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Few research topics are as broad and pervasive as electromagnetic scattering. Undeni-
ably, electromagnetic scattering phenomena are behind many wireless and radio devices.
From radar systems to mobile telecommunications, and from medical devices to innova-
tive materials, the study of electromagnetic interactions and scattering is fundamental to
develop applications that exploit electromagnetic waves.

Although the initial research in the field dates back centuries, many unresolved the-
oretical issues are still there. At the same time, novel applications of electromagnetic
scattering are continuously emerging. A detailed description of the many areas in which
scattering is involved is well beyond our scope. Based on the wavelength, applications
may be very different, as well as the techniques used to analyze and simulate the electro-
magnetic propagation.

Starting from low-frequency problems and embracing the whole spectrum up to optics
and photonics, the goal of the present Special Issue is to provide a comprehensive collection
of state-of-the-art papers dedicated to electromagnetic scattering theory and applications.

Electromagnetic scattering from the so-called canonical structures is one of the subjects
covered in this Special Issue. In particular, a theoretical framework is presented in [1]
to provide a description of scattering phenomena involving dielectric and conducting
spheres by decomposing the total field in the outer space in terms of inward and outward
electromagnetic fields, rather than in terms of incident and scattered fields, as in the classical
Lorenz–Mie formulation. The method can provide an intuitive physical interpretation of
electromagnetic scattering in terms of impedance matching and resonances.

Of course, when the structures under consideration become more complex, the de-
velopment of proper computational techniques is necessary to simulate and analyze the
electromagnetic scattering effects. An example is the study of scattering problems in the
presence of bianisotropic materials and metamaterials. In this regard, reference solutions
obtained by means of finite-elements approximations are presented in [2]. In this paper, not
only the well-posedness and the finite-element approximability in the three-dimensional
and time-harmonic case are discussed, but also three example problems are considered:
one, in free space, deals with scattering from plasmonic gratings that exhibit bianisotropy,
while the other two deal with bianisotropic obstacles inside waveguides.

The propagation of electromagnetic waves in magnetized plasma is another research
topic that deserves particular attention. In this Special Issue, this problem is addressed
in [3], where a numerical method based on a modified precise-integration time-domain
formulation is illustrated. It is shown that the method can provide an evident reduction in
the execution time by using a larger simulated time step; meanwhile, the computational
error of the presented algorithm is also lower than those of the formulations based on the
FDTD scheme, especially in the high-frequency range.

In some applications it is important to study the scattering effects (e.g., the radar cross
section) of large structures with details of different scales. In this situation, the adoption
of full-wave numerical methods for the whole targets under test may require very high
computational resources. A possible solution is represented by the use of hybrid techniques,
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in which full-wave methods may be combined with approaches based on high-frequency
approximations. This is the topic of the work presented in [4], where the finite volume time
domain technique is hybridized with an asymptotic solution strategy based on physical
optics and the equivalent current method.

Electromagnetic band gap structures (EBGs) [5], despite having been introduced more
than twenty years ago [6], still continue to have a significant impact in microwave and
antenna engineering research. This topic is considered in [7], where three different types of
microstrip band stop filters based on EBGs are proposed and compared, with exagonal,
octagonal, and elliptical rings.

Mobile telecommunications are another field where scattering phenomena are un-
avoidable and strongly contribute to the resulting electromagnetic field levels and possible
coverage issues. This point may be critical if irregular geometries are involved. In [8],
a model for the estimation of electromagnetic field levels in built-up areas, which enhances
the COST231-Walfisch–Ikegami model [9,10], and able to effectively deal with the built-up
scenarios of hilly, largely variable, and small, irregularly arranged towns, is developed and
validated from an experimental viewpoint.

Finally, another interesting topic covered in this Special Issue is inverse electromag-
netic scattering, with reference to the problem of microwave imaging. In particular, to-
mographic microwave imaging of dielectric targets inside circular conducting cylinders
is discussed in [11], analyzing the performance of a nonlinear quantitative inversion tech-
nique in non-Hilbertian Lebesgue spaces. The approach studied by the authors could
be exploited in many applications making use of circular enclosures, such as the case of
biomedical imaging where the process requires a tight coupling of the investigated region
with the surrounding background media.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In this work, we introduce a theoretical framework to describe the scattering from spheres.
In our proposed framework, the total field in the outer medium is decomposed in terms of inward
and outward electromagnetic fields, rather than in terms of incident and scattered fields, as in the
classical Lorenz–Mie formulation. The fields are expressed as series of spherical harmonics, whose
combination weights can be interpreted as reflection and transmission coefficients, which provides
an intuitive understanding of the propagation and scattering phenomena. Our formulation extends
the previously proposed theory of non-uniform transmission lines by introducing an expression
for impedance transfer, which yields a closed-form solution for the fields inside and outside the
sphere. The power transmitted in and scattered by the sphere can be also evaluated with a simple
closed-form expression and related with the modulus of the reflection coefficient. We showed that
our method is fully consistent with the classical Mie scattering theory. We also showed that our
method can provide an intuitive physical interpretation of electromagnetic scattering in terms of
impedance matching and resonances, and that it is especially useful for the case of inward traveling
spherical waves generated by sources surrounding the scatterer.

Keywords: electromagnetic scattering and propagation; Mie scattering; reflection coefficient

1. Introduction

The study of the electromagnetic scattering from spherical objects has its origin in the
work of Lorenz and Mie [1] at the turn of the 20th century. Modern formulations [2–5] of
what has since been referred as “Mie scattering” arose from this outstanding work and
has since been applied to light scattering, cancer detection, metamaterial theory and much
more [6–15].

In Mie scattering, the total electromagnetic (EM) field outside the sphere can be
expressed as the sum of the incident field, which is the field that would be there in the
absence of the sphere (i.e., the scatterer), and the scattered field. The field that propagates
inside the sphere is called transmitted field. The EM fields are expressed as a superposition
of vector harmonics. The EM field dependence on each spherical coordinate is factorized,
and the radial dependence inside the sphere is defined by means of spherical Bessel
functions. To guarantee that the EM field is finite at the origin of the coordinate system,
which coincides with the center of the sphere, only spherical Bessel functions of the first
kind are used to describe the radial dependence inside the sphere. Outside the sphere,
the EM field is typically defined by means of a combination of stationary first kind and
progressive fourth kind spherical Bessel functions. Internal and external fields are linked
by the continuity conditions.

Despite the elegance and compactness of the Mie analytical formulation, its physical in-
terpretation can be challenging, because both scattered and transmitted field coefficients are
expressed as a combination of Bessel and Riccati–Bessel functions. In an effort to improve

Electronics 2021, 10, 216. https://doi.org/10.3390/electronics10020216 https://www.mdpi.com/journal/electronics
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the physical understanding of the scattering characteristics of spheres, Debye proposed
to expand each term of the Mie scattering in series [16–19]. Each term of the Debye series
can be interpreted as the result of a diffraction, reflection, or transmission phenomenon at
the air–sphere interface. While such formalism improves the physical comprehension, its
complexity makes it practical only for a limited number of simple problems.

Building on Mie scattering theory, extensive work has been done in the last decades to
provide elegant, closed-form solutions to the problem of scattering from spheres [20,21].
Such work has mainly focused on two types of scattering problems: the case of an outgoing
wave incident on a spherical boundary and that of a standing wave incident on a spherical
boundary. These problems, well described in [21], have been of great interest because
they are useful to analyze the two important applicative fields of scattering theory: the
scattering of lights and the irradiation of antennas. In the first case, the incident wave
is modeled as a plane wave, whereas in the second case, the source is at the origin and
the incident field is an outgoing wave. For example, Mie scattering was developed in the
framework of light scattering theory, using plane waves as incident fields and adopting a
number of far field approximations for the evaluation of the scattered field. This approach,
however, does not help understanding complex near-field behaviors, which are important
for biomedical applications.

In fact, in various diagnostic and therapeutic techniques, a local radiofrequency
source is used to illuminate a body part, which can be often modeled using a dielectric
sphere. Although this third type of scattering problems, in which there is an incoming
spherical wave incident on a spherical boundary, is becoming increasingly relevant, current
theoretical frameworks only provide limited physical intuition to analyze it. For example,
in magnetic resonance imaging (MRI), where the interaction of EM fields with biological
tissue affects both image quality and patient safety, dielectric spheres have been used
as an approximation of the human head to simulate the performance of radiofrequency
coils [22–24]. While rapid analytical approaches based on Mie scattering enable one to
explore a large parameter space, they provide limited comprehension of the physical
variables that govern the EM field propagation and should guide the design of MRI
detectors and transmitters.

An alternative approach that could be more suitable for this type of problems is to
express the scattering from the sphere in terms of equivalent transmission lines [25–27].
Schelkunoff, in particular, proposed the theory of the transmission of spherical waves [25].
This outstanding formulation introduced the basic concepts of impedance and reflection
coefficient to describe the scattering from a sphere. However, its practical use has been
considerably limited, mainly due to the mathematical complexity of the impedances
and to the lack of a simple impedance transfer formula. In fact, the latter is critical for
simplifying the description and interpretation of boundary condition problems and to
relate impedances and reflection coefficients in the case of layered spheres.

This work expands the theory of equivalent transmission lines [25] by providing a
closed-form solution to the problem of the scattering of an inward spherical wave on a
spherical boundary, which has not been fully addressed by previous work. The main
difference with respect to Mie scattering is that both the EM fields outside and inside
the scatterer are expressed as a sum of inward (or incident) and outward (or reflected)
waves. This field decomposition enables interpreting the ratios between field coefficients
as reflection coefficients, providing an intuitive explanation of the physical phenomena
that govern the EM field propagation inside the object. In addition, the resulting EM
field expressions could be interpreted in terms of non-uniform equivalent transmission
lines with the sphere center represented by an equivalent short load. We introduce an
impedance transfer formula, which is expected to facilitate the straightforward utilization
of our formalism in several applicative scenarios.

The remainder of the paper is organized as follows. In Section 2, the classical Mie
scattering is recalled, whereas, in Section 3, the proposed reformulation is described. In
Section 4, the two methods are compared. In Section 5, numerical examples are presented to
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show the advantages of the proposed method for the physical interpretation of phenomena
that can be described in the framework of the Mie scattering. The main results are discussed
in the concluding session.

2. Mie Scattering

The classical Mie scattering formulation is described in several research and review
papers [2,4,28] which provide all the physical and mathematical details. In this section,
we recall only the basic principles and the equations that will be used as a reference to
introduce our approach.

From Maxwell’s equations, the electric field E can be expressed as the solution of a
Helmholtz equation:

∇2E + k2E = 0 (1)

where k is the wavenumber. An identical equation can be derived for the magnetic field. In
the case of scattering from spherical objects, it has been demonstrated [3,4] that the fields
can be expressed in terms of the two families of vector harmonics Mnm and Nnm:

Mnm = Bn(kr)
[
iπnm(ϑ)ϑ̂ − τnm(ϑ)ϕ̂

]
eimϕ (2)

Nnm = 1
kr

d(rBn(kr))
dr

[
iπnm(ϑ)ϕ̂ + τnm(ϑ)ϑ̂

]
eimϕ

+ Bn(kr)
kr n(n + 1)Pm

n (cos ϑ)eimϕ r̂
(3)

where i is the imaginary, (r, ϑ, ϕ) are the three coordinates of a spherical coordinate system
with the origin in the center of the sphere, Bn is a spherical Bessel function of the nth
order, Pm

n is the associated Legendre polynomial, πnm(ϑ) and τnm(ϑ) are sectorial functions,
defined as:

πnm(ϑ) = m
Pm

n (cos ϑ)

sin ϑ
(4)

τnm(ϑ) =
dPm

n (cos ϑ)

dϑ
(5)

The spherical Bessel function Bn is the solution of the Bessel equation in spherical
coordinates and can be written as a combination of static first and second kind spherical
Bessel functions, or traveling third and fourth kind spherical Bessel functions (also called
first and second type spherical Hankel functions). In Mie scattering, the total EM field in
the region outside the sphere is expressed as the sum of an incident field:

Ei =
∞

∑
n=1

n

∑
m=−n

(anmM
(1)
nm + bnmN

(1)
nm)

Bi =
k

iω

∞

∑
n=1

n

∑
m=−n

(anmN
(1)
nm + bnmM

(1)
nm) (6)

and a scattered field:

Es =
∞

∑
n=1

n

∑
m=−n

(cnmM
(4)
nm + dnmN

(4)
nm)

Bs =
k

iω

∞

∑
n=1

n

∑
m=−n

(cnmN
(4)
nm + dnmM

(4)
nm) (7)

The field that instead propagates inside the sphere (i.e., the transmitted, field) is
described as:

Et =
∞

∑
n=1

n

∑
m=−n

(enmM
(1)
nm + fnmN

(1)
nm)

Bt =
k

iω

∞

∑
n=1

n

∑
m=−n

(enmN
(1)
nm + fnmM

(1)
nm) (8)
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The superscripts (1) and (4) appended to the vector harmonics in Equations (6)–(8)
indicate the kind of the spherical Bessel functions used for the description of the radial
dependence. Since the incident and the transmitted fields are defined at the origin, their
expressions include only spherical Bessel functions of the first kind, which impose that
the field is finite at the origin. The scattered field is instead outward directed, so it is
described as a superposition of spherical Bessel functions of the fourth kind (also called
spherical Hankel functions of the second kind). Note that this notation is based on a
eiωt time dependence. If the e−iωt notation is used, the outward waves must be described
by spherical Bessel functions of the third kind.

Since the Mnm and Nnm vectors are orthogonal and, as shown by Equations (2) and (3),
the Mnm vectors have no radial component, the evaluation of the field coefficients in
Equations (6)–(8) can be separated in two independent problems. If all the bnm coefficients
are null, the electric field is orthogonal to the radial direction and the solution is called
Transverse Electric (TE); if all the anm coefficients are null, the magnetic field is orthogonal
to the radial direction and the solution is called Transverse Magnetic (TM).

The Mie scattering coefficients are obtained by imposing the continuity of the tan-
gential components of the field at the sphere boundary. The complete Mie formulation
is available in the literature. Here, we recall only the expressions for the scattering coeffi-
cients, which will be used as a reference to evaluate our method and can be expressed as a
combination of spherical Bessel functions:

cnm = −anm
j′n(k1a)jn(k2a)− χjn(k1a)j′n(k2a)

h(2)
′

n (k1a)jn(k2a)− χh(2)n (k1a)j′n(k2a)

dnm = −bnm
jn(k1a)j′n(k2a)− χj′n(k1a)jn(k2a)

h(2)n (k1a)j′n(k2a)− χh(2)
′

n (k1a)jn(k2a)
(9)

where a is the radius of the sphere, χ = k2
k1

is the refraction index, k1 and k2 are the
wavenumbers of the external and internal medium, respectively, and the following defini-
tion for the first derivative of the spherical Bessel functions was used:

B′
n(kr) =

1
kr

d(rBn(kr))
dr

(10)

For a perfectly conducting sphere, the coefficients reduce to:

cnm = −anm
jn(k1a)

h(2)n (k1a)

dnm = −bnm
j′n(k1a)

h(2)
′

n (k1a)
(11)

The above equations represent an outstanding contribution to modern physics, which
inspired several works in different fields of science [1,28]. However, their physical interpre-
tation is not immediate.

3. Proposed Method

We propose a new formulation of the scattering by spheres, in which the EM field is
expressed in terms of inward and outward waves rather than incident, transmitted and
scattering waves. Our method, which builds on previous work on equivalent transmission
lines [20,21,25], develops from the physical consideration that the inward waves focus in
the origin and the energy they carry is redistributed by the outward waves. In other words,
the origin can be seen as a sink for the incoming waves and a source of outgoing waves, in
accordance with the energy conservation principle.

6
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From the mathematical point of view, in the classical Mie scattering, the energy
conservation principle is respected by forcing the radial dependence of the EM field to
behave as spherical Bessel functions of the first kind, guaranteeing that the fields are finite
in the origin. In our approach, we keep the distinction between inward (described by
Hankel functions of the first kind) and outward (described by Hankel functions of the
second kind) waves and we fulfill the energy conservation principle by forcing the equality
of their field coefficients inside the sphere. From the physics point of view, this constraint is
nothing but an energy conservation criterion and it is coherent with the fact that inside the
sphere the field behaves as a first kind spherical Bessel function, as described by the Mie
scattering. In this framework, the outward waves can be viewed as the result of a reflection
phenomenon happening at the origin and the scattering problem can be described by the
non-uniform transmission line theory [29], with the origin acting as a perfect reflector.

In the following paragraphs, we describe the proposed formulation for the TE case.
The TM solution can be calculated with an analogous procedure.

3.1. Problem Formulation

Figure 1 shows a schematic representation of the scattering problem. In Medium 1
(usually air), the total field can be expressed as a superposition of inward and outward
waves (note that no distinction is made between incident and scattered field):

E1(r) =
∞

∑
n=1

n

∑
m=−n

E+
1nmM

(3)
nm + E−

1nmM
(4)
nm

H1(r) =
k

iωμ

∞

∑
n=1

n

∑
m=−n

E+
1nmN

(3)
nm + E−

1nmM
(4)
nm (12)

 

Figure 1. Geometrical representation of the scattering problem. The field in each medium is expressed
as the combination of inward and outward spherical waves.

In Medium 2 (i.e., inside the sphere), the fields can also be expressed as a superposition
of inward and outward waves:

E2(r) =
∞

∑
n=1

n

∑
m=−n

E+
2nmM

(3)
nm + E−

2nmM
(4)
nm

H2(r) =
k

iωμ

∞

∑
n=1

n

∑
m=−n

E+
2nmN

(3)
nm + E−

2nmN
(4)
nm (13)

with the constraint that the inside the sphere inward and outward coefficients are equal
(E+

2nm = E−
2nm) to ensure energy conservation.

The fields E1(r) and E2(r) are linked by the continuity conditions, which allow one to
calculate the coefficients of the series expansion.
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3.2. Characteristic Impedance

We can define an impedance term by taking the ratio between the tangential compo-
nent of electric and magnetic fields. From the definition of Mnm and Nnm in Equations (2)
and (3), for a single wave, the impedance can be expressed as:

Zn(klr) =
iωμ

kl

Bn(klr)
B′

n(klr)
(14)

where the term B′
n(klr) is defined in Equation (10), l ∈ (1, 2) specifies the medium and n is

the order of the Bessel function.
By observing that the ratio ωμ

kl
= ζl is the characteristic impedance of the l-th medium

and using the logarithmic derivative of the Riccati–Bessel function:

B′
n(klr)

Bn(klr)
= Dnl (15)

the impedance can be written in a more compact form as Zn(klr) = i ζl
Dnl

.
The impedances for the inward and outward waves are different, but their values are

closely related. In fact, we can evaluate the impedance of the inward wave Z(1)
n (klr), by

substituting h(1)n (klr) in place of Bn(klr) in Equation (14), obtaining:

Z(1)
n (klr) =

iωμ

kl

h(1)n (klr)

h(1)′n (klr)
= Znl (16)

whereas we can evaluate the impedance of the outward wave Z(2)
n (klr) by substituting

h(2)n (klr) in place of Bn(klr) in Equation (14), obtaining:

Z(2)
n (klr) =

iωμ

kl

h(2)n (klr)

h(2)′n (klr)
= Z(1)

n (−klr) = Znl (17)

Inside the sphere, given the energy conservation constraint E+
2nm = E−

2nm, and given

the identity h(1)n (k2r) + h(2)n (k2r) = 2jn(k2r), the total field (inward plus outward wave)
behaves as a spherical Bessel function of the first kind. Therefore, by substituting jn(k2r) in
place of Bn(klr) in Equation (14), we can define the impedance of the total field inside the
sphere as:

Z(J)
n (k2r) =

iωμ

k2

jn(k2r)
j′n(k2r)

= ZJn2 (18)

In Table 1, the different expressions (16)–(18) that Equation (14) can take for different
Bessel functions are provided. In the last column, a compact expression that will be used in
the remainder of the paper is introduced.

Table 1. Definitions of the different wave impedances.

Spherical Bessel
Function

Impedance
Expression

Impedance Symbol Compact Expression

h(1)n (klr)
iωμ
kl

h(1)n (klr)
h(1)′n (klr)

Z(1)
n (klr) Znl

h(2)n (klr)
iωμ
kl

h(2)n (klr)
h(2)′n (klr)

Z(2)
n (klr) Znl

jn(klr) iωμ
kl

jn(klr)
j′n

Z(J)
n (klr) ZJnl
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3.3. Field Expression: Traveling Form

For each mode of the EM field in the l-th medium, the tangential fields can be ex-
pressed as:

Elnm(r) = E+
lnmh(1)n (klr) + E−

lnmh(2)n (klr)

Hlnm(r) = kl
iωμ

[
E+

lnmh(1)
′

n (klr) + E−
lnmh(2)

′
n (klr)

]
=

[
E+

lnm
Znl

h(1)n (klr) +
E−

lnm
Znl

h(2)n (klr)
] (19)

If we define a reflection coefficient for the electric field as:

Γn(klr) =
E−

l h(2)nm(klr)

E+
l h(1)nm(klr)

, (20)

we can write the fields in a more compact form:

Elnm(r) = E+
lnmh(1)n (klr)[1 + Γn(klr)]

Hlnm(r) =
E+

lnm
Znl

h(1)n (klr)
[

1 + Γn(klr)
Znl

Znl

]
. (21)

The impedance of the total field can then be expressed as a function of the reflection
coefficient by taking the ratio between the electric and magnetic field in Equations (21):

Zn(klr) =
El(r)
Hl(r)

= Znl
1 + Γn(klr)

1 + Γn(klr)
Znl
Znl

. (22)

Inside the sphere (l = 2), this corresponds to the impedance in Equation (18). The
above expression can be easily inverted in order to express the reflection coefficients in
terms of impedance as:

Γn(klr) =
Zn(klr)− Znl

Znl − Zn(klr)
Znl
Znl

(23)

The last equations provide a framework for the physical interpretation of the fields.
For example, in Equations (21), the electric field is expressed as the product of the term
1 + Γn(klr), which accounts for the coherent sum of incident and reflected fields, with the
term h(1)n (klr), which accounts for the radial distribution of the energy. One advantage
of the proposed approach compared to the classical Mie formulation is that the reflec-
tion coefficient and the impedance are scalar and physically interpretable engineering
quantities, as opposed to the coefficients in Equation (9). For instance, impedance and
reflection coefficient enable to easily evaluate, for each mode, the position of the peak
of the electric field inside the sphere, providing a powerful tool for, e.g., antenna design
optimization. In Section V, numerical examples are presented to illustrate applications of
the proposed methods.

In the equation for the magnetic field (21), the reflection coefficient of the electric field
is multiplied by the factor Znl/Znl , which is a term with unitary amplitude. At the origin,
the phase of this term is null; therefore, the magnetic reflection coefficient is equal to the
electric reflection coefficient.

For kl >> n, the phase of Znl/Znl approaches π, and the reflection coefficient of the
magnetic field is the opposite of that of the electric field, as it happens for transmission
lines. The phase of Znl/Znl is plotted against the sphere radius in Figure 2.

9
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Figure 2. The phase of the term Znl/Znl is plotted against the sphere radius a. The frequency is
297.2 MHz; the sphere dielectric properties are: ε = 50ε0, σ = 0; the corresponding wavenumber
k = 44.89 m−1.

3.4. Field Expression: Stationary Form

The spherical Bessel functions of the third and fourth kind can be expressed in terms
of stationary spherical Bessel functions as h(1)n (klr) = jn(klr) + iyn(klr) and h(2)n (klr) =
jn(klr)—iyn(klr). Then, the EM field can be written in stationary form as:

Elnm(r) =
(
E+

lnm + E−
lnm

)
2jn(klr) + i

(
E+

lnm − E−
lnm

)
2yn(klr)

Hlnm(r) =
kl

iωμ

(
E+

lnm + E−
lnm

)
2j′n(klr) + i

(
E+

lnm − E−
lnm

)
2iy′n(klr) (24)

The corresponding impedance in the l-th medium can be calculated, for each mode, as
the ratio between electric and magnetic fields:

Zn(klr) =
El(r)
Hl(r)

= ZJnl
A0l + itnl
A0l + it′nl

(25)

where

A0l =

(
E+

lnm + E−
lnm

)(
E+

lnm − E−
lnm

) (26)

tnl =
yn(klr)
jn(klr)

, (27)

and

t′nl =
y′n(klr)
j′n(klr)

(28)

Equation (25) provides a novel general expression of the impedance in any medium
and it is particularly useful for the evaluation of the matching condition. For example,
in case of scattering from multi-layered spheres, it provides an operative expression to
evaluate the impedance in any layer as a transfer of the impedance in the origin.

As a proof of consistence with Mie scattering, we can see that, inside the sphere, given
the condition E+

2nm = E−
2nm, we get that A02 = ∞ and the impedence reduces to the ZJn2 in

Equation (18). The importance of Equation (25) is further demonstrated by the fact that,
at the origin, ZJn2 = 0 and this allows interpreting the scattering in terms of equivalent
transmission lines closed on a short circuit at the origin, as shown in Figure 3.
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Figure 3. Equivalent transmission line for the case of an inward spherical wave incident on a
spherical boundary.

3.5. Field Coefficients Evaluation

In some applications (for example, when modeling an MRI experiment) an inward
wave is generated in the outer medium (by an antenna) and impinges on the sphere.
Therefore, it is of interest to express the first medium outward wave (E−

1nm) and the internal
inward wave (E+

2nm) field coefficients as a function of the first medium inward wave (E+
1nm)

field coefficient. To this purpose, we can use the reflection coefficient definition and the
continuity of the impedance. In fact, by inverting Equation (20) and evaluating it at r = a,
we obtain:

E−
1nm = E+

1nmΓn(k1a)
h(1)n (k1a)

h(2)n (k1a)
(29)

The reflection coefficient can be written in terms of the impedance:

Γn(k1a) =
Zn(k1a)− Zn1

Zn1 − Zn(k1a)R
(30)

where R is the ratio Znl/Zni, evaluated in r = a. By imposing the continuity condition for
the impedance in r = a: Zn(k1a) = Zn(k2a) = ZJn2(k2a), we can calculate the outward
wave coefficients in terms of spherical Bessel functions as:

E−
1nm

E+
1nm

=
ZJn2(k2a)− Zn1

Zn1 − ZJn2(k2a)R
· h

(1)
n (k1a)

h(2)n (k1a)
(31)

The previous expression is the product of two ratios. The first ratio describes a
reflection coefficient, whose value depends on the dielectric properties of the media and
the radius of the sphere. The second ratio represents a propagation factor, which accounts
for the spatial distribution of the energy and whose value also depends on the radius of
the sphere.

The coefficients of the field transmitted in the sphere (13) are evaluated by imposing
the continuity of the electric field at r = a. From Equation (21), we have:

E+
2nm = E+

1nm
h(1)n (k1a)

h(1)n (k2a)

[1 + Γn(k1a)]
[1 + Γn(k2a)]

. (32)

An expression for reflection coefficient Γn(k2a) can be obtained from Equation (20),
with the physical constraint E+

2nm = E−
2nm, from being inside the sphere, and substituted in

Equation (32):

E+
2nm = E+

1nm
h(1)n (k1a)
2jn(k2a)

[1 + Γn(k1a)] (33)
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The expression of the coefficient has a straightforward physical interpretation also in
this case. It is the product of a propagation term that accounts for the geometry-dependent
energy distribution and a transmission coefficient τn = 1 + Γn(k1a), which accounts for
the energy propagated inside the sphere.

3.6. Power Evaluation

The traveling form presented in Section 3.3 is useful to describe the field inside the
sphere as the coherent sum of inward and outward waves. It also allows one to evaluate
the power density Slnm as:

Slnm =
1
2

Elnm H∗
lnm·r̂ =

=
1

2Znl

∣∣E+
lnm

∣∣2∣∣∣h(1)n (klr)
∣∣∣2[1 + Γn(klr)][1 + Γn(klr)

Znl

Zni
]
∗

(34)

where r̂ is the radial unit vector defined in Figure 1.
When kr >> n, the magnetic field is the opposite of the electric field and the power

density in each medium can be written as:

Slnm =
1

2Znl

∣∣E+
lnm

∣∣2∣∣∣h(1)n (klr)
∣∣∣2[1 − |Γn(klr)|2

]
. (35)

This expression clearly shows that the inward and outward powers are decoupled.
By integrating the power density on a spherical surface centered at the origin, the power
dissipated inside the sphere by the n-th mode can be calculated in a straightforward manner
by substituting l = 2 in Equation (34) and multiplying the result with n(n + 1)r2.

In conclusion, in Table 2, the formulas of electromagnetic fields, reflection coefficient
and impedances proposed in both traveling and stationary forms are presented.

Table 2. Summary of the formulas defining the proposed framework.

Electromagnetic Field Reflection Coefficient Impedance

Traveling form
Elnm(r) = E+

lnmh(1)n (klr)[1 + Γn(klr)]

Hlnm(r) =
E+

lnm
Znl

h(1)n (klr)
[
1 + Γn(klr)

Znl
Znl

] Γn(klr) =
Zn(klr)−Znl

Znl−Zn(klr)
Znl
Znl

Zn(klr) = Znl
1+Γn(klr)

1+Γn(klr)
Znl
Znl

Stationary form

Elnm(r) =
(
E+

lnm + E−
lnm

)
2jn(klr) +

i
(
E+

lnm − E−
lnm

)
2yn(klr)

Hlnm(r) =
kl

iωμ

(
E+

lnm + E−
lnm

)
2j′n(klr) +

i
(
E+

lnm − E−
lnm

)
2iy′n(klr)

Γn(klr) =
Zn(klr)−Znl

Znl−Zn(klr)
Znl
Znl

Zn(klr) = ZJnl
A0l+itnl
A0l+it′nl

4. Comparison with Mie Scattering

In this section, we compare the proposed framework with the classical Mie scattering.
In our approach, the electric field in the external medium E1nm is expressed as the sum of
inward and outward waves:

E1nm = E+
1nmh(1)n (k1r) + E−

1nmh(2)n (k1r) (36)

As both the incident and the scattered fields contribute to the outward waves, we can
rewrite Equation (36) to explicitly show both contributions:

E1nm = E+
1nmh(1)n (k1r) + E+

1nmh(2)n (k1r) +
(
E−

1nm − E+
1nm

)
h(2)n (k1r) (37)

The first two terms of Equation (37) represent the incident field, and the last term
is the scattering term, as defined in the Mie formulation. Therefore, considering that
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h(1)n (k1r) + h(2)n (k1r) = 2jn(k1r), the relationship between our coefficients and those of the
classical Mie scattering is:

E+
1nm =

anm

2
(38)

E−
1nm − E+

1nm = cnm (39)

Therefore, the Mie coefficients can be easily retrieved from the coefficients of our
method as:

cnm

anm
=

1
2

(
E−

1nm
E+

1nm
− 1

)
(40)

As a further validation of our approach, in Appendix A we present the algebraic
passages to obtain the cnm expression presented in Equation (9) from Equation (40).

The consistence of the proposed model with Mie scattering is directly verified for the
case of a perfectly conducting sphere. In fact, the continuity conditions dictate that the
electric field at r = a must be null. This means that the reflection coefficient of the electric
field must be −1.

Therefore, the relation between the outward and inward coefficients is immediately
found from Equation (29) as:

E−
inm = −E+

inm
h(1)n (k1a)

h(2)n (k1a)
(41)

Substituting the last equation in Equation (40), we obtain:

cnm
anm

=
1
2

(
h(1)n (k1a)

h(2)n (k1a)
− 1

)
= − jn(k1a)

h(2)n (k1a)
, (42)

which is, in fact, the expression of the Mie scattering coefficients for the perfectly conducting
sphere reported in Equation (11).

5. Numerical Results

In this section, we present examples of EM scattering from a spherical object and show
how our model can provide a physically intuitive understanding of the results.

5.1. Results for the Fundamental Mode (n = 1)

We first investigated the scattering and propagation characteristics for the fundamental
mode (n = 1) as a function of the dielectric properties of the sphere.

In all the simulations, the carrier frequency was set to 292.7 MHz, which is the operat-
ing frequency of 7 T MR scanners, the external medium was air (εr1 = 1) and the relevant
quantities were plotted for a sphere with radius a ranging from 0 to 0.6 m (corresponding
to ka = 26.93). We investigated the dependence of the reflection coefficient (Figure 4) and
impedance (imaginary and real part in Figures 5 and 6, respectively) on different values of
relative electric permittivity (εr2 = 5, 25, 50) and conductivity (σ = 0, 0.05, 0.15 and 0.5 S/m).

In addition, we plotted the radial dependence of the EM field (electric and magnetic
field in Figures 7 and 8, respectively) and the power (Figures 9 and 10) inside a sphere of
radius a = 0.6 m for the same values of relative electric permittivity (εr2 = 5, 25, 50) and
conductivity (σ = 0, 0.05, 0.15 and 0.5 S/m).
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(a)  

(b)

(c)

Figure 4. The modulus of the reflection coefficient is plotted as a function of the sphere radius for
different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and conductivity
(σ = 0, 0.05, 0.15 and 0.5 S/m). The frequency is set to 297.2 MHz.

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. The imaginary part of the sphere impedance is plotted as a function of the sphere radius
for different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and a range of
conductivity values.

(a)

(b)

(c)

Figure 6. The real part of the sphere impedance is plotted as a function of the sphere radius for
different values of relative permittivity εr2 = 5, 25 and 50 in (a–c), respectively and a range of
conductivity values.
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(a)

(b)

(c)

Figure 7. The amplitude of the electric field inside a sphere of radius a = 0.6 is plotted as a function
of the radial coordinate r for different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c),
respectively) and conductivity (see plot legend).

The results for a lossless sphere (σ = 0 S/m) are shown in blue in all plots. For a lossless
sphere, Figure 4 shows that the reflection coefficient has unitary modulus, independently
from the value of the dielectric constant.

This is consistent with the fact that no power is absorbed by the sphere and all the
incoming power (carried by inward waves) is balanced by the outgoing power (carried by
outward waves). The same result is confirmed by the fact that the sphere impedance turns
out to be a pure imaginary quantity.

In the following paragraphs, we show that our approach allows one to reformulate,
in terms of engineering quantities (impedances and reflection coefficients), two typical
boundary-value problems described in the literature by Mie scattering: the natural oscilla-
tion modes of a sphere and the diffraction of a plane wave by a sphere [2].

It is known from the Mie scattering theory that a lossless sphere is characterized by
its natural modes that obey the transcendental equations introduced in Section 9.22 of [2]
(Equations (10) and (19)). With our proposed approach, the same solutions are obtained sim-
ply by imposing the continuity condition for the impedance at r = a: Zn(k1a) = Zn(k2a).

By simply observing that in the inner medium there is a standing wave and that in the
outer medium there is only an outward wave, it is straightforward to write the continuity
condition by substituting to Zn(k1a) and Zn(k2a) the impedance expressions reported in
the second and third rows of Table 1, respectively.
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As a result, the condition can be simply written as:

Znl = ZJn2 (43)

or substituting the explicit expression reported in the second column of Table 1 as:

1
k1

h(2)n (k1a)

h(2)
′

n (k1a)
=

1
k2

jn(k2a)
j′n(k2a)

(44)

Equation (43) provides the transcendental equation introduced in Section 9.22 of [2],
whose solutions provide the natural frequencies of the sphere, demonstrating that a set of
natural modes exists.

(a)

(b)

(c)

Figure 8. The amplitude of the magnetic field inside a sphere of radius a = 0.6 is plotted as a function
of the radial coordinate r for different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c),
respectively) and conductivity (see plot legend).
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(a)

(b)

(c)

Figure 9. The amplitude is plotted as a function of the radial coordinate for different values of relative
permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and conductivity (see plot legend).

(a)

Figure 10. Cont.
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(b)

(c)

Figure 10. The power dissipated inside a sphere is plotted as a function of the radial coordinate for
different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and conductivity
(see plot legend).

The main advantages of using our formulation are:

1. By employing the concept of impedance, we derived Equation (44) by means of simple
and easily interpretable physical arguments.

2. Equation (44) can be easily extended to the case of a stratified sphere, which represents
a considerable simplification compared to the classical approach that requires a
complete reformulation of the scattering problem for each layer.

The diffraction of EM energy from a sphere can also be analyzed using our proposed
framework. It is known that, when a plane wave impinges on a homogeneous lossless
dielectric sphere, the EM field transmitted in the sphere (whose analytical expression
is provided in Equation (33)) has a resonance-like behavior, governed by the geometric
and dielectric characteristics of the sphere. From Equation (33), we can easily find the
resonance condition by maximizing the ratio between the inward field coefficients of the
two media, which occurs when the 1 + Γn(k1a) factor reaches its maximum value, i.e.,
when the value of Γn(k1a) is real and positive. Therefore, our formulation intuitively shows
that resonances occur when outward and inward waves have electric fields in phase and
magnetic fields in antiphase on the sphere surface. This means that the magnetic field is
null on the sphere surface, which is consistent with the fact that the impedance ZJn2(k2a)
is infinite in resonance condition.

In perfect analogy with uniform transmission lines, our formulation allows one to
interpret the resonance phenomenon in terms of the sphere’s impedance and, therefore, in
terms of the phase difference between electric and magnetic fields on the spherical interface,
which is responsible for the field distribution outside and inside the sphere and for the
consequent energy storage.

The previous phenomena can be appreciated also directly from the plots of the impedance
and the EM field. For example, a resonance effect can be seen in Figures 7b and 8b, where
the maximum values of the amplitude of the electric and magnetic fields for εr2 = 25 are
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considerably higher than the corresponding values for εr2 = 5 (Figures 7a and 8a) and
εr2 = 50 (Figures 7c and 8c). For the fundamental mode (n = 1), for a = 0.6 m and εr2 = 25,
the product ka = 18.67 almost coincides with the sixth null of the derivative of the spherical
Bessel function (18.79). From Figure 5 (see above) and Equation (31), we know that this
corresponds to infinite impedance at the sphere surface, which means that the amplitude
of the 1 + Γn(k1a) factor is maximum and, therefore, the mode resonates.

In a similar manner, also in the TM case, we can obtain discrete resonance values
corresponding to infinite values of the admittance at the interface, by looking at the nulls
of the impedance at the interface.

For the case of a lossy sphere, the field is attenuated during its propagation and the
inward–outward interferences are damped.

It is interesting to note that in this case the real part of the impedance is non-null,
with peaks in correspondence of the resonant frequencies. In fact, the sphere impedance
approaches the intrinsic impedance of the external medium, resulting in a minimum of the
reflection coefficient (see Equation (31)).

Using our proposed framework, phenomena like those described above can be inter-
preted with traditional engineering concepts, such as an impedance pseudo-matching (in
fact, perfect matching is not possible for a single sphere with real frequencies).

Relevant insight can also be gained from the power density plots. In a lossless sphere,
the net incoming power density is fully balanced by the outgoing one and the net flux is
null for all permittivity values (see Figures 9 and 10, where the blue line is superimposed
to the x axis). This phenomenon is also shown by Equations (34) and (35), where it is clear
that the net power density is null if the magnitude of the reflection coefficient |Γn(klr)|
is unitary.

In the presence of losses, the power density closely follows the square of the amplitude
of the electric field, and when εr2 = 25, which is the in-resonance condition for the funda-
mental mode, for low losses (σ = 0.05 S/m), the power density is also large in proximity
of the origin. If the losses are significant (σ = 0.15 and σ = 0.5 S/m), the power is mostly
dissipated by the peripheral region of the sphere and the power density inside the sphere
is almost null.

Figure 10 shows the power dissipation, which is the integral of the power density and
is a monotonic function of the radial coordinate r. As expected, the higher the conductivity,
the lower the capacity of the field to penetrate inside the sphere, and the power is mainly
dissipated in the peripheral region of the sphere.

The power value at the boundary of the sphere (i.e., for a = 0.6 m in Figure 10)
represents the total dissipated power inside the sphere.

It is worth highlighting that, with our formalism, the power was evaluated with a
simple scalar expression (Equation (34)), without solving integrals, which represents an
advantage compared to Mie scattering, in terms of the computation time and complexity
associated with the integration of rapidly oscillating functions.

5.2. Full Modal Analysis

The behavior of the EM field for modes characterized by the higher order of the
spherical Bessel functions was first investigated for the case of a lossless sphere.

Figures 11 and 12 show the transmitted electric and magnetic field as a function of the
radial coordinate in a sphere of radius a = 0.6 m, evaluated for the first four modes of the
Bessel functions.
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(a)

(b)

(c)

Figure 11. Electric field distribution as a function of the radial coordinate in a lossless (σ = 0 S/m)
sphere of radius a = 0.6 m for the first four modes. Results are plotted for different values of relative
permittivity (εr2 = 5, 25 and 50 in (a–c), respectively).

(a)

Figure 12. Cont.
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(b)

(c)

Figure 12. Magnetic field distribution as a function of the radial coordinate in a lossless (σ = 0 S/m)
sphere of radius a = 0.6 m for the first four modes. Results are shown for different values of relative
permittivity (εr2 = 5, 25 and 50 in (a–c), respectively).

For a low dielectric contrast (εr2 = 5), none of the modes is resonant and the peaks of
the fields are slightly decreasing with the order of the Bessel function. At the origin, the
electric field is always null, due to field symmetry, and the only mode contributing to the
magnetic field is the first mode.

Figure 11b,c and Figure 12b,c show that the field distribution is strongly influenced by
the resonance conditions.

For example, as already noted when describing Figures 7b and 8b, when εr2 = 25
and a = 0.6 m, the first mode is close to the resonance condition and, therefore, the
corresponding electric and magnetic amplitudes both have a peak (Figures 11b and 12b).
In addition, in the same figures, the third mode is also amplified, and this is due to the fact
that ka = 18.67 is close to the fifth null of the derivative of the third order Bessel function,
which corresponds to an infinite impedance and, therefore, to the resonance condition.

In Figures 11c and 12c, a similar pattern occurs for the second and fourth modes, which
are on resonance when εr2 = 50 and a = 0.6 m, which means they are the main contributors
(among the first 4 modes analyzed in the plots) to the electric and magnetic fields.

A possible application of these results would be in the optimization of computation
time. In fact, using the interpretation provided above, it is straightforward to order the
modes based on their contribution to either the electric or magnetic field, and perform
calculations only for the limited set of modes that contributes the most. In addition, the
proposed scattering formulation in terms of engineering quantities could be useful for
design optimization. For example, in MRI, it could guide the design of novel materials
to be integrated with the radiofrequency coils ([30]) that can force impedance matching
only for specific modes, in order to maximize the magnetic field (i.e., the source of the MRI
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signal) in a specific region while limiting power deposition (i.e., losses) over the entire
sample [24].

In Figure 13, we show the EM distribution in the case of a lossy sphere, with con-
ductivity σ = 0.05 S/m. As expected, all the modes are attenuated by the lossy medium.
In addition, the resonance phenomenon cannot take place as for the case of a lossless
sphere, because here the impedance cannot be infinite (see Figure 4), which results in
considerable amplitude damping of the resonant modes (see y-axis scale of Figure 12 vs.
Figures 10 and 11).

(a)

(b)

Figure 13. Electric (a) and magnetic (b) field distribution as a function of the radial coordinate for
the first four modes. The sphere has a radius of a = 0.6 m, conductivity of 0.05 S/m and a relative
permittivity of 50, mimicking the electrical properties of average brain tissue at 297.2 MHz.

6. Discussion and Conclusions

In this work, we presented a theoretical framework to study the electromagnetic
scattering and propagation characteristics in spherical objects. We demonstrated the
proposed approach for the simple case of a homogeneous sphere, showing that it is fully
consistent with the established Mie scattering theory. Our formulation extends previous
work on equivalent transmission lines and the main advantage over Mie scattering is the
possibility to analyze the propagation of the EM field in terms of reflection and transmission
coefficients, making the physical understanding of the field distribution more intuitive. This
goal was achieved by describing the fields inside and outside the sphere as a superposition
of inward and outward waves, and forcing the equality of the inward and outward field
coefficients inside the sphere to respect the energy conservation principle.

The described approach can be directly applied to research problems that currently
use Mie scattering. One example is the design of metasurfaces, which enable unconven-
tional phenomena, such as perfect absorption, holography, electromagnetic invisibility
and much more [10,31–33]. In such application, the Mie coefficients are combined with
homogenization techniques to evaluate the electromagnetic response of an array of high
permittivity dielectric spheres, deriving a surface impedance. A possible implication of
this study could be the expression of the surface impedance in terms of the impedance
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of the individual dielectric spheres, with an improvement of the physical interpretation
behind the surface design.

Our model could be generalized in a straightforward manner to describe the scattering
by multi-layered spheres, which has applications in several fields. In fact, our formulation
can be seen as an extension of the theory of spherical transmission lines [25]. In particular,
while the concepts of impedance and reflection coefficients in the analysis of the scatter-
ing from spheres were previously described, the significant novelty of this work is the
introduction of an intuitive impedance transfer formula that simplifies the definition of
the boundary conditions between layers. A possible application of our comprehensive
theoretical framework could be the optimization of the properties of high-permittivity coil
substrates that are used to manipulate the EM field distribution to improve the diagnostic
performance of MRI coils [24,30].

While the proposed formulation provides intuitive physical insight if the sources
surround the spherical object, as in various biomedical applications, it is also applicable to
the classical problem of scattering of plane waves from spheres. In fact, the formulation is
valid for any source that can be expressed as a linear combination of spherical waves.

One limitation of our approach is its effectiveness when a large number of modes
is needed to describe the total electromagnetic field. In fact, in such case, it could be
challenging to intuitively grasp an overall physical interpretation of the scattering from the
analysis of the individual modes. Nevertheless, the framework would still allow one to
identify a few dominant modes for the case of interest and study their behavior first.

In conclusion, the proposed method allows for expressing the scattering from spheres
in terms of relevant engineering entities, providing physicists and engineers with a new
tool to interpret the Mie scattering mathematical results, and to design systems that involve
spherical scatterers with a full physical comprehension of the underlying phenomena.
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Appendix A

In this appendix, we present the algebraic steps necessary to obtain the classical
Mie scattering formulation from the reflection coefficient introduced in this paper. By
using Equation (18) in Equation (31), we can write the ratio between outward and inward
coefficients in Medium 1 as:

E−
1nm

E+
1nm

=

1
k2

jn(k2a)
j′n(k2a)

− 1
k1

h(1)n (k1a)

h(1)
′

n (k1a)

1
k1

h(1)n (k1a)

h(1)
′

n (k1a)
− 1

k2

jn(k2a)
j′n(k2a)

R

h(1)n (k1a)

h(2)n (k1a)
= k1h(1)

′
n (k1a)jn(k2a)−k2 j′n(k2a)h

(1)
n (k1a)

k2 j′n(k2a)h
(1)
n (k1a)−k1h(1)

′
n (k1a)jn(k2a)R

h(1)n (k1a)

h(2)n (k1a)
(A1)

where the term R is defined as:

R =
h(1)n (k1a)

h(2)n (k1a)

h(2)
′

n (k1a)

h(1)
′

n (k1a)
(A2)
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Substituting Equation (A2) in Equation (A1), we obtain:

E−
1nm

E+
1nm

=
h(1)

′
n (k1a)jn(k2a)− χj′n(k2a)h

(1)
n (k1a)

χj′n(k2a)h(2)(k1a)− h(2)
′

n (k1a)jn(k2a)
(A3)

Using simple algebra, we can then derive the following quantity:

1
2

(
E−

1nm
E+

1nm
− 1

)
=

j′n(k1a)jn(k2a)− χj′n(k2a)jn(k1a)

χj′n(k2a)h(2)(k1a)−
.
h
(2)

(k1a)jn(k2a)
(A4)

The left side of Equation (A4) is the ratio between scattered and incident fields ex-
pressed with the proposed formalism. The right side of the equation shows that this
ratio has the same analytical expression of the TE Mie scattering coefficients presented in
Equation (9), confirming that our proposed method is equivalent to the Mie approach.
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Abstract: A recently developed theory is applied to deduce the well posedness and the finite element
approximability of time-harmonic electromagnetic scattering problems involving bianisotropic media
in free-space or inside waveguides. In particular, three example problems are considered of which
one deals with scattering from plasmonic gratings that exhibit bianisotropy while the other two
deal with bianisotropic obstacles inside waveguides. The hypotheses that guarantee the reliability
of the numerical results are verified, and the ranges of the constitutive parameters of the media
involved for which the finite element solutions are guaranteed to be reliable are deduced. It is shown
that, within these ranges, there can be significant bianisotropic effects for the practical media considered
as examples. The ensured reliability of the obtained results can make them useful as benchmarks
for other numerical approaches. To the best of our knowledge, no other tool can guarantee
reliable solutions.

Keywords: electromagnetic scattering; time-harmonic electromagnetic fields; bianisotropic media;
metamaterials; variational formulation; well posedness; finite element method; convergence of
the approximation

1. Introduction

Bianisotropic media have important applications in numerous practical problems ranging from
the microwave to photonic frequency bands [1–4]. The electromagnetic problems involving such media
admit analytical solutions only in very specialized cases, and numerical simulators are necessary to
solve the vast majority of them.

In this context, the reliability of the numerical solvers is of utmost importance, and results
guaranteeing the well posedness of the problems and the convergence of the numerical solutions are
crucial. Some of the previous papers that addressed this issue were limited in their applications [5–8].
For instance, the work in [5] made strong assumptions on the losses to guarantee the reliability
of the results. The results in [6] were derived for two-dimensional problems involving axially
moving cylinders, whereas [7] dealt only with evolution problems inside cavities. As for [8],
the constitutive parameters were taken to be smooth, which did not allow applications to radiation
and scattering problems.

A considerable generalization of the conditions that allow ensuring the well posedness of
the problems and the convergence of the finite element solutions was recently achieved in [9]. A set of
non-restrictive hypotheses was shown to guarantee such results for three-dimensional time-harmonic
problems involving bianisotropic media. The authors applied the theory to rotating axisymmetric

Electronics 2020, 9, 1065; doi:10.3390/electronics9071065 www.mdpi.com/journal/electronics27
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objects, where the effect of motion induced bianisotropy. However, the theoretical results derived
were applicable to a much wider range of bianisotropic materials and metamaterials.

In this paper, we exploit the recently developed theory to obtain novel results. We consider
examples of practical problems discussed in the open literature for which, to the best of our knowledge,
none of the previous theories were able to guarantee the reliability of the numerical results. In particular,
we study the electromagnetic scattering from plasmonic gratings, which exhibits bianisotropy [1],
and from bianisotropic obstacles in waveguides [10,11]. We demonstrate the application of the theory
in [9] to derive the conditions on the constitutive parameters of these problems that guarantee
the reliability of the results. The numerical solutions of the problems are calculated under such
conditions, which, owing to the reliability assured by the theory, can be used as references for other
numerical solvers. As far as we are aware, no other tool is available that allows obtaining benchmark
solutions for these problems.

The paper is organized as follows. In Section 2, the problem is defined and the theory is summarized to
guide the reader in its application. Section 3 contains the main results of the paper, where the application
of the theory is demonstrated and reliable solutions are obtained. Section 4 provides the conclusions.

2. Mathematical Description of the Problem

In this paper, we are interested in electromagnetic problems that involve bianisotropic media
under time-harmonic excitation, which were studied in [9]. While the full details of the problem
definition and results are available in the reference, here we provide a summary of the main points
in order to ease the understanding of the present developments.

The problem is formulated in an open, bounded, and connected domain Ω ∈ R
3, which has

a Lipschitz continuous stationary boundary denoted by Γ. To take into account electromagnetic
problems involving inhomogeneous materials, we assume that Ω can be decomposed into m
subdomains (see HD3 of [9]) denoted Ωi, i ∈ I = {1, ..., m}.

The time-harmonic sources imply that all the resulting fields are in turn time-harmonic
and the assumed factor ejωt is ubiquitous and is suppressed. The media involved in the problem
are linear and time-invariant and are considered to satisfy the following constitutive relations:{

D = (1/c0) P E + L B in Ω,
H = M E + c0 Q B in Ω.

(1)

In the above equation, E, B, D, and H are complex valued functions defined in Ω and represent,
respectively, the electric field, magnetic induction, electric displacement, and magnetic field, while c0

is the speed of light in a vacuum. The space where we will seek E and H is [12] (p. 82; see also p. 69):

U = HL2,Γ(curl, Ω) = {v ∈ H(curl, Ω) | v × n ∈ L2
t (Γ)}, (2)

where [12] (p. 48):

L2
t (Γ) = {v ∈ (L2(Γ))3 | v · n = 0 almost everywhere on Γ}. (3)

Based on Maxwell’s equations, boundary conditions, and constitutive relations, the following
variational formulation of the problem can be deduced [5]: given ω > 0, the electric and magnetic
current densities prescribed by the sources Je, Jm ∈ (L2(Ω))3 and the known term fR ∈ L2

t (Γ), involved
in admittance boundary condition, find E ∈ U such that:

a(E, v) = l(v) ∀v ∈ U, (4)
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where:

a(u, v) = c0
(
Q curl u, curl v

)
0,Ω − ω2

c0

(
P u, v

)
0,Ω − jω

(
M u, curl v

)
0,Ω

−jω
(

L curl u, v
)

0,Ω + jω
(
Y (n × u × n), n × v × n

)
0,Γ, (5)

and:
l(v) = −jω

(
Je, v

)
0,Ω − c0

(
Q Jm, curl v

)
0,Ω + jω

(
L Jm, v

)
0,Ω − jω

(
fR, n × v × n

)
0,Γ. (6)

In [9], we derived a set of sufficient conditions that guarantee the well posedness and finite
element approximability of the problem. The developed theory was applied to problems involving
rotating axisymmetric objects. In this paper, we apply the theory to a wider range of problems
involving bianisotropic materials and metamaterials demonstrating the generality of the developments
and obtaining interesting new solutions [1,10,11].

We recall important definitions and hypotheses to fix the notations that are required for proceeding
with the application of the theory. The subscript i ∈ I identifying the subdomain Ωi may belong
to two subsets, Ia and Ib of I, according to the properties of the media involved: i ∈ Ia when they
are anisotropic (that is, with L = M = 0) and i ∈ Ib when they are bianisotropic. Any matrix A
with complex entries can be split into A = As − jAss with As = A+A∗

2 and Ass = A∗−A
2j . Some of

the hypotheses will be stated using the alternative form of constitutive relations defined by:{
E = κ D + χ B in Ω,
H = γ D + ν B in Ω.

(7)

where the constitutive matrices are given by [13] κ = c0 P−1, χ = −c0 P−1 L, γ = c0 M P−1, and ν =

c0 (Q − M P−1 L).
As mentioned in Section 6 of [9], most of the hypotheses are readily satisfied for important

practical problems. That leaves us with seven critical hypotheses (HM9–HM15 in [9]) on the media
involved in the problem that need to be verified. Among them, HM9–HM12 of [9] are stated in terms
of the constitutive relations involving κ, ν, χ, and γ and are restated here as H1–H4.

Hypothesis 1 (H1). ∃∃Cκ,d > 0, Cν,d > 0 : |determinant (κ) | ≥ Cκ,d, |determinant (ν) | ≥ Cν,d, ∀x ∈
Ωi, ∀i ∈ I,

Hypothesis 2 (H2). lT
1,3 κ−1 l1,3 	= 0, lT

1,3 ν−1 l1,3 	= 0 ∀l1,3 ∈ R
3, l1,3 	= 0, ∀x ∈ Ωi, ∀i ∈ Ia,

Hypothesis 3 (H3). ∃∃Cκ,r > 0, Cν,r > 0 : |lT
1,3,n κ−1 l1,3,n| ≥ Cκ,r, |lT

1,3,n ν−1 l1,3,n| ≥ Cν,r ∀l1,3,n ∈ R
3 :

‖l1,3,n‖2 = 1, ∀x ∈ Ωi, ∀i ∈ Ib,

Hypothesis 4 (H4). ∃∃Cκ,s > 0, Cν,s > 0:

( 3

∑
i,j=1

|κij|
)− min

i=1,2,3
|κii| ≤ Cκ,s ∀x ∈ Ωk, ∀k ∈ Ib, (8)

( 3

∑
i,j=1

|νij|
)− min

i=1,2,3
|νii| ≤ Cν,s ∀x ∈ Ωk, ∀k ∈ Ib, (9)

and κ, χ, γ, and ν satisfy:

4
((

∑3
i,j=1 |γij|

)− mini=1,2,3 |γii|
) ((

∑3
i,j=1 |χij|

)− mini=1,2,3 |χii|
)

(− Cκ,s +
√

C2
κ,s + 4 Cκ,d Cκ,r

) (− Cν,s +
√

C2
ν,s + 4 Cν,d Cν,r

) < 1 (10)
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∀x ∈ Ωk, ∀k ∈ Ib.

Among the above hypotheses, H2 needs to hold only in the subdomains Ωi, i ∈ Ia. H1 can be
verified separately in any subdomain Ωi, i ∈ I, whereas H3 and H4 are to be defined and verified
only locally on any subdomain Ωi, i ∈ Ib (see Remark 1 of [9]).

The local continuity of the tensors P, Q, L, and M can be assumed in most practical problems,
which allows the definition of the following constants.

• ∃CL > 0: |(L curl u, v)0,Ω| ≤ CL‖curl u‖0,Ω‖v‖0,Ω for all u ∈ H(curl, Ω) and v ∈ (L2(Ω))3,
• ∃CM > 0: |(M u, curl v)0,Ω| ≤ CM‖u‖0,Ω‖curl v‖0,Ω for all u ∈ (L2(Ω))3 and v ∈ H(curl, Ω).

Finally, HM13–HM15 of [9] are reported here as H5–H7.

Hypothesis 5 (H5). We can find CPS > 0 such that |(Pu, u)0,Ω| ≥ CPS‖u‖2
0,Ω for all u ∈ (L2(Ω))3.

Hypothesis 6 (H6). We can find CQS > 0 such that |(Qcurl u, curl u)0,Ω| ≥ CQS‖curl u‖2
0,Ω for all

u ∈ H(curl, Ω).

Hypothesis 7 (H7). CPS, CQS, CL, and CM (i.e., all media involved) are such that CQS − CLCM
CPS

> 0.

We refer to Section 6 of [9] for some hints about the calculation of the constants involved
in the above conditions. In particular, we recall here Lemma 1 of [9] for easy reference, which is
helpful in finding the constant involved in H5.

Lemma 1. Suppose that Pss is uniformly positive definite in Ωel ⊂ Ω, that is ∃C1 > 0 such that:
∫

Ωel

u∗Pssu ≥ C1

∫
Ωel

|u|2 = C1||u||20,Ωel
∀u ∈ (L2(Ω))3. (11)

whenever Ωel = Ω, we can simply define CPS = C1.
Whenever Ωel is not the whole Ω, suppose that, in the complementary region, Ps is uniformly positive or

negative definite, that is ∃C5 > 0 such that:∣∣∣∣∫Ω\Ωel

u∗Psu

∣∣∣∣ ≥ C5||u||20,Ω\Ωel
. (12)

whenever Ωel = ∅, we simply have CPS = C5, and we can set:

CPS = min
i∈I

inf
x∈Ωi

λmin(Ps), (13)

where λmin denotes the minimum of the magnitudes of the eigenvalues of the Hermitian symmetric matrix Ps.
Finally, whenever Ωel is neither the empty set nor the whole domain, under assumptions HM2 and HM3 of [9],
condition H5 is satisfied with CPS given by:

CPS =
1√
2

min

(√
(1 − α)C5,

√
C2

1 + (1 − 1
α
)C2

3

)
, (14)

where C3 > 0 is defined by: ∣∣∣∣∫Ωel

u∗Psu

∣∣∣∣ ≤ C3‖u‖2
0,Ωel

(15)

and α is such that 1 > α >
C2

3
C2

1+C2
3
> 0.
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Analogously, by replacing P with Q in Equations (11), (12), and (15) , we define, respectively,
Ωml and the constants C2 > 0, C4 > 0, and C6 > 0 and deduce that condition H6 is satisfied if we set:

CQS = min
i∈I

inf
x∈Ωi

λmin(Qs), (16)

whenever Ωml = ∅, CQS = C2 whenever Ωml = Ω, or:

CQS =
1√
2

min

(√
(1 − α)C6,

√
C2

2 + (1 − 1
α
)C2

4

)
, (17)

α being such that 1 > α >
C2

4
C2

2+C2
4
> 0, when Ωml 	= Ω and Ωml 	= ∅.

With respect to the H4, if we define:

Cχ,s = max
i∈Ib

sup
x∈Ωi

(
(

3

∑
i,j=1

|χij|)− mini=1,2,3|χii|
)

, (18)

Cγ,s = max
i∈Ib

sup
x∈Ωi

(
(

3

∑
i,j=1

|γij|)− mini=1,2,3|γii|
)

, (19)

the sufficient condition guaranteeing the validity of the inequality in the hypothesis can be expressed as:

Ku =
4Cχ,sCγ,s(

−Cκ,s +
√

C2
κ,s + 4Cκ,dCκ,r

) (
−Cν,s +

√
C2

ν,s + 4Cν,dCν,r

) < 1. (20)

3. Results and Discussion

In this section, we apply the theory developed in [9] to several classes of problems that could
not be managed with the previous theories [5–8]. The conditions are established on the constitutive
parameters of such problems, under which the well posedness and finite element approximability
can be guaranteed. In particular, we apply the theory and obtain solutions for three examples of
bianisotropic media, which are found in the open literature. The first one is that introduced in [1] where
the authors considered plasmonic gratings, which are represented by an equivalent bianisotropic media.
In this case, we study the scattering from a slab of the equivalent medium, which is placed in empty
space, in accordance with the setup considered by the authors [1]. Next, the media introduced in [10,11]
are analyzed. The authors there considered the scattering from the bianisotropic obstacles placed
inside hollow waveguides. Although we stick to the original configurations proposed by the authors,
our tools can be used to analyze other problems involving these media.

Under the conditions that guarantee that hypotheses H1–H7 are satisfied, the numerical solutions
of these problems are computed. They can be used as reference solutions for other approaches
and simulators because, on the one hand, for each problem, our theory guarantees the convergence of
the sequence of approximations, and on the other hand, we verify that the outcome we present is close
to the limit of the sequence by a stability analysis of the numerical solutions.

We use a first order edge element based Galerkin finite element simulator to obtain the solutions
as described in Section 5 of [9].

3.1. Scattering from Plasmonic Gratings Behaving as Bianisotropic Metamaterials

In [1], the authors considered a plasmonic grating that exhibits bianisotropy at visible wavelengths.
The bianisotropic media considered there are of the form:{

D = εE + ξH,
B = ζE + μH,

(21)
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with:

ε = ε0

⎡
⎢⎣εx 0 0

0 εy 0
0 0 εz

⎤
⎥⎦ , μ = μ0

⎡
⎢⎣μx 0 0

0 μy 0
0 0 μz

⎤
⎥⎦ , (22)

ξ =
1
c0

⎡
⎢⎣0 0 0

0 0 0
0 jξ0 0

⎤
⎥⎦ , ζ =

1
c0

⎡
⎢⎣0 0 0

0 0 −jξ0

0 0 0

⎤
⎥⎦ . (23)

Here, εx, εy, and εz are complex valued functions and are set to be equal to a unique value εr.
Moreover, μx, μy, and μz are each set equal to one, and ξ0 is taken to be real valued. The region occupied
by the scatterer may be denoted as Ωs ⊂ Ω. The above form can be converted into the alternative form
of constitutive relations [13] involving the P, Q, L, and M matrices defined in Equation (1), and the
final result is shown in the following equations:

P = c0ε0

⎡
⎢⎣εr 0 0

0 εr 0
0 0 εr − ξ2

0

⎤
⎥⎦ , (24)

Q =
1

c0μ0
I3, (25)

L = MT =
jξ0

μ0c0

⎡
⎢⎣0 0 0

0 0 0
0 1 0

⎤
⎥⎦ . (26)

Here, I3 is the three by three identity matrix. The complementary region Ω \ Ωs is occupied
by the empty space, which is characterized by P = c0ε0 I3, Q = 1

c0μ0
I3, L = M = 0. This problem

cannot be managed by the previous theories and, in particular, by the theory in [5], which relied on
strong hypothesis about losses.

The bianisotropic medium is lossy with the imaginary part Im(εr) < 0, whereas ξ0 is assumed
real here to avoid some longer calculations. Now, Lemma 1 can be applied to verify hypothesis H5.
Inside Ωs, P can be decomposed as P = Ps − jPss with:

Ps =
P + P∗

2
= c0ε0

⎡
⎢⎣Re(εr) 0 0

0 Re(εr) 0
0 0 Re(εr)− ξ2

0

⎤
⎥⎦ , (27)

and Pss =
P∗−P

2j = −c0ε0 Im(εr)I3. Hence, we have Ωel = Ωs, the lossy region where Pss is uniformly
positive definite and the complementary region with the free space where Ps is uniformly positive
definite. This means that the conditions of Lemma 1 are satisfied, and as a result, H5 is valid.

From the definitions (see Equations (11), (12), and (15)), C1 = c0ε0|Im(εr)|, C5 = c0ε0, and C3 =

c0ε0 max(|Re(εr)− ξ2
0|, |Re(εr)|). To find the minimum of the two expressions in Equation (14), we note

that, in the valid range, the value of the first expression decreases monotonically with α, whereas
that of the second expression increases with it. The highest estimate for CPS is obtained when the two
expressions have the same value. The value of α at which this happens can be evaluated by equating
the two expressions and finding the positive root of the resulting quadratic equation. This value of α,
denoted as αopt, is given by:

αopt =
C2

5 − C2
1 − C2

3 +
√
(C2

5 − C2
1 − C2

3)
2 + 4C2

5C2
3

2C2
5

. (28)
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Thus, we may simply write:

CPS =

√
1 − αopt

2
c0ε0. (29)

As mentioned in [9], this does not mean that a better value of CPS cannot be found. For example,
if Re(εr)− ξ2

0 > 0, then Ps is uniformly positive definite in Ω, and we can find another candidate for CPS,
namely C7 = c0ε0 min(1, |Re(εr)− ξ2

0|) (see Equation (31) of [9]). In particular, when Re(εr)− ξ2
0 > 1√

2
,

C7 is always going to give a value for CPS that is higher than that obtained from the lemma.
In the rest of the subsection, the discussion focuses on the cases with Re(εr) < 0, which gives

a non-definite Ps in Ω. For this case, C3 = c0ε0|Re(εr)− ξ2
0|, and we can directly use the value of CPS in

Equation (29). Since the material is assumed to be non-magnetic, the direct application of the definition
gives CQS = 1

c0μ0
, and H6 is valid. Likewise, for the continuity constants CL and CM, we can choose

the value |ξ0|
c0μ0

. Then, the inequality in H7 becomes CQS − CLCM
CPS

= 1
c0μ0

(1 − ξ2
0
√

2√
1−αopt

) > 0, which gives:

|ξ0| <
(

1 − αopt

2

)1/4
. (30)

Since the right-hand side of Equation (30) also depends on ξ0 due to the presence of C3

in the expression for αopt, we do not have a closed-form expression on the limit on ξ0 below which H7
is satisfied. However, a graphical analysis can be done for estimating such a limit on |ξ0|, as shown
in Figure 1. The value of Re(εr) is varied in the range (−5.0,−1.0), whereas Im(εr) assumes values
in the range (−0.5,−0.1). It can be observed that for a fixed value of Im(εr), the range of ξ0 over which
H7 is valid steadily decreases as |Re(εr)| increases. As for the dependence on Im(εr), the corresponding
range increases when the medium becomes lossier due to higher |Im(εr)|, as expected.
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Figure 1. The plot indicates the maximum of |ξ0| guaranteeing that condition H7 is satisfied,
for scattering problems involving different media considered in [1]. The curves are computed
by assuming ξ0 ∈ R, Re(εr) ∈ (−5.0,−1.0), Im(εr) ∈ (−0.5,−0.1), and μr = 1.

Since outside the region occupied by the bianisotropic media (Ω \ Ωs), we just have the empty
space, H1 and H2 are trivially satisfied there. By Remark 1 of [9], since H1, H3, and H4 need to hold
only locally, now we have to just analyze them inside Ωs occupied by the bianisotropic medium.
We consider the alternative form of constitutive relations, which for the medium inside Ωs becomes as
in Equations (31) to (33), for examining the validity of H1, H3 and H4 [13]:

κ =
1

ε0εr

⎡
⎢⎣1 0 0

0 1 0
0 0 εr

εr−ξ2
0

⎤
⎥⎦ , (31)
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ν =
1

μ0

⎡
⎢⎣1 0 0

0 εr
εr−ξ2

0
0

0 0 1

⎤
⎥⎦ , (32)

γ = −χT =
jξ0c0

εr − ξ2
0

⎡
⎢⎣0 0 0

0 0 1
0 0 0

⎤
⎥⎦ . (33)

The constants of interest can be evaluated directly from the definitions. The determinants of κ

and ν are, respectively, 1

(ε0εr)3(1− ξ2
0

εr )
and 1

(μ0)3(1− ξ2
0

εr )
, which immediately give the values of Cκ,d and Cν,d.

Cκ,d =
1

|ε3
0ε3

r(1 − ξ2
0

εr
)|

, (34)

Cν,d =
1

|μ3
0(1 −

ξ2
0

εr
)|

. (35)

The inverses of the diagonal matrices κ and ν are just the diagonal matrices with the reciprocal entries.
Applying Equations (40) and (41) of [9] gives the values of Cκ,r and Cν,r.

Cκ,r = |ε0εr|, (36)

Cν,r = μ0. (37)

Using Equations (36) and (37) of [9], we get Cκ,s and Cν,s.

Cκ,s =
2

|ε0εr| , (38)

Cν,s =
2

μ0
. (39)

From Equations (18) and (19), we can easily evaluate Cγ,s and Cχ,s.

Cχ,s = Cγ,s =

∣∣∣∣∣ ξ0c0

εr − ξ2
0

∣∣∣∣∣ . (40)

The hypotheses H1 and H3 are valid due to the existence of the above constants. Using these
constants, the value of Ku can be calculated from Equation (20). The critical value of |ξ0| below
which the condition in H4 is satisfied is plotted in Figure 2, with respect to either Re(εr) or Im(εr).
The results show that the range of ξ0 for which H4 holds true increases with the increase in |Re(εr)|,
while it is practically independent of Im(εr).

Let us try to understand the implications of the theory by applying it to the numerical solution of
a specific problem involving the medium of interest. We consider the region with the scatterer Ωs to
be a cube filled with homogeneous bianisotropic media. The surrounding region is filled with empty
space, and the overall domain of numerical investigation, Ω, has a cubic shape as well and is concentric
to Ωs. In the following, Ω and Ωs are characterized by sides of length 2 μm and 0.8 μm, respectively.
The axes are taken along the sides of the cubic domain Ω, and the excitation is with a plane wave
incident along the x axis, with the electric field polarized along the z axis, having a magnitude of
1 V/m and wavelength of 1 μm.

Inside Ωs, the medium is characterized by εr = −1 − j0.4, μr = 1, and ξ0 = −0.41. This value
is such that the hypotheses required for well posedness and finite element approximability are satisfied.
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In fact, for the εr considered, condition H4 is valid for |ξ0| < 0.4393, and condition H7 is valid
for |ξ0| < 0.4235.
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Figure 2. The plots indicate the maximum |ξ0| guaranteeing that condition H4 is satisfied, for scattering
problems involving different media considered in [1]. The curves are computed by assuming ξ0 ∈ R,
Re(εr) ∈ (−5.0,−1.0), Im(εr) ∈ (−0.5,−0.1), and μr = 1.

The solutions are obtained with a first order edge element based Galerkin finite element method.
The boundary condition is enforced with Y equal to the admittance of a vacuum and with an
inhomogeneous term fR, taking into account the incident field.

The domain is discretized uniformly using tetrahedral meshes. The meshing is done by first
dividing the domain into small identical cubes, each of which is in turn divided into six tetrahedra.
The parameter h denotes the maximum diameter of all the elements of the mesh [14] (p. 131), and in
this case, it is simply given by the side of the small cubes times

√
3. To study the stability of the solution,

we consider different levels of refinement of meshes ranked in order of h, ranging from “very coarse”
to “very fine”. For example, the mesh denoted as very coarse is characterized by cubes of sides
200 nm, and the resulting mesh has 1331 nodes, 6000 tetrahedral elements, and 1200 boundary faces.
A summary of the information related to the four different refinements of the meshes that were used is
given in Table 1.

Table 1. Details of the different meshes used.

Type of Mesh
Maximum Diameter

Number Number Number of
of the Mesh

of Nodes of Elements Boundary Faces
(h in nm)

Very coarse 200
√

3 1331 6000 1200
Coarse 100

√
3 9261 48,000 4800

Fine 50
√

3 68,921 384,000 19,200
Very fine 25

√
3 531,441 3,072,000 76,800

The outcomes related to the stability of the results of the simulations are shown in Figure 3
by plotting the magnitude of the z component of the electric field along a line parallel to the y axis and
passing through the center of gravity of the domain. The difference between successive refinements
progressively decreases, and the fine and very fine meshes give stable solutions. The well posedness
and convergence result that was predicted using the theory guarantee that our solutions are reliable.

Figure 4 shows the significance of the bianisotropic effect on the z component of the electric
field along a line parallel to the x axis and passing through the center of gravity of the domain.
Here, Ez denotes the solution obtained with ξ0 = −0.41, and Ez,0 is the solution when ξ0 = 0,
while the plot shows the magnitude of the difference |Ez − Ez,0| along with |Ez|. The magnitude of
the difference is as large as 50% of the incident field. Similarly, the results along a line parallel to the
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z axis and passing through the center of gravity of the domain are shown in Figure 5, and we get
a difference of around 30% of the incident field.
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Figure 3. Stability of the solution for problem involving the medium in [1]. The magnitude of the z
component of the electric field is plotted for four different meshes along a line parallel to the y axis
and passing through the center of gravity of the domain.
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Figure 4. The magnitude of the z component of electric field along a line parallel to the x axis and
passing through the center of gravity of the domain, for the problem involving the medium in [1].
The plot for the magnitude of the field |Ez| obtained in the bianisotropic case using ξ0 = −0.41 is shown
along with the magnitude of the difference between the two solutions |Ez − Ez,0|, where Ez,0 is obtained
using ξ0 = 0.

These non-negligible effects imply that to get accurate results, it is necessary to consider
the bianisotropy of the medium. Hence, the reliability of the finite element solution in the presence of
bianisotropy is important for getting good results for these problems. The application of our theory
gives the conditions under which we can guarantee such reliability. The solutions obtained can serve
as references for other approaches.
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Figure 5. The magnitude of the z component of electric field along a line parallel to the z axis and
passing through the center of gravity of the domain, for the problem involving the medium in [1].
The plot for the magnitude of the field |Ez| obtained in the bianisotropic case using ξ0 = −0.41 is shown
along with the magnitude of the difference between the two solutions |Ez − Ez,0|, where Ez,0 is obtained
using ξ0 = 0.

3.2. Scattering from Chiral Obstacles in a Waveguide

In [10], the authors considered a metallic waveguide, which was hollow except for an obstacle
characterized by a chiral medium with the following constitutive relations.{

D = ε0εr I3E − jξc I3B,
H = −jξc I3E + 1

μ0μr
I3B.

(41)

Here, εr, μr, and ξc are strictly positive real quantities. Thus, from Equation (1), we can easily
identify P, Q, L, and M, which are given below:

P = ε0εrc0 I3, (42)

Q =
1

μ0μrc0
I3, (43)

L = M = −jξc I3. (44)

In Section 6 of [5], it was shown that this media could not be managed by the theory developed
there, independently of the value of ξc ∈ R and of any other material involved in the model of interest.
However, we show that the generality of the recently developed theory in [9] allows us to apply it to
obtain the conditions for well posedness and finite element approximability for this kind of problem of
practical interest.

Let us analyze the validity of the hypotheses by considering, as did the authors in [10], εr ≥ 1
and μr = 1. We can make use of Lemma 1 of [9] to check H5. Ps = P and is equal to ε0εrc0 inside the
material and simply ε0c0 outside. Since Ωel = ∅, a value of CPS can be found by using Equation (13).
In particular, H5 is satisfied for CPS = ε0c0. The hypothesis H6 is also trivially valid with CQS = 1

μ0c0
.
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By Equations (32) and (33) of [9], CL = CM = ξc. Then, the inequality in hypothesis H7 becomes
CQS − CLCM

CPS
= c0(ε0 − μ0ξ2

c ) > 0, which implies:

ξc <

√
ε0

μ0
= 2.654 × 10−3 mho . (45)

This is not a small value considering the chiral effects reported in [10]. As the region outside the
obstacle is empty space, H2 is trivially satisfied, and by Remark 1 of [9], we need to verify that the
hypotheses H1, H3, and H4 hold true locally inside the region occupied by the bianisotropic medium.
To do this, the suitable form of constitutive relations is in terms of κ, ν, γ, and χ, which are given
by the following [13]:

κ =
1

ε0εr
I3, (46)

ν =
ε0εr + μ0ξ2

c
μ0ε0εr

I3, (47)

χ = −γ =
jξc

ε0εr
I3. (48)

κ and ν are multiples of the identity matrix with eigenvalues 1
ε0εr

and ( ε0εr+μ0ξ2
c

μ0ε0εr
), respectively.

The determinants are just the cubes of the eigenvalues, and hence, according to Equations (34) and (35)
of [9], we get the values of Cκ,d and Cν,d.

Cκ,d =

(
1

ε0εr

)3
, (49)

Cν,d =

(
ε0εr + μ0ξ2

c
μ0ε0εr

)3

. (50)

Cκ,s and Cν,s, by Equations (36) and (37) of [9], are in this case simply twice the eigenvalue of the
corresponding diagonal matrix:

Cκ,s =
2

ε0εr
, (51)

Cν,s = 2
ε0εr + μ0ξ2

c
μ0ε0εr

. (52)

The inverse of the matrices is also trivial, and Equations (40) and (41) of [9] simply evaluate to
the reciprocals of the eigenvalues of κ and ν, respectively giving Cκ,r and Cν,r:

Cκ,r = ε0εr, (53)

Cν,r =
μ0ε0εr

ε0εr + μ0ξ2
c

. (54)

From Equations (18) and (19), we get:

Cχ,s = Cγ,s =
2ξc

ε0εr
. (55)

Having shown that the hypotheses H1 and H3 are satisfied, we can use the above constants
to calculate Ku to verify H4. Figure 6 shows the dependence of Ku on ξc for various values of εr.
As the value of εr increases, the hypothesis H4 remains valid for higher and higher values of ξc.
Figure 7 shows the plot of the critical value of ξc below which H4 is satisfied against εr. The limit of
2.654 × 10−3 mho, arising from Equation (45) required to satisfy H7, is also shown in the same figure.
It is seen that for low values of εr, the tighter condition arises from the need to satisfy H4. For example,
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the limiting value is 5.6 × 10−4 mho for εr = 1, increases with εr, and is 1.78 × 10−3 mho for εr = 10.
The curve crosses the 2.654 × 10−3 mho line at around εr = 22.3, and above that value, Equation (45)
imposes the stricter limit.
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Figure 6. Plot of Ku versus ξc for the bianisotropic medium described in [10]. The plots are shown
for various values of εr. The hypothesis H4 is satisfied for Ku < 1.
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Figure 7. The value of ξc below which the hypothesis H4 is satisfied is plotted against εr. The limit of
2.654 × 10−3 mho, arising from Equation (45) required to satisfy H7, is also shown.

Now, we consider a specific numerical problem for which the solution is calculated using
our finite element simulator. A rectangular waveguide with a discontinuity due to a block of
bianisotropic medium is considered as shown in Figure 8. In the simulation, the rectangular waveguide
is characterized by a = 23 mm, b = 10 mm and has a length l = 40 mm. The obstacle is a parallelepiped
with c = 11 mm, d = 5 mm and a length w = 10 mm. The origin of the axis is at the lower right
corner of the near face of the waveguide shown in Figure 8. The obstacle ranges from x = 6 mm
to x = 17 mm along the x axis, from y = 0 to y = 5 mm along the y axis, and from z = 15 mm
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to z = 25 mm along the z axis. The bianisotropic medium making up the obstacle is characterized
by εr = 5 and ξc = 1.24 × 10−3 mho. For this medium, Ku = 0.98 < 1, and also, Equation (45) is
satisfied; hence, all the hypotheses required to guarantee the well posedness and convergence of finite
element solutions hold true. The waveguide is excited with TE10 mode having an amplitude of 1 V/m
and a frequency of 9 GHz. The input port is on the x-y plane, and the output port is closed on a
matched homogeneous admittance boundary condition for the TE10 mode in the empty waveguide.

a

l

b
c

w

d

z
x

y

Figure 8. The geometry of a rectangular waveguide partially filled with the chiral media considered in [10].

The details of the Galerkin finite element solver is the same as before. The tetrahedral meshes
are obtained as discussed in the previous subsection by dividing the domain into small cubes, each of
which is in turn subdivided into six tetrahedra. The stability of the solution is verified by checking
the solutions for three different meshes, which are characterized by small cubes of sides 1

2 mm,
1
4 mm, and 1

6 mm, which are referred to as, respectively, “coarse”, “fine”, and “very fine” meshes.
There are 10,824 nodes, 55,200 elements, and 6200 boundary faces in the coarse mesh, whereas the fine
mesh has 79,947 nodes, 441,600 elements, and 24,800 boundary faces, and finally, the very fine mesh
has 262,570 nodes, 1,490,400 elements, and 55,800 boundary faces. It was verified that the solutions
obtained with these meshes are stable. For example, Figure 9 shows the magnitude of the x component
of the electric field along a line parallel to the y axis and passing through the center of gravity of
the domain with the different meshes and illustrates the stability of the result. It is noted that the x
component of the electric field along this line is zero for the achiral case (ξc = 0), and there is a
difference of more than 30% of the incident field, which is induced by the bianisotropy.

Figure 10 shows the result for the magnitude and phase of the x component of the electric field
along the line parallel to the x axis and passing through the center of gravity of the domain. We have
a difference of 20% of the magnitude of the incident field for the x component of the electric field
along this line. Similarly, Figure 11 shows that the bianisotropic effect for the x component of the field
along the line parallel to the z axis and passing through the center of gravity of the domain causes
a difference in the magnitude of the electric field of around 13% of the incident field.

Figure 12 shows the y component of the electric field along a line parallel to the z axis and passing
through the center of gravity of the domain. The bianisotropic effect is again not negligible and causes
a difference of more than 10% of the incident field. A similar effect is present in the z component as
can be seen in the plot along a line parallel to the x axis and passing through the center of gravity of
the domain, which is given in Figure 13. We do not show the other figures to save space, but it is noted
that the y component of electric field along the lines through the center of the domain and parallel to
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the x and y axes shows small differences in magnitude between the chiral and achiral cases, being less
than five percent of the incident field. The z component on the other hand along the lines parallel to
the y and z axes and passing through the center of the domain shows a difference of more than 15% of
the incident field.
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Figure 9. Stability of the solution for the problem involving the medium in [10]. The magnitude of
the x component of the electric field is plotted for three different meshes along a line parallel to the y
axis and passing through the center of gravity of the domain.
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Figure 10. The magnitude and phase of the x component of the electric field along a line parallel to the
x axis and passing though the center of gravity of the domain for the problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24 × 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.
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Figure 11. The magnitude and phase of the x component of the electric field along a line parallel to the
z axis and passing though the center of gravity of the domain for the problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24 × 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.
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Figure 12. The magnitude and phase of the y component of the electric field along a line parallel to the
z axis and passing though the center of gravity of the domain for the problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24 × 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.
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Figure 13. The magnitude and phase of the z component of the electric field along a line parallel to
the x axis and passing though the center of gravity of the domain for problem involving the medium
in [10]. The plot for the bianisotropic case using ξc = 1.24 × 10−3 mho is compared with the solution
obtained in the isotropic case using ξc = 0.

Together, these results provide a point of reference for other approaches of solving such
problems, owing to the reliability of the results provided here, which is guaranteed by the recently
developed theory. The previous theory [5] was not able to manage these problems, and our results
are therefore novel. In fact, to the best of our knowledge, there are no other approaches that are available
to get reliable results for benchmarking. The significant bianisotropic effects demonstrated in the results
show the practical importance of the theory for such media.

3.3. Reflection by a Short-Circuited Waveguide Half Filled with Bianisotropic Media

Another relevant bianisotropic medium was discussed in [11], where the authors considered
a short-circuited rectangular waveguide, half of which was empty and the other half filled with
a lossless bianisotropic material characterized by:

P = ε0c0 I3, (56)

Q =
1

μ0c0
I3, (57)

L = M = jκ0 A, (58)
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where A is the matrix given by:

A =

⎡
⎢⎣1 1 0

1 1 0
0 0 1

⎤
⎥⎦ , (59)

and κ0 is a positive real number.
The hypotheses H5 and H6 are trivially valid with CPS = ε0c0 and CQS = 1

μ0c0
. Further, L∗L =

M∗M = κ2
0 A2 whose eigenvalues are zero, κ2

0, and 4κ2
0. Therefore, by Equations (32) and (33) of [9],

we get CL = CM = 2κ0. The condition in hypothesis H7 then becomes CQS − CLCM
CPS

= 1
μ0c0

− 4κ2
0

ε0c0
> 0,

which gives the following limit on κ0:

κ0 <
1
2

√
ε0

μ0
= 1.327 × 10−3 mho . (60)

The hypothesis H2 holds true since the anisotropic part is just empty space. H1, H3, and H4
can be studied using the alternative form of constitutive relations, which is characterized by the
following matrices [13]:

κ =
1
ε0

I3, (61)

ν =
1

μ0
I3 +

κ2
0

ε0
A2, (62)

χ = −γ =
−jκ0

ε0
A. (63)

The determinants of κ and ν can be readily calculated, and by using Equations (34) and (35) of [9],
we get Cκ,d and Cν,d:

Cκ,d =
1
ε3

0
, (64)

Cν,d =
(ε0 + μ0κ2

0)(ε0 + 4μ0κ2
0)

μ3
0ε2

0
. (65)

Cκ,s and Cν,s can be directly obtained from their definitions:

Cκ,s =
2
ε0

, (66)

Cν,s =
2ε0 + 8μ0κ2

0
μ0ε0

. (67)

By simple application of the definition:

Cκ,r = ε0 (68)

and by Equation (41) of [9], Cν,r evaluates to the reciprocal of the largest eigenvalue of the real matrix
ν, which is given by:

Cν,r =
μ0ε0

ε0 + 4μ0κ2
0

. (69)

Equations (18) and (19) give:

Cχ,s = Cγ,s =
4κ0

ε0
. (70)

The existence of the above constants verifies H1 and H3, and we can use them to calculate Ku to
check H4. It can be verified that Ku is less than one when κ0 ≤ 2.72 × 10−4 mho, which is stricter than
the limit obtained from Equation (60).
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Finally, let us give some numerical solutions for this problem, which can be used as references
for other approaches. The cross-section of the waveguide is 2 cm along the x axis and 1 cm along
the y axis, and the length of the waveguide is 2 cm, half of which is filled with the bianisotropic
medium characterized by κ0 = 2.7 × 10−3 mho (see Figure 1 of [11]). The origin is taken on the corner
of the open face of the waveguide on the empty side. TE10 mode is excited in the waveguide with
a source of amplitude 1 V/m and a frequency of 12 GHz.

The first order edge element based Galerkin finite element method is used to obtain the solution.
The meshing is carried out by dividing the domain into identical cubes, each of which is then
subdivided into six tetrahedra. The stability of the result is ensured by evaluating the solutions
on three meshes, termed as “coarse”, “fine”, and “very fine”, characterized, respectively, by cubes of
sides 1 mm, 1

2 mm, and 1
3 mm. The coarse mesh has 4852 nodes, 24,000 elements, and 3200 boundary

faces. The fine mesh is composed of 35,301 nodes, 192,000 elements, and 12,800 boundary faces.
The very fine mesh has 115,351 nodes, 648,000 elements, and 28,800 boundary faces. The results
obtained with these meshes are stable. For example, Figure 14 shows the stability of the results
obtained with the three meshes for the x component of the electric field along a line parallel to the y
axis and passing through the center of gravity of the domain.
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Figure 14. Stability of the solution for the problem involving the medium in [11]. The magnitude of
the x component of the electric field is plotted for three different meshes along a line parallel to the y
axis and passing through the center of gravity of the domain.

We provide the magnitudes and phases of the x component of the electric field obtained from
the simulation in Figures 15–17. The bianisotropy causes a difference in magnitude of up to 14%
of the incident field. The phases are also significantly affected by the bianisotropy of the medium.
The figures for other components are not shown to save space, but it is noted that the y component
is affected by the bianisotropy, showing a difference of up to about 10% of the incident field. The z
component of the field along the line parallel to the x axis passing through the center of gravity of
the domain does show a difference of about 10% of the incident field, but the magnitudes along
the other directions are close to zero for both values of κ0 considered.

Since the theory guarantees the reliability of these results, they can be used as references for other
solvers and approaches. It is to be noted that the previous theory developed in [5] could not be
applied to this medium since the same reasons mentioned there with respect to the medium in [10]
are valid. Hence, our results show the generality of the new theory with respect to the application to
interesting bianisotropic media. The results demonstrate that our theory can be applied to problems
with significant bianisotropic effects. This consideration underlines its practical importance.
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Figure 15. The magnitude and phase of the x component of the electric field along a line parallel to the
x axis and passing though the center of gravity of the domain for the problem involving the medium
in [11]. The plot for the bianisotropic case using κ0 = 2.7 × 10−4 mho is compared with the solution
obtained in the isotropic case using κ0 = 0.
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Figure 16. The magnitude and phase of the x component of the electric field along a line parallel to the
y axis and passing though the center of gravity of the domain for the problem involving the medium
in [11]. The plot for the bianisotropic case using κ0 = 2.7 × 10−4 mho is compared with the solution
obtained in the isotropic case using κ0 = 0.
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Figure 17. The magnitude and phase of the x component of the electric field along a line parallel to the
z axis and passing though the center of gravity of the domain for the problem involving the medium
in [11]. The plot for the bianisotropic case using κ0 = 2.7 × 10−4 mho is compared with the solution
obtained in the isotropic case using κ0 = 0.

4. Conclusions

In this paper, we discussed the application of a recently developed theory to electromagnetic
scattering problems involving bianisotropic materials and metamaterials of practical interest. The range
of constitutive parameters over which the reliability of the results was guaranteed was calculated
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for these problems, and the solutions were obtained. The ensured reliability of the results made
them useful as benchmarks for other numerical techniques. To the best of our knowledge, none of
the previous tools were able to get such benchmark solutions.
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Abstract: A modified precise-integration time-domain (PITD) formulation is presented to model
the wave propagation in magnetized plasma based on the auxiliary differential equation (ADE).
The most prominent advantage of this algorithm is using a time-step size which is larger than the
maximum value of the Courant–Friedrich–Levy (CFL) condition to achieve the simulation with a
satisfying accuracy. In this formulation, Maxwell’s equations in magnetized plasma are obtained
by using the auxiliary variables and equations. Then, the spatial derivative is approximated by
the second-order finite-difference method only, and the precise integration (PI) scheme is used to
solve the resulting ordinary differential equations (ODEs). The numerical stability and dispersion
error of this modified method are discussed in detail in magnetized plasma. The stability analysis
validates that the simulated time-step size of this method can be chosen much larger than that
of the CFL condition in the finite-difference time-domain (FDTD) simulations. According to the
numerical dispersion analysis, the range of the relative error in this method is 10−6 to 5× 10−4 when
the electromagnetic wave frequency is from 1 GHz to 100 GHz. More particularly, it should be
emphasized that the numerical dispersion error is almost invariant under different time-step sizes
which is similar to the conventional PITD method in the free space. This means that with the increase
of the time-step size, the presented method still has a lower computational error in the simulations.
Numerical experiments verify that the presented method is reliable and efficient for the magnetized
plasma problems. Compared with the formulations based on the FDTD method, e.g., the ADE-FDTD
method and the JE convolution FDTD (JEC-FDTD) method, the modified algorithm in this paper
can employ a larger time step and has simpler iterative formulas so as to reduce the execution time.
Moreover, it is found that the presented method is more accurate than the methods based on the
FDTD scheme, especially in the high frequency range, according to the results of the magnetized
plasma slab. In conclusion, the presented method is efficient and accurate for simulating the wave
propagation in magnetized plasma.

Keywords: auxiliary differential equation (ADE); magnetized plasma; numerical simulation; PITD
method; propagation

1. Introduction

The simulations of the electromagnetic (EM) wave propagation in the magnetized plasma are
attractive and have a wide range of applications, e.g., high frequency components, PCB design,
microstrip antenna, and so on [1–6]. Recently, the finite-difference time-domain (FDTD) formulation is
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Electronics 2020, 9, 1575

the most popular numerical tool in the full wave analysis, and widely used in the simulation of the
magnetized plasma and other dispersive materials. The typical algorithms based on the FDTD method
for modeling the dispersive material include the recursive convolution (RC) FDTD method [7,8],
the auxiliary differential equation (ADE) FDTD method [9–11], and the Z-transform (ZT) FDTD
method [12,13]. Unfortunately, the FDTD method has an inherent drawback on which the above
methods are based, i.e., Courant–Friedrich–Levy (CFL) stability criterion, and it has limited the further
applications of the FDTD method in the dispersive materials as the problem expands. Assume that the
spatial mesh is very fine to obtain the satisfying accuracy, the CFL stability criterion indicates that the
time-step size should be a small enough value to ensure the numerical results are convergent. It is easily
seen that such a small time-step size leads to an increase of the iteration step and a higher computational
memory requirement so as to decrease the effectiveness of the FDTD calculation significantly and
sometimes increase the accumulated error of the simulation.

Prompted by the aforementioned reasons, a number of time-domain algorithms, which have
looser stability conditions, are presented to improve the efficiency of the FDTD simulations, e.g.,
the alternating-direction implicit FDTD (ADI-FDTD) method [14,15], the locally-one-dimensional
(LOD) FDTD method [16–18], the precise-integration time-domain (PITD) method [19], and so on.
Therein, the ADI-FDTD method is established by the alternating-direction implicit technique, and it is
implicit and has complex iterative formulas. The LOD-FDTD method, which is presented by Shibayama,
et al., is based on both the locally-one-dimensional scheme and the split time step technique. Compared
with the ADI-FDTD method, the LOD-FDTD method is more efficient because it has fewer arithmetical
operations. Here, we know both the ADI-FDTD and LOD-FDTD methods are unconditional stable to
solve the EM wave problems. This means that the CFL condition has no restraint on the time step,
and the efficiency of the simulation can be improved significantly by employing a larger time step.
Meanwhile, the numerical dispersion errors of the ADI-FDTD method and the LOD-FDTD method are
comparable and similar. It should be emphasized that the computational errors of these two methods
increase rapidly which leads to the unanticipated results when the time step is increased as shown in
the following description. In recent years, the ADI-FDTD method and the LOD-FDTD method were
also generalized to the application of the dispersive materials [20,21].

The PITD method, which is presented by Ma, et al., has been used to solve Maxwell’s equations
in free space, lossy space, and unmagnetized plasma [19,22,23]. Although the PITD method is not
unconditionally stable, it can still employ a time step which is much larger than the maximum value
allowed by the CFL stability condition in the FDTD method [24]. Moreover, in contrast to the two
unconditional stable methods mentioned above, the dispersion error of the PITD method is almost
invariant when the time step is increased. This means that the PITD method can maintain a satisfactory
computational accuracy when the time step is increased [25,26], and it makes the PITD method more
suitable for the electrically large EM problems. Here, we take the ADI-FDTD method as the example.
Figure 1 shows the numerical velocity of the FDTD, PITD, and ADI-FDTD methods with respect to the
propagation angle when the Courant number is S = 0.5. It is found that the numerical dispersion error
of the PITD method is larger than that of the FDTD method, but smaller than that of the ADI-FDTD
method. Figure 2 shows the numerical velocity of the PITD method and the ADI-FDTD method versus
the propagation angle under different Courant numbers. With the increase of the Courant number,
the numerical dispersion error of the ADI-FDTD method is increased rapidly, however, the numerical
dispersion error of the PITD method is still nearly invariant.

Due to the advantages mentioned above, the PITD method is a promising approach to model
the EM wave propagation in magnetized plasma efficiently. The resulting Maxwell’s equations of
magnetized plasma are firstly obtained by employing the auxiliary variables and equations related to the
current density. Then, the second-order accurate finite-difference formulation is used to approximate
the spatial derivative in the presented method, and several ordinary differential equations (ODEs)
with respect to the time derivative are obtained directly. Finally, we use the PI scheme to solve the
ODEs. After establishing the modified PITD method in magnetized plasma, the stability condition
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and the dispersion error are analyzed numerically. The stability analysis verifies that the numerical
stability criterion of the presented method in magnetized plasma is much looser than the CFL stability
condition of the FDTD methods so as to increase the maximum allowable time step, and the numerical
dispersion errors are almost invariant when the time-step size is increased. Thus, this method has
the potential to balance both the efficiency and the accuracy. The magnetized plasma slab and the
magnetized plasma filled cavity are simulated to validate that the modified PITD method in the paper
is reliable and efficient. The analyses of the numerical results indicate that the presented method can
provide an evident reduction of the execution time by using a larger simulated time step, meanwhile,
the computational error of the presented algorithm is also lower than those of the formulations based
on the FDTD scheme, especially in the high frequency range.

Figure 1. Numerical velocity of the finite-difference time-domain (FDTD), precise-integration
time-domain (PITD) and alternating-direction implicit FDTD (ADI-FDTD) methods versus the
propagation angle when the Courant number is S = 0.5.
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Figure 2. Numerical velocity of the PITD and ADI-FDTD methods versus the propagation angle under
different Courant numbers.

The rest of this paper is organized as follows. The formulation of the presented method is
introduced in Section 2. The stability analysis and the dispersion analysis are discussed numerically in
Section 3. Numerical results are simulated to verify the efficiency and the accuracy of the presented
algorithm in Section 4. Finally, conclusions are drawn in Section 5.
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2. Formulations

2.1. Resulting Maxwell’s Equations of Magnetized Plasma

The curl Maxwell’s equations for describing the magnetized plasma problem is firstly established
by employing the auxiliary variables and equations related to the current density J(t). The resulting
matrix form is shown as follows:

∂
∂t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
E(t)
H(t)
J(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
ε0
∇× − 1

ε0
− 1
μ0
∇× 0 0

ε0ω2
p 0 −γ+ωb×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(t)
H(t)
J(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where ωp and γ are the natural angular frequency and the collision frequency, respectively; ωb = eB0/m
is the electron cyclotron angular frequency, wherein B0 is the applied magnetic field, e is the electric
quantity, and m is the mass of the electron.

Assume that the applied magnetic field is z-direction in the following analysis, and Equation (1)
can be expanded as follows:

∂
∂t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

Hx

Hy

Hz

Jx

Jy

Jz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 − 1
ε0
∂
∂z

1
ε0
∂
∂y − 1

ε0
0 0

0 0 0 1
ε0
∂
∂z 0 − 1

ε0
∂
∂x 0 − 1

ε0
0

0 0 0 − 1
ε0
∂
∂y

1
ε0
∂
∂x 0 0 0 − 1

ε0

0 1
μ0
∂
∂z − 1

μ0
∂
∂y 0 0 0 0 0 0

− 1
μ0
∂
∂z 0 1

μ0
∂
∂x 0 0 0 0 0 0

1
μ0
∂
∂y − 1

μ0
∂
∂x 0 0 0 0 0 0 0

ε0ω2
p 0 0 0 0 0 −γ −ωb 0

0 ε0ω2
p 0 0 0 0 ωb −γ 0

0 0 ε0ω2
p 0 0 0 0 0 −γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

Hx

Hy

Hz

Jx

Jy

Jz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Here, we know that in the formulations based on the FDTD scheme, both the spatial and time
derivatives are discretized by using the finite difference technique to obtain a set of algebraic equations
from the Maxwell’s equations. However, in the proposed PITD algorithm, only the spatial derivative
is discretized, and several ODEs are obtained temporarily and written as matrix form:

dY

dt
= HY + g(t), (3)

where Y =
[
Ex, Ey, Ez, Hx, Hy, Hz, Jx, Jy, Jz

]T
, the coefficient matrix H is determined by both the EM

parameters of the medium and the spatial step of the simulation, and g(t) is an inhomogeneous term
related to the excitations.

The analytical and discrete solutions of Equation (3) are:

Y(t) = eHtY(0) +
∫ t

0
eH(t−τ)g(τ)dτ, (4)

and

Yn+1 = TYn + Tn+1
∫ tn+1

tn

e−τHg(τ)dτ, (5)

where Yn = Y(nΔt) is the discrete form of Y(t) and T = exp(HΔt) which can be calculated by the the
PI technique.
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2.2. PI Technique Review

The exponential matrix T is firstly reformulated as:

T = [exp(Hs)]l, (6)

where s = Δt/l, l = 2N, and N is a preselected arbitrary integer. If N is large enough, the interval of s
will be extremely small. Then, the Taylor series expansion is employed to approximate exp(Hs) with a
high precision as shown in the following:

exp(Hs) ≈ I + Ta, (7)

where:

Ta = (Hs) +
(Hs)2

2!
+

(Hs)3

3!
+

(Hs)4

4!
, (8)

and evidently,
T ≈ (I + Ta)

l. (9)

It should be noted that if Ta is added to the identity matrix I directly, Ta will be neglected because
Ta is extremely small, which leads to a precision reduction of the exponential matrix. Therefore, it is
evident that Ta should be operated in the process.

The matrix T is computed as follows:

T ≈ (I + Ta)
l = (I + Ta)

2N
= (I + Ta)

2N−1 × (I + Ta)
2N−1

= · · ·, (10)

and
(I + Ta)

2 = I + 2Ta + Ta ×Ta. (11)

Start with Equation (8) to compute Ta and then run the following instruction, the exponential
matrix T can be calculated:

do. i = 1, N
Ta = 2Ta + Ta ×Ta. (12)

end do
T = I + Ta. (13)

Equations (8), (12), and (13) constitute the whole process of the PI technique to calculate the
exponential matrix. Relying on the previous work, the simulated time step of the PITD method is much
larger than the maximum allowable value of the CFL stability condition of the FDTD formulation in
the lossless or lossy problems, which is very significant in the full wave analysis. For the magnetized
plasma material, we believe the application of the PI technique can achieve the same effect and the
following stability analysis and numerical experimentations will prove this point.

Furthermore, for the integration on the right-hand side of Equation (5), a linear variation of the
term g(t) is assumed within the interval (tn, tn+1), expressed as:

g(t) = r0 + r1(t− tn), (14)

Substitute the above expression in the integration, we have the following recursive form solution:

Yn+1 = T
[
Yn + M−1(r0 + M−1r1)

]
−M−1

[
r0 + M−1r1 + r1Δt

]
. (15)

In most cases, Equation (15) is unavailable directly since the matrix M is noninvertible. To
mitigate this problem, the three-points Gauss integral formula is adopted to calculate the integration in
Equation (5), and the recurrence formula is obtained as follows:
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Yn+1 = TYn +
5Δt
18 exp

[(
Δt
2 + Δt

2

√
3
5

)
H
]
g
(
tn +

Δt
2 − Δt

2

√
3
5

)
+ 8Δt

18 exp
[

Δt
2 H
]
g
(
tn +

Δt
2

)
+ 5Δt

18 exp
[(

Δt
2 − Δt

2

√
3
5

)
H
]
g
(
tn +

Δt
2 + Δt

2

√
3
5

) (16)

3. Stability Analysis and Numerical Dispersion Analysis

3.1. Stability Analysis

In this subsection, the amplitude of the eigenvalues of the exponential matrix T is used to discuss
the numerical stability of the presented PITD algorithm in the magnetized plasma. Von Neumann
stability criterion indicates that if the amplitudes of all the eigenvalues of the exponential matrix T are
no larger than unity, the update equations of the presented PITD algorithm will be stable.

We consider the 2-D case in the following analysis. The preselected integer N is selected as 20, and
l = 220 in the proposed method. The natural angular frequency of the magnetized plasma discussed
is 2π × 28.7 × 109 rad/s, the collision frequency is 20 GHz, and the electron cyclotron frequency is
set as 1.0× 1011 rad/s. Figure 3 graphs the comparison of the unit circle and the eigenvalues of the
exponential matrix T in the complex plane when the time-step size is 106ΔtCFL. Here, ΔtCFL is the
upper limit time-step size of the conventional FDTD method. It is clear seen that all the eigenvalues are
within or on the unit circle, which means that the presented PITD method of the magnetized plasma is
stable under such a large time-step size. Therefore, the proposed formulation can use a time-step size
much larger than the maximum value of the CFL stability condition to achieve the simulation of the
magnetized plasma problems.

Figure 3. Comparison of the unit circle and the eigenvalues of the presented PITD algorithm in the
complex plane.

3.2. Numerical Dispersion Analysis

In this subsection, the dispersion performance of the presented PITD method in magnetized
plasma is discussed numerically by adopting the Fourier approach. The dispersion performance of the
presented formulation is described by the differences between the numerical wave number knum and
the analytical wave number kanal. Suppose c is the velocity of light in the vacuum, the analytic wave
number of the left-hand circularly polarized (LCP) EM wave is:

kL =
ω
c

√√√
1− ω2

p

ω2
[(

1− j γω
)
+
ωb
ω

] , (17)

and the analytic wave number of the right-hand circularly polarized (RCP) EM waves is:

kR =
ω
c

√√√
1− ω2

p

ω2
[(

1− j γω
)
− ωb
ω

] . (18)
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Assuming that the monochromatic plane wave propagates in the magnetized plasma, the field
components are expressed as:

X = X0e− j(kz−ωt), (19)

where k is the wave number, X0 and ω are the amplitude and the angular frequency of the EM wave,
respectively. The discrete form of Equation (19) is obtained as follows:

Xk = X0e− j(kmΔz−ωnΔt), (20)

where m and n are the space index and the time index, respectively.
Here, we consider the 1-D case, and the vector X includes the field components Ex, Ey, Hx, Hy,

Jx, and Jy. Substituting the discrete form of the field components into Equation (2) for the 1-D case, a
homogenous system of ODEs can be obtained and written in matrix form as:

dX

dt
= H1X. (21)

Here, the coefficient matrix H1 is:

H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 jW
ε0
− 1
ε0

0

0 0 − jW
ε0

0 0 − 1
ε0

0 − jW
μ0

0 0 0 0
jW
μ0

0 0 0 0 0
ε0ω2

p 0 0 0 −γ −ωb

0 ε0ω2
p 0 0 ωb −γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

where:

W =
2 sin
(

1
2 kΔz

)
Δz

. (23)

The following discrete iterative formula is used to solve the ODEs Equation (21):

Xk+1 = T1Xk, (24)

where the exponential matrix T1 is:

T1 =

⎡⎢⎢⎢⎢⎣I + (H1s) +
(H1s)2

2!
+

(H2s)3

3!
+

(H3s)4

4!

⎤⎥⎥⎥⎥⎦
l

. (25)

Then, we have: (
ejωtI−T1

)
X0 = 0. (26)

Since it is true for any X0 that is nonzero, the determinant of the coefficient matrix
(
ejωtI−T

)
should be zero: (

ejωtI−T1
)
= 0. (27)

In the following analysis, the numerical dispersion error and the numerical dissipation error
are defined to describe the precision of the presented PITD method in the magnetized plasma.
The definition of the relative dispersion error is (Re(knum)−Re(kanal))/Re(kanal), and it is related to the
phase error. The definition of the relative dissipation error is (Im(knum)−Im(kanal))/Im(kanal), and it is
related to the amplitude error [27].

It is assumed that Δz = 75 μm, Δt = 0.125 ps, and ωb = 3.0× 1011 rad/s. The preselected integer
N is chosen as 20, and l = 220 in the presented PITD method. The solutions of numerical wave number
are computed by Equation (27).
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3.2.1. Effect of Wave Frequency on Numerical Error

The natural angular frequency of the magnetized plasma isωp = 2π× 50× 109 rad/s. The collision
frequency is 20 GHz. Figure 4a,b graphs the relative dispersion and relative dissipation errors with
respect to the wave frequency ω for both the LCP and RCP waves, respectively. We can see that both
the dispersion and dissipation errors increase monotonically with the wave frequency. Furthermore,
the relative dispersion error is higher than the relative dissipation error in the LCP wave, and is lower
than the relative dissipation error in the RCP wave. In addition, the relative error range of the proposed
PITD method is 10−6 to 5× 10−4 when the EM wave frequency is from 1 GHz to 100 GHz.
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Figure 4. Relative dispersion and relative dissipation errors with respect to the electromagnetic (EM)
wave frequency: (a) The left-hand circularly polarized (LCP) wave. (b) The right-hand circularly
polarized (RCP) wave.

3.2.2. Effect of the Natural Angular Frequency on Numerical Error

The EM wave frequency is set as 50 GHz. The collision frequency of the magnetized plasma
is 20 GHz. Figure 5a,b graphs the relative dispersion and relative dissipation errors with respect
to the natural angular frequency ωp for both the LCP and RCP waves, respectively. For the LCP

54



Electronics 2020, 9, 1575

wave, the relative dispersion error curve has lower-peak error when ωp/2π is 18 GHz, and the relative
dissipation error curve has lower-peak errors when ωp/2π are 4 GHz and 21 GHz. For the RCP wave,
the relative dispersion error curve has no lower-error peak, and the relative dissipation error curve has
lower-peak error when ωp/2π is 6 GHz. Moreover, both the relative dispersion and relative dissipation
errors increase monotonically with the natural frequency when ωp/2π is larger than the frequency of
the lower-peak error.
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Figure 5. Relative dispersion and relative dissipation errors with respect to the natural frequency:
(a) The LCP wave. (b) The RCP wave.

3.2.3. Effect of the Plasma Collision Frequency on Numerical Error

The EM wave frequency is set as 50 GHz, and the natural angular frequency is ωp = 2π× 50×
109 rad/s. Figure 6a,b graphs the relative dispersion and relative dissipation errors with respect
to the collision frequency γ for both the LCP and RCP waves, respectively. It is found that the
relative dispersion and relative dissipation errors are slightly decreased when the collision frequency
is increased.
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(a) 

(b) 

Figure 6. Relative dispersion and relative dissipation errors with respect to the collision frequency:
(a) The LCP wave. (b) The RCP wave.

3.2.4. Effect of the Time-Step Size on Numerical Error

It is assumed that the natural angular frequency is 2π× 50× 109 rad/s, and the collision frequency
is 20 GHz. Figure 7 graphs the relative dispersion and relative dissipation errors with respect to the
wave frequency ω for both the LCP and RCP waves under different Courant number S, respectively.
It is clear that all the curves are in agreement. Figure 8 shows the relative dispersion and relative
dissipation errors with respect to the Courant number when the EM wave frequency is 50 GHz. Figure 8
indicates that the relative dispersion and relative dissipation errors are almost invariant when the
Courant numbers is increased. These mean that the proposed method can maintain a lower numerical
dispersion error in the simulations when the time step is increased.
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Figure 7. Relative dispersion and relative dissipation errors with respect to the wave frequency under
different Courant numbers: (a) Relative dispersion error of the LCP wave. (b) Relative dissipation error
of the LCP wave. (c) Relative dispersion error of the RCP wave. (d) Relative dissipation error of the
RCP wave.
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Figure 8. Relative dispersion and relative dissipation errors with respect to the Courant numbers for
the LCP wave and the RCP wave.
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4. Numerical Experiments

The performance of the presented PITD method are verified by two typical magnetized plasma
examples which are also solved by the analytical formulas and the formulations based on the FDTD
method, respectively, for comparison.

4.1. Magnetized Plasma Slab

As the first example, a magnetized plasma slab is simulated to validate the efficiency and the
accuracy of the modified PITD algorithm in this paper. The diagram of the infinite magnetized plasma
slab in infinite free space is shown in Figure 9. The numerical reflection coefficient and transmission
coefficient are computed by the presented method, the JEC-FDTD method and the ADE-FDTD method,
respectively. The results are also compared with the analytical solution.

Infinite 
Free Space

Infinite Magnetized 
Plasma Slab

x

y
1.5 cm

z

 
Figure 9. The diagram of the magnetized plasma slab in free space.

The magnetized plasma slab is 1.5 cm thick, and divided into 200 cells, i.e., the space step is 75 μm.
The main computing region is composed of 600 free space cells (the space indexes are from 1 to 300,
and 501 to 800) and 200 magnetized plasma cells (the space indexes are from 301 to 500). Perfectly
matched layer (PML) is employed as the absorption boundary condition to eliminate the reflection error.
The time-step size of the methods based on the FDTD formulation is set to ΔtFDTD = 0.125 ps, and
the time-step size of the proposed PITD method is 5 times of ΔtFDTD (i.e., ΔtProposedPITD = 0.625 ps).
The parameters of the magnetized plasma are shown as follows:

ωp = 2π× 28.7× 109rad/s, (28)

γ = 20.0 GHz, (29)

ωb = 1.0× 1011 rad/s. (30)

Figures 10–13 show the magnitude and the phase of the complex reflection coefficient and
transmission coefficient of the magnetized plasma slab calculated by the JEC-FDTD method,
the ADE-FDTD method, the proposed PITD method, and the analytical solution, respectively. We
can clearly see that the computational results of the proposed PITD method are coincident with the
analytical solutions on both the magnitude and the phase.

58



Electronics 2020, 9, 1575

(a) 

(b) 

Figure 10. Calculated complex reflection coefficient of the LCP wave: (a) Magnitude. (b) Phase.

(a) 

Figure 11. Cont.
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(b) 

Figure 11. Calculated complex transmission coefficient of the LCP wave: (a) Magnitude. (b) Phase.

(a) 

(b) 

Figure 12. Calculated complex reflection coefficient of the RCP wave: (a) Magnitude. (b) Phase.
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(a) 

(b) 

Figure 13. Calculated complex transmission coefficient of the RCP wave: (a) Magnitude. (b) Phase.

According to Figures 11, 12a and 13, it should be noted that the solutions of the proposed PITD
method is more accurate than those of the JEC-FDTD method and the ADE-FDTD method, especially
in the higher frequency range. Meanwhile, it is also found that larger errors occur in the stopband of
the transmission coefficient for the RCP wave. Figure 13 shows that larger errors occur from 13 GHz to
38 GHz for the FDTD methods, and from 13 GHz to 27 GHz for the proposed method. This means that
the low computational error range of the presented PITD method is larger than the FDTD methods.

The CPU time of the three methods are also recorded. The execution time of the JEC-FDTD
method, the ADE-FDTD method, and the presented method are 8.50 s, 8.09 s, and 4.52 s, respectively.
It can be concluded that a larger simulated time step leads to an appreciably reduction of the CPU time.

4.2. 2-D Magnetized Plasma Filled Cavity

The second example is a 2-D cavity filled with the magnetized plasma as shown in Figure 14.
The main computing region is divided into 20 × 20 cells with a space step 75 μm. The time-step size of
the ADE-FDTD method is Δt = 0.1 ps. For the proposed PITD method, the time-step size is 6Δt in this
example. Therefore, the simulations are executed by 3000 iterative steps in the ADE-FDTD method
and 500 iterative steps in the presented PITD method. The parameters of the magnetized plasma filled
in the cavity are ωp = 2π× 28.7× 109 rad/s, γ = 10.0 GHz, and ωb = 3.0× 1011 rad/s.
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Figure 14. The diagram of the 2-D cavity filled with the magnetized plasma.

Figure 15 graphs the time-domain waveforms of the electric field Ex simulated by the presented
PITD method and the ADE-FDTD method, respectively. It is shown that good agreements are achieved
between the two methods on the simulated waveform. Table 1 lists the numerical resonant frequencies
and the execution time of the presented PITD method and the ADE-FDTD method, respectively. It can
be found that the calculated resonant frequencies are also coincident, moreover, the CPU time of the
presented method is at least 1/3 less than that of the ADE-FDTD method. The simulations of both the
FDTD methods and the PITD method in above analysis are achieved by MATLAB and performed on
Intel(R) Core(TM) i3 CPU M370 2.40 GHz PC (Intel, Santa Clara, CA, USA).

Figure 15. The time-domain waveforms of the electric field Ex simulated by the proposed PITD method
and the auxiliary differential equation FDTD (ADE-FDTD) method.

Table 1. A comparison of calculated frequencies and execution time between the auxiliary differential
equation finite-difference time-domain (ADE-FDTD) method and the proposed precise-integration
time-domain (PITD) method.

Method Resonant Frequency/GHz Execution Time/s

ADE-FDTD 30.76 103.5 201.7 12.85
Proposed PITD 31.25 103.5 201.2 8.07
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In conclusion, according to the numerical experiments above, the efficiency of the modified
PITD method in this paper is higher than the algorithms based on the FDTD scheme for modeling
the magnetized plasma. Meanwhile, the solutions of the magnetized plasma slab validate that the
presented method is more accurate than the JEC-FDTD method and the ADE-FDTD method, especially
in the high frequency range.

5. Conclusions

Based on both the auxiliary differential equation and the PI technique, a modified PITD method
has been proposed for modeling the EM wave propagation through magnetized plasma in this paper.
The analyses of the numerical stability and dispersion are discussed respectively, and the superior
performance of the proposed method has been confirmed numerically. It is found that the numerical
stability criterion of the proposed method is much looser than the CFL stability condition of the
FDTD methods so as to increase the allowable simulated time step, and the numerical dispersion
error and the dissipation error are almost invariant when the time step is increased. The numerical
results validate the efficiency and accuracy of the presented algorithm. In the numerical experiments
above, the proposed method can use a time-step size much larger than the value allowed by the CFL
limit of the FDTD method which leads to a reduction of the CPU time in the simulation. Meanwhile,
the accuracy performance of the presented PITD method is better than the JEC-FDTD method and the
ADE-FDTD method, especially in higher frequency range. In conclusion, the proposed algorithm is a
strong numerical tool to solve the EM wave problems in the magnetized plasma.
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Abstract: The Finite Volume Time-Domain (FVTD) method is an effective full-wave technique which
allows an accurate computation of the electromagnetic field. In order to analyze the scattering
effects due to electrically large structures, it can be combined with methods based on high-frequency
approximations. This paper proposes a hybrid technique, which combines the FVTD method with
an asymptotic solver based on the physical optics (PO) and the equivalent current method (ECM),
allowing the solution of electromagnetic problems in the presence of electrically large structures with
small details. Preliminary numerical simulations, aimed at computing the radar cross section of
perfect electric conducting (PEC) composite objects, are reported in order to evaluate the effectiveness
of the proposed method.

Keywords: numerical simulation; finite volume methods; physical optics; radar cross-section

1. Introduction

Several electromagnetic problems require solvers able to characterize complex and multi-scale
structures [1–4]. To this end, two main classes of approaches can be identified. The first one is composed
by full-wave approaches, which aim to solve Maxwell’s equations (or equivalent equations derived
from them) without approximations different from the ones introduced by the numerical discretization
of the problem. Common solvers belonging to such a class are the method of moments (MoM) [5], the
finite-difference time-domain (FDTD) [6] and finite-difference frequency-domain (FDFD) [7] methods,
the finite integration technique (FIT) [8], the finite-element method (FEM) [9], and the method of lines
(MOL) [10]. Although being very effective in several practical applications, these approaches have
the drawback that the computational requirements usually increase significantly when very large (in
terms of wavelengths) radiating or scattering structures are considered. In such cases, high-frequency
techniques based on asymptotic approximations are frequently adopted. Common methods belonging
to this second class are based on the physical optics (PO) approximation and on the geometrical/physical
theory of diffraction [9,11].

When targets composed by large and small scatterers are concerned, hybrid methods, in which
full-wave and high-frequency techniques are combined together, can also be adopted. In this framework,
different hybrid formulations have been proposed in the literature in the past years. For example, the
method of moments has been combined with different high-frequency solvers, both for characterizing
the radiation of antennas in the presence of large structures [12–15], and for computing the field
scattered by large or multi-scale objects [16–18]. Iterative techniques have also been proposed for
increasing the accuracy and reducing the computational time [19,20]. Time-domain approaches, such as
the FDTD and FIT methods, have been adopted in combination with asymptotic algorithms, too [21–25].
It is worth remarking that, in several cases, one of the main difficulties in developing hybrid methods
is represented by the design of a correct interface between the full-wave and asymptotic solver. To
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partially overcome such a problem, the use of Green’s functions, including the scattering contributions
from the large scatterers present in the simulated scenario, has also been proposed [26–28].

In this paper, a hybrid approach based on the Finite Volume Time-Domain (FVTD) method [3,29–31],
which is a full-wave technique based on a finite-volume discretization of Maxwell’s equations, is
proposed. The FVTD method has been successfully used in several applications [32–35] concerning
both perfect electric conducting (PEC) and dielectric targets, and even in combination with other
approaches. For example, full-wave FVTD/FDTD techniques have been proposed in [36,37], whereas
in [38], a hybrid FVTD/PO method has been developed and applied to two-dimensional (2D) structures.
In the present paper, the FVTD method is combined with an asymptotic technique in order to analyze
the radar cross section (RCS) of three-dimensional (3D) structures. In particular, the FVTD solver is
used for computing the scattering contributions due to one or more small dielectric or metallic objects,
whereas the asymptotic solver is adopted for including the effects of large metallic structures located
nearby them. The initial idea concerning such a hybridization has been firstly reported in [39], where
it has been used for characterizing antennas near large metallic structures. In that case, however, only
sources internal to the FVTD region were handled and only the PO contributions due to the nearby
metallic structures were included. In the present work, the proposed hybrid technique is extended for
the first time in order to include more scattering contributions from the asymptotic region. To this end,
the PO approximation is adopted for computing the scattered fields from smooth surfaces, whereas
the Equivalent Current Method (ECM) [11] is used for including the effects of the edges. As far as we
know, this is the first time that such a hybrid approach is developed and numerically validated for
3D configurations.

The paper is organized as follows. The formulation of the hybrid method is reported in Section 2.
Numerical results aimed at validating the proposed computational technique are provided in Section 3.
Finally, conclusions are drawn in Section 4.

2. Formulation of the Hybrid Method

With reference to Figure 1, the computational domain is split into two parts, namely the FVTD
region and the asymptotic region. In the first region, which contains an electrically small-size object,
the FVTD solver is applied. In the second region, which is used for the electrically large structures,
electromagnetic fields are calculated by using the asymptotic technique. In particular, the PO method
is applied to compute the scattered field by the surfaces in which the asymptotic region is discretized,
whereas edges are taken into account by using ECM.

Figure 1. Combined contributions of the two regions.

The computational domain is illuminated by a plane wave, EINC(r) = E0
INCe− jk0d̂t·r, where d̂t is

the propagation direction, E0
INC describes the electric field amplitude and polarization, and k0 is the
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vacuum wavenumber. The overall scattered electric field in the far-field region, indicated as EFF
SCAT(r),

is approximately given by the following contributions:

EFF
SCAT(r) � EFF

FVTD(r) + EFF
PO(r) + EFF

ECM(r) + EFF
FVTD→PO(r) + EFF

FVTD→ECM(r) (1)

The first term, EFF
FVTD(r), represents the electric field scattered by the object inside the FVTD region,

whereas EFF
PO(r) and EFF

ECM(r) denote the primary electric fields scattered by the plane surfaces in which
the asymptotic region is discretized and by their edges, respectively. However, these three terms do not
take into account the interactions between the two regions. The most significant of these interactions
are included in secondary scattered fields, denoted as EFF

FVTD→PO(r) and EFF
FVTD→ECM(r). These two

terms concern the field scattered by the objects located in the asymptotic region when illuminated by
the field produced by the FVTD region.

The contribution produced by the field scattered by the asymptotic region and radiated onto the
FVTD region is neglected, assuming that the latter region is significantly larger than the former one.
Under this assumption, it is possible to simulate the FVTD region alone, and subsequently combine
the result with the contributions due to the asymptotic region. The scattering problem is solved by
adopting a proper discretization of both regions, as described in the following sections.

2.1. Scattered Field from the FVTD Region

The primary scattering contribution from the FVTD region is computed using the full-wave FVTD
method. We adopt a discretization with tetragonal elementary volumes Vn (n = 1, . . . , N), whose faces
are denoted as Sn,k (k = 1, . . . , 4) and characterized by outward unit vectors n̂n,k. By defining the vector

field U(r, t) =
(
Ex, Ey, Ez, Hx, Hy, Hz

)t
and using the second-order Lax–Wendroff temporal scheme [40],

from Maxwell’s equations we obtain the following explicit update equations for each nth elementary
volume [3],

U
(i+ 1

2 )
n = U

(i)
n +

Δt
2

⎡⎢⎢⎢⎢⎢⎣ 1
Vn

4∑
k=1

Λ
(i)
n,kSn,k −A−1

n CnU
(i)
n

⎤⎥⎥⎥⎥⎥⎦ (2)

U
(i+1)
n = U

(i)
n + Δt

⎡⎢⎢⎢⎢⎢⎣ 1
Vn

4∑
k=1

Λ
(i+ 1

2 )

n,k Sn,k −A−1
n CnU

(i+ 1
2 )

n

⎤⎥⎥⎥⎥⎥⎦ (3)

where the superscript i represents the time-step index and Δt is its time-width, which is chosen to
satisfy the stability criterion [3]. The term Un is the field vector computed at the center of the nth
tetrahedron, whereas Λn,k represents the field flux through the surface Sn,k, which is related to the
tangential component of electromagnetic field [1]. By applying the Monotonic Upwind Scheme for
Conservative Laws (MUSCL) [1], it is possible to compute the value of the electromagnetic field at the
center of each face, which is a quantity required for evaluating Λn,k. The term A−1

n CnU
(i)
n takes into

account the presence of media with finite electric conductivities. This term is computed by means of the
Additive Induced Source Technique (AIST) [34]. In particular, An is a matrix containing the values of the
dielectric permittivity ε and magnetic permeability μ inside the nth subdomain, whereas Cn is a matrix
containing the values of the electric conductivity in the same volume element. Detailed definitions
of these matrices can be found in [1]. At the boundaries of the simulation domain, Silver–Müller
absorbing boundary conditions [1] are applied in order to remove the inward components of the
flux at the boundary faces. Near-field to far-field (NFFF) transformations in the time-domain [6] are
then used to compute the scattered electric and magnetic fields EFF

FVTD and HFF
FVTD outside the FVTD

region, i.e., in test points and in both faces and edges of the asymptotic region. In order to compute
the NFFF transformation, a proper Huygens surface is considered inside the FVTD region. Since the
subsequent steps of the hybrid procedure are evaluated in the frequency-domain, the Fast Fourier
Transform (FFT) is applied to FVTD results in order to compute the scattered field term EFF

FVTD(r) at the
considered frequency.
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2.2. Scattered Field from the Asymptotic Region

The primary scattered field due to the asymptotic region, which is assumed to be composed of a
PEC material, is computed by considering two different contributions. The first one is related to the
scattering from surfaces and it is computed by using the PO method [11,41] in the frequency-domain.
The scattered field is approximated with the field generated by the current density vector JPO, given
by [42]

JPO(r) =

⎧⎪⎪⎨⎪⎪⎩2n̂(r) ×HINC(r) if r ε Sill

0 otherwise
(4)

where n̂ is the outward unit vector perpendicular to the illuminated part of the surface Sill and
HINC(r) = d̂t × η−1

0 EINC(r) is the incident magnetic field vector at a point r on Sill. Assuming that the
illuminated surface Sill is discretized into I triangular faces, Si, i = 1, . . . , I, the resulting scattered
electric field can be expressed as [42]

EFF
PO(r) = LPO(HINC)(r) =

η0e− jk0r

j2λ0r

∑
i

{
Ni

PO(r̂) −
[
Ni

PO(r̂) · r̂
]
r̂
}

(5)

where λ0 is the wavelength, η0 is the intrinsic impedance of the vacuum, and Ni
PO is the radiation

vector related to the ith face, which is given by Ni
PO(r̂) =

∫
Si

JPO(r′)ejk0r
′ ·r̂dr

′
.

The second contribution is related to the edges. As previously mentioned, the ECM is used [11,41],
which assumes that the scattered field due to the edges can be computed in terms of equivalent electric
and magnetic line currents. With reference to the above discretization in triangular elements, this
part of the scattered field is obtained by summing the contributions of each lth elementary edge [42]
between adjacent triangles, i.e.,

EFF
ECM(r) = LECM(EINC, HINC)(r) =

η0e− jk0r

j2λ0r

∑
l

{
Nl

ECM(r̂) −
[
Nl

ECM(r̂) · r̂
]
r̂− 1
η0

r̂× Ll
ECM(r̂)

}
(6)

where Nl
ECM and Ll

ECM are the electric and magnetic radiation vectors related to the lth edge, given

by Nl
ECM(r̂) = t̂l

∫
Cl

Ie(r′)ejk0r
′ ·r̂dr

′
and Ll

ECM(r̂) = t̂l
∫

Cl
Im(r′)ejk0r

′ ·r̂dr
′
, respectively, t̂l being the unit

vector defining the direction of the lth edge Cl. The equivalent electric and magnetic currents Ie and Im

depend upon EINC and HINC, respectively, and are defined as in [41,43].

2.3. Scattered Fields Due to the Coupling between Regions

The secondary scattered fields EFF
FVTD→PO(r) and EFF

FVTD→ECM(r) are due to the coupling between
the FVTD and the asymptotic regions. Such contributions are again computed by using the PO
approximation and the ECM. However, in this case, the incident field is represented by the primary
field scattered by the FVTD region in the points belonging to the asymptotic region. In this paper, we
assume that the distance between the asymptotic and the FVTD regions is sufficiently large to allow
the use of the far-field approximation for the computation of the fields EFF

FVTD(r) and HFF
FVTD(r), r ∈ Sill,

that illuminate the asymptotic region. Consequently, the coupling terms can be compactly expressed as

EFF
FVTD→PO(r) = LPO

(
HFF

FVTD

)
(r) (7)

EFF
FVTD→ECM(r) = LECM

(
EFF

FVTD, HFF
FVTD

)
(r) (8)

3. Numerical Results

In this Section, some preliminary numerical results obtained by using the above hybrid method
are reported. The first considered configuration is shown in Figure 2. A PEC sphere of diameter
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dS = 0.318 m is located over a PEC plate of sides lx = ly = 1 m. The distance between the center of the
sphere and the plate is denoted as D. A standard spherical coordinate system centered on the sphere is
assumed (in the following, as usual, θ and φ denote the elevation and azimuth angles, as shown in
Figure 2). The incident field is a plane wave propagating in the directions φ = 0◦, θ ∈ [0◦, 90◦] and
polarized along the elevation direction θ̂. In the FVTD solver, a Gaussian pulse with unit amplitude
and time-width at half-maximum of 1 ns has been used. The simulation time has been set equal to
29 ns and the time step is Δt = 3.4 ps. In this case, the FVTD region is a spherical volume of diameter
dFVTD = 1 m, which has been discretized into NFVTD = 90, 375 tetrahedra. The Huygens surface SH

used for computing the NFFF transformations is a sphere of diameter dH = 0.6 m discretized with
NH = 3572 triangles. Both the FVTD region and the Huygens surface are centered at the origin of the
reference system. The asymptotic region is represented by the plate, which has been discretized with a
mesh composed of NAS = 28 triangles.

Figure 2. Schematic representation of the first configuration. Sphere over a perfect electric conducting
(PEC) plate.

Figure 3 shows the monostatic RCS computed at 750 MHz for 0◦ ≤ θ ≤ 90◦, and φ = 0◦. In this
case, D = 5 m. In particular, the figure reports the values of the RCS for the two targets (sphere and
plate) computed independently (i.e., without mutual interactions) and by exploiting the proposed
hybrid approach. In this case, the effects of the mutual interactions between the sphere and the
plate, correctly estimated with the hybrid method, are more visible for high elevation angles. It is
worth remarking that, even in such a simple configuration, the proposed hybrid technique allows
a considerable saving in the computational requirements. Indeed, if the FVTD method were used
to simulate the whole scenario, a simulation region containing both the sphere and the plate (with
some additional space between targets and boundaries) would be required. For example, assuming a
spherical region of side 7 m discretized with a uniform mesh with elements of side length equal to
λ/10 (referred to the maximum frequency of the excitation signal), more than 100 million tetrahedra
would be needed, resulting in unfeasible memory requirements on a standard personal computer.
Instead, in the considered hybrid technique, only 1.66 GB and 529 MB of RAM are needed for the
FVTD and PO/ECM solvers, respectively.
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Figure 3. Radar cross section (RCS) of the sphere over plate target. Plate of sides lx = ly = 1 m located
at D = 5 m from the sphere. Comparison with the RCS of the sphere and plate alone.

Moreover, in order to validate the use of the NFFF transformations for computing the secondary
scattering contributions, the distance between the sphere (i.e., the FVTD region) and the plate (i.e.,
the asymptotic region) has been varied in the range D ∈ [1, 5] m. The obtained results have been
compared with those provided by the FEKO software (Altair Engineering Inc.) [44]. In particular, the
hybrid solver based on the MoM and uniform theory of diffraction (UTD) has been applied considering
a mesh of 708 triangular elements. The normalized root mean square error (NRMSE) between the RCS
simulated by the proposed hybrid method and by the FEKO solver, for different values of the distance
between plate and sphere, are reported in Table 1. Moreover, an example of the behavior of the RCS
versus the elevation angle for the case D = 3 m is also shown in Figure 4. As can be seen, there is a
good agreement between the proposed procedure and the results provided by FEKO. As expected,
when the distance between FVTD region and asymptotic region is small, higher errors are present,
since the far-field assumptions of the NFFF transformations are no longer satisfied.

Figure 4. RCS of the sphere over plate target. Plate of sides lx = ly = 1 m located at D = 3 m from the
sphere. Comparison with the results provided by the FEKO software.
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Table 1. Normalized root mean square error (NRMSE) versus the distance between asymptotic and
Finite Volume Time-Domain (FVTD) regions.

Distance [m] 1 2 3 4 5

NRMSE 0.118 0.072 0.055 0.056 0.056

As a further test, the sides of the plate have been varied between 0.5 and 2 m, with D = 4 m.
In this case, the plate is discretized with NAS = 76 triangles. The errors on the computed RCS with
respect to the results provided by FEKO are reported in Table 2. As expected, the error is lower when
the plate is larger, mainly because the PO method is less effective in simulating the scattered field by
small electrical objects.

Table 2. Normalized root mean square error (NRMSE) versus the size of the plate.

Plate side [m] 0.5 1 2

NRMSE 0.142 0.056 0.048

In the second considered test case, a PEC sphere of diameter dS = 0.318 m is located over a square
frustum of height h = 2 m (Figure 5). The upper base has size bx = by = 1 m, and the lower base has
side lengths lx = ly = 1.5 m. The distance between the center of the sphere and the upper base of the
frustum is equal to D = 3 m. The FVTD region is equal to the one considered in the previous case. The
asymptotic region corresponds to the outer surface of the frustum, and it has been discretized with
NAS = 158 triangles. Figure 6 shows the computed RCS at 750 MHz. The results given by the FEKO
full MoM solver (with a mesh composed of 1360 triangular elements) are provided for comparison
purposes, as well as FEKO results with hybrid MoM/PO solver with full ray tracing. As can be seen,
the agreement between the proposed hybrid method and the full MoM solution, which has been taken
as a reference, is quite good (the NRMSE is equal to 0.080), although for some directions the RCS is
slightly underestimated. Such differences may be ascribed to the contributions of the field scattered by
the asymptotic region and radiated onto the FVTD, which are currently neglected in the developed
approach. It is also worth noting that, at least in this case, the obtained results are better than the ones
of the FEKO MoM/PO approach, for which the NRMSE with respect to the full MoM is equal to 0.136.

Figure 5. Schematic representation of the second configuration. Sphere over a PEC square frustum.
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Figure 6. RCS of the sphere over frustum target. Comparison with the results provided by the FEKO
software (full method of moments (MoM) and MoM/physical optics (PO) approaches).

4. Conclusions

In this paper, a hybrid approach based on the FVTD method and PO/ECM asymptotic techniques
has been presented, with the aim of computing the scattered electromagnetic field by multi-scale
objects. The computational domain is split into two parts: An FVTD region and an asymptotic region,
which contain small-size and large structures, respectively. The mutual interactions between regions,
which produce secondary scattered field contributions, are approximated by considering the most
significant terms and far-field interactions. Preliminary numerical simulations, in which the proposed
technique is compared with independent electromagnetic simulators for estimating the RCS of simple
composite PEC targets, show the effectiveness of the approach. Future developments will be aimed
at modeling near-field interactions between the two regions and at validating the technique in the
presence of more complex structures and dielectric targets, for which the FVTD method is proven to be
particularly effective. The combination of FVTD and asymptotic methods in the time-domain will be
considered, too. Such an extension would allow simulations to take into account the contributions due
to the field scattered by the asymptotic region and radiated back onto the FVTD region. Moreover,
further work will also be devoted to the introduction of multiple reflections through the integration of
geometrical optics techniques in order to increase the accuracy of the solution. Finally, the possibility
of exploiting proper Green’s functions into the FVTD method for including the contributions of large
structures, as well as the use of iterative schemes, will be explored.
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Abstract: The electromagnetic band gap structure (EBGs) is widely used in microwave engineering,
such as amplifiers, waveguides, microstrip filters, due to the fact of its excellent band stop
characteristics. In this paper, three kinds of microstrip band stop filters were proposed which
were etched with a hexagonal ring EBGs, octagonal ring EBGs and elliptical ring EBGs. Firstly,
the etching coefficient of a band stop filter is proposed, and the performance of filters with different
etching coefficient was analyzed. Secondly, the equivalent circuit of an EBGs band stop filter is
proposed. By comparing the simulation results using advanced design system (ADS) and high
frequency structure simulator (HFSS), it was found that the simulation results had the same −10 dB
stopband width which verifies the correctness of the equivalent circuit model. Finally, three kinds
of microstrip stopband filters were fabricated and measured. The experimental results of the
−10 dB stopband width and resonant frequency were in good agreement with the simulation results.
The −10 dB stopband fractional bandwidth of the three kinds of microstrip stopband filters was more
than 63%. The proposed microstrip band stop filters can be widely used in microwave devices with a
wide stopband.

Keywords: electromagnetic band gap structure; microstrip band stop filter; band stop characteristics

1. Introduction

The photonic band gap (PBG) structure has a certain periodic structure which can prevent the
propagation of microwave in a certain frequency range [1]. The electromagnetic band gap structure
(EBGs) originates from the PBG structure which has the characteristics of band resistance and slow
wave [2]. In recent years, EBGs has been widely used in microwave device design. In the application
of microwave power amplifiers, it has usually been used to improve the efficiency and output power of
power amplifiers. In the design of microstrip antennas, it is mainly used to improve the performance
of the antenna [3]. In the application of microstrip filters, its superior broad stopband characteristic is
suitable for microwave band stop filters [4–9].

Microstrip filters based on a variety of EBG structures are realized by a few techniques, and they
mainly include the following categories. The first is to realize the filter with notch by coupling an
EBGs, adjusting the coupling distance and the size of the unit EBGs. In Reference [4], a microstrip
filter based on the Archimedes spiral EBGs is proposed. In Reference [5], a microstrip filter is realized
via a coupling T-shaped resonator, and an asymmetric coupling line band-pass filter is proposed in
Reference [6], and the performance of the filter is adjusted by adding coupling variables. In Reference [7],
an ultra-wideband bandpass filter based on a coupled EBGs is proposed. The second is based on the
periodic EBGs which reduces the passband ripple, increases the stopband width, and achieves better
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band stop characteristics. For example, Reference [8] proposed a DP–EBG structure to achieve band
stop characteristics; Reference [9] proposed a filter embedded in a multi-mode resonator; Reference [10]
proposed a filter based on a tapered Cauchy microstrip Koch fractal EBGs; and Reference [11] proposed
a filter based on a multi-cycle conical etching EBGs. The third is based on the integration of EBGs and
a multi-layer PCB. For example, multi-layer PCB adopts the locally embedded planar EBGs [12] and
biplane EBG microstrip filter [13]. The fourth is to optimize the EBGs based on high performance
optimization algorithm, and analyze its band resistance characteristics to obtain better band resistance.
In Reference [14], Particle swarm optimization (PSO) is used to optimize EBGs, and in Reference [15]
PSO is used to optimize the EBG common mode filter by using an artificial neural network.

In this paper, three kinds of double-layer microstrip stopband filters with an etched EBG ring
structure are proposed. First, a band stop filter based on a gradient line is proposed. In the upper layer
of the dielectric plate, the basic band stop filter was realized by using the butterfly gradient microstrip
line. The periodic elliptical ring, hexagonal ring, and octagonal ring were etched on the floor, further
increasing the stopband width of −10 dB and the maximum attenuation. Second, the influence of the
etching factor of the three band stop filters on the band stop width and attenuation was analyzed,
and the equivalent circuit of the band top filter was further analyzed. The correctness of the proposed
equivalent circuit model was verified by comparing the simulation and measured results. Finally,
the three band stop filters were compared with those proposed in other studies. The proposed filters
etched with three kinds of EBGs rings can be applied to the broadband band stop RF devices.

2. Design of Microstrip Band Stop Filter

2.1. Design Principle of Microstrip Band Stop Filter

The three band stop filters designed in this paper were composed of a two-layer EBGs. The top
layer was the patch microstrip line of butterfly element, and the bottom layer was etched with three
different periodic ring EBGs on the floor. According to Reference [14], when the period of the butterfly
element is six, the band stop filter can obtain good stopband characteristics and small passband ripple.
The dielectric material was Rogers ro4003, the thickness of the dielectric plate was 1.5 mm, and the
relative dielectric constant was 3.55. According to Bragg reflection conditions, Formulas (1)–(4) can
be derived. The distance between two adjacent circles on the ground plate was d1, βwas the phase
constant of the dielectric plate, λg was the wavelength of the waveguide, f 0 was the center frequency
of the band resistance, εeff was the effective dielectric constant plate of the medium, and C was the
speed of light. The central frequency of the three filters was 5.2 GHz, the period d1 and d2 of the upper
butterfly structure were 17.1 mm, and the corresponding w1 was 3.5 mm and w2 was 0.2 mm.

β× d1 = π (1)

β =
2π
λg

(2)

λg =
C

f0 × √εe f f
(3)

d1 =
λg

2
(4)

The top layer of the three double-layer band stop filters proposed in this paper adopted the
butterfly gradient structure with a thickness of 0.035 mm. The top view and the 3D view are shown
in Figure 1a,b, respectively. In order to analyze the effect of w1 and w2 on the band stop, HFSS was
adopted to sweep the frequency from 2 GHz to 8 GHz for w1 and w2.
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Figure 1. (a) Perspective picture of the microstrip band stop filter based on asymptote; (b) simulation
results of the microstrip band stop filter based on asymptote.

As shown in Figure 2a, with the increase of w1, the −10 dB bandwidth increased from 1.59 GHz to
1.91 GHz, the maximum stopband attenuation increased from 19.41 dB to 23.95 dB, the low-frequency
ripple decreased from 2.73 dB to 2.29 dB, and the high-frequency ripple increased from 1.99 dB to
3.93 dB. As shown in Figure 2b, with the increase of w2, the −10 dB bandwidth decreased from
2.01 GHz to 1.49 GHz, the maximum stopband attenuation decreased from 25.39 dB to 18.3 dB, and the
low-frequency ripple and high-frequency ripple decreased accordingly.

Figure 2. (a) S21 with different w1 by high frequency structure simulator (HFSS); (b) S21 with different
w2 by using HFSS.

As shown in Figure 3a, with the increase of d1, the resonance frequency decreased continuously,
but the −10 dB bandwidth and the maximum stopband attenuation increased. The simulation of the
band stop filter based on the asymptote structure are shown in Figure 3b. The frequency of stopband
resonance center was set at 5.2 GHz, and the size of gradient line optimized by HFSS sweeping was as
follows: d1 = d2 = 17.1 mm; w = 10 mm; w1 = 3.5 mm; w2 = 0.2 mm; dielectric constant = 3.55; and
thickness = 1.5 mm.

Figure 3. (a) S21 with different d1 by HFSS; (b) S21 and S11 of band stop filter based on a gradient line.

77



Electronics 2020, 9, 1216

2.2. Band Stop Filter with Etched Periodic Hexagon Ring EBG Structure

The upper layer of the microstrip band stop filter is a butterfly-shaped gradient line which is made
of copper with a thickness of 0.034 mm. The floor of the filter is covered with copper and etched with a
hexagon ring EBGs. The etched depth is equal to the thickness of copper, which is 0.034 mm. The side
length of the outer hexagon is c1, and the side length of the inner hexagon is c2. The etching factor
of hexagon is kh = c2/c1. A perspective view of a microstrip band stop filter etched with a periodic
hexagon ring on the floor is shown in Figure 4a, and Figure 4b is a 3D view of a microstrip band stop
filter etched with a periodic hexagon ring modeled using HFSS.

Figure 4. (a) Perspective view of microstrip band stop filter etching of a periodic hexagon ring
electromagnetic band gap structure (EBGs); (b) 3D picture of a microstrip band stop filter etching of a
periodic hexagon ring EBGs.

2.3. Band Stop Filter of Etched Periodic Octagonal Ring EBG Structure

The upper layer of the microstrip band stop filter is a butterfly-shaped gradient line which is
made of copper with a thickness of 0.034 mm. The floor of the filter is covered with copper and etched
with an octagonal ring EBGs. The etched depth is equal to the thickness of copper which is 0.034 mm.
Figure 5a shows a perspective view of a microstrip band stop filter etched with a periodic octagon ring
on the floor. The center distance of the outer octagon is e1, the center distance of the inner octagon is e2,
and the relationship between ko = e2/e1. Figure 5b is a 3D diagram of a microstrip band stop filter with
periodic octagonal ring etched by HFSS.

Figure 5. (a) Perspective view of a microstrip band stop filter etching of a periodic octagon ring EBGs;
(b) 3D picture of a microstrip band stop filter etching of a periodic octagon ring EBGs.

2.4. Band Stop Filter of Etched Periodic Elliptic Ring EBG Structure

The upper layer of the microstrip band stop filter is a butterfly-shaped gradient line which is
made of copper with thickness of 0.034 mm. The floor of the filter is covered with copper and etched
with an elliptical ring EBGs. The major axis of the outer ellipse ring is a1, the minor axis is b1, the major
axis of the inner ellipse ring is a2, and the minor axis is b2. The ratio of the long axis to the short axis of
the outer elliptic ring is ra1, ra1 = b1/a1. The ratio of the major axis to the minor axis is ra2, ra2 = b2/a2.
The proportion of the long axis and the short axis of the inner and outer elliptic rings is equal, that is ra
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= ra1 = ra2. Let the etching factor of elliptical ring be ke, ke = a2/a1. Figure 6a is a perspective view
of a microstrip band stop filter etched with a periodic elliptical ring, and Figure 6b is a 3D view of a
microstrip band stop filter etched with a periodic elliptical ring modeled with HFSS.

Figure 6. (a) Perspective view of a microstrip band stop filter etching of a periodic elliptical ring EBGs;
(b) 3D picture of a microstrip band stop filter etching of a periodic elliptical ring EBGs.

3. Discussions and Results

3.1. Analysis of Band Stop Filter with an Etched Periodic Hexagon Ring EBG Structure

In order to analyze the influence of the etching coefficient of a band stop filter with a hexagon
ring, we used HFSS to analyze the frequency sweep of kh, c1 = 3.6 mm, where the kh value was 0.5~0.9,
and the step size was 0.1. The center frequency was 5.2 GHz, and the optimized parameters were
c1 = 4.2 mm and kh = 0.22. As shown in Figure 7a,b, when c1 = 3.6 mm, as kh increased from 0.5 to 0.9,
the maximum attenuation of the stopband decreased from 41.9 dB to 36 dB, the bandwidth of −10 dB
decreased from 3.05 GHz to 2.66 GHz, and the resonance frequency of band stop filter decreased from
5.24 GHz to 5.2 GHz.

Figure 7. (a) Simulation with different hexagon ring etching factors kh using HFSS; (b) maximum
attenuation and −10 dB fractional bandwidth with different hexagon ring etching factors kh.

As shown in Figure 8a, when kh = 0.3 and c1 increased from 3.0 mm to 3.8 mm, the maximum
attenuation of band resistance increased from 35.56 dB to 42.87 dB, and the −10 dB bandwidth increased
from 2.66 GHz to 3.07 GHz, but the ripple of high and low frequency increased slightly. As shown
in Figure 8b, the simulation results of the single-layer graded linear EBGs band stop filter, the filter
in Reference [14] and the proposed double-layer band stop filter etching hexagon ring EBGs were
compared. The results showed that the performance of the double-layer band-stop filter was obviously
better than the former two. When the resonant frequency was 5.2 GHz, c1 = 4.2 mm, kh = 0.22, the
−10 dB band stop width was 3.34 GHz and the maximum band resistance attenuation was 48.84 dB.
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Figure 8. (a) Simulation with different c1 using HFSS; (b) comparison of the filter in Reference [14]
with the filter etched with a hexagon ring.

Pictures of the top layer and bottom layer of the microstrip band stop filter based on the gradient
line structure and etched hexagon ring EBGs are shown in Figure 9a. The comparison between the
measured and the simulation is shown in Figure 9b. The results showed that the resonance frequency
of the band stop filter was 5.2 GHz, the stopband width of −10 dB was 3.29 GHz, and the maximum
attenuation of the stopband was 44.83 dB. The experimental results of the −10 dB stopband width and
resonant frequency were in good agreement with the simulation results. The physical test photos and
the physical measurement results of the band stop filter etched periodic hexagon ring EBGs are shown
in Figure 10a,b. The performance of the band stop filter was tested with the S5180 vector network
analyzer by Copper Mountain Technologies. The vector network analyzer was directly connected to
the amplitude and phase stabilization test module of N small a type (N-SMA) using the Gore test cable.
The calibration was carried out at the SMA port of the test cable of the vector net, and the reference
end face was automatically moved to the calibration end face after calibration.

Figure 9. (a) Physical photographs of the microstrip band stop filter etched with periodic hexagon ring
EBGs welding with an SMA joint; (b) comparison of the measured and simulated results of the filter
etched with periodic hexagon ring EBGs.

Taking the microstrip band stop filter with etched periodic hexagon ring as an example, the
equivalent circuit of band stop filter was analyzed. The equivalent lumped circuit of the microstrip
band stop filter based on gradient line EBGs is shown in Figure 11a. The equivalent lumped circuit of
the microstrip band stop filter etched with periodic hexagon ring is shown in Figure 11b. The ring
EBGs is etched on the floor of the microstrip band stop filter of the asymptote, which is equivalent to
adding inductance capacitance (LC) series resonance in the asymptote equivalent circuit and improving
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the stopband width of the circuit. The three resonant frequencies of the stopband are determined by
inductance capacitance series resonance as shown in Formula (5).

fi =
1

2π
√

LiCi
(i = 1, 2, 3) (5)

Figure 10. (a) Physical test photos of the band stop filter etched periodic hexagon ring EBGs; (b) physical
measurement results of the band stop filter etched periodic hexagon ring EBGs.

Figure 11. (a) Equivalent lumped circuit of the microstrip band stop filter based on gradient line EBGs;
(b) equivalent lumped circuit of the microstrip band stop filter etched with periodic hexagon ring EBGs.

Advanced design system (ADS) is used to simulate the equivalent lumped circuit of the microstrip
band stop filter etched with periodic hexagon ring. The LC parameters are optimized as shown in
Table 1. As shown in Figure 12, the simulation results of ads and HFSS show that they have the same
−10 dB stopband width, which verifies the correctness of the proposed equivalent circuit.

Table 1. The extracted parameters in Figure 11b by using advanced design system (ADS).

C (pF) C (pF) C (pF) L (nH) L (nH) L (nH)

C1 = −0.49 C4 = 2.25 C7 = 0.54 L1 = 5 L4 = 2.27 L7 = 6.44
C2 = 0.54 C5 = 1.06 C8 = 1.61 L2 = 1.11 L5 = 3.06 L8 = 1.29
C3 = 0.83 C6 = 2.29 C9 = 0.235 L3 = 0.73 L6 = 1.29 L9 = 10.3
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Figure 12. Simulation results of the comparison of the microstrip band stop filter etched with periodic
hexagon rings.

3.2. Analysis of Band Stop Filter of Etched Periodic Octagonal Ring EBG Structure

In order to analyze the influence of etching coefficient ko on the performance of the octagonal
band stop filter, the scanning frequency of ko was analyzed using HFSS, and the sweep range of ko was
from 0.5 to 0.9 in steps 0.1 with the condition e1 = 3.6 mm. The optimized parameters of HFSS were e1

= 4.1 mm and ko = 0.25. As shown in Figure 13a,b, when e1 = 3.6 mm, the maximum attenuation of
band stop decreased from 43.1 dB to 36.3 dB, as ko increased from 0.5 to 0.9, the bandwidth of −10 dB
decreased from 3.1 GHz to 2.67 GHz, and the resonance frequency of the band stop filter decreased
from 5.24 GHz to 5.2 GHz.

Figure 13. (a) Simulation with different ko by using HFSS; (b) maximum attenuation and −10 dB
fractional bandwidth with different ko.

As shown in Figure 14a, when ko = 0.3 and e1 increased from 3.0 mm to 3.8 mm, the maximum
attenuation of the band stop increased from 38.1 dB to 44.41 dB, and the −10 dB bandwidth increased
from 2.74 GHz to 3.13 GHz, but the high and low frequency ripple slightly increased. As shown in
Figure 14b, the HFSS simulation results of single-layer gradual linear EBGs band stop filter, the filter
proposed in Reference [14], and the double-layer band stop filter etching octagonal ring EBGs were
compared. The results showed that the performance of the double-layer band stop filter was better
than the former two filters. When the resonance frequency was 5.2 GHz and e1 = 4.1 mm, ko = 0.25,
the band stop width of −10 dB was 3.46 GHz, and the maximum band stop attenuation was 50.25 dB.
The simulation results showed that by increasing e1 or decreasing the etching factor ko, the band stop
width of the filter can be increased and the band stop attenuation can be increased.

82



Electronics 2020, 9, 1216

Figure 14. (a) Simulation results with different e1 using HFSS; (b) comparison between the filter in
Reference [14] and the filter etched with octagon ring.

The pictures of the top layer and bottom layer of the microstrip band stop filter based on the gradient
line structure and etched octagonal ring EBGs with SMA joint are shown in Figure 15a. The comparison
between the measured and the simulation is shown in Figure 15b. The performance of the band stop
filter was tested with the S5180 vector network analyzer by Copper Mountain Technologies.

Figure 15. (a) Physical photographs of microstrip band stop filter etched periodic octagonal ring EBGs
welding with SMA joint; (b) comparison of the measured and simulated results of the filter etched
periodic octagonal ring EBGs.

The results showed that the resonance frequency of the band stop filter was 5.2 GHz, the stopband
width of −10 dB was 3.41 GHz, and the maximum attenuation of the stopband was 49.24 dB.
The experimental results of the−10 dB stopband width and resonant frequency were in good agreement
with the simulation results. The physical test photos and the physical measurement results of the band
stop filter etched periodic hexagon ring EBGs are shown in Figure 16a,b.

3.3. Analysis of Band Stop Filter with Etched Periodic Elliptic Ring EBG Structure

In order to analyze the influence of etching coefficient ke on the performance of band stop filter
etched elliptical ring EBGs. In the case of ra = ra1 = ra2, the frequency sweep of ke was analyzed
using HFSS. The relationship between etching coefficient and −10 dB band stop bandwidth, maximum
insertion loss, and passband ripple were analyzed.
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Figure 16. (a) Physical test photos of the band stop filter etched periodic octagonal ring EBGs;
(b) physical measurement results of the band stop filter etched periodic octagonal ring EBGs.

When the resonance frequency was 5.2 GHz, the optimized parameters were a1 = 4.1 mm, ra = 0.95,
and ke = 0.24. As shown in Figure 17a,b, a1 = 3.6 mm, ra = ra1 = ra2 = 0.85, when ke increased from
0.5 to 0.9, the maximum attenuation of band stop decreased from 42.6 dB to 36.9 dB, the bandwidth
of −10 dB decreased from 3.04 GHz to 2.72 GHz, and the resonance frequency of the band stop filter
decreased from 5.22 GHz to 5.2 GHz.

Figure 17. (a) Simulation results with different ke using HFSS; (b) maximum attenuation and −10 dB
fractional bandwidth with different ke.

As shown in Figure 18a, as ra increased from 0.5 to 0.9, the maximum attenuation of the band
stop increased from 37.29 dB to 43.25 dB, −10 dB bandwidth increased from 3.77 GHz to 3.69 GHz,
low-frequency ripple increased from 3.8 dB to 6.17 dB, and high-frequency ripple increased from 4.46
dB to 9.75 dB.
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Figure 18. (a) Simulation results with different ra using HFSS; (b) comparison of the filter in
Reference [14] with the filter etched with the elliptical ring.

As shown in Figure 18b, the microstrip band stop filter based on single-layer gradient EBGs, the
band stop filter proposed in Reference [14], and the double-layer band stop filter etched with tthe
elliptical ring EBGs were compared. The results showed that the band stop filter etched with elliptical
ring EBGs increased the −10 dB stopband width and the maximum attenuation of stopband, but the
ripple in the band also increased.

The top layer and bottom layer of the microstrip band stop filter based on the gradient line
structure and etched elliptical ring EBGs with SMA joint are shown in Figure 19a. The comparison
between the measured and the simulation is shown in Figure 19b. The performance of the band stop
filter was tested with the S5180 vector network analyzer by Copper Mountain Technologies. The results
showed that the resonance frequency of the band stop filter was 5.2 GHz, the stopband width of −10 dB
was 3.46 GHz, and the maximum attenuation of the stopband was 48.57 dB. The experimental results
of the −10 dB stopband width and resonant frequency were in good agreement with the simulation
results. The physical test photos and the physical measurement results of the band stop filter etched
periodic elliptical ring EBGs are shown in Figure 20a,b.

Figure 19. (a) Physical photographs of the microstrip band stop filter etched periodic elliptical ring
EBGs welding with SMA joint; (b) comparison of the measured and simulated results of the filter
etched periodic elliptical ring EBGs.
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Figure 20. (a) Physical test photos of the band stop filter etched periodic elliptical ring EBGs; (b) physical
measurement results of the band stop filter etched periodic elliptical ring EBGs.

In order to compare the effect of three etching factors on the stopband characteristics of the three
band stop filters, under the condition of a1 = c1 = e1 = 3.6 mm, Figure 21a compares the −10 dB
bandwidth with the three etching factors, and Figure 21b analyzes the maximum stopband attenuation
with the three etching factors. Simulation results show that the curves of the −10 dB bandwidth of
stopband and the maximum attenuation of ke are in good agreement with the curves of kh which
shows that the etching factor ke and kh can achieve the same stopband characteristics. Therefore,
when a1 = c1 is determined, the required −10 dB bandwidth and the maximum attenuation of the
stopband can be adjusted by changing ke or kh.

Figure 21. (a) Comparison of simulation of−10 dB bandwidth with three etching factors; (b) comparison
of the simulations of the maximum attenuation of stopband with three etching factors.

In this paper, three kinds of double-layer microstrip band stop filters were proposed which were
designed with a butterfly-shaped gradual microstrip line on the upper layer of the dielectric plate and
the EBGs of a periodic elliptic ring, hexagonal ring, and octagonal ring etched on the floor.

4. Conclusions

By etching the EBGs, a wider band stop and a larger band stop attenuation microstrip band stop
filter were realized comparing Reference [14]. Given that a1, c1, and e1 were constant, the −10 dB
bandwidth and the maximum attenuation of the three microstrip stop band filters decreased with the
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increase of the etching parameters ke, kh, and ko. The simulation of the designed filter and other band
stop filters are compared in Table 2. Compared with References [14] and [15], the stopband center
frequency of 5.2 GHz, the −10 dB fractional bandwidths of the three stopband filters proposed in this
paper were all greater than 63% which is significantly larger than the former two.

Table 2. Comparison of the proposed filter with other band stop filters.

Reference
Maximum

Attenuation of
Stopband (dB)

Low
Frequency

Ripple (dB)

High
Frequency

Ripple (dB)

Resonant
Frequency

(GHz)

−10 dB
Bandwidths

(GHz)

−10 dB
Fractional

Bandwidths
(FBW) %

[14] 42.46 5.05 6.64 5.2 2.73 51%
[16] 41.3 1.2 0.8 5.6 2.55 51.2%
[17] 52 2.3 2.1 4.2 7.8 80.3%
[18] 60.1 6.2 12.3 13 7.5 46.15%
[19] 60.3 4.5 20.6 4.6 4.2 78.1%
[20] 45 31 12.2 6.5 7.8 122.1%
[21] 32.2 5.1 3.7 6.9 1.02 23.3%
[22] 43.1 8.03 7.24 10.2 1.5 14.6%
[23] 48.8 4.13 8.88 10.5 5.03 41%
[24] 44.8 2.3 2.4 30 18 60%
[25] 45.8 1.5 3.6 5.2 4.1 37.7%
[26] 70 5.1 4.81 11.3 17 168.2%
[27] 41.2 6.5 6.8 6.5 3.8 58.4%
[28] 35 2.3 4.3 2.5 1.2 72%
[29] 47.5 1.3 2.5 2.1 1.3 61.5%
[30] 35.6 0.7 0.8 5.2 0.6 11.5%
[31] 70 0.4 0.6 4 1.5 37.5%

Etching elliptic
ring EBGs 44.83 4.98 7.34 5.2 3.49 65.78%

Etching hexagon
ring EBGs 49.24 5.48 9.45 5.2 3.34 63.31%

Etching octagon
ring EBGs 48.57 5.27 7.97 5.2 3.46 65.28%

In this paper, three kinds of double-layer microstrip band stop filters were proposed. The same
butterfly gradient microstrip line was used in the upper layer of the dielectric plate, and the periodic
elliptical ring, hexagonal ring, and octagonal ring were etched on the floor. Compared with
References [14] and [15], the three band stop filters designed in this paper had wider stopband
widths and larger maximum attenuations.

In the case of c1 = e1 and kh = ko, the trend of maximum attenuation and relative bandwidth of
the band stop filter etched with elliptical ring EBGs and the band stop filter etched with hexagon ring
EBGs were consistent.

The simulation and measurement results show that the maximum attenuation and the stopband
width of −10 dB can be improved by reducing the corrosion factor of the three microstrip band stop
filters. The fractional stopband bandwidths of the three microstrip band stop filters were all over
63%, which can be used in radio frequency (RF) devices with wide stopband bandwidth requirements.
In practical application, on the basis of ensuring performance, the filter size should be further reduced
and the cost should be reduced.
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Abstract: The knowledge of the electromagnetic field levels generated by radio base stations present
in an urban environment is a relevant aspect for propagations and coverage issues, as well as for
the compliance to national regulations. Despite the growing interest in the novel fifth generation
(5G) technology, several aspects related to the investigation of the urban propagation of the Global
System of Mobile Communication (GSM), third generation (3G), and fourth generation (4G) mobile
systems in peculiar non-rural environments may be improved. To account for irregular geometries
and to deal with the propagation in hilly towns, in this work we present an enhanced version of the
COST231-Walfisch–Ikegami model, whose parameters have been modified to evaluate the path loss
at distances greater than 20 meters from the radio base station. This work addressed the problem of
providing an effective, reliable, and quantitative model for the estimation of electromagnetic field
levels in built-up areas. In addition, we also developed and tested a pre-industrial software prototype
whose aim is to make the estimated electromagnetic field levels available to the key players in the
telecom industry, the local authorities, and the general population. We validated the proposed model
with a measurement campaign in the small urban and irregular built-up areas of Dorgali (Nuoro),
Cala Gonone (Nuoro), and Lunamatrona (Cagliari) in Sardinia (Italy).

Keywords: radio propagation in an urban environment; electromagnetic field level; narrow band
measurements; software prototype

1. Introduction

From the early 1980s, worldwide urban environments have witnessed a thorough technological
innovation driven by telecommunication systems development. The contemporary users demand a
high-quality experience, supplied by a continuous improvement of the services in order to ensure new
mobile network functionalities. This results in an overwhelming diffusion of commercial cellular mobile
networks, especially those operating in built-up environments in the cellular ultra-high frequency
(UHF) bands [1]. Hence, the accurate prediction of the electromagnetic (EM) field levels produced by
one or more radio base stations (RBSs) installed in a given urban area, the quantitative assessment
of the coverage, and the estimation of loss factors in propagation paths, from the transmitter to the
receiver, became determinant aspects for the design of the mobile network or for the evaluation of
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the EM pollution in any urban environment of interest. Indeed, it is possible to verify if inhabitants
are exposed to physical parameters in the limit prescribed by current regulations [2,3]. Moreover,
today scientists must communicate scientific evidence clearly. The government agencies must inform
people about safety regulations and policy measures, and concerned citizens must decide to what
extent they are willing to accept such risk. In this process, it is important that communication among
the stakeholders be done clearly and effectively [3]. In order to respond to the needs of mobile network
design and the requirements of exposure regulations, theoretical models are able to predict efficiently
how EM signal propagates represent valuable and reliable tools for these aims.

It is possible to obtain evaluations of path loss and interference considerations with a suitable
propagation model [4,5]. Such a model for propagation in urban environments allows us to avoid
long and expansive measuring campaigns, thus constituting a valuable tool for both coverage and
exposure assessment. The propagation model must be chosen depending on the peculiar ambient to
characterize. Hence, it can be utilized in both the planning and the design phase of the radio systems
or when verifying the coverage aims and quality of the service (QoS). To define the model as valid, it is
necessary to account for the essential features (e.g., altimetry, characteristics of buildings and streets)
of the propagation scenario in an effective and accurate way, i.e., by summarizing the pivotal aspects
of specific parameters.

Moreover, the mechanism of propagation for the selected environment has to be correctly described
and modeled [4,5]. On the other hand, it is worth noting that the features of the linked antennas
deployed in the given scenario must be included in the mathematical description of the types of
urban propagation.

In the literature, several propagation models have been proposed. Depending on the descriptive
approach of the selected urban environment, the numerical tools for the evaluation of field levels, these
models are classified into two types. The former class contains statistical models, which makes use of
parameters expressed as average values. The statistical models are used to study wide areas, where the
exact evaluation of parameters is expansive. The second model type refers to the so-called deterministic
models, which, on the other hand, make use of parameters with exact values, thus being useful for
narrow urban areas. From the analysis of the state-of-the-art, it is possible to highlight that several
studies were performed with the aim of achieving a correct description of the evaluation of the EM field
produced by an RBS together with validation based on an adequate measuring campaign to efficiently
monitor the exposure to the EM source. Indeed, a comparison between the EM field values derived from
empirical–statistical models, namely, the COST231-Hata model and the COST231–Walfisch–Ikegami
(C231WI) model [4,5], and experimental validation through a narrowband measurement campaign
was carried out [1]. An interesting and useful study was conducted for the case of the city of Turin
(Italy) [6], where the exposure of the population to EM fields generated by RBSs was assessed by
comparing measured values with appropriate instrumentations and theoretical values derived from a
model which did not consider attenuation and reflection from buildings. Furthermore, a thorough
analysis was performed in the city of Monselice (Padova, Italy) with the aim of predicting field levels,
considering the alteration due to the presence of buildings (attenuation and reflection), using two
different approaches: the former through the expression of the far-field, the latter with the ray-tracing
technique [7]. Reference [8] presented work about a comparison of the theoretical evaluation and
measured values of power nearby a specific RBS.

The interest of the scientific community is also addressed in the monitoring of EMF levels in
urban environments in order to assess the degree of population exposure to UHF EM fields. In the
literature, several works focused on the use and description of peculiar and specific measurement
systems, and experimental protocols can be found, as shown in Table 1. In Reference [9,10], the authors
proposed an innovative monitoring system based on a wireless sensor network (WSN) able to keep
under constant control the overall and cumulative EM field in the area of interest. The purpose of the
system called SEMONT (Serbian ElectroMagnetic field MOnitoring Network) was the development
of a useful tool for national and local agencies of Serbia for environmental protection, especially
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to keep under control electromagnetic pollution and to asses real-time exposure of the population.
In Reference [11,12], the authors presented a study based on the RF radiation levels produced by
radio base stations in Serbia and focused the attention on the antennas set at roof height, which are
the most common in the analyzed area. These studies [11,12] led to the valuable result of verifying
that exposure levels were within limits prescribed by international standards. The problem of field
estimation and EM monitoring is a worldwide issue and hence in other countries similar research
was performed. For instance, in Turkey the concerns about EM exposure resulted in an indoor and
outdoor measuring campaign to assess safety conditions for several inhabitants of a specific area in
proximity to a GSM radio base station [13]. In Reference [14], it is possible to observe the results of a
study carried out in the rural area of Bari (Italy) focused on the quantification of the effects of exposure
to EM, generated by an RBS, on agricultural workers. With reference to the same topic, in [15–17] the
results derived from the measurement of power density were compared with EM exposure levels in
public areas in Nigeria, in a metropolitan zone in India, and in several areas of China, respectively.
The monitoring of electromagnetic field strength from RBSs in urban environments was validated with
narrowband measurement campaigns using a spectrum analyzer [17]. As a matter of fact, from this
discussion, the experimental monitoring approach is certainly more expansive from an economical
and temporal point of view compared with the theoretical and predictive way discussed previously.
Therefore, for both the coverage assessment and the exposure concerns, a validated theoretical model
constitutes a valuable tool.

Besides the model development and accuracy, as reported in Table 1, in the literature, relevant
attention is paid to the translation of the propagation scheme into integrated software for displaying
and sharing the field levels in a given area. Indeed, by using optical geometry and the geometric
theory of diffraction, hence describing field propagation in terms of beams, a deterministic model was
used to design software able to evaluate field levels in urban environments [18]. From the simplified
model of antennas transmitting in free space, Windows-based software to predict EM field levels was
developed [19].

Among the most relevant models used to predict radio signal propagation in urban environments,
the COST 231 Hata model [4,5,20,21] and the COST 231 Walisch-Ikegami model [4,5,22–24] are used
for any prediction at distances greater than 20 m from the RBS, as can be seen in Table 1. The COST 231
Hata model, which is an empirical and statistical technique, considers as main parameters the height
of the RBS and of the terminal mobile, as well as the distance to the observation point. Therefore,
the C231WI model results are more accurate, with respect to other models results. In fact, it can
be classified as an empirical–statistical model (see Table 1), which makes use of a better and more
careful description of the urban environment, thanks to the different approach to the propagation
mechanism by diffraction by roofs and the roof–street linking/coupling [23]. Descriptive parameters
for the environment are the average height and distance of separation between adjacent buildings,
the width of the street, and the angle between the street and the line of conjunction of the RBS and the
mobile station. These are all statistical parameters, and they assume that buildings in an urban center
are arranged in a regular grid.

The fundamental working hypotheses of the C231WI can be considered acceptable in medium-sized
and large cities; whereas, for the highly recurrent case of irregular, variable, hilly cities and small
towns, the C231WI model would surely lose accuracy and effectiveness. The aim of this work is the
development, validation, and use of a theoretical model which can describe the propagation of EM
fields generated by GSM, 3 G, and 4 G RBSs (at frequencies of 944.2 MHz, 1847.8 MHz, and 2142.4 MHz)
in urban scenarios of small, hilly towns with irregular street geometry and small houses with different
shapes and heights. In this way, by modifying the definition of the propagation model parameters,
it is possible to take into account the plethora of configurations and cases of interest for the coverage
estimation and exposure assessment.

This estimation of EM fields from RBSs, using a propagation model based on a modified version
of the C231WI, is used to develop an integrated software system with a dedicated mobile application

93



Electronics 2020, 9, 765

in order to share and visualize the estimated EM fields in a given area, thus informing the telecom
companies, the local authorities, and the general population.

Table 1. Summary table of the state-of-the-art of propagation models and field level estimation.

Name Category Coverage Scenario Country Year Ref.

COST231-Hata Mode Empirical 150 MHz–1.5 GHz
d > 20 m Urban - 1980 [4,21]

COST231-Walfisch–Ikegami Empirical
Statistical

900 MHz–1.8 GHz
d > 20 m Urban - 1999 [4,5,23,24]

Prasad et al.
Deterministic

Statistical
Empirical

1.8 GHz
d > 20 m

Urban
Suburban India 2011 [1]

Anglesio et al. Deterministic 100 kHz–3 GHz
d > 20 m Urban Italy 2001 [6]

Giliberti et al. Deterministic (Ray tracing) 3 MHz–3 GHz Urban
Suburban Italy 2009 [7]

Miclaus and Bechet Deterministic 900 MHz
d > 20 m Urban Romania 2007 [8]

SEMONT Empirical 700 MHz–2.6 GHz Suburban Serbia 2014–2020 [9–12]
Çerezci et al. Empirical 900 MHz–2.1 GHz Urban Turkey 2015 [13]

Pascuzzi and Santoro Deterministic 900 MHz–1.8 GHz
d > 20 m

Urban
Suburban Italy 2015 [14]

Ojuh et al. Deterministic 900 MHz Rural Nigeria 2015 [15]

Saravanamuttu et al. Statistical
Empirical

540 kHz–2.6 GHz
d > 20 m Urban India 2015 [16]

Zheng and Zhigang Deterministic 30 MHz–3 GHz Urban China 2015 [17]

In light of these premises, our work aims to develop a theoretical model for describing the
propagation of UHF EM fields produced by one or more radio base stations in specific urban scenarios
and at the same time increase awareness of the population at the EM field level in the interested
zones. Originally, our research was initiated under an umbrella project called “Onde Chiare” and was
supported by the Regione Autonoma Sardegna. This project aimed to answer the need of information
about EM fields by the general public while satisfying the requirement of lowering the monitoring
efforts of regulatory and local agencies. Accordingly, the first objective of our work was to develop
a mathematical framework serving as a design tool for cellular networks and to predict coverage
performances. Furthermore, the second objective was the development of a Web-based platform of
mobile phone base stations and their emissions and simultaneously of a mobile application linked
to this in order to give direct access to data in a user-friendly, reliable, up-to-date, and timely way.
Our system aims to provide a common information basis for decision makers and the public and
therefore presents the values of EM field levels to the interested population and checks whether the
exposure to EMF is likely to be exceeded. In this way, it would be possible to activate procedures to
reduce levels when they exceed the attention thresholds.

This paper makes the following contributions to the literature. First, it focuses on relevant models
used to predict radio signal propagation in urban environments and then defines an enhanced model
for the estimation of loss factors in propagation paths in order to predict accurately the EM field
level produced by one or more radio base stations installed in specific urban environments. Secondly,
it presents our pre-industrial software prototype called the Onde Chiare System (OCS) oriented to
support the knowledge in the electromagnetic field and obtain general information about antennas and
regulations. Then, it demonstrates with an experimental validation that the modified version of the
COST231-WI model can deal with the built-up scenarios of hilly, largely variable, and small, irregularly
arranged towns. The experimental validation is fundamental in order to use the proposed model
and test the developed software system. Finally, a discussion of its implications and the conclusions
are presented.

2. The Estimation of EM Field Levels

Basically, the field level depends on two factors, namely, the path loss between the RBS and the
field point, and the RBS antenna gain in all directions. To calculate the electric field levels in any
desired position, the following far-field equation was used [25]
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E =

√
8πη0PtG(θ,ϕ)

λ2L
(1)

where E is the far field in V/m, η0 is the vacuum impedance, Pt is the transmission power of the RBS
transmitter antenna expressed in Watts, G(θ,ϕ) is the transmitter antenna gain as a function of vertical
and horizontal angles in degrees, and L is the attenuation path loss of the electromagnetic signal.

In an urban scenario, there is more than one active RBS. For this reason, we must compute the field
amplitude Ep for each RBS using the previous formula and then add the corresponding power density,
since the fields of different RBSs are uncorrelated. Therefore, the total EM field is obtained using [25]

ETot =

√√√ n∑
p=1

E2
p (2)

where n is the number of active RBSs. Regarding the transmitter antenna gain, it must be included
in the model. In this work, the term G(θ,ϕ) was derived with the knowledge of the horizontal and
vertical radiation patterns, which are provided by the manufacturers in the datasheets. Typically,
the fields for the main E- and H-planes are known. However, the estimation of the electric field should
be performed for a given arbitrary point. It is therefore necessary to derive the entire radiation pattern.
Among the available methods, in this work, the gain of the transmitting antenna is used as input to the
3D interpolation algorithm from [25,26] in order to derive the full pattern and hence calculate the field
levels in a given point. An explicative scheme of the reconstruction procedure is shown in Figure 1 for
the case of a Kathrein 742212 antenna.

Modified Version of the COST 231– Walfisch–Ikegami Model

As discussed in the Introduction, a statistical and empirical model is preferable in order to respect
and account for the actual topology of the built-up area under analysis in the model. Furthermore, in
this work, a model valid for the UHF frequency range and for distances greater than 20 m from the
RBS would be considered for coping with hilly and irregular built-up environments. The model which
fulfills all these requirements is the C231WI model [4,5,23,24]. Indeed, for the frequency range from
800 MHz to 2000 MHz, for a set of mobile-to-RBS distances from 0.02 km to 5 km, RBS height from 4 m
to 50 m, and for mobile height from 1m to 3 m, the COST231WI model allows the path loss evaluation
considering the following parameters [4]:

• the height of the buildings in the given scenario (hroof);
• the width of the roads in the built-up area (w);
• the building separation (b);
• the road orientation with respect to the radio path (ϕ).

Therefore, the term L in Equation (1) is a function of these parameters, i.e., L = L (hroof, w, b, ϕ) [4].
A remark is in order. Indeed, in their classical form, the C231WI parameters could be representative of
the local field behavior only for a regular urban environment with almost similar buildings having
similar features, located in a regular and ordered grid [4]. This is a relevant limitation, considering
that the majority of cases, especially in the Italian scenario, are represented by small, hilly towns with
irregular arrangements of buildings having significant variability in their height [7,11–19]. When the
best, regular configuration is analyzed, the theoretical estimation of the path loss differs by about
+3 dB ± 4–8 dB from the measured values, in the case of RBS antennas with heights above the
rooftop level [23,24]. Since, in the literature, the analysis of C231WI performances for the cases of
non-regular grids, buildings with largely variable height, and set in a non-plane, hilly area has been
poorly investigated, to date the error and the deviation of the predicted field levels with respect to
measurements are not known. Therefore, employing the C231WI model would lead to unreliable
theoretical predictions of EM field values, thus implying a noticeable bias in coverage prediction or
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in the exposure assessment. Furthermore, for the C231WI model, it is known that the error becomes
larger when hbase ≈ hroof, especially with respect to the case when hbase >> hroof. Moreover, the C231WI
has the shortcoming of dealing for distances very close to the source, i.e., the model effectiveness is
scarce for hbase << hroof. Therefore, there is room for improvement.

Figure 1. Example of the inputs and output of the algorithm for the 3D reconstruction of the antenna
gain [25,26]. The case of the Kathrein 742212 antenna is presented.

It is possible to overcome the aforementioned limitations of the C231WI model by rephrasing and
redefining the model parameters, as done in [25]. Instead of using the mean value of the buildings in
the grid of interest, hroof should be defined as the mean of the height of the buildings which are crossed
by the propagation path, considering the segment which joins the RBS antenna and the ground below
the mobile, as shown in Figure 2a [4]. This new definition of the roof height allows us to account for a
hilly built-up environment [25], while ensuring the possibility of describing flat cities [5]. This is the
built-up environment. Then, parameter w should be assumed to be equal to the width of the street
where the receiving mobile is located. A clarification is in order. It is possible to interpret w as the
actual road width (wA) or as the length of the propagation path inside that road (wp), as shown in
Figure 2b [4]. Both possible definitions were tested and verified [25]. Indeed, w can be interpreted as
the equivalent ray description of the propagation path (wp) or as the length of propagation toward
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the mobile inside a parallel-plane waveguide, with the two buildings as walls, which as the outcome
that the dispersion of such a “modal” propagation is an unknown function of wA [25]. The findings
from [25] demonstrated that an actual road with (w = wp) is the modeling strategy for which the
prediction error is lower, with respect to the other w parameter evaluations. As regards the term b,
in the proposed rephrased model, the arithmetic mean of the separation distances between buildings
that are crossed by the beam in its propagation path is a more appropriate definition, as shown in
Figure 2c. Finally, ϕ is redefined as the angle between the propagation path and the last building wall
crossed by it before reaching the observation point (see Figure 2c). With these new set of parameters,
it is possible to estimate the electric field level in a given urban area using Equation (1).

The modified version of the C231WI model is used to derive the field values in a given urban area.
In this study, the model is validated and then used for the irregular and hilly towns of Dorgali (NU),
Cala Gonone (NU), and Lunamatrona (CA), Italy. The Onde Chiare software uses the proposed model
to derive by request the EM field value at the user location. In this way it is possible to monitor the
electromagnetic field levels produced RBSs in urban environments and share this information with the
interested stakeholders.

 
(a) 

 
(b) (c) 

Figure 2. New definition of parameters for the COST231–Walfisch–Ikegami model [24]: (a) Schematic
drawing of the re-defined parameter hroof to account for the hilliness of a given urban scenario;
(b) Representation of the two possible definitions of parameter w. In this work, the definition w =
wp is used [24]. (c) Definition and representation of the parameters b and ϕ. The rectangular boxes,
named respectively, En, Em, and Ek, are the buildings crossed by the electromagnetic field during
its propagation path from the RBS (see label in black) to the point P (see label in green). In addition,
hbase, hmobile, and h1,2 represent the RBS height, the point P height, and the building height, respectively.
Finally, the w, b, andϕ parameters are the width of the roads in the built-up area, the building separation,
and the road orientation with respect to the radio path, respectively

3. Onde Chiare Project

As introduced previously, the “Onde Chiare” project aimed to implement a model for the
estimation of loss factors in propagation paths in order to accurately predict EM field levels produced
by one or more RBSs installed in particular urban environments. Moreover, it had the goal of developing
a regional database of mobile phone base stations and their emissions, while presenting to the public
the values of EM field levels in order to show that the exposure to EM fields is below the prescribed
limits. In this way it would be possible to activate procedures to reduce levels when they exceed the
attention thresholds.
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In the context of non-ionizing radiation, data communication as well as its acquisition has a
significant importance. The acquired data may help in several functions. They can describe the
environment quality and provide information to the local government for urban and territorial
planning, but also to the public about the exposure to radio frequency, thus also reducing the concern
about upgrades and reconfigurations of mobile phone RBSs. In this direction the project developed a
Web-based platform in order to give direct access to data in a user-friendly, reliable, up-to-date, and
timely way, providing a common information basis to decision makers and the public.

3.1. System Design

In detail, the software system named Onde Chiare System (OCS) is a pre-industrial prototype
setting up a collaborative software platform of services oriented to support the knowledge in the
electromagnetic field and obtain general information about antennas and regulations. The general
functioning scheme of OCS is shown in Figure 3.

Figure 3. General scheme for the Onde Chiare system. The user can access the database, using an
Android device, to check geolocalized information in order to recover the set of surrounding RBSs. The
server elaborates the electric field estimation using the modified version of the C231WI model with the
geographical and topological data and then sends the output to the user.

OCS has an online register containing the data of the cellular RBS (GSM, 3G, and 4G) installed
over the regional territory of Sardinia (Italy). The system aims to support the planning of actions for
administrative and regulatory purposes, both for the estimation of the electromagnetic field levels
and the evaluation of the population exposure conditions. To address these requirements, the OCS
provides a Web application (web app) and a mobile application (mobile app). The Onde Chiare
web app maps the geographical distribution of the authorized radio transmitters in Sardinia and
provides an information sheet for each of these stations. The map is based on the data supplied by
Arpa Sardegna [27]—the regional public service agency responsible for environmental monitoring.
This public agency supports the competent authorities in the planning, authorization, and sanctions in
the environmental field and it has been tasked with collecting information about health concerns in
relation to exposure from EM fields. In particular, the Onde Chiare web app is not only a data register
that collects information of mobile phone base stations submitted by the telecommunication operators
to the authorities, it also allows the users to observe the results of EM field levels estimated using
the model described in the previous section, Section 2. Data are displayed on the map, but they can
also be downloaded in various formats for further elaboration. The web app enables the government
to manage the territorial and urban transformation processes from the environmental and social
perspectives and citizens to gain valuable information about health risks of mobile communications.

OCS provides different access levels: public and private. For privacy and data protection issues,
the private problem has different levels of accessibility: for example, restricted areas have been created
for the municipalities and the mobile operators with password-controlled access. In practice, the local
authority in its area of expertise can view the full specifications of the plants in its territory and can
have only public data, not belonging to the municipality itself. An example of the information available
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using the Onde Chiare system is shown in Figure 4. The database is based on a geographic information
system (GIS) giving the antenna mast positions on a normal geographic map. To access the data,
the user can type a specific address or the city, and once this is entered, the database will display the
map showing an icon marker for each cellular base station in that area. Users can click on the icon and
some information will be displayed, as shown in Figure 4b. The Onde Chiare system displays a map
that includes both the location of the mobile antennas with technical information and the measurement
performed to assess levels of exposure in the surrounding of the masts. Further information on mobile
communications technologies and regulations, potential health risks, and research investigations about
exposure to radiation are available in .pdf format. The data register can be visualized on mobile devices
via a mobile app called the Onde Chiare app [28].

(a) 

 
(b) 

Figure 4. Examples of the web app of the Onde Chiare system. (a) The register of antennas contains
information related to the position, the identification number, the height, the gain, the nominal power,
the pointing direction, the antenna type, and the working frequency band. (b) The web app provides
the actual location of the RBS in the region of interest, with the full set of information.
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3.2. Onde Chiare App

The Onde Chiare app is a prototype designed for Android devices that was tested internally at
the University of Cagliari [28]. Figure 5a shows the app main screen; it offers the possibility for each
mobile device owner to become part of a network of distributed information made up of citizens
interested in environmental issues. Indeed, the active participation of citizens has a fundamental role.
The Onde Chiare app is an application that enables the community to promote a proper form of active
involvement of citizens and real-time information sharing of electromagnetic field levels in a given
geographical area. This mobile application provides some services such as:

1. Information about the geographic location and the input power of the antenna on the map,
as shown in Figure 5b;

2. Geolocation of the electromagnetic field measurements;
3. Sending of geo-localized reports (i.e., broken antennas), as shown in Figure 5d.

(a) (b) (c) (d) 

Figure 5. Examples of the app functionalities. (a) Main screen: the mobile user position is presented
in the Google maps environment. (b) Report Menu. (c) User-suggested field measures for enhanced
feedback. (d) Screen of the reported diagnostic tool.

The application allows a user to collect specific information directly from the system. Originally,
we created our application in an Android development environment based on the Java Software
Development Kit (SDK) 4 and Android 6.0. The application was developed using state-of-the-art
frameworks, such as RoboGuice [29] for dependency injection [30] and Roboletric [31] for automated
testing. Google Maps SDK was used to draw locations on a map in real time. The application places
an informative marker on the user’s current position on the map, as shown in Figure 5a. The user
can also type a specific address, and the map shows all existing antenna masts. Each antenna mast is
represented by an icon and by double-clicking on a specific antenna on the map, the basic technical
information for the mast is displayed as in Figure 4b. The register includes information about the
geographic location and the input power of the antenna and transmits to a centralized database via
an unencrypted channel by stakeholders obliged to disclose information. This information is a set
of organized technical data related to all transmission systems operating in the telecommunications
sector, and the structured data are stored in a well-defined database. This system allows us to use our
modified version of the COST 231 Walfisch–Ikegami model to estimate the field level in a given point
within an urban area of interest. The OCS can be considered an effective tool for supporting regional
actions in terms of planning, control, and supervision of the entire telecommunications system, while
enabling us to assess the adherence to national obligations from the EM exposure point of view.
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4. Model and System Validation: Measurement Campaign

To demonstrate that the modified version of the C231WI model can deal with the built-up scenarios
of hilly, largely variable, and small, irregularly arranged towns, such as those often encountered in
Italy, an experimental validation was carried out. The experimental validation is fundamental in order
to use the proposed model to develop the software system.

The measurements were performed in the three UHF bands of interest. In particular, in the
town of Dorgali (NU), the electric field levels were measured in the GSM band, at 944.2 MHz in the
set of points shown in Figure 6a. For the frequency of 1847.8 MHz, the site of Cala Gonone (NU),
presented in Figure 6b, was considered. Finally, the 4G coverage (2142.4 MHz) and exposure were
assessed in the town of Lunamatrona (CA) in Sardinia (Italy), as shown in Figure 6c. Regarding the
highest frequency band, a remark is in order. The C231WI model is known to be limited to an upper
frequency bound of 2 GHz. This is a nominal constraint, but, in this work, relying on the method of [24],
we corroborated the possibility of using the C231WI model at 2150 GHz with reasonable accuracy. At
each site, the measurements were carried out using a YAGI antenna for both the 1.8 GHz and 2.15 GHz
bands. On the other hand, a log-periodic antenna (LPDA) was used for the 900 MHz band. A tripod
was used to position the antenna 1.5 m above ground. A Rohde-Schwarz FSH8 spectrum analyzer,
operating from 9 kHz to 8 GHz and with an input impedance of 50 Ohm, was used to measure the
electric field. Given the daily periodic pattern of the transmitted RBS power [32,33], which follows the
traffic load and present variations of about 8–9 dBm between day and night [34], all the measurements
were performed during the traffic peak hours [32]. At least 15 measurement points were selected for
each location, and their position, as well the RBS location.

Figure 6. Topology of the three sites for the measurement campaigns. (a) Dorgali (NU, Italy):
the working frequency of the RBS is 944.2 MHz, for a Kathrein 730376 antenna located 20 m above
the road level. Fifteen measurement points were selected (A–Q). (b) Cala Gonone (NU, Italy): the
working frequency of the RBS is 1878.4 MHz, for a Kathrein 742212 antenna located 10 m above the road
level. Seventeen measurement points were selected (A–S). (c) Lunamatrona (CA, Italy): the working
frequency of the RBS is 2142.4 MHz, for a Kathrein 742212 antenna located 30 m above the road level.
Eighteen measurement points were selected (A–T).

5. Results

The extended version of the C231WI model [24] and the Onde Chiare system were experimentally
validated, and their effectiveness in the estimation of electric field levels was assessed, as described
in Section 4. The first urban scenario was the town of Dorgali (NU, Italy), as shown in Figure 6a.
The measured electric field values are reported in Table 2. To derive the related estimated EM field
levels, for each of the fifteen measurement points, using the new definition of the model parameters

101



Electronics 2020, 9, 765

given in Section 2 (see Figure 2), the OCS is accessed to retrieve the information about the nearest
RBS. Then, the 3D pattern of the antenna gain is derived using the reconstruction algorithm [25,26];
hence by applying Equation (1), the resulting theoretical electric field value is derived, as reported in
Table 2. It can be noticed that at the frequency of 944.2 MHz (2G), for distances from the RBS which
range from 48.5 m to 166.8 m, the maximum error is about 4.5 dB V/m, which is coherent with the
original version of the model [4] and previous literature results [25]. When the frequency increases to
1847.4 MHz (3G), in the case of Cala Gonone (NU, Italy), i.e., Figure 6b, the Onde Chiare application,
following the aforementioned steps, returns estimated values of the electric field levels very close to
the measured ones, as reported in Table 3. Indeed, for a range of distances from the RBS greater than
the previous case (i.e., from 62 m to 314.8 m) the average error is about 0.61 dB V/m, with a maximum
error 10% lower than that found for 944.2 MHz. For the highest frequency band, i.e., 2142.4 MHz,
at the site of Lunamatrona (CA, Italy) presented in Figure 6c, the modified C231WI model and the OCS
can provide an estimated electric field level very similar (from −4.8 dB V/m to 4.5 dB V/m, for RBS
distances from 412.7 m to 779 m) to the measured one, as shown in Table 4.

Table 2. Results of the Dorgali measurement campaign (944.2 MHz, Kathrein 730376).

Point Distance from the RBS (m) Measured (dB V/m) Estimated (dB V/m) Error (dB V/m)

A 48.5 −32.1 −28.1 4
B 60 −42 −44.1 −2.1
C 71.4 −29.6 −33.1 −3.5
D 67.6 −40.9 −44.2 −3.3
E 166.8 −24.4 −21.1 3.3
F 166 −41.3 −38.5 2.8
G 188 −40.9 −37.2 3.7
H 135 −40.7 −38.2 2.5
I 131.5 −26.9 −30.1 −3.9
L 88.4 −27 −28.7 −1.7
M 145 −40.5 −43.8 −3.3
N 115 −36.4 −36.6 −0.2
O 219 −27.2 −24.3 2.9
P 109 −38.6 −34.2 4.4
Q 119 −25.8 −21.6 4.2

Table 3. Results of the Cala Gonone measurement campaign (1847.8 MHz, Kathrein 742212).

Point Distance from the RBS (m) Measured (dB V/m) Estimated (dB V/m) Error (dB V/m)

A 79.8 −47.2 −44.8 2.4
B 62 −59.6 −59.1 0.5
C 101.5 −48.1 −44.6 3.5
D 140 −49.7 −46.9 2.8
E 183 −55 −53.9 1.1
F 173 −50.8 −52.6 −1.8
G 203.5 −50.5 −48.6 1.9
H 228 −57.2 −58.5 −1.3
I 273.5 −56.1 −59.4 −3.3
L 281.5 −63.4 −59.7 3.7
M 300 −52.1 −53.6 −1.5
N 148.5 −48.8 −45.3 3.5
O 150.6 −55.9 −60.2 −4.3
P 176 −49.3 −51.2 −1.9
Q 248.8 −50.4 −51.7 −1.3
R 282.5 −54.4 −51 3.4
S 314.8 −54.3 −51.3 3

In order to highlight that the new definitions of the model parameters which describe the set
of buildings involved in the propagation between the RBS and the mobile are pivotal for the case of
small, hilly towns with a significant variability in the topology and environment, it is worth noting
that an accuracy equivalent to the one claimed by the original C231WI in the case of large and almost
homogenous cities is obtained [4]. In other words, with the results from Table 2 to 4, it is demonstrated
that the modified version of the C231WI model and the OCS perform similarly to the original model,
but for a worst and complex case. We have summarized these findings in Figure 7 in order to present
the model and system performances against the distance from the RBS and the working frequency.
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The error of the estimated field level oscillates randomly with the distance from the RBS. However,
from Figure 7 it can be noticed that for the three sites, the distribution of the error is similar for the three
built-up areas of interest. This implies that the prediction error is similar across the UHF frequency
band considered in this work. By remembering that the original C231WI model was developed to
work at a maximum frequency of 2 GHz [4,25], the findings from Figure 7 corroborate the possibility
of extending the model to higher frequency as long as its parameters are modified, as explained in
Section 2. As a conclusion, the validation campaign demonstrated that the modified version of the
C231WI model and the Onde Chiare system are effective, accurate, and reliable tools for the prediction
of EM field levels in irregular, hilly built-up areas, thus being a technological solution for companies
from the telecommunication system or for local regulatory agencies.

Table 4. Results of the Lunamatrona measurement campaign (2142.4 MHz, Kathrein 742212).

Point Distance from the RBS (m) Measured (dB V/m) Estimated (dB V/m) Error (dB V/m)

A 438 −53.3 −49.4 3.9
B 437.2 −59.3 −57.3 2
C 412.7 −53.5 −54.3 −0.8
D 394.5 −32.9 −28.3 4.6
E 483.4 −47.3 −44.7 2.6
F 519.5 −59.2 −54.7 4.5
G 478 −40.6 −45.4 −4.8
H 489 −40.5 −42.8 −2.3
I 526 −46.6 −48.1 −1.5
L 519.8 −47.6 −47.7 −0.1
M 499 −52.4 −48,.1 4.3
N 516 −55.7 −55.7 0
O 540 −44.3 −40.6 3.7
P 547 −43.3 −45 −1.7
Q 587 −44.3 −47.3 −3
R 698.3 −49.6 −51.5 −1.9
S 741 −58.7 −55.2 3.5
T 779 −60.1 −56.9 3.2

Figure 7. Comparison of the estimated error with our modified version of the C231WI model for the
three built-up scenarios of Dorgali (NU, Italy), Cala Gonone (NU, Italy), Lunamatrona (CA, Italy) at the
UHF frequencies of 944.2 MHz, 1878.4 MHz and 2142.4 MHz.

6. Conclusion and Future Work

In line with our research work, we addressed the problem of providing an effective, reliable, and
quantitative model for the estimation of electromagnetic field levels in built-up areas. In particular,
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the COST 231 Walfisch–Ikegami model was re-phrased and modified in order to allow the description
of small, hilly towns with buildings of largely variable height, arranged in irregular grids. The novel
methodology was validated by performing a measurement campaign in three different sites for the
three different GSM, 3G, and 4G frequencies, namely, 944.2 MHz, 1878.4 MHz, 2142.4 MHz. The values
of the estimated electric field differed by a maximum of about 5 dB relative to measured ones, for a
large set of distances from the RBS and for all frequencies. These findings corroborate the possibility
of using the modified C231WI model for urban environments which are significantly different from
those for which it was initially developed [25]. Furthermore, our results support the feasibility of
extending the use of this model up to 2.5 GHz with reasonable accuracy. Given this experimental
evidence, and since the development of 5G technology already resulted in the deployment of RBS
stations, it is questionable if our modified C231WI model could be extended to the 3.6–3.8 GHz band,
for both monitoring and coverage issues [35–37]. Indeed, in the literature, there is a lack of models and
experimental strategies for EM propagation in urban environments [38], such as those investigated in
this work, even though several studies which cover the synthesis of antennas, protocols, and systems
for 5G exist [39–41]. Future work may deal with the definition and correction of the model parameters
for EM signals of higher frequency, with the goal of ensuring the same accuracy and reliability of the
estimated electric field levels.

Moreover, our research work aimed to answer the information needs of citizens about EM fields
while satisfying the requirement of lowering the monitoring efforts of regulatory and local agencies.
Accordingly, we developed a pre-industrial software prototype called the Onde Chiare System oriented
to provide real-time knowledge of electric field levels in a given area. It is a valuable tool to improve
the communication efforts by local authorities and facilitate the policy makers to make careful planning
decisions and inform the citizens on environmental issues.

This technological solution may be further refined to develop a commercial product that could be
of interest for telecommunication industries to speed-up the coverage assessment or setup a user-driven
diagnostic system based on the app feedbacks. Furthermore, the Onde Chiare system may be used as
a platform for regulatory agencies and entities for the environmental monitoring of general public
exposure to electromagnetic radiation, while serving as an informative tool for citizens concerned
about EM pollution-connected risks.
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Abstract: Microwave imaging of targets enclosed in circular metallic cylinders represents an interest-
ing scenario, whose applications range from biomedical diagnostics to nondestructive testing. In this
paper, the theoretical bases of microwave tomographic imaging inside circular metallic pipes are
reviewed and discussed. A nonlinear quantitative inversion technique in non-Hilbertian Lebesgue
spaces is then applied to this kind of problem for the first time. The accuracy of the obtained dielec-
tric reconstructions is assessed by numerical simulations in canonical cases, aimed at verifying the
dependence of the result on the size of the conducting enclosure and comparing results with the
conventional free space case. Numerical results show benefits in lossy environments, although the
presence and the type of resonances should be carefully taken into account.

Keywords: inverse scattering; tomography; conducting cylinders

1. Introduction

Since the end of the past century [1], inverse electromagnetic scattering problems
aimed at microwave imaging have experienced a widespread interest among researchers.
Indeed, while still at a prototyping level in many applications, microwave imaging is
evolving to a mature technique in many fields of civil engineering, industrial testing,
medicine, and so on [2,3]. Although a comprehensive review about the topic is outside the
scope of the present paper, the interested reader is referred to [4–7], where many of the
theoretical aspects of microwave imaging as well as a variety of practical applications are
considered and discussed, and a wide literature is suggested.

Among the various possible configurations of the microwave imaging problem, a sce-
nario that is acquiring an increasing interest is represented by targets enclosed inside
conducting enclosures [8,9]. Indeed, this kind of configuration may be useful in systems
for biomedical diagnostics [10–13], as well as to inspect the content of pipes [14] or storage
containers [15] in industrial processes and agriculture.

On the one hand, the use of conductive enclosures shields the investigation and
measurement domains from external interferences and provides well-defined boundary
conditions. Moreover, the container bounded by the outer conductor may be filled with
proper (liquid or gel) matching media, which are particularily useful in medical applica-
tions. On the other hand, the electromagnetic (EM) field is usually strongly perturbed by
the presence of the outer conductor, which should be taken into account inside the inverse
scattering algorithm.

In this paper, we consider the cylindrical configuration schematized in Figure 1.
In particular, we are interested in conductive circular enclosures, which can be part of the
tomographic imaging system themselves, as for example it is in some devices for breast or
head imaging, or can stand for the boundary of the domain to be imaged, as it could be in
the case of monitoring inside pipelines.

Electronics 2021, 10, 594. https://doi.org/10.3390/electronics10050594 https://www.mdpi.com/journal/electronics
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Scattering object(s) Line Current

Measurement domain

Circular PEC boundary

Figure 1. Schematic geometry of the considered problem.

As to the solution of microwave inverse scattering problems, innovative techniques
are continuously proposed by the research community [16–22]. It is also worth noting that
some specific approaches have been investigated for the imaging inside metallic enclosures,
such as eigenfunction-based inversion algorithms [23,24]. Among the various possible
inversion schemes, Newton-based methods look promising in many contexts, for their
effectiveness in dealing with the intrinsic nonlinearity of the problem at hand [25–27].
Furthermore, it has been shown that facing the problem in non-Hilbertian Lebesgue
spaces [28–30] may allow a more accurate reconstruction of the dielectric properties of the
imaged domain in various configurations [31,32].

In this paper, we investigate the possibility of exploiting a Newton-based inversion
method in non-Hilbertian Lebesgue spaces [33] for the microwave imaging of targets lo-
cated inside conducting cylinders, illuminated by antennas modeled as line-current sources
in the axial direction. In particular, only perfectly electric conducting (PEC) enclosures
are taken into account. The adoption of the configuration of Figure 1 reflects in a change
of the Green’s function and consequently of the kernel of the integral operators used to
describe the electromagnetic problem, with non-negligible effects on results. The proposed
inversion technique is assessed with a set of numerical simulations in canonical cases,
aimed at verifying the dependence of the imaging performance on the size of the enclosure
and the loss of the infill dielectric medium, also comparing results with the free space case.
Furthermore, for a fixed size of the imaging chamber, a comparison with conventional L2

regularization is presented.
The paper is organized as follows. The electromagnetic scattering problem is for-

mulated in Section 2, highlighting the specific issues associated with the presence of a
conducting enclosure. Section 3 briefly outlines the structure of the adopted inverse scatter-
ing method. Numerical results are described and discussed in Section 4. At the end of the
paper, Section 5 draws some concluding considerations.

2. Problem Formulation

In this paper, two-dimensional (2D) configurations are assumed, where the geometry
is invariant along the z axis. Under z-polarized transverse magnetic (TM) illumination
conditions, all the involved quantities only depend on the position in the transverse plane,
which is indicated by cylindrical coordinates ρ, ϑ as defined in Figure 2. Time-harmonic
electromagnetic fields are assumed with a time dependence ejωt. Nonmagnetic materials
are considered, characterized by a permeability μ = μ0 = 4π × 10−7 H/m. The scattering
object(s) under test (OUT) are placed inside a circular conducting cylinder of internal radius
a, which is centered at the axes origin. The cylindrical enclosure is filled by a background
medium with a possibly complex dielectric permittivity εb = ε0 ε̃r,b = ε0εr,b − jσb/ω, where
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ε0 � 8.85 × 10−12 F/m is the vacuum dielectric permittivity, εr,b is the relative permittivity,
and σb is an (equivalent) background conductivity. Illumination field is provided by an
ideal infinite line of current of complex amplitude Iz placed at (ρi, ϑi), i.e.:

J̄(ρ, ϑ) =
Iz

ρ
δ(ρ − ρi)δ(ϑ − ϑi)ẑ (1)

where
1
ρ

δ(ρ − ρi)δ(ϑ − ϑi) is the Dirac δ-function for cylindrical coordinates and z invari-

ance [34].

Circular PEC

Measurement

boundary

Current source

domain

ϑ

ρ

x

z

y

a

D

Figure 2. Assonometric projection of the transverse plane, and the related coordinate systems.

Let us denote as ei(ρ, θ) the z component of the incident electric field inside the
cylinder, which is a solution to the scalar Helmholtz equation:

∇2ei(ρ, ϑ) + k2
b ei(ρ, ϑ) = jωμ0

Iz

ρ
δ(ρ − ρi)δ(ϑ − ϑi) (2)

where kb = ω
√

μ0εb is the wavenumber, subject to the boundary condition ei(a, θ) = 0.
If some scattering object is present inside the cylinder, the (z-directed) total electric

field et(ρ, θ) can always be written as the sum:

et(ρ, θ) = ei(ρ, θ) + es(ρ, θ) (3)

where es(ρ, θ) is the (z-directed) scattered field.
According to the volume equivalence theorem [35], the scattering field can be ex-

pressed in an integral form

es(ρ, θ) = −k2
b

∫
D

τ(ρ′, ϑ′)et(ρ
′, ϑ′)g(ρ, ϑ; ρ′, ϑ′)dρ′dϑ′ (4)

where D is the considered investigation domain (which as reported in Figure 2, is a circular
region located in the transverse plane) and

τ(ρ, ϑ) =
ε̃r(ρ, ϑ)

ε̃r,b
− 1 (5)

is the so-called object function, accounting for the dielectric properties of the scatterers by
means of the space-dependent complex relative dielectric permittivity ε̃r(ρ, ϑ), and finally
g(ρ, ϑ; ρ′, ϑ′) is the Green function for the problem.

Green’s Function of the Considered Problem

The Green’s function inside a circular PEC cylinder of radius a (Figure 1) is the solution
of the following Helmholtz equation:

∇2g(ρ, ϑ; ρ′, ϑ′) + k2
b g(ρ, ϑ; ρ′, ϑ′) = 1

ρ
δ(ρ − ρ′)δ(ϑ − ϑ′) (6)
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subject to the boundary condition g(a, ϑ; ρ′, ϑ′) = 0.
The solution to this equation is discussed in many articles and textbooks (see, for

example [35–38]), and can be expressed in some different forms. In this work the following
expression will be used [35]:

g(ρ, ϑ; ρ′, ϑ′) = −1
4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞

∑
n=−∞

[
Jn
(
kbρ′

)
Yn(kba)− Jn(kba)Yn

(
kbρ′

)]×
× Jn(kbρ)

Jn(kba)
ejn(ϑ−ϑ′) ρ < ρ′

+∞

∑
n=−∞

[Jn(kbρ)Yn(kba)− Jn(kba)Yn(kbρ)]×

× Jn(kbρ′)
Jn(kba)

ejn(ϑ−ϑ′) ρ > ρ′

(7)

where Jn and Yn are the Bessel functions of the first and of the second kind, respectively,
of order n. Without going in too much theoretical details (which were the subject of other
works, such as [8]) here we want just to stress two aspects of the problem, making it much
more tricky than the analogous in free-space:

• while in free space the scattering field can be expanded into a simple sum of pro-
gressing waves, in the present problem the solution is made by a sum of complicated
standing waves, and many resonant modes can arise inside the cavity;

• the incident field is also strongly affected by the cavity boundaries: while the line
current produces a simple circular wave in free space, in the present problem the inci-
dent field has the same form of the Green’s function (compare Equations (2) and (6)),
hence it contains many contributions, made of standing waves depending on the
cavity dimensions.

In (7), the presence of the term Jn(kba) causes g to assume high values when it ap-
proaches zero (in particular, g → ∞ when Jn(kba) = 0). In the lossless case, the positions
of TMnl resonances can be found based on the l-th root of the Bessel function of first kind
with order n.

Investigation about the zeros of Bessel’s functions is a problem that is not new in
physics and the first comprehensive works about this topic date back the second half of the
19th century [39,40]. Many of these and other findings (e.g., [41]) about Bessel’s functions
are collected and extended in the monumental book by Watson [42]. Further studies were
since then carried out and this topic is presently still an open research field for mathematics.
A complete review of the literature about Bessel’s functions is outside the scope of the
present paper; however we refer the reader to some papers [43–53], containing relevant
results for the problem faced in the present work. It is worth nothing that also some works,
aimed at other goals, contain notable insight about the zeros of Bessel’s functions [54–58].

In particular, in order to underline the behavior of resonances within the enclosure,
some properties of the zeros of Bessel’s functions are worth recalling. Please note that such
properties can be valid for any real order ν, but we focus on integer order n. Let ζn,l denote
the l-th (l ≥ 1) zero of the Bessel function of first kind with order n. Then:

a. limn→∞(ζn,l+1 − ζn,l) = π;

b. ζn,1 < ζn+1,1 < ζn,2 < ζn+1,2 < ζn,3 < . . . ;

c. ζn,l > n + lπ +
π

2
− 1

2
;

d. ζn,l <

(
l +

n
2
− 0.965

4

)
π − n2

2

[(
l +

n
2
− 0.965

4

)
π

]−1
n > 0;

e. ζn,1 < 2(n + 1)(n + 5)(5n + 11)/(7n + 19) n > −1.
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The first property states that, for each n, the zeros approaches a regular distribution,
in accordance with the asymptotic behavior of Jn. The second statement is about the
interlacing property of the zeros. This should explain how the zeros of Bessel’s functions
of any order tend to distribute. In particular, it should be stressed that between two
consecutive zeros of Jn lies exactly one zero of Jn+1. Furthermore, property (c) provides a
lower bound for the zeros, and it can be seen that “zeros are strictly increasing functions of
both index and order” [58]. Therefore, properties (a), (b), and (c) show that the number of
zeros in an interval (x − Δ, x + Δ) strictly increases as x becomes larger.

The number of zeros in an interval could also be estimated by using upper bounds
that exists for the zeros of Bessel functions. Properties (e) and (d) are about two simple
upper bounds. More sharp (and complicated) bounds can also be found in the literature
(e.g., [45,47,48,59,60]); however, for the problem faced in the present work, the number of
zeros is small enough to allow computing to a high accuracy the position of each zero.

Previous analysis is strictly related to the problem dealt with in the present work,
since, as the radius of the enclosure increases, the number of possible resonances increases,
too, and their distribution follows the behavior of Bessel zeros. As an example, zeros
corresponding to the resonances of a conducting enclosure filled with vacuum and with
radius a, ranging between 0 and 3λ, have been evaluated, and their number have been com-
puted in each of the intervals (x − Δ, x + Δ), Δ = 0.25λ, x = [0.25 + m/2]λ, m = 0, . . . , 5.
In Figure 3 the histogram of the results is shown. As can be seen, the predicted behavior is
perfectly confirmed. For convenience, the first TMnl resonances versus the radius of the
PEC cylinder (up to 3λ) are reported in Table 1.

Table 1. First TMnl resonances versus the radius of the conducting enclosure (for radiuses up to 3λ).

Order, n Root, l Radius, a/λ Order, n Root, l Radius, a/λ

0 1 0.382565575636716 9 1 2.12443502732519
1 1 0.609557227746547 6 2 2.16181776676093
2 1 0.816987450864820 4 3 2.28641855021103
0 2 0.878147628239934 10 1 2.30279831942887
3 1 1.01497187625880 2 4 2.35377646939679
1 2 1.11605681508930 7 2 2.35780395133906
4 1 1.20717221350811 0 5 2.37524718150666
2 2 1.33903593944348 11 1 2.48007141762091
0 3 1.37665636071269 5 3 2.49762238062566
5 1 1.39538925994123 8 2 2.55132863821835
3 2 1.55280761241691 3 4 2.58086897429352
6 1 1.58066078745604 1 5 2.62018841505947
1 3 1.61842038016315 12 1 2.65639874693837
4 2 1.76020125084557 6 3 2.70500953319621
7 1 1.76364706145171 9 2 2.74277582388405
2 3 1.84851296702361 4 4 2.80239128808070
0 4 1.87582635499932 13 1 2.83189617009082
8 1 1.94479780216248 2 5 2.85709234145654
5 2 1.96285556025129 0 6 2.87478938633534
3 3 2.07049020258037 7 3 2.90923374085231
1 4 2.11956574517874 10 2 2.93244082347851
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Figure 3. Number of resonances for an enclosure as the radius ranges from 0 to 3λ.

When the argument of a Bessel function becomes complex, as is in the case of con-
ductive media, the behavior changes in accordance to the variation on the imaginary part
�{z} of the argument z = x − jy. In particular, while Jn(x) is bounded, this is no longer
the case for Jn(x − jy), where both the real and the imaginary parts tend to increase as the
argument increases. An in-depth discussion about Bessel’s function of complex arguments
is outside the scope of the present work and we refer interested readers to some specialized
literature [61,62]. However, to investigate some practical case, let us consider:

z = x − jy = kbρ = [�{kb} − j�{kb}]ρ (8)

where kb is complex, while ρ is real. In particular, two effects can be observed: the
behavior with respect to lossless case gets smoothed, since there are no longer zeros, and
the amplitude of Jn(kbρ) tends to oscillate and decrease up to a certain value of ρ. For larger
values, oscillations are quickly damped and |Jn(kbρ)| begins to increase and eventually
approaches infinity. In Figure 4 an example is shown, for different orders of Bessel functions
and for different values of σb. In particular, in the upper left corner, the function giving the
larger number of zeros, namely J0, is plotted, while in lower right corner we have shown
the behavior of J13, being 13 the maximum order for which it is possible having a zero in the
considered range. The other two graphs, referring respectively to J3 and J7, are intended to
give an idea of the trend, as the order of the Bessel function varies. From the example in
Figure 4 it can be deduced that, while in general, a conductive background would be an
obstacle to the solution of an inverse scattering problem, for a certain range of values of σb
(we could consider σb � 3 mS/m in the example, with �{kb} � 0.15�{kb}) an advantage
can come from the damping of the resonances, while the losses can still be managed.
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Figure 4. Behavior of the magnitude of different Bessel’s functions Jn(kba) for a background with εb = ε0 − jσb/ω and
different values of σb, versus the radius of PEC cylinder a. In the upper left corner J0 is shown.

3. Nonlinear Inverse Scattering Method

In solving the inverse problem, the goal is to retrieve the object function τ(ρ, ϑ) inside
an investigation domain D starting from a set of measurements of the scattered field es(ρ, θ)
collected in an observation domain O. Based on (4), it can be shown that τ(ρ, ϑ) is connected
to the measured scattered electric field es(ρ, θ) by means of a nonlinear relationship:

es(ρ, θ) = AOτ(I −ADτ)−1ei(ρ, θ) = N (τ)(ρ, θ), (ρ, θ) ∈ O (9)

where the linear operators A{O,D} are given by

A{O,D}x(ρ, θ) = −k2
b

∫
D

x(ρ′, ϑ′)g(ρ, ϑ; ρ′, ϑ′)dρ′dϑ′, (ρ, θ) ∈ {O, D} (10)

The inverse scattering method is characterized by an inexact-Newton scheme, where (9)
is iteratively linearized around the reconstructed value of the object function τi(ρ, ϑ) at the
i-th step (i = 1, ..., I). Starting the iterations with an initial value τ1 = 0, the result of such a
linearization is the equation

N ′
i δ = es −N (τi)︸ ︷︷ ︸

bi

(11)

where δ ∈ A, bi ∈ B and N ′
i : A → B is the Fréchet derivative of the nonlinear operator

N calculated at τi. The solution of (11) in the unknown δ is again performed by an
iterative loop, which is a truncated Landweber-like method that considers A, B as Lebesgue
spaces Lp [33]. This regularized solution approach, at the k-th step (k = 1, ..., K), has been
implemented as

δk+1 = JA∗
[

JA(δk)− γN ′∗
i JB

(N ′
i δk − bi

)]
(12)

where JA(·), JA∗(·) and JB(·) are defined as the duality maps of spaces A, A∗ (i.e., the dual
space of A) and B [31]; N ′∗

i is the adjoint of N ′
i ; γ is a real positive number. The loop

starts with δ1 = 0. Once (11) is solved by means of iterations (12), a regularized version
of the unknown of the linear problem δ̃ is available. Then, the object function inside the
investigation domain is updated as
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τi+1(ρ, θ) = τi(ρ, θ) + δ̃(ρ, θ), (ρ, θ) ∈ D (13)

and a new linearization is performed, until convergence is reached.

4. Results of Numerical Simulations

The behavior of the proposed inverse scattering technique when operating in conduct-
ing enclosures has been analyzed from a numerical point of view in canonical configura-
tions, involving circular dielectric cylinders.

The simulations have been oriented at understanding the influence of the external
conducting cylinder on the reconstruction performance. To this end, two distinct cases have
been considered, regarding a small and a large enclosure. The difference between these
two cases is related to the definition of the investigation domain D and the observation
domain O. This distinction has also been made to follow, in the case of sufficiently large
enclosures, the guidelines about the position of the observation domain with respect to
the conducting boundary provided in [8]. A background characterized by εb = ε0 − jσb/ω
has been considered. The electric field data have been simulated at the angular frequency
ω = 2π f , with f = 300 MHz, by means of a custom numerical code based on the method
of moments, and corrupted with an additive Gaussian noise with zero mean value and
signal-to-noise ratio equal to 20 dB. In all cases, the inversion method has been run with
the same parameters in order to compare results. In particular, a Lebesgue space exponent
p = 1.2 is considered; the iterative loops have been stopped when a maximum number of
inexact-Newton iterations I = 10 and a maximum number of Landweber steps K = 100 are
reached, or when the relative variation of the data residual falls below a threshold value
rth = 1%.

The results have been evaluated from a quantitative viewpoint by means of the
normalized reconstruction error (NRE)

NRE =
||τ − τact||
||τact|| (14)

For each analyzed case, N = 15 simulations with different random noise have been
executed, calculating the mean value and the standard deviation of the obtained values of
the NRE.

4.1. Small Conducting Enclosure

In the case of the small conducting enclosure, the radius of the outer PEC cylinder
has been varied in the range a ∈ [0.25, 1.025]λ with 0.025λ steps. A set of S = 30 positions,
equally spaced on a circumference with radius ρs = a − 0.1λ, have been defined to host
both sources and measurement points in a multistatic and multiview configuration (i.e.,
one of the position at a time is occupied by a source antenna, whereas all the other ones are
used to sample the scattered electric field).

The investigation domain is a circular region centered at the origin with diameter
dD = 0.25λ. This region contains a circular dielectric cylinder of diameter dc = 0.125λ,
centered at (ρc, θc) = (0.05λ, 0), characterized by a relative dielectric permittivity εr,c = 2
and electric conductivity σc = 10 mS/m. For the forward problem solution, D has been
subdivided into Nf = 1976 square subdomains with side length equal to ls f = 0.005λ.
Conversely, a discretization with Ni = 1264 cells of side lsi = 0.00625λ has been adopted
inside the inversion procedure.

Figure 5 reports the NRE reconstruction error versus the size of the enclosure a, for
three different values of background loss σb = {0, 1, 10} mS/m (which correspond to loss
tangents tan δ = {0, 0.06, 0.6}). Some examples of reconstructed dielectric permittivity are
also shown in Figures 6 and 7, along with the magnitude of the Green’s function inside
the conducting cylinder for a source at (ρs, 0). All results are compared with the free space
case, where the same configuration but without the PEC enclosure have been simulated.
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Figure 5. Small conducting enclosure. Reconstruction error versus the radius of the conducting
enclosure, for three values of the background conductivity: (a) lossless, σb = 0 S/m; (b) σb = 1 mS/m;
(c) σb = 10 mS/m.
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Figure 6. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = λ/2. Upper row: results with σb = 1 mS/m: (a)
Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 10 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.
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Figure 7. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = 0.7λ. Upper row: results with σb = 1 mS/m: (a)
Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 10 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.
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As reported in the graphs, five different resonances may arise with this range of
radiuses of the PEC cylinder. For small or absent background losses, the TM01, TM11 and
TM02 modes clearly cause a significant degradation of results, impairing a correct recon-
struction of the inside dielectric cylinder. In the middle points between these significant
resonances, results are comparable or even slightly better (in average) than the free space
ones. When background losses rise, a completely different trend is observed (Figure 5c):
there are no points with higher errors due to resonances, and the average of NRE demon-
strates some advantages in adopting a conducting enclosure with respect to the free space
conditions. Clearly, as expected, errors in both situations increase by enlarging the radius
a, since this also increases the distance between the target and the observation domain O.
However, the error increase with the surrounding metallic enclosure is slightly less steep
than the free space case.

4.2. Large Conducting Enclosure

In the case of large conducting enclosure, the radius of the PEC cylinder has been
varied in the range a ∈ [1.0, 3.0]λ with 0.125λ steps. The same number of S = 30 positions
as before has been used, but this time they are located on a circumference with radius
ρs = a − 0.25λ. A multistatic and multiview configuration has been always considered.
The investigation domain is larger than the previous case, and is a circular region centered
at the origin with diameter dD = λ. A circular dielectric cylinder characterized by the
same dielectric properties as in Section 4.1, but with diameter dc = 0.2λ and centered at
(ρc, θc) = (0.2λ, 0) is placed inside the PEC enclosure.

The forward electromagnetic problem has been solved by subdividing D into
Nf = 1976 square subdomains with side length ls f = 0.02λ, whereas a discretization with
Ni = 1264 cells of dimension lsi = 0.025λ has been used for the inverse problem‘solution.

The mean value and standard deviation of the NRE in this case is shown in Figure 8,
which reports the reconstruction errors versus the radius a for σb = {0, 1, 2} mS/m
(tan δ = {0, 0.06, 0.12}). Figure 9 shows some examples of the reconstructed relative
dielectric permittivity inside D and the Green’s function magnitude for a source located
at (ρs, 0). As can be noticed looking at Table 1, the number of resonances of the circular
cavity dramatically increases for a > λ. This fact determines the significantly higher
errors compared to the corresponding free space cases when no or low background loss
is present. It is actually very difficult, even with a practical construction of a metallic
chamber in mind, to avoid all the possible resonances. However, by increasing the back-
ground loss (e.g., Figure 8b) it can be observed that not all resonances are critical in the
same way. Those that cause a worst degradation of reconstruction results are again re-
lated to the TM0l modes, with l = {2, 3, 4, 5}, and can be seen in the high-error peaks at
a = {1.375, 1.875, 2.375, 2.875}λ. Moreover, similarly to the case of the small enclosure,
the TM1l resonances have a smaller but yet significant impact. The remaining ones are
sufficiently damped by the small background loss and do not produce increases in the
NRE in neighboring sizes of the PEC cylinder. Of course, the bigger the cylinder radius,
the greater is the effect of background losses.

Moreover, Figure 8c evidences some interesting facts related to the imaging in con-
ducting enclosures versus their free space counterpart. In the lossy case, reconstruction
results obtained inside conducting cylinders are always better then the free space ones,
having a smaller mean NRE and even a significantly reduced standard deviation. This is
also observed in Figures 9 and 10, where it can be seen that the free space reconstruction
have more background artifacts than those obtained in conducting enclosures. In addition,
the advantages of embedding the measurement configuration in a metallic cylinder appear
more evident if the background losses rise.
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Figure 8. Large conducting enclosure. Reconstruction error versus the radius of the conducting
enclosure: (a) σb = 0 S/m; (b) σb = 1 mS/m; (c) σb = 2 mS/m.
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Figure 9. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = 2.125λ. Upper row: results with σb = 1 mS/m:
(a) Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 2 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.
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Figure 10. Examples of Green’s functions and reconstructed distributions of the relative dielectric
permittivity with small conducting enclosure, a = 2.875λ. Upper row: results with σb = 1 mS/m:
(a) Green’s function magnitude for a source at (ρs, 0); (b) Reconstruction with cylindrical enclosure;
(c) Reconstruction in free space. Lower row: results with σb = 2 mS/m: (d) Green’s function for
point source located at (ρs, 0); (e) Reconstruction with cylindrical enclosure; (f) Reconstruction in
free space.
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In order to verify how such considerations generalize, additional tests with a different
target have been carried out. In particular, a fixed imaging chamber size a = 2.125λ, with
σb = 2 mS/m and all the other parameters as before has been considered. This time, the
target is a cylinder with rectangular cross section of x, y side lengths equal to drx = 0.15λ and
dry = 0.4λ, respectively, centered at (ρr, θr) = (−0.2

√
2λ, 3π/4). It has a relative dielectric

permittivity εr,r = 2 and electric conductivity σr = 10 mS/m. Some examples of the
reconstructed dielectric profiles within the cylindrical enclosure and in free space have been
shown in Figure 11a,b, respectively. Observing these images, it is confirmed that the PEC
enclosure gives the best results even in this configuration, while the reconstruction obtained
in free space is worse and more affected by background artifacts. Similar observations
can be drawn from the reconstruction errors, reported in Table 2. As it happened with the
circular target in the same conditions, both the mean value of the NRE and its standard
deviation are significantly lower for the imaging inside cylindrical enclosure.

For comparison purposes, the same data have also been inverted by using an L2

Hilbert-space formulation (i.e., with p = 2). Results are presented in Figure 11c,d. Clearly,
in both PEC enclosure and free space, the dielectric properties of the target are underesti-
mated. Furthermore, some artifacts appear in Figure 11d. The reconstruction errors listed
in Table 2 lead to some interesting remarks. First, in all cases the proposed non-Hilbertian
formulation gives by far the best results. Second, benefits of working inside the PEC enclo-
sure still exist in the L2 case, but are more evident when the regularization is performed
outside Hilbert spaces. Third, the Hilbert-space NREs have a reduced standard deviation
compared to the others, which is due to the higher smoothing effect. Although this may
mitigate the impact of noise to some extent, it also degrades the reconstruction considerably
(over-smoothing).
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Figure 11. Rectangular cylinder. Examples of reconstructed distributions of the relative dielectric
permittivity with enclosure of radius a = 2.125λ and σb = 2 mS/m. Upper row: Lp-space results,
with p = 1.2. (a) Reconstruction with cylindrical enclosure; (b) Reconstruction in free space. Lower
row: Hilbert-space results. (c) Reconstruction with cylindrical enclosure; (d) Reconstruction in
free space.
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Table 2 also reports some computational data (time and random access memory)
required to run the inversion methods on a personal computer equipped with an Intel(R)
Core(TM) i5-2310 CPU at 2.90 GHz (Intel, Santa Clara, CA, USA) and 8 GB of RAM.
Computational time is notably higher when a cylindrical enclosure is considered, and it
shows a slight (average) increase in the proposed approach due to the number of performed
Newton iterations. When the number of iterations is the same, there are no significant
differences between methods. Furthermore, the present implementation of the case of PEC
enclosure requires more random access memory than the free space case, but the amount
of needed RAM is still similar for the Lp and the L2 methods.

In summary, these results confirm the advantages of adopting a non-Hilbertian for-
mulation for the imaging of targets inside conducting enclosures, and extend the previous
analyses carried out in open space configurations [33].

Table 2. Rectangular cylinder. Reconstruction errors (NRE), computational times (mean value ± stan-
dard deviation) and required random access memory (RAM) with the proposed Lp-space approach
compared with a Hilbert-space formulation.

Proposed Approach Hilbert-Space

Cylindrical enclosure
NRE 0.526 ± 0.020 0.706 ± 0.008

Time (s) 90.24 ± 10.60 85.05 ± 0.203
RAM (MB) 129.4 ± 0.254 129.5 ± 0.205

Free space
NRE 0.622 ± 0.049 0.774 ± 0.020

Time (s) 12.34 ± 0.347 8.937 ± 2.695
RAM (MB) 20.79 ± 0.233 20.78 ± 0.240

5. Conclusions

In this paper, the nonlinear microwave imaging of targets enclosed in circular conduct-
ing cylinders has been addressed. This particular imaging configuration, which presents
some relevant potential applications in industrial nondestructive testing and medical di-
agnostics, has been considered within an inexact-Newton inversion method formulated
in non-Hilbertian Lp spaces for the first time. The presence of the circular enclosure has
been modeled with a proper Green’s function as kernel of the integral operators used to
formulate the imaging problem.

A brief discussion about the theoretical background has underlined that the problem
faced in this paper is much more tricky than the analogous in free-space. Actually, while in
free space the scattering field can be expanded into a simple sum of progressing waves,
in the present problem the solution is made by a sum of complicate standing waves, and
many resonant modes can arise inside the cavity. Furthermore, also the incident field
is strongly affected by the cavity boundaries and contains many modal contributions,
depending on the cavity dimensions.

The behavior of the proposed inverse scattering technique when operating in PEC
enclosures has been analyzed from a numerical point of view in canonical configurations,
involving circular dielectric cylinders. In particular, the simulations have been oriented at
understanding the influence of the conducting enclosure on the reconstruction performance.
Two distinct classes have been considered, regarding small and large enclosures, with
different amounts of background loss.

As expected, for small enclosures without background losses, the first resonances cause
a significant degradation of results, impairing a correct reconstruction of the inside dielectric
cylinder. On the contrary, in the middle points between these significant resonances, results
are comparable or even slightly better (in average) than the free space ones. Instead,
when a slightly dissipative background is used, numerical experiments show a completely
different behavior, since resonances are smoothed, and the average error seems to show
some advantages in using a conducting enclosure with respect to the free space conditions.
While, as expected, errors rise when enlarging the enclosure and moving measurement
points away from targets, the error increase with the enclosure is slightly less steep than
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the free space case. Moreover, in the lossy case, reconstruction results obtained inside
large conducting cylinders are always better then the free space ones, having a smaller
mean error on the dielectric characterization of the targets and even a significantly reduced
standard deviation. The advantages of embedding the measurement configuration in a
metallic cylinder appear more evident if the background losses rise.

As it is well known, the selection of proper operating frequencies represents a crucial
problem in time-harmonic microwave imaging. The presence of conducting enclosures
further complicates this issue, due to the possible resonance phenomena. If the inversion
method does not takes explicitly advantage from resonant modes, and low-loss configu-
rations should be adopted, a general suggestion is to choose the working frequency so
as to be sufficiently away from critical resonances, which can be computed based on the
behavior of Bessel’s functions. However, avoiding resonances may be very difficult as the
size of the imaging chamber rises. As proven by the presented results, this problem is
mitigated when the infill medium has non-negligible losses.

In conclusion, the adoption of a non-Hilbertian Lebesgue-space formulation seems
promising for the imaging inside metallic cylinders, and may lead to more accurate di-
electric reconstructions compared to the standard L2 approach. Although some relevant
differences may be observed based on the size of the outer metallic cylinder, ad-hoc cham-
bers of appropriate dimensions can enhance results in the presence of lossy backgrounds.
This could be exploited in many applications where not only boundaries can be controlled,
but also the imaging devices can benefit from the use of circular enclosures, such as the
case of biomedical imaging where the process requires a tight coupling of the investigated
region with the surrounding background media.
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