms of the overall prediction accuracy.

To further analyze the results of the proposed forecasting approach based on nested FCMs,
and assess its effectiveness as well, a comparative analysis has been carried out with respect to the
forecasting performance, between the proposed technique and the standard FCM, which has already
been applied in similar energy problems as reported in the relevant literature. All the results produced
are gathered in the tables and figures cited in the previous section. In particular, from the results shown
in Table 1, it emerges that the proposed approach allowed the clustering of 26 concepts related to the
use of appliances energy into 5 similar clusters. After a detailed analysis of Tables 2 and 3, as regards
the MAE, MSE, and RMSE errors, it can be concluded that the nested structure based on two levels
(first level and second level) provided lower errors than the standard approach based on a single FCM.

In Figure 3, it can be noted that the proposed optimization approach allowed the authors to obtain
a readable nested structure in which each concept at the first level can be decomposed into another FCM,
providing a more detailed representation of appliances’ energy time series. Evolutionary algorithms
for FCM learning were used to extract important relationships between the concepts at every nesting
level and define corresponding weights as regards the available time series. Additionally, the SOGA
algorithm helped in the optimization of the nested structure through the selection of the most significant
concepts from all possible concepts at every nesting level.

The most important advantageous characteristics of the proposed nested FCM architecture,
according to the results as presented in the previous section, are summarized below. More specifically,
the nested FCM:

• optimizes the FCM structure by selecting the most proper concepts for decision-making;
• finds out the most important relationships between the concepts at every nesting level and

determines the weights of these relationships;
• results in a readable nested structure in which each concept of a first level can be decomposed

into another FCM, providing a more detailed representation of time series;
• facilitates understanding of the concepts affecting the forecast;
• clusters available concepts into similar groups
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The main limitation of the proposed approach is that it could be time-consuming for large datasets,
as it requires the construction of several individual FCM models. However, time series prediction can
be limited only to the most general level of the nested structure.

The main outcomes of this research study are outlined as follows:

(i) The proposed nested FCM method demonstrates excellent performance in the case of clustering
analysis considering the examined variables/concepts of this case study. For the examined
nested structure and after a number of experiments were conducted, a specific configuration
was concluded as the best. In general, the optimum nested FCM model is defined through the
identification of the most important relationships between the concepts at every nesting level and
by determining the weights of these relationships.

(ii) The proposed nested architecture is proven to be superior compared to the standard well-known
FCM model, which has been previously used in prediction problems in the energy domain.

(iii) The proposed nested model exhibits remarkable competence when deployed in appliances energy
prediction since its performance is better (see Tables 2 and 3) and constitutes a flexible tool to
cluster concepts efficiently and, thus, reduce the model complexity.

To sum up, we have developed and suggested a new approach for constructing a nested structure
based on fuzzy cognitive maps. The proposed approach seems to be a promising method for time
series forecasting and decision-making in many scientific domains. It allows the representation of a
readable nested structure in which each concept of a first level can be decomposed into another fuzzy
cognitive map for a more detailed presentation of the analyzed time series. Future work is oriented in
analyzing the application of the developed approach based on various complex time series. Moreover,
we would like to introduce different forecasting models (e.g., artificial neural networks) at the most
detailed level of the nested structure in order to achieve higher prediction accuracy.

Author Contributions: Conceptualization, K.P. and E.I.P.; methodology, K.P.; software, K.P.; validation, K.P., E.I.P.
and V.C.G.; formal analysis, K.P., E.I.P. and V.C.G.; investigation, K.P. and E.I.P.; resources, K.P.; data curation, K.P.;
writing—original draft preparation, K.P., E.I.P. and V.C.G.; writing—review and editing, K.P., E.I.P. and V.C.G.;
visualization, K.P.; supervision, E.I.P. and V.C.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kosko, B. Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 1986, 24, 65–75. [CrossRef]
2. Papakostas, G.A.; Boutalis, Y.S.; Koulouriotis, D.E.; Mertzios, B.G. Fuzzy cognitive maps for pattern

recognition applications. Int. J. Pattern Recogn. Artif. Intell. 2008, 22, 1461–1468. [CrossRef]
3. Aguilar, J. Dynamic random fuzzy cognitive maps. Comput. Sist. 2004, 7, 260–271. Available online:

http://www.scielo.org.mx/pdf/cys/v7n4/v7n4a5.pdf (accessed on 17 November 2020).
4. Tsadiras, A.K.; Kouskouvelis, I. Using fuzzy cognitive maps as a decision support system for political

decisions: The case of Turkey’s integration into the European Union. In Advances in Informatics; PCI 2005;
Lecture Notes in Computer Science; Bozanis, P., Houstis, E.N., Eds.; Springer: Berlin/Heidelberg, Germany,
2005; Volume 3746, pp. 371–381. [CrossRef]

5. Dickerson, J.A.; Kosko, B. Virtual worlds as fuzzy cognitive maps. Presence 1994, 3, 173–189. [CrossRef]
6. Papageorgiou, K.; Singh, P.K.; Papageorgiou, E.I.; Chudasama, H.; Bochtis, D.; Stamoulis, G. Fuzzy cognitive

map-based sustainable socio-economic development planning for rural communities. Sustainability 2020, 12, 305.
[CrossRef]

7. Papageorgiou, K.; Carvalho, G.; Papageorgiou, E.I.; Bochtis, D.; Stamoulis, G. Decision-making process for
photovoltaic solar energy sector development using fuzzy cognitive map technique. Energies 2020, 13, 1427.
[CrossRef]

8. Song, H.; Miao, C.; Roel, W.; Shen, Z. Implementation of fuzzy cognitive maps based on fuzzy neural network
and application in prediction of time series. IEEE Trans. Fuzzy Syst. 2010, 18, 233–250. [CrossRef]

99



Mathematics 2020, 8, 2059

9. Lu, W.; Yang, J.; Liu, X. The linguistic forecasting of time series based on fuzzy cognitive maps. In Proceedings
of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, Edmonton, AB,
Canada, 24–28 June 2013; pp. 649–654.

10. Stach, W.; Kurgan, L.; Pedrycz, W. Numerical and linguistic prediction of time series with the use of fuzzy
cognitive maps. IEEE Trans. Fuzzy Syst. 2008, 16, 61–72. [CrossRef]

11. Homenda, W.; Jastrzebska, A.; Pedrycz, W. Modeling time series with fuzzy cognitive maps. In Proceedings
of the 2014 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2014, Beijing, China, 6–11 July 2014;
pp. 2055–2062. [CrossRef]

12. Papageorgiou, E.I.; Poczeta, K.; Laspidou, C. Application of fuzzy cognitive maps to water demand prediction.
In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015, Istanbul,
Turkey, 2–5 August 2015; pp. 1–8. [CrossRef]

13. Papageorgiou, K.; Papageorgiou, E.I.; Poczeta, K.; Gerogiannis, V.C.; Stamoulis, G. Exploring an ensemble
of methods that combines fuzzy cognitive maps and neural networks in solving the time series prediction
problem of gas consumption in Greece. Algorithms 2019, 12, 235. [CrossRef]

14. Papageorgiou, E.I.; Poczeta, K. A two-stage model for time series prediction based on fuzzy cognitive maps
and neural networks. Neurocomputing 2017, 232, 113–121. [CrossRef]

15. Homenda, W.; Jastrzebska, A.; Pedrycz, W. Nodes selection criteria for fuzzy cognitive maps designed to
model time series. In Intelligent Systems’ 2014. Advances in Intelligent Systems and Computing; Filev, D., Ed.;
Springer: Cham, Switzerland, 2014; Volume 323, pp. 859–870. [CrossRef]

16. Selvin, N.N.; Srinivasaraghavan, A. Dimensionality reduction of inputs for a fuzzy cognitive map for obesity
problem. In Proceedings of the 2016 International Conference on Inventive Computation Technologies,
ICICT 2016, Coimbatore, Tamilnadu, India, 23–26 August 2016; pp. 1–5. [CrossRef]

17. Chi, Y.; Liu, J. Learning of fuzzy cognitive maps with varying densities using multi-objective evolutionary
algorithms. IEEE Trans. Fuzzy Syst. 2016, 24, 71–81. [CrossRef]

18. Stach, W.; Pedrycz, W.; Kurgan, L.A. Learning of fuzzy cognitive maps using density estimate. IEEE Trans.
Syst. Man Cybern. Part B 2012, 42, 900–912. [CrossRef]

19. Hatwágner, M.F.; Kóczy, L.T. Parameterization and concept optimization of FCM models. In Proceedings of
the 2015 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015, Istanbul, Turkey, 2–5 August 2015;
pp. 1–8. [CrossRef]

20. Sadiq, R.; Kleiner, Y.; Rajani, B.B. Interpreting fuzzy cognitive maps (FCMs) using fuzzy measures to evaluate
water quality failures in distribution networks. In Proceedings of the Joint International Conference on
Computation in Civil and Building Engineering, ICCCBE XI, Montreal, QC, Canada, 14–16 June 2006;
pp. 1–10.

21. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings
of the 5th Berkeley Symposium on Mathematical Statistics and Probability; Le Cam, L.M., Neyman, J., Eds.;
University of California Press: Davis, CA, USA, 1967; Volume 1, pp. 281–297. Available online:
https://projecteuclid.org/euclid.bsmsp/1200512992 (accessed on 17 November 2020).

22. Stach, W.; Kurgan, L.; Pedrycz, W.; Reformat, M. Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst.
2005, 153, 371–401. [CrossRef]

23. Makonin, S.; Ellert, B.; Bajic, I.; Popowich, F. Electricity, water, and natural gas consumption of a residential
house in Canada from 2012 to 2014. Sci. Data 2016, 3, 160037. [CrossRef]

24. Dong, B.; Cao, C.; Lee, S.E. Applying support vector machines to predict building energy consumption in
tropical region. Energy Build. 2005, 37, 545–553. [CrossRef]

25. Candanedo, L.M.; Feldheim, V.; Deramaix, D. Data driven prediction models of energy use of appliances in a
low-energy house. Energy Build. 2017, 140, 81–97. [CrossRef]

26. Kandananond, K. Forecasting electricity demand in Thailand with an artificial neural network approach.
Energies 2011, 4, 1246–1257. [CrossRef]

27. Kim, J.-Y.; Cho, S.-B. Electric energy consumption prediction by deep learning with state explainable
autoencoder. Energies 2019, 12, 739. [CrossRef]

28. Poczeta, K.; Yastrebov, A.; Papageorgiou, E.I. Learning fuzzy cognitive maps using structure optimization
genetic algorithm. In Proceedings of the 2015 Federated Conference on Computer Science and Information
Systems, FedCSIS 2015, Lodz, Poland, 13–16 September 2015; pp. 547–554. [CrossRef]

100



Mathematics 2020, 8, 2059

29. Orang, O.; Silva, R.; de Lima e Silva, P.C.; Guimarães, F.G. Solar energy forecasting with fuzzy time series
using high-order fuzzy cognitive maps. In Proceedings of the 2020 IEEE International Conference on Fuzzy
Systems, FUZZ-IEEE 2020, Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

30. Papageorgiou, K.; Carvalho, G.; Papageorgiou, E.I.; Papandrianos, N.I.; Mendonça, M.; Stamoulis, G.
Exploring Brazilian photovoltaic solar energy development scenarios using the fuzzy cognitive map wizard
tool. In Proceedings of the 2020 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2020, Glasgow,
UK, 19–24 July 2020; pp. 1–8. [CrossRef]

31. Makridakis, S.; Winkler, R.L. Averages of forecasts: Some empirical results. Manag. Sci. 1983, 29, 987–996.
Available online: https://www.jstor.org/stable/2630927 (accessed on 17 November 2020). [CrossRef]

32. De Jong, K.A.; Spears, W.M. A formal analysis of the role of multi-point crossover in genetic algorithms.
Ann. Math. Artif. Intell. 1992, 5, 1–26. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

101





mathematics

Article

Extending Fuzzy Cognitive Maps With Tensor-Based
Distance Metrics

Georgios Drakopoulos 1,*, Andreas Kanavos 2 and Phivos Mylonas 1 and Panagiotis Pintelas 3

1 Humanistic and Social Informatics Lab, Department of Informatics, Ionian University,
49100 Kerkyra, Greece; fmylonas@ionio.gr

2 Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece;
kanavos@ceid.upatras.gr

3 Department of Mathematics, University of Patras, 26504 Patras, Greece; pintelas@math.upatras.gr
* Correspondence: c16drak@ionio.gr

Received: 30 September 2020; Accepted: 26 October 2020; Published: 31 October 2020
��������	
�������

Abstract: Cognitive maps are high level representations of the key topological attributes of real or
abstract spatial environments progressively built by a sequence of noisy observations. Currently
such maps play a crucial role in cognitive sciences as it is believed this is how clusters of dedicated
neurons at hippocampus construct internal representations. The latter include physical space and,
perhaps more interestingly, abstract fields comprising of interconnected notions such as natural
languages. In deep learning cognitive graphs are effective tools for simultaneous dimensionality
reduction and visualization with applications among others to edge prediction, ontology alignment,
and transfer learning. Fuzzy cognitive graphs have been proposed for representing maps with
incomplete knowledge or errors caused by noisy or insufficient observations. The primary
contribution of this article is the construction of cognitive map for the sixteen Myers-Briggs personality
types with a tensor distance metric. The latter combines two categories of natural language attributes
extracted from the namesake Kaggle dataset. To the best of our knowledge linguistic attributes are
separated in categories. Moreover, a fuzzy variant of this map is also proposed where a certain
personality may be assigned to up to two types with equal probability. The two maps were evaluated
based on their topological properties, on their clustering quality, and on how well they fared against
the dataset ground truth. The results indicate a superior performance of both maps with the fuzzy
variant being better. Based on the findings recommendations are given for engineers and practitioners.

Keywords: cognitive graphs; self organizing maps; tensor distance metrics; higher order data;
topological error; Myers-Briggs Type Indicator; MBTI

1. Introduction

Self organizing maps (SOMs) or cognitive maps constitute a class of neural network grids
introduced in Reference [1]. In these grids neuron topology is closely related to their functionality.
Moreover, the unsupervised training is patterned after a modified Hebbian rule [2]. These two
fundamental properties allow SOMs to approximate the shape of a high dimensional manifold,
typically represented as a set of selected data points, and subsequently to construct a lower dimensional
and continuous topological map thereof. The latter provides an indirect yet efficient clustering
of the data points presented to the SOM during the training process. In turn, that makes SOMs
important components in many data mining pipelines in dimensionality reduction, clustering,
or visualization roles.

Human character dynamics are the focus of many research fields including psychology,
sociology, and cognitive sciences. The Myers-Briggs Type Indicator (MBTI) is among the most
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well-known classifictions of human personality according to four binary fundamental factors,
resulting in a total of sixteen possible personality types [3]. Understanding the psychological dynamics
of the individual members of a group is instrumental in minimizing or even avoiding non-productive
and time consuming frictions, while at the same time maximizing the group potential through efficient
task delegation, unperturbed and unambiguous communication, and effective conflict resolution.
These skills are crucial among other cases during the formation of startups, even more so when an
accelerator or an incubator are involved, in assemblying workgroups for accomplishing specific
missions, or during mentorship assignments [4]. These cases are indicative of the potential of
such methods.

Despite their increasing significance across a number of fields, the rapid evolution of natural
language processing (NLP) algorithms for estimating human emotional states [5,6], and the
development of sophisticated image processing algorithms for the identification of a wide spectrum
of cognitive tasks [7,8], there are still few algorithms for addressing the topic of inferring personality
dynamics from text as reported in Reference [9]. Additionally, the number of applications based on
tensor metrics are still few, which is the principal motivation of this work.

The primary research objective of this article is twofold. First, a multilinear weighted function is
used is the construction of the topological map as the data point distance metric. Tensors naturally
capture higher order interactions between explanatory variables, in this particular case the fundamental
personality traits of the MBTI model. Second, each data point is represented as a matrix and not
as a vector, which is currently the customary approach. This adds flexibility in at least two ways,
as not only inherently two-dimensional objects can be naturally represented but also one-dimensional
objects can have simultaneously more than one representations, which can be applied in cases where
object representations can be selected adaptively including aspect mining and multilevel clustering.
The tensor-based metric and the matrix representations are naturally combined to yield an SOM
algorithm operating on two-dimensional representations of personality traits indirectly represented
as text attributes. The latter are extracted from short texts from the Kaggle Myers-Briggs dataset.
In addition to the main SOM algorithm, a fuzzy one is developed where membership to at most two
clusters can be possible, provided that a given data point is close enough to both.

The remaining of this article is structured as follows. In Section 2 the recent scientific literature
regarding tensor distance metrics, cognitive maps, and computational cognitive science is briefly
reviewed. Section 3 describes the main points behind the MBTI theory. The SOM architecture is the
focus of Section 4. Section 5 discusses the attributes extracted from the dataset, the proposed tensor
distance metric, and the results of the experiments. Section 6 concludes this work by recapitulating
the findings as well as by exploring future research directions. Tensors are represented with capital
calligraphic letters, matrices with boldface capital letters, vectors with boldface lowercase letters,
and scalars with lowercase letters. When a function requires parameters, they are placed after the
arguments following a semicolon. Technical acronyms are explained the first time they are encountered
in text. Finally, the notation of this article is summarized in Table 1.
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Table 1. Notation of this article.

Symbol Meaning

�
= Definition or equality by definition
{s1, . . . , sn} or {sk}n

k=1 Set with elements s1, . . . , sn
|S| or |{s1, . . . , sn}| Set cardinality
×k Tensor multiplication along the k-th direction
vec (·) Vectorize operation for matrices and tensors
loc (·) Location function for data points
invloc (·) Inverse location relationship for neurons
weight (u) Synaptic weights of neuron u
bias (u) Bias of neuron u
Γ (u) Neighborhood of neuron u
Δ (u) Cover of neuron u
〈p1 || p2〉 Kullback-Leibler divergence between discrete distributions p1 and p2

2. Previous Work

Cognitive maps or self organizing maps constitute a special class of neural networks which
are trained in an unsupervised manner in order to form a low dimensional representation of a
higher dimensional manifold with the added property that important topological relationships are
maintained [1]. This map is progressively constructed by updating the neuron synaptic weights
through a modified Hebbian rule, which eliminates the need for gradient based training methods [10].
Their application to clustering objects in very large databases is thoroughly explored in Reference [11].
Fuzzy cognitive maps are SOMs where clusters are allowed to overlap [12]. Their properties are
examined in Reference [13]. Learning the rules of a fuzzy cognitive map can be done through genetic
algorithms [14,15], optimization algorithms [16,17], or compressed sensing [18]. SOMs have been
applied to clustering massive document collections [19], functional magnetic resonance images (fMRI)
based on attributes extracted from the discrete cosine transform (DCT) [20], prediction of distributed
denial of service (DDoS) attacks in software defined networks (SDN) [21], factory interdependencies
for Industry 4.0 settings [22], task pools for autonomous vehicles [23], and the drivers behind digital
innovation [24]. Moreover SOMs have been employed for a hierarchical clustering scheme for
discovering latent gene expression patterns [25] and gene regulatory networks [26]. Given that
the trained fuzzy cognitive maps can be represented as a fuzzy graph, clustering can be performed
by fuzzy community discovery algorithms [27–29]. In Reference [30] fuzzy graphs have been used
in a technique for estimating the number of clusters and their respective centroids. C-means fuzzy
clustering has been applied to epistasis analysis [31] and image segmentation [32]. An extensive review
for software about SOMs is given in Reference [33].

Tensor algebra is the next evolutionary step in linear algebra since it deals primarily with the
simultaneous coupling of three or more vector spaces or with vectors of three or more dimensions [34].
Also, tensors can be used in the identification of non-linear systems [35–37]. Tensors and their
factorizations have a wide array of applications to various engineering fields. Computationally
feasible tensor decompositions are proposed in Reference [38], whereas other applications to machine
learning (ML) are the focus of References [39–41]. In Reference [42] a third order tensor represents
spatiosocial Twitter data about the Grand Duchy of Luxembourg and is clustered by a genetic algorithm
to yield coherent districts both geographically and linguistically. Tensor stack networks (TSNs)
are clusters of feedforward neural networks (FFNNs) which can learn not only from their own
errors but also from those of other networks in the cluster [43]. TSNs have been applied to large
vocabulary speech recognition [44] and graph resiliency assessment [45]. Tensor distance metrics
have numerous applications across diverse fields including gene expression [46], dimensionality
reduction [47], and face recognition [48].

Distributed processing systems such as Apache Spark play an increasingly important role in
data mining (DM) and ML pipelines [49]. In Reference [50] the singular value decomposition (SVD)
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performs attribute transformation and selection and boosts the performance of various Spark MLlib
classifiers in Kaggle datasets. A similar role is played by higher order tensor factorizations [51]. Julia is
a high level programming language primarily intended for intense data management and scientific
computing applications [52]. Although interpreted, it offers high performance [53] as it is based on
the low level virtual machine (LLVM) infrastructure engine [54]. The capabilities and the respective
performance of the various ML models of Julia are described in Reference [55] especially over massive
graphics processing unit (GPU) arrays [56]. A numerical optimization package for Julia is described in
Reference [57], methods for parameter estimation for partial differential equations (PDEs) are discussed
in Reference [58], while the potential of a package for the simulation of quantum systems is explained
in Reference [59]. Recently a package for seismic inversion was introduced [60].

Emotions are drivers of human actions as well as major components of human personality.
The Myers-Briggs type indicator (MBTI) as explained among others in Reference [3] and Reference [61]
has been invented in order to create a methodological framework for quantitative personality
analysis [62]. This has been used in applications such as brand loyalty [63]. Also taking into account
the MBTI and their interactions can lead to significant improvements in teaching [64]. In contrast to
emotion models such as Plutchick’s emotion wheel [65] or the universal emotion or big five theory
proposed by Eckman in Reference [66], frameworks like MBTI offer a more general view of human
personality and allow the analysis of interaction between two or more persons. The connection
between cognitive functions and personality type is explored in Reference [4]. An overview of the
MBTI typology is given among others in Reference [67]. Finally, human emotional state can be
estimated in a number of ways. Among the most significant emotional indicators is speech, which
is relatively easy to capture and process since one dimensional signal processing methodologies
are used [68]. Other emotional state indicators include gait [69], facial cues [70], or a combination
thereof [71]. Alternatively, human emotional state can be estimated by brain imaging techniques [72].

The blueprints of a specialized cognitive system aiming at the reconstruction of events and scenes
from memory are given in Reference [73]. The role of augmented- (AR) and virtual reality (VR) for
cognitive training is investigated in Reference [74]. The principles and properties of cognitive tools
are the focus of Reference [75]. A more extensive approach including predictions for future cognitive
systems is that of Reference [76]. Brain-computer interface (BCI) collect biosignals related to brain
activity [77]. A detailed review of BCI signaling is given in Reference [78]. Convolutional neural
network (CNN) architectures in Reference [79] are used to extract temporal information about the
brain through BCIs, while age and gender classification with BCI is proposed in Reference [80].

3. Myers-Briggs Type Indicator

The MBTI taxonomy [3] establishes a framework for classifying the personality of an individual
along the lines of the theory developed earlier by the pioneering psychologist Karl Jung [67]. It is often
now routinely employed by human resources (HR) deparments around the globe in order to determine
ways to maximize total employee engagement as well as to identify possible friction points arising
by different viewpoints and approach to problem solving. At the core of the taxonomy are sixteen
archetypal personalities with unique traits. Each such personality type is derived by evaluating the
following four fundamental criteria [4]:

• Approach to socialization: Introvert (I) vs Extrovert (E). As the name of this variable suggests,
it denotes the degree a person is open to others. Introverts tend to work mentally in isolation and
rely on indirect cues from others. On the contrary, extroverts share their thoughts frequently with
others and ask for explicit feedback.

• Approach to information gathering: Sensing (S) vs Intuition (N). Persons who frequently resort
to sensory related functions observe the outside world, whether the physical or social environment,
in order to collect information about open problems or improve situational awareness belong to
the S group. On the other hand, persons labeled as N rely on a less concrete form of information
representation for reaching insight.
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• Approach to decision making: Thinking (T) vs Feeling (F). This variable indicates the primary
means by which an individual makes a decision. This may be rational thinking with clearly
outlined processes, perhaps in the form of corporate policies of formal problem solving methods
such as 5W or TRIZ, or a more abstract and empathy oriented way based on external influences
and the emotional implications of past decisions.

• Approach to lifestyle: Judging (J) vs Perceiving (P). This psychological function pertains to how a
lifestyle is led. Perceiving persons show more understanding to other lifestyles and may not object
to open ended evolution processes over a long amount of time. On the contrary, judging persons
tend to close open matters as soon as possible and are more likely to apply old solutions to
new problems.

As each of the above variables has two possible values, there is a total of sixteen possible
personality types in the MBTI model as mentioned earlier. These are listed in Table 2. Each of these
personality types is assigned a four-letter acronym which is formed by the corresponding predominant
trait of that character type with respect to each of the four basic variables.

Table 2. Myers-Briggs Type Indicator (MBTI) taxonomy (source: [61]).

Type Attributes Type Attributes

ISTJ Introversion, Sensing, Thinking, Judging INFJ Introversion, Intuition, Feeling, Judging
ISTP Introversion, Sensing, Thinking, Perceiving INFP Introversion, Intuition, Feeling, Perceiving
ESTP Extraversion, Sensing, Thinking, Perceiving ENFP Extraversion, Intuition, Feeling, Perceiving
ESTJ Extraversion, Sensing, Thinking, Judging ENFJ Extraversion, Intuition, Feeling, Judging
ISFJ Introversion, Sensing, Feeling, Judging INTJ Introversion, Intuition, Thinking, Judging
ISFP Introversion, Sensing, Feeling, Perceiving INTP Introversion, Intuition, Thinking, Perceiving
ESFP Extraversion, Sensing, Feeling, Perceiving ENTP Extraversion, Intuition, Thinking, Perceiving
ESFJ Extraversion, Sensing, Feeling, Judging ENTJ Extraversion, Intuition, Thinking, Judging

The above personality types are not equally encountered. On the contrary, a few types are
more frequently encountered than others. The most common personality type reported is ISFJ with
corresponds to 13.8% of the US population [3]. This corresponds to roughly twice the expected
frequency of 1/16 ≈ 6.25%. On the other hand, the less common MBTI type encountered is INTJ
with a frequency of 1.5% [64]. Among the reasons explaining this variance are educational system,
peer pressure, and adaptation to urban life and its associated socioeconomic conditions. As a sidenote,
it is worth mentioning that emotions are not noise in the system but rather complex motivational
mechanisms whose evolution has been driven, partly at least, by a combination of factors such as the
need for immediate action and cultural norms.

4. Cognitive Maps

Structurally, an SOM is a grid where each point is a neuron uk with adjustable synaptic weights
as well as an optional bias. These weights can be systematically trained to match selected patterns,
such as selected points of a manifold of higher dimensions. The latter is represented by a set V of n
training vectors or input points denoted as vj .Thus:

V
�
=
{

vj
}n

j=1 . (1)

Functionally, each SOM by construction connects two distinct spaces, namely the data space V
and the coordinate space C. The former space contains V, whereas the latter contains the vectors of
the neuron grid coordinates. Thus, SOMs offer dimensionality reduction by mapping points of V to C.
Additionally, C can be considered as way to cluster the original data points.

The representation of the coordinate space plays an instrumental role in SOM functionality.
The following definition describes the structure of C.
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Definition 1 (Neuron location). The location of a neuron uk is the vector containing the coordinates of the
neuron in the grid. The number of components is the dimension of the grid. Thus, for a two dimensional grid:

loc (uk)
�
=
[

xk yk.
]T
∈ C (2)

The set of data points assigned to a particular neuron uk is denoted by:

invloc (uk)
�
=
{

vj | loc
(
vj
)
= uk

}
⊆ V. (3)

There is a key difference between loc (·) and invloc (·). The former is a function as it maps one
data point to a coordinate vector, but the latter is a relationship since it maps a coordinate vector to a
set of data points. The synaptic weight vector wk ∈ V of neuron uk is denoted as follows:

weight (uk)
�
= wk ∈ V . (4)

The synaptic weight set wk for each neuron may also be supplemented with an optional bias bk
which acts as a safeguard against discontinuities in the resulting topological maps by driving inactive
neurons closer to active clusters. To this end, biases are not trained in the classic fashion of an FFNN.
Instead, they depend on the number of iterations where the neuron did not receive a synaptic weight
update. The bias of neuron uk is typically denoted as bias (uk). In contrast to the weight update rule,
the bias update does not depend on the proximity to the data points. Instead, as the role of bias is
to ensure that no unactivated neurons exist [81]. When a bias mechanism is implemented, then the
following two advantages are gained in exchange for a minimal SOM monitoring mechanism:

• All neurons are eventually activated and assigned to clusters, leaving thus no gaps to the
topological map. Thus all available neurons are utilized.

• Moreover, in the long run the number of neuron activations is roughly the same for each neuron.
For sufficiently large number of epochs each neuron is activated with equal probability.

In this article no such mechanism has been implemented.

Definition 2 (Epoch). An epoch is defined as the number of iterations necessary to present each input point
once to the SOM. Therefore, each epoch is a batch consisting of exactly n iterations.

During each epoch the order in which each data point is presented to the SOM may well vary.
Options proposed in the scientific literature include:

• Random order. In each epoch the data points are selected based on a random permutation of
their original order.

• Reverse order. In each epoch the previous order is reversed.

In this article the order of data points remains the same in each epoch.

4.1. Training

The distance function g (·, ·) measures distance in the data space V and, thus, serves as the
distance metric between pairs of synaptic weight vectors, data vectors, and between them. Its selection
is crucial to both the continuity of the final topological map as well as to the shape of the final clusters.
Formally, the distance function is defined as:

g (·, ·) : V × V → R∗ (5)

Choices for the distance metric may include:

• The �1 norm or Manhattan distance.
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• The �2 norm of Euclidean distance.

The training process is the algorithmic way for the SOM to learn the primary topological properties
of the underlying manifold. True to the long tradition of neural networks, training is indirectly reflected
in the change of the synaptic weights of the grid neurons. However, in sharp contrast to other neural
network architectures, gradient based methods are not necessary as only the distance between the data
point and the synaptic weights of neurons is needed. The SOM training is summarized in Algorithm 1.

The distance function mentioned earlier is central in the synaptic weight update and, hence, in the
SOM training process. The latter relies heavily on the Hebbian learning rule. In its original form this
rule states that only the winning neuron u∗ or best matching unit (BMU), namely the neuron whose
synaptic weight vector weight (u∗) is closest to the data point vj currently presented to the network.
Thus, u∗ is defined according to (6):

u∗
�
= argmin

{
g
(
weight (u) , vj

)}
. (6)

The neighborhood of a neuron are all the neurons in the grid which are found at a distance of one
from it. This raises two questions. First what is the pattern and second whether this pattern is allowed
to wrap around the grid limits. Options reported in the bibliography are:

• Square.
• Hexagon.
• Cross.

In this work the pattern is a cross formed by the four adjacent neurons located next to the given
neuron. Moreover, this pattern cannot wrap around.

Definition 3 (Neighborhood). For each neuron u the relationship Γ (u) returns the set of its neighboring neurons.

Γ (u)
�
=
{

u′ | u′ is adjacent to u
}

. (7)

Once the BMU u∗ is selected, its synaptic weights are updated as follows:

weight (u∗) [r]
�
= weight (u∗) [r− 1] + η [r] · (v [r]−weight (u∗) [r− 1]) . (8)

The learning rate η [r] during epoch r is a factor which plays a central role in the stability of the
training process, since as the epochs gradually progress, each activated neuron receives an increasingly
smaller reward in the form of a weight update. This ensures that initially neuron clusters are formed
and during later epochs these clusters are finer tuned but not really moved around. Common options
for the learning rate include:

• Constant rate: This is the simplest case as η [r] has a constant positive value of η0. This imples
η0 should be carefully chosen in order to avoid both a slow synaptic weight convergence and
missing the convergence. In some cases a theoretical value of η0 is given by (9), where λ† is the
maximum eigenvalue of the input autocorrelation matrix:

η0 =
2

λ† . (9)

• Cosine rate: A common option for the learning rate is the cosine decay rate as shown in (10),
which is in general considered flexible and efficient in the sense that the learning rate is initially
large enough so that convergence is quickly achieved but also it becomes slow enough so that no
overshoot will occur.

η [r]
�
= cos

(
πr
2r0

)
, 0 ≤ r ≤ r0 − 1. (10)
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In (10) the argument stays in the first quadrant, meaning that the η [r] is always positive.
However, the maximum number of epochs r0 should be known in advance. This specific learning
rate has the advantage that initially it is relatively high but gradually drops with a quadratic rate
as seen in Equation (11):

cos ϑ =
+∞

∑
k=0

(−1)k ϑ2k

(2k)!
= 1− ϑ2

2
+

ϑ4

4!
− ϑ6

6!
+ . . . ≈ 1− ϑ2

2
. (11)

To see what this means in practice, let us check when η [r] drops below 0.5:

η [r] ≤ 1
2
⇔ cos

(
πr
2r0

)
≤ cos

(π

3

)
⇒ πr

2r0
≥ π

3
⇔ r ≥ 2r0

3
. (12)

Thus, for only a third of the total available number of iterations the learning rate is above 0.5.
Alternatively, for each iteration where the learning rate is above that threshold there are two
where respectively it is below that, provided that the number of iterations is close to the limit r0.
Another way to see this, the learning rate decays with a rate given by (13):∣∣∣∣∂η [r]

∂r

∣∣∣∣ �= ∣∣∣∣ ∂

∂r
cos
(

πr
2r0

)∣∣∣∣ = π

2r0

∣∣∣∣sin
(

πr
2r0

)∣∣∣∣ . (13)

• Inverse linear: The learning rate scheme of Equation (14) is historically among the first. It has a
slow decay which translates in the general case to a slow convergence rate, implying that more
epochs are necessary in order for the SOM to achieve a truly satisfactory performance.

η [r; γ0, γ1, γ2]
�
=

γ2

γ1r + γ0
. (14)

Now the learning rate decays with a rate of:∣∣∣∣∂η [r]
∂r

∣∣∣∣ �= γ2γ1

(γ1r + γ0)
2 = O

(
1
r2

)
. (15)

In order for the learning rate to drop below 0.5 it suffices that:

η [r; γ0, γ1, γ2] ≤
1
2
⇔ r ≥ 2γ2 − γ0

γ1
. (16)

From the above equation it follows that γ1 determines convergence to a great extent.
• Inverse polynomial: Equation (17) generalizes the inverse linear learning rate to a higher

dimension. In this case there is no simple way to predict its behavior, which may well fluctuate
before the dominant term takes over. Also, the polynomial coefficients should be carefully selected
in order to avoid negative values. Moreover, although the value at each iteration can be efficiently
computed, numerical stability may be an issue especially for large values of p or when r is close
to a root. If possible the polynomial should be given in the factor form. Also, ideally polynomials
with roots of even moderate multiplicity should be avoided if r can reach their region as the lower
order derivatives of the polynomial do not vanish locally. To this end algorithmic techniques
such as Horner’s schema [82] should be employed. In this case:

η
[
r;
{

γj
}p+1

j=0 , p
] �
=

γp+1

∑
p
j=0 γjrj

=
γp+1

γp ∏
p
j=1

(
r− ξ j

) . (17)
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For this option the learning rate decay rate is more complicated compared to the other cases as:

∣∣∣∣∂η [r]
∂r

∣∣∣∣ �= γp+1

∣∣∣∑p
j=1 jγjrj−1

∣∣∣(
∑

p
j=0 γjrj

)2 = O
(

1
rp+1

)
. (18)

• Inverse logarithmic: A more adaptive choice for the learning rate and an intermediate selection
between the constant and the inverse linear options is the inverse logarithmic as described by
Equation (19). The logarithm base can vary depending on the application and here the Neperian
logarithms will be used. Although all logarithms have essentially the same order of magnitude,
local differences between iterations may well be observed. In this case:

η [r; γ0, γ1, γ2]
�
=

γ2

γ1 ln (1 + r) + γ0
. (19)

As r grows, the logarithm tends to behave approximately like a increasing piecewise constant for
increasingly large intervals of r. Thus, the learning rate adapts to the number of iterations and
does not require a maximum value r0. Equation (20) gives the rate of this learning rate:∣∣∣∣∂η [r]

∂r

∣∣∣∣ =
∣∣∣∣∣− γ2γ1

(1 + r) (γ1 ln (1 + r) + γ0)
2

∣∣∣∣∣ = O
(

1
r ln2 r

)
. (20)

In order for the learning rate to drop below 0.5 it suffices that:

η [r; γ0, γ1, γ2] ≤
1
2
⇔ r ≥ exp

(
2γ2 − γ0

γ1

)
− 1. (21)

Due to the nature of the exponential function all three parameters play their role in determining
the number of epochs.

• Exponential decay: Finally the learning rate diminishes sharper when the scheme of Equation (22)
is chosen, although that depends mainly on the parameter γ1:

η [r; γ0, γ1]
�
= γ0 exp (−γ1r) . (22)

The learning rate in this case decays according to:∣∣∣∣∂η [r]
∂r

∣∣∣∣ �= γ0γ1 exp (−γ1r) = γ1η [r] . (23)

Therefore the learning rate decays with a rate proportional to its current value, a well
known property of the exponential function, implying this decay is quickly accelerated.
Additionally, in order for the learning rate to drop below 0.5 it suffices that:

η [r; γ0, γ1] ≤
1
2
⇔ r ≥ ln (2γ0)

γ1
. (24)

For each neighboring neuron u to u∗ its synapic weights are also updated as follows:

weight (u) [r]
�
= weight (u) [r− 1] + w (g (u, u∗)) · η [r] · (v [r]−weight (u) [r− 1]) . (25)

The additional weight w (·) depends on the distance between the BMU u∗ and the neuron u.
Equation (25) implies that the synaptic weight of the neighboring neurons also updated, which is a
deviation from the original Hebbian learning rule. This update operation is crucial in formulating
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clusters in the final topological map. Note that the weight depends on the distance of the neuron u
from u∗ as measured by g (·, ·). Common weight functions for V include:

• Constant α0
• Rectangular with rectangle side α0
• Circular with radius ρ0
• Triangular with height h0 and base hb.
• Gaussian with mean μ0 and variance σ2

0

The proximity function h (·, ·) measures the distance of two neurons in the coordinate space C.
Notice that it differs from g (·, ·) since V and C are distinct spaces.

h
(
loc (u) , loc

(
u′
))

: C × C → R∗ (26)

Common proximity functions for C include:

• Rectangular with rectangle size α0.
• Circular with radius ρ0.
• Gaussian with mean μ0 and variance σ2

0

Definition 4 (Cover). The cover of a neuron u with respect to a threshold η0 is defined as that set of neurons
u′ for which the proximity function does not fall under η0.

Δ (u; η0)
�
=
{

u′ | h
(
u, u′

)
≥ η0

}
. (27)

The distinction between the neighborhood Γ (u′) and cover Δ (u′; η0) of a neuron u′ is crucial
since the former corresponds to the core of a cluster which can be formed around u′ whereas the latter
corresponds to a portion of the periphery of that cluster determined by threshold η0. In most cases it
will hold that Γ (u′) ⊂ Δ (u′; η0) since the periphery of a cluster is expected to contain more neurons
than merely the core.

Selecting the grid dimensions p0 and q0 is not a trivial task. There are no criteria in the strict sense
of the word, but some rules have been proposed in the literature. Here the following rule is used,
which stems from the information content of set V.

p0 = q0 = b0 �log n�+ b1. (28)

4.2. Error Metrics

In this subsection the various performance and error metrics employed to monitor the evolution
of an SOM and the correctness of its functionality are explained. They cover various aspects ranging
from cluster topology to neuron activation frequency distribution.

Since topology and its partial preservation plays an important role in the training process of an
SOM, it makes perfect sense to use it as a performance metric. Specifically, the topological error counts
the fraction of data points which have not been assigned to the neighborhood of a neuron.

Definition 5 (Topological error). During epoch r the topological error is defined as the fraction of data vectors
assigned neither to a cluster center nor to its neighboring neurons. Formally, as shown in Equation (29):

e [r]
�
=

∣∣{vj ∈ V | loc
(
vj
)
�∈ C [r]

}∣∣
n

. (29)

Another parameter is the data point density ε0 which acts as an indicator of the average data
points corresponding to each grid point. Thus, each cluster is expected to have been approximately
assigned a number of data points close to the product of the density by the grid points of the cluster.
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Definition 6 (Data point density). The density is defined as the number of data points divided by the nunber
of neurons. In the case of a two dimensional grid this translates to the number of neurons divided by the product
of grid dimensions.

ε0
�
=

n
p0q0

≈ n

b3 �log n�2 . (30)

Various combinations of neighborhood and weight functions can lead to various cluster shapes.
In theory, there is no restriction to their combination, although smooth cluster shapes are more desirable
in order to ensure a greater degree of continuity of the topological map. To this end, shapes like squares
and triangles are generally avoided in the SOM literary, whereas circles and Gaussian shapes are more
common. Known combinations are listed in Table 3.

Table 3. Cluster shapes (source: authors).

Neighborhood Weight Shape Neighborhood Weight Shape

Square Square Cube Triangular Triangular Pyramid
Square Triangular Pyramid Circular Semicircular Dome
Square Semicircular Dome Gaussian Gaussian 3D Gaussian

Now that all the elements have been explained, the basic SOM training is shown in Algorithm 1.

Algorithm 1 SOM training.

Require: data point selection policy, cognitive map size, and weight initialization policy
Require: termination criterion τ0 and maximum number of iterations policy τ1
Require: distance, proximity, and weight functions, cover, neighborhood, and their parameters
Ensure: the resulting cognitive map is continuous and partially preserves topology

1: initialize map T
2: repeat

3: for all data points vj ∈ V do

4: select a vj based on the selection policy
5: find the winning neuron u∗ as in (6)
6: update weight (u∗) as well as those of Δ (u∗) based on (8) and (25) respectively
7: end for

8: until τ0 is met or iterations dictated by τ1 are reached
9: return T

5. Results

5.1. Dataset and Data Point Representation

The Myers-Briggs dataset stored in Kaggle contains short texts from a individuals describing their
own characters and describing how they believe others see them, either by mentioning important life
events, direct feedback given to them by peers, or self evaluation. Moreover, for each person there is
the MBTI taxonomy as given by a domain expert which will be used as the ground truth.

To avoid problems associated with class size imbalance, the original dataset was randomly pruned
so that each class had the same number of rows with the smallest class. This resulted in a total of C0

ground truth classes, one for each MBTI personality, each with N0 = 256 rows.
The attributes extracted from these texts are stored as the entries of the wide matrix M shown in

Equation (31). Table 4 explains each feature. Observe that each value is normalized with respect to
the total number of the occurrences in the dataset. This means that for each attribute the respective
minimum and maximum values were found and the numerical value of an attribute was expressed as
a percentage in that scale. Attributes are organized in two groups of Q0 features each where the first
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attribute group is related to how each person writes and the second attribute group pertains to his/her
emotional and thinking processes.

M
�
=

[
m1,1 m1,2 m1,3 m1,4 m1,5 m1,6

m2,1 m2,2 m2,3 m2,4 m2,5 m2,6

]
∈ R2×Q0 . (31)

Table 4. Extracted attributes.

Attribute Position in (31)

Normalized number of words m1,1
Normalized number of characters m1,2
Normalized number of punctuation marks m1,3
Normalized number of question marks m1,4
Normalized number of exclamation points m1,5
Normalized number of occurences of two or more ’.’ m1,6

Normalized number of positive words m2,1
Normalized number of negative words m2,2
Normalized number of self-references m2,3
Normalized number of references to others m2,4
Normalized number of words pertaining to emotion m2,5
Normalized number of words pertaining to reason m2,6

Algorithmic reasons for representing a data point as an attribute matrix instead of a vector include
the following:

• A point or even an entire class may be better represented by more than one vectors.
Thus, these vectors may be concatenated to yield a matrix.

• Higher order relationships between vectors cannot be represented by other vectors.

5.2. Proposed Metrics

Tensors are direct higher order generalizations of matrices and vectors. From a structural
perspective a tensor is a multidimensional array indexed by an array of p integers, where p is termed
the tensor order. Formally:

Definition 7 (Tensor). A p-th order tensor T , where p ∈ Z∗, is a linear mapping coupling p non necessarily
distinct vector spaces Sk, 1 ≤ k ≤ p. If Sk = RIk , then T ∈ RI1×...×Ip .

Perhaps the most important operation in tensor algebra is tensor multiplication which defines
elementwise the multiplication along the k-th dimension G = X ×k Y between the tensors X of order
p and Y of order q, k ≤ min {p, q} as shown below, provided that both tensors have the same number
of elements Ik along the k-th dimension:

Definition 8 (Tensor multiplication). The tensor multiplication along the k-th dimension denoted by X ×k Y
of two tensors X ∈ RI1×...×Ik−1×Ik×Ik+1×...×Ip and Y ∈ RJ1×...×Jk−1×Ik×Jk+1×...Jq of respective orders p and q
with k ≤ min {p, q} is a tensor G of order p + q− 2 elementwise defined as:

G
[
i1, . . . , ik−1, ik+1, . . . , ip, j1, . . . , jk−1, jk+1, . . . jq

] �
=

Ik

∑
ik=1

X
[
i1, . . . , ip

]
Y
[
j1, . . . , jq

]
. (32)

For instance, the SVD of an arbitrary data matrix A ∈ RI1×I2 can be recast as:

A = UΣVT = Σ×1 U×2 V, Σ ∈ RIr×Ir . (33)
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As a special case a tensor-vector product X ×k v where X ∈ RI1×...×Ip and v ∈ RI
k is a tensor G of

order p− 1 elementwise defined as:

G
[
i1, . . . , ik−1, ik+1, . . . , ip

] �
=

Ik

∑
ik=1

X
[
i1, . . . , ip

]
v [ik] . (34)

The Frobenius norm of a tensor T is defined as:

‖T ‖F
�
=

⎛⎝ I1

∑
i1=1

. . .
Ip

∑
ip=1

T
[
i1, . . . , ip

]2⎞⎠ 1
2

. (35)

The proposed distance metric for two data points in V with the structure shown in (31) is:

g (M1, M2)
�
= ‖N ×1 (M1 −M2)×2 (M1 −M2)×3 (M1 −M2)‖F . (36)

In Equation (36) the weight tensor N contains the correlation of each attribute as extracted from
the dataset.

For the fuzzy SOM configurations the above distance is computed between each data point and
each cluster center. Then the data point is considered to belong to the two closest clusters. A schematic
of the proposed tensor metric is depicted at Figure 1.

Text

Attribute
matrix i

Attribute
matrix j

Weight tensor

Attribute
Difference

+

-

Tensor
multiplication

Frobenius
norm

Figure 1. Schematic of the proposed metric (source: authors).

5.3. Experimental Setup

The available options for the various SOM parameters are shown in Table 5.
Given the parameters of Table 5 as a starting point, a number of SOMs were implemented.

Their respective configurations are shown in Table 6. In order to reduce complexity the proximity
function h (·, ·) has been chosen to be also the weight function w (·). Each SOM configuration is a tuple
with the following structure:

(p0, q0, g (·, ·) , h (·, ·) , w (·) , η [·]) . (37)

In Figure 2 the architecture of the ML pipeline which has been used in this article is shown.
Its linear structure as well as the relatively low number of adjustable parameters leads to a low
complexity.

The SOM clustering performance will be evaluated at three distinct levels. From the most general
to the most specific these are:

• Clustering quality: As SOMs perform clustering general metrics can be used, especially since
the dataset contains ground truth classes.

• Topological map: It is possible to construct figure of merits based on the SOM operating
principles. Although they are by definition SOM-specific, they nonetheless provide insight
on how the self-organization of the neurons takes place while adapting to the dataset topology.
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• MBTI permuations: Finally, the dataset itself provides certain insight. Although no specific
formulas can be derived, a qualitative analysis based on findings from the scientific literature.

Table 5. Options for the self organizing map (SOM) parameters (source: authors).

Parameter Options

Synaptic weight initialization Random
Bias mechanism Not implemented
Neighborhood Γ (u) shape Cross

Distance function g (·, ·) Tensor (T), Fuzzy tensor (F), �1 norm (L1), �2 norm (L2)
Proximity function h (·, ·) Gaussian (G), Circular (C), Rectangular (R)
Cover threshold η0 - Equation (27) 0.5
Weight function in C Gaussian, Circular, Rectangular (as above)
Gaussian μ0 = 0, σ2

0 = 8
Circular ρ0 = 4
Rectangular a0 = 4

Learning rate parameter Cosine (S), Inverse linear (L), Inverse quadratic (Q), Exponential (E)
Cosine r0 = 40
Inverse linear γ2 = 1, γ1 = 0.025, γ0 = 1
Exponential γ0 = 1, γ1 = 0.125

Grid size b0 and b1 - Equation (30) b0 ∈ {2, . . . , 8}, b1 = 0
Number of classes C0 16
Number of rows per class N0 256
Number of attributes 2Q0
Number of runs R0 100

Table 6. Indices of SOM configurations (source: authors).

# Configuration # Configuration # Configuration # Configuration

1 (p0, p0, L1, C, C, S) 10 (p0, p0, L2, C, C, S) 19 (p0, p0, T, C, C, S) 28 (p0, p0, F, C, C, S)
2 (p0, p0, L1, R, R, S) 11 (p0, p0, L2, R, R, S) 20 (p0, p0, T, R, R, S) 29 (p0, p0, F, R, R, S)
3 (p0, p0, L1, G, G, S) 12 (p0, p0, L2, G, G, S) 21 (p0, p0, T, G, G, S) 30 (p0, p0, F, G, G, S)
4 (p0, p0, L1, C, C, L) 13 (p0, p0, L2, C, C, L) 22 (p0, p0, T, C, C, L) 31 (p0, p0, F, C, C, L)
5 (p0, p0, L1, R, R, L) 14 (p0, p0, L2, R, R, L) 23 (p0, p0, T, R, R, L) 32 (p0, p0, F, R, R, L)
6 (p0, p0, L1, G, G, L) 15 (p0, p0, L2, G, G, L) 24 (p0, p0, T, G, G, L) 33 (p0, p0, F, G, G, L)
7 (p0, p0, L1, C, C, E) 16 (p0, p0, L2, C, C, E) 25 (p0, p0, T, C, C, E) 34 (p0, p0, F, C, C, E)
8 (p0, p0, L1, R, R, E) 17 (p0, p0, L2, R, R, E) 26 (p0, p0, T, R, R, E) 35 (p0, p0, F, R, R, E)
9 (p0, p0, L1, G, G, E) 18 (p0, p0, L2, G, G, E) 27 (p0, p0, T, G, G, E) 36 (p0, p0, F, G, G, E)

NLP SOMDataset Vectors

Figure 2. Architecture of the proposed pipeline (source: authors).

5.4. Topological Error

Because of the particular nature of the SOM, certain specialized performance metrics have been
developed for it. Perhaps the most important figure of merit of this category is the topological error.
The latter is defined in Equation (29). Figure 3 shows the average topological error as a percentage of
the total number of data points after R0 runs for each distance metric using the cosine rate. The reasons
for the selection of this particular rate will become apparent later in this subsection. The topological
error has been parameterized with respect to the SOM grid size as indexed by the parameter b0.

116



Mathematics 2020, 8, 1898

2 3 4 5 6 7 8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

b0

To
po

lo
gi

ca
l e

rro
r (

%
 o

f d
at

a 
po

in
ts

)

Topological error vs grid size

l-1 norm
l-2 norm
tensor
fuzzy

Figure 3. Topological error vs b0 (source: authors).

From this figure it can be inferred that the fuzzy version of the proposed tensor distance metric
achieves the lowest topological error with the original tensor distance metric being a close second for
most of the values of b0. Although �2 clearly outperforms �1, the gap from the tensor based metrics
is considerable. Representing the topologically incorrectly placed data points as a percentage of the
total number of those in the dataset reveals how well the SOM can perform dimensionality reduction.
With respect to the parameter b0 there appears to be a window of b0 ∈ {5, 6, 7} where the topological
error is minimized. Also, it appears that for this particular dataset said window is independent from
the distance metric but this needs to be corroborated from further experiments.

An important metric is the distrubution of epochs before a satisfactory topological error is
reached. In particular, for each distance metric the deterministic mean I0 and variance σ2 are of interest.
Assuming for each such metric there were R0 runs and each run required rk epochs in total, then the
sample mean of the number of epochs is given by Equation (38):

I0
�
=

1
R0

R0

∑
k=1

rk. (38)

Notice that the sample mean of Equation (38) is in fact an estimator of the true stochastic mean of
the number of epochs. By computing the average of R0 samples, the estimation variance is divided
by
√

R0. This is typically enough to ensure convergence based on the weak law of large numbers.
Along a similar line of reasoning, the deterministic variance is similarly defined as in Equation (39).

Readers familiar with estimation theory can see this is the squared natural estimator of order two.

σ2
0
�
=

1
R0 − 1

R0

∑
k=1

(rk − I0)
2 . (39)

Table 7 contains I0 and σ2
0 for each learning parameter rate and each distance metric.

The remaining SOM parameters remained the same throughout these experiments in order to ensure
fairness. Specifically b0 was 5 and the proximity function was the Gaussian kernel.
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Table 7. Mean and variance of the number of epochs (source: authors).

Cosine Inv. linear Exponential

�1 norm I0 = 26.4417/σ2
0 = 12.3873 I0 = 27.500/σ2

0 = 16.8865 I0 = 33.1125/σ2
0 = 14.8873

�2 norm I0 = 22.3334/σ2
0 = 13.0228 I0 = 24.667/σ2

0 = 14.3098 I0 = 31.8333/σ2
0 = 15.5642

Tensor I0 = 18.8731/σ2
0 = 11.6686 I0 = 20.2504/σ2

0 = 12.7633 I0 = 26.0021/σ2
0 = 14.6574

Fuzzy I0 = 14.4457/σ2
0 = 12.1282 I0 = 18.3333/σ2

0 = 12.6645 I0 = 25.3333/σ2
0 = 14.0995

From the entries of Table 7 the following can be deduced:

• In each case the variance is relatively small, implying that there is a strong concentration of the
number of epochs around the respective mean value. In other words, I0 is a reliable estimator of
the true number of epochs of the respective combination of distance metric and learning rate.

• For the same learning rate the fuzzy version of the tensor distance metric consistently requires a
lower number of epochs. It is followed closely by the tensor distance metric, whereas the �2 and
�1 norms are way behind with the former being somewhat better than the latter.

• Conversely, for the same metric the cosine decay rate systematically outperforms the other
two options. The inverse linear decay rate may be a viable alternative, although there is a
significant gap in the number of epochs. The exponential decay rates results in very slow
convergence requiring almost twice the number of epochs compared to the cosine decay rate.

Notice that a lower number of epochs not only translates to quicker total response time, which is
of interest when scalability becomes an issue, but also denotes that the distance metric has captured
the essence of the underlying domain. This means that the SOM through the distance metric can go
beyond the limitation of treating each data point merely as a collection of attributes.

5.5. Clustering Quality

Since SOMs essentially perform clustering, it also makes sense to employ general clustering error
metrics in addition to the specialized SOM ones. Since the dataset contains ground truth classes,
the cross entropy metric H̄ can be used in order to evaluate overall performance by counting the
how many data points have been assigned to the wrong cluster. For the fuzzy version if one of
the two clusters a data point is assigned to is the correct one, it is considered as correctly classified.
In Figure 4 the normalized average cross entropy over R0 runs is shown.
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Figure 4. Normalized cross entropy vs SOM index (source: authors).
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In case the ground truth classes were not available, as is the case in many clustering scenarios,
the average distance di,j between each possible distinct pair of clusters Ci and Cj is first computed. It is
defined as the distance over all points assigned to Ci from each point assigned to Cj as shown in (40):

di,j
�
=

1
|Ci|
∣∣Cj
∣∣ ∑

v∈Ci

∑
y∈Cj

g (x, y) . (40)

Then for the SOM configurations of Table 6 the average distance between clusters is defined as
the sum of the distances over all distinct cluster pairs averaged over the number of clusters as shown
in (41):

d̄
�
=

2
C0 (C0 − 1)

C0

∑
i=1

i

∑
j=2

di,j. (41)

In Figure 5 the normalized d̄ averaged over R0 runs is shown. Observe that SOM configurations
which use the proposed tensor metric yield a higher cluster distance, meaning that clusters can be
better separated. This can be attributed to the fact that bounds between clusters can have more flexible
shapes in comparison to the �1 and �2 norms.
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Figure 5. Normalized average cluster distance vs SOM index (source: authors).

5.6. MBTI Permutations

Another way of evaluating the clustering performance is by examining the natural interpretation
of the resulting cognitive map based on properties of the dataset. Although this method is the least
general since it is confined to the limits of a single dataset, it may lead to insights nonetheless,
especially when followed by high level inspection from domain experts. The approach presented
here stems from the observation that eventually each topolgical map is a permutation of Table 2.
Since topology plays an important role in the continuity of the map and in the overall clustering
quality, the form of the final tableau will be used. Specifically, the best map will be considered the
one whose distribution of data points is the closest to that of the original dataset. To this end the
Kullback-Leibler divergence will be used as shown in Equation (42):

〈p1 || p2〉
�
= ∑

k
p1 [k] log

(
p1 [k]
p2 [k]

)
= ∑

k
p1 [k] log p1 [k]−∑

k
p1 [k] log p2 [k] . (42)
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Notice that in Equation (42) the distributions p1 and p2 are not interchangeable. Instead, p1 acts a
template, whereas p2 as a variant or an approximation thereof. In other words, the Kullback-Leibler
divergence quantifies the difference of substituting p1 with p2. The leftmost part of Equation (42) is
the difference of the cross-entropy between p1 and p2 from the entropy of p1. Also, the index k ranges
over the union of the events of both probabilities.

As stated earlier, the original Kaggle dataset was randomly sampled such that classes are balanced.
Therefore, a proper topological map should have the same number of data points across all clusters.
One way to measure that is to compute the Kullback-Leibler divergence of the distribution of data
points assigned to clusters from the uniform distribution. Tables 8 and 9 show the topological maps
achieving the minimum and the maximum divergence.

Table 8. Clustering attaining the minimum divergence (source: authors).

ISTJ ISFJ INFJ INTJ
ISTP ISFP INFP INTP
ESTP ESFP ENFP ENTP
ESTJ ESFJ ENFJ ENTJ

It comes as no surprise that the topological map achieving the least divergence is in fact the
original Briggs-Mayers map, namely Table 2. Notice that in this map each personality differs only by
one trait from its neighboring ones. This is reminiscent of the Gray numbering scheme. Perhaps this
structure leads to robustness and to higher overall clustering quality. On the contrary, the map with
the largest divergence looks more like a random permutation of Table 2. Moreover, the number of
traits a type differs from its neighboring ones varies.

Table 9. Clustering attaining the maximum divergence (source: authors).

ENFJ ISFP ENFJ ESFP
ISTJ INTP ESTJ ISFJ
INTJ INFJ ENTP ISTP
ESFJ ENTJ ESTP ISFP

For each SOM configuration and for each of the R0 runs, each with a different subset of the
original dataset, the resulting cognitive map the Kullback-Leibler divergence as described above was
recorded. Then for each SOM configuration the average was computed and then each such average was
normalized by dividing them with the minimum of them. This provides an insight on the clustering
robustness of each map. In Figure 6 the normalized divergences averaged over R0 runs are shown.

From Figure 6 it follows that the tensor-based SOM configurations have an almost uniform low
Kullback-Leibler divergence from the uniform distribution. Therefore, they achieve better clustering
of at least most of the R0 available subsets.
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Figure 6. Normalized divergence vs SOM index (source: authors).

5.7. Complexity

The complexity of the proposed method in comparison to that of the norm based methods will
be examined here. Figure 7 shows the normalized number of floating point operations for each of
the SOM configurations of Table 6 over R0 iterations. Every operation count has been divided by the
minimum one in order to reveal the difference the order of magnitude.
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Figure 7. Normalized number of floating point operations vs SOM index (source: authors).

Figure 8 shows the average total execution time for each SOM configuration of Table 6 over R0

iterations. A similar normalization with that described earlier took place here. Specifically, for each
SOM configuration the total execution time averaged over all R0 subsets of the original dataset was
computed. Then, each such average was divided by the minimum one, yielding thus a measure of
their relative performance.
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Figure 8. Normalized total execution time vs SOM index (source: authors).

From Figures 7 and 8 it can be deduced that the added cost in floating point operations necessary
for the tensor metrics is partially absorbed by the lower number of iterations. Thus, despite their
increased nominal complexity, tensor based metrics remain competitive at least in terms of the total
execution time.

5.8. Discussion

Based on the results presented earlier, the following can be said about the proposed methodology:

• The cosine decay rate outperforms the inverse linear and the exponential ones. This can be
explained by the adaptive nature of the cosine as well as by the fact that the exponential function
decays too fast and before convergence is truly achieved.

• Partitioning clusters in Gaussian regions results in lower error in every test case. This is explained
by the less sharp shape of these regions compared to cubes or domes. Moreover, with the tensor
distance metrics, which can in the general case approximate more smooth shapes, the cluster
boundaries can better adapt to the topological properties of the dataset.

• The fuzzy version of the tensor distance metric results in better performance, even a slight one,
in all cases. The reason for this may be the additional flexibility since personalities sharing traits
from two categories can belong to both up to an extent. On the contrary, all the other distance
metrics assign a particular personality to a single cluster.

• The complexity of the tensor metrics in terms of the number of floating point operations involved
is clearly more than that of either the �1 and the �2 norm. However, because of the lower number
of iterations that difference is not evident in the total execution time.

The most evident limitations of the proposed methodology, based on the preceding analysis,
are the following:

• The interpretability of the resulting cognitive map is limited by the texts of the original dataset,
which in turn are answers to specific questions. Adding more cognitive dimensions to these texts
would improve personality clustering quality.

• Although the MBTI map is small, for each cognitive map there is a large number of equivalent
permutations. Finding them is a critical step before any subsequent analysis takes place.

• The curent version of the proposed methodology does not utilize neuron bias.
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Several approaches have been reported in the cognitive science domain regarding the MBTI
taxonomy. It should be noted that the results presented here regarding the distribution of the MBTI
permutations are similar to those reported in Reference [83]. Moreover, the computational results agree
with the principles for cognitive tools set forth in Reference [75].

Regarding complexity, the number of iterations required to construct the topological maps for
similar map sizes are close to those reported in Reference [33]. Also the iterations obtained here are in
the same order of magnitude with those of Reference [32], where fuzzy C-means is used for image
partitioning, which is a comparable method the SOMs.

5.9. Recommendations

Once the algorithmic tools are available for clustering personalities based on text derived attributes
according to the MBTI taxonomy, the following points should be taken into consideration:

• Text, despite being an invaluable source of information about human traits, is not the only one.
It is highly advisable that a cross check with other methods utilizing other modalities should take
place.

• In case where the personalities of two or more group members are evaluated, it is advisable that
their compatibility is checked against the group tasks in order to discover potential conflict points
or communication points as early as possible.

6. Conclusions and Future Work

This article focuses on a data mining pipeline for a cognitive application. At its starting stage
natural language processing extracts keywords from plain text taken from the Kaggle Myers-Briggs
open dataset. Each personality is represented as a wide attribute matrix. At the heart of the pipeline
lies a self organizing map which is progressively trained with various combinations of learning rates,
neighborhood functions, weight functions, and distance metrics to construct a cognitive map for
the sixteen different personality types possible under the Myers-Briggs Type Indicator. The latter is
a widespread taxonomy of human personalities based on four primary factors which is frequently
used to describe team dynamics and exploit the full potential of interplay among diverse individuals.
The novelty of this work comes from separating the linguistic attributes to categories depending on
their semantics and using a tensor distance metric to exploit their interplay. Particular emphasis is
placed on two aspects of the cognitive map. First, a multilinear distance metric is compared to the �1

and the �2 norms, both common options in similar scenarios. Second, a fuzzy version of this metric has
been developed, allowing pairwise cluster overlap. The outcome of the experiments suggest that doing
so leads to lower error metrics. The latter can be attributed to the added flexibility for personalities
sharing traits from up to two archetypal personality types.

The work presented here can be extended in a number of ways. Regarding the algorithmic part,
more specialized tensor distance metrics can be developed for various fields. For instance, in a social
network analysis application the distance between two accounts can include connectivity patterns
or semantic information extracted from the hashtags of the respective tweets. Moreover, clustering
robustness should be investigated. The question of unbalanced classes should be addressed, either for
the original dataset or in a more general context.
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Abstract: The COVID-19 pandemic has severely impacted our daily lives. For tackling the COVID-19
pandemic, various intervention strategies have been adopted by country (or city) governments around
the world. However, whether an intervention strategy will be successful, acceptable, and cost-effective
or not is still questionable. To address this issue, a varying partial consensus fuzzy collaborative
intelligence approach is proposed in this study to assess an intervention strategy. In the varying
partial consensus fuzzy collaborative intelligence approach, multiple decision makers express their
judgments on the relative priorities of factors critical to an intervention strategy. If decision makers
lack an overall consensus, the layered partial consensus approach is applied to aggregate their
judgments for each critical factor. The number of decision makers that reach a partial consensus
varies from a critical factor to another. Subsequently, the generalized fuzzy weighted assessment
approach is proposed to evaluate the overall performance of an intervention strategy for tackling
the COVID-19 pandemic. The proposed methodology has been applied to compare 15 existing
intervention strategies for tackling the COVID-19 pandemic.

Keywords: intervention strategy; COVID-19 pandemic; layered partial consensus; fuzzy analytic
hierarchy process

1. Introduction

The outbreak of COV-19 was identified in Wuhan, China [1]. Since then, the COVID-19
pandemic has severely affected all aspects of our daily lives [2]. Owing to the high infectivity
of COVID-19, governments everywhere have adopted various intervention strategies to curb the
spread of COVID-19 [3]. For example, many countries closed their borders to avoid the transnational
spread of COVID-19, which was even more meaningful as evidence has shown that COVID-19 mutated
differently in different regions [4]. Mass gatherings, especially those held indoors, were discouraged to
prevent the spread of COVID through contact [5]. For the same reason, public spaces in which people
had close contact, such as movie theaters, churches, and pubs, were also locked down [6]. Samanlioglu
and Kaya [7] listed the 15 most common intervention strategies for tackling the COVID-19 pandemic.
However, asking people to wear masks was not included, although it had been considered as the most
effective intervention strategy [8]. To sum up, the following phenomena have been observed so far:

• Intervention strategies adopted by different governments were not the same [9].
• The effects of various intervention strategies were unequal [10].
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• Not all these intervention strategies were acceptable or welcome to people [11].

Therefore, assessing intervention strategies for tackling the COVID-19 pandemic becomes a
critical task. Based on the assessment results, the top-performing intervention strategies can be
recommended to a country (or city) government. So far, very few attempts have been made to fulfill
this task. Samanlioglu and Kaya [7] proposed a hesitant fuzzy analytic hierarchy process (hesitant
FAHP) approach, in which hesitant fuzzy numbers [12] were adopted to better consider the subjectivity
and uncertainty involved in the judgments of a decision maker.

To sum up, the existing methods for similar purposes are subject to the following problems:

• Fuzzy arithmetic averages are applied to aggregate decision makers’ judgements, which may lead
to unreasonable results [13,14].

• Decision makers may not reach a consensus about the priorities of factors critical to an intervention
strategy [15–17].

• The priority of a critical factor is usually modelled with a crisp value, rather than a fuzzy value.
As a result, some meaningful information, such as the possibly highest and lowest priorities of a
critical factor, is lost [18–21].

To solve these problems, a varying partial consensus fuzzy collaborative intelligence approach
is proposed in this study to assess an intervention strategy for tackling the COVID-19 pandemic.
Fuzzy collaborative intelligence methods have rarely been applied to fuzzy group decision-making
problems [22–24], because the involved set operations are not easy to calculate [20,25,26].
Fuzzy numerical methods—e.g., fuzzy weighted average (FWA) and its variants [23,24]—are prevalent,
but may lead to unreasonable results [20].

The varying partial consensus fuzzy collaborative intelligence approach is a fuzzy group
decision-making method in which multiple decision makers assess an intervention strategy for
tackling the COVID-19 pandemic collaboratively. In the proposed methodology, the layered partial
consensus (LPC) approach proposed by Chen and Wu [27] is applied to aggregate most decision
makers’ partial consensus, if the overall consensus among all decision makers does not exist. However,
Chen and Wu [27] applied the LPC approach to forecast the unit cost of a product, which was a
supervised learning problem [25,27,28]. On the contrary, in this study the LPC approach is applied
to assess an intervention strategy for tackling the COVID-19 pandemic, which is an unsupervised
assessment problem [29,30].

Compared to existing methods in this field, the varying partial consensus fuzzy collaborative
intelligence approach has the following novelties:

• The priority of a critical factor is modelled with a fuzzy value.
• When the overall consensus among all decision makers is lacking, the partial consensus among

most decision makers [15–17,27] is sought instead.
• The number of decision makers that reach a partial consensus varies when the LPC

approach is applied to different critical factors, which is called the “varying” property of the
proposed methodology.

• A new assessment method, the generalized fuzzy weighted assessment (GFWA) approach,
is proposed to assess an intervention strategy for tackling the COVID-19 pandemic.

In the literature, there have been various methods to aggregate decision makers’ fuzzy judgments.
The differences between the proposed methodology and some existing methods are summarized in
Table 1.

This paper is organized in the following manner. In the next section, the varying partial consensus
fuzzy collaborative intelligence approach is introduced. In Section 3, the results of applying the varying
partial consensus fuzzy collaborative intelligence approach to assess some intervention strategies for
tackling the COVID-19 pandemic are presented. Then, there is a discussion of the experimental results.
The conclusions of this study are given in the last section.
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Table 1. Differences between the proposed methodology and some existing methods.

Method Application Consensus Type Aggregation Method
Number of Decision Makers

Reaching Consensus
Assessment Method

Samanlioglu and
Kaya [7]

Intervention strategy
assessment Overall consensus Fuzzy arithmetic mean All Fuzzy arithmetic mean

Lin et al. [22] Smart technology
application assessment

Guaranteed overall
consensus Fuzzy Intersection All

Fuzzy technique for order
preference by similarity to

ideal solution

Chen and Wu [27] Cost forecasting Layered consensus Partial consensus fuzzy
intersection

Maximum number of decision
makers with sufficient consensus Back propagation network

Chen [31] Price forecasting Partial consensus Partial consensus fuzzy
intersection

Maximum number of decision
makers with consensus Back propagation network

Chen and Lin [32] Yield forecasting Overall consensus Fuzzy intersection All Back propagation network

Gao et al. [33] Supplier assessment Overall consensus Fuzzy weighted average All Fuzzy weighted average

The proposed
methodology

Intervention strategy
assessment

Varying layered
partial consensus

Partial consensus fuzzy
intersection

Maximum number of decision
makers with sufficient consensus

for each critical factor

Generalized fuzzy weighted
assessment

2. Literature Review

There are two major trends in the development of fuzzy multiple-criteria decision-making
methods. One is to fuzzify an existing crisp multiple-criteria decision-making method by modelling
the evaluation result of an alternative, the weight (or relative priority) of a criterion, and/or the weight
(or authority level) of each decision maker with fuzzy numbers. For example, Chen [34] applied FWA to
aggregate the performances of a hotel along various dimensions, and then defuzzified the aggregation
result using a back propagation network. Similarly, fuzzy multi-attribute utility theory (MAUT)
methods were applied to select intervention strategies to restore an aquatic ecosystem contaminated
by radionuclides [35], assess intelligent buildings [36], and recommend suitable clinics to patients [37].
Sevkli [38] proposed a fuzzy elimination and choice expressing the reality (ELECTRE) method for
supplier selection. For a similar purpose, Sachdeva et al. [39] applied the fuzzy preference ranking
organization method for enrichment evaluations (PROMETHEE) technique instead. Fuzzy measuring
attractiveness by a categorical-based evaluation technique (MACBETH) methods are another type
of fuzzy multiple-criteria decision-making method that has been widely applied [40,41]. The other
is to adopt new types of fuzzy numbers. For example, Faizi et al. [42] fuzzified the traditional
characteristic objects method (COMET), in which the evaluation results of alternatives were given in
hesitant fuzzy sets (HFSs). A similar methodology was proposed by Faizi et al. [43] who adopted
normalized interval-valued triangular fuzzy numbers instead. Compared to the previous method [42],
their methodology considered the difficulty in specifying the membership function, and therefore was
more flexible and practicable.

When multiple decision makers are involved, the decision-making problem becomes a group-based
one. However, most past studies assumed that there was an overall consensus among all decision
makers, and just averaged decision makers’ judgements before applying a fuzzy multiple-criteria
decision-making method, which was problematic because sometimes it was difficult for decision makers
to reach an overall consensus [15–17,27,31]. In addition, the averaging result may be meaningless to
decision makers [44]. To address this issue, the partial consensus among some decision makers can be
sought instead [15–17]. This study also belongs to this type of research.

3. The Proposed Methodology

3.1. Implementation Procedure

The varying partial consensus fuzzy collaborative intelligence approach is proposed in this study
for assessing an intervention strategy for tackling the COVID-19 pandemic. The implementation
procedure of the varying partial consensus fuzzy collaborative intelligence approach comprises the
following steps:
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Step 1. Each decision maker must apply the fuzzy geometric mean (FGM) method [45–47] to
evaluate the relative priorities of factors critical to an intervention strategy for tackling the
COVID-19 pandemic.

Step 2. Consider the first critical factor.
Step 3. If all the decision makers reached an overall consensus, go to Step 4; otherwise, go to Step 6.
Step 4. Apply fuzzy intersection (FI) [32] to aggregate the relative priorities evaluated by the

decision makers.
Step 5. Go to Step 7.
Step 6. Apply the LPC approach to aggregate the relative priorities.
Step 7. If all critical factors have been considered, go to Step 10; otherwise, go to Step 8.
Step 8. Consider the next critical factor.
Step 9. Go to Step 3.
Step 10. Apply the GFWA approach to assess the overall performance of an intervention strategy for

tackling the COVID-19 pandemic.
Step 11. Apply the center-of-gravity (COG) method [48,49] to defuzzify the assessment result, so as to

generate an absolute ranking of intervention strategies for tackling the COVID-19 pandemic.

A flowchart is provided in Figure 1 to illustrate the implementation procedure of the varying
partial consensus fuzzy collaborative intelligence approach.

Figure 1. Implementation procedure of the varying partial consensus fuzzy collaborative
intelligence approach.

Inputs to the proposed methodology include multiple decision makers’ judgments, possible
intervention strategies for tackling the COVID-19 pandemic, and critical factors in the intervention
strategies. Outputs from the proposed methodology include the relative priorities of critical factors
and the ranking result of intervention strategies. The problem structure is illustrated in Figure 2.
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 Q

n

Figure 2. Problem structure.

3.2. FGM Method for Evaluating the Relative Priorities of Critical Factors

In the proposed methodology, first each decision maker evaluates and compares the relative
priorities of critical factors in pairs using the FGM method. The comparison results are expressed in
linguistic terms such as “as equal as,” “weakly more important than,” “strongly more important than,”
“very strongly more important than,” “absolutely more important than,” etc. A prevalent way is to
associate these linguistic terms with triangular fuzzy numbers, as summarized Table 2 [46]. Usually,
these triangular fuzzy numbers (TFNs) are within [1,9]. By widening these TFNs, the possibility for
decision makers to reach a consensus increases [20]. In addition, restricting these TFNs to be within a
narrower range, such as [1,3], elevates the consistency of the pairwise comparison results [7].

Table 2. Linguistic terms for expressing the relative priorities of critical factors.

Symbol Linguistic Term TFN

L1 As equal as (1, 1, 3)

L2 As equal as or weakly more important than (1, 2, 4)

L3 Weakly more important than (1, 3, 5)

L4 Weakly or strongly more important than (2, 4, 6)

L5 Strongly more important than (3, 5, 7)

L6 Strongly or very strongly more important than (4, 6, 8)

L7 Very strongly more important than (5, 7, 9)

L8 Very or absolutely strongly more important than (6, 8, 9)

L9 Absolutely more important than (7, 9, 9)

Based on the pairwise comparison results, the fuzzy judgment matrix Ãn×n = [̃aij] is constructed,
in which:

ã ji = 1/ãi j. (1)

The fuzzy eigenvalue and eigenvector of Ã, indicated with λ̃ and x̃, respectively, satisfy:

det(Ã(−)λ̃I) = 0, (2)

and
(Ã(−)λ̃I)(×)̃x = 0, (3)

where (−) and (×) denote fuzzy subtraction and multiplication, respectively.
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The FGM method [25] is applied to evaluate the relative priority of each critical factor (w̃i), as:

w̃i �

n

√
n∏

j=1
ãi j

n∑
k=1

n

√
n∏

j=1
ãk j

. (4)

The fuzzy maximal eigenvalue λ̃max can be estimated as:

λ̃max =
1
n

n∑
i=1

n∑
j=1

(̃aij(×)w̃j)

w̃i
. (5)

The consistency of the pairwise comparison results can be evaluated in terms of the critical
ratio (CR):

C̃R =

λ̃max−n
n−1

RI
, (6)

where RI is the random consistency index [50]. C̃R should be less than 0.1 for a small FAHP problem,
or less than 0.3 if the problem size is large or the problem is highly uncertain [51,52].

3.3. LPC Approach for Aggregating the Relative Priorities

When there is no overall consensus among all the decision makers, the partial consensus among
some of them can be sought instead [32,53].

Definition 1. The H/M partial consensus fuzzy intersection (PCFI) of the relative priorities derived by M decision

makers for the i-th critical factor, indicated with w̃i(1) ~ w̃i(M), is denoted by P̃CFI
H/M

(w̃i(1), . . . , w̃i(M)),
such that:

μ
P̃CFI

H/M(x) = max
all g

(min(μw̃1(g(1))(x), . . . , μw̃1(g(H))(x))), (7)

where g() ∈ Z+; 1 ≤ g() ≤ M; g(p) ∩ g(q) = ∅ ∀ p � q; H ≥ 2.

An example is given in Figure 3, showing the relative priorities of a critical factor evaluated by five
decision makers. If fuzzy intersection is applied to find the common part of the evaluations, the result
will be an empty set. As a result, these decision makers lack an overall consensus, because no value is
acceptable to all of them.

w i

wi

Figure 3. An example.
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Nevertheless, (partial) consensus among any four decision makers exists. For illustrating this,
the 4/5 PCFI result of the evaluations is derived, as shown in Figure 4. For example, 0.47 is acceptable
to decision makers #2, #3, #4, and #5, and has a positive membership. However, the 4/5 PCFI result
covers very few possible values.

w i

wi

Figure 4. The 4/5 partial consensus fuzzy intersection (PCFI) result.

It is easier to reach a partial consensus among fewer decision makers. For this reason, the 3/5
PCFI result of the fuzzy priorities is derived, as shown in Figure 5. More values are acceptable to three
of the five decision makers.

w i

wi

Figure 5. The 3/5 PCFI result.

If the consensus between only two decision makers is sought, there will be much more possible
values that are acceptable, as illustrated in Figure 6.

The problem is how to determine the number of decision makers that reach a consensus. According
to Chen and Wu [27]:

(1) It is better if more decision makers reach a consensus [54,55].
(2) The PCFI result should cover a sufficient number of possible values: for this purpose, the range

of the PCFI result should be wider than a threshold ξ [56].

In the previous example, the ranges of various PCFI results are summarized in Table 3. If ξ is set
to 0.3, only the 2/5 PCFI result meets the second requirement, and a partial consensus between any two
decision makers will be sought. In contrast, setting ξ to 0.15 makes the 3/5 PCFI result also feasible.
In this way, every possible value is acceptable to three decision makers.
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w i

wi

Figure 6. The 2/5 PCFI result.

Table 3. Ranges of various PCFI results.

PCFI Range

4/5 0.04
3/5 0.18
2/5 0.53

The number of decision makers that reach a partial consensus may vary when the layered partial
consensus approach is applied to different critical factors:

Hi � Hj ∃i � j, (8)

where Hi indicates the number of decision makers that reach a partial consensus, regarding the relative
priority of critical factor i.

3.4. GFWA Approach for Assessing an Intervention Strategy

Subsequently, GFWA is proposed to assess an intervention strategy amid the COVID-19 pandemic,
for which the varying PCFI result provides the relative weights/priorities of critical factors:

S̃q =
v

√√ n∑
i=1

(P̃CFI({w̃i(m)})(×)p̃qi(−)R̃i)
v
, (9)

where S̃q is the overall performance of the q-th intervention strategy amid the COVID-19 pandemic, p̃qi

is the performance of the q-th intervention strategy in optimizing the i-th critical factor, {R̃i} is the basis
reference point, (−) denotes fuzzy subtraction, and v ∈ Z+.

Theorem 1. FWA is a special case of GFWA.

Proof of Theorem 1. The overall performance of the q-th intervention strategy amid the COVID-19
pandemic can be evaluated using FWA as:

S̃q =

n∑
i=1

P̃CFI({w̃i(m)})(×)p̃qi

n∑
i=1

P̃CFI({w̃i(m)})

=

1

√
n∑

i=1
(P̃CFI({w̃i(m)})(×)p̃qi(−)0)

1

n∑
i=1

P̃CFI({w̃i(m)})

. (10)
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The divisor can be neglected, since it is constant for all intervention strategies amid the COVID-19
pandemic. As a result,

S̃q =
1

√√ n∑
i=1

(P̃CFI({w̃i(m)})(×)p̃qi(−)0)
1
. (11)

which is a special case of GFWA when v = 1. �

Theorem 2. Fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) is a special case
of GFWA.

Proof of Theorem 2. Using FTOPSIS, the distance between the q-th intervention strategy amid the
COVID-19 pandemic and two reference points are measured as:

d̃−q =

√√ n∑
i=1

(P̃CFI({w̃i(m)})(×)p̃qi(−)R̃−i )
2
, (12)

d̃+q =

√√ n∑
i=1

(P̃CFI({w̃i(m)})(×)p̃qi(−)R̃+
i )

2
. (13)

Both are the special cases of GFWA when v = 2. �

However, P̃CFI({w̃i(m)} is a polygonal fuzzy number, while p̃qi is a TFN. Their combination is not

easy to calculate. To tackle such complexity, P̃CFI({w̃i(m)} is approximated with a TFN as:

P̃CFI({w̃i(m)} � (min(P̃CFI({w̃i(m)}),
3COG(P̃CFI({w̃i(m)}) −max(P̃CFI({w̃i(m)}) −min(P̃CFI({w̃i(m)}),
max(P̃CFI({w̃i(m)}).

(14)

In this way, the defuzzified value of the approximating TFN is equal to COG(P̃CFI({w̃i(m)}),
which is calculated as:

COG(P̃CFI({w̃i(m)}) =
∫ 1

0 xμP̃CFI({w̃i(m)}(x)dx∫ 1
0 μP̃CFI({w̃i(m)}(x)dx

. (15)

Then, S̃q can be derived using the arithmetic for TFNs. In addition, to generate a crisp ordering of
alternatives, the COG method can also be applied to defuzzify S̃q.

4. Case Study

Application of the Proposed Methodology

A city government in Taiwan was considering adopting suitable intervention strategies to tackle
the COVID-19 pandemic in the city. To this end, the following factors were considered critical:

• Total costs;
• Ease of implementation;
• Acceptability;
• Effectiveness in preventing the spread of COVID-19;
• Irreplaceability by other treatments.

Based on these beliefs, four fuzzy pairwise comparison matrixes were constructed for the decision
makers, as shown in Table 4.
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Table 4. Fuzzy pairwise comparison matrixes constructed by four decision makers.

Decision maker #1

(1, 1, 1) (3, 5, 7) - - (5, 7, 9)

- (1, 1, 1) - - -

(2, 4, 6) (3, 5, 7) (1, 1, 1) - (2, 4, 6)

(3, 5, 7) (5, 7, 9) (3, 5, 7) (1, 1, 1) (5, 7, 9)

- (1, 3, 5) - - (1, 1, 1)

Decision maker #2

(1, 1, 1) - - - -

(3, 5, 7) (1, 1, 1) (1, 3, 5) - (2, 4, 6)

(1, 3, 5) - (1, 1, 1) - (3, 5, 7)

(2, 4, 6) (3, 5, 7) (3, 5, 7) (1, 1, 1) (5, 7, 9)

(1, 3, 5) - - - (1, 1, 1)

Decision maker #3

(1, 1, 1) - - - -

(2, 4, 6) (1, 1, 1) (1, 3, 5) - (1, 3, 5)

(3, 5, 7) - (1, 1, 1) - -

(5, 7, 9) (3, 5, 7) (1, 3, 5) (1, 1, 1) (1, 3, 5)

(1, 3, 5) - (1, 3, 5) - (1, 1, 1)

Decision maker #4

(1, 1, 1) - - - -

(1, 3, 5) (1, 1, 1) (1, 3, 5) - -

(1, 3, 5) - (1, 1, 1) - (1, 3, 5)

(3, 5, 7) (2, 4, 6) (1, 3, 5) (1, 1, 1) (1, 3, 5)

(1, 3, 5) (1, 3, 5) - - (1, 1, 1)

Each decision maker applied the FGM method to derive the fuzzy maximal eigenvalue and
relative priorities from the corresponding fuzzy pairwise comparison matrix. As a result, the derived
fuzzy maximal eigenvalues were:

λ̃max(1) = (1.89, 5.79, 23.61),

λ̃max(2) = (1.72, 5.73, 33.01),

λ̃max(3) = (1.48, 5.60, 46.53), and

λ̃max(4) = (1.34, 5.87, 62.14).

The corresponding consistency ratios were:

C̃R(1) = (−0.67, 0.18, 4.15),

C̃R(2) = (−0.73, 0.16, 6.25),

C̃R(3) = (−0.79, 0.13, 9.27), and

C̃R(4) = (−0.82, 0.19, 12.75).

These show certain levels of consistency. In addition, the relative priorities evaluated by the
decision makers are summarized in Figure 7.

The overall consensus reached by all the decision makers, represented by the FI results of the
relative priorities derived by them, are summarized in Figure 8. Obviously, all the decision makers
reached an overall consensus regarding the values of w̃1 and w̃3 ∼ w̃5. However, an overall consensus
regarding the value of w̃2 was lacking, because the FI result was an empty set. As a result, the existing
fuzzy group decision making methods assuming the existence of an overall consensus, such as Chen
and Lin [32], Lin et al. [22], Gao et al. [33], Samanlioglu and Kaya [7], and Chen [57], were logically not
applicable. To solve this problem, a partial consensus among some of the decision makers was sought
instead. For this purpose, the PCFI result of the relative priorities was derived.
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Figure 7. The derived relative priorities.

However, the number of decision makers that reached a partial consensus for each critical factor
needed to be determined. To this end, the threshold for the range of the PCFI result, ξ, was set
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to 0.15—i.e., the range of the PCFI result had to be wider than 0.15 for the partial consensus to be
significant. In addition, the decision makers that reached a partial consensus had to be as many as
possible. As a result, the number of decision makers that reached a partial consensus for each critical
factor was determined, as presented in Table 5. The PCFI results are summarized in Figure 9.

 
(a)  

(b)  

(c)  

Figure 8. Cont.
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(d)  

(e)  

Figure 8. The fuzzy intersection (FI) results of the relative priorities.
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(e) w  

x

x

Figure 9. The partial consensus fuzzy intersection (PCFI) results.

Table 5. The number of decision makers achieving a partial consensus for each critical factor.

Critical Factor Number of Decision Makers Range of the PCFI Result

w̃1 2 0.18

w̃2 3 0.26

w̃3 4 (overall consensus) 0.16

w̃4 4 (overall consensus) 0.31

w̃5 2 0.33

To facilitate the subsequent calculation, the PCFI results were approximated with TFNs according
to Equation (14). The approximation results are shown in Figure 10.

w

w

w

w

w

w

w

Figure 10. Approximating the partial consensus fuzzy intersection (PCFI) results with triangular fuzzy
numbers (TFNs).

Among the five critical factors, only “total costs” was the-lower-the-better performance, whereas
the others were the-higher-the-better performances. The performances in optimizing these critical
factors were evaluated according to the rules depicted in Table 6.
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Table 6. Rules for evaluating the performances in optimizing the critical factors.

Critical Factor Rule

Total costs

p̃q1(xq) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0, 1) if 0.1 ·min
r

xr + 0.9 ·max
r

xr ≤ xk or data not available

(0, 1, 2) if 0.35 ·min
r

xr + 0.65 ·max
r

xr ≤ xk < 0.1 ·min
r

xr + 0.9 ·max
r

xr

(1.5, 2.5, 3.5) if 0.65 ·min
r

xr + 0.35 ·max
r

xr ≤ xk < 0.35 ·min
r

xr + 0.65 ·max
r

xr

(3, 4, 5) if 0.9 ·min
r

xr + 0.1 ·max
r

xr ≤ xk < 0.65 ·min
r

xr + 0.35 ·max
r

xr

(4, 5, 5) if xk < 0.9 ·min
r

xr + 0.1 ·max
r

xr

xq is the estimated total costs.

Ease of implementation p̃q2(xq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(0, 0, 1) if xk = very difficult
(0, 1, 2) if xk = difficult

(1.5, 2.5, 3.5) if xk = moderate
(3, 4, 5) if xk = easy
(4, 5, 5) if xk = very easy

xq is the ease of implementation.

Acceptability p̃q3(xq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(0, 0, 1) if xk = very unacceptable
(0, 1, 2) if xk = unacceptable

(1.5, 2.5, 3.5) if xk = neutral
(3, 4, 5) if xk = acceptable
(4, 5, 5) if xk = very acceptable

xq is the acceptability.

Effectiveness in preventing
the spread of COVID-19

p̃q4(xq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(0, 0, 1) if xk = very ineffective
(0, 1, 2) if xk = ineffective

(1.5, 2.5, 3.5) if xk = moderate
(3, 4, 5) if xk = effective
(4, 5, 5) if xk = very effective

xq is the effectiveness in preventing the spread of COVID-19.

Irreplaceability by other
treatments

p̃q5(xq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(0, 0, 1) if xk = very low
(0, 1, 2) if xk = low

(1.5, 2.5, 3.5) if xk = moderate
(3, 4, 5) if xk = high
(4, 5, 5) if xk = very high

xq is the irreplaceability.

Based on the derived relative priorities, the 15 intervention strategies mentioned by
Samanlioglu et al. [7] were compared:

(1) Quarantining patients and those suspected of infection;
(2) Internal border restrictions—i.e., reducing the ability to move/transport freely within a

city/country;
(3) Social distancing;
(4) Health monitoring;
(5) Public awareness campaigns;
(6) Restriction of nonessential businesses;
(7) Restrictions of mass gatherings;
(8) External border restrictions—i.e., reducing the ability to exit or enter a city/country;
(9) Closure of schools;
(10) Enhanced control of the country’s health resources (materials and health workers);
(11) Formation of an emergency response team;
(12) Common health testing (independent of suspected infection);
(13) Curfew;
(14) Restriction of nonessential government services;
(15) Declaration of emergency.
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Samanlioglu et al. [7] did not investigate the critical factors in an intervention strategy, but directly
compared all the intervention strategies in pairs using a FAHP approach, which was a rough analysis
and limited by too much subjectivity. In contrast, in this study the performances of each intervention
strategy in optimizing the critical factors were evaluated. Table 7 presents the evaluation results.

Table 7. Evaluation results.

Intervention Strategy Total Costs
Ease of

Implementation
Acceptability

Effectiveness in
Preventing the Spread

of COVID-19

Irreplaceability by
Other Treatments

Quarantining patients and
those suspected of infection (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (3, 4, 5) (4, 5, 5) (4, 5, 5)

Internal border restrictions (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)

Social distancing (4, 5, 5) (4, 5, 5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5)

Health monitoring (3, 4, 5) (4, 5, 5) (4, 5, 5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5)

Public awareness campaigns (3, 4, 5) (1.5, 2.5, 3.5) (4, 5, 5) (0, 1, 2) (1.5, 2.5, 3.5)

Restriction of nonessential
businesses (0, 1, 2) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (0, 1, 2)

Restrictions of mass
gatherings (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (0, 1, 2) (1.5, 2.5, 3.5) (0, 1, 2)

External border restrictions (0, 1, 2) (4, 5, 5) (1.5, 2.5, 3.5) (3, 4, 5) (1.5, 2.5, 3.5)

Closure of schools (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (0, 1, 2)

Enhanced control of
country’s health resources (1.5, 2.5, 3.5) (3, 4, 5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5)

Formation of an emergency
response team (4, 5, 5) (4, 5, 5) (4, 5, 5) (0, 1, 2) (3, 4, 5)

Common health testing (0, 1, 2) (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (4, 5, 5) (0, 1, 2)

Curfew (1.5, 2.5, 3.5) (1.5, 2.5, 3.5) (0, 0, 1) (1.5, 2.5, 3.5) (0, 0, 1)

Restriction of nonessential
government services (1.5, 2.5, 3.5) (3, 4, 5) (3, 4, 5) (1.5, 2.5, 3.5) (0, 0, 1)

Declaration of emergency (0, 0, 1) (0, 1, 2) (0, 0, 1) (1.5, 2.5, 3.5) (0, 0, 1)

Subsequently, the overall performance of an intervention strategy was assessed using the GFWA
approach, for which v was set to 3 and for R̃i was set to min

q
(P̃CFI({w̃i(m)})(×)p̃qi). The assessment

results are summarized in Table 8. The defuzzification results of the overall performances are also
shown in the same table.

According to the experimental results, the following discussion was made:

(1) Intervention strategies with higher overall performances should be adopted earlier than those
with lower overall performances. In the experiment, “quarantining patients and those suspected
of infection”, “common health testing”, and “external border restrictions” were the top three
intervention strategies. The three intervention strategies have been widely adopted by a number
of countries/cities, including the city that the decision makers were located. For example, Taiwan’s
Center for Disease Control and Prevention monitors all people who travelled to Wuhan within
14 days and developed symptoms of fever or upper respiratory tract infection.

(2) During the peak of the COVID-19 pandemic, as many intervention strategies should be adopted
as possible. For guiding this, a threshold for the overall performance could be established—e.g.,
1.2. Then, the intervention strategies with overall performances higher than the threshold could
be taken, which involved eight intervention strategies.

(3) The overall performances of the intervention strategies were ranked, as shown in Figure 11.
For comparison, the ranking result by Samanlioglu et al. [7] was also presented in the same
figure. There were considerable differences between the ranking results using the two methods.
One possible reason for this was that different national conditions have led to a gap in the
preferences of decision makers. Another possible reason was that the ranking result by
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Samanlioglu et al. [7] was based on subjective comparisons only, while that using the proposed
methodology took the objective performances of intervention strategies into account.

(4) A sensitivity (or parametric) analysis has been conducted by varying the order of the objective
function (v) in the GFWA approach, so as to observe changes in the ranking result. The results
are summarized in Figure 12. Obviously, the ranking result changed as the value of v varied.
Nevertheless, “quarantining patients and those suspected of infection” was always the most
suitable intervention strategy. In addition, when v was greater than 5, the ranking result was no
longer affected by the value of v, showing the stability of the GFWA approach.

(5) Two more existing methods, FGM-FGM-FWA [14] and FGM-FGM-FTOPSIS [58], have been
applied to compare these intervention strategies for tackling the COVID-19 pandemic.
In FGM-FGM-FWA, the decision makers’ judgments were aggregated using FGM. Then,
the relative priorities of the critical factors were also derived from the aggregation result using
FGM. Subsequently, FWA was applied to assess the overall performance of each intervention
strategy. In FGM-FGM-FTOPSIS, the overall performance of an intervention strategy was assessed
using FTOPSIS instead. The ranking results using various methods are compared in Table 9.

(6) Carnero [59] proposed the potentially all pairwise rankings of all possible alternatives (PAPRIKA)
method for the failure mode and effects analysis (FMEA) [60] of a waste segregation system.
In the PAPRIKA method, the failure rates and weights of risk factors were evaluated with
intuitionistic fuzzy numbers (IFNs) that had both membership and nonmembership function
values. Then, the intuitionistic fuzzy weighted averaging (IFWA) operator was applied to
aggregate the decision makers’ evaluation results. However, in Carnero’s study, it was assumed
that the decision makers reached an overall consensus, while in this study only some decision
makers reached a partial consensus. In addition, in Carnero’s study, the weights of the decision
makers were predetermined and remained unchanged within the decision-making process.
In contrast, in the proposed methodology the weights of decision makers varied within the
decision-making process. Decision makers that reached a partial consensus about each critical
factor had equal weights, while the others had zero weights. For example, when determining the
relative priority of “total costs”, the weights of the two decision makers who reached a partial
consensus were both 0.5. When determining the relative priority of “ease of implementation”,
three decision makers reached a partial consensus, and their weights were all 0.33.

q

Figure 11. Ranking result.
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Table 8. The assessment results.

Intervention Strategy Overall Performance Defuzzification Result

Quarantining patients and those suspected of infection (0.08, 2.09, 3.78) 1.98

Internal border restrictions (0, 0.2, 1.56) 0.59

Social distancing (0, 1.06, 2.95) 1.34

Health monitoring (0.18, 1.23, 3.04) 1.48

Public awareness campaigns (0.18, 0.95, 2.29) 1.14

Restriction of nonessential businesses (0, 0.83, 2.63) 1.15

Restrictions of mass gatherings (0, 0.79, 2.6) 1.13

External border restrictions (0, 1.63, 3.72) 1.78

Closure of schools (0, 0.83, 2.64) 1.16

Enhanced control of country’s health resources (0, 0.94, 2.92) 1.29

Formation of an emergency response team (0.18, 1.14, 2.76) 1.36

Common health testing (0.06, 2.05, 3.56) 1.89

Curfew (0, 0.78, 2.57) 1.12

Restriction of nonessential government services (0.06, 1.03, 2.92) 1.34

Declaration of emergency (0, 0.77, 2.45) 1.07

Table 9. Ranking results using various methods.

Intervention Strategy FGM-FGM-FWA FGM-FGM-FTOPSIS
The Proposed
Methodology

Quarantining patients and those
suspected of infection 1 1 1

Internal border restrictions 15 15 15

Social distancing 5 6 6

Health monitoring 2 4 4

Public awareness campaigns 9 9 11

Restriction of nonessential
businesses 11 11 10

Restrictions of mass gatherings 12 12 12

External border restrictions 3 2 3

Closure of schools 10 10 9

Enhanced control of country’s
health resources 7 8 8

Formation of an emergency
response team 4 5 5

Common health testing 6 3 2

Curfew 13 13 13

Restriction of nonessential
government services 8 7 7

Declaration of emergency 14 14 14
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Figure 12. Ranking results with various values of v.

5. Conclusions and Future Research Directions

The COVID-19 pandemic has severely impacted our daily lives. To tackle the COVID-19 pandemic,
country (or city) governments around the world have adopted various intervention strategies. Not all
intervention strategies will be successful, acceptable, and/or cost-effective. For this reason, the varying
partial consensus fuzzy collaborative intelligence approach is proposed in this study to assess an
intervention strategy, so that a country (or city) government can choose the top-performing intervention
strategies to create synergy. In the varying partial consensus fuzzy collaborative intelligence approach,
multiple decision makers express their beliefs on the relative priorities of factors critical to an
intervention strategy. If an overall consensus is lacking among the decision makers, the LPC approach
is applied to derive a partial consensus among most of the decision makers for each critical factor.
Subsequently, the GFWA approach is proposed to evaluate the overall performance of an intervention
strategy for tackling the COVID-19 pandemic. Finally, the top-performing intervention strategies can
be adopted by or recommended to the country (or city) government to tackle the COVID-19 pandemic.

The proposed methodology has been applied to compare 15 existing intervention strategies for
tackling the COVID-19 pandemic to illustrate its applicability. After analyzing the experimental results,
the following conclusions were drawn:

(1) Five factors, “total costs”, “ease of implementation”, “acceptability”, “effectiveness in preventing
the spread of COVID-19”, and “irreplaceability by other treatments”, were considered critical to
an intervention strategy.

(2) “Quarantining patients and those suspected of infection”, “common health testing”, and “external
border restrictions” were the top three intervention strategies, while “internal border restrictions”
performed the worst.

(3) The number of decision makers that reached a partial consensus differed from one.

The proposed methodology has the following advantages over the existing methods:

(1) The proposed methodology does not assume the existence of an overall consensus among all
decision makers, which is more practical.

(2) The partial consensus among some decision makers may not be obvious using existing methods,
such as Wang and Chen [15], Lin and Chen [16], and Chen et al. [17]. In contrast, the proposed
methodology varies the number of decision makers that reach a partial consensus to ensure that
the partial consensus is obvious enough.

However, the proposed methodology is also subject to some limits. For example, the partial
consensus among decision makers may not be obvious enough, even if the number of decision makers
is minimized.

Some future research directions are provided as follows. First, it is difficult to know for how long
the COVID-19 pandemic will persist. Therefore, the same analysis needs to be conducted again to see
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whether the experimental results obtained in this study are still applicable. In addition, intervention
strategies for tackling the COVID-19 pandemic can be classified before being compared [61–64].
These constitute some topics for future investigation.
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36. Kahraman, C.; Kaya, İ. A fuzzy multiple attribute utility model for intelligent building assessment. J. Civ.
Eng. Manag. 2012, 18, 811–820. [CrossRef]

37. Chen, T.C.T.; Chiu, M.C. A classifying ubiquitous clinic recommendation approach for forming patient
groups and recommending suitable clinics. Comput. Ind. Eng. 2019, 133, 165–174. [CrossRef]

38. Sevkli, M. An application of the fuzzy ELECTRE method for supplier selection. Int. J. Prod. Res. 2010, 48,
3393–3405. [CrossRef]

39. Sachdeva, A.; Sharma, V.; Bhardwaj, A.; Gupta, R. Selection of logistic service provider using fuzzy
PROMETHEE for a cement industry. J. Manuf. Technol. Manag. 2012, 23, 899–921.

40. Dhouib, D. An extension of MACBETH method for a fuzzy environment to analyze alternatives in reverse
logistics for automobile tire wastes. Omega 2014, 42, 25–32. [CrossRef]

150



Mathematics 2020, 8, 1725

41. Chen, T.; Chuang, Y.H. Fuzzy and nonlinear programming approach for optimizing the performance of
ubiquitous hotel recommendation. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 275–284. [CrossRef]
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Abstract: This paper proposes an α-level estimation algorithm for ridge fuzzy regression modeling,
addressing the multicollinearity phenomenon in the fuzzy linear regression setting. By incorporating
α-levels in the estimation procedure, we are able to construct a fuzzy ridge estimator which does
not depend on the distance between fuzzy numbers. An optimized α-level estimation algorithm
is selected which minimizes the root mean squares for fuzzy data. Simulation experiments and
an empirical study comparing the proposed ridge fuzzy regression with fuzzy linear regression is
presented. Results show that the proposed model can control the effect of multicollinearity from
moderate to extreme levels of correlation between covariates, across a wide spectrum of spreads for
the fuzzy response.

Keywords: ridge fuzzy regression; α-level estimation algorithm; fuzzy linear regression

1. Introduction

Often times in practical applications, the available data may not always be precise. The researcher
may be only accessible to minimum and maximum values of data. Sometimes the data may not
even be given in numbers. For instance, consider linguistics data such as “young”, “tall”, or “high”,
and medicine data such as “healthy” and “not healthy”. In such cases where the given data are
imprecise and vague, classical representation of numbers may be insufficient. The fuzzy set theory
introduced by Zadeh [1,2] can handle such uncertainty in data. In the view of fuzzy set theory,
uncertain data are what is called fuzzy. Fuzzy data are prevalent in various fields such as linguistics,
survey, medicine and so forth [3–7]. The development of fuzzy set theory has led to statistical
methods for analyzing fuzzy data. When the measure of indeterminacy is needed, the neutrosophic
set introduced by Smarandache [8] considered the measure of indeterminacy in addition to the fuzzy
set. The neutrosophic statistics based on the the neutrosophic set can be applied for the analysis of the
data when data are selected from the population with uncertain, fuzzy, and imprecise observations [9].

In 1982, Tanaka et al. [10] proposed the fuzzy linear regression model which generalizes the usual
linear regression model to fuzzy data. Fuzzy regression models have been since then widely used to
analyze fuzzy data [11–16].

In classical linear regression models, the multicollinearity phenomenon is frequently observed in
which two or more explanatory variables are highly linearly related. Common examples of collinear
covariates are: a person’s height and weight, a person’s level of education, gender, race, and starting
salary. When multicollinearity occurs, the least squares estimator may not be obtainable or be subject to
very high variance. Once the researcher identifies the collinear variables, there are several techniques
the researcher can use to handle multicollinearity. Among these techniques, the two most widely used
approaches are lasso regression and ridge regression. Lasso regression developed by Tibshirani [17]
and ridge regression developed by Hoerl and Kennard [18] improve model performance by adding a
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penalty term to the classical linear regression model. Both methods aim to shrink the model parameters
towards zero. This induces a sparse model which increases the model bias, but decreases the model
variance even more, thus improving overall performance. Ridge regression decreases the parameters
of low contributing variables towards zero, but not exactly to zero, and stabilizing the parameter
variance of the least squares estimator in the presence of multicollinearity. Lasso regression sets the
model parameters exactly to zero, removing low contributing variables as well as improving model
fitting. However, sometimes the researcher may want to include all the available covariates in the
model without having to reduce the dimension of the data. In such cases, ridge regression is preferred
to lasso regression.

Similar to classical linear regression models, multicollinearity occurs frequently in fuzzy linear
regression models as well, causing problems in the estimation procedure. Often times the number of
covariates is not particularly large for fuzzy data. Consequently, dropping any explanatory variables
may not be an option. As in the classical statistical setting, we prefer to use ridge regression to
lasso regression to handle multicollinearity in such datasets. In this paper, we incorporate fuzzy
set theory with ridge regression developed by Hoerl and Kennard [18] to handle multicollinearity
observed in fuzzy data. Only some works have suggested ridge estimation methods for fuzzy
linear regression, and are limited to obtaining fuzzy ridge estimators which are dependent on the
distance between fuzzy numbers [19–21]. We instead propose an α-level estimation algorithm for
ridge fuzzy regression modelling. The proposed algorithm is an extension of the ridge regression
model introduced in Choi et al. [22]. By applying α-levels to the estimation procedure, we are able
to construct a fuzzy ridge estimator which does not depend on the distance between fuzzy numbers.
Simulation experiments show the proposed ridge fuzzy regression model can solve moderate to severe
degrees of multicollinearity across a wide range of spreads for the fuzzy response. An empirical study
using Tanaka’s house prices data [10] with multicollinearity, the most widely applied data set in the
fuzzy linear regression literature, is conducted to demonstrate the practical implementations.

The rest of this paper is organized as follows. Section 2 introduces key definitions and results
from fuzzy set theory. Section 3 describes the classical ridge regression, followed by a step-by-step
procedure for the proposed α-level estimation algorithm of ridge fuzzy regression modeling. Sections 4
and 5 illustrates the performance of the model with simulation studies and a numerical example,
respectively. Section 6 concludes the paper.

2. Fuzzy Numbers

A fuzzy set is a set of ordered pairs A = {(x, μA(x)) : x ∈ X} where μA(x) : X → [0, 1] is
a membership function which represents the degree of membership of x in a set A. Please note
that when A is a crisp (classical) set, its membership function can take only the values one or zero
depending on whether or not x does or does not belong to A. In this case, μA(x) reduces to the
indicator function IA(x) of a set A. For any α in [0, 1], the α-level set of a fuzzy set A is a crisp set
A(α) = {x ∈ X : μA(x) ≥ α}which contains all the elements in X with membership value in A greater
than or equal to α. The α-level set of a fuzzy set A can also be represented by A(α) = [lA(α), rA(α)].
Here lA(α) and rA(α) are the left and right end-points of the α-level set, respectively. Zadeh’s [23]
resolution identity theorem states that a fuzzy set can represented by its membership function or by its
α-level set. Let A be a fuzzy number with membership function μA(x) and α-cut A(α). Then we have
μA(x) = Sup{α · IA(α)(x) : α ∈ [0, 1]}.

A fuzzy number is a normal and convex subset of the real line R with bounded support.
The support of a fuzzy set A is defined by supp(A) = {x ∈ R|μA(x) > 0}. The following parametric
class of fuzzy numbers, the so-called LR-fuzzy numbers denoted by A = (am, sl , sr)LR, is often used as
a special case:
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μA(x) =

⎧⎪⎪⎨⎪⎪⎩
L
( am − x

sl

)
if x ≤ am

R
( x− am

sr

)
if x > am

for x ∈ R (1)

where L, R : R → [0, 1] are fixed, left-continuous, and non-increasing functions with R(0) = L(0) = 1,
and R(1) = L(1) = 0. L and R are called left and right shape functions of A, respectively. am is
the mean value of A, and sl , sr > 0 are each the left and right spreads of A. The spreads sl and sr

represent the fuzziness of the fuzzy number and can be symmetric or asymmetric. If sl = sr = 0,
the LR-fuzzy number becomes a precise real number with no fuzziness. Thus, a precise real number can
be considered to be a special case of a fuzzy number. For a precise observation a ∈ R, its corresponding
membership function is μa(x) = 1.

In the fuzzy set theory, triangular and trapezoidal fuzzy numbers are special cases of LR-fuzzy
numbers and are used extensively [24]. The membership function of a triangular fuzzy number
A = (al , am, ar)T is given by

μA(x) =

⎧⎪⎪⎨⎪⎪⎩
x− al

am − al
if x ≤ am

ar − x
ar − am

if x > am

for x ∈ R (2)

where al , am, and ar are the left end-point, mid-point, and right end-point, respectively.

3. Ridge Fuzzy Regression

In this section, we propose the α-level estimation algorithm for the proposed ridge fuzzy regression
model. This algorithm modifies the method based on Choi et al. [22] to estimate the fuzzy parameters.
The term α-level estimation indicates that our algorithm uses α-levels to describe fuzzy data. By using
α-level, we are able to develop a ridge fuzzy estimator which is not restricted to the distance between
fuzzy numbers. We first briefly examine the original formulation of ridge regression model for
crisp data.

3.1. Ridge Regression

Given a data set {yi, xi1, xi2, · · · , xip}N
i=1, a multiple linear regression model assumes that the

relationship between a dependent variable yi, i = 1, · · · , N and a set of explanatory variables
xi1, xi2, · · · , xip, i = 1, · · · , N is linear. The model takes the form

yi = β0 + β1xi1 + · · · βpxip + εi = X t
i β i = 1, · · · , N (3)

or written alternatively in matrix notation as Y = Xβ + ε. A vector Y = (y1, · · · , yN)
t is a vector

of observations on the dependent variable, X = (X t
1, · · · , X t

N)
t is a matrix of explanatory variables,

β = (β0, β1, · · · , βp)t is a vector of regression coefficients to be estimated, and ε = (ε1, · · · , εN)
t is a

vector of error terms. The standard estimator for β is the least squares estimator defined by

β̂ = (X tX)−1X tY . (4)

In the presence of multicollinearity, i.e., in state of extreme correlations among the explanatory
variables β̂ is poorly determined and susceptible to high variance. Thus, we may deliberately bias
the regression coefficient estimates so as to control their variance. In this manner, the ridge regression
estimator was introduced by Hoerl and Kennard [18] as a penalized least squares estimator. It is
achieved by minimizing the residual sum of squares (RSS) subject to a constraint on the size of the
estimated coefficient vector [25]:
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RSS(λ) = (Y − Xβ)t(Y − Xβ) + λβt β. (5)

Here λ ≥ 0 is a shrinkage parameter which controls the size of the coefficients. The larger the
value of λ, the greater the amount of shrinkage, and we have coefficients close to zero. The smaller
the value of λ is close to 0, we obtain the least squares solutions. Please note that by convention the
input matrix X is assumed to be standardized and Y is assumed to be centered before solving RSS(λ).
The ridge regression solution is

β̂ridge = (X tX + λI)−1X tY

where I is the p× p identity matrix. The shrinkage parameter λ is usually selected via K-fold cross
validation. Cross validation is a simple and powerful tool often used to calculate the shrinkage
parameter and the prediction error in ridge regression. The entire dataset is divided into K parts,
and trains the model on all but the kth part. The model is validated on the kth part, iterating for all
k = 1, · · · , K. The choice of K is K = 5 or K = 10 in general.

3.2. Ridge Fuzzy Regression Algorithm

Let us consider a set of observations

{yi, xi1, xi2, · · · , xip}N
i=1 = {(yil , yim, yir)T , (x1l , x1m, x1r)T , · · · , (xpl , xpm, xpr)T}N

i=1 (6)

where the dependent variable yi, i = 1, · · · , N and the explanatory variables xi1, xi2, · · · , xip, i =

1, · · · , N are triangular fuzzy numbers. We assume a linear relationship between the dependent and
explanatory variables:

yi = A0 ⊕ A1 � xi1 ⊕ · · · ⊕ Ap � xip ⊕ εi, i = 1, · · · , N (7)

where {Aj}p
j=0 = {(Ajl , Ajm, Ajr)T}p

j=0 are the fuzzy regression parameters and {εi}N
i=1 =

{(εil , εim, εir)T}N
i=1 are the fuzzy error terms. ⊕ and � represent addition and multiplication between

two fuzzy numbers, respectively. Often the N equations are stacked together and written in matrix
notation as

Y = X � A⊕ ε. (8)

For more details on arithmetic operations between fuzzy numbers, see [10,26]. Please note that
the above fuzzy variables can be symmetric or asymmetric, and be extended to various forms such
as normal, parabolic, or square root fuzzy data. Since crisp sets are a special case of fuzzy sets,
fuzzy inputs and fuzzy outputs, or fuzzy inputs and crisp outputs combinations are also possible.
For illustration purposes, in this section, we present our ridge fuzzy regression model using triangular
membership functions.

We divide the given data into training and test sets. The model is computed from the training set
{yi, xi1, xi2, · · · , xip}n

i=1, and later its performance is evaluated on the test set {yi, xi1, xi2, · · · , xip}m
i=1.

Note again that N is the total number of observations, n is the number of observations for the training
set, and m is the number of observations for the test set, such that n + m = N. We fit our ridge fuzzy
regression model on the training set by the following estimation algorithm:

Step 1: Create α-level sets of the triangular fuzzy input and output as illustrated in Figure 1.
For any α-level in [0, 1],
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yi(α) = [lyi (α), ryi (α)] (9)

= [(α− 1)sy
il + yim,−(α− 1)sy

ir + yim]

xij(α) = [lxij(α), rxij(α)] (10)

= [(α− 1)sx
ijl + xijm,−(α− 1)sx

ijr + xijm] i = 1, · · · , n, j = 1, · · · , p

where sy
il , sy

ir, sx
ijl , sx

ijr ≥ 0 are the left and right spreads of the dependent and explanatory variables,

respectively. The α-levels are denoted by the sequence (αk)
K
k=0 for some K with αk ∈ [0, 1].

Figure 1. Fuzzy output data.

Step 2: Perform ridge regression of Y(αk) on X(αk) for each k = 0, · · · , K. Find the intermediate
estimators lA(αk) and rA(αk) of lA(αk) and rA(αk) by minimizing the following respective ridge loss
functions (see Figure 2).

(lY (αk)− lX(αk)lA(αk))
t(lY (αk)− lX(αk)lA(αk)) + λlA(αk)

tlA(αk) (11)

(rY (αk)− rX(αk)rA(αk))
t(rY (αk)− rX(αk)rA(αk)) + λrA(αk)

trA(αk)

We assume the endpoints of the α-level set of Y has been centered and the endpoints of α-level set
of X has been standardized as is by convention in classical ridge regression [25].

Figure 2. Intermediate estimators lAj (αk) and lAj (αk) for the α-level sequence (0, 0.25, 0.5, 0.75, 1).

157



Mathematics 2020, 8, 1572

Step 3: Obtain the estimators l̃A(αk) and r̃A(αk) of lA(αk) and rA(αk) by modifying the intermediate
estimators lA(αk) and rA(αk) so that the estimated coefficients form the membership function of a
triangular fuzzy number. For this the following operations are performed (see Figure 3).

l̃A(αK) = r̃A(αK) = lA(αK) = rA(αK) (12)

l̃A(αk) = min {lA(αk), l̃A(αk+1)} k = K− 1, K− 2, · · · , 0

r̃A(αk) = max {rA(αk), r̃A(αk+1)} k = K− 1, K− 2, · · · , 0

Figure 3. Modified estimators l̃Aj (αk) and l̃Aj (αk) for the α-level sequence (0, 0.25, 0.5, 0.75, 1).

Step 4: Estimate the triangular fuzzy coefficient Â = (Âl , Âm, Âr)T and its membership function
μÂ by fitting a linear regression line through l̃A(αk) and r̃A(αk) for k = 0, · · · , K, respectively.
A constraint is given so that μÂ satisfy the condition of μÂ(l̂A(1)) = μÂ(r̂A(1)) = 1 (see Figure 4).

Figure 4. Estimated fuzzy coefficient Âj = (Âjl , Âjm, Âjr)T and its membership function.
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Step 5: Symmetric fuzzy inputs or outputs do not always guarantee that the estimated membership
function μÂ will also be symmetric. To reduce the difference between the true values with the fitted
values we consider the following candidates:

μÂ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x− l̂A(0)

l̂A(1)− l̂A(0)
if x ≤ l̂A(1) = r̂A(1)

r̂A(0)− x
r̂A(0)− r̂A(1)

if x > l̂A(1) = r̂A(1)

for x ∈ R (13)

or

μÂ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x− l̂A(0)

l̂A(1)− l̂A(0)
if x ≤ l̂A(1)

l̂A(0) + x
l̂A(1)− l̂A(0)

if x > l̂A(1)

for x ∈ R (14)

where r̂A(0) is chosen as r̂A(0) = 2× l̂A(1)− l̂A(0), or

μÂ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r̂A(0) + x

r̂A(0)− r̂A(1)
if x ≤ r̂A(1)

r̂A(0)− x
r̂A(0)− r̂A(1)

if x > r̂A(1)

for x ∈ R (15)

where l̂A(0) is chosen as l̂A(0) = 2× r̂A(1)− r̂A(0).
We present two performance criteria based on Diamond’s fuzzy distance measure [27] to evaluate

the proposed fuzzy estimators. Denote the dependent variable as yi = (yil , yim, yir)T , i = 1, · · · , n,
and its predicted value as ŷi = (ŷil , ŷim, ŷir)T = (X t

il Âl , X t
im Âm, X t

ir Âr)T , i = 1, · · · , n. Here n is the
number of observations for the training set. We defined RMSEF (root mean square error for fuzzy
numbers) and MAPEF (mean absolute percentage error for fuzzy numbers) as below.

RMSEF =

√
1
n

n

∑
i=1
{(yil − ŷil)2 + (yim − ŷim)2 + (yir − ŷir)2} (16)

MAPEF =
100%

n

n

∑
i=1

(|yil − ŷil |+ |yim − ŷim|+ |yir − ŷir|) (17)

Compute the RMSEF for each of the membership functions, then select the one which minimizes
the criterion.

Step 6: Repeat Steps 1–5 for selected α-level sequences (αk)
K
k=0 with αk equally spaced between 0

and 1. Choose the optimal set of α-levels which minimizes RMSEF. Finally, compute the fuzzy ridge
coefficient estimate Â based on that selected sequence.

4. Simulation Study

A simulation study was conducted to illustrate the performance of the proposed ridge fuzzy
regression model in the presence of multicollinearity. Simulation results are compared with the fuzzy
linear regression model with varying degrees of correlation. The fuzzy least squares estimator is
obtained by setting the tuning parameter λ as zero in Step 2 of Section 3.2.

We generated N = 100 observations for each of the p = 4 crisp explanatory variables. The number
of data dimensions is in line with commonly found fuzzy data. Following Gibbons [28], the explanatory
variables xij are generated by
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xij = (1− ρ2)1/2zij + ρzip, i = 1, · · · , n j = 1, · · · , p (18)

where ρ is a given constant and zij are generated from independent normal distributions with mean 50
and variance 1. Here xij are assumed to be non-negative so as to reflect the non-negative characteristics
of real world fuzzy data. The degree of linear association between explanatory variables is controlled
via ρ, where in this case is the correlation between any two explanatory variables is ρ2. Three different
sets of correlation are considered corresponding to ρ = 0.8, 0.9, and 0.99. Each value of ρ stands for
moderate, high, and very high correlation between the variables. Observations on the fuzzy dependent
variable are generated by

yil = A0l + A1l xi1 + · · ·+ Apl xip + ε1
i (19)

yim = A0m + A1mxi1 + · · ·+ Apmxip + ε2
i

yir = A0r + A1rxi1 + · · ·+ Aprxip + ε3
i , i = 1, · · · , N

where ε1
i , ε2

i , ε3
i are generated from independent normal distributions with mean 0 and variance σ2.

Four values of σ are investigated in this study: 0.5, 1, 1.5, and 2. Large values of σ correspond to bigger
variation in the spreads of the fuzzy dependent variable. Sy

l = (sy
1l , · · · , sy

Nl)
t the vector of left spreads

and Sy
r = (sy

1r, · · · , sy
Nr)

t the vector of right spreads are determined by

sy
il = yim − yil (20)

sy
ir = yir − yim i = 1, · · · , N.

Cases of asymmetric spreads, Sy
l �= Sy

r , and symmetric spreads, Sy
l = Sy

r are also
compared. The supposed parameters of the model are: Al = (0, 0.1, 0.15, 0.2, 0.25), Am =

(0, 0.4, 0.45, 0.5, 0.55), and Ar = (0, 0.7, 0.75, 0.8, 0.85). In order to analyze the effects of factors ρ

and σ, we controlled for the effects of varying α-level sequences in Step 6 of Section 3.2. For both
models we fixed the α-level sequence as (0, 0.25, 0.5, 0.75, 1).

200 replicates for each scenario are generated. The explanatory variables and the fuzzy coefficients
remain fixed, while the error terms and hence the fuzzy dependent variable changes. We separated the
simulated data into training and test sets. Once the ridge fuzzy regression model and the fuzzy linear
regression model are fit to the training data, RMSEF and MAPEF are computed from the test set for
t = 1, · · · , 200 replicates. Let RMSEt

F and MAPEt
F be the performance measures when the fuzzy model

is applied to the replicate t. The following quantities are then computed for each fuzzy estimator:

Ave. RMSEF =
1

200

200

∑
t=1

RMSEt
F (21)

Ave. MAPEF =
1

200

200

∑
t=1

MAPEt
F. (22)

In addition, we fit the ridge regression model and the linear regression model on the mid-point
of our training data {yim, xi1m, xi2m, · · · , xipm}n

i=1 for comparison with fuzzy methods. The test Ave.
RMSE and Ave. MAPE values of 200 replicates are recorded for both models. The output from
numerical experiments is suggested below in Tables 1–6. Measures of performance are summarized
for all combinations of factors ρ, σ and whether the fuzzy output is symmetric or not. The following
remarks can be made on the basis of Tables 1–6:

1. Ave. RMSE and Ave. MAPE do not depend on whether the spreads are symmetric or not as
they are computed from the mid-points of the generated data. Ridge regression achieves smaller
Ave. RMSE than linear regression in all cases. Ridge regression achieves smaller or nearly equal
Ave. MAPE with linear regression in all cases. If the Ave. RMSE of ridge regression is smaller
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than linear regression a similar pattern is observed for Ave. RMSEF values. This relationship is
observed for Ave. MAPE and Ave. MAPEF as well.

2. Ave. RMSEF increases as σ increases for both models. As σ and ρ increases, the Ave. RMSEF
difference between ridge fuzzy regression and fuzzy linear regression increases as well.
Ave. RMSEF values are larger when the spreads are symmetric. In all scenarios, ridge fuzzy
regression Ave. RMSEF values almost always outperform those of fuzzy linear regression.

3. Ave. MAPEF exhibit near identical patterns with Ave. RMSEF. For both ridge fuzzy regression
and fuzzy linear regression, Ave. MAPEF is larger for bigger σ values. The difference between the
two models increases as σ and ρ increases. When the fuzzy dependent variable is symmetric the
Ave. MAPEF values are larger than when it is asymmetric. Ave. MAPEF is in general lower for
ridge fuzzy regression than fuzzy linear regression for all σ and ρ combinations and asymmetric,
symmetric outputs.

Table 1. The performance measures when ρ = 0.8 and the dependent variable is an asymmetric triangular
fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 1.161 4.459 10.955 19.419
Fuzzy Reg. 1.706 8.979 23.130 40.243

Ave. RMSE Ridge Reg. 0.478 0.957 1.437 1.917
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 1.84% 7.64% 19.26% 34.43%
Fuzzy Reg. 2.83% 15.81% 41.14% 71.71%

Ave. MAPE Ridge Reg. 0.31% 0.61% 0.91% 1.21%
Linear Reg. 0.31% 0.61% 0.92% 1.23%

Table 2. The performance measures when ρ = 0.8 and the dependent variable is a symmetric triangular
fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 3.604 8.150 19.944 22.572
Fuzzy Reg. 6.273 19.228 39.020 61.870

Ave. RMSE Ridge Reg. 0.478 0.957 1.437 1.917
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 5.89% 13.64% 25.52% 38.88%
Fuzzy Reg. 10.72% 33.72% 69.03% 109.8%

Ave. MAPE Ridge Reg. 0.31% 0.61% 0.91% 1.21%
Linear Reg. 0.31% 0.61% 0.92% 1.23%

Table 3. The performance measures when ρ = 0.9 and the dependent variable is an asymmetric
triangular fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 1.210 4.612 11.625 20.995
Fuzzy Reg. 2.879 17.321 38.918 63.449

Ave. RMSE Ridge Reg. 0.478 0.959 1.440 1.921
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 2.02% 8.29% 21.47% 39.05%
Fuzzy Reg. 5.19% 32.26% 72.62% 118.4%

Ave. MAPE Ridge Reg. 0.32% 0.64% 0.95% 1.27%
Linear Reg. 0.32% 0.64% 0.96% 1.28%
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Table 4. The performance measures when ρ = 0.9 and the dependent variable is a symmetric triangular
fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 3.306 8.356 16.036 25.076
Fuzzy Reg. 8.378 30.691 60.041 91.664

Ave. RMSE Ridge Reg. 0.478 0.959 1.440 1.921
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 5.60% 14.71% 28.85% 45.47%
Fuzzy Reg. 15.23% 56.89% 111.7% 170.6%

Ave. MAPE Ridge Reg. 0.32% 0.64% 0.95% 1.27%
Linear Reg. 0.32% 0.64% 0.96% 1.28%

Table 5. The performance measures when ρ = 0.99 and the dependent variable is an asymmetric
triangular fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 0.952 2.378 6.822 14.514
Fuzzy Reg. 34.201 101.27 171.70 243.33

Ave. RMSE Ridge Reg. 0.440 0.874 1.310 1.746
Linear Reg. 0.443 0.885 1.328 1.771

Ave. MAPEF
Ridge Fuzzy Reg. 1.80% 4.70% 14.53% 31.64%
Fuzzy Reg. 75.07% 222.3% 377.1% 535.0%

Ave.MAPE Ridge Reg. 0.37% 0.74% 1.11% 1.49%
Linear Reg. 0.38% 0.76% 1.14% 1.52%

Table 6. The performance measures when ρ = 0.99 and the dependent variable is a symmetric
triangular fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 2.471 6.266 13.195 23.077
Fuzzy Reg. 55.455 142.97 233.84 325.40

Ave. RMSE Ridge Reg. 0.440 0.874 1.310 1.746
Linear Reg. 0.443 0.885 1.328 1.771

Ave. MAPEF
Ridge Fuzzy Reg. 4.70% 12.53% 27.65% 49.26%
Fuzzy Reg. 121.5% 313.5% 513.2% 714.9%

Ave. MAPE Ridge Reg. 0.37% 0.74% 1.11% 1.49%
Linear Reg. 0.38% 0.76% 1.14% 1.52%

5. Empirical Study

In this section, we demonstrate the performance of the proposed ridge fuzzy regression model
on an illustrative example taken from Tanaka [10]. The performance of the ridge fuzzy regression
estimator is compared with the fuzzy least squares estimator for crisp explanatory variables and a
fuzzy dependent variable. The linear regression fuzzy model from Tanaka [10] is further compared to
illustrate the performance of the ridge fuzzy regression model. For both the ridge fuzzy regression
and the linear fuzzy model, the α-level sequences αk = r× k, k = 0, · · · , K for some r and K are chosen
as candidates for Step 6 of the estimation algorithm in Section 3.2. The list of α-level sequences is
presented in Table 7.
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Table 7. The list of α-level sequences for Step 6 of the estimation algorithm.

αk = r × k, k = 0, · · ·, K

No. r K
1 0.01 100
2 0.02 50
3 0.025 40
4 0.04 25
5 0.05 20
6 0.1 10
7 0.15 6
8 0.2 5
9 0.25 4
10 0.3 3
11 0.5 2
12 1 1

Example: House Prices Data

Tanaka et al. [10] presents a data set concerning the price mechanism of prefabricated houses.
The relationship between five crisp inputs (rank of material, first floor space (m2 ), second first floor
space (m2), number of rooms and number of Japanese-style rooms) and a fuzzy output (house price)
is investigated. The complete data is shown in Table 8. The fitted values for the ridge fuzzy model
and the linear fuzzy model is shown in Table 9. Results show the predicted values from the ridge
fuzzy regression more accurately describes the original data than fuzzy linear regression. This is again
clarified in Figure 5. In the triangular fuzzy plot of the observed and fitted values, a comparison of
the two models is shown. The black triangles correspond to the observed values, the red triangles in
Figure 5a to the ridge fuzzy fitted values, and the blue triangles in Figure 5b to the fuzzy linear fitted
values. Both methods estimated the mid-points of the fuzzy dependent variable well. The spreads
however, are shorter for the proposed ridge fuzzy regression than the other. The fitted equation for the
ridge fuzzy regression is given by

Ŷ =(−1839.23,−1156.78,−474.32) + (1874.56, 1874.56, 1874.56)x1+ (23)

(73.73, 75.29, 76.85)x2 + (59.04, 65.57, 72.10)x3+

(−149.93,−149.93,−149.93)x4 + (543.50, 587.74, 631.98)x5

and for the fuzzy linear regression, the fitted equation is

Ŷ =(−2038.12,−1129.61,−221.09) + (2386.56, 2386.56, 2386.56)x1+ (24)

(87.13, 93.37, 99.60)x2 + (71.72, 82.13, 92.54)x3+

(−376.35,−376.35,−376.35)x4 + (−285.03,−188.25,−91.48)x5.

Please note that the fitted equation for the linear regression fuzzy model shown in Tanaka et al. [10] is

Ŷ =(10, 220, 11, 040, 11, 860) + (1810, 1810, 1810)x1+ (25)

(1770, 2140, 2510)x2 + (870, 870, 870)x3+

(−540,−540,−540)x4 + (−180,−180,−180)x5.

An analysis of the α-level sequences used in Step 6 of the estimation algorithm is presented in
Figure 6. The α-level sequence which minimizes RMSEF was chosen as the optimal α-level sequence
for each of the models. The red dots in Figure 6a,b each indicate the chosen α-level sequence based on
RMSEF. For the ridge fuzzy regression, αk = r× k, k = 0, · · · , K with r = 0.01, K = 100 was chosen.
In the case of fuzzy linear regression, r = 0.5, K = 2 was selected.
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Table 8. Houses prices data.

No. Y = (ym, Sy
l = Sy

r ) x1 x2 x3 x4 x5

1 (6060, 550) 1 38.09 36.43 5 1
2 (7100, 50) 1 62.10 26.50 6 1
3 (8080, 400) 1 63.76 44.71 7 1
4 (8260, 150) 1 74.52 38.09 8 1
5 (8650, 750) 1 75.38 41.40 7 2
6 (8520, 450) 2 52.99 26.49 4 2
7 (9170, 700) 2 62.93 26.49 5 2
8 (10,310, 200) 2 72.04 33.12 6 3
9 (10,920, 600) 2 76.12 43.06 7 2
10 (12,030, 100) 2 90.26 42.64 7 2
11 (13,940, 350) 3 85.70 31.33 6 3
12 (14,200, 250) 3 95.27 27.64 6 3
13 (16,010, 300) 3 105.98 27.64 6 3
14 (16,320, 500) 3 79.25 66.81 6 3
15 (16,990, 650) 3 120.50 32.25 6 3

Table 9. Fitted values of house prices data.

No. Y = (ym, Sy
l = Sy

r ) Ridge Fuzzy Reg. Fuzzy Reg.

1 (6060, 550) (5812.32, 1024.08) (5735.21, 1621.95)
2 (7100, 50) (6819.04, 996.70) (6785.09, 1668.23)
3 (8080, 400) (7988.07, 1118.22) (8059.27, 1868.14)
4 (8260, 150) (8214.21, 1091.78) (8143.87, 1866.29)
5 (8650, 750) (9233.67, 1158.99) (8684.11, 2002.89)
6 (8520, 450) (8894.65, 1026.66) (8884.70, 1708.12)
7 (9170, 700) (9493.11, 1042.17) (9436.42, 1,770.07)
8 (10,310, 200) (11,051.53, 1143.94) (10,266.90, 1992.65)
9 (10,920, 600) (11,272.79, 1170.98) (11,276.09, 2024.78)
10 (12,030, 100) (12,309.87, 1190.31) (12,561.81, 2108.54)
11 (13,940, 350) (13,837.21, 1153.57) (13,781.85, 2059.16)
12 (14,200, 250) (14,315.80, 1144.40) (14,372.32, 2080.39)
13 (16,010, 300) (15,122.16, 1161.12) (15,372.29, 2147.15)
14 (16,320, 500) (15,677.92, 1375.23) (16,093.51, 2388.31)
15 (16,990, 650) (16,517.66, 1213.89) (17,106.59, 2285.64)

(a) Ridge fuzzy regression. (b) Fuzzy linear regression.

Figure 5. The triangular fuzzy plot of observed and fitted values. (a): Ridge fuzzy regression and (b):
Fuzzy linear regression.

In Table 10 the performance measures RMSEF and MAPEF ridge fuzzy regression are compared
with the fuzzy linear regression model and the linear regression fuzzy model from Tanaka et al. [10].
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Clearly both measures are greatly reduced for the ridge fuzzy regression compared to the other
models, suggesting that the proposed ridge fuzzy regression model provides a better fit of the data in
comparison to the two methods.

(a) Ridge fuzzy regression. (b) Fuzzy linear regression.

Figure 6. Analysis of the α-level sequences in Step 6 of the estimation algorithm. (a): Ridge fuzzy
regression and (b): Fuzzy linear regression.

Table 10. RMSEF and MAPEF fuzzy performance measures for ridge fuzzy regression, fuzzy linear
regression, and the linear regression fuzzy model from Tanaka et al. [10].

RMSEF MAPEF

Ridge Fuzzy Reg. 1327.78 18%
Fuzzy Reg. 2321.24 33%
Tanaka et al. 349,851.8 55%

6. Conclusions

This paper proposes an α-level estimation algorithm for ridge fuzzy regression modeling,
extending the ridge regression model introduced in Choi et al. [22]. As shown in simulation studies
and an empirical study, the proposed ridge fuzzy regression model can handle fuzzy data sets with
crisp inputs and triangular fuzzy outputs. The same procedure is available with fuzzy inputs and
fuzzy outputs, or fuzzy inputs and crisp outputs. In previous works, estimation methods for ridge
fuzzy regression depend on the distance between fuzzy numbers. By incorporating α-levels to ridge
fuzzy regression, we are able to construct the ridge fuzzy estimator without having to define the
distance between fuzzy numbers. Simulation results show the ridge fuzzy regression model reduces
the effect of multicollinearity over a wide range of spreads for the fuzzy response, for various levels of
correlation between inputs. In the illustrative example taken from Tanaka et al. [10], we have shown
the practical implementations of our method. Comparison is made with fuzzy linear regression with
respect to RMSE and MAPE for fuzzy numbers. Overall these results demonstrate the effectiveness of
ridge regression in fuzzy data.

An importance point to note is that typically ridge regression is preferred over lasso regression
when the objective of research is to handle multicollinearity while not wanting to remove low
contributing variables. However, when the dimension of the data is large and dropping collinear
variables is necessary, one may use lasso regression rather than ridge regression. To manage such
cases, in future studies we plan to extend the proposed α-level estimation algorithm for ridge fuzzy
models to lasso fuzzy regression models. Lasso fuzzy regression will be especially useful for modeling
correlated genetic data sets.

In addition, the present study can be extended for neutrosophic statistics [9,29–35] as future research.
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Abstract: A constantly increasing number of deaths on roads forces analysts to search for models
that predict the driver’s propensity for road traffic accidents (RTAs). This paper aims to examine a
relationship between the speed and space assessment capabilities of drivers in terms of their association
with the occurrence of RTAs. The method used for this purpose is based on the implementation of
the interval Type-2 Fuzzy Inference System (T2FIS). The inputs to the first T2FIS relate to the speed
assessment capabilities of drivers. These capabilities were measured in the experiment with 178 young
drivers, with test speeds of 30, 50, and 70 km/h. The participants assessed the aforementioned speed
values from four different observation positions in the driving simulator. On the other hand, the inputs
of the second T2FIS are space assessment capabilities. The same group of drivers took two types of
space assessment tests—2D and 3D. The third considered T2FIS sublimates of all previously mentioned
inputs in one model. The output in all three T2FIS structures is the number of RTAs experienced by a
driver. By testing three proposed T2FISs on the empirical data, the result of the research indicates
that the space assessment characteristics better explain participation in RTAs compared to the speed
assessment capabilities. The results obtained are further confirmed by implementing a multiple
regression analysis.

Keywords: type-2 fuzzy inference systems; traffic simulator; traffic accidents; road safety;
space perception; speed perception

1. Introduction

One of the biggest problems globally nowadays is the rate of road traffic accidents (RTAs) and
deaths on roads. Each year, around 1.24 million people are killed in RTAs and up to 20–50 million
injured [1,2]. The issue of road safety represents a social and economic concern, resulting in physical
and mental injuries and immense loss of property [3]. The costs of the consequences of RTAs vary from
1% to 2% gross national product in underdeveloped and developing countries [2,4]. The current trends
indicate that if urgent action is not taken, RTAs could be the seventh leading cause of death by the year
2030. Moreover, 90% of these deaths occur in underdeveloped and developing countries [2,3,5].

Technology development makes vehicles more affordable, which results in a rapid increase in
vehicle ownership. On the one hand, this results in an elevated likelihood of the occurrence of RTAs;
however, on the other hand, this produces much more RTA data, offering more possibilities to obtain
new knowledge in the traffic safety field. With the continuous development of research methods,
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computer performance, information processing, etc., many universities, research institutes, and safety
agencies analyze RTA data in order to propose adequate safety measures [6,7].

The wealth of RTA data inevitably generates more explanatory variables that may provide more
accurate models of explaining RTA occurrence. However, it is known that “more is not always better”,
especially for the prediction of RTAs, considering that a large number of variables may cause model
overfitting [8,9]. In addition, this can impact accompanying activities such as long execution time and
unreliable prediction results [8,10].

The development of computers and software leads to the development of new types of vehicles.
In the current market of new vehicles, safer driving can be recognized through vehicle tracking and
smartphone applications that detect risky driving patterns such as speeding or inappropriate lane
changing [11]. Furthermore, the appearance of partly or fully autonomous vehicles can significantly
contribute to road safety, reducing the frequency of RTAs [11]. However, this is still far from everyday
reality, even for the most progressive markets [11,12].

There are many random factors in the occurrence of RTAs; however, they are most often grouped
considering the road, vehicle, and driver characteristics, such as vehicle speed, aggressive behavior,
skills, etc. If a driver has developed spatial skills while in traffic, his or her attention will be focused on
the traffic situation, otherwise, it will be distracted and directed to orientation in space [13,14]. On the
other hand, some reports indicate that speeding is a contributing factor in about one-third of all fatal
RTAs [15].

Considering all of the above, a motive to carry out the research described in this paper is to offer a
model whose implementation would contribute to the explanation of causes of RTAs. The experimental
research was conducted to examine the impact of vehicle speed and space assessment capabilities on
the occurrence of RTAs.

Speed does not only affect the severity of a crash but is also related to the risk of being involved in
an RTA [16]. The dominant forms of improper driving during the late twentieth century were speeding,
driving too fast for the existing conditions, improper lane changing, and improper passing [17,18].
Many empirical studies generally confirmed a positive relationship between traffic speed and the
frequency of RTAs [19–22]. At the same time, some studies found that higher speeds do not necessarily
result in higher accident rates [23,24]. It is suggested that the speed-RTA relationship should be
considered in the proper context, accounting for possible additional confounding factors such as traffic
exposure and road conditions [24–26], however including a perception of vehicle speed. Speeding,
but also an inaccurate vehicle speed, is associated with an increased risk of being involved in a crash.

The current state in the considered field in the Republic of Serbia, the country where our research
was carried out, is illustrated by the survey conducted by the state authorities in the period from 2017 to
2019. This survey shows that about half of drivers in urban areas exceed the speed limit (2017—49.4%;
2018—48.4%; 2019—51%) [27]. When it comes to the circumstances and causes of RTAs, the results
for this period indicate that the largest number of the worst RTAs, as well as the largest number of
fatalities, belong to the category of unadjusted speed (2017—53.14%; 2018—52.14%; 2019—51.41% of
the cases where the cause of RTAs with fatalities is unadjusted speed) [28]. According to the Road
Traffic Safety Agency in Serbia [27], based on the responses of the participants, every third driver of a
passenger car exceeds the speed limit in urban areas by an average of more than 10 km/h. When it
comes to the speed of vehicles outside urban areas, the results show that almost two-fifths of the
participants drive at a speed that is higher than the limit. A survey of drivers’ attitudes to speeding
in the Republic of Serbia pointed to the alarming fact that the largest percentage of drivers (41.7) do
not agree that speeding in populated areas by 10 km/h increases the risk of being involved in an RTA.
The decision on the level of vehicle speed is influenced by the driver’s psychological traits, driving
skills and limitations, road and environment characteristics, and vehicle characteristics, but also by the
space assessment capabilities of the driver.

Driving skills involve processes such as the perception of time, speed, and especially space.
How important these skills are for safe participation in traffic is widely explained in the literature.

170



Mathematics 2020, 8, 1548

A well-known term introduced for describing someone’s position in traffic related to their skills
is situation awareness. This term can be defined as [29,30] “the perception of the elements in the
environment within a volume of time and space, the comprehension of their meaning, and the projection
of their status in the near future”. The aforementioned abilities are connected to the largest number of
RTAs that are caused by the human factor. There are findings that the human factor is responsible
for 93% of all RTAs [31,32]. From all the above, it can be noticed how important is to examine the
perception of speed and space of drivers. A motive to carry out the research described in this paper is
to offer a model whose implementation would contribute to the explanation of the causes of RTAs.
The experimental research was conducted to examine the impact of vehicle speed and space assessment
capabilities on the occurrence of RTAs.

Because the answers of participants related to the assessment of speed and space involve a
certain level of imprecision and fuzziness, we assumed that the implementation of fuzzy inference
systems would be a convenient tool for data processing. Fuzzy logic is widely used for explaining
driver behavior. The previous implementation can be segmented as follows [33]: examination of the
interaction between the driver and road infrastructure [34]:, examination of the interaction between
the driver and in-vehicle systems [35], testing the psychophysical characteristics of drivers [33,36,37],
and determining a driving style [38,39]. The motivation to use fuzzy logic for modeling the propensity
for RTAs based on speed assessments and spatial abilities of drivers is actually the introduction of
a new field of implementation. This new area can be called the perception of road traffic conditions
and relations.

In this paper we propose the implementation of the interval Type-2 Fuzzy Inference System (T2FIS).
Three T2FIS structures are designed and tested on the empirical data collected in two experiments.
The T2FIS that gives the lowest error in the description of data can be considered as the most convenient
in explaining the relationship between the inputs—characteristics of the driver, and output—the
number of RTAs. The proposed T2FIS can be used as a decision-making tool to calculate the propensity
for participation in accidents.

2. Methods

This section is divided into two subsections. The first refers to the description of experiments
carried out with the aim of empirical data collection. The second subsection is about the design of
T2FIS structures.

2.1. Data Collection

The empirical data are collected in the experiment which consists of two testing sessions, which will
be designated as Experiment I and Experiment II in the further text. The task of the respondents in
Experiment I was to estimate the passenger car speed. Experiment II was designed to explore the
respondent’s spatial abilities. Along with the tests related to the assessment of speed and spatial
capabilities, the participants also filled the demographic questionnaire and the questionnaire about
participation in RTAs. The main purpose of these additional questionnaires was to provide information
about the number of RTAs experienced by participants, which were then used as an output variable in
the implemented models.

2.1.1. Participants

The experiments were conducted in the Laboratory of Traffic Psychology, Faculty of Transport and
Traffic Engineering, in Belgrade. The participants in the experiment were recruited from 178 young
drivers (96 males and 82 females). Our participants’ mean age was 22.05 years (standard deviation (SD)
= 2.12). The experimental procedure (instructions, the method of testing, and data collection) were the
same for all participants who took part in both experiments and also completed questionnaires on
demographic data and involvement in RTAs. The research adhered to the Code of Ethics and Conduct
of the Serbian Psychological Association. The participants also signed a written voluntary informed
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consent which confirms their willingness to take part in this research. The participants did not receive
any compensation for taking part in the survey as well.

2.1.2. Experiment I

For the purpose of this experiment, three different speed levels of a moving vehicle were presented
to the participants in the driving simulator. Both experiments were carried out in a PC-based
driving simulator, which incorporates three 4200 plasma monitors that provide the respondents a 180◦
horizontal and 50◦ vertical field of view of the simulated environment [40,41].

The vehicle used for the experiment was a Peugeot 307. The color of the vehicle was bright yellow.
In the literature, it is possible to discover the findings on the relationship between vehicle color and its
perception on the road. There is evidence that it is easier to spot the vehicle having a higher contrast
between the vehicle color and the environment. More concrete, brighter colored cars provide a lot of
contrast between the vehicles and their surroundings; therefore, it is easier to notice them [41–43].

In Experiment I, the vehicle was observed from four positions. These were the following: the
first was a front view of the vehicle, which meant that the vehicle was approaching, the second was a
back view, which implied that the vehicle was moving away, the third was a side view, indicating that
the vehicle was passing by, and the fourth was a view from inside the vehicle, which represented the
situation when a driver was behind the wheel, but without information about vehicle speed from the
instruments (Figure 1). Every participant estimated all of the three vehicle speed levels, from each
viewing position.

 

Figure 1. Observation positions in Experiment I: 1—Front view; 2—Back view; 3—Side view; 4—Driver’s
seat perspective.

In total, each participant made 12 assessments of speed. In the calculation process, to form three
input variables based on speed assessment capabilities, the errors in the assessment are grouped
around each of three speed levels. This implies a calculation of average assessment error from four
positions, per particular speed level. The units for both, speed levels and the errors in the assessments
are the same—km/h.

The three test speed levels were 30 km/h, 50 km/h, and 70 km/h. They were chosen due to the
most often legal limitations: the limit of 30 km/h is usually set in a school zone; limit of 50 km/h in the
inhabited area; and the limit of 70 km/h outside of the inhabited area [41,44,45]. The respondents were
asked to report the perceived vehicle speed for each experimental condition. The experimenter entered
the declared value into the adequate space in the on-line questionnaire previously prepared for the
purpose of this study. The questionnaire also covered demographic variables, as well as those related
to participation and the number of experienced RTAs [41,45].

Specific speed/position combination was randomly assigned to each participant, i.e., the stimulus
order was determined using a random number generator. This was done in order to avoid the
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anchoring effect, employing counterbalancing. Counterbalancing was achieved by randomizing the
series of presentations of the test stimuli [41].

2.1.3. Experiment II

For Experiment II, 2D and 3D spatial tests were used. The objects were positioned with random
orientation in space. All participants had the same viewing position on all tasks. The background was
dark, to standardize the local contrasts [46,47]. Examples of 2D and 3D tests are shown in Figure 2.

 
(a) 

 
(b) 

Figure 2. The appearance of the task used in experiment II: (a) an example of a 2D test used in the
experiment; (b) an example of a 3D test used in the experiment.

In the laboratory with reduced environmental light, all participants were placed in the same
position with a 58 cm distance between their head and the center of the screen. The tests were displayed
on the same monitor that was used in the driving simulator. 2D and 3D tests presentation order was
randomized. As in the case of Experiment I, in the beginning, each participant was assigned the specific
combination of an experimental test order, which was regulated by using a random number generator.
In the 2D test, respondents are asked to find for the given object shown in 2D the appropriate object
in 3D (example in Figure 2a). Similarly, when it comes to the 3D task, the respondent had to find an
object in 2D for the assigned object shown in 3D (example in Figure 2b).

2.2. Model Development

The models proposed in this paper are based on testing of the Mamdani based T2FIS [48].
The principles of Type-2 fuzzy sets were first proposed and described by Zadeh [49] to expand the
possibilities and performance of the standard Type-1 fuzzy sets. The main characteristic of Type-2
fuzzy sets is that they integrate uncertainty about the membership function (MF). For this reason,
MF is defined by the corresponding interval bounded by two functions, a lower MF and upper MF,
and called the Footprint of Uncertainty (FOU), as illustrated in Figure 3.
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Figure 3. The footprint of uncertainty for an interval Type-2 fuzzy set.

The performance of three T2FIS structures was compared. In the first, there were input variables
related to speed assessment capabilities (Figure 4a), in the second, the space assessment capabilities
were inputs to the model (Figure 4b), and in the third, the speed and space assessments were jointly
considered as inputs (Figure 4c). All three structures had the same output variable—the number of
experienced RTAs.

 
 

(a) (b) 

 
(c) 

Figure 4. Configuration of the research: (a) the model of speed assessment capabilities—T2FIS_speed;
(b) the model of space assessment capabilities—T2FIS_space; (c) the model that encompasses all
considered input variables—T2FIS_speed_and_space.

In the figures, as well as in the tables, we use the following notation: T2FIS related to the
speed assessment capabilities is designated as T2FIS_speed, T2FIS related to the space assessment
capabilities is labeled as T2FIS_space, and T2FIS that jointly considers both categories is marked as
T2FIS_speed_and_space.
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The first fuzzy inference system has three input variables: Average assessment of speed 30 km/h,
Average assessment of speed 50 km/h, and Average assessment of speed 70 km/h. In all three cases, the word
“average” is used because the assessments were performed from four positions—front, rear, side view,
and from the position of a driver. Therefore, each of the three input variables is the arithmetic mean of
four measurements.

Input variables that relate to the speed assessment take the values of average errors that are made
when estimating the real speed of the car. The minimum, mean, maximum values, and standard
deviation of each variable of the examined sample of 178 young drivers are given in Table 1. It can
be noted that in some cases very huge errors in the assessments are recorded. The young age of
participants and their humble driving experience may be an explanation for such results.

Table 1. Description of a sample considering errors in speed assessment.

Input Variable
Average Errors in Assessments from Four Different Positions [km/h]

Minimum Mean Maximum Standard Deviation

Average assessment of speed 30 km/h −3.75 21.75 67.50 11.68
Average assessment of speed 50 km/h −18.75 13.57 62.50 13.51
Average assessment of speed 70 km/h −54.50 −32.33 15.00 10.06

Input variable Average assessment of speed 30 km/h is displayed using five fuzzy sets and their
membership functions (Figure 5): U_30—Average assessment is under 30 km/h, A_30—Average
assessment is around 30 km/h, MO_30—Average assessment is moderately over 30 km/h, SO_30—Average
assessment is significantly over 30 km/h and EO_30—Average assessment is much higher than 30 km/h.
This variable is marked as x1.

 

Figure 5. Input variable Average assessment of speed 30 km/h. Used notation: MF—membership
function; FOU—footprint of uncertainty.

Input variable Average assessment of speed 50 km/h is displayed using five fuzzy sets and their
membership functions (Figure 6): U_50—Average assessment is under 50 km/h, A_50—Average
assessment is around 50 km/h, MO_50—Average assessment is moderately over 50 km/h, SO_50—Average
assessment is significantly over 50 km/h and EO_50—Average assessment is extremely over 50 km/h.
This variable is marked as x2.

Input variable Average assessment of speed 70 km/h is displayed using five fuzzy sets and their
membership functions (Figure 7): EU_70—Average assessment is greatly under 70 km/h, SU_70—
Average assessment is significantly under 70 km/h, MU_70—Average assessment is moderately under
70 km/h, A_70—Average assessment is around 70 km/h, and O_70—Average assessment is over
70 km/h. This variable is marked as x3.
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Figure 6. Input variable Average assessment of speed 50 km/h. Used notation: MF—membership
function; FOU—footprint of uncertainty.

 

Figure 7. Input variable Average assessment of speed 70 km/h. Used notation: MF—membership
function; FOU—footprint of uncertainty.

The output variable named The number of experienced road traffic accidents is the same, as previously
explained, in both fuzzy inference systems. Since the sample consists of young drivers, the number
of reported RTAs is relatively small—the minimum value is 0 and the maximum is 3. Accordingly,
the output variable is defined by three fuzzy sets (Figure 8): SNA—a small number of road traffic
accidents, MNA—a moderate number of road traffic accidents, and HNA—high number of road traffic
accidents. This variable is marked as y.

 

Figure 8. Output variable the number of experienced road traffic accidents. Used notation: MF—
membership function; FOU—footprint of uncertainty.

On the other hand, the second fuzzy inference system is based on two input variables that describe
the space assessment capabilities. Unlike in the case of speed assessment, where the errors were
considered, in this case, each examinee is rated by the grade from 0 to 5 depending on the success on
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the 2D and 3D spatial abilities test. The minimum, mean, maximum values, and standard deviation of
considered variables in the examined sample of 178 young drivers are shown in Table 2.

Table 2. Description of a sample considering errors in space assessments.

Input Variable
Average Marks from the Space Assessments Tests

Minimum Mean Maximum Standard Deviation

Average assessment of 2D space 0 1.81 5 1.12
Average assessment of 3D space 0 1.67 5 1.01

Input variable Average assessment of 2D space is described using five fuzzy sets and their
membership functions (Figure 9): VSM_2—Very small mark, SM_2—Small mark, MM_2—Middle
mark, HM_2—High mark, and VHM_2—Very high mark. This variable is marked as x4.

 

Figure 9. Input variable Average assessment of 2D space. Used notation: MF—membership function;
FOU—footprint of uncertainty.

Input variable Average assessment of 3D space is described using five fuzzy sets and their
membership functions (Figure 10): VSM_3—Very small mark, SM_3—Small mark, MM_3—Middle
mark, HM_3—High mark, and VHM_3—Very high mark. This variable is marked as x5.

 

Figure 10. Input variable Average assessment of 3D space. Used notation: MF—membership function;
FOU—footprint of uncertainty.

The fuzzy rule base is crucial for the performance of a T2FIS. Here, we use a well-known principle
for defining fuzzy rules based on the empirical data introduced by Wang and Mendel (WM) [50].

This approach implies generating one fuzzy rule per one data pair, i.e., per one participant. In our
case, there are 178 participants in the sample, and accordingly, 178 fuzzy rules should be formed.
However, certain rules are the same or conflicting. The conflicting rules have the same “IF” part, but a
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different “THEN” part. First, from the same rules, just one should be left. Furthermore, we need to
eliminate the conflicting rules. To decide which rules will be retained in the final fuzzy rules database,
the procedure involves the calculation of the degree of significance for each of the formed rules. This is
done by Equation (1), for the rule defined in the following way: “IF x1 is A and x2 is B, THEN y is C”.
In a group of conflicting rules, only the rule with the maximum degree should be retained. D(Rule) is
the importance degree of a rule, μA(x1) is a value of the membership function of the region A when
the input value is x1, etc.

D(Rule) = μA(x1) ∗ μB(x2) ∗ μC(y) (1)

The implemented programming code for this purpose is based on the code presented in the
paper by Čubranić-Dobrodolac et al. [33]. After the required calculations, there are 22 fuzzy rules
obtained based on the empirical data, considering the sample of 178 participants, in the case of speed
assessment capabilities (Table 3), while as regards spatial abilities assessment, there are 17 fuzzy rules
obtained by the same approach (Table 4). Finally, in the T2FIS where all input variables are jointly
considered, 84 fuzzy rules are generated from the empirical data based on the WM approach (Table A1
in Appendix A).

Table 3. The fuzzy rules obtained from empirical data in the case of speed capabilities assessment.

D(Rule)
Serial No. of MF

for Variable x1

Serial No. of MF
for Variable x2

Serial No. of MF
for Variable x3

Serial No. of MF
for Variable y

1 1 1 1 1
0.42682 2 1 1 1
0.25945 2 1 2 1
0.54222 2 2 1 1
0.62963 2 2 2 1
0.29929 3 2 1 1
0.68531 3 2 2 1
0.47288 3 2 3 1
0.35178 3 3 1 1
0.85328 3 3 2 1
0.74074 3 3 3 1
0.33383 3 4 2 1
0.27160 3 4 3 1
0.24294 4 3 2 1
0.30423 4 3 3 1
0.48971 4 4 2 1
0.67901 4 4 3 1
0.50440 4 4 4 1
0.37940 4 5 3 1
0.65040 5 4 5 1
0.10539 5 5 3 2
0.72222 5 5 4 1

Table 4. The fuzzy rules obtained from the empirical data in the case of space capabilities assessment.

D(Rule) Serial No. of MF for Variable x4 Serial No. of MF for Variable x5 Serial No. of MF for Variable y

1 1 1 1
0.79518 1 2 1
0.79640 1 3 1
0.80239 1 4 1
0.88888 2 1 1
0.70682 2 2 1
0.70791 2 3 1
0.71324 2 4 1

178



Mathematics 2020, 8, 1548

Table 4. Cont.

D(Rule) Serial No. of MF for Variable x4 Serial No. of MF for Variable x5 Serial No. of MF for Variable y

0.87500 3 1 1
0.69578 3 2 1
0.69685 3 3 1
0.70209 3 4 1
0.75000 4 1 1
0.59638 4 2 1
0.59730 4 3 1
0.60179 4 4 1

1 5 5 1

3. Results and Discussion

Finally, the defined T2FIS structures should be tested. This is accomplished based on Equation (2) [51,52].
Cumulative deviation (CD) is a parameter that describes how good a T2FIS describes the empirical
data. It represents a sum of absolute values of the difference between the number of RTAs experienced
by the drivers from the sample and the corresponding results of T2FIS based on the input values for
each driver from the sample. The result of the T2FIS for an examinee number i in Equation (1) is
marked as T2FIS(i).

CD =
178∑
i=1

∣∣∣y(i) − T2FIS(i)
∣∣∣ (2)

CD is a cumulative deviation; y(i) represents the number of RTAs experienced by the driver from
the sample; T2FIS(i) is the result of the interval Type-2 fuzzy inference system.

Following all the calculations, we are in a position to obtain the final result for the three considered
fuzzy inference systems. In the first case, CD value for the interval Type-2 fuzzy inference system
related to the speed assessment capabilities is equal to 97.6477. Further, CD value for the T2FIS
related to the space assessment capabilities is equal to 91.7891. Finally, testing the T2FIS where
all five considered independent variables are entered as inputs showed that CD value is 103.4103.
A comparison of empirical data and results of T2FIS structures are graphically shown in Figures 11–13.

 

Figure 11. A comparison of empirical data and results of the Type-2 Fuzzy Inference System (T2FIS) in
the case of speed capabilities assessment—T2FIS_speed.
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Figure 12. A comparison of empirical data and results of T2FIS in the case of space capabilities
assessment—T2FIS_space.

 

Figure 13. A comparison of empirical data and results of T2FIS in the case of speed and space capabilities
assessment—T2FIS_speed_and_space.

It is interesting to note that the T2FIS with five input variables achieved the worst result. As already
stated in the introduction of this paper, this can be explained by the fact that introducing more variables
in the model does not necessarily lead to better results [8–10]. However, to confirm the conclusions
obtained, we performed the paired t-test to examine whether the difference in results between T2FIS
structures is statistically significant (Table 5). As is shown, there are significant differences between the
results of T2FIS_space and the other two T2FIS structures. However, there is no significant difference
between T2FIS_speed and T2FIS_speed_and_space. These results indicate that the space assessment
capabilities can better explain the propensity for road traffic accidents of drivers compared to speed
assessment capabilities.
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Table 5. The difference between cumulative deviation (CD) values per T2FIS tested by paired t-test.

T2FIS_Speed T2FIS_Space T2FIS_Speed_and_Space

T2FIS_speed -
T2FIS_space 0.048 * -

T2FIS_speed_and_space 0.059 0.049 * -

* p < 0.05.

Finally, it is useful to compare the proposed approach with some other method. In this context,
we compare the performance of T2FIS with the statistical technique multiple regression analysis.
The results are shown in Figure 14. We further implemented a t-test to conclude about the statistical
significance of the difference between the two approaches; however, the results show that there is
no statistically significant difference in all three cases considered. It can be concluded that these two
approaches give similar results.

 

Figure 14. A comparison of T2FIS performance and multiple regression analysis.

Speaking about the performance of T2FIS, further adjustments of membership functions shape,
positions, and the design of fuzzy rules can be done using some of the heuristic and metaheuristic
algorithms. This would lead to even better results, and accordingly, can be considered as the
recommended direction for future research.

Above all, it would be meaningful to implement certain additional methodologies based on fuzzy
logic as well. One of the most popular in the literature is the fuzzy regression analysis [53,54]. Here,
the main task is to estimate the parameters of the regression model, and these parameters represent
fuzzy numbers. To solve this problem, there are three general approaches used [55]: linear and
non-linear programming methods (possibilistic regression analysis), fuzzy least squares methods,
and machine-learning techniques. Within these approaches, numerous sub directions exist. Having in
mind that we apply Type-2 fuzzy sets in this paper, it would be interesting to compare the obtained
results with Type-2 fuzzy regression analysis [56–63].

When it comes to the practical implications of this research, in the authors’ opinion both speed
and space capabilities are important for safe maneuvers in traffic, and this is the reason why both of
them are considered in this research. However, the results obtained can be explained in the way that
the drivers who record low scores on the spatial abilities test do not possess good skills related to
vehicle position in the environment, which in turn could increase the likelihood of RTAs involvement.
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The result of this research can be very useful for policy-makers in the field of traffic safety.
Modifications have to be undertaken to adapt education and training programs in order to improve
space perception which could result in reducing the number of RTAs. The results from numerous
studies confirm that spatial cognition can be improved by training [64–67]. This fact can be used when
creating the training programs for young drivers applying for a driver’s license, for drivers whose
driver’s license has been revoked, in the recruitment procedures for professional drivers, as well as,
in the programs for older drivers whose spatial abilities may decline with aging. All these programs
should contribute to lowering the number of RTAs in the whole world and to a higher level of safety
on the roads.

4. Conclusions

In this paper, the authors performed the testing of the interval Type-2 fuzzy inference systems
to compare the impact of speed and space perception on the occurrence of road traffic accidents.
By analyzing three proposed T2FIS structures, the results of the research indicate that the space assessment
characteristics better explain the participation in RTAs compared to speed assessment capabilities.

This result may be useful for improving traffic safety. Other authors also support the conclusion
from this paper. Conclusions drawn from the results of our study are consistent with research
showing that drivers’ negligence, speeding, and misperception of space are the main causes of RTAs,
while drivers being responsible for about 90% RTAs [68]. Having in mind both human and material
losses that all countries globally experience due to RTAs, the need arises for this type of investigation
which will contribute to the understanding of the circumstances of RTA occurrence and the development
of better traffic safety measures.

The implemented methodology can be further improved in future research. Here, the statistical
approach implying the multiple regression analysis and the concept of a Mamdani-based fuzzy
inference system are used. It turned out that these two gave similar results. However, other approaches
are welcome, such as fuzzy regression analysis, intuitionistic fuzzy sets, Sugeno fuzzy inference
systems, etc. Furthermore, the optimization procedure of the current T2FIS structures would be
meaningful as well. This would include the implementation of certain metaheuristic algorithms to
find as good as possible shapes and positions of membership functions, as well as an adequate fuzzy
rules base.
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Appendix A

Table A1. The fuzzy rules obtained from the empirical data in the case of joint speed and space
capabilities assessment.

D(Rule)
Serial No.
of MF for

Variable x1

Serial No.
of MF for

Variable x2

Serial No.
of MF for

Variable x3

Serial No.
of MF for

Variable x4

Serial No.
of MF for

Variable x5

Serial No.
of MF for
Variable y

0.80239 1 1 1 1 4 1
0.30215 2 1 1 2 3 1
0.20504 2 1 1 3 2 1
0.23063 2 1 2 2 1 1
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Table A1. Cont.

D(Rule)
Serial No.
of MF for

Variable x1

Serial No.
of MF for

Variable x2

Serial No.
of MF for

Variable x3

Serial No.
of MF for

Variable x4

Serial No.
of MF for

Variable x5

Serial No.
of MF for
Variable y

0.12946 2 1 2 2 4 2
0.29663 2 2 1 2 3 1
0.34355 2 2 1 3 3 1
0.32337 2 2 1 4 2 1
0.16547 2 2 1 4 3 1
0.30893 2 2 2 1 2 1
0.29847 2 2 2 1 3 1
0.25239 2 2 2 2 2 1
0.27987 2 2 2 2 4 1
0.55092 2 2 2 3 1 1
0.30552 2 2 2 3 3 1
0.33059 2 2 2 3 4 1
0.32500 2 2 2 4 1 1
0.20980 2 2 2 4 3 1
0.11413 3 2 1 2 3 1
0.15930 3 2 1 2 4 1
0.11327 3 2 1 3 4 1
0.22223 3 2 2 1 2 1
0.33499 3 2 2 1 3 1
0.32831 3 2 2 1 4 1
0.48439 3 2 2 2 2 1
0.28653 3 2 2 2 3 1
0.27443 3 2 2 2 4 1
0.39459 3 2 2 3 2 1
0.33644 3 2 2 3 3 1
0.31541 3 2 2 3 4 1
0.38599 3 2 2 4 1 1
0.35078 3 2 2 4 2 1
0.36788 3 2 2 4 3 1
0.31414 3 2 3 2 2 2
0.20192 3 2 3 2 4 1
0.24565 3 2 3 3 3 1
0.31204 3 2 3 3 4 1
0.28458 3 2 3 4 4 1
0.35178 3 3 1 1 1 1
0.40288 3 3 2 1 1 1
0.40232 3 3 2 1 2 1
0.54969 3 3 2 1 3 1
0.12764 3 3 2 1 4 1
0.55967 3 3 2 2 1 1
0.38411 3 3 2 2 2 1
0.49525 3 3 2 2 3 1
0.44577 3 3 2 2 4 1
0.59369 3 3 2 3 2 1
0.28958 3 3 2 3 3 1
0.51937 3 3 2 4 1 1
0.50663 3 3 2 4 2 1
0.40022 3 3 2 4 3 1
0.40399 3 3 3 1 3 1
0.28975 3 3 3 1 4 2
0.40760 3 3 3 2 1 1
0.17203 3 3 3 2 2 1
0.34380 3 3 3 2 3 1
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Table A1. Cont.

D(Rule)
Serial No.
of MF for

Variable x1

Serial No.
of MF for

Variable x2

Serial No.
of MF for

Variable x3

Serial No.
of MF for

Variable x4

Serial No.
of MF for

Variable x5

Serial No.
of MF for
Variable y

0.28869 3 3 3 2 4 1
0.51539 3 3 3 3 2 1
0.39328 3 3 3 3 3 1
0.33181 3 3 3 3 4 1
0.16842 3 3 3 4 2 1
0.23263 3 4 2 3 3 1
0.15876 3 4 3 3 2 1
0.16198 3 4 3 4 2 1
0.12092 4 3 2 4 3 1
0.21504 4 3 3 2 2 1
0.19945 4 3 3 2 4 1
0.14372 4 3 3 4 2 1
0.13577 4 3 3 4 3 2
0.29205 4 4 2 4 2 1
0.26880 4 4 3 1 2 1
0.37232 4 4 3 2 2 1
0.38626 4 4 3 2 3 1
0.29795 4 4 3 3 4 1
0.30276 4 4 3 4 1 1
0.40495 4 4 3 4 2 1
0.28480 4 4 3 4 4 1
0.19056 4 4 3 5 5 1
0.30128 4 4 4 4 3 1
0.33724 4 5 3 2 1 1
0.51798 5 4 5 1 3 1
0.07449 5 5 3 2 2 2
0.50251 5 5 4 3 2 1
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Abstract: Segregation is an important step in health care waste management. If done incorrectly, the
risk of preventable infections, toxic effects, and injuries to care and non-care staff, waste handlers,
patients, visitors, and the community at large, is increased. It also increases the risk of environmental
pollution and prevents recyclable waste from being recovered. Despite its importance, it is
acknowledged that poor waste segregation occurs in most health care organizations. This study
therefore intends to produce, for the first time, a classification of failure modes related to segregation
in the Nuclear Medicine Department of a health care organization. This will be done using
Failure Mode and Effects Analysis (FMEA), by combining an intuitionistic fuzzy hybrid weighted
Euclidean distance operator, and the multicriteria method Potentially All Pairwise RanKings of all
possible Alternatives (PAPRIKA). Subjective and objective weights of risk factors were considered
simultaneously. The failure modes identified in the top three positions are: improper storage of
waste (placing items in the wrong bins), improper labeling of containers, and bad waste management
(inappropriate collection periods and bin set-up).

Keywords: waste segregation; failure mode and effects analysis; intuitionistic fuzzy hybrid weighted
Euclidean distance operator; PAPRIKA

1. Introduction

Health care waste (HCW) has increased considerably over recent decades due to the increase
in population, number and size of health care organizations, and also through the use of disposable
medical products [1]. Furthermore, in middle and low-income countries, health care waste production
has increased considerably due to better access to health services. In higher income countries, the rapid
ageing of the population has led to an increase in the use of health services [2,3]. This increase in HCW
has been calculated at 330% over the 17-year period analyzed in Korkut [4], although the rise in the
number of hospital beds was only 10%.

Waste produced as a result of health care activities carries a greater chance of causing infection
and injury than other types of waste. Although only 15% of HCW is considered hazardous material
that may be infectious, toxic or radioactive [5], improper segregation of health care waste leads to
mixing this waste with non-hazardous waste and so to a much higher quantity of potentially hazardous
waste [6]. This increases risk of injury and toxic effects, and means more time, more staff, more
steps and higher transport costs in order for it to be properly disposed of [7]. If hazardous waste
were immediately separated from other waste, however, the amount of dangerous waste could be
reduced by 2–5%, and the risk of infection to the workers handling the waste would also be reduced [8].
A simple training program in segregation could lead to savings of 26.3% [9]. If there is no segregation
of hazardous from other waste, all health care waste must be considered infectious [10].

Segregation is therefore an important step in HCW management, and consists of separating out
the waste flows depending on their hazardous properties, the type of treatment, and the disposal
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process to be applied [8]. The World Health Organization (WHO) classifies HCW into the categories
shown in Table 1. The recommended way of identifying HCW categories is to classify the waste in
bags or bins of suitable materials, coded by colors, properly labeled and each in its proper place as
described in WHO [5]; the basic recommendations given by the WHO should also be borne in mind [8]:

• The procedure should always take place at the source where the waste is produced.
• It can be easily applied by all care staff and is uniformly applied throughout the country.
• It is safe and guarantees absence of infectious HCW in the domestic waste flow.
• It should be well known and understood by the care staff of the health care organization.
• It should be regularly monitored to make sure that these recommendations are still being met.

Improper HCW segregation increases the risk of preventable infections, toxic effects and injuries to
care and non-care staff, waste handlers, patients, visitors and the community at large. The greatest risk
posed by infectious waste is accidental needle stick injuries, which can cause hepatitis B and hepatitis
C and HIV infection, and recently, COVID-19. There are however numerous other diseases which can
be transmitted by contact with infectious health care waste [10]. To this should be added the increase
in risk of environmental pollution by cleaning waste (considered dangerous) from combustion gases.
This occurs, for instance, in the process of incinerating phthalates in waste disposal sites for HCW [11]
made up of polyvinyl chloride (PVC) [7], which is used in tubes and bags for saline solution, plasma and
blood for transfusions, dialysis, surgical gloves, etc. It should be further borne in mind that proper
segregation has other advantages when applied to non-hazardous waste, since it can be classified into
recyclables, biodegradable waste and non-recyclables. If these waste categories are mixed up when
they are produced, it may be impossible to prepare the recyclable waste for recovery [5].

The production and segregation of waste in health care facilities is regulated by international,
national, and regional legislation, which states that waste holders are responsible for managing it
appropriately, in terms both of segregation and of disposal [9]; it is, however, recognized that poor
waste segregation is found in most health care organizations [12]. The problems most commonly found
are lack of awareness, of health risks associated with HCW, lack of training and competence in the
proper handling of waste, lack of waste management and disposal systems, deficiencies in human and
economic resources, and the low priority given to the subject [13].

There are a few studies analyzing health care waste management, among which the following
should be especially noted. Gai et al. [14] analyzed the results of introducing national regulations
and standards for HCW management in China. It showed that the amount produced by primary
health care centers is much higher than that of secondary hospitals, which is attributed to the mixing
of general waste with medical waste. The study showed that establishing responsibility for medical
waste management in departments and treatment rooms, prior education, and experience in learning,
can be major factors that determine the knowledge of care staff in HCW management. There is
therefore an urgent need for regular training programs and the proper provision of protective measures
to improve the safety at work of cleaning staff. With the same goal, Moreira and Gunther [15]
analyzed the improvements stemming from a medical waste management plan in Brazil a year after
its introduction; the results showed that although total waste generation had increased by 9.8%,
the volume of non-recyclable materials fell by 11%, the volume of recyclable materials rose by 4%,
and it was also possible to segregate 7% of organic waste to be used as compost. The rate of
infectious waste generation in critical areas fell from 0.021 to 0.018 kg/procedure. It was necessary
to change the behavior of the staff through training. Abd El-Salam [16] studied HCW management
practices in Egypt, and found that 38.9% was considered hazardous waste, and that segregation
did not follow the standards, with the result that a certain amount of medical waste was mixed
with domestic waste. Thus, the inappropriate practices detected are: ineffective segregation at
source, inappropriate collection methods, unsafe storage of waste, inadequate financial and human
resources for proper management, and deficient control of waste disposal, lack of suitable protective
equipment, and lack of training and clear lines of responsibility between the departments involved
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in the management of hospital waste. Ferreira and Teixeira [17] suggested that waste segregation is
the main deficiency found in healthcare waste practice in Portugal, while the perceptions of risk to
health care staff are related to the difficulties of correctly segregating waste, and the lack of knowledge
about the importance of this segregation. Manga et al. [18] assessed HCW management systems in
Cameroon, highlighting how problems with the most common waste treatment and disposal methods
are: dumping in uncontrolled and poorly designed tips, and incineration with inappropriate measures
to address emissions to air, soil and water. They noted that the main challenges in developing
countries are segregation, collection, inefficient transport of waste flow, lack of suitable training for
staff, deficient collection of waste and separation of infectious and general recyclable waste, deficient
legislation, management of infectious waste without adequate personal protection equipment, illegal
dumping of waste and disposal together with other municipal waste. Sharma and Gupta [19] analyzed
HCW management in India, and found that private hospitals produced more HCW than public ones.
They saw a great need for human resources departments in hospitals that can optimally design policies
and processes related to the management of health care waste. Korkut [4] indicated that to reduce
the amount of HCW in Turkey, the mixture of different types of waste should be prevented, and so
should the unnecessary use of hospital materials. But the best way to control the impact of HCW is to
ensure that only hazardous waste is sent to treatment, while the rest is treated as household waste.
Sahiledengle [20] recognized that the key aspect of an effective management of HCW is segregation of
the waste at the point of production, regardless of the treatment and disposal of waste. In this study on
segregation practices in Ethiopian hospitals, it can be seen that only half of health workers have good
segregation practices, and to improve results, it recommends the allocation of sufficient onsite waste
containers and regular training. Likewise, Kumar et al. [21] assessed the effectiveness of an intensive
training program in HCW management in Pakistan, showing that training is an effective method to
improve knowledge, attitudes and practices among healthcare personnel regarding infectious waste
management. Along the same lines is the study by Abdo et al. [22], which showed the improvements
provided by an educational program in the management of infectious and sharps waste in Kuwait.

Therefore, all the studies analyzed in different countries emphasize the importance of carrying
out a proper segregation at source and that the training of health care staff is essential. This is the
specific area in which this research is carried out trying to detect the failure modes that contribute most
significantly to segregation problems. Although the number of studies analyzing HCW management in
different countries is very important, there are no studies that prioritize segregation failure modes using
a widely recognized objective method, Failure Mode and Effects Analysis (FMEA). FMEA has been
widely and successfully applied in different typologies of industries and products and with different
goals [23,24]. However, traditional FMEA presents numerous problems that hinder its applicability to
real problems. Intuitionistic Fuzzy Sets (IFS) has been shown to be a very useful tool in FMEA for
dealing with vagueness and uncertainty in the real-world risk assessment process [25].

The main contributions of this research are:

• Determining the failure modes related to environmental problems in the Nuclear Medicine
Department of a health care organization with a powerful need to improve segregation of the
waste produced.

• Prioritizing the various failure modes.
• Solving deficiencies of traditional FMEA by using, for the first time, a combination of an

intuitionistic fuzzy hybrid weighted Euclidean distance operator and the multicriteria method
Potentially All Pairwise RanKings of all possible Alternatives (PAPRIKA).

• Using a group of experts characterized by assigning an importance weight to each team member,
in accordance with the latest trends in the application of FMEA [26].

• Most studies only consider subjective or objective weights of risk factors. This study considers
subjective and objective weights of risk factors simultaneously.
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PAPRIKA has been used in place of other multicriteria methods because it involves more
judgements than traditional scoring methods, it is simpler to apply, and it reflects the preferences
of decision makers more accurately [27]; additionally it is cost-effective, reproducible and it is less
cognitively burdensome for decision makers than other methods. Another advantage is that is
produce a set of weightings for each decision maker, unlike other MCDM methods, which only give
aggregated data. This allows comparisons of weightings between subgroups of participants [28].

The paper is structured as follows. Firstly, it includes a literature review on FMEA and the
problems with traditional FMEA, along with multicriteria techniques and intuitionistic fuzzy sets
in FMEA. Intuitionistic Fuzzy Failure Model and Effect Analysis methodology is then described.
Next, the waste segregation FMEA model integrating Intuitionistic Fuzzy Hybrid Weighted Euclidean
Distance Operator and PAPRIKA method applied to the Nuclear Medicine service of a hospital
is described. Then the results obtained in the Health Care Organisation are set out. Finally come
the discussion, conclusions and references.

2. Literature Review

FMEA is a systematic and analytical technique that combines the technology and experience of
experts to identify, analyze and prevent possible failure modes or difficulties in product and process
before they take place; the aim is to determine preventive actions in systems, products, processes or
services to eliminate or diminish the probability of failures and errors [29]. FMEA is the subjective
assessment of risk dependent on expert judgement [30].

Traditional FMEA uses a risk priority number (RPN) to prioritize failure modes in a system,
process, design, product or service. In this way, limited company resources can be allocated to the
high-risk failure modes. The RPN is obtained by multiplying the probability of occurrence of the
failure (O), the severity of the failure (S) and the ability to detect the failure before the impact of the
effect occurs (D).

RPN = O× S×D (1)

O, S and D are usually measured on a scale comprising 10 levels from 1 to 10, as shown in the
example for the probability of Occurrence in Table 2. Failure modes with higher RPN are considered to
be of greater importance, and they should be afforded greater attention with respect to risk mitigation.

Table 2. Ratings of probability of occurrence of a failure mode [1].

Rank Probability of Failure Possible Failure Rates

10 Extremely high: failure almost inevitable ≥1 in 2
9 Very high 1 in 3
8 Repeated failures 1 in 8
7 High 1 in 20
6 Moderately high 1 in 80
5 Moderate 1 in 400
4 Relatively low 1 in 2000
3 Low 1 in 15,000
2 Remote 1 in 150,000
1 Nearly impossible ≤1 in 1,500,000

Traditional FMEA employs a risk priority number (RPN) to prioritize failure modes of a system,
process, design, product or service. In this way, limited company resources can be allocated to the
high-risk failure modes. The RPN is obtained by multiplying the probability of occurrence of the
failure (O), the severity of the failure (S) and the ability to detect the failure before the impact of the
effect occurs (D).

Traditional FMEA processes use the following procedure [31]: (1) determine the scope of FMEA
analysis; (2) designate FMEA team; (3) identify potential failure modes and effects; (4) determine O, S,
and D of each failure mode; (5) calculate the RPN of each failure mode; (6) prioritize the failure modes;
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(7) report the results of the analysis; and finally (8) calculate the new RPNs when the failure modes
have been diminished or eliminated.

Although traditional FMEA has been used successfully since 1960 in different types of companies
and real-world examples, the crisp RPN method does, however, have important deficiencies ([1,24,32]):

• O, S and D are considered to have similar importance, which need not be the case in a practical
application of the FMEA process.

• Different combinations of O, S and D can generate the same RPN value; however, their hidden
risk implications can be totally different. This could cause loss of resources and time, or some
high-risk failure modes may go unnoticed.

• O, S and D are difficult to determine precisely by FMEA team members, because a lot of information
is often uncertain, vague or expressed in linguistic terms.

• The mathematical formula for calculating RPN is questionable because there is no scientific basis
for why O, S and D should be multiplied to obtain RPN.

• The conversion of scores is different for the three risk factors. Thus, while a nonlinear conversion
is used between O and the associated ratings, a linear transformation is used for D.

• The RPN only measures risk, but does not take into account the importance or cost of corrective
actions in the analysis; Additionally, RPN cannot be used to measure the effectiveness of
corrective actions.

• RPNs are not continuous, but rather have many gaps, since many numbers on [1, 1000] cannot be
generated from Equation (1). Only 120 of the possible 1000 numbers can be obtained.

• Interdependencies between various failures modes and effects on the same levels and different
levels of hierarchical structure of an engineering system are not considered.

• Equation (1) is strongly sensitive to variations in risk factor assessments; that is, a small variation
in one rating can lead to a significantly larger effect on the RPN, depending on the values of the
other risk factors.

• The RPN elements have many duplicate numbers, for example, 60 RPNs can be formed from 24
different combinations of values of O, S and D.

• The RPN considers only three risk factors related to safety; other important factors such as
production cost, quality or other economic aspects are ignored.

• O, S, and D are assessed using discrete ordinal measurement scales. But they are treated as though
the numerical operations on them, such as multiplication, were significant. The results are not
only meaningless but are in fact misleading.

• The customers’ expectations are not usually taken into account during the risk analysis.
Severity rates are generally established from the point of view of the organization and not
that of its customers [33].

These deficiencies have led to inefficiencies in the practical applications of traditional FMEA [34].
Therefore, variations on traditional FMEA have been proposed, many of which include Multi-Criteria
Decision Making (MCDM) analysis because prioritization of failure modes is a topic that considers
multiple risk factors [26].

The literature review carried out by Liu [35] between 1992 and 2016 integrating FMEA with
uncertainty theories and multicriteria decision making methods identified 56 contributions which
have tried to solve the problems of the traditional FMEA. 16 of these studies used distance-based
MCDM methods; 11 used compromise-ranking MCDM methods (that is, VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS)); three papers used our ranking methods (QUALItative FLEXible (QUALIFLEX),
ELimination Et Choice Translating REality (ELECTRE) and Preference Ranking Organisation METHod
for Enrichment of Evaluations (PROMETHEE)); and eight used pairwise comparison MCDM methods
(Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP)). Eighteen other studies
used other MCDM methods (Decision-Making Trial and Evaluation Laboratory (DEMATEL), multiple
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multi-objective optimization by ratio analysis (MULTIMOORA), COPRAS-G, etc.) and Eight used a
hybrid MCDM method in which some of the above methods were combined. In addition, based on the
165 papers that included improvements in the application of FMEA, it can be seen how 85 of them
used fuzzy sets, with Dempster–Shafer theory a long way behind with 10 contributions. In addition,
the evolution of the publication of articles on improvements in FMEA follows a growing exponential
trend, with a considerable increase from 2007.

A more recent literature review by Liu et al. [26] looked at 169 studies on FMEA integrated
with different typologies of MCDM to counter the disadvantages of the use of RPN. Most of these
studies used the risk factors (O, S, D), although in some cases they also use expected cost, cost of
failures, profitability, failure mode importance, and weight of corrective actions, or multiple sub-risk
factors for O, S, D. The most commonly used technique for the assignment of weights to the criteria is
given directly, followed by expert judgement, the entropy method, fuzzy AHP, AHP, ordered weighting,
Data Envelopment Analysis (DEA) and a combination of expert judgement and the entropy method.

In FMEA, the most commonly used MCDM methods, with 30.2% of contributions,
are distance-based methods, among which Gray Relational Analysis (GRA) and TOPSIS stand
out due to their simplicity and robustness, while DEMATEL, DEA, VIKOR, and Fuzzy Weighted
Geometric Mean (FWGM) have also been applied frequently to prioritize failure modes in FMEA.

Among the more recent studies with hybrid models combining FMEA and MCDM is Kutlu and
Ekmekçioğlu [36], who used fuzzy AHP to compute the weighting vector of three risk factors, and fuzzy
TOPSIS to obtain a ranking for the failure modes. Fuzzy TOPSIS was also used by Mangeli et al. [37]
for the same purpose. Wang et al. [38] used interval-valued intuitionistic fuzzy sets (IVIFSs) in an
ANP method to obtain weightings for the risk factors, and the IVIF-COPRAS method to rank the
failure modes. Bao et al. [39] combined FMEA with fuzzy AHP to assess occupational disease. Fattahi
and Khalilzadeh [40] used a fuzzy weighted risk priority number instead of traditional RPN; the
weightings of these risk factors were calculated via fuzzy AHP. Fuzzy MULTIMOORA was used to
calculate the weight of each failure mode from the criteria time, cost, and profit. Tian et al. [41] used the
fuzzy best-worst method to obtain weightings for the risk factors, and fuzzy VIKOR to prioritize the
failure modes. Boral et al. [42], on the other hand, used fuzzy AHP to calculate the relative importance
of the risk factors, and a modified Fuzzy Multi-Attribute Ideal Real Comparative Analysis (MAIRCA)
to rank the failure modes. Zhu et al. [43] combined linguistic neutrosophic numbers, regret theory,
and PROMETHEE to obtain the risk priorities of failure modes, taking into account psychological
behaviors in the approach of the decision makers. Wang et al. [44] used AHP to calculate the weightings
of the risk factors, while the failure modes were prioritised via the closeness coefficient. A wide
variety of MCDM’s are therefore used to carry out FMEA analysis. However, in no prior case has
PAPRIKA been used, despite its greater precision, and the ease with which it obtains judgements from
the decision makers.

Numerous methods have combined fuzzy sets with FMEA to configure fuzzy FMEA; fuzzy sets
based on triangular fuzzy numbers is the method most commonly preferred in the studies reviewed by
Liu et al. [26] for risk assessment, such as [25,31,33–35,45–50].

However, the number of contributions using intuitionistic fuzzy sets in the field of FMEA is
smaller despite the improvements they represent compared to fuzzy FMEA. Among these are Chang
and Cheng [51], which integrated intuitionistic fuzzy sets and DEMATEL to prioritize failure modes in
a 0.15 μm DRAM engraving process. Liu et al. [52] used the Intuitionistic Fuzzy Hybrid Weighted
Euclidean Distance (IFHWED) operator for the prioritization of failure modes, while the uncertain
assessments given by FMEA team members are treated as linguistic terms expressed in Intuitionistic
Fuzzy Numbers (IFNs), and the Intuitionistic Fuzzy Weighted Averaging (IFWA) operator is used
to add the FMEA team members individual judgements into a group assessment. Liu et al. [53]
used the Interval 2-Tuple Hybrid Weighted Distance (ITHWD) operator and assignments provided
by the FMEA team members are included using interval 2-tuple linguistic variables; additionally,
subjective and objective weights of risk factors have been taken into account in the prioritization of the
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failure modes that appear in the blood transfusion process. Liu et al. [25] applied the intuitionistic
fuzzy hybrid TOPSIS method to prioritize failure modes in super-twisted nematic color. The IFWA
operator is employed to aggregate the trials of the FMEA team members. The IFHWED operator is
then used to obtain the distances of each failure mode from intuitionistic fuzzy positive ideal and
negative ideal solutions. Finally, a relative closeness coefficient is used to compute the risk priority
of the failure modes. Both subjective and objective weights of risk factors are taken into account
in the study. Guo [54] used linguistic variables and intuitionistic fuzzy numbers to evaluate S, O,
and D and transform them into basic probability assignment functions; the Jousselme distance is then
used to obtain the weightings of the decision makers. The weighted trial average is obtained and
the classical Dempster combination rule is used to combine the modified mass functions. Tooranloo
and Ayatollah [55] calculated the weight of risk factors using intuitionistic fuzzy linguistic terms and
the IFWA operator to aggregate weighting factors while the failure modes of the quality of internet
banking services have been prioritized using the intuitionistic fuzzy TOPSIS technique. Yazdi [56]
used the IFHWED operator together with TOPSIS to prioritize hazards occurring in a gas refinery for
welding and lamination processes. A heterogeneous group of experts was used to assign a level of
confidence or weight to each expert for which AHP has been used. Mirghafoori et al. [57] analyze the
quality of the electronic library services in a university library using entropy based on FMEA model
in the intuitionistic fuzzy environment. Tooranloo et al. [58] evaluated 16 failure modes related with
knowledge management in organizations in an oil and gas company. To do this, they determined the
weight of each decision maker using linguistic expressions and intuitionistic fuzzy numbers. Next,
an aggregated matrix of intuitionistic fuzzy decisions, based on the decision-makers’ judgements,
was generated using the IFWA operator. The weight of each risk factor was calculated using linguistic
expressions and intuitionistic fuzzy numbers through the IFWA operator. Since TOPSIS is being used
in this intuitionistic environment, it is necessary to determine the intuitionistic fuzzy positive and
negative ideal amounts for, then to compute the distance between failure items through positive and
negative ideals. This was done using normalized Euclidean distance. Finally, the relative proximity
ratio was calculated. The results were that the priority failure modes were identified to be lack of
management commitment and leadership. Can [59] ranked corrective-preventive strategies through the
combination of FMEA and Weighted Aggregated Sum Product Assessment (WASPAS). Intuitionistic
fuzzy risk priority numbers, duration of exposure, occurrence, detection, severity, cost, and system
safety factors were used.

Therefore, although the number of contributions that use an intuitionistic fuzzy set in FMEA
is very limited, it has been successfully applied to different fields with the use of different distance
operators. However, in no case has it been applied with the aim of prioritizing segregation failure
modes in a health care organization. In the specific area of HCW, only the research by Liu et al. [60]
used fuzzy set theory and VIKOR method selection for the appropriate treatment method in HCW.
Linguistic variables are used to assign the ratings and weights to the criteria, while the Ordered
Weighted Averaging (OWA) operator is used to aggregate individual opinions of decision makers into
a group assessment.

3. Intuitionistic Fuzzy Failure Model and Effect Analysis Methodology

A risk classification procedure was designed using risk analysis techniques together with
multicriteria techniques, and an FMEA methodology applied using the Intuitionistic Fuzzy Hybrid
Weighted Euclidean Distance (IFHWED) Operator and the multicriteria method PAPRIKA.

This methodology has the advantage that when using linguistic terms for the assignment of values
to the risk factors, these assessments are much more precise. For this purpose, the Intuitionistic Fuzzy
Set (IFS) concept will be used. IFS was introduced by Atanassov [61] considering a generalization of
fuzzy and more exhaustive elements than fuzzy conventional sets, which only have a membership
function [62]; in addition, they allow the hesitation and the indeterminacy that are generally found
in decision-making processes to be considered, something that is not taken into account in the fuzzy
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set [63]. They have a more logical mathematical framework to deal with inaccurate facts or incomplete
information [55]. IFSs are characterized by a membership function, a non-membership function,
and an indeterminacy function. Therefore, IFS is recognized as a suitable approach to deal with the
ambiguities and uncertainties present in the realization of FMEA [51].

The methodology set out below allows the limitations of the traditional FMEA to be overcome,
and its effectiveness to be improved. The uncertainty in the assessments of the team in the FMEA
study is handled using linguistic terms expressed with intuitionistic fuzzy numbers.

If X is considered a fixed set, an IFS S in X is introduced in accordance with Equation (2) [35]:

S =
{〈x, μs(x), νs(x)〉x ∈ X

}
(2)

where μs(x) : X → [0, 1] is a membership function and νs(x) : X → [0, 1] a non-membership function
and 0 ≤ μs(x) + νs(x) ≤ 1,∀x ∈ X is satisfied. Furthermore, πs(x) = 1 − μs(x) − νs(x) is called the
hesitation degree of x ∈ X and represents the degree of uncertainty or hesitancy of x to S, satisfying
0 ≤ πs(x) ≤ 1,∀x ∈ X [64].

Whether πs(x) is higher or lower is an indication that x is more or less uncertain respectively.
Ifμs(x) and νs(x) are continuous functions, IFS regresses to traditional fuzzy sets whenμs(x) = 1−νs(x),
while when μs(x) = 1− νs(x) is equal to 0 or 1, it is a crisp set.

(μs(x), νs(x)) is known as an Intuitionistic Fuzzy Number (IFN) and can be denoted by
α = (μα, να) where μα ∈ [0, 1], να ∈ [0, 1], and satisfying μα + να ≤ 1. α+ = (1, 0) and α− = (0, 1) are
respectively the largest and smallest IFNs.

Let α1 = (μα1 , να1), α2 = (μα2 , να2) be two IFNs, the operational laws of IFNs are expressed by
Equations (3) to (5) [65]:

α1 + α2 = (μα1 + μα2 − μα1μα2 , να1να2) (3)

α1xα2 = (μα1μα2 , να1 + να2 − να1να2) (4)

λα1 = (1− (1− μα1)
λ, νλα1

), λ > 0
α1
λ =

(
μλα1

, 1− (1− να1)
λ
)
, λ > 0

(5)

Table 3 shows the linguistic terms and the IFNs used to assess the failure modes [56].

Table 3. Linguistic terms for assessing failure modes.

Linguistic Terms IFN

Extremely low (EL) (0.10, 0.90)
Very low (VL) (0.25, 0.70)

Low (L) (0.30, 0.60)
Medium low (ML) (0.40, 0.50)

Medium (M) (0.50, 0.50)
Medium high (MH) (0.60, 0.30)

High (H) (0.70, 0.20)
Very high (VH) (0.75, 0.20)

Extremely high (EH) (0.90, 0.10)

Most FMEA methods consider only objective or subjective risk weights independently.
To overcome this problem, objective and subjective weightings of risk factors are considered
simultaneously in this methodology, as suggested in Liu et al. [25] and Liu [35]. Subjective weights are
evaluated by a decision-making group using the linguistic terms shown in Table 4 [56]. Objective weights
are determined using the ordered weights of the risk factors, which are derived from the method based
on the normal distribution.
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Table 4. Linguistic terms for assessing subjective weights of risk factors.

Linguistic Terms IFN

Very low (VL) (0.10, 0.85)
Low (L) (0.25, 0.70)

Moderate (M) (0.50, 0.50)
High (H) (0.75, 0.20)

Very high (VH) (0.90, 0.05)

The decision group must provide individual assessments of failure modes using the linguistic
terms defined by IFNs.

The Intuitionistic Fuzzy Distance (IFD) between two IFNs, α1 = (μα1 , να1 ) and α2 = (μα2 , να2 )
will be defined as shown in Equation (6) [25].

dIFD(α1, α2) =
1
2
× (

∣∣∣μα1 − μα2

∣∣∣+ ∣∣∣να1 − να2

∣∣∣) (6)

There are assumed to be l members in the decision group responsible for the assessment of m
failure modes with respect to n risk factors. Each member of the decision group will have an assigned

weighting λk > 0 (k = 1, 2, . . . , l) satisfying
l∑

k=1
λk = 1 to reflect the relative importance of each member

of the group.
Let αk

i j = (μk
i j, ν

k
i j) be an IFN provided by each member of the group to assess each failure mode

with respect to each risk factor, and wk
j = (μk

j ,ν
k
j) is the subjective weighting of each risk factor given

by each member of the decision group. The Intuitionistic Fuzzy Weighted Averaging (IFWA) operator
(see Equations (7) and (8)) will be used to aggregate the judgements and derive a consensus judgement
stemming from the decision group [35].

αi j = IFWA
(
α1

i j, α
2
i j, . . . , α

l
i j

)
=

l∑
k=1
λkα

k
i j =

[
1− l∏

k=1

(
1− μk

i j

)λk
,

l∏
k=1

(
νk

i j

)λk
]
,

i = 1, 2, . . . , m; j = 1, 2, . . . , n
(7)

wj = IFWA
(
w1

j , w2
j , . . . , wl

j

)
=

l∑
k=1
λkwk

j =

[
1− l∏

k=1

(
1− μk

j

)λk
,

l∏
k=1

(
νk

j

)λk
]
,

j = 1, 2, . . . , n
(8)

where αi j =
(
μi j, νi j

)
are the assessments of the group comprising l members for the failure modes

with respect to the risk factors, and wj =
(
μ j, ν j

)
are the subjective weightings of the group for the risk

factors of the l members of the group.
The subjective weightings of the risk factors will be determined using the subjective weightings

of the group wj =
(
μ j, ν j

)
obtained from Equation (8). These weightings will be normalised using

Equation (9) [35].

wj =
μ j + π j(

μ j
μ j+ν j

)∑n
j=1(μ j + π j(

μ j
μ j+ν j

))
j = 1, 2, . . . , n (9)

where π j = 1− μ j − ν j is the hesitation degree, and
n∑

j=1
wj = 1.

The objective weightings of the risk factors were determined using the normal distribution-based
method developed by Xu [66].

Next, reference series for risk factors should be established. These reference series should be
the optimal level of all risk factors for failure modes in FMEA. When FMEA is being performed, the
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smaller score represents a lower risk, therefore, the minimum value α− = (0, 1) can be used as a
reference series. This can be expressed as shown in Equation (10).

Ã0 = [α01, α02, . . . ,α0n] = [α−, α−, . . . , α−] (10)

The IFHWED operator is used to calculate the distances between the reference series and the
aggregated results (see Equation (11)).

IFHWED
(
Ãi, Ã0

)
= ϕ(

n∑
j=1

wj(dIFD
(
αi j, α0 j

)
)

2
)

1
2
+

(1−ϕ)( n∑
j=1
ω j(dIFD

(
αiσ( j), α0σ( j)

)
)

2
)

1/2
i = 1, 2, . . . , m

(11)

where (α(1), . . . ,α(n)) is any permutation of (1, 2, . . . , n) such that dIFD
(
αiσ( j−1), α0σ( j−1)

)
≥

dIFD
(
αiσ( j), α0σ( j)

)
, j = 1, 2, . . . , n and ϕ ∈ [0, 1].

Next, all failure modes are classified in descending order of the IFHWEDs obtained. The greater
distance implies a higher overall risk of failure mode.

The relative weights of the decision group members were provided in the form of non-fuzzy
values because they are relatively easy to determine in the study. However, other methods, such as
fuzzy AHP or the Delphi method, could be used. The linguistic terms included in Table 4 can also be
applied and Equation (9) can be used to calculate them.

4. Waste Segregation FMEA Model Integrating Intuitionistic Fuzzy Sets and the PAPRIKA Method

The application of the methodology outlined in the previous section to prioritizing failure modes
related to HCW segregation problems in a Hospital is shown below.

From the Central Services of the Health Service of Castilla-La Mancha (Spain) there is a great
concern for reducing the amount of waste generated in a hospital. To do this, they consider the need to
improve the segregation of hospital waste. For this study, the Nuclear Medicine Service is selected as a
pilot unit in which to analyze the problems and solutions to be proposed. The choice of this service
instead of others is because it generates a large amount of waste (it is the 11th service in terms of annual
waste generation of the 41 into which the hospital is organized) and, in addition, it can generate waste
of all the different possible typologies such as [67]:

• Group I: general, no risk.
• Group II: sanitary, assimilated to urban.
• Group III: sanitary, potentially infectious.
• Group IV: bodies and human remains.
• Group V: dangerous chemical waste.
• Group VI: cytotoxic with carcinogenic, mutagenic and teratogenic risk.
• Group VII: radioactive.

Radioactive waste is low and medium activity, does not generate heat and has a relatively short
radioactive life (about 30 years as a limit). It is mainly about operating material such as gloves, rags,
syringes, filters, etc.

The goal is to extend the improvement plans and actions to the other areas, units and services of
the hospital.

The flow chart with the steps that have been followed in this investigation are shown in Figure 1.
In order to identify the failure modes related to waste segregation, surveys were carried out

with personnel who work in the Nuclear Medicine Department: the head of department, a nuclear
medicine specialist doctor, service supervisor, senior technicians, nurses and administrative assistants
and caretakers. The results of the survey were that 60% of respondents believed that the service did
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not have adequate containers for type II waste, 62.5% of care and non-care staff did not perform
correct segregation of type II waste, 56.25% of the respondents do not know the maximum time that
elapses in the collection of waste, 93.75% of the staff do not know the weight thresholds (minimum
and maximum) per container, 87.5% believe that there is no documentation with the action procedures
in waste management, and 50% consider that the presence of intermediate waste containers in the
department is necessary. From the complete results obtained from the survey, the failure modes shown
in Table 5 were established.

 

Figure 1. Flowchart of the study.

Table 5. Nuclear Medicine Department segregation failure modes.

Failure Mode Description

Failure mode 1 Incorrect labeling; for example, marking a container as organic material when in
fact it is a container for glass

Failure mode 2
Poor waste management; for example: putting bags inside a container implying
that a container is permanent when it is not, lack of collection with the
necessary frequency

Failure mode 3 Improperly stored waste; deposit items in containers that do not correspond;
for example, organic matter to a glass container

Failure mode 4 Collection of containers when they reach minimum weights per container
Failure mode 5 Lack of space for correct placement of containers or new containers

Failure mode 6 Lack of information from healthcare staff on: collection time, container location,
weight thresholds, maximum and minimum container

Failure mode 7 Lack of signage/posters on environmental risks
Failure mode 8 Lack of training of health personnel on environmental risks
Failure mode 9 Lack of continuous control of data on quantities/weights/elements generated
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Visual documents on non-conformities were also collected, such as, for example, Figure 2 shows
how tweezers had been disposed of in a container for storing needles, the correct action being
sterilization of the tweezers.

 
Figure 2. Incorrect segregation of waste documented in the Nuclear Medicine Service.

The judgements necessary for the application of this methodology were made by two Decision
Makers (DMi). One of them has had the role of Deputy Director of Technical Services of the Hospital,
whose responsibility included the Environment Area of the Hospital. The other Decision Maker is
an external expert, although he is knowledgeable about the environmental problems of the Hospital.
Like [56], the experts used in the allocation of occurrence, severity and detectability in this research
have very different knowledge and experiences in the area analyzed, being very positive for the
allocation process. Table 6 shows the judgements given by both DMs evaluating the different failure
modes described with respect to the criteria: occurrence, severity and detectability. A number of
different linguistic term scales were gathered from the literature [35,52,55,68], to provide linguistic
terms for assessing subjective weights of risk factors and for assessing failure modes. The linguistic
scales were chosen from among the different options available by means of a questionnaire given to
the decision makers about their preferences. The scales chosen were the nine-point rating scale shown
in Table 3, and the same scale was used for the three risk criteria to avoid confusion in the assessment
of failure modes, and the scale in Table 4. The results of the aggregation of the judgements using
Equations (7) and (8) are shown in Table 7. A weight of 0.25 has been assigned to DM1 and 0.75 to DM2.

Table 6. Evaluation of the failure modes in each criterion by the DMs.

Criteria Occurrence Severity Detectability

Decision Maker DM1 DM2 DM1 DM2 DM1 DM2

Failure mode 1 EH H EH MH VH M
Failure mode 2 VH H VH MH M H
Failure mode 3 EH MH EH MH VH H
Failure mode 4 M H MH H VH M
Failure mode 5 ML ML ML M MH ML
Failure mode 6 H MH MH MH M H
Failure mode 7 MH M MH H VL H
Failure mode 8 VH MH H MH M H
Failure mode 9 M H ML MH M MH
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Table 7. Evaluation of the failure modes in each criterion by the DMs.

Criteria Occurrence Severity Detectability

Decision Maker DM1 DM2 DM1 DM2 DM1 DM2

Failure mode 1 0.444 0.168 0.411 0.228 0.293 0.398
Failure mode 2 0.362 0.200 0.324 0.271 0.292 0.251
Failure mode 3 0.411 0.228 0.411 0.228 0.362 0.200
Failure mode 4 0.292 0.251 0.315 0.221 0.293 0.398
Failure mode 5 0.164 0.500 0.194 0.500 0.213 0.440
Failure mode 6 0.305 0.271 0.274 0.300 0.292 0.251
Failure mode 7 0.241 0.440 0.315 0.221 0.247 0.274
Failure mode 8 0.324 0.271 0.305 0.271 0.292 0.251
Failure mode 9 0.215 0.251 0.229 0.341 0.250 0.341

Applying the method based on the normal distribution of Xu [66], the objective weights of the risk
factors are obtained. For this, the Ordered Weighted Averaging (OWA) operator is used to determine
their associated weightings. The OWA operator has been used in many applications, especially in
environmental problems [60,69]. This operator has the advantage that the input data are rearranged in
descending order, and the weights associated with the OWA operator are the weights of the ordered
positions of the input data rather than of the input data itself [60].

If μn is the mean of the collection of 1, 2, ..., n, and σn (σn > 0) is the standard deviation of the
collection 1, 2, ..., n and both can be calculated from the expressions:

μn =
1 + n

2
(12)

σn =

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

(i− μn)
2

⎞⎟⎟⎟⎟⎟⎠
1/2

(13)

Then the weight vector of the OWA operator can be calculated from the equation [66]:

wi =
e
−[ (1−

1+n
2 )

2

2σ2n
]

∑n
j=1 e

−[ ( j− 1+n
2 )

2

2σ2n
]

, i = 1, 2, . . . , n (14)

The order of the criteria, Occurrence (O), Severity (S) and Detectability (D), and thus the weighting
assigned to each of them, was decided by one of the decision makers used in the study. Therefore,
for n = 3 we obtain:

μ3 = 2; σn =

√
2
3

wO =
e−3/4

1 + 2e−3/4
= 0.243

wS =
1

1 + 2e−3/4
= 0.514

wD =
e−3/4

1 + 2e−3/4
= 0.243

Therefore, the vector of objective weightings obtained is the following:

ω = (0.243, 0.514, 0.243)
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Next, the PAPRIKA multicriteria technique [27] will be used to obtain the subjective weightings of
the risk factors. PAPRIKA has been successfully applied in numerous real-world problems particularly
related to the health care field, for example in patient prioritization [70,71], health technology
prioritization [28,72], disease classification and diagnosis [73], disease prioritization for R&D [74],
assessment of non-clinical hospital services [75], to analyze preferences for physical activity attributes
in adults with chronic knee pain [76], or to value health states worse than dead [77].

PAPRIKA has been used, implemented through 1000minds software, since, in real time and very
efficiently, it tracks all the potentially millions of pair rankings of the options made by decision makers.
Furthermore, unlike other methods based on ratio measurements of the decision makers’ preferences,
for example the ratio-scale measurement of 1 to 9 used by AHP, PAPRIKA selects an option from just
two possibilities. This is a much simpler and more natural selection method [28]. All this provides
great confidence in the answers provided by the decision makers [78].

PAPRIKA allows a ranking of alternatives to be obtained by comparing pairs of all potentially
non-dominated pairs with respect to all possible alternatives in the model. A non-dominated pair
is a pair of alternatives in which one of them has a higher rank in at least one criterion and a lower
rank in at least one other criterion, and therefore a judgement of the decision maker is necessary for
the alternatives to be classified by pairwise comparisons. On the other hand, a dominated pair is a
pair of alternatives in which one of them has a higher rank category in at least one criterion and none
of a lower rank in the other criterion, so it is not necessary to make the comparison. The number of
pairwise comparisons is minimized by a method that identifies all pairs classified as evident within the
explicit pair ranking [27].

The steps to be followed to apply this technique are:

1. Definition of the criteria and the levels of each criterion.
2. Definition of possible alternatives and obtaining of total scores.
3. Identification of undominated pairs.
4. Classification of non-dominated pairs and identification of all implicitly ranked pairs.
5. Obtaining the global ranking of alternatives.

PAPRIKA starts out by identifying all the pairs of options defined for two criteria simultaneously,
and which involve compensation. Each decision maker must choose in random order between pairs
of options. Each time the decision maker classifies a pair of options, all the remaining hypothetical
options that could be classified by pairs by transitivity are identified and eliminated. For example, if a
decision maker prefers A to B, and then B to C, then by transitivity, A has priority over C. This procedure
guarantees that the number of questions put to the decision maker is minimized. However, the decision
maker classifies by pairs all the alternatives differentiated in two criteria simultaneously, both explicitly
and implicitly, that is, by transitivity. The number of questions put to the decision maker depends on
the number of criteria and on the levels associated to each criterion. As an example, with four criteria
and three or four levels per criterion, approximately 30 judgements are required [78]. Some questions
are repeated as an internal consistency check [79]. From the classifications by explicit pairs, 1000Minds
using linear programming, which can be consulted in Hansen and Ombler [27], to calculate the
weightings of the criteria. The decision makers’ weights are averaged to obtain mean weights and
standard deviations for the decision makers as a set. Significant differences in the mean weights for the
criteria (p< 0.05) are assessed by variance analysis for the normally distributed variables, and by the
Kruskal-Wallis rank test when the normality criterion was not satisfied [79].

According to [79], the global values for risk SRj, and value SV j, are calculated from
Equations (15) and (16) respectively. For each alternative j, the normalised means of the weightings
wi for each criterion i, are multiplied by the performance scores for the risk Ri,j, and value-based
criteria Vi,j.

SRj =
∑

i

wi ×Rij (15)
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SV j =
∑

i

wi ×Vij (16)

Comparing two of the methods most widely used in the literature, AHP and TOPSIS, and
one of the newly-created MCDM, the Characteristic Objects METhod (COMET) [80] with PAPRIKA,
shows the following. AHP uses a hierarchical, multilevel structure to conceptualize how the alternatives
can achieve the main goal. The weights of the criteria are established based on pairwise comparisons.
Pairwise comparisons are used at each level to provide estimates for the weights of the criteria and also
for the alternatives, resulting in a pairwise comparison matrix. The criteria weights are determined
by the principal eigenvector method, and a consistency ratio is defined to assess the consistency
of judgements. TOPSIS uses a rational, intuitive logic, which allows the best alternatives to be sought
for each criterion, with a simple mathematical formula which takes into account the values of the
weights of each criterion in the calculation process, as well as whether the criterion is a cost or a benefit.
The order of the alternatives is calculated from the geometric distance to the positive and negative
ideal solutions. However, it does not have a specific procedure for obtaining the weightings of the
criteria, and so many studies use AHP to obtain these weightings, causing similar problems to AHP.

AHP and TOPSIS have the problem that they may undergo all the types of rank reversal caused
by change of local priorities before and after an alternative is added or deleted. In the case of TOPSIS
this is due to the calculation of the norm and the choice of the ideal positive and negative solutions.
Although modifications have been introduced into these techniques to avoid this rank reversal,
the phenomenon has not been perfectly resolved [81] and it may be considered as the main flaw in
most MCDM methods [82]. COMET, on the other hand, completely avoids rank reversal because
there is no comparison between the decision variants assessed. It also allows a relatively simple
identification of linear and non-linear decision-maker functions, increasing its applicability to both
linear and non-linear problems [83]. This method accounts for correlation between the components of
an MCDM function, and comparisons between the characteristic objects are simpler than comparisons
between alternatives [80]. Thus, when a decision maker compares two characteristic objects, the
more preferred is given one point, and the second gets nil point, whereas if the preferences are equal,
both objects are awarded half a point. After the final object comparison, the complete fuzzy rule base
is obtained. The preference of alternative is calculated as the sum of the product of all activated rules,
their degrees of fulfilment, and their preference values.

In PAPRIKA, weightings between criteria are obtained by comparing the preference or equality of
one criterion relative to another, while in COMET the comparison is carried out between characteristic
objects (relative to all criteria at once), choosing the best each time. The accuracy obtained with COMET
and PAPRIKA may therefore be considered better than with AHP and TOPSIS, which are based on
the use of a scale from 1 to 9, and its inverse, and so the comparison requires a greater number of
options than COMET and PAPRIKA. An example of use described in Sałabun and Piegat [82] shows
that COMET has a lower root mean square error (RMSE) and a higher ratio of correct answers than
AHP and TOPSIS, and therefore gives greater accuracy.

Furthermore, the comparison process used by both COMET and PAPRIKA leads to low
biased results, since participants can express their true preferences more freely, and in both cases,
software is needed to apply it. AHP, PAPRIKA and COMET all come with very intuitive software for
applying the method, but only in the case of COMET is the associated software capable of calculating the
behavior of the arithmetic intervals, hesitant fuzzy sets and intuitionistic fuzzy sets [84]. In this regard,
COMET is an intuitionistic approach, unlike the other methods previously mentioned.

In the case of PAPRIKA, the number of further necessary questions is reduced dynamically,
as a function of the decisions already made, by eliminating the dominated alternatives. Although
any number of criteria and scale levels can be included, as their number increases the number
of potential alternatives (combinations) increases exponentially. In the case of COMET, the
number of required questions increases polynomially relative to the number of characteristic
objects; even in the most optimistic case, which assumes that each linguistic variable will have
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two characteristic values, the number of questions increases exponentially with the number of
criteria [84]; however, by creating a hierarchical structure, the number of pairwise comparisons in the
COMET technique is considerably reduced.

The main advantage of the PAPRIKA methodology is that the criteria weights can be constructed
without explicitly asking decision makers about them. This technique also provides information on
the value functions related to the different criteria, which requires greater effort by the analysts and
decision makers than with the other methods [85]. Furthermore, care must be taken to guarantee that
the number of sets of options used (combining the various criteria and scale levels) gives sufficient
data for the statistical analysis.

The results obtained with the help of the 1000Minds software are shown below, taking into account
the assessments of four decision makers who constitute a heterogeneous group: two of them belong to
the Hospital staff, one of them being in charge of the Hospital’s Environment service, and the other
two are university experts. Decision makers are identified as DM1 to DM4. The preference values
obtained by the DMi are shown in Table 8. Three categories or scale levels have been considered in
each risk criterion. The ranking of the criteria or risk factors is shown in Table 9. Table 10 shows the
relative importance between the criteria in a pairwise comparison. The weights of the risk criteria or
normalized criteria and the scores of each criterion (means) are shown in Table 11.

Table 8. Preferential values given by decision makers.

DM1 DM2 DM3 DM4 Median Mean

Occurrence

High 0% 0% 0% 0% 0% 0%
Medium 12.1% 16.0% 14.3% 12.5% 13.4% 13.7%

Low 24.2% 20.0% 28.6% 16.7% 22.1% 22.4%

Severity

Very severe 0% 0% 0% 0% 0% 0%
Severe 24.2% 12.0% 14.3% 20.8% 17.6% 17.8%

Not severe 39.4% 48.0% 50.0% 50.0% 49.0% 46.8%

Detectability

Not detected 0% 0% 0% 0% 0% 0%
Sometimes detected 18.2% 8.0% 7.1% 8.3% 8.2% 10.4%

High capacity for detection 36.4% 32.0% 21.4% 33.3% 32.7% 30.8%

Table 9. Ranking of risk factors.

Risk Criteria dm1 DM2 DM3 DM4 Median Mean

Occurrence 1st 1st 1st 1st 1.000 1.000
Severity 3rd 3rd 2nd 3rd 3.000 2.750

Detectability 2nd 2nd 3rd 2nd 2.000 2.250

Table 10. Relative importance of risk factors in comparison by pairs.

Risk Criteria Severity Occurrence Detectability

Occurrence 1.0 2.1 1.5
Severity 0.5 1.0 0.7

Detectability 0.7 1.4 1.0
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Table 11. Weightings of risk criteria.

Risk Criteria
Weightings
(
∑

wi = 1)
Categories

Individual Valuation
(0–100)

Occurrence 0.468
High 0.0

Medium 61.4
Low 100.0

Severity 0.224
Very severe 0.0

Severe 38.1
Not severe 100.0

Detectability 0.308
Not detected 0.0

Sometimes detected 33.8
High capacity for detection 100.0

5. Results

ϕ = 0.6 was established following the recommendation of Liu [35]. Regarding the reference
series for the risk factors, considering that the lower the score, the lower the risk, the minimum value
α− = (0, 1) can be used, thus, taking A0 = [α−,α−, . . . , α−] = [(0, 1), (0, 1), ..., (0, 1)]. Once the
reference series of the risk factors, the objective and subjective weightings of the risk factors were
obtained, the calculation of the distances between the reference series and the aggregated results using
the IFHWED operator, defined in Equation (11), were established. Table 12 shows the final ranking of
failure modes to be treated in the Nuclear Medicine Department of the hospital. It can be seen that
the failure mode ranked first is waste mismanagement, followed by incorrect labeling and incorrect
storage of the waste.

Table 12. Ranking of failure modes using IFHWED and subjective weights in risk criteria
using PAPRIKA.

Failure Modes IFHWED (ϕ = 0.6) + PAPRIKA Ranking

Failure mode 1 0.574 2nd
Failure mode 2 0.546 3rd
Failure mode 3 0.589 1st
Failure mode 4 0.511 5th
Failure mode 5 0.353 9th
Failure mode 6 0.508 6th
Failure mode 7 0.479 7th
Failure mode 8 0.522 4th
Failure mode 9 0.462 8th

The sensitivity analysis gives the results shown in Table 13. As can be seen, the methodology is
robust since there is only an inversion in the classification of the failure modes 4 and 6, which are in
5th and 6th positions, in the case of ϕ = 0.2 and ϕ = 0.8. The same full ranking of failure modes was
maintained for the remaining cases.

Table 13. Sensitivity analysis using IFHWED and subjective weightings of risk factors using PAPRIKA.

Failure Modes
IFHWED + PAPRIKA

(ϕ = 0.2)
Ranking

IFHWED + PAPRIKA
(ϕ = 0.4)

Ranking
IFHWED + PAPRIKA

(ϕ = 0.8)
Ranking

Failure mode 1 0.573 2nd 0.574 2nd 0.575 2nd
Failure mode 2 0.542 3rd 0.544 3rd 0.549 3rd
Failure mode 3 0.589 1st 0.589 1st 0.589 1st
Failure mode 4 0.516 6th 0.513 5th 0.508 6th
Failure mode 5 0.354 9th 0.353 9th 0.353 9th
Failure mode 6 0.505 5th 0.506 6th 0.510 5th
Failure mode 7 0.493 7th 0.486 7th 0.471 7th
Failure mode 8 0.521 4th 0.521 4th 0.522 4th
Failure mode 9 0.458 8th 0.460 8th 0.464 8th
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6. Validation

The methodology described was validated in two ways. Firstly, linguistic terms are used to
assess the subjective weights of risk factors, rather than PAPRIKA. Secondly, using fuzzy TOPSIS,
a recognized and widely used technique, which has also been used successfully in various studies
where it is combined with FMEA.

To validate the proposed methodology, the linguistic terms in Table 4 were used to assess the
subjective weights of risk factors, rather than PAPRIKA. Two DMs were used for this, the same ones
who provided the linguistic assessments of the failure modes and who also provided the judgements
in the PAPRIKA method. The resulting judgements are shown in Table 14.

Table 14. Risk criteria judgements.

Criteria Occurrence Severity Detectability

DM1 (0.75, 0.2) (0.9, 0.05) (0.5, 0.5)
DM2 (0.9, 0.05) (0.75, 0.2) (0.5, 0.5)

To determine the subjective weightings of the risk factors, the subjective weightings of the group
wj =

(
μ j, ν j

)
, obtained from Equation (8), will be used.

w1 = (0.874, 0.071); w2 = (0.801, 0.141); w3 = (0.500, 0.500)

These weights are to be normalized according to Equation (8), giving the weights:

w1 = 0.407; w2 = 0.374; w3 = 0.220

Once the reference series of the risk factors were established, the calculation of the distances
between the reference series and the aggregated results using the IFHWED operator, defined in
Equation (11), the final ranking of failure modes is obtained (see Table 15). ϕ = 0.6 was used again in
this case, as with PAPRIKA.

Table 15. Ranking of failure modes.

Failure Modes IFHWED (ϕ = 0.6) Ranking

Failure mode 1 0.579 2nd
Failure mode 2 0.545 3rd
Failure mode 3 0.590 1st
Failure mode 4 0.517 5th
Failure mode 5 0.352 9th
Failure mode 6 0.505 6th
Failure mode 7 0.488 7th
Failure mode 8 0.522 4th
Failure mode 9 0.460 8th

The sensitivity analysis gives the results shown in Table 16. The methodology can be seen to be
robust, since the same complete ranking of failure modes was maintained for all the assessed values
of ϕ.
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Table 16. Sensitivity analysis.

Failure Modes
IFHWED
(ϕ = 0.2)

Ranking
IFHWED
(ϕ = 0.4)

Ranking
IFHWED
(ϕ =0.8 )

Ranking

Failure mode 1 0.575 2nd 0.577 2nd 0.582 2nd
Failure mode 2 0.541 3rd 0.543 3rd 0.547 3rd
Failure mode 3 0.589 1st 0.590 1st 0.590 1st
Failure mode 4 0.518 5th 0.517 5th 0.517 5th
Failure mode 5 0.353 9th 0.352 9th 0.351 9th
Failure mode 6 0.504 6th 0.505 6th 0.506 6th
Failure mode 7 0.496 7th 0.492 7th 0.483 7th
Failure mode 8 0.521 4th 0.521 4th 0.522 4th
Failure mode 9 0.457 8th 0.459 8th 0.461 8th

It can be seen that the ranking using PAPRIKA or linguistic terms to evaluate the subjective
weights of risk factors is the same, and there is no change in ranking of the failure modes between the
two methodologies. The differences between the values obtained with linguistic terms and those from
PAPRIKA are 0.289% on average. Five values are found to be slightly higher with PAPRIKA compared
to linguistic terms, and one value is the same with the two methodologies. The valuations with
PAPRIKA are therefore very slightly higher than when only IFHWED and linguistic terms are used.
Thus, PAPRIKA slightly increases the risk assessment in the failure modes compared to IFHWED and
linguistic terms.

The methodology that combines IFHWED and PAPRIKA with a methodology that includes the
weightings obtained via fuzzy linguistic terms and fuzzy TOPSIS was also checked, to obtain the
classification of the failure modes. The fuzzy linguistic scale for weightings traditionally used in fuzzy
TOPSIS is shown in Table 17 (see [36]). The linguistic variables for the ratings are shown in Table 18.
Using the linguistic variables from Table 17 on the risk factors, from the two decision makers previously
used in this study, the values shown in Table 19 are obtained. A weight of 0.25 is assigned to DM1 and
0.75 to DM2 as in the methodology described in our study. The weighted normalised decision matrix
is shown in Table 20.

Table 17. Linguistic scale for the weights.

Linguistic Terms Triangular Fuzzy Number

Very Low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)

Medium Low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)

Medium High (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)

Very High (VH) (0.9, 1.0, 1.0)

Table 18. Linguistic scale for the ratings.

Linguistic Terms Triangular Fuzzy Number

Very Poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)

Medium Poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)

Medium Good (MG) (5, 7, 9)
Good (G) (7, 9, 10)

Very Good (VG) (9, 10, 10)
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Table 19. Risk criteria judgements.

Criteria Occurrence Severity Detectability

DM1 (0.7, 0.9, 1) (0.9, 1, 1) (0.3, 0.5, 0.7)
DM2 (0.9, 1, 1) (0.7, 0.9, 1) (0.3, 0.5, 0.7)

Table 20. Weighted normalized decision matrix.

Alternative Occurrence Severity Detectability

Failure mode 1 (0.340, 0.464, 0.500) (0.276, 0.414, 0.500) (0.090, 0.188, 0.298)
Failure mode 2 (0.319, 0.439, 0.500) (0.257, 0.390, 0.500) (0.075, 0.175, 0.298)
Failure mode 3 (0.298, 0.415, 0.475) (0.276, 0.414, 0.500) (0.120, 0.238, 0.350)
Failure mode 4 (0.234, 0.342, 0.425) (0.237, 0.390, 0.500) (0.090, 0.188, 0.298)
Failure mode 5 (0.043, 0.146, 0.250) (0.079, 0.195, 0.316) (0.045, 0.125, 0.245)
Failure mode 6 (0.255, 0.390, 0.475) (0.197, 0.341, 0.474) (0.075, 0.175, 0.298)
Failure mode 7 (0.298, 0.415, 0.475) (0.237, 0.390, 0.500) (0.053, 0.113, 0.193)
Failure mode 8 (0.213, 0.342, 0.425) (0.119, 0.244, 0.369) (0.075, 0.175, 0.298)
Failure mode 9 (0.313, 0.437, 0.500) (0.225, 0.347, 0.425) (0.060, 0.150, 0.280)

The distances d+i and d−i of each weighted alternative obtained from the fuzzy positive ideal
solution (FPIS) and the farthest distance from a fuzzy negative ideal solution (FNIS) are shown
in Table 21. The Table also includes the Closeness Coefficient (CC) of each failure mode, and the
resulting ranking.

Table 21. The distances, Closeness Coefficients and ranking of failure modes.

Alternatives
Distances

CC Ranking
d+i d−i

Failure mode 1 11.9923 1.0573 0.08102 2nd
Failure mode 2 12.0335 1.0252 0.07851 3rd
Failure mode 3 11.9886 1.0640 0.08152 1st
Failure mode 4 12.1169 0.9435 0.07224 5th
Failure mode 5 12.5326 0.5491 0.04197 9th
Failure mode 6 12.1278 0.9441 0.07222 6th
Failure mode 7 12.1242 0.9263 0.07098 7th
Failure mode 8 12.2642 0.8068 0.06172 8th
Failure mode 9 12.1027 0.9529 0.07299 4th

If the ranking obtained with the methodology described here is compared with that found using
fuzzy TOPSIS, it is seen that the rankings is similar. The only change is between failure modes 8 and 9,
in 4th and 8th position.

Since this difference exists in the classification of alternatives, the most frequently-used measures
of the analysis of the ranking similarity in decision-making problems were applied: Spearman,
Kendall and Goodman-Kruskal coefficients [86–88]. Spearman’s coefficient, ρ, is interpreted as a
percentage of the rank variance of one variable, explained by the other variable [88]. Equation (17) was
used to calculate Spearman’s coefficient, where di is the difference between the rankings obtained via
the MCDM methods and the number of elements in the ranking. The Kendall, τ, and Goodman-Kruskal,
G, coefficients are calculated from Equations (18) and (19) respectively, where Ns is the number of
compatible pairs, Nd the number of non-compliant pairs, and n the number of all pairs. These coefficients
represent the difference between the probability that the variables compared will be in the same order
for both variables and the probability that they will be in the opposite order.

ρ = 1 − 6×∑
d2

i

n× (n2 − 1)
(17)
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τ =
2(Ns −Nd)

n× (n − 1)
(18)

G =
Ns −Nd
Ns + Nd

(19)

The values obtained for these coefficients are: ρ = 0.733; τ = 0.389; G = 0.389; therefore,
Spearman’s coefficient suggests strong or high association, as it is between 0.7 and 0.9. As expected,
Spearman’s coefficient is greater than the other coefficients, since the latter are more sensitive to error,
or discrepancies in the data. The Kendall and Goodman-Kruskal coefficients show some positive
relation, in that knowing the order of the independent variable assists in predicting the order of the
dependent variable, but there is not high concordance. However, the difference at the top should
be more significant than an error at the bottom of the ranking. To solve this problem, therefore, the
Value of Similarity (WS) coefficient suggested in Sałabun and Urbaniak [88] is also calculated. This WS
coefficient is strongly related to the difference between two rankings at particular positions, and the
top of the ranking has a more significant influence on similarity than the bottom. Equation (20) is used
to calculate the WS coefficient.

WS = 1−
n∑

i=1

2−Rxi ×
∣∣∣Rxi −Ryi

∣∣∣
max

{∣∣∣1−Ryi
∣∣∣, ∣∣∣N −Ryi

∣∣∣} (20)

where N is a ranking length, Rxi and Ryi are defined as the positions in the ranking of the ith element
in ranking x and ranking y respectively. If the WS coefficient is less than 0.234, then the similarity
is low, while if the value is higher than 0.808, then the similarity is high [88]. In the case checked,
WS = 0.934, and therefore the similarity is high. This is because of the similar in the rankings with
only two variations of the nine alternatives, and because the three top positions in the ranking do not
undergo change.

Thus, the proposed methodology using FMEA in the segregation of health care waste is considered
to be validated by two different methodologies.

7. Discussion

Although there are many papers analyzing health waste management problems in different
countries, especially in middle and low-income countries, they are descriptive studies at the country or
wide geographical area level, so they do not focus on the problems of a specific hospital. However,
as can be seen in this study, health waste management problems also exist in high-income countries.
Although the problems may have different failure modes in middle and low-income countries than in
high income countries, the results cause similar risks for health personnel and other staffworking in
the health care organization, for patients and visitors, and for the environment. Therefore, it should be
analyzed in detail not only in low-income countries where it seems that the studies are focused on
this topic, but in all countries.

In addition, it should be noted that in no case studied in the literature on health waste
management have risk assessment techniques such as FMEA been used. Such techniques are, however,
not uncommon in risk assessment in other areas such as assessing machinery and device failures,
improving the decision process of the emergency department of a hospital, evaluating safety risks in
organizations, evaluating options of the production process, improving the process of purchasing in a
hospital, etc.

Therefore, this study focuses on a higher level of precision than the current literature, although at
the hospital level studied, improvement actions may be strategic.

The use of the intuitionistic fuzzy FMEA methodology, in addition to solving the problems derived
from using classical FMEA, prioritizes failure modes in the segregation of health care waste in a very
practical way, always based on expert judgement. By using linguistic terms, the significance of each
failure mode can be readily established, and when weighting each decision maker, a reliability can be
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assigned to each judgement issued, which is highly advisable when, for example, decision makers
have different levels of knowledge about the specific facility being assessed.

The goal of the hospital at the first stage was to maintain the number of containers used, but to
obtain a weight per container higher than that achieved up to that point, since that would be a
hallmark of better segregation and compliance with the regulations regarding minimum weights per
container (since it had been observed that containers have sometimes been collected without meeting
the stipulated minimums). Once this first step was taken, the second part consisted of reducing the
number of containers and the total weight. For this, the amount of waste (kg) and the number of
containers generated by the Nuclear Medicine Departments were monitored on a monthly basis.

In view of the prioritization of the failure modes obtained, the incorrectness in the placing of
material in the containers is in first place. To address this, especially regarding hazardous waste,
a poka-yoke system was designed. Poka-yoke are systems originally devised at Toyota, to avoid
mistakes in the operation of a system. This is a sticker (see Figure 3) to be placed on the lids of the
3-litre containers. This sticker will serve a dual purpose: on the one hand, it will serve to remind the
user of what parts to insert for correct segregation and, on the other, it will prevent the erroneous
insertion of certain objects (for example, syringes). Figure 3a) shows the profiles of the lid of the
3-litre container (red), the thickness of a poorly segregated syringe (blue) and the final design of a
sticker (green). Although the sticker can remain attached to the container when it is collected, it has a
strategically placed tab to enable it to be removed at any time.

(a) 

 

(b) 

Figure 3. Sticker to be placed on 3-litre containers (a) Design; (b) Final sticker.

In addition, an informative brochure has been produced to make the care staff of the Nuclear
Medicine Department aware of the importance of a good segregation and the improvement that
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it would mean for their working conditions and risk reduction. The brochure consists of 24 sides
(in Spanish); Attempts have been made, in a casual way, to make the user aware of the problems in
their environment and to visualize different correct and incorrect segregation actions. As an example,
two pages of the brochure are shown (see Figures 4 and 5 with the text in Spanish). Information
about the collection time, its location and cleaning times has also been included in the brochure.
Posters have also been created. The brochure was distributed digitally and on paper, while the posters
are put up at the Nuclear Medicine Department, to provide information for both workers and patients.
The information campaign has been reinforced with a series of training talks at the department. There is
also an intention to certify the research, so the Quality Unit would look at the possibility of offering
these talks, not as a mere instrument of information, but also for training.

Failure mode 5, which occupies the last position in the ranking, despite being one of the problems
that is clearest according to the view of human resources, could be solved with a proper relocation of
containers. Although there is a lack of space for the placement of new containers, these would not be
necessary if the healthcare staffmake proper use of those that are currently available.

Since this research began, changes have been observed in the worker’s culture in this regard,
and thus, the Environmental Technician announced that, after obtaining the latest data on recycling and
collection of waste material in the department, a significant decrease had been seen in waste generated.

 

Figure 4. Information on identification of containers and signage.

 

Figure 5. Correct and incorrect segregation actions.
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8. Conclusions

Segregation is recognized as an important step in health care waste management; however, it is
also observed that poor waste segregation exists in health care organizations in a generalized way,
with the lack of awareness about related health risks with health care waste, the lack of education
and training in proper waste management, the absence of waste management and disposal systems,
insufficient human and economic resources, and the low priority assigned to the topic being perceived
as the most common problems.

Incorrect segregation can affect hospital care staff, but also non-care staff, for example, facility
maintenance or cleaning personnel, waste handlers, and patients and companions, until it becomes a
public health problem. It also has implications for the environment and reduces the possible amount of
waste to be recycled. In addition, it increases the amount of hazardous waste generated, since the wrong
mix means that all mixed waste has to be treated as hazardous. However, despite the importance of
segregation, the number of studies that prioritize the failure modes related to segregation is non-existent,
with only descriptive studies associated with countries being found. However, the literature does
show multiple examples of using FMEA for risk prioritization in other areas.

Therefore, this study has designed a prioritization of failure modes related to segregation in the
Nuclear Medicine Department of a hospital. For this, an intuitive fuzzy FMEA methodology was
used to avoid the many problems presented by crisp FMEA. PAPRIKA has been used to obtain the
subjective risk criteria weights, while the distribution-based method has been used to calculate the
objective weights.

The methodology described has been validated in two ways: using linguistic terms, rather than
PAPRIKA, to assess the subjective weights of risk factors, and with fuzzy TOPSIS. In the first case
the ranking is the same, and in the second, there is only one change between the classification of
two failure modes. WS coefficient is used to calculate the level of similarity between the models,
and WS = 0.934, and therefore the similarity is high. A sensitivity analysis was also carried out to show
the robustness of the methodology.

The proposed methodology can help other health care organizations to classify their failure modes
relative to health care waste management and focus improvement efforts on the most critical failure
modes. In addition, it can be seen how, by initiating a study in the Hospital on the problem of segregation,
the staff becomes more aware and the segregation data of the department analyzed improves.

As future research, the aim is to incorporate additional risk factors to the O, S, and D considered
in this study and use them to build a hierarchical structure that contributes to a better prioritization
of failures modes. Furthermore, PAPRIKA has not been tested on the decision-making paradox,
where different decision-making methods can yield different results, when applied to exactly the
same decision problem and data, but it could exhibit this phenomenon; therefore, other techniques
such as Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) or the
more up-to-date COMET method, could be used to assign subjective weights to said risk criteria
and sub-criteria.

Also, future research will use methods different from the OWA operator to determine the objective
weights and compare the results obtained.

The research described was performed using the results of a survey carried out with personnel
who work in the Nuclear Medicine Department of a specific Hospital; due to the subjective nature
of surveys, it is proposed that the failure modes related to health care segregation be generated
using data from government sources or national private agencies to make the results more objective.
In this way, the failure modes generated will affect not just the care services at one hospital, but will
also be more generally characteristic of behavior throughout the country.
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Abstract: Most existing fuzzy AHP (FAHP) methods use triangular fuzzy numbers to approximate the
fuzzy priorities of criteria, which is inaccurate. To obtain accurate fuzzy priorities, time-consuming
alpha-cut operations are usually required. In order to improve the accuracy and efficiency of
estimating the fuzzy priorities of criteria, the piecewise linear fuzzy geometric mean (PLFGM)
approach is proposed in this study. The PLFGM method estimates the α cuts of fuzzy priorities and
then connects these α cuts with straight lines. As a result, the estimated fuzzy priorities will have
piecewise linear membership functions that resemble the real shapes. The PLFGM approach has
been applied to the identification of critical features for a smart backpack design. According to the
experimental results, the PLFGM approach improved the accuracy and efficiency of estimating the
fuzzy priorities of these critical features by 33% and 80%, respectively.

Keywords: fuzzy analytic hierarchy process; fuzzy geometric mean; alpha-cut operations;
piecewise linear

1. Introduction

The analytic hierarchy process (AHP), proposed by Saaty [1], is a well-known multi-criteria
decision-making method. AHP is based on the pairwise comparison of criteria, which is a subjective
process. To better consider such subjectivity, fuzzy logic has been incorporated into AHP, which resulted
in various fuzzy AHP (FAHP) methods [2]. FAHP have been extensively applied to a number of topics
in various fields, e.g., supplier selection [3–6], project selection and risk assessment/management [7,8],
personnel selection [9,10], failure mode and effect analysis [11,12], strategy analysis and technology
selection [13–16], etc.

In a FAHP problem, deriving the values of fuzzy eigenvalue and eigenvector requires a number
of fuzzy multiplication operations, which is a time-consuming task [17]. For this reason, most existing
FAHP methods [18–26] estimate, rather than derive, the values of fuzzy eigenvalue and eigenvector.
To improve both the efficiency and accuracy of solving a FAHP problem, a piecewise linear fuzzy
geometric mean (PLFGM) approach is proposed in this study. The PLFGM approach can be viewed as
a hybrid of alpha-cut operations (ACO) [18] and fuzzy geometric mean (FGM) [22]. In the PLFGM
approach, some α cuts of fuzzy eigenvalue and eigenvector are estimated using FGM. Then, these α
cuts are connected with straight lines. As a result, the membership functions of the estimated fuzzy
eigenvalue and eigenvector become piecewise linear functions, rather than triangular functions. In this
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way, the estimated fuzzy eigenvalue and eigenvector better approximate their exact values. In addition,
the required calculations can be done quickly, even for a large-scale FAHP problem. The novelty of the
proposed methodology resides in the following:

(1) The priority of a criterion is approximated with a polygon fuzzy number, rather than a triangular
fuzzy number (TFN).

(2) The commonly used FGM method is modified, and the PLFGM approach is proposed to improve
the accuracy of deriving the priorities of criteria.

(3) The proposed PLFGM approach is similar in nature to the ACO method, but much more efficient
than it.

(4) The center-of-gravity (COG) [27] of a polygon fuzzy number is derived.

The remainder of this paper is organized as follows. Section 2 is dedicated to the literature review.
Section 3 is a preliminary of some existing FAHP methods. Section 4 introduces the proposed PLFGM
approach. Section 5 details the application of the PLFGM approach to the identification of critical
features of a smart backpack design. Several existing methods were also applied to the same problem
for comparison. Section 6 concludes this study and puts forth some topics for future investigation.

2. Related Work

In theory, the fuzzy eigenvalue and eigenvector of a fuzzy judgment matrix can be derived
using ACO [18]. To enhance the computational efficiency, some researchers modified the definition
of consistency, so as to derive fuzzy eigenvalue and vector in a different way (i.e., not fuzzy
eigenanalysis) [19,20]. In addition, many existing FAHP methods approximate, rather than derive, the
values of fuzzy eigenvalue and eigenvector using techniques such as fuzzy extent analysis (FEA) [21],
FGM [22], and the fuzzy inverse of column sum (FICSM) [23]. However, such approximation may
lead to incorrect decisions [24,25]. To address this problem, Chen et al. [26] modified the ACO method
and proposed the approximating alpha-cut operations (xACO) method that derived the values of
fuzzy eigenvalue and eigenvector without enumerating all possible α cuts of a fuzzy judgment matrix.
However, Chen et al.’s method was still time-consuming for a large-scale FAHP problem.

In the recent literature, Sirisawat and Kiatcharoenpol [28] ranked a few solutions for reverse
logistics barriers using technique for order preference by similarity to ideal solution (TOPSIS). Factors
critical to the ranking process were prioritized by solving a FAHP problem using the FEA method.
Chen et al. [29] considered a FAHP problem as a fuzzy collaborative forecasting process [30–33], in
which the fuzzy priorities of criteria, rather than experts’ fuzzy pairwise comparison results, were
aggregated. Lyu et al. [34] compared the effects of various risks on constructing a metro tunnel, for
which the FEA method was applied to solve the FAHP problem. Chen and Wu [35] decomposed
an inconsistent fuzzy judgment matrix into several consistent fuzzy subjudgment matrixes, so as
to assess the suitability of a smart technology application for e-health. Boral et al. [36] combined
FAHP and fuzzy multi-attribute ideal deal comparative analysis (fuzzy MAIRCA) for comparing risk
factors in conducting a failure mode and effect analysis. For evaluating the sustainability of a smart
technology application to mobile health care, Chen [37] applied the FGM method to aggregate the
pairwise comparison results by multiple experts, and then derived the fuzzy priorities of criteria using
the ACO method. The differences between the proposed methodology and some existing methods are
summarized in Table 1.
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Table 1. Differences between the proposed methodology and some existing methods.

Method
Type of Eigenvalue

and Eigenvector

Shape of
Membership

Functions
Efficiency Accuracy

FGM [22] Fuzzy Triangular Very high Low

FEA [21,28,34] Crisp - Very high Very low

FICSM [23] Fuzzy Triangular Very high Low

ACO [18,37] Fuzzy Nonlinear Very low Very high

xACO [26] Fuzzy Logarithmic Low ~ moderate High

The proposed
methodology Fuzzy Piecewise Linear Very high Moderate ~ High

3. Preliminary

3.1. FAHP

In a FAHP problem, a decision maker compares the relative priority of a criterion over that of
another using linguistic terms such as “as equal as,” “weakly more important than,” “strongly more
important than,” “very strongly more important than,” and “absolutely more important than.” These
linguistic terms are usually mapped to TFNs within [1,9] (see Table 2) [38,39].

Table 2. Linguistic terms for expressing relative priorities.

Symbol Linguistic Term TFN

L1 As equal as (1, 1, 3)
L2 As equal as or weakly more important than (1, 2, 4)
L3 Weakly more important than (1, 3, 5)
L4 Weakly or strongly more important than (2, 4, 6)
L5 Strongly more important than (3, 5, 7)
L6 Strongly or very strongly more important than (4, 6, 8)
L7 Very strongly more important than (5, 7, 9)
L8 Very or absolutely strongly more important than (6, 8, 9)
L9 Absolutely more important than (7, 9, 9)

Based on pairwise comparison results, the fuzzy judgment matrix Ãn×n = [̃aij] is constructed as:

ã ji = (aji1, aji2, aji3)

= 1/ãi j
� (1/aij3, 1/aij2, 1/aij1)

(1)

ãii = 1 (2)

The fuzzy eigenvalue and eigenvector of Ã, indicated with λ̃ and x̃ respectively, satisfy [40]:

det
(
Ã(−)λ̃I

)
= 0 (3)

and
(Ã(−)λ̃I)(×)̃x = 0 (4)

where (−) and (×) denote fuzzy subtraction and multiplication, respectively. To derive the values of λ̃
and x̃, a number of fuzzy multiplication operations need to be performed. However, the multiplication
of TFNs does not yield a TFN [41]. Therefore, λ̃ and x̃ are not TFNs anymore, as illustrated in Figure 1.
Approximating them with TFNs may lead to incorrect decisions.
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μ
x

x

λ

Figure 1. Non-TFN nature of a fuzzy eigenvalue.

3.2. ACO

In the ACO method, fuzzy parameters and variables in Equations (3) and (4) are replaced with
their α cuts:

det(Ã(α) − λ̃(α)I) = 0 (5)

(Ã(α) − λ̃(α)I)̃x(α) = 0 (6)

Each α cut is an interval:
ãi j(α) = [aL

ij(α), aR
ij(α)] (7)

λ̃(α) = [λL(α), λR(α)] (8)

x̃(α) = [xL(α), xR(α)] (9)

If α takes 11 possible values (0, 0.1, . . . , 1), Equations (5) and (6) must be solved 11·2Cn
2 times to

derive the membership functions of fuzzy eigenvalue and eigenvector as [26]:

λL(α) = min
det([a∗i j(α)]−λt(α)I)=0

(λt(α)) (10)

λR(α) = max
det([a∗i j(α)]−λt(α)I)=0

(λt(α)) (11)

xL(α) = min
([a∗i j(α)−λt(α)I)xt(α)=0

(xt(α)) (12)

xR(α) = max
([a∗i j(α)−λt(α)I)xt(α)=0

(xt(α)) (13)

where * = L or R. λL
t (α), λ

R
t (α), xL

t (α), and xR
t (α) are the results derived from the t-th combination; t =

1~11·2Cn
2 . Although the ACO method can derive the membership functions of fuzzy eigenvalue and

eigenvector accurately, it is time-consuming.
Based on x̃, the fuzzy priorities of criteria can be derived as [40]:

w̃i = x̃i
n∑

j=1
x̃ j

= 1

1+
∑
j�i

x̃ j
x̃i

(14)
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In addition, based on λ̃max, fuzzy consistency ratio can be assessed as [40]:

C̃R =

λ̃max−n
n−1

RI
(15)

where RI random consistency index. If C̃R ≤ 0.1, then the decision maker’s pairwise comparison
results are consistent. Neither w̃i nor C̃R are TFNs [26].

The COG method can be applied to defuzzify a fuzzy priority as [27]:

COG(w̃i) =

∫ 1
0 xμw̃i

(x)dx∫ 1
0 μw̃i

(x)dx
(16)

However, the ACO method takes samples uniformly along the y axis, while COG requires that
samples be taken regularly along the x axis [26]. To resolve this discrepancy, the range of w̃i can be
partitioned into Γ equal intervals [42]:

w̃i= {[Γ − η+ 1
Γ

wL
i (0) +

η− 1
Γ

wR
i (0).. ,

Γ − η
Γ

wL
i (0) +

η

Γ
wR

i (0)]
∣∣∣∣∣ η = 1 ∼ Γ} (17)

The center of the η-th interval is indicated with Ci(η):

Ci(η) = 1
2 (

Γ−η+1
Γ wL

i (0) +
η−1

Γ wR
i (0) +

Γ−η
Γ wL

i (0) +
η
Γ wR

i (0))

=
2Γ−2η+1

2Γ wL
i (0) +

2η−1
2Γ wR

i (0)
(18)

The membership of Ci(η) is determined by interpolating those of the two closest α cuts of w̃i:

μw̃i
(Ci(η)) =

Ci(η)− max
w∗i (α)≤Ci(η)

w∗i (α)

min
w∗i (α)≥Ci(η)

w∗i (α)− max
w∗i (α)≤Ci(η)

w∗i (α)
· min

w∗i (α)≥Ci(η)
α

+

min
w∗i (α)≥Ci(η)

w∗i (α)−Ci(η)

min
w∗i (α)≥Ci(η)

w∗i (α)− max
w∗i (α)≤Ci(η)

w∗i (α)
· max

w∗i (α)≤Ci(η)
α

(19)

where * can be R or L. Then, the COG of w̃i is calculated based on the centers of the intervals:

COG(w̃i) =

Γ∑
η=1

(μw̃i
(Ci(η))Ci(η))

Γ∑
η=1
μw̃i

(Ci(η))

(20)

3.3. FGM

The FGM method estimates the fuzzy priority of criterion i as [38]:

w̃i �

n

√
n∏

j=1
ãi j

n∑
k=1

n

√
n∏

j=1
ãk j

(21)

When w̃i is approximated with a TFN, i.e., w̃i = (wi1, wi2, wi3), the following theorem holds.
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Theorem 1 ([39]).

wi1 �
1

1 +
∑
k�i

n

√
n∏

j=1
akj3

n

√
n∏

j=1
aij1

(22)

wi2 �
1

1 +
∑
k�i

n

√
n∏

j=1
akj2

n

√
n∏

j=1
aij2

(23)

wi3 �
1

1 +
∑
k�i

n

√
n∏

j=1
akj1

n

√
n∏

j=1
aij3

(24)

The COG method can be applied to defuzzify a TFN-based fuzzy priority as [27]

COG(w̃i) =
wi1 + wi2 + wi3

3
(25)

The fuzzy maximal eigenvalue λ̃max can be estimated as [38]

λ̃max �
1
n

n∑
i=1

n∑
j=1

(̃aij(×)w̃j)

w̃i
. (26)

The following theorem holds if λ̃max is approximated with a TFN.

Theorem 2 ([39]).

λmax,1 � 1 +
1
n

n∑
i=1

∑
j�i

ai j1wj1

wi3
(27)

λmax,2 � 1 +
1
n

n∑
i=1

∑
j�i

ai j2wj2

wi2
(28)

λmax,3 � 1 +
1
n

n∑
i=1

∑
j�i

ai j3wj3

wi1
. (29)

Based on λ̃max, fuzzy consistency ratio, in terms of a TFN, can be evaluated according to Equation
(15) as

CR1 =

λmax,1−n
n−1

RI
(30)

CR2 =

λmax,2−n
n−1

RI
(31)

CR3 =

λmax,3−n
n−1

RI
. (32)
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4. The PLFGM Approach

4.1. Assumptions and Limitations

The following assumptions are made in this study:

(1) The decision-maker is able to compare the relative priorities of criteria in pairs.
(2) Pairwise comparison results are consistent.
(3) An efficient ACO-based method for solving large-scale FAHP problems is still lacking.

In addition, the proposed PLFGM approach is subject to the following limitations:

(1) The PLFGM approach can only improve the accuracy of α cuts when α is not equal to 0 or 1.
(2) When pairwise comparison results are inconsistent, the effect of the PLFGM method is limited.
(3) When the uncertainty of pairwise comparison results is not high, the effect of the PLFGM method

is also limited.

A flowchart is provided in Figure 2 to illustrate the procedure of the PLFGM approach.

 

α

α

α

α

Figure 2. Procedure of the proposed methodology.

4.2. Piecewise Linear Membership Functions

Letting the left and right α cuts of w̃i be indicated with wL
i (α) and wR

i (α), respectively. According
to Theorem 1:

wL
i (α) �

1

1 +
∑
k�i

n

√
n∏

j=1
aR

kj(α)

n

√
n∏

j=1
aL

ij(α)

(33)
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wR
i (α) �

1

1 +
∑
k�i

n

√
n∏

j=1
aL

kj(α)

n

√
n∏

j=1
aR

ij(α)

(34)

In PLFGM, a fuzzy priority is estimated by connecting some of its α cuts with straight lines, as
illustrated in Figure 3, in which the membership function on either side is approximated by connecting
four α cuts with straight lines [43]. FGM is a special case of PLFGM because only the α cuts when α = 0
and 1 are connected.

x

μ x

α1

α2

wi

Figure 3. A fuzzy priority estimated using PLFGM.

An example is provided in Figure 4 that illustrates the differences among ACO, xACO, FGM,
and PLFGM.

(a) ACO 

Figure 4. Cont.
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(b) xACO 

(c) FGM 

(d) PLFGM 

Figure 4. Differences among ACO, xACO, FGM, and PLFGM (* denotes a data point) (a) ACO; (b)
xACO; (c) FGM; (d) PLFGM.

4.3. Defuzzification

To defuzzify a fuzzy priority estimated using the PLFGM approach, the following theorems
are helpful:

Theorem 3 ([6]). The integral of a non-normal trapezoidal fuzzy number (TrFN) P̃, shown in Figure 5, is:∫ x2

x1

μP̃(x)(x)dx =
μ2x2

2 + μ1x2
2 − 2μ2x1x2 + μ1x2

1 − 2μ1x1x2 + μ2x2
1

2(x2 − x1)
(35)
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x

μ x

x x

μ

μ
P

Figure 5. A non-normal TrFN.

Theorem 4 ([6]).∫ x2

x1

xμP̃(x)(x)dx =
2μ2x3

2 + μ1x3
2 − 3μ2x1x2

2 + μ2x3
1 + 2μ1x3

1 − 3μ1x2
1x2

6(x2 − x1)
. (36)

A fuzzy priority estimated using the PLFGM approach can be decomposed into several non-normal
TrFNs, as illustrated in Figure 6. In this figure, there are four non-normal TrFNs, whose corner data are
summarized in Table 3. Then, the defuzzified value of w̃i can be derived by applying Theorems 3 and
4 as follows.

x

μ x

0.5

wi

Figure 6. Decomposing a fuzzy priority estimated using PLFGM into several non-normal TrFNs.

Table 3. Corner data of the non-normal TrFNs.

I II III IV

x1 wL
i (0) wL

i (0.5) w∗
i (1) wR

i (0.5)
x2 wL

i (0.5) w∗
i (1) wR

i (0.5) wR
i (0)

μ1 0 0.5 1 0.5
μ2 0.5 1 0.5 0
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Theorem 5. Let w̃i be a polygonal fuzzy number as shown in Figure 6. Then the COG of w̃i is:

COG(w̃i) =

wL
i (0.5)3γ2γ3γ4 − 1.5wL

i (0)w
L
i (0.5)2γ2γ3γ4 + 0.5wL

i (0)
3γ2γ3γ4 + 2.5w∗

i (1)
3γ1γ3γ4

−3wL
i (0.5)w∗

i (1)
2γ1γ3γ4 + 2wL

i (0.5)3γ1γ3γ4 − 1.5wL
i (0.5)2w∗

i (1)γ1γ3γ4 + 2wR
i (0.5)3γ1γ2γ4

−1.5w∗
i (1)w

R
i (0.5)2γ1γ2γ4 + 2.5w∗

i (1)
3γ1γ2γ4 − 3w∗

i (1)
2wR

i (0.5)γ1γ2γ4 + 0.5wR
i (0)

3γ1γ2γ3

+wR
i (0.5)3γ1γ2γ3 − 1.5wR

i (0.5)2wR
i (0)γ1γ2γ3

1.5wL
i (0.5)2γ2γ3γ4 − 3wL

i (0)w
L
i (0.5)γ2γ3γ4 + 1.5wL

i (0)
2γ2γ3γ4 + 7.5w∗

i (1)
2γ1γ3γ4

−9wL
i (0.5)w∗

i (1)γ1γ3γ4 + 4.5wL
i (0.5)2γ1γ3γ4 + 7.5wR

i (0.5)2γ1γ2γ4 − 9w∗
i (1)w

R
i (0.5)γ1γ2γ4

+4.5w∗
i (1)

2γ1γ2γ4 + 1.5wR
i (0)

2γ1γ2γ3 + 1.5wR
i (0.5)2γ1γ2γ3 − 3wR

i (0.5)wR
i (0)γ1γ2γ3

(37)

where γ1 = wL
i (0.5) −wL

i (0); γ2 = w∗
i (1) −wL

i (0.5); γ3 = wR
i (0.5) −w∗

i (1); γ4 = wR
i (0) −wR

i (0.5).

Proof.

COG(w̃i) =

∫
xμw̃i

(x)dx∫
μw̃i

(x)dx

=

∫
x∈I xμw̃i

(x)dx+
∫

x∈II xμw̃i
(x)dx+

∫
x∈III xμw̃i

(x)dx+
∫

x∈IV xμw̃i
(x)dx∫

x∈I μw̃i
(x)dx+

∫
x∈II μw̃i

(x)dx+
∫

x∈III μw̃i
(x)dx+

∫
x∈IV μw̃i

(x)dx

=

wL
i (0.5)3−1.5wL

i (0)w
L
i (0.5)2+0.5wL

i (0)
3

6wL
i (0.5)−6wL

i (0)

+
2.5w∗i (1)

3−3wL
i (0.5)w∗i (1)

2+2wL
i (0.5)3−1.5wL

i (0.5)2w∗i (1)
6w∗i (1)−6wL

i (0.5)

+
2wR

i (0.5)3−1.5w∗i (1)w
R
i (0.5)2+2.5w∗i (1)

3−3w∗i (1)
2wR

i (0.5)

6wR
i (0.5)−6w∗i (1)

+
0.5wR

i (0)
3+wR

i (0.5)3−1.5wR
i (0.5)2wR

i (0)

6wR
i (0)−6wR

i (0.5)

0.5wL
i (0.5)2−wL

i (0)w
L
i (0.5)+0.5wL

i (0)
2

2wL
i (0.5)−2wL

i (0)

+
2.5w∗i (1)

2−3wL
i (0.5)w∗i (1)+1.5wL

i (0.5)2

2w∗i (1)−2wL
i (0.5)

+
2.5wR

i (0.5)2−3w∗i (1)w
R
i (0.5)+1.5w∗i (1)

2

2wR
i (0.5)−2w∗i (1)

+
0.5wR

i (0)
2+0.5wR

i (0.5)2−wR
i (0.5)wR

i (0)

2wR
i (0)−2wR

i (0.5)

=

wL
i (0.5)3γ2γ3γ4 − 1.5wL

i (0)w
L
i (0.5)2γ2γ3γ4 + 0.5wL

i (0)
3γ2γ3γ4 + 2.5w∗

i (1)
3γ1γ3γ4

−3wL
i (0.5)w∗

i (1)
2γ1γ3γ4 + 2wL

i (0.5)3γ1γ3γ4 − 1.5wL
i (0.5)2w∗

i (1)γ1γ3γ4 + 2wR
i (0.5)3γ1γ2γ4

−1.5w∗
i (1)w

R
i (0.5)2γ1γ2γ4 + 2.5w∗

i (1)
3γ1γ2γ4 − 3w∗

i (1)
2wR

i (0.5)γ1γ2γ4 + 0.5wR
i (0)

3γ1γ2γ3

+wR
i (0.5)3γ1γ2γ3 − 1.5wR

i (0.5)2wR
i (0)γ1γ2γ3

1.5wL
i (0.5)2γ2γ3γ4 − 3wL

i (0)w
L
i (0.5)γ2γ3γ4 + 1.5wL

i (0)
2γ2γ3γ4 + 7.5w∗

i (1)
2γ1γ3γ4

−9wL
i (0.5)w∗

i (1)γ1γ3γ4 + 4.5wL
i (0.5)2γ1γ3γ4 + 7.5wR

i (0.5)2γ1γ2γ4 − 9w∗
i (1)w

R
i (0.5)γ1γ2γ4

+4.5w∗
i (1)

2γ1γ2γ4 + 1.5wR
i (0)

2γ1γ2γ3 + 1.5wR
i (0.5)2γ1γ2γ3 − 3wR

i (0.5)wR
i (0)γ1γ2γ3

(38)

where γ1 = wL
i (0.5) −wL

i (0); γ2 = w∗
i (1) −wL

i (0.5); γ3 = wR
i (0.5) −w∗

i (1); γ4 = wR
i (0) −wR

i (0.5). This
completes the proof. �

Based on the derived (or estimated) fuzzy priorities of criteria, fuzzy weighted average (FWA) [16],
multi-attribute utility theory (MAUT) [44], fuzzy technique for order preference by similarity to ideal
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solution (fuzzy TOPSIS) [42], or fuzzy VIseKriterijumska Optimizacija I Kompromisno Resenje (fuzzy
VIKOR) [45] can be applied to evaluate the overall performances of alternatives.

5. Smart Backpack Design Case

5.1. Application of the Proposed Methodology

A smart backpack, also known as an enhanced backpack, is an innovative application of
smart technologies, with functions such as motion detection, navigation, and power generation [46].
However, most of the research and development focus is on rechargeable backpacks with a variety of
compartments, that is, placing a mobile power supply in a backpack and connecting the power to the
USB plug of each compartment [47]. Although it is very convenient to record activities and navigation
using a smart phone, there are still occasions when a smart backpack with functions such as motion
detection, navigation, and power generation is required. For example, sometimes it is inconvenient to
hold a smart phone, a smart phone is out of power, a mobile power supply is out of power, there is no
base station signal, or there is no offline map [48].

The research and development of smart backpacks is still in a nascent stage. As a result, it is a
challenging task to identify factors that are critical to a smart backpack design. After reviewing the
relevant literature and current practices, the following five factors were considered critical to a smart
backpack design:

(1) C1: sleek design;
(2) C2: low price;
(3) C3: many smart technologies;
(4) C4: high practicability;
(5) C5: lightweight.

A designer first compared the relative priorities of these critical factors with linguistic terms. The
results are summarized in Table 4.

Table 4. Results of pairwise comparisons.

Critical Factor #1 Critical Factor #2
Relative Priority of Critical Factor #1 Over

Critical Factor #2

Low price Sleek design Weakly more important than

Many smart technologies Sleek design Strongly more important than

Sleek design High practicability Weakly more important than

Lightweight Sleek design Weakly more important than

Many smart technologies Low price Weakly more important than

Low price High practicability Weakly more important than

Lightweight Low price As equal as

Many smart technologies High practicability Strongly more important than

Many smart technologies Lightweight Weakly or strongly more important than

High practicability Lightweight As equal as

The following fuzzy judgment matrix was constructed:

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1/(1, 3, 5) 1/(3, 5, 7) (1, 3, 5) 1/(1, 3, 5)

(1, 3, 5) 1 1/(1, 3, 5) (1, 3, 5) 1/(1, 1, 3)
(3, 5, 7) (1, 3, 5) 1 (3, 5, 7) (2, 4, 6)

1/(1, 3, 5) 1/(1, 3, 5) 1/(3, 5, 7) 1 (1, 1, 3)
(1, 3, 5) (1, 1, 3) 1/(2, 4, 6) 1/(1, 1, 3) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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At first, the ACO method was applied to derive the exact values of fuzzy maximal eigenvalue and
fuzzy priorities from this fuzzy judgment matrix. The results are shown in Figures 7 and 8, respectively.
The fuzzy consistency ratio was around 0.096 with a minimum of 0 and a maximum of 0.611. After
applying COG to defuzzify fuzzy priorities, the results were 0.121, 0.196, 0.443, 0.11, and 0.174.

μ
x

x

λ

Figure 7. Values of fuzzy maximal eigenvalue derived using ACO.

μ
x

x

Figure 8. Values of fuzzy priorities derived using ACO.

The ACO method was implemented using MATLAB on a PC with an i7-7700 CPU 3.6 GHz and
8 GB RAM. The execution time was up to 20 s. To enhance computational efficiency, the PLFGM
approach was applied.

In the PLFGM approach, the α-cuts of fuzzy priorities when α is in {0, 0.5, 1} were estimated
according to Equations (33) and (34) and then connected, which resulted in their piecewise-linear
membership functions, as shown in Figure 9. Obviously, most of the fuzzy priorities estimated using
the PLFGM approach resembled their exact values. Subsequently, COG is applied to defuzzify these
fuzzy priorities. The results were 0.121, 0.209, 0.482, 0.11, and 0.174. Three of the estimated priorities
were equal to the corresponding exact values, showing the effectiveness of the PLFGM approach.
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Figure 9. Cont.
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(e) w5. 

μ
x

x

Figure 9. Fuzzy priorities estimated using PLFGM (a) w1; (b) w2; (c) w3; (d) w4; (e) w5.

5.2. Comparison with Existing Methods

For comparison, three existing methods, FGM, FEA, and xACO were also applied to this case. In
the FGM method, fuzzy priorities were approximated with TFNs. In the FEA method, priorities were
given in crisp values. In the xACO method, about 20% of the α-cut combinations required by the ACO
method were enumerated, which shortened the execution time to about 5 s. Subsequently, the COG
method was applied to defuzzify fuzzy priorities. To compare the accuracy achieved using various
methods, the average deviation (AD) from exact values was measured:

AD =

n∑
i=1

∣∣∣COGmethod(wi) −COGACO(wi)|
n

(39)

The results are summarized in Table 5. The execution time for each method was also shown in
this table.

Table 5. Performances of various methods.

Method AD Execution Time (seconds)

FGM 0.015 1
FEA 0.031 1

xACO 0.01 5
PLFGM 0.01 1

5.3. Discussion

According to the experimental results,

(1) Both xACO and PLFGM achieved the highest estimation accuracy, followed by FGM. The
prevalent FEA method was the least accurate method. Compared to FEA, PLFGM improved the
estimation accuracy, in terms of AD, by 33%.

(2) On the other hand, the execution time of xACO was considerably longer than that of PLFGM, FEA,
or FGM. If the size of a FAHP problem becomes larger, xACO will take much more time, while
other methods can still be completed instantaneously. Compared to xACO, PLFGM improved
the estimation efficiency, in terms of the execution time, by 80%.

(3) In this case, the PLFGM approach was considered to be superior to the three existing methods,
since it achieved the highest estimation accuracy within the shortest execution time.

(4) The most obvious advantage of the proposed methodology is that it improves the estimation
accuracy and efficiency at the same time.
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(5) One disadvantage of the PLFGM approach is the complexity of the formula for calculating the
defuzzification value.

6. Conclusions

In a FAHP problem, deriving the fuzzy priorities of criteria is a time-consuming task. As a result,
most existing FAHP methods estimate, rather than derive, the values of fuzzy priorities of criteria.
In this way, fuzzy priorities are approximated with TFNs. However, the edges of fuzzy priorities
are actually curved. Such inaccuracy may lead to incorrect decisions. To address this problem, the
PLFGM approach is proposed in this study. The PLFGM approach is a hybrid of ACO and FGM, so it
is expected to have the advantages of these two methods. In the PLFGM approach, some α cuts of
fuzzy priorities are estimated using the FGM method and connected with straight lines. As a result, the
estimated fuzzy priorities have piecewise linear membership functions that resemble the real shapes.
In addition, since FGM is much faster than ACO and xACO, the PLFGM approach can greatly improve
the efficiency of estimating fuzzy priorities.

The PLFGM approach has been applied to identify the critical features of a smart backpack design.
The following conclusions were drawn from the experimental results:

(1) “Many smart technologies” and “low price” were the two most important features of a smart
backpack design. In contrast, “high practicability” was the least important feature.

(2) Compared to the FGM method, the PLFGM approach improved the estimation accuracy, in terms
of AD, by 33%.

(3) In addition, the efficiency of the PLFGM approach, in terms of the execution time, was 80% higher
than that of the xACO method.

(4) The efficiency of the xACO method deteriorates rapidly as the size of the FAHP problem increases.
Therefore, the advantage of the PLFGM approach over the xACO method will be more significant
for a larger-scale FAHP problem.

The PLFGM approach needs to be applied to more real cases to further elaborate its effectiveness.
In addition, a simpler formula for defuzzifying a polygon fuzzy number must be proposed to enhance
the practicability of the PLFGM approach. These constitute some directions for future research.
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Abstract: The deployment of low-carbon energy (LCE) technologies and management of installations
represents an imperative to face climate change. LCE planning is an interminable process affected by a
multitude of social, economic, environmental, and health factors. A major challenge for policy makers
is to select a future clean energy strategy that maximizes sustainability. Thus, policy formulation
and evaluation need to be addressed in an analytical manner including multidisciplinary knowledge
emanating from diverse social stakeholders. In the current work, a comparative analysis of LCE
planning is provided, evaluating different multicriteria decision-making (MCDM) methodologies.
Initially, by applying strengths, weaknesses, opportunities, and threats (SWOT) analysis, the available
energy alternative technologies are prioritized. A variety of stakeholders is surveyed for that reason.
To deal with the ambiguity that occurred in their judgements, fuzzy goal programming (FGP) is
used for the translation into fuzzy numbers. Then, the stochastic fuzzy analytic hierarchical process
(SF-AHP) and fuzzy technique for order performance by similarity to ideal solution (F-TOPSIS) are
applied to evaluate a repertoire of energy alternative forms including biofuel, solar, hydro, and wind
power. The methodologies are estimated based on the same set of tangible and intangible criteria for
the case study of Thessaly Region, Greece. The application of FGP ranked the four energy types in
terms of feasibility and positioned solar-generated energy as first, with a membership function of
0.99. Among the criteria repertoire used by the stakeholders, the SF-AHP evaluated all the criteria
categories separately and selected the most significant category representative. Finally, F-TOPSIS
assessed these criteria ordering the energy forms, in terms of descending order of ideal solution,
as follows: solar, biofuel, hydro, and wind.

Keywords: low-carbon energy (LCE); clean energy technology; policy; multicriteria decision making
(MCDM); fuzzy methodologies; SWOT; FGP; SF-AHP; F-TOPSIS

1. Introduction

The use of energy is one of the most critical aspects in today’s society, as it participates in
all expressions of human development (industrial, economic, urban, and rural). For competent
authorities, it is also of great importance to develop clean technologies, mechanisms, and policies
that control regional resources and direct the regional development via the use of renewable and
environment-friendly energy forms. Thus, energy conservation and sustainability are equally important
in energy planning decision making. For that reason, the European Commission has suggested,
consequently, from 2014 and every year, a guideline to create a sustainable energy action plan (SEAP)
to include actions for the transition towards sustainable energy technologies. Via this European level
action, the body of European Governors had agreed to reduce atmospheric CO2 at least 20% by 2020,
a goal which was never reached.
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The key action for the modern regions is, therefore, to determine trajectories for establishing policies
in order to advance the use of renewable low-carbon resources for clean power generation systems
with techno-commercial viability, including solar, wind, hydro, and even hydrogen energy conversion
and storage installations capacity and response for efficient utilization [1–4], while also minimizing the
reliance on non-renewable fossil energy resources. Another primary goal is to promote initiatives that
would lead to bioenergy development in biomass and waste biorefineries for increased production
and use of sustainable biofuels [5–9]. Adopting an energy shift towards multifaceted low-carbon
technologies with sustainable nature and related policies would be to positively contribute to slow
down greenhouse gas cumulative emissions for addressing the climate change crucial problem [10–12].

At the same time, the following critical question arises: Is it feasible from an economical point
of view to accomplish these energy transitions? Investors surely understand the environmental gain
from such a shift to renewable energy usage, but certain reluctance still remains due to the lack
of an optimal solution to this problem [13]. The aforementioned conditions and restrictions make
the problem of energy planning and decision making a more complex one [14]. The conventional
multicriteria decision-making (MCDM) methodologies are not convenient to deal with this problem,
as a participatory modeling fuzzy environment is needed where all criteria in decision making,
all uncertainties related to energy form selection, and all subjectivities would be expressed with
linguistic variables instead of crisp-valued quantities [15,16]. The application of MCDM methods with
participation of fuzzy variables is promising in dealing with the vagueness in the process and revealing
the most influential factors associated with the embedded uncertainties in decision making.

Most of the studies that include fuzzy methodologies in the energy MCDM problem focus on
the following: (a) evaluation of a certain type of energy resource [17], (b) determination of an energy
policy for an energy usage alternative [18–20], and (c) power plant selection towards renewable
energies [21–23].

The main objective of the present original research is to evaluate participatory modeling as a
primary methodology for supporting a policy making process for the implementation of low-carbon
energy technologies. Using this method, first, competent authorities design a multitude of scenarios
based on regional environmental, economic, social, political, and health factors. The interoperability of
these parameters is not always constructive, as there can be negative or inverse causalities between any
two of these factors. In participatory modeling, regional stakeholders contribute to the buildup of these
causalities. Their opinion is obtained either by surveys or focus groups. Thus, linguistic or intuitionistic
variables are used for capturing this information. After all data are acquainted, fuzzy methodologies
are employed for evaluating the various scenarios and also selecting a specific energy technology
alternative. The application of participation modeling via surveys and focus groups succeeds to record
stakeholder preferences as fuzzy numbers initially. Four different candidate energy types (solar, hydro,
biofuel, and wind) are first evaluated by the fuzzy goal programming methodology in terms of their
feasibility according to the criteria set by the stakeholders. This succeeds in transforming the problem
from multiple objective into a single goal, i.e., to rank the energy types according to the primary criteria.
For this reason, the stochastic fuzzy analytic hierarchical process (SF-AHP) is involved for evaluating
the interrelations among the criteria and computing the pairwise fuzzy weight matrices. Later, the
fuzzy technique for order performance by similarity to ideal solution (F-TOPSIS) methodologies is
used to find near optimal solutions based on the predefined criteria that were used for the evaluation.
The aim is to optimize the achievement of this decision-making process relative to the preset criteria,
their pairwise relations, and the preset goals.

The structure of the paper is as follows: In the following section, we present all the material
and methods related to SWOT (strengths, weaknesses, opportunities, and threats), FGP (fuzzy goal
programming), SF-AHP, and F-TOPSIS methodologies, each one covering its own subsection. At the
same time, we provide the necessary literature review in each subsection when we lay out each one
and every methodology. In section three, we use a combined analysis for the SWOT and the SF-AHP to
determine priorities of criteria or alternative policies in the decision matrix. The steps in this analysis
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are the same as in conventional AHP studies, i.e., (i) setting up the hierarchy, (ii) setting up the weight
scale, and (iii) creating the decision matrix. The last is also created for the F-TOPSIS methodology with
the use of triangular fuzzy numbers. In addition, FGP previously computed the importance of the
criteria used in SF-AHP and F-TOPSIS method. Our results and discussion follow in the next section
with the application of the methodology in Thessaly Region, Greece. In the final section, we discuss
conclusions and future challenges for the issue.

2. Material and Methods

2.1. Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis

Strengths, weaknesses, opportunities, and threats (SWOT) analysis (see Figure 1) is a planning
methodology for project managers and decision makers to organize and highlight all above
characteristics in a use case of decision making or a project. This analysis is at a preliminary
stage, at the very first high level, and it is intended to mark all the objectives, as well as the internal
and external factors that affect the process achieving these objectives. The interoperability and
interrelationship between the internal and external factors are usually handled by means of the
strategic fit of the decision making and affect later steps in this planning analysis to achieve the
objective (such as AHP). The SWOT analysis is usually the first step applied in most of the energy
planning methodologies [24,25]. Furthermore, the SWOT analysis is used to analyze stakeholder
perceptions according to the decision-making process at hand [26], moving from a top-down to a
bottom-up approach.

 
Figure 1. Cognitive map of the strengths, weaknesses, opportunities, and threats (SWOT) analysis.

2.2. Stochastic Fuzzy Set Theory and Fuzzy Analytic Hierarchal Process

Introduced by Zadeh [27], fuzzy sets are the means to present uncertainty due to imprecision or
vagueness. Fuzzy sets are able to present data of linguistic variables and imprecise values. A fuzzy set
is characterized by the notion of membership as a function which assigns a grade of membership to
each entity in the set (a normalized value between 0 and 1). Fuzzy theory also includes the necessary
mathematical operators and programming to apply to the fuzzy domain [28–32].

The AHP was introduced by Saaty [33] and has become the most popular method used for MCDM.
However, AHP has shown some noticeable drawbacks because the variables involved in the method
must be valued with exact crisp numbers. For that reason, fuzzy AHP (FAHP) was developed as an
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extension to AHP [34]. Special note here is given to the triangular fuzzy number which is defined by
the triplet (l, m, u) where (l ≤ m ≤ u), (see Figure 2).

μ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−l
m−l l ≤ x ≤ m
u−x
u−m m ≤ x ≤ u
0 otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

 
Figure 2. The presentation of a triangular fuzzy number.

Note that m indicates the mean and the most possible value, where l and u denote the smallest
and the largest possible value, respectively.

According to the method, first, the experts recommend natural linguistic terms (e.g., equally
important and weakly important) to express their judgments in fuzzy AHP and compare any two
criteria pairs [35,36] (see Table 1). The pairwise comparison between any two criteria is based on a
nine-integer scale shown where vales in between can be used. Table 1 presents the corresponding
fuzzy value of this linguistic comparison.

Table 1. Equivalence between linguistic values and triangular fuzzy numbers.

Definition Crisp Values (Intensity of Importance) Fuzzy Triangular Scale
~
M=(l,m,u)

Equally important 1 (1,1,1)
Weakly important 3 (1,3,5)
Fairly important 5 (3,5,7)

Strongly important 7 (5,7,9)
Absolutely important 9 (7,9,9)

(Values 2,4,6,8 correspond to intermediate values to compromise between the previous ones).

According to the previous notation, it is worthwhile to present the most common algebraic
operations between any two fuzzy numbers and a compact description of how the judgement matrix is
calculated in the SF-AHP [37–40].

M̃ = (l, m, u) (2)

(M̃)
−1

= (l, m, u)−1 =
( 1

u′ ,
1

m′ ,
1
l

)
(3)

M̃1 ⊕ M̃2 = (l1, m1, u1) ⊕ (l2, m2, u2) = (l1 + l2, m1 + m2, u1 + u2) (4)

M̃1 − M̃2 = (l1, m1, u1) − (l2, m2, u2) = (l1 − l2, m1 −m2, u1 − u2) (5)

M̃1 ⊗ M̃2 = (l1, m1, u1) ⊗ (l2, m2, u2) = (l1l2, m1m2, u1u2) (6)
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Using the equations above for the addition and the multiplication of fuzzy numbers, we also
show the formulas for the inner product and the summation of multiple fuzzy numbers needed for the
calculation of the judgement matrix:

n∏
i=1

M̃i =

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

l,
n∏

i=1

m,
n∏

i=1

u

⎞⎟⎟⎟⎟⎟⎠ (7)

n∑
i=1

M̃i =

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

l,
n∑

i=1

m,
n∑

i=1

u

⎞⎟⎟⎟⎟⎟⎠ (8)

Using the answers (values) for the criteria under judgement for reaching the goal of the SF-AHP,
the judgement matrix must be calculated according to the following equation:

M̃ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̃11 M̃12 · · · M̃1n

M̃21 M̃22 . . . M̃2n

...

M̃n1

...

M̃n2

. . .

. . .

...

M̃nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l11m11u11 l12m12u12 · · · l1nm1nu1n

l21m21u21 l22m22u22 . . . l2nm2nu2n

...

ln1mn1un1

...

ln2mn2un2

. . .

. . .

...

lnnmnnunn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for

i = 1..n

j = 1..n

(9)

For each one of the criteria under study we also have to calculate the geometric mean of the values
of the matrix above, because it is needed to convert the fuzzy numbers back to crisp numbers and to
normalize them. This is via the equation:

F̃i = R̃⊗ G̃i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

n

√√√ n∏
j=1

M̃ij

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1

⊗ n

√√√ n∏
j=1

M̃ij, (10)

where G̃i is the fuzzy geometric mean of the criterion Ci, R is the reciprocal of the sum of the geometric
mean of fuzzy comparison values, and F̃i represents the fuzzy weight for criterion Ci. The last step of
the algorithm to compute the weights for each one of the criteria in this methodology is to find the
normalized value of the mean of the fuzzy weights above so that for all criteria these weights must
add up to 1. We must also add, for the case in which we have more than one expert that we contribute
to the decision-making process, the previous methodology must be repeated each time.

In the last few years, the method has started to be widely used in the decision-making processes
regarding supplier evaluations. There is a plethora of research works which have just been published
also in relation to the subject at hand and for which we include, here. a synoptic reference:

In a recent work [41], the authors investigated supply chain sustainability by using the Pythagorean
fuzzy analytic hierarchy process for the Indian manufacturing industry using the engagement of
stakeholders. The study proved that the sustainable supply chain innovation along with social,
environmental, and economic advancements were the key factors in improvement of the manufacturing
industries. Towards the same line, other researchers [42] used the SF-AHP method to explore dilemmas
regarding the solar energy in Taiwan buildings and analyzed the economic development of energy
exploiting and environmental protection as the main categories of setting up criteria. Their findings
indicated that the method used provided an operational evaluation decision-making system model.
Furthermore, 15 representative energy enterprises in China were investigated and their performance
was evaluated [43]. SF-AHP for F-TOPSIS was applied to rank the enterprises accordingly and they
recommended differentiated subsidy policies for uncertainty evaluation to increase the credibility of the
results. Since the problem at hand is of an international nature and it is a reality for most undergrown
countries, another work [44] dealt with the evaluation of the renewable resource alternatives in Pakistan
employing SWQIT analysis with SF-AHP to assess the internal and external factors which affect the
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renewable energy technologies. More specifically the SF-AHP was used as a multi-perspective approach
to study the solar, wind, and biomass energy types identifying that economic and socio-political were
the two most important criteria, thus suggesting that there must be a priority of the government to
exploit renewable resources to mitigate the current energy crisis. In addition, other researchers agreed
with the aforementioned conclusion when they dealt with similar problems referring to Serbia [45,46].
These authors dealt mostly with measuring energy security, but they applied the same methodology,
since it was simply evaluation of another set of criteria. The authors claimed that SF-AHP operates with
numerical and linguistic data and there is universality of its application concluding to an experimentally
verified assessment of energy security and its trend in the future of the natural gas sector.

2.3. Fuzzy Technique for Order Performance by Similarity to Ideal Solution

The basic idea behind the technique for order performance by similarity to ideal solution (TOPSIS)
is the use of the heuristic that any candidate decision among all candidates must have the minimum
distance from the positive ideal candidate decision and the longest distance from the negative ideal
candidate decision [47–49]. Although the method was developed in 1981 [50], it is heavily used for
almost every decision-making process, which is based on linguistic variables after the fuzzy extension
was proposed [51]. This extension gives the decision maker the ability to define each criterion,
its weight, and every decision alternative with triangular based fuzzy numbers as they were defined
in (1). Assuming any two fuzzy numbers M̃1 = (l1, m1, u1) and M̃2 = (l2, m2, u2) and using the vertex
method for F-TOPSIS, the distance between M̃1 and M̃2 is given as:

d
(
M̃1, M̃2

)
=

√
1
3

[
(l1 − l2)

2 + (m1 −m2)
2 + (u1 − u2)

2
]

(11)

In relation to finding near optimal or suboptimal solutions for the renewable type energy selection
problem, lately, there exists some new research [52–57].

Here, we present the step-by-step algorithm of the F-TOPSIS procedure as follows:
Step 1 Define and classify the weights of the criteria involved. Each of the decision maker experts

assigns a linguistic weight to all of the predetermined criteria. The assignment is subjective to each
expert, but the linguistic values used are similar to a five-Likert scale, which is given in Table 1. Typical
values can be “very low importance”, “low importance”, “medium importance”, “high importance”
and “very high importance” and the corresponding normalized fuzzy numbers are shown in Table 2.

Table 2. Expert linguistic values and corresponding normalized triangular fuzzy numbers.

Linguistic Value Normalized Fuzzy Triangular Number

Very low importance (0,0.1,0.3)
Low importance (0.1,0.3,0.5)

Medium importance (0.3,0.5,0.7)
High importance (0.5,0.7,0.9)

Very high importance (0.7,0.9,1)

Step 2 Creation of the judgement matrix. The judgement matrix refers to each decision maker and
it is constructed by the available alternative decisions Di in combination with the available criteria Cj.

JM =

C1 C2 · · · Cm

D1

D2
...
Dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r̃11 r̃12 · · · r̃1m
r̃21 r̃22 . . . r̃2m
...

... . . .
...

r̃n1 r̃n2 . . . r̃nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)
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Step 3 Creation of the normalized judgement matrix. To achieve this transformation, we first
classify the criteria set into two subsets, namely (a) the benefit criteria (BC) subset and (b) the cost
criteria (CC) subset. The normalized judgement matrix NJM is created using JM, BC, and CC where

NJM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x̃11 x̃12 · · · x̃1m
x̃21 x̃22 . . . x̃2m
...

... . . .
...

x̃n1 x̃n2 . . . xnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

x̃i j =

⎛⎜⎜⎜⎜⎜⎝aij

c∗j
,

bij

c∗j
,

cij

c∗j

⎞⎟⎟⎟⎟⎟⎠, j ∈ BC, x̃i j =

⎛⎜⎜⎜⎜⎜⎝a−j
ci j

,
a−j
bi j

,
a−j
ai j

⎞⎟⎟⎟⎟⎟⎠, j ∈ CC (14)

c∗j = maxi cij, j ∈ BC, a−j = maxi aij, j ∈ CC (15)

Step 4 Construct the weighted NJM. The weighted NJM denoted as WNJM is constructed as

Ṽ =
[
ṽi j

]
n×m

ṽij = x̃i j(.)w̃i i = 1 . . . n j = 1 . . .m (16)

Step 5 Calculate the fuzzy positive ideal solution (FPIS) and the fuzzy negative ideal solution
(FNIS). These solutions are given by the calculation of two vectors respectively A∗ and A− where

A∗ =
(
ṽ∗1, ṽ∗2, . . . , ṽ∗n

)
A− =

(
ṽ−1 , ṽ−2 , . . . , ṽ−n

)
(17)

and ṽ∗i = (1, 1, 1) and ṽ∗i = (0, 0, 0) i = 1 . . . n.g
Step 6 Calculate the distance between FPIS and FNIS, that is, the distance between A∗ and

A− where

d̃∗i =
n∑

i=1

d
(
ṽi j, ṽ∗i

)
, i = 1 . . . n (18)

d̃−i =
n∑

i=1

d
(
ṽi j, ṽ−i

)
, i = 1 . . . n (19)

Step 7 Calculate the closeness coefficient of each of the alternative decisions and order them in
descending order.

COEFi =
d̃−i

d̃∗i + d̃−i
(20)

When dealing with the energy suppliers’ problem, we must investigate the selection of the best
supplier under conditions and criteria. Some authors [58] have claimed that the selection became
difficult because in order to choose they needed to achieve the balance between criteria which were
not of the same morphological type (i.e., ordinal, cardinal, categorical values, etc.) Therefore, they
used the F-TOPSIS method in a two-phase model, with FAHP as the first step, to evaluate and select
suppliers. This model could be used as a decision support and making tool since it succeeded to
optimize the savings choosing the optimal supplier. In a similar study [59], criteria for solar energy
were evaluated, but mostly technological, using intuitionistic fuzzy TOPSIS with a trigonometric
entropy vector weight. In addition, another researcher [60] dealt with the renewable energy power
deployment in various systems that used electrical power and claimed that the sustainability study of
energy storage systems was of critical significance. Therefore, the author did an extensive analysis,
evaluation, and ranking of eight criteria in economic, social, environmental, and technological pillars
that affected the aforementioned problem. The author initially used the Bayesian best–worst method
to determine the weights of the criteria, and then the fuzzy TOPSIS method was used to rank the
sustainability performance of different electrochemical energy storage technologies according to the
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criteria participating in the process. As for the integrating energy type selection planning, a latest
work [61] showed the integration of SWOT analysis, SF-AHP, and F-TOPSIS to evaluate energy
strategies for energy sustainability. Initially, SWOT was deployed to determine the important factors
for sustainable energy planning. Then, SF-AHP was used to calculate the weights of each factor and
sub-factor, and in the last step F-TOPSIS ranked the various energy strategies studied. The methodology
was very clear and very similar to the proposed methodology in this paper since it guaranteed a
systematic approach for energy strategy sustainability evaluation. On the other hand, the same
problem was approached with multi-criteria decision-making (MCDM) methods [62]. By using
participatory modeling and surveying, the authors identified all relevant criteria that had quantitative
and qualitative characteristics and used a decision-making process to calculate the criteria weights [63].
Specifically, SF-AHP was used for the weights, and then fuzzy VIKOR and F-TOPSIS were utilized
for result comparisons. Finally, the most proper energy systems in Saudi Arabia were investigated
using SF-AHP, fuzzy VIKOR, and F-TOPSIS methods to select the most eligible system among eight
alternatives [64]. The priority of the investment for energy systems was computed by doing sensitivity
analysis, and pairwise comparison of the alternatives was implemented using the weight of group
utility and fuzzy DEA (data envelopment analysis) approaches. The results showed that solar energy
was the most productive.

2.4. Fuzzy Goal Programming

Goal programming (GP) is a well-known method introduced by Charnes and Cooper [65] and
later on extended by other researchers [66–70]. This methodology aims at optimizing (minimizing) the
achievement of a decision relative to the preset goal levels. The mathematical definition of GP is [65]:

Min

⎛⎜⎜⎜⎜⎜⎝ K∑
i=1

(pi + ni)

⎞⎟⎟⎟⎟⎟⎠ s.t.
(AX)i + ni − pi = bi
X ∈ Cs

ni, pi ≥ 0
i = 1..K (21)

where ni, pi, bi, X, Cs are the set of positive deviations, the set of negative deviations, the preset level
of goal, the decision, and the constrains or criteria, respectively. There are many differentiations
to the method sometimes focusing on the problem at hand such as: (a) weighted GP (WGP) [68],
(b) lexicographic GP (LGP) [71] and (c) MINMAX GP (MGP) [72]. The introduction of fuzzy
representation of variables in GP was presented by Narasimhan [73] who created the fuzzy goal
programming (FGP) method. This author involved fuzzy subsets to formulate imprecision in defining
goals for the decision making.

The problem is a multi-objective and multi constraint problem which consists of the following set
of optimization functions along with the rich set of constraints:

Min
i0∑

i=1

wi
pi

ΔR
i

+

j0∑
i=i0+1

wi
ni

ΔL
i

+
K∑

i= j0+1

wi

⎛⎜⎜⎜⎜⎝ ni

ΔL
i

+
pi

ΔR
i

⎞⎟⎟⎟⎟⎠
s.t. (AX)i − pi ≤ bi i = 1, . . . , i0
(AX)i + ni ≥ bi i = i0 + 1, . . . , j0
(AX)i + ni − pi = bi i = j0 + 1, . . . , k0

(AX)i − pi ≤ bu
i i = k0 + 1, . . . , K

(AX)i + ni ≥ bl
i i = k0 + 1, . . . , K

μι +
pi
ΔR

i
= 1 i = 1, . . . , i0

μι +
ni
ΔL

i
= 1 i = i0 + 1, . . . , j0

μι +
ni
ΔL

i
+

pi
ΔR

i
= 1 i = j0 + 1, . . . , K

μι, ni, pi ≥ 0 i = 1, . . . , K
X ∈ Cs

(22)
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Relatively to decision making in energy-oriented problems, lately, there has been substantial
research that has utilized various versions of the GP and the FGP methodologies. In other work [74],
FGP was adapted to accommodate changes in energy costs and future advances in technology maturity
for the type of energy selection problem, in the case of Oregon, USA. This model also took under
consideration the preferences of the stakeholders to reveal the costs and benefits of complex decisions
regarding renewable energy. In a similar work also presented [75], the authors proposed an FGP model
that integrates optimal resource allocation for the development of policies related to setting goals such
as the minimization of energy consumption and the reduction of greenhouse emissions, while at the
same time there exists economic development for the United Arab Emirates. As for renewable energy,
a research [76] applied the FGP methodology to evaluate the policies related to biodiesel production
in the Philippines using as objectives the maximization of feedstock production, the overall revenue,
and minimization of energy. In that work, we see the innovative involvement of several agricultural,
rural, environmental and social criteria and constraints, such as the availability of land, labor, water,
and machine time, using fuzzy linguistic values for their representations. Towards this direction, a
fairly recent research [77] evaluated suitable sustainable feedstocks considering them as the key factor
for the optimum renewable products allocation. Their study proposed a hybrid adaptive framework
based on a participatory modeling approach, with a process to produce weights of evaluation criteria
and their ranking, using dynamic hesitant fuzzy sets. Each of the criteria sets was assigned a weight
based on the dynamic hesitant fuzzy entropy method. Using F-TOPSIS, the criteria were ranked
in descending order with respect to the FPIS and the FNIS. However, all policies must base their
methodology on the optimal mix of different plant types, where in the country these new plants must
be built, and finally, what their capacity should be. According to these additional criteria, from the
administrative point of view, the interoperability between the available types of renewable energy
plants was analyzed [78], synthesizing a variety of additional factors such as geographical, climatic
and ecological. The authors applied the FGP model for the case study of the Algeria focusing on the
generation of electricity using renewable energy resources. An increasing number of researchers have
conducting similar research referring to their own country territory and this has interested emanates
due to the huge economic and environmental advantages accrued by the process [79].

Additional research attempts relating to fuzzy goal programming and energy alternatives, types,
and suppliers have also been shown recently. First, on the one hand, a priority-based FGP method was
presented [80], to deal with the congestion management problem in electric power transmissions and
their formulation was via the use of genetic algorithms to determine the membership functions that
correspond to the criteria of their analysis. On the other hand, other authors [81] claimed that hybrid
energy systems are the future of earth consisting of different types of conventional and renewable
resources. After they categorized these systems into grid and stand-alone, they tried to formulate the
total profit obtained by their operation utilizing the ratio of renewable energies with the load demand
for consumption using FGP. Additionally, previous research was extended [82] on macroeconomic
growth models and introduced new criteria variables for investment into the energy sector for the use
case of Kazakhstan. Their method was based on FGP and it contributed significant findings in terms
of the impact made by R&D on the long-run economic sustainable growth of Kazakhstan regarding
energy decision making. Similarly, in a work for the country of Morocco [83], the author proposed
an FGP methodology to calculate a sustainable solution, while keeping in mind the unpredictable
fluctuations of price, demand, and uncertainty in the energy sector and more specifically for the
biodiesel production. In terms also of other renewable energy types, a recent work [84] investigated
the potential of exploiting wind energy in India. More specifically, the authors explored various
decision-making approaches in relation to fuzzy analysis with the perspective of justification of major
factors that influence the effective use of wind energy. Their findings indicated that India had the
maximum potential for taping wind energy via a set of suggested policies that would need to be
established to maximize the use of renewable source of energy. Finally, an innovative weighted-additive
fuzzy multi-choice goal programming (WA-FMCGP) model was proposed [85], introducing energy
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relating goals with multiple-choice aspiration levels (MCALs). Although their work was mostly
presented as a proof-of-concept, application to energy sector numerical problems could help as a
supplementary method, in contrast to the multi-attribute decision making for fuzzy programming and
multi-choice goal programming related problems.

2.5. Research Comparison and Novelty of our Approach

In this subsection, we summarize the existed literature depicted in the previous section in a
comparative table and we discussion the novelty of our research as compared with the exiting literature.
We concentrate only on the research that relates the models of SF-AHP, FGP, and F-TOPSIS to energy
(giving focus to renewable energy sector) as the amount of research in the general application of
the aforementioned models is beyond limits and out of the scope of this work. Table 3 presents a
multitude of popular MCDM fuzzy oriented techniques for sustainable and renewable energy planning
related studies.

Table 3. Comparison of research results related to renewable energy selection using stochastic fuzzy
analytic hierarchical process (SF-AHP), fuzzy goal programming (FGP), and fuzzy technique for order
performance by similarity to ideal solution (F-TOPSIS).

Studies Case Study Energy Strategies Criteria
MCDM
Methods

Best Strategy

[52] Lagos Central
District Numerical illustrations Energy selection IF-TOPSIS Only TOPSIS

[81]
Numerical
example of
small town

Multiobjective decision via
function optimization

Collaboration of multiple
energy types GP GP

[83] Numerical
example Biodiesel classification FGP Only one is

considered

[62] Turkey Select the best energy Multicriteria
FAHP,

F-VICOR,
F-TOPSIS

Collaboration

[53] Turkey Selection among all, not
only renewable

Strengths, opportunities,
weaknesses, threats

F-TOPSIS,
SWOT, ANP ANP

[74] Oregon Min and max of criteria Construction cost, Production cost,
land use, environmental impact FGP FGP

[54] N/A Biomass
Profit, sales, customization,
affordability, participation,

experience, technology

HF-DEMATEL,
HF-TOPSIS HF-TOPSIS

[85] N/A Electrochemical energy
storage

Economic, social, environmental,
and technological F-TOPSIS, FGP F-TOPSIS

[55] Numerical
Example

Renewable energy policy
selection

Technology, environmental, social,
economical

VIKOR,
IVPLTS IVPLTS

[42] Taiwan Solar energy
Economic development, energy

exploiting, environmental
protection

SEA, FDM,
SAM, Fuzzy

AHP
FAHP

[76] Philippines Biodiesel

Max feedstock production and
revenue, min of energy used and
working capital, availability of

land, labor, water and
machine time

FGP FGP

[56,57] India
Selection between nuclear,

solar, hydropower,
biomass, heat, and power

Efficiency, investment-operation
cost, water pollution, pollutant

emission, land, social acceptance,
job creation

F-TOPSIS F-TOPSIS

[56] India

Determine the potentiality
indices for healthier
exploration of wind

energy resources in India

Wind power density, availability
of suitable, land, government
initiatives, grid connectivity,

technical prowess

TOPSIS VIKOR
FAHP

Combination of
F-TOPSIS and

F-VIKOR

246



Mathematics 2020, 8, 1178

Table 3. Cont.

Studies Case Study Energy Strategies Criteria
MCDM
Methods

Best Strategy

[61] Pakistan Rank 13 energy strategies Multitude of criteria in
MCDM process

SWOT FAHP
and F-TOPSIS

Integration of
the two

methods

[64] Saudi Arabia Eight energy strategies
as candidates

Power generation, capacity,
efficiency, storability, safety, air

pollution, net present value

Integrated
FAHP

F-VIKOR,
F-TOPSIS

Solar energy is
the most
profitable

according to
both F-VIKOR
and F-TOPSIS

[44] Pakistan solar, wind, and biomass
4 Basic criteria (economic,

environmental, technical, and
socio-political), and 17 subcriteria

SWOT FAHP SWOT FAHP

We claim that our research is novel as compared with the most related (state of the art) research
because of the following arguments:

• Most of the research attempts concentrate on a specific MCDM methodology and they do not
integrate a plethora of methodologies to produce a “holistic” result based on more than one mode.

• There is not any other research work on the Greek case study to the best of our knowledge.
• Our methodology extends the conventional AHP, GP, and TOPSIS methodologies in terms of

integrating the opinions of most critical stakeholder bodies as fuzzy values of their linguistic
values in order to solve the MCDM problem of selecting renewable energy sources.

• The proposed methodology explores the validity and applicability of FAHP, FGP, and F-TOPSIS
under the existed divergence.

• The only previous research works [62,74] that have some similarity to our methods and findings
systematically try to select the best energy type under criteria.

3. Case Study: Thessaly Region, Greece

3.1. Characteristics of the Region and Methodological Roadmap of the Study

Thessaly Region is located in the middle mainland of Greece (see map in Figure 3) extending with
a total area of 14,036.64 km2 and a population of 725,874 inhabitants (2018). Lately, the region exhibits
a sharp turn to manufacturing and industrialization from the conventional agricultural activities.

 

Figure 3. Map of the region of the case study.

Regional sustainability (especially energy sustainability) has become a major concern of competent
authorities. It participates in several initiatives in relation to urban planning actions, transition to
renewable energies, and boosting of the establishment of solar energy production plants. Following
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Europe’s post-petroleum actions, most of the regional municipalities initiated several actions towards
bio-energy transition, always under the precondition of succeeding economic growth at the same time.
Apart from competent authorities, however, this energy conversion depends on the interoperability
and the interplay between the regional stakeholders and the various regional social groups.

The methodological organization framework of this work is depicted in Figure 4. Initially, we set
the scope of the study, which is the evaluation of low-carbon energy technology alternatives, to select
the most suitable for the region under examination. The ultimate goal is the conversion to electricity, the
most commonly used energy form. This would provide proof to competent authorities for supporting
future policy making. The first step to achieve this goal is to perform the SWOT analysis for establishing
all the relevant advantages and disadvantages, as well as any opportunities or threats that can occur
due to the decision of choosing an energy alternative. Data for the SWOT analysis comes after selecting
the stakeholders, conducting thorough interviews, and organizing all responses setting up all the
criteria which they believe that affect the selection. The criteria can be clustered in various categories
according to what they refer to. In most of the studies, these criteria are categorized into technological,
social, economic, and environmental. Then, the FGP methodology is engaged to find the degrees of
memberships of these criteria. We have a bidirectional process of the FGP and FAHP, as seen in Figure 4,
as the most important criteria have to be discovered for participating in FAHP, and later in F-TOPSIS.
Thus, first, FGP is attended, and then FAHP produces the normalized crisp weight distribution of the
criteria. Then, FGP is again involved to provide the degrees of memberships in order to ensure that the
selection among all criteria is adequate to provide reliable input for F-TOPSIS. Note, that the criteria
are organized for pairwise comparisons based on the FAHP approach that succeeds in ranking them
on a predefined importance scale, and therefore weight assignment is possible. Further comparisons
between results from FAHP are done after the F-TOPSIS application. Following the FGP, FAHP, and
F-TOPSIS application, the policy maker can use the TOWS analysis that can define various strategies
attacking the problem at hand.

 

Figure 4. Methodological map in evaluating renewable energies.

3.2. SWOT Analysis

We use the SWOT analysis to strategically integrate all strengths, weaknesses, opportunities,
and threats in relation to the energy planning problem.

Recently, many similar studies have been conducted to solve this problem, with typical interests
in renewable energy [86], bio-energy [87] and regional energy planning [88,89]. We have utilized 17
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experts/stakeholders to set up the SWOT matrix coming from a diverse environment of education,
research, government, and energy production utilities according to the recommended expert sampling
methodologies [90,91]. The result of their interviews is depicted in Figure 5, where, after amalgamation
of similar factors in one, we summarize all the strengths, weaknesses, opportunities, and threats.
Following this survey, we asked the experts, in a second stage, to identify all the relevant criteria in
selecting one of the candidate types of renewable energy (biofuel, wind, hydro and solar). The interview
was conducted under the pre-assumption of clustering these criteria into the aforementioned categories
of technological, economic, social, and environmental. The categories of criteria from this survey
are shown in Table 4 and the quantification of the stakeholders’ importance of these criteria before
fuzzification are shown in Figure 6. More specifically, according to the four categories of experts
coming from the education, research, government, and energy production utilities sectors, we obtain
four average series for the 21 criteria emanated from the survey. The value of each curve is an average
evaluation of each criterion from the corresponding stakeholder body.

 

Figure 5. SWOT analysis, setup of strengths, opportunities, weaknesses, and threats.

Figure 6. SWOT analysis, criteria quantification by experts before fuzzification.
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Table 4. Expert stakeholder criteria setup for the energy type selection.

Criteria No. Description

TECHNOLOGICAL

C1 Availability of the technological resources for application of the type
C2 Human capital expertise
C3 Robustness and reliability of the energy type
C4 Electricity supply
C5 Safety

ECONOMIC

C6 Capital cost
C7 Fuel or energy cost
C8 Life expectancy of the system
C9 Cost to connect to the electricity network
C10 Research and development cost
C11 Marketing and other cost

ENVIRONMENTAL

C12 Waste production
C13 Hazardous aerial emissions
C14 Ecology preservation
C15 Land use

SOCIAL

C16 New jobs
C17 Quantification of the (not in my back yard) NIMBY phenomenon
C18 Social perception and acceptance
C19 Impact on residents’ everyday life and health
C20 Feasibility of the energy plant
C21 Impact to regional sustainability

Using the previous model, we also apply the TOWS analysis (a reverse approach to SWOT),
to identify potential strategies for the problem resolution. The set of strengths, weaknesses,
opportunities, and threats, remains the same, but the morphology of the TOWS matrix is altered as
to the prioritization of the pairwise strategies chosen. More specifically, we choose the following: (a)
To minimize both threats and weaknesses as the strategy of the highest priority, therefore the WT
(weakness-threat) as a (min-min) strategy can be used to reduce the threats simultaneously with the
overcoming weaknesses and shortcomings; (b) to minimize weaknesses while at the same time try to
maximize the opportunities (Strategy WO) to new and well-established energy portfolio alternatives
is another promising strategy used in order to mitigate the weakness; (c) Strategy ST (max-min)
to maximize the strengths of each alternative energy portfolio while at the same time minimizing
the threats and risks taken choosing a specific energy type; and (d) Strategy SO (max-max), the
most optimistic approach, to attempt to maximize the strengths while at the same time maximizing
the opportunities.

3.3. Fuzzy Goal Programming Analysis

In this section, we provide the mathematical formulation of the use case of Thessaly attacking
the problem from the fuzzy goal programming point of view. Policy makers, competent authorities,
and regional stakeholders have determined, via the participatory modeling (surveys and focus groups),
the criteria for alternative resource energies. Let:

• X1 be the solar annual electricity generation;
• X2 be the biofuel annual electricity generation;
• X3 be the hydro annual electricity generation; and
• X4 be the wind annual electricity generation.
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Note that all aforementioned electricity amounts are in GWh units.
Because the survey participants gave fuzzy evaluations of the criteria above, we also used

questions that relate the fuzzy intervals on the hard or approximate values. For example, in relation to
criterion C1 (availability of technological resources), participants could easily answer the question
“How many technological resources are needed of solar/hydro/wind/biofuel conversion to electricity?”
with answers such as “medium”, “large”, or “low”, but could not specify a specific or hard number in
such amounts. The idea of specifying intervals (lower and higher thresholds) for set/crisp values on
the criteria alleviated the problem. The problem, however, of determining the initial values of the fixed
criteria values remains, as it depends on the entity each time. For example, the amount of technological
resources is difficult to be determined in moneys as opposed to capital costs or fuel or energy costs.
At the same time, wide ranges of intervals initiate higher uncertainties and need to initially go through
a sensitivity analysis or need to be predicted accordingly [92,93].

In addition, it is possible to retrieve a solution with adequate results using deviation variables
and deviation quantities.

According to international studies [85,94] and the Thessaly Region authorities, the crisp values
and the intervals for the criteria under study are given in Table 5.

Table 5. Crisp criteria values and intervals.

Criteria Solar Wind Biofuel Hydro Aspiration Level Tolerance

C1
4,048,112 ≤ y11 ≤

4,648,112
2,098,741 ≤ y12
≤ 3,098,741

8,683,567 ≤ y13
≤ 9,500,000

650,000 ≤ y14 ≤
750,000 18,000,000 1,000,000

C2
40,481 ≤ y21 ≤

46,481
82,962 ≤ y22 ≤

92,962
605,571 ≤ y23 ≤

645.571
10,000 ≤ y24 ≤

15,000 6,000,000 600,000

C6 467,925 1,814,470 9,292,500 375,000 41,000,000 4,100,000

C7 N/A N/A N/A N/A N/A N/A

C12 14,190 57,178 68,950 52,000 4,000,000 4,000,000

C16 1500 ≤ y61 ≤ 2000 900 ≤ y62 ≤ 1200 500 ≤ y63 ≤ 800 500 ≤ y64 ≤ 800 1500 350

Due to the fact that there is not available data in terms of the criterion C7 (fuel or energy cost), this
criterion does not participate in the goal programming calculations. The problem is, then, formulated
as an optimization problem that is described by the following goals:

G1 : y11X1 + y12X2 + y13X3 + y14X4 ≤ 18, 000, 000

G2 : y21X1 + y22X2 + y23X3 + y24X4 ≤ 6, 000, 000

G3 : 467925X1 + 1814470X2 + 9292500X3 + 375, 000X4 ≤ 6, 000, 000

G4 : 14190X1 + 57178X2 + 68950X3 + 52, 000X4 ≤ 18, 000, 000

G5 : y61X1 + y62X2 + y63X3 + y64X4 ≤ 1500,

(23)

where the variables X represent the solar, wind, hydro, and biofuel conversions to electricity (annual
amounts) in GWh.

Assuming the following hard constraints set by the policy makers given by the inequalities:

X1 + X2 + X3 + X4 ≥ 40
X1 + X3 ≥ 22
X2 ≥ 12
X3 ≥ 10
X4 ≥ 10

(24)
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For the above constraints we can find a variety of solution sets for the variables X1, X2, X3, X4

(for example, a solution set is 10, 12, 10, 10) can produce a set of membership functions for the fuzzy
goal programming model. A set that corresponds to the previous solution set is as follows:

(μ1,μ2,μ3,μ4,μ5) = (0.37, 1, 0.45, 0.67, 1)

Solving the problem with LINGO [95], yields the following near optimal solution for the decision
variables and the degree of the membership functions:

(X1, X2, X3, X4) = (17.173256, 12, 12.826744, 10)

(μ1,μ2,μ3,μ4,μ5) = (0.99, 0.99, 0.99, 0.67, 1),

showing that the goal, G4 (membership function degree 0.67), that corresponds to the waste production
minimization is not fully achieved.

3.4. Stochastic Fuzzy AHP Analysis

The main objective using AHP is to order the importance of criteria and factors that directly affect
the goal of the problem solution. Thus, the prioritization of the criteria weights effectively determines
the operational energy measures that a policy maker must take within the scope of energy sustainability
in a region. Coming from the SWOT analysis, we have categorized these criteria into technological,
economic environmental, and social. For the completion of the reciprocal pairwise comparison matrix
in SF-AHP, we followed the method of producing separate matrices for each criteria category instead
of a single one. There are two reasons for doing this. The first reason is the introduced bias by the
experts, who unconsciously prioritize criteria of their own expertise higher than of other expertise.
Secondly, studies have shown that as the number of criteria increases, the accuracy of determining
the exact defuzzified value of the importance weight of each criteria decreases [96,97]. Tables 6–9 are
depicted in pairs, namely Table 6a,b to Table 9a,b, accordingly. Each of these pair are devoted to each
one of the aforementioned criteria categories. Specifically, the (a) part of each table shows the fuzzified
pairwise comparison matrix. The second part illustrates the following results: (a) the computation
of the fuzzy geometric mean, (b) the final fuzzified value of each criteria using the normalized value
its own fuzzy geometric mean, (c) the defuzzified crisp value, and finally (d) the normalized crisp
numeric percentage weight of the criteria. The method of calculating the fuzzy geometric mean is
introduced by Buckley [98]. More specifically:

• Table 6a shows the calculation of the fuzzified pairwise comparison matrix for the technological
category of criteria used in the survey.

• Table 6b shows the technological criteria fuzzy and defuzzified weights.
• Table 7a, above, shows the calculation of the fuzzified pairwise comparison matrix for the

economics category of criteria used in the survey, whereas Table 7b, below, shows the economics
criteria fuzzy and defuzzified weights computed.

• Table 8a, above, shows the calculation of the fuzzified pairwise comparison matrix for the
environmental category of criteria used in the survey, whereas Table 8b, below, shows the
environmental criteria fuzzy and defuzzified weights computed.

• And finally, Table 9a, above, shows the calculation of the fuzzified pairwise comparison matrix for
the social category of criteria used in the survey, whereas Table 9b, below, shows the social criteria
fuzzy and defuzzified weights computed.
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Table 6. SF-AHP results per criteria category for the category technological. (a) Fuzzified pairwise
comparison matrix; (b) Criteria fuzzy and defuzzified weights.

(a)

Fuzzified Pairwise Comparison Matrix

C1 C2 C3 C4 C5

C1 (1,1,1) (1,2,3) (2,3,4) (2,3,4) (0.166,0.2,0.25)
C2 (0.333,0.5,1) (1,1,1) (6,7,8) (2,3,4) (6,7,8)
C3 (0.25,0.333,0.5) (0.125,0.142,0.166) (1,1,1) (0.166,0.2,0.25) (0.25,0.333,0.5)
C4 (0.25,0.333,0.5) (0.25,0.333,0.5) (4,5,6) (1,1,1) (1,1,1)
C5 (4,5,6) (0.125,0.142,0.166) (2,3,4) (1,1,1) (1,1,1)

(b)

Criteria Fuzzy and Defuzzified Weights

Fuzzy Geometric Mean Lower Middle Upper Crisp Norm Crisp

(0.9213, 1.2919, 1.6437) 0.1232 0.2145 0.3402 0.2260 0.2123
(1.8877, 2.3618, 3.0314) 0.2524 0.3922 0.6275 0.4240 0.3983
(0.2645, 0.3159, 0.4010) 0.0354 0.0525 0.0830 0.0569 0.0535
(0.7578, 0.8887, 1.0844) 0.1013 0.1476 0.2245 0.1578 0.1482

(1, 1.1632, 1.3184) 0.1337 0.1932 0.2729 0.1999 0.1878

Table 7. SF-AHP results per criteria category for the category economic. (a) Fuzzified pairwise
comparison matrix; (b) Criteria fuzzy and defuzzified weights.

(a)

Fuzzified Pairwise Comparison Matrix

C6 C7 C8 C9 C10 C11

C6 (1,1,1) (6,7,8) (6,7,8) (7,8,9) (7,8,9) (6,7,8)
C7 (0.125,0.142,0.166) (1,1,1) (4,5,6) (4,5,6) (6,7,8) (7,8,9)
C8 (0.125,0.142,0.166) (0.142,0.2,0.25) (1,1,1) (3,4,5) (2,3,4) (3,4,5)
C9 (1.111,0.125,0.142) (0.142,0.2,0.25) (0.2,0.25,0.333) (1,1,1) (3,4,5) (3,4,5)
C10 (1.111,0.125,0.142) (0.125,0.142,0.166) (0.25,0.333,0.5) (0.2,0.25,0.333) (1,1,1) (0.25,0.333,0.5)
C11 (0.125,0.142,0.166) (1.111,0.125,0.142) (0.2,0.25,0.333) (0.2,0.25,0.333) (2,3,4) (1,1,1)

(b)

Criteria Fuzzy and Defuzzified Weights

Fuzzy Geometric Mean Lower Middle Upper Crisp Norm Crisp

(4.6857, 5.2915, 5.8836) 0.4058 0.5233 0.6331 0.5207 0.5127
(2.6367, 2.4183, 2.7495) 0.2283 0.2392 0.2958 0.2544 0.2505
(0.8492, 1.0541, 1.2685) 0.0735 0.1043 0.1365 0.1048 0.1032
(0.5673, 0.6813, 0.8171) 0.0491 0.0674 0.0879 0.0681 0.067
(0.2362, 0.2814, 0.3545) 0.0205 0.0278 0.0381 0.0288 0.0284
(0.3218, 0.3868, 0.4686) 0.0279 0.0383 0.0504 0.0389 0.0383

Table 8. SF-AHP results per criteria category for the category environmental. (a) Fuzzified pairwise
comparison matrix; (b) Criteria fuzzy and defuzzified weights.

(a)

Fuzzified Pairwise Comparison Matrix

C12 C13 C14 C15

C12 (1,1,1) (1,2,3) (3,4,5) (2,3,4)
C13 (0.333,0.5,1) (1,1,1) (1,2,3) (0.333,0.5,1)
C14 (0.2,0.25,0.333) (0.333,0.5,1) (1,1,1) (2,3,4)
C15 (0.25,0.333,0.5) (1,2,3) (0.25,0.333,0.5) (1,1,1)

(b)

Criteria Fuzzy and Defuzzified Weights

Fuzzy Geometric Mean Lower Middle Upper Crisp Norm Crisp

(1.5651, 2.2134, 2.7832) 0.2564 0.4892 0.8569 0.5342 0.4698
(0.5774, 0.8409, 1.3161) 0.0946 0.1858 0.4052 0.2285 0.2010
(0.6043, 0.7825, 1.0746) 0.0990 0.1729 0.3309 0.2009 0.1767
(0.5000, 0.6866, 0.9306) 0.0819 0.1517 0.2865 0.1734 0.1525
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Table 9. SF-AHP results per criteria category for the category social. (a) Fuzzified pairwise comparison
matrix; (b) Criteria fuzzy and defuzzified weights.

(a)

Fuzzified Pairwise Comparison Matrix

C16 C17 C18 C19 C20 C21

C16 (1,1,1) (1,2,3) (3,4,5) (1,2,3) (6,7,8) (3,4,5)
C17 (0.333,0.5,1) (1,1,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5)
C18 (0.2,0.25,0.333) (1,1,1) (1,1,1) (0.25,0.333,0.5) (1,1,1) (1,2,3)
C19 (0.333,0.5,1) (0.333,0.5,1) (2,3,4) (1,1,1) (5,6,7) (3,4,5)
C20 (0.125,0.142,0.166) (0.25,0.333,0.5) (1,1,1) (0.142,0.166,0.2) (1,1,1) (0.333,0.5,1)
C21 (0.2,0.25,0.333) (0.2,0.25,0.333) (0.333, 0.5,1) (0.2,0.25,0.333) (1,2,3) (1,1,1)

(b)

Criteria Fuzzy and Defuzzified Weights

Fuzzy Geometric Mean Lower Middle Upper Crisp Norm Crisp

(1.9442, 2.7662, 3.4878) 0.2003 0.3776 0.6111 0.3963 0.3615
(1.1225, 1.2988, 1.9786) 0.1156 0.1773 0.3467 0.2132 0.1945
(0.7071, 0.7418, 0.7647) 0.0728 0.1013 0.1340 0.1027 0.0937
(1.2222, 1.6189, 2.2787) 0.1259 0.2210 0.3992 0.2487 0.2269
(0.3379, 0.3979, 0.5054) 0.0348 0.0543 0.0885 0.0592 0.0540
(0.3724, 0.500, 0.6934) 0.0384 0.0683 0.1215 0.0760 0.0694

3.5. Fuzzy TOPSIS Analysis

As explained in the previous section, the norm crisp values for each criterion have been calculated
in the SF-AHP process. For the case of F-TOPSIS, we choose to at least use one criterion from each
of the categories provided by the participation modeling and the SWOT analysis (categories are:
technological, economics, environmental, and social). The one chosen is the one performing with the
maximum normalized crisp value obtained from the SF-AHP calculation. To enrich the F-TOPSIS
analysis with more criteria, we choose another two out of all performing with the largest of the
remaining normalized crisp vales (i.e., C1 and C7). Table 10 is the summary of the normalized fuzzy
weights of all participating criteria in the F-TOPSIS.

Table 10. Normalized fuzzy weights of criteria used in fuzzy TOPSIS.

Criteria ID Lower Middle Upper

C16 0.059532 0.168872987 0.416734861
C12 0.076205 0.218783542 0.584356247
C6 0.120609 0.234033989 0.431737589
C2 0.075016 0.175402504 0.427918712
C1 0.036617 0.095930233 0.231996727
C7 0.067854 0.106976744 0.201718494

Table 11 calculates the fuzzy decision matrix and the fuzzy positive ideal solution, as well as the
fuzzy negative ideal solution (where H, hydro; S, solar; B, biofuel; W, wind; N, FNIS; and P, FPIS).
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Table 11. Calculation of the fuzzy decision matrix and the fuzzy positive ideal solution (FPIS) and
fuzzy negative ideal solution (FNIS).

Normalized Fuzzy Decision Matrix Using the cj
* and aj

−

S (0.555, 0.805, 1) (0.666, 0.833, 1) (0.444, 0.592, 1) (0.444, 0.533, 0.8) (0.25, 0.444, 1) (0.777, 0.888, 1)
B (0.777, 0.888, 1) (0.777,0.888,1) (0.444, 0.64, 0.869) (0.571, 0.695, 1) (0.25, 0.266, 1) (0.111, 0.222, 0.333)
H (0.666, 0.833, 1) (0.666, 0.833, 1) (0.444, 0.533, 0.8) (0.444, 0.5, 0.571) (0.25, 0.4, 1) (0.222, 0.444, 0.666)
W (0.666, 0.805, 1) (0.666, 0.833, 1) (0.444, 0.592, 1) (0.571, 0.727, 1) (0.25, 0.444, 1) (0.222, 0.388, 0.666)

Weighted Normalized Fuzzy Decision Matrix

S (0.019, 0.076, 0.231) (0.049, 0.145, 0.427) (0.053, 0.138, 0.431) (0.029, 0.056, 0.160) (0.019, 0.096, 0.584) (0.045, 0.149, 0.416)
B (0.028, 0.084, 0.231) (0.058, 0.155, 0.427) (0.053, 0.149, 0.374) (0.038, 0.073, 0.201) (0.019, 0.057, 0.584) (0.006, 0.037, 0.138)
H (0.023, 0.079, 0.231) (0.049, 0.145, 0.427) (0.053, 0.124, 0.344) (0.029, 0.053, 0.114) (0.019, 0.087, 0.584) (0.013, 0.074, 0.277)
W (0.023, 0.076, 0.231) (0.049, 0.145, 0.427) (0.053, 0.138, 0.431) (0.038, 0.077, 0.201) (0.019, 0.096, 0.584) (0.013, 0.065, 0.277)

FNIS and FPIS

N (0.028, 0.084, 0.231) (0.058, 0.155, 0.427) (0.053, 0.138, 0.431) (0.038, 0.077, 0.201) (0.019, 0.096, 0.584) (0.045, 0.149, 0.416)
P (0.019, 0.076, 0.231) (0.049, 0.145, 0.427) (0.053, 0.138, 0.431) (0.029, 0.056, 0.160) (0.019, 0.057, 0.584) (0.006, 0.037, 0.138)

H, hydro; S, solar, B, biofuel; W, wind; N, FNIS; P, FPIS.

Finally, the distance from the FNIS and the FPIS, as well as the ranking of the four energy
alternatives is given in Tables 12 and 13, respectively, ranking the solar energy as the best performing
with the biofuel as the least performing alternative.

Table 12. Calculation of the distance from FNIS and FPIS.

Distance of Weighted Normalized Fuzzy Decision Matrix from FNIS

Solar 0 0 0 0 0.02240119 0.174605594
Biofuel 0.006699751 0.007370663 0.033285032 0.026082561 0 0
Hydro 0.002786276 0 0.050800427 0.026688137 0.016916363 0.082897105
Wind 0.002309401 0 0 0.026891263 0.02240119 0.081655598

Distance of Weighted Normalized Fuzzy Decision Matrix from FPIS

Solar 0.006699751 0.007370663 0 0.026891263 0 0
Biofuel 0 0 0.033651548 0 0.02240119 0.174605594
Hydro 0.003970306 0.007370663 0.050800427 0.052336253 0.005484828 0.093375746
Wind 0.005249127 0.007370663 0 0 0 0.095999878

Table 13. Ranking of the energy alternative types.

Energy Type ˜d∗
i

˜d−
i

CCi = di-/(di- + di *) RANK

Solar 0.040961676 0.197006784 0.827869306 1
Biofuel 0.230658332 0.073438007 0.24149586 4
Hydro 0.213338222 0.180088307 0.457743172 3
Wind 0.108619668 0.133257452 0.550930373 2

d̃∗i and d̃−i distance between FPIS and FNIS (Equations (18) and (19))

4. Discussion of Results

The FGP methodology is extensively used with the aim to mitigate the ambiguity introduced by
the participatory modeling. Unfortunately, the limitation of no availability of set values for the criterion
C7 (fuel or energy cost) cannot fully support the translation into fuzzy numbers for all the criteria
under concern. However, the results of the GP methodology show a great degree of membership
functions for the rest of the participating criteria. Therefore, assuming at least five out of the six criteria
are well taken, FAHP was applied for each one of the four criteria categories, based on the results of
FAHP as follows:

• For the technological oriented criteria, criteria C2 (human capital expertise) was calculated to
be the most important criterion with a normalized crisp weight of 0.3983, with the second in
order criterion C1 (availability of the technological resources for application of the type) with a

255



Mathematics 2020, 8, 1178

normalized crisp weight of 0.2123. The strategy is to, first, gain the human capital needed to build
and manage the energy conversion establishments, and then think about which resources are
available. Robustness of the projects is thought to be the least important factor. However, safety
and the amount of electricity (GWh) that would be directed to the market are almost equally
important criteria.

• For the economically oriented criteria, criteria C6 (capital cost), C7 (fuel and energy cost), and C8
(life expectancy of the system) by far are the most important factors in this specific order, with
C6 obtaining a normalized crisp weight of 0.5127 and the other two obtaining weights of 0.2505
and 0.1032, respectively. As expected, the issue of initial capital is the most important factor
in investing, especially in such investments of regional level and high cost. The second factor
of importance is the energy costs for such factories to operate. Usually, this is calculated as a
percentage of the outcome in electricity, but it is a key performance indicator for the overall
operation trustworthiness. The lack of obtaining a degree of membership for C7 from the FGP
methodology diminishes the trustworthiness of the FAHP method, especially relatively to the
outcome of the C7 criterion. However, the value of importance of C7 is still undisputed because
of its rating within the category and because of the high score received. Note, for example, that
criteria C8, C9, C10, and C11 are all well below the range of 0.10 normalized weight, therefore,
we can argue that the rate of C7 within the category cannot be changed and that was the reason
that C7 was included in the F-TOPSIS.

• For the environmentally oriented criteria, similarly, clear weight ordering appears in this category
with criterion C12 (waste production) performing much higher than the other criteria gaining a
normalized crisp weight of 0.4698 and with criterion C13 (hazardous aerial emissions) in second
place with a normalized crisp weight of 0.2010, outperforming criteria C14 and C15. The results
show that stakeholders want to explore the opportunity to experience green and renewable energy
exploitation via policies that minimize the waste production. Moreover, competent authorities
and the final policy makers should integrate this approach horizontally and vertically to try to
incorporate the appropriate strategic alliances towards low carbon economy.

• For the socially oriented criteria, relative to social acceptance and supportiveness of the low carbon
energy policy making, the results of FAHP indicate that the primary factor for the Greek society is
the creation of new jobs and how this is going to affect the regional economy with criterion C16
(new jobs) outperforming the other criteria of the category (normalized crisp weight of 0.3615).
At the same time, criteria C17 (quantification of the (not in my back yard) NIMBY phenomenon)
and C19 (impact on residents’ everyday life and health) are almost equally important for the
social bodies of Thessaly Region with normalized crisp weights of 0.1947 and 0.2269, respectively.
The remaining category criteria participate in the distribution of weights with very low percentages.
Thus, although the society wants new jobs and is aware of the health and environmental benefits
of the conversion into low carbon practices, people are still afraid to reside close to such energy
production plants.

Using the outcomes of SF-AHP, the application of the F-TOPSIS methodology was performed only
on the most important criteria of each category, as aforementioned. The method ranks solar energy
plants and investments as the most preferable (CCi of 0.827869306) and wind parks (CCi of 0.550930373)
are ranked second. The substantial difference between the first and second choice is justified by the
geographic location of the region and the social perception that solar energy is the least expensive
form of producing electricity, while not affecting the environment. However, further investigation
has shown that solar energy systems deployment must agree with specific locations. For example,
in Thessaly, there are locations in the eastern part, which are more preferable than locations in the
western part that occasionally suffers from floods. As to the equipment to be used, there is a need for
equipment synchronization in order to become beneficial for the process.

This research offers an original contribution to knowledge by applying a hybrid methodology
of three fuzzy MCDM models that can be used as a decision-making tool by competent authorities
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and investment groups for investing in the energy industry. Using input from the basic pillars of
society, the selection of the best renewable energy type fitted in a region is succeeded by the steps of
this research paradigm. As it has shown in Sections 3.3–3.5, the amalgamation of the SF-AHP, FGP and
F-TOPSIS analyses highlighted the criteria of (a) new job generation, (b) capital cost, (c) availability of
technological resources, and (d) waste production, which prevail in the decision-making of competent
authorities and private investors when deciding to establish a new energy plant. Thus, the hybrid
application of AHP and TOPSIS with the assistance of experts produces a decision-making methodology
which can be applicable to the renewable energy industry.

5. Conclusions and Future Challenges

The use of the appropriate form of energy technology is crucial for human society, as it directly
affects the regional economy and the industrial and rural development. On top of the critical effects,
health and environmental indicators became significant in energy planning decision making, since
they affect the sustainable use of regional resources. Therefore, any regional policy making must be
focused on designing technologies for the safe management of regional resources and direct investors
towards the exploitation of renewable and environment-friendly energy forms.

In this work, we applied the participatory modeling methodology for visioning and strategy
development in terms of selecting the most appropriate energy type for regional investments. Available
forms were the solar, wind, hydro, and biofuel energy. Initially, a SWOT analysis was performed
to mark all the objectives, as well as the internal and external factors that affect the energy form
selection process and the establishment of policies to support this selection. The interoperability and
interrelationships among the internal and external factors were thoroughly examined. A well-designed
effort of polling the public opinion, and most importantly, the stakeholders was also developed via
surveys and focus groups. This process highlighted a set of important criteria spanning from technology,
economics, environment, and society. Through the interaction between FGP and SF-AHP, we selected
the criteria with a high degree of trustworthiness in the process, which are the principal components in
the decision-making process, and we calculated the pairwise comparisons matrices making individual
runs for each criteria category. This approach provided the most significant criteria/factors according
to their normalized crisp weight. The highest weight criterion for each category, as well as the two
other criteria with the highest among the rest weights, participated in the F-TOPSIS calculation of
ranking the energy types. The result showed that solar energy ranked as the first preference with wind,
hydro, and biofuel following, in this order.

Except for the good results emanated from our research, the application of the most popular
fuzzy MCDM methodologies such as SF-AHP, FGP, and F-TOPSIS also faced a few, yet memorable
limitations, in terms of the planning process, the refinement of fuzzified values, and the combination
of the models used [99]. More specifically, the non-existence of budget constraints in the application of
the FGP model and the use of budget constraints coming from the literature are a major limitation that
leads to doubts in terms of experimental verification of the results of the model. At a second level,
on the one hand, involvement of fuzzy modeling always initiates limitations of results as opposed to
crisp value measurements. On the other hand, this deficiency is also beneficial in terms of the ability of
the stakeholders to express their opinions with linguistic terms as opposed to crisp evaluations. Finally,
any use of SF-AHP to find the weights of the criteria used for all the energy alternatives introduces
a limitation as to the unidirectional application of only one method as opposed to a comparative
approach involving more techniques.

Further investigation must be undertaken for other energy forms and also alternatives.
The inclusion of new renewable energy technologies would add confidence in integrated energy
policy modeling and decision making. Additionally, a comparative analysis with other fuzzy and
soft computing methodologies would also be appropriate to provide a holistic study. Fuzzy cognitive
maps, for example, is also a useful tool that could introduce causalities between the criteria, thus,
taking into account their interrelations.
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Abstract: On the basis of decision-theoretical rough sets (DTRSs), the three-way decisions give new
model of decision approach for deal with the problem of decision. This proposed model of decision
method is based on the loss function of DTRSs. First, the concept of fractional orthotriple fuzzy
β-covering (FOF β-covering) and fractional orthotriple fuzzy β-neighborhood (FOF β-neighborhood)
was introduced. We combined loss feature of DTRSs with covering-based fractional orthotriple fuzzy
rough sets (CFOFSs) under the fractional orthotriple fuzzy condition. Secondly, we proposed a new
FOF-covering decision-theoretical rough sets model (FOFCDTRSs) and developed related properties.
Then, based on the grade of positive, neutral and negative membership of fractional orthotriple fuzzy
numbers (FOFNs), five methods are established for addressing the expected loss expressed in the form
of FOFNs and the corresponding three-way decisions are also derived. Based on this, we presented a
FOFCDTRS-based algorithm for multi-criteria decision making (MCDM). Then, an example verifies
the feasibility of the five methods for solving the MCDM problem. Finally, by comparing the results
of the decisions of five methods with different loss functions.

Keywords: covering-based fractional orthotriple fuzzy rough sets; fractional orthotriple fuzzy
β-covering decision-theoretic rough sets; fractional orthotriple fuzzy β-neighborhood; multi-attribute
decision making; decision-theoretic rough sets

1. Introduction

Multi-criteria decision making analysis is also used in different contexts [1,2]. Intuitionistic fuzzy
set (IFS) [3], a vital extension of fuzzy set (FS) [4], is considered as suitable tool to handle these
information. An IFS contains two membership grades ρϑ (�) ∈ [0, 1] and ňϑ (�) ∈ [0, 1] in a finite
universe of discourse � with ρϑ (�) + ňϑ (�) ≤ 1, for each � ∈ �. Since the introduction of IFS,
the theories and applications of IFS have been studied comprehensively, including its’ applications in
decision making problems (DMPs). These researches are very appropriate to tackle DMPs under IFS
environment only owing to the condition 0 ≤ ρϑ + ňϑ ≤ 1. However, in practical DMPs, the experts
provide evaluation-value in the form of (ρϑ, ňϑ), but it may be not satisfy the condition ρϑ (�) +

ňϑ (�) ≤ 1 and beyond the upper bound 1.
As IFSs have only two kinds of responses, i.e., “yes” and “no” but there is some issue with

three types of reply in the case of election, e.g., “yes”, “no” and “refusal”, and the ambitious answer
is “refusal”. In order to overcome this defect, Cuong [5,6] developed the idea of picture fuzzy set
(PFS), which dignified the positives, neutral and negative membership grades in three different
functions. Cuong [7] addressed some PFSs characteristics and also accepted distance measurements.
Cuong & Hai [8] defined fuzzy logic operators and specify basic operations in the picture fuzzy
logic for fuzzy derivation types. Cuong et al. [9] analyzed the features of the blurry t-norm and
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t-conorm picture. Phong et al. [10] discussed some configuration of picture fuzzy relationships.
Wei et al. [11–13] have identified several procedures for calculating the closeness between picture fuzzy
sets. Many authors have currently built more models in the condition of PF sets: Singing [14] proposes
the correlation coefficient of PFS and apply it to the clustering analysis. Son et al. [15,16] give time and
temperature estimates based on the PF sets domain. Son [17,18] describes PF as isolation, distance
and association measurements, often combined with the condition of PFSs. Van Viet and Van Hai [19]
described a novel PFS fluid derivation structure and improved a classic fluid inference technique.
Thong et al. [20,21] using the PF clustering technique for the optimization of complex & particle clumps.
Wei [22] defined some basic leadership methodology using the PF weighted cross-entropy principle
and used this method to rate the alternative. Yang et al. [23] described flexible soft matrix of decision
making using PFSs. In [24], Garg feature aggregation of MCDM problems with PFSs. Peng et al.
introduced the PFSs solution in [25] and apply in decision making. For the PF-set, readers see
also [26–28]. Ashraf et al. [29] extend cubic set structure to PFSs.

Three-way decisions are one of the important ways in solving the decision making problems
under uncertainty. Their key strategy is to consider a decision making problem as a ternary
classification one labeled by three decision actions of acceptance, rejection and non-commitment in
practice. In general, many theories can be utilized for inducing three-way decisions such as shadowed
sets [30,31], modal logic [32] and orthopairs [33]. The essential idea of three-way decisions is to divide
a universal set into three pairwise disjoint regions named as the positive, negative and boundary
regions. The three regions are then processed to make different decisions with accept, reject and
deferment [34]. The general framework of three-way decisions was outlined by Yao [35,36].

Zakowski’s [37] Covering-based fuzzy rough sets (CRS) is a variant of the classical rough sets
(RS) generalization. It is an extension of Pawlak RS partition to RS cover. Two rough approximation
operators are built on this basis, and several conclusions are drawn. Many scholars then studied
several types of RS models based on reporting from different angles. In 2003, Zhu & Wang [38]
introduced the generalized rough set cover model, and studied the model’s reduction and axiomatic
properties. They then introduced three different types of CRS models based on the known models
and identified several important features. Safari et al. [39] introduced twelve types of coverage
approximation operators in 2016, and studied the structural properties and interrelations of these
twelve CRS models. In addition, Ma [40] substitutes for the classical equivalence relationship with the
general binary relationship (neighborhood relationship), thus generalizing the CRS. Many scholars
have applied the classical CRS to the fuzzy world in recent years. The rough fuzzy set (RFS) and
the fuzzy rough set (FRS) were introduced in Dubios et al. [41]. Researchers have done some
researches on CFRS. The generalized CFRS structure was introduced by Ma [42] Deer et al. [43,44]
introduced the fuzzy β-neighborhoods and fuzzy neighborhoods definition. Hussain [45] introduced
the q-rung orthopair fuzzy TOPSIS method for the MCDM problem which depends on the Cq-ROFRS
model. Quek et al. [46] defined the concept of Plithogenic set is an extension of the crisp set, fuzzy set,
intuitionistic fuzzy set, and neutrosophic sets, whose elements are characterized by one or more
attributes, and each attribute can assume many values. Zeng [47] proposed a framework for solving
MADM problem based on complex Spherical fuzzy rough set (CSFRS) models and created a TOPSIS
method for dealing with MADM problem.

In recent years, research on decision-theoretical rough sets (DTRSs) has made great progress.
Many scholars have studied this theory. The key directions for research include the reduction of
attributes, loss feature and some new extended models focused on DTRSs [48–59]. Yao suggested
three-way decisions which are modern DTRS theories. Three-way decisions divide the universal set
into three disjoint parts: positive area, boundary area and negative region. The Three-way decisions
are a combination of DTRSs and Bayesian decision process, which has solved several classification
problems successfully. The theory of three-way decisions has been extended to many specific areas,
such as cluster analysis [60,61], risk decision taking by the government [62], medical evaluation [63],
investment decision making [64], multi-attribute community decision making (MAGDM) [65], etc.
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Current work has concentrated on conditional likelihood and loss function to extend the idea of
three-way decisions. Yao & Zhou [66] determined the conditional probability on the basis of Bayes’
theorem and the naive probabilistic independence. Liu [67] calculated the conditional probability
through logistic regression. In order to address the problem that it is difficult to calculate the loss
accurately in a specific situation, there is a trend towards reducing the precision of loss calculation by
some kind of fluid method. Liang & Liu [68] have developed a new model of three-way decisions that
calculates the loss function by using hesitant fuzzy sets. Liang & Liu [69] also considered IFSs as a new
framework for evaluating the loss feature in Three-way decisions and then developed a new Three-way
decision model. Mandal & Ranadive [70] introduced PFNs into the loss function and developed three
methods with Pythagorean fuzzy decision-theoretical rough sets (PFDTRSs) to extract Three-way
decisions. These studies have encouraged widespread application of DTRS and Three-way Decisions.
While Mandal & Ranadive [70] introduced PFNs into the loss function and proposed the concept of
PFDTRSs. The factional orthotriple fuzzy set is new generalized tool to describe the uncertainty and
Pythagorean fuzzy set (PyFS) and q-rung orthopair fuzzy set is particulars cases. In case, we have
f = p

q = 2, then the fractional orthotriple fuzzy set is reduced a Pythagorean fuzzy set, and if f = p
q = p

and q = 1, then the fractional orthotriple fuzzy set is reduced to q-rung orthopair fuzzy set. The model
of [70] did not implement on the fractional orthotriple fuzzy environment. To fill this research space,
this paper tries to study the model of (fractional orthotriple fuzzy covering-based decision-theoretical
rough sets (FOFCDTRSs) through fractional orthotriple fuzzy (FOF) β-neighborhood structures and
Three-way decisions. Using the positive, neutral and negative characteristics of FOFNs, we develop five
methods to resolve fractional orthotriple fuzzy numbers (FOFNs) and deduce appropriate Three-way
decisions. We focus on the determination of loss functions, using the opinions of multiple experts.
We compare the five approaches (Methods), summarize their advantages and drawbacks and establish
a corresponding algorithm for deriving FOF β-covering Three-way decisions with DTRSs. In real life,
the FOFCDTRS model is a critical instrument for coping with ambiguity and confusion. In addition,
by adjusting the value of 0 ≤ ρϑ (�)

2 , ňϑ (�)
2 , νϑ (�)

2 ≤ 1, it is found that FOFCDTRSs is an important
extension of covering-based Spherical fuzzy decision-theoretic rough sets (CSFDTRSs). And by
adjusting 0 ≤ ρϑ (�) , ňϑ (�) , νϑ (�) ≤ 1, it is an important extension of covering-based picture fuzzy
decision-theoretic rough sets (CPFDTRSs). This shows that the FOFCDTRS model is more capable of
dealing with uncertainty than the CPFDTRSs and CSFDTRSs.

The factional orthotriple fuzzy set is new generalized tool to describe the uncertainty and
Pythagorean fuzzy set and q-rung orthopair fuzzy set is particulars cases. In case, we have f = p/q = 2,
then the fractional orthotriple fuzzy set is reduced a Pythagorean fuzzy set, and if f = p/q = p and
q = 1, then the fractional orthotriple fuzzy set is reduced to q-rung orthopair fuzzy set. The model
of [70] did not implement on the fractional orthotriple fuzzy environment.

The role of the fractional orthotriple fuzzy sets (FOFSs) in the decision making problem is very
important among the other extension of fuzzy sets. In the FOFS, the opinion is not only restricted to yes
or no, also having some sort of refusal or abstinence. The best example for representing the FOFS as,
voting systems, in voting systems, there are four type of voters, i.e vote in favor, or against vote, refuse
to vote, or neutral for vote. In FOFS, the MD is used for vote in favor, NMD is used for against vote,
ND is used for neutral for vote and RD is used for refuse to vote. In many cases of real life, we have exist
situation where the experts plans for best decision by using more accurate tools. The FOFS is a very
important tool to describe the object with no uncertainty, and in other tool the information diverse and
having uncertainty. For example, we consider a country want build or start a project for the medical
treatment or health care center. The government party will give high favor for his project, Govt assigned
MD 0.8, while the opposition party will show it, the same project is not good, they will highly against.
The opposition party will assigned NMD 0.75. The other small party will remain neutral and they will
assigned NM is 0.2, in case of picture fuzzy set, 0.8+ 0.75+ 0.2 = 1.75 > 1, in this case the picture fuzzy
set failed to explain such information. Now consider SFS, (0.8)2 + (0.75)2 + (0.2)2 = 1.243 > 1, also in
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this case the SFS failed to explain the such information, In case of FOFS, (0.8) f + (0.75) f + (0.2) f ≤ 1,
where f ∈ Q+.

In order to handle such problem of uncertainty, we need a comprehensive tool to describe such
type of problem during the decision making process.

The rest of this paper is arranged as follows: the basic concepts of FOFSs and their generalization
are introduced in Section 2. In Section 3, the concept of CFOFRSs based on FOF β-neighborhoods is
proposed along with the corresponding axiomatic system. Apart from these, the method of obtaining
conditional probability is discussed in this section. In Section 4, we propose the FOFCDTRSs model
and give the minimum cost decision rules under FOF environment, and further study the decision
rules (P1)− (N1) according to different comparison methods of FOFNs, and propose five methods to
deduce Three-way decisions with FOFCDTRS. Then, an application algorithm based on FOFCDTRSs
model to solve MCDM is designed in Section 5, and also an example shows the implementation of
the latest three-way decisions, and contrasts and analyzes the five approaches proposed. Section 6,
concludes the paper and discusses future research.

2. Preliminaries

The fuzzy set theory was first time defined by Zadeh [4], which contribute a fruitful scheme for
representing and manipulating uncertainty in the form of gradualness. In 1986, Atanassov update
the FS into IFS [3], by developing the notion of negative membership grade along with a positive
membership grade.

This section presented the briefly remembrance the rudiments of IFS, PyFS, PFS and SFS.

Definition 1 ([3]). Let � �= φ are the genral set. An intuitionistic fuzzy set ϑ is described as;

� = {(�, ρϑ (�) , νϑ(�)|� ∈ �}. (1)

where the functions ρϑ (�) : � → [0, 1] and νϑ(�) : R → [0, 1] represent the grade of positive and negative
membership of each number, with 0 ≤ ρϑ (�) + νϑ(�) ≤ 1 for all � ∈ R.

Definition 2 ([71]). For any fixed set .ג A PyFS ϑ on ג is described with the pair of mappings ρϑ : →ג [0, 1]
and ňϑ : →ג [0, 1] where each � ∈ ,ג ρϑ (�) , ňϑ (�) and νϑ (�) are said to be positive and negative membership
grades of �, respectively, and ρ2

ϑ (�) + ň2
ϑ (�) ≤ 1. That is,

ϑ = {(�, ρϑ (�) , ňϑ (�))} .

Conventionally, πϑ (�) =
√

1− s2
ϑ (�) , where s2 (�) = ρ2

ϑ (�) + ň2
ϑ (�) + ν2

ϑ (�) is said to be the

hesitancy grade of �, and ρ2
ϑ (�) + ň2

ϑ (�) ≤ 1 for each � ∈ .ג

Definition 3 ([72]). For any fixed set �. A q-rung orthopair fuzzy set (q-ROFS) ϑ on � is described with the
pair of mappings ρϑ : �→ [0, 1] , ňϑ : �→ [0, 1] and νϑ : �→ [0, 1] , where each � ∈ �, ρϑ (�) , ňϑ (�) and
νϑ (�) are said to be positive and negative grades of �, correspondingly, and 0 ≤ ρϑ (�)

f + νϑ (�)
f ≤ 1, ( f ≥ 1) .

That is
ϑ =

{
(�, ρϑ (�) , νϑ (�)) : ρϑ (�)

f + νϑ (�)
f ≤ 1 for each � ∈ �

}
Conventionally, πϑ (�) =

(
1− ρϑ (�)

f − νϑ (�)
f
) 1

f is said to be the indeterminacy membership grade
of �.
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Definition 4 ([5]). For any fixed set .ג An picture fuzzy set (PFS) ϑ on ג is described with the pair of mappings
ρϑ : →ג [0, 1], ňϑ : →ג [0, 1] and νϑ : →ג [0, 1] , where each � ∈ ,ג ρϑ (�), ňϑ (�) and νϑ (�) are said to be
positive, neutral and negative membership grades of �, respectively, and ρϑ (�) + ňϑ (�) + νϑ (�) ≤ 1. That is

ϑ = {(�, ρϑ (�) , ňϑ (�) , νϑ (�)) : ρϑ (�) + ňϑ (�) + νϑ (�) ≤ 1 for each � ∈ {ג .

Conventionally, πϑ (�) = 1− ρϑ (�)− ňϑ (�)− νϑ (�) is said to be the indeterminacy membership grade
of �. We note that a standard membership grade is a special case of an picture positive membership grade where
ňϑ (�) = 1− ρϑ (�)− νϑ (�) . Also, standard membership grade has πϑ (�) = 0.

Definition 5 ([73]). For any fixed set .ג A Spherical fuzzy set (SFS) ϑ on ג is described with the pair of
mappings ρϑ : →ג [0, 1] , ňϑ : →ג [0, 1] and νϑ : →ג [0, 1] where each � ∈ ,ג ρϑ (�) , ňϑ (�) and νϑ (�) are
said to be positive, neutral and negative membership grades of �, respectively, and ρ2

ϑ (�) + ň2
ϑ (�) + ν2

ϑ (�) ≤ 1.
That is

ϑ =
{
(�, ρϑ (�) , ňϑ (�) , νϑ (�)) : ρ2

ϑ (�) + ň2
ϑ (�) + ν2

ϑ (�) ≤ 1 for each � ∈ ג
}

.

Conventionally, πϑ (�) =
√

1− s2
ϑ (�) , where s2 (�) = ρ2

ϑ (�) + ň2
ϑ (�) + ν2

ϑ (�) is said to be the
hesitancy grade of �.

Definition 6 ([74]). A fuzzy-rough set is the pair of lower and upper approximations of a fuzzy set ϑ in a
universe � on which a fuzzy relation R is defined. The fuzzy-rough model is obtained by fuzzifying the definitions
of the crisp lower and upper approximation. Recall that the condition for an element to belong to the crisp lower
approximation is

∀y ∈ �(x, y) ∈ R → y ∈ ϑ

The equivalence relation R is now a fuzzy relation, and ϑ is a fuzzy set. The values R(x, y) and ϑ(y) are
connected by a fuzzy implication Γ, so Γ(R(x, y), ϑ(y)) expresses to what extent elements that are similar x
to belong to ϑ. The membership value of an element x ∈ � to the lower approximation is high if these values
Γ(R(x, y), ϑ(y)) are high for all y ∈ ϑ:

∀y ∈ �(R ↓ ϑ)(x) = min
y∈�

Γ(R(x, y), ϑ(y))

∀y ∈ �(R ↑ ϑ)(x) = mix
y∈�

Γ(R(x, y), ϑ(y))

This upper approximation expresses to what extent there exist instances that are similar to x and belong
to ϑ.

Definition 7 ([47]). (1) Consider a universal set � and S = {S1,S2,S3, ...Sn} and each Si ∈ SFS(�). Then,

S is called spherical β-covering(SF β-covering) of �, if there is another SFS β of � such that
(

n⋃
i=1
Si

)
(x) � β

for all x ∈ �. Thus, the pair (�,S) is said to a be SFCAS.
(2) Consider (�,S) be a SFCAS, for β and SF β-covering S = {S1,S2,S3, ...Sn} of �. Then

N
β

S(x) =
⋂
{Si ∈ S/Si(x)} � β, i = 1, 2, 3, ..., n

is called an SF β-covering neighborhood of �.
(3) Consider Nβ

S =
{
N

β

S(x)/x ∈ �
}

denote an SF β-covering neighborhood system induced by an SF
β-covering S . Further, we have the representation of SF β-neighborhood systems as following;

Mβ
S =

[
N

β

S(x) (x)
]
(x1,x2)∈�×�
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Definition 8 ([75]). Decision-theoretic rough set models are a probabilistic extension of the algebraic rough set
model. The required parameters for defining probabilistic lower and upper approximations are calculated based
on more familiar notions of costs (risks) through the well-known Bayesian decision procedure.

3. Fractional Orthotriple Fuzzy Set

Definition 9. For any fixed set �. A fractional orthotriple fuzzy set (FOFS) ϑ on � is described with the triple
of mappings ρϑ : � → [0, 1] , ňϑ : � → [0, 1] and νϑ : � → [0, 1] , where each � ∈ �, ρϑ (�) , ňϑ (�) and
νϑ (�) are said to be positive, neutral and negative grades of �, correspondingly, and 0 ≤ ρϑ (�)

f + ňϑ (�)
f +

νϑ (�)
f ≤ 1, ( f ≥ 1) . That is

ϑ =
{
(�, ρϑ (�) , ňϑ (�) , νϑ (�)) : ρϑ (�)

f + ňϑ (�)
f + νϑ (�)

f ≤ 1 for each � ∈ �
}

. (2)

Conventionally, πϑ (�) =
(

1− ρϑ (�)
f − ňϑ (�)

f − νϑ (�)
f
) 1

f is said to be the indeterminacy
membership grade of �.

For convenience, fractional orthotriple fuzzy number (FOFN) is denoted as (ρϑ (�) , ňϑ (�) , νϑ (�)) for all
� ∈ �, and the collection of all FOFSs on � is written by FOF(�).

Definition 10. Suppose ϑ1 (�) =
(
ρϑ1 (�) , ňϑ1 (�) , νϑ1 (�)

)
and ϑ2 (�) =

(
ρϑ2 (�) , ňϑ2 (�) , νϑ2 (�)

)
are

two FOFNs. Then, one has the following properties;

1. ϑ1 (�) ⊆ ϑ2 (�) if ρϑ1 (�) ≤ ρϑ2 (�) , ňϑ1 (�) ≥ ňϑ2 (�) and νϑ1 (�) ≥ νϑ2 (�) ;
2. ϑ1 (�) = ϑ2 (�) if ρϑ1 = ρϑ2 , ňϑ1 = ňϑ2 and νϑ1 = νϑ2 ;
3. ϑ1 (�) ∩ ϑ2 (�) =

{
min

(
ρϑ1 (�) , ρϑ2 (�)

)
, max

(
ňϑ1 (�) , ňϑ2 (�)

)
, max

(
νϑ1 (�) , νϑ2 (�)

)}
;

4. ϑ1 (�) ∪ ϑ2 (�) =
{

max
(
ρϑ1 (�) , ρϑ2 (�)

)
, min

(
ňϑ1 (�) , ňϑ2 (�)

)
, min

(
νϑ1 (�) , νϑ2 (�)

)}
;

5. ϑc
1 (�) =

(
νϑ1 (�) , ňϑ1 (�) , ρϑ1 (�)

)
;

6. ϑ1 (�)⊕ ϑ2 (�) =

⎧⎨⎩
(

ρϑ1 (�)
f + ρϑ2 (�)

f − ρϑ1 (�)
f · ρϑ2 (�)

f
) 1

f ,

ňϑ1 (�) · ňϑ2 (�) , νϑ1 (�) · νϑ2 (�)

⎫⎬⎭ ;

7. ϑ1 (�)⊗ ϑ2 (�) =

⎧⎪⎨⎪⎩ ρϑ1 (�) · ρϑ2 (�) ,
(

ňϑ1 (�)
f + ňϑ2 (�)

f − ňϑ1 (�)
f · ňϑ2 (�)

f
) 1

f ,(
νϑ1 (�)

f + νϑ2 (�)
f − νϑ1 (�)

f · νϑ2 (�)
f
) 1

f

⎫⎪⎬⎪⎭ ;

8. Ψϑ1 (�) =

{(
1−
(

1− ρϑ1 (�)
f
)Ψ
) 1

f
, ňϑ1 (�)

Ψ , νϑ1 (�)
Ψ

}
, Ψ > 0;

9. (ϑ1 (�))
Ψ =

{(
ρϑ1 (�)

)Ψ ,
(

1−
(

1− ňϑ1 (�)
f
)Ψ
) 1

f
,
(

1−
(

1− νϑ1 (�)
f
)Ψ
) 1

f
}

.

Definition 11. Consider two FOFNs ϑ1 (�) =
(
ρϑ1 (�) , ňϑ1 (�) , νϑ1 (�)

)
and ϑ2 (�) =(

ρϑ2 (�) , ňϑ2 (�) , νϑ2 (�)
)
. Then, there are a natural quasi-ordering on the FOFNs is defined as follows;

ϑ1 (�) ≥ ϑ2 (�)⇔ ρϑ1 (�) ≥ ρϑ2 (�) , ňϑ1 (�) ≤ ňϑ2 (�) and νϑ1 (�) ≤ νϑ2 (�) (3)

Remark 1. It is easy observed from Definition (11) that the FOFN f+ = (1, 0, 0) is the largest FOFN and
the f− = (0, 0, 1) is the smallest FOFN, correspondingly. We called f+, the positive ideal FOFN and f−,
the negative ideal FOFN.

Definition 12. Let ϑ (�) = (ρϑ (�) , ňϑ (�) , νϑ (�)) be a FOFN, the score S (ϑ (�)) and the corresponding
accuracy function H (ϑ (�)) are defined as follows;

S (ϑ (�)) = ρϑ (�)
f − ňϑ (�)

f − νϑ (�)
f (4)
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and
H (ϑ (�)) = ρϑ (�)

f + ňϑ (�)
f + νϑ (�)

f (5)

Obviously, −1 ≤ S (ϑ (�)) ≤ 1 and 0 ≤ H (ϑ (�)) ≤ 1.

According to the Definition (12), the comparison rules for FOFNs as follows;

1. If S (ϑ1 (�)) > S (ϑ2 (�)) , then (ϑ1 (�)) > (ϑ2 (�)) ;
2. If S (ϑ1 (�)) < S (ϑ2 (�)) , then (ϑ1 (�)) < (ϑ2 (�)) ;
3. If S (ϑ1 (�)) = S (ϑ2 (�)) , then;

(a) If H (ϑ1 (�)) > H (ϑ2 (�)) , then (ϑ1 (�)) > (ϑ2 (�)) ;

(b) If H (ϑ1 (�)) < H (ϑ2 (�)) , then (ϑ1 (�)) < (ϑ2 (�)) ;

(c) If H (ϑ1 (�)) = H (ϑ2 (�)) , then (ϑ1 (�)) = (ϑ2 (�)) ;

Definition 13. Let ϑ1 (�) =
(
ρϑ1 (�) , ňϑ1 (�) , νϑ1 (�)

)
and ϑ2 (�) =

(
ρϑ2 (�) , ňϑ2 (�) , νϑ2 (�)

)
are two

FOFNs, the generalized distance between ϑ1 (�) and ϑ2 (�) is defined as follows;

d (ϑ1 (�) , ϑ2 (�)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1
2 (1− p)

⎛⎜⎜⎜⎜⎝
∣∣∣ρϑ1 (�)

f − ρϑ2 (�)
f
∣∣∣λ

+
∣∣∣ňϑ1 (�)

f − ňϑ2 (�)
f
∣∣∣λ

+
∣∣∣νϑ1 (�)

f − νϑ2 (�)
f
∣∣∣λ
⎞⎟⎟⎟⎟⎠

+p
∣∣∣πϑ1 (�)

f − πϑ2 (�)
f
∣∣∣λ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

1
λ

(6)

where

πϑ1 (�) =
(

1− ρϑ1 (�)
f − ňϑ1 (�)

f − νϑ1 (�)
f
) 1

q ,

πϑ2 (�) =
(

1− ρϑ2 (�)
f − ňϑ2 (�)

f − νϑ2 (�)
f
) 1

q ,

λ > 0 and p ∈ [0, 1]. When the parameters λ and p take different values, we will get some different
distance measures.

Case 1. When λ = 1 and f = 2, the distance will be reduced to Hamming-indeterminacy
degree-preference distance.

d (ϑ1 (�) , ϑ2 (�)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
(1− p)

⎛⎜⎜⎜⎝
∣∣∣ρϑ1 (�)

2 − ρϑ2 (�)
2
∣∣∣

+
∣∣∣ňϑ1 (�)

2 − ňϑ2 (�)
2
∣∣∣

+
∣∣∣νϑ1 (�)

2 − νϑ2 (�)
2
∣∣∣

⎞⎟⎟⎟⎠+ p
∣∣∣πϑ1 (�)

2 − πϑ2 (�)
2
∣∣∣
⎫⎪⎪⎪⎬⎪⎪⎪⎭

In case 1, if p = 0, the effect of the indeterminacy grade is not considered. The distance will be
reduced to metric distance.

d (ϑ1 (�) , ϑ2 (�)) =

⎧⎨⎩1
2
(1− p)

⎛⎝ ∣∣∣ρϑ1 (�)
2 − ρϑ2 (�)

2
∣∣∣+ ∣∣∣ňϑ1 (�)

2 − ňϑ2 (�)
2
∣∣∣

+
∣∣∣νϑ1 (�)

2 − νϑ2 (�)
2
∣∣∣

⎞⎠⎫⎬⎭
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Case 2. When λ = 2 and f = 2, the distance will be reduced to Euclidean-indeterminacy
grade-preference distance.

d (ϑ1 (�) , ϑ2 (�)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2 (1− p)

⎛⎜⎜⎜⎜⎝
∣∣∣ρϑ1 (�)

2 − ρϑ2 (�)
2
∣∣∣2

+
∣∣∣ňϑ1 (�)

2 − ňϑ2 (�)
2
∣∣∣2

+
∣∣∣νϑ1 (�)

2 − νϑ2 (�)
2
∣∣∣2
⎞⎟⎟⎟⎟⎠

+p
∣∣∣πϑ1 (�)

2 − πϑ2 (�)
2
∣∣∣ 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
In the Case 2, if p = 0, the distance will be reduced to Euclidean distance.

d (ϑ1 (�) , ϑ2 (�)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2
(1− p)

⎛⎜⎜⎜⎜⎝
∣∣∣ρϑ1 (�)

2 − ρϑ2 (�)
2
∣∣∣2

+
∣∣∣ňϑ1 (�)

2 − ňϑ2 (�)
2
∣∣∣2

+
∣∣∣νϑ1 (�)

2 − νϑ2 (�)
2
∣∣∣2
⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

1
2

Definition 14. Let ϑ1 (�) =
(
ρϑ1 (�) , ňϑ1 (�) , νϑ1 (�)

)
and ϑ2 (�) =

(
ρϑ2 (�) , ňϑ2 (�) , νϑ2 (�)

)
are two

FOFNs, the distance d satisfied the following properties;

1. d (ϑ1 (�) , ϑ2 (�)) ≥ 0;
2. d (ϑ1 (�) , ϑ2 (�)) = d (ϑ2 (�) , ϑ1 (�)) ;
3. d (ϑ1 (�) , ϑ2 (�)) = 0 ⇔ d (ϑ1 (�)) = d (ϑ2 (�)) .

According to the Definition (13), it is easy to find the distance of FOFN ϑ (�) =

(ρϑ (�) , ňϑ (�) , νϑ (�)) and the positive ideal FOFN f+ = (1, 0, 0) as follows;

d
(
ϑ (�) , f+

)
=

{
1
2
(1− p)

(∣∣∣1− ρϑ (�)
f
∣∣∣λ +

∣∣∣ňϑ (�)
f
∣∣∣λ +

∣∣∣νϑ (�)
f
∣∣∣λ)} 1

λ

(7)

and distance between the FOFN ϑ (�) = (ρϑ (�) , ňϑ (�) , νϑ (�)) and the negative ideal FOFN f− =

(0, 0, 1) as follows;

d
(
ϑ (�) , f−

)
=

{
1
2
(1− p)

(∣∣∣ρϑ (�)
f
∣∣∣λ +

∣∣∣1− ňϑ (�)
f
∣∣∣λ +

∣∣∣1− νϑ (�)
f
∣∣∣λ)} 1

λ

(8)

Usually, the smaller the distance d (ϑ (�) , f+) is the bigger the FOFN ϑ (�) is; and on the contrary
the larger the distance d (ϑ (�) , f−) is, the bigger the FOFN ϑ (�) is. Inspire by the concept of
TOPSIS [76], we developed the idea of closeness index for the FOFN.

Definition 15. Let ϑ (�) = (ρϑ (�) , ňϑ (�) , νϑ (�)) be a FOFN, f+ = (1, 0, 0) be the positive ideal FOFN
and f− = (0, 0, 1) be the negative ideal FOFN, then the closeness index of ϑ (�) is defined as following;

ζ (ϑ (�)) =
d (ϑ (�) , f−)

d (ϑ (�) , f−) + d (ϑ (�) , f+)
(9)

Apparently, if ϑ (�) = f−, then ζ (ϑ (�)) = 0; if ϑ (�) = f+, then ζ (ϑ (�)) = 1. Meanwhile, it is
easily noticed that the closeness index ζ (ϑ (�)) ∈ [0, 1].

And for two FOFNs ϑ1 (�) =
(
ρϑ1 (�) , ňϑ1 (�) , νϑ1 (�)

)
and ϑ2 (�) =(

ρϑ2 (�) , ňϑ2 (�) , νϑ2 (�)
)

, if ζ (ϑ1 (�)) ≥ ζ (ϑ2 (�)) , then ϑ1 (�) ≥ ϑ2 (�) .
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4. Covering Based Fractional Orthotriple Fuzzy Rough Set

In this section, we defined some new concept of fractional orthotriple fuzzy β-covering
(FOF β-covering), fractional orthotriple fuzzy covering approximation space (FOFCAS) and FOF
β-neighborhood.

Definition 16.

1. Assume � is a universe set, Ẽ =
(

Ẽ1, ..., Ẽn

)
, where Ẽi ∈ FOF(�) and k = 1, ..., n. For any FOFN

β =
(
ρβ (�) , ňβ (�) , νβ (�)

)
, then Ẽ is called a FOF β-covering of � if(

n⋃
k=1

Ẽk

)
(�) ≥ β (10)

for all � ∈ �. The
(
�, Ẽ
)

is called a FOFCAS.

2. Let
(
�, Ẽ
)

be a FOFCAS and Ẽ =
(

Ẽ1, ..., Ẽn

)
be a FOF β-covering of � for some β =(

ρβ (�) , ňβ (�) , νβ (�)
)

. Then,

Ñβ

Ẽ(�)
=
(

Ẽk ∈ Ẽ|Ẽk (�) ≥ β, k = 1, ..., n
)

(11)

is called a FOF β-neighborhood of � in �.

Based on the above FOF β-neighborhood Ñβ

Ẽ(�)
, a crisp set called fractional orthotriple

β-neighborhood (FOF β-neighborhood) is introduced as follows;

Definition 17. Given that Ẽ =
(

Ẽ1, ..., Ẽn

)
is a FOF β-covering on �. Ñβ

Ẽ(�)
is a FOF β-neighborhood of � in

�. For a FOFN β =
(
ρβ (�) , ňβ (�) , νβ (�)

)
, if each � ∈ �, FO β-neighborhood N̂β

Ẽ(�)
of � is defined as;

N̂β

Ẽ(�)
=

{
z ∈ � : ρ

Ñβ

Ẽ(�)

(z) ≥ ρβ (�) , ň
Ñβ

Ẽ(�)

(z) ≤ ňβ (�) , ν
Ñβ

Ẽ(�)

(z) ≤ νβ (�)

}
(12)

.

Definition 18. Let
(
�, Ẽ
)

be a FOFCAS. The conditional probability in which the object � belongs to Ĥ with

respect to N̂β

Ẽ(�)
, denoted by Pr

(
Ĥ|N̂β

Ẽ(�)

)
for every Ĥ ⊆ �, is defined as;

Pr

(
Ĥ|N̂β

Ẽ(�)

)
=

∣∣∣Ĥ ∩ N̂β

Ẽ(�)

∣∣∣∣∣∣N̂β

Ẽ(�)

∣∣∣ (13)

Clearly, for all � ∈ �, 0 ≤ Pr

(
Ĥ|N̂β

Ẽ(�)

)
≤ 1.
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Example 1. Suppose that (ϑ,�) be a FOFCAS and Ẽ =
(

Ẽ1, ..., Ẽ4

)
is a set of FOFSs, f ≥ 4,

where � = (�1, ...,�5) , β = (0.8.0.6.0.4). Details are shown in Table 1.

Table 1. FOF β—covering Ẽ in Example 1.

Ẽ1 Ẽ2 Ẽ3 Ẽ4

�1 (0.9, 0.1, 0.2) (0.7, 0.3, 0.5) (0.6, 0.3, 0.5) (0.8, 0.5, 0.2)
�2 (0.5, 0.3, 0.4) (0.9, 0.3, 0.1) (0.8, 0.1, 0.4) (0.7, 0.2, 0.4)
�3 (0.9, 0.4, 0.3) (0.3, 0.2, 0.1) (0.8, 0.2, 0.4) (0.5, 0.4, 0.6)
�4 (0.8, 0.1, 0.4) (0.5, 0.2, 0.1) (0.9, 0.3, 0.4) (0.8, 0.3, 0.1)
�5 (0.8, 0.4, 0.3) (0.9, 0.4, 0.3) (0.7, 0.3, 0.1) (0.4, 0.2, 0.1)

Therefore, Ẽ is FOF β−covering of �. Then, Ñ(0.8.0.6.0.4)
Ẽ(�1)

= Ẽ1 ∩ Ẽ4, Ñ(0.8.0.6.0.4)
Ẽ(�2)

= Ẽ2 ∩ Ẽ3,

Ñ(0.8.0.6.0.4)
Ẽ(�3)

= Ẽ1 ∩ Ẽ3, Ñ(0.8.0.6.0.4)
Ẽ(�4)

= Ẽ3 ∩ Ẽ4, Ñ(0.8.0.6.0.4)
Ẽ(�5)

= Ẽ1 ∩ Ẽ2.

By calculations, we have the FOF β−neighborhood Ñ(0.8.0.6.0.4)
Ẽ

as shown in Table 2.

Table 2. FOF β—neighborhood Ñ(0.8.0.6.0.4)
Ẽ

in Example 1.

�1 �2 �3 �4 �5

�1 (0.8, 0.1, 0.2) (0.5, 0.2, 0.4) (0.5, 0.4, 0.6) (0.8, 0.1, 0.4) (0.4, 0.2, 0.3)
�2 (0.6, 0.3, 0.5) (0.8, 0.1, 0.4) (0.3, 0.2, 0.4) (0.5, 0.2, 0.4) (0.7, 0.3, 0.3)
�3 (0.6, 0.1, 0.5) (0.5, 0.1, 0.4) (0.8, 0.2, 0.4) (0.8, 0.1, 0.4) (0.7, 0.3, 0.3)
�4 (0.6, 0.3, 0.5) (0.7, 0.1, 0.4) (0.5, 0.2, 0.6) (0.8, 0.3, 0.4) (0.4, 0.2, 0.1)
�5 (0.7, 0.1, 0.5) (0.5, 0.3, 0.4) (0.3, 0.2, 0.3) (0.5, 0.1, 0.4) (0.8, 0.4, 0.3)

Ñ(0.8.0.6.0.4)
Ẽ(�1)

= (�1) , Ñ(0.8.0.6.0.4)
Ẽ(�2)

= (�2) , Ñ(0.8.0.6.0.4)
Ẽ(�3)

= (�3) , Ñ(0.8.0.6.0.4)
Ẽ(�4)

= (�1,�3,�4) ,

Ñ(0.8.0.6.0.4)
Ẽ(�5)

= (�5)

Let the decision set Ĥ = (�1,�4,�5) , so we have the conditional probability as;

Pr

(
Ĥ|N̂β

Ẽ(�1)

)
=

|(�1) ∩ (�1,�4,�5)|
|(�1)|

= 1,

Pr

(
Ĥ|N̂β

Ẽ(�2)

)
=

|(�2) ∩ (�1,�4,�5)|
|(�2)|

= 0,

Pr

(
Ĥ|N̂β

Ẽ(�3)

)
=

|(�3) ∩ (�1,�4,�5)|
|(�3)|

= 1,

Pr

(
Ĥ|N̂β

Ẽ(�4)

)
=

|(�1,�3,�4) ∩ (�1,�4,�5)|
|(�1,�3,�4)|

=
2
3

,

Pr

(
Ĥ|N̂β

Ẽ(�5)

)
=

|(�5) ∩ (�1,�4,�5)|
|(�5)|

= 1.

5. FOF β-Covering Decision-Theoretic Rough Set Model

In this section, we discuss the loss function of DTRS with FOFNs in view of the new uncertainty
measurement of FOFSs, and construct a FOFCDTRS as per Bayesian decision procedure [53,68,69].
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According to the results of Liang and Liu [69] and Bayesian decision procedure, the q- ROFCDTRS
consists of two states and three actions. The family of states is denoted by Γ = (D,¬D), which means
that an object is in the state D or not in the state D. And, the collection of three actions is denoted
by Z = (bP, bB, bN), in which bP, bB and bN stand for the three actions in classifying an object �,
namely, deciding � ∈ POS(D), deciding � ∈ BND(D) and deciding � ∈ NEG(D), respectively.
At the moment, POS(D), BND(D) and NEG(D) correspond the decision rules of three-way decisions.
Using the idea Liang and Liu [69] and Bayesian decision procedure, under the fractional orthotriple
fuzzy information, We create a loss function matrix for the risk or cost of behavior in the various states.
The results are given in Table 3.

Table 3. The loss function matrix with FOFNs.

D

bP ϑ (λPP) = (ρϑ (λPP) , ňϑ (λPP) , νϑ (λPP))
bB ϑ (λBP) = (ρϑ (λBP) , ňϑ (λBP) , νϑ (λBP))
bN ϑ (λNP) = (ρϑ (λNP) , ňϑ (λNP) , νϑ (λNP))

¬D

bP ϑ (λPN) = (ρϑ (λPN) , ňϑ (λPN) , νϑ (λPN))
bB ϑ (λBN) = (ρϑ (λBN) , ňϑ (λBN) , νϑ (λBN))
bN ϑ (λNN) = (ρϑ (λNN) , ňϑ (λNN) , νϑ (λNN))

In Table 3, the loss function ϑ(λ··) is FOFN (· = P; B; N). When the object � is in the state D, its loss
degrees with FOFNs are ϑ (λPP) , ϑ (λBP) and ϑ (λNP) incurred for taking actions of bP, bB and bN ,
correspondingly. In the same way, when the object � does not belong to D, its loss degrees with FOFNs
are ϑ (λPP) , ϑ (λBP) and ϑ (λNP) incurred for taking the same actions. Utilizing the property of FOFN
and the semantics of three-way decisions, the loss functions of Table 3, have the following relationship:

ρϑ (λPP) ≤ ρϑ (λBP) < ρϑ (λNP) ; (14)

ňϑ (λNP) ≤ ňϑ (λBP) < ňϑ (λPP) ; (15)

νϑ (λNP) ≤ νϑ (λBP) < νϑ (λPP) ; (16)

ρϑ (λNN) ≤ ρϑ (λBN) < ρϑ (λPN) ; (17)

ňϑ (λPN) ≤ ňϑ (λBN) < ňϑ (λNN) ; (18)

νϑ (λPN) ≤ νϑ (λBN) < νϑ (λNN) . (19)

Proposition 1. Using the relationship of loss functions (14)–(19), we can obtain the following results;

ϑ (λPP) ≤ ϑ (λBP) < ϑ (λNP) (20)

ϑ (λNN) ≤ ϑ (λBN) < ϑ (λPN) (21)

From Proposition (1), Equation (20) shows that the loss of classifying the object � belonging to D into
the positive region POS(D) is less than or equal to the loss of classifying it into the boundary region BND(D),
and both of them are less than the loss of classifying � into the negative region NEG(D). The relationship (21)
can be explained in the same way.
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Assume that Pr

(
D|N̂β

Ẽ(�)

)
is the conditional probability in which the object � belonging

to D is described by its FO β-neighborhood N̂β

Ẽ(�)
. Then, there exists a relationship

Pr

(
D|N̂β

Ẽ(�)

)
+ Pr

(
¬D|N̂β

Ẽ(�)

)
= 1. Now, for every � ∈ �, the corresponding expected losses

R
(

b·|N̂β

Ẽ(�)

)
(· = P, B, N) can be shown as;

R
(

bP|N̂β

Ẽ(�)

)
= ϑ (λPP) Pr

(
D|N̂β

Ẽ(�)

)
⊕ ϑ (λPN) Pr

(
D|N̂β

Ẽ(�)

)
; (22)

R
(

bB|N̂β

Ẽ(�)

)
= ϑ (λBP) Pr

(
D|N̂β

Ẽ(�)

)
⊕ ϑ (λBN) Pr

(
D|N̂β

Ẽ(�)

)
; (23)

R
(

bN |N̂β

Ẽ(�)

)
= ϑ (λNP) Pr

(
D|N̂β

Ẽ(�)

)
⊕ ϑ (λNN) Pr

(
D|N̂β

Ẽ(�)

)
; (24)

Proposition 2. According to Pr

(
D|N̂β

Ẽ(�)

)
+ Pr

(
¬D|N̂β

Ẽ(�)

)
= 1, Equations (22)–(24), can be expressed

as follows;

R
(

bP|N̂β

Ẽ(�)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1−
(

1− ρϑ (λPP)
f
)Pr

(
D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,

ňϑ (λPP)
Pr

(
D|N̂β

Ẽ(�)

)
,

νϑ (λPP)
Pr

(
D|N̂β

Ẽ(�)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1−
(

1− ρϑ (λPP)
f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,

ňϑ (λPP)
Pr

(
¬D|N̂β

Ẽ(�)

)
,

νϑ (λPP)
Pr

(
¬D|N̂β

Ẽ(�)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

R
(

bB|N̂β

Ẽ(�)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
⎛⎝1−

(
1− ρϑ (λBP)

f
)Pr

(
D|N̂β

Ẽ(�)

)⎞⎠ 1
f

, ňϑ (λBP)
Pr

(
D|N̂β

Ẽ(�)

)
,

νϑ (λBP)
Pr

(
D|N̂β

Ẽ(�)

)

⎞⎟⎟⎟⎟⎠

⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1−
(

1− ρϑ (λBP)
f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,

ňϑ (λBP)
Pr

(
¬D|N̂β

Ẽ(�)

)
,

νϑ (λBP)
Pr

(
¬D|N̂β

Ẽ(�)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)
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R
(

bN |N̂β

Ẽ(�)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1−
(

1− ρϑ (λNP)
f
)Pr

(
D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,

ňϑ (λNP)
Pr

(
D|N̂β

Ẽ(�)

)
,

νϑ (λNP)
Pr

(
D|N̂β

Ẽ(�)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1−
(

1− ρϑ (λNP)
f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,

ňϑ (λNP)
Pr

(
¬D|N̂β

Ẽ(�)

)
,

νϑ (λNP)
Pr

(
¬D|N̂β

Ẽ(�)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

Proposition 3. The expected losses R
(

b·|N̂β

Ẽ(�)

)
(· = P, B, N) are expressed as follows;

R
(

bP|N̂β

Ẽ(�)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1−
(

1− ρϑ (λPP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λPN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,⎛⎝ňϑ (λPP)
Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λPN)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ ,⎛⎝νϑ (λPP)
Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λPN)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(28)

R
(

bB|N̂β

Ẽ(�)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1−
(

1− ρϑ (λBP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λBN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,⎛⎝ňϑ (λBP)
Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λBN)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ ,⎛⎝νϑ (λBP)
Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λBN)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(29)

R
(

bN |N̂β

Ẽ(�)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1−
(

1− ρϑ (λPP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λPN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,⎛⎝ňϑ (λNP)
Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λNN)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ ,⎛⎝νϑ (λNP)
Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λNN)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (30)

As can be seen from Proposition (3), the following results hold.
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Proposition 4. Based on (28)–(30), the expected losses R
(

b·|N̂β

Ẽ(�)

)
(· = P, B, N) are calculated as follows;

R
(

bN |N̂β

Ẽ(�)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1−
(

1− ρϑ (λ·P)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λ·N)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

,⎛⎝ňϑ (λ·P)
Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ ,⎛⎝νϑ (λ·P)
Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= (ρ·, ň·, ν·) (· = P, B, N)

We give the following minimum cost decision rules under FOF environment as per the Bayesian
decision-making process;

(P) . If R
(

bP|N̂β

Ẽ(�)

)
≤ R

(
bB|N̂β

Ẽ(�)

)
and R

(
bP|N̂β

Ẽ(�)

)
≤ R

(
bN |N̂β

Ẽ(�)

)
, decide � ∈ POS (D) ;

(B) . If R
(

bB|N̂β

Ẽ(�)

)
≤ R

(
bP|N̂β

Ẽ(�)

)
and R

(
bB|N̂β

Ẽ(�)

)
≤ R

(
bN |N̂β

Ẽ(�)

)
, decide � ∈ BND (D) ;

(N) . If R
(

bN |N̂β

Ẽ(�)

)
≤ R

(
bB|N̂β

Ẽ(�)

)
and R

(
bN |N̂β

Ẽ(�)

)
≤ R

(
bP|N̂β

Ẽ(�)

)
, decide � ∈ NEG (D) ;

where R
(

bP|N̂β

Ẽ(�)

)
, R
(

bB|N̂β

Ẽ(�)

)
and R

(
bN |N̂β

Ẽ(�)

)
are FOFNs. According to the above results,

the researches on the decision rules (P)− (N) are further conducted by using (28)–(30), as per the operations
of FOFNs.

5.1. Decision-Making Analysis of FOFCDTRS

In Section 4, we construct a FOFCDTRS model. At the same time,the decision rules (P)− (N) are
put forward. Since the expected losses of FOFCDTRS cannot be directly compared, we need to further
investigate the decision rules (P)− (N) as per the operations of FOFNs. A FOFN characterized both
by positive, neutral and negative, gives a way to calculate the decision problem with the positive,
neutral and the negative viewpoints. In this section, we defined five methods to deduce Three-way
decisions with FOFCDTRS.

5.1.1. Method 1: A Positive Viewpoint

For decision rules (P) − (N), the expected losses R
(

b·|N̂β

Ẽ(�)

)
= (ρ·, ň·, ν·) (· = P, B, N) are

FOFNs. With regard to the positive viewpoint, we directly utilize the positive degree of FOFNs
to represent the expected losses. When we compare the expected losses, the positive degree of the
expected losses keep in step with them. According to this scenario, decision rules (P)− (N) can be
re-expressed as;

(P1) . If ρ
f
P ≤ ρ

f
B and ρ

f
P ≤ ρ

f
N , decide � ∈ POS (D) ;

(B1) . If ρ
f
B ≤ ρ

f
P and ρ

f
B ≤ ρ

f
N , decide � ∈ BND (D) ;

(N1) . If ρ
f
N ≤ ρ

f
P and ρ

f
N ≤ ρ

f
B, decide � ∈ NEG (D) ;

where, ρ· =

⎛⎝1−
(

1− ρϑ (λ·P)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λ·N)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

(· = P, B, N) . With the

conditions (14) and (17), we simplify the decision rules (P1)− (N1). For the rule (P1), the first condition
is expressed as:
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ρ
f
P ≤ ρ

f
B ⇔ 1−

(
1− ρϑ (λPP)

f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λPN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

≤ 1−
(

1− ρϑ (λBP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λBN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

⇔
(

1− ρϑ (λPP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λPN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

≥
(

1− ρϑ (λBP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λBN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ log

⎛⎝(1− ρϑ (λPP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λPN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
≥ log

⎛⎝(1− ρϑ (λBP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λBN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
⇔ log

⎛⎝(1− ρϑ (λPP)
f
)Pr

(
D|N̂β

Ẽ(�)

)⎞⎠+

⎛⎝log
(

1− ρϑ (λPN)
f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
≥ log

⎛⎝(1− ρϑ (λBP)
f
)Pr

(
D|N̂β

Ẽ(�)

)⎞⎠+

⎛⎝log
(

1− ρϑ (λBN)
f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
⇔ Pr

(
D|N̂β

Ẽ(�)

)
log
(

1− ρϑ (λPP)
f
)
+ Pr

(
¬D|N̂β

Ẽ(�)

)
log
(

1− ρϑ (λPN)
f
)

≥ Pr

(
D|N̂β

Ẽ(�)

)
log
(

1− ρϑ (λBP)
f
)
+ Pr

(
¬D|N̂β

Ẽ(�)

)
log
(

1− ρϑ (λBN)
f
)

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
1− ρϑ (λBN)

f

1− ρϑ (λPN)
f

)
/ log

(
1− ρϑ (λPP)

f ∗ 1− ρϑ (λBN)
f

1− ρϑ (λPN)
f ∗ 1− ρϑ (λBP)

f

)

Similarly, the second condition of rule (P1) can be expressed as:

ρ
f
P ≤ ρ

f
N ⇔ 1−

(
1− ρϑ (λPP)

f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λPN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

≤ 1−
(

1− ρϑ (λNP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λNN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
1− ρϑ (λNN)

f

1− ρϑ (λPN)
f

)
/ log

(
1− ρϑ (λPP)

f ∗ 1− ρϑ (λNN)
f

1− ρϑ (λPN)
f ∗ 1− ρϑ (λNP)

f

)

The first condition of rule (B1) is the converse of the first condition of rule (P1). It follows,

ρ
f
B ≤ ρ

f
P ⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
1− ρϑ (λBN)

f

1− ρϑ (λPN)
f

)
/ log

(
1− ρϑ (λPP)

f ∗ 1− ρϑ (λBN)
f

1− ρϑ (λPN)
f ∗ 1− ρϑ (λBP)

f

)
.

For the second condition of rule (B1), we have;
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ρ
f
B ≤ ρ

f
N ⇔ 1−

(
1− ρϑ (λBP)

f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λBN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

≤ 1−
(

1− ρϑ (λNP)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λNN)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
1− ρϑ (λNN)

f

1− ρϑ (λBN)
f

)
/ log

(
1− ρϑ (λBP)

f ∗ 1− ρϑ (λNN)
f

1− ρϑ (λBN)
f ∗ 1− ρϑ (λNP)

f

)

The first condition of rule (N1) is the converse of the second condition of rule (P1) and the second
condition of rule (N1) is the converse of the second condition of rule (B1). It follows,

ρ
f
N ≤ ρ

f
P ⇔

Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
1− ρϑ (λNN)

f

1− ρϑ (λPN)
f

)
/ log

(
1− ρϑ (λPP)

f ∗ 1− ρϑ (λNN)
f

1− ρϑ (λPN)
f ∗ 1− ρϑ (λNP)

f

)
ρ

f
N ≤ ρ

f
B ⇔

Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
1− ρϑ (λNN)

f

1− ρϑ (λBN)
f

)
/ log

(
1− ρϑ (λBP)

f ∗ 1− ρϑ (λNN)
f

1− ρϑ (λBN)
f ∗ 1− ρϑ (λNP)

f

)

On basis of the derivation of decision rules (P1)− (N1), we denote the three expressions in these
conditions by the following three thresholds;

α1 = log

(
1− ρϑ (λBN)

f

1− ρϑ (λPN)
f

)
/ log

(
1− ρϑ (λPP)

f ∗ 1− ρϑ (λBN)
f

1− ρϑ (λPN)
f ∗ 1− ρϑ (λBP)

f

)
(31)

β1 = log

(
1− ρϑ (λNN)

f

1− ρϑ (λBN)
f

)
/ log

(
1− ρϑ (λBP)

f ∗ 1− ρϑ (λNN)
f

1− ρϑ (λBN)
f ∗ 1− ρϑ (λNP)

f

)
(32)

γ1 = log

(
1− ρϑ (λNN)

f

1− ρϑ (λPN)
f

)
/ log

(
1− ρϑ (λPP)

f ∗ 1− ρϑ (λNN)
f

1− ρϑ (λPN)
f ∗ 1− ρϑ (λNP)

f

)
(33)

Then, the decision rules (P1)− (N1), can be re-expressed concisely as;

(P1) . If Pr

(
D|N̂β

Ẽ(�)

)
≥ α1 and Pr

(
D|N̂β

Ẽ(�)

)
≥ γ1, decide � ∈ POS (D) ;

(B1) . If Pr

(
D|N̂β

Ẽ(�)

)
≤ α1 and Pr

(
D|N̂β

Ẽ(�)

)
≥ β1, decide � ∈ BND (D) ;

(N1) . If Pr

(
D|N̂β

Ẽ(�)

)
≤ β1 and Pr

(
D|N̂β

Ẽ(�)

)
≤ γ1, decide � ∈ NEG (D) ;

From the positive viewpoint, we finally determine the decision rule of the object � by comparing
the conditional probability Pr

(
D|N̂β

Ẽ(�)

)
and the thresholds (α1, β1, γ1) .

5.1.2. Method 2: A Neutral Viewpoint

For decision rules (P) − (N), the expected losses are R
(

b·|N̂β

Ẽ(�)

)
= (ρ·, ň·, ν·) (· = P, B, N) .

With regard to the neutral viewpoint, we straightly adopt the neutral degree of FOFNs to analyze
decision rules (P) − (N). Under this situation, the neutral degree of the expected losse have
opposite directions with the expected losses. Following this scenario decision rules (P)− (N) can be
expressed as:

(P2) . If ň f
P ≤ ň f

B and ň f
P ≤ ň f

N , decide � ∈ POS (D) ;

(B2) . If ň f
B ≤ ň f

P and ň f
B ≤ ň f

N , decide � ∈ BND (D) ;

(N2) . If ň f
N ≤ ň f

P and ň f
N ≤ ň f

B, decide � ∈ NEG (D) ;

278



Mathematics 2020, 8, 1121

where, ň· = ňϑ (λ·P)
Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)
(· = P, B, N) . Under conditions of (15) and (18),

we simplify the decision rules (P2)− (N2). For the rule (P2), the first condition is expressed as:

ň f
P ≤ ň f

B ⇔ ňϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λPN) f .

Pr

(
¬D|N̂β

Ẽ(�)

)

≥ ňϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λBN) f .

Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ ňϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λPN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

≥ ňϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λBN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ log

⎛⎝ňϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λPN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
≥ log

⎛⎝ňϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λBN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
⇔ log

⎛⎝ňϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)⎞⎠+ log

⎛⎝ňϑ (λPN)
f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
≥ log

⎛⎝ňϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)⎞⎠+ log

⎛⎝ňϑ (λBN)
f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
⇔ f .Pr

(
D|N̂β

Ẽ(�)

)
log (ňϑ (λPP)) + f .Pr

(
¬D|N̂β

Ẽ(�)

)
log (ňϑ (λPN))

≥ f .Pr

(
D|N̂β

Ẽ(�)

)
log (ňϑ (λBP)) + f .Pr

(
¬D|N̂β

Ẽ(�)

)
log (ňϑ (λBN))

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
ňϑ (λBN)

ňϑ (λPN)

)
/ log

(
ňϑ (λPP) ∗ ňϑ (λBN)

ňϑ (λPN) ∗ ňϑ (λBP)

)
Similarly, the second condition of rule (P2) can be expressed as:

ň f
P ≤ ň f

N ⇔ ňϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λPN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

≤ ňϑ (λNP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λNN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
ňϑ (λNN)

ňϑ (λPN)

)
/ log

(
ňϑ (λPP) ∗ ňϑ (λNN)

ňϑ (λPN) ∗ ňϑ (λNP)

)
The first condition of rule (B2) is the converse of the first condition of rule (P2). It follows,

ň f
B ≤ ň f

P ⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
ňϑ (λBN)

ňϑ (λPN)

)
/ log

(
ňϑ (λPP) ∗ ňϑ (λBN)

ňϑ (λPN) ∗ ňϑ (λBP)

)
.

For the second condition of rule (B2), we have;

ň f
B ≤ ň f

N ⇔ ňϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λBN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

≤ ňϑ (λNP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λNN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
ňϑ (λNN)

ňϑ (λBN)

)
/ log

(
ňϑ (λBP) ∗ ňϑ (λNN)

ňϑ (λBN) ∗ ňϑ (λNP)

)
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The first condition of rule (N2) is the converse of the second condition of rule (P2) and the second
condition of rule (N2) is the converse of the second condition of rule (B2). It follows,

ň f
N ≤ ň f

P ⇔

Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
ňϑ (λNN)

ňϑ (λPN)

)
/ log

(
ňϑ (λPP) ∗ ňϑ (λNN)

ňϑ (λPN) ∗ ňϑ (λNP)

)
ň f

N ≤ ň f
B ⇔

Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
ňϑ (λNN)

ňϑ (λBN)

)
/ log

(
ňϑ (λBP) ∗ ňϑ (λNN)

ňϑ (λBN) ∗ ňϑ (λNP)

)
For the decision rules (P2)− (N2), the three thresholds in these conditions are deduced as follows;

α2 = log
(

ňϑ (λBN)

ňϑ (λPN)

)
/ log

(
ňϑ (λPP) ∗ ňϑ (λBN)

ňϑ (λPN) ∗ ňϑ (λBP)

)
(34)

β2 = log
(

ňϑ (λNN)

ňϑ (λBN)

)
/ log

(
ňϑ (λBP) ∗ ňϑ (λNN)

ňϑ (λBN) ∗ ňϑ (λNP)

)
(35)

γ2 = log
(

ňϑ (λNN)

ňϑ (λPN)

)
/ log

(
ňϑ (λPP) ∗ ňϑ (λNN)

ňϑ (λPN) ∗ ňϑ (λNP)

)
(36)

Then, the decision rules (P2)− (N2), can be re-expressed concisely as;

(P2) . If Pr

(
D|N̂β

Ẽ(�)

)
≥ α2 and Pr

(
D|N̂β

Ẽ(�)

)
≥ γ2, decide � ∈ POS (D) ;

(B2) . If Pr

(
D|N̂β

Ẽ(�)

)
≤ α2 and Pr

(
D|N̂β

Ẽ(�)

)
≥ β2, decide � ∈ BND (D) ;

(N2) . If Pr

(
D|N̂β

Ẽ(�)

)
≤ β2 and Pr

(
D|N̂β

Ẽ(�)

)
≤ γ2, decide � ∈ NEG (D) ;

From the neutral viewpoint, we finally determine the decision rule of the object � by comparing
the conditional probability Pr

(
D|N̂β

Ẽ(�)

)
and the thresholds (α2, β2, γ2) .

5.1.3. Method 3: A Negative Viewpoint

For decision rules (P) − (N), the expected losses are R
(

b·|N̂β

Ẽ(�)

)
= (ρ·, ň·, ν·) (· = P, B, N) .

With regard to the negative viewpoint, we straightly adopt the negative degree of FOFNs to analyze
decision rules (P) − (N). Under this situation, the negative degree of the expected losses have
opposite directions with the expected losses. Following this scenario decision rules (P)− (N) can be
expressed as:

(P3) . If ν
f
P ≤ ν

f
B and ν

f
P ≤ ν

f
N , decide � ∈ POS (D) ;

(B3) . If ν
f
B ≤ ν

f
P and ň f

B ≤ ν
f
N , decide � ∈ BND (D) ;

(N3) . If ν
f
N ≤ ν

f
P and ν

f
N ≤ ν

f
B, decide � ∈ NEG (D) ;

where, ν· = νϑ (λ·P)
Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)
(· = P, B, N) . Under conditions of (16) and (19),

we simplify the decision rules (P3)− (N3). For the rule (P3), the first condition is written as:
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ν
f
P ≤ ν

f
B ⇔ νϑ (λPP)

f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λPN) f .

Pr

(
¬D|N̂β

Ẽ(�)

)

≥ νϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λBN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ νϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λPN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

≥ νϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λBN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ log

⎛⎝νϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λPN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
≥ log

⎛⎝νϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λBN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
⇔ log

⎛⎝νϑ (λPP)
f .Pr

(
D|N̂β

Ẽ(�)

)⎞⎠+ log

⎛⎝νϑ (λPN)
f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
≥ log

⎛⎝νϑ (λBP)
f .Pr

(
D|N̂β

Ẽ(�)

)⎞⎠+ log

⎛⎝vϑ (λBN)
f .Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠
⇔ f .Pr

(
D|N̂β

Ẽ(�)

)
log (νϑ (λPP)) + f .Pr

(
¬D|N̂β

Ẽ(�)

)
log (νϑ (λPN))

≥ f .Pr

(
D|N̂β

Ẽ(�)

)
log (νϑ (λBP)) + f .Pr

(
¬D|N̂β

Ẽ(�)

)
log (νϑ (λBN))

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
νϑ (λBN)

νϑ (λPN)

)
/ log

(
νϑ (λPP) ∗ νϑ (λBN)

νϑ (λPN) ∗ νϑ (λBP)

)
Similarly, the second condition of rule (P3) can be expressed as:

ν
f
P ≤ ν

f
N ⇔ νϑ (λPP)

f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λPN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

≤ νϑ (λNP)
f .Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λNN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
νϑ (λNN)

νϑ (λPN)

)
/ log

(
νϑ (λPP) ∗ νϑ (λNN)

ňϑ (λPN) ∗ νϑ (λNP)

)
The first condition of rule (B3) is the converse of the first condition of rule (P3). It follows,

ν
f
B ≤ ν

f
P ⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
νϑ (λBN)

νϑ (λPN)

)
/ log

(
νϑ (λPP) ∗ νϑ (λBN)

νϑ (λPN) ∗ νϑ (λBP)

)
.

For the second condition of rule (B3), we have;

ν
f
B ≤ ν

f
N ⇔ νϑ (λBP)

f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λBN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

≤ νϑ (λNP)
f .Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λNN)

f .Pr

(
¬D|N̂β

Ẽ(�)

)

⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
νϑ (λNN)

νϑ (λBN)

)
/ log

(
νϑ (λBP) ∗ νϑ (λNN)

νϑ (λBN) ∗ νϑ (λNP)

)
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The first condition of rule (N3) is the converse of the second condition of rule (P3) and the second
condition of rule (N3) is the converse of the second condition of rule (B3). It follows,

ν
f
N ≤ ν

f
P ⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
νϑ (λNN)

νϑ (λPN)

)
/ log

(
νϑ (λPP) ∗ νϑ (λNN)

νϑ (λPN) ∗ νϑ (λNP)

)
ν

f
N ≤ ν

f
B ⇔ Pr

(
D|N̂β

Ẽ(�)

)
≥ log

(
νϑ (λNN)

νϑ (λBN)

)
/ log

(
νϑ (λBP) ∗ νϑ (λNN)

νϑ (λBN) ∗ νϑ (λNP)

)
For the decision rules (P3)− (N3), the three thresholds in these conditions are deduced as follows;

α3 = log
(

νϑ (λBN)

νϑ (λPN)

)
/ log

(
νϑ (λPP) ∗ νϑ (λBN)

νϑ (λPN) ∗ νϑ (λBP)

)
(37)

β3 = log
(

νϑ (λNN)

νϑ (λBN)

)
/ log

(
νϑ (λBP) ∗ νϑ (λNN)

νϑ (λBN) ∗ νϑ (λNP)

)
(38)

γ3 = log
(

νϑ (λNN)

νϑ (λPN)

)
/ log

(
νϑ (λPP) ∗ νϑ (λNN)

νϑ (λPN) ∗ νϑ (λNP)

)
(39)

Then, the decision rules (P3)− (N3), can be re-expressed concisely as;

(P3) . If Pr

(
D|N̂β

Ẽ(�)

)
≥ α3 and Pr

(
D|N̂β

Ẽ(�)

)
≥ γ3, decide � ∈ POS (D) ;

(B3) . If Pr

(
D|N̂β

Ẽ(�)

)
≤ α3 and Pr

(
D|N̂β

Ẽ(�)

)
≥ β3, decide � ∈ BND (D) ;

(N3) . If Pr

(
D|N̂β

Ẽ(�)

)
≤ β3 and Pr

(
D|N̂β

Ẽ(�)

)
≤ γ3, decide � ∈ NEG (D) ;

From the negative viewpoint, we finally drive the decision rule of the object � by comparing the
conditional probability Pr

(
D|N̂β

Ẽ(�)

)
and the thresholds (α3, β3, γ3) .

5.1.4. Method 4–5: Based on Composite Viewpoint

With regards to Method 1, 2 and 3, it merely uses the positive neutral and negative degrees
of FOFNs to generate decision rules with the positive viewpoint. From the Example 2, we find
the inconsistency of Method 1, 2 and 3. For solving this problem, we required to synchronously
consider the positive degree, neutral degree and the negative degree of FOFNs, which is known as a
composite viewpoint. In order to compare the expected losses R

(
b·|N̂β

Ẽ(�)

)
= (ρ·, ň·, ν·) (· = P, B, N) ,

we introduce three different functions that compare the size of FOFNs. The first one is the score and
the accuracy function, the second one is closeness index. These two methods are introduced as follows:

Method 4
In light of Definition (12), the score functions of the expected losses can be obtained as follows;

S
(

R
(

bP|N̂β

Ẽ(�)

))
= ρP (�) f − ňP (�) f − νP (�) f (40)

S
(

R
(

bB|N̂β

Ẽ(�)

))
= ρB (�) f − ňB (�) f − νB (�) f (41)

S
(

R
(

bN |N̂β

Ẽ(�)

))
= ρN (�) f − ňN (�) f − νN (�) f (42)
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where ρ· =

⎛⎝1−
(

1− ρϑ (λ·P)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λ·N)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

, ň· =

ňϑ (λ·P)
Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)
and ν· = νϑ (λ·P)

Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)
(· = P, B, N) . Meanwhile, the accuracy functions of the expected losses can also be computed:

H
(

R
(

bP|N̂β

Ẽ(�)

))
= ρP (�) f + ňP (�) f + νP (�) f (43)

H
(

R
(

bB|N̂β

Ẽ(�)

))
= ρB (�) f + ňB (�) f + νB (�) f (44)

H
(

R
(

bN |N̂β

Ẽ(�)

))
= ρN (�) f + ňN (�) f + νN (�) f (45)

For the rule (P), the first condition R
(

bP|N̂β

Ẽ(�)

)
≤ R

(
bB|N̂β

Ẽ(�)

)
implies

the following prerequisites:

(C1) .S
(

R
(

bP|N̂β

Ẽ(�)

))
< S

(
R
(

bB|N̂β

Ẽ(�)

))
(C2) .S

(
R
(

bP|N̂β

Ẽ(�)

))
= S

(
R
(

bB|N̂β

Ẽ(�)

))
∧ H

(
R
(

bP|N̂β

Ẽ(�)

))
≤ H

(
R
(

bB|N̂β

Ẽ(�)

))
In the same way, the prerequisites for the second condition R

(
bP|N̂β

Ẽ(�)

)
≤ R

(
bN |N̂β

Ẽ(�)

)
of rule

(P) are

(C3) .S
(

R
(

bP|N̂β

Ẽ(�)

))
< S

(
R
(

bN |N̂β

Ẽ(�)

))
(C4) .S

(
R
(

bP|N̂β

Ẽ(�)

))
= S

(
R
(

bN |N̂β

Ẽ(�)

))
∧ H

(
R
(

bP|N̂β

Ẽ(�)

))
≤ H

(
R
(

bN |N̂β

Ẽ(�)

))
For the rule (B) , we have

(C5) .S
(

R
(

bB|N̂β

Ẽ(�)

))
< S

(
R
(

bP|N̂β

Ẽ(�)

))
(C6) .S

(
R
(

bB|N̂β

Ẽ(�)

))
= S

(
R
(

bP|N̂β

Ẽ(�)

))
∧ H

(
R
(

bB|N̂β

Ẽ(�)

))
≤ H

(
R
(

bP|N̂β

Ẽ(�)

))

(C7) .S
(

R
(

bB|N̂β

Ẽ(�)

))
< S

(
R
(

bN |N̂β

Ẽ(�)

))
(C8) .S

(
R
(

bB|N̂β

Ẽ(�)

))
= S

(
R
(

bN |N̂β

Ẽ(�)

))
∧ H

(
R
(

bB|N̂β

Ẽ(�)

))
≤ H

(
R
(

bN |N̂β

Ẽ(�)

))
And for the rule (N) , we have

(C9) .S
(

R
(

bN |N̂β

Ẽ(�)

))
< S

(
R
(

bP|N̂β

Ẽ(�)

))
(C10) .S

(
R
(

bN |N̂β

Ẽ(�)

))
= S

(
R
(

bP|N̂β

Ẽ(�)

))
∧ H

(
R
(

bN |N̂β

Ẽ(�)

))
≤ H

(
R
(

bP|N̂β

Ẽ(�)

))
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(C11) .S
(

R
(

bN |N̂β

Ẽ(�)

))
< S

(
R
(

bB|N̂β

Ẽ(�)

))
(C12) .S

(
R
(

bN |N̂β

Ẽ(�)

))
= S

(
R
(

bB|N̂β

Ẽ(�)

))
∧ H

(
R
(

bN |N̂β

Ẽ(�)

))
≤ H

(
R
(

bB|N̂β

Ẽ(�)

))
Therefore, the decision rules (P)− (N) can be re-expressed as (P4)− (N4)

(P4) . If ((C1) ∨ (C2)) ∧ ((C3) ∨ (C4)) , decide � ∈ POS (D) ;
(B4) . If ((C5) ∨ (C6)) ∧ ((C7) ∨ (C8)) , decide � ∈ POS (D) ;
(N4) . If ((C9) ∨ (C10)) ∧ ((C11) ∨ (C12)) , decide � ∈ POS (D) .

Method 5
In light of Definition (15). the closeness index of the expected losses can be determined as follows;

 
(

R
(

bP|N̂β

Ẽ(�)

))
=

1
3

(
1 + ρP (�) f − ňP (�) f − νP (�) f

)
(46)

 
(

R
(

bB|N̂β

Ẽ(�)

))
=

1
3

(
1 + ρB (�) f − ňB (�) f − νB (�) f

)
(47)

 
(

R
(

bN |N̂β

Ẽ(�)

))
=

1
3

(
1 + ρN (�) f − ňN (�) f − νN (�) f

)
(48)

where ρ· =

⎛⎝1−
(

1− ρϑ (λ·P)
f
)Pr

(
D|N̂β

Ẽ(�)

) (
1− ρϑ (λ·N)

f
)Pr

(
¬D|N̂β

Ẽ(�)

)⎞⎠ 1
f

, ň· =

ňϑ (λ·P)
Pr

(
D|N̂β

Ẽ(�)

)
ňϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)
and ν· = νϑ (λ·P)

Pr

(
D|N̂β

Ẽ(�)

)
νϑ (λ·N)

Pr

(
¬D|N̂β

Ẽ(�)

)
(· = P, B, N) .

Therefore, the decision rules (P)− (N) can be expressed as (P5)− (N5):
(P5) . If

 
(

R
(

bP|N̂β

Ẽ(�)

))
≤  

(
R
(

bB|N̂β

Ẽ(�)

))
and

 
(

R
(

bP|N̂β

Ẽ(�)

))
≤  

(
R
(

bN |N̂β

Ẽ(�)

))
, decide � ∈ POS (D) ;

(B5) . If

 
(

R
(

bB|N̂β

Ẽ(�)

))
≤  

(
R
(

bP|N̂β

Ẽ(�)

))
and

 
(

R
(

bB|N̂β

Ẽ(�)

))
≤  

(
R
(

bN |N̂β

Ẽ(�)

))
, decide � ∈ BND (D) ;

(N5) . If

 
(

R
(

bN |N̂β

Ẽ(�)

))
≤  

(
R
(

bP|N̂β

Ẽ(�)

))
and

 
(

R
(

bN |N̂β

Ẽ(�)

))
≤  

(
R
(

bB|N̂β

Ẽ(�)

))
, decide � ∈ NEG (D) .

6. Algorithm for the Multi-Attribute Decision Making with FOFCDTRSs

Input Decision-making table with FOF information and loss functions with FOFNs for risk or cost
of actions in different states;

Step 1. Obtain FOF β-neighborhood Ñβ

Ẽ(�)
and FO β-neighborhood N̂β

Ẽ(�)
from the given

decision-making table with FOF information by using Definitions (1) and (17);
Step 2. Calculate the conditional probability Pr

(
D|N̂β

Ẽ(�)

)
by the Formula (13).
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Step 3. Give loss function with FOFNs for risk or cost of actions in different states,
and then calculate the values of the thresholds (α1, β1, γ1) , (α2, β2, γ2) and (α3, β3, γ3) according
to Formulas (31)–(39), respectively.

Step 4. Obtain the expected losses R
(

b·|N̂β

Ẽ(�)

)
(· = P, B, N) by using the Formulas (28)–(30).

According to the Formulas (40)–(45) and (46)–(48), we further acquire the values of the score and the
accuracy function H

(
R
(

b·|N̂β

Ẽ(�)

))
and the closeness index function  

(
R
(

b·|N̂β

Ẽ(�)

))
.

Step 5. Based on the five methods in Section 5, the corresponding decision rules are used
to calculate the positive domain POS (D), negative domain NEG (D) and boundary domain BND
(D), respectively.

Step 6. Find and compare the optimal decision results.

6.1. An Illustrative Example

In this section , we will present the proposed MADM method based on FOFS models related to
the evaluation and rank of heavy rainfall in the district of Lasbella district and adjoining areas of the
Baluchistan, Pakistan.

A recent storm caused a spell of heavy rainfall in the Lasbella district, and adjoining areas of
Baluchistan, Pakistan were hit with unprecedented flash floods in February 2019. In this flood a large
number of roads which link the district of Lasbella with other parts of Baluchistan were destroyed.
In this flood a large number of roads which link the district of Lasbella with other parts of Baluchistan
were destroyed.

Such projects were carried out by a small number of well-established contractors, and the
selection process was based solely on the tender price. In recent years, rising project complexity,
technological capability, higher performance, security and financial requirements have demanded the
use of multi-attribute decision-making methods. Pakistan’s government has released a newspaper
notice for this, and one construction company is responsible for choosing the best construction firm
from a selection of six potential alternatives, �1 = Ahmed Construction, �2 = Matracon Pakistan Private
(Pvt) Limited (Ltd), �3 = Eastern Highway Company, �4 = Banu Mukhtar Concrete Pvt. Ltd., �5 =
Khyber Grace Pvt. Ltd., �6 = Experts Engineering services on the basis of the attributes, Ẽ1 = Technical
capability, Ẽ2 = Higher performance, Ẽ3 = Safety, Ẽ4 = Financial requirements, Ẽ5 = Time saving, that is
bid for these projects, and all criteria are of the type of benefit, so no need to normalized it. Then the
Government’s goal is to choose among them the best construction company for the task. Hence,
as shown below, the following decision matrix was constructed given in Table 4:

Table 4. A tabular representation of FOFSs for Ẽ.

Ẽ1 Ẽ2 Ẽ3 Ẽ4 Ẽ5

�1 (0.9, 0.1, 0.2) (0.8, 0.2, 0.5) (0.7, 0.3, 0.5) (0.8, 0.2, 0.5) (0.9, 0.1, 0.3)
�2 (0.8, 0.2, 0.4) (0.3, 0.4, 0.5) (0.7, 0.5, 0.3) (0.6, 0.2, 0.1) (0.5, 0.6, 0.2)
�3 (0.9, 0.3, 0.1) (0.6, 0.3, 0.5) (0.7, 0.2, 0.4) (0.3, 0.4, 0.1) (0.5, 0.4, 0.6)
�4 (0.8, 0.1, 0.5) (0.6, 0.2, 0.7) (0.5, 0.3, 0.4) (0.7, 0.3, 0.2) (0.8, 0.4, 0.3)
�5 (0.6, 0.5, 0.2) (0.9, 0.4, 0.3) (0.5, 0.3, 0.7) (0.3, 0.2, 0.1) (0.8, 0.5, 0.2)
�6 (0.8, 0.3, 0.5) (0.6, 0.3, 0.1) (0.9, 0.3, 0.2) (0.6, 0.2, 0.3) (0.5, 0.1, 0.4)

Now, take the threshold β = (0.6, 0.5, 0.4), then Ẽ is a FOF β-covering. Then, Ñ(0.6,0.5,0.4)
Ẽ(�1)

= Ẽ1∩ Ẽ5,

Ñ(0.6,0.5,0.4)
Ẽ(�2)

= Ẽ1 ∩ Ẽ3 ∩ Ẽ4, Ñ(0.6,0.5,0.4)
Ẽ(�3)

= Ẽ1 ∩ Ẽ3, Ñ(0.6,0.5,0.4)
Ẽ(�4)

= Ẽ4 ∩ Ẽ5, Ñ(0.6,0.5,0.4)
Ẽ(�5)

= Ẽ1 ∩ Ẽ2 ∩ Ẽ5,

Ñ(0.6,0.5,0.4)
Ẽ(�6)

= Ẽ2 ∩ Ẽ3 ∩ Ẽ4

According to the Definition (1), we get the FOF β-neighborhood as shown in Table 5.
Assume that the decision makers gives a evaluation threshold β = (0.6, 0.5, 0.4) . As a result,

based on Table 5, and Equation (12), we have N̂(0.6,0.5,0.4)
Ẽ(�1)

= (�1) , N̂(0.6,0.5,0.4)
Ẽ(�2)

= (�2,�3) , N̂(0.6,0.5,0.4)
Ẽ(�3)

=

(�3) , N̂(0.6,0.5,0.4)
Ẽ(�4)

= (�4) , N̂(0.6,0.5,0.4)
Ẽ(�5)

= (�1,�2,�5) , N̂(0.6,0.5,0.4)
Ẽ(�6)

= (�6) .
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Let the state set D = (�1,�3,�5) . By Equation (13), we have Pr

(
D|N̂β

Ẽ(�1)

)
= 1, Pr

(
D|N̂β

Ẽ(�2)

)
=

1
2 , Pr

(
D|N̂β

Ẽ(�3)

)
= 1, Pr

(
D|N̂β

Ẽ(�4)

)
= 0, Pr

(
D|N̂β

Ẽ(�5)

)
= 2

3 , Pr

(
D|N̂β

Ẽ(�6)

)
= 0.

Table 5. A tabular representation of FOF β-neighborhood.

Ñβ

Ẽ(�)
�1 �2 �3

Ñβ

Ẽ(�1)
(0.9, 0.1, 0.3) (0.5, 0.2, 0.4) (0.5, 0.3, 0.6)

Ñβ

Ẽ(�2)
(0.7, 0.1, 0.5) (0.6, 0.2, 0.4) (0.3, 0.2, 0.4)

Ñβ

Ẽ(�3)
(0.7, 0.1, 0.5) (0.7, 0.2, 0.4) (0.7, 0.2, 0.4)

Ñβ

Ẽ(�4)
(0.8, 0.1, 0.5) (0.5, 0.2, 0.2) (0.3, 0.4, 0.6)

Ñβ

Ẽ(�5)
(0.9, 0.1, 0.5) (0.3, 0.2, 0.5) (0.5, 0.3, 0.6)

Ñβ

Ẽ(�6)
(0.7, 0.2, 0.5) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5)

�4 �5 �6

Ñβ

Ẽ(�1)
(0.8, 0.1, 0.5) (0.6, 0.5, 0.2) (0.5, 0.1, 0.5)

Ñβ

Ẽ(�2)
(0.5, 0.1, 0.5) (0.6, 0.5, 0.2) (0.6, 0.2, 0.5)

Ñβ

Ẽ(�3)
(0.5, 0.1, 0.5) (0.3, 0.2, 0.7) (0.8, 0.3, 0.5)

Ñβ

Ẽ(�4)
(0.7, 0.3, 0.3) (0.3, 0.2, 0.2) (0.5, 0.1, 0.4)

Ñβ

Ẽ(�5)
(0.6, 0.1, 0.7) (0.6, 0.4, 0.3) (0.5, 0.1, 0.5)

Ñβ

Ẽ(�6)
(0.5, 0.2, 0.7) (0.3, 0.2, 0.7) (0.6, 0.2, 0.3)

Assume that the loss function for risk or cost of functions in different states D and ¬D are in
Table 6.

Table 6. The loss function 1 matrix in this Example.

D ¬D

bP ϑ (λPP) = (0, 0.1, 0.9) ϑ (λPN) = (0.85, 0.7, 0.1)
bB ϑ (λBP) = (0.4, 0.4, 0.5) ϑ (λBN) = (0.7, 0.6, 0.3)
bN ϑ (λNP) = (0.85, 0.8, 0.1) ϑ (λNN) = (0.02, 0.5, 0.75)

Let RP (�) = R
(

bP|N̂β

Ẽ(�)

)
, RB (�) = R

(
bB|N̂β

Ẽ(�)

)
and RN (�) = R

(
bN |N̂β

Ẽ(�)

)
. Based on the

Table 6 and Equations (28)–(30), we can get the expected losses R
(

b·|N̂β

Ẽ(�)

)
(· = P, B, N) , which are

shown in Table 7.

Table 7. Expected losses R
(

b· |N̂β

Ẽ(�)

)
(· = P, B, N).

RP (�) RB (�) RN (�)

�1 (0, 0.1, 0.9) (0.4, 0.4, 0.5) (0.85, 0.8, 0.1)
�2 (0.745, 0.269, 0.299) (0.529, 0.489, 0.387) (0.746, 0.632, 0.274)
�3 (0, 0.1, 0.9) (0.4, 0.4, 0.5) (0.85, 0.8, 0.1)
�4 (0.85, 0.7, 0.1) (0.7, 0.6, 0.3) (0.02, 0.5, 0.75)
�5 (0.683, 0.199, 0.432) (0.497, 0.458, 0.422) (0.789, 0.684, 0.195)
�6 (0.85, 0.7, 0.1) (0.7, 0.6, 0.3) (0.02, 0.5, 0.75)

In what follows, we shall adopt the above five decision methods to deal with this problem.

6.1.1. Decision-Making Based on Method 1

According to the Equations (31)–(33), we calculate the thresholds α1, β1, γ1, respectively.
Concretely, α1 = 0.889, β1 = 0.321, γ1 = 0.499. Based on the Method 1, according to the decision rules
(P1)− (N1), we have POS(D) = (�3) , BND(D) = (�1,�2,�5) , NEG(D) = (�4,�6) .
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6.1.2. Decision-Making Based on Method 2

According to the Equations (34)–(36), we calculate the thresholds α2, β2, γ2, respectively.
Concretely, α2 = 1, β2 = 0.208, γ2 = 0.139. Based on the Method 2, according to the decision rules
(P2)− (N2), we have

POS(D) = (�3) , BND(D) = (�1,�2,�5) , NEG(D) = (�4,�6) .

6.1.3. Decision-Making Based on Method 3

According to the Equations (37)–(39), we calculate the thresholds α3, β3, γ3, respectively.
Concretely, α2 = 0.652, β2 = 0.363, γ2 = 0.478. Based on the Method 3, according to the decision rules
(P3)− (N3), we have POS(D) = (�3) , BND(D) =

(
�1,�2,�5

)
, NEG(D) = (�4,�6) .

6.1.4. Decision-Making Based on Method 4

Let RP (�) = R
(

bP|N̂β

Ẽ(�)

)
, RB (�) = R

(
bB|N̂β

Ẽ(�)

)
and RN (�) = R

(
bN |N̂β

Ẽ(�)

)
. Based on

the Method 4, according to the Equations (40)–(45), we calculate the score and accuracy function of
expected losses, respectively. And the result are shown in Table 8.

Table 8. The score and accuracy functions of expected losses in this Example.

S (RP (�)) S (RB (�)) S (RN (�)) H (RP (�)) H (RB (�)) H (RN (�))

�1 −0.656 −0.063 0.121 0.656 0.113 0.923
�2 0.295 −0.002 0.141 0.321 0.157 0.465
�3 −0.656 −0.063 0.121 0.656 0.113 0.923
�4 0.282 0.104 −0.064 0.762 0.378 0.064
�5 0.181 −0.015 0.151 0.253 0.136 0.606
�6 0.282 0.104 −0.064 0.762 0.378 0.064

So, according to the decision rules (P4) − (N4), POS(D) = (�1,�3) , BND(D) =

(�2,�5) , NEG(D) = (�4,�6) .

6.1.5. Decision-Making Based on Method 5

Let RP (�) = R
(

bP|N̂β

Ẽ(�)

)
, RB (�) = R

(
bB|N̂β

Ẽ(�)

)
and RN (�) = R

(
bN |N̂β

Ẽ(�)

)
. Based on the

Method 5, according to the Equations (46)–(48), we calculate the closeness index of the expected losses,
respectively. And the result are shown as Table 9.

Table 9. The closeness index in this Example.

� (RP (�)) � (RB (�)) � (RN (�))

�1 0.115 0.312 0.373
�2 0.432 0.309 0.378
�3 0.115 0.312 0.373
�4 0.427 0.368 0.312
�5 0.394 0.328 0.389
�6 0.427 0.368 0.312

So, according to the decision rules (P5) − (N5), we have POS(D) = (�3) , BND(D) =

(�1,�2,�5) , NEG(D) = (�4,�6)

In the following, we orderly used five methods of Section 6 for deriving Three way-decsions.
(1) The contraction company selection with Method 1, 2, 3 (Positive, neutral and negative

viwepoint): With the aid of the general method of Section 6, we first compute the FOF
β-neighborhood Ñβ

Ẽ(�)
and FO β-neighborhood N̂β

Ẽ(�)
from the given decision-making Table 4 by

using the Definitions (1) and (17). We also, calculate the conditional probability Pr

(
D|N̂β

Ẽ(�)

)
by

the Equation (13), and give loss function with FOFNs for risk or cost of actions in different states.
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After that, find the values of the thresholds (α1, β1, γ1) , (α2, β2, γ2) and (α3, β3, γ3) according to
Formulsa (31)–(39), respectively. On the basis of the decision rules (P1) − (N1) to (P3) − (N3),
we can judge the corresponding decision rule for each company. At the moment, using the decision
rules (P1) − (N1) to (P3) − (N3), we can predict that (�3) ∈ POS(D), (�1,�2,�5) ∈ BND(D) and
(�4,�6) ∈ NEG(D).

(2) The contraction company selection with Method 4 (Score and Accuracy function): Based on
the Method 4, according to the Equations (40)–(45), we calculate the score and accuracy function
of expected losses, respectively. Then, using the decision rules (P4) − (N4), we can predict that
(�1,�3) ∈ POS(D), (�2,�5) ∈ BND(D) and (�4,�6) ∈ NEG(D).

(3) The contraction company selection with Method 5 (Closness index): We use the ranking
method of the closness index function for the selection of construction company. Based on the
Method 5, according to the Equations (46)–(48), we calculate the closeness index of the expected losses,
respectively. Then, using the decision rules (P5)− (N5), we can predict that (�3) ∈ POS(D), (�1,�2) ∈
BND(D) and (�4,�5,�6) ∈ NEG(D).

6.1.6. Sensitivity Analysis

When the β = (0.6, 0.5, 0.4) and f = 3. The decision result of multi-attribute decision making will
change with the change of loss function. Assume that there are three different loss functions as shown
in Tables 6, 10 and 11. The decision results obtained by five methods under different loss functions are
shown in Table 12 as follows.

Table 10. The loss function 2 matrix.

D ¬D

bP ϑ (λPP) = (0.3, 0.1, 0.7) ϑ (λPN) = (0.3, 0.2, 0.4)
bB ϑ (λBP) = (0.4, 0.3, 0.3) ϑ (λBN) = (0.5, 0.4, 0.1)
bN ϑ (λNP) = (0.1, 0.8, 0.1) ϑ (λNN) = (0.7, 0.3, 0.2)

Table 11. The loss function 3 matrix.

D ¬D

bP ϑ (λPP) = (0.6, 0.2, 0.3) ϑ (λPN) = (0.3, 0.5, 0.1)
bB ϑ (λBP) = (0.5, 0.1, 0.4) ϑ (λBN) = (0.4, 0.6, 0.3)
bN ϑ (λNP) = (0.2, 0.7, 0.2) ϑ (λNN) = (0.2, 0.1, 0.7)

According to the two different loss functions described in Tables 6, 10 and 11, we can use the five
different decision methods in Section 5 to get different decision results, as shown in Table 12.

Table 12. Comparison of decision results of five methods (LF = loss function).

Loss Function Method POS(D) BND(D) NEG(D)

Method 1 (�3) (�1,�2,�5) (�4,�6)
The LF-1 Method 2 (�3) (�1,�2,�5) (�4,�6)
in Table 6 Method 3 (�1,�3) (�2,�5) (�4,�6)

Method 4 (�3)
(

�1,�2,
)

(�4,�5,�6)
Method 5 (�3) (�1,�2,�3) (�4,�6)

Method 1 (�3) (�1,�2,�5) (�4,�6)
The LF-2 Method 2 (�3) (�1,�2,�5) (�4,�6)

in Table 10 Method 3 (�3) (�1,�2,�5,�6) (�4)
Method 4 (�1,�3) (�2,�4) (�5,�6)
Method 5 (�3) (�1,�2) (�4,�5,�6)

Method 1 (�3) (�1,�2,�5) (�4,�6)
The LF- 3 Method 2 (�3) (�1,�2,�5) (�4,�6)

in Table 11 Method 3 (�3) (�1,�2) (�4,�6)
Method 4 (�3) (�1,�2,�5) (�4�6)
Method 5 (�3) (�2,�5) (�4,�6)
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It can be seen from Table 12, that on the basis of loss function 1, 2, 3 the decision results of the five
methods are the same, but only changes occur in the method 4 on the basis of loss function 3, thn the
decision results of loss function 1 and loss function 2. Thus, Eastern Highway Company �3 is the best
construction company for the selection of project.

6.1.7. Comparison and Analysis

To elaborate the validity and practicability of the created method in this essay, we conduct a
collection of comparative analyzing with other previous decision methodologies including the method
based upon covering-based Spherical fuzzy rough set Model hybrid with TOPSIS method proposed
by Zeng et al. [77], the method based upon Spherical fuzzy Dombi aggregation operators proposed
by Ashraf et al. [78], Spherical aggregation operators proposed by Ashraf and Abdullah [79] and the
method based upon Spherical fuzzy Graphs proposed by Akram et al. [80]. We utilize these methods
to cope with the Example in this paper, the score values and ranking of alternatives are displayed
in Table 13. From it, we can attain the same sorting results of alternatives based on the previous
methods and the designed method in this article, which can demonstrate the effectiveness of the
propounded methods.

Table 13. Comparison Information.

Approaches
Score Value of Alternative

h̄1 h̄2 h̄3 h̄4 h̄5 h̄6

Ranking

Zeng et al. [77] 0.027 0.024 0.062 0.017 0.010 0.009 h̄3 > h̄1 > h̄2 > h̄4 > h̄5 > h̄6
Ashraf et al. [78] 0.603 0.520 0.823 0.391 0.476 0.314 h̄3 > h̄1 > h̄2 > h̄5 > h̄4 > h̄6

Ashraf & Abdullah [79] 0.293 0.463 0.537 0.235 0.114 0.079 h̄3 > h̄2 > h̄1 > h̄4 > h̄5 > h̄6
Akram et al. [80] 1.734 1.498 1.893 1.528 1.384 1.272 h̄3 > h̄1 > h̄4 > h̄2 > h̄5 > h̄6

It is noteworthy that the class of FOFSs extends the classes of PFSs and SFSs. Thus, it can express
vague information more flexibly and accurately with increasing fraction. When f = 1, this model
reduces to the PF model, and when f = 2, it becomes the SF model. Thus, a wider range of uncertain
information can be expressed using the methods proposed in this paper, which are closer to real
decision-making. This helps us to deal with MCDM problems and to sketch real scenarios more
accurately. Hence our approach towards MCDM is more flexible and generalized, which provides
a vast space of acceptable triplets given by decision-makers, according to the different attitudes,
as compared to the PF model.

7. Conclusions

The FOFCDTRS model is an important tool in real life for handling uncertainties. In this paper,
we combine the loss functions of DTRSs with CFOFSs in the fractional orthotriple fuzzy context.
Therefore, a new approach is adopted to fractional orthotriple fuzzy sets with notions of covering rough
set to presented the new method of FOFCDTRS through FOF β-neighborhoods. Then, we propose a
new FOFCDTRS model and elaborate its respective properties. We set out five methods for resolving
the predicted loss in the form of FOFNs and extract the related three-way decisions. At the same time
we present an algorithm based on FOFCDTRSs for decision making with multiple attributes. Through
example analysis, it is proved that the five methods proposed are correct and effective. Among them,
Methods 1, 2 and 3 have better stability.

In the next researches, we mainly focus on the following topics: (1) Extend FOFCDTRSs to
the multi-period situation. (2) The application of FOFCDTRSs in big data processing and analysis.
(3) Use the developed concept on new multi-attribute evaluation models to deal with fuzziness and
uncertainty in multiple criteria decision- making topics such as planning choices, construction options,
site selection, and decision-making problem in many other areas.
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Abstract: Existing methods for forecasting the productivity of a factory are subject to a major drawback—the
lower and upper bounds of productivity are usually determined by a few extreme cases, which unacceptably
widens the productivity range. To address this drawback, an interval fuzzy number (IFN)-based mixed
binary quadratic programming (MBQP)–ordered weighted average (OWA) approach is proposed in
this study for modeling an uncertain productivity learning process. In the proposed methodology,
the productivity range is divided into the inner and outer sections, which correspond to the lower and
upper membership functions of an IFN-based fuzzy productivity forecast, respectively. In this manner,
all actual values are included in the outer section, whereas most of the values are included within the inner
section to fulfill different managerial purposes. According to the percentages of outlier cases, a suitable
forecasting strategy can be selected. To derive the values of parameters in the IFN-based fuzzy productivity
learning model, an MBQP model is proposed and optimized. Subsequently, according to the selected
forecasting strategy, the OWA method is applied to defuzzify a fuzzy productivity forecast. The proposed
methodology has been applied to the real case of a dynamic random access memory factory to evaluate its
effectiveness. The experimental results indicate that the proposed methodology was superior to several
existing methods, especially in terms of mean absolute error, mean absolute percentage error, and root
mean square error in evaluating the forecasting accuracy. The forecasting precision achieved using the
proposed methodology was also satisfactory.

Keywords: productivity; learning; interval fuzzy number; mixed binary quadratic programming;
ordered weighted average

1. Introduction

Productivity is a measure of how efficient a system is in converting inputs into outputs and is
usually measured by dividing the quantity or value of outputs by that of inputs [1–3]. Productivity can
be measured at different levels, such as for a factory (or store), city, or even country [4]. This study focuses
on the productivity of a factory. In a factory, productivity increases with time because of operators
becoming more familiar with their tasks, equipment engineers becoming skilled in maintaining
and repairing machines, product engineers becoming more experienced in solving product quality
problems, and other reasons [5].

Factories are adopting an increasing number of information technologies (ITs) that include software,
hardware, and artificial intelligence [6,7]. For example, factories rely on transaction processing systems (TPSs)
to automate routine operations, which obviously elevates productivity [8–11]. Consequently, human workers
are now trained to be familiar with MISs rather than with routine operat ions. The emergence of Industry
4.0 has created opportunities for further enhancing productivity. For example, when wireless sensors are
incorporated in a machine, the sensors can detect abnormal operating conditions before a serious shutdown
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that results in the loss of productivity, thereby enabling predictive maintenance [12]. Although some
researchers have asserted that artificial intelligence will eventually replace human workers for performing
many tasks, the applications of artificial intelligence do not necessarily enhance productivity due to
reasons such as false hopes, mismeasurement, redistribution, and implementation lags [13]. Nevertheless,
productivity improves as users learn to master IT. Although productivity improves by conducting activities
involving substantial human intervention, productivity is subject to considerable uncertainty [14,15].
To address this problem, fuzzy logic [16] has been extensively applied to model productivity. For example,
in a study by Hougaard [17], the inputs and outputs of a production plan were given in or estimated with
fuzzy numbers. After enumerating all possible values of fuzzy inputs and outputs, the α cuts of fuzzy
productivity were derived. Finally, a triangular fuzzy number was used to approximate fuzzy productivity.
Similarly, Emrouznejad et al. [18] modeled inputs, outputs, and prices through fuzzy numbers. The α cuts
of fuzzy parameters were fed as interval data into a data envelopment analysis model to calculate the overall
profit Malmquist productivity index. Wang and Chen [19] proposed a fuzzy collaborative forecasting
approach for forecasting the productivity of a factory. In the fuzzy collaborative forecasting approach,
multiple experts fitted a fuzzy productivity learning process with quadratic or nonlinear programming
models to forecast productivity. The fuzzy productivity forecasts by experts were aggregated using fuzzy
intersection. Then, the aggregation result was defuzzified using a back propagation network. In a study
by Chen and Wang [20], fuzzy productivity forecasts were compared with a competitive region to assess
the productivity competitiveness of a factory. Recently, Chen et al. [21] proposed a heterogeneous fuzzy
collaborative forecasting approach in which experts constructed either mathematical programming models
or artificial neural networks to forecast productivity. The adoption of different fuzzy forecasting methods
contributed to the diversification of fuzzy productivity forecasts, which was considered a favorable property
for a multiple-expert forecasting problem.

However, a problem associated with existing methods is that the lower and upper bounds on
a fuzzy productivity forecast are usually determined by a few extreme cases [20]. Moreover, other cases
may lie considerably close to cores (or centers), which unreasonably widens the range of a fuzzy
productivity forecast, as illustrated in Figure 1, in which red circles represent extreme cases. There exist
two types of extreme cases, namely better-than-anticipated (BTA) and poorer-than-expected (PTE) cases.

Figure 1. Lower and upper bounds determined by extreme cases.

Therefore, a desirable option is to form a narrow interval that contains most of the collected
data by excluding extreme cases, as illustrated in Figure 2. To this end, an interval fuzzy number
(IFN) [22–24] is a viable option. There exist two membership functions in an IFN, one of which is
suitable for modeling the inner part of a fuzzy productivity forecast, whereas the other is suitable for
modeling the outer part.
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Figure 2. Narrow interval that contains most of the collected data.

Due to the aforementioned reasons, an IFN-based mixed binary quadratic programming
(MBQP)–ordered weighted average (OWA) approach is proposed in this study for modeling an uncertain
productivity learning process by distinguishing between BTA and PTE cases. The motives for this
study are explained as follows:

(1) Owing to the existence of extreme cases, fuzzy productivity forecasts generated using an existing
fuzzy forecasting method are not sufficiently precise.

(2) Fuzzy productivity forecasts generated using existing fuzzy forecasting methods are usually
type-1 fuzzy numbers [2,15,19]. Compared with type-1 fuzzy numbers, IFNs can better consider
uncertainty [25,26]. However, fuzzy forecasting methods that generate IFN-based fuzzy productivity
forecasts are not widely used.

(3) A special defuzzifier needs to be proposed for an IFN-based fuzzy productivity forecast that
separates extreme cases from normal cases.

To the best of our knowledge, the present study is the first attempt of its kind. The parameters
of the IFN-based fuzzy productivity learning model are given in the form of IFNs. Consequently,
fuzzy productivity forecasts generated by the IFN-based fuzzy productivity learning model are also in
the form of IFNs. In the proposed methodology, the range of productivity is divided into the inner
and outer sections that correspond to the lower and upper membership functions of an IFN-based
fuzzy productivity forecast, respectively. In this manner, all actual values are included in the outer
section, whereas most of the values lie within the inner section. Moreover, the ratio of the number of
PTE cases to the number of BTA cases is a useful factor for selecting a suitable forecasting strategy.
To derive the values of parameters in the IFN-based fuzzy productivity learning model, an MBQP
model is proposed and optimized. Finally, according to the selected forecasting strategy, the OWA
method [27] was applied to defuzzify a fuzzy productivity forecast.

The remainder of this paper is organized as follows. First, some arithmetic operations on IFNs are
introduced in Section 2. The proposed methodology is detailed in Section 3. To illustrate the applicability
of the proposed methodology, a real case is discussed in Section 4. The performance of the proposed
methodology is also compared with those of several existing methods. Finally, the conclusions of this
study and some directions for future research are provided in Section 5.

2. Preliminary

IFNs have been extensively applied in multiple-criteria decision-making problems. For example,
Hu et al. [28] considered a multiple-criteria decision-making problem in which criteria took the values
of IFNs. Moreover, some of the weights assigned to criteria were unknown. To address this problem,
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an expected value function was optimized through a maximizing deviation method. However, in existing
studies on IFN applications, the motives for adopting IFNs are not clear or strong. By contrast, in this
study, the motive for adopting an IFN to represent a fuzzy productivity forecast is clear.

This section introduces some arithmetic operations on IFNs. First, the definition of an IFN is given
as follows [29]:

Definition 1. An IFNÃ is a subset of real numbers R and is defined as the set of ordered pairs Ã = {(x, μÃ(x) )|

xμÃ(x) ∈ R}, where μÃ(x) : R→ [0, 1] is the interval-valued membership function of Ã.

If Ã is Moore-continuous, then there exist two membership functions for Ã, namely the lower
membership function (LMF) μÃl

(x) and the upper membership function (UMF) μÃu
(x), such that

μÃ(x) = [μÃl
(x),μÃu

(x)]. An IFN is a special case of type-II fuzzy sets [30].
Some attributes of an IFN are defined as follows:

Definition 2. The inner support, outer support, and core of an IFN Ã of R are defined, respectively, as follows:

isuppÃ = {x ∈ R|μÃl
(x) > 0} (1)

osuppÃ = {x ∈ R|μÃu
(x) > 0} (2)

coreÃ = {x ∈ R|μÃl
(x) = μÃu

(x) = 1} (3)

Definition 3. An IFN Ã is an interval triangular fuzzy number (ITFN) if both the LMF and UMF of Ã are
triangular functions,

μÃl
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
x−Al1

A2−Al1
i f Al1 ≤ x < A2

Al3−x
Al3−A2

i f A2 ≤ x < Al3

0 otherwise

(4)

μÃu
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
x−Au1

A2−Au1
i f Au1 ≤ x < A2

Au3−x
Au3−A2

i f A2 ≤ x < Au3

0 otherwise

(5)

Ã can be briefly denoted by ((Al1, A2, Al3), (Au1, A2, Au3)) or (Au1, Al1, A2, Al3, Au3).

An ITFN is shown in Figure 3, in which Ã = ((5, 9, 12), (2, 8, 13)) or (2, 5, 9, 12, 13).

Figure 3. An ITFN.
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Property 1. The inner support, outer support, and core of an ITFN Ã can be derived as follows:

isuppÃ = [Al1, Al3] (6)

osuppÃ = [Au1, Au3] (7)

coreÃ = A2 (8)

Some arithmetic operations on ITFNs are summarized in the following theorem [31–33].

Theorem 1. (Arithmetic Operations on ITFNs)

(1) Fuzzy addition: Ã(+)B̃ = (Au1 + Bu1, Al1 + Bl1, A2 + B2, Al3 + Bl3, Au3 + Bu3).

(2) Fuzzy subtraction: Ã(−)B̃ = (Au1 − Bu3, Al1 − Bl3, A2 − B2, Al3 − Bl1, Au3 − Bu1).

(3) Fuzzy product (or multiplication): Ã(×)B̃ � (Au1Bu1, Al1Bl1, A2B2, Al3Bl3, Au3Bu3) whenever 0 � B̃.

(4) Fuzzy division: Ã(/)B̃ = (Au1/Bu3, Al1/Bl3, A2/B2, Al3/Bl1, Au3/Bu1)whenever 0 � B̃.

(5) Exponential function: eÃ � (eAu1 , eAl1 , eA2 , eAl3 , eAu3).

(6) Logarithmic function: ln Ã � (ln Au1, ln Al1, ln A2, ln Al3, ln Au3) whenever Au1 ≥ 0.

3. Proposed Methodology

The proposed methodology comprises the following steps. First, the collected productivity data
are analyzed to make sure that a productivity learning process exists. Subsequently, all parameters in
the productivity learning model are fuzzified as IFNs to consider uncertainty. To derive the values of
IFN-based fuzzy parameters, an MBQP model is proposed and optimized. Finally, the OWA method
is applied to defuzzify an IFN-based fuzzy productivity forecast. IFNs, rather than general type-2
fuzzy numbers, are adopted in the proposed methodology because the mathematics needed for IFNs,
primarily interval arithmetic, is much simpler than that needed for general type-2 fuzzy numbers [34].

3.1. Data Preanalysis

In a factory, many performance measures exhibit learning phenomena [35–37]. However, the fuzzy
learning model of productivity is different from that of other performance measures, such as yield or
unit cost, because the asymptotic or final value of productivity is unbounded, whereas that of yield or
unit cost is bounded.

Productivity →∞; yield → 100%; the unit cost → 0
Therefore, before applying the proposed methodology, it should be ensured that the collected

productivity data follow a learning process:

Pt = P0e− b
t +r(t) (9)

where Pt is the productivity forecast at time period t (t = 1 – T); P0 is the asymptotic or final productivity;
b > 0 is the learning constant; and r(t) is a homoscedastical and serially uncorrelated error term that is
often ignored. Taking the logarithmic values of both sides gives the following Equation:

ln Pt = ln P0 − b
t
+ r(t) (10)
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A linear regression model is presented in the aforementioned Equation, whose validity can be measured
in terms of the coefficient of determination R2, which is given as follows:

R2 =
S2

xy

SxxSyy
(11)

where

Sxx =
T∑

t=1

(−1
t
)

2
− T(

T∑
t=1

(− 1
t )

T
)2 (12)

Syy =
T∑

t=1

(ln Pt)
2 − T(

T∑
t=1

(ln Pt)

T
)2 (13)

Sxy =
T∑

t=1

(− ln Pt

t
) − T(

T∑
t=1

(− 1
t )

T
)(

T∑
t=1

ln Pt

T
) (14)

R2 is expected to approach a value of 1 if the collected productivity data follow a learning process.

3.2. IFN-Based Fuzzy Productivity Learning Model

The IFN-based fuzzy productivity learning model is proposed by defining the parameters in (8)
with ITFNs.

P̃t = P̃0(×)e− b̃
t +r(t) (15)

where

P̃t = (Ptu1, Ptl1, Pt2, Ptl3, Ptu3) (16)

P̃0 = (P0u1, P0l1, P02, P0l3, P0u3) (17)

b̃ = (bu1, bl1, b2, bl3, bu3) (18)

An IFN-based fuzzy productivity forecast is meaningful in practice. The interpretation of (16) is that,
according to a historical experience, the productivity within the t-th period would be within P0u1 and
P0u3. If this range is very wide, then a narrower range (from P0l1 to P0u3) is very likely to contain
actual value.

Because t � 0, according to the formula of fuzzy division, dividing b̃ by −t gives the following
Equation:

− b̃
t
= (−bu3

t
,−bl3

t
,−b2

t
,−bl1

t
,−bu1

t
) (19)

By taking the exponential of (19), we obtain the following Equation:

e− b̃
t � (e−

bu3
t , e−

bl3
t , e−

b2
t , e−

bl1
t , e−

bu1
t ) (20)

P̃t can be derived by multiplying P̃0 to both sides of (20) by using the formula of fuzzy multiplication:

P̃t = P̃0(×)e− b̃
t � (P0u1e−

bu3
t , P0l1e−

bl3
t , P02e−

b2
t , P0l3e−

bl1
t , P0u3e−

bu1
t ) (21)
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3.3. MBQP Model for Deriving the Values of Fuzzy Parameters

Mathematical programming models involving type-2 or other types of fuzzy numbers have been
extensively applied in the literature [38–40]. By taking the logarithm of (15), we obtain the following Equation:

ln P̃t � (ln P0u1 − bu3

t
, ln P0l1 − bl3

t
, ln P02 − b2

t
, ln P0l3 − bl1

t
, ln P0u3 − bu1

t
) (22)

The following MBQP model is optimized to derive the values of fuzzy parameters.
Model MBQP:

Min Z =
T∑

t=1

(ln P0u3 − bu1

t
− ln P0u1 +

bu3

t
+ ln P0l3 − bl1

t
− ln P0l1 +

bl3
t
) (23)

subject to

ln Pt ≥ (1− s)(ln P0u1 − bu3

t
) + s(ln P0u2 − bu2

t
); t = 1 ∼ T (24)

ln Pt ≤ (1− s)(ln P0u3 − bu1

t
) + s(ln P0u2 − bu2

t
); t = 1 ∼ T (25)

T∑
t=1

Xt1Xt2

T
≥ (1− α) (26)

ln Pt ≥ Xt1(ln P0l1 − bl3
t
); t = 1 ∼ T (27)

ln Pt ≤ Xt2(ln P0l3 − bl1
t
); t = 1 ∼ T (28)

Xt1, Xt2 ∈ {0, 1} ; t = 1 ∼ T (29)

ln P0u1 ≤ ln P0l1 ≤ ln P02 ≤ ln P0l3 ≤ ln P0u3 (30)

0 ≤ bu1 ≤ bl1 ≤ b2 ≤ bl3 ≤ bu3 (31)

The objective function minimizes the sum of the widths of fuzzy productivity forecasts by
considering both LMF and UMF, thereby narrowing both the ranges of LMF and UMF (Figure 4) to
maximize the forecasting precision [41]. Constraints (24) and (25) suggest that the membership of
an actual value in the corresponding fuzzy forecast should be higher than the satisfaction level (s)
based on UMF. Xt1 and Xt2 are binary variables, as defined in (29). When both Xt1 and Xt2 are equal to
1, an actual value lies within the range of LMF, as suggested by Constraints (27) and (28). Otherwise,
the actual value lies outside the LMF range. In this manner, the inclusion level [42] is higher than
100(1 − α)% (Figure 5), as required by Constraint (26). Constraints (26)–(29) are quadratic constraints or
can be converted into quadratic constraints. Constraints (30) and (31) define the sequences of endpoints
in the ITFNs. The MBQP model has one linear objective function, 2T + 6 variables, 4T + 9 linear
constraints, and 2T + 1 quadratic constraints.

By moving variables independent of t out of the summation function, the objective function
changes as follows:

Min Z = T ln P0u3 − T ln P0u1 + T ln P0l3 − T ln P0l1 +
T∑

t=1

(−bu1

t
+

bu3

t
− bl1

t
+

bl3
t
) (32)

Let
T∑

t=1

1
t
= K (33)
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Then,
Z = T ln P0u3 − T ln P0u1 + T ln P0l3 − T ln P0l1 −Kbu1 + Kbu3 −Kbl1 + Kbl3 (34)

Note that (33) is a divergent harmonic series [43].

Figure 4. Effects of the objective function.

Figure 5. Inclusion interval constructed by solving the MBQP problem.

3.4. OWA for Defuzzifying a Fuzzy Productivity Forecast

In the literature, various formulas have been proposed to defuzzify an ITFN. For example,
according to Dahooie et al. [44], an ITFN Ã can be defuzzified as follows:

D1(Ã) =
Au1 + Al1 + A2 + Al3 + Au3

5
(35)

which is an extension of the center-of-gravity (COG) formula or

D2(Ã) =
(1− λ)Au1 + λAl1 + A2 + λAl3 + (1− λ)Au3

3
; λ ∈ [0, 1] (36)

Lee et al. [31] proposed the following formula:

D3(Ã) =
Au1 + Al1 + 4A2 + Al3 + Au3

8
(37)

However, existing defuzzification formulas consider PTE and BTA cases likely, which is questionable
because they have distinct meanings in practice.

Definition 4. A PTE case is a case that lies outside the LMF on the left-hand side, that is, Pt ≤ Ptl1.
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Definition 5. A BTA case is a case that lies outside the LMF on the right-hand side, that is, Pt ≥ Ptl3.

To address the aforementioned problem, the concept of OWA is applied in the proposed
methodology. The rationale for applying OWA to defuzzify an IFN-based fuzzy productivity forecast
is explained as follows:

(1) Using existing defuzzification methods, the defuzzification result of an IFN-based fuzzy
productivity forecast is usually the weighted sum of its endpoints. OWA also calculates the
weighted sum of data.

(2) OWA aggregates data that have been sorted. The endpoints of an IFN-based fuzzy productivity
forecast, from the leftmost to the rightmost, also form a sorted series.

There exist five decision strategies in OWA that assign unequal weights to different attributes
according to their performances. The five strategies are optimistic, moderately optimistic, neutral,
moderately pessimistic, and pessimistic strategies [44,45]. Most formulas for defuzzifying an ITFN
also assign weights to its endpoints. Therefore, assigning weights to the endpoints of P̃t according
to their possibilities is reasonable. In the training data, if the number of PTE cases is considerably
higher than that of BTA cases, then the “pessimistic” strategy appears to be suitable. By contrast, if the
number of BTA cases is considerably higher than that of PTE cases, then the “pessimistic” strategy can
be selected. On the basis of these beliefs, a fuzzy productivity forecast is defuzzified according to the
selected forecasting strategy, as presented in Table 1. These strategies are subjective selections based
on objective historical statistics [46].

Table 1. Defuzzification method based on the forecasting strategy.

Strategy D4(P̃t)

Optimistic 0Ptu1 + 0Ptl1 + 0Pt2 + 0Ptl3 + 1Ptu3
Moderately Optimistic 0.06Ptu1 + 0.08Ptl1 + 0.10Pt2 + 0.14Ptl3 + 0.62Ptu3

Neutral 0.2Ptu1 + 0.2Ptl1 + 0.2Pt2 + 0.2Ptl3 + 0.2Ptu3
Moderately Pessimistic 0.49Ptu1 + 0.30Ptl1 + 0.15Pt2 + 0.06Ptl3 + 0.01Ptu3

Pessimistic 0.89Ptu1 + 0.10Ptl1 + 0.01Pt2 + 0Ptl3 + 0Ptu3

Property 2. The “neutral” forecasting strategy is equivalent to the COG defuzzification method.

4. Application of the Proposed Methodology to a Real Case

The effectiveness of the proposed methodology was evaluated by applying it for forecasting the
productivity of a real dynamic random access memory (DRAM) factory. This case was first investigated
by Wang and Chen [19]. In this case, the multi-item productivity of the DRAM factory, which was
derived by dividing the monetary value of outputs by that of inputs, was recorded for 14 periods.
The recorded data are displayed in Figure 6. Wang and Chen [19] proposed a fuzzy collaborative
forecasting approach to forecast the future productivity. For the same purpose, Chen et al. [21] proposed
a fuzzy polynomial fitting and mathematical programming approach. The differences between the two
approaches and the proposed methodology are summarized in Table 2. The most obvious difference
is that only the proposed methodology forecasts productivity with an IFN, thereby differentiating
between extreme cases and normal cases to construct a narrow interval of productivity.

The productivity data were divided into two parts, the training data (including the data of the first
10 periods) and test data (including the remaining data). First, to ensure that the collected data followed
a learning process, the coefficient of determination (R2) was calculated. R2 was found to be 0.87,
which was sufficiently high to ensure that the collected data followed a learning process. Subsequently,
the training data were used to build the MBQP model, which was solved using a branch-and-bound
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algorithm [47–50] on a personal computer with Intel core i7-7700 CPU @ 3.60 GHz and 8 GB RAM in
10 s. Moreover, α was set to 0.2 so that an 80% inclusion interval was constructed. The satisfaction
level s was set to 0.3. The optimal solution was

P̃∗0 = (1.267, 1.343, 1.343, 1.569, 1.683)

b̃∗ = (0.990, 0.990, 0.990, 1.260, 1.260)

The optimal objective function value Z∗ was 5.972. The forecasting results are displayed in Figure 7.
The average width of the ranges of LMFs was 0.234. As expected, the ranges of LMFs were too narrow
to include all actual values. Nevertheless, most actual values could be contained in such narrow ranges,
which is very advantageous for practical applications. The productivity at the eighth period was a PTE
case (the purple circle in Figure 7) because the actual value was below the LMF curve, as illustrated in
Figure 8. By contrast, no BTA case was observed, which implied that the pessimistic or moderately
pessimistic strategy may be suitable.

Figure 6. Real case.

Figure 7. Forecasting results using the proposed methodology.

Figure 8. IFN-based fuzzy productivity forecast for t = 8.
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Table 2. Differences between the two approaches and the proposed methodology.

Method Type of Productivity Forecast Optimization Models Discriminating Extreme Cases Number of Experts Required

Wang and Chen [19] Fuzzy number NLP, QP No Multiple
Chen et al. [21] Fuzzy number PP No One
The proposed
methodology IFN MBQP Yes One

After applying the proposed methodology to test data, the hit rate was 25%. Subsequently,
various formulas were applied to defuzzify interval-valued fuzzy productivity forecasts for test data
to evaluate the forecasting accuracy of the proposed methodology in terms of mean absolute error
(MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The results are
summarized in Table 3. The defuzzification formula D4 (the moderately pessimistic strategy) exhibited
the best performance.

Table 3. Forecasting accuracy achieved using the proposed methodology (for test data).

Defuzzification Formula MAE MAPE RMSE

D1 0.270 26.2% 0.279
D2 (λ = 0.4) 0.255 24.8% 0.265

D3 0.240 23.3% 0.250
D4 (Moderately Optimistic) 0.402 38.9% 0.409
D4 (Moderately Pessimistic) 0.150 14.7% 0.166

The linear programming (LP) method of Tanaka and Watada [41], quadratic programing (QP)
method of Peters [51], QP method of Donoso et al. [52], two NLP models of Chen and Lin [53],
artificial neural network (ANN) method of Chen [54], and the PP method of Chen et al. [21] were
applied to the real case for comparison. Similar to the proposed methodology, all the aforementioned
methods are based on a single expert’s forecast.

Tanaka and Watada’s LP method minimized the sum of the ranges of fuzzy productivity forecasts.
The satisfaction level (s) was set to 0.3 for a fair comparison. By contrast, Peters’ QP method maximized
the forecasting accuracy in terms of the average satisfaction level by requesting the average range of
fuzzy productivity forecasts to be less than d = 1. To simultaneously optimize the forecasting accuracy
and precision, the QP method of Donoso et al. minimized the weighted sum of the squared deviations
from the core as well as the squared deviations from the estimated spreads. In this case, the two weights
w1 and w2 were set to 0.45 and 0.55, respectively. Chen and Lin’s two NLP models were extensions of
Tanaka and Watada’s LP model and Peters’s QP model, respectively. The two NLP methods adopted
the following high-order objectives and/or constraints: o = 2, s = 0.15, m = 2, and d = 1.2, where o and m
are the orders of the two objective functions, respectively. In Chen’s ANN method, the initial values of
the network parameters were set as follows: the connection weight (w̃) = (0.10, 0.77, 1.15); the threshold
(θ̃) = (−0.18, −0.12, 0.26); and the learning rate (η) = 0.25. The training of the ANN was completed in
10 epochs. The PP method of Chen et al. overcame the global optimality problem of Chen and Lin’s NLP
method by converting the NLP models into PP models, for which the Karush–Kuhn–Tucker conditions
were easy to solve. The performance of existing methods is summarized in Table 4. A comparison
of the performances of existing methods and the proposed methodology is displayed in Figure 9.
The “moderately pessimistic” strategy was adopted in the proposed methodology.

Table 4. Forecasting performances of existing methods for test data.

Method MAE MAPE RMSE Hit Rate Average Range

Tanaka and Watada’s LP method 0.283 27.4% 0.292 25% 0.346
Peters’s QP method 0.487 47.0% 0.492 25% 1.233

Donoso et al.’s QP method 0.269 26.1% 0.278 0% 0.273
Chen and Lin’s NLP I model 0.276 26.8% 0.285 0% 0.288
Chen and Lin’s NLP II model 0.282 27.4% 0.290 100% 1.006

Chen’s ANN method 0.185 18.1% 0.198 100% 0.803
Chen et al.’s PP method 0.168 16.4% 0.181 0% 0.249
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Figure 9. Cont.

306



Mathematics 2020, 8, 998

Figure 9. Comparison between the performances of various methods.

According to the experimental results, the following inferences are obtained:

(1) By excluding extreme (PTE and BTA) cases, the average range of fuzzy productivity forecasts
was narrowed by 35%. In other words, the average range was widened by 35% when including
a single extreme case.

(2) The proposed methodology outperformed existing methods in terms of MAE, MAPE, and RMSE
in evaluating the forecasting accuracy. The detection of PTE and BTA cases enabled the selection of
a suitable forecasting strategy, which contributed to the superiority of the proposed methodology
over existing methods. The most significant advantage was over the QP method of Peters.
The proposed method was up to 69% more effective than the QP method in minimizing MAPE.

(3) Conversely, the proposed methodology optimized the forecasting precision measured in terms of
the average range. Despite such a narrow average range, the hit rate achieved using the proposed
methodology was also satisfactory.

(4) To ascertain whether the differences between the performances of various methods were
statistically significant, the sums of ranks of all methods were compared [55–57]. The results
are presented in Table 5. For example, the proposed methodology ranked the first among the
compared methods in reducing MAE, MAPE, RMSE, and the average range, and ranked the
fifth in elevating the hit rate. As a result, the sum of ranks was 9 for the proposed methodology.
The ranks of methods that performed equally well were averaged. For example, Donoso et al.’s
QP method and Chen and Li’s NLP I method performed equally well in elevating the hit rate and
outperformed the other methods. Therefore, both of their ranks were (1 + 2)/2 = 1.5. According to
the sums of ranks achieved by these methods, the proposed methodology ranked first, followed by
the PP method of Chen et al., the QP method of Donoso et al., and the ANN method of Chen.

(5) To further elaborate the effectiveness of the proposed methodology, it has been applied to another
case of forecasting the productivity of a factory. This case was first investigated by Akano
and Asaolu [58], in which four factors (preventive maintenance time, off-duty time, machine
downtime, and power failure time) were considered to be influential to the productivity of
a factory. To forecast the productivity, Akano and Asaolu constructed an adaptive network-based
fuzzy inference system (ANFIS), which resulted in a MAPE of up to 34%. In this study, an expert
applied the IFN-based MBQP–OWA approach to forecast productivity, for which the neutral
strategy was adopted. The forecasting results are shown in Figure 10. The forecasting accuracy,
in terms of MAPE, was elevated by 19%.
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Table 5. Comparing the sums of ranks of various methods.

Method Rank (MAE) Rank (MAPE) Rank (RMSE)
Rank

(Hit Rate)
Rank

(Average Range)
Sum of Ranks

Tanaka and Watada’s LP 7 7 7 5 5 31
Peters’s QP 8 8 8 5 8 37

Donoso et al.’s QP 4 4 4 1.5 3 16.5
Chen and Lin’s NLP I 5 5 5 1.5 4 20.5
Chen and Lin’s NLP I 6 7 6 7.5 7 33.5

Chen’s ANN 3 3 3 7.5 6 22.5
Chen et al.’s PP 2 2 2 3 2 11
The proposed
methodology 1 1 1 5 1 9

Figure 10. Forecasting results using the IFN-based MBQP–OWA approach.

5. Conclusions

An IFN-based MBQP–OWA approach is proposed in this study to model an uncertain productivity
learning process. This study aims to resolve a problem of existing methods, that is, a few extreme
(PTE and BTA) cases determine the lower and upper bounds on productivity. This problem causes the
range of productivity to be unacceptably wide. To solve this problem, the range of productivity is
divided into inner and outer sections that correspond to the LMF and UMF of an IFN-based fuzzy
productivity forecast, respectively. In this manner, all actual values are included in the outer section,
whereas most of the values lie within the inner section. Moreover, a suitable forecasting strategy can
be determined according to the percentages of PTE and BTA cases. To derive the values of parameters
in the IFN-based fuzzy productivity learning model, an MBQP model is proposed and optimized.
Subsequently, the OWA method based on the selected forecasting strategy is applied to defuzzify the
fuzzy productivity forecast. The contribution of this study resides in the following:

(1) Using the characteristics of IFNs, a systematic mechanism was established to avoid extreme cases
from widening the ranges of fuzzy productivity forecasts.

(2) An innovative idea was proposed to defuzzify an IFN-based fuzzy productivity forecast
using OWA.

The IFN-based MBQP–OWA approach has been applied to a real case of a DRAM factory to
evaluate its effectiveness. According to the experiment results, the following findings are obtained:

(1) In terms of MAE, MAPE, and RMSE, the accuracy of the forecasted productivity obtained using
the proposed methodology was superior to those obtained using several existing methods.

(2) The forecasting precision achieved using the proposed methodology was also satisfactory,
especially for minimizing the average range of fuzzy productivity forecasts.
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(3) By identifying PTE and BTA cases, an expert was able to select a suitable forecasting strategy,
which further enhanced the forecasting precision and accuracy.

The proposed methodology has several advantages, but there are also some drawbacks. For example,
extreme cases may affect the range of productivity in different ways in the future. Nevertheless, in future
studies, other types of fuzzy numbers, such as interval-valued intuitionistic fuzzy numbers [59],
hesitant IFNs [60,61], Pythagorean fuzzy numbers [62], and interval-valued Pythagorean fuzzy
numbers [63,64] can be adopted to model uncertain productivity instead. The proposed methodology
can also be applied to other learning processes in various fields that are subject to uncertainty, such as
unit cost learning [65] and energy efficiency learning [66]. Another interesting topic is how to build
the IFN-based fuzzy productivity learning model if the collected productivity data are incomplete [67].
The proposed methodology can also be extended to fulfill a multiple-expert collaborative forecasting
task [68–72].
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Abstract: Technological tables are very important in electrical discharge machining to determine
optimal operating conditions for process variables, such as material removal rate or electrode wear.
Their determination is of great industrial importance and their experimental determination is very
important because they allow the most appropriate operating conditions to be selected beforehand.
These technological tables are usually employed for electrical discharge machining of steel, but their
number is significantly less in the case of other materials. In this present research study, a methodology
based on using a fuzzy inference system to obtain these technological tables is shown with the aim of
being able to select the most appropriate manufacturing conditions in advance. In addition, a study of
the results obtained using a fuzzy inference system for modeling the behavior of electrical discharge
machining parameters is shown. These results are compared to those obtained from response surface
methodology. Furthermore, it is demonstrated that the fuzzy system can provide a high degree of
precision and, therefore, it can be used to determine the influence of these machining parameters on
technological variables, such as roughness, electrode wear, or material removal rate, more efficiently
than other techniques.

Keywords: fuzzy; manufacturing; modeling; electrical discharge machining (EDM); technological tables

1. Introduction

Electrical discharge machining (EDM) is a manufacturing process which is typically classified as
a non-traditional manufacturing process. EDM has several advantages over traditional manufacturing
processes such as turning or milling, because there is no direct contact between the part and the tool, and the
hardness of the so-processed materials does not affect the result. In the field of EDM, technological tables are
of great interest since, by using them, it is possible to determine in advance the optimal machining conditions
for a certain strategy that either maximizes material removal or reduces electrode wear, among other
objectives. These technological tables are usually employed for electrical discharge machining of steel,
but their number is significantly less in the case of other materials. In the research study of Torres et al. [1],
technological tables were obtained for the case of TiB2, which is a low-machinability material, by using
response surface methodology (RSM) that fitted a second-order polynomial regression model along with
nonlinear programming. However, when regression models are not adequate to predict the behavior
of response variables, because the values of the coefficients of determination are low, it is necessary to
use other alternative methodologies. Therefore, in this present study, a methodology is proposed to
obtain the technological tables using a Sugeno type fuzzy inference system (FIS). As shown, the results
obtained with this FIS significantly improve those obtained using response surface methodology and,
therefore, the results obtained are more reliable than those obtained by RSM. In the research study of
Torres et al. [2], a new energy density model was proposed and a 43 factorial design was employed for
modeling the behavior of the arithmetical mean roughness (Ra), the electrode wear (EW), and the material
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removal rate (MRR) in the EDM machining of an Inconel® 600 alloy using Cu–C electrodes (Inconel is a
registered trademark of Special Metals Family of Companies). However, in this study, the technological
tables for this alloy were not developed. Furthermore, as shown in this study [2], the regression models
obtained using RSM were able to adequately predict Ra and MRR values with R-squared values greater
than 0.95; however, in the case of EW, response surface methodology was not able to adequately predict the
EW behavior. Therefore, to fill these gaps, a Takagi–Sugeno [3,4] fuzzy inference system (FIS) is proposed
in this present study to model the behavior of Ra, MRR, and EW and to obtain the technological tables
for this Inconel® 600 alloy, within the range of the considered variation levels of the parameters under
study. In addition, a comparative study is performed between the results provided by RSM and the results
provided by the FIS system. In [5] a methodology was developed to obtain the values of technological
tables for the case of B4C, SiSiC and WC-Co conductive ceramic materials. However, as in the technological
tables developed in [1], when regression models are not adequate to predict the behaviour of response
variables, it is necessary to use other alternative methodologies. As shown below, the FIS can predict the
output values more efficiently than by using regression. Data shown in Tables 1 and 2 that were taken from
the above-mentioned study [2] are used in this present work in order to analyze a case study and to develop
a fuzzy inference system for modeling the behavior of these technological variables (Ra, EW, and MRR),
as well as show the application of the proposed methodology in order to obtain the technological tables.
These technological tables are widely used for steel, while their number is significantly less in the case of
other materials. In any case, it is considered that the proposed methodology could be generally applied
to any other material and for other manufacturing processes. Hence, it is considered that the present
methodology for obtaining the technological tables may be of interest in the event that the input variables
can be continuously varied and, thus, in this way, it could be possible to select the most appropriate
operating conditions in advance.

Table 1. Design factors and levels. These values were taken from Reference [2] Torres Salcedo, A.;
Puertas Arbizu I.; Luis Pérez, C. J. Analytical Modeling of Energy Density and Optimization of the EDM
Machining Parameters of Inconel 600. Metals 2017, 7, 166. (Open access article distributed under the
terms and conditions of the Creative Commons Attribution (CC BY) license: http://creativecommons.
org/licenses/by/4.0/).

Design Factors
Levels and Values

Positive Polarity Negative Polarity
1 2 3 4 1 2 3 4

Current intensity (A) 2 4 6 8 2 4 6 8
Pulse time (μs) 25 50 75 100 25 50 75 100
Duty cycle (%) 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6

Table 2. Mean values of arithmetical mean roughness (Ra), material removal rate (MRR), and electrode
wear (EW), obtained with positive and negative polarity. These values were taken from Reference [2]
Torres Salcedo, A.; Puertas Arbizu I.; Luis Pérez, C. J. Analytical Modeling of Energy Density and
Optimization of the EDM Machining Parameters of Inconel 600. Metals 2017, 7, 166. (Open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license: http://creativecommons.org/licenses/by/4.0/). (See Reference [2] or Appendix A for all data).

Positive Polarity (+) Negative Polarity (−)
E Ra (μm) MRR (mm3/min) EW (%) E Ra (μm) MRR (mm3/min) EW (%)

1 1.39 0.1778 35.81 1 1.57 0.4961 96.67
2 3.34 3.0897 10.66 2 3.59 4.7944 28.23
63 6.33 8.4132 1.30 63 7.52 23.2371 171.94
64 7.08 15.3894 0.37 64 7.83 30.4894 17.49
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2. State of the Art

Over the past few years, the number of applications of fuzzy systems increased significantly [6].
Takagi–Sugeno [3,4] and Mamdani [7,8] fuzzy inference systems are commonly used, and there exist a
large number of research studies in different scientific fields, dealing with control, pattern recognition,
modeling, etc. Among the studies that can be found in the literature, it is worth mentioning the study
of Mouralova et al. [9] which proposed a Mamdani FIS, based on 18 rules provided by an expert in the
field, for modeling the cutting speed in wire electrical discharge machining (WEDM) from five inputs
(gap voltage, pulse on time, pulse off time, discharge current, and wire feed). These authors employed
a maximum of results for aggregation and the centroid in order to de-fuzzify the aggregated output.
Among the conclusions, these authors found that the FIS may be employed in order to determine the
optimum machine parameters to maximize the cutting speed for the WEDM of Creusabro steel [9].
In another study, Aamir et al. [10] employed a Mamdani FIS to predict surface roughness and hole
size as a function of feed rate and cutting speed in multi-hole drilling. These authors calculated the
outputs based on the centroid method. They found that the FIS was able to predict hole quality at
different levels of process parameters [10]. On the other hand, Alarifi et al. [11] employed genetic
algorithms and particle swarm optimization to determine the parameters of an adaptive neuro-fuzzy
inference system (ANFIS) model to predict the thermo-physical properties of Al2O3–multi-walled
carbon nanotube (MWCNT)/thermal oil hybrid nanofluid. In order to evaluate and compare the
performance of the models analyzed, root-mean-square error (RMSE) and the R-squared coefficient
(R2) were employed. These authors found that the models were able to appropriately predict the
thermo-physical properties [11]. In the research study of Wang et al. [12], a fuzzy multicriteria
decision-making model (MCDM) for raw material supplier selection in the plastic industry was
employed. Likewise, in the research study of Kang et al. [13], a heating temperature estimation method
using an ANFIS algorithm was proposed for diagnosis and assessment of fire-damaged concrete
structures. These authors employed as input variables ultrasonic pulse velocity, reflectance of the
concrete surface, and design compressive strength of the concrete. Moreover, these authors estimated
the heating temperatures of the specimens using the proposed ANFIS algorithm. They found that their
model estimated the heating temperatures of the specimens with a high degree of accuracy [13]. On the
other hand, Tayyab et al. [14] applied fuzzy theory to consider uncertainty in demand information in a
multi-stage lean manufacturing system. These authors employed the centroid to de-fuzzify the objective
function. Other studies such as that of Faisal et al. [15] used particle swarm optimization (PSO) and
biogeography-based optimization (BBO) algorithms for a multiple-objective optimization of the MRR and
Ra for the EDM process, and they validated their models with experimental results. Lin et al. [16] applied
a fuzzy collaborative intelligence approach for fall detection in four existing smart technology applications,
while Cavallaro employed a Takagi–Sugeno FIS to assess the sustainability of biomass of production [17].

Regarding fuzzy modeling for industrial applications, there exist several studies which were applied
to different industrial sectors. Among these research studies, it is worth mentioning the application of soft
computing techniques for both detection and classification of defects [18,19], fault diagnosis of rolling bearing
in industrial robots [20], airport classification [21], control of piezoelectric actuators [22], monitoring of
fuel system of an industrial gas turbine [23], control of brushless direct current (DC) motors [24], and fault
detection in wind turbines [25]. In addition, fuzzy systems are able to handle uncertainties in an efficient
way, as shown in Reference [26], where a Takagi–Sugeno–Kang (TSK) type-2 fuzzy neural network was
proposed for system modeling and noise cancellation, or in Reference [27], where a design methodology
based on interval type-2 TSK fuzzy logic controllers for modular and reconfigurable robots manipulators
with uncertain dynamic parameters was shown, among many others [28,29].

Some other studies such as that of Shabgard et al. [30] employed a Mamdani inference system to
predict material removal rate, electrode wear, and surface roughness in the EDM and ultrasonic-assisted
EDM (US/EDM) processes of tungsten carbide. An analysis of the particle swarm optimization (PSO)
implementation in designing parameters of manufacturing processes, as well as a benchmark with
other optimization techniques can be found in the review study of Sibalija [31]. EDM process variables
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were modeled by using artificial neural networks (ANNs) and ANFIS, as shown in studies such
as that of Rahul et al. [32], where the authors employed a Taguchy design of experiments, as well
as the concept of satisfaction function, to improve machining performances responses in EDM of
Inconel 718. Babu et al. [33] employed a Taguchy design of experiments and an ANN in order
to determine optimal parameters in the wire electrical discharge machining (WEDM) of Inconel
750. Likewise, Al-Ghamdi et al. employed an adaptive neuro-fuzzy inference system (ANFIS) and
polynomial modeling approaches to model the material removal rate in EDM of a Ti–6Al–4V alloy [34].
These authors employed five ANFIS models and a first-order Sugeno, along with a back-propagation
neural network training algorithm. Among the results, these authors found that ANFIS models perform
more efficiently than convectional polynomial models [34]. Devarasiddappa et al. [35] employed
an artificial neural network (ANN) to predict surface roughness in the wire-cut electrical discharge
machining (WEDM) of Inconel 825. These authors found that this methodology is effective for modeling
surface roughness in this Inconel alloy [35]. Maher et al. [36] employed an adaptive neuro-fuzzy
inference system (ANFIS) to predict cutting speed, surface roughness, and heat-affected zone in WEDM.
Another example is the study of Joshi et al. [37] which investigated the management and quantification
of surface roughness and MRR of Inconel 800 HT when machined with a copper electrode on EDM,
whereas Torres et al. [38] studied an Inconel® 718 alloy during electrical discharge machining.

From previous studies, it is possible to see that EDM is commonly used for manufacturing
materials such as tungsten carbide [39], titanium diboride [1], and Inconel® alloys [2], boron carbide
and silicon carbide [5], among many others. In this present research study, the main aim is to use a FIS
to obtain technological tables from EDM experimental data. As previously mentioned, these tables are
very usual for steel; however, in other materials, the number of technological tables is significantly less.
Hence, this study may have interest because these tables allow machining strategies to be selected in
advance to obtain either maximum material removal rate or minimum electrode wear, among other
manufacturing strategies.

3. Methodology

This study presents a methodology in order to obtain technological tables that can be used in electrical
discharge machining (EDM) processes. This methodology is based, first of all, on experimentation,
which can be carried out through design of experiments (DOE) or another type of experimental study.
Technological tables are of great interest in the field of EDM since, by using them, it is possible to determine
in advance the optimal machining conditions for a certain strategy that either maximizes material removal
or reduces electrode wear. The methodology presented in this present study could be used generally for
other manufacturing processes; however, in this present case, it is focused on EDM in order to analyze
a case study. Most current EDM devices have (Computer Numerical Control) CNCs; thus, it is possible
to enter these technological tables in the memory of their CNCs. Currently, most EDM equipment is
programmed based on the existence of these technological tables. The usual practice is to obtain the
technological tables both from experimental tests and from the experience of the users [1,5].

Technological tables could be developed from previous experience on EDM in order to determine
the most appropriate operating conditions. Moreover, it would be possible to train and then adjust an
ANFIS by using experiments, that is to say, inputs and measured outputs. However, these techniques
are not used in this present study because it is possible to get more precision by using a FIS from the
experimental data. In a future study, a FIS will be adjusted from inputs and outputs which may have a
lower number of rules compared to that proposed in this present study. However, the precision of
this so-adjusted FIS would be lower than that obtained with the proposed model. Therefore, the FIS
employed in this present study starts from the knowledge of the experimental tests. As previously
mentioned, the knowledge of these technological tables is very important since it makes it possible to
select a machining strategy to obtain certain values of roughness, as well as to specify a certain strategy
for the material removal rate or electrode wear. For this reason, these technological tables are widely
used for steel, with their number being significantly lower in the case of other materials, as in the case
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analyzed in this present study. In any case, it is considered that the proposed methodology could be
generally applied for any other material. These technological tables are generated in a bottom-up
approach, since they start from experimental tests because of the fact that more precise results can be
obtained. Therefore, the proposed methodology is as described below.

Firstly, a FIS is developed from the inputs (x1 . . . .xn) and outputs (y1 . . . .yn). A zero-order Sugeno
fuzzy model is employed in this study. Triangular membership functions are used for modeling the
inputs and constant values are used for the outputs. Figure 1 shows the membership function selected
for fuzzification of the inputs. The membership functions for the independent variables are triangular,
as shown in Figure 1. The membership function is obtained from Equation (1).

Figure 1. Degree of membership of the independent variables.

It should be mentioned that the membership functions may have different shapes such as triangular,
trapezoidal, Gaussian, and bell-shape, among many others [40]. In this case, triangular functions
are used for their simplicity and because using these types of functions with overlap between them
produces acceptable values to model the response.

μx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−a
b−a , i f a ≤ x ≤ b
c−x
c−b , i f b ≤ x ≤ c

0, otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (1)

Therefore, the procedure for obtaining the technological tables starts from obtaining a Sugeno
FIS [3,4,40], which can be developed from the experimental data. The aggregation method is the sum
of fuzzy sets, and the aggregated output is obtained from the weighted average of all output rules.
For the i-th rule, the implication method is obtained from Equation (2), where the product implication
method is used in Sugeno systems [40].

λi(x) = AndMethod
{
μi1(x1), . . . ,μin(xn)

}
. (2)

Once the FIS is developed, it is then possible to evaluate the outputs and to obtain the response values
for each of the inputs using the FIS, that is, for xi = min{xi} : inci : max{xi}. The increment “inci” defines
the number of points to be evaluated in order to generate the response with the fuzzy inference system
(FIS). In general, it is possible to have several inputs and outputs. The general procedure to define the
technological tables is shown in Algorithm 1.
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Algorithm 1. Methodology for obtaining the technological tables. FIS—fuzzy inference system.

(1) Develop a FIS from the inputs (x1 . . . .xn) and outputs (y1 . . . .yn). A zero-order Sugeno fuzzy model is
employed in this study.

(2) Transform each of the inputs into a vector as follows: xi = min
{
xi,j

}
: inci : max

{
xi,j

}
, where inci values

are selected so that the length of each vector “xi” is the same for all inputs.
(3) Evaluate the output to be classified, using the fuzzy inference system. That is, evaluate output1,j using

the FIS.
(4) Select a pitch = outputsup1,l

− outputinf1,l
= constant for the output to be classified, so that

outputinf1,l
≤ output1,j ≤ outputsup1,l

. This defines the number of levels “l” used to classify the output.

(5) Classify output1 using these “l” levels. Each of these levels has “ml” values.
(6) The strategy for obtaining each value of the technological table is as follows:

If the optimal value of one output “k” is given by the maximum, for example, material removal rate, then
the value of the technological table which corresponds to the level “l” of output1 is obtained from the
following function:

table_outputk,l = max{outputk,m}FIS, classifed.

Otherwise, if the manufacturing strategy is given by the minimum, for example, tool wear, then the
values of the technological tables are obtained from the following function:

table_outputk,l = min{outputk,m}FIS, classifed.

That is, for each level of output1, select the value that either maximises or minimises outputk, where the
values are obtained using the FIS.

(7) Then, obtain inputs (x1 . . . .xn) which correspond to table_outputk,l and, using the FIS, evaluate other
outputs (outputm, f or m � 1 and k).

As shown in Algorithm 1, from the experimental results, a fuzzy inference system is generated
from all the independent variables and the dependent variables under study. For this reason, the FIS is
capable of predicting the values of the dependent variables within the range defined by the minimum
and maximum values of the experiments with greater precision than that obtained by using RSM,
as shown later. The intervals used to classify the output1 values are established based on a pitch which
could be whatever. The selection of output1 as the output to be classified can be done without loss of
generality since, in the methodology presented, a single output is selected as classifiable to establish
the ranges of variation, and the remaining outputs vary either at their maximum levels or at their
minimum levels, depending on the manufacturing strategy.

The proposed methodology has the advantage that several manufacturing conditions can be
determined from a reduced number of experimental tests, within the range defined by experimentation
(minimum and maximum values of the input variables). Once the outputs are classified, it is a matter
of selecting the conditions that maximize a variable.

In order to show the application of the above-mentioned methodology, the technological tables
for the case of Inconel® 600 are obtained, within the range of values defined by the DOE shown in
Table 1. The surface quality is characterized from the arithmetic mean roughness parameter (Ra).
This roughness parameter is commonly employed in industry to characterize the surface finish of
manufactured parts because most roughness measurement equipment is able to provide this parameter.
However, the proposed methodology could be generally applied for other roughness parameters.
In order to develop the technological tables, roughness classes with a certain value should be established
beforehand and, thus, the roughness values are then classified according to the specified roughness
classes. With this objective in mind, it is necessary to start from the experimental values which can be
obtained from a DOE or from any other experimental methodology. Therefore, the method to be used
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is to establish roughness classes and, from these classes, to determine the values of the input variables
that allow either to minimize the electrode wear or to maximize the material removal rate.

4. Results and Discussion

This section presents the results obtained by applying the methodology described in the previous
section. In order to develop the present study, experimental values obtained by Torres et al. [2]
are employed. As previously mentioned, this material is a nickel–chromium alloy (Inconel® 600).
The ranges of variation of the inputs and outputs are shown in Tables 1 and 2.

Table 2 shows the results obtained after EDM of Inconel® 600 alloy, where the material removal
rate (MRR) and the electrode wear (EW) are defined from Equations (2) and (3), respectively.

Material Removal Rate (MRR) =
Volume of material removed from the part

Machining time

(
mm3/min

)
. (3)

Electrode Wear (EW) =
Volume of material removed from the electrode

Volume of material removed from the part
× 100(%). (4)

As is well known, (Ra) is defined from the UNE-EN-ISO 4287:1999 norm [41] as the arithmetic
average roughness of the absolute values of the roughness profile ordinates Z(x) (where Z(x) is the
height of the profile evaluated in any position “x”) that are included in a sampling length (lr) of the
roughness profile, which can be obtained from Equation (5). This value is one of the most commonly
employed parameters in industry. Therefore, it is used in order to classify the roughness values in
order to develop the technological tables.

Ra =
1
lr

∫ lr

0

∣∣∣Z(x)∣∣∣dx. (5)

Figure 2 shows the profile for the determination of the Ra parameter, where Z(x) is the profile
measured from the mean line, and lr is the sampling length, while Figure 3 shows the EDM equipment.

Figure 2. Roughness profile for determination of Ra parameter.
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Figure 3. Electrical discharge machining (EDM) machine ONA Datic D-2030-S.

4.1. Analysis of Experimentation Using the FIS

This section is included in order to demonstrate that the FIS is able to model the behavior of the
response variables more efficiently than by using RSM. Data shown in Tables 1 and 2 are employed
in order to develop a FIS which can be then employed to obtain the technological tables following
the procedure previously mentioned in Section 3. As can be seen in Reference [1], a method for
obtaining the technological tables from a conventional design of experiments along with multiple
linear regression techniques was proposed, where technological tables were obtained for TiB2, which is
a sintered ceramic material and in Reference [5] technological tables were obtained for B4C, SiSiC and
WC-Co. However, as was previously mentioned, if the regression is not able to adequately predict
the behavior of a response variable, the technological tables obtained from these models will not be
accurate. In this section, the proposed methodology in this present study is applied for the case of the
EDM of Inconel® 600. However, it should be mentioned that this methodology could be applied for
other kinds of materials. Figure 1 shows the membership functions that were used to fuzzify the inputs.
As can be observed, triangular functions were selected for the inputs. On the other hand, the present
study assumes that it is possible to linearly vary the parameters in the EDM equipment in order to be
able to select the values obtained from the technological tables which are determined to be optimal
ones. If this is not possible, the FIS would have to be used on the possible values of these independent
variables. As Table 2 shows, the design of experiments does not continuously vary the values of the
independent variables; thus, it is possible that the optimal values are not selected if only these values are
considered. In addition, it may be that there are levels vacant when establishing the levels of roughness,
which is the dependent variable that was selected as output1 since, as explained above, it is one of the
most widely used parameters for characterizing surface quality and, therefore, its determination is of
great importance and interest in industry.

In this present study, the FIS was obtained using Matlab™2019b. Therefore, from Table 2, it is
possible to directly obtain the set of rules that make up the FIS. As previously mentioned, a Sugeno
FIS was employed by using the Fuzzy Logic Toolbox™ of MatlabTM2019b [40]. Mamdani systems are
more intuitive and the rules are easier to understand, making them more suitable for expert systems,
developed from human knowledge [40,42,43]. On the other hand, the defuzzification process for a
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Sugeno system is more computationally efficient compared to that of a Mamdani system [40,42,43].
Figure 4 shows the employed FIS which was developed from the rules shown in Table 3. This table
shows the rules implemented in the fuzzy system, in symbolic format, codified from the outputs.
For each output value, a FIS was developed. In this way, it is possible to model the behavior of Ra,
MRR, and EW for each of the manufacturing strategies.

Figure 4. Fuzzy inference system employed.

Table 3. Codification of the rules.

1 1 1, 1 (1) : 1 1 1 2, 17 (1) : 1 1 1 3, 33 (1) : 1 1 1 4, 49 (1) : 1
2 1 1, 2 (1) : 1 2 1 2, 18 (1) : 1 2 1 3, 34 (1) : 1 2 1 4, 50 (1) : 1
3 1 1, 3 (1) : 1 3 1 2, 19 (1) : 1 3 1 3, 35 (1) : 1 3 1 4, 51 (1) : 1
4 1 1, 4 (1) : 1 4 1 2, 20 (1) : 1 4 1 3, 36 (1) : 1 4 1 4, 52 (1) : 1
1 2 1, 5 (1) : 1 1 2 2, 21 (1) : 1 1 2 3, 37 (1) : 1 1 2 4, 53 (1) : 1
2 2 1, 6 (1) : 1 2 2 2, 22 (1) : 1 2 2 3, 38 (1) : 1 2 2 4, 54 (1) : 1
3 2 1, 7 (1) : 1 3 2 2, 23 (1) : 1 3 2 3, 39 (1) : 1 3 2 4, 55 (1) : 1
4 2 1, 8 (1) : 1 4 2 2, 24 (1) : 1 4 2 3, 40 (1) : 1 4 2 4, 56 (1) : 1
1 3 1, 9 (1) : 1 1 3 2, 25 (1) : 1 1 3 3, 41 (1) : 1 1 3 4, 57 (1) : 1
2 3 1, 10 (1) : 1 2 3 2, 26 (1) : 1 2 3 3, 42 (1) : 1 2 3 4, 58 (1) : 1
3 3 1, 11 (1) : 1 3 3 2, 27 (1) : 1 3 3 3, 43 (1) : 1 3 3 4, 59 (1) : 1
4 3 1, 12 (1) : 1 4 3 2, 28 (1) : 1 4 3 3, 44 (1) : 1 4 3 4, 60 (1) : 1
1 4 1, 13 (1) : 1 1 4 2, 29 (1) : 1 1 4 3, 45 (1) : 1 1 4 4, 61 (1) : 1
2 4 1, 14 (1) : 1 2 4 2, 30 (1) : 1 2 4 3, 46 (1) : 1 2 4 4, 62 (1) : 1
3 4 1, 15 (1) : 1 3 4 2, 31 (1) : 1 3 4 3, 47 (1) : 1 3 4 4, 63 (1) : 1
4 4 1, 16 (1) : 1 4 4 2, 32 (1) : 1 4 4 3, 48 (1) : 1 4 4 4, 64 (1) : 1

The codification shown in Table 3, which was obtained from Table 2, is “current intensity, pulse time,
and duty cycle”: “I(i) Ti( j) dc(k), output (1 = and, 2 = or) : weight”. In this case, weight = 1, so that
each rule has the same effect relative to others [40], where the numbering 1, 2, 3, and 4 is employed for
the inputs in order to select the levels of the variables. As can be observed in Table 1, these variables
have four levels. For example, the levels for the intensity are given by {2 A, 4 A, 6 A, and 8 A}.
Therefore, these values are coded as {1, 2, 3, and 4} in Table 3. The same procedure is applied for both
pulse time and duty cycle. In the case of the output, there are 64 values which are obtained from
the DOE with the different input conditions. That is, for the case of Ra, for instance, 1 1 1, 1 (1) : 1
corresponds to the following:

1. If (Intensity is 2 A)AND (Pulse Time is 25 μs)AND (duty cycle is 0.3 %)THEN (Ra is 1.39 μm).

That is,
1. If (I == I2) & (Ti == Ti25) & (dc == dc0.3)Then (Output = m f 1),

2. If (I == I4) & (Ti == Ti25) & (dc == dc0.3)Then (Output = m f 2),

63. If (I == I6) & (Ti == Ti100) & (dc == dc0.6)Then (Output = m f 63),

64. If (I == I8) & (Ti == Ti100) & (dc == dc0.6) Then (Output = m f 64),

where the input values “I(i), Ti( j), dc(k)” and the outputs m f1 . . .m fn are selected from Table 1.
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RSM model:

y ∼ (b0 + b1 × x1 + b2 × x2 + b3 × x3 + b4 × x1 × x2 + b5 × x1 × x3+b6 × x2 × x3 + b7 × x2
1 + b8 × x2

2 + b9 × x2
3). (6)

The FIS was generated directly from experimental data. Therefore, as shown later, the precision of
the obtained results is much higher than that obtained using RSM. Figures 5–8 are included to compare
the response surfaces obtained with the proposed methodology using the FIS and those obtained from
the RSM, as done in Reference [2], where the experimental data were fitted by using a second degree
polynomial, which is shown by Equation (6).

 

 

 

(a) (b) 

Figure 5. Response surfaces for EW in the case of positive polarity: (a) obtained from the regression [2];
(b) obtained with the proposed methodology using the FIS.

322



Mathematics 2020, 8, 922

(a) (b) (c) 

Figure 6. Difference between EW (FIS model) and EW (regression [2]) vs.: (a) Pulse Time and Intensity;
(b) Duty cycle and Intensity; (c) Duty cycle and Pulse Time.

(a) (b) (c) 

Figure 7. Difference between Ra (FIS model) and Ra (regression [2]) vs.: (a) Pulse Time and Intensity;
(b) Duty cycle and Intensity; (c) Duty cycle and Pulse Time.

(a) (b) (c) 

Figure 8. Difference between MRR (FIS model) and MRR (regression [2]) vs.: (a) Pulse Time and
Intensity; (b) Duty cycle and Intensity; (c) Duty cycle and Pulse Time.

As can be observed in Figures 7 and 8, the results obtained with the FIS are close to those obtained
with the regression as a consequence of Ra and MRR being fitted adequately by a quadratic polynomial,
as can be seen from the coefficients of determination of the fit and from the RMSE and mean absolute
error (MAE) statistics, which are shown in Equation (7) and in Table 4. However, as Table 4 shows,
this is not the case for the electrode wear (EW), which is shown in Figure 5; hence, it is possible to
conclude that the FIS is more accurate than RSM. Therefore, it is able to predict more adequately the
values of the response, within the range of study, than the RSM.

Figures 6–8 show a comparison between the EW, Ra, and MRR results obtained with the RSM and
with the FIS. As can be observed in Figures 7 and 8, differences are not significant as a consequence of
the fact that experimental Ra and MRR results are well fitted by a second-order polynomial, such as that
shown in Equation (6). However, this is not the case for electrode wear, as shown in Figures 5 and 6.
As Table 4 shows, the polynomial model is not accurate and, in this case, the differences between the
FIS and the regression model are significant. Therefore, data provided by the FIS are more accurate
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than those obtained by using the RSM, and the technological tables are more accurate if the FIS is used
instead of the regression model.

Table 4. Accuracy for predicted values of Ra, MRR, and EW using the regression model [2] and the FIS.

Positive Polarity (+) Negative Polarity (−)

Ra Ra Ra Ra
(using the FIS) (Regression) (using the FIS) (Regression)

RMSE = 0 RMSE = 0.3286 RMSE = 0 RMSE = 0.4461
MAE = 0 MAE = 0.2693 MAE = 0 MAE = 0.3705

R2 = 1 R2 = 0.9639 R2 = 1 R2 = 0.9606

MRR MRR MRR MRR
(using the FIS) (Regression) (using the FIS) (Regression)

RMSE = 0 RMSE = 0.7184 RMSE = 0 RMSE = 1.4713
MAE = 0 MAE = 0.4879 MAE = 0 MAE = 1.0625

R2 = 1 R2 = 0.9778 R2 = 1 R2 = 0.9712

EW EW EW EW
(using the FIS) (Regression) (using the FIS) (Regression)

RMSE = 0 RMSE = 5.5290 RMSE = 0 RMSE = 49.7581
MAE = 0 MAE = 3.5873 MAE = 0 MAE = 33.3053

R2 = 1 R2 = 0.6958 R2 = 1 R2 = 0.6783

Figure 9 shows the response surfaces for both Ra and MRR obtained with the proposed
methodology using the FIS for the case of positive polarity. Equation (7) shows the statistical
parameters that were used to determine the precision of the models used for modeling the dependent
variables, that is, Ra, MRR, and EW. As can be observed in Table 4, the FIS accuracy is higher than that
provided by the RSM. Data shown in Table 4 were obtained by using Matlab™2019b.

RMSE =

√√√
1
n

n∑
j=1

(
yj − ŷ j

)2
and MAE =

1
n

n∑
j=1

∣∣∣yj − ŷ j
∣∣∣. (7)

As can be observed in Table 4, the fuzzy inference system fits all the data perfectly, which is logical
since the FIS was built according to the procedure shown in the previous section. However, this is not
the case with the RSM which, despite using all the DOE points for the determination of the models,
is not able to adequately adjust the electrode wear surface response. Therefore, the values predicted by
the regression have lower accuracy than those predicted by the FIS. In this case, the polynomial models
for the case of both roughness and material removal rate are acceptable. Nevertheless, the precision is
lower than that of the FIS. In any case, in other types of experimentation in which there is less precision
in the least squares adjustments, the employment of the FIS becomes more important since it adjusts to
all the points of the model.

In Torres et al. [2], the model with the highest value of adjusted R2 was selected. However, in this
present study, the model with all the regression coefficients is used because these models have higher R2

values than those shown in Reference [2] and, with the aim of considering all the effects in the models
such as the models shown in Reference [2], some of the independent variables could be eliminated.

Figure 10b shows that it is possible to analyze the experimental results in a similar way to that
done with regression models. It is shown that the most important effects are the current intensity
and the pulse time, followed to a lesser extent by the duty cycle. In addition, by using the FIS,
the values obtained are more precise, as can be seen in Table 4. As can be observed, the differences
between the values predicted by the regression model and those predicted by the FIS are significant.
Specifically, in the case of positive polarity, the regression model does not adequately predict the
behavior of electrode wear, as can be seen in Table 4. Therefore, the results provided by the regression
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model when predicting electrode wear are not accurate. In this case, the FIS is shown to have significant
advantages over the regression model. Specifically, it is shown that, with increasing intensity, there is
less wear on the electrode, which is logical because, as seen in Figure 11a,b, if the intensity decreases,
so does the removal of material, while the surface roughness assumes smaller values, with the
wear of the electrode in these cases being greater, which is in good agreement with experimental
values. Finally, Figure 12 shows the interaction effects plot. As can be observed, the most significant
interactions are those related to the current intensity and the pulse time. On the other hand, it is
observed that the differences between both the FIS and the regression are significant, as a consequence
of the fact that the regression model is not able to adequately predict the behavior of the electrode
wear. In addition, Table 4 shows that the FIS is able to predict the behavior of the response variables
more adequately than the regression, which is logical as a consequence of the methodology employed
for defining the FIS. Hence, the fit is perfect in the case of the FIS, and this is not so in the case of
the regression model. Therefore, the technological tables with values provided by the FIS are more
accurate than those provided by conventional methods.

 

 

 

(a) (b) 

Figure 9. Response surfaces obtained with the FIS for the case of positive polarity: (a) Ra; (b) MRR.
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(a) (b) 

Figure 10. Main effects plot for EW in the case of positive polarity: (a) obtained from the regression [2];
(b) obtained by using the FIS.

  

(a) (b) 

Figure 11. Main effects plot for (a) Ra and (b) MRR in the case of positive polarity, obtained using the FIS.

  
(a) (b) 

Figure 12. Interaction effects plot for EW in the case of positive polarity: (a) obtained from the
regression [2]; (b) obtained with the proposed methodology using the FIS.
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Figure 11 shows that the current intensity is the variable that has the greatest impact on both Ra
and MRR, which is logical since, within the values considered in the present study, a higher intensity
reflects higher material removal and worse surface roughness. On the other hand, it can be observed
in Figure 11b that the pulse time affects the material removal rate to only a slight extent and that,
approximately for values of the pulse time within the range 50 μs < Ti (μs) < 75 μs, the material
removal rate stands at its maximum value, being constant when the current intensity and the duty
cycle are at their average values.

Figure 12 b(3x3) shows that it is possible to analyze the interaction effects between factors by using
the FIS in a similar way to conventional analysis of factorial 2k experiments along with regression
models. These factors are represented in an array (3 f iles× 3 columns). The results were generated by
analyzing the variation of one factor between its maximum and minimum levels, when all the other
factors were held at their average level. For example, in Figure 12 b(1,2), it is shown that, when the
current intensity is held at its lowest level, the electrode wear values are lower with increasing pulse
time, when the duty cycle is at its average level of 0.45%. Moreover, if the current intensity is held at its
highest level, the electrode wear values are lower than those obtained when the current intensity is held
at its lower level. On the other hand, in the case of duty cycle, which is represented in Figure 12 b(1,3),
it is shown that the electrode wear remains approximately constant versus the duty cycle when the
pulse time is held at a constant value of 62.5 μs, showing that the electrode wear values are independent
of either higher or lower values of intensity. A similar analysis could be done with all the interaction
effects. Figure 13 shows the interaction plots effect, using the FIS, for the three independent variables
under study in the case of positive polarity when Ra and MRR are considered as response variables.

 
(a) (b) 

Figure 13. Interaction effects plot for (a) Ra and (b) MRR in the case of positive polarity, obtained using
the FIS.

Figures 14 and 15 show the main effects plot and the interaction effects plot for the case of negative
polarity, using the FIS. As can be observed, a similar behavior to that of positive polarity is obtained.
The same comments regarding the precision of the models are applicable in the negative polarity case.

As demonstrated in this section, the response surfaces generated with the FIS have greater
precision than those obtained with the RSM; thus, the technological tables are determined according to
the methodology described in the previous Section. It should be mentioned that it was considered
necessary to develop the previous analysis in order to show the higher accuracy of the FIS model to
predict the surface roughness, the material removal rate, and the wear of the electrode.
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(a) 

  

(b) (c) 

Figure 14. Main effects plot for (a) EW, (b) Ra, and (c) MRR in the case of negative polarity, obtained using
the FIS.

 
(a) 

  
(b) (c) 

Figure 15. Interaction effects plot for (a) EW, (b) Ra, and (c) MRR in the case of negative polarity,
obtained using the FIS.
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4.2. Development of the Technological Tables

In this section, the technological tables for the Inconel® 600 alloy are obtained from the methodology
previously described in Section 3. As can be observed in Tables 5–8, Ra is classified with a pitch of
0.20 μm. Although it would be possible to generate the technological tables only using the experimental
data, it could be that there exist roughness classes in which there are no input variables to obtain
them, since the dependent variables are obtained afterward and, therefore, their value is not known in
advance. Moreover, it could happen that MRR and EW values were not optimized as a consequence of
the fact that the inputs are not linearly varied in the DOE.

Table 5 shows the technological table for the case of positive polarity that was obtained by
selecting a specific class of roughness values with the maximum values of the material removal rate.
The electrode wear is given by the FIS after selecting the input variables that lead to a specific roughness
value, and Table 6 shows the technological table for the case of minimum electrode wear. In this case,
the material removal rate is obtained from the FIS once the input variables are defined.

In previous research studies, in which the author participated, technological tables were obtained
using regression models [1,5]. However, as shown in the previous section, the FIS is capable
of providing more precise values than those obtained by means of a conventional regression.
Therefore, the methodology described in Section 3 was used in this present study to generate the
technological tables. It should be mentioned that a pitch of 0.20 μm was selected for classifying
Ra. However, this value could be whatever without loss of generality. From the values shown
in Tables 1 and 2, an interval that encompasses both the minimum and the maximum values was
selected. In this interval, the roughness classes are established from the selected pitch and, thus,
the technological tables can then be obtained.

Figures 16 and 17 show the values obtained from the technological table with the fuzzy inference
system for the strategy of maximum material removal rate using positive and negative polarities,
respectively. These figures were obtained from Tables 5 and 7, respectively.

Figure 16. Values obtained from the technological table with the fuzzy inference system for the strategy
of maximum removal rate using positive polarity.

Figures 18 and 19 show the values obtained from the technological table with the fuzzy inference
system for the strategy of minimum electrode wear using positive and negative polarities, respectively.
These figures were obtained from Tables 6 and 8, respectively.

329



Mathematics 2020, 8, 922

T
a
b

le
5
.

St
ra

te
gy

of
m

ax
im

um
m

at
er

ia
lr

em
ov

al
ra

te
.T

ec
hn

ol
og

ic
al

ta
bl

e
ob

ta
in

ed
fr

om
th

e
FI

S,
fo

r
th

e
ca

se
of

m
ax

im
um

re
m

ov
al

ra
te

st
ra

te
gy

(p
os

it
iv

e
po

la
ri

ty
).

C
la

ss
o

f
R

o
u

g
h

n
e
ss

L
o

w
e
r

V
a
lu

e
(μ

m
)

R
a

V
a
lu

e
(μ

m
)

U
p

p
e
r

V
a
lu

e
(μ

m
)

In
te

n
si

ty
(A

)
P

u
ls

e
T

im
e

(μ
s)

D
u

ty
C

y
cl

e
(%

)
M

R
R

M
a
x

(m
m

3

m
in

)
E

W
(%

)

R
a1

1.
00

1.
19

1.
20

2.
00

25
.0

0
0.

51
0.

27
42

.8
0

R
a2

1.
20

1.
40

1.
40

2.
12

25
.0

0
0.

57
0.

56
40

.9
7

R
a3

1.
40

1.
59

1.
60

2.
37

25
.0

0
0.

54
1.

08
37

.7
1

R
a4

1.
60

1.
79

1.
80

2.
61

25
.0

0
0.

51
1.

52
34

.4
3

R
a5

1.
80

2.
00

2.
00

2.
73

25
.0

0
0.

59
2.

05
32

.6
2

R
a6

2.
00

2.
20

2.
20

2.
98

25
.0

0
0.

56
2.

50
29

.3
5

R
a7

2.
20

2.
39

2.
40

3.
10

26
.5

3
0.

60
2.

98
26

.8
4

R
a8

2.
40

2.
57

2.
60

3.
35

25
.0

0
0.

60
3.

56
24

.3
4

R
a9

2.
60

2.
79

2.
80

3.
59

25
.0

0
0.

60
4.

15
21

.0
3

R
a1

0
2.

80
2.

97
3.

00
3.

71
26

.5
3

0.
60

4.
48

18
.9

6
R

a1
1

3.
00

3.
20

3.
20

4.
08

25
.0

0
0.

60
5.

30
15

.3
9

R
a1

2
3.

20
3.

40
3.

40
4.

69
25

.0
0

0.
58

6.
31

14
.2

6
R

a1
3

3.
40

3.
57

3.
60

5.
18

25
.0

0
0.

60
7.

46
13

.7
0

R
a1

4
3.

60
3.

78
3.

80
5.

80
25

.0
0

0.
60

8.
65

12
.7

5
R

a1
5

3.
80

3.
99

4.
00

6.
78

25
.0

0
0.

60
10

.6
5

10
.5

0
R

a1
6

4.
00

4.
19

4.
20

7.
88

25
.0

0
0.

60
12

.9
1

7.
75

R
a1

7
4.

20
4.

36
4.

40
8.

00
28

.0
6

0.
60

13
.4

6
7.

15
R

a1
8

4.
40

4.
58

4.
60

8.
00

32
.6

5
0.

60
13

.9
2

6.
71

R
a1

9
4.

60
4.

80
4.

80
8.

00
37

.2
4

0.
60

14
.3

7
6.

26
R

a2
0

4.
80

4.
94

5.
00

8.
00

40
.3

1
0.

60
14

.6
7

5.
97

R
a2

1
5.

00
5.

17
5.

20
8.

00
44

.9
0

0.
60

15
.1

3
5.

53
R

a2
2

5.
20

5.
39

5.
40

8.
00

49
.4

9
0.

60
15

.5
8

5.
09

R
a2

3
5.

40
5.

59
5.

60
8.

00
55

.6
1

0.
60

16
.4

2
4.

89
R

a2
4

5.
60

5.
79

5.
80

8.
00

61
.7

3
0.

60
17

.2
8

4.
73

R
a2

5
5.

80
6.

00
6.

00
8.

00
67

.8
6

0.
60

18
.1

3
4.

58
R

a2
6

6.
00

6.
20

6.
20

8.
00

73
.9

8
0.

60
18

.9
9

4.
42

R
a2

7
6.

20
6.

25
6.

40
8.

00
75

.5
1

0.
60

19
.0

6
4.

31
R

a2
8

6.
40

6.
40

6.
60

8.
00

80
.1

0
0.

60
18

.3
7

3.
57

R
a2

9
6.

60
6.

61
6.

80
8.

00
86

.2
2

0.
60

17
.4

5
2.

59
R

a3
0

6.
80

6.
82

7.
00

8.
00

92
.3

5
0.

60
16

.5
4

1.
60

R
a3

1
7.

00
7.

03
7.

20
8.

00
98

.4
7

0.
60

15
.6

2
0.

62
R

a3
2

7.
20

7.
22

7.
40

8.
00

10
0.

00
0.

33
10

.8
8

1.
06

R
a3

3
7.

40
7.

41
7.

60
8.

00
10

0.
00

0.
30

10
.0

4
0.

81

330



Mathematics 2020, 8, 922

T
a
b

le
6
.

St
ra

te
gy

of
m

in
im

um
el

ec
tr

od
e

w
ea

r.
Te

ch
no

lo
gi

ca
lt

ab
le

ob
ta

in
ed

fr
om

th
e

FI
S,

fo
r

th
e

ca
se

of
m

in
im

um
el

ec
tr

od
e

w
ea

r
st

ra
te

gy
(p

os
it

iv
e

po
la

ri
ty

).

C
la

ss
o

f
R

o
u

g
h

n
e

ss
L

o
w

e
r

V
a

lu
e

(μ
m

)
R

a
V

a
lu

e
(μ

m
)

U
p

p
e

r
V

a
lu

e
(μ

m
)

In
te

n
si

ty
(A

)
P

u
ls

e
T

im
e

(μ
s)

D
u

ty
C

y
cl

e
(%

)
E

W
M

in
(%

)
M

R
R

(m
m

3

m
in

)

R
a1

1.
00

1.
20

1.
20

2.
00

26
.5

3
0.

50
40

.9
3

0.
26

R
a2

1.
20

1.
40

1.
40

2.
00

52
.5

5
0.

60
16

.5
7

0.
18

R
a3

1.
40

1.
59

1.
60

2.
00

72
.4

5
0.

60
6.

48
0.

14
R

a4
1.

60
1.

80
1.

80
2.

00
90

.8
2

0.
60

3.
20

0.
11

R
a5

1.
80

1.
99

2.
00

2.
00

75
.5

1
0.

31
1.

03
0.

09
R

a6
2.

00
2.

02
2.

20
2.

00
75

.5
1

0.
30

0.
49

0.
08

R
a7

2.
20

2.
21

2.
40

2.
12

75
.5

1
0.

30
0.

73
0.

28
R

a8
2.

40
2.

43
2.

60
2.

24
77

.0
4

0.
30

1.
09

0.
48

R
a9

2.
60

2.
61

2.
80

2.
37

77
.0

4
0.

30
1.

31
0.

68
R

a1
0

2.
80

2.
82

3.
00

2.
49

78
.5

7
0.

30
1.

63
0.

87
R

a1
1

3.
00

3.
12

3.
20

2.
73

75
.5

1
0.

30
1.

89
1.

28
R

a1
2

3.
20

3.
21

3.
40

2.
73

80
.1

0
0.

30
2.

12
1.

25
R

a1
3

3.
40

3.
49

3.
60

2.
98

75
.5

1
0.

30
2.

36
1.

68
R

a1
4

3.
60

3.
67

3.
80

3.
10

75
.5

1
0.

30
2.

59
1.

88
R

a1
5

3.
80

3.
85

4.
00

3.
22

75
.5

1
0.

30
2.

82
2.

08
R

a1
6

4.
00

4.
01

4.
20

3.
22

89
.2

9
0.

30
3.

00
1.

90
R

a1
7

4.
20

4.
21

4.
40

3.
35

93
.8

8
0.

30
3.

12
2.

02
R

a1
8

4.
40

4.
41

4.
60

3.
47

10
0.

00
0.

30
3.

16
2.

10
R

a1
9

4.
60

4.
79

4.
80

3.
84

10
0.

00
0.

40
3.

02
3.

11
R

a2
0

4.
80

5.
00

5.
00

3.
84

10
0.

00
0.

49
1.

86
3.

61
R

a2
1

5.
00

5.
19

5.
20

4.
08

10
0.

00
0.

48
0.

76
4.

02
R

a2
2

5.
20

5.
36

5.
40

4.
45

10
0.

00
0.

50
0.

47
4.

72
R

a2
3

5.
40

5.
55

5.
60

4.
94

10
0.

00
0.

50
0.

43
5.

59
R

a2
4

5.
60

5.
79

5.
80

5.
55

10
0.

00
0.

50
0.

37
6.

63
R

a2
5

5.
80

5.
94

6.
00

5.
92

10
0.

00
0.

50
0.

33
7.

26
R

a2
6

6.
00

6.
00

6.
20

6.
04

10
0.

00
0.

50
0.

37
7.

49
R

a2
7

6.
20

6.
21

6.
40

6.
04

10
0.

00
0.

47
0.

62
7.

34
R

a2
8

6.
40

6.
58

6.
60

6.
65

10
0.

00
0.

30
0.

83
7.

84
R

a2
9

6.
60

6.
79

6.
80

7.
27

10
0.

00
0.

59
0.

76
12

.7
4

R
a3

0
6.

80
6.

99
7.

00
7.

76
10

0.
00

0.
60

0.
48

14
.5

4
R

a3
1

7.
00

7.
08

7.
20

8.
00

10
0.

00
0.

60
0.

37
15

.3
9

R
a3

2
7.

20
7.

33
7.

40
7.

88
10

0.
00

0.
30

0.
81

9.
84

R
a3

3
7.

40
7.

41
7.

60
8.

00
10

0.
00

0.
30

0.
81

10
.0

4

331



Mathematics 2020, 8, 922

T
a
b

le
7
.

St
ra

te
gy

of
m

ax
im

um
m

at
er

ia
lr

em
ov

al
ra

te
.T

ec
hn

ol
og

ic
al

ta
bl

e
ob

ta
in

ed
fr

om
th

e
FI

S,
fo

r
th

e
ca

se
of

m
ax

im
um

re
m

ov
al

ra
te

st
ra

te
gy

(n
eg

at
iv

e
po

la
ri

ty
).

C
la

ss
o

f
R

o
u

g
h

n
e

ss
L

o
w

e
r

V
a

lu
e

(μ
m

)
R

a
V

a
lu

e
(μ

m
)

U
p

p
e

r
V

a
lu

e
(μ

m
)

In
te

n
si

ty
(A

)
P

u
ls

e
T

im
e

(μ
s)

D
u

ty
C

y
cl

e
(%

)
M

R
R

M
a

x
(m

m
3

m
in

)
E

W
(%

)

R
a2

1.
20

1.
39

1.
40

2.
00

44
.9

0
0.

50
0.

51
14

5.
31

R
a3

1.
40

1.
60

1.
60

2.
24

25
.0

0
0.

60
1.

76
21

9.
37

R
a4

1.
60

1.
80

1.
80

2.
37

29
.5

9
0.

60
2.

48
21

2.
79

R
a5

1.
80

1.
99

2.
00

2.
49

31
.1

2
0.

60
3.

21
20

1.
03

R
a6

2.
00

2.
18

2.
20

2.
61

32
.6

5
0.

60
3.

94
18

8.
91

R
a7

2.
20

2.
37

2.
40

2.
86

25
.0

0
0.

60
5.

26
15

3.
08

R
a8

2.
40

2.
60

2.
60

2.
98

28
.0

6
0.

60
6.

02
14

2.
45

R
a9

2.
60

2.
76

2.
80

3.
10

28
.0

6
0.

60
6.

73
12

8.
83

R
a1

0
2.

80
2.

98
3.

00
3.

35
25

.0
0

0.
60

8.
07

10
0.

04
R

a1
1

3.
00

3.
19

3.
20

3.
47

26
.5

3
0.

60
8.

81
87

.3
7.

R
a1

2
3.

20
3.

35
3.

40
.

3.
59

26
.5

3.
0.

60
.

9.
51

73
.9

3
R

a1
3

3.
40

3.
60

3.
60

3.
84

25
.0

0
0.

60
10

.8
7

47
.0

1
R

a1
4

3.
60

3.
75

3.
80

3.
96

25
.0

0
0.

60
11

.5
7

33
.7

5
R

a1
5

3.
80

3.
98

4.
00

4.
69

25
.0

0
0.

60
14

.2
0

27
.8

0
R

a1
6

4.
00

4.
18

4.
20

5.
43

25
.0

0
0.

60
16

.7
3

26
.1

8
R

a1
7

4.
20

4.
35

4.
40

6.
04

25
.0

0
0.

60
18

.9
4

24
.8

6
R

a1
8

4.
40

4.
57

4.
60

6.
53

25
.0

0
0.

60
21

.7
8

24
.1

3
R

a1
9

4.
60

4.
79

4.
80

7.
02

25
.0

0
0.

60
24

.6
3

23
.3

9
R

a2
0

4.
80

4.
96

5.
00

7.
39

25
.0

0
0.

60
26

.7
6

22
.8

5
R

a2
1

5.
00

5.
18

5.
20

7.
88

25
.0

0
0.

60
29

.6
0

22
.1

1
R

a2
2

5.
20

5.
39

5.
40

8.
00

28
.0

6
0.

60
30

.3
3

21
.6

2
R

a2
3

5.
40

5.
55

5.
60

8.
00

31
.1

2
0.

60
30

.3
5

21
.3

1
R

a2
4

5.
60

5.
78

5.
80

8.
00

35
.7

1
0.

60
30

.3
8

20
.8

4
R

a2
5

5.
80

5.
93

6.
00

8.
00

38
.7

8
0.

60
30

.4
0

20
.5

2
R

a2
6

6.
00

6.
17

6.
20

8.
00

43
.3

7
0.

60
30

.4
3

20
.0

6
R

a2
7

6.
20

6.
40

6.
40

8.
00

47
.9

6
0.

60
30

.4
6

19
.5

9
R

a2
8

6.
40

6.
47

6.
60

8.
00

49
.4

9
0.

60
30

.4
7

19
.4

3
R

a2
9

6.
60

6.
61

6.
80

8.
00

55
.6

1
0.

60
29

.2
3

19
.4

0
R

a3
0

6.
80

6.
80

7.
00

8.
00

63
.2

7
0.

59
27

.1
9

19
.4

1
R

a3
1

7.
00

7.
19

7.
20

7.
76

83
.1

6
0.

60
26

.1
9

25
.2

0
R

a3
2

7.
20

7.
39

7.
40

7.
88

87
.7

6
0.

60
27

.4
4

23
.3

6
R

a3
3

7.
40

7.
57

7.
60

8.
00

92
.3

5
0.

60
28

.7
8

18
.1

0
R

a3
4

7.
60

7.
78

7.
80

8.
00

98
.4

7
0.

60
30

.1
5

17
.6

1
R

a3
5

7.
80

7.
83

8.
00

8.
00

10
0.

00
0.

60
30

.4
9

17
.4

9
R

a3
6

8.
00

8.
01

8.
20

8.
00

10
0.

00
0.

56
28

.0
7

16
.9

6
R

a3
7

8.
20

8.
23

8.
40

.
8.

00
10

0.
00

0.
52

25
.2

4
16

.3
4

332



Mathematics 2020, 8, 922

T
a
b

le
8
.

St
ra

te
gy

of
m

in
im

um
el

ec
tr

od
e

w
ea

r.
Te

ch
no

lo
gi

ca
lt

ab
le

ob
ta

in
ed

fr
om

th
e

FI
S,

fo
r

th
e

ca
se

of
m

in
im

um
el

ec
tr

od
e

w
ea

r
st

ra
te

gy
(n

eg
at

iv
e

po
la

ri
ty

).

C
la

ss
o

f
R

o
u

g
h

n
e

ss
L

o
w

e
r

V
a

lu
e

(μ
m

)
R

a
V

a
lu

e
(μ

m
)

U
p

p
e

r
V

a
lu

e
(μ

m
)

In
te

n
si

ty
(A

)
P

u
ls

e
T

im
e

(μ
s)

D
u

ty
C

y
cl

e
(%

)
E

W
M

in
(%

)
M

R
R

(m
m

3

m
in

)

R
a2

1.
20

1.
39

1.
40

2.
00

41
.8

4
0.

30
13

8.
16

0.
37

R
a3

1.
40

1.
57

1.
60

2.
00

25
.0

0
0.

30
96

.6
7

0.
50

R
a4

1.
60

1.
69

1.
80

2.
12

25
.0

0
0.

30
92

.4
8

0.
76

R
a5

1.
80

1.
94

2.
00

2.
37

25
.0

0
0.

30
84

.1
0

1.
29

R
a6

2.
00

2.
19

2.
20

2.
61

25
.0

0
0.

30
75

.7
2

1.
81

R
a7

2.
20

2.
31

2.
40

2.
73

25
.0

0
0.

30
71

.5
3

2.
08

R
a8

2.
40

2.
56

2.
60

2.
98

25
.0

0
0.

30
63

.1
5

2.
60

R
a9

2.
60

2.
68

2.
80

3.
10

25
.0

0
0.

30
58

.9
6

2.
86

R
a1

0
2.

80
2.

93
3.

00
3.

35
25

.0
0

0.
30

50
.5

8
3.

39
R

a1
1

3.
00

3.
18

3.
20

3.
59

25
.0

0
0.

30
42

.2
0

3.
92

R
a1

2
3.

20
3.

30
3.

40
3.

71
25

.0
0

0.
30

38
.0

1
4.

18
R

a1
3

3.
40

3.
55

3.
60

3.
96

25
.0

0
0.

30
29

.6
3

4.
71

R
a1

4
3.

60
3.

79
3.

80
4.

57
25

.0
0

0.
30

27
.5

6
5.

31
R

a1
5

3.
80

3.
96

4.
00

5.
06

25
.0

0
0.

30
26

.9
9

5.
75

R
a1

6
4.

00
4.

20
4.

20
5.

55
25

.0
0

0.
58

26
.0

5
16

.1
2

R
a1

7
4.

20
4.

40
4.

40
6.

16
25

.0
0

0.
59

24
.7

7
18

.8
5

R
a1

8
4.

40
4.

59
4.

60
7.

27
25

.0
0

0.
30

22
.8

6
9.

02
R

a1
9

4.
60

4.
76

3.
40

4.
80

8.
00

0.
30

21
.0

9
10

.4
2

R
a2

0
4.

80
4.

88
5.

00
8.

00
26

.5
3

0.
30

20
.9

7
10

.6
6

R
a2

1
5.

00
5.

13
5.

20
8.

00
29

.5
9

0.
30

20
.7

2
11

.1
4

R
a2

2
5.

20
5.

38
5.

40
8.

00
32

.6
5

0.
30

20
.4

7
11

.6
2

R
a2

3
5.

40
5.

54
5.

60
4.

08
75

.5
1

0.
30

20
.0

2
7.

91
R

a2
4

5.
60

5.
64

5.
80

4.
08

78
.5

7
0.

30
20

.0
5

8.
20

R
a2

5
5.

80
5.

99
6.

00
8.

00
40

.3
1

0.
30

19
.8

4
12

.8
2

R
a2

6
6.

00
6.

11
6.

20
8.

00
41

.8
4

0.
30

19
.7

2
13

.0
6

R
a2

7
6.

20
6.

36
6.

40
8.

00
44

.9
0

0.
30

19
.4

7
13

.5
4

R
a2

8
6.

40
6.

48
6.

60
8.

00
46

.4
3

0.
30

19
.3

4
13

.7
8

R
a2

9
6.

60
6.

80
6.

80
7.

02
75

.5
1

0.
40

18
.8

2
17

.6
1

R
a3

0
6.

80
7.

00
7.

00
7.

51
73

.9
8

0.
40

18
.3

7
19

.4
9

R
a3

1
7.

00
7.

16
7.

20
7.

76
75

.5
1

0.
40

17
.9

3
20

.4
7

R
a3

2
7.

20
7.

36
7.

40
8.

00
78

.5
7

0.
40

17
.5

3
21

.5
9

R
a3

3
7.

40
7.

59
7.

60
8.

00
87

.7
6

0.
40

17
.2

3
22

.0
7

R
a3

4
7.

60
7.

79
7.

80
8.

00
95

.4
1

0.
40

16
.9

8
22

.4
7

R
a3

5
7.

80
8.

00
8.

00
8.

00
10

0.
00

0.
42

16
.6

5
23

.0
2

R
a3

6
8.

00
8.

18
8.

20
8.

00
10

0.
00

0.
47

16
.3

1
23

.5
0

R
a3

7
8.

20
8.

32
8.

40
8.

00
10

0.
00

0.
50

16
.0

7
24

.0
3

333



Mathematics 2020, 8, 922

Figure 17. Values obtained from the technological table with the fuzzy inference system for the strategy
of maximum removal rate using negative polarity.

Figure 18. Values obtained from the technological table with the fuzzy inference system for the strategy
of minimum electrode wear using positive polarity.

Figure 19. Values obtained from the technological table with the fuzzy inference system for the strategy
of minimum electrode wear using negative polarity.
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5. Conclusions

In this present study, a methodology that combines an experimental design with fuzzy modeling
was used in order to obtain the technological tables that make it possible to select in advance the most
suitable machining conditions in order to either maximize or minimize a certain objective function
(in this case the material removal rate and wear of the electrode) in a process of EDM. In addition,
a case study was analyzed for an Inconel® alloy.

Knowledge of the technological tables is very important since it makes it possible to select a certain
machining strategy, so that it is possible to obtain certain values of roughness along with maximum
material removal or minimum electrode wear. It was shown that the fuzzy model is capable of
generating the results in a more efficient way than that obtained by conventional regression techniques.
Moreover, the fuzzy model has the advantage that it is easy to incorporate new rules into the model,
in the event that there are additional experimental tests.

In this present study, it was shown that the FIS allows the behavior of the technological variables
used in the EDM processes to be adequately modeled and that the statistical values provided by this
methodology, which were quantified by RMSE, MAE, and R-squared, are much better than those
obtained by conventional methods. Therefore, the use of a FIS to obtain the EDM technology tables
may be an interesting alternative, due to the fact that higher precision can be obtained compared to
that obtained by traditional RSM-based methodologies.

It is felt that the present methodology for obtaining the technological tables may be of interest
in the event that the input variables to the EDM equipment can be varied continuously and, thus,
it could be possible to select the most appropriate operating conditions in advance. Likewise, it is
felt that the proposed methodology could be generally applied for any other material and for other
manufacturing processes.

Finally, it should be mentioned that it would have been possible to perform a reverse approach,
that is, to train the model from the experimental data in order to obtain an adaptive neuro-fuzzy
inference system; then, the technological tables could have been obtained. This will be done in a
future study.
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Appendix A

Table A1. Mean values of Ra, MRR, and EW, obtained with positive polarity. These values were taken
from Reference [2] Torres Salcedo, A.; Puertas Arbizu I.; Luis Pérez, C. J. Analytical Modeling of Energy
Density and Optimization of the EDM Machining Parameters of Inconel 600. Metals 2017, 7, 166.
(Open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license: http://creativecommons.org/licenses/by/4.0/).

Positive Polarity (+)
E Ra (μm) MRR (mm3/min) EW (%) E Ra (μm) MRR (mm3/min) EW (%)

1 1.39 0.1778 35.81 33 1.17 0.2650 42.84
2 3.34 3.0897 10.66 34 3.15 4.2338 15.45
3 3.66 5.0825 11.69 35 3.78 7.7099 9.61
4 4.22 7.4984 11.68 36 4.18 11.5649 9.31
5 1.57 0.1331 20.74 37 1.46 0.1792 14.94
6 4.20 3.7383 9.14 38 4.52 4.8556 10.68
7 4.70 6.3535 8.58 39 5.12 9.1444 7.93
8 4.71 6.6319 11.26 40 5.62 14.5645 6.77
9 2.01 0.0846 0.44 41 1.47 0.1332 41.45
10 5.01 3.3606 4.32 42 4.83 4.6985 8.08
11 5.84 6.4197 6.76 43 5.31 8.5279 6.41
12 6.57 9.8827 3.92 44 6.35 13.6608 3.21
13 2.73 0.0884 3.02 45 3.11 0.0852 16.31
14 5.01 2.8219 3.21 46 5.19 3.9846 0.43
15 6.18 6.7786 0.84 47 5.96 7.3741 0.30
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Table A1. Cont.

Positive Polarity (+)
E Ra (μm) MRR (mm3/min) EW (%) E Ra (μm) MRR (mm3/min) EW (%)

16 7.41 10.0405 0.81 48 6.80 13.8606 2.32
17 1.34 0.2297 37.33 49 1.33 0.2907 42.54
18 3.12 3.6482 16.26 50 3.17 5.1434 15.52
19 3.72 6.3632 11.44 51 3.85 9.0528 12.44
20 4.24 9.9951 9.80 52 4.21 13.1599 7.44
21 1.88 0.1520 18.76 53 1.37 0.1808 17.86
22 4.28 4.0843 8.58 54 4.36 5.7782 11.63
23 5.37 7.2087 8.92 55 4.94 10.4558 8.42
24 5.57 11.9972 5.72 56 5.41 15.6323 5.04
25 1.75 0.1169 4.80 57 1.62 0.1328 5.19
26 4.79 4.2463 6.15 58 4.69 5.3637 5.90
27 5.81 7.6840 6.31 59 5.21 9.8216 3.60
28 6.56 12.2552 6.47 60 6.23 19.1347 4.39
29 2.91 0.1056 9.32 61 1.90 0.1031 2.05
30 4.95 3.3520 2.52 62 5.10 3.9857 5.15
31 6.65 6.9094 1.13 63 6.33 8.4132 1.30
32 6.78 12.7827 1.63 64 7.08 15.3894 0.37

Table A2. Mean values of Ra, MRR, and EW, obtained with negative polarity. These values were
taken from Reference [2] Torres Salcedo, A.; Puertas Arbizu I.; Luis Pérez, C. J. Analytical Modeling of
Energy Density and Optimization of the EDM Machining Parameters of Inconel 600. Metals 2017, 7, 166.
(Open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license: http://creativecommons.org/licenses/by/4.0/).

Negative Polarity (−)
E Ra (μm) MRR (mm3/min) EW (%) E Ra (μm) MRR (mm3/min) EW (%)

1 1.57 0.4961 96.67 33 1.70 0.6719 107.46
2 3.59 4.7944 28.23 34 3.66 7.9205 29.72
3 4.29 6.6012 25.90 35 4.26 12.5716 25.79
4 4.76 10.4203 21.09 36 5.23 18.9419 21.67
5 1.31 0.3048 158.27 37 1.31 0.4777 154.88
6 5.43 7.4086 25.33 38 4.56 9.5215 27.75
7 5.84 10.3921 22.60 39 5.52 15.1031 21.94
8 6.77 14.3346 19.05 40 7.10 19.9893 19.59
9 1.39 0.3060 181.88 41 1.36 0.3882 221.58
10 5.47 7.7107 19.97 42 5.49 11.3645 26.01
11 6.90 11.5521 20.97 43 6.49 16.7606 21.72
12 7.44 17.7658 18.06 44 7.76 23.8823 18.76
13 1.58 0.3257 197.44 45 1.33 0.2949 263.67
14 6.24 9.9400 20.35 46 5.90 12.3596 24.44
15 7.36 16.1073 19.36 47 7.23 19.5421 297.77
16 8.04 20.0082 16.99 48 8.33 23.8906 16.04
17 1.62 0.5149 104.63 49 1.29 0.3546 245.89
18 3.82 6.2876 30.88 50 3.80 11.8064 29.33
19 4.53 10.5888 25.27 51 4.33 18.7034 24.92
20 4.83 13.1696 22.11 52 5.24 30.3120 21.93
21 1.28 0.4136 158.90 53 1.33 0.3144 291.16
22 4.90 9.7806 24.26 54 5.06 12.7525 26.09
23 6.06 12.7843 22.21 55 5.86 19.7280 21.70
24 6.30 22.1590 21.45 56 6.50 30.4760 19.38
25 1.28 0.3693 181.61 57 1.30 0.3561 248.44
26 5.51 9.2448 23.96 58 5.35 12.7624 26.15
27 6.26 13.5873 20.01 59 6.27 21.7225 21.94
28 7.27 21.4791 17.64 60 6.99 24.9210 19.47
29 1.36 0.3159 224.40 61 1.39 0.2823 320.70
30 6.24 11.3532 23.00 62 6.16 13.5013 25.88
31 6.93 17.2709 21.05 63 7.52 23.2371 171.94
32 7.90 22.7672 16.83 64 7.83 30.4894 17.49
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Abstract: Systems working in discrete time (discrete event systems, in short: DES)—based on binary
operations: the maximum and the minimum—are studied in so-called max–min (fuzzy) algebra.
The steady states of a DES correspond to eigenvectors of its transition matrix. In reality, the matrix
(vector) entries are usually not exact numbers and they can instead be considered as values in some
intervals. The aim of this paper is to investigate the eigenvectors for max–min matrices (vectors) with
interval coefficients. This topic is closely related to the research of fuzzy DES in which the entries of
state vectors and transition matrices are kept between 0 and 1, in order to describe uncertain and vague
values. Such approach has many various applications, especially for decision-making support in
biomedical research. On the other side, the interval data obtained as a result of impreciseness, or data
errors, play important role in practise, and allow to model similar concepts. The interval approach in
this paper is applied in combination with forall–exists quantification of the values. It is assumed that
the set of indices is divided into two disjoint subsets: the E-indices correspond to those components
of a DES, in which the existence of one entry in the assigned interval is only required, while the
A-indices correspond to the universal quantifier, where all entries in the corresponding interval must
be considered. In this paper, the properties of EA/AE-interval eigenvectors have been studied and
characterized by equivalent conditions. Furthermore, numerical recognition algorithms working in
polynomial time have been described. Finally, the results are illustrated by numerical examples.

Keywords: discrete events system; max–min (fuzzy) algebra; interval matrix; interval eigenvector

MSC: Primary: 08A72; 90B35; Secondary: 90C47

1. Introduction

Matrices in max–min algebra (fuzzy matrices), in which the binary operations of addition and
multiplication are replaced by binary operations of maximum and minimum, are useful when
modeling fuzzy discrete dynamic systems. They are also useful for graph theory, scheduling,
knowledge engineering, cluster analysis, fuzzy systems and when describing the diagnosis of technical
devices [1,2] or medical diagnosis [3]. The problem studied in [3] leads to the problem of finding the
greatest invariant of the fuzzy system.

Fuzzy DES combine fuzzy set theory with discrete events systems and are represented by
vectors and matrices having entries between 0 and 1 and describing uncertain and vague values.
The papers [4,5] are devoted to a generalization of DES into fuzzy DES and spreading optimal control
of discrete event systems to fuzzy discrete event systems. The authors of [6] deal with predictability in
fuzzy DES. In particular, these papers are motivated by an ambition to clear a difficulty with vagueness
and subjectivity in real medical applications. The other possibility how to treat the possible inaccuracy
of DES entries is to use interval data in combination with forall–exists quantification of values. Namely,
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some elements of the interval vector and the interval matrix are taken into account for each value of
the interval, and some of them are only considered for at least one value. This approach allows to
obtain alternative solutions.

The research of fuzzy algebra is also motivated by max-plus interaction discrete-events systems
(DESs) whereby applications on the system of processors and multi-machine interactive production
process were presented in [7,8], respectively. In these systems, we have n entities (e.g., processors,
servers, machines, etc.) which that work in stages. In the algebraic model of their interactive work,
the entry xi(k) of the state vector x(k) represents the start-time of the kth stage on entity i, i = 1, . . . , n,
and the entry aij of the transition matrix encodes the influence of the work of entity j in the previous
stage on the work of entity i in the current stage. The system is assumed to be homogeneous, in the
sense that A does not change from stage to stage.

Summing up all the influence effects multiplied by the results of previous stages, we have
xi(k + 1) =

⊕
j aij ⊗ xj(k), where ⊕ = max and ⊗ = +. In max-plus algebra, the maximum is often

interpreted as waiting until all works of the system are finished and all of the necessary influence
constraints are satisfied. The problem of finding the vectors for which the DES reaches the steady state
leads to the eigenproblem A⊗ x = λ⊗ x, and is one of the most intensively studied questions (see
max–min case study in Section 3.2.

Analogously, ⊗ = min in max–min algebra. The summing is then interpreted as computing the
maximal capacity of the path leading to the next state of the system. Because the operations max and
min do not create new values, a DES in max–min algebra necessarily comes to periodic repetition of
the state vector (i.e., to a steady state) if the period is 1. The eigenproblem then has the form A⊗ x = x.
In comparison with the max–plus algebra, the eigenvalue λ is omitted (in other words, we assume that
λ is equal to the maximal value I).

In practice, the values of the matrix entries obtained as a result of roundoff, truncation, or data
errors are not exact numbers and they are usually contained in some intervals. Interval arithmetic is
an efficient way to represent matrices in a guaranteed way on a computer. Meanwhile, fuzzy algebra
is a convenient algebraic setting for some types of optimization problems, see [9]. Matrices and vectors
with interval entries play important role in practice. They can be applied in several branches of applied
mathematics, as for instance, a solvability of systems of linear interval equations in classical linear
algebra [10] and in max-plus algebra [11] or the stability of the matrix orbit in max–min algebra [12,13].

The motivation for the basic questions studied in this paper comes from an investigation of the
steady states of max–min systems with interval coefficients. Suppose that X is an interval vector
and A is an interval matrix, then X is called a strong eigenvector of A if A⊗ x = x holds for every
x ∈ X and for every A ∈ A. The eigenvectors correspond to steady states, and it may happen in
reality that this interpretation—with the universal quantifier for every index i ∈ N and for every pair
(i, j) ∈ N × N—is too strong for all of the entries.

In other words, in some model situations only the existence of some xi (some aij) is required
for i ∈ N∃ (for (i, j) ∈ Ñ∃), while all possible values of xi (of aij) must be considered for i ∈ N∀ =

N \ N∃ (for(i, j) ∈ Ñ∀ = N × N \ Ñ∃).
Hence, we assume that X and A can be split into two subsets according to the exists/forall

quantification of its interval entries; that is, X = X∃ ⊕ X∀ or A = A∃ ⊕ A∀ (or both splittings
simultaneously) take place.

According to the first two cases, the properties of various types of the strong EA/AE-eigenvectors,
or the EA/AE-strong eigenvectors, are studied in this paper. In addition, their characterizations by
equivalent conditions are given. Moreover, polynomial recognition algorithms for the described
conditions are presented. The mixed case (the EA/AE-strong EA/AE-eigenvectors) is briefly
considered without recognition algorithms.

Related concepts of robustness (when an eigenvector of A is reached with any starting vector)
and strong robustness (when the greatest eigenvector of A is reached with any starting vector) in
fuzzy algebra were introduced and studied in [14,15]. Equivalent conditions for the robustness of
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interval matrix were presented in [11] and efficient algorithms for checking of strong robustness were
described in [16]. The papers by [12,13] deal with AE/EA robustness of interval circulant matrices
and XAE/XEA robustness of max–min matrices. Polynomial procedures for the recognition of weak
robustness were described in [15].

The rest of this paper is organized as follows. The next section contains the basic definitions
and notation. Sections 3 and 4 deal with the definitions and equivalent conditions for the
EA/AE-eigenvectors. In particular, Section 3 is divided into two subsections, where Section 3.1
contains the methodology and Section 3.2 presents a study case application based on a numerical
example. Section 5 describes the strong EA/AE-eigenvectors. Meanwhile, Section 6 is devoted to
characterization of the necessary and sufficient conditions for the EA/AE-strong eigenvectors. Finally,
the generalization to the mixed case of EA/AE-strong EA/AE-eigenvectors is briefly sketched in
Appendix A.

2. Preliminaries and Basic Definitions

Let (B,≤) be a bounded linearly ordered set with the least element in B denoted by O and the
greatest element denoted by I. For given natural numbers m, n, we use the notation M = {1, 2, . . . , m}
and N = {1, 2, . . . , n}, respectively. The set of m× n matrices over B is denoted by B(m, n), the set
of n× 1 vectors over B is denoted by B(n) and, for α ∈ B, the constant vector (α, . . . , α)T is denoted
by α�.

The max–min algebra is defined as a triple (B,⊕,⊗), where a ⊕ b = max(a, b) and a ⊗ b =

min(a, b). The operations ⊕,⊗ are extended to the matrix-vector algebra over B by the direct analogy
to the conventional linear algebra. If each entry of a matrix A ∈ B(m, n) (a vector x ∈ B(n)) is equal to
O, then we write A = O (x = O).

The ordering from B is naturally extended to vectors and matrices. For example, for x =

(x1, . . . , xn)T ∈ B(n) and y = (y1, . . . , yn)T ∈ B(n) we write x ≤ y, if xi ≤ yi holds for each i ∈ N.

For A, A ∈ B(n, n), A ≤ A and x, x ∈ B(n), x ≤ x, the interval matrix A with bounds A, A and
the interval vector X with bounds x, x are defined as follows

A = [A, A] =
{

A ∈ B(n, n); A ≤ A ≤ A
}

,

X = [x, x] = { x ∈ B(n); x ≤ x ≤ x } .

In the rest of this paper we assume that subsets N∃, N∀ ⊆ N are given with N = N∃ ∪ N∀ and
N = N∃ ∩N∀ = ∅. In other words, we consider a partition N = {N∃, N∀}. If i ∈ N∃ (i ∈ N∀), then we
say that the index i is associated with the existential (universal) quantifier.

Using the given partition N = {N∃, N∀}, we can split the interval vector X as X∀ ⊕ X∃,
where X∀ = [x∀, x∀] is the interval vector comprising the universally quantified entries and
X∃ = [x∃, x∃] concerns the existentially quantified entries. In the other words, every vector x ∈ X can
be written in the form x = x∀ ⊕ x∃, with x∀ ∈ X∀, x∃ ∈ X∃.

More precisely, x∀i = xi for i ∈ N∀, x∀i = O for i ∈ N∃; and similarly, x∃i = xi for i ∈ N∃, x∃i = O
for i ∈ N∀.

Definition 1. Let interval vector X ⊆ B(n) and partition N = {N∃, N∀} be given. Interval vector X∃ =

[x∃, x∃] is called

• E-subvector of X, if x∃i = x∃i = O for each i ∈ N∀ and [x∃i , x∃i ] = [xi, xi] for each i ∈ N∃,

and interval vector X∀ = [x∀, x∀] is called

• A-subvector of X, if x∀i = x∀i = O for each i ∈ N∃ and [x∀i , x∀i ] = [xi, xi] for each i ∈ N∀,
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Example 1. Suppose that B = [0, 10], N = {N∃, N∀}. Consider interval vector X which has the form

X =

⎛⎜⎜⎜⎜⎜⎝
[1, 2]
[1, 3]
[3, 4]
[1, 2]
[0, 1]

⎞⎟⎟⎟⎟⎟⎠ with N∃ = {1, 2, 3} and N∀ = {4, 5}.

Then subvectors X∃ and X∀ have the form

X∃ =

⎛⎜⎜⎜⎜⎜⎝
[1, 2]
[1, 3]
[3, 4]
[0, 0]
[0, 0]

⎞⎟⎟⎟⎟⎟⎠ , and X∀ =

⎛⎜⎜⎜⎜⎜⎝
[0, 0]
[0, 0]
[0, 0]
[1, 2]
[0, 1]

⎞⎟⎟⎟⎟⎟⎠ .

For given A ∈ B(n, n), x ∈ B(n) we say that x is eigenvector of A, if

A⊗ x = x.

In the rest of this paper, we assume that a partition N = {N∃, N∀} is given. The corresponding
subvectors X∃, X∀ and entries will always be related to this fixed N, without explicit formulation.
The same is true for the EA/AE-eigenvectors that are defined as follows.

Definition 2. Let matrix A ∈ B(n, n) and interval vector X = [x, x] ⊆ B(n) be given. We say that X is

• EA-eigenvector of A if

(∃x∃ ∈ X∃)(∀x∀ ∈ X∀) A⊗ (x∃ ⊕ x∀) = (x∃ ⊕ x∀),

• AE-eigenvector of A if

(∀x∀ ∈ X∀)(∃x∃ ∈ X∃) A⊗ (x∃ ⊕ x∀) = (x∃ ⊕ x∀).

All matrices belonging to A and vectors belonging to X can be represented as max–min linear
combinations of so-called generators, which are defined as follows. For every i, j ∈ N, A(ij) ∈ B(n, n)
and x(i), x[i], ∈ B(n) are defined by putting, for every k, l ∈ N,

a(ij)kl =

{
aij, for k = i, l = j

akl , otherwise
,

x(i)k =

{
xi, for k = i

xk, otherwise
x[i]k =

{
xi, for k = i

xk, otherwise

Furthermore, we denote x(n+1) := x∀, x[n+1] := x∀ and X∀
G = {x(i), x[i]; i ∈ N ∪ {n + 1}}.

Notice that |X∀
G| = 2n + 2.

Lemma 1. Let x ∈ B(n) and A ∈ B(n, n). Then,

(i) x ∈ X if and only if x =
⊕

i∈N
βi ⊗ x(i) for some βi ∈ B with xi ≤ βi ≤ xi,

(ii) A ∈ A if and only if A =
⊕

i,j∈N
αij ⊗ A(ij) for some αij ∈ B with aij ≤ αij ≤ aij.
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Proof. For the proof of statement (i), let us suppose that x ∈ X; that is, the inequalities xi ≤ xi ≤ xi hold
for every i ∈ N. Denoting βi = xi we get βi⊗ xi = xi⊗ xi = xi and βi⊗ xi = xi⊗ xi = xi ≤ xi for every
i ∈ N. It can be easily verified that

⊕
i∈N βi ⊗ x(i) = x. The proof of statement (ii) is analogous.

3. EA-Eigenvector

3.1. Description of the Methodology

The first result is the characterization of an interval EA-eigenvector of a given (non-interval)
matrix A, with the help of generators.

Theorem 1. Let A ∈ B(n, n) and X = [x, x] be given. Then, X is EA-eigenvector of A if and only if

(∃x∃ ∈ X∃)(∀i ∈ N∀ ∪ {n + 1}) A⊗ (x∃ ⊕ x(i)) = x∃ ⊕ x(i).

Proof. Suppose that there is x∃ ∈ X∃ such that A ⊗ (x∃ ⊕ x(i)) = x∃ ⊕ x(i) holds for all
i ∈ N∀ ∪ {n + 1}. For fixed x∃ define the auxiliary interval vector X̂ = (x̂1, . . . , x̂n)T as follows:

x̂i =

{
[x∃i , x∃i ], for i ∈ N∃

[xi, xi] , for i ∈ N∀ . (1)

Notice that vectors x̂(i) of X̂ have the form

x̂(i)k =

⎧⎪⎨⎪⎩
xi, for k = i ∧ i ∈ N∀

xi, for k �= i ∧ k ∈ N∀

x∃k , for k ∈ N∃,
(2)

or equivalently, x̂(i) = x∃ ⊕ x(i) for each i ∈ N∀ and x̂(i) = x̂ = x∃ ⊕ x(n+1) for each i ∈ N∃. It is easy
to see that X is EA-eigenvector if and only if A⊗ x̂ = x̂ holds for each x̂ ∈ X̂. By Lemma 1, an arbitrary
vector x̂ ∈ X̂ is defined as the max–min linear combination x̂ =

⊕
i∈N∀

βi ⊗ x̂(i). We will then prove that

the equality A⊗ x̂ = x̂ holds for each x̂ ∈ X̂. Thus, we get

A⊗ x̂ = A⊗
⊕
i∈N

βi ⊗ x̂(i) = A⊗

⎛⎝⊕
i∈N∃

βi ⊗ x̂(i) ⊕
⊕

i∈N∀
βi ⊗ x̂(i)

⎞⎠ =

A⊗

⎛⎝⊕
i∈N∃

βi ⊗ x̂⊕
⊕

i∈N∀
βi ⊗ x̂(i)

⎞⎠ =

⎛⎝⊕
i∈N∃

βi ⊗ A⊗ x̂

⎞⎠⊕
⎛⎝⊕

i∈N∀
βi ⊗ A⊗ x̂(i)

⎞⎠ =

⎛⎝⊕
i∈N∃

βi ⊗ A⊗ (x∃ ⊕ x(n+1))

⎞⎠⊕
⎛⎝⊕

i∈N∀
βi ⊗ A⊗ (x∃ ⊕ x(i))

⎞⎠ =

⎛⎝⊕
i∈N∃

βi ⊗ (x∃ ⊕ x(n+1))

⎞⎠⊕
⎛⎝⊕

i∈N∀
βi ⊗ (x∃ ⊕ x(i))

⎞⎠ =

⎛⎝⊕
i∈N∃

βi ⊗ x̂(i) ⊕
⊕

i∈N∀
βi ⊗ x̂(i)

⎞⎠ = x̂.

The reverse implication is trivial.
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The next result shows that the conditions in Theorem 1 can be equivalently formulated as
the solvability condition of a system of two-sided max–min linear equations. Hence, the interval
EA-eigenvectors of a given non-interval matrix can be recognized in polynomial time.

Without loss of generality, suppose that N∃ = {1, 2, . . . , k} and N∀ = {k + 1, k + 2, . . . , n}; that is,

X∃ = ([x1, x1], . . . , [xk, xk], [O, O] . . . , [O, O])T

and
X∀ = ([O, O] . . . , [O, O], [xk+1, xk+1], . . . , [xn, xn])

T .

Define the matrices C, D ∈ B
(
n(n− k + 1), n + 1

)
as follows

C =

⎛⎜⎜⎜⎜⎝
A⊗ x(1) . . . A⊗ x(k) A⊗ x(k+1) O O . . . O
A⊗ x(1) . . . A⊗ x(k) O A⊗ x(k+2) O . . . O

...
A⊗ x(1) . . . A⊗ x(k) O O O . . . A⊗ x(n+1)

⎞⎟⎟⎟⎟⎠
and

D =

⎛⎜⎜⎜⎜⎝
x(1) . . . x(k) x(k+1) O O . . . O
x(1) . . . x(k) O x(k+2) O . . . O

...
x(1) . . . x(k) O O O . . . x(n+1)

⎞⎟⎟⎟⎟⎠ .

Theorem 2. Let A and X = [x, x] be given. Then, X is EA-eigenvector of A if and only if the system
C⊗ β = D⊗ β is solvable with xi ≤ βi ≤ xi for i ∈ N∃ and β j = I for j ∈ N∀ ∪ {n + 1}.

Proof. By Lemma 1, if xi ≤ βi ≤ xi for i ∈ N∃, then x∃ =
k⊕

i=1
βi ⊗ x(i) belongs to X∃; and if x∃ ∈ X∃,

then we can find xi ≤ βi ≤ xi for i ∈ N∃ such that x∃ =
k⊕

i=1
βi ⊗ x(i).

We also have that the system C⊗ β = D⊗ β is solvable with xi ≤ βi ≤ xi for i ∈ N∃ and β j = I
for j ∈ N∀ ∪ {n + 1} if and only if the following equivalences hold true:

C⊗ β = D⊗ β ⇔(
∀j ∈ N∀ ∪ {n + 1}

) ⊕
i∈N∃

(A⊗ x(i) ⊗ βi)⊕ (A⊗ x(j) ⊗ β j) =

⊕
i∈N∃

(x(i) ⊗ βi)⊕ (x(j) ⊗ β j)⇔

(
∀j ∈ N∀ ∪ {n + 1}

)
A⊗ (

⊕
i∈N∃

(x(i) ⊗ βi)⊕ x(j)) =
⊕

i∈N∃
(x(i) ⊗ βi)⊕ x(j) ⇔

(∃x∃ ∈ X∃)(∀j ∈ N∀ ∪ {n + 1}) A⊗ (x∃ ⊕ x(j)) = x∃ ⊕ x(j)

because of β j = I for j ∈ N∀ ∪ {n + 1}. Thus by Theorem 1, the assertion follows.

A polynomial algorithm for solving a general two-sided system C ⊗ β = D ⊗ β of max–min
linear equations with C, D ∈ B(r, s), is presented in [17]. This method finds the maximum possible
solution, βmax, of the system. If this possible solution does not satisfy all of the conditions of the system,
then the system is not solvable. In our case, the insolvability means that the considered X is not an
EA-eigenvector of A. The computational complexity of the proposed algorithm is O(rs ·min(r, s)).
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Theorem 3. Suppose that we are given a matrix A and an interval vector X = [x, x]. The recognition problem
of whether a given interval vector X of A is EA-eigenvector is then solvable in O(n4) time.

Proof. According to Theorem 2, the recognition problem of EA-eigenvector of A is equivalent to
recognizing whether the system C⊗ β = D⊗ β is solvable with xj ≤ β j ≤ xj for j ∈ N∃ and β j = I
for j ∈ N∀. In the general case, the computation of the needs O(rs ·min(r, s)) time (see [17]). In our
case, we have r = n(n− k + 1), s = n + 1; therefore, the computation of C ⊗ β = D ⊗ β is done in
O(n2 · n · n) = O(n4) time.

3.2. Case Study Application of the Methodology Based on Numerical Example

Consider a data transfer system consisting of n computers and one server S. The computed data
from computer ci, i ∈ N are sent to S whereby the corrected data have to return to ci. We assume that
the connection between ci and S is only possible via one of n security processors pj, the connections
between ci and pj are one-way connections, and the capacity of the connection between ci ∈ N and
pj ∈ N is equal to aij. Moreover, suppose that security processors pj ∈ N are connected with S by
two-way connections with capacities xj in both directions. The data are transmitted in data packets,
and every data packet is transmitted over just one connection as an inseparable unit. Therefore,
the total capacity of the connection between i and S is equal to max

j∈N
{min{aij, xj}}, that is, different

used connections are comprised as the maximum of capacities (not as their sum).
The transfer from S to i is carried out via other one-way connections between security processors

j ∈ N and i ∈ N with capacities between j and i equal to the constant I (the greatest element) if i = j,
and equal to O (the least element), otherwise. Since the connections between S and j are two-way
connections, the total capacity of the connection between S and i is equal to min{I, xi} = xi for every
i ∈ N. The goal is to find optimal capacities xj, j ∈ N such that the maximal capacity of all connections
between i and S via j is equal to the maximal capacity of connections between S and i on the way back,
that is, we have to choose xj, j ∈ N in such a way that max

j∈N
{min{aij, xj}} = xi for all i ∈ N.

Consider a data transfer system which consists of 4 computers, 4 security processors and one
server (see Figure 1). To find optimal capacities xj, j ∈ M = {1, 2, 3, 4} means to solve an eigenproblem
for a matrix A. Then for B = [0, 10] and the matrix A we look for a solution of the equality A⊗ x = x,
or in matrix-vector form, we have

A⊗ x =

⎛⎜⎜⎜⎝
0 2 2 1
1 0 2 2
2 1 4 1
1 2 1 5

⎞⎟⎟⎟⎠⊗
⎛⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎠

Figure 1. Data transfer system (application).
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One solution of the set of all solutions describing optimal capacities xj, j ∈ N of the data transfer
system is vector x = (2, 2, 4, 5)T .

Assume now that the capacities xj, j ∈ N are limited by the lower bound xj and upper bound
xj. Furthermore, we assume that not all of the processed data have the same importance: whereby,
for some more important types of data, all values of the interval must be taken into account (all
capacities of the data transfer system have to be involved in optimal solutions), and for some—less
important data types—it is sufficient to be considered for at least one value (some value of these
capacities of the data transfer system are optimal). In the above defined terminology, the optimal
solution has to satisfy the definition of the EA-eigenvector of A.

For numerical illustration of this situation suppose that interval vector X has the form

x =

⎛⎜⎜⎜⎝
2
2
3
2

⎞⎟⎟⎟⎠ , x =

⎛⎜⎜⎜⎝
4
5
4
3

⎞⎟⎟⎟⎠
with N∃ = {1, 2}, N∀ = {3, 4} and N∀ ∪ {n + 1} = {3, 4, 5}.

Then generators of X and its matrix-vector products can be computed as follows:

x(1) =

⎛⎜⎜⎜⎝
4
2
0
0

⎞⎟⎟⎟⎠ , x(2) =

⎛⎜⎜⎜⎝
2
5
0
0

⎞⎟⎟⎟⎠ , x(3) =

⎛⎜⎜⎜⎝
0
0
4
2

⎞⎟⎟⎟⎠ , x(4) =

⎛⎜⎜⎜⎝
0
0
3
3

⎞⎟⎟⎟⎠ , x(5) =

⎛⎜⎜⎜⎝
0
0
3
2

⎞⎟⎟⎟⎠ .

and

A⊗ x(1) =

⎛⎜⎜⎜⎝
2
1
2
2

⎞⎟⎟⎟⎠ , A⊗ x(2) =

⎛⎜⎜⎜⎝
2
1
2
2

⎞⎟⎟⎟⎠ , A⊗ x(3) =

⎛⎜⎜⎜⎝
2
2
4
2

⎞⎟⎟⎟⎠ ,

A⊗ x(4) =

⎛⎜⎜⎜⎝
2
2
3
3

⎞⎟⎟⎟⎠ , A⊗ x(5) =

⎛⎜⎜⎜⎝
2
2
3
2

⎞⎟⎟⎟⎠ ,

By Theorem 2 we will show that X is EA-eigenvector. At first we shall construct matrices C and
D and after that we shall solve the system C⊗ β = D⊗ β with xj ≤ β j ≤ xj for j ∈ N∃ and βi = I for
i ∈ N∀ ∪ {n + 1}, i.e.,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2 0 0
1 1 2 0 0
2 2 4 0 0
2 2 2 0 0
2 2 0 2 0
1 1 0 2 0
2 2 0 3 0
2 2 0 3 0
2 2 0 0 2
1 1 0 0 2
2 2 0 0 3
2 2 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛⎜⎜⎜⎜⎜⎝
β1

β2

β3

β4

β5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 2 0 0 0
2 5 0 0 0
0 0 4 0 0
0 0 2 0 0
4 2 0 0 0
2 5 0 0 0
0 0 0 3 0
0 0 0 3 0
4 2 0 0 0
2 5 0 0 0
0 0 0 0 3
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛⎜⎜⎜⎜⎜⎝
β1

β2

β3

β4

β5

⎞⎟⎟⎟⎟⎟⎠ (3)
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with 2 ≤ β1 ≤ 4; 2 ≤ β2 ≤ 5; 10 ≤ β3 ≤ 10; 10 ≤ β4 ≤ 10; 10 ≤ β5 ≤ 10.
To obtain a solution of the system (3), we use the Algorithm 1 presented in [17]. For the

convenience of the reader, the algorithm is described in the original notation.
Let A, B ∈ B(m, n) be given matrices. Denote

M̂ = {x ∈ B(n); A⊗ x = B⊗ x},

I = {1, . . . , m}, J = {1, . . . , n},

ai(x) = max
j∈J

(aij ⊗ xj), bi(x) = max
j∈J

(bij ⊗ xj),

M(x = {x; x ∈ M̂ ∧ x ≤ x},

I<(x) = {i ∈ I; ai(x) < bi(x)},

I=(x) = {i ∈ I; ai(x) = bi(x)},

α(x) = min{ai(x); i ∈ I<(x)},

I<(α(x)) = {i ∈ I<(x); ai(x) = α(x)},

I=(α(x)) = {i ∈ I=(x); ai(x) ≤ α(x)},

J(α(x)) = {j ∈ J; (∃i ∈ I<(α(x))[bij ⊗ xj > α(x)]}.

Algorithm 1: Solving a general two-sided system.
Input: m, n, x.
Output: xmax.
begin

1 If x ∈ M(x), then xmax := x, STOP;
2 Change notation so that ai(x) ≤ bi(x) for all i ∈ I;
3 Compute α(x), I<(α(x)), I=(α(x));
4 Set x̃j := α(x) if j ∈ J(α(x)), x̃j := xj otherwise;
5 If x̃ ∈ M(x), then xmax := x̃, STOP;
6 Put x := x̃ go to 2 ;

end

We will now apply the items of the Algorithm 2 to obtain the greatest solution of the system (3)
whereby x, ai(x), bi(x) will be substituted by β, ci(β), di(β), respectively:

Algorithm 2: Solving a general two-sided system - example.

Input: m = 12, n = 5, I = {1, . . . , 12}, J = {1, . . . , 5}, x = (4, 5, 10, 10, 10)T .
Output: βmax.
1 β = (4, 5, 10, 10, 10) /∈ M(β);
2 (c1(β), . . . , c12(β)) = (2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2) ≤

(d1(β), . . . , d12(β)) = (4, 5, 4, 2, 4, 5, 3, 3, 4, 5, 3, 2);
3 α(β) = 2, I<(α(β)) = I<(2) = {1, 2, 5, 6, 9, 10}, I=(α(β)) = I=(2) =
{4, 12}, J(α(β)) = J(2) = {1, 2};

4 β̃ = (2, 2, 10, 10, 10);
5 β̃ = (2, 2, 10, 10, 10) ∈ M(β), βmax = β̃, STOP.

The output of the Algorithm 2 is vector βmax = (2, 2, 10, 10, 10) ∈ M(β), which is the greatest
possible solution of the system (3). It is easy to verify that the possible solution βmax satisfies all
conditions of (3). In other words, βmax is the solution, and we can conclude that X is an EA-eigenvector
of A.
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4. AE-Eigenvector

As in the previous section, we characterize an interval AE-eigenvector of a given non-interval
matrix A with the help of generators. We recall that X∀

G = {x(i), x[i]; i ∈ N ∪ {n + 1}} ⊆ X∀ , where

x(i)k =

{
xi, for k = i

xk, otherwise,
x[i]k =

{
xi, for k = i

xk, otherwise,

for i ∈ N, and x(n+1) := x∀, x[n+1] := x∀.

Theorem 4. Let A ∈ B(n, n) and X = [x, x] be given. Then, X is an AE-eigenvector of A if and only if

(∀x∀ ∈ X∀
G)(∃x∃ ∈ X∃) A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀.

Proof. Suppose that X is not an AE-eigenvector of A; that is,

(∃x∀ ∈ X∀)(∀x∃ ∈ X∃) A⊗ (x∃ ⊕ x∀) �= (x∃ ⊕ x∀)

or equivalently

(∃x∀ ∈ X∀)(∀x∃ ∈ X∃)(∃i ∈ N) (A⊗ (x∃ ⊕ x∀))i �= (x∃ ⊕ x∀)i.

We shall prove that either there is k ∈ N ∪ {n + 1} such that for each x∃ ∈ X∃ the inequality
A⊗ (x∃ ⊕ x(k)) �= (x∃ ⊕ x(k)) holds true or there is k ∈ N ∪ {n + 1} such that for each x∃ ∈ X∃ the
inequality A⊗ (x∃ ⊕ x[k]) �= (x∃ ⊕ x[k]) is fulfilled.

We will next analyze four cases:
Case (i).

Suppose that i ∈ N∃ and (A⊗ (x∃ ⊕ x∀))i < (x∃ ⊕ x∀)i. We then have⊕
j∈N

aij ⊗ (x∃ ⊕ x∀)j < (x∃ ⊕ x∀)i

and for x∀ = x(n+1) we obtain⊕
j∈N

aij ⊗ (x∃ ⊕ x∀)j ≤
⊕
j∈N

aij ⊗ (x∃ ⊕ x∀)j < (x∃ ⊕ x∀)i = x∃i = (x∃ ⊕ x∀)i.

Case(ii).
Suppose that i ∈ N∃ and (A⊗ (x∃ ⊕ x∀))i > (x∃ ⊕ x∀)i. We then have⊕

j∈N
aij ⊗ (x∃ ⊕ x∀)j = aii ⊗ (x∃ ⊕ x∀)i ⊕

⊕
j �=i

aij ⊗ (x∃ ⊕ x∀)j > (x∃ ⊕ x∀)i

and hence ⊕
j �=i

aij ⊗ (x∃ ⊕ x∀)j > (x∃ ⊕ x∀)i

because aii ⊗ (x∃ ⊕ x∀)i ≤ (x∃ ⊕ x∀)i. Moreover, there exists k ∈ N, k �= i such that⊕
j �=i

aij ⊗ (x∃ ⊕ x∀)j = aik ⊗ (x∃ ⊕ x∀)k > (x∃ ⊕ x∀)i.

We will consider two subcases:
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Subcase 1: k ∈ N∀. Then, for x(k), we obtain⊕
j∈N

aij ⊗ (x∃ ⊕ x(k))j ≥ aik ⊗ (x∃ ⊕ x(k))k = aik ⊗ (x∃ ⊕ x∀)k ≥

aik ⊗ (x∃ ⊕ x∀)k > (x∃ ⊕ x∀)i = x∃i = (x∃ ⊕ x(k))i.

Subcase 2: k ∈ N∃. Then, for x[n+1] = x∀, we obtain⊕
j∈N

aij ⊗ (x∃ ⊕ x∀)j ≥ aik ⊗ (x∃ ⊕ x∀)k ≥

aik ⊗ (x∃ ⊕ x∀)k > (x∃ ⊕ x∀)i = x∃i = (x∃ ⊕ x∀)i.

Case (iii).
Suppose that i ∈ N∀ and (A⊗ (x∃ ⊕ x∀))i < (x∃ ⊕ x∀)i. We then have⊕

j∈N
aij ⊗ (x∃ ⊕ x∀)j < (x∃ ⊕ x∀)i ⇔

aii ⊗ (x∃ ⊕ x∀)i ⊕
⊕
j∈N

aij ⊗ (x∃ ⊕ x∀)j < (x∃ ⊕ x∀)i

and hence it follows that

aii ⊗ (x∃ ⊕ x∀)i < (x∃ ⊕ x∀)i ⇒ aii < (x∃ ⊕ x∀)i.

Thus, for x(i) we obtain⊕
j∈N

aij ⊗ (x∃ ⊕ x(i))j = aii ⊗ (x∃ ⊕ x∀)i ⊕
⊕
j �=i

aij ⊗ (x∃ ⊕ x∀)j ≤

aii ⊗ (x∃ ⊕ x∀)i ⊕
⊕
j �=i

aij ⊗ (x∃ ⊕ x∀)j < (x∃ ⊕ x∀)i = x∀i ≤ x∀i = x(i)i = (x∃ ⊕ x(i))i.

Case (iv).
Suppose that i ∈ N∀ and (A⊗ (x∃ ⊕ x∀))i > (x∃ ⊕ x∀)i. We then have⊕

j∈N
aij ⊗ (x∃ ⊕ x∀)j > (x∃ ⊕ x∀)i,

hence there is k ∈ N, k �= i such that aik ⊗ (x∃ ⊕ x∀)k > (x∃ ⊕ x∀)i because aii ⊗ (x∃ ⊕ x∀)i ≤
(x∃ ⊕ x∀)i.

We will consider two subcases:
Subcase 1: k ∈ N∀. Then, for x(k), we obtain⊕

j∈N
aij ⊗ (x∃ ⊕ x(k))j ≥ aik ⊗ (x∃ ⊕ x(k))k = aik ⊗ (x∃ ⊕ x∀)k ≥

aik ⊗ (x∃ ⊕ x∀)k > (x∃ ⊕ x∀)i = x∀i ≥ x∀i = x(k)i = (x∃ ⊕ x(k))i.

Subcase 2: k ∈ N∃. Then, for x[i], we obtain⊕
j∈N

aij ⊗ (x∃ ⊕ x[i])j ≥ aik ⊗ (x∃ ⊕ x[i])k = aik ⊗ (x∃ ⊕ x∀)k ≥
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aik ⊗ (x∃ ⊕ x∀)k > (x∃ ⊕ x∀)i = x∀i ≥ x∀i = x[i]i = (x∃ ⊕ x[i])i.

The reverse implication is trivial.

The last theorem can be rewritten in the following form:

Corollary 1. Let A ∈ B(n, n) and X = [x, x] be given. Then, X is AE-eigenvector of A if and only if

(∀i ∈ N ∪ {n + 1})(∃x(i)∃ ∈ X∃) A⊗ (x(i)∃ ⊕ x(i)) = x(i)∃ ⊕ x(i),

(∀i ∈ N ∪ {n + 1})(∃x[i])∃ ∈ X∃) A⊗ (x[i])∃ ⊕ x[i]) = x[i]∃ ⊕ x[i].

The next two theorems show that the conditions in Corollary 1 can be equivalently formulated
as the solvability conditions of a finite set of two-sided max–min linear systems. Consequently,
the interval AE-eigenvectors of a given non-interval matrix can be recognized in polynomial time.

Without loss of generality suppose that N = N∃ ∪ N∀, where N∃ = {1, 2, . . . , k} and N∀ =

{k + 1, k + 2, . . . , n}; that is,

X∃ = ([x1, x1], . . . , [xk, xk], [O, O] . . . , [O, O])T

and
X∀ = ([[O, O] . . . , [O, O], xk+1, xk+1], . . . , [xn, xn])

T .

Define matrices C(i), D(i), E(i), F(i) ∈ B(n, k + 1), for i ∈ N∀ ∪ {n + 1}, as follows

C(i) =
(

A⊗ x(1) . . . A⊗ x(k) A⊗ x(i)
)

, D(i) =
(

x(1) . . . x(k) x(i)
)

E[i] =
(

A⊗ x(1) . . . A⊗ x(k) A⊗ x[i]
)

, F[i] =
(

x(1) . . . x(k) x[i]
)

Also, denote β = (β1, . . . , βk, βk+1)
T , γ = (γ1, . . . , γk, γk+1)

T ∈ B(k + 1).

Theorem 5. Let A ∈ B(n, n), X and i ∈ N∀ ∪ {n + 1} be given. Then

• (∃x∃ ∈ X∃)A ⊗ (x∃ ⊕ x(i)) = (x∃ ⊕ x(i)) if and only if the system C(i) ⊗ β = D(i) ⊗ β with
xj ≤ β j ≤ xj for j ∈ N∃ and βk+1 = I is solvable,

• (∃x∃ ∈ X∃)A⊗ (x∃ ⊕ x[i]) = (x∃ ⊕ x[i]) if and only if the system E[i]⊗ γ = F[i]⊗ γ with xj ≤ γj ≤
xj for j ∈ N∃ and γk+1 = I is solvable.

Proof. By Lemma 1, if xj ≤ β j ≤ xj for j ∈ N∃, then x∃ =
k⊕

j=1
βi ⊗ x(j) belongs to X∃, and if x∃ ∈ X∃

then we can find xj ≤ β j ≤ xj for j ∈ N∃ such that x∃ =
k⊕

j=1
β j ⊗ x(j).

We also have the following equivalences for an arbitrary i ∈ N∀ ∪ {n + 1}

C(i)⊗ β = D(i)⊗ β ⇔⊕
j∈N∃

A⊗ x(j) ⊗ β j ⊕ A⊗ x(i) ⊗ βk+1 =
⊕

j∈N∃
x(j) ⊗ β j ⊕ x(i) ⊗ βk+1 ⇔

A⊗ (
⊕

j∈N∃
x(j) ⊗ β j ⊕ x(i)) =

⊕
j∈N∃

x(j) ⊗ β j ⊕ x(i) ⇔

(∃x∃ ∈ X∃) A⊗ (x∃ ⊕ x(i)) = x∃ ⊕ x(i)
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because βk+1 = I.
Similarly, we can prove the second part of the theorem.

Theorem 6. Suppose that we are given a matrix A ∈ B(n, n) and an interval vector X = [x, x]. Then, X
is an AE-eigenvector of A if and only if for each i ∈ N∀ ∪ {n + 1} the systems C(i)⊗ β = D(i)⊗ β and
C[i]⊗ β = D[i]⊗ β are solvable with xj ≤ β j ≤ xj for j ∈ N∃, βk+1 = I and xj ≤ γj ≤ xj for j ∈ N∃,
γk+1 = I, respectively.

Proof. The assertion follows from Theorems 4 and 5.

Theorem 7. Suppose that we are given a matrix A ∈ B(n, n) and an interval vector X = [x, x].
The recognition problem of whether a given interval vector X is an AE-eigenvector of A is then solvable
in O(n4) time.

Proof. According to Theorem 6, the recognition problem of whether a given interval vector X is an
AE-eigenvector of A is equivalent to recognizing if the system C(x∀)⊗ β = D(x∀)⊗ β is solvable for
each x∀ ∈ X∀

G with xj ≤ β j ≤ xj for j ∈ N∃ and βk+1 = I. The computation of a system A⊗ y = B⊗ y
needs O(rs ·min(r, s)) time (see [17]), where A, B ∈ B(r, s). Therefore, the computation of at most n
such systems is done in n ·O(n3) = O(n4) time.

5. Strong Eigenvectors

In this section, we study various eigenvector types for the interval matrix A = [A, A] and the
interval vector X = [x, x]. The basic type, which is called a strong eigenvector, is related to all
matrices in A and all vectors in X. Further types, which are called strong EA-eigenvectors (strong
AE-eigenvectors), are related to all matrices A ∈ A and to EA-eigenvectors (AE-eigenvectors) derived
from X.

Definition 3. Let A, X be given. The interval vector X is called strong eigenvector of A if (∀A ∈ A)(∀x ∈
X) A⊗ x = x.

Theorem 8. Let A, X be given. Then, X is a strong eigenvector of A if and only if A⊗ x(k) = x(k) and
A⊗ x(k) = x(k) for all k ∈ N.

Proof. Let us assume that x ∈ X, A⊗ x(k) = x(k) and A⊗ x(k) = x(k) for all k ∈ N. Then, for arbitrary
x ∈ X we get

A⊗ x = A⊗
n⊕

i=1

βi ⊗ x(i) =
n⊕

i=1

βi ⊗ (A⊗ x(i)) =
n⊕

i=1

βi ⊗ x(i) = x

and

A⊗ x = A⊗
n⊕

i=1

βi ⊗ x(i) =
n⊕

i=1

βi ⊗ (A⊗ x(i)) =
n⊕

i=1

βi ⊗ x(i) = x.

The assertion follows from the monotonicity of operations; that is, x = A⊗ x ≤ A⊗ x ≤ A⊗ x =

x for each A ∈ A. The converse implication is trivial.

Remark 1. It is easy to see that the conditions in Theorem 8 can be verified in O(n3) time.

Definition 4. Let A, X be given. Then interval vector X is called

• a strong EA-eigenvector of A if

(∀A ∈ A)(∃x∃ ∈ X∃)(∀x∀ ∈ X∀) A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀,
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• and a strong AE-eigenvector of A if

(∀A ∈ A)(∀x∀ ∈ X∀)(∃x∃ ∈ X∃) A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀.

Theorem 9. Let A, X be given. The following conditions are equivalent

(i) X is a strong EA-eigenvector of A,

(ii) (∃x∃ ∈ X∃)(∀x∀ ∈ X∀)
[

A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀ ∧ A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀
]
,

(iii) (∃x∃ ∈ X∃)(∀x(k) ∈ X∀)
[

A⊗ (x∃ ⊕ x(k)) = x∃ ⊕ x(k) ∧

A⊗ (x∃ ⊕ x(k)) = x∃ ⊕ x(k)
]
.

Proof. These assertions follow from Theorems 1 and 8.

Theorem 10. Let A, X be given. The following conditions are equivalent

(i) X is a strong AE-eigenvector of A,

(ii) (∀x∀ ∈ X∀)(∃x∃ ∈ X∃)
[

A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀ ∧ A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀
]
,

(iii) (∀x∀ ∈ X∀
G)(∃x∃ ∈ X∃)

[
A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀ ∧

A⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀
]
.

Proof. These assertions follow from Theorems 4 and 8.

Remark 2. By Theorems 9 and 10, the verification of whether

(i) X is a strong EA-eigenvector,
(ii) X is a strong AE-eigenvector,

reduces to finding a vector x∃ ∈ X∃ satisfying some linear max–min equations, similar to Theorems 2 and 6.
Hence, the recognition problem for these types of strong eigenvectors is polynomially solvable.

6. EA/AE-Strong Eigenvectors

In the previous sections, we worked with a fixed partition N = {N∃, N∀}, with N = N∃ ∪ N∀

and N = N∃ ∩ N∀ = ∅. In other words, every index i ∈ N is associated either with the existential,
or with the universal quantifier. According to partition N, the interval vector X is presented as a sum of
subintervals X∃ ⊕ X∀. The interpretation of this partition is such that, for technical reasons, the vector
entries in subinterval X∃ only require the existence of one possible value xi ∈ [xi, xi], while the entries
in subinterval X∀ require all possible values xi ∈ [xi, xi].

A similar interpretation can be applied to the matrix entries. Suppose that each interval of A is
associated either with the universal or with the existential quantifier. We can then split the interval
matrix as A = A∀ ⊕ A∃, where A∀ is the interval matrix comprising universally quantified coefficients
and A∃ concerns existentially quantified coefficients.

Hence, we work with partition Ñ = {Ñ∃, Ñ∀}, where Ñ∃ ∪ Ñ∀ = N × N and Ñ∃ ∩ Ñ∀ = ∅.
In other words, a∃ij = a∃ij = O for each pair (i, j) ∈ Ñ∀ and a∀ij = a∀ij = O for each (i, j) ∈ Ñ∃.

Definition 5. Let A, X be given. Interval vector X is called

• EA-strong eigenvector of A if there is A∃ ∈ A∃ such that for any A∀ ∈ A∀ the vector X is a strong
eigenvector of A∃ ⊕ A∀,

• AE-strong eigenvector of A if for any A∀ ∈ A∀ there is A∃ ∈ A∃ such that X is a strong eigenvector of
A∃ ⊕ A∀.
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6.1. EA-Strong Eigenvector

Theorem 11. Let A, X be given. Then, X is an EA-strong eigenvector of A if and only if

(∃A∃ ∈ A∃)(∀x ∈ X) (A∃ ⊕ A∀)⊗ x = x ∧ (A∃ ⊕ A∀)⊗ x = x.

Proof. Suppose that there is A∃ ∈ A∃ such that (A∃ ⊕ A∀)⊗ x = x and (A∃ ⊕ A∀)⊗ x = x hold for
each x ∈ X. By monotonicity of the operations ⊕ and ⊗ for an arbitrary matrix A∀ ∈ A∀, we get

x = (A∃ ⊕ A∀)⊗ x ≤ (A∃ ⊕ A∀)⊗ x ≤ (A∃ ⊕ A∀)⊗ x = x.

The reverse implication trivially holds.

Theorem 12. Let A, X be given. Then, X is an EA-strong eigenvector of A if and only if

(∃A∃ ∈ A∃)(∀i ∈ N [(A∃ ⊕ A∀)⊗ x(i) = x(i) ∧ (A∃ ⊕ A∀)⊗ x(i) = x(i)].

Proof. By Lemma 1, if xj ≤ β j ≤ xj for j ∈ N then x =
n⊕

j=1
β j ⊗ x(j) belongs to X; and if x ∈ X, then we

can find xj ≤ β j ≤ xj for j ∈ N such that x =
n⊕

j=1
β j ⊗ x(j). Then, we have

(A∃ ⊕ A∀)⊗ x = (A∃ ⊕ A∀)⊗
⊕
i∈N

βi ⊗ x(i) =

⊕
i∈N

(A∃ ⊕ A∀)⊗ x(i) ⊗ βi =
⊕
i∈N

βi ⊗ x(i) = x.

Similarly, we can prove the second equality and by Theorem 11 the assertion follows. The reverse
implication trivially holds.

The last theorem enables us to check the equivalent conditions of Theorem 12 in practice, whereby

(A∃ ⊕ A∀)⊗ x(i) = x(i) and (A∃ ⊕ A∀)⊗ x(i) = x(i) are joined into one system of equalities.

Let A and X be given and Ñ∃ = {(i1, j1), . . . , (ik, jk)}. We denote the block matrix Ã ∈ B(2n2, k +
1) and vectors x̃ ∈ B(2n2), α ∈ B(k + 1) as follows

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(i1 j1) ⊗ x(1) . . . A(i1 jk) ⊗ x(1) A(i2 j1) ⊗ x(1) . . . A(ik jk) ⊗ x(1) A⊗ x(1)

A(i1 j1) ⊗ x(2) . . . A(i1 jk) ⊗ x(2) A(i2 j1) ⊗ x(2) . . . A(ik jk) ⊗ x(2) A⊗ x(2)
...

A(i1 j1) ⊗ x(n) . . . A(i1 jk) ⊗ x(n) A(i2 j1) ⊗ x(n) . . . A(ik jk) ⊗ x(n) A⊗ x(n)

A(i1 j1) ⊗ x(1) . . . A(i1 jk) ⊗ x(1) A(i2 j1) ⊗ x(1) . . . A(ik jk) ⊗ x(1) A⊗ x(1)

A(i1 j1) ⊗ x(2) . . . A(i1 jk) ⊗ x(2) A(i2 j1) ⊗ x(2) . . . A(ik jk) ⊗ x(2) A⊗ x(2)
...

A(i1 j1) ⊗ x(n) . . . A(i1 jk) ⊗ x(n) A(i2 j1) ⊗ x(n) . . . A(ik jk) ⊗ x(n) A⊗ x(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

x̃ =
(

x(1)1 , . . . , x(1)n , . . . , x(n)1 , . . . , x(n)n , x(1)1 , . . . , x(1)n , . . . , x(n)1 , . . . , x(n)n

)T
,

and
α =

(
α11, . . . , α1k, α21, . . . , α2k, . . . , αk1, . . . , αkk, αk+1

)T
,

where αk+1 is a variable corresponding to the last column of Ã.
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Theorem 13. Let A, X be given. Then X is EA-strong eigenvector of A if and only if the system Ã⊗ α = x̃
has a solution α such that aij ≤ αij ≤ aij and αk+1 = I.

Proof. The system Ã⊗ α = x̃ is solvable if and only if there is a vector α such that

k⊕
i,j=1

αij ⊗ A(ij) ⊗ x(k) ⊕ A⊗ xk = x(k),

k⊕
i,j=1

αij ⊗ A(ij) ⊗ x(k) ⊕ A⊗ xk = x(k)

for all k ∈ N with aij ≤ αij ≤ aij and αk+1 = I. Put A∃ =
k⊕

i,j=1
αij ⊗ A(ij) and by Theorem 12 the

assertion holds true.

Theorem 14. Suppose that we are given a matrix A and interval vector X = [x, x]. The recognition problem of
whether a given interval vector X is EA-strong eigenvector of A is solvable in O(n5) time.

Proof. According to Theorem 13, the recognition problem of whether a given interval vector X is
EA-strong eigenvector of A is equivalent to recognizing if the system Ã ⊗ α = x̃ has a solution α

with aij ≤ αij ≤ aij and αk+1 = I. The computation of a system A ⊗ y = b needs O(rs ·min(r, s))
time (see [18]), where A ∈ B(r, s), b ∈ B(r). Therefore, the computation of such systems is done in
O(n2 · n2 · n) = O(n5) time.

6.2. AE-Strong Eigenvector

Denote A∀G = {A∀, A∀}.

Theorem 15. Let A, X be given. Then, X is an AE-strong eigenvector of A if and only if

(∀A∀ ∈ A∀G)(∃A∃ ∈ A∃)(∀x ∈ X) (A∃ ⊕ A∀)⊗ x = x.

Proof. Suppose that for A∀ there is B∃ ∈ A∃ such that for all x ∈ X the equality (B∃ ⊕ A∀)⊗ x = x
holds true and for A∀ there is C∃ ∈ A∃ such that for all x ∈ X the equality (C∃ ⊕ A∀) ⊗ x = x is
fulfilled. Moreover, assume that x ∈ X is arbitrary but fixed. Then, for any i ∈ N there is k, l ∈ N such
that the following

((A∀ ⊕ B∃)⊗ x)i =
⊕
j∈N

(a∀ij ⊕ b∃ij)⊗ xj = (a∀ik ⊕ b∃ik)⊗ xk ≥ (a∀iv ⊕ c∃iv)⊗ xv,

(a∀iv ⊕ b∃iv)⊗ xv ≤ (a∀il ⊕ c∃il)⊗ xl =
⊕
j∈N

(a∀ij ⊕ c∃ij)⊗ xj = ((A∀ ⊕ C∃)⊗ x)i

holds for any v ∈ N.
We will prove that for an arbitrary but fixed matrix A∀ ∈ A∀, there is A∃ ∈ A∃ such that

(A∃ ⊕ A∀)⊗ x = x.
Put A∃ := B∃. Then, there is r ∈ N such that

((B∃ ⊕ A∀)⊗ x)i = (a∀ir ⊕ b∃ir)⊗ xr.

Consider two cases.
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Case 1. For (i, r) ∈ Ñ∀, we get

(a∀ir ⊕ b∃ir)⊗ xr = a∀ir ⊗ xr ≤ a∀ir ⊗ xr = (a∀ir ⊕ c∃ir)⊗ xr ≤ (a∀ik ⊕ b∃ik)⊗ xk = xi.

Thus, we have
((A∀ ⊕ B∃)⊗ x)i = (a∀ir ⊕ b∃ir)⊗ xr ≤ xi.

The reverse inequality follows from the monotonicity of operations

(A∀ ⊕ B∃)⊗ x ≥ (A∀ ⊕ B∃)⊗ x = x. (4)

Case 2. For (i, r) ∈ Ñ∃, we get

(a∀ir ⊕ b∃ir)⊗ xr = b∃ir ⊗ xr = (a∀ir ⊕ b∃ir)⊗ xr ≤ (a∀il ⊕ c∃il)⊗ xl = xi.

Because the reverse inequality trivially follows from (4), the equality ((B∃ ⊕ A∀) ⊗ x)i = xi
is proven.

The reverse implication is trivial.

Theorem 16. Let A, X be given. Then, X is AE-strong eigenvector of A if and only if

(∀A∀ ∈ A∀G)(∃A∃ ∈ A∃)(∀k ∈ N) (A∃ ⊕ A∀)⊗ x(k) = x(k).

Proof. By Lemma 1, if xk ≤ βk ≤ xk for k ∈ N, then x =
n⊕

k=1
βk ⊗ x(k) belongs to X; and if x ∈ X,

then we can find xk ≤ βk ≤ xk for k ∈ N such that x =
n⊕

k=1
βk ⊗ x(k). Then, for any A∀ ∈ A∀G there is

A∃ ∈ A∃ such that for and fixed x ∈ X we have

(A∃ ⊕ A∀)⊗ x = (A∃ ⊕ A∀)⊗
⊕
k∈N

βk ⊗ x(k) =

⊕
i∈N

(A∃ ⊕ A∀)⊗ x(k) ⊗ βk =
⊕
k∈N

x(k) ⊗ βk =
⊕
k∈N

βk ⊗ x(k) = x

and by Theorem 15 the implication follows. The reverse implication trivially holds true.

Let A and X be given and Ñ∃ = {(i1, j1), . . . , (ik, jk)}. For each A∀ ∈ A∀G and v ∈ N, we denote
the block matrix C(A∀, v) ∈ B(n, k + 1) and α ∈ B(k + 1) as follows

C(A∀, v) =
(

A(i1 j1) ⊗ x(v) . . . A(i1 jk) ⊗ x(v) A(i2 j1) ⊗ x(v) . . . A(ik jk) ⊗ x(v) A∀ ⊗ x(v)
)

,

and
α =

(
α11, . . . , α1k, α21, . . . , α2k, . . . , αk1, . . . , αkk, αk+1

)T
,

where αk+1 is a variable corresponding to the last column of C(A∀, v).

Theorem 17. Let A, X be given. Then, X is an AE-strong eigenvector of A if and only if each A∀ ∈ A∀G and
for each v ∈ N the system C(A∀, v)⊗ α = x(v) has a solution α such that aij ≤ αij ≤ aij and αk+1 = I.

Proof. Suppose that v ∈ N and A∀ ∈ A∀G are fixed. The system C(A∀, v)⊗ α = x(v) is solvable if and
only if there is a vector α such that

k⊕
i,j=1

αij ⊗ A(ij) ⊗ x(v) ⊕ A(rs) ⊗ xv = x(v)
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with aij ≤ αij ≤ aij and αk+1 = I. Put A∃ =
k⊕

i,j=1
αij ⊗ A(ij) and by Theorem 16 the assertion

holds true.

Theorem 18. Let A, X be given. The recognition problem of whether a given interval vector X is an AE-strong
eigenvector of A is solvable in O(n5) time.

Proof. According to Theorem 17, the recognition problem of whether a given interval vector X is an
AE-strong eigenvector of A is equivalent to recognizing if the system C(A∀, v)⊗ α = x(v) has a solution
α with aij ≤ αij ≤ aij and αk+1 = I. The computation of a system A⊗ y = b needs O(rs ·min(r, s))
time (see [18]), where A ∈ B(r, s), b ∈ B(r). Therefore, the computation of such systems is done in
n ·O(n · n2 · n) = O(n6) time.

7. Conclusions

In this paper, we have presented the properties of steady states in max–min discrete event systems.
This concept, in connection with inexact entries and its exists/forall quantification, represents an
alternating version to fuzzy discrete events systems which are using vectors and matrices with entries
between 0 and 1, and are describing uncertain and vague values. The practical significance of this
approach is that some elements of the vector X and the matrix A are taken into account for all values
of the interval (corresponding to A-index), and some of them are only considered for at least one value
(corresponding to E-index).

The concept of various types of the strong EA/AE-eigenvectors and the EA/AE-strong
eigenvectors have been studied. In addition, their characterizations by equivalent conditions are given.
All findings have been formally analyzed with a target to estimate the computational complexity of
checking the obtained equivalent conditions. The results have been illustrated by an application of the
obtained methodology on a numerical example.

The investigation of AE/EA concepts for steady state of discrete events systems with interval
data has brought new efficient equivalent conditions. There is a good reason to continue the study
of exists/forall quantification method for tolerable, universal and weak eigenvectors which are still
unexplored and stay open for future research.
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Appendix A

The idea of EA/AE-splitting the interval vector (matrix) X (A) in the form X∃ ⊕ X∀ (A∃ ⊕ A∀),
can be considered simultaneously using partitions N = {N∃, N∀} and Ñ = {Ñ∃, Ñ∀}. By combining
both approaches, the following four notions can be defined.

Definition A1. Let A, X be given. Then X is called

• an EA-strong EA-eigenvector of A if there is A∃ ∈ A∃ such that for each A∀ ∈ A∀ interval vector X is
an EA-eigenvector of A∃ ⊕ A∀,

• an EA-strong AE-eigenvector of A if there is A∃ ∈ A∃ such that for each A∀ ∈ A∀ interval vector X is
an AE-eigenvector of A∃ ⊕ A∀,

• an AE-strong EA-eigenvector of A if for each A∀ ∈ A∀ there is A∃ ∈ A∃ such that interval vector X is
an EA-eigenvector of A∃ ⊕ A∀,
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• an AE-strong AE-eigenvector of A if for each A∀ ∈ A∀ there is A∃ ∈ A∃ such that interval vector X is
an AE-eigenvector of A∃ ⊕ A∀.

Every of these notions can be characterized in a similar way as that used in the previous two
sections: Theorems 11 and 12, or Theorems 15 and 16.

For the sake of brevity, only the first notion will be discussed here. The remaining cases
are analogous.

Theorem A1. Let A, X be given. Then, interval vector X is an EA strong EA-eigenvector of A if and only if

(∃A∃ ∈ A∃)(∃x∃ ∈ X∃)(∀x∀ ∈ X∀) [(A∃ ⊕ A)⊗ (x∃ ⊕ x∀) = (x∃ ⊕ x∀)∧

(A∃ ⊕ A)⊗ (x∃ ⊕ x∀) = (x∃ ⊕ x∀)].

Proof. (⇐) The assertion follows from the monotonicity of the operations; that is,

x∃ ⊕ x∀ = (A∃ ⊕ A)⊗ (x∃ ⊕ x∀) ≤ (A∃ ⊕ A∀)⊗ (x∃ ⊕ x∀) ≤

(A∃ ⊕ A)⊗ (x∃ ⊕ x∀) = x∃ ⊕ x∀.

The converse implication is trivial.

Theorem A2. Let A, X be given. Then, interval vector X is an EA strong EA-eigenvector of A if and only if

(∃A∃ ∈ A∃)(∃x∃ ∈ X∃)(∀x(k) ∈ X∀) [(A∃ ⊕ A)⊗ (x∃ ⊕ x(k)) =

(x∃ ⊕ x(k)) ∧ (A∃ ⊕ A)⊗ (x∃ ⊕ x(k)) = (x∃ ⊕ x(k))].

Proof. This assertion follows from Theorem 1 and Theorem A1.

Remark A1. In view of Theorem A2, the verification of whether or not X is an EA-strong EA-eigenvector of
A requires us to find a vector x∃ ∈ X∃ and a matrix A∃ ∈ A∃ satisfying some two–sided max–min quadratic
systems. This recognition problem and the analogous problems for remaining cases in Definition A1 have not
been studied in this paper.
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Abstract: Complex fuzzy theory has strong practical background in many important applications,
especially in decision-making support systems. Recently, the Mamdani Complex Fuzzy Inference
System (M-CFIS) has been introduced as an effective tool for handling events that are not restricted to
only values of a given time point but also include all values within certain time intervals (i.e., the
phase term). In such decision-making problems, the complex fuzzy theory allows us to observe both
the amplitude and phase values of an event, thus resulting in better performance. However, one of
the limitations of the existing M-CFIS is the rule base that may be redundant to a specific dataset.
In order to handle the problem, we propose a new Mamdani Complex Fuzzy Inference System with
Rule Reduction Using Complex Fuzzy Measures in Granular Computing called M-CFIS-R. Several
fuzzy similarity measures such as Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex
Fuzzy Dice Similarity Measure (CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM)
together with their weighted versions are proposed. Those measures are integrated into the M-CFIS-R
system by the idea of granular computing such that only important and dominant rules are being
kept in the system. The difference and advantage of M-CFIS-R against M-CFIS is the usage of the
training process in which the rule base is repeatedly changed toward the original base set until the
performance is better. By doing so, the new rule base in M-CFIS-R would improve the performance of
the whole system. Experiments on various decision-making datasets demonstrate that the proposed
M-CFIS-R performs better than M-CFIS.

Keywords: complex fuzzy set; similarity measure; complex fuzzy measure; Mamdani Complex
Fuzzy Inference System (M-CFIS); rule reduction; granular computing
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1. Introduction

Zadeh [1] proposed fuzzy set (FS) as an approach for representing and processing vagueness
found abundantly in the real world. Fuzzy inference systems (FIS) are used to generate fuzzy rule sets,
which are applied in solving problems in various applications such as detection [2,3], prediction [4,5],
classification [6–8], and other tasks [9–14]. A Complex Fuzzy Set (CFS) [15] is an extension of the fuzzy
set, where the membership function consists of both the amplitude term and the phase term. Building
upon this, Ramot et al. [16] proposed a novel framework for logical reasoning, termed Complex Fuzzy
Logic (CFL), using the CFS theory. Although the CFS and the extensions of the CFS were not applied
directly in applications, CFSs were considered as a basic concept to make intelligent systems capable
of handling different issues [17–24].

Recently, the Mamdani Complex Fuzzy Inference System (M-CFIS) was proposed in [23]. Some other
FISs in the CFS were also developed such as the Adaptive Neuro-complex Fuzzy Inferential System
(ANCFIS) with higher-order TSK models [25], Randomized Adaptive Neuro-complex Fuzzy Inference
System (RANCFIS) [26], and Fast Adaptive Neuro-complex Fuzzy Inference System (FANCFIS) [27].
However, a potential impairment of the existing M-CFIS is that the rule base may be redundant to a
specific dataset. In order to remedy the problem, fuzzy similarity measures should be utilized.

The measures of the CFS were presented in [28], including complex fuzzy distances and
distance measures between two CFSs. The distance measures of the CFS were introduced in [29,30].
Setnes et al. [31] proposed a similarity measure in fuzzy rule base to evaluate the equality between
two fuzzy sets and to simplify the rule base. Similarity measures in complex neutrosophic sets
were presented in [32], including Cosine, Dice, and Jaccard similarity measures. The candidates of
multi-attribute decision-making were assessed by these measures. Apart from that, the measures based
on FS, CFS, or FIS were also used to calculate weights of criteria in a decision-making system [33]. In the
CFS, the complex fuzzy measure was defined as the cardinality of fuzzy rule set [29]. The complex
fuzzy measures (t-norm and t-conorm) in Mamdani CFIS (M-CFIS) were introduced in [23], where the
obtained rule set in M-CFIS directly affects to the results of decision-making. In most cases, there is
redundancy in the rule base obtained from M-CFIS.

This paper proposes a new Mamdani Complex Fuzzy Inference System with Rule Reduction
Using Complex Fuzzy Measures in Granular Computing called M-CFIS-R. Several fuzzy similarity
measures, including Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex Fuzzy Dice
Similarity Measure (CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM) together with
their weighted versions are proposed. Those measures are integrated into the M-CFIS-R system by the
idea of Granular Computing where only important and dominant rules will be kept in the system.
These complex fuzzy measures are used to evaluate the similarity among complex fuzzy rules in
the rule set of M-CFIS. Based on the values of these measures, the rules with high similarity will be
reduced to guarantee high performance. The advantage of M-CFIS-R over M-CFIS is the usage of the
training process in which the rule base is repeatedly changed toward the original base set until the
performance is better. By doing so, the new rule base in M-CFIS-R would improve the performance
of the whole system. The performance of proposed method is experimentally validated on various
decision-making datasets.

2. Related Works

2.1. Complex Fuzzy Measures

Most research on complex fuzzy measure has mainly focused on certain aspects [34,35] such as
the fuzzy measure and classical theory of complex fuzzy numbers, similarity, and distance with the
CFS [29,30].
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In a fuzzy rule base, the concept of similarity measure was mentioned by Setnes et al. [31].
Based on this, the similarity of two fuzzy sets was defined. Then, similar fuzzy sets were removed and
the common presentations were kept in the rule base. Ma and Li [36] extended the classical measure to
fuzzy complex number valued measure and defined some important properties on complex fuzzy set
valued complex fuzzy measures. These properties generalized the corresponding results in measure
theory and on the related integral theory. In another study [37], Ma et al. proposed a new concept
of complex fuzzy measure, which is distinguished between the real and imaginary. Based on the
complex fuzzy measure, Ma and Li [38] focused on the convergence problem of the complex fuzzy
integral. Alkouri and Salleh [28] introduced the definitions of linguistic variables and linguistic hedges
on the CFS. In this research, they also presented several distance measures in the CFS, which might be
used as a suggestion in decision-making, prediction, and pattern recognition to find optimal solutions.
Other measures and operations on other types of the complex fuzzy set were also presented in [23,29].

The information measure in Complex Intuitionistic Fuzzy Set (CIFS) was given by Garg and
Rani [39] in a multiple-criteria decision-making for uncertain and vague data. The quaternion
representation and distance on CIFS were proposed in [40] with an application in medical diagnosis.
These formulas of quaternion representation and distance measure were used in a diagnosis model
by calculating patient–disease relations. The threshold obtained via learning process was used to
decide the output of model. In the Interval-Valued Complex Fuzzy Set (IvCFS), distance measures
were defined on Euclidean metric and Hamming metric [37]. The authors presented an example to
illustrate the use of these measures in decision-making. In the case of Complex Neutrosophic Set
(CNS), similarity measures with the weighted versions were introduced in [32]. Using these measures,
the decision-making model could rank the priority of candidates. The best one was selected to make
a decision. These measures lead to good decisions because they considered the interaction among
attributes in the dataset and the indeterminacy of data.

2.2. Fuzzy Inference System in Complex Fuzzy Set

Many intelligent systems with different applications were based on FIS [2–4,6,7]. Sagir et al. [4]
proposed two extended models of ANFIS to apply to the heart disease prediction problem. The limitations
of these extended models are that the accuracy of classification is not very high and the number of rules
is great. A combination of multiple kernel learning and ANFIS was introduced by Manogaran and
Varatharajan [7]. This method resulted in higher performance than other compared models. However,
the application of this model focused on diagnosing heart disease with only two input features. ANFIS
was also used in detecting lung cancer [3] by cancerous and non-cancerous segmentation on computed
tomography images.

ANCFIS in time series forecasting has higher quality than other related models, including
ANFIS [25]. Using the experimental results on five real datasets, the values of MSE and NDEI from
applying ANCFIS are less than those of the compared models. ANCFIS was improved as FANCFIS to
deal with multivariate time series problem [27,41]. This model was designed to maintain the accuracy
and decrease time computing of ANCFIS. Many applications of these systems were also presented
in [24,26,42]. The combination of the CFS and machine learning or other state-of-the-art tools was one
of the popular approaches to carry out practical problems. In [43], a CFS with multiswarm learning
was proposed for multiclass prediction problems. Granular computing was utilized for complex fuzzy
sets in [44]. The granulation was used to interpret complex fuzzy contexts provided by users.
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3. Preliminaries

3.1. Complex Fuzzy Set

Definition 1 [1]. A fuzzy set F over X is defined by

F =
{
(x,μF(x)) : x ∈ X

}
(1)

where the membership function of F, μF(x), is μF : X → [0, 1] . For each x ∈ X, the value μF(x) represents the
degree of membership of x in the fuzzy set F.

Definition 2 [15]. A complex fuzzy set (CFS) S on X, is characterized by a membership function ηS(x) that
lies within the unit circle in the complex plane and has the form pS(x).ei.μS(x)where the amplitude pS(x) and
phase μS(x) are both real-valued, pS(x) ∈ [0, 1],and i =

√−1.

S =
{
x, ηS(x)

∣∣∣x ∈ X
}

(2)

Definition 3 [45]. Some basic operations of CFS:

Consider two CFSs, A and B, in a universe of discourse X with membership degrees of ηA(x) =
pA(x)ejμA(x), ηB(x) = pB(x)ejμB(x), respectively. The operations of these two CFSs are defined as follows:

ηA∪B(x) = [pA(x) ⊕ pB(x)]ej(μA∪B) = max(pA(x), pB(x)). ej(max(μA(x),μB(x))) (3)

ηA∩B(x) = [pA(x) ∗ pB(x)]ej(μA∩B) = min(pA(x), pB(x)). ej(min(μA(x),μB(x))) (4)

where ηA∪B(x) is the union and ηA∩B(x) is the intersection operation of the CFSs A and B, ∗ is t-norm,
and ⊕ is t-conorm.

Definition 4 [45]. Let A be a complex fuzzy set on X. The complement of S is

ηc(A)(x) = pc(A)(x)e
jμc(A)(x) =

(
1− pc(A)

)
(x).ej(2π−μc(A)(x)) (5)

Definition 5 [45]. Let A and B be two CFSs on X with ηA(x) = pA(x)ejμA(x), ηB(x) = pB(x)ejμB(x).
The complex fuzzy product of A and B is

ηA◦B(x) = pA◦B(x)ejμA◦B(x) = (pA(x).pB(x)).ej
μA(x).μB(x)

2π (6)

Definition 6 [45]. A distance of complex fuzzy sets is ρ : (F∗(U) × F∗(U))→ [0, 1] , for any A, B, and C ∈
F∗(U)

i. ρ(A, B) ≥ 0, ρ(A, B) = 0 IFF A = B,
ii. ρ(A, B) = ρ(B, A ),
iii. ρ(A, B) ≤ ρ(A, C) + ρ(C, B),

where F∗(U) is the set of all complex fuzzy sets in U.

Definition 7 [45]. Assume A and B, with ηA(x) = pA(x)ejμA(x), ηB(x) = pB(x)ejμB(x). A and B are δ-equal
IFF (A, B) ≤ 1− δ, 0 ≤ δ ≤ 1.
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Definition 8 [45]. Assume A and B, with ηA(x) = pA(x)ejμA(x), ηB(x) = pB(x)ejμB(x). The distance of two
CFSs defined on the same product space is defined as follows:

d(A, B) = max

⎛⎜⎜⎜⎜⎜⎝ sup
(x,y)∈UxV

∣∣∣pA(x, y) − pB(x, y)
∣∣∣, 1

2π
sup

(x,y)∈UxV

∣∣∣μA(x, y) − μB(x, y)
∣∣∣⎞⎟⎟⎟⎟⎟⎠ (7)

3.2. Mamdani Complex Fuzzy Inference System (M-CFIS)

In this section, we introduce the Mamdani Complex Fuzzy Inference System (M-CFIS) [23].
The general structure of Mamdani CFIS consists of six stages [23]:

Let x1, x2, . . . , xn ∈ C be the inputs of this model.
Stage 1: Establish a set of complex fuzzy rules
Based on practical application, we will determine the set of complex fuzzy rules in the form:

CFR1 : If x1,1 is A1,1 O1,1x1,2 is A1,2 O1,2 . . . O1,n1−1 x1,n1 is A1,n1 , is Z1

CFR2 : If x2,1 is A2,1 O2,1x2,2 is A2,2 O2,2 . . . O2,n2−1 x2,n2 is A2,n2 , is Z2

. . . . . . . . .
CFRk : If xk,1 is Ak,1 Ok,1 xk,2 is Ak,2 Ok,2 . . .Ok,nk−1 xk,nk

is Ak,nk
, is Zk

With all u, v:

(i) (u, v) ∈ {1, 2, . . . , n}, with 1 ≤ u, 1 < u, 2 < . . . < u, nu ≤ n;

(ii) ηAu,v(xu,v) = pAu,v(xu,v) e j μAu,v (xu,v), with pAu,v : C→ [0, 1] and μAu,v : C→ (0, 2π] ;

(iii) ηZu(y) = pZu(y) e j μZu (y), with pZu : C→ [0, 1] and μZu : C→ (0, 2π] ;
(iv) T0 is a T-norm, and S0 is the S-norm (i.e., the T-conorm) that corresponds to T0;
(v) Ou,v = and IFF Nu,v = T0;
(vi) Ou,v = or IFF Nu,v = S0.

Stage 2: Fuzzification of the inputs
Inputs are fuzzified using complex membership function η(x) = p(x).ej μ(x), where μ(x) ∈ (0, 2π],

p(x) ∈ [0, 1], and p(x) and μ(x) represent the amplitude and phase terms of the elements, respectively.
Stage 3: Establish the firing strength of rule
This stage computes the firing strength ωu for each complex fuzzy rule as: ωu = τu e j ψu .
Stage 4: Calculate the consequence of the complex fuzzy rules
In Mamdani CFIS, the value of the consequence of the complex fuzzy rules is obtained by using

the Mamdani implication rule.

ηA→B(x, y) = (pA(x).pB(y)). ej 2π(
μA(x)

2π .
μB(y)

2π ) (8)

Choose a function U0 : [0, 1]2 → [0, 1], with U0(1, 1) = 1, and a function g0 : (0, 2π]2 → (0, 2π],
with g0(2π, 2π) = 2π. We form the consequent of CFRu for each u:

Γu(y) = U0(τu, rCu(y))e j g0(ψu,μCu (y)) = ωu.ηCu(y)

where “.” denotes the complex dot product.
Stage 5: Aggregation
In this stage, the output distribution is calculated as follows:

D(y)= Γ1(y) + Γ2(y) + . . .+ Γk(y).

Stage 6: Defuzzification.

363



Mathematics 2020, 8, 707

Choose a function Φ : F (C ,C)→ C. Determine the value of the output yop = Φ(D). For example,

we can choose the trapezoidal approximation such as Φ(D) =

∫ ∞
−∞ y|D(y)|dy∫ ∞
−∞|D(y)| dy

.

3.3. Granular Computing

Granular computing [46,47] generally refers information granulation that includes probabilistic
set, fuzzy set, and rough set. In the context of fuzzy sets, each element can be viewed as a granule of a
certain degree of membership to the set. It is used to simplify complex problems by decomposing
strategy in term of information granulation. Studying rule learning with granular computing has an
important role in improving the model accuracy. Thus, the relationship between granular computing
and rule-based systems is argued.

4. Proposed M-CFIS-R System

4.1. Main Ideas

It has been observed from Section 2 that changing the number of rules in a rule base for better
performance of classification is still a challenge when designing a FIS model. Hence, it is necessary
to have an effective measure to evaluate the importance of each rule in the rule base. This section
will propose three similarity measures in the Training stage. In our decision-making model, granular
computing is used in the last stage of Training. The purpose of using granular computing is to reduce
the rules with high similarity or to add more rules in order to get higher coverage. The result of this
stage is a new rule set with suitable number of rules with high classification accuracy compared to
the original rule set. Comparing with the architecture of M-CFIS [23], we add the Training process
in order to create the original complex fuzzy rule base and improve it by the Granular Computing
with Complex Fuzzy Measure (i.e., Granular Complex Fuzzy Measure). The Testing phase follows
the inference process in the M-CFIS discussed in Section 3.2 but with the reduced complex fuzzy
base. The model is divided into two parts: (i) Training used to train the generation of fuzzy rules
is discussed in detail in Section 4.2; (ii) Testing used to test the performance of the rule system is
discussed in Section 4.3.

4.2. Training

In this model, we divide the dataset into the Training–Validation–Testing parts by K-Folds (where
K is often small, e.g., 3). From the Training data, we build the real and imaginary data (presented
in Section 4.2.1). Then, fuzzy clustering (i.e., Fuzzy C-Means [48]) is performed for each attribute of
those data to obtain the set of fuzzy rules, which is considered as the original complex fuzzy rule base
(see Section 4.2.2). This rule base is evaluated on the Validation data to get the performance, namely
A (see Section 4.2.3). Next, we try to improve the original complex fuzzy rule base by calculating
the correlations between complex fuzzy rules based on different new complex fuzzy measures (see
Section 4.2.4). The similarities of complex fuzzy rules are finally determined by granular computing
according to each label of Validation data (see Section 4.2.5). We then evaluate performance of the new
complex fuzzy rule base called A’ on the Validation data by the same inference module (similar to
Section 4.2.3). If A’ is better than A, we end the Training and proceed to Testing; otherwise, we repeat
the process of using Granular Complex Fuzzy Measure to retrain. The Training process can be seen
in Figure 1.
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Figure 1. Training diagram for the proposed model.

4.2.1. Real and Imaginary Data Selection

From the Training data, we build the real and imaginary data as follows: The real data are defined
as the original data values. The imaginary data at record P of attribute Q is determined as var.P (row) +
var.Q (column), where var.P (row) is the variance in row at row P and var.Q (column) is the variance
according to the column in column Q.

4.2.2. Fuzzy C-Means (FCM)

In this study, we use the Fuzzy C-Means clustering method (Algorithm 1) for dividing the data
according to each attribute into several groups. The number of clusters specified for each attribute is
different based on the semantic value of the attribute. The number of clusters of an attribute in the real
and imaginary parts is the same. Finally, we produce complex fuzzy rules from each cluster.

365



Mathematics 2020, 8, 707

Algorithm 1. Fuzzy C-Means algorithm.

Input Datasets X of N records; C: number of clusters; m: fuzzier; MaxStep
Output Membership U and centers V
BEGIN
1 Iteration t = 0

2 Initialize u(t)kj ← random (k = 1, N j = 1, C) within [0,1] and the sum constraint

3 Repeat
4 t = t + 1

5 Compute Vj =

∑C
k=1 um

kjXk∑C
k=1 um

kj

( j = 1, C)

6 Compute ukj =
1∑C

i=1

( ‖Xk−Vj‖
‖Xk−Vi‖

) 1
m−1

(k = 1, N j = 1, C)

7 Until ‖U(t) −U(t−1)‖ ≤ ε or t >MaxStep

4.2.3. Evaluating Performance of the Rule-Based System

After obtaining the complex fuzzy rule base, we use the Validation data to derive the outputs and
evaluate the performance through Accuracy, Precision, and Recall.

Accuracy =
TN + TP

TN + FN + FP + TP

Recall = |TP|
|TP|+|FN|

Precision = |TP|
|TP|+|FP|

4.2.4. Complex Fuzzy Measures

In this section, we propose three complex fuzzy similarity measures with their weighted versions
as below.

Complex Fuzzy Cosine Similarity Measure (CFCSM)

Definition 9. Assume that there are two complex fuzzy sets, namely S1 = rS1(x)e
jμS1 (x) and S2 = rS2(x)e

jμS2 (x),
x ∈ X. A Complex Fuzzy Cosine Similarity Measure (CFCSM) between S1 and S2 is

CCFS =
1
n

n∑
j=1

(a1b1)(a2b2)√
(a1b1)

2 +

√
(a2b2)

2
(9)

where
a1 = Re

(
pS1(x)e

jμS1 (x)
)
, b1 = Im

(
pS1(x)e

jμS1 (x)
)
, a2 = Re

(
pS2(x)e

jμS2 (x)
)
,

b2 = Im
(
pS2(x)e

jμS2 (x)
)

Proposition 1. Let S1 and S2 be complex fuzzy sets. Then,

1. 0 ≤ CCFS(S1, S2 ) ≤ 1;
2. CCFS(S1, S2 ) = CCFS(S2, S1 );
3. CCFS(S1, S2 ) = 1 if and only if S1 = S2;
4. If S1 ⊂ S2 ⊂ S then CCFS(S1, S ) ≤ CCFS(S1, S2 ) and CCFS(S1, S ) ≤ CCFS(S2, S ).

Proof.

1. It is correct because all positive values of cosine function are within 0 and 1.
2. Trivial.
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3. When S1 = S2 then obviously CCFS(S1, S2 ) = 1. If CCFS(S1, S2 ) = 1, a1 = a2, b1 = b2. This implies
that S1 = S2.

4. Let S =
〈
pS(x).ejμS(x)

〉
and also assume that L1 = Re

[
pS(x).ejμS(x)

]
and L2 = Im

[
pS(x).ejμS(x)

]
.

If S1 ⊂ S2 ⊂ S, we can write that a1b1 ≤ a2b2 ≤ L1L2. The cosine function is a decreasing function
within the interval

[
0, π2

]
. Then, we can write CCFS(S1, S ) ≤ CCFS(S1, S2 ) and CCFS(S1, S ) ≤

CCFS(S2, S ). �

Definition 10. Weighted Complex Fuzzy Cosine Similarity Measure (WCNCSM).

Assume that there are two complex fuzzy sets, namely S1 = pS1(x)e
jμS1 (x) and S2 = pS2(x)e

jμS2 (x),
x ∈ X. A Weighted Complex Fuzzy Cosine Similarity Measure between S1 and S2 is

CWCFS =
∑n

j=1
wj

[ √
a1b1a2b2√

a1b1 +
√

a2b2

]
where

∑n

j=1
wj = 1 (10)

Complex Fuzzy Dice Similarity Measure (CFDSM)

Definition 11. Assume that there are two complex fuzzy sets namely S1 = rS1(x)e
jμS1 (x) and S2 =

rS2(x)e
jμS2 (x), x ∈ X. A Complex Fuzzy Dice Similarity Measure (CFDSM) between S1 and S2 is

DCFS =
1
n

n∑
j=1

2
√

a1b1a2b2

a1b1 + a2b2
(11)

where
a1 = Re

(
pS1(x)e

jμS1 (x)
)
,b1 = Im

(
pS1(x)e

jμS1 (x)
)
, a2 = Re

(
pS2(x)e

jμS2 (x)
)
,

b2 = Im
(
pS2(x)e

jμS2 (x)
)
.

Proposition 2. Let S1 and S2 be complex fuzzy sets. Then,

1. 0 ≤ DCFS(S1, S2 ) ≤ 1;
2. DCFS(S1, S2 ) = DCFS(S2, S1 );
3. DCFS(S1, S2 ) = 1 if and only if S1 = S2;
4. If S1 ⊂ S2 ⊂ S then DCFS(S1, S ) ≤ DCFS(S1, S2 ) and DCFS(S1, S ) ≤ DCFS(S2, S ).

Proof. The proof is similar to Proposition 1. �

Definition 12. Weighted Complex Fuzzy Dice Similarity Measure (WCFDSM).

Assume that there are two complex fuzzy sets, namely S1 = pS1(x)e
jμS1 (x) and S2 = pS2(x)e

jμS2 (x),
x ∈ X. A Weighted Complex Fuzzy Dice Similarity Measure between S1 and S2 is

DWCNS =
∑n

j=1
wj

⎡⎢⎢⎢⎢⎢⎢⎣ 2
(√

a1b1a2b2
)

√
a1b1 +

√
a2b2

⎤⎥⎥⎥⎥⎥⎥⎦ where
∑n

j=1
wj = 1 (12)
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Complex Fuzzy Jaccard Similarity Measure (CFJSM)

Definition 13. Assume that there are two complex fuzzy sets, namely S1 = pS1(x)e
jμS1 (x) and S2 =

pS2(x)e
jμS2 (x), x ∈ X. A Complex Fuzzy Jaccard Similarity Measure (CFJSM) between S1 and S2 is

JCFS =
1
n

n∑
j=1

√
a1b1a2b2

(a1b1 + a2b2) −
(√

a1b1 +
√

a2b2
) (13)

where a1 = Re
(
pS1(x)e

jμS1 (x)
)
, b1 = Im

(
pS1(x)e

jμS1 (x)
)
, a2 = Re

(
pS2(x)e

jμS2 (x)
)
, b2 = Im

(
pS2(x)e

jμS2 (x)
)
.

Proposition 3. Let S1 and S2 be complex fuzzy sets. Then,

1. 0 ≤ JCFS(S1, S2 ) ≤ 1;
2. JCFS(S1, S2 ) = JCFS(S2, S1 );
3. JCFS(S1, S2 ) = 1 if and only if S1 = S2;
4. If S1 ⊂ S2 ⊂ S then JCFS(S1, S ) ≤ JCFS(S1, S2 ) and JCFS(S1, S ) ≤ JCFS(S2, S ).

Proof. The proof is similar to Proposition 1. �

Definition 14. Weighted Complex Fuzzy Jaccard Similarity Measure (WCFJSM)

Assume that there are two complex fuzzy sets namely S1 = pS1(x)e
jμS1 (x) and S2 = pS2(x)e

jμS2 (x),
x ∈ X. A Weighted Complex Fuzzy Dice Similarity Measure between S1 and S2 is

JWCNS =
∑n

j=1
wj

[ √
a1b1a2b2√

a1b1 −
√

a2b2

]
where

∑n

j=1
wj = 1 (14)

4.2.5. Granular Complex Fuzzy Measures

In this section, we describe how to determine the final similarity between complex fuzzy rules from
the correlations of rules described in Section 4.2.4. To accomplish this, we introduce an idea of granular
computing to conceptualize relationships for a combination of fuzzy correlation measures. Assume
that the outputs of three similarity measures in Section 4.2.4 are three corresponding squared matrices
whose elements are the correlations between pairs of complex fuzzy rules: D1, D2, D3. We determine
the final degree of similarity between complex fuzzy rules based on the aggregation:

Fij = a1D1
i j + a2D2

i j + a3D3
i j (15)

For each set of labels, e.g., label l, we obtain Fij(l) to be determined a1(l), a2(l), . . . ae(l).

at(l) =
|Dt/l|∑
i=1

|Dt/l|∑
j=i+1

(
Dt

ij/t
)

∣∣∣Dt/l
∣∣∣ (16)

For rules other than labels, then Fij = 0. From these, we obtain the matrix F.
A new complex fuzzy rule base is found from F by removing rules having a high or maximal

degree of similarity within a group. Then, we proceed to the next steps to evaluate the performance of
the new rule system. In cases that the performance of the new complex fuzzy rule base is worse than
that of the current rule, we return to the steps of computing the complex fuzzy measures (Section 4.2.4)
and granular computing (Section 4.2.5) for the new complex fuzzy rule base. The iteration stops either
when the performance of the new complex fuzzy rule base is better than that of the current base or the
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cardinality of rules according to any label is equal to 1. The following example demonstrates the main
activities of granular computing in M-CFIS-R.

Example 1. Suppose we have a set of 6 complex fuzzy rules in which 3 rules R1, R3, R4 have label 1 (k = 1),
and 3 rules R2, R5, R6 have label 2:

R1: If x1 is Medium and x2 is High and x3 is High then k is 1
R2: If x1 is High and x2 is Low and x3 is Low then k is 2
R3: If x1 is Low and x2 is Medium and x3 is High then k is 1
R4: If x1 is Low and x2 is High and x3 is Medium then k is 1
R5: If x1 is High and x2 is Low and x3 is Medium then k is 2
R6: If x1 is Medium and x2 is Low and x3 is Low then k is 2

Using the complex fuzzy measures (Section 4.2.4), we obtain three matrices as follows:

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5 0.8
0.5 0 0.5
0.8 0.5 0

0.7 0.4 0.3
0.4 0.8 0.9
0.9 0.4 0.5

0.7 0.4 0.9
0.4 0.8 0.4
0.3 0.9 0.5

0 0.5 0.3
0.5 0 0.7
0.3 0.7 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.2 0.5
0.2 0 0.2
0.5 0.2 0

0.4 0.2 0.1
0.3 0.5 0.6
0.5 0.2 0.1

0.4 0.3 0.5
0.2 0.5 0.2
0.1 0.6 0.1

0 0.2 0.3
0.2 0 0.5
0.3 0.5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.1 0.4
0.1 0 0.1
0.4 0.1 0

0.4 0.2 0.1
0.2 0.4 0.3
0.4 0.1 0.2

0.4 0.2 0.4
0.2 0.4 0.1
0.1 0.3 0.2

0 0.2 0.1
0.2 0 0.3
0.1 0.3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We calculate the coefficients of each matrix according to the labels 1, 2:

a1
1=

0.8 + 0.7 + 0.9
3

= 0.8 a1
2=

0.5 + 0.4 + 0.5
3

= 0.467 a1
3=

0.4 + 0.4 + 0.4
3

= 0.4

a2
1=

0.8 + 0.9 + 0.7
3

= 0.8 a2
2=

0.5 + 0.6 + 0.5
3

= 0.533 a1
3=

0.4 + 0.3 + 0.3
3

= 0.333

We calculate the matrix F as follows:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1.034
0 0 0

0.397 0 0

0.907 0 0
0 1.04 1.14

1.114 0 0
0.563 0 0.51

0 0.29 0
0 0.657 0

0 0 0
0 0 0.926
0 0.926 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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It is obvious that the rules with highest similarity within label 1 are R3 and R4, and the rules with
the highest similarity within label 2 are and R2 and R6. Then, the new complex fuzzy rule base is: R1,
R3 with label 1; R2, R5 with label 2.

We calculate performance of the new rule base. If it is worse, we return to compute the complex
fuzzy measures with the current rule base including R1, R3 with label 1 and R2, R5 with label 2. Here,
we demonstrate Iteration 2.

The second iteration: The second set of fuzzy rules R’ is: R’1, R’3 have label 1, R’2, R’4 have label
2. For clarity, we assign a mark (‘) to differentiate between iterations. The corresponding measure
values are:

D1′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0.5

0.5 0
0.8 0.3
0.4 0.7

0.8 0.4
0.3 0.7

0 0.3
0.3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D2′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0.2

0.2 0
0.5 0.1
0.2 0.4

0.5 0.2
0.1 0.4

0 0.1
0.1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D3′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0.1

0.1 0
0.3 0.1
0.1 0.4

0.3 0.1
0.1 0.4

0 0.2
0.2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We calculate the coefficients of each matrix according to the labels 1 and 2:

a
′1
1=

0.8
1

= 0.8 a
′1
2=

0.5
1

= 0.5 a
′1
3=

0.3
1

= 0.3

a
′2
1=

0.7
1

= 0.7 a
′2
2=

0.4
1

= 0.4 a
′1
3=

0.4
1

= 0.4

We calculate the matrix F as follows:

F′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0
0 0

0.98 0
0 0.81

0.98 0
0 0.81

0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We define the similarity with the same label and determine the highest similarity. The following

rules are similar: R’1 and R’3, R’2, and R’4. Then, the new rule base is: R’1 with label 1; R’2 with label
2. We continue to compute performance of the new rule base. Even if the performance is not better
than that of the current rule base, we still stop the algorithm because the cardinality of rules in both
labels 1 and 2 is 1. In order to obtain the best performance, we may use the original complex fuzzy
rule base generated from Training as the final results. As a result, the proposed M-CFIS-R at least has
performance equal to M-CFIS in the worst case.

4.3. Testing

We perform a similar procedure with M-CFIS [23] for testing the performance of the system with
the reduced complex fuzzy rule base found in the Training phase (Figure 2).
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Figure 2. Testing diagram for the proposed model.

Specifically, from Testing data, we build data for the real and imaginary parts. Then, we use
the reduced complex fuzzy rule base generated from the Training model to obtain the consequences.
By using the Aggregation operator and Defuzzification, we obtain the output. Finally, we evaluate the
performance of the outputs based on the evaluation measures (see Section 4.2.3).

4.4. Some Notes on M-CFIS-R

Advantages: The M-CFIS-R model combines M-CFIS, complex fuzzy measures and granular
computing within the Training phase. The result is a new fuzzy rule system with better performance
than M-CFIS. The novelty of this research lies on the complex fuzzy measures within granular
computing. In M-CFIS [23], the Training phase was not described, so it is an advantage for this research
to demonstrate the improvements in this phase. By doing so, we obtain the new M-CFIS with better
complex fuzzy rule base, which results in better performance than M-CFIS [23].

Disadvantages: The new model only stopped at local optimization and did not yet obtain a global
optimal solution because when evaluating the performance of a new fuzzy rule base in the Training,
if it is better than that of M-CFIS, the algorithm stops. This should be enhanced further. Besides,
implementation time of the proposed model is also longer than that of M-CFIS.

5. Experiments

5.1. Experimental Environment

We implemented the proposed M-CFIS-R against M-CFIS [23] in MATLAB 2014 and executed
them on a PC VAIO laptop with Core i5 processor. The experimental data include two types:
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(a) Benchmark Medical UCI Machine Learning Repository Data [49]:

i. The first dataset is the Wisconsin Breast Cancer Diagnosis (WBCD) from UCI [50] with
699 examples (458 benign and 241 malignant) in nine integer inputs and one binary output
(Table 1).

Table 1. Wisconsin Breast Cancer Diagnosis (WBCD) data summary.

No. Feature Name Value Range

1 Clump Thickness 1–10
2 Uniformity of Cell Size 1–10
3 Uniformity of Cell Shape 1–10
4 Marginal Adhesion 1–10
5 Single Epithelial Cell Size 1–10
6 Bare Nuclei 1–10
7 Bland Chromatin 1–10
8 Normal Nucleoli 1–10
9 Mitoses 1–10
10 Class (2: benign, 4: malignant)

ii. The second dataset, named Diabetes Databases [51], is from the Department of Medicine
of the University of Virginia School of Medicine. The data have 391 examples with two
classes to test whether the patient is positive or negative for diabetes. This dataset consists
of five attributes (Table 2).

Table 2. Diabetes data summary.

No Feature Names Value Range

1 Total Cholesterol 78–443
2 Stabilized Glucose 48–385
3 High Density Lipoprotein 12–120
4 Cholesterol/HDL Ratio 1.5–19.3
5 Glycosylated Hemoglobin 2.68–16.11
6 Class (0: negative, 1: positive)

(b) Real Medical Datasets:

i. The third dataset is from Gangthep Hospital and Thai Nguyen National Hospital,
Vietnam [52], including 4156 patients divided into two groups: 2954 examples of
non-diseased patients and 1202 examples of diseased patients (Table 3).

Table 3. Gangthep Hospital and Thai Nguyen National Hospital data summary.

No. Feature Name Value Range

1 Age: at the exam time 5–86
2 Gender (0: male; 1: female)
3 AST: aspartate transaminase 11.4–659.76
4 ALT: alanine aminotransferase 78.52–647.7
5 AST/ALT index 0–8.5
6 GGT: gamma glutamyl transferase 0–3352.6
7 Albumin 0–58.2
8 TB: Total bilirubin 3–669.03
9 DB: Direct bilirubin 0–287.52
10 DB/TB (%) 0–224.8
11 Class (0: nondisease, 1: disease)
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ii. The fourth dataset is the real dental dataset from Hanoi Medical University Hospital,
Vietnam [53], in which dentists provide a properly labeled dataset that consists of 447
X-ray images with the disease of wisdom teeth deviate and 200 X-ray images without
wisdom teeth deviate. The dental experts are from Hanoi Medical University and are
currently working as professional dentists (Figure 3).

  

(a) (b) 

Figure 3. (a) A dental image. (b) The patient’s cavity area image.

From this, we extract the following features: Gradient (GRA) [54]; Local Binary Patterns (LBP) [55];
Patch [56]; and Entropy, Edge-Value, and Intensity (EEI) [57] (Table 4). The input is an image, and the
output is the label of disease or not.

Table 4. Value ranges of the dental dataset.

ID Features Value Range

1 LBP 27.04–55.89
2 EEI 145.65–161.76
3 GRA 85.02–125.07
4 Patch 30.54 × 10−3–208.56 × 10−3

5 Label 0 or 1

The evaluation criteria are Accuracy, Precision, and Recall, as defined in Section 4.2.3.

5.2. Experimental Results on the Benchmark UCI Datasets

Using 3-fold cross-validation method, the values of criteria obtained by applying M-CFIS and
M-CFIS-R on the UCI datasets are visually presented in Figures 4 and 5, respectively. The average
values of validity indices and time consumed are calculated separately on the training and the testing
data. The number of rules is defined after applying granular computing with complex fuzzy measures.
Results are taken as the average of 3-fold cross-validation.
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Figure 4. Performance on the WBCD dataset: (a) Accuracy, Recall, and Precision on training set;
(b) Accuracy, Recall, and Precision on testing set; (c) Time consumed; (d) Number of rules.
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Figure 5. Performance on the Diabetes dataset: (a) Accuracy, Recall, Precision on training set;
(b) Accuracy, Recall, Precision on testing set; (c) Time consumed; (d) Number of rules.

Figure 4 shows the results of applying M-CFIS and M-CFIS-R on the first dataset—WBCD.
The accuracy of M-CFIS-R in the training data (Figure 4a) is higher than that of M-CFIS by 1.2% with
small standard derivation (SD) (about 0.02). This value on the testing data is 1.6% higher with 0.01
of SD. Similarly, the Recall values in Figure 4b of M-CFIS-R in both the training and testing data are
also higher than those of CFIS with the SD being less than 0.02. The Precision values in Figure 4a,b of
M-CFIS-R are a bit higher than those of M-CFIS, with very small SD (SD is even zero in the testing data).

The computation time in Figure 4c of M-CFIS-R is a bit higher than that of M-CFIS, with only
0.25 s on the training data and 0.41 s on the testing data. Thus, the computation time of these methods
can be considered as equal. The average number of rules in Figure 4d of M-CFIS-R is 127 with SD of

375



Mathematics 2020, 8, 707

3.4, which is 35 rules less than the result of M-CFIS (163 rules on average with 2.06 SD). Thus, the rule
base of M-CFIS-R has a lower number of rules than M-CFIS.

The performance comparison between M-CFIS and M-CFIS-R on the Diabetes dataset is presented
in Figure 5. The values of validity indices (Figure 5a,b) obtained from M-CFIS-R are higher than those
of M-CFIS by more than 1% and with small SD.

The running time (Figure 5c) of M-CFIS-R is higher than that of M-CFIS by only 0.02 s on
the training data and 0.086 s on the testing data. The standard derivations are very small as well.
The computation time of M-CFIS-F is equivalent to that of M-CFIS. The average number of rules in
Figure 5d of M-CFIS-R is 5 rules less than that of M-CFIS, with SD of 0.94.

5.3. Experimental Results on the Real Datasets

On the real datasets, the classification quality evaluation between our proposed method M-CFIS-R
and M-CFIS is shown in Figures 6 and 7.

 
(a) 

 
(b) 

(c) (d) 

Figure 6. Performance on the Liver dataset: (a) Accuracy, Recall, Precision on training set; (b) Accuracy,
Recall, Precision on testing set; (c) Time consumed; (d) Number of rules.
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Figure 7. Performance on the Dental dataset: (a) Accuracy, Recall, Precision on training set; (b) Accuracy,
Recall, Precision on testing set; (c) Time consumed; (d) Number of rules.

Figure 6 shows the performance of M-CFIS-R and M-CFIS on the Liver dataset. From Figure 6a,
it is clear that the accuracy of M-CFIS-R on the training data is 2.5% higher than that of M-CFIS.
Moreover, as shown in Figure 6a,b, the recall and precision values of M-CFIS-R on the training and
testing data are about 2.2% higher than those of M-CFIS. Although the recall of M-CFIS-R on the
testing data is 0.4% smaller than that of M-CFIS, the SD is very small (only 0.03). This is caused by the
decreasing in number of rules, as shown in Figure 6d. On the Liver dataset, the number of rules in
M-CFIS-R is 69 less than that of M-CFIS. This is the reason for M-CFIS-R being more time-consuming
than M-CFIS (i.e., 34.5 s higher on the training data and 8.5 s higher on the testing data, as shown in
Figure 6c). The standard derivations of all these results are very low.

The performance evaluation of M-CFIS-R compared to M-CFIS on Dental dataset is presented in
Figure 7. All the results in this table are mostly similar to those of three datasets mentioned above.
The number of rules in M-CFIS-R is 183 rules with SD of 2.5, while the number of rules in M-CFIS
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is 215 with 3.4 SD, as shown in Figure 7d. This explains why the accuracy, precision, and recall of
M-CFIS-R are higher than those of M-CFIS, as seen in Figure 7a,b.

Apart from experimental evaluation above, the qualitative comparisons between the proposed
model and others are provided in Table 5.

Table 5. Theoretical comparison between the proposed work and others.

Authors Model Brief Description Results and Limitations

Selvachandran
et al. [23] Mamdani CFIS

- Extended Mamdani FIS on
complex fuzzy sets (Mamdani
CFIS) together with operations on
this system.
- Output of Mamdani CFIS is a set
of complex fuzzy rules used to
solve diagnosis problems.

- Applying proposed model on
six real datasets with higher
accuracy than Mamdani FIS
and ANFIS.
- Limitation: There is
redundancy in the rule base.

Turabieh et al.
[58] Dynamic ANFIS

- An ANFIS based model to
predict missing values of
incomplete samples based on
complete samples.
- Optimized each rule in the rule
base using MSE.

- The model was validated on
two medical datasets with
good results in handling
missing value datasets.
- Limitation: Unable to deal
with data that have phase or
periodic interval.

Ahmad et al.
[59]

Multilayer
Mamdani FIS

- Proposed two-stage model in
which Mamdani FIS is used to
diagnose hepatitis B.
- First layer determines hepatitis
and second layer diagnoses
hepatitis B.

- Experiments were done on a
real dataset. The correct
classification rate is high.
- Limitation: This method is
restricted to medical dataset of
hepatitis. Does not concern
periodic data.

This paper M-CFIS-R

- Proposed a new rule reduction
for M-CFIS [23] by using granular
computing with complex
similarity measures.
- Theoretical proofs and theorems
were provided.

- Achieved high accuracy of
prediction in both the
benchmark and real datasets.
- Achieved the optimal number
of rules.
- Able to handle the limitations
of rule redundancy and
periodic data.
- Limitation: Time-consuming.

6. Conclusions

This paper proposed a new M-CFIS-R system that incorporated fuzzy similarity measures such
as Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex Fuzzy Dice Similarity Measure
(CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM) in the granular computing
mechanism. The aim is to achieve a better rule base than that in the original M-CFIS system. The rule
base is improved by calculating the correlations between complex fuzzy rules based on different
complex fuzzy measures. The similarities of complex fuzzy rules are finally determined by granular
computing according to each label of Validation data. We then evaluate performance of the new
complex fuzzy rule base on the Validation data by the same inference module. If the performance is
better, we end the Training and proceed to Testing; otherwise, we repeat the process of using Granular
Complex Fuzzy Measure to retrain. In the Testing phase, we perform a similar procedure with M-CFIS
for testing the performance of the system with the reduced complex fuzzy rule base found in the
Training phase. The M-CFIS-R model combines M-CFIS, complex fuzzy measures, and granular
computing within the Training phase. By doing so, we obtain the new M-CFIS with better complex
fuzzy rule base, which results in better performance than M-CFIS.
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The experiments have been performed on the benchmark datasets from UCI Machine Learning
Depository and real datasets from Gangthep Hospital, Thai Nguyen National Hospital, and Hanoi
Medical University Hospital, Vietnam. Obviously, the results in Sections 5.2 and 5.3 clearly affirm that
the proposed M-CFIS-R is better than M-CFIS in terms of accuracy, recall and precision. In general,
all these indices of M-CFIS-R are higher than those of M-CFIS on average, with very low standard
derivation. In most cases, the accuracy values of M-CFIS-R in the training data are smaller than those in
the testing data, e.g., 92.89% vs. 95.84% on the WBCD, 86.37% vs. 89.47% on the Diabetes, and 87.69%
vs. 88.44% on the Dental data. However, M-CFIS-R takes more time to identify the labels of the input
samples because of using the granular computing with complex fuzzy measures. On the other hands,
the rule base obtained from M-CFIS-R has better quality with a smaller number of rules than that of
M-CFIS. In summary, the accuracy of M-CFIS-R is approximately 86.3–92.9% for the Training and
85–95.8% for the Testing data. The rule reduction in M-CFIS-R compared with M-CFIS is by around
4.8–22.1%. Lastly, M-CFIS-R is slower than M-CFIS by around 1.15 times in the Testing data on average.

However, the M-CFIS-R stops at local optimization but did not yet obtain a global optimal solution,
since when evaluating the performance of a new fuzzy rule base in the Training, if it is better than that
of M-CFIS, the algorithm stops. This should be enhanced further. Besides, the implementation time of
the proposed model is also longer than that of M-CFIS. Different concepts of complex fuzzy measures,
complex fuzzy integral, and other variants (i.e., Sugeno and Tsukamoto) of M-CFIS-R should be under
investigation soon.
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Abstract: Driver behavior plays a major role in road safety because it is considered as a significant
argument in traffic accident avoidance. Drivers mostly face various risky driving factors which
lead to fatal accidents or serious injury. This study aims to evaluate and prioritize the significant
driver behavior factors related to road safety. In this regard, we integrated a decision-making model
of the Best-Worst Method (BWM) with the triangular fuzzy sets as a solution for optimizing our
complex decision-making problem, which is associated with uncertainty and ambiguity. Driving
characteristics are different in different driving situations which indicate the ambiguous and complex
attitude of individuals, and decision-makers (DMs) need to improve the reliability of the decision.
Since the crisp values of factors may be inadequate to model the real-world problem considering
the vagueness and the ambiguity, and providing the pairwise comparisons with the requirement of
less compared data, the BWM integrated with triangular fuzzy sets is used in the study to evaluate
risky driver behavior factors for a designed three-level hierarchical structure. The model results
provide the most significant driver behavior factors that influence road safety for each level based on
evaluator responses on the Driver Behavior Questionnaire (DBQ). Moreover, the model generates a
more consistent decision process by the new consistency ratio of F-BWM. An adaptable application
process from the model is also generated for future attempts.

Keywords: fuzzy best worst method; driver behavior factors; road safety; DBQ; Budapest city

1. Introduction

According to data from the worldwide road safety status report, annual traffic deaths are reported
to reach 1.35 million [1]. According to this report, it was stated that the road safety performance for
Hungary is below the EU average. In 2018, the proportion of people died on the roads in Hungary was
set at 64 per million, and this statistic increased by 1% compared to the previous year [2]. However, the
Road Safety Action Program (2014–2016) was integrated with the Hungarian Transport Strategy in line
with the goal of reducing the number of road deaths by 50% between 2010 and 2020. According to
the Road Safety Action Program situation analysis, most accidents stemmed from human-induced
factors. Therefore, addressing them becomes a dynamic target of road safety actions [3]. According to
the estimates of some previous studies, approximately 90% of road traffic accidents have been found to
be the sole or major causative factor of human factors [4–6].

Mathematics 2020, 8, 414; doi:10.3390/math8030414 www.mdpi.com/journal/mathematics383



Mathematics 2020, 8, 414

Many driver behavior factors emerge as dynamic, deliberate violations of the rules and mistakes
resulting from less driving experience, while others appear as a result of carelessness, momentary
errors, or failure to perform an action, the latter being generally age-related [7,8]. In order to alleviate
the driver’s workload and increase the basic services of active vehicle safety systems, identification of
risky driver behavior factors has been handled. However, these systems based on the average driver
performance on the road and individual driver’s attitudes were seldom taken into consideration [9].

To analyze the risky driving behavior for road safety, the Driver Behavior Questionnaire (DBQ)
was first introduced as a tool in the studies in the 1990s [10,11]. Reason et al., (1990) detected three
kinds of driving behaviors, i.e., errors, lapses, and violations, and analyzed the association between
driving behavior and accident involvement. Accordingly, human error is an unintended act or decision.
Slips and lapses happen in very familiar tasks that we can execute without very much conscious
consideration. Violations are intended failures—intentionally doing the wrong act [12–14]. In addition,
the Driver Behavior Questionnaire (DBQ), with an extended version, was used to evaluate aberrant
driver behaviors [12]. While the extended version of the DBQ consists of aggressive and ordinary
violations, lapses and errors [14]. An aggressive violation behavior was identified as contradictory
behavior towards other road users [13].

The previous study observed that the analytic hierarchy process (AHP) method was an effective
approach in terms of prioritizing suburban road safety indicator to access the factors which reduce the
number and severity of accidents in Iran [15]. However, the prioritizing of the AHP method is rather
imprecise; and the subjective assessment by perception, evaluation, development, and assortment
based on the preference of decision-makers (DMs) have a significant impact on AHP outcomes [16]. To
deal with such tricky problems, many researchers integrate fuzzy theory with AHP to incorporate
its results [17–21]. The fuzzy AHP, compared to AHP and the statistical methods of prioritization,
has greater precision and certainty. Although in AHP, the experts compare the alternatives using
their competencies and intellectual skills, but it may not completely reflect the human thinking style.
However, the use of fuzzy numbers is more consistent in human linguistic representations. Therefore,
the decisions can be made more reliable and more precise in the real world using fuzzy numbers [22].

However, it is not possible to ignore the inconsistency in AHP-based pairwise comparison matrices
(PCMs) because inconsistency often occurs in practice [23,24]. The inconsistency in PCMs is the main
drawback of AHP and can lead to uncertain results. In general, it is obvious that if the PCM is 5 × 5
or larger in the decision structure, the relatively consistent filling of this size of matrix by non-expert
evaluators requires significant effort [16].

In order to solve this consistency problem in traditional AHP and to minimize PC surveys,
Rezaei introduced the BWM method [25] to reduce the number of pairwise comparisons in the
traditional AHP process. As a new technique, there are still gaps in both the theoretical structure
and application areas of BWM. Thus, some questions remained open in terms of conditions and
limitations on traditional AHP usage. For the BWM itself, the appropriate consistency ratio value
and the inconsistency improving procedures can be addressed. Additionally, the BWM within other
contexts could investigate the uncertainty. The model’s multiple optimality solution in BWM can be
determined from other angles [26].

Due to the statistic that BWM is sensitive to preferences of DMs, it is very complicated to calculate
the accurate weights when the DM utilizes natural language, such as “very high”, “medium”, or
“very low”, to express a type of overall preferences [27]. Therefore, in this study, the crisp preferences
in BMW are stretched with triangular fuzzy numbers to overcome the inherent ambiguity of the
DM’s decision in real decision-making problems. Furthermore, this F-BWM model gives fewer PCs
with high consistency of the pairwise comparison matrix. Saaty explains that consistency will not be
good when the number of factors exceeds 7 ± 2 [28]. This is also a theoretical justification of Miller’s
psychological investigation [29]. Therefore, the proposed model produces more consistent and reliable
results with fewer PCs. In summary, BWM with triangular fuzzy sets merely considers reference
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pairwise comparisons and handles inconsistency in an effective manner versus conventional AHP with
triangular fuzzy sets. Therefore, it presents an easy and accurate decision framework.

2. Literature Review

In the literature, BWM and its fuzzy extended versions are frequently applied to various areas,
from manufacturing to supply chain management and transportation [30]. Although plenty of papers
have been published in these areas, there are very few contributions applied to the evaluation of
driving behaviors for road safety. Most of the recent BWM/F-BWM contributions focus on supply
chain design, supplier or green supplier evaluation, and occupational or environmental safety risk
analysis [31].

Regarding supply chain performance and supplier assessment, Badi and Ballem [31] studied
supplier selection problems in the pharmaceutical industry using an integrated rough BWM method.
While the Z-number BWM is proposed by Aboutorab et al. [32] for supplier development problem,
intuitionistic F-BWM is applied for the green supplier selection problem by Tian et al. [33]. Wu et
al. [34] integrated the interval type-2 fuzzy sets and BWM for green supplier selection problems.

In the risk assessment literature, AHP or F-AHP is mostly used as a weighted factor scoring
method for risk parameters. After BWM is introduced, researchers have begun to use it instead of
AHP due to its superiorities. BWM/F-BWM is used to assign weights to risk parameters like AHP. In
many studies, it is frequently integrated with FMEA [35–40]. In some other studies, it is integrated
with MCDM such as interval triangular fuzzy Delphi method under 5 × 5 matrix [41], F-TOPSIS [42],
and artificial intelligence-based methods such as Bayesian networks [43,44] and business impact
analysis [45].

In the light of this brief review of the previous studies related to BWM and F-BWM applied to
diverse selection and ranking problems, it is observed that BWM has not integrated yet with fuzzy
sets for the addressed problem “driving behavior evaluation”. Therefore, in the proposed approach,
F-BWM is utilized to determine the importance weight of driver behavior factors related to road
safety. As fuzzy extensions, triangular fuzzy numbers are used in the existed study since they reflect
uncertainty in the decision-making process well. Additionally, the DBQ is attached to the F-BWM
to strengthen the methodology of the study. The benefits of the applied F-BWM methodology are
as follows: (1) From the theoretical viewpoint, it has designed a solid decision-making framework
with the aid of triangular fuzzy numbers and, modeled uncertainty well. Although the literature
covers methods like AHP and BWM in determining the importance weights of factors, the F-BWM
methodology fits well with the structure of the problem handled in this study. The full consistency
method (FUCOM) is the simplest example. It is proposed by Pamučar et al. [46] and applied by many
scholars [47–49] to various MCDM problems. (2) From an application viewpoint, the study considers a
DBQ and priorities the driving behavior factors relating to road safety. Previous studies regarding
driving behavior factor evaluation are mostly based on statistical inference logic either cross-sectional
or cross-cultural. However, this study handles the problem in an MCDM manner. Additionally, as
a case study, the Budapest city of Hungary is studied to demonstrate applicability. Of course, the
approach can be adapted to other cities.

3. Materials and Methods

3.1. Driver Behavior Questionnaire (DBQ) Survey

The study utilized the driver behavior questionnaire (DBQ) as a tool to collect driver behavior data
on perceived road safety issues from Budapest city. To do so, the car drivers having at least fifteen-year
driving experience were asked to fill the DBQ by face-to-face method, which increased its reliability.
The drivers who participated in this study were the faculty members of the Department of Transport
Technology and Economics and the Department of Control for Transportation and Vehicle Systems at
Budapest University of Technology and Economics who also have transportation engineering research
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experience. In addition, the participants were asked to indicate how often they likely to involve in
each of the observed driver behaviors in the recent year using Saaty’s traditional ratio scale (1–9). The
questionnaire survey was designed in two parts: The first part intended to measure demographic
data about the participants and results are tabulated in Table 1. The results stated the mean and
standard deviation (SD) values of observed data such as age, gender, and driving experience based on
drivers’ responses. In addition, we used digits (1, 0) for assessment purposes to explain simply the
characteristics of gender.

Table 1. Sample characteristics.

Variables Data Analysis Results

N 100
Age: Mean (SD) 32.341 (3.421)

Gender (1 =male, 0 = female):
Mean (SD) 0.845 (0.125)

Duration of driving license:
Mean (SD) 15.312 (1.589)

The second part of DBQ designed on Saaty scale (1977) to analyze the significant driver behavior
factors related to road safety. For evaluation purposes, the driver behavior factors were designed in a
three-level hierarchical structure and symbolized each factor with alphabet ‘F’ as shown in Figure 1.
These driver behavior factors have a significant influence on road safety. Some recent studies considered
the specified driver behavior factors for evaluation of road safety performance by different evaluator
groups [50–52].

Figure 1. The hierarchical structure of the problem [50].

3.2. Overview on Best Worst Method (BWM)

The general BWM method was created by Rezaei (2015) to derive the weights of the criteria with
the smaller number of comparisons and more consistent comparisons. The most important factor is
the one which has the most vital role in making the decision, while the less important has the opposite
role in the decision process. Furthermore, the BMW does not only derive the weights independently
but it can also be combined with other multi-criteria-decision-making methods [53–55].

• The procedure of the BWM can be highlighted as follows:
• Identification of the decision-making problem and its factors
• Determination of the most crucial and least crucial factor
• Determination of the preference of the most crucial factor over all the other factors
• Determination of the preference of the least crucial factor over all the other factors
• Make the consistency check
• Determination of the importance weight of the factors
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We consider a set of elements (e1, e2, . . . , en) and then select the most important element and
compare it to others using Saaty’s scale (1–9). Accordingly, this provides the most important element
to other vectors would be: Ea = (ea1, ea2, . . . , ean), and obviously eaa = 1. However, the least important
element to other vectors would be: Eb = (e1b, e2b, . . . , enb)

T by using the same scale.
After deriving the optimal weight scores, the consistency has been checked through computing

the consistency ratio from the following formula:

ξ2 − (1 + 2uBW)ξ+ (u2
BW − uBW) = 0Consistency Ratio =

ξ∗
Consistency Index

(1)

where Table 2 provides us the consistency index values:

Table 2. Consistency index (CI) values.

eab 1 2 3 4 5 6 7 8 9

Consistency Index(max ξ) 0.0 0.44 1.0 1.63 2.3 3.0 3.73 4.47 5.23

To obtain an optimal weight for all elements, the maximum definite differences are
∣∣∣∣wa

wj
− eaj

∣∣∣∣ and∣∣∣∣ wj
wb
− ejb

∣∣∣∣, and for all j is minimized. If we assumed a positive-sum for the weights, the following
problem would be solved:

min maxj

{∣∣∣∣wa
wj
− eaj

∣∣∣∣, ∣∣∣∣ wj
wb
− ejb

∣∣∣∣}
s.t.∑
j

bj = 1

bj ≥ 0, for all j

(2)

The problem could be transferred into the following problem:

minξ
s.t.∣∣∣∣wa

wj
− eaj

∣∣∣∣ ≤ ξ, for all j∣∣∣∣ wj
wb
− ejb

∣∣∣∣ ≤ ξfor all j∑
j

bj = 1

bj ≥ 0, for all j

(3)

By solving this problem, we obtain the optimal weights and ξ∗. For further reading on priority
criteria, one may refer to [56,57]. While wB presents the importance weights of best criterion, wW shows
the e importance weights of the worst criterion. eBj denotes the evaluation of the best to others, eW j
denotes the evaluation of the others to worst.

3.3. The Proposed F-BWM Model

3.3.1. General Information on Fuzzy Sets

Prior to explaining F-BWM, some fundamental notations regarding fuzzy sets can be useful.
Zadeh [58] introduced fuzzy sets for better reflecting of the human judgments and assessment in the
decision making process. It is considered as a more robust tool to deal with vagueness, ambiguity, and
uncertainty. Many decision-making problems consist of goals, constraints, and possible actions that
are not known precisely [58]. The usage of fuzzy sets is better for transforming the linguistic decision
of human judgment. Hence, many real-world decision-making problems have used fuzzy sets [59,60].
A triangular fuzzy number consists of lower, medium and upper numbers of the fuzzy as Ã = (l, m, u)
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where l, m and u which is crisp and real numbers (x ≤ y ≤ z. The membership function of a triangular
fuzzy number can be defined as follows:

μÃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
0, x < l

(x− l)/(m− l), l ≤ x ≤ m

(u− x)/(u−m), m ≤ x ≤ u

0 x ≥ u

(4)

A triangular fuzzy number is presented in Figure 2. The linguistic terms and triangular fuzzy
numbers are also given in Table 3.

Figure 2. Triangular fuzzy number.

Table 3. The linguistic terms and fuzzy numbers.

Linguistic Term Triangular Fuzzy Number

Equally Importance (EI) (1, 1, 1)
Weakly Important (WI) (2/3, 1, 1.5)

Fairly Important (FI) (1.5, 2, 2.5)
Very Important (VI) (2.5, 3, 3.5)

Absolutely Important (AI) (3.5, 4, 4.5)

Ã1 = (l1, m1, u1) and Ã2 = (l2, m2, u2) are any two triangular fuzzy numbers, and the mathematical
calculation of the two triangular fuzzy numbers is defined as follows:

The addition operation:

Ã1 + Ã2 = (l1 + l2, m1 + m2, u1 + u2) (5)

The subtraction operation:

Ã1 − Ã2 = (l1 − u2, m1 −m2, u1 − l2) (6)

The multiplication operation:

Ã1 x Ã2 = (l1xl2, m1xm2, u1xu2) (7)

The arithmetic operation:

kxÃ1 = (kxl1, kxm1, kxu1), (k > 0) (8)
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Ã1

k
=

(
l1
k

,
m1

k
,

u1

k

)
, (k > 0) (9)

The graded mean integration representation (GMIR) R
(
Ãi

)
of a triangular fuzzy number for the

ranking of triangular fuzzy number is calculate as follows:

R
(
Ãi

)
=

li + 4mi + ui
6

(10)

3.3.2. Fuzzy Best-Worst Method (F-BWM)

The BWM was proposed by Rezai (2015) for multi-criteria decision-making problems considering
pairwise comparison manner. The best and worst criteria are determined in BWM [33]. Different
fuzzy sets-based versions have been proposed as intuitionistic fuzzy sets [32,61], triangular fuzzy
numbers [27,62], Z-numbers [34], dominance degree [63], and interval type-2 fuzzy number [64,65].
Mi et al. [66] presented a survey of BWM applications and extensions. The interested readers and
researchers may refer to this study in detail.

In BWM, there are n criteria, and the fuzzy pairwise comparisons are applied based on the
linguistic terms of decision-makers as presented in Table 3. Then, the linguistic evaluations are
transformed into triangular fuzzy numbers. The fuzzy comparison matrix is getting as follows:

c1 c2 · · · cn

Ã =

c1

c2
...
cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ã11 ã12 · · · ã1n
ã21 ã22 · · · ã2n

...
...

. . .
...

ãn1 ãn2 · · · ãnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ãi j denotes the relative fuzzy preference of criterion i to criterion j, which is a triangular fuzzy
number; ãi j = (1, 1, 1) when i = j.

In this paper, we will present the detailed steps of fuzzy BWM. The detailed steps of fuzzy BWM
are used for obtaining the fuzzy weights [62].

Step 1. Construct the criteria system. A set of criteria reflects the performances of different
criteria. Suppose there are n decision criteria {c1, c2, . . . , cn}.

Step 2. Determine the best criterion and the worst criterion. In this step, the best criterion and
the worst criterion is determined by experts based on the constructed decision criteria system. The
best criterion is denoted as cB, and the worst criterion is also denoted as cW .

Step 3. Perform the fuzzy reference comparisons for the best criterion. According to the
pairwise comparison ãi j, cB is the best criterion; cW is the worst criterion. The fuzzy preferences of the
best criterion over all the criteria can be determined. Then, the fuzzy comparisons are converted to
triangular fuzzy numbers. The fuzzy Best-to-Others vector is obtained as follows:

ÃB =
{̃
aB1, ãB2, . . . , ãBn

}
where ÃB denotes the fuzzy best-to-others vector; ãBj denotes the fuzzy comparison of the best criterion
cB over criterion j, j = 1, 2, . . . , n. It is known that ãBB = (1, 1, 1).

Step 4. Perform the fuzzy reference comparisons for the worst criterion. In this step, the fuzzy
preferences of all the criteria over the worst criterion can be determined. They are transformed into
triangular fuzzy numbers. The fuzzy others-to-worst vector can be obtained as:

ÃW =
{̃
a1W , ã2W , . . . , ãnW

}
where ÃW denotes the fuzzy others-to-worst vector; ãiW denotes the fuzzy comparison of the worst
criterion cW , i = 1, 2, . . . , n. It is known that ãWW = (1, 1, 1).
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Step 5. Determine the optimal fuzzy weights
(
w̃∗

1, w̃∗
2, . . . , w̃∗

n

)
. In this step, the optimal fuzzy

weight for each criterion is determined for each fuzzy pair w̃B/w̃j and w̃j/w̃W . It should have

w̃B/w̃j = ãBj and w̃j/w̃W = ã jW . A solution is obtained that the maximum absolute gaps
∣∣∣∣∣ w̃B

w̃j
− ãBj

∣∣∣∣∣ and∣∣∣∣∣ w̃j

w̃W
− ã jW

∣∣∣∣∣ for all j are minimized to satisfy these conditions for all j. w̃B,w̃j and w̃W in fuzzy BWM

are triangular fuzzy numbers. In some cases, we prefer to use w̃j =
(
lwj , mw

j , uw
j

)
for optimal criteria

selection. The triangular fuzzy weight of the criterion w̃j =
(
lwj , mw

j , uw
j

)
is transformed to a crisp value

using Equation (11). Consequently, the constrained optimization problem is constructed for obtaining
the optimal fuzzy weights

(
w̃∗

1, w̃∗
2, . . . , w̃∗

n

)
as follows:

min max
j

{∣∣∣∣∣ w̃B
w̃j
− ãBj

∣∣∣∣∣, ∣∣∣∣∣ w̃j

w̃W
− ã jW

∣∣∣∣∣}

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

R(w̃i) = 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j = 1, 2, . . . , n

(11)

where w̃B =
(
lwB , mw

B , uw
B

)
, w̃j =

(
lwj , mw

j , uw
j

)
, w̃W =

(
lwW , mw

W , uw
W

)
, ãBj =

(
lwBj, mw

Bj, uw
Bj

)
and ã jW =(

lwjW , mw
jW , uw

jW

)
. Equation (12) is transformed to the nonlinearly constrained optimization problem:

min ξ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣ w̃B
w̃j
− ãBj

∣∣∣∣∣ ≤ ξ∣∣∣∣∣ w̃j

w̃W
− ã jW

∣∣∣∣∣ ≤ ξ
n∑

j=1
R(w̃i) = 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j = 1, 2, . . . , n

(12)

where ξ =
(
lξ, mξ, uξ

)
.

Considering lξ ≤ mξ ≤ uξ, it is supposed that ξ∗ = (k∗, k∗, k∗), k∗ ≤ lξ then Equation (13) can be
transferred as:

min ξ∗

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣ (lwB ,mw
B ,uw

B )(
lwj ,mw

j ,uw
j

) − (
lBj, mBj, uBj

)∣∣∣∣∣∣∣ ≤ (k∗, k∗, k∗)∣∣∣∣∣∣∣
(
lwj ,mw

j ,uw
j

)
(lwW ,mw

W ,uw
W)

−
(
l jW , mjW , ujW

)∣∣∣∣∣∣∣ ≤ (k∗, k∗, k∗)
n∑

j=1
R(w̃i) = 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j = 1, 2, . . . , n

(13)

Step 6. Determine the consistency ratio. The consistency ratio is determined in the same way as
BWM. In this step, the consistency index for fuzzy BWM is calculated.
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The main steps of the proposed F-BWM model are discussed in Figure 3.

Figure 3. The main steps of the proposed F-BWM model.

4. Results

The F-BWM model was applied to evaluate driver behavior factors related to road safety and to
compute weight scores. Furthermore, the reliability of the PCs consistency in F-BWM was checked,
and it was acceptable for each matrix. In the following, step by step application of F-BWM to the
problem is provided. In this application, three main factors, eight sub-factors, and nine sub-sub-factors
are evaluated. We will first present the F-BWM model for main factors as violations (F1), lapses (F2),
and errors (F3). The violations (F1) and lapses (F2) are determined as the most significant and the less
significant factor, respectively (Step 2). The fuzzy reference comparisons are applied, and the linguistic
terms for fuzzy preferences of the most significant factor and the less significant factor are given in
Tables 4 and 5, respectively.

Table 4. The linguistic terms for fuzzy preferences of the most important factor.

Factor F1 F2 F3

Best factor (F1) EI FI WI

Table 5. The linguistic terms for fuzzy preferences of the less important factor.

Factor Worst Factor (F2)

F1 FI
F2 EI
F3 WI

Then, the fuzzy most significant-to-others vector and the fuzzy others-to-less significant can be
obtained with respect to Table 3 as follows (Step 3).

ãB = [(1, 1, 1), (3/2, 2, 5/2), (2/3, 1, 3/2)]̃aW = [(3/2, 2, 5/2), (1, 1, 1), (2/3, 1, 3/2)]
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Then, for obtaining the optimal fuzzy weights of all the main factors, the nonlinearly constrained
model is constructed as follows in Equation (14):

min ξ∗

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 1,mw

f 1,uw
f 1

) − (
l f 11, m f 11, u f 11

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 12, m f 12, u f 1||2

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 3,mw

f 3,uw
f 3

) − (
l f 13, m f 13, u f 13

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 1,mw

f 1,uw
f 1

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 12, m f 12, u f 12

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 2,mw

f 2,uw
f 2

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 22, m f 22, u f 22

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)∣∣∣∣∣∣∣
(
lwf 3,mw

f 3,uw
f 3

)
(
lwf 2,mw

f 2,uw
f 2

) − (
l f 32, m f 32, u f 32

)∣∣∣∣∣∣∣ ≤ (e∗, e∗, e∗)

3∑
j=1

R(w̃j) = 1

lwf j ≤ mw
f j ≤ uw

f j
lwf j ≥ 0

j = 1, 2, 3

(14)

Then, the following nonlinearly constrained optimization problem is obtained using represented
by crisp numbers as in Equation (15).

min e

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l f 1 − 1.5 ∗ u f 2 − u f 2 ∗ e ≤ 0; l f 1 − 1.5 ∗ u f 2 + u f 2 ∗ e ≥ 0; m f 1 − 2 ∗m f 2 −m f 2 ∗ e ≤ 0;
m f 1 − 2 ∗m f 2 + m f 2 ∗ e ≥ 0; u f 1 − 2.5 ∗ l f 2 − l f 2 ∗ e ≤ 0; u f 1 − 2.5 ∗ l f 2 + l f 2 ∗ e ≥ 0;
l f 1 − 2

3 ∗ u f 3 − u f 3 ∗ e ≤ 0; l f 1 − 2
3 ∗ u f 3 + u f 3 ∗ e ≥ 0; m f 1 − 1 ∗m f 3 −m f 3 ∗ e ≤ 0;

m f 1 − 1 ∗m f 3 + m f 3 ∗ e ≥ 0; u f 1 − 1.5 ∗ l f 3 − l f 3 ∗ e ≤ 0; u f 1 − 1.5 ∗ l f 3 + l f 3 ∗ e ≥ 0;
l f 3 − 2

3 ∗ u f 2 − u f 2 ∗ e ≤ 0; l f 3 − 2
3 ∗ u f 2 + u f 2 ∗ e ≥ 0; m f 3 − 1 ∗m f 2 −m f 2 ∗ e ≤ 0;

m f 3 − 1 ∗m f 2 + m f 2 ∗ e ≥ 0; u f 3 − 1.5 ∗ l f 2 − l f 2 ∗ e ≤ 0; u f 3 − 1.5 ∗ l f 2 + l f 2 ∗ e ≥ 0;
l f 1 ≤ m f 1 ≤ u f 1; l f 2 ≤ m f 2 ≤ u f 2; l f 3 ≤ m f 3 ≤ u f 3;
1
6 ∗ (l f 1 + 4 ∗m f 1 + u f 1) +

1
6 ∗ (l f 2 + 4 ∗m f 2 + u f 2) +

1
6 ∗ (l f 3 + 4 ∗m f 3 + u f 3) = 1;

l f 1 > 0; l f 2 > 0; l f 3 > 0
e ≥ 0

(15)

The optimal fuzzy weights of three factors (‘violations’, ‘lapses’, and ‘errors’) are calculated
as follows:

w∗
F1 = (0.365, 0.418, 0.500), w∗

F2 = (0.223, 0.246, 0.296), w∗
F3 = (0.283, 0.321, 0.393) and

ξ∗ = (0.303, 0.303, 0.303)
Then, the crisp weights of three factors ‘violations’, ‘lapses’, and ‘errors’, are determined as

follows: w∗
F1 = 0.423, w∗

F2 = 0.251, w∗
F3 = 0.327. In this process, the consistency ratio is calculated.

ãBw = a12 = (1.5, 2, 2.5) is the largest in the interval, hence, CI is considered as 5.29 using Table 6.
The consistency ratio is CR = 0.303/5.29 = 0.0573 which shows a very high consistency because the
consistency ratio 0.0573 is very close to zero.
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Table 6. Consistency index (CI) for fuzzy BWM.

Linguistic
Terms.

Equally
Importance (EI)

Weakly
Important (WI)

Fairly
Important (FI)

Very
Important (VI)

Absolutely
Important (AI)

ãBw (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2)
CI 3 3.8 5.29 6.69 8.04

According to the results of the F-BWM model, among the main factors at the first level, “violations”
(F1) were found to be the most crucial driver behavior factor related to road safety based on the
responses given by the assessors in DBQ. One of the previous studies [67] stated that Road Traffic
Violations (RTVs) are the most important factor causing certain risks for other road users. Subsequently,
“errors” (F3) followed by “lapses” (F2) as shown in Table 7, as the second-ranking factor.

Table 7. The importance weights of the first-level factors.

Factor Weight Rank

F1 0.423 1
F2 0.251 3
F3 0.327 2

Among the second level factors, “aggressive violation” (F12) has emerged as the most crucial
driver behavior factor related to road safety. According to the results of a previous study carried
for Finland and Iran [68], it is found a significant relationship between aggressive violations and the
number of accidents. Additionally, the results demonstrated that “fail to apply brakes in road hazards”
(F33) was determined as the second most crucial factor as compared to other related factors. The
previous study noticed that more fatalities can occur if the driver does not apply the brakes and has
higher impact-speed crashes [69,70]. While “pull away from traffic lights in wrong gear” (F22) is
observed as the lowest ranked driver behavior factor related to road safety as shown in Table 8.

Table 8. The global importance weights of the second-level factors.

Factor Weight Rank

F11 0.106 4
F12 0.317 1
F21 0.076 6
F22 0.042 8
F23 0.133 3
F31 0.094 5
F32 0.047 7
F33 0.186 2

According to the evaluation results of the third level factors, the most important driver behavior
factor related to road safety was identified as “driving with alcohol” (F126). This result is directly
proportional to the zero-tolerance policy in practice in drinking and driving according to Hungarian
driving laws and can be verified in this context [71]. Subsequently, the model results observed, “failing
to yield pedestrian” (F122) as second rank factor followed by “disobey traffic lights” (F123). The
previous study revealed that one of the possible causes for the high number of crashes and injuries is
due to beating traffic lights [72]. While the results showed “no deterrence of punishing” (F124) as the
least rank driver behavior factor as compared to other related factors as shown in Table 9.

393



Mathematics 2020, 8, 414

Table 9. The global importance weights of the third-level factors.

Factor Weight Rank

F111 0.068 7
F112 0.112 4
F113 0.071 5
F121 0.114 3
F122 0.177 2
F123 0.114 3
F124 0.057 8
F125 0.070 6
F126 0.216 1

Due to space limitations, open forms of mathematical models for the remaining two levels (levels
2 and level 3) are provided in the Appendix A. All mathematical models for the F-BWM are solved in
GAMS version 23.5.1 as minimization problems by mixed-integer non-linear programming (MINLP).

5. Comparative Study

In this section, we make a comparative study between the results of the existed approach (F-BWM
model) and a recent hybrid study covering AHP and BWM models [51]. Moslem et al. [51] handled
evaluation of the driver behavior factors related to road safety using both AHP and BWM. They used
AHP in PCMs that have a 4 × 4 or smaller structure. On the other side, they used BWM in 5 × 5
matrices or larger ones. We then observe the variations in factor rankings of both approaches. The
results are shown in Table 10.

Table 10. Comparative study results of factor ranks.

Factor/Sub-Factor/Sub-sub-Factor
Rank

AHP-BWM Model (Moslem et al. [51]) F-BWM Model (Existed Study)

F1 1 1
F2 3 3
F3 2 2

F11 7 4
F12 1 1
F21 4 6
F22 6 8
F23 3 3
F31 5 5
F32 8 7
F33 2 2

F111 9 7
F112 6 4
F113 8 5
F121 7 3
F122 3 2
F123 2 3
F124 5 8
F125 4 6
F126 1 1

It is observed from Table 10 that, by both approaches, the ranks of main factors have remained the
same. By using the AHP-BWM model of Moslem et al. [51], we notice that the ranks of sub-factors
F11, F21, and F22 are changed. Regarding sub-sub-factors, F126 is the most important one by both
approaches. When we compare the results obtained by both approaches, we observe that there are
very small rank variations between them. The highest difference is observed in sub-sub-factor ranking
results. Although we do not observe drastic rank variations between the benchmarking model that
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have been previously proved in the literature and our current approach, it can be claimed that the
application of this approach is new in the application domain. It is also noted that, according to a
correlation analysis, which measures the association between the rank of factors, there is a significant
and strong positive correlation between both approaches. The Spearman rank correlation coefficient
(RHO) values for every three groups are obtained as 1.00, 0.79, and 0.62.

From the methodological perspective, there exist some similar contributions in the literature [73–76].
Gerogiannis et al. [73] studied a group-AHP scoring model. The method used in [73] is differentiated
from our current approach considering that the decision is based on the aggregation of both experts’
and users’ judgements. Similar to our approach, [73] seeks a solution in facing a very large number of
PCs. However, in BWM/FBWM-based approaches, decreased PCMs are designed according to the
best and the worst criterion. The two studies of [74] and [75] have focused on the improvement of the
traditional BWM approach. While the first one proposes a mixed-integer linear programming model
approximation, the other deals with a robust solution to BWM. In [76], the same problem which we
handle in the current study is aimed to solve by using the analytic network process (ANP). A primitive
version of the criteria set which we used in the current study is used to prioritize. It has also taken into
account the interrelationships between the decision criteria. In light of the above critics, the integrated
BWM approach with triangular fuzzy sets enables decision-makers more freedom in making the final
decision and face with a decreased number of PCMs.

6. Conclusions

The significance of driver behavior factors for road safety is critical and difficult to analyze due to
uncertain driver behavior. The novelty of this study is the combined use of the best-worst method
(BWM) and triangular fuzzy sets as a supporting tool for ranking and prioritizing the critical driver
behavior criteria. For the first level of hierarchical structure, the study evaluation results observed the
‘violations’ as the most significant factor related to road safety followed by ‘errors’. Subsequently, for
the second level, the study results observed the ‘aggressive violations’ as the most significant driver
behavior factor related to road safety followed by ‘fail to apply brakes in road hazards’. While the
study results revealed the ‘visual scan wrongly’ as the least important driver behavior factor related to
road safety. Furthermore, for the third level, the F-BWM model results evaluated the ‘drive alcohol use’
as the most important factor followed by ‘disobey traffic lights’ as compared to other specified factors.
While ‘failing to use personal intelligence’ was observed as the least important driver behavior factor
related to road safety.

Driver behavior recognition has been noticed as a significant and complex concern to obviate road
issues due to the huge amount of driver behavior data and its variation [47–49]. In the current study,
we explained some AHP drawbacks and then utilized an advanced F-BWM model for estimating
the driver behavior factors related to road safety. To collect driver behavior data, the study utilized
the driver behavior questionnaire from experienced drivers with fifteen years of driving experience
or more. This causes less evaluation time and better understandability for evaluators due to fewer
comparisons as compared to conventional methods, like AHP. The acquired model results are more
coherent due to more consistent PCs which increase the efficiency of the proposed model.

Considering further research, more applications of the F-BWM model are essential to obtain
familiar to analyze different real-world features. The objective advantages are evident: it gives quicker
and cheaper survey processes, and undoubtedly the survey pattern can more easily be expanded by
this method than employing the classical AHP with complex PC questionnaires. However, this paper
only provided one example, but many other applications can ultimately validate the technique. The
F-BWM model will help the researchers to enhance their future studies by developing consistency
with fewer PCs and save time for analyzing the collected data.

For future directions, BWM can be applied to the same problem under recently released fuzzy
extensions such as Pythagorean fuzzy sets [77–79], spherical fuzzy sets [80], and hexagonal fuzzy
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sets [81]. By doing this, a comparative framework may be developed and used to test the solidity of
the integration of BWM and fuzzy set extensions.
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Appendix A

Nonlinear constrained optimization problem represented by crisp numbers for F11 and F12:

min e

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l f 11 − 2.5 ∗ u f 12 − u f 12 ∗ e ≤ 0; l f 11 − 2.5 ∗ u f 12 + u f 12 ∗ e ≥ 0; m f 11 − 3 ∗m f 12 −m f 12 ∗ e ≤ 0;
m f 11 − 3 ∗m f 12 + m f 12 ∗ e ≥ 0; u f 11 − 3.5 ∗ l f 12 − l f 12 ∗ e ≤ 0; u f 11 − 3.5 ∗ l f 12 + l f 12 ∗ e ≥ 0;
l f 11 ≤ m f 11 ≤ u f 11; l f 12 ≤ m f 12 ≤ u f 12;
1
6 ∗ (l f 11 + 4 ∗m f 11 + u f 11) +

1
6 ∗ (l f 12 + 4 ∗m f 12 + u f 12) = 1;

l f 11 > 0; l f 12 > 0;
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F11 and F12 :
W∗

f 11 = (0.232, 0.250, 0.275)

W∗
f 12 = (0.687, 0.749, 0.812)

e = (0.000, 0.000, 0.000)

Nonlinear constrained optimization problem represented by crisp numbers for F21, F22, and F23:

min e

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l f 23 − 1.5 ∗ u f 21 − u f 21 ∗ e ≤ 0; l f 23 − 1.5 ∗ u f 21 + u f 21 ∗ e ≥ 0; m f 23 − 2 ∗m f 21 −m f 21 ∗ e ≤ 0;
m f 23 − 2 ∗m f 21 + m f 21 ∗ e ≥ 0; u f 23 − 2.5 ∗ l f 21 − l f 21 ∗ e ≤ 0; u f 23 − 2.5 ∗ l f 21 + l f 21 ∗ e ≥ 0;
l f 23 − 2.5 ∗ u f 22 − u f 22 ∗ e ≤ 0; l f 23 − 2.5 ∗ u f 22 + u f 22 ∗ e ≥ 0; m f 23 − 3 ∗m f 22 −m f 22 ∗ e ≤ 0;
m f 23 − 3 ∗m f 22 + m f 22 ∗ e ≥ 0; u f 23 − 3.5 ∗ l f 22 − l f 22 ∗ e ≤ 0; u f 23 − 3.5 ∗ l f 22 + l f 22 ∗ e ≥ 0;
l f 21 − 1.5 ∗ u f 22 − u f 22 ∗ e ≤ 0; l f 21 − 1.5 ∗ u f 22 + u f 22 ∗ e ≥ 0; m f 21 − 2 ∗m f 22 −m f 22 ∗ e ≤ 0;
m f 21 − 2 ∗m f 22 + m f 22 ∗ e ≥ 0; u f 21 − 2.5 ∗ l f 22 − l f 22 ∗ e ≤ 0; u f 21 − 2.5 ∗ l f 22 + l f 22 ∗ e ≥ 0;
l f 21 ≤ m f 21 ≤ u f 21; l f 22 ≤ m f 22 ≤ u f 22; l f 23 ≤ m f 23 ≤ u f 23;
1
6 ∗ (l f 21 + 4 ∗m f 21 + u f 21) +

1
6 ∗ (l f 22 + 4 ∗m f 22 + u f 22) +

1
6 ∗ (l f 23 + 4 ∗m f 23 + u f 23) = 1;

l f 21 > 0; l f 22 > 0; l f 23 > 0
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F21, F22 and F23 :
W∗

f 21 = (0.248, 0.295, 0.374)

W∗
f 22 = (0.159, 0.165, 0.188)

W∗
f 23 = (0.495, 0.529, 0.581)

e = (0.209, 0.209, 0.209)
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Nonlinear constrained optimization problem represented by crisp numbers for F31, F32, and F33:

min e

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l f 33 − 1.5 ∗ u f 31 − u f 31 ∗ e ≤ 0; l f 33 − 1.5 ∗ u f 31 + u f 31 ∗ e ≥ 0; m f 33 − 2 ∗m f 31 −m f 31 ∗ e ≤ 0;
m f 33 − 2 ∗m f 31 + m f 31 ∗ e ≥ 0; u f 33 − 2.5 ∗ l f 31 − l f 31 ∗ e ≤ 0; u f 33 − 2.5 ∗ l f 31 + l f 31 ∗ e ≥ 0;
l f 33 − 3.5 ∗ u f 32 − u f 32 ∗ e ≤ 0; l f 33 − 3.5 ∗ u f 32 + u f 32 ∗ e ≥ 0; m f 33 − 4 ∗m f 32 −m f 32 ∗ e ≤ 0;
m f 33 − 4 ∗m f 32 + m f 32 ∗ e ≥ 0; u f 33 − 4.5 ∗ l f 32 − l f 32 ∗ e ≤ 0; u f 33 − 4.5 ∗ l f 32 + l f 32 ∗ e ≥ 0;
l f 31 − 1.5 ∗ u f 32 − u f 32 ∗ e ≤ 0; l f 31 − 1.5 ∗ u f 32 + u f 32 ∗ e ≥ 0; m f 31 − 2 ∗m f 32 −m f 32 ∗ e ≤ 0;
m f 31 − 2 ∗m f 32 + m f 32 ∗ e ≥ 0; u f 31 − 2.5 ∗ l f 32 − l f 32 ∗ e ≤ 0; u f 31 − 2.5 ∗ l f 32 + l f 32 ∗ e ≥ 0;
l f 31 ≤ m f 31 ≤ u f 31; l f 32 ≤ m f 32 ≤ u f 32; l f 33 ≤ m f 33 ≤ u f 33;
1
6 ∗ (l f 31 + 4 ∗m f 31 + u f 31) +

1
6 ∗ (l f 32 + 4 ∗m f 32 + u f 32) +

1
6 ∗ (l f 33 + 4 ∗m f 33 + u f 33) = 1;

l f 31 > 0; l f 32 > 0; l f 33 > 0
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F31, F32 and F33 :
W∗

f 31 = (0.234, 0.288, 0.339)

W∗
f 32 = (0.133, 0.144, 0.151)

W∗
f 33 = (0.523, 0.575, 0.594)

e = (0.043, 0.043, 0.043)

Nonlinear constrained optimization problem represented by crisp numbers for level F111, F112,
and F113:

min e

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l f 112 − 1.5 ∗ u f 111 − u f 111 ∗ e ≤ 0; l f 112 − 1.5 ∗ u f 111 + u f 111 ∗ e ≥ 0; m f 112 − 2 ∗m f 111 −m f 111 ∗ e ≤ 0;
m f 112 − 2 ∗m f 111 + m f 111 ∗ e ≥ 0; u f 112 − 2.5 ∗ l f 111 − l f 111 ∗ e ≤ 0; u f 112 − 2.5 ∗ l f 111 + l f 111 ∗ e ≥ 0;
l f 112 − 1.5 ∗ u f 113 − u f 113 ∗ e ≤ 0; l f 112 − 1.5 ∗ u f 113 + u f 113 ∗ e ≥ 0; m f 112 − 2 ∗m f 113 −m f 113 ∗ e ≤ 0;
m f 112 − 2 ∗m f 113 + m f 113 ∗ e ≥ 0; u f 112 − 2.5 ∗ l f 113 − l f 113 ∗ e ≤ 0; u f 112 − 2.5 ∗ l f 113 + l f 113 ∗ e ≥ 0;
l f 111 − 1.5 ∗ u f 112 − u f 112 ∗ e ≤ 0; l f 111 − 1.5 ∗ u f 112 + u f 112 ∗ e ≥ 0; m f 111 − 2 ∗m f 112 −m f 112 ∗ e ≤ 0;
m f 111 − 2 ∗m f 112 + m f 112 ∗ e ≥ 0; u f 111 − 2.5 ∗ l f 112 − l f 112 ∗ e ≤ 0; u f 111 − 2.5 ∗ l f 112 + l f 112 ∗ e ≥ 0;
l f 111 ≤ m f 111 ≤ u f 111; l f 112 ≤ m f 112 ≤ u f 112; l f 113 ≤ m f 113 ≤ u f 113;
1
6 ∗ (l f 111 + 4 ∗m f 111 + u f 111) +

1
6 ∗ (l f 112 + 4 ∗m f 112 + u f 112) +

1
6 ∗ (l f 113 + 4 ∗m f 113 + u f 113) = 1;

l f 111 > 0; l f 112 > 0; l f 113 > 0
e ≥ 0

Solving this model, the optimal f uzzy weights o f the F111, F112 and F113 :
W∗

f 111 = (0.233, 0.266, 0.334)

W∗
f 112 = (0.334, 0.431, 0.614)

W∗
f 113 = (0.237, 0.287, 0.313)

e = (0.500, 0.500, 0.500)

Nonlinear constrained optimization problem represented by crisp numbers for F121, F122, F123,
F124, F125, and F126:
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min e

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l f 126 − 1.5 ∗ u f 121 − uf 121 ∗ e ≤ 0; l f 126 − 1.5 ∗ uf 121 + uf 121 ∗ e ≥ 0; mf 126 − 2 ∗m f 121 −mf 121 ∗ e ≤ 0; mf 126 − 2 ∗m f 121 + mf 121 ∗ e ≥ 0;

uf 126 − 2.5 ∗ l f 121 − l f 121 ∗ e ≤ 0; u f 126 − 2.5 ∗ l f 121 + l f 121 ∗ e ≥ 0; l f 126 − 2
3 ∗ u f 122 − u f 122 ∗ e ≤ 0; l f 126 − 2

3 ∗ u f 122 + u f 122 ∗ e ≥ 0;

mf 126 − 1 ∗m f 122 −mf 122 ∗ e ≤ 0; m f 126 − 1 ∗m f 122 + m f 122 ∗ e ≥ 0; uf 126 − 1.5 ∗ l f 122 − l f 122 ∗ e ≤ 0; u f 126 − 1.5 ∗ l f 122 + l f 122 ∗ e ≥ 0;

l f 126 − 1.5 ∗ u f 123 − uf 123 ∗ e ≤ 0; l f 126 − 1.5 ∗ u f 123 + u f 123 ∗ e ≥ 0; mf 126 − 2 ∗mf 123 −m f 123 ∗ e ≤ 0; mf 126 − 2 ∗m f 123 + mf 123 ∗ e ≥ 0;

uf 126 − 2.5 ∗ l f 123 − l f 123 ∗ e ≤ 0; uf 126 − 2.5 ∗ l f 123 + l f 123 ∗ e ≥ 0; l f 126 − 3.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 126 − 3.5 ∗ u f 124 + uf 124 ∗ e ≥ 0;

mf 126 − 4 ∗mf 124 −mf 124 ∗ e ≤ 0; mf 126 − 4 ∗m f 124 + m f 124 ∗ e ≥ 0; u f 126 − 4.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; uf 126 − 4.5 ∗ l f 124 + l f 124 ∗ e ≥ 0;

l f 126 − 2.5 ∗ uf 125 − u f 125 ∗ e ≤ 0; l f 126 − 2.5 ∗ u f 125 + u f 125 ∗ e ≥ 0; mf 126 − 3 ∗m f 125 −m f 125 ∗ e ≤ 0; mf 126 − 3 ∗m f 125 + m f 125 ∗ e ≥ 0;

uf 126 − 3.5 ∗ l f 125 − l f 125 ∗ e ≤ 0; u f 126 − 3.5 ∗ l f 125 + l f 125 ∗ e ≥ 0; l f 121 − 1.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 121 − 1.5 ∗ u f 124 + u f 124 ∗ e ≥ 0;

mf 121 − 2 ∗mf 124 −m f 124 ∗ e ≤ 0; m f 121 − 2 ∗m f 124 + mf 124 ∗ e ≥ 0; uf 121 − 2.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; uf 121 − 2.5 ∗ l f 124 + l f 124 ∗ e ≥ 0;

l f 122 − 2.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 122 − 2.5 ∗ u f 124 + u f 124 ∗ e ≥ 0; m f 122 − 3 ∗m f 124 −m f 124 ∗ e ≤ 0; mf 122 − 3 ∗m f 124 + m f 124 ∗ e ≥ 0;

uf 122 − 3.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; u f 122 − 3.5 ∗ l f 124 + l f 124 ∗ e ≥ 0; l f 123 − 1.5 ∗ u f 124 − u f 124 ∗ e ≤ 0; l f 123 − 1.5 ∗ u f 124 + u f 124 ∗ e ≥ 0;

mf 123 − 2 ∗mf 124 −m f 124 ∗ e ≤ 0; m f 123 − 2 ∗m f 124 + mf 124 ∗ e ≥ 0; u f 123 − 2.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; uf 123 − 2.5 ∗ l f 124 + l f 124 ∗ e ≥ 0;

l f 125 − 2
3 ∗ uf 124 − u f 124 ∗ e ≤ 0; l f 125 − 2

3 ∗ u f 124 + u f 124 ∗ e ≥ 0; mf 125 − 1 ∗mf 124 −mf 124 ∗ e ≤ 0; m f 125 − 1 ∗m f 124 + m f 124 ∗ e ≥ 0;

uf 125 − 1.5 ∗ l f 124 − l f 124 ∗ e ≤ 0; uf 125 − 1.5 ∗ l f 124 + l f 124 ∗ e ≥ 0; l f 121 ≤ m f 121 ≤ uf 121; l f 122 ≤ m f 122 ≤ u f 122; l f 123 ≤ m f 123 ≤ u f 123;

l f 124 ≤ mf 124 ≤ uf 124; l f 125 ≤ m f 125 ≤ u f 125; l f 126 ≤ m f 126 ≤ u f 126;⎛⎜⎜⎜⎜⎜⎜⎜⎝
1
6 ∗ (l f 121 + 4 ∗m f 121 + u f 121) +

1
6 ∗ (l f 122 + 4 ∗mf 122 + u f 122) +

1
6 ∗ (l f 123 + 4 ∗m f 123 + u f 123)+

1
6 ∗ (l f 124 + 4 ∗m f 124 + u f 124) +

1
6 ∗ (l f 125 + 4 ∗mf 125 + u f 125) +

1
6 ∗ (l f 126 + 4 ∗m f 126 + u f 126)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 1;

l f 121 > 0; l f 122 > 0; l f 123 > 0; l f 124 > 0; l f 125 > 0; l f 126 > 0

e ≥ 0

Solving this model, the optimal f uzzy weights o f the F121, F122, F123, F124, F125 and F126 :

W∗
f 121 = (0.118, 0.151, 0.192)

W∗
f 122 = (0.199, 0.235, 0.254)

W∗
f 123 = (0.118, 0.151, 0.192)

W∗
f 124 = (0.072, 0.076, 0.083)

W∗
f 125 = (0.080, 0.093, 0.112)

W∗
f 126 = (0.265, 0.291, 0.303)

e = (0.299, 0.299, 0.299)

The consistency of the relative expert’s responses regarding the weights of the factors, sub-factors,
and sub-sub-factors have been checked. For each level, it is obtained a consistency ratio value lower
than 0.1 as given in Table A1 below:

Table A1. The consistency ratio of all factors.

Factor/Sub-Factor/Sub-sub-Factor Epsilon Value Consistency Ratio

F1, F2, and F3 0.3030 0.0573
F11 and F12: 0.0000 0.0000

F21, F22 and F23: 0.2090 0.0312
F31, F32 and F33: 0.0430 0.0053

F111, F112 and F113: 0.5000 0.0945
F121, F122, F123, F124, F125, and

F126 0.2990 0.0372
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