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Mathematics. She has published many papers in journals and conferences, both national and

international, and the book Rational Algebraic Curves: A Computer Algebra Approach (2007) in

Springer Verlag. Her areas of expertise include the study and analysis of symbolic, numeric and

approximate algorithms, as well as its applications in the theory of curves and surfaces (https:

//orcid.org/0000-0002-0174-5325).

vii





Preface to ”New Trends in Algebraic Geometry and

Its Applications”

Algebraic geometry is an old and important research topic. Its applications include

architectural designs, number theoretic problems, models of biological shapes, error-correcting codes,

cryptographic algorithms, or as central items in computer-aided geometric design.

In this Special Issue, we explore the interplay between geometry, algebra, and numerical

computation when designing algorithms for different varieties, and provide a complexity analysis

of the running time of such algorithms. More precisely, we focus on recent problems concerning

algebraic geometry and its applications.

This Special Issue is mainly intended for graduate students specializing in constructive algebraic

curve geometry. However, we are sure that researchers wanting an overview of where algebraic

geometry can be applied to symbolic or numeric algebraic computation will find this book helpful.

Sonia Pérez-Dı́az

Editor
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Abstract: In this paper, we present an algorithm for reparametrizing birational surface parametrizations
into birational polynomial surface parametrizations without base points, if they exist. For this purpose,
we impose a transversality condition to the base points of the input parametrization.

Keywords: proper (i.e., birational) parametrization; polynomial parametrization; base point

1. Introduction

Algebraic surfaces are mainly studied from three different, but related, points of view, namely:
pure theoretical, algorithmic and because of their applications. In this paper, we deal with some
computational problems of algebraic surfaces taking into account the potential applicability.

In many different applications, as for instance in geometric design (see e.g., [1]) parametric
representations of surfaces are more suitable than implicit representations. Among the different
types of parametric representations, one may distinguish radical parametrizations (see [2]) and
rational parametrizations (see e.g., [3]), the first being tuples of fractions of nested radical of bivariate
polynomials, and the second being tuples of fractions of bivariate polynomials; in both cases the
tuples are with generic Jacobian of rank 2. Other parametric representations by means of series can
be introduced, but this is not within the scope of this paper. One may observe that the set of rational
parametrizations is a subclass of the class of radical parametrizations. Indeed, in [4], one can find
an algorithm to decide whether a radical parametrization can be transformed by means of a change
of the parameters into a rational parametrization; in this case, we say that a reparametrization has
been performed.

Now, we consider a third type of parametric representation of the surface, namely, the polynomial
parametrization. That is, tuple of bivariate polynomials with generic Jacobian of rank 2. Clearly the
class of polynomial parametrizations is a subclass of the class of the rational parametrizations,
and the natural question of deciding whether a given rational parametrization can be reparametrized
into a polynomial parametrization appears. This is, indeed, the problem we deal with in the
paper. Unfortunately the inclusion of each of these classes into the next one is strict, and hence
the corresponding reparametrizations are not always feasible. In some practical applications,
the alternative is to use piecewise parametrizations with the desired property (see e.g., [5,6]).

Before commenting the details of our approach to the problem, let us look at some reasons why
polynomial parametrizations may be more interesting than rational ones. In general, rational parametr
izations are dominant over the surface (i.e., the Zariski closure of its image is the surface), but not
necessarily surjective. This may introduce difficulties when applying the parametric representation to
a problem, since the answer might be within the non-covered area of the surface. For the curve case,
polynomial parametrizations are always surjective (see [7]). For the surface case, the result is not so
direct but there are some interesting results for polynomial parametrizations to be surjective (see [8])
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as well as subfamilies of polynomial parametrizations that are surjective (see [9]). Another issue that
could be mention is the numerical instability when the values, substituted in the parameters of the
parametrizations, get close to the poles of the rational functions; note that, in this case, the denominators
define algebraic curves which points are all poles of the parametrization. One may also think on the
advantages of providing a polynomial parametrization instead of a rational parametrization, when facing
surface integrals. Let us mention a last example of motivation: the algebra-geometric technique for solving
non autonomous ordinary differential equations (see [10,11]). In these cases, the differential equation
is seen algebraically and hence representing a surface. Then, under the assumption that this surface is
rational (resp. radical) the general rational (resp. radical) solution, if it exists, of the differential equation is
determined from a rational parametrization of the surface. This process may be simplified if the associated
algebraic parametrization admits a polynomial parametrization.

Next, let us introduce, and briefly comment on, the notion of base points of a rational parametrization.
A base point of a given rational parametrization is a common solution of all numerators and denominators
of the parametrization (see e.g., [12,13]). The presence of this type of points is a serious obstacle when
approaching many theoretical, algorithmic or applied questions related to the surface represented by the
parametrizations; examples of this phenomenon can be found in, e.g., [14–17]. In addition, it happens that
rational surface may admit, both, birational parametrizations with empty base locus and with non-empty
base locus. Moreover, the behavior of the base locus is not controlled, at least to our knowledge, by the
existing parametrization algorithms or when the resulting parametrization appears as the consequence
of the intersection of higher dimension varieties, or as the consequence of cissoid, conchoid, offsetting,
or any other geometric design process applied to a surface parametrization (see e.g., [18–21]).

In this paper, we solve the problem, by means of reparametrizations, of computing a birational
polynomial parametrization without base points of a rational surface, if it exists. For this purpose,
we assume that we are given a birational parametrization of the surface that has the property of
being transversal (this is a notion introduced in the paper, see Section 3 for the precise definition).
Essentially, the idea of transversality is to assume that the multiplicity of the base points is minimal.
Since, by definition (see Section 3) this multiplicity is introduced as a multiplicity of intersection of
two algebraic curves, one indeed is requiring the transversality of the corresponding tangents. In this
paper, we have not approached the problem of eliminating this hypothesis, and we leave it as future
work in case it exists.

The general idea to solve the problem is as follows. We are given a birational parametrization
P and let Q be the searched birational polynomial parametrization without base points; let us say,
first of all, that throughout the paper we work projectively. Then, there exists a birational map, say SP ,
that relates both parametrizations as Q = P ◦ SP . Then, taking into account that the base locus of SP
and P are the same, that they coincide also in multiplicity, and applying some additional properties on
base points stated in Section 3.1, we introduce a 2-dimensional linear system of curves, associated to
an effective divisor generated by the base points of P . Then, using the transversality we prove that
every basis of the linear system, composed with a suitable birational transformation, provides a
reparametrization of P that yields to a polynomial parametrization with empty base locus.

To give a better picture of these ideas, let us briefly illustrate them here by means of an example.
We consider the projective surface S defined by the polynomial

−2w2y2 + 2w2yz + 2w2z2 − wxy2 − wxyz− wxz2 − 8wy3 + 5wy2z + 5wyz2 − 3wz3 + x2y2 − 2xy3

+4xy2z− 2xyz2 + y4 − 4y3z + 6y2z2 − 4yz3 + z4.

S is rational and can be birationally parametrized as

P =
(
t2
2t2

3 + t3t3
1 + t3t2

2t1 − t4
1 − 2t2

1t2
2 − t4

2 : −t3(t1 + t2)(t2
1 − t1t3 + t2

2 − t2t3)

: t2
3(t1 + 2t2)(t1 + t2) : (t2

1 + t2
2)

2) .

2
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P provides the affine non-polynomial parametrization(
−t4

1 − 2 t2
1t2

2 − t4
2 + t3

1 + t1 t2
2 + t2

2(
t1

2 + t2
2
)2 ,− (t1 + t2)

(
t2
1 + t2

2 − t1 − t2
)(

t2
1 + t2

2
)2 ,

(t1 + 2 t2) (t1 + t2)(
t2
1 + t2

2
)2

)
.

On the other hand, S can also be parametrized as

Q = (t2
1 + t2t3 − t1t3 − t2

3 : t2
2 − t2t3 : t2

2 + t2t1 : t2
3),

that provides the affine polynomial parametrization

(t2
1 + t2 − t1 − 1, t2

2 − t2, t2
2 + t2t1).

The question is how to computeQ from P . Since both parametrizations are birational, there exists
a birational change of parameters SP such that Q = P ◦ SP . Furthermore, it holds that the base locus
of SP and P are the same. So, the problem of finding Q is reduced to the problem of determining
a birational map SP satisfying that the base locus of SP and P are the same. For this purpose,
we introduce a 2-dimensional linear system of curves, associated to an effective divisor generated
by the base points of P and, using the transversality, we prove that every basis of the linear system
provides a polynomial parametrization of P with empty base locus.

The structure of the paper is as follows. In Section 2, we introduce the notation and we recall
some definitions and properties on base points, essentially taken from [12]. In Section 3 we state some
additional required properties on base points, we introduce the notion of transversality of a base locus,
both for birational maps of the projective plane and for rational surface projective parametrizations.
Moreover, we establish some fundamental properties that require the transversality. Section 4 is
devoted to state the theoretical frame for solving the central problem treated in the paper. In Section 5,
we derive the algorithm that is illustrated by means of some examples. We finish the paper with a
section on conclusions.

2. Preliminary on Basic Points and Notation

In this section, we briefly recall some of the notions related to base points and we introduce
some notation; for further results on this topic we refer to [12]. We distinguish three subsections.
In Section 2.1, the notation that will be used throughout the paper is introduced. The next subsection
focuses on birational surface parametrizations, and the third subsection on birational maps of the
projective plane.

2.1. Notation

Let, first of all, start fixing some notation. Throughout this paper, K is an algebraically closed field
of characteristic zero. x = (x1, . . . , x4), y = (y1, . . . , y4) and t = (t1, t2, t3). F is the algebraic closure
of K( x , y ). In addition, Pk(K) denotes the k–dimensional projective space, and G (Pk(K)) is the set of
all projective transformations of Pk(K).

Furthermore, for a rational map

M : Pk1(K) ��� Pk2(K)

h = (h1 : · · · : hk1+1) �−→ (m1(h) : · · · : mk2+1(h)),

where the non-zero mi are homogenous polynomial in h of the same degree, we denote by deg(M) the
degree degh(mi), for mi non-zero, and by degMap(M) the degree of the mapM; that is, the cardinality
of the generic fiber ofM (see e.g., [22]).

3
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For L ∈ G (Pk2(K)), and M ∈ G (Pk1(K)) we denote the left composition and the right
composition, respectively, by

LM := L ◦M, MM :=M◦M.

Let f ∈ L[t1, t2, t3] be homogeneous and non-zero, where L is a field extension of K. Then C ( f )
denotes the projective plane curve defined by f over the algebraic closure of L.

Let C ( f ), C (g) be two curves in P2(K). For A ∈ P2(K), we represent by multA(C ( f ), C (g)) the
multiplicity of intersection of C ( f ) and C (g) at A. In addition, we denote by mult(A, C ( f )) the
multiplicity of C ( f ) at A.

Finally, S ⊂ P3(K) represents a rational projective surface.

2.2. Case of Surface Parametrizations

In this subsection, we consider a rational parametrization of the projective rational surface
S , namely,

P : P2(K) ��� S ⊂ P3(K)

t �−→ (p1( t ) : · · · : p4( t )),
(1)

where t = (t1, t2, t3) and the pi are homogenous polynomials of the same degree such that
gcd(p1, . . . , p4) = 1.

Definition 1. A base point of P is an element A ∈ P2(K) such that pi(A) = 0 for every i ∈ {1, 2, 3, 4}.
We denote by B(P) the set of base points of P . That is B(P) = C (p1) ∩ · · · ∩ C (p4).

In order to deal with the base points of the parametrization, we introduce the following
auxiliary polynomials:

W1( x , t ) := ∑4
i=1 xi pi(t1, t2, t3)

W2( y , t ) := ∑4
i=1 yi pi(t1, t2, t3),

(2)

where xi, yi are new variables. We will work with the projective plane curves C (Wi) in P3(F). Similarly,
for M = (M1 : M2 : M3) ∈ G (P3(K)), we define,

WM
1 ( x , t ) := ∑4

i=1 xi Mi(P( t ))

WM
2 ( y , t ) := ∑4

i=1 yi Mi(P( t )).
(3)

Remark 1. Sometimes, we will need to specify the parametrization in the polynomials above. In those cases,
we will write WP

i or WM,P
i instead of Wi or WM

i ; similarly, we may write C (WP
1 ) and C (WM,P

1 ).

Using the multiplicity of intersection of these two curves, we define the multiplicity of a base
point as follows.

Definition 2. The multiplicity of a base point A ∈ B(P) is multA(C (W1), C (W2)), that is, is the
multiplicity of intersection at A of C (W1) and C (W2); we denote it by

mult(A, B(P)) := multA(C (W1), C (W2)) (4)

In addition, we define the multiplicity of the base points locus of P , denoted mult(B(P)), as

mult(B(P)) := ∑
A∈B(P)

mult(A, B(P)) = ∑
A∈B(P)

multA(C (W1), C (W2)). (5)

Note that, since gcd(p1, . . . , p4) = 1, the set B(P) is either empty of finite.

4
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For the convenience of the reader we recall here some parts of Proposition 2 in [12].

Lemma 1. If L ∈ G (P3(K)), then:

1. If A ∈ B(P), then

mult(A, C (WL
1 )) = mult(A, C (WL

2 )) = min{mult(A, C (pi)) | i = 1, . . . , 4}.

2. If A ∈ B(P), then the tangents to C (WL
1 ) at A (similarly to C (WL

2 )), with the corresponding
multiplicities, are the factors in K[ x , t ] \K[ x ] of

ε1x1T1 + ε2x2T2 + ε3x3T3 + ε4x4T4,

where Ti is the product of the tangents, counted with multiplicities, of C (Li(P)) at A, and where εi = 1
if mult(A, C (Li(P))) = min{mult(A, C (Li(P))) | i = 1, . . . , 4} and 0 otherwise.

2.3. Case of rational maps of P2(K)

In this subsection, let

S : P2(K) ��� P2(K)

t = (t1 : t2 : t3) �−→ S( t ) = (s1( t ) : s2( t ) : s3( t )),
(6)

where gcd(s1, s2, s3) = 1, is a dominant rational transformation of P2(K).

Definition 3. A ∈ P2(K) is a base point of S( t ) if s1(A) = s2(A) = s3(A) = 0. That is, the base points of
S are the intersection points of the projective plane curves, C (si), defined over K by si( t ), i = 1, 2, 3. We denote
by B(S) the set of base points of S .

We introduce the polynomials

V1 = ∑3
i=1 xi si( t ) ∈ K( x , y )[ t ]

V2 = ∑3
i=1 yi si( t ) ∈ K( x , y )[ t ],

(7)

where xi, yj are new variables and we consider the curves C (Vi) over the field F; compare with (3).
Similarly, for every L ∈ G (P2(K)) we introduce the polynomials

VL
1 = ∑3

i=1 xi Li(S) ∈ K( x , y )[ t ]

VL
2 = ∑3

i=1 yi Li(S) ∈ K( x , y )[ t ],
(8)

Remark 2. Sometimes, we will need to specify the rational map in the polynomials above. In those cases, we will
write VSi or VL,S

i instead of Vi or VL
i ; similarly, we may write C (VS1 ) and C (VL,S

1 ).

As we did in Section 2.2, we have the following notion of multiplicity.

Definition 4. For A ∈ B(S), we define the multiplicity of intersection of A, and we denote it by
mult(A, B(S)), as

mult(A, B(S)) := multA(C (V1), C (V2)). (9)

5
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In addition, we define the multiplicity of the base points locus of S , denoted mult(B(S)), as (note that,
since gcd(s1, s2, s3) = 1, B(S) is either finite or empty)

mult(B(S)) := ∑
A∈B(S)

mult(A, B(S)) = ∑
A∈B(S)

multA(C (V1), C (V2)) (10)

The next result is a direct extension of Proposition 2 in [12] to the case of birational transformation
of P2(K).

Lemma 2. If L ∈ G (P2(K)) then

1. B(S) = C (VL
1 ) ∩ C (VL

2 ) ∩ P2(K).
2. Let A ∈ B(S) then

mult(A, C (VL
1 )) = mult(A, C (VL

2 )) = min{mult(A, C (si)) | i = 1, 2, 3}.

3. Let A ∈ B(S). The tangents to C (VL
1 ) at A (similarly to C (VL

2 )), with the corresponding multiplicities,
are the factors in K[ x , t ] \K[ x ] of

ε1x1T1 + ε2x2T2 + ε3x3T3,

where Ti is the product of the tangents, counted with multiplicities, of C (Li(S)) at A, and where εi = 1 if
mult(A, C (Li(S))) = min{mult(A, C (Li(S))) | i = 1, 2, 3} and 0 otherwise.

3. Transversal Base Locus

In this section, we present some new results on base points that complement those in [12] and we
introduce and analyze the notion of transversality in conexion with the base locus.

Throughout this section, let S = (s1 : s2 : s3), with gcd(s1, s2, s3) = 1, be as in (6). In the
sequel, we assume that S is birational. Let the inverse of S be denoted by R = (r1 : r2 : r3);
that is R := S−1. In addition, we consider a rational surface parametrization P = (p1 : · · · : p4),
with gcd(p1, . . . , p4) = 1, be as in (1). We assume that P is birational.

3.1. Further Results on Base Points

We start analyzing the rationality of the curve C (VL
i ) (see (8)).

Lemma 3. There exists a non-empty open subset Ω1 of G (P2(K)) such that if L ∈ Ω1 then C (VL
1 ) is a

rational curve. Furthermore,

V1( x , h1, h2) = RL−1
(h1x3, h2x3,−(h1x1 + x2h2))

is a birational parametrization of C (VL
1 ).

Proof. We start proving that for every L ∈ G (P2(K)), VL
1 is irreducible. Indeed, let L = (∑ λiti : ∑ μiti :

∑ γiti) ∈ G (P2(K)). Then VL
1 = (λ1x1 + μ1x2 + γ1x3)s1 + (λ2x1 + μ2x2 + γ2x3)s2 + (λ3x1 + μ3x2 +

γ3x3)s3. gcd(s1, s2, s3) = 1 and gcd(λ1x1 + μ1x2 + γ1x3, λ2x1 + μ2x2 + γ2x3, λ3x1 + μ3x2 + γ3x3) = 1
because the determinant of the matrix associated to L is non-zero. Therefore, VL

1 is irreducible.
In the following, to define the open set Ω1, let L(t1, t2, t3) = (L1 : L2 : L3) be a generic element

of G (P2(K)); that is, Li = zi,1t1 + zi,2t2 + zi,3t3, where zi,j are undetermined coefficients satisfying that
the determinant of the corresponding matrix is not zero. Furthermore, for L ∈ G (P2(K)), we denote
by z L the coefficient list of L. We also introduce the polynomial RL = x1L1 + x2L2 + x3L3 =

(∑ zi,1xi)t1 + (∑ zi,2xi)t2 + (∑ zi,3xi)t3. Similarly, for L ∈ G (P2(K)), we denote RL = RL( z L, x , t ).

6
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We consider the birational extensionR x : P2(F) ��� P2(F) ofR from P2(K) to P2(F). Let U x ⊂
P2(F) be the open set where the R x is bijective; say that U x = P2(F) \ Δ. We express the close set
Δ as Δ = Δ1 ∪ Δ2 where Δ1 is either empty or it is a union of finitely many curves, and Δ2 is either
empty or finite many points. We fix our attention in Δ1. Let f ( t ) be the defining polynomial of Δ1.
Let Z( z , t1, t2) be the remainder of f when diving by VL1 w.r.t t3. Note that RL does not divide f since
RL is irreducible and depends on z . Hence Z is no zero. Let α( z ) be the numerator of a non-zero
coefficient of Z w.r.t. {t1, t2} and let β( z ) the l.c.m. of the denominators of all coefficients of Z w.r.t.
{t1, t2}. Then, we define Ω1 as

Ω1 = {L ∈ G (P2(K)) | α( z L)β( z L) 	= 0}

We observe that, by construction, if L ∈ Ω1 then C (RL) ∩ U x is dense in C (RL).
Let a, b ∈ C (RL) ∩ U x be two different points, then by injectivity R x (C (RL)) contains at least

two points, namelyR x (a) andR x (b). In this situation, sinceR x (C (RL)) and C (V1) are irreducible
we get thatR x (C (RL)) = C (V1), and hence C (V1) is a rational curve P2(F). Furthermore, one easily
may check that V1 parametrizes C (V1) and it is proper sinceR is birational.

Remark 3. Note that V1(t3, 0,−t1, t1, t2) = RL−1
(−t1t1,−t1t2,−t1t3) = RL−1

( t ). Hence

LS(V1(t3, 0,−t1, t1, t2)) =
LS(RL−1

( t )) = (t1 : t2 : t3).

Therefore,
Li(S(V1(t3, 0,−t1, t1, t2)) = ti · ℘( t ), i = 1, 2, 3.

Next lemma analyzes the rationality of the curves C (Li(S)) where L = (L1 : L2 : L3) ∈ G (P2(K)).

Lemma 4. There exists a non-empty Zariski open subset Ω2 of G (P2(K)) such that if L ∈ G (P2(K)) then
C (Li(S)), where i ∈ {1, 2, 3}, is rational.

Proof. Let U be the open subset whereR is a bijective map, and let {ρj,1t1 + ρj,2t2 + ρj,3t3}j=1,...,n be
the linear forms defining the lines, if any, included in P2(K) \ U . Then, we take Ω2 = ∩n

j=1Σj where

Σj =

⎧⎪⎨⎪⎩(
∑ λiti : ∑ μiti : ∑ γiti

)
∈ G (P2(K))

∣∣∣ (λ1 : λ2 : λ3) 	= (ρj,1 : ρj,2 : ρj,3),
(μ1 : μ2 : μ3) 	= (ρj,1 : ρj,2 : ρj,3),
(γ1 : γ2 : γ3) 	= (ρj,1 : ρj,2 : ρj,3)

⎫⎪⎬⎪⎭ .

Now, let L = (L1 : L2 : L3) ∈ Ω2. By construction, C (Li) ∩ U is dense in C (Li), for i ∈ {1, 2, 3}.
In this situation, reasoning as in the last part of the proof of Lemma 3, we get that R(C (Li)) =

C (Li(S)). Therefore, C (Li(S)) is rational.

The following lemma follows from Lemma 2.

Lemma 5. If L ∈ G (P2(K)) then

1. B(S) = B(LS).
2. For A ∈ B(S) it holds that mult(A, B(S)) = mult(A, B(LS)).
3. mult(B(S)) = mult(B(LS)).

Proof. (1) Let A ∈ B(S) then s1(A) = s2(A) = s3(A) = 0. Thus, L1(S)(A) = L2(S)(A) =

L3(S)(A) = 0. So, A ∈ B(LS). Conversely, let A ∈ B(LS). Then expressing L(S(A)) = 0 in
terms of matrices, since L is invertible, we have that S(A) = L−1(0, 0, 0) = (0, 0, 0). Thus, A ∈ B(S).
(2) and (3) follows from Theorem 5 in [12].

7
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Lemma 6. There exists a non-empty Zariski open subset Ω3 of G (P2(K)) such that if L ∈ Ω3 then for every
A ∈ B(S) it holds that

mult(A, C (VL
1 )) = mult(A, C (L1(S))) = mult(A, C (L2(S))) = mult(A, C (L3(S))).

Proof. Let A ∈ B(S). Then, by Lemma 2(2), we have that

mA := mult(A, C (VL
1 )) = min{mult(A, C (si) | i ∈ {1, 2, 3}}, ∀ L ∈ G (P2(K)). (11)

Let us assume w.l.o.g. that the minimum above is reached for i = 1. Then all (mA − 1)—order
derivatives of the forms si vanish at A, and there exists an mA–order partial derivative of s1 not
vanishing at A. Let us denote this partial derivative as ∂mA .

Now, let L be as in the proof of Lemma 3. Then,

gi( z ) := ∂mALi(S)(A) = zi,1∂mA s1(A) + zi,2∂mA s2(A) + zi,3∂mA s3(A) ∈ K[ z ]

is a non-zero polynomial because ∂mA s1(A) 	= 0. We then consider the open subset (see proof of
Lemma 3 for the notation z L)

ΩA = {L ∈ G (P2(K)) | g1( z L)g2( z L)g3( z L) 	= 0} 	= ∅.

In this situation, we take
Ω3 =

⋂
A∈B(S)

ΩA

Note that, since B(S) is finite then Ω3 is open. Moreover, since G (P2(K)) is irreducible then Ω3

is not empty.
Let us prove that Ω3 satisfies the property in the statement of the lemma. Let L ∈ Ω3 and

A ∈ B(S). Let mA be as in (11). Then all partial derivatives of Li(S), of any order smaller than mA,
vanishes at A. Moreover, since L ∈ Ω3 ⊂ ΩA, it holds that ∂mA Li(S)(A) 	= 0 for i = 1, 2, 3. Therefore,

mult(A, C (VL
1 )) = mA = mult(A, C (L1(S)) = mult(A, C (L2(S)) = mult(A, C (L3(S))

Remark 4. We note that the proofs of Lemmas 5 and 6 are directly adaptable to the case of birational surface
parametrizations. So, both lemmas hold if M ∈ G (P3(K)) and we replace S by the birational surface
parametrizaion P and LS by MP := M ◦ P .

In the following, we denote by Sing(D), the set of singularities of an algebraic plane curve D.

Corollary 1. Let Ω3 be the open subset in Lemma 6 and L ∈ Ω3. It holds that

1. ∩3
i=1Sing(C (Li(S))) ∩B(S) ⊂ Sing(C (VL

1 )).
2. Let A ∈ B(S). The tangents to C (VL

1 ) at A, with the corresponding multiplicities, are the factors in
K[ x , t ] \K[ x ] of

x1T1 + x2T2 + x3T3,

where Ti is the product of the tangents, counted with multiplicities, to C (Li(S)) at A.
3. Let A ∈ B(S), and let Ti be the product of the tangents, counted with multiplicities, to C (Li(S)), at A.

If gcd(T1, T2, T3) = 1, then

multA(C (VL
1 ), C (VL

2 )) = mult(A, C (Li(S))2, i ∈ {1, 2, 3}

8
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Proof.

(1) Let A ∈ ∩3
i=1Sing(C (Li(S))) ∩B(S). By Lemma 6, m := mult(A, C (Li(S))) > 0, for i ∈

{1, 2, 3}, and mult(A, C (VL
1 )) = m > 0. So, A ∈ Sing(C (VL

1 )).
(2) follows from Lemmas 2 and 6.
(3) By (2) the tangents to C (VL

1 ) and to C (VL
2 ) at A are T1 := ∑ xiTi and T2 := ∑ yiTi, respectively.

Since gcd(T1, T2, T3) = 1, then Ti is primitive, and hence gcd(T1, T2) = 1. That is, C (VL
1 ) and

C (VL
2 ) intersect transversally at A. From here, the results follows.

3.2. Transversality

We start introducing the notion of transversality for birational maps of P2(K).

Definition 5. We say that S is transversal if either B(S) = ∅ or for every A ∈ B(S) it holds that (see (7))

mult(A, B(S)) = mult(A, C (V1))
2

In this case, we also say that the base locus of S is transversal.

In the following lemma, we see that the transversality is invariant under left composition with
elements in G (P2(K)).

Lemma 7. If S is transversal, then for every L ∈ G (P2(K)) it holds that LS is transversal.

Proof. By Lemma 5(1), B(S) = B(LS). So, if B(S) = ∅, there is nothing to prove. Let A ∈ B(S) 	=
∅, and let L := (L1 : L2 : L3). Then

mult(A, B(LS)) = mult(A, B(S)) (see Lemma 5(2))
= mult(A, C (V1))

2 (S is transversal)
= mult(A, C (VL,S

1 ))2 (see Lemma 2(2) and Remark 2)

Therefore, LS is transversal.

The next lemma characterizes the transversality by means of the tangents of C (si) at the base
points. A direct generalization of this lemma to the case of surface parametrizations appears in
Lemma 10, and will be used in Algorithm 1 for checking the transversality.

Lemma 8. The following statements are equivalent

1. S is transversal.
2. For every A ∈ B(S) it holds that gcd(T1, T2, T3) = 1, where Ti is the product of the tangents,

counted with multiplicities, to C (si) at A.

Proof. If B(S) = ∅, the result if trivial. Let B(S) 	= ∅. First of all, we observe that, because of
Lemma 7, we may assume w.l.o.g. that Lemma 6 applies to S . So, by Definition 5, S is transversal if
and only if for every A ∈ B(S) it holds that

mult(A, B(S)) = mult(A, C (V1))
2,

and, by Definition 2, if and only if

mult(A, C (V1))
2 = multA(C (V1), C (V2)).

9
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Furthermore, using Theorem 2.3.3 in [23], we have that

multA(C (V1), C (V2)) = mult(A, C (V1))mult(A, C (V2))

if and only V1 and V2 intersect transversally at A i.e., if the curves have no common tangents at A
which is equivalent to gcd(T1, T2, T3) = 1. The proof finishes taking into account that, by Lemma 6
mult(A, C (V1)) = mult(A, C (V2)).

In the last part of this section, we analyze the relationship of the transversality of a birational map
of the projective plane and the transversality of a birational projective surface parametrization. For this
purpose, first we introduce the notion of transversality for parametrizations.

Definition 6. Let P be a birational surface parametrization of P3(K). We say that P is transversal if either
B(P) = ∅ or for every A ∈ B(P) it holds that (see (3))

mult(A, B(P)) = mult(A, C (W1))
2

In this case, we say that the base locus of P is transversal.

We start with some technical lemmas. The next lemma states that transversality does not change
under projective transformations of the cartesian coordinates, i.e., under left composition. This has to
be taken into account when extending the results of this paper to the case of non-transversality.

Lemma 9. If P is transversal, then for every M ∈ G (P2(K)) it holds that MP is transversal.

Proof. The proof is analogous to the proof of Lemma 7.

The next lemma provides a characterization of the transversality of a parametrization by means
of the tangents that will be used in Algorithm 1. The proof of this lemma is a direct generalization of
the proof of Lemma 8.

Lemma 10. The following statements are equivalent

1. P is transversal.
2. For every A ∈ B(P) it holds that gcd(T1, . . . , T4) = 1, where Ti is the product of the tangents,

counted with multiplicities, to C (pi) at A.

The following lemma focusses on the behavior of the base points of P when right composing
with elements in G (P2(K)).

Lemma 11. Let L ∈ G (P2(K)). It holds that

1. B(P) = L(B(P L)). Furthermore, A ∈ B(P) if and only L−1(A) ∈ B(P L).
2. For A ∈ B(P), mult(A, B(P)) = mult(L−1(A), B(P L))

3. mult(B(P)) = mult(B(P L)).
4. If P is transversal then P L is also transversal.

Proof. (1) A ∈ B(P) iff pi(A) = 0 for i ∈ {1, . . . , 4} iff pi(L(L−1(A))) = 0 for i ∈ {1, . . . , 4} iff
L−1(A) ∈ B(P L) iff A ∈ L(B(P L)). So (1) follows.

We consider the curves C (WP
i ) and C (WPL

i ) (see Remark 1), and we note that C (WPL

i ) is the
transformation of C (Wi) under the birational transformation L−1 of P2(K). Now, (2) and (3) follow
from Definition 2, and (4) from Lemma 10.

10
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The next results analyze the base loci of birational surface parametrizations assuming that there
exists one of them with empty base locus.

Lemma 12. Let P and Q be two birational projective parametrizations of the same surface S such that
Q(S) = P and B(Q) = ∅. It holds that

1. B(S) = B(P).
2. If A ∈ B(S) then deg(S )mult(A, B(S)) = mult(A, B(P)).

Proof. SinceQ = P(S) and B(Q) = ∅, by Theorem 11 in [12] we get that B(LSS) = B(LPP) for LS in
a certain open subset of G (P2(K)) and LP in a certain open subset of G (P3(K)). Now, using Lemma 5,
and Remark 4 one concludes the proof of statement (1). Statement (2) follows from Theorem 11 in [12],
taking into account that Q is birational.

Lemma 13. Let P and Q be two birational projective parametrizations of the same surface S such that
Q(S) = P and B(Q) = ∅. Then, for every A ∈ B(S) it holds that (see (3) and (7))

mult(A, C (W1)) = mult(A, C (V1))deg(Q).

Proof. Let P = (p1 : · · · : p4), and Q = (q1 : · · · : q4), where gcd(q1, . . . , q4) = 1. We know that
pi = qi(S). Moreover, since B(Q) = ∅, by Theorem 10 in [12], we have that gcd(p1, . . . , p4) = 1.

We start observing that because of Lemma 12 one has that B(S) = B(P). Now, let us consider
L ∈ G (P2(K)) and M ∈ G (P3(K)). Let Q∗ = MQL−1

, S∗ = LS and P∗ = MP . Note that Q∗(S∗) = P∗.
Moreover, B(Q∗) = ∅. Indeed: if A ∈ P3(K) then B := L−1(A) ∈ P3(K) and, since B(Q) = ∅,
C := Q(B) ∈ P3(K). Therefore Q∗(A) = M(B) ∈ P3(K) and, in consequence, B(Q∗) = ∅. Moreover,
Q∗ and P∗ parametrize the same surface. Furthermore, by Lemma 7, S∗ is transversal. Thus,
S∗,P∗,Q∗ satisfy the hypotheses of the lemma. On the other hand, by Lemma 5 and Remark 4,
we have that B(S∗) = B(S) = B(P) = B(P∗). Furthermore, by Lemmas 1 and 2 we have that
mult(A, C (V1)) = mult(A, C (VL

1 )) and mult(A, C (W1)) = mult(A, C (WM
1 )). Therefore, by Lemma 6

and Remark 4, we can assume w.l.o.g. that for every A ∈ B(S) = B(P) it holds that

mult(A, C (V1)) = mult(A, C (si)) for i ∈ {1, 2, 3}
mult(A, C (W1)) = mult(A, C (pi)) for i ∈ {1, 2, 3, 4} (12)

Now, let A ∈ B(P) and let m := mult(A, C (V1)). We can assume w.l.o.g that A = (0 : 0 : 1).
Let Ti denote the product of the tangents to si at A. Additionally, let deg(S) = s deg(P) = p,
and deg(Q) = q Then, by (12), we may write:

si = Tits−m
3 + gm+1,its−m−1

3 + · · ·+ gs,i (13)

where gj,i(t1, t2) are homogeneous forms of degree j. In addition, let qi be expressed as

qi( t ) = Fq,i + Fq−1,it3 + · · ·+ F�i ,it
q−�i
3 , (14)

where Fj,i(t1, t2) are homogeneous forms of degree j. Then

pi( t ) = Fq,i(s1, s2) + Fq−1,i(s1, s2)s3 + · · ·+ F�i ,i(s1, s2)s
q−�i
3 .

Using this expression and (13) it can be expressed as

pi( t ) =
(

Fq,i(T1, T2) + Fq−1,i(T1, T2)T3 + · · ·+ F�i ,i(T1, T2)T
q−�i
3

)
tq(s−m)
3

+ (terms of degree in t3 strictly smaller than q(s−m)) .
(15)

11
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Let
Hi := Fq,i(T1, T2) + Fq−1,i(T1, T2)T3 + · · ·+ F�i ,i(T1, T2)T

q−�i
3 .

Now, let us prove that Hi is not identically zero. We first observe that Hi = qi(T1, T2, T3) for
i ∈ {1, 2, 3, 4}. We also note that if there exists i ∈ {1, 2, 3, 4} such that Hi = 0, by (12), it must happen
that for all i ∈ {1, 2, 3, 4} it holds that Hi = 0. Let H1 be zero. Then, T = (T1 : T2 : T3) /∈ P2(K),
because otherwise T ∈ B(Q) and B(Q) = ∅. Therefore, T is a curve parametrization. Thus,
if Hi = 0, then T parametrizes a common component of the four curves C (pi). However, this implies
that gcd(q1, q2, q3, q4) 	= 1 which is a contradiction.

Thus, by (12), mult(A, C (p1)) = mult(A, C (Wi)) = qm = deg(Q)mult(A, C (Vi)).

We finish this section stating the relationship between the transversality of S and P under the
assumption that P(S−1) does not have base points.

Theorem 1. Let P and Q be two birational projective parametrizations of the same surface S such that
Q(S) = P and B(Q) = ∅. Then, S is transversal if and only if P is transversal.

Proof. Let A ∈ B(S) = B(P). First we note that from Lemma 13, and Corollary 5 in [12], it holds
that

mult(A, C (W1))
2 = mult(A, C (V1))

2deg(Q)2 = mult(A, C (V1))
2deg(S )

Using Corollary 9 in [12], we have that

mult(A, B(P)) = deg(S )mult(A, B(S)).

Therefore,

mult(A, B(S))mult(A, C (W1))
2 = mult(A, B(P))mult(A, C (V1))

2.

Thus, S is transversal if and only if P is transversal.

4. Proper Polynomial Reparametrization

In this section, we deal with the central problem of the paper, namely, the determination, if they
exist, of proper (i.e., birational) polynomial parametrizations of rational surfaces. For this purpose,
we distinguish several subsections. In the first subsection, we fix the general assumptions and we
propose our strategy. In the second subsection, we perform the theoretical analysis, and in the last
subsection we prove the existence of a linear subspace, computable from the input data, and containing
the solution to the problem.

We start recalling what we mean with a polynomial projective parametrization. We say that
a projective parametrization is polynomial if its dehomogenization w.r.t. the fourth component,
taking ti = 1 for some i ∈ {1, 2, 3}, is polynomial; note that the fourth component of a polynomial
projective parametrization has to be a power of ti for some i ∈ {1, 2, 3}. Clearly, a similar reasoning is
applicable w.r.t. other dehomogenizations. On the other hand, we say that a parametrization is almost
polynomial if its fourth component is the power of a linear form.

The important fact is that a rational surface admits a birational polynomial parametrization if and
only if it admits a birational almost polynomial parametrization. Furthermore, if we have an almost
polynomial parametrization, and its fourth component is a power of the linear form L∗3( t ), we may
consider two additional linear forms L∗1, L∗2 such that L∗ = (L∗1 : L∗2 : L∗3) ∈ G (P2(K)) and then the
composition of the almost polynomial parametrization with (L∗)−1 is a polynomial parametrization of
the same surface.

12
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4.1. General Assumptions and Strategy

In our analysis we have two main assumptions. We assume that the rational surface S admits a
polynomial birational parametrization with empty base locus. Throughout the rest of the paper, let us
fix one of these parametrizations and denote it by Q; that is,

Q( t ) = (q1( t ) : q2( t ) : q3( t ) : q4( t )), (16)

with qi homogenous polynomials of the same degree such that gcd(q1, . . . , q4) = 1, is a proper
polynomial parametrization of S satisfying that B(Q) = ∅. Note that, by Corollary 6 in [12], the degree
of S is then the square of a natural number. Moreover, we introduce a second assumption. We assume
that we are given a transversal birational parametrization of S . Note that, because Lemmas 9 and 11,
this hypothesis is invariant under right and/or left projective transformations. Throughout the rest of the
paper, let us fix P as a transversal proper parametrization of S , and let P be expressed as in (1).

Our goal is to reach Q, or more precisely an almost polynomial parametrization of S , from P .
For this purpose, first we observe that, since both P and Q are birational, they are related by means
of a birational map of P2(K), say SP . More precisely, SP := Q−1 ◦ P . In the following, we represent
SP as

SP ( t ) = (s1( t ) : s2( t ) : s3( t )), (17)

where gcd(s1, s2, s3) = 1. Note that, because of Theorem 1, since P is transversal, then SP is transversal.
In addition, letRP := S−1

P ( t ) = P−1 ◦ Q. In the sequel, we representRP as

RP ( t ) = (r1( t ) : r2( t ) : r3( t )), (18)

where gcd(r1, r2, r3) = 1.
So, in order to derive Q from P it would be sufficient to determine SP , and hence RP ,

because Q = P(RP ). Furthermore if, instead of determining SP , we obtain LSP := L ◦ SP , for some
L ∈ G (P2(K)), then instead of Q we get

P((LSP )−1) = P(RL−1

P ) = Q(L−1) = QL−1
,

which is almost polynomial, and hence solves the problem. Taking into account this fact we make the
following two considerations:

1. We can assume w.l.o.g. that B(P) 	= ∅. Indeed, if B(P) = ∅, by Theorem 10 and Corollary
9 in [12], we get that B(SP ) = ∅. Furthermore, by Corollary 7 in [12], we obtained that
deg(SP ) = 1. Thus, using that Q is indeed polynomial, we get that the fourth component of P is
the power of a linear form, and therefore the input parametrization P would be already almost
polynomial, and hence the problem would be solved.

2. We can assume w.l.o.g. that SP satisfies whatever property reachable by means of a left
composition with elements in G (P2(K)), as for instance those stated in Lemma 3, or Lemma 4,
or Lemma 6. In particular, by Lemma 7, the transversality is preserved. In other words, in the set
R of all birational transformations of P2(K), we consider the equivalence relation ∼, defined as
S ∼ S∗ if there exists L ∈ G (P2(K)) such that L ◦ S = S∗, and we work with the equivalence
classes in R/ ∼.

Therefore, our strategy will be to find a birational map M of P2(K) such that P(M−1) is
almost polynomial. For this purpose, we will see that it is enough to determine a dominant rational
transformation M of P2(K) (later, we will prove that such a transformation is indeed birational)
such that

1. deg(M) = deg(SP ).
2. B(M) = B(SP ).

13
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3. ∀ A ∈ B(M) it holds that mult(A, B(M)) = mult(A, B(SP )).

The difficulty is that bothM and SP are unknown. Nevertheless, by Corollary 10 and Theorem 3
in [12], we have that

deg(SP ) =
deg(P)√
deg(S )

.

Note that deg(P) is given and deg(S ) can be determined by applying, for instance, the formulas
in [24] (see also [25]). On the other hand, taking into account Lemma 12, we can achieve our
goal by focusing on P . More precisely, we reformulate the above conditions into the equivalent
following conditions.

Conditions 1. We say that a rational dominant mapM of P2(K) satisfies Conditions 1 if

1. deg(M) =
deg(P)√
deg(S )

.

2. B(M) = B(P),
3. mult(A, B(M)) = mult(A,B(P))

deg(S )
for all A ∈ B(P).

In the following subsections, we will see that rational dominant maps satisfying Conditions 1
provide an answer to the polynomiality problem.

4.2. Theoretical Analysis

We start this analysis with some technical lemmas. For this purpose, S ,Q,P ,SP ,RP are as
in the previous subsection. We recall that Q(SP ) = P , B(Q) = ∅, RP = S−1

P , P is transversal,
and hence SP is also transversal. Moreover, by Lemma 12, SP satisfies Conditions 1. Furthermore,
in the sequel, let

S( t ) = (s1( t ) : s2( t ) : s3( t )), (19)

with gcd(s1, s2, s3) = 1, be dominant rational map of P2(K) satisfying Conditions 1.

Lemma 14. LetM be a birational map of P2(K). Then, deg(M) = deg(M−1).

Proof. We use the notation introduced in Lemma 3. We take L ∈ G (P3(K)) such that

1. C (VL
1 ) is rational (see (8) for the definition of VL

1 constructed from M, and Lemma 3 for the
existence of L).

2. gcd(ηL
1 , ηL

3 ) = 1, whereM−1 = (η1 : η2 : η3).

In addition, we consider a projective transformation N( t ) in the parameters t such
that deg t (V

L
1 ( x , N( t )) = degt2

(VL
1 ( x , N( t )) and deg t (η

L
1 (N( t )) = degt2

(ηL
1 (N( t )) =

degt2
(ηL

3 (N( t )). Then, it holds

deg(M) = deg t (V
L
1 ( x , t ))

= deg t (V
L
1 ( x , N( t )) (M is a proj. transf.)

= degt2
(VL

1 ( x , N( t )) (see above)
= degt2

(ηL
1 (N(x1, h1, x3))/ηL

3 (N(x1, h1, x3)) (*)
= degt2

(ηL
1 ((N(x1, h1, x3))) (gcd(ηL

1 , ηL
3 ) = 1)

= deg(M−1)

* See Theorem 4.21 in [26].

Our goal will be to compute birational transformations satisfying Conditions 1. Next lemma
shows that the birationality will be derived from Conditions 1, and hence we will not have to check
it computationally.

14
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Lemma 15. LetM be a rational dominant map of P2(K). IfM satisfies Conditions 1, thenM is birational.

Proof. Since deg(M) = deg(SP ), and mult(B(M)) = mult(B(SP )), by Theorem 7(a) in [12],
we have that degMap(M) = degMap(SP ). So S is birational.

Therefore, since we have assume above (see (19)) that S satisfies Conditions 1, S is birational
(see Lemma 15). Let

R( t ) = S−1
( t ) = (r1( t ) : r2( t ) : r3( t )) (20)

be its inverse. Clearly, S(R) = (t1 : t2 : t3), which implies that si(R( t )) = ti ℘( t ), for i ∈
{1, 2, 3}, and where deg(℘) = deg(S)2 − 1 (see Lemma 14) and hence deg(℘) = mult(B(S)) =

mult(B(SP )) = mult(B(P)). In the next result we prove that ℘ is directly related to B(S), and using
that B(S) = B(SP ), we study the common factor appearing in the composition S(R). We start with
a technical lemma.

Lemma 16. Let L ∈ G (P2(K)). It holds that

1. B(SL
P ) = B(P L) = B(S L

).
2. If A ∈ B(SL

P ) then mult(A, B(SL
P )) = mult(A,P L)/deg(S )

3. S L satisfies Conditions 1.
4. SL

P is transversal

5. If S is transversal, then SL is transversal.

Proof.

(1) A ∈ B(SL
P ) iff SL

P (A) = 0 iff SP (L(A)) = 0 iff L(A) ∈ B(SP ) = B(P) iff P L(A) =

P(L(A)) = 0 iff A ∈ B(P L). Moreover, the second equality follows as in the previous reasoning,
taking into account that S satisfies Condition 1, and hence B(SP ) = B(S) = B(P).

(2) follows taking into account that the multiplicity of a point on a curve, as well as the multiplicity
of intersection, does not change under projective transformations.

(3) Condition (1) follows taking into account that deg(L) = 1. Statement (1) implies condition (2).
For condition (3), we apply statement (2) and that mult(A, B(S L

)) = mult(A, B(S)) because
the multiplicity of intersection does not change with L.

(4) and (5) follow arguing as in the proof of Lemma 11(4).

Theorem 2. Let S be transversal. If i ∈ {1, 2, 3} then si(R) = ti ℘( t ) where deg(℘( t )) = mult(B(P))
and such that ℘ is uniquely determined by B(P).

Proof. We first observe that we can assume w.l.o.g. that no base point of P is on the line at infinity x3 =

0. Indeed, let L ∈ G (P2(K)) be such that B(P) is contained in the affine plane x3 = 1. We consider
S ∗ := SL

= (s ∗1 : s ∗2 : s ∗3 ) and R∗
:= (SL

)−1, then s ∗i (R
∗
) = s ∗i (L−1(R)), and s ∗i = si(L);

hence s ∗i (R
∗
) = si(R). In addition, because of Lemma 16, S ∗ satisfies the hypothesis of the theorem.

Let C (V1) denote the curve associated to S as in (7). By Lemma 3, taking L in the corresponding
open subset of G (P2(K)), we have that C (VL

1 ) is a rational curve. So, we assume w.l.o.g. that
C (V1) is rational. Let V( x , h1, h2) be the rational parametrization of C (V1) provided by Lemma
3. We apply a Möbius transformation φ ∈ G (P1(K)) such that if W( x , h1, h2) = (w1( x , h1, h2) :
w2( x , h1, h2) : w3( x , h1, h2)) := V( x , φ(h1, h2)) then the affine parametrization ρ( x , h1) :=
(w1( x , h1, 1)/w3( x , h1, 1), w2( x , h1, 1)/w3( x , h1, 1)) is affinely surjective (see [7,23]).
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Now, let A = (a1 : a2 : 1) ∈ B(P). By Lemma 2, P ∈ C (V1). We observe that, by taking L in the
open subset of Lemma 6, we may assume that

mA := mult(A, C (V1)) = mult(A, C (si)), i ∈ {1, 2, 3}. (21)

We consider the polynomial

gA = gcd(w1( x , h1, h2)− a1w3( x , h1, h2), w2( x , h1, h2)− a2w3( x , h1, h2)).

Since the affine parametrization has been taken surjective, we have that

degh(gA) = mA (22)

and that for every root t0 of gA it holds that ρ(t0) = (a1, a2). We write wi as

wi = gA · w ∗
i + aiw3, i = 1, 2.

On the other hand, we express si as

si( t ) = Ti,mA( t )tdeg(S)−mA
3 + · · ·+ Ti,deg(S)( t ),

where deg(Ti,j) = j, j ∈ {mA, . . . , deg(S)}, and Ti,j( t ) = ∑k1+k2=j(t1− a1t3)
k1(t2− a2t3)

k2 . Therefore

si(W) = gmA
A ·

(
Ti,mA(w

∗
1 , w ∗

2 )w deg(S)−mA
3 + · · ·+ gdeg(S)−mA

A Ti,deg(S)(w
∗
1 , w ∗

2 )

)
.

In other words, gA divides si(W). Now, for B = (b1 : b2 : 1) ∈ B(P), with A 	= B, it holds
that gcd(gA, gB) = 1, since otherwise there would exist a root t0 of gcd(gA, gB), and this implies that
ρ(t0) = (a1, a2) = (b1, b2) = ρ(t0) which is a contradiction. Therefore, we have that

si(W) = ∏
A∈B(P)

gA( x , h1, h2)
mA fi( x , h1, h2) (23)

We observe that the factor defined by the base points does not depend on i. Thus, since si(W)

does depend on i, we get that fi is the factor depending on i. Furthermore,

degh

(
∏A∈B(P) gmA

A

)
= ∑A∈B(P) degh(gA)

mA

= ∑A∈B(P) m2
A (see (22))

= ∑A∈B(P) mult(A, C (V1))
2 (see (21))

= ∑A∈B(P) mult(A, B(S)) (S is transversal)
= ∑A∈B(P) mult(A, B(P)) (See Conditions 1)
= mult(B(P)) (See Definition 2)

Moreover, by Theorem 4.21 in [23], sinceW is birational it holds that deg(W) = deg(C (V1)) =

deg(S). Hence, deg(si(W)) = deg(S)2 = mult(B(P)) + 1. Therefore, fi in (28) is a linear form.
In this situation, let us introduce the notation t ∗ := (t3, 0,−t1, t1, t2) and t ∗∗ =

(t3, 0,−t1, φ−1(t1, t2)). Then, for i ∈ {1, 2, 3}, we have that

ti ℘ = si(R)

= si(V( t ∗)) (see Remark 3)
= si(W( t ∗∗)) (see definition ofW)
= ∏A∈B(P) gA( t ∗∗)mA fi( t ∗∗) (see (28))
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Taking into account that ∏A∈B(P) gA( t ∗∗)mA does not depend on i, we get that t1 f2( t ∗∗) =

t2 f1( t ∗∗). This implies that t1 divides f1( t ∗∗), and since f1( t ∗∗) is linear we get that t1 = λ f1( t ∗∗)
for λ ∈ K \ {0}. Then, substituting above, we get λ f1( t ∗∗) f2( t ∗∗) = t2 f1( t ∗∗), which implies that
t2 = λ f2( t ∗∗). Similarly, for t3 = λ f3( t ∗∗) . Therefore, we get that

si(R) = ti λ ∏
A∈B(P)

gA( t ∗∗)mA , with λ ∈ K \ {0}

This concludes the proof.

For the next theorem, we recall that SP = (s1 : s2 : s3) with gcd(s1, s2, s3) = 1; see (17).

Theorem 3. Let S be transversal. If i ∈ {1, 2, 3} then si(R) = Zi( t )℘( t ) where Zi is a linear form,
deg(℘( t )) = mult(B(P)) and such that ℘ is uniquely determined by B(P).

Proof. We first observe that we can assume w.l.o.g. that no base point of P is on the line at infinity x3 =

0. Indeed, let L ∈ G (P2(K)) be such that B(P) is contained in the affine plane x3 = 1. We consider
S ∗ := SL

P = (s ∗1 : s ∗2 : s ∗3 ), S
∗

:= SL
, and R∗

:= (S ∗)−1. Then s ∗i (R
∗
) = si(L(L−1(R))) = si(R).

In addition, because of Lemma 16, S ∗ and S∗ satisfy the hypotheses of the theorem.

Let C (V1), V( x , h1, h2),W( x , h1, h2) = (w1 : w2 : w3) and ρ be as in the proof of Theorem 2.
Now, let A = (a1 : a2 : 1) ∈ B(P). By Lemma 2, P ∈ C (V1). We recall that B(P) =

B(S) = B(SP ). Let ΩS
3 and ΩSP

3 be the open subset in Lemma 6 applied to S and SP , respectively.
Taking L ∈ ΩS

3 ∩ ΩSP
3 (note that G (P2(K)) is irreducible and hence the previous intersection is

non-empty), we may assume that

mA := mult(A, C (V1)) = mult(A, C (si)), i ∈ {1, 2, 3}. (24)

and
mult(A, C (V1)) = mult(A, C (si)), i ∈ {1, 2, 3}. (25)

Since SP and S are transversal, and taking into account Condition 1, it holds that

mult(A, C (V1))
2 = mult(A, B(SP )) = mult(A, B(S)) = mult(A, C (V1))

2

Therefore,
mult(A, C (V1)) = mA = mult(A, C (V1)). (26)

We consider the polynomial gA = gcd(w1 − a1w3, w2 − a2w3). Reasoning as in the Proof of
Theorem 2 we get that

degh(gA) = mA (27)

and that for every root t0 of gA it holds that ρ(t0) = (a1, a2). We write wi as wi = gA · w ∗
i + aiw3 for

i =∈ {1, 2}.
On the other hand, by (25) and (26), we have that mult(A, C (si)) = mA. Therefore, we can

express si as

si( t ) = Ti,mA( t )tdeg(SP )−mA
3 + · · ·+ Ti,deg(SP )( t ),

where deg(Ti,j) = j, j ∈ {mA, . . . , deg(SP )}, and Ti,j( t ) = ∑k1+k2=j(t1 − a1t3)
k1(t2 −

a2t3)
k2 . Therefore

si(W) = gmA
A ·

(
Ti,mA(w

∗
1 , w ∗

2 )w deg(SP )−mA
3 + · · ·+ gdeg(SP )−mA

A Ti,deg(S)(w
∗
1 , w ∗

2 )
)

.
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In other words, gA divides si(W). Now, for B = (b1 : b2 : 1) ∈ B(P), with A 	= B, reasoning as
in the proof of Theorem 2, it holds that gcd(gA, gB) = 1. Therefore, we have that

si(W) = ∏
A∈B(P)

gA( x , h1, h2)
mA fi( x , h1, h2) (28)

Furthermore,

degh

(
∏A∈B(P) gmA

A

)
= ∑A∈B(P) degh(gA)

mA

= ∑A∈B(P) m2
A (see (27))

= ∑A∈B(P) mult(A, C (V1))
2 (see (24))

= ∑A∈B(P) mult(A, B(S)) (S is transversal)
= ∑A∈B(P) mult(A, B(P)) (See Conditions 1)
= mult(B(P)) (See Definition 2)

Moreover, by Theorem 4.21 in [23], sinceW is birational it holds that deg(W) = deg(C (V1)) =

deg(S). Hence, by Condition 1, deg(si(W)) = deg(SP )deg(S) = deg(SP )2 = mult(B(P)) + 1.
Therefore, fi in (28) is a linear form.

In this situation, let us introduce the notation t ∗ := (t3, 0,−t1, t1, t2) and t ∗∗ =

(t3, 0,−t1, φ−1(t1, t2)). Then, for i ∈ {1, 2, 3}, we have that

si(R) = si(V( t ∗)) (see Remark 3)
= si(W( t ∗∗)) (see definition ofW)
= ∏A∈B(P) gA( t ∗∗)mA fi( t ∗∗) (see (28))

This concludes the proof.

Corollary 2. If S is transversal, there exists L ∈ G (P2(K)) such that S = LSP .

Proof. From Theorem 3, we get that SP (R) = (Z1( t ) : Z2( t ) : Z3( t )), where Zi is a linear form.
Thus, LSP = S , where L ∈ G (P2(K)) is the inverse of (Z1, Z2, Z3).

Corollary 3. The following statements are equivalent

1. S is transversal.
2. There exists L ∈ G (P2(K)) such that S = LSP .

Proof. If (1) holds, then (2) follows from Corollary 2. Conversely, if (2) holds, then (1) follows from
Lemma 7

4.3. The Solution Space

In this subsection we introduce a linear projective variety containing the solution to our problem
and we show how to compute it. We start identifying the set of all projective curves, including multiple
component curves, of a fixed degree d, with the projective space (see [23,27,28] for further details)

Vd := P
d(d+3)

2 (K).

More precisely, we identify the projective curves of degree d with the forms in K[ t ] of degree d,
up to multiplication by non-zero K-elements. Now, these forms are identified with the elements in
Vd corresponding to their coefficients, after fixing an order of the monomials. By abuse of notation,
we will refer to the elements in Vd by either their tuple of coefficients, or the associated form, or the
corresponding curve.
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LetM = (m1( t ) : m2( t ) : m3( t )), gcd(m1, m2, m3) = 1, be a birational transformation of P2(K).
We consider Vdeg(M). Then, m1, m2, m3 ∈ Vdeg(M). Moreover, in Vdeg(M), we introduce the projective
linear subspace

L(M) := {a1m1( t ) + a2m2( t ) + a3m3( t ) | (a1 : a2 : a3) ∈ P2(K)}.

We observe that if {m1, m2, m3} are linearly dependent, then the image of P2(K) viaM−1 would
be a line in P2(K) which is impossible becauseM is birational on P2(K). Therefore, the following holds.

Lemma 17. IfM is a birational transformation of P2(K), then dim(L(M)) = 2.

Similarly, one has the next lemma.

Lemma 18. IfM is a birational transformation of P2(K) and L ∈ G (P2(K)) then L(M) = L(LM).

Furthermore, the following theorem holds

Theorem 4. Let M be a birational transformation of P2(K) and let {n1, n2, n3} be a basis of L(M) and
N := (n1 : n2 : n3). There exists L ∈ G (P2(K)) such that LM = N .

Proof. LetM = (m1 : m2 : m3), with gcd(m1, m2, m3) = 1. Since m1, m2, m3 ∈ L(M), and {n1, n2, n3}
is a basis of L(M), there exist (λi,1 : λi,2 : λi,3) ∈ P2(K) such that

mi = ∑ λi,jnj.

Since {m1, m2, m3} is also a basis of L(M), one has that L := (∑ λ1,jtj : ∑ λ2,jtj : ∑ λ3,jtj) ∈
G (P2(K)) and N = L ◦M.

Remark 5. Observe that, by Theorem 4, all bases of L(M) generate birational maps of P2(K).

Corollary 4. LetM be a birational transformation of P2(K). The following statements are equivalent

1. M is transversal.
2. There exists a basis {n1, n2, n3} of L(M) such that (n1 : n2 : n3) is transversal.
3. For all bases {n1, n2, n3} of L(M) it holds that (n1 : n2 : n3) is transversal.

Proof. It follows from Theorem 4 and Lemma 7.

In the following results we analyze the bases of L(SP ). So, S ,R,P ,Q and S are as the in
previous subsections.

Corollary 5. Let {m1, m2, m3} a basis of L(SP ). Then, (m1 : m2 : m3) satisfies Conditions 1.

Proof. It is a direct consequence of Theorem 4.

Corollary 6. If M := (m1 : m2 : m3) is transversal and satisfies Condition 1, then {m1, m2, m3} is a basis
of L(SP ).

Proof. By Corollary 3, there exists L ∈ G (P2(K)) such thatM = LSP . Now, by Lemma 18, L(SP ) =
L(M). Taking into account that {m1, m2, m3} are linearly independent, we get the result.

The previous results show that the solution to our problem lies in L(SP ). However,
knowing L(SP ) implies knowing SP , which is essentially our goal. In the following, we see how
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to achieve L(SP ) by simply knowing B(SP ) and the base point multiplicities; note that, under the
hypotheses of this section, this information is given by P .

Definition 7. LetM be a birational transformation of P2(K). We define the linear system of base points of
M, and we denote it by L (M), as the linear system of curves, of degree deg(M),

L (M) = { f ∈ Vdeg(M) |mult(A, C ( f )) ≥
√

mult(A, B(M)) ∀A ∈ B(M)}

Observe that L (M) is the deg(M)-linear system associated to the effective divisor

∑
A∈B(M)

√
mult(A, B(M)) · A

Remark 6. We observe that ifM satisfies Condition 1, in particular SP , then L (M) is the deg(SP )-degree
linear system generated by the effective divisor

∑
A∈B(P)

√
mult(A, B(P)) · A.

The following lemma is a direct consequence of the definition above. In Section 4.1, we have
mentioned that we will work with equivalence classes. The next lemma states that the deg(SP )-degree
linear system generated by the effective divisor is invariant within the equivalence class, and hence we
may take whatever representant for our computations.

Lemma 19. Let M be a birational transformation of P2(K). If L ∈ G (P2(K)) then L(M) = L(LM) and
L (M) = L (LM).

The next lemma relates the L(M) and L (M).

Lemma 20. IfM is a transversal birational map of P2(K), then L(M) ⊂ L (M).

Proof. Let M = (m1 : m2 : m3), let f ∈ L(M) and A ∈ B(M). Then, deg( f ) = deg(M). On the
other hand

mult(A, C ( f )) ≥ min{mult(A, C (mi)) | i ∈ {1, 2, 3}}
= mult(A, C (V1)) (see Lemma 2(2))
=

√
mult(A, B(M)) (M is transversal).

Therefore, f ∈ L (M).

Lemma 21. IfM is a transversal birational map of P2(K), then dim(L (M)) = 2.

Proof. LetM = (m1 : m2 : m3). By Lemmas 17 and 20, we have that dim(L (M)) ≥ 2. Let us assume
that dim(L (M)) = k > 2 and let {n1, . . . , nk+1} be a basis of L (M) where n1 = m1, n2 = m2, n3 =

m3. Then
L (M) = {λ1n1 + · · ·+ λk+1nk+1 | (λ1 : · · · : λk+1) ∈ Pk+1(K)}.

Now, we take three points in P2(K) that will be crucial later. For their construction, we first
consider an open Zariski subset Σ ⊂ P2(K) where M : Σ → M(Σ) ⊂ P2(K) is a bijective map.
Then,M(Σ) is a constructible set of P2(K) (see e.g., Theorem 3.16 in [22]). Thus, P2(K) \M(Σ) can
only contain finitely many lines. On the other hand, we consider the open subset Ω2 ⊂ G (P2(K))

introduced in Lemma 4, and we take L = (L1 : L2 : L3) ∈ Ω2 such that a non-empty open subset
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of C (L1) is included in M(Σ). We take three points B1, B2, B3 ∈ Σ (this, in particular, implies that
B1, B2, B3 	∈ B(M)) such that:

1. M(B1) 	=M(B2)

2. M(B1),M(B2) ∈ C (L1),
3. M(B3) 	∈ C (L1); note thatM(B1),M(B2),M(B3) are not on a line

SinceM(B1),M(B2),M(B3) are not collinear, the system{
k+1

∑
i=1

λini(Bj) = 0

}
j∈{1,2,3}

has solution. Let (b1 : · · · : bk+1) be a solution. Then, we consider the polynomials (say that
L1 := a1t1 + a2t2 + a3t3)

f ( t ) := L1(M) = a1m1 + a2m2 + a3m3, g( t ) := b1n1 + · · ·+ bk+1nk+1.

We have that C ( f ) is irreducible because L ∈ Ω2. Moreover, deg(C ( f )) = deg(C (g)). In addition,
C ( f ) 	= C (g): indeed, B3 ∈ C (g) and B3 	∈ C ( f ) because otherwise⎛⎜⎝ m1(B1) m2(B1) m3(B1)

m1(B2) m2(B2) m3(B2)

m1(B3) m2(B3) m3(B3)

⎞⎟⎠
⎛⎜⎝ a1

a2

a3

⎞⎟⎠ =

⎛⎜⎝ 0
0
0

⎞⎟⎠ ,

and sinceM(B1),M(B2),M(B3) are not collinear we get that a1 = a2 = a3 = 0 that is a contradiction.
Therefore, C ( f ) and C (g) do not share components. Thus, by Bézout’s theorem the number of
intersections of C ( f ) and C (g), properly counted, is deg(M)2. In addition, we oberve that f ∈
L(M) ⊂ L (M) (see Lemma 20) and g ∈ L (M). Thus,

B(M) ∪ {B1, B2} ⊂ C ( f ) ∩ C (g). (29)

Therefore

deg(M)2 = ∑
A∈C ( f )∩C (g)

multA(C ( f ), C (g))

≥ ∑
A∈B(M)

multA(C ( f ), C (g)) + ∑
A∈{B1,B2}

multA(C ( f ), C (g)) (see (29))

≥ ∑
A∈B(M)

multA(C ( f ), C (g)) + 2 (B1, B2 	∈ B(M))

≥ ∑
A∈B(M)

mult(A, C ( f ))mult(A, C (g)) + 2

≥ ∑
A∈B(M)

mult(A, B(M)) + 2 ( f , g ∈ L (M)))

= mult(B(M)) + 2 (see Definition 4)
= deg(M)2 + 1 (see Corollary 7 in [12]).

which is a contradiction.

Theorem 5. IfM is a transversal birational map of P2(K), then L(M) = L (M).

Proof. By Lemma 20, L(M) ⊂ L (M). Thus, using Lemmas 17 and 21, we get the result.
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5. Algorithm and Examples

In this section, we use the previous results to derive an algorithm for determining polynomial
parametrizations of rational surface, under the conditions stated in Section 4.1. For this purpose we
first introduce an auxiliary algorithm for testing the transversality of parametrizations. In addition,
we observe that we require to the input parametrization to be proper (i.e., birational). This can be
checked for instance using the algorithms in [29].

Observe that Step 2 in Algorithm 1 provides a first direct filter to detect some non-transversal
parametrizations, and Step 5 applies the characterization in Lemma 10. This justifies the next theorem.

Algorithm 1 Transversality of a Parametrization

Require: A rational proper projective parametrization P( t ) of an algebraic surface S .

1: Compute B(P) = ⋂4
i=1 C (pi) and mult(A, B(P)) = multA(C (W1), C (W2)) for every A ∈ B(P).

2: if ∃ A ∈ B(P), such that mult(A, B(P)) 	= m2
A for some mA ∈ N, mA ≥ 1 then

3: return “P is not transversal”.
4: end if

5: if ∀ A ∈ B(P), gcd(T1, T2, T3, T4) = 1, where Ti is the product of the tangents, counted with
multiplicities, to C (pi) at A, then

6: return “P is transversal” else return “P is not transversal”.
7: end if

Theorem 6. Algorithm 1 is correct.

The following algorithm is the central algorithm of the paper.

Theorem 7. Algorithm 2 is correct.

Proof. For the correctness of the first steps (1-4) we refer to the preamble in Section 4 where the almost
polynomial parametrizations are treated. For the rest of the steps, we use the notation introduced
in Section 4 and we assume the hypotheses there, namely, Q(SP ) = P and B(Q) = ∅. Since P
is transversal, by Theorem 1, we have that SP is transversal. Now, by Theorem 5, L = L(SP ).
In this situation, by Theorem 4, S = LSP for some L ∈ G (P2(K)). Therefore, P(R) has to be almost
polynomial, and hence the last step generates a polynomial parametrization. If the fourth component
of Q, namely q4 is not the power of a linear form, then B(Q) 	= ∅.

Remark 7. Let us comment some consequences and computational aspects involved in the execution of the
previous algorithms.

1. We observe that if Algorithm 2 returns a parametrization, then it is polynomial and its base locus is empty.
2. In order to check the properness of P , one may apply, for instance, the results in [29] and, for determining

deg(S ), one may apply, for instance, the results in [24,25,30]. For the computation ofR one may apply
well known elimination techniques as resultants or Gröbner basis; see e.g., [31].

3. In different steps of both algorithms one need to deal with the base points. Since the base locus is
zero-dimensional, one may consider a decomposition of its elements in families of conjugate points, so that
all further step can be performed exactly by introducing algebraic extensions of the ground field. For further
details on how to deal with conjugate points we refer to Section 3.3 (Chapter 3) in [23]

We finish this section illustrating the algorithm with some examples. The first two examples
provide polynomial parametrizations, while in the third the algorithm detects that the input
parametrization, although proper, is not transversal.
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Algorithm 2 Birational Polynomial Reparametrization for Surfaces

Require: A rational proper projective parametrization P( t ) =
(

p1( t ) : p2( t ) : p3( t ) : p4( t )
)

of an
algebraic surface S , with gcd(p1, . . . , p4) = 1.

1: if p4( t ) is of the form (a1t1 + a2t2 + a3t3)
deg(P), then

2: Consider the projective transformation L = (ti, tj, a1t1 + a2t2 + a3t3) where i, j ∈ {1, 2, 3} are
different indexes such if {k} = {1, 2, 3} \ {i, j}, then ak 	= 0.

3: Compute the inverse L−1 of L and return “P(L−1) is a rational proper polynomial
parametrization of S ”.

4: end if

5: Apply Algorithm 1 to check whether P is transversal. In the affirmative case go to the next Step.
Otherwise return “Algorithm 2 is not applicable”.

6: Compute deg(S ) and deg(S) = deg(P)/
√

deg(S ).
7: Compute the deg(S)-linear system associated to the effective divisor

L := ∑
A∈B(P)

√
mult(A, B(P))/deg(S ) · A

8: Determine S( t ) = (s1( t ) : s2( t ) : s3( t )), where {s1, s2, s3} is a basis of L .

9: ComputeR( t ) = S−1
( t ).

10: Compute Q( t ) = (q1 : q2 : q3 : q4), where Q( t ) = P(R( t )).
11: if q4( t ) is of the form (a1t1 + a2t2 + a3t3)

deg(Q), then

12: return “Q(L−1) (where L is as in Step 2) is a rational proper polynomial parametrization of S ”
else return “S does not admit a polynomial proper parametrization with empty base locus”.

13: end if

Example 1. Let P( t ) = (p1( t ) : p2( t ) : p3( t ) : p4( t )) be a rational parametrization of an algebraic
surface S , where

p1 = −6t4
3t1t2 + 6t2

3t2
2t2

1 − t3t2t4
1 − 2t3t3

2t2
1 + 5t3

3t2
1t2 + 3t3

3t1t2
2 − t6

2 + 3t2
3t4

1 + 3t2
3t4

2−
t3t5

2 − 3t4
1t2

2 − 3t2
1t4

2 + t3
3t3

1 − 6t4
3t2

1 + 3t5
3t1 + 3t3

3t3
2 − 6t4

3t2
2 + 2t5

3t2 − t6
1.

p2 = −(t1 − t3)t3(t2
2 + t2

1 − t1t3)(t2
2 + t2

1 − 2t2
3 + t1t3).

p3 = t2
3t3

2t1 + t2
3t3

1t2 − 3t4
3t1t2 + 39t2

3t2
2t2

1 − 8t3t2
2t3

1 − 4t3t1t4
2 − 4t3t2t4

1 − 8t3t3
2t2

1 + 8t3
3t2

1t2

+6t3
3t1t2

2 + 6t6
3 − 5t6

2 − 4t3t5
1 + 20t2

3t4
1 + 19t2

3t4
2 − 4t3t5

2 − 15t4
1t2

2 − 15t2
1t4

2 + 8t3
3t3

1

−29t4
3t2

1 + 4t5
3t1 + 7t3

3t3
2 − 22t4

3t2
2 − 2t5

3t2 − 5t6
1.

p4 = (t2
1 + t2

2 − t2
3)

3.

Applying the results in [29], one deduces that P is proper. We apply Algorithm 2 in order to compute
a rational proper polynomial parametrization Q( t ) of S , without base points, if it exists. Clearly, P is not
almost polynomial and hence steps 1–4 does not apply. In Step 5, we perform Algorithm 1. The base locus is
(we denote by ±ı the square roots of −1)

B(P) =
4⋂

i=1

C (pi) = {(1 : 0 : 1), (1 : ı : 0), (1 : −ı : 0)}.

Moreover, it holds that

mult(A, B(P)) = multA(C (W1), C (W2)) = 9, ∀A ∈ B(P .)
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Therefore, for every A ∈ B(P) we have that mult(A, B(P)) = m2
A for some mA ∈ N, mA ≥ 1. Thus,

the necessary condition in Algorithm 1 is fulfilled. In addition, one may also check that the gcd of the tangents is
1, for each base point. As a consequence, we deduce that P is transversal.

In Step 6 of Algorithm 2, we get that deg(S ) = 9 (see [30]). Now, using that

deg(S) = deg(P)/
√

deg(S ) = 6/3 = 2,

and that

mult(A, B(S)) = mult(A, B(P))/deg(S ) = 9/9 = 1 for every A ∈ B(P),

we compute the 2-linear system associated to the effective divisor

∑
A∈B(P)

A.

For this purpose, one considers a generic polynomial of degree 2 with undetermined coefficients (note that
we have 6 undetermined coefficients). We impose the three conditions, i.e., {(1 : 0 : 1), (1 : ±ı : 0)} should be
simple points, and we get

L := λ1(−9t2
1 − 9t2

2 + 9t1t3 + t2t3) + λ2(−10t2
1 − 10t2

2 + 9t1t3 + t2
3) + λ3(t2

1 + t2
2 − t2

3).

Let

S( t ) = (s1 : s2 : s3) = (−9t2
1 − 9t2

2 + 9t1t3 + t2t3 : −10t2
1 − 10t2

2 + 9t1t3 + t2
3 : t2

1 + t2
2 − t2

3),

where {s1, s2, s3} is a basis of L Next, we compute

R( t ) = S−1
( t ) = (r1( t ) : r2( t ) : r3( t )) =

where
r1 = 81t2

1 − 162t1t2 − 162t1t3 + 71t2
3 + 151t2t3 + 80t2

2,
r2 = −9(2t2 + 11t3)(t1 − t2 − t3),
r3 = 181t2

3 + 82t2
2 + 81t2

1 − 162t1t2 + 182t2t3 − 162t1t3.

In the last step, the algorithm returns

Q( t ) = P(R( t )) = (t3
1 + t2t2

3 − t1t2
3 − t3

3 : t2(t2 − t3)(t2 + t3) : t3
2 + t1t2

2 + t3t2t1 − 4t1t2
3 − 5t3

3 : t3
3)

that is a rational proper polynomial parametrization of S with empty base locus. Note that the affine polynomial
parametrization is given as

(t3
1 + t2 − t1 − 1, t2(t2 − 1)(t2 + 1), t3

2 + t1t2
2 + t2t1 − 4t1 − 5).

Observe that in this example we have introduced ±ı. Nevertheless we could have considered conjugate
points. More precisely, the base locus decomposes as

{(1 : 0 : 1)} ∪ {(1 : s : 0) | s2 + 1 = 0}

Then, all remaining computations could have been carried out working in the field extension Q(α) where
α2 + 1 = 0.
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Example 2. Let P( t ) = (p1( t ) : p2( t ) : p3( t ) : p4( t )) be a rational parametrization of an algebraic
surface S , where

p1 = 2891876933101
7056 t4

2t2
3 − 94253497

42 t5
2t3 +

79182089
24 t5

1t3 − 15185833
35 t5

2t1 +
230745016769

19600 t4
2t2

1

− 789948757
280 t4

1t2
2 − 314171

4 t5
1t2 − 3324893202046

2205 t3
2t2

3t1 +
17297334852139

29400 t2
2t2

3t2
1

+ 835536822991
5880 t4

2t3t1 − 3567593339657
14700 t3

2t3t2
1 +

8869391921
420 t4

1t2t3 +
199437407

140 t3
1t3

2

+ 56021820649
144 t4

1t2
3 +

925548000997
630 t3

1t2t2
3

− 35094007283
210 t3

1t2
2t3 +

28561
4 t6

2 +
3455881

16 t6
1,

p2 = − 1097019300247
2352 t4

2t2
3 − 246980149

56 t5
2t3 − 2485483 t5

1t3 − 32737835
56 t5

2t1 − 35410335273
3920 t4

2t2
1

+ 321945
4 t4

1t2
2 +

314171
4 t5

1t2 +
287134716635

168 t3
2t2

3t1 − 52659146973
80 t2

2t2
3t2

1 − 35536353385
294 t4

2t3 t1

+ 60928171523
280 t3

2t3t2
1 +

52899535
3 t4

1t2t3 − 446331197
140 t3

1t3
2 − 5296771655

12 t4
1t2

3 − 49879553251
30 t3

1t2t2
3

+ 23802911463
140 t3

1t2
2t3 − 257049

16 t6
2,

p3 = − 2676488123101
7056 t4

2t2
3 +

94253497
42 t5

2t3 − 379182089
24 t5

1t3 +
15185833

35 t5
2t1 − 219513256369

19600 t4
2t2

1

+ 797945837
280 t4

1t2
2 +

314171
4 t5

1t2 +
3079803152296

2205 t3
2t2

3t1 − 16059945270739
29400 t2

2t2
3t2

1

− 786351504991
5880 t4

2t3t1 +
3371173762457

14700 t3
2t3t2

1 − 9628594001
420 t4

1t2t3 − 163616167
140 t3

1t3
2

− 51903261673
144 t4

1t2
3 − 857765630677

630 t3
1t2t2

3 +
32679676343

210 t3
1t2

2t3 − 28561
4 t6

2 − 3455881
16 t6

1,

p4 = (−5348t2
1t3 + 5525t2

2t3 + 169t2
1t2 + 757t1t2

2 − 10059t1t2t3)
2.

Applying the results in [29], one deduces that P is proper. We apply Algorithm 2. Clearly, P is not almost
polynomial and hence steps 1–4 does not apply. In Step 5, we perform Algorithm 1. The base locus is

B(P) = {(0 : 0 : 1), (1 : 2 : 1), (5 : 7 : 1), (1/3 : −1/7 : 1), (−13 : 7 : 1)}.

Moreover, it holds that
mult(A, B(P)) = 4

for every A ∈ B(P) except for A = (0 : 0 : 1) that satisfies that mult(A, B(P)) = 16. Thus, the necessary
condition in Algorithm 1 is fulfilled. In addition, one may also check that the gcd of the tangents is 1, for each
base point. As a consequence, we deduce that P is transversal. Now, using that

deg(S) = deg(P)/
√

deg(S ) = 6/2 = 3,

and that
mult(A, B(S)) = mult(A, B(P))/deg(S ) = 1,

for every A ∈ B(P) except for A = (0 : 0 : 1) that satisfies that mult(A, B(S)) = 4, we compute the 3-linear
system associated to the effective divisor

4 (0 : 0 : 1) + (1 : 2 : 1) + (5 : 7 : 1) + (1/3 : −1/7 : 1) + (−13 : 7 : 1).

We get that L = λ1s1 + λ2s2 + λ3s3 where

s1 = 203971
12 t2

1t3 − 1463501
84 t2

2t3 +
3373732

105 t1t2t3 +
1859

4 t3
1 +

169
2 t3

2 − 169
2 t2

1t2 − 438913
140 t1t2

2,

s2 = 37443
2 t2

1t3 − 538707
28 t2

2t3 +
140997

4 t1t2t3 − 507
4 t3

2 − 507t2
1t2 − 71637

28 t1t2
2,

s2 = 26747
2 t2

1t3 − 384007
28 t2

2t3 − 338t2
1t2 − 50441

28 t1t2
2 +

100761
4 t1t2t3 − 507

4 t3
2.

So, we take, for instance, S( t ) = (s1( t ) : s2( t ) : s3( t )) and we computeR( t ) = S−1
( t ) = (r1( t ) :

r2( t ) : r3( t )) where
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r1 =
1

11
(−34331t2 + 7140t1 + 39091t3)(−1240370879t2

2 + 4693319730t2t3

−957816090t1t2 − 4096303731t2
3 + 26989200t2

1 + 1272637170t1t3),

r2 = − 7
3
(−5349t3 + 3821t2)(−1240370879t2

2 + 4693319730t2t3 − 957816090t1 t2

−4096303731t2
3 + 26989200t2

1 + 1272637170t1t3),

r3 = 9122349600t2
1t3 − 6081566400t2

1t2 + 5962839694227t3
3 − 13840668860013t2t2

3

+10640657052993t2
2t3 − 2711599696487t3

2 + 503701536030t1t2
2

−1409880894660t1t2t3 + 985048833510t1t2
3.

Finally, we obtain

Q( t ) = P(R( t )) = (t2
1 + t2

2 − t2t3 : −t1t2 − t2
2 + t1t3 : −t2

1 + t2
3 − t2t3 : (t2 − t3)

2).

Since q4( t ) = (t2 − t3)
2, the algorithm returns

Q((t1, t2, t2 − t3)
−1) = (t2

1 + t2t3 : −t2
2 − t1t3 : −t2

1 + t2
3 − t2t3 : t2

3)

that is a rational proper polynomial parametrization of S with empty base locus. Note that the affine polynomial
parametrization is given as

(t2
1 + t2,−t2

2 − t1,−t2
1 + 1− t2).

Example 3. Let P( t ) = (p1( t ) : p2( t ) : p3( t ) : p4( t )) be a rational parametrization of an algebraic
surface S , where

p1 = (−14065142t3
1t3 + 29410550t3

2t3 − 29410550t2t2
1t3 + 14065142t2

2t1t3 + 27633480t4
1

−46976541t1t3
2 + 64760061t3

1t2)
2,

p2 = 15452942581758441/7 t2t6
1t3 − 317479084729363299/49 t6

2t1t3

−68267697305871459/7 t5
2t2

1t3 − 18666824719928010/7 t5
2t1t2

3

+212684946864036627/49t4
2t2

1t2
3 + 37333649439856020/7t3

2t3
1t2

3

−2927680573060371t2
2t5

1t3 − 18666824719928010/7t2t5
1t2

3

+10954535298967494/7t3
2t5

1 + 1789545850442280t2
2t6

1 − 1587369926524977t2t7
1

−700212410256675t6
1t2

3 + 1255537783884564t7
1t3 + 69932525820304176/7t7

2 t1

−202783295759585328/49t6
2t2

1 − 3042203660729001t5
2t3

1 + 48537853394156778/7t7
2 t3

−123497677483306851/49t6
2t2

3 + 399414081398977842/49t4
2t3

1 t3

−4193865500723721t8
2 − 987075578994849t8

1 − 217339297920270t4
2t4

1

−54876861278152701/49t2
2t4

1t2
3 + 4276901329956240/7t3

2t4
1t3,

p3 = 3/7(24511557t4
1 − 64760061t2

1t2
2 + 11755445t2t2

1t3 + 38554704t1t3
2 − 1125425t2

2t1 t3

−11755445t3
2t3 + 1125425t3

1t3)(−151106809t4
2 + 97487778t3

2t3 + 269939512t1t3
2

+59811570t2
2t1t3 − 151106809t2

1t2
2 − 97487778t2t2

1t3 + 98258706t4
1 − 59811570t3

1t3)

p4 = (24511557t4
1 − 64760061t2

1t2
2 + 11755445t2t2

1t3 + 38554704t1t3
2 − 1125425t2

2t1 t3

−11755445t3
2t3 + 1125425t3

1t3)
2.
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Applying the results in [29], one gets that P is proper. However, when applying Algorithm 1, we get that

B(P) = {(0 : 0 : 1), (1 : 2 : 1), (5 : 7 : 1), (1/3 : −1/7 : 1), (−13 : 7 : 1)}

and that mult(A, B(P)) = 4 for every A ∈ B(P) except for A = (0 : 0 : 1) where mult(A, B(P)) = 44.
Since mult(A, B(P)) = 44, which is not the square of a natural number, the algorithm returns that P is not
transversal. Thus, we can not apply Algorithm 2.

6. Conclusions

Some crucial difficulties in many applications, and algorithmic questions, dealing with surface
parametrizations are, on one hand, the presence of base points and, on the other, the existence of
non-constant denominators of the parametrizations. In this paper, we have seen how to provide
a polynomial parametrization with empty base locus, and hence an algorithm to avoid the two
complications mentioned above, if it is possible. For this purpose, we have had to introduce, and indeed
impose, the notion of transversal base locus. This notion directly affects to the transversality of the
tangents at the base points of the algebraic plane curves Vi or Wi (see (3) and (7)). This, somehow,
implies that in general one may expect transversality in the input. In any case, we do deal here with the
non-transversal case and we leave it as an open problem. We think that using the ideas, pointed out by
J. Schicho in [32], on blowing up the base locus, one might transform the given problem (via a finite
sequence of Cremone transformations and projective transformations) into the case of transversality.
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Abstract: Let S be a rational projective surface given by means of a projective rational parametrization
whose base locus satisfies a mild assumption. In this paper we present an algorithm that provides
three rational maps f , g, h : A2 S ⊂ Pn such that the union of the three images covers S. As a
consequence, we present a second algorithm that generates two rational maps f , g̃ : A2 S, such
that the union of its images covers the affine surface S ∩An. In the affine case, the number of rational
maps involved in the cover is in general optimal.

Keywords: rational surface; birational parametrization; surjective parametrization; surface cover;
base points

1. Introduction

Rational parametrizations of algebraic varieties are an important tool in many geo-
metric applications like those in computer aided design (see, e.g., [1,2]) or computer vision
(see, e.g., [3,4]). Nevertheless, the applicability of this tool can be negatively affected if the
parametrization is missing basic properties: for instance its injectivity, its surjectivity, or the
nature of the ground field where the coefficients belong to; see, e.g., the introductions of
the papers [5–7] for some illustrating examples of this phenomenon.

Let us mention here some illustrating situations of this phenomenon; for more detailed
examples, we refer the reader, e.g., to the introductions of the papers [5–7]. Let us say
that we are given a rational parametrization P(t) of a curve that describes the possible
positions that a given robot may achieve. Now, for a position P in the affine space, we want
to detect the value t0 of the parameter t such that P(t0) = P. If the parametrization P is not
injective, the answer may contain unnecessary information, for instance several parameter
values for the same goal, and hence the computation time may not be optimal. On the other
hand, if the parametrization is not surjective the situation can be worse because the point P
may be on the trajectory curve, but not be reachable via the given parametrization for any
parameter value. In addition, if the parametrization has complex non-real coefficients, it
would be unnecessarily complicated to detect the real point positions of the robot.

These types of problems have been addressed by different authors from the theoretical
and computational points of view. For the optimality of the ground field we refer to [8–10]
where the notions of hypercircle and ultraquadric were introduced to approach the problem.
In the case of the injectivity, the answer is based on Lüroth’s theorem for the case of curves
(see, e.g., [11]) and on Castelnuovo’s theorem for the case of surfaces (see, e.g., [12]).
Computationally, the injectivity problem has also been studied and there are different
approaches; for the case of curves, we refer to [13–15], andfor the case of surfaces, we
refer to [14,16,17]. It is worth mentioning that, up to our knowledge, the determination of
injective surface re-parametrizations is still an open problem.

In this paper we focus on the third problem, namely, the surjectivity of rational
parametrizations. Surjective parametrizations, also called normal parametrizations, have
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been studied extensively but many important questions, both theoretical and computa-
tional, still remain open. The case of curves, over algebraically closed fields of characteristic
zero, is comprehensively understood, and one can always find a surjective, indeed also
injective, affine parametrization of the affine algebraic curve (see, e.g., [11,18–20]). Fur-
thermore, the case of curves defined over the field of the real numbers is also studied and
characterized in [20].

The situation, as usually happens, turns to be much more complicated when deal-
ing with surfaces. In [21,22] the first steps in this direction were given and answers for
certain types of surfaces, like quadrics, were provided. Also, in [23] the relation of the
polynomiality of parametrizations to the surjectivity was analyzed. Nevertheless, in [24]
it is shown that there exist rational surfaces that cannot be parametrized birationally and
surjectively. As a consequence of this fact, the question of whether every rational surface
can be covered by the union of the images of finitely many birational parametrizations is
of interest. The answer is positive and can be deduced from the results in [25]. In previous
papers, the second, the third and the fourth authors have studied this problem for special
types of surfaces. In [5] the unreachable points of parametrizations of surfaces of revolution
are characterized. In [7] it is proved that ruled surfaces can be covered by using two
rational parametrizations. In addition, in [6] an algorithm to cover an affine rational surface
without based points at infinity with at most three parametrizations is presented.

In this paper we continue the research described above and we present two main
algorithmic and theoretical results. Moreover, we provide an algorithm that, for any
projective surface parametrization, generates a cover of the projective surface with three
parametrizations, assuming that, either the base locus of the input is empty, or the Jacobian
of the input parametrization, specialized at each base point, has rank two. As a consequence
of this result, we also present an algorithm that, for a given affine parametrization whose
projectivization satisfies the condition on the base points mentioned above, returns a cover
of the affine surface with two affine parametrizations.

Taking into account the results in [24], the affine cover presented in this paper is,
in general, optimal. Furthermore, it improves the results in [6] and extends the results
in [7] to a much more general class of surfaces. With respect to the projective cover case,
although theoretically interesting, we cannot ensure that the number of parametrizations
involved in the cover is optimal for a generically large class of projective surfaces since,
for instance, the whole projective plane can be covered with just two maps from the
affine plane as the following example shows. We leave this theoretical question open as
future reseach.

Example 1. Consider the following two maps:

f : A2 → P2

(s, t) �→ (1 : s : t)
,

g : A2 → P2

(s, t) �→ (s(1− s) : t : (1− s)2)

Then for any point P := (x : y : z) ∈ P2, if x 	= 0 then P := f
( y

x , z
x
)
; if x = 0 	= z then

P := g
(
0, y

z
)
; and if x = z = 0 then P := g(1, y), y 	= 0. This means that we can cover the whole

projective plane with just two maps from the affine plane.

The paper is structured as follows. In Section 2, we introduce some notation and we
briefly recall some notions and results that will be used throughout the paper. In Section 3,
we present the projective cover algorithm and in Section 4 we illustrate the result by means
of some examples. In Section 5, we apply the results in Section 3 to derive the two affine
parametrization cover algorithm.

2. Preliminaries

In this section, we briefly recall some concepts and results that will be used in the
subsequent sections. We essentially recall some results on the fundamental locus of rational
maps and some consequences and the characterization of zero dimensional ideals via
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Gröbner bases. Throughout this paper K is an algebraically closed field of characteristic
zero, and Pn the projective space over K. Moreover, we denote by Ai the affine space
{(x0 : · · · : xn) ∈ Pn, | xi 	= 0}. In the examples, the field K will be the field C of the
complex numbers.

Let X be an irreducible projective variety and let f : X Pn be a rational map.
The fundamental locus of f is the algebraic set F( f ) of points to which f cannot be extended
regularly. Any P ∈ F( f ) is called a fundamental point of f . The following theorem analyzes
the dimension of the fundamental locus.

Theorem 1. (Lemma V.5.1 [12]) Let X be a smooth irreducible projective variety and let f :
X Pn be a rational map generically finite. The fundamental locus of f has codimension at least 2
in X.

Corollary 1. Let X be a smooth irreducible surface and f as in Theorem 1. F( f ) is either empty or
zero dimensional.

The traditional way for solving indeterminacies in algebraic geometry consists in blow-
ing up fundamental points (see, e.g., IV.3.3 [26]) and composing with the corresponding
map as the next theorem shows.

Theorem 2. (Example II.7.17.3 [12] or Theorem II.7 [27]) Let X be a smooth surface. Let f : X
Pn be a rational map. Then there exists a commutative diagram

Y

X Pn

g
��

h
��f
��

where g is a composite of blowups involving fundamental points of f and h is a morphism.

A first consequence of Theorem 2 is the following.

Corollary 2. (Corollary 2.5 [24]) Let X and f be as in Theorem 2. For any fundamental point P of
f , h(g−1(P)) is a connected finite union of rational curves.

Remark 1. Let f : P2 Pn be as in Theorem 2, and let S be the Zariski closure of f (P2) in Pn.
The complementary in S of the f (A2) is, according to Theorem 2, contained in h(g−1(F( f )∪ L∞)),
where L∞ = P2 − A2. Such a subset consists of some rational curves and, if f contracts L∞,
a closed point (see Corollary 2.5 [24]).

We end this section with a well-known result on elimination theory that will be used
in Section 3.

Theorem 3. (Chapter 5, Theorem 6 [28]) Let I be an ideal in K[x1, .., xn]. Then, the following
statements are equivalent:

1. The algebraic subset of Kn defined by I is a finite set.
2. Let B be a Gröbner basis for I with respect to a fixed monomial ordering. Then, for each

1 ≤ i ≤ n, there is some mi ∈ N such that xmi
i is the leading monomial of an element of B.

3. Covering Projective Surfaces with Three Parametrizations

Throughout this section, let S ⊂ Pn be a rational projective surface and let

F = (F0 : · · · : Fn) : P2 S ⊂ Pn

31



Mathematics 2021, 9, 338

be a (not necessarily birational) parametrization of S, given by n + 1 homogeneous coprime
polynomials F0, ..., Fn where the nonzero polynomials have degree d. In addition, let the
homogeneous ideal I = (F0, ..., Fn)K[x0, x1, x2] be called the fundamental ideal associated
to F.

Since the polynomials defining F are coprime, by Corollary 1, I defines a closed
algebraic subset A of P2 that is either empty or consists of a finite amount of points.
If A = ∅, then F defines a regular map and its restrictions to each of the three affine
planes Ai = {(x0 : x1 : x2) | xi 	= 0} covering P2 define 3 charts that cover S, since the
image of a projective variety by a regular map is always Zariski closed. Otherwise, say
A = {P1, ..., Pk}; we need to make the following assumption:

(∗) If A 	= ∅, then for every P ∈ A := {P1, . . . , Pk} the Jacobian matrix of F at P has
rank 2.

Note that (∗) guarantees that I does not define multiple points (i.e. the base points of
F are simple). We also assume without loss of generality that:

(a) no Pj is in any of the lines {x0 = 0}, {x1 = 0} and {x2 = 0},
(b) no pair {Pi, Pj}, i 	= j, is aligned with any of the coordinate points (1 : 0 : 0), (0 : 1 : 0)

and (0 : 0 : 1).

We observe that the real constraint lays in (∗), since conditions (a) and (b) are satisfied
after a general change of coordinates. In the following remark we discuss how these
hypotheses can be computationally checked.

Remark 2.

1. Note that condition (∗) implies that the point Pj is regular in the projective scheme defined by
the ideal I. Then, the intersection multiplicity is 1 at every Pj. Now, if we consider the ideal J
defined by the 3× 3 minors of the Jacobian matrix of F, the following methods, among others,
can be applied to test (∗):
(i) Check whether the ideal I + J is zero-dimensional.
(ii) Check whether

√
I + J = (x0, x1, x2)K[x0, x1, x2] (i.e., the irrelevant ideal) or,

equivalently, whether I + J contains a power of any of the variables.
(iii) By means of resultants and gcds, using the formulas in (Theorems 2 and 3 [29]) (see

also [30]).

2. Checking (i) without explicitly determining P1, ..., Pk can be carried out by certifying that all
the ideals generated by {F0, ..., Fn, xi} (i = 0, 1, 2) either are zero-dimensional or contain a
power of the irrelevant ideal.

3. Checking (ii) can be done by computing the ideal bases B1 and B2 of Algorithm 3PatchSur-

face and checking whether they have adequate shape (see Proposition 1). However, it may be
more efficient to check that, for all i = 0, 1, 2, the gcd of all resultants of couples (F0, Fj) with
respect to xi is square free.

Now we consider the three affine planes Ai defined above. According to (a) all Pj lie
in the intersection of the three affine planes. In this situation, the strategy is as follows. We
will work with the parametrization

f := F|A0 : A0 S

as defined in A0, and we will blowup A1 and A2 at the base points of F to get new affine
planes Ã1 and Ã2 with projections Bl1 : Ã1 → A1 and Bl2 : Ã2 → A2. Now, we introduce
the compositions

g := F|A1 ◦ Bl1 : Ã1 → A1 → S and h := F|A2 ◦ Bl2 : Ã2 → A2 → S,

and we prove that the union of the images of f , g and h is the whole S (see details in
Proposition 1). During this process, we also need to keep track of what happens with the
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infinity line of A0, namely L∞ = {(x0 : x1 : x2) | x0 = 0}. As a consequence, we derive the
following Algorithm 1.

Algorithm 1: 3PatchSurface

Require: A map F = (F0 : · · · : Fn) defined by coprime homogeneous polynomials in
K[x0, x1, x2], where the nonzero polynomials have the same degree, parametrizing
a Zariski dense subset of a projective surface S ⊂ Pn, such that conditions (∗), (a)
and (b) are satisfied.

Ensure: Two maps G = (G0 : · · · : Gn) and H = (H0 : · · · : Hn) defined by
homogeneous polynomials in K[x0, x1, x2] where the nonzero polynomials have
the same degree (while in the same list), such that the union of the images of
F(1 : _ : _), G(_ : 1 : _), H(_ : _ : 1) : A2 → S cover S.

1: if the radical of the homogeneous ideal (F0, ..., Fn)K[x0, x1, x2] is irrelevant
(i.e., F defines a regular morphism) then

2: Return G = F, H = F.
3: end if
4: For the ideals Ii = (F0, ..., Fn, xi − 1) for i = 1, 2, compute reduced Gröbner

bases B1 = {x2 − q1(x0), x1 − 1, p1(x0)}
for I1 and B2 = {x2 − 1, x1 − q2(x0), p2(x0)} for
I2, with lexicographical order x0 < x1 < x2.

5: Set k = deg(pi) > deg(qi) for whatever i = 1, 2.
6: Set P1(x0 : x1) = p1(

x0
x1
)xk

1 and Q1(x0 : x1) = q1(
x0
x1
)xk−1

1 .

7: Put G̃ = (G̃0 : · · · : G̃n) = F
(

x0xk
1 : xk+1

1 : x2
1Q1(x0 : x1) + x2P1(x0 : x1)

)
,

8: Set P2(x0 : x2) = p2(
x0
x2
)xk

2 and Q2(x0 : x2) = q2(
x0
x2
)xk−1

2 .

9: Set H̃ = (H̃0 : · · · : H̃n) = F
(

x0xk
2 : x2

2Q2(x0 : x2) + x1P2(x0 : x2) : xk+1
2

)
10: Set Ĝ = gcd(G̃0, ..., G̃n), Ĥ = gcd(H̃0, ..., H̃n).
11: Return G = G̃/Ĝ, H = H̃/Ĥ.

Remark 3. In Proposition 1 we show that the integer k, introduced in the algorithm, is exactly
the number of base points, that is the cardinality of A (see above), so we have not introduced
equivocal notation.

In the following, we see that the output of Algorithm 3PatchSurface is correct (see
Theorem 4). We also recall that the required conditions for the algorithm can be checked
computationally according to Remark 2. We start by proving that Step 4 works properly,
assuming that conditions (∗), (a) and (b) are satisfied. This is probably a well-known
result in a more general setting but, up to the authors’ knowledge, there are no suitable
references for the proof.

Proposition 1. Let F = (F0 : · · · : Fn), I1 and I2 be as in Algorithm 1. There exist p1, q1 ∈ K[x2],
p2, q2 ∈ K[x1] such that k =deg(pi) > deg(qi) for all i = 1, 2, and the reduced Gröbner basis B1
and B2 of I1 and I2 respectively, have the following shape:

B1 = {x2 − q1(x0), x1 − 1, p1(x0)} and B2 = {x2 − 1, x1 − q2(x0), p2(x0)}.

Proof. Observe that both I1 and I2 define finite sets in A1 and A2, respectively. By
Theorem 3, this implies that, since B1 and B2 are Gröbner bases, with respect to the lexico-
graphical order x0 < x1 < x2, there is a polynomial in each Bi just involving x0. This is p1
for I1 and p2 for I2. Due to (∗), (a) and (b), each pi defines k different parallel lines in Ai,
so its degree is k.

Applying again Theorem 3, there is another monic polynomial in K[x0][x1] ∩ I1. Since
the basis is reduced, and x1 − 1 was originally among the generators of I1, this polynomial
in K[x0][x1] for I1 is precisely x1 − 1.
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Now, let qi be the interpolation polynomial whose graph goes through all the base
points Pj ∈ Ai of F. It does exist because (b) holds (so there are no two different Pj
in the same vertical line) and its degree is at most k − 1. Then x1 − q2(x0) vanishes at
every Pj so, by Hilbert’s Nullstellensatz, it belongs to

√
I2. Since deg(p2) = k > deg(q2),

x1− q(x0) cannot be reduced by p(x0), so, since B1 is reduced, this is the monic polynomial
in K[x0][x1] ∩ I2.

We apply an analogous argument and reduction by x1 − 1 to deduce that the monic
polynomial in K[x0, x1][x2] for I1 must be x2− q2(x0), and we know that x2− 1 is a reduced
monic polynomial for I2, so it is in B2.

Since B1 and B2 are reduced Gröbner bases with respect to the lexicographical order
x0 < x1 < x2 and the ideals they generate define, precisely, the fundamental locus, they
are the reduced Gröbner bases of I1 and I2.

Before continuing, we state a Lemma.

Lemma 1. In the conditions of Algorithm 1, neither G(_ : 1 : _) nor H(_ : _ : 1) have affine
base points.

Proof. By the properties of the rational map F : P2 Pn, defined by F, and the fact
that a blow up is bijective outside its blown up points, we know that any base point
of G(_ : 1 : _) = F ◦ Bl1(_ : 1 : _) would be in one of the lines Bl1(Pj). Now, we fix
Pj = (1 : αj : β j) and we then prove that G(_ : 1 : _) has no base points in the line
{x0 = 1

αj
} ⊂ A1.

Since all Fi(x0 : 1 : x2) vanish at Pj, they have αjx0 − 1 as a common factor (note
that αj 	= 0 because (a) holds). Then, since Gi = G̃i/Ĝ, we have that Gi(x0 : 1 : x2) is a
divisor of

Gi(x0 : 1 : x2) :=
G̃i(x0 : 1 : x2)

x0 − 1
αj

=
Fi(x0 : 1 : q1(x0) + p1(x0)x2)

x0 − 1
αj

=

=
Fi(x0 : 1 : q1(x0) + p1(x0)x2)− Fi(

1
αj

: 1 : q1(
1
αj
) + p1(

1
αj
) β

αj
)

x0 − 1
αj

=

=
Fi(x0 : 1 : q1(x0) + p1(x0)x2)− Fi(

1
αj

: 1 : q1(
1
αj
))

x0 − 1
αj

.

This means that

Gi

(
1
αj

: 1 : x2

)
=

=
∂Fi
∂x0

(
1
αj

: 1 : q1

(
1
αj

))
+

∂Fi
∂x2

(
1
αj

: 1 : q1

(
1
αj

))(
∂q1

∂x0

(
1
αj

)
+

∂p1

∂x0

(
1
αj

)
x2

)
=

=
(

∂Fi
∂x0

(Pj)
∂Fi
∂x1

(Pj)
∂Fi
∂x2

(Pj)
)
·

⎛⎜⎝ 1
0

∂q1
∂x0

(
1
αj

)
+ ∂p1

∂x0

(
1
αj

)
x2

⎞⎟⎠.

On the other side, the vector (1, αj, β j) is also in the kernel of the Jacobian matrix of
F at Pj, due to Euler’s formula for homogeneous polynomials: x0

∂F
∂x0

+ x1
∂F
∂x1

+ x2
∂F
∂x2

=

deg(F)F.
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By (∗), the Jacobian matrix of F has rank 2 at Pj, so (1, αj, β j) generates its kernel. Then,(
1, 0, ∂q1

∂x0

(
1
αj

)
+ ∂p1

∂x0

(
1
αj

)
x2

)
is not in such kernel, since αj 	= 0. Therefore,

G(
1
αj

: 1 : x2) = Jac(F) ·

⎛⎜⎝ 1
0

∂q1
∂x0

(
1
αj

)
+ ∂p1

∂x0

(
1
αj

)
x2

⎞⎟⎠ 	= 0

for all x2 ∈ C. Since all entries of G( 1
αj

: 1 : x2) are divisors of those of G( 1
αj

: 1 : x2), then

G is nonzero throughout the whole line x0 = 1
αj

in Ã1.
Repeating the argument with H finishes the proof.

The next result states the correctness of Algorithm 1:

Theorem 4. The three parametrizations F, G and H output by Algorithm 1 satisfy that the union
of the images of F(1 : _ : _), G(_ : 1 : _) and H(_ : _ : 1) covers S completely.

Proof. We devote these first lines to sketch the proof. Keeping in mind Theorem 2, when
(∗), (a) and (b) hold, we construct the following diagram:

BlP1,...,Pk (P
2)

P2 PN

π

��

ϕ

��
F ��A0 ⊂

Ã1

Ã2

j0
��j1 ��

j2 ��

Here, BlP1,...,Pk (P
2) is the blowup of the base points. To prove that the output of

Algorithm 3PatchSurface works as expected, we need to show that

• F(1 : _ : _) = ϕ ◦ j0, G(_ : 1 : _) = ϕ ◦ j1 and H(_ : _ : 1) = ϕ ◦ j2.
• j0(A0) ∪ j1(Ã1) ∪ j2(Ã2) = BlP1,...,Pk (P

2).
• ϕ has no base points.

In this situation, we observe that, since ϕ has no base points, then it is a regular
morphism, so ϕ(BlP1,...,Pk (P

2)) is an algebraic subset of Pn. On the other side, F is dominant
over S, so

S = ϕ(BlP1,...,Pk (P
2)) = F(A0) ∪ G(Ã1) ∪ H(Ã2),

and, hence, the theorem holds.
First of all, we define j1 and j2. The blow up of all the base points of F is, locally,

the blow up of the ideal Ii in Ai with i being 1 or 2. Knowing the bases of I1 and I2, we
have (see Section 4.2 [26]):

BlI1(A1) = {((x0 : 1 : x2), (y0 : y1)) | p1(x0)y0 = (x2 − q1(x0))y1} ⊂ A1 × P1,

BlI2(A2) = {((x0 : x1 : 1), (y0 : y1)) | p2(x0)y0 = (x1 − q2(x0))y1} ⊂ A2 × P1.

While the way to glue the two open subsets is not interesting for the purpose of this
proof, it is easy to see that BlI1(A1) ∪ BlI2(A2) is the whole Bl{P1,...,Pk}(P

2) minus the point
that is the strict transform of (1 : 0 : 0). We now consider the inclusions

j1 : Ã1 → BlI1(A1)
(x0, x2) �→ ((x0 : 1 : q1(x0) + x2 p1(x0)), (x2 : 1))

,

j2 : Ã2 → BlI2(A2)
(x0, x1) �→ ((x0 : q2(x0) + x1 p2(x0) : 1), (x1 : 1))

.
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If πi : BlIi (Ai)→ Ai is the first projection in any of the cases, it is clear that Bli = πi ◦ ji
is defined by

Bl1(x0, x2) = (x0, q1(x0) + x2 p1(x0)) and Bl2(x0, x1) = (x0, q2(x0) + x1 p2(x0)).

Therefore, we have that

G(x0 : 1 : x2) = F(Bl1(x0, x2)) and H(x0 : x1 : 1) = F(Bl2(x0, x1)).

On the other hand, Ãi covers the whole Ai except the vertical lines through the base
points. These affine lines are completely contained in A0, since the infinity point is (0 : 0 : 1)
for A1 and (0 : 1 : 0) for A2. This means that, to show that Ã1, Ã2 and A0\{P1, ..., Pk}
—through j1, j2 and the blowup j0 of the base points— cover Bl{P1,...,Pk}(P

2), we just need

to prove that Ã1 and Ã2 cover the exceptional divisor. So we fix Pj = (1 : αj : β j) and we
call Ej � P1 the component of the exceptional divisor corresponding to Pj. Note that Bli
covers a full neighborhood of Pj in Ai minus the vertical line. This corresponds to the line
joining Pj with (0 : 0 : 1) for the case i = 1 and the line joining Pj with (0 : 1 : 0) for the
case i = 2. By condition (b), these lines do not contain other base points. These two lines
represent two different directions at Pj (i.e., two different points in Ej). This means that
j1({x0 = 1

αj
}) covers all Ej except one point and that j2({x0 = 1

β j
}) is an affine line passing

through that point.
The only task remaining is proving that ϕ has no base points. Such base points would

be in the exceptional divisor, which is covered by Ã1 and Ã2, but Lemma 1 states that there
are no base points of ϕ in j1(Ã1) ∪ j2(Ã2).

4. Examples

This section is devoted to illustrating Algorithm 3PatchSurface by examples. In all
of them, and in those of the next section, we have used Sage [31] for the calculations. We
start with a toy example in which we explicitly show that the three parametrizations cover
the whole projective surface.

Example 2. Whitney’s umbrella has implicit equation y0y2
1− y2

2y3 = 0. The usual parametrization
(x0 : x1 : x2) �→ (x2

0 : x1x2 : x0x1 : x2
2) does not satisfy condition (a), so we change coordinates

to get a new parametrization

F(x0 : x1 : x2) = (x2
2 − 2x0x2 + x2

0 : x2
1 + x1x2 − x0x1 − x0x2 :

− x1x2 + x0x1 + x0x2 − x2
0 : x2

1 + 2x1x2 + x2
2).

The only base point of the new parametrization is (1 : −1 : 1). We then compute the bases

B1 = {x2 + 1, x1 − 1, x0 + 1} and B2 = {x2 − 1, x1 + 1, x0 − 1}.

So we get:

G̃(x0 : x1 : x2) = (x0 + x1)G(x0 : x1 : x2) and H̃(x0 : x1 : x2) = (x2 − x0)H(x0 : x1 : x2)

where

G = (x3
1 − 2x2

1x2 + x2
1x0 + x1x2

2 − 2x1x2x0 + x2
2x0 : x2

1x2 − x1x2x0 :

x3
1 − x2

1x2 − x2
1x0 + x1x2x0 : x1x2

2 + x2
2x0)

and

H = (x3
2− x2

2x0 : x2
1x2− x2

1x0 + x1x2
2 + x0x1x2 : x1x2

2− x0x1x2 + x3
2 + x0x2

2 : x2
1x2− x0x2

1).
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We now prove that the whole surface is covered by F(1 : _ : _), G(_ : 1 : _) and H(_ : _ : 1).
Let A = (y0 : y1 : y2 : y3) be such that y0y2

1 − y2
2y3 = 0. Then:

1. if y0y2(y0y1 + y0y2 − y2
2) 	= 0, then, taking y0 = 1,

A = F

(
1 :

y2 + y1 + y2
2

y2 + y1 − y2
2

:
−y2 + y1 − y2

2
y2 + y1 − y2

2

)

Note here that y3 =
y2

1
y2

2
, due to the equation of the umbrella and y0 = 1.

2. if y0y1 + y0y2 − y2
2 = 0 and y0y2 	= 0, taking y0 = 1, we get y1 = y2

2 − y2. This equality
transforms the equation of the umbrella in y3 = (y2 − 1)2. Then, A = G(0 : 1 : 1− 1/y2).

3. if y2 = 0 and y0 	= 0, then, taking y0 = 1,

A = F
(

1 : 1 :
−1 +

√
y3

1 +
√

y3

)
.

Note here that every A in this case is gotten twice. Even (1 : 0 : 0 : 1) is both F(1 : 1 : 0)
and H(0 : −1 : 1).

4. if y0 = 0, the infinity hyperplane section of Whitney’s umbrella has two components: y2 = 0
and y3 = 0. Then:

A = (0 : y1 : 0 : y3) = F
(

1 : 0 :
(y3 + y1)

(y3 − y1)

)
when y3 − y1 	= 0, and A = (0 : 1 : 0 : 1) = G(0 : 1 : 1). Moreover,

A = (0 : y1 : y2 : 0) = G(−1 : y1 + y2 : y1)

when y1 + y2 	= 0. Finally, A = (0 : −1 : 1 : 0) = H(1 : −1 : 1).

Observe that F(1 : _ : _) covers the whole umbrella minus a couple of rational curves. Then,
G(_ : 1 : _) covers these curves minus just a point, that is covered by H(_ : _ : 1).

The following example applies Algorithm 1 to a classic surface. While the computation
time is not long, the output is too large, so we just sketch some computations.

Example 3. Let us consider the Clebsch cubic, given by the equation

z3
0 + z3

1 + z3
2 + z3

3 − (z0 + z1 + z2 + z3)
3 = 0.

A parametrization is defined by

(−x2
0x1 + x2

0x2 + x0x2
1 − x0x2

2 : x3
0 − x2

0x1 − x2
0x2 + x1x2

2 :

− x3
0 + x2

0x1 + x2
0x2 − x2

1x2 : −x0x2
1 + x2

0x1 − x1x2
2).

This parametrization, however, does not satisfy conditions (a) and (b). After the coordinate
change in P2 given by

(x0 : x1 : x2) �→ (x0 + 3x1 + 2x2 : x0 + x1 + 3x2 : −x0 − x1 + x2),

we get the parametrization F = (F0 : F1 : F2 : F3), where

F0 = 8x3
2 + 8x2

2x1 + 8x2
2x0 − 18x2x2

1 − 12x2x1x0 − 2x2x2
0 − 18x3

1 − 30x2
1x0 − 14x1x2

0 − 2x3
0,

F1 = −5x3
2− 17x2

2x1− 9x2
2x0 + 19x2x2

1 + 14x2x1x0 + 3x2x2
0 + 28x3

1 + 30x2
1x0 + 12x1x2

0 + 2x3
0,

F2 = −x3
2 + 15x2

2x1 + 7x2
2x0 − 13x2x2

1 − 2x2x1x0 + 3x2x2
0 − 26x3

1 − 24x2
1x0 − 6x1x2

0,
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F3 = −9x3
2 + 6x2

2x1 + 18x2x2
1 + 4x2x1x0 − 2x2x2

0 + 5x3
1 + 5x2

1x0 − x1x2
0 − x3

0.

One can check that the base points are P1 = (5 : 2 : −3), P2 = (11 : −2 : −5), P3 = (7 :
−2 : −1), P4 = (1 : 2 : 1), P5,6 = (±2−

√
5 : 2 :

√
5). This agrees with the well known fact that

a cubic smooth surface is a plane blown up at 6 general points.
Now we take x1 = 1 or x2 = 1 and get the two Gröbner bases Bi = {xi − 1, x3−i −

qi(x0), pi(x0)}, where i ∈ {1, 2} and:

p1(x0) = x6
0 + 8x5

0 +
21
4

x4
0 − 61x3

0 −
1077

16
x2

0 +
239
4

x0 −
385
64

,

q1(x0) = −
393
8360

x5
0 −

18511
50160

x4
0 −

12941
50160

x3
0 +

13537
5280

x2
0 +

1123141
401280

x0 −
21649
14592

,

p2(x0) = x6
0 +

178
15

x5
0 +

199
5

x4
0 +

916
25

x3
0 −

2387
75

x2
0 −

3926
75

x0 −
77
15

,

q2(x0) = −
7075
11264

x5
0 −

212195
33792

x4
0 −

221885
16896

x3
0 +

49613
16896

x2
0 +

612691
33792

x0 +
2987
3072

.

Performing substitutions

G̃(x0 : 1 : x2) = F(x0 : 1 : q1(x0) + x2 p1(x0))

and
H̃(x0 : x1 : 1) = F(x0 : q2(x0) + x1 p2(x0) : 1)

then dividing by the gcd of all entries in each case produces two parametrizations of degree 15,
G(x0 : 1 : x2) and H(x0 : x1 : 1), with about 45 coefficients per polynomial and about 70 bits per
coefficient, that cover, together with F(1 : x1 : x2), the whole cubic.

5. The Affine Case

In this section, we slightly change our point of view and we consider the problem of
covering a rational affine surface by means of the images of several affine parametrizations.
So, in the sequel we consider that we are given F and S as in Section 5, and we deal
with the problem of covering S ∩An, where An is the open subset of Pn defined by the
first variable not vanishing. Equivalently, one may consider that we are indeed given an
affine parametrization and the affine surface that it defines. Nevertheless, to be consistent
with the notation used throughout the paper, we will use the first notational statement of
the problem.

In this section, we prove that to cover a rational affine surface, only two patches
are necessary (see Theorem 5 and Corollary 3). The basic idea is as follows. The given
parametrization F(1 : x1 : x2) covers a constructible subset. The complement of such
subset is contained in the image of L∞ (that is, F(0 : x1 : x2)) and the base points, which
is a finite union of affine rational curves (see Corollary 2) and, maybe, an isolated point
corresponding to a contracted L∞. The parametrization G(x0 : 1 : x2) of Algorithm 1,
restricted to certain vertical lines, covers all such affine curves except at most one point.
Since such curves also have a point at infinity, we want such point to be the image of the
point at infinity of the parameter line. Based on these ideas, we derive Algorithm 2 that,
when the original parametrization satisfies (∗), (a) and (b), covers affine surfaces using
just two parametrizations.
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Algorithm 1: 2PatchForAffine

Require: A list F = (F0 : · · · : Fn) of coprime homogeneous polynomials of the same degree in K[x0, x1, x2],
parametrizing a Zariski dense subset of a projective surface S ⊂ Pn

C, such that conditions (∗), (a) and (b) are
satisfied.

Ensure: A list g′ = (g′0 : · · · : g′n) of rational functions of two variables such that F(1 : _ : _) and g′(_, _) cover S ∩An .
1: Compute B1 = {x2 − q1(x0), x1 − 1, p1(x0)} and G = (G0 : · · · : Gn) as in Algorithm 1.
2: for α root of p1(x0) or α = 0 do
3: if deg G0(α : 1 : x2) < max{deg Gi(α : 1 : x2) | i = 1, ..., n} or G0(α : 1 : x2) is constant then
4: Include α in set A and βα := ∞.
5: else
6: Include α in set B. Choose βα among the roots of G0(α : 1 : x2).
7: end if
8: end for
9: Let s(x0) be a polynomial vanishing at all the α ∈ A and not vanishing at any of the α ∈ B. See Remark 4 below,

for suggestions on how to find one.
10: Choose r(x0), a polynomial such that r(α) = βαs(α) for all α ∈ B and r(α) 	= 0 for all α ∈ A.
11: Find Bezout coefficients u and v such that gcd(r, s) = u · r + v · s.

12: return g′(x0, x2) = G
(

x0 : 1 :
r(x0)x2 + v(x0)

s(x0)x2 − u(x0)

)
.

Remark 4. Let us comment some computational aspects of Algorithm 2.

1. For s(x0), one may proceed as follows: collect the coefficients of G0(x0 : 1 : x2) for x2

except the one for x0
2, and compute the gcd, d(x0), of these coefficients; then s(x0) =

gcd(d(x0), x0 p1(x0)).
2. Note that Algorithm 1 does not extend the field that is used to define F, However, Algorithm 2

needs to consider possibly algebraic coordinates for the points that need to be sent to the
infinity in the parameter plane A1. Example 4 shows that the application of the algorithm
forces the usage of algebraic coefficients.

In order to state the correctness of Algorithm 2, we start with a technical lemma.

Lemma 2. In the setting of Algorithm 2, if no component of G(α : 1 : x2) is constant, it holds that

1. If α ∈ A, then limx2→∞ G(α : 1 : x2) is a point at infinity.
2. If α ∈ B, then G(α : 1 : βα) is a point at infinity.

Proof. Let α be an element of A. If G0(α : 1 : x0) is identically zero, then the result is
obvious. Otherwise, the map (G1

G0
(α : 1 : x2), ..., Gn

G0
(α : 1 : x2)), from the affine plane to

the surface, has degree strictly higher in the numerator of at least one of its components,
because deg(G0(α : 1 : x2)) < max{deg(Gi(α : 1 : x2)) | i = 1, ..., n}. So the limit, when x2
tends to ∞, is at infinity. Note that the full (n + 1)−tuple G(α : 1 : x2) is not constant, so
the case of constant first entry G0(α : 1 : x2) satisfies the inequality too.

Now, let α be an element of B. Then, G0(α : 1 : βα) = 0, so the statement holds.

Let us, now, prove that Algorithm 2 works as expected.

Theorem 5. Let F, S and g′ be as in Algorithm 2. Then F(1 : x1 : x2) and g′(x0, x2) cover the
whole S ∩ {y0 	= 0}.

Proof. Since the input of Algorithms 1 and 2 are the same, by Theorem 4, one deduces that
F(1 : x1 : x2), G(x0 : 1 : x2) and H(x0 : x1 : 1) cover the projective surface S.

Taking into account how G and H in Algorithm 1 are defined, any point in Ã1 and
Ã2, not in L∞ or in {pi(x0) = 0}, is sent by G(x0 : 1 : x2) or H(x0 : x1 : 1) into the
image by F of a point in A0. Therefore, we need to check that g′ covers any affine point in
G({x0 = 0} ∪ {p1(x0) = 0}) ∪ H({x0 = 0} ∪ {p2(x0) = 0}).
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Any component C of G({x0 = 0} ∪ {p1(x0) = 0}) ∪ H({x0 = 0} ∪ {p2(x0) = 0}) is
either a point or a rational curve covered by G(α : 1 : x2) ∪ H(α′ : x1 : 1), where either
α = α′ = 0 or (1 : 1

α : 1
α′ ) is a base point of F. Moreover, such component is the Zariski

closure of the image of the restriction G|{x0=α,x1 	=0}, which coincides with the Zariski
closure of g′|{x0=α}.

If C is just a point, then it is covered by g′|{x0=α}. Otherwise, it is well known that any
morphism defined in an open subset of a projective smooth curve can be extended regularly
to the whole curve and that the image of a projective curve by a regular morphism is a
Zariski closed subset. Then, we can extend g′|{x0=α} to the Zariski closure of the line where
it is defined and we would cover completely C. This means that g′|{x0=α} covers all C
minus, at most, just a point (the image of the infinity point of the affine line). However, this
point is G(α : 1 : βα), which is at infinity by Lemma 2. Therefore, any point in C ∩ {y0 	= 0}
is in g′({x0 = α}) ⊂ g′(A2).

Example 4. Consider the following projective transformation of the Veronese morphism:

F : P2 → P5

(x0 : x1 : x2) �→ (x2
0 + x2

1 + x2
2 : x0x1 : x0x2 : x2

1 : x1x2 : x2
2)

Since there are no base points, Algorithm 2 generates G = F, and then, for just α = 0, it
computes β0 such that β2

0 + 1 = 0. This means that β0 must be imaginary, so it is not rational.
The output

g′(x0, x2) = G
(

x0 : 1 :
ix2 + 1

x2

)
has imaginary coefficients.

We observe that any choice of two rationally defined affine planes A0 and A1 of the projective
plane will leave a point P in the projective plane over Q out of the union, and then F(P), which is
not at infinity, will not be covered. Observe, however, that the surface is isomorphic to the projective
plane, so one can compose the two maps appearing in Example 1 with the Veronese morphism to
cover, not just the affine part, but the whole projective surface without extending the field

Example 5. Let us again consider the cubic of Example 3. We recall that

p1(x0) = x6
0 + 8x5

0 +
21
4

x4
0 − 61x3

0 −
1077

16
x2

0 +
239
4

x0 −
385
64

.

One can factor G0, as obtained in Example 3, and one of the factors is

200640x2x4
0 + 1203840x2x3

0 − 1304160x2x2
0 − 9329760x2x0+

4827900x2 − 9432x3
0 − 55180x2

0 + 56238x0 + 388135.

Here, one can easily get x2 as a rational function on x0, so we have a point going to infinity at
each vertical line:

x2 = βx0 =
9432x3

0 + 55180x2
0 − 56238x0 − 388135

200640x4
0 + 1203840x3

0 − 1304160x2
0 − 9329760x0 + 4827900

. (1)

The set A is given by the common roots of p1 and the denominator in (1), so

s(x0) = gcd(p1, denominator(βx0)) = 16x4
0 + 96x3

0 − 104x2
0 − 744x0 + 385.

We need a polynomial r(x0), coprime with s(x0), whose values at the roots of x0 p1(x0)
s(x0)

equal

βx0 s(x0). Such roots are 0 and 1±
√

5
2 , and the interpolating polynomial

r(x0) =
18511
3135

x2
0 −

898
209

x0 −
7057
228
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works. We now need a Bezout identity ur + vs = 1, so we get

u(x0) = −
26198287461

21693258568709
x3

0 −
1732666485971

130159551412254
x2

0−
487041584557

12396147753548
x0 −

632041996387
74376886521288

and
v(x0) =

1510767910251
3389825077278640

x0 +
357074564524303

186537231395390304
.

Then, we have that the images of F(1 : x1 : x2) and G
(

x0 : 1 :
r(x0)x2 + v(x0)

s(x0)x2 − u(x0)

)
cover the

whole affine cubic.

In [24], it is proved that there exist affine surfaces that cannot be covered by means of
a unique map from the affine plane. In fact, the surface in Example 5 is proved to be one of
them. Now, the following corollary of Theorem 5 shows that, under hypotheses (*), (a), (b),
one can always cover the affine surface with two affine parametrization images.

Corollary 3. Let S be an affine surface such that there exists a parametrization f : A2 S with a
projectivization F satisfying (∗), (a) and (b). Then S can be covered with just two parametrizations.

In order to prove that two affine patches are enough we have had to impose, to the
projectivization of the input affine parametrization, hypotheses (*), (a) and (b). If we do not
impose (*), we cannot ensure this general result. However, it is interesting to observe that
there are affine surfaces not satisfying (∗) that can be covered by only one map. To create
an example, it is enough to send the exceptional divisor to the infinity hyperplane together
with the image of L∞.

Example 6. Consider the transformation of the plane t(x0 : x1 : x2) = (x0x1x2 : x3
1 : x0x2

2) and
let F be its composition with the degree-3 Veronese morphism v3(x0 : x1 : x2) = (x0x1x2 : x3

0 :
· · · : x3

2). We can observe that P2 − t(A0) = {x0x1x2 = 0} = v−1
3 ({y0 = 0}). On the other

hand, the fundamental locus is defined by the ideal I = (x0x1x2, x3
1, x0x2

2), which is singular, so F
does not satisfy (∗), but F(1, x1, x2) covers the whole affine surface.

6. Conclusions

In the introduction we have commented the importance for applications of having
surjective parametrizations of curves and surfaces. For the curve case, the problem can be
solved by means of a single parametrization. For the surface case, the situation is much
more complicated and, in general, one may need more that one parametrization to cover it.
So the problem is reformulated by, on one hand, asking for the minimization of the number
of parametrizations in the cover and, on the other, by requiring the actual computation of
covers. There were previous results for some particular types of surfaces, specially of those
whose construction is directly related to curves as ruled surfaces, revolution surfaces, etc.

In this paper we present theoretical results on the number of parametrizations that
one may need to cover a surface, and we enlarge the class of surfaces where this approach
is valid. More precisely, we present two algorithms, one for the projective case and the
other for the affine case. In the affine case, we are able to cover any rational affine surface
satisfying certain mild hypotheses on the base locus of the input parametrization, in a
way that is optimal in the number of cover elements, namely, two. For the projective case,
the answer provides three cover parametrizations. Two open problems are the extension of
the results to the case where no condition of the base locus is imposed, and the optimality
on the number of cover parametrizations in the projective case.

41



Mathematics 2021, 9, 338

Author Contributions: All the stages of work have been participated by all the authors of the article.
All authors have read and agreed to the published version of the manuscript.

Funding: The authors are partially supported by FEDER/Ministerio de Ciencia, Innovación y
Universidades-Agencia Estatal de Investigación/MTM2017-88796-P (Symbolic Computation: new
challenges in Algebra and Geometry together with its applications). J. Caravantes, J.R. Sendra and C.
Villarino belong to the Research Group ASYNACS (Ref. CT-CE2019/683). D. Sevilla is a member of
the research group GADAC and is partially supported by Junta de Extremadura and FEDER funds
(group FQM024).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Farin, G.; Hoschek, J.; Kim, M.S. (Eds.) Handbook of Computer Aided Geometric Design; North-Holland: Amsterdam, The Netherlands,
2002; p. xxviii+820.

2. Hoschek, J.; Lasser, D. Fundamentals of Computer Aided Geometric Design; A.K. Peters: Wellesley, MA, USA; Berlin, Germany, 1993.
3. Agoston, M. Computer Graphics and Geometric Modelling; Computer Graphics and Geometric Modeling; Springer:

Berlin/Heidelberg, Germany, 2005.
4. Marsh, D. Applied Geometry for Computer Graphics and CAD; Springer Undergraduate Mathematics Series; Springer: London,

UK, 2005.
5. Sendra, J.R.; Villarino, C.; Sevilla, D. Missing sets in rational parametrizations of surfaces of revolution. Comput. Aided Des. 2015,

66, 55–61. [CrossRef]
6. Sendra, J.R.; Sevilla, D.; Villarino, C. Covering of surfaces parametrized without projective base points. In Proceedings of the

International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, 23–25 July 2014; Nabeshima, K.,
Nagasaka, K., Winkler, F., Szántó, Á., Eds.; ACM: New York, NY, USA, 2014; pp. 375–380. [CrossRef]

7. Sendra, J.R.; Sevilla, D.; Villarino, C. Covering rational ruled surfaces. Math. Comput. 2017, 86, 2861–2875. [CrossRef]
8. Sendra, J.R.; Winkler, F. Parametrization of algebraic curves over optimal field extensions. J. Symb. Comput. 1997, 23, 191–207.
9. Recio, T.; Sendra, J.R.; Tabera, L.F.; Villarino, C. Generalizing circles over algebraic extensions. Math. Comp. 2010, 79, 1067–1089.

[CrossRef]
10. Andradas, C.; Recio, T.; Sendra, J.R.; Tabera, L.F. On the simplification of the coefficients of a parametrization. J. Symb. Comput.

2009, 44, 192–210. [CrossRef]
11. Sendra, J.R.; Winkler, F.; Pérez-Díaz, S. Rational Algebraic Curves. A Computer Algebra Approach; Algorithms and Computation in

Mathematics; Springer: Berlin, Germany, 2008; Volume 22, p. x+267.
12. Hartshorne, R. Algebraic Geometry (Graduate Texts in Mathematics, No. 52); Springer: New York, NY, USA; Heidelberg, Germany,

1977; p. xvi+496.
13. Alonso, C.; Gutiérrez, J.; Recio, T. Reconsidering algorithms for real parametric curves. Appl. Algebra Engrg. Comm. Comput. 1995,

6, 345–352. [CrossRef]
14. Pérez-Díaz, S. On the problem of proper reparametrization for rational curves and surfaces. Comput. Aided Geom. Des. 2006,

23, 307–323. [CrossRef]
15. Sederberg, T.W. Improperly parametrized rational curves. Comput. Aided Geom. Des. 1986, 3, 67–75. [CrossRef]
16. Pérez-Díaz, S. A partial solution to the problem of proper reparametrization for rational surfaces. Comput. Aided Geom. Des. 2013,

30, 743–759. [CrossRef]
17. Schicho, J. Rational parametrization of surfaces. J. Symb. Comput. 1998, 26, 1–29. [CrossRef]
18. Andradas, C.; Recio, T. Plotting missing points and branches of real parametric curves. Appl. Algebra Engrg. Comm. Comput. 2007,

18, 107–126. [CrossRef]
19. Rubio, R.; Serradilla, J.; Vélez, M.P. A note on implicitization and normal parametrization of rational curves. In Proceedings of

the 2006 International Symposium on Symbolic and Algebraic Computation, Genoa, Italy, 9–12 July 2006; ACM Press: New York,
NY, USA, 2006; pp. 306–309.

20. Sendra, J.R. Normal Parametrizations of Algebraic Plane Curves. J. Symb. Comput. 2002, 33, 863–885. [CrossRef]
21. Bajaj, C.L.; Royappa, A.V. Finite representations of real parametric curves and surfaces. Internat. J. Comput. Geom. Appl. 1995,

5, 313–326. [CrossRef]
22. Gao, X.S.; Chou, S.C. On the normal parameterization of curves and surfaces. Internat. J. Comput. Geom. Appl. 1991, 1, 125–136.

[CrossRef]
23. Pérez-Díaz, S.; Sendra, J.R.; Villarino, C. A first approach towards normal parametrizations of algebraic surfaces. Internat. J.

Algebra Comput. 2010, 20, 977–990. [CrossRef]

42



Mathematics 2021, 9, 338

24. Caravantes, J.; Sendra, J.R.; Sevilla, D.; Villarino, C. On the existence of birational surjective parametrizations of affine surfaces. J.
Algebra 2018, 501, 206–214. [CrossRef]

25. Bodnár, G.; Hauser, H.; Schicho, J.; Villamayor U., O. Plain varieties. Bull. Lond. Math. Soc. 2008, 40, 965–971. Available online:
https://academic.oup.com/blms/article-pdf/40/6/965/772642/bdn078.pdf (accessed on 8 February 2021). [CrossRef]

26. Shafarevich, I.R.T. Basic Algebraic Geometry 1: Varieties in Projective Space, 2nd ed.; Translated from the 1988 Russian edition and
with notes by Miles Reid; Springer: Berlin, Germany, 1994; p. xx+303.

27. Beauville, A. Complex Algebraic Surfaces; London Mathematical Society Lecture Note Series; Barlow, R., Shepherd-Barron, N.I., Reid,
M., transed.; Cambridge University Press: Cambridge, UK, 1983; Volume 68, p. iv+132.

28. Cox, D.A.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative
Algebra, 4th ed.; Undergraduate Texts in Mathematics; Springer: Cham, Switzerland, 2015; p. xvi+646. [CrossRef]

29. Cox, D.A.; Pérez-Díaz, S.; Sendra, J.R. On the base point locus of surface parametrizations: Formulas and consequences. arXiv
2020, arXiv:2008.08009.

30. Pérez-Díaz, S.; Sendra, J.R. Computing Birational Polynomial Surface Parametrizations without Base Points. Mathematics 2020, 8,
2224. [CrossRef]

31. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0). 2020. Available online: http://www.
sagemath.org (accessed on 8 February 2021).

43





mathematics

Article

The μ-Basis of Improper Rational Parametric Surface and
Its Application

Sonia Pérez-Díaz 1,*,† and Li-Yong Shen 2,3,†

��������	
�������

Citation: Pérez-Díaz, S.; Shen, L.-Y.

The μ-Basis of Improper Rational

Parametric Surface and Its

Application. Mathematics 2021, 9, 640.

https://doi.org/10.3390/math9060640

Academic Editor: Gabriel Eduard

Vilcu

Received: 12 February 2021

Accepted: 12 March 2021

Published: 17 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dpto de Física y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain
2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;

lyshen@ucas.ac.cn
3 Key Laboratory of Big Data Mining and Knowledge Management, CAS, Beijing 100190, China
* Correspondence: sonia.perez@uah.es
† These authors contributed equally to this work.

Abstract: The μ-basis is a newly developed algebraic tool in curve and surface representations and it is
used to analyze some essential geometric properties of curves and surfaces. However, the theoretical
frame of μ-bases is still developing, especially of surfaces. We study the μ-basis of a rational surface
V defined parametrically by P( t ), t = (t1, t2) not being necessarily proper (or invertible). For
applications using the μ-basis, an inversion formula for a given proper parametrization P( t ) is
obtained. In addition, the degree of the rational map φP associated with any P( t ) is computed. If
P( t ) is improper, we give some partial results in finding a proper reparametrization of V . Finally, the
implicitization formula is derived from P (not being necessarily proper). The discussions only need
to compute the greatest common divisors and univariate resultants of polynomials constructed from
the μ-basis. Examples are given to illustrate the computational processes of the presented results.

Keywords: μ-basis; rational surfaces; inversion; improper; reparametrization; implicitization; resultant

1. Introduction

The study of representations of rational curves and surfaces is a fundamental task in
computer aided geometric design (CAGD) and computer algebra. There exist two typical
problems in the study of representations.

• Implicitization: for a rational parametric curve or surface, implicitization is to find an
algebraic expression of the curve or surface.

• Proper Reparametrization: for an improper rational parametric curve or surface,
proper reparametrization is to find a proper parametric expression of the curve or
surface.

The parametric expression of a curve or surface is widely used in geometric modeling,
such as NURBS representations. The algebraic equation, which is also called implicit
equation, is another important representation, and this is much better than the parametric
expression in determining whether or not a point is on the curve or surface. Hence the
implicitization problem is classical in CAGD and there are implicitization algorithms for
rational curves and surfaces proposed over the past several decades [1–14]. Among all of
these techniques, the Gröbner bases [2] is well-known, since it is theoretically complete.
However, this method has exponential computational complexity and, thus, it is ineffi-
cient. This is the reason that people can not apply the Gröbner basis method for practical
implicitization in application. Alternatively, in computational application, people prefer
to find the implicit equations from certain implicit matrices. The implicit matrices can
be constructed as resultant matrices or matrices of moving curves/surfaces. The implicit
matrix of the curve is much simpler than that of the surface, since the curve only introduces
one variable. Actually, the construction of bivariate resultant is not uniform and it is
still a developing technique in computer algebra [15–21]. The implicit matrix of moving
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curves/surfaces was introduced in [10] and developed by more researchers [5,11,22–25].
The μ-basis of a curve or surface was later defined by moving lines or moving planes with
certain properties [5,23].

The implicit equation of the surface is generally included as a factor in its constructed
resultants, but a constructed resultant may have extraneous factors that are not easy to
identify and remove. For implicit matrices, some works attempt to construct the matrix
whose determinant is exactly the implicit equation [10,24,26,27], but the ways to construct
such implicit matrices are not complete for general surfaces. In the implicit matrix, there
is more information than the implicit equation, such as singularities with multiplicity
counting. Accordingly, people sometimes construct the implicit matrix by simple way
and then the determinant of this matrix may have extraneous factors other than the
implicit equation [22]. For the matrix constructed from the μ-basis of arbitrary three
linearly independent syzygies, the extraneous factors are identified completely based on
the analysis of base points or to parameters at infinity of tensor product surfaces [11,25],
but some computations need the Gröbner bases of a zero dimensional algebraic variety.

When considering the proper reparametrization problem, an essential question is to
decide whether a rational parametrization is proper. If a given rational parametrization is
not proper, also called improper, a generic point lying on the variety corresponds to more
than one parameter. On the other side, if a rational parametrization is improper, we ask
whether it can be reparameterized, such that we can get a new proper parametrization. For
algebraic curves, is well-known that the existence of a proper reparametrization for a given
improper rational parametrization is certified by Lüroth’s Theorem [28]. One can have a
look, for instance, at a previous bibliography, as, for instance, [29–31], where some efficient
methods are proposed to find a proper reparametrization for an improper parametrization
of an algebraic curve. For a given algebraic surface, Castelnuovo’s Theorem states that
unirationality and rationality are equivalent over algebraically closed fields, but only some
partial algorithmic methods approaching the problem are known (see [30,32]).

The μ-basis was first used in [17]. Here, the authors provided a representation for
the implicit equation of a given curve defined parametrically. The μ-basis developing as
a new algebraic tool can be used to obtain the parametric equation of a rational curve
or a rational surface, in order to compute the implicit equation defining these varieties,
and to study singularities and intersections [33]. There are several methods to compute
the μ-basis for rational curves by computing two moving lines that satisfy the required
properties [17], based on Gröbner basis [34] or based on vector elimination [23]. The μ-basis
has also been generalized to rational surfaces [5], although the case of rational surfaces is
different; for instance, the degrees of the μ-basis elements can be different. An algorithm
to compute a μ-basis of a rational surface is designed that is based on polynomial matrix
factorization [35]. Another possible way is to compute a basis of the syzygy module of
the surface with the application of Quillen–Suslin Theorem [36,37]. In order to avoid the
extraneous factor in implicitization, people tried to find the strong μ-bases of surfaces that
have the very similar properties of the μ-bases of curves. However, the surfaces with strong
μ-bases are relatively rare [25,38].

The μ-basis has shown different advantages by assuming that the given parametriza-
tion is always proper. A recent result attempts to find inverse formula, proper reparametriza-
tion, and algebraic equation for an improper parametrization of an algebraic curve by using
μ-basis [39]. In this paper, we pay attention to the μ-basis of an improper parametrization
of an algebraic surface and then apply the μ-basis in the problems of proper reparametriza-
tion and implicitization. There are intrinsical differences in the discussions between the
surface and the curve; hence, some results of the curve can not be extended to the surface
straightforward. After we give the definition of μ-basis of a rational parametric surface
defined parametrically by P( t ), we find the inversion formula (if P is proper) and the
degree of the rational map that is induced by P while using the μ-basis. Although the
proper reparametrization problem is still opening, we address the problem of proper
reparametrization partially based on the latest results and the properties of the μ-basis. As
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an important application, we derive the implicitization formula from the μ-basis from a
given parametrization not being necessarily proper. Starting from the μ-basis, the compu-
tations only involve greatest common divisors (gcds) and univariate resultants of some
polynomials constructed from the μ-basis. While the surface implicitization form μ-basis
involved the computation of Gröbner bases in [5].

We have structured the article, as indicated below. In Section 2, we present some
important definitions and properties for the μ-basis of rational surfaces. In Section 3, given
a rational parametrization P , we study the inversion computation (if P is proper) and the
degree of the induced rational map. In Section 4, we focus on the proper reparametrization
problem while using μ-basis. In Section 5, we come to the implicitization problem from a
given rational parametrization not necessarily proper using μ-basis. We finish the paper
with Section 6, where we present a brief summary of our work.

2. μ-Basis for Rational Surfaces: Definition and Previous Results

Let R denote the polynomial ring K[t1, t2] over an algebraically closed field K of
characteristic zero and Rm denote the set of m−dimensional row vectors with entries in the
polynomial ring R. A submodule M of Rm is a subset of Rm, for which this condition holds:
for any f1, f2 ∈ M and h1, h2 ∈ R, we have h1f1 + h2f2 ∈ M. A set of elements fi ∈ M,
for i = 1, . . . , k, is called a generating set of M if for any m ∈ M, there exist hi ∈ R, for
i = 1, . . . , k satisfying that

m = h1f1 + . . . + hkfk.

The Hilbert Basis Theorem states that every submodule M ⊂ Rm has a finite generating set.
If, for any m ∈ M, the above expression is unique, then {f1, . . . , fk} is called a basis of the
module M. If a module has a basis, then it is called a free module. For any (f1, . . . , fk) ∈ Rk,
the set

syz(f1, . . . , fk) := {(h1, . . . , hk) ∈ Rk|h1f1 + . . . + hkfk = 0}
is a module over R, called a syzygy module [40]. An important result regarding syzygy
modules is that if a, b, c, d ∈ R[t1, t2] are four relatively prime polynomials then, the syzygy
module syz(a, b, c, d) is a free module of rank 3 (see [5]).

Let Va be a rational affine irreducible surface, and let

Pa( t ) =
(
℘1( t )
℘4( t )

,
℘2( t )
℘4( t )

,
℘3( t )
℘4( t )

)
∈ K( t )3, t = (t1, t2)

be a rational affine parametrization of Va, where gcd(℘1,℘2,℘3,℘4) = 1. Sometimes, we
write the parametrization in the homogenous coordinate form P( t ) = (℘1( t ) : ℘2( t ) :
℘3( t ) : ℘4( t )) and, in this case, we denote the surface in the projective space as V .

A moving surface of degree l is a family of algebraic surfaces with parameter pairs (t1, t2)

S( x , t ) =
σ

∑
i=1

fi( x )bi( t )

, where fi( x ), i = 1, . . . , σ are polynomials of degree l, and bi( t ) ∈ R[ t ], i = 1, . . . , σ
(called blending functions) are linearly independent. We say that a moving surface follows
the rational surface P if

℘4( t )lS
(
Pa( t ), t

)
= 0.

We observe that the implicit equation of a given rational surface V is a moving surface
of P . A moving plane is a moving surface of degree one. We denote the next moving plane

A( t )x1 + B( t )x2 + C( t )x3 + D( t )x4

by L( t ) := (A( t ), B( t ), C( t ), D( t )) ∈ R[ t ]4. In the following, we denote, by L t , the set
of the moving planes that follow the rational surface that is parametrized by P . Thus, L t
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is exactly the syzygy module syz(℘1,℘2,℘3,℘4). Now, we define the μ-basis of the rational
surface P .

Definition 1. Let p, q, r ∈ L t be three moving planes satisfying that [p, q, r] = kP( t ), where k
is a nonzero constant. Subsequently, it is said that p, q, r form a μ-basis of the rational surface P .
In the following, [p, q, r] denotes the outer product of p, q, r.

Geometrically, the above definition means that the point of rational surface P can be
represented as the intersection of three moving planes p, q, r. This definition is generalized
from the moving lines of a rational curves [23]. Notice that the result in the curve case
was proposed twenty years ago, but the surface case has been a mystery for a long time.
The μ-bases surfaces that have the very similar properties of the μ-bases of curves is called
strong μ-basis, but the strong μ-bases are relatively rare [25]. Therefore, we have to study
the μ-basis of the surface from initial definition and, here, we review some basic theorems
in [5].

Theorem 1. For any rational surface P , there always exist three moving planes p, q, r, such that
[p, q, r] = k · P( t ) holds. In fact, any basis p, q, r of syz(℘1( t ),℘2( t ),℘3( t ),℘4( t )) satisfies
the above equality.

Theorem 2. Let p, q, r be a μ-basis of the rational surface P . Thus, p, q, r provide a basis for the
module L t (hence, L t is a free module). That is, for any l( t ) ∈ L t , there exist some polynomials
hi( t ), i = 1, 2, 3, satisfying that

l( t ) = h1p + h2q + h3r.

In addition, the above expression is unique.

An immediate consequence of the above theorems is that if p, q, r form a μ-basis if
and only if p, q, r are a basis of syz(℘1( t ),℘2( t ),℘3( t ),℘4( t ))

3. Inversion and Degree Using μ-Basis

LetK be an algebraically closed field of characteristic zero. We denote, by f (x1, x2, x3) ∈
K[x1, x2, x3], the defining polynomial of a rational affine irreducible surface Va defined by
the rational affine parametrization

Pa( t ) =
(
℘1( t )
℘4( t )

,
℘2( t )
℘4( t )

,
℘3( t )
℘4( t )

)
∈ K( t )3, t = (t1, t2).

The homogeneous implicit polynomial defining the corresponding the projective rational
surface V will be denoted as F(x1, x2, x3, x4) ∈ K[x1, x2, x3, x4], where F(x1, x2, x3, x4) =

xdeg( f )
4 f (x1/x4, x2/x4, x3/x4), and the parametrization in the homogenous coordinate form

is given as P( t ) = (℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t )).
Besides implicitization, other applications of μ-basis include, as in the case of algebraic

curves, point inversion and, in general, the computation of the fiber. The point inversion
problem can be stated, as follows: given a point Q on the space, decide whether the point
is on a rational surface V defined parametrically by P( t ) or not, and, in the affirmative
case, compute the corresponding parameter values t1, t2, such that P(t1, t2) = Q. In this
section, we recall some efficient algorithms that allow for computing the point inversion
and, in general, the computation of the degree of the rational map that is induced by P .
For this purpose, we will use μ-basis.

In order to deal with these problems, we first recall that, associated with the parametriza-
tion Pa( t ), we consider the induced rational map φP : K −→ Va ⊂ K3; t �−→ Pa( t ).
We denote, by deg(φP ), the degree of the induced rational map φP (see [41] p. 143, and
[42] p. 80). Observe that the birationality of φP , which is the properness of the input
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parametrization, is characterized by deg(φP ) = 1 (see [41,42]). We additionally remind
that deg(φP ) determines the cardinality of the fiber of a generic element (see Theorem 7,
p. 76 in [41]). The degree measures the number of times the parametrization traces the
curve when the parameter takes values in K2. Finally, let FP (Q) be the fiber of a point
Q ∈ Va; that is FP (Q) = P−1

a (Q) = { t ∈ K2 | Pa( t ) = Q}.
In the following, given the projective parametrization P( t ) of a surface V and

p( t ) = (p1, p2, p3, p4), q( t ) = (q1, q2, q3, q4), r( t ) = (r1, r2, r3, r4)

a μ-basis for P( t ), we consider a generic point Q = (x1, x2, x3, x4) on the surface, and the
polynomials

pP ( t , x ) = p( t ) ·Q, qP ( t , x ) = q( t ) ·Q, rP ( t , x ) = r( t ) ·Q, x = (x1, x2, x3, x4).

Remind that pP ( t ,P( t )) = qP ( t ,P( t )) = rP ( t ,P( t )) = 0 (p, q, r is a μ-basis for P( t )).
We denote, by V1, V2, V3, the auxiliary curves over K(V), defined, respectively, by the
polynomials pP ( t , x ), qP ( t , x ), rP ( t , x ) ∈ K(V)[ t ], where K(V) is the field of rational
functions of the given surface.

Finally, let

SP (t1, x ) = pp x (ContZ(Rest2(pP , qP + ZrP ))) ∈ K(V)[t1],

where Contx(h) returns the content of a polynomial h w.r.t. some variable x, ppx(h) returns
the primitive part of a polynomial h with respect to a variable x and Resx(h1, h2) returns the
resultant of two polynomials h1 and h2 w.r.t. some variable x. Similarly, one also considers
the polynomial

TP (t2, x ) = pp x (ContZ(Rest1(pP , qP + ZrP ))) ∈ K(V)[t2].

The computation of SP , TP can be done in two different ways. First, we consider
that the implicit equation defining the input surface is known. In this case, we carry
out the arithmetic over K(V) while using this implicit equation. We observe that, since
I(V) = 〈F〉 (I(V) represents the ideal of V), the basic arithmetic on K[V ] can be carried
out by computing polynomial remainders. Thus, we conclude that the quotient field K(V)
is computable. Furthermore, we note that we calculate the resultants of polynomials in
K(V)[ t ], which is a unique factorization domain, and we compute gcds of univariate
polynomials over K(V) and, thus, in an Euclidean domain. In the second way, we avoid
the requirement on the implicit equation. More precisely, the elements are represented
(not uniquely) as function of polynomials in the variables x1, x2, x3, x4. We check the
zero equality while using the input rational parametrization. This way could be too time
consuming. In order to avoid this problem, one may test zero–equality by substituting
a random point on the surface. The result of this test is correct with probability almost
one. Additionally, one may also test the correctness of the computation of the inverse by
checking it on a randomly chosen point on the given surface. In this way, we avoid the
computation of the implicit polynomial.

In the following theorem, we provide the technique for computing the components of
the inverse of a given rational proper parametrization P( t ). Additionally, we characterize
the properness of P( t ). We illustrate this result in Example 1.

Theorem 3. The rational parametrization P( t ) is proper if and only if for a generic point
Q = (x1, x2, x3, x4) on the surface, it holds that degt1

(SP ) = 1. In this case, the t1-coordinate of
the inverse of P( t ) is given by solving SP (t1, x ) = 0 w.r.t the variable t1.

Proof. Using the results shown in [43] (see Proposition 1), we deduce that the non-constant
t1-coordinates of the intersections points in Vi, i = 1, 2, 3 are given by the roots of the
polynomial SP (t1, x ). Thus, we only have to prove that P( t ) is proper if and only there
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exists one unique point A = (A1, A2) ∈ (V1 ∩V2 ∩V3)∩ (K \K)2 (K denotes the algebraic
closure of the field K(V); i.e K = K(V)). Indeed: first, let M = (M1( x ), M2( x )) be the
inverse of the rational proper parametrization P( t ). Subsequently, M(P) = t and, thus,
pP (M(P),P) = qP (M(P),P) = rP (M(P),P) = 0, which implies that

M ∈ V1 ∩V2 ∩V3 ∩ K2.

In addition, since M is the inverse of P( t ), one has that M ∈ (K \K)2. Hence, M ∈ (V1 ∩
V2 ∩V3) ∩ (K \K)2. Now, let us see that M is unique. Let M∗ ∈ (V1 ∩V2 ∩V3) ∩ (K \K)2.
The equalities pP (M∗, x ) = qP (M∗, x ) = rP (M∗, x ) = 0 imply that

pP (R( t ),P) = qP (R( t ),P) = rP (R( t ),P) = 0, R( t ) = M∗(P).

Afterwards, by the properties of resultants and by Lemma 1, we get that P( t ) = kP(R( t ))
and since P is proper we deduce that R( t ) = M∗(P( t )) = t . Thus, left composing by
P−1, we get that M∗ = P−1 = M.

Reciprocally, because there exists a unique point in (V1 ∩ V2 ∩ V3) ∩ (K \K)2, A is
fixed under the action of the Galois group and, thus, A ∈ K(V)2. Reasoning similarly, as
we did for the uniqueness in the above implication, one gets that A ◦ P = t and, then, we
conclude that A is the inverse of P .

Remark 1. Theorem 3 can be stated similarly for TP (t2, x ). More precisely, P( t ) is proper if and
only if, for a generic point Q = (x1, x2, x3, x4) on the surface, it holds that degt2

(TP ) = 1. In this
case, the t2-coordinate of the inverse of P( t ) is given by solving TP (t2, x ) = 0 w.r.t the variable t2.

We also note that we may work over the affine space (i.e., x4 = 1) and the obtained results are
the same, but over the affine space. If x4 = 1, then the computations are more efficient.

Example 1. Let V be the rational surface that is defined by the parametrization

P( t ) = (t2t1 : t2 + t1 : t2 − t1 : t2
2 + t2

1 + 2).

First, we compute the polynomials

pP ( t , x ) = p( t ) · x = −2x1 + t1x2 + t1x3,
qP ( t , x ) = q( t ) · x = −2t1x1 + (t2

1 + 1 + t2t1)x2 − x3 − t1x4,
rP ( t , x ) = r( t ) · x = (−2t2 + 2t1)x1 + (t2

2 − t2
1)x2 + 2x3 + (−t2 + t1)x4,

where the μ-basis is given as

p( t ) = (−2, t1, t1, 0),
q( t ) = (−2t1, t2

1 + 1 + t2t1,−1,−t1),
r( t ) = (−2t2 + 2t1, t2

2 − t2
1, 2,−t2 + t1).

Now, we determine SP (t1, x ) and TP (t2, x ). We obtain

SP (t1, x ) = −2x1 + t1x2 + t1x3,

TP (t2, x ) = −2x1x4x2 − 2x1x4x3 + 2x1x2
2t2 + 2x1x2t2x3 − 4x2

1x3 − x2x2
3 − x3

3 + x3
2 + x3x2

2.

Because degt1
(SP ) = 1, we conclude that P is proper and the first coordinate of the inverse is

given as

I1 =
2x1

x2 + x3
.
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Reasoning similarly with TP , we obtain the second coordinate of the inverse, which is given as

I2 =
2x1x4x2 + 2x1x4x3 + x3

3 − x3
2 + 4x2

1x3 + x2x2
3 − x3x2

2
2x1x2(x2 + x3)

.

Based upon the above theorem, we may compute FP (Q) for a generic point Q and,
thus, to obtain the degree of the rational map induced by deg(φP ). For this purpose, we
consider Q = Pa( s ), where s = (s1, s2) are new variables, and the polynomials

SP (t1, s ) = pp s (ContZ(Rest2(pP , qP + ZrP ))) ∈ K[t1, s ],

TP (t2, s ) = pp s (ContZ(Rest1(pP , qP + ZrP ))) ∈ K[t2, s ],

where

pP ( t , s ) = p( t ) · P( s ), qP ( t , s ) = q( t ) · P( s ), rP ( t , s ) = r( t ) · P( s ).

Remind that pP ( t , t ) = qP ( t , t ) = rP ( t , t ) = 0 (p, q, r is a μ-basis for P( t )). We denote,
by V1, V2, V3, the auxiliary curves over K( s ) defined, respectively, by the polynomials
pP ( t , s ), qP ( t , s ), rP ( t , s ) ∈ K[ t , s ]. Thus, one obtains the following proposition.

Theorem 4. For a generic point Q = Pa( s ), it holds that

deg(φP ) = Card(FP (Q)) = degt1
(SP (t1, s )) = degt2

(TP (t2, s )).

Proof. First, we use Proposition 1 in [43], and we deduce that the non-constant t1-coordinates
of the intersections points in Vi, i = 1, 2, 3 are given by the roots of the polynomial SP (t1, s ).
Thus, we only have to prove that M ∈ FP (Q) if and only if M ∈ V1 ∩V2 ∩V3 ∩ (K \K)2,
where K = K( s ) is the algebraic closure of the field. Indeed, if M ∈ V1 ∩V2 ∩V3 ∩ (K \K)2

thus pP (M, s ) = qP (M, s ) = rP (M, s ) = 0, which implies that

p(M) · P( s ) = q(M) · P( s ) = r(M) · P( s ) = 0.

Because
p(M) · P(M) = q(M) · P(M) = r(M) · P(M) = 0

, we get that P(M) = kP( s ) with k 	= 0 (since M 	∈ K2), which implies that Pa(M) =
Pa( s ). Hence, M ∈ FP (Q).

Reciprocally, let M ∈ FP (Q). Subsequently, Pa(M) = Pa( s ) which implies that
P(M) = kP( s ) with k 	= 0. Because

p(M) · P(M) = q(M) · P(M) = r(M) · P(M) = 0,

we get that
p(M) · P( s ) = q(M) · P( s ) = r(M) · P( s ) = 0.

Thus, pP (M, s ) = qP (M, s ) = rP (M, s ) = 0 and, hence, M ∈ V1 ∩V2 ∩V3. Furthermore,
since M ∈ FP (Q), we also get that M ∈ (K \K)2.

Clearly, Theorem 4 can be also stated for a generic point Q = (x1, x2, x3, x4) on the
surface, and the polynomials

pP ( t , x ) = p( t ) ·Q, qP ( t , x ) = q( t ) ·Q, rP ( t , x ) = r( t ) ·Q, x = (x1, x2, x3, x4).

(remind that pP ( t ,P( t )) = qP ( t ,P( t )) = rP ( t ,P( t )) = 0 ([p, q, r] = kP( t )). For this
purpose, one considers the polynomials

SP (t1, x ) = pp x (ContZ(Rest2(pP , qP + ZrP ))) ∈ K(V)[t1],
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and
TP (t2, x ) = pp x (ContZ(Rest1(pP , qP + ZrP ))) ∈ K(V)[t2].

where computation can be done, as we described in the paragraph before Theorem 3, i.e.,
over the field of rational functions K(V). Thus, one has the following corollary.

Corollary 1. For a generic point Q = (x1, x2, x3, x4) ∈ V , it holds that

deg(φP ) = Card(FP (Q)) = degt1
(SP (t1, x )) = degt2

(TP (t2, x )).

Remark 2. From the proof of Theorem 4, we deduce that FP (Q) = V1 ∩V2 ∩V3 ∩ (K \K)2.

Example 2. Let V be the rational surface that is defined by the parametrization

P( t ) = (t2
2t2

1 − t4
1 : −t2 + t3

2 + t2t4
1 : −t2

1 + t2t2
1 + t2

2t2
1 − t4

1 : −t2
1 + t2

2t2
1 + t4

1).

We determine the polynomials pP ( t , s ) = p( t ) · P( s ), qP ( t , s ) = q( t ) · P( s ), rP ( t , s ) =
r( t ) · P( s ), where the μ-basis is given by

p( t ) = (t2t2
1 + 2t2

1 + 4t4
2 + 6t3

2 − 4t2 − 4,−2t2
1,

−2t2t2
1 − t2

1 − 4t4
2 − 4t3

2 + 4t2 + 2, t2t2
1 + t2

1 + 2t3
2 − 2)

q( t ) = (−2t2t2
1 − 3t2

1 + t2 + 1, 0, 2t2t2
1 + 2t2

1 − t2 − 1,−t2
1 + 1)

r( t ) = (−2t2
2 − t2 + 2, 0, 2t2

2 − 1,−t2 + 1).

Now, we determine SP (t1, s ) (similarly, if we compute TP (t2, s )), and we obtain

SP (t1, s ) = pp s (ContZ(Rest2(pP , qP + ZrP ))) = t2
1 − s2

1 ∈ K[t1, s ].

Therefore, applying Theorem 4, we conclude that P is not proper and in fact deg(φP ) = 2.
Furthermore,

FP (Pa( s )) = {(s1, s2), (−s1, s2)}.

4. On the Problem of the Reparametrization Using μ-Basis

In this section, we consider the problem of computing a rational proper reparametriza-
tion of a given algebraic surface defined by an improper parametrization. That is, given
an algebraically closed field K, and P( t ), t = (t1, t2), a rational parametrization of
a surface V over K, we want to compute a proper parametrization of V , Q( t ), and
R( t ) ∈ (K( t ) \K)2, such that

P( t ) = Q(R( t )).

Notice that we consider Q(R( t )), with R( t ) = (r1( t )/r( t ), r2( t )/r( t )) ∈ (K( t ) \
K)2, in homogenous form, i.e.,P( t ) = Q(R( t ))means thatP( t ) = Q

(
r1( t )
r( t ) , r2( t )

r( t )

)
r( t )deg(Q),

which is a polynomial vector in homogenous form.
In this section, although we do not provide a solution to the general reparametrization

problem, we show how the μ-basis can be used to provide some information concerning
R( t ) ∈ (K( t ) \K)2. We address the problem partially and the idea presented is based
in the results in [32], but we trust that we could develop deeply these new approaches in
future works, and more results concerning this topic allow us to get more advances.

The approach that is presented in this section is based on the computation of polyno-
mial gcds and univariate resultants. These techniques always work and the time perfor-
mance is very effective. The algorithm presented follows directly from the algorithm that
was developed in [39], which solves the problem for the case of curves. Accordingly, we
first outline this approach and illustrate it with an example.
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Example 3. Let C be the rational curve that is defined by the parametrization

P(t) = (−t4 + t3 + 2t2 + 2t + 1 : (t + 1)(3t2 + 2t + 2) : 2t4 + 3t3 + 5t2 + 4t + 2).

In Step 2 of the algorithm, we determine the polynomials pP (t, s) and qP (t, s), where the μ-basis is
p(t) =

(
40t2 + 40t + 40,−30t2 − 35t− 35, 20t2 + 15t + 15

)T

q(t) =
(

30t2 + 20t + 20,−25t2 − 20t− 20, 15t2 + 10t + 10
)T .

Now, we compute GP (t, s),

GP (t, s) = C0(t) + C1(t)s + C2(t)s2,

where C0(t) = −10t2, C1(t) = −10t2, and C2(t) = 10 + 10t. Because m := degt(G
P ) > 1,

we go to Step 5 of Algorithm 1, and we consider

R(t) =
C2(t)
C0(t)

=
−1− t

t2 .

Note that gcd(C0, C2) = 1. Now, we determine the polynomials

L1(s, x1) = Rest(x1℘3(t)−℘1(t), sC0(t)−C2(t)) = (x3 + sx3 + 2x1− s2x3− 3sx1 + 2s2x1)
2,

L2(s, x2) = Rest(x2℘3(t)− ℘2(t), sC0(t)− C2(t)) = (3sx3 + 2x2 − 3sx2 + 2s2x2 − 2s2x3)
2.

Finally, the algorithm outputs the proper parametrization Q(t), and the rational function R(t) (see
Step 7)

Q(t) =
(

t2 − 1− t : t(−3 + 2t) : 2− 3t + 2t2
)

, R(t) =
−1− t

t2 .

Algorithm 1 Proper Reparametrization for Curves using μ-Basis

Input a rational parametrization P(t) = (℘1(t) : ℘2(t) : ℘3(t)), of a plane algebraic
curve C.
Output a rational proper parametrization Q(t) of C, and a rational function R(t) such that
P(t) = Q(R(t)).
Steps

1. Compute a μ-basis of P . Let p(t), q(t) be this μ-basis.
2. Compute pP (t, s) = p(t) · P(s), qP (t, s) = q(t) · P(s).
3. Compute GP (t, s) = gcd(pP (t, s), qP (t, s)) = Cm(t)sm + · · · + C0(t).

Let m := degt(G
P (t, s)).

4. If m = 1, return Q(t) = P(t), and R(t) = t. Otherwise go to Step 5.

5. Consider R(t) = Ci(t)
Cj(t)

∈ K(t), such that Cj(t), Ci(t) are not associated polynomials

(i.e., Cj(t) 	= kCi(t), k ∈ K).
6. For i = 1, 2, compute

Li(s, xi) = Rest(xi℘3(t)− ℘i(t), sCj(t)− Ci(t)) = (qi2(s)xi − qi1(s))deg(R).

7. Return Qa(t) = (q11(t)/q12(t), q21(t)/q22(t)) or the equivalent projective
parametrization Q(t), and R(t) = Ci(t)/Cj(t).

The main idea of the result that we develop in this paper consists in computing a
reparametrization of two auxiliary parametrizations (defining two space curves), P1 andP2,
directly defined from a given rational parametrization of the surface P (see Definition 2).
Moreover, using that the degree of a rational map is multiplicative under composition, we
get some results that relate the degree of the rational map that is induced by P with the
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degree of Q, and the degree of the rational maps induced by P1 and P2. In addition, we
also prove the relation with the degree w.r.t. the variables t1, t2 of R( t ) ∈ K( t )2.

To start with, we first provide the following lemma that analyzes the behavior of the
μ-basis under reparametrizations.

Lemma 1. Let p̃( t ), q̃( t ) and r̃( t ) be a μ-basis for a parametrization Q( t ) of a surface V . Let
R( t ) ∈ (K( t ) \K)2. Subsequently, p( t ) = p̃(R( t )), q( t ) = q̃(R( t )), r( t ) = r̃(R( t )) is a
μ-basis for the reparametrization P( t ) = Q(R( t )).

Proof. Taking into account that p̃( t ), q̃( t ) and r̃( t ) is a μ-basis forQ( t ), from Theorem 1,
it follows that [p̃, q̃, r̃] = kQ( t ) for some non-zero constant k. Therefore, we easily get that
[p, q, r] = kP( t ) for some non-zero constant k. Hence, from Theorem 1, we conclude that
p( t ), q( t ), r( t ) is a μ-basis for P( t ).

In the next proposition, we assume that we know p, q and r and R( t ) = (r1( t ), r2( t )) ∈
(K( t ) \K)2, and we present a method for computing p̃, q̃ and r̃ from p, q and r, respec-
tively. We state Proposition 1 for p = (p1, p2, p3, p4) and p̃ = ( p̃1, p̃2, p̃3, p̃4). One reasons,
similarly, to obtain q̃ from q and r̃ from r.

We assume w.l.o.g that p4 	= 0m which implies that p̃4 	= 0 (otherwise, we consider
another non-zero component of p). Thus, we may write

(p1/p4, p2/p4, p3/p4) = ( p̃1/ p̃4, p̃2/ p̃4, p̃3/ p̃4)(R( t )).

Let us assume that gcd(p1, p4) = gcd( p̃1, p̃4) = 1 (otherwise, we simplify these rational
functions). In addition, we note that, if p1 = 0, then we easily get that p̃1 = 0. For the
case of p1 	= 0, we consider (r1, r2, p1/p4) that can be seen as an affine parametrization of
the surface defined by the irreducible polynomial p̃1(x1, x2)− x3 p̃4(x1, x2) ∈ K[x1, x2, x3]
(note that gcd( p̃1, p̃4) = 1 and p̃4 p̃1 	= 0). Hence, we only have to compute the implicit
equation of that surface by applying, for instance, the method that is presented in [44].

Reasoning, similarly, (r1, r2, pi/p4) can be seen as a parametrization of the surface
defined by the irreducible polynomial p̃i(x1, x2)− x3 p̃4(x1, x2) ∈ K[x1, x2, x3], for i = 2, 3.
Summarizing, we have the following proposition.

Proposition 1. Under the conditions that are stated above, it holds that the implicit equation of
the parametrization (r1, r2, pi/p4) is given as p̃i(x1, x2)− x3 p̃4(x1, x2), for i = 1, 2, 3.

In Remark 3, we apply the same idea that is stated in Proposition 1, but for the
particular case of curves.

Given a rational projective parametrization N ( t ) of a surface over K, in Definition 2
we introduce some auxiliary parametrizations over K(ti) that are defined from N .

Definition 2. Let N ( t ) be a parametrization with coefficients in K. We define the partial
parametrizations associated to N as the parametrizations Ni(tj) := N ( t ) with coefficients in
K[ti] (i.e., Ni is defined over K[ti]), for i, j ∈ {1, 2} and i 	= j.

We note that the partial parametrization Ni(tj) (i 	= j) determines a space curve in

K(ti)
3
, where K(ti) is the algebraic closure of K[ti]. In addition, we note that Definition 2

can also be stated for any N( t ) ∈ K( t )2. That is, given N( t ) ∈ K( t )2, one may consider
Ni(tj) := N( t ) ∈ (K[ti])(tj)

2 (i.e., N is seen defined over K[ti] and in the variable tj),
for i, j ∈ {1, 2} and i 	= j. Similarly, one also may adapt Definition 2 for any polynomial
n( t ) ∈ K( t ).

The properness of the input parametrization P of a surface V can be characterized
by means of the properness of its partial parametrizations. In particular, it is proved that
P is birational if and only if its associated partial parametrizations, Pi, are proper and
P−1

i ∈ K( x ) \K(ti), where x = (x1, x2, x3, x4) (see [32]).
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In the following, given a rational affine parametrization P( t ) of a surface V , we de-
velop an algorithm that computes a rational parametrizationQ( t ) of V , and R( t ) ∈ K( t )2,
such that P( t ) = Q(R( t )). The algorithm is based on the computation of polynomial
gcds and univariate resultants whose computing time performance is very satisfactory.

We prove that the partial parametrizations that correspond to the output parametriza-
tion, Q( t ), are proper (see Theorem 5), and we get properties relating the degree of φP
with the degree of the rational map φQ, and the degree of R( t ) (see Theorem 6). More
precisely, we prove that

deg(φP ) = deg(φQ)degt1
(S)degt2

(T)

where
R( t ) = (S( t ), T(S( t ), t2)), S, T ∈ K( t ).

In Corollaries 2 and 3, we analyze in which conditions deg(φQ) = 1 or, otherwise, the
degree of the rational map induced by Q( t ) is lower than the degree that is induced by
the input parametrization P( t ).

In Theorem 5, we have that the partial parametrizations associated to the output
parametrization, Q( t ), are proper (see [32]) but we can not ensure that Q is proper.

Theorem 5. The partial parametrizations Q1(t2) and Q2(t1) associated to the parametrization Q
computed by Algorithm 2 are proper.

Algorithm 2 Proper Reparametrization for Surfaces using μ-Basis

Input a rational parametrization P( t ) =
(
℘1( t ) : ℘2( t ) : ℘3( t ) : ℘4( t )

)
of an algebraic

surface V .
Output a rational parametrization Q( t ) of V , and R( t ) ∈ (K( t ) \ K)2 such that
P( t ) = Q(R( t )).
Steps

1. Compute a μ-basis of P . Let p( t ), q( t ), r( t ) be this μ-basis.
2. Apply Algorithm 1 to P2(t1). If P2 is not proper, then the algorithm returns the

proper parametrization M2(t1), and S2(t1) ∈ (K[t2])(t1) (S2(t1) = S(t1, t2) seen
with coefficients in K[t2]), such that P2(t1) =M2(S2(t1)). Otherwise, the algorithm
returnsM( t ) = P( t ) (i.eM2(t1) = P2(t1), and S2(t1) = t1).

3. Apply Algorithm 1 toM1(t2). IfM1 is not proper, the algorithm returns the proper
parametrization Q1(t2), and T1(t2) ∈ (K[t1])(t2) (T1(t2) = T(t1, t2) seen with coef-
ficients in K[t2]) such that M1(t2) = Q1(T1(t2)). Otherwise, the algorithm returns
Q( t ) =M( t ) (i.e Q1(t2) =M1(t2), and T1(t2) = t2). Then,

P( t ) =M(S( t ), t2) = Q(t1, T( t ))(S( t ), t2) = Q(S( t ), T(S( t ), t2)).

4. Return the rational parametrization Q( t ) of the surface V , and

R( t ) = (S( t ), T(S( t ), t2)) ∈ K( t )2.

From Algorithm 2, and while using that the degree of a rational map is multiplicative
under composition, we deduce some properties that relate the degree the rational map
φP with the degree of the rational maps φQ, φM, φPi , i = 1, 2, and with deg(R), where
R( t ) = (S( t ), T(S( t ), t2)). One reasons, similarly as in [32].

Theorem 6. It holds that

deg(φP ) = deg(φQ)degt1
(S( t ))degt2

(T( t )), and

deg(φP2) = degt1
(S( t )), deg(φM1) = degt2

(T( t )).
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In addition,

deg(φP ) = deg(φM)degt1
(S( t )), deg(φM) = deg(φQ)degt2

(T( t )).

Corollary 2. The following statements are equivalent:

1. Q is proper.
2. deg(φM) = degt2

(T).
3. deg(φP ) = degt1

(S)degt2
(T).

Finally, in Corollary 3, we show in which conditions Algorithm 2 does not return a
better reparametrization than the input one (in the sense of the degree of the rational map
that is induced by the rational parametrization).

Corollary 3. It holds that deg(φQ) = deg(φP ) if and only if deg(φP2) = deg(φM1) = 1. In
particular, if deg(φPi ) = 1 for i = 1, 2, then deg(φQ) = deg(φP ).

We observe that, while using previous results, one may easily analyze whether some
families of surfaces can be properly reparametrized using the approach presented in this
paper. For instance, if deg(φPi ) 	= 1 for some i = 1, 2, and deg(φP ) = n, where n is a prime
number, then deg(φQ) = 1.

To finish this section, we illustrate Algorithm 2 with one example. The times of our
implementation performance is similar to the times that were obtained in [32].

Example 4. Let V be the rational surface that is defined by the parametrization

P( t ) = (℘4( t )) : ℘2( t ) : ℘3( t ) : ℘4( t ) =(
t4
2t2

1 − t4
1 : −t2

2 + t6
2 + t2

2t4
1 : −t2

1 + t2
2t2

1 + t4
2t2

1 − t4
1 : −t2

1 + t4
2t2

1 + t4
1

)
.

For this purpose, in Step 1 of Algorithm 2, we compute a μ-basis of P and we get that is given by

p( t ) = (t2
2t2

1 + 2t2
1 + 4t8

2 + 6t6
2 − 4t2

2 − 4,−2t2
1,−2t2

2t2
1 − t2

1 − 4t8
2 − 4t6

2 + 4t2
2 + 2, t2

2t2
1 + t2

1 +
2t6

2 − 2)

q( t ) = (−2t2
2t2

1 − 3t2
1 + t2

2 + 1, 0, 2t2
2t2

1 + 2t2
1 − t2

2 − 1,−t2
1 + 1)

r( t ) = (−2t4
2 − t2

2 + 2, 0, 2t4
2 − 1,−t2

2 + 1).

Using Theorem 4, one gets that deg(φP ) = 4. Now, we apply Algorithm 1 to P2(t1). We
obtain that

GP2(t1, s1) = s2
1 − t2

1 ∈ (K[t2])[t1, s1],

and S2(t1) = −t2
1 ∈ (K[t2])[t1] (remind that S2(t1) = S(t1, t2) is seen as a polynomial in the

variable t1 and with coefficients in K[t2]). Subsequently, we determine the polynomials

Li(s1, xi) = Rest1(xi℘4( t )− ℘i( t ), s1 − S2(t1)) = (mi,2(s1)xi −mi,1(s1))
degt1

(S)

for i = 1, 2, 3. We obtain that

M( t ) = ((−t4
2 − t1)t1 : t2

2(t
4
2 − 1 + t2

1) : (1− t2
2 − t4

2 − t1)t1 : t1(1− t4
2 + t1)).

Now, in Step 3 of the algorithm, we apply Algorithm 1 to M1(t2). For this purpose, we first
compute a μ-basis ofM and we get that it is given by (see Remark 3)

pM( t ) = (4t2
2 + 4− 4t8

2 − 6t6
2 + t2

2t1 + 2t1,−2t1,−4t2
2 − 2 + 4t8

2 + 4t6
2 − 2t2

2t1 − t1,−2t6
2 +

2 + t2
2t1 + t1)
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qM( t ) = (t2
2 + 1 + 2t2

2t1 + 3t1, 0,−t2
2 − 1− 2t2

2t1 − 2t1, 1 + t1)
rM( t ) = (−2 + 2t4

2 + t2
2, 0,−2t4

2 + 1,−1 + t2
2).

We obtain that
GM1(t2, s2) = s2

2 − t2
2 ∈ (K[t1])[t2, s2]

that is,M1 is not proper. Afterwards, we compute T1(t2) = −t2
2 ∈ (K[t1])[t2], and the polynomi-

als

Li(s2, xi) = Rest2(xim4( t )−mi( t ), s2 − T1(t2)) = (qi,2(s2)xi − qi,1(s2))
degt2

(T)

for i = 1, 2, 3 (remind that T1(t2) = T(t1, t2) is seen as a polynomial in the variable t2 and with
coefficients in K[t1]). We obtain that

Q( t ) =
(
(−t1 − t2

2)t1 : −t2(t2
2 − 1 + t2

1) : (−t1 + 1 + t2 − t2
2)t1 : t1(1 + t1 − t2

2)
)

.

In Step 4, the algorithm returns the parametrization Q( t ), and R( t ) = (S( t ), T(S( t ), t2)) =
(−t2

1,−t2
2). We observe that

degt2
(T) = 2, and degt1

(S) = 2.

Thus, since deg(φP ) = 4, by Theorem 6, we conclude that deg(φQ) = 1 and, hence, Q is proper.

Remark 3. Using Lemma 1, we may compute a μ-basis, pM, qM, rM, of M from the μ-basis,
p, q, r, of P . Remind that P( t ) =M(S2(t1), t2), and S2(t1) = S(t1, t2) is seen as a polynomial
in the variable t1 with coefficients in K[t2]. Thus, we have a particular case (case of curves) of the
reasoning that is presented in Proposition 1 (which is stated for surfaces). More precisely, we write
p = (p1, p2, p3, p4) and pM = (pm1 , pm2 , pm3 , pm4). Observe that the implicit equation of the
parametrization (S2(t1), pi/p4) (seen with coefficients in K(t2) and in the variable t1) is given by
the polynomial pmi (x1, t2)− x2 pm4(x1, t2) ∈ (K(t2))[x1, x2] for i = 1, 2, 3 (i.e., the coefficients of
the the implicit equation are in K(t2)). In order to compute this implicit equation, we may use that

Rest1(xi p4( t )− pi( t ), x1 − S2(t1)) = (pm4(x1, t2)xi − pmi (x1, t2))
degt1

(S), i = 1, 2, 3

(see, e.g., [44]). Similarly one reasons to get qM from q and rM from r. Observe that this
is a particular case of the result presented in Proposition 1 (we apply the same idea stated in
Proposition 1, but for the particular case of curves).

5. Implicitization Using μ-Basis

In the following, we assume that we are in the affine space (i.e., x4 = 1; this simplifies
the time on the computations), and we consider the polynomials

GP1 ( t , x ) := pP ( t , x )r3( t )− rP ( t , x )p3( t ) ∈ K[ t , x1, x2]

GP2 ( t , x ) := qP ( t , x )r3( t )− rP ( t , x )q3( t ) ∈ K[ t , x1, x2]

GP3 ( t , x ) := rP ( t , x ) ∈ K[ t , x ], x = (x1, x2, x3).

Note that, then, we may write

GP1 ( t , x ) := x1(p1r3 − p3r1) + x2(p2r3 − p3r2) + (p4r3 − p3r4)

GP2 ( t , x ) := x1(q1r3 − q3r1) + x2(q2r3 − q3r2) + (q4r3 − q3r4)

GP3 ( t , x ) := x1r1 + x2r2 + x3r3 + r4.

In addition, let
SP12(t1, x ) = pp x (Rest2(G

P
1 , GP2 )) ∈ K[t1, x1, x2],
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TP12(t2, x ) = pp x (Rest1(G
P
1 , GP2 )) ∈ K[t2, x1, x2].

Finally, FP12(x1, x2) denotes the fiber of a point Q12 := π12(Q) = (x1, x2), where
Q = (x1, x2, x3) ∈ Va and π12(Va) is the (1, 2)-projection of Va. That is

FP12(Q12) = P−1
12 (Q12) = { t ∈ K2 | P12( t ) = Q12},

where P12 := (℘1/℘4,℘2/℘4) := π12(Pa).

Lemma 2. It holds that

degt1
(SP12) = degt2

(TP12) = Card(FP12(x1, x2)).

Proof. Because p, q, r is a μ-basis of P( t ), we have

p1℘1 + p2℘2 + p3℘3 + p4℘4 = 0,
q1℘1 + q2℘2 + q3℘3 + q4℘4 = 0,
r1℘1 + r2℘2 + r3℘3 + r4℘4 = 0.

(1)

Consider a generic point Q = (x1, x2, x3) on the variety generated by (℘1 : ℘2 : ℘4) and
the associated polynomials

pP ( t , x ) = p( t ) ·Q, and qP ( t , x ) = q( t ) ·Q,

where p( t ) = (p1r3 − p3r1, p2r3 − p3r2, p4r3 − p3r4), and q( t ) = (q1r3 − q3r1, q2r3 −
q3r2, q4r3 − q3r4). It holds that pP ( t ,P( t )) = qP ( t ,P( t )) = 0. In fact, pP ( t ,P( t )) =
(p1r3− p3r1)℘1 + (p2r3− p3r2)℘2 + (p4r3− p3r4)℘4 = 0 is derived by eliminating ℘3 from
the first and third equations in (1). Similarly, to find qP ( t ,P( t )) = 0 from the last two
equations in (1).

Thus, one may reason as in Theorem 4 and Corollary 1 (also see Remark 2) to get that

degt1
(SP12(t1, x )) = degt2

(TP12(t2, x )) = Card(FP12(x1, x2))

(remind that P12 := (℘1/℘4,℘2/℘4) = π12(Pa)).

Theorem 7. Let p( t ), q( t ) and r( t ) a μ-basis for P( t ). It holds that

ppx3
(h( x )) = f ( x )deg(φP )

where
h( x ) = Cont{Z,W}(Rest2(T

P
12(t2, x ), K(t2, Z, W, x ))) ∈ K[ x ],

K(t2, Z, W, x ) = Rest1(S
P
12(t1, x ), HP ( t , Z, W, x )) ∈ K[t2, Z, W, x ],

and

HP ( t , Z, W, x ) = GP3 ( t , x ) + ZGP1 ( t , x ) + WGP2 ( t , x ) ∈ K[ t , Z, W, x ].

Proof. First, we recall that

degt1
(SP12) = degt2

(TP12) = Card(FP12( x )).

Let d12 be this quantity. Clearly, d12 ≥ 1. In addition, let m = degt1
(HP ) and

k = degt2
(HP ). Regarding SP12 and HP as polynomials in K(t2, Z, W, x )[t1], and us-
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ing that the resultant of two univariate polynomials is the product of the evaluations of
one of them in the roots of the other, we get

K(t2, Z, W, x ) = Rest1(S
P
12, HP ) = A( x )m

d12

∏
i=1

HP (αi, t2, Z, W, x ),

where A is the leading coefficient of SP12 w.r.t. t1, and where {α1, . . . , αd12} are the roots of SP12
in the algebraic closure K(x1, x2) of K(x1, x2) (we regard SP12 as an univariate polynomial
in t1). Similarly,

Rest2(T
P
12, K) = B( x )k

d12

∏
j=1

K(β j, Z, W, x ),

where B is the leading coefficient of TP12 w.r.t. t2, and {β1, . . . , βd12} are the roots of TP12 in
K(x1, x2) (we regard TP12 as a univariate polynomial in t2). Therefore,

Rest2(T
P
12, K) = Bk Am·d12

d12

∏
i=1

d12

∏
j=1

HP (αi, β j, Z, W, x ).

By Lemma 2, there exist d12 pairs of points (αi, β j) being in FP12(x1, x2), and for each
U(x1, x2) ∈ FP12(x1, x2) it holds that GP1 (U, x ) = GP2 (U, x ) = 0. Thus,

Rest2(T
P
12, K) = Bk Am·d12 Q( x , Z, W) ∏

U∈FP12
(x1,x2)

GP3 (U, x ),

where
Q( x , Z, W) = ∏

1 ≤ i, j ≤ d12
(αi , β j) 	∈ FP12 (x1, x2)

H(αi, β j, Z, W, x ).

Note that for each root αi there exists a unique bj satisfying that the pair (αi, β j)

is in the fiber. Furthermore, for (αi, β j) 	∈ FP12(x1, x2), either GP1 (αi, β j, x ) 	= 0 or
GP2 (αi, β j, x ) 	= 0 (see Lemma 2). Hence, Q( x , Z, W) depends on Z or W. In addition,
each HP (αi, β j, Z, W, x ) does depend on Z or W.

Next, we show that Q( x , Z, W), regarded as polynomial in K[ x ][ x , Z, W], is primi-
tive w.r.t. the variables {Z, W}. For this purpose, we denote, by N(x3) ∈ K[x1, x2][x3], the
content of Q w.r.t. {Z, W}. Thus, there exists (αi, β j) 	∈ FP12(x1, x2) satisfying that the poly-
nomial N divides H(αi, β j, Z, W, x ); that is, N(x3) divides GP3 (αi, βi, x )+ZGP1 (αi, β j, x )+
WGP2 (αi, β j, x ) and, then, N(x3) divides GP1 (αi, β j, x1, x2) and GP2 (αi, β j, x1, x2). Taking
into account that at least one of them is not zero, we get that N ∈ K[x1, x2] and, thus, Q is
primitive w.r.t. {Z, W}. Now, using that

h( x ) = Cont{Z,W}(Rest2(T
P
12, K)),

we obtain that

h( x ) = Bk Am·d12 · N(x1, x2) · ∏
U∈FP12

(x1,x2)

GP3 (U, x ),

where N ∈ K[x1, x2]. Thus,

ppx3
(h( x )) = ppx3

⎛⎝ ∏
U∈FP12

(x1,x2)

GP3 (U( x ), x )

⎞⎠.
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Under these conditions, it holds that degx3
(ppx3

(h( x ))) = d12. Indeed, clearly one has
degx3

(ppx3
(h( x ))) ≤ d12. If degx3

(ppx3
(h( x ))) < d12, thus, there exists U ∈ FP12(x1, x2),

such that r3(U) = 0. Moreover, U ∈ K2, which is impossible since U ∈ FP12(x1, x2).
Now, we prove that

ppx3

⎛⎝ ∏
U∈FP12

(x1,x2)

GP3 (U( x ), x )

⎞⎠ = f ( x )r.

Indeed, clearly one has that

ppx3

⎛⎝ ∏
U∈FP12

(x1,x2)

GP3 (U( x ), x )

⎞⎠ = f ( x )rg( x ).

Furthermore, r ≥ deg(φP ), since GP3 (U( x ), x ) = GP3 (V( x ), x ) for U, V ∈ FP ( x ) (ob-
serve that FP ( x ) ⊆ FP12(x1, x2))). Thus, since degx3

( f ) = d12/deg(φP ) (see [44]) and
degx3

(ppx3
(h( x ))) = d12, we get that

d12/deg(φP ) · r + deg(g) = d12

, which implies that d12(1− r/deg(φP )) = deg(g) and, hence, r ≤ deg(φP ). Because
r ≥ deg(φP ), we conclude that deg(g) = 0 and r = deg(φP ).

In the following examples, we illustrate the above theorem. These examples are taken
from [5].

Example 5. Let V be the rational surface that is defined by the parametrization

P( t ) = (t2
2t1 − t2

1 : −t2 + t3
2 + t2t2

1 : −t1 + t2t1 + t2
2t1 − t2

1 : −t1 + t2
2t1 + t2

1).

We determine the polynomials pP ( t , x ) = p( t ) · x , qP ( t , x ) = q( t ) · x , rP ( t , x ) =
r( t ) · x , where the μ-basis is given by

p( t ) = (t2t1 + 2t1 + 4t4
2 + 6t3

2 − 4t2 − 4,−2t1,−2t2t1 − t1 − 4t4
2 − 4t3

2 + 4t2 + 2, t2t1 + t1 +
2t3

2 − 2)

q( t ) = (−2t2t1 − 3t1 + t2 + 1, 0, 2t2t1 + 2t1 − t2 − 1,−t1 + 1)

r( t ) = (−2t2
2 − t2 + 2, 0, 2t2

2 − 1,−t2 + 1).

Now, we determine

GP1 ( t , x ) := pP ( t , x )r3( t )− rP ( t , x )p3( t ) ∈ K[ t , x1, x2]

GP2 ( t , x ) := qP ( t , x )r3( t )− rP ( t , x )q3( t ) ∈ K[ t , x1, x2]

GP3 ( t , x ) := rP ( t , x ) ∈ K[ t , x ], x = (x1, x2, x3)

and we compute

SP12(t1, x ) = pp x (Res(GP1 , GP2 , t2)) = −t1 + 2t2
1 + x1 + 2x2

1 − x2
2t2

1x2
1 + x2

2t2
1x1 − 4x2

2t3
1x1 +

4x2
2t4

1x1 + 4x2
2t3

1x2
1 − x2

2t2
1x3

1 − 4x2
2t4

1x3
1 + 4x2

2t3
1x3

1 − 4x2
2t4

1x2
1 + 4x2

2t4
1 − 4x2

2t3
1 + x2

2t2
1 − 5x1t4

1 −
t5
1x1 − 2x4

1t1 + 2x3
1t4

1 + 2x3
1t5

1 + 2x2
1t5

1 + x5
1t2

1 + 3x5
1t4

1 − x4
1t5

1 − 3x5
1t3

1 − 7x3
1t1 + x1t3

1 − x5
1t5

1 +
16x3

1t2
1− 4x2

1t4
1− 6x2

1t3
1 + 8x4

1t2
1− 5x1t1 + 14x2

1t2
1− 9x2

1t1 + 7x1t2
1 + 6x4

1t4
1− 11x4

1t3
1− 14x3

1t3
1−

t5
1 + x3

1 − 2t4
1 + t3

1,
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TP12(t2, x ) = pp x (Res(GP1 , GP2 , t1)) = −2t5
2x1 + 4x1t3

2 − 2t4
2x2 + t2

2x2 + t5
2 + x2

1t5
2 − x2

1t3
2 +

2x1t4
2x2 − 3x1t2

2x2 + x1x2 − t2 − 2x1t2 + t3
2.

Also, let

HP ( t , Z, W, x ) = GP3 ( t , x ) + ZGP1 ( t , x ) + WGP2 ( t , x ) ∈ K[ t , Z, W, x ]

and
K(t2, Z, W, x ) = Rest1(S

P
12(t1, x ), HP ( t , Z, W, x )) ∈ K[t2, Z, W, x ].

Finally, we compute

h( x ) = Cont{Z,W}(Rest2(T
P
12(t2, x ), K(t2, Z, W, x ))) ∈ K[ x ],

and

ppx3
(h( x )) = f ( x )deg(φP ) = −1− 46x2

1x2x3 + 38x1x2x2
3 − 8x1x2x3 + 4x2

2x2
1x3 − 12x2

2x1x3

+ 10x3
1x2x3 + x2

1x2x2
3 − 10x1x2x3

3 + 4x1x2
2x2

3 − 10x2x3
3 + 8x2

2x2
3 − 4x2

2x3 + 5x2x2
3 − 5x4

1x2
+ 19x3

1x2 − 4x2
2x3

3 + 4x2x4
3 + 2x2

1x2 − 2x2
3x3

1 + 47x2
3x2

1 − 12x4
1x3 + 14x1x2

3 + 11x2
1x3

3 − 6x1x4
3

− 32x1x3
3 − 22x3x3

1 − 12x3x2
1 + 4x3x1 − 4x3

1x2
2 + 4x2

1x2
2 + 4x1x2

2 − x1x2 + 7x4
3 − 5x3

3 − 5x2
3

+ 8x5
1 + 2x2

1 + 2x3
1 + x5

3 + 3x3 − 2x1 + x2.

Observe that we may conclude that deg(φP ) = 1 and, thus, P( t ) is a proper rational
parametrization.

We have implemented this method while using Maple 2016 on a Lenovo ThinkPad Intel(R)
Core(TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz and 16 GB of RAM, OS-Windows 10 Pro. The
time, in CPU seconds, for this example is 10.907 and using Gröbner basis, we get 0.187.

Example 6. Let V be the rational surface defined by the parametrization

P( t ) = (t2
1 + t2t1 + 2t2

2 − 2t2
2t1 : t2

1 + 2t2t1 + t2t2
1 + 2t2

2 − t2
2t1 + 2t2

2t2
1 : −t2

1 + t2t1 + 2t2t2
1 +

2t2
2 − t2

2t1 − 2t2
2t2

1 : 2t2t1 − 2t2t2
1 − 2t2

2t1 − t2
2t2

1).

We determine the polynomials pP ( t , x ) = p( t ) · x , qP ( t , x ) = q( t ) · x , rP ( t , x ) =
r( t ) · x , where the μ-basis is given by

p( t ) = (−1344390t2
2t1 + 34075368t2t1− 22657890t1− 5710808t3

2− 181563t2
2− 23392736t2−

4984080, 1344390t2
2t1 − 25195836t2t1 + 10711400t1 + 3569255t3

2 + 1074194t2
2 + 18408656t2 +

4984080, 1344390t2
2t1 − 17483628t2t1 − 11946490t1 + 2141553t3

2 − 892631t2
2 + 4984080t2,

9704572t2 − 11391246t2t1 + 6590790t1 + 2855404t3
2 + 6075203t2

2 − 2492040)

q( t ) = (−229530t2t1 − 50278t1 + 139288t2
2 − 174717t2 + 194136, 131160t2t1 + 155206t1 −

87055t2
2 + 85766t2 − 194136, 65580t2t1 + 104928t1 − 52233t2

2 + 88951t2, 131160t2t1 +
100556t1 − 69644t2

2 − 58603t2 + 97068)

r( t ) = (−8t3
2 + 11t2

2 − 4t2 + 4, 5t3
2 − 6t2

2 + 8t2 − 4, 3t3
2 − 5t2

2 − 4t2, 4t3
2 + t2

2 + 2).

Now, we determine

GP1 ( t , x ) := pP ( t , x )r3( t )− rP ( t , x )p3( t ) ∈ K[ t , x1, x2]

GP2 ( t , x ) := qP ( t , x )r3( t )− rP ( t , x )q3( t ) ∈ K[ t , x1, x2]

GP3 ( t , x ) := rP ( t , x ) ∈ K[ t , x ], x = (x1, x2, x3)
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and we compute SP12(t1, x ) and TP12(t2, x ). Additionally, let

HP ( t , Z, W, x ) = GP3 ( t , x ) + ZGP1 ( t , x ) + WGP2 ( t , x ) ∈ K[ t , Z, W, x ]

and
K(t2, Z, W, x ) = Rest1(S

P
12(t1, x ), HP ( t , Z, W, x )) ∈ K[t2, Z, W, x ].

Finally, we compute

h( x ) = Cont{Z,W}(Rest2(T
P
12(t2, x ), K(t2, Z, W, x ))) ∈ K[ x ],

and from ppx3
(h( x )), we get that

f ( x ) = −449792 + 51270879x3x1x2
2 + 13092929x2

3x1x2 − 3482416x3x2
1x2 + 22904376x3x1x2 + 675054x1x6

3 − 862596x2x6
3 −

29225028x2
1x2x3

3 + 11830146x1x2x3
3 + 32231373x1x2

2x3
3 + 110760512x5

1x2x3 − 90099948x4
1x2

2x3 − 129717124x4
1x2x2

3 +
40844546x3

1x3
2x3 + 124810810x3

1x2
2x2

3 + 74702726x3
1x2x3

3 − 19905824x2
1x4

2x3 − 64077866x2
1x3

2x2
3 − 75736662x2

1x2
2x3

3 +
18645124x1x4

2x2
3 + 9481980x1x5

2x3 + 33323142x1x3
2x3

3 − 40980736x6
1x2 − 50645760x6

1x3 + 34182816x5
1x2

2 + 54875936x5
1x2

3 −
24633612x4

1x3
2 − 26906244x4

1x3
3 + 30171008x3

1x4
2 − 25238190x2

1x5
2 + 9961900x1x6

2 − 1918400x6
2x3 + 30499314x1x4

2x3 −
28601154x2

3x2
1x2

2 + 22849453x2
3x1x3

2 + 27085291x2
3x3

1x2 − 2534290x5
2x2

3 − 5374808x4
2x3

3 + 3235863x3
1x3

3 − 9477510x3
2x3

3 +
2815992x2

1x3
3 − 8545002x2

2x3
3 + 3831717x1x3

3 − 5284450x2x3
3 − 15996836x2

3x3
1 + 119044501x1x4

2 − 25566784x5
1x2 +

9070776x4
1x2

2 + 80443033x3
1x3

2 + 9622080x5
1x3 − 109224707x2

1x4
2 + 53021640x1x5

2 − 9557440x5
2x3 − 19184968x2

3x4
1 −

6794107x2
3x4

2 + 16282880x4
1x2 + 119771644x3

1x2
2 − 205506824x2

1x3
2 + 49430528x3x4

1 + 41274000x4
1x3x2 − 63080603x3

1x3x2
2 −

3378276x2
1x3x3

2− 96074840x3x3
1x2 + 9101736x3x2

1x2
2 + 53646214x3x1x3

2 + 10909032x2
3x2

1x2− 21171376x3x4
2− 10777540x2

3x3
2 +

7054782x4
3x3

1 − 6762492x2
2x4

3 + 2808045x2
1x4

3 + 16635132x2
3x1x2

2 − 1041561x1x4
3 − 2701863x2x4

3 − 5920710x4
3x3

2 −
3201822x5

3x2
2 − 367011x5

3x1 − 1776762x5
3x2 − 2007234x5

3x2
1 + 10217583x2x1x4

3 − 26748144x4
3x2x2

1 + 23463306x4
3x2

2x1 +
6779862x5

3x2x1 + 4466880x1− 3813952x2− 520768x3− 16392064x2
1− 13928144x2

2− 857264x2
3 + 23714880x3

1− 28078300x3
2−

573568x4
1 − 33492106x4

2 − 24141568x5
1 − 23550085x5

2 − 196096x6
1 − 9046200x6

2 + 39690x5
3 − 638436x4

3 − 1440780x3
3 +

3591536x3x1 − 2849856x3x2
1 + 4138196x2

3x1 + 31582352x1x2 − 4613120x3x2 − 90566848x2
1x2 + 92152884x1x2

2 −
15211892x3x2

2 + 88688752x3
1x2 − 195019560x2

1x2
2 + 140970299x1x3

2 − 25290352x3x3
1 − 24626550x3x3

2 − 5042468x2
3x2 +

1087832x2
3x2

1 − 10534970x2
3x2

2 + 18348032x7
1 − 1475500x7

2 − 119313x6
3 − 96066x7

3,

and deg(φP ) = 1. That is, P( t ) is a proper rational parametrization.
The time, in CPU seconds, for this example is 71.703, and using Gröbner basis, we get a time

that is > 5000.

Remark 4. In order to improve the time of computations, one may compute the polynomial

h( x ) = Cont{Z,W}(Rest2(T
P
12(t2, x ), K(t2, Z, W, x )))

as gcd(R1, R2), where

Ri = Rest2(T
P
12(t2, x ), K(t2, ai, bi, x )), i = 1, 2

and ai, bi ∈ K are random constants. The answer is correct with a probability of almost one, since,
taking into account the behavior of the gcd under specializations, this property holds in an open
Zariski subset (see e.g., Lemmas 7 and 8 in [45]).

6. Conclusions

The μ-basis has shown as a bridge tool between the parametric form and the implicit
form of curves and surfaces. Moreover, the μ-basis has also been introduced into appli-
cations in singularities analysis and collision detections. The μ-basis theory of curves are
more complete than that of surfaces, but surfaces would certainly attract more attention,
although the discussion is more difficult. We study the μ-basis further for improper rational
surfaces. The results are essential to the theoretical completeness of the μ-basis of surface.

We show how the μ-basis allows for computing the inversion of a given proper
parametrization P( t ) of an algebraic surface. If P( t ) is not proper, we show how the
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degree of the rational map that is induced by P( t ) can be computed as well as the elements
of the fiber. Furthermore and directly from P( t ), we propose a method to find a μ-basis for
a proper reparametrization Q( t ) with some assumptions. If P( t ) is improper, we give
some partial results in finding a proper reparametrization of V . Finally, we show how the
μ-basis of a given not being necessarily proper parametrization also allows for computing
the implicit equation of a given surface bysubsequence univariate resultants.

As the further work, the numerical consideration could be an interesting extension
of the μ-basis theory. One possible way would consist in generalizing the symbolic com-
putation to numerical situation using the ideas and techniques that have already been
implemented in some other problems, such as the numerical proper reparametrization of
surfaces [46].
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Abstract: Traditional electrical power theories and one of their most important concepts—apparent
power—are still a source of debate, because they present several flaws that misinterpret the power-
transfer and energy-balance phenomena under distorted grid conditions. In recent years, advanced
mathematical tools such as geometric algebra (GA) have been introduced to address these issues.
However, the application of GA to electrical circuits requires more consensus, improvements and
refinement. In this paper, electrical power theories for single-phase systems based on GA were
revisited. Several drawbacks and inconsistencies of previous works were identified, and some
amendments were introduced. An alternative expression is presented for the electric power in the
geometric domain. Its norm is compatible with the traditional apparent power defined as the product
of the RMS voltage and current. The use of this expression simplifies calculations such as those
required for current decomposition. This proposal is valid even for distorted currents and voltages.
Concepts are presented in a simple way so that a strong background on GA is not required. The paper
included some examples and experimental results in which measurements from a utility supply were
analysed.

Keywords: geometric algebra; non-sinusoidal power; Clifford algebra; power theory

1. Introduction

The full understanding of power flows in electrical and electronic systems has been
a topic of interest during the last century. It is of paramount relevance because of the
increasing energy losses in transmission systems, as well as the the poor power quality on
electrical devices. In particular, the reduction of power losses involves the reduction of
CO2 emissions. This aim requires the installation of smart metering systems in the grid
to collect a large amount of electrical power data [1]. To accomplish this task, relevant
efforts have been carried out in the frequency domain for systems operating in steady
state [2] and in the time domain by using both instantaneous and averaged approaches [3–
5]. The outcomes from these studies were sometimes inconsistent and even contradictory.
For example, the well-known instantaneous power theory can yield incoherent results
under specific conditions [6]. Similar controversial results have been found for well-
established regulations such as the standard IEEE 1459 [7]. Traditional techniques that are
commonly applied for analysing power flows are based on linear algebra tools such as
complex numbers, matrices, tensors, etc., and they have been proven to be useful from
the application point of view [8]. However, none of them provide a clear overview of
power flows under disported and unbalanced grid conditions, and this point is still an
open discussion [9]. Geometric algebra (GA) is a mathematical tool developed by W. K.
Clifford and H. Grassmann at the end of the 19th Century. It has been rediscovered and
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refined in the last few decades by Hestenes [10] and others [11]. This tool has brought new
possibilities to important fields such as physics [10], computer graphics [12] and rendering
problems [13], producing compact and generalised formulations [14]. Furthermore, it
can be easily used to manipulate integral and differential equations in multi-component
systems [15,16]. Even though GA is not widely known by the scientific community, it
has a great potential and has attracted a lot of interest in recent publications [17]. GA
has already been introduced to reformulate the apparent power as the geometric product
between voltage and current, which is commonly written as M [18–21]. Compared to the
traditional definition of apparent power S = VI, the use of M has several advantages. A
relevant one is that M is conservative in spite of S, and this is of interest for its application
in distorted environments [22]. The use of a different letter M instead of the traditional
one S is therefore justified. It also has important implications for the definition of reactive
power and its compensation, and this is a topic of interest for the power community [23].

Contributions

The main contributions and novelties of this paper are based on the following points:

• GA power theories proposed by different authors were briefly reviewed in order
to analyse some of the inconsistencies raised so far, while additional ones not yet
found in the literature were also discussed [7,18,24]. Menti’s pioneering expression
for geometric electric power was recovered because it has several advantages and
benefits over other proposals for power computations. For example, one of the most
relevant is that its norm equals the product between the norms of geometric voltage
and current, thus retaining the traditional approach in the apparent power definition.
It should be emphasized that this approach is different from those already published
and based on k-blades or complex-vectors;

• A new mapping between the Fourier basis for periodic time functions and the Eu-
clidean basis was introduced, accounting for harmonics, inter- and sub-harmonics and
DC components. Because no additional restrictions were imposed on the waveforms,
the developed methodology is valid even in the case of distorted currents and voltages.
Furthermore, the relevant features of GA for power and circuit analysis and power
calculations were maintained: electrical circuits can be easily solved, and the principle
of energy conservation was still satisfied;

• Another relevant contribution was the formulation by means of vectors in GA for
some of the most important laws in basic circuit theory, i.e., Kirchoff’s laws or Ohm’s
law, to mention a few. This is a crucial issue when solving steady-state AC circuits in
GA without the use of complex phasors. The concept of geometrical impedance as a
bivector was also introduced;

• Another very relevant aspect is the current decomposition proposal based on the use
of the inverse of the voltage vector, which has important implications in the use of
active filters and current compensation. It was shown that the use of this approach
allowed a comprehensive current decomposition for optimal passive/active filtering
based on the concept of the vector inverse, not discussed previously in the literature.

Numerical and experimental results were included in order to validate the main
contributions of this work. A brief introduction to GA and its terminology was included in
order to make the paper self-contained.

2. Geometric Algebra for Power Flow Analysis

The geometric product was introduced by Clifford at the end of the 19th Century,
and it includes the exterior (Grassmann) and interior (dot) products of vectors. Suppose a
Euclidean two-dimensional vector space R2 spanned by the basis {σ1, σ2} and elements
such as a = α1σ1 + α2σ2 and b = β1σ1 + β2σ2 with αi, βi ∈ R. Their interior product can
be calculated as follows:

a · b = ‖a‖‖b‖ cos ϕ = ∑ αiβi (1)
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while the exterior product is:

a ∧ b = ‖a‖‖b‖ sin ϕ σ1σ2 (2)

The operation in Equation (2) does not exist in traditional linear algebra, and its result
is not a scalar, nor a vector, but a new entity that is commonly known as a bivector [10].
Bivectors play a key role in calculations related to non-active power, as is shown later. The
exterior product is anticommutative, i.e., a ∧ b = −b ∧ a. The fundamental operation in
GA is the geometric product:

M = ab = (α1σ1 + α2σ2)(β1σ1 + β2σ2) = (α1β1 + α2β2)︸ ︷︷ ︸
〈M〉0

+ (α1β2 − α2β1)︸ ︷︷ ︸
〈M〉2

σ1σ2
(3)

where M consists of two elements. As these elements are of a different nature, M is
commonly referred to as a multivector. The operation 〈X〉k refers to the extraction of the
k-grade component of a multivector X. In Equation (3), the term 〈M〉0 is a scalar, while the
term 〈M〉2 is a bivector. Multivectors are classified according to their degree: scalars have
degree zero, vectors one, bivectors two, etc. The norm of a multivector is:

‖M‖ =
√
〈M† M〉0 (4)

where M† is the reverse of M (see [10] for details). Note that in the rest of this work, vectors
are represented by bold lower case letters while bivectors and multivectors are represented
by bold upper case letters. Considering a single-phase system operating under perfect
periodic sinusoidal conditions, it is possible to select an orthonormal basis in the space
vector of Fourier functions:

ϕ = {1,
√

2 cos ωt,
√

2 sin ωt} (5)

This basis also belongs to the L2 Hilbert space [25] of integrable and finite energy
functions, equipped with a norm:

‖x(t)‖ =
√

1
T

∫ T

0
x2(t)dt (6)

Note that x(t) can be expressed as a linear combination of the orthonormal ele-
ments ϕj with j = 1, 2, 3 as in x(t) = ∑3

j=1 xj ϕj(t), which, in general, can be repre-

sented in a Euclidean vector space as a vector x = ∑3
j=1 xjσj as defined previously.

The above can be readily extended to non-sinusoidal signals by updating the basis to
ϕ = {1,

√
2 cos kωt,

√
2 sin kωt}n

k=1 where n is the number of harmonics under considera-
tion. For simplicity, the DC term will not be considered at this moment (but it can be added
without problems). Therefore, voltages and currents are transformed to the proposed
Euclidean vector space as follows:

u(t) −→ u = α1σ1 + α2σ2

i(t) −→ i = β1σ1 + β2σ2
(7)

The geometric product defined in Equation (3) can be used to calculate the geometric
power:

M = ui = (α1β1 + α2β2)︸ ︷︷ ︸
P

+ (α1β2 − α2β1)σ1σ2︸ ︷︷ ︸
Q

(8)

This expression consists of two terms of a different nature that can be clearly identified:
P is a scalar, and Q is a bivector. Note that ‖Q‖ is the traditional reactive power Q.
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For convenience, σ1σ2 is often written as σ12. This result is extended to non-sinusoidal
conditions in later sections. The geometric power fulfils:

‖M‖2 = 〈M〉20 + 〈M〉22 = P2 + Q2 = ‖u‖2‖i‖2 (9)

3. GA-Based Power Theories: Overview

In this section, the main power theories based on GA are briefly and critically discussed
so that the main contributions of this paper can be better understood.

• Menti: This theory was developed by Anthoula Menti et al. in 2007 [18]. This was
the first application of GA to electrical circuits. The apparent power multivector was
defined by multiplying the voltage and current in the geometric domain:

S = ui = u · i + u ∧ i = 〈S〉0 + 〈S〉2 (10)

The scalar part matches the active power P, while the bivector part represents power
components with zero mean value. Unfortunately, the theory did not establish a
general framework for the resolution of electrical circuits under distorted conditions.
Furthermore, the proposal was not applied to decompose currents (for non-linear load
compensation, for example), and it was not extended to multi-phase systems.

• Castilla–Bravo: This theory was developed by Castilla and Bravo in 2008 [19]. The
authors introduced the concept of generalised complex geometric algebra. Vector-
phasors were defined for both voltage and current:

Ũp = Upejαp σp = Ūpσp, Ĩq = Iqejβq σq = Īqσq (11)

Geometric power results from multiplying the harmonic voltage and conjugated
harmonic current vector-phasors:

S̃ = ∑
p∈N∪L
q∈N∪M

Ũp Ĩ∗q = P̃ + jQ̃ + D̃ (12)

This proposal is able to capture the multicomponent nature of apparent power through
the so-called complex scalar P̃ + jQ̃ and the complex bivector D̃. However, this
formulation requires the use of complex numbers, which could have been avoided
by using appropriate bivectors [14]. Furthermore, only definitions of powers were
presented, and it was not extended to multi-phase systems.

• Lev-Ari: This theory was developed by Lev-Ari [20,26], and it was the first application
of GA to multi-phase systems in the time domain. However, this work did not contain
examples, nor fundamentals for load compensation. Furthermore, practical aspects
required to solve electrical circuits were not explained.

• Castro-Núñez: This theory was developed by Castro-Núñez in the year 2010 [27]
and then extended and refined in further works [7,28]. A relevant contribution of
this work consisted of the resolution of electrical circuits by using GA (without
requiring complex numbers). Furthermore, a multivector called geometric power that
is conservative and fulfils the Tellegen theorem was defined [29]. As in the Menti and
Castilla–Bravo proposals, the results were presented only for single-phase systems.
Another contribution was the definition of a transformation based on k-blades, i.e.,
objects that can be expressed as the exterior product of k basis vectors. They form an
orthonormal base. However, this basis presents some drawbacks. The main one is the
definition of the geometric power [30]. In particular, active power calculations did not
match with those obtained by using classical theories. Therefore, the authors needed
to include an ad hoc corrective coefficient [7]. Finally, the definition of geometric
power norm did not follow the traditional expression as a product or voltage and
current norms (i.e., RMS in the complex domain) due to the proposed axiomatic
transformation.
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• Montoya: This framework was proposed by Montoya et al. [30], and it is an upgrade
of the Menti and Castro-Núñez theories [7,18]. It establishes a general framework
for power calculations in the frequency domain. Since it was the most recent work,
it provided solutions to some problems detected so far in other proposals, and the
formulation was more compact and efficient. However, this framework was based
on the use of k-blades, and therefore, drawbacks related to the non-standardised
definition of apparent power were inherited from previous theories.

The most relevant contributions of this work compared to existing proposals are
presented in Table 1.

Table 1. Comparison of the main contributions of GA power theories.

Feature Menti [18] Castilla and Bravo [19] Lev-Ari [20] Castro-Núñez [27] Montoya [21] This Work

Based on vectors complex-vectors vectors k-blades k-blades vectors
GA power definition S = ui S̃ = ∑ Ũpĝ Ĩ∗q S = vi M = VI M = V I† M = ui
Power norm ‖S‖ = ‖u‖‖i‖ |S̃|2 = |Ũ|2| Ĩ|2 ‖S‖ = ‖v‖‖i‖ ‖M‖ 	= ‖V‖‖I‖ ‖M‖ 	= ‖V‖‖I†‖ ‖M‖ = ‖u‖‖i‖
Circuit theory ready No No No Yes Yes Yes
Current decomposition No No No No Not Always Yes
Interharmonic handling No No No No Yes Yes
Impedance definition No No No Yes Yes Yes

4. GA Framework and Methodology

4.1. Circuit Analysis by Means of GA

In this theory, different approaches already available in the literature are unified and
enhanced in order to analyse electrical circuits in the geometric domain. The proposed
modifications are deemed to remain consistent with the physical basic principles observed
in electrical circuits. An orthonormal basis σ = {σ1, σ2, . . . , σn} is used in order to represent
the multi-component nature of periodic signals with finite energy. Consider a voltage signal
u(t):

u(t) = U0 +
√

2∑n
k=1Uk cos(kωt + ϕk) +

√
2∑l∈LUl cos(lωt + ϕl) (13)

where U0 is the DC component, while Uk and ϕk are the RMS and phase of the k-th
harmonic, respectively. The set L represents sub- and inter-harmonics included in the
signal [31]. As in traditional circuit analysis based on complex variables, a sinusoidal and
steady-state signal can be considered as a part of a rotating vector n(t) (in a similar fashion
to ejωt). It was demonstrated that this facilitated the analysis in the geometric domain. In
addition, thanks to the linear properties of GA, it was possible to define a single multivector
that included all the harmonic frequencies present in the signal (this was not possible by
using the traditional complex analysis). This rotating vector n(t) in a two-dimensional
geometric space G2 can be obtained as follows [32]:

n(t) = e
1
2 ωtσ12 Ne−

1
2 ωtσ12 = RNR† = eωtσ12 N = R2N = NR†2 (14)

where R = e
1
2 ωtσ12 is a geometric rotor (or simply a rotor) [33] and N is a vector. In Equation

(14), left-multiplying produces opposite effects compared to right-multiplying. Figure 1
shows a graphical representation of a vector N left-multiplied by a rotor R′ = eϕσ12 with
positive angle ϕ. This operation produces a rotated vector (in green) in clockwise direction.
Similarly, the same vector N right-multiplied by the same rotor R′ produces a rotation of ϕ
degrees in the counter-clockwise direction (vector in red).

In order to maintain the commonly accepted convention of signs in electrical engi-
neering, vectors are always left-multiplied by rotors. Therefore, a positive sign in a phase
angle refers to the clockwise direction. This implies that an inductor reactance will have
positive phase angles, while a capacitor will have negative phase angles. However, the
phase lead and lag now change its role in the geometric domain: lag implies rotation in the
counter-clockwise direction and lead in the clockwise direction (see Figure 1).
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Figure 1. A vector multiplied by a rotor eϕσ12 (with positive angle ϕ) rotates in the clockwise or
counter-clockwise direction depending whether the multiplication is performed by the left or by the
right, respectively.

It can be proven that the projection of a rotating vector voltage u1(t) over the basis
σ1 yields the original voltage waveform, i.e., u1(t) =

√
2(α1 cos ωt + α2 sin ωt). This

resembles the extraction of the real part of a complex rotating phasor, i.e.,Re{
√

2�Vejωt}.
By using the Euclidean orthonormal basis σ = {σ1, σ2} isomorphic to the Fourier basis
in Equation (5), then the original time signal u1(t) is transformed into the vector u1 =
α1σ1 + α2σ2; therefore:

u1(t) = eωtσ12 u1 = (cos ωt + sin ωtσ12)(α1σ1 + α2σ2) =

= (α1 cos ωt + α2 sin ωt)σ1 + (α2 cos ωt− α1 sin ωt)σ2

=
1√
2
(u1(t)σ1 −H[u1(t)]σ2) (15)

where H refers to the Hilbert transform of a signal [34]. Hence, u1(t) = projσ1
[
√

2u1(t)] =√
2u1(t) · σ1 can be recovered as the scalar product, i.e., the projection of a rotating vector

u1(t) onto σ1. It is worth pointing out that the rotating vector u1(t) is not the original
time domain voltage waveform, u1(t). This is a different interpretation compared to that
of other authors [7,22]. This discrepancy was analysed by using the simple RLC circuit
depicted in Figure 2. Its solution is well known in both the time and complex domain (for
the steady state), but it is presented here to highlight that the proposed framework can be
applied to the most basic electrical circuits. The time-domain equation that governs the
circuit dynamics is:

u1(t) = Ri(t) + L
di(t)

dt
+

1
C

∫
i(t)dt (16)

If we perform the derivative and the integral [32] of the rotating vector defined in Equation (15),
we obtain:

du1(t)
dt

= ωσ12u1(t)∫
u1(t)dt = −σ12

ω
u1(t)

(17)
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u1(t)
i

R L C

+

Figure 2. RLC circuit used in Example 1.

Because the source is sinusoidal and assuming that the circuit is operating in the
steady state, Equation (15) can be substituted in Equation (16),

projσ1

[√
2eωtσ12 u1

]
=
√

2 projσ1

[
R eωtσ12 i + Lωσ12eωtσ12 i− σ12

Cω
eωtσ12 i

]
(18)

so, applying the same rationale used in Equation (15), Equation (18) can be simplified, yielding:

u1 = Ri + Lωσ12i− σ12

Cω
i (19)

Rotors such as eωtσ12 are cancelled out because they commute with σ12. Therefore,
it is not necessary to set any specific time instant t0 after performing the derivative, as
suggested by Castro-Núñez [27]. The result is an algebraic equation where only vectors
such as u1 and i are present. Right-multiplying Equation (19) by the inverse of the current
results in a generalised Ohm’s law, where the geometric impedance can be defined as:

Z = u1i−1 = R +

(
Lω− 1

Cω

)
σ12 = R + Xσ12 (20)

The geometric admittance can be defined as the inverse of the geometric impedance:

Y = Z−1 =
Z†

Z†Z
=

Z†

‖Z‖2 = G + Bσ12 (21)

Both elements have similar definitions to those of impedance/admittance in the
complex domain (the complex algebra is already a subalgebra of G2). However, now
they are multivectors because they consist of a scalar part plus a bivector (this kind of
multivector is commonly known as a spinor). The use of this criterion allows overcoming
the drawbacks of other theories in which inductive reactance is negative, while capacitive
reactance is positive [27]. In order to transform the voltage signal in Equation (13) from the
Fourier to the geometric domain, a new Euclidean basis was proposed based on Equation
(5). This proposal was supported by the principle of isomorphism among vector spaces.
Let V and W be vector spaces over the same field F, which preserves the addition and
scalar multiplication of elements in both spaces. Then, for all vectors u and v in V and all
scalars c ∈ F, a transformation T : V → W exists such as:

T(u + v) = T(u) + T(v) and T(cv) = cT(v) (22)

This was a major contribution of this work, not previously reported in the literature.
This isomorphism is then defined as:

ϕDC = 1 ←→ σ0

ϕc1(t) =
√

2 cos ωt ←→ σ1

ϕs1(t) =
√

2 sin ωt ←→ σ2
...

ϕcn(t) =
√

2 cos nωt←→ σ2n−1

ϕsn(t) =
√

2 sin nωt ←→ σ2n

(23)
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In addition, l sub- and inter-harmonics can be added by increasing the number of elements
in the basis by 2l after the highest order harmonic (n) [31]. Now, u(t) can be completely
transferred to the geometric domain as:

u = U0σ0 + ∑n
k=1Ukeϕkσ(2k−1)(2k)σ(2k−1) + ∑l

m=1Umeϕmσ(2n+2m−1)(2n+2m)σ(2n+2m−1)

= U0 + ∑n
k=1Uk1σ(2k−1) + Uk2σ(2k) + ∑l

m=1Um1σ(2m−1) + Um2σ(2m)

(24)

where Uk1 = Uk cos ϕk and Uk2 = Uk sin ϕk. The same transformation can be applied to i(t)
in order to calculate the geometric current i. It is worth noting that i may include harmonics
not present in the voltage. By using the same rationale presented in Equations (16)–(19),
the geometric impedance can be defined for each harmonic as:

Zk = uki−1
k = R +

(
kLω− 1

kCω

)
σ(2k−1)(2k) (25)

where uk and ik are the vector representation for the harmonic k in the geometric domain.
This proposal overcomes some drawbacks of previous GA-based power theories. First,
it can accommodate DC components in voltages and currents. Second, the traditional
idea behind the definition of apparent power based on the product of the RMS voltage
and current is preserved, and this does not happens in other proposals [7]. These are the
contributions of this work.

4.2. Power definitions in GA

There exist different definitions for apparent power in other power theories based
on GA. Menti and Castro-Núñez chose S = U I and M = U I, respectively, while Castilla–
Bravo used S = U I∗. All of them are compatible with the energy conservation principle
due to the multi-component nature of GA [28]. However, the results might be inconsistent
if the orthonormal basis that spans the geometric space is not carefully chosen. For example,
in the proposal of Castro-Núñez, k-blades were used for the basis [27]. As a result, the
geometric power calculation should be corrected so that power components are computed
in accordance with physics principles, as already mentioned in Section 3. Furthermore,
non-active power calculations can lead to erroneous results since the geometric power is
not calculated accordingly. In [30], the correction M = U I† was proposed as a solution. In
this work, the geometric power was defined as:

M = ui = u · i + u ∧ i (26)

In Equation (26), several terms of engineering interest can be identified. On the one
hand, the scalar term:

〈M〉0 = u · i =
n

∑
k=1

ukik (27)

matches the well-known active power P, and it will be referred to as active geometric
power (or just active power). It corresponds to the mean value of the instantaneous active
power p(t) that is converted into useful work in power systems. On the other hand, the
bivector term 〈M〉2 = u ∧ i is the so-called non-active geometric power or MN . It can be
decomposed into other terms with engineering significance:

MN = MQ + MD =
n

∑
k=1

(u(2k−1)i(2k) − u(2k)i(2k−1))σ(2k−1)(2k) +
n

∑
k,l

k 	=l
k<l+1

(ukil − ulik)σkl (28)
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The term MQ is a bivector with coordinates representing the classical reactive power
generated by harmonics in the Budeanu sense Qk. Finally, the term MD is a new concept
not existing in complex algebra approaches. It stands for cross-products between a voltage
and current of different frequencies.

Note that the units of the geometrical quantities previously introduced are volts (V)
for voltage u, amperes (A) for current i, volt-amperes (VA) for power M, MN , MQ and MN .
Obviously, the active power P is in watts (W). It can be readily checked that the norm of M
is the product of the voltage and current norms, provided that u and i are vectors:

‖M‖ =
√
〈M† M〉0 =

√
〈(ui)†(ui)〉0 =

√
〈(i†u†)(ui)〉0 =

√
‖u‖2‖i‖2 = ‖u‖‖i‖ (29)

where the property a† = a was applied for vectors. The application of this property is
the key to overcoming a definition based on the complex conjugate current. This feature
cannot be applied in other power theories based on GA, since, in general, A† 	= A for any
k-blade A with k > 1 [27]. The power triangle also holds for the geometric power:

‖M‖2 = P2 + ‖MN‖2 = P2 + ‖MQ‖2 + ‖MD‖2 (30)

The above expression does not hold for other GA power theories such as that proposed
by Castro-Núñez because of the use of k-blades in the definition of voltage and current.

4.3. Current Decomposition in GA

In this section, the current demanded by a load is decomposed by using the proposed
power theory. Simplifying Equation (26) and taking into account that for any given vector
a−1 = a/‖a‖2, the following result is obtained:

M = ui −→ u−1M = u−1u︸ ︷︷ ︸
1

i = i

i = u−1M =
u
‖u‖2 (Ma + MN) = ia + iN

(31)

where ia is the geometric counterpart of the active or Fryze current [35], while iN is
the non-active current. This decomposition procedure has not been used before for GA
power theories in the frequency domain, and it was a novel contribution of this work.
Furthermore, in previous power theories based on GA current decomposition were not
guaranteed since multivectors might not have an inverse, and in any case, its calculation
is not straightforward [36]. Each of the currents presented above has a well-established
engineering meaning. The current ia is the minimum current required to produce the same
active power to that consumed by the load, while the non-active current iN is the current
that does not affect the net active power. Therefore, the latter can be compensated by using
either passive or active filters. For linear loads, the current iN can be decomposed into two
terms for practical engineering purposes. The first one is related to transient energy storage
and leads to the reactive current. The second one does not include storage and leads to the
scattered current introduced by Czarnecki [37]. In addition, by using Equations (21) and
(24) and Ohm’s law, the current i demanded by the linear load can be calculated as:

i =
n

∑
k=1

Ykuk =
n

∑
k=1

(
Gk + Bkσ(2k−1)(2k)

)
uk = ip + iq (32)

where ip is commonly known as the parallel current while iq as the quadrature current:

ip =
n

∑
k=1

Gkuk, iq =
n

∑
k=1

Bkσ(2k−1)(2k)uk (33)
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which is a geometric counterpart of the Shepherd and Zakikhani decomposition [38]. It can
be demonstrated that they are orthogonal because of the term σ(2k−1)(2k) in iq. Therefore,
by comparing Equations (31) and (32), it follows that:

i = ia + iN = ip + iq = ia + is + iq (34)

where is = ip − ia is the geometric counterpart of the scattered current [39], which can
only be compensated by using active elements, while iq can be compensated by using
both passive and active elements [37]. There have been different attempts to give physical
meaning to these current components. For that purpose, the scattered power could be
defined as Ms = uis, while reactive power as Mq = uiq. However, it has already been
demonstrated that this decomposition has no real physical meaning (in the sense that these
currents do not flow separately), even though it is useful for engineering practice [40,41]. In
addition, for non-linear loads, the component iG is included to model current components
with frequencies that are not present in the voltage:

i = ia + is + iq + iG︸ ︷︷ ︸
iN

(35)

The power factor can be defined in the geometric domain as:

p f =
〈M〉0
‖M‖ =

P
‖M‖ (36)

5. Examples and Discussion

Two examples are given in order to validate the theoretical developments. The first one
is the resolution of an RLC circuit under distorted conditions, while the other one consists
of the analysis of experimental data. The results obtained with the proposed amendments
were compared to those obtained by using other theories. Computations were performed
by using the GA-Explorer library, which is available at https://github.com/ga-explorer
(accessed on 1 May 2021) [42]. This library was chosen because it has a MATLAB connector.
Furthermore, it performs calculations quickly and accurately. The Clifford Algebra toolbox
was also used in some parts [43].

5.1. Example 1: Non-Sinusoidal Source

The RLC circuit presented in Figure 2 was used previously as an example and bench-
mark by different theories based on GA. Interestingly enough, the proposals by Menti,
Castilla–Bravo and Lev-Ari cannot cope with the circuit analysis since they do not offer
the right tools in the geometric domain. For these cases, it would be required to solve the
circuit by using other techniques (such as complex algebra) and then transform the results
to the geometric domain in order to analyse the power flow. Therefore, the circuit was only
solved by using the theory proposed in this paper, CN [27] and CPC (Czarnecki) [2]. All of
them allow a current decomposition into meaningful engineering terms.

In the circuit, R = 1 Ω, L = 1/2 H and C = 2/3 F. The source voltage is u(t) =
100
√

2(sin ωt + sin 3ωt). The proposed theory was used to transform Equation (16) to the
geometric domain:

u1 + u3 = R(i1 + i3) + L(ωσ12i1 + 3ωσ56i3)−
1
C

(
σ12i1

ω
+

σ56i3

3ω

)
(37)

It can be seen that the superposition theorem is embedded in the proposed formulation
since all components are operated at the same time. This is a clear difference compared to
theories based on complex numbers.

By using Equation (23), the geometric voltage turns into:

u = u1 + u3 = 100(σ2 + σ6) (38)
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while impedances and admittances are calculated with Equation (25):

Z1 = 1− σ12 −→ Y1 = 0.5 + 0.5σ12

Z3 = 1 + σ56 −→ Y3 = 0.5− 0.5σ56
(39)

Therefore, the current becomes:

i = i1 + i3 = Y1u1 + Y3u3 = 50σ1 + 50σ2 − 50σ5 + 50σ6 (40)

The geometric power is calculated by using Equation (26):

M = ui = 10︸︷︷︸
Ma=P

− 5σ12 + 5σ56 − 5σ16 − 5σ25︸ ︷︷ ︸
MN

The active power is a scalar with a value of 10 kW, while the other terms are the
non-active power.

The reactive power (in the Budeanu sense) consumed by each harmonic is included in
the σ(2k−1)(2k) terms.

Therefore, the reactive power of the first harmonic was −5σ12, while that of the third
one was 5σ56.

This result was in good agreement with traditional analyses in the frequency domain
where the value for reactive power of each harmonic was identical, but of opposite sign.
However, the term −5σ16 − 5σ25 cannot be obtained by using complex algebra since it
involves the cross-product between voltages and currents of different frequencies. This is
one of the clear advantages of GA over complex numbers.

The norm (modulus) of the geometric power is:

‖M‖ =
√
〈M† M〉0 = ‖u‖‖i‖ = 141.42× 100 = 14, 142 VA (41)

If the CN theory is applied, the geometric apparent power becomes:

MCN = 10 + 10σ12 + 10σ34 kVA

‖MCN‖ = 17, 320 VA
(42)

The value of active power was 10 kW. However, the factor f = (−1)k(k−1)/2 should
be used for the calculations in order to obtain the right result. Furthermore, it can be
seen that it was not possible to distinguish reactive power components generated by each
harmonic since all of them were grouped into the term σ12. Moreover, the CN proposal
failed to provide the correct result as proven in [30]. Finally, it can be observed that
‖MCN‖ 	= ‖u‖‖i‖.

By using the CPC theory, it was not possible to generate a current vector in the
frequency domain, nor a power multivector. Furthermore, the instantaneous value of
currents should be used to describe independent terms of power. The results were:

P = 10.000 W Qr = 10.000 VAr

Ds = 0 VA S = 14.142 VA

The value of active power calculated by the CPC theory was, of course, correct.
However, this theory cannot fully describe harmonic interactions between the voltage and
current components. The norm of the total reactive power yielded 10 kVAr. However, it
was not possible to calculate the individual contribution of each harmonic, nor its sign
(sense).
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Regarding current decomposition, by using Equation (31), it follows:

i = 50σ2 + 50σ6︸ ︷︷ ︸
ia

+ 50σ1 − 50σ5︸ ︷︷ ︸
iN

(43)

Furthermore, if Equation (32) is applied, an identical result is obtained:

i = 50σ2 + 50σ6︸ ︷︷ ︸
ip

+ 50σ1 − 50σ5︸ ︷︷ ︸
iq

(44)

If a harmonic compensator is to be designed, its susceptance at each harmonic would
be the same as that of the load, but with the opposite sign:

Bcp1 = −B1 Bcp3 = −B3 (45)

All the current would be compensated by using passive elements since no scattered
current was present (see [44] for more details). This means that ia = ip. Therefore, iN
would be zero.

Consider now a value of C = 2/7 F in Figure 2. This set of parameters was used in
other scientific works since power components cannot be distinguished if the classical con-
cept of apparent power is applied [28,45]. For the voltage value presented in Equation (38),
the current becomes:

i = 30σ1 + 10σ2 − 30σ5 + 90σ6 (46)

and the geometric power is:

M = 10− 3σ12 + 3σ56 − 3σ16 − 3σ25 + 8σ26 (47)

Active power was the same as that obtained with other theories (10 kW). However,
the rest of the terms were different. Reactive power consumption for each harmonic was
reduced. The term 8σ26 appeared due to the interaction between in-phase components in
the first voltage harmonic and the third current harmonic. This term highlights that the
system cannot be fully compensated by using only passive elements. Despite the changes
in various terms in the currents and powers, the norm of the geometric power remained
unchanged:

‖M‖ = ‖u‖‖i‖ = 141.42× 100 = 14.14 kVA (48)

The current decomposition for this case is given in Table 2. If the CN theory is applied, the
power becomes:

M = 10 + 6σ12 + 6σ34 + 8σ1234 kVA (49)

where ‖M‖ = 15.36 kVA. This value differed from that obtained in the previous case, even
though the voltages and currents did not change. Therefore, the proposed theory captured
effects that others cannot.

Table 2. Current decomposition for the circuit in Figure 2 and C = 2/7 F.

σ1 σ2 σ3 σ4 σ5 σ6 ‖ · ‖
ia 0 50.00 0 0 0 50.00 70.71
is 0 −40.00 0 0 0 40.00 56.56

ip 0 10.00 0 0 0 90.00 90.55
iq 30.00 0 0 0 −30.00 0 42.42

i 30.00 10.00 0 0 −30.00 90.00 100.00
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5.2. Example 2: Measurements Analysis

In this example, the voltage and current waveforms of a typical residential building
in Almería (Spain) were analysed. The open-platform openZmeter (oZm) was used for
the acquisition of the raw values of such waveforms [46]. Figure 3 shows voltage and
current measurements in a time window of 200 ms, taken with a sampling frequency of
15.625 kHz (3125 samples). Several home appliances were on, such as a TV and LED lights,
or electronic appliances, such as a router, satellite receiver and other devices in stand-by
mode. The current waveform was highly distorted since the THDi was 88.3%, while the
THDv was 6.63%.

Figure 4 shows the voltage and current spectrum for the first fifty harmonics (for the
sake of clarity, the fundamental component is not shown). The fifth and seventh harmonic
voltage components were prominent, while even harmonics were insignificant due to the
half-wave symmetry of the waveform. From Table 3, it can be concluded that most of the
energy was concentrated in the first five odd harmonics. The RMS value of the voltage was
234.011 V, while that of the current was 2.618A. Figure 5 shows the power waveform, as
well as the value of P (359.15 W).

Figure 3. Voltage and current waveform measurements at a residential installation in Spain.

Figure 4. Voltage and current spectrum of the waveforms in Figure 3.
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Table 3. Odd harmonics present in the waveforms of Example 2.

Voltage Current
Order ‖V‖ (V) ϕv (rad) ‖I‖ (A) ϕi (rad)

fund 233.92 −1.57 2.33 −0.72
3rd 0.46 −2.61 0.93 1.85
5th 4.74 1.28 0.45 −1.69
7th 4.02 −0.07 0.49 1.70
9th 0.42 −2.60 0.16 −1.44

Figure 5. Instantaneous power waveform and active power P in Example 2.

A geometric vector of dimension 100 can be derived, but due to its length, only the
five most energetic odd harmonics were selected (the fundamental component plus four
odd harmonics), as shown in Table 3. It is worth pointing out that in the proposed theory,
the dimension of the geometric space can be chosen according to specific requirements
(e.g., the number of harmonics of interest). This is an advantage compared to other theories.
In this case, the basis was σ = {σ1, . . . , σ10}. The voltage and current expressions in polar
form are:

u = 233.92e−1.57σ12 σ1 + 0.46e−2.61σ34 σ3 + 4.74e1.28σ56 σ5 + 4.02e−0.07σ78 σ7 + 0.42e−2.60σ(9)(10) σ9

i = 2.33e−0.72σ12 σ1 + 0.93e1.85σ34 σ3 + 0.45e−1.69σ56 σ5 + 0.49e1.70σ78 σ7 + 0.16e−1.44σ(9)(10) σ9

(50)

The most significant terms of the geometric power were those related to active and
reactive power:

M = 359.14− 408.56σ12 + 0.42σ34 + 0.34σ56 − 1.95σ78 − 0.06σ(9)(10) + O (51)

where O includes the rest of the bivectors that appeared due to the cross-frequency products
and is not shown due to the lack of space. The norm was ‖M‖ = 612.66 VA, which was
nearly the same as ‖u‖‖i‖ = 234.011× 2.618 = 612.64 VA. The value of Ma was 359.21 W,
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which was similar to that obtained by using the digital samples of voltages and currents.
Results for the reactive power of each harmonic were also similar. Note that the reactive
power of the fundamental frequency was encoded in the bivector term σ12. In this case, it
had a negative value, so it represented a capacitive behaviour. These values are also shown
in Table 4. Table 5 shows the current components presented in Equation (31) for the five
most energetic harmonics. In order to compute ip and iq according to Equation (25), the
geometric impedances were calculated for each harmonic. The value of the total current
was ‖i‖ = 2.607 A, while ‖ia‖ = 1.535 A. Note that the norm of the total current differed
slightly from the real one (2.618 A) because not all harmonics were included. It can be
observed that ‖ia‖ was the minimum current that would produce the same active power.
Figure 6 shows the waveforms of i(t), ia(t) and iN(t).

Table 4. Harmonic active (W) and reactive (VAr) power measurements.

Pi Qi
Order

oZm oZm GA

fund 361.80 −408.56 −408.50
3rd −0.102 0.426 0.425
5th −2.134 0.346 0.346
7th −0.408 −1.955 −1.955
9th 0.028 −0.063 −0.062

Total 359.15

Table 5. Current components obtained from current measurements.

ip ia is iq iN i

σ1 −0.007 −0.007 0.000 1.746 1.746 1.739
σ2 1.547 1.534 0.012 0.008 0.020 1.555
σ3 0.188 −0.003 0.190 −0.454 −0.263 −0.266
σ4 −0.108 0.001 −0.109 −0.789 −0.898 −0.897
σ5 −0.126 0.009 −0.135 0.070 −0.065 −0.056
σ6 0.431 −0.030 0.461 0.020 0.482 0.452
σ7 −0.101 0.026 −0.127 0.036 −0.091 −0.065
σ8 −0.007 0.002 −0.010 −0.484 −0.494 −0.492
σ9 −0.057 −0.002 −0.055 0.077 0.022 0.020
σ10 0.034 0.001 0.033 0.129 0.162 0.163

‖ · ‖ 1.629 1.535 0.548 2.035 2.108 2.607
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Figure 6. Total, active and non-active current for the measurements.

6. Conclusions

In this paper, an improved formulation of the power theory based on GA was pre-
sented. First, the main shortcomings of existing power theories based on GA were iden-
tified. It was shown that the use of k-blades as a basis for the geometric space led to an
unclear definition of the geometric apparent power. Moreover, the energy conservation
principle cannot be easily fulfilled without extra correction factors. Thus, Menti’s proposal
was recovered and favoured for power computations. A new comprehensive isomorphic
transformation that accounted for harmonic, sub- and inter-harmonic and DC compo-
nents’ representation was presented. It simplified the power definitions in the frequency
domain and provided a clear meaning to harmonic power. Furthermore, the norm of
the geometric power was in good agreement with the traditional definition of apparent
power based on the product of RMS voltage and current. Circuit theory analysis can also
be performed in the steady state for AC circuits using geometric vectors. The concept
of geometric impedance was also introduced with a similar meaning as the well-known
complex algebra. It made it possible to analyse electrical circuits by using conventional
techniques. Current decomposition for load compensation purposes can be easily carried
out by means of the use of the inverse of the current vector. Through different examples, it
was shown that the proposed framework overcame some limitations of existing GA-based
power theories and provided a comprehensive tool for analysing and solving single-phase
electrical circuits under distorted conditions. Moreover, new indices for power quality
can be defined based on the suggested non-active power as a result of the cross-frequency
products of the voltage and current. Harmonic and power factor correction can also benefit
from the proposed approach. Future research is under way to extend this methodology to
polyphase systems. This requires the use of orthogonal transformations such as the one
derived from the application of the symmetric components. This fact can be addressed
through a higher number of dimensions.
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Abstract: We studied a particular class of well known error-correcting codes known as Reed–Solomon
codes. We constructed RS codes as algebraic-geometric codes from the normal rational curve. This
approach allowed us to study some algebraic representations of RS codes through the study of the
general linear group GL(n, q). We characterized the coefficients that appear in the decompostion of
an irreducible representation of the special linear group in terms of Gromov–Witten invariants of
the Hilbert scheme of points in the plane. In addition, we classified all the algebraic codes defined
over the normal rational curve, thereby providing an algorithm to compute a set of generators of the
ideal associated with any algebraic code constructed on the rational normal curve (NRC) over an
extension Fqn of Fq.
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1. Introduction

Let us denote by Fq the finite field of q elements with q a power of prime number
p. One can consider field extensions Fq of Fp as q varies through powers of the prime
p. Any Fpn field extension of Fp is a vector space over Fp of dimension n and an (n−
1)−dimensional projective space PG(n− 1, p).

Let V be an n + 1 dimensional vector space over the field Fq; we denote by PG(n, q)
or P(V) the n-dimensional projective space over V and by P1, the projective line. The set
of all subspaces of dimension r in V is a Grassmannian, and it is denoted by Gr,n(Fq) or by
PGr(n, q). The dual of an r−space in PG(n, q) is an (n− r− 1)−space.

Consider the Fq−rational points of Gr,n(Fq) as a projective system; we obtain a q-
ary linear code, called the Grassmann code, which we denote [n, r]q code. The length

l and the dimension k of G(r, n) are given by the q binomial coefficient l =

[
n
r

]
q
=

(qn+1−1)(qn+1−q)...(qn+1−qr)
(qr+1−1)(qr+1−q)...(qr+1−qr)

, and k = (n
r), respectively.

We study the relation between codes constructed from vector bundles and the repre-
sentation theory of the general linear group GL(n,Fq). Following [1], we consider the right
action of the general linear group GL(n,Fq) on Gk,n(Fq):

Gk,n(Fq)× GL(n,Fq) → Gk,n(Fq) (1)

(U , A) → UA.

Observe that the action is defined independently of the choice of the representation
matrix U ∈ Fk×n

q .
Let U ∈ Gk,n(Fq) and G < GL(n,Fq) be a subgroup; then C = {UA| A ∈ G} is an

orbit in Gk,n(Fq) of the induced action.
In order to classify all the orbits, we need to classify all the conjugacy classes of

subgroups of GL(n,Fq). In [2], we studied cyclic coverings of the projective line that
correspond to orbits defined by a cyclic subgroup of order p as the multiplicative group of
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pth roots of unity or the additive group of integers modulo p for some prime number p. In
particular, we showed that any irreducible cyclic plane cover of the projective line can be
given by a prime ideal

(ym − (x− a1)
d1 . . . (x− an)

dn) ⊂ Fq[x, y].

This ideal defines an affine curve in A2(Fq) which has singularities, if dk > 1 for some
1 ≤ k ≤ n. There exists a unique projective curve birationally equivalent to this affine curve
obtained by homogenization of the polynomial. Here we study the connection between
ideal sheaves on Fq[x, y] and its numerical invariants together with the combinatorics of
partitions of n and the representation theory of the general linear group GL(Fq, n). In other
words, we want to understand which subspaces are invariant by the action of elements of
the general linear group or finite subgroups of GL(n,Fq) and how the GL(n,Fq) group’s
action on the Grassmannian changes the Grassmann code, as this action simply permutes
basis elements of the Grassmann code.

When one considers as an alphabet a setP = {P1, . . . , PN} of Fq−rational points lying
on a smooth projective curve defined over a finite field, algebraic codes are constructed by
evaluation of the global sections of a line bundle or a vector bundle on the curve. Any cyclic
cover of P1 which is simply ramified corresponds to an unordered tuple of n points on P1.
More generally, in Section 4 we consider configurations of n points in a d−dimensional
projective space PG(d, q) which generically lies on a rational normal curve (NRC) and we
study the algebraic codes defined on it, providing a complete classification in terms of
divisors defined over the NRC; see Theorem 2. These are the so called Reed–Solomon
codes. Moreover, in the last section as an application of the Horn problem, we provide a
set of generators of the ideal associated with any algebraic code constructed on the NRC
over an extension Fn

q of Fq.
From now on, Fq will be a field with q = pn elements and C a non-singular, projective,

irreducible curve defined over Fq with q elements.

Notation

For d a positive integer, α = (α1, . . . , αm) is a partition of d into m parts if the αi
are positive and decreasing integers summing to n. We will denote as P(d) the set of
all partitions of d. We set l(α) = m for the length of α, that is, the number of cycles in α,
and li for the length of αi. The notation (a1, . . . , ak) stands for a permutation in Sd that
sends ai to ai+1. For λ ∈ P(d), we write [λ] for the corresponding character of Sn. We
write PGL(2, k) = GL(2, k)/k∗, where k is field of arbitrary characteristic and elements of

PGL(2, k), which will be represented by equivalence classes of matrices
(

a b
c d

)
, with

ad− bc 	= 0. A q−ary constant weight code of length n, distance d and weight w will be
denoted as an [n, d, w]q code.

2. Horn Problem: An Application to Convolutional Codes

In this section we present a description of the Horn problem, i.e., the study of the
eigenvalues of the sum C = A + B of two matrices, given the spectrum of A and B, in the
context of polynomial matrices with polynomial entries associated with torsion modules
or dually submodules of a polynomial ring with coefficients in a field. Next, we introduce
some important matrices that define a linear error-correcting code.

Let R be any complete valued field R with a closed coefficient field k of an arbitrary
characteristic, for example, a finite field or the ring R = C{x} of convergent power series.
If f ∈ R is a nonzero divisor, then we define the encoder A as the matrix associated
with the corresponding torsion module R/ f R. The matrix A can be diagonalized by
elementary row and column operations with diagonal entries xα1 , xα2 , . . . , xαn , for unique
non-negative integers α1 ≥ . . . ≥ αn. More precisely, these matrices are in correspondence
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with endomorphisms of Rn, with cokernels being torsion modules with at most n generators.
Such a module is isomorphic to a direct sum

R/xα1 R⊕ R/xα2 R⊕ . . .⊕ R/xαn R, α1 ≥ . . . ≥ αn.

The set (α1, . . . , αn) of invariant factors of A defines a partition α of size d = |λ|.
Reciprocally, when R = C{x} is the ring of convergent power series, any partition λ
defines a rank one torsion-free sheaf on C by setting Iλ = (xλ1 , xλ2 , xλ3 , . . . , xλn). In
particular, the ideal sheaf corresponding to the identity partition (1)n, defines a maximal

ideal I(1)n = (x,
n times︷︸︸︷. . . , x) in C[x]. The Horn problem is then equivalent to the following

question: which partitions α, β, γ can be the invariant factors of matrices A, B and C if
C = A · B?

In the case of convergent power series, this problem was proposed by I. Gohberg and
M.A. Kaashoek. By denoting the cokernels of A, B and C as A,B and C, respectively, one
has a short exact sequence:

0 → A → B → C → 0,

i.e., B is a submodule of C with C/B ∼= A; such an exact sequence corresponds to matrices
A, B and C with A · B = C.

If we specialize C to be the identity matrix I, by the correspondence between partitions
and ideal sheaves above, the invariant factors of the identity matrix are defined by the
partition (1)n, then the question becomes: which partitions α, β can be the invariant factors
of matrices A, B if A · B = I? The case of interest for us will be the case in which R is an
Fq[x]-module with q a prime power of p.

Duly, the code can be defined as an R−submodule of Rn, where R = F[z] is a poly-
nomial ring with coefficients in a field F and z is a uniformizing parameter in R (see [3]).
When F is a finite field, these are known as convolutional codes which have been very well
studied; see, for example, [4]. A full row rank matrix G(z) ∈ F[z]k×n with the property that

C = ImF[z]G(z) = { f (z)g(z) : f (z) ∈ [Fk(z)]}

is called a generator matrix. The degree d of a convolutional code C is the maximum of
the degrees of the determinants of the k× k submatrices of one, and hence any generator
matrix of C. The main difference between block and convolutional codes is that at the
encoder, in a convolutional code we may have different states. Linear block codes may be
considered as a particular case of convolutional codes with only one state. In next section
we describe an example of block codes known as Reed–Solomon codes.

Remark 1. The set of convolutional codes of a fixed degree is parametrized by the Grothendieck
Quot scheme of degree d, rank n− k coherent sheaf quotients of On on a curve X defined over F.
If the degree is zero, these schemes describe a Grassmann variety and constitute the so called class
of block codes of parameters (n, k). Namely, the space of all matrix divisors Dk(r, d) of rank r and
degree d can be identified with the set of rational points of Quotm

OX(D)n/X/k parametrizing torsion
quotients of OX(D)n and having degree m = r · deg D− d, see [5].

An Example with Algebraic-Geometric Codes: Reed–Solomon Codes

Let X be a smooth projective curve defined over a finite field Fq with q elements. The
classical algebraic-geometric (AG) code due to Goppa is defined by evaluating rational
functions associated with a divisor D at a finite set of Fq-rational points. From another
point of view, we are considering the evaluation of sections of the corresponding line
bundle OX(D) on X. Namely, let P := {P1, . . . , Pn} be a configuration of distinct Fq-
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rational points of X, the usual algebraic-geometric code is defined to be the image of the
evaluation map:

ϕD : L(D)→ Fn
q (2)

f �→ ( f (P1), . . . , f (Pn)),

where L(D) denotes the vector space of sections associated with the line bundle OX . The
parameters of these codes, the length n, the dimension k and the minimum distance d
are determined by the theorem of Riemann-Roch and it is easy to see that they satisfy
the following bound k + d ≥ n + 1− g, where g is the genus of the curve X. Using this
definition, the notion of AG codes is easily generalized for varieties of higher dimension.

Namely, let E be a vector bundle of rank r on X defined over Fq. The Goppa code
C(X, D, G) takes as input a divisor D supported on the finite set P of Fq-rational points
and a divisor G associated with the vector bundle E and evaluates each section σ ∈ L(G)
in the linear series attached to the divisor G:

C(X, D, G) = {(σ(Pi))
n
i=1 : σ ∈ L(G)} ⊆ Fn

q .

Observe that C(X,P , E) is an Fq-linear subspace of Fn
qr and thus a point of the Grass-

mannian Gr,n(Fq). Moreover, for the same subset of evaluation points and any r ≤ k, we
have G(r, n) ⊆ G(k, n) ⊆ Fn

q , where r ≤ k. Further, we get a partial flag of Fq−vector
spaces {0} = Ek ⊂ Ek−1 ⊂ . . . ⊂ E1 ⊂ E0 = Fn

q such that dim (Ei−1/Ei) = λi, to which we
associate the partition λ = (λ1, . . . , λr) of n. In this way, each partition λ of n determines
a variety Fλ = Fλ(Fq) of partial flags of Fq-vector spaces.

The representation theory of the special linear group SL(n,Fq) can be viewed as a
form of Gale duality first proven by Goppa in the context of algebraic coding theory.

Let D and G be effective divisors supported over a smooth projective curve X defined
over Fq such that Supp(G) ∩ Supp(D) = ∅, then the geometric Goppa code associated
with the divisors D and G is defined by

C(D, G) = {(x(P1), . . . , x(Pn)), x ∈ L(G)} ⊆ Fn
q ,

where L(G) denotes the linear system associated with the divisor G.

Definition 1. Let C1 and C2 be the corresponding codes obtained by evaluating non-constant
rational functions f (x) and g(x) with non common roots on X over the support of the divisor D.
We define the quotient code of C1 and C2 to be the code associated with the quotient rational function
ϕ = f /g.

Since f and g take the value ∞, they are defined by non constant polynomials f (x)
and g(x) in Fq[x]. Here Fq denotes the algebraic closure of Fq. The degree of ϕ is defined
to be deg (ϕ) = max {deg(f), deg(g)}.

As ϕ is a finite morphism, one may associate to each rational point x ∈ X(Fq) a local
degree or multiplicity mϕ(x) defined as:

mϕ(x) = ordz=0ψ(z),

where ψ = σ2 ◦ ϕ ◦ σ1, y = ϕ(x), and σ1, σ2 ∈ PGL(2,Fq) such that σ1(0) = x and σ2(y) = 0.
With each non-constant rational function ϕ over X, one can associate a matrix A with

entries in the ring Fq[x]. Namely, let us call f0 := f (x) and call f1 the divisor polynomial
g(x), and f2 the remainder polynomial; then by repeated use of the Euclid’s algorithm, we
construct a sequence of polynomials f0, f1, . . . , fk, and quotients q1, . . . qk, K ≤ n. Then the
quotient matrix A is defined to be the diagonal matrix with entries q1, . . . , qk corresponding
to the continued fraction expansion of the rational function ϕ.
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Here we include a SAGE code [6] which implements the algorithm.

def euclid(f, g):

r = f % g

q = f // g

while r.degree() >= 0:

yield q

f = g

g = r

r = f % g

q = f // g

Let λi be the partition of the integer k, defining the degree multiplicities of the polyno-
mial qi. Then the Horn problem applied to this situation reads:

Which partitions α, β and γ can be the degree multiplicities of polynomials qA, qB and
qC such that the corresponding diagonal matrices A, B, and C satisfy C = A · B?

Another important family of Goppa codes is obtained considering the normal rational
curve Cn defined over Fq:

Cn := {Fq(1, α, . . . , αn) : α ∈ Fq ∪ {∞}}.

The points are distinct elements of Fq and L is the vector space of polynomials of degree
at most k− 1 and with coefficients in Fq. Such polynomials have at most k− 1 zeros, so
nonzero codewords have at least n− k + 1 non-zeros. Hence, this is a [n, k, n− k + 1]q code
whenever k ≤ n. Any codeword (c0, c1, . . . , cn−1) can be expressed into a q-ary k-vector
with respect to the basis {1, α, . . . , αk−1}.These codes are just generalized Reed–Solomon
codes of parameters [n, k, d]q over Fq with parity check polynomial h(x) = ∏k−1

i=1 (x− αi)

where α is a primitive root of Fq such that αk = α + 1. In other words, the GRS code is
an ideal in the ring Fq[x]/(xk − x− 1) generated by a polynomial g(x) with roots in the
splitting field Fl

q of xk − x− 1, where k|ql − 1. Since the NRC is a genus 0 curve, it is easy
to see that these codes satisfy the Singleton bound d ≥ n− k + 1.

Construction of Reed–Solomon codes over Fq only employs elements of Fq, hence
their lengths are at most q. In order to get longer codes, one can make use of elements of an
extension of Fq, for instance considering subfield subcodes of Reed–Solomon codes.

As in [2], where we considered a variant of the Horn problem in the context of cyclic
coverings of the projective line defined over an arbitrary field k, the problem is reduced to
study the representation theory of the general linear group GL(n,Fq).

3. Representation Theory of GL(n,Fq)

We focus on Grassman codes Gk,n(Fq) that were described in the introduction as
[n, k]q−codes by considering an action (1) of the general linear group GL(n, q) on the Grass-
mannian. The study of the representation theory of GL(n, q) will allow us to understand
better the orbits of this action that will be characterized in Section 5.

The multiplication in the finite field Fqn is a bilinear map from Fqn × Fqn into Fqn .
Thus it corresponds to a linear map from the tensor product m : Fqn ⊗ Fqn → Fqn . The
symmetric group Sn acts on Fqn via the permutation matrix:

σ · vi = vσ(i), vi ∈ Fqn . (3)

The d-Veronese embedding of Pn(Fq) maps the line spanned by the vector v ∈ Fqn to
the line spanned by v⊗d = v⊗ . . .⊗ v. Thus the symmetric group Sn acts diagonally on
the basis of simple tensors of Fqn .

σ · (vi1 ⊗ . . .⊗ vir ) = vσ(i1) ⊗ . . .⊗ vσ(ir). (4)
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For each partition λ = (λ1, . . . , λk) we consider its Young diagram. The diagram of λ
is an array of boxes, lined up at the left, with λi boxes in the ith row, with rows arranged
from top to botton. For example,

is the Young diagram of the partition λ = (5, 3, 3, 1) with l(λ) = 4 and |λ| = 12. We define
the Schur projection:

cλ :
d⊗

Fqn →
d⊗

Fqn .

Let Sn be the symmetric group of permutations over d elements. Any permutation σ ∈
Sn acts on a given Young diagram by permuting the boxes. Let Rλ ⊆ Sn be the subgroup
of permutations preserving each row. Let Cλ ⊆ Sn be the subgroup of permutations
preserving each column, let cλ = ∑σ∈Rλ

∑τ∈Cλ
ε(τ)στ.

The image of cλ is an irreducible GL(n,Fq)-module, which is nonzero iff the number
of rows is less or equal than dimVλ. All irreducible GL(n,Fq)-modules can be obtained in
this way. Every GL(n,Fq)−module is a sum of irreducible ones.

In terms of irreducible representations of GL(n,Fq), a partition η corresponds to a
finite irreducible representation that we denote as V(η). Since GL(n,Fq) is reductive, any
finite dimensional representation decomposes into a direct sum of irreducible represen-
tations, and the structure constant cη

λ,μ is the number of times that a given irreducible
representation V(η) appears in an irreducible decomposition of the tensor product of the
representations V(λ) ⊗ V(μ). These are known as Littlewood–Richardson coefficients,
since they were the first to give a combinatorial formula encoding these numbers (see [7]).
In terms of the Hopf algebra Λ of Schur functions, let sλ be the Schur function indexed
by the partition λ, we have sλ · sμ = ∑ν kν

λμsν for the product and we get the coefficients

kη
λμ as the structure constants of the dual Hopf algebra Λ∗. These are known as Kronecker

coefficients (see [8,9]) since they appear as expansion coefficients in the Kronecker product
[λ][μ] = ∑ν kλμ[ν] of characters of the symmetric group Sn, as the authors proved in Propo-
sition 4.3 of [2]. Recall that the Schur function sλ attached to the partition λ = (λ1, . . . , λn)
of length less or equal than n is defined by the quotient:

sλ(x1, . . . , xn) =
det(xλi+n−j

i )1≤i,j,≤n

det(xn−j
i )1≤i,j≤0

.

It is a homogeneous polynomial of degree |λ| in x1, . . . , xn. It easily seen that
sλ(x1, . . . , xn, 0) = sλ(x1, . . . , xn). Moreover we can define the Schur function sλ as
the unique symmetric function with this property for all n ≥ l(λ). It is well known that
the Schur functions constitute a basis for the ring Λ of symmetric functions. In addition,
there are at least other three well known bases for the ring Λ of symmetric functions. The
basis ek of k-elementary symmetric functions, the hk complete homogeneous symmetric
functions of degree k and the power sums pk = zk

1 + zk
2 + . . .. This has been applied in

Reed–Solomon coding, that is, for AG codes defined on the projective line P1, as a way
to encode information words. Namely, for each codeword a = (a0, a1, . . . , an), ai ∈ Fq,
let us define an+1 = ∑n

i=1 ai ∈ Fq which is nothing but the first elementary symmetric
function e1. If we consider the variables x1, . . . , xr as a fixed list of nonzero elements in Fq,
then the information word a can be encoded into the codeword d = (d1, . . . , dr), where
di = ∑n

j=1 ajx
j
i . The secret is a0 = −∑r

i=1 di, while the pieces of the secret are the dis.
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3.1. Relation between Littlewood–Richardson Coefficients and Kronecker Coefficients

One can stack Littlewood–Richardson coefficients cν
λμ in a 3D matrix or 3-dimensional

matrix. Intuitively a 3D matrix is a stacking of boxes in the corner of a room. The elements
of the principal diagonal are called rectangular coefficients and are indexed by triples
(λ, μ, ν) = ((in), (in), (in)) of partitions (in) with all their parts equal to the same integer
1 ≤ i ≤ n.

Consider B and C, two 3D matrices, then we define the product matrix B · C as the
3D matrix

B · C = ∏
ν∈P(n),Bν ,Cν∈Mp(n)×p(n)(Q)

Bν · Cν.

Namely, for each index ν fixed, λ and μ run over all partitions P(n) of n. Thus
the coefficients

(
cν

λ,μ

)
λ,μ∈P(n)

are encoded in a matrix of order p(n)× p(n), where p(n)

denotes the number of unrestricted partitions of n, that is, the number of ways of writing
the integer n as a sum of positive integers without regard to order. Thus the product
matrix Bν · Cν is the standard product of square matrices in Mp(n)×p(n)(Q). In particular,
the property of associativity follows easily from the associativity in the vector space
Mp(n)×p(n)(Q).

Proposition 1. Let C be the 3D matrix whose entries are the Littlewood–Richardson coefficients,
and K the 3D matrix of Kronecker coefficients. Then the matrices are inverse one to each other.

Proof. Since cν
λμ and kν

λμ correspond to the structure constants of the Hopf algebra of Schur
functions and its dual one respectively (see Proposition 4.3 of [2]), and the Hopf algebra of
Schur functions is self-dual (see [9]), one gets that the product matrix C · K is the identity
3D matrix I , that is, the matrix whose rectangular coefficients are identically 1. Thus both
matrices are inverse one to each other.

3.2. The Polytope of Triples (λ, μ, η) for Which cη
λ,μ Is Positive

The convex hull in R3 of all triples (λ, μ, ν) with cν
λ,μ > 0 is the Newton polytope

of f (x, y, z) = ∑λ,μ,ν cν
λ,μxλyμzν ∈ C[x, y, z]. Here xλ denotes the monomial xλ1 · · · xλn of

partition degree λ. In particular, when λ = (1r), we have x(1)
r
= er = ∑i1<...<ir xi1 . . . xir ,

the r−th elementary symmetric function. At the other extreme, when λ = (r) we have
x(r) = pr = ∑ xr

i , the r−power sum. As we have seen in the previous section, it is clear
that every symmetric function f ∈ Λ is uniquely expressible as a finite linear combination
of the (xλ)λ∈P . Moreover, the following theorem shows that f is the the generating series
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for the Gromov–Witten invariant Nd,g(λ, μ, ν) counting irreducible plane curves of given
degree and genus g passing through a generic configuration of 3d− 1 + g points on P2(C)
with ramification type at 0, ∞ and 1 described by the partitions λ, μ and ν and simple
ramification over other specified points with |λ| + |μ| + |ν| = d, and these have been
computed by Fomin and Mikhalkin in [10].

Theorem 1. The power series f (x, y, z) = ∑λ,μ,ν cν
λ,μxλyμzν ∈ C[x, y, z], is the generating

series for the Gromov–Witten invariants Nd,g(λ, μ, ν), counting irreducible plane curves of given
degree d and genus g passing through a generic configuration of 3d− 1 + g points on P2(C) with
ramification type at 0, ∞ and 1 described by the partitions λ, μ and ν and simple ramification over
other specified points with |λ|+ |μ|+ |ν| = d.

Proof. Whenever the coefficient cν
λ,μ > 0 is positive consider the corresponding ideal

sheaves Iλ, Iμ and Iν in C[x, y, z] associated with the partitions λ, μ and ν respectively.
Each ideal sheaf determines a curve in C[x, y] via homogenization of the corresponding
monomial ideals. Thus each coefficient represents the number of ideal sheaves on C3

of colength n and degree d equal to the size of the partition, that is the corresponding
3-point Gromov–Witten invariant 〈λ, μ, ν〉0,3,d of the Hilbert scheme Hilbn of n = 2d− 1 +
|ν|+ |μ|+ |λ|+ g distinct points in the plane, or the relative Gromov–Witten invariant
Nd,g(λ, μ, ν) counting irreducible plane curves of given degree d and genus g passing
through a generic configuration of 3d− 1 + g points on P2(C) with ramification type at
0, ∞ and 1 respectively, described by the partitions λ, μ and ν of n (see section 4 of [2]).

Remark 2. The Euler characteristic of each ideal sheaf is fixed and coincides with the Euler
characteristic χ of the polyhedra described in R3 by the convex hull of all triples (λ, μ, ν) with
cν

λ,μ > 0, that is, the Newton polytope of f (x, y, z) = ∑λ,μ,ν cν
λ,μxλyμzν ∈ R[x, y, z]. Thus each

coefficient represents the number of ideal sheaves on C3 of fixed Euler characteristic χ = n and
degree d equal to the size of the partition, that is the corresponding Donaldson-Thomas invariant of
the blow-up of the plane P1 × (C2) with discrete invariants χ = n and degree d.

Remark 3. The Hilbert scheme Hilbn of n points in the plane C2 parametrizing ideals J ⊂ C[x, y]
of colength n contains an open dense set in the Zariski topology parametrizing ideals associated
with configurations of n distinct points. Moreover there is an isomorphism Hilbn ∼= (C2)n/Sn.
In particular, as we showed in [2], any conjugacy class in the symmetric group Sn determines
a divisor class in the T−equivariant cohomology H4n

T (Hilbn,Q), for the standard action of the
torus T = (C∗)2 on C2. The T−equivariant cohomology of Hilbn has a canonical Nakajima basis
indexed by P(n). The map λ → Jλ is a bijection between the set of partitions P(n) and the set of
T−fixed points HilbT

n ⊂ Hilbn.

Denote the series 〈λ, μ, ν〉Hilbn of 3-point invariants by a sum over curve degrees:

〈λ, μ, ν〉Hilbn = ∑
d≥0

qd〈λ, μ, ν〉Hilbn
0,3,d .

Corollary 1. Let H be the divisor class in the Nakajima basis corresponding to the tautological
rank n bundle O/J → Hilbn with fiber C[x, y]/J over J ∈ Hilbn and ν the corresponding
partition.Then we can recover inductively in the degree d, all the Littlewood–Richardson coefficients
(cν

λ,μ)λ,μ∈P(n).

Proof. The non-negative degree of a curve class β ∈ H2(Hilbn,Z) is defined by d =
∫

β H.

Then via the identification of cν
λ,μ with the 3-point Gromov–Witten invariant 〈λ, H, μ〉Hilbn

0,3,d
where [λ], [μ] are the corresponding classes in H4n

T (Hilbn,Q) associated with the partitions
λ and μ in P(n), we proceed by induction on the degree d as in section 3.6 of [11].
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Remark 4. If we choose the partition ν to be the empty partition ∅, we recover the relative Gromov–
Witten invariants Nd,g(λ, μ) studied by Fomin and Mikhalkin in [10], and by Caporaso and Harris
in [12].

4. Configurations of Points over a Normal Rational Curve

In this section, we study codes defined from a linear series attached to a divisor on the
normal rational curve NRC or equivalently Goppa codes on P1 and hence generalized Reed–
Solomon codes. Assume V is a vector space of dimension n + 1 over a field k equipped
with a linear action, that is, G acts via a representation G → GL(V). We denote by SdV the
d-th symmetric power of V.

Consider the d-Veronese embedding of Pn

PV∗ → PSdV∗ (5)

v �→ vd,

mapping the line spanned by v ∈ V∗ to the line spanned by vd ∈ SdV∗. In coordinates, if we
choose bases {α, β} for V and {[ n!

k!(n−k)! ]α
kβd−k} for SdV∗ and expanding out (xα + yβ)d,

we see that in coordinates this map may be given as

[x, y]→ [xd, xd−1y, xd−2y2, . . . , xyd−1, yd].

In particular, the homogeneous coordinate ring for the natural projective embedding
of the geometric invariant theory (GIT) quotient (Pd)n//SLd+1 is the ring of invariants for
n ordered points in the projective space up to, projectivity, i.e, if one considers the function
field k(x1, . . . , xd) of the projective space (P)d, the ring of invariants is defined by:

{ f ∈ k(x1, . . . , xd) | ∀σ ∈ SLd+1, σ · f = f }.

Generators for this ring are given by tableau functions, which appear in many ar-
eas of mathematics, particularly representation theory and Schubert calculus. Consider
the hypersimplex:

�(d + 1, n) = {(c1, . . . , cn) ∈ Qn|0 ≤ ci ≤ 1, ∑ ci = d + 1},

for any 1 ≤ d ≤ n− 3 and choose a linearization c ∈ �(d + 1, n), there is a morphism

ϕ : M̄0,n → (Pd)n//cSLd+1,

sending a configuration of distinct points on P1 to the corresponding configuration under
the dth Veronese map.

The symmetric power Symn Cd of the curve Cd is the quotient of the configuration
space Cn

d of n unordered tuples of points on the normal rational curve Cd by the symmetric
group Sn. Furthermore, we can identify the set of effective divisors of degree d on Cd with
the set of k-rational points of the symmetric power SymnC, that is, SymnC represents the
functor of families of effective divisors of degree n on C.

Lee-Sullivan List-Decoding Algorithm of Reed–Solomon Codes

By definition, the rational normal curve Cd is the image by the d−Veronese embedding
of PV∗ = P1 where V is a 2-dimensional vector space, therefore it is isomorphic to any
curve of genus 0. The action of PGL(2, k) on Pd preserves the rational normal curve Cd.
Conversely, any automorphism of Pd fixing Cd pointwise is the identity. It follows that
the group of automorphisms of Pd that preserves Cd is precisely PGL(2, k). These codes
are just generalized RS codes and they come with efficient decoding algorithms once we
choose a metric consistent with channel errors and search of a set of vectors with given
metric properties as a correcting code. In particular, these codes are consistent with the
Hamming metric ([13,14]). Recall that given two vectors of length n, say U and V, the
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Hamming distance dH(U, V) between U and V is the number of coordinates in which they
differ.

Given a [n, k] RS code C of length n and dimension k, we call d the minimum
(Hamming distance) which attains the Singleton bound n − k + 1. We shall identify
the code with the set of its codewords. A codeword of C is viewed as a polynomial
c0 + c1x + . . . + cn−1xn−1 in the F−vector space F[x], where F is a finite field. In the com-
munication process, when a codeword is transmitted, it can be affected by errors and
erasures. An error occurs when one codeword component is changed into another field
element and an erasure occurs when the received component has an unknown value. The
problem of minimum distance decoding is to find, for any given vector v, the set Cv of
all codewords c ∈ C at minimum distance from v. If Cv contains just one element c, then
the sent codeword coincides with the received codeword and no decoding is needed. The
codewords of minimum weight are the points lying in the intersection of any line and the
curve. K. Lee and M.E. O’Sullivan in [15] describe a list decoding algorithm consisting of
two steps: the interpolation step and the root-finding step. Starting with a set of generators
of the module induced from the ideal for the n points {P1, . . . , Pn}, they convert the gener-
ators to a Gröbner basis of the module in which the minimal polynomial is found. This
results in an efficient algorithm solving the interpolation problem.

Let v be the received vector, and fix n distinct points α1, . . . , αn from F, for each
1 ≤ i ≤ n, let Pi denote the point (αi, vi) by Lagrange interpolation we get the polynomial
hv = ∑n

i=1 vihi ∈ F[x]n, where hi = ∏n
j=1(x− αj), j 	= i so that hi(αj) = 1 if j = 1, and 0

otherwise. Now for m ≥ 1, we define the ideal

Iv,m = { f ∈ F[x, y]|multPi ( f ) ≥ m for 1 ≤ i ≤ n} ∪ {0}.

For f ∈ F[x, y] and u ≥ 1, denoted by degu( f ), the (1, u)−weighted degree of f , that
is, the variables x and y, are assigned weights 1 and u, respectively, and for a monomial
xiyj, we define degu(xiyj) = i + uj.

The goal of the interpolation step is to find a polynomial in Iv,m having the smallest
(1, k− 1)−weighted degree. The codewords of minimum weight are the points lying in the
intersection of any line and the curve. Moreover if wt(v− c) < n− w

m , where w = degk−1( f )
and f is the polynomial representing the word c, then the polynomial hc is a root of f as
a polynomial in y over F[x]. Moreover the set of polynomials (y− hc)iηm−i, 0 ≤ i ≤ m,
where η = ∏n

j=1(x− αj) is a set of generators of Iv,m.
Let Q be the minimal polynomial of Iv,m with respect to the monomial order >k−1

of F[x, y]. We can find Q by computing a Gröbner basis of Iv,m with respect to >k−1. In
Appendix A, we provide Horn’s algorithm to compute sets of indices which are admissible
for the Horn problem. As a result, we provide a set of generators for the algebraic code
induced on the NRC.

Proposition 2. If we consider the set of orbits of Cn
d by the action of finite subgroups of the

symmetric group Sn, we get all possible divisor classes in the group Divn(Cd) of degree n divisors
on Cd.

Proof. Since the symmetric group Sn is generated by 3 elements, a reflection of order 2, a
symmetry of order 3 and a rotation of order n, we get all the divisor classes by quotienting
the configuration space Cn

d of n points on the normal rational curve, by the cyclic group
generated by the rotation, or one of the triangle groups, the dihedral group Dn, the
alternated groups A4, A5 or the symmetric group S4.

5. Notion of Collinearity on the Normal Rational Curve

A permutation matrix σ ∈ GL(n,Fq) acts on the Grassmannian by multiplication
on the right of the corresponding representation matrix. In particular, we are interested
in understanding the orbits by the action of any permutation matrix of GL(n,Fq) and
moreover of any subgroup G contained in GL(n,Fq). Further, it is possible to count the
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orbits of the action in several cases and this is established by the correspondence given in
Theorem 2 between sets of points satisfying certain geometrical conditions and partitions.

Definition 2. An incidence structure S on V is a triple (P ,B, I), where P is a set whose elements
are smooth, reduced points in V, B is a set whose elements are subsets of points called blocks (or
lines in several specific cases) endowed with a relation of collinearity, and an incidence relation
I ⊂ P ×B. If (P, L) ∈ I, then we say that P is incident with L or L is incident with P, or P lies in
L or L contains P.

When the collinearity relation is a symmetric ternary relation defined on triples
(p, q, r) ∈ P ×P ×P by the geometric condition (p, q, r) ∈ B if either p + q + r is the full
intersection cycle of Cd with a k-line l ⊂ Pn(k) with the right multiplicities, or else if there
exists a k-line l ⊂ V such that, p, q, r ∈ l, then the triple (p, q, r) is called a plane section.

1. For any (p, q) ∈ P2(V∗), there exists an r ∈ P(SdV∗) such that (p, q, r) ∈ l. The triple
(p, q, r) is strictly collinear if r is unique with this property, and p, q, r are pairwise
distinct. The subset of strictly collinear triples is a symmetric ternary relation. When
k is a field algebraically closed of characteristic 0, then r is unique with this property,
and we recover the euclidean axioms.

2. Assume that p 	= q and that there are two distinct r1, r2 ∈ P with (p, q, r1) ∈ B and
(p, q, r2) ∈ B. Denote by l = l(p, q) the set of all such rs, then l3 ∈ B—that, is any
triple (r1, r2, r3) of points in which l is collinear. Such sets l are called lines in B.

If V is a 3-dimensional vector space defined over the finite field Fp, then the projective
plane P2(Fp) on V is defined by the incidence structure PG(2, p) = (P(V),L(V), I).

Definition 3.

1. A (k; r)-arc K in PG(2, p) is a set of k points such that some r, but not r + 1 of them are
collinear. In other words, some line of the plane meets K in r points and no more than r points.
A (k; r)−arc is complete if there is no (k + 1; r) arc containing it.

2. A k-arc is a set of k points, such that, every subset of s points with s ≤ n points is linearly
independent.

Let q denote some power of the prime p and PG(n, p) be the n-dimensional projective
space (Fp)n+1 ∼= Fq, where n ≥ 2.The normal rational curve C is defined as:

Vn
1 :=

{
Fq(1, x, x2, . . . , xn)| x ∈ Fq

⋃
{∞}

}
.

If q ≥ n + 2, the NRC is an example of a (q + 1)−arc. It contains q + 1 rational points,
and every set of n + 1 points are linearly independent. For each a ∈ (Fp)n+1, the mapping:

Fp(x0, . . . , xn)→ Fp(a0x0, . . . , anxn),

describes an automorphic collineation of the NRC.
All invariant subspaces form a lattice with the operations of “join” and “meet”.
For j ∈ N, let Ω(j) = {m ∈ N|0 ≤ m ≤ n, (m

j ) 	= 0 mod p}. Given J ⊂ {0, 1, . . . , n},
put Ω(J) =

⋃
j∈J Ω(j), Ψ(J) :=

⋃
j∈J{j, n− j}.

Both Ω and Ψ are closure operators on {0, 1, . . . , n}. Likewise the projective collineation
Fp(x0, x1, . . . , xn) → Fp(xn, xn−1, . . . , x0) leaves the NRC invariant whence Λ has to be
closed with respect to Ψ. Any algebraic-geometric code constructed by evaluation of a
function over the NRC with values in Fq is a generalized Reed–Solomon code of length at
most q. In order to get longer codes, one needs to use elements from any finite extension
Fr

q of Fq.

95



Mathematics 2021, 9, 578

Proposition 3. Each subspace invariant under collineation of the NRC is indexed by a partition in
P(t). If the ground field k is sufficiently large, then every subspace which is invariant under all
collineations of the NRC is spanned by base points kcλ, where λ ∈ P(t).

Proof. Let
Et

n := {(e0, e1, . . . , en) ∈ Nn+1| e0 + e1 + . . . + en = t},

be the set of partitions of t of n parts and let Y be the (n
t)−dimensional vector space over

Fp with basis
{ce0,e1,...,en ∈ Fq : (e0, e1, . . . , en) ∈ Et

n}.

Let us call V t
n the Veronese image under the Veronese mapping given by:

Fp(
n

∑
i=0

xibi)→ Fp(∑
Et

n

ce0,...,en xe0 xe1
1 · · · cen

n ), xi ∈ Fp.

The Veronese image of each r-dimensional subspace of PG(n, p) is a sub-Veronesean
variety V t

r of V t
n, and all those subspaces are indexed by partitions in P(t). Thus by a

Theorem due to Gmainer are invariant under the collineation group of the normal rational
curve (see [16]).

The k-rational points (p0, p1, · · · , pn) of the normal rational curve C correspond to
collinear points on C that are defined over some Galois extension l of k and permuted by
Gal(l/k).

5.1. An Application: Three-Point Codes on the Normal Rational Curve

As we showed in Proposition 3, each subspace invariant under collineation of the
NRC is indexed by a partition λ ∈ P(d). Let us call the base point associated with the
partition λ as Pλ. As we are considering that the ground field is Fq, the Fq-points might
be defined over a finite extension Fqr of Fq. Observe that for any divisor r of n, one easily
obtains a extension field of Fq of degree r. Namely, let ξ a non-trivial r−root of unity,
one can consider the symbols ξqr

, . . . , ξq, ξ and the polynomial which has them as roots,
q(x) = ∏i=r

i=0(1− ξqi
) gives an extension field of Fq of degree r.

Theorem 2. Let σ1, σ2, σ3 be three generators for the symmetric group Sd and let λ1, λ2 and λ3 be
the partitions of d indexing the corresponding irreducible representations in the special linear group
SL(n,Fq). Then any algebraic code defined over the NRC is covered by a divisor defined as linear
combination of the base points (Pλi )1≤i≤3 on the NRC, where the λi are LR coefficients.

Proof. Consider the divisors associated with the rational maps f (x, y, z) = nx + my + lz
defined over the normal rational curve Cd defined over Fq, with n, m and l integer numbers.
In particular, if d| q2− 1, the points P = (α, 0, 0), Q = (0, β, 0) and R = (0, 0, γ) with αd = 1,
βd = 1 and γd = 1, are Fq2−rational points on Cd, and the divisors nP, mQ and lR define
codes on it. Reciprocally, given a code on the NRC, by Proposition 2, the corresponding
divisor defining the code is defined by a finite subgroup in the symmetric group. Since
the symmetric group is generated by the 3 elements σ1, σ2 and σ3, the divisor is a linear
combination of the base points (Pλi )1≤i≤3 on the NRC.

5.2. Conclusions

In [17], the authors considered a particular class of block codes known as quasi-cyclic
codes as orbit codes in the Grassmannian parameterizing constant dimension codes. In
the present paper we have focused on RS codes that can also be viewed as orbit codes
in the Grassmannian through the action of PGL(n, q), the collineation group of the NRC.
This approach could be extended to study a wide class of codes, including convolutional
codes with two states known as 2D finite support convolutional codes of rate k

n , which are
defined as free F[z1, z2]−submodules of F[z1.z2]

n with rank k.
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Appendix A. Explicit Presentation of 3-Point Codes

In this section, we provide Horn’s algorithm to compute sets of indices which are
admissible for the Horn problem. As a result, we provide a set of generators for the
algebraic code induced on the NRC. Given sets I, J, K ⊂ {0, 1, . . . , n}, of cardinality r, we
can associate to them partitions λ, μ and ν as follows. Let I = {i1 < . . . ,< ir} ⊂ {1, . . . , n};
then the corresponding partition is defined as λ = (ir − r, . . . , i1 − 1). We consider the
corresponding codes defined by the base points cλ, cμ and cν, whenever the corresponding
Littlewood–Richardson coefficient cν

λ,μ is positive. Next, we give an algorithm to compute
the Littlewood–Richardson coefficients cν

λ,μ. Horn defined sets of triples (I, J, K) by the
following inductive procedure (see [7]):

Un
r = {(I, J, K)| ∑

i∈I
+∑

j∈J
= ∑

k∈K
k + r(r + 1)/2},

Tn
r = {(I, J, K) ∈ Un

r | f or all p < r and all (F, G, H) ∈ Tr
p,

∑
f∈F

i f + ∑
g∈G

jg ≤ ∑
h∈H

kh + p(p + 1)/2}.

Note that Horn’s algorithm produces all the triples from the lowest values. Even if
it is possible to start with a random generator set I, you need first to compute the lower
values. As a consequence of the classification Theorem 2, for any triple (I, J, K) of indices
admissible for the Horn problem the polynomials defined by f (x) = ∏j∈J(x− αj), g(x) =
∏i∈I(x − αi), and h(x) = ∏k∈K(x − αk) where α is a primitive element of Fqm and m is
the least integer such that n + 1| pm − 1 constitute a set of generators for the ideal of the
corresponding algebraic code in the module of n + 1 Fqm -rational points lying on the NRC.

Here we present a Sage [6] code calculating the Un
r and Tn

r index sets, followed by a
table containing all the cases till n = 4 and r = 3. The algorithm is implemented using
Python: this involves calculate and iterate through r−combination of n−element. The
running time is O((n

r)
3).

from sage.combinat.subset import Subsets

def simple_cache(func):

cache = dict()

def cached_func(*args):

if args not in cache:

cache[args] = func(*args)

return cache[args]

cached_func.cache = cache

return cached_func
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@simple_cache

def getUnr(n, r):

if r >= n:

raise ValueError(‘‘r must be less than n: (n, r) =

(%d, %d)’’ %(n, r))

s = Subsets(range(1, n + 1), r)

candidates = [(x, y, z) for x in s for y in s for z in s]

return [tuple(map(sorted, (x, y, z))) for (x, y, z) in candidates if (

sum(x) + sum(y)) == (sum(z) + r * (r + 1)/2)]

def index_filter(sub_index, index):

if max(sub_index) > len(index):

raise ValueError(‘‘%s must be valid indexes for %s’’

% (sub_index, index))

# our indexes lists start at 1

return [index[i - 1] for i in sub_index]

def condition((f, g, h), (i, j, k)):

p = len(f)

return sum(index_filter(f, i)) + sum(index_filter(g, j)) <= sum(

index_filter(h, k)) + p*(p + 1)/2

def genTillR(r):

return [getTnr(r, p) for p in range(1, r)]

@simple_cache

def getTnr(n, r):

if r == 1:

return getUnr(n, 1)

else:

return [(i, j, k) for (i, j, k) in getUnr(n, r) if all(

all(condition((f, g, h), (i, j, k)) for (f, g, h) in triplets)

for triplets in genTillR(r))]

Here we list code’s remarks

• The sorted() mapping function in getUnr() is necessary because the order of ele-
ments in Subsets is unknown;

• There is a 1-offset between index in Python lists and index sets we use;
• The recursion in getTnr() is factored out in getTillR() call;
• The cache decorator mitigates the perils of performing the same calculation several

times in a function that is already heavily recursive;
• Results are limited by constraints Python has on recursive function calls;
• The filtering performed on Un

r to get Tn
r is implemented by two nested calls to all().
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(n, r) Un
r Tn

r

(2, 1)
({1}, {1}, {1}), ({1}, {2}, {2}),
({2}, {1}, {2})

({1}, {1}, {1}), ({1}, {2}, {2}),
({2}, {1}, {2})

(3, 1)
({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({2}, {1}, {2}),
({2}, {2}, {3}), ({3}, {1}, {3})

({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({2}, {1}, {2}),
({2}, {2}, {3}), ({3}, {1}, {3})

(3, 2)

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {2, 3}, {2, 3}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {2, 3}),
({2, 3}, {1, 2}, {2, 3})

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {2, 3}, {2, 3}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {2, 3}),
({2, 3}, {1, 2}, {2, 3})

(4, 1)

({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({1}, {4}, {4}),
({2}, {1}, {2}), ({2}, {2}, {3}),
({2}, {3}, {4}), ({3}, {1}, {3}),
({3}, {2}, {4}), ({4}, {1}, {4})

({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({1}, {4}, {4}),
({2}, {1}, {2}), ({2}, {2}, {3}),
({2}, {3}, {4}), ({3}, {1}, {3}),
({3}, {2}, {4}), ({4}, {1}, {4})

(4, 2)

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {1, 4}, {1, 4}),
({1, 2}, {1, 4}, {2, 3}),
({1, 2}, {2, 3}, {1, 4}),
({1, 2}, {2, 3}, {2, 3}),
({1, 2}, {2, 4}, {2, 4}),
({1, 2}, {3, 4}, {3, 4}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {1, 4}),
({1, 3}, {1, 3}, {2, 3}),
({1, 3}, {1, 4}, {2, 4}),
({1, 3}, {2, 3}, {2, 4}),
({1, 3}, {2, 4}, {3, 4}),
({1, 4}, {1, 2}, {1, 4}),
({1, 4}, {1, 2}, {2, 3}),
({1, 4}, {1, 3}, {2, 4}),
({1, 4}, {1, 4}, {3, 4}),
({1, 4}, {2, 3}, {3, 4}),
({2, 3}, {1, 2}, {1, 4}),
({2, 3}, {1, 2}, {2, 3}),
({2, 3}, {1, 3}, {2, 4}),
({2, 3}, {1, 4}, {3, 4}),
({2, 3}, {2, 3}, {3, 4}),
({2, 4}, {1, 2}, {2, 4}),
({2, 4}, {1, 3}, {3, 4}),
({3, 4}, {1, 2}, {3, 4})

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {1, 4}, {1, 4}),
({1, 2}, {2, 3}, {2, 3}),
({1, 2}, {2, 4}, {2, 4}),
({1, 2}, {3, 4}, {3, 4}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {1, 4}),
({1, 3}, {1, 3}, {2, 3}),
({1, 3}, {1, 4}, {2, 4}),
({1, 3}, {2, 3}, {2, 4}),
({1, 3}, {2, 4}, {3, 4}),
({1, 4}, {1, 2}, {1, 4}),
({1, 4}, {1, 3}, {2, 4}),
({1, 4}, {1, 4}, {3, 4}),
({2, 3}, {1, 2}, {2, 3}),
({2, 3}, {1, 3}, {2, 4}),
({2, 3}, {2, 3}, {3, 4}),
({2, 4}, {1, 2}, {2, 4}),
({2, 4}, {1, 3}, {3, 4}),
({3, 4}, {1, 2}, {3, 4})

(4, 3)

({1, 2, 3}, {1, 2, 3}, {1, 2, 3}),
({1, 2, 3}, {1, 2, 4}, {1, 2, 4}),
({1, 2, 3}, {1, 3, 4}, {1, 3, 4}),
({1, 2, 3}, {2, 3, 4}, {2, 3, 4}),
({1, 2, 4}, {1, 2, 3}, {1, 2, 4}),
({1, 2, 4}, {1, 2, 4}, {1, 3, 4}),
({1, 2, 4}, {1, 3, 4}, {2, 3, 4}),
({1, 3, 4}, {1, 2, 3}, {1, 3, 4}),
({1, 3, 4}, {1, 2, 4}, {2, 3, 4}),
({2, 3, 4}, {1, 2, 3}, {2, 3, 4})

({1, 2, 3}, {1, 2, 3}, {1, 2, 3}),
({1, 2, 3}, {1, 2, 4}, {1, 2, 4}),
({1, 2, 3}, {1, 3, 4}, {1, 3, 4}),
({1, 2, 3}, {2, 3, 4}, {2, 3, 4}),
({1, 2, 4}, {1, 2, 3}, {1, 2, 4}),
({1, 2, 4}, {1, 2, 4}, {1, 3, 4}),
({1, 2, 4}, {1, 3, 4}, {2, 3, 4}),
({1, 3, 4}, {1, 2, 3}, {1, 3, 4}),
({1, 3, 4}, {1, 2, 4}, {2, 3, 4}),
({2, 3, 4}, {1, 2, 3}, {2, 3, 4})
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Abstract: We study the properties of the image of a rational surface of revolution under a nonsingular
affine mapping. We prove that this image has a notable property, namely that all the affine normal
lines, a concept that appears in the context of affine differential geometry, created by Blaschke in the first
decades of the 20th century, intersect a fixed line. Given a rational surface with this property, which can
be algorithmically checked, we provide an algorithmic method to find a surface of revolution, if it
exists, whose image under an affine mapping is the given surface; the algorithm also finds the affine
transformation mapping one surface onto the other. Finally, we also prove that the only rational affine
surfaces of rotation, a generalization of surfaces of revolution that arises in the context of affine differential
geometry, and which includes surfaces of revolution as a subtype, affinely transforming into a surface of
revolution are the surfaces of revolution, and that in that case the affine mapping must be a similarity.

Keywords: surface of revolution; affine differential geometry; affine equivalence

1. Introduction

Surfaces of revolution are classical objects in differential geometry, generated by rotating a curve
around a fixed line, called the axis of revolution of the surface. These surfaces appear often in
nature, in architecture, and in many common human artifacts, and are widely used in Geometric
Design. Additionally, when the surface of revolution is rational, i.e., admitting a parametrization whose
components are quotients of bivariate polynomials (a rational parametrization ), the strong structure of the
surface allows to perform easily certain operations like implicitizing [1], reparametrizing the surface over
the real numbers [2], or analyzing the surjectivity of the parametrization [3]. We recall that every rational
surface is algebraic, i.e., it is the zeroset of a trivariate polynomial.

In this paper we study how rational surfaces of revolution are transformed when a nonsingular affine
mapping is applied. The resulting surface is certainly rational too, but in general it is not a surface of
revolution. However, some properties of this image can be discovered when elements of affine differential
geometry are used. Classical differential geometry studies objects and notions that behave well when an
orthogonal transformation is applied: for instance, normal lines transform accordingly, and the Gauss
curvature is preserved. Affine differential geometry [4,5], started by Blaschke in the first decades of the 20th
century, however, studies objects and notions that behave well when we consider matrix transformations
of the special linear group SL3(R), i.e., the group of matrices with determinant equal to 1. Thus, in the
context of affine differential geometry, for instance, normals and Gauss curvature are replaced by affine
normals and affine curvature, which have good properties when transformations of the special linear group
are applied.

In the context of affine differential geometry, affine surfaces of rotation [6,7], which generalize classical
surfaces of revolution, are introduced. These surfaces can be of three different subtypes, elliptic, hyperbolic
and parabolic, the first of them being the classical surfaces of revolution. Theoretical properties of algebraic
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affine surfaces of rotation are treated in some recent papers: the elliptic case is studied in [8], the hyperbolic
case is addressed in [9], and the parabolic in [10]. Furthermore, an algorithm for recognizing algebraic
affine surfaces of revolution is provided in [11]. In this regard, a necessary condition, although not
sufficient, for a surface to be an affine surface of rotation is that all the affine normal lines of the surface
intersect a fixed line, called the affine axis of rotation. If the affine normal lines satisfy this property, we say
that the surface is ANIL (Affine Normal lines Intersecting a Line). In particular, surfaces of revolution are
ANIL surfaces.

Using notions of affine differential geometry and Plücker coordinates (see [12]) as fundamental tools, we
prove that the image of every rational ANIL surface, and therefore of every rational surface of revolution,
under a nonsingular affine mapping is also ANIL. Furthermore, we also provide an algorithmic method
to find, given a rational ANIL surface, a rational surface of revolution affinely transforming onto the
first surface, and to compute the mapping itself. This is useful because, as we mentioned before, certain
operations like implicitizing, reparametrizing over the reals or studying surjectivity can be efficiently
performed on surfaces of revolution; via the affine mapping relating the surface of revolution and the
given ANIL surface, the results of these operations can be carried to the original ANIL surface.

Additionally, we also explore under what conditions the image of a rational surface of revolution
under a nonsingular affine mapping is an affine rotation surface. We prove that this is only possible
when the affine rotation surface is another surface of revolution and the mapping is a similarity, i.e.,
the composition of a rigid motion and a scaling. This shows that there are in fact many ANIL surfaces
which however are not affine surfaces of rotation, since the image of any surface of revolution under
an affine mapping that is not a similarity is an ANIL surface, but not an affine surface of rotation.
The observation is of interest since up to our knowledge, the only known examples of ANIL surfaces to
this date are affine surfaces of rotation and affine spheres, i.e., surfaces where all the affine normals intersect
at one point, called the center of the sphere. Affine spheres do not need to be affine surfaces of rotation [11],
and their nature is preserved by affine mappings.

The structure of the paper is the following. In Section 2, we recall several notions and results on affine
differential geometry, and Plücker coordinates. In Section 3, we prove that the image of a rational surface
of revolution is an ANIL surface. In Section 4, we develop an algorithmic method to compute a surface of
revolution affinely equivalent to a given ANIL rational surface, and to find the affine mapping between
the surfaces. In Section 5, we address the conditions for the affine image of a rational surface of revolution
to be an affine surface of rotation. We close in Section 6, where we present our conclusions.

2. Preliminaries

In this section we consider several preliminary notions on affine differential geometry and line
geometry. Along the section, we let S ⊂ R3 be a rational surface. For certain technical reasons, which will
be clear later, we assume that S is not a developable surface, i.e., isometric to the plane, so S has Gaussian
curvature not identically equal to zero.

2.1. Affine Rotation Surfaces

In this subsection we recall several notions and results on affine differential geometry and a special
class of surfaces, called affine rotation surfaces, which appear in the context of affine differential geometry
and generalize surfaces of revolution. First, we recall from [13,14] some notions from affine differential
geometry. The affine co-normal vector at each point of S is defined as

ν = |K|− 1
4 ·N, (1)

102



Mathematics 2020, 8, 2061

where N is the unit Euclidean normal vector, and K is the Gaussian curvature. The affine co-normal vector
is not defined when K is zero.

The affine normal vector to S at a point p ∈ S is

ξ(p) = [ν(p), νu(p), νv(p)]−1 (νu(p)× νv(p)) , (2)

where •u, •v represent the partial derivatives of •with respect to the variables u, v, and [•, •u, •v] represents
the determinant of •, •u, •v. The affine normal line at p ∈ S is the line through p, parallel to the affine normal
vector. Denoting by SL3(R) the special linear group, i.e., the group of matrices with determinant equal
to 1, the affine normal lines are known to be covariant under affine transformations of SL3(R) (see Prop.
3 in [13]): this means that if h represents an affine transformation of the special linear group and Lp

represents the affine normal line at p, then h(Lp) coincides with Lh(p). Sometimes we will refer to this
property as the covariance property of affine normal lines.

Also in the context of affine differential geometry, affine rotation groups are introduced. An affine
rotation group is a uniparametric matrix group that is a subgroup of SL3(R), and which leaves invariant
exactly one line in 3-space, called the affine axis of rotation. Lee [6] shows that there are only three different
types of such subgroups; in an appropriate coordinate system, these types correspond to the following
uniparametric matrix groups:⎛⎜⎝cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎞⎟⎠ ,

⎛⎜⎝ cosh(θ) sinh(θ) 0
sinh(θ) cosh(θ) 0

0 0 1

⎞⎟⎠ ,

⎛⎜⎝ 1 0 0
θ 1 0
θ2

2 θ 1

⎞⎟⎠ . (3)

In the three cases of Equation (3), the invariant line is the z-axis. We name the rotations defined
in each case as elliptic (left-most matrix, which defines a classical rotation about the z-axis), hyperbolic
(center matrix, which defines a hyperbolic rotation about the z-axis), and parabolic (right-most matrix).
The surfaces which, after perhaps an orthogonal change of coordinates T , are invariant under one of the
matrix groups in Equation (3) are called affine rotation surfaces; furthermore, in this case the preimage under
T of the z-axis is called the affine axis of rotation of the surface. We say that an affine rotation surface is of
elliptic, hyperbolic or parabolic type depending on the form of the matrix group. If the surface is algebraic,
then we say that the surface is an algebraic affine rotation surface. Notice that the affine rotation surfaces of
elliptic type are the classical surfaces of revolution.

Every affine rotation surface about the z-axis can be parametrized locally around a regular point
using differentiable functions f (s), g(s) as

x(θ, s) = Qθ · [ f (s), 0, g(s)]T , (4)

where [ f (s), 0, g(s)]T parametrizes a directrix curve and Qθ corresponds to one of the uniparametric matrix
groups in Equation (3). We will refer to this representation as the standard form of the surface. Using the
standard form, the curves x(θ0, s) are called meridians, while the curves x(θ, s0) are called parallel curves.
In particular, the directrix is a meridian. Moreover, according to [6], the parallel curves are (a) in the
elliptic case, circles centered on the z-axis, contained in planes normal to the z-axis; (b) in the hyperbolic
case, equilateral hyperbolae centered on the z-axis, contained in planes normal to the z-axis, with parallel
asymptotes; (c) in the parabolic case, parabolas placed in planes normal to the x-axis, with parallel axes,
whose major axis is parallel to the z-axis.

Affine normals can be used to characterize affine rotation surfaces [11]. Before providing this
characterization, we need to introduce two more properties.
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Definition 1. Let S be a surface which under an orthogonal change of coordinates T , can be locally parametrized as
y(θ, s) = Aθ · [ f (s), 0, g(s)]T, where Aθ is a 3× 3 matrix depending on a parameter θ, and let A be the preimage
of the z-axis under the transformation T . We say that S has the shadow line property with respect to the line A,
if along every meridian y(θ0, s) the tangents to the parallel curves y(θ, s0) are parallel.

For instance, one can see that surfaces of revolution always have the shadow line property with
respect to its axis of revolution.

Definition 2. We say that a non-developable surface S is ANIL (Affine Normals Intersecting a same Line), or that
S has the ANIL property, if all the affine normal lines of S intersect a same line A, called the axis of S.

Then we have the following theorem (see [11] for a proof), which characterizes affine rotation surfaces.

Theorem 1. The surface S is an affine rotation surface with affine axis A if and only if the following two conditions
hold: (1) S is ANIL, with axis A; (2) S has the shadow line property with respect to the line A.

From Theorem 1, it is clear that every affine rotation surface is ANIL. The converse, however, is not
true: in [11] it is observed that there exist affine spheres, i.e., surfaces where all the affine normal lines
intersect at one point (for instance, ellipsoids), called the center of the sphere, which are not affine rotation
surfaces. Since all the affine normals of an affine sphere intersect at the center of the sphere, the affine
normals obviously intersect every line through the center, so every affine sphere is an ANIL surface. In this
paper, however, we will discover that there are many ANIL surfaces which are not affine rotation surfaces,
or affine spheres: in fact, in Section 5 we will see that the images of surfaces of revolution under most
nonsingular affine mappings are exactly like this.

2.2. Plücker Coordinates

Theorem 1 can be used to device an algorithm for detecting whether a given algebraic surface is an
affine rotation surface, and to find the affine axis, in the affirmative case [11]. In order to do so, the key
question is to efficiently exploit Condition (1) in Theorem 1, i.e., the fact that all the affine normal lines
intersect the affine axis. This can be done using Plücker coordinates [12,15], which we recall in this subsection.

Plücker coordinates provide an alternative way to represent straight lines. A line L ⊂ R3 is completely
determined when we know a point P ∈ L and a vector w parallel to L. Therefore, we often write
L = (P, w). Now let w = P×w, where P here denotes the vector connecting the point P with the origin
of the coordinate system. Then the Plücker coordinates of L are (w, w) ∈ R6. Notice that by construction
w ·w = 0; this equation defines a quadric in R6 known as the Klein quadric.

Plücker coordinates of lines are unique up to multiplication by a constant nonzero factor. Moreover
w is independent of the choice of the point P ∈ L, since if Q ∈ L, then (Q− P)×w = 0. Furthermore,
given the Plücker coordinates (w, w) of L, we can recover a point P on L from the relationship

P×w = w, (5)

by writing P = (x, y, z) and solving the system of linear Equations (5) for x, y, z. An alternative to solving
this system of linear equations is simply to compute the pedal point w×w〈w, w〉−1 on the line (w, w).

Let (α, β) be the Plücker coordinates of a line in R3, and consider all the lines (w, w), written in
Plücker coordinates, such that

α ·w + β ·w = 0. (6)
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This equation (see [15,16]) expresses the condition that the lines (w, w) intersect the line (α, β), so these
lines span a hyperplane of R6. Thus, Equation (6) provides an efficient way of managing Condition
(1) in Theorem 1, and therefore of detecting whether a given rational surface is ANIL: given a rational
surface rationally parametrized by x(t, s), one can compute the affine normal line at several points x(ti, si),
where (ti, si) ∈ R2. From Equation (6), each point gives a linear condition on the Plücker coordinates
(α, β) of a potential line A, intersected by all the affine normal lines of the surface. Solving the linear
system of equations corresponding to all these linear conditions, the coordinates (α, β) can be efficiently
computed. This, for instance, is used in [11] in order to detect whether an algebraic surface is an affine
surface of rotation.

3. Affine Image of a Rational Surface of Revolution (I)

The goal of this section is to prove that the image under a nonsingular affine mapping f of a surface
of revolution about an axis A is an ANIL surface of axis Â = f (A). Notice that from Theorem 1, this is a
necessary condition for a surface to be an affine surface of rotation. Later, in Section 5, we will explore in
what cases the image of a surface of revolution under a nonsingular affine mapping is an affine surface
of rotation.

In order to do this, we let S ⊂ R3 be a rational ANIL surface, rationally parametrized by x(t, s),
where t, s are parameters, and we let f (x) = Ax + b, where A ∈ M3×3(R) and b ∈ R3. We denote
Ŝ = f (S). By definition, if S is a surface of revolution about an axis A then S is an affine rotation surface of
elliptic type about the affine axis A. Hence, by Theorem 1 all the affine normals of S intersect the line A,
so S is an ANIL surface of axis A.

For now we will assume that S is not developable; some considerations about developable surfaces
will be made at the end of this section. Observe that a developable surface (see [17]) can always be,
at least locally, parametrized as y(u, v) = a(u) + vc(u) where [a′(u), c(u), c′(u)] = 0, so the vectors
{a′(u), c(u), c′(u)} are coplanar. Since the images of these vectors under a nonsingular mapping g(x) =
Ax are also coplanar, a surface is developable if and only if its image under a nonsingular mapping
g(x) = Ax is also developable. Since translations are isometries, and therefore preserve the property of
being developable, we deduce that a surface is developable if and only if the image of the surface under
every nonsingular affine mapping f (x) = Ax + b is also developable. In particular, and since we are
assuming that S is not developable, Ŝ is not developable either. Thus, the affine normal lines of both S and
Ŝ are well defined.

Furthermore, we will need the following technical lemma.

Lemma 1. Let A ∈ M3×3(R) be nonsingular. Then A = kB, where k ∈ R and det(B) = 1.

Proof. Let k = 3
√

det(A). Since det(A) 	= 0, k 	= 0 too. Let B = 1
k A. Then

det(B) = 1
k3 · det(A) = 1

k3 · k3 = 1.

In order to show that Ŝ = f (S) is an ANIL surface, we first consider the image S̃ of S under a
homothety f̃ (x) = kx with k ∈ R− {0}; we denote S̃ = f̃ (S).

Lemma 2. Let S ⊂ R3 be an ANIL surface of axis A rationally parametrized by x(t, s) which is not developable,
and let S̃ be the image of S under a homothety f̃ (x) = kx, k ∈ R− {0}. Then S̃ = f̃ (S) is an ANIL surface of axis
Ã = f̃ (A).

Proof. First we need to consider the relationship between the affine normal lines of S and S̃. In order to do
this, observe that y(t, s) = kx(t, s) parametrizes S̃. Let us denote by Kx, Nx, Ky, Ny the Gauss curvatures
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and unitary normal vectors of S and S̃. And let us also denote by μx, ξx, μy, ξy the affine co-normal vectors
and the affine normal vectors of S and S̃. One can check that

Ny = Nx, Ky =
1
k2 Kx, μy =

√
|Kx|μx, ξy =

1√
|Kx|

ξx. (7)

Notice that these equalities describe the relationship between the unitary normal, co-normal and
affine normal vector of S̃ at the point y(t, s), and the corresponding vector of S at the point x(t, s); similarly
for the Gaussian curvatures. Furthermore, since by hypothesis S is not developable, the affine normal
vectors of both S and S̃ are well defined.

Now let P ∈ A, and let w be a vector parallel to A. Then (α, β) = (w, P × w) = (α, β), where
P denotes the vector connecting the point P and the origin of the coordinate system, are the Plücker
coordinates of the line A. Thus, the Plücker coordinates of the line Ã = f̃ (A) are (w, kP×w) = (α, kβ).

Since S is an ANIL surface about the axis A, from Equation (6) we have

α(x× ξx) + βξx = 0. (8)

Taking into account that the Plücker coordinates of the line Ã = f̃ (A) are (w, kP×w) = (α, kβ), and using
Equations (7) and (8), we get

α(y× ξy) + kβξy = α

(
kx× 1√

|Kx|
ξx

)
+ kβ

1√
|Kx|

ξx =
Kx√
|Kx|

[α(x× ξx) + βξx] = 0 (9)

Hence, again from Equation (6) we conclude that the affine normal lines of S̃ all intersect the line Ã.

Now we consider the image S� of S under a translation f �(x) = x + b, with b ∈ R3.

Lemma 3. Let S ⊂ R3 be a ANIL surface of axis A rationally parametrized by x(t, s) which is not developable,
and let S� be the image of S under a translation f �(x) = x + b, b ∈ R3. Then S� = f �(S) is an ANIL surface of
axis A� = f �(A).

Proof. Observing that y(t, s) = x(t, s) + b parametrizes S�, we get that

Ny = Nx, Ky = Kx, μy = μx, ξy = ξx, (10)

where these equalities describe the relationships between the unitary normal, co-normal and affine normal
vector of S� at the point y(t, s), and the corresponding vector of S at the point x(t, s); similarly for the
Gaussian curvatures. Furthermore, since by hypothesis S is not developable, the affine normal vectors of
both S and S� are well defined. Then we argue as in the proof of Lemma 1.

Finally we can prove the main result of this section.

Theorem 2. Let S ⊂ R3 be an ANIL surface of axis A rationally parametrized by x(t, s) which is not developable,
and let Ŝ be the image of S under a nonsingular affine mapping f (x) = Ax + b, A ∈ M3×3(R), b ∈ R3.
Then Ŝ = f (S) is an ANIL surface of axis Â = f (A).

Proof. By Lemma 1, A = kB, where k ∈ R− {0} and det(B) = 1; thus, f (x) = kBx + b. Let f † be the
linear mapping defined by f †(x) = Bx, and let S† be the image of S under f †, i.e., S† = f †(S). By the
covariance property of affine normal lines, the affine normal lines of S† are the images of the affine normal
lines of S under f †. Since by hypothesis all the affine normal lines of S intersect A, and since linear
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mappings preserve incidence, all the affine normal lines of S† intersect the line A† = f †(A). Then the
result follows from Lemma 2 and Lemma 3.

Corollary 1. Let S ⊂ R3 be a rational surface of revolution about an axis A, and assume that S is not developable.
Let f (x) = Ax + b, A ∈ M3×3(R) nonsingular, b ∈ R3. Then the image of S under the mapping f is an ANIL
surface of axis f (A).

Furthermore, since affine mappings preserve incidence, we also have the following corollary of
Theorem 2 on affine spheres.

Corollary 2. Let S ⊂ R3 be an affine sphere of center c rationally parametrized by x(t, s) which is not developable,
and let Ŝ be the image of S under a nonsingular affine mapping f (x) = Ax + b, A ∈ M3×3(R), b ∈ R3.
Then Ŝ = f (S) is an affine sphere of center ĉ = f (c).

The Case of Developable Surfaces

Let S ⊂ R3 be a developable surface, in which case the Gaussian curvature is zero. Since the affine
normal line is not defined when the Gassian curvature is zero, the notion of an ANIL surface is not
applicable to these surfaces. However, some considerations can be done in the case when S is a surface
of revolution. Without loss of generality we assume that the axis of revolution of S is the z-axis. A first
obvious possibility is that S is a cylinder of revolution, and therefore a quadric. If S is not a cylinder of
revolution, then S admits (see Section 15.1 of [17]) an, at least local, parametrization of S as

x(ρ, γ) = (ρ cos γ, ρ sin γ, h(ρ)).

Additionally, imposing that the Gaussian curvature of S is identically zero, one can see (e.g., Section 15.3
of [17]) that h(ρ) = C1ρ + C2, with C1, C2 constants, C1 nonzero, so S is a cone of revolution: indeed,
eliminating ρ, γ in

x = ρ cos γ, y = ρ sin γ, z = C1ρ + C2,

one gets x2 + y2 =
(

z−C2
C1

)2
, which shows that S is a cone of revolution. Since affine mappings preserve

incidence and parallelism, one deduces that the image of a developable surface of revolution under a
nonsingular affine mapping is either cylindrical, i.e., a ruled surface whose generatrices are all of them
parallel, or conical, i.e., a ruled surface whose generatrices intersect at a point, named the vertex of the
surface. Furthermore, since affine mappings preserve the degree of the surface, it must also be a quadric.

4. Computing a Surface of Revolution Affinely Equivalent to an ANIL Surface

Given an ANIL surface S1 ⊂ R3, rationally parametrized by x(t, s), we aim to find an algorithm to
solve the following problem: find, if it exists, a rational surface of revolution S2 ⊂ R3 which is affinely
equivalent to S1, i.e., such that there is a nonsingular affine mapping f (x) = Ax + b, where A ∈ M3×3(R)
and b ∈ R3, satisfying that f (S1) = S2. We say that f is an affine equivalence between S1, S2. Notice that
certainly S2 is not unique, since by composing f with any similarity h, the surface (h ◦ f )(S1) is also a
surface of revolution affinely equivalent to S1; recall that similarities are the composition of a congruence
(also called rigid motion, a mapping preserving distances) and a homothety (which preserves angles and
scales the objects).

In order to solve the problem, it is useful to recall the following theorem, characterizing algebraic
surfaces of revolution. In this theorem we consider classical normals, and not affine normals. We will need
to apply this theorem on the surface S2 we are seeking. Notice that by hypothesis S1 is ANIL; since the
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notion of an ANIL surface is not applicable to developable surfaces, S1 is not developable, and therefore
S2 is not developable either. In particular, S2 is not cylindrical.

Theorem 3. Let S ⊂ R3 be an algebraic surface which is not cylindrical. Then S is a surface of revolution about an
axis A if and only if all the normals to the surface intersect the axis A.

Proof. See Theorem 4.2.1 and Lemma 4.2.2 of [12].

Observe that in Theorem 3 the hypothesis of S being algebraic is necessary: if the surface is not
algebraic, the condition in the theorem implies that the surface is either a surface of revolution, or a
helical surface, i.e., a surface invariant under a helical motion (see Section 3.1.2 of [12]). Helical motions
are the mappings in R3 that can be written in a certain system of coordinates as T(x) = Qθ x + [0, 0, pθ]T ,
where Qθ is the left-most matrix in Equation (3), and p 	= 0 (p is called the pitch). However, helical surfaces
are not algebraic. Notice also in Theorem 3 that the condition on the shadow line property is not necessary.
As it also happened with Theorem 1 and affine rotation surfaces, using Plücker coordinates one can use
Theorem 3 to build an efficient algorithm for detecting surfaces of revolution (see e.g., [16]). In our case,
Theorem 3 will be key in order to solve the problem we are addressing.

We still need some additional observations. First, by applying if necessary a translation followed by a
rotation about a line, we can assume that the axis of S1 is the z-axis. Furthermore, we can also assume that
the axis of revolution of the surface S2 we are looking for is the z-axis as well: since the composition of
nonsingular affine mappings is a nonsingular affine mapping, if there exists a surface of revolution affinely
equivalent to S1, then there also exists a surface of revolution about the z-axis with the same property
(one just needs to apply a congruence to reach this surface). Finally, since the composition of S2 with
any translation by a vector parallel to the z-axis also provides a surface of revolution about the z-axis,
we can assume that the affine equivalence transforming S1 into S2 fixes the origin, so that f (x) = Ax.
Our problem, then, is to find the matrix A: after computing A, the surface S2 is immediately obtained.

Now if S1 is parametrized by x(t, s) and f (S1) = S2, then y(t, s) = Ax(t, s) is a parametrization of S2.
In order to use Theorem 3, we consider the (classical) normals to S2. Since yt = Axt, ys = Axs, and taking
into account the well-known formula Ma × Mb = det(M)M−T(a × b) for M ∈ M3×3(R), a, b ∈ R3,
we get

yt × ys = det(A)A−T(xt × xs). (11)

The Plücker coordinates of a generic normal line of S1 are (α, β) = (xt × xs, x × xt × xs).
From Equation (11), the Plücker coordinates of a generic normal line of S2 are

(yt × ys, y× yt × ys) = (det(A)A−T(xt × xs), Ax× det(A)A−T(xt × xs)). (12)

Notice that since y(t, s) parametrizes a surface of revolution about the z-axis, ky(t, s) with k ∈ R −
{0} parametrizes another surface of revolution about the z-axis too; we can prove it from Theorem 3,
taking into account the relationship between the normals of the surfaces parametrized by y(t, s) and
ky(t, s). This implies that we can assume det(A) = 1. Therefore, and calling α = xt × xs, we get that the
Plücker coordinates of a generic normal line of S2 are

(A−Tα, Ax× A−Tα) (13)
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Additionally, the Plücker coordinates of the z-axis, which is the axis of revolution of S2, are (0, k),
where 0 = (0, 0, 0) and k = (0, 0, 1). From Theorem 3, all normals to S2 intersect the z-axis. Using Plücker
coordinates, from Equation (6) this condition is translated into

A−Tα · 0 + (Ax× A−Tα) · k = 0. (14)

Let Co(A) be the cofactor matrix of A. Since we are assuming that det(A) = 1, A−T = Co(A). Then,
Equation (14) is equivalent to

(Ax× Co(A)α) · k = [Ax, Co(A)α, k] = 0. (15)

By Theorem 2, f (x) = Ax must preserve the z-axis, so Ak = λk for λ 	= 0. Since additionally
det(A) = 1, we get that

A =

⎛⎜⎝a11 a12 0
a21 a22 0
a31 a32 a33

⎞⎟⎠ , (16)

where a33(a11a22 − a12a21) = 1. Since a33 	= 0 (because otherwise A is singular), we can always assume
that a33 = 1. Thus, we get

A =

⎛⎜⎝a11 a12 0
a21 a22 0
a31 a32 1

⎞⎟⎠ , Co(A) =

⎛⎜⎝ a22 −a21 a21a32 − a22a31

−a12 a11 −a11a32 + a12a31

0 0 a11a22 − a12a21

⎞⎟⎠ (17)

Substituting the expressions for A and Co(A) into Equation (15), and adding the equation

a11a22 − a12a21 = 1, (18)

we get cubic equations in a11, a12, a21, a22, a31, a32 which define an algebraic variety V ⊂ C6. Any real
point of V provides a matrix A with the desired property. So throughout the section we have proven the
following result. In turn, this result provides the Algorithm 1, which solves the problem considered in
this section.

Theorem 4. Let S1 ⊂ R3 be an ANIL surface whose axis is the z-axis. Then S1 is affinely equivalent to a surface of
revolution if and only if V ∩R6 	= ∅.

Remark 1. In fact, if V ∩R6 	= ∅ then V must contain at least a real curve, since rotating a surface of revolution
S2 with the desired properties around the z-axis also yields a surface of revolution.

In practice, instead of deriving a system of cubic equations directly from Equation (15), it is cheaper
from the computational point of view to substitute points (ti, si) into Equation (15) to generate equations.
The system of cubic equations derived this way can be solved by using computer algebra methods, e.g.,
Gröbner bases. In our case, we used the computer algebra system Maple 17, and the Groebner package.
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Algorithm 1 Revol.

Require: A non-developable ANIL surface S1, rationally parametrized by x(t, s).
Ensure: A rational surface of revolution S2 affinely equivalent to S1, or a certificate of its non-existence.

1: Substitute the entries of A and Co(A) from Equation (17) into Equation (15).
2: Solve the cubic polynomial system S in aij, i ∈ {1, 2, 3}, j ∈ {1, 2}, consisting of the equations derived

in Step 1, and Equation (18).
3: if the system does not have any real solution then
4: return “there is no surface of revolution affinely equivalent to the surface”
5: else
6: pick a real solution a11, a12, a21, a22, a31, a32 of S .
7: return the surface S2 parametrized by y(t, s) = Ax(t, s), where A is the matrix in the left-hand side

of Equation (17) whose entries correspond to the solution in Step 6.
8: end if

Example 1. Let S1 be the sextic surface, rationally parametrized by

x(t, s) =

(
−2(s3t2 − s3t + s2t2 − s3 + s2 + t2 − t− 1)

t2 + 1
,− (s3 + 1)(t2 − 2t− 1)

t2 + 1
,

− (s3 + 1)(t2 − 4t− 1)
t2 + 1

)
.

Using Plücker coordinates, one can see that S1 is an ANIL surface, and that the axis is the x-axis. Additionally,
one can check that the implicit equation of the surface has the form

F(x, y, z) = (x− 3y + z)6 + l.o.t.,

where l.o.t. stands for lower order terms. Since the form of highest order of an affine surface of rotation has a very
specific structure (see Theorem 6 in [8], Theorem 6 in [10], Theorem 6 in [9]), we deduce that S1 is not an affine
surface of rotation. In order to compute cubic equations defining the variety V , we consider Equation (15) for the
points corresponding to (ti, si) with ti, si ranging from −3 to 3. The first of these equations is

912600a2
11a32 − 912600a11a12a31 + 638820a11a12a32 − 638820a2

12a31 + 912600a2
21a32

−912600a21a22a31 + 638820a− 21a22a32 − 638820a− 222a− 31 + 2332200a2
11

+2464020a11a12 + 582036a2
12 + 2332200a− 212 + 2464020a21a22 + 582036a2

22 = 0.

Adding also Equation (18), we get 50 cubic equations. Maple solves the polynomial system consisting of these
equations in 0.265 s, and yields the following families of real solutions (there are also some complex solutions,
which we do not list):

a11 = λ, a12 = −1
2

a21 −
3
2

λ, a22 = −3
2

a21 +
1
2

λ, a31 = 1, a32 = −3,

where λ satisfies that λ2 + a2
21 − 2 = 0, and

a11 = 0, a12 = −1
2

μ, a21 = μ, a22 = −3
2

μ, a31 = 1, a32 = −3,
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where μ satisfies that μ2 − 2 = 0. Picking a21 = 1, λ = 1 in the first family, we get

A =

⎛⎜⎝1 −2 0
1 −1 0
1 −3 1

⎞⎟⎠ .

The affine mapping f (x) = Ax maps S1 onto the surface S2 parametrized by

y(t, s) =
(
(s3 + 1)(t2 − 1)

t2 + 1
,

2(s3 + 1)t
t2 + 1

,−2s2
)

,

which one can recognize as the surface of revolution generated by rotating the cubic curve parametrized by (s3 +

1, 0,−2s2) about the z-axis.

5. Affine Image of a Surface of Revolution (II)

In this section, we want to explore under what circumstances the image of a surface of revolution
under a nonsingular affine mapping is an affine surface of rotation. In order to do this, we will use the
preceding notations, and we will benefit from certain observations done in Section 4.

Let S1, S2 be two rational surfaces, none of them developable, S1 an ANIL surface, S2 a surface of
revolution, related by a nonsingular affine mapping. Following the observations in Section 4, without loss
of generality we can assume that the the affine axis of S1 is the z-axis, the axis of revolution of S2 is the
z-axis as well, and that the nonsingular affine mapping transforming S1 into S2 has the form f (x) = Ax.
Even more, we can assume that the matrix A has the form in Equation (17), and that the entries of the
matrix A also satisfy Equation (18). We will separately consider the cases when S1 is an elliptic, hyperbolic
or parabolic affine surface of rotation. We begin with the parabolic and the hyperbolic cases, and we
conclude with the elliptic case. In what follows, the reader is invited to review the notion of parallel curve
of an affine rotation surface, recalled in Section 2.1.

5.1. The Parabolic Case

If S1 is a parabolic affine rotation surface about the z-axis, we can assume (see Section 2.1) that the
parallel curves are placed in planes normal to the x-axis, i.e., planes x = x0, x0 ∈ R, that we denote by Πx0 .
Furthermore, in that case the intersection Πx0 ∩ S1 is a union of parabolas lying on planes parallel to the
yz-plane, and whose major axes are parallel to the z-axis. We are interested in finding the images of the
planes Πx0 under the mapping f (x) = Ax. Thus, we have⎛⎜⎝a11 a12 0

a21 a22 0
a31 a32 1

⎞⎟⎠ ·
⎛⎜⎝x0

λ

μ

⎞⎟⎠ =

⎛⎜⎝ a11x0 + a12λ

a21x0 + a22λ

a31x0 + a32λ + μ

⎞⎟⎠ . (19)

Elliminating the parameters λ, μ, and since a11a22 − a12a21 = 1, we get the plane a22x− a12y− x0 = 0,
that is parallel to the z-axis, and which we denote by Π̂x0 . Since f (x) = Ax is an affine mapping Π̂x0 ∩ S2

must be a union of parabolas as well. Since S2 is a surface of revolution about the z-axis, we deduce that
S2 is generated by rotating parabolas around the z-axis, so S2 must be the union of several paraboloids
of revolution. Because S2 is rational and therefore irreducible, we get that S2 must be a paraboloid of
revolution, so S1 = f (S2) must also be a paraboloid. But this is a contradiction, because from Corollary 5
in [10] the only quadrics that are affine surfaces of rotation of parabolic type are either cones (which are
developable surfaces), or hyperboloids. Therefore, we have proved the following result.
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Theorem 5. The affine image of a rational surface of revolution that is not developable cannot be an affine surface of
rotation of parabolic type.

5.2. The Hyperbolic Case

Let S1 be a hyperbolic affine surface of rotation about the z-axis. Then the parallel curves are placed
in planes z = z0, that we denote by Πz0 . Proceeding as in Section 5.1, we can check that f maps Πz0 onto
the plane Π̂z0 , defined by

A13x + A23y + (z− z0) = 0, (20)

where Aij represents the cofactor of the element (i, j) of the matrix A. Since the coefficient of z in
Equation (20) is nonzero, Π̂z0 is not parallel to the z-axis. Furthermore, since f is affine and S2 ∩Πz0 is a
union of equilateral hyperbolae, f (S1 ∩Πz0) = S2 ∩ Π̂z0 must also be a union of hyperbolae. Additionally,
since S2 is a surface of revolution we can see S2 as generated by rotating S2 ∩ Π̂z0 around the z-axis.
We want to see that this cannot be.

In order to do that, assume first that A13 = A23 = 0. Then, Equation (20) corresponds to a horizontal
plane, i.e., normal to the z-axis. Since S2 is a surface of revolution about the z-axis, the horizontal sections
of S2 are unions of circles centered at the points on the z-axis. Since S1 ∩ Π̂z0 is a union of hyperbolas,
this cannot happen. So let us focus on the case where A13, A23 are not both zero, in which case the plane in
Equation (20) is not horizontal. We need the following previous result.

Lemma 4. Let S be a rational surface of revolution about the z-axis, and let D be a rational planar curve contained
in a planar section S ∩Π of the surface S, where Π is not normal to the z-axis. Then S is the surface obtained by
rotating D about the z-axis.

Proof. By rotating D around the z-axis we get a rational surface S′ ⊂ S. Since S and S′ are rational and
therefore irreducible, S = S′.

Now assume that S2 = f (S1), where f is an affinity, is a surface of revolution about the z-axis,
and consider two planes Πz0 and Πz1 , defined by z = z0 and z = z1, where z0 	= z1. Let Π̂z0 , Π̂z1 be
the images of Πz0 , Πz1 under f . Notice that S1 ∩Πz0 , S1 ∩Πz1 are unions of circles, so C0 = f (S1 ∩Πz0),
C1 = f (S1 ∩Πz1) are unions of hyperbolas. Furthermore, since z0 	= z1, C0 	= C1.

From Lemma 4, and since S2 is rational and therefore irreducible, the surface S2 should be obtained
both by rotating a rational component of C0 around z, and by rotating a rational component of C1 around
z. We want to see that this is not possible, i.e., that by rotating such components we generate different
surfaces, not the same surface. For simplicity, we will assume that C0 and C1 are hyperbolae, and not
unions of hyperbolae; were this not the case, it suffices to consider one rational component in each case.

The situation is shown in Figure 1: in more detail, the notation in Figure 1 represents the following:

• C0 = f (S1 ∩Πz0), C1 = f (S1 ∩Πz1).
• P is a horizontal plane, i.e., normal to the z-axis, through one of the vertices of C0.

Furthermore, Figure 2 represents the plane P seen from above. The notation in Figure 2 represents
the following:

• The point P is a vertex of C0. Furthermore, P is the only intersection of P with C0.
• The lines L1 and L2 are the intersections of the planes Π̂z0 , Π̂z1 with the horizontal plane P .

These lines are also shown in blue in Figure 1. Notice that since Π̂z0 , Π̂z1 are parallel, L1,L2 are
parallel too.
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• The points Q1, Q2 are the intersections of the curve C1 with the plane Π̂z1 ; it could happen that
Q1 = Q2, or even that the intersection of C1 with the plane Π̂z1 was empty, but in those cases we
would obtain contradictions as well.

• The point C is the intersection of the z-axis with the horizontal plane P .
• The circle in red, C̃, is the circle through the point P, centered at C; this circle is also shown in red in

Figure 1.

The following result certifies that the picture shown in Figure 2 is correct:

P

Π̂z0

Π̂z1

C0
C1

z-axis

Figure 1. The case of hyperbolic affine rotation surfaces (I).
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C P

L1 L2

Q1

Q2

C̃

Figure 2. The case of hyperbolic affine rotation surfaces (II).

Lemma 5. The line connecting C and P is perpendicular to the line L1.

Proof. Assume that the line connecting C, which is the intersection of the z-axis and the plane P , and P,
which is the vertex of the hyperbola C0 contained in the plane P , is not perpendicular to L1. Then the
circle C̃ centered at C through P is not tangent to L1, and therefore there is another intersection point
P′ 	= P of the circle C̃ with the line L1. However, since S2 is generated by rotating the curve C0 around the
z-axis, then P′ ∈ S2. Even more, since C0 = Π̂z0 ∩ S2 and P′ ∈ L1 ⊂ Π̂z0 , we get that P′ ∈ C0. Furthermore,
since L1 ⊂ P , P′ ∈ P , so P′ ∈ C0 ∩ P . However, since P is the horizontal plane through the vertex P,
the only point of C0 ∩ P is P, and therefore P′ = P.

We also need the following lemma.

Lemma 6. Let d(C, Qi), with i = 1, 2, denote the distance between C, Qi, let d(C,Lj), with j = 1, 2,
denote the distance between the point C and the line Lj, and let CP denote the segment connecting C and P.
Then d(C, Qi) > CP.

Proof. SinceL1,L2 are parallel, d(C,L2) > d(C,L1). Furthermore, d(C, Qi) ≥ d(C,L2). Thus, d(C, Qi) >

d(C,L1). But from Lemma 5, d(C,L1) = CP.

Corollary 3. The circle C̃ centered at C of radius CP is not contained in the set generated by rotating C1 around
the z-axis.

Now we can prove the following result. Here we use the preceding notation, and the help of
Figures 1 and 2.

Theorem 6. The affine image of a rational surface of revolution that is not developable cannot be an affine surface of
rotation of hyperbolic type.

Proof. Without loss of generality, we reduce to the situation analyzed before. We have already seen
that A13, A23 cannot be both zero, so we can assume that Equation (20) defines a plane which is neither
horizontal, nor parallel to the z-axis, in which case we can use our last observations. In particular,
if S2 = f (S1), where f is an affinity, is a surface of revolution about the z-axis, S2 is generated by both
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curves C0 and C1, defined before. However, the surface obtained by rotating C0 about the z-axis contains
the circle C̃. But from Corollary 3, C̃ is not contained in the surface generated by rotating C1 about the
z-axis. Thus, rotating C0 and C1 around the z-axis provides different surfaces (Notice that by just moving
the value z0, the union of the corresponding circles C̃ gives rise to another surface not contained in S2,
so one can refine the argument to show that the surfaces generated by rotating C0 and C1 about the z-axis
differ not in one curve, but in a whole 2-dimensional subset.), which contradicts our hypothesis.

Remark 2. Notice that the essence of the argument in the proof of Theorem 6 is not altered if the points Qi coincide,
or if C1 ∩ P is empty.

5.3. The Elliptic Case

Assume now that S1 is an affine surface of rotation of elliptic type, i.e., a surface of revolution. Thus,
the sections Πz0 of S1 with planes z = z0 are unions of circles, which are transformed by f (x) = Ax
into unions of ellipses contained in planes Π̂z0 like Equation (20). If A13 and A23 are not both zero,
then Equation (20) defines a plane not normal to the z-axis. In this case, we can argue as in Section 5.2 to
see that this cannot happen: again, we prove that by considering the affine images of different sections
of S1 normal to the axis, we get planar curves, contained in S2, which generate different surfaces when
rotating about the z-axis. So we focus on the case A13 = A23 = 0. Here, we observe that Π̂z0 is also the
plane z = z0, so f preserves the z-coordinate. Thus, the entries a31, a32 of the matrix A are both zero, so A
can be written as a block matrix

A =

(
Q 0

0 1

)
, Q =

(
a11 a12

a21 a22

)
, (21)

where Q defines a linear transformation g(x) = Qx of the plane, preserving the origin, where det(Q) = 1.
Furthermore, since S2 is by hypothesis a surface of revolution about the z-axis, and f preserves the
z-coordinate, we deduce that f maps circles to circles, and therefore that g maps circles centered at the
origin onto circles centered at the origin. Then we have the following lemma.

Lemma 7. With the preceding notation and hypotheses, g(x) = Qx defines a congruence of the plane.

Proof. Let x = [x, y]T . Then the equation of a circle Cr centered at the origin is

xT · x = r2, (22)

with r > 0. Since g(x) = Qx maps circles to circles and preserves the origin, Cr is mapped onto the circle
CR of equation

xTQT ·Qx = R2, (23)

where R > 0 and x satisfies Equation (22). Multiplying Equation (22) by an appropriate λ, we get
xT · λI · x = R2, where I denotes the 2× 2 identity matrix. Subtracting this expression from Equation (23),
we get that QTQ = λI. Finally, since det(Q) = 1, we deduce that λ = 1, so Q is orthogonal. Therefore
g(x) is an orthogonal transformation, so g(x) defines a congruence.

Lemma 7 provides the following corollary.

Corollary 4. The image of a rational surface of revolution that is not developable under a nonsingular affine
mapping, is another surface of revolution if and only if the affine mapping corresponds to a similarity.
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From the algorithmic point of view, notice that given two surfaces of revolution about the same
axis, one can check whether the surfaces are similar by intersecting both surfaces with a same plane,
say, the yz-plane, and then checking whether the resulting planar curves are similar. There are efficient
algorithms for doing this: if the sections are rational, one can use the algorithm in [18]; if the sections are
not rational, one can use the algorithm in [19].

Finally, we summarize all the results of the section in the following theorem.

Theorem 7. The image of a surface of revolution under a nonsingular affine mapping is an affine surface of rotation
if and only if the affine mapping defines a similarity, in which case the image is also a surface of revolution.

Corollary 5. The image of a non-developable rational surface of revolution under a nonsingular affine mapping that
is not a similarity, is an ANIL surface that is not an affine surface of rotation.

Notice that Corollary 5 comes to show that there are many ANIL surfaces that are not affine surfaces
of rotation: in fact, the image of any surface of revolution under a non-orthogonal affine mapping is that
way. Taking Corollary 2 also into account, we conclude that there are many ANIL surfaces that are not
either affine surfaces of rotation, or affine spheres.

6. Conclusions

Throughout the paper we have proved that the image of a non-developable rational surface of
revolution under a nonsingular affine mapping is an ANIL surface which is not an affine rotation surface
except for certain, well-described, cases. Furthermore, given an ANIL surface, we have provided an
algorithm to determine whether it is the affine image of a surface of revolution, and to recover it, if it exists.

One can wonder whether there exist ANIL surfaces which are not the image of a surface of revolution
or an affine sphere. We do not have an answer to this question. Were the answer negative, it would be nice
to identify notable surfaces with this property. These are problems that we leave here as open questions.
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Abstract: This paper presents a new framework based on geometric algebra (GA) to solve and
analyse three-phase balanced electrical circuits under sinusoidal and non-sinusoidal conditions. The
proposed approach is an exploratory application of the geometric algebra power theory (GAPoT)
to multiple-phase systems. A definition of geometric apparent power for three-phase systems,
that complies with the energy conservation principle, is also introduced. Power calculations are
performed in a multi-dimensional Euclidean space where cross effects between voltage and current
harmonics are taken into consideration. By using the proposed framework, the current can be
easily geometrically decomposed into active- and non-active components for current compensation
purposes. The paper includes detailed examples in which electrical circuits are solved and the results
are analysed. This work is a first step towards a more advanced polyphase proposal that can be
applied to systems under real operation conditions, where unbalance and asymmetry is considered.

Keywords: geometric algebra; non-sinusoidal power; clifford algebra; power theory

1. Introduction

For more than a century, the steady-state operation of AC electrical circuits has been
analysed in the frequency domain using complex numbers. The foundations of this
well-established technique were initially developed by Steinmetz [1] and later refined
by other authors such as Kennelly [2] or Heaviside [3]. In its basic form, an AC signal is
transformed from the time to the frequency domain, where algebraic equations can be easily
manipulated. This transformation is commonly referred to as phasor transformation. For
example, the phasor representation of a voltage waveform such as v(t) =

√
2V cos(ωt+ ϕ) is

ℱ[v(t)] = �V = Vejϕ (1)

while the inverse transformation is given by

ℱ−1[�V ] = �
[√

2�Vejωt
]
= v(t) (2)

This methodology is widely applied to solve single- and three-phase electrical circuits
that operate in steady state under sinusoidal conditions.

It can also be applied to circuits operating under non-sinusoidal conditions by using
the superposition theorem. In this case, the voltage and current components of each
harmonic frequency are calculated separately, one by one, and then added in the time
domain so that the voltage and current waveforms are obtained. Nevertheless, this property
can be seen as both an advantage and a disadvantage. The main reason is that bilinear
operations, such as products between voltages and currents of different frequencies, are not
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meaningful in the algebra of complex numbers when applied to power systems. However,
this procedure is strictly required to calculate power flows under distorted conditions.
For example, consider a voltage v(t) = 100

√
2 cos ωt and a current i(t) = 100

√
2 cos 2ωt.

Their phasor representations are �V = 100∠0 and�I = 100∠0, respectively. Even though
these signals are completely different, their representation in the complex domain is the
same. From a mathematical perspective, the product �V�I∗ cannot be performed since only
rotating vectors of the same frequency (and, thus, phasor quantities) can be axiomatically
multiplied in the complex domain. Due to the aforementioned limitations, the principle of
energy (power) conservation cannot be applied to apparent power in the complex domain
in a general sense [4]. These drawbacks have given rise to a great number of proposals for
the resolution of electrical circuits and the analysis of power flows [5–7]. This topic is of a
paramount relevance because of the increasing energy losses in transmission systems as
well as the negative effects on electrical-drives, power transformers and electronic devices.

Recently, geometric algebra (GA) has been proposed and applied to solve physical and
engineering problems [8,9]. It has also been proposed for analysing electrical circuits [10,11].
The use of GA has shed some light on a number of important shortcomings of complex
numbers, mainly due to the following properties:

1. It is possible to perform calculations between voltages and currents of different
frequencies that generate cross-coupling power terms. Therefore, power under non-
sinusoidal conditions can be adequately calculated;

2. Foundations of GA circuit analysis is defined in a multi-dimensional geometric do-
main (𝒢n), where a definition of geometric apparent power that fulfils the principle of
energy conservation can be obtained [12]. This power (M) has been named geometric
apparent power in the literature. Compared to the traditional definition of apparent
power (S), it considers the contribution of cross effects between voltages and currents
of different frequencies and is a signed quantity.

The aforementioned statements are strongly supported by the very basic foundations
of electromagnetic power theory: the Poynting Theorem. It is well-known that the density
power S delivered to a load can be calculated through the Poynting vector

S = E× H (3)

where E and H are the electric and magnetic field vector, respectively. Note the cross
product in (3). If both the electric field and the magnetic field are transferred to the
frequency domain [13], it is evident that the product of the harmonics content of different
frequencies leads to a density power with a clear physical existence.

The concept of geometric apparent power was first introduced by Menti in 2007 [14]. It
was demonstrated that the traditional apparent power is a particular case of the geometric
apparent power for systems that operate under sinusoidal conditions. Later, in 2010,
Castro-Núñez presented a new mathematical framework based on the use of k-blades
in GA for solving and analysing electrical circuits under sinusoidal conditions [15]. The
concept of geometric impedance was introduced and applied to single-phase RLC circuits.
The theory was extended by the same author for non-linear circuits in the presence of
harmonics [16,17]. The improvements compared to traditional theories were demonstrated
through examples. However, some drawbacks and inconveniences were found in this
particular formulation [18]. Castilla and Bravo [19,20] made improvements to former
theories and presented an alternative formulation, called generalized complex geometric
algebra. This theory can be used to perform power calculations, but cannot solve electrical
circuits in the GA domain. Recently, Montoya et al. [10,11] have studied power flows
under non-sinusoidal conditions using GA. These developments were applied in different
applications such as power factor correction and non-active current compensation, but only
for single-phase systems. Moreover, new GA developments have redefined the geometric
apparent power so that it can be fully applied to single-phase electrical circuits operating
under any type of voltage and current distortion [12]. In addition, recent publications have
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presented a formulation of a GA power theory in the time domain that establishes the basis
for both instantaneous and averaged current decomposition [21].

GA has already been applied in a number of cases to single-phase systems, but the
application to three-phase systems has been seldom addressed in the literature to date. To
the best of the author’s knowledge, the only attempt was undertaken by Lev-Ari [22] in
2009. However, this work only presented preliminary concepts and the effectiveness of the
theory was not validated. No further results have been published to date.

In this paper, GA is applied to analyse and solve three-phase electrical circuits under
sinusoidal and non-sinusoidal conditions. This can be seen as a relevant improvement
compared to previous theories based on GA that only addressed single-phase electrical
systems. Note that this is an initial effort towards a more complete polyphase framework
based on GA, where asymmetries and unbalanced effects should be taken into account. In
order to substantiate the validity of the proposed theory, several examples are presented
and solved in detail. Finally, the conclusions and suggestions for further research are
drawn. The main benefits of the application of geometric algebra to power systems are:

• It is possible to define a new power concept based on geometrical principles that take
the interaction of voltage and current harmonics of different frequency into account.
This is not possible using phasors based on complex algebra;

• Unified criteria and methods are established for the study of electrical circuits based
on a single tool that makes it possible to tackle multidimensional problems, such as
those existing in polyphase circuits;

• It establishes basic principles for the compensation of non-active current that allow
for the optimisation of energy losses in power transmission lines.

2. GA for Electrical Applications: Overview

The proposed theory requires some basic knowledge of GA. References [23–26] pro-
vide introductory material. However, a basic overview of GA has been included in order
to make the paper self-contained. For detailed information about GA and its applications
to electrical systems, see [11,12].

A relevant concept in GA is the geometric product. It can be applied to voltage and
current vectors to calculate the so-called geometric apparent power, M. For example, for a
single-phase sinusoidal supply and a linear load, an Euclidean vector basis σ = {σ1, σ2}
can be chosen so that the voltage and the current can be represented as a vector, i.e.,
u = α1σ1 + α2σ2 and i = β1σ1 + β2σ2. The geometric product is defined as the inner plus
the exterior product:

M = ui = u · i + u ∧ i = (α1β1 + α2β2)︸ ︷︷ ︸
P

+ (α1β2 − α2β1)︸ ︷︷ ︸
Q

σ12 (4)

where σ12 is commonly known as a bivector. Note that it is an element that is not present
in traditional linear algebra.

In order to apply the GA power theory to poly-phase systems, voltages and currents
are arranged as multi-dimensional vector arrays. These will be referred to as arrays, while
the term vector will be used to refer to voltages and currents of a given phase. For example,
the current waveforms [iR(t) iS(t) iT(t)] and voltage waveforms [uRN(t) uSN(t) uTN(t)] for
the three-phase system depicted in Figure 1 can be represented in the geometric domain as:

u =
[
uRN uSN uTN

]
, i =

[
iR iS iT

]T (5)
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The transformation is based on the principle of isomorphism between vector spaces. In
this case, the time domain periodic Fourier functions and Euclidean vector space. Thus, the
basis used for the geometric transformation can be chosen as in single-phase systems [12]:

ϕDC = 1 ←→ σ0
ϕc1(t) =

√
2 cos ωt ←→ σ1

ϕs1(t) =
√

2 sin ωt ←→ σ2
...

ϕcn(t) =
√

2 cos nωt ←→ σ2n−1
ϕsn(t) =

√
2 sin nωt ←→ σ2n

(6)

Any current or voltage variable x(t) in the time domain (including the DC component)
can be expressed as a vector x in the geometric domain by using 2n + 1 dimensions, where
n is the number of harmonics in x(t)

x = x0σ0 + ∑n
k=1(x1kσ2k−1 + x2kσ2k) (7)

while x1k and x2k are the Fourier coefficients of the harmonic k and x0 is the DC component.
From now on, inter-harmonics and the DC component will not be considered for the sake
of simplicity, but they can be seamlessly taken into account [11,18]. This representation
cannot be obtained in the complex domain since it involves rotating vectors at different
frequencies. Once the voltage and current vectors are defined, it is possible to introduce
the geometric apparent power for three-phase systems as:

M = ui = [uRN uSN uTN ]

⎡⎣ iR
iS
iT

⎤⎦ = uRNiR + uSNiS + uTNiT =

= uRN · iR + uSN · iS + uTN · iT︸ ︷︷ ︸
Ma=P

+ uRN ∧ iR + uSN ∧ iS + uTN ∧ iT︸ ︷︷ ︸
MN

(8)

In (8), the sum of scalar products ukN · ik, with k = {R, S, T}, leads to the geometric
active power Ma, which is similar to the traditional definition of P. Meanwhile, the sum
of the exterior products ukN ∧ ik leads to the geometric non-active power MN , which is
similar to the traditional reactive power (Q) for a symmetric and sinusoidal voltage supply
feeding a balanced load.

Other apparent power definitions based on euclidean or geometric principles can be
found in the literature. For example, the RMS values of voltage and current vectors are
used in [27], i.e., S = ‖U‖‖I‖. Unfortunately, they exclusively rely on the concept of a
norm. Therefore, they cannot fulfil the principle of energy conservation [12].

The norm (RMS value) of any geometric array can be calculated by using the norm
definition [25]:

‖x‖ =
√

x · xT =
√
〈x†x〉

0
=

√
∑ix2

i (9)

For a voltage waveform, the result is

‖u‖2 = u · uT = [uRN uSN uTN ]

⎡⎣ uRN
uSN
uTN

⎤⎦ = uRNuRN + uSNuSN + uTNuTN (10)

= ‖uRN‖2 + ‖uSN‖2 + ‖uTN‖2 (11)

A similar result can be obtained for the current i. It can be proved that ‖M‖ =
‖u‖‖i‖ [18], i.e., the product of vector norms equals the norm of the geometric power

‖M‖ =
√
〈MM†〉0 =

√
〈ui(ui)†〉0 =

√
〈uiiTuT〉0 =

√
〈‖u‖2‖i‖2〉0 = ‖u‖‖i‖ (12)
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where the reverse of a general geometric array a is defined as a† = aT .

Power Supply Load

iR

iS

iT

R

S

T

N

uRN

uSN

uTN

Figure 1. Three-phase three-wire electrical circuit.

3. Case I: Balanced, Symmetric and Sinusoidal

In this section, the proposed theory is applied to a three-phase circuit that operates
under balanced, symmetric and sinusoidal conditions. Although it is a well-known case,
already solved in the literature, we believe it is a good example to understand the GA-based
methodology. For clarification, the traditional complex algebra solution is also presented.
The computations were carried out using a Matlab library kown as GAPoTNumLib devel-
oped by the some of the authors for GA in electrical engineering [28].

3.1. Current, Voltage and Impedance Calculations

A three-phase three-wire electrical circuit that consists of an ideal voltage source that
feeds a balanced star-connected load is shown in Figure 2. The phase voltages are uRN(t),
uSN(t) and uTN(t) while the line currents are iR(t), iS(t) and iT(t). These waveforms are
defined in the time domain. They can be transformed to the geometric domain 𝒢n by using
the transformation shown in (6). Since the system is balanced and sinusoidal, there is only
a fundamental harmonic component, i.e., n = 1. Thus, the dimension of the geometric
domain is two (𝒢2). Under these assumptions, the chosen basis σ includes one scalar, two
vectors and one bivector, i.e., σ = {1, σ1, σ2, σ12}.

uRN

iR

uSN

iS

uTN
iT

L

R

+

+
+

Figure 2. Symmetrical three-phase, three-wire circuit.

The following voltage waveforms are considered:

uRN(t) =
√

2U cos(ωt + ϕ)

uSN(t) =
√

2U cos(ωt + ϕ− 2π/3)

uTN(t) =
√

2U cos(ωt + ϕ + 2π/3)

(13)

Without loss of generality and for simplicity reasons, it is assumed that U = 1 V,
ϕ = 0º and ω = 1 rad/s. In this case, by virtue of (6), the geometric voltages become

uRN = σ1, uSN = −1
2

σ1 +

√
3

2
σ2, uTN = −1

2
σ1 −

√
3

2
σ2 (14)
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which resembles the standard phasor representation in the complex domain, being σ1 the
real part, and σ2 the imaginary part, as in

�uRN = 1, �uSN = −1
2
+

√
3

2
j, �uTN = −1

2
−
√

3
2

j (15)

The Euler formula widely used in complex algebra eϕj = cos ϕ + sin ϕj, can also be
used in GA [23]:

eϕσ12 = cos ϕ + sin ϕσ12 (16)

This exponential entity is commonly known in GA as spinor, i.e., a multivector made
up of a scalar plus a bivector [29]. Any vector multiplied by a spinor undergoes a rotation
of ϕ degrees in the plane defined by the bivector (in this case σ12) and a scaling. Therefore,
spinors are commonly used to rotate elements in GA (unitary spinors are also known as
rotors [24]). Note that the impedance and admittance of a passive element can also be
represented as a spinor, as explained later. Hence, the voltage in (14) can be expressed in
polar form as:

uRN= e0σ12 σ1= 1∠0

uSN= e−120σ12 σ1= 1∠−120

uTN= e120σ12 σ1= 1∠120

(17)

The reader should keep in mind that right- and left-multiplication between vectors
and rotors produce rotations in opposite directions. In the rest of the paper, rotors will
left-multiply vectors. In (17), it is easy to identify 1∠0, 1∠−120 and 1∠120 as geometric
vectors in the plane σ1-σ2. They resemble the complex phasors e0j, e−120j and e120j in the
complex plane, respectively. Line voltages can be calculated as follows:

uRS = uRN − uSN =
√

3e30σ12 σ1 =
√

3∠30

uST = uSN − uTN =
√

3e−90σ12 σ1 =
√

3∠−90 (18)

uTR = uTN − uRN =
√

3e150σ12 σ1 =
√

3∠150

Assuming an RL load with R = 1/
√

2 Ω and L = 1/
√

2 H, the geometric impedance
becomes:

Z = R + XL = Zeϕσ12 = R + Lωσ12 =
1√
2
+

1√
2

σ12 = e45σ12

Note that the traditional form in complex notation is 1√
2
+ 1√

2
j = e45j. A relevant

property of vectors and multivectors in GA is that the existence of an inverse is always
guaranteed, provided that they are not null. For example, for a multivector in 𝒢2 given by
X = X0 + X1σ1 + X2σ2 + X3σ12 and a vector x = x1σ1 + x2σ2, their inverses are:

X−1 = X†/(XX†), x−1 = 1/x = x/‖x‖2 (19)

where
X† =

n

∑
k=0
〈X†〉k =

n

∑
k=0

(−1)k(k−1)/2〈X〉k

is the reverse of X and 〈X〉k is an operator that extracts the k-th grade element of X. The
admittance can be calculated as follows:

Y = Z−1 =
Z†

ZZ† = G + BL =
1
Z

e−ϕσ12 =
1√
2
− 1√

2
σ12 = e−45σ12 (20)

The currents can be found by applying Kirchhoff and Ohm’s laws to the former
expressions, yielding:
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iR = YuRN =
1√
2
(σ1 + σ2) = e−45σ12 σ1

iS = YuSN =
−1−

√
3

2
√

2
σ1 +

−1 +
√

3
2
√

2
σ2 = e−165σ12 σ1 (21)

iT = YuTN =
−1 +

√
3

2
√

2
σ1 +

−1−
√

3
2
√

2
σ2 = e75σ12 σ1

Compare the results of (22) with that of complex notation e−45j, e−165j and e75j. It
may look like the complex notation is lighter than that of GA, but it comes at a cost:
only two dimensions can be handled at a time, i.e., only one harmonic component can be
solved. Figure 3 shows a graphical representation of geometric vectors that resembles the
traditional Argand diagram for complex numbers. However, the concept of phase shift
now leads to a negative angle, represented as a rotation in counter-clockwise direction.
Meanwhile, phase lead is represented by a positive angle and a rotation in clockwise
direction. This interesting fact can be explained by using the trigonometric identity sin θ =
cos(θ − π/2). Therefore, we conclude that sin ωt lags cos ωt (σ2 lags σ1).

Figure 3. Representation of voltage and current geometric vectors in the plane σ1σ2.

Compared to traditional complex algebra, the graphical representation of powers
and impedances/admittances in GA is slightly different. These elements are spinors, i.e.,
entities that consist of a scalar and a bivector part. Therefore, they should not be depicted
in the plane σ1-σ2 but in the scalar-bivector one. It is a subtle difference, but it is worth to
highlight this aspect. Although both GA objetcs and complex numbers can be depicted in
Argand diagrams, completely different representations are used for GA objects, according
to their nature (impedances/powers or voltages/currents). Figure 4 shows an example of a
graphical representation, where the x axis now represents scalars and the y axis represents
bivectors. This interpretation is a novel contribution of this paper.
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Figure 4. Power and impedance triangle in GA plane scalar-σ12.

3.2. Power Calculations

The norm of the voltage and current arrays can be calculated by using (5) and (11):

‖u‖2 = u · u = uuT = [uRN uSN uTN ]

⎡⎣uRN
uSN
uTN

⎤⎦ = σ1σ1 +

(
−1

2
σ1 +

√
3

2
σ2

)(
−1

2
σ1 +

√
3

2
σ2

)
+

+

(
−1

2
σ1 −

√
3

2
σ2

)(
−1

2
σ1 −

√
3

2
σ2

)
= 3 (22)

‖i‖2 = i · i = i T i =
[
iR iS iT

]⎡⎣iR
iS
iT

⎤⎦ = 3 (23)

Therefore, the concept of three-phase geometric apparent power can be used, yielding:

M = ui = u · i + u ∧ i = Ma + MN (24)

where

Ma =
1√
2
+

1 +
√

3
4
√

2
+

√
3(−1 +

√
3)

4
√

2
+

1−
√

3
4
√

2
+

√
3(1 +

√
3)

4
√

2

MN =

[
1√
2
+

1−
√

3
4
√

2
+

√
3(1 +

√
3)

4
√

2
+

1 +
√

3
4
√

2
+

√
3(−1 +

√
3)

4
√

2

]
σ12

After some algebraic manipulations, the geometric apparent power can be written as:

M = Ma + MN = P + Qσ12 =
3√
2
+

3√
2

σ12 (25)

It can be seen that the geometric power consists of two terms of different nature. On
the one hand, the active geometric power Ma, which is a scalar number that is equal to the
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active power P for the sinusoidal case. Therefore, for this example, P = R‖i‖2 = 3/
√

2.
On the other hand, we get the non-active power MN , which is a bivector. For the ideal
case, the non-active power is equal to Q. Therefore, in this example, Q = X‖i‖2 = 3/

√
2.

Furthermore, it can be verified that ‖M‖ yields to the same result as the traditional apparent
power S by using (12):

‖M‖ =
√
(3/
√

2)2 + (3/
√

2)2 = ‖u‖‖i‖ = 3 (26)

A relevant difference between M and S is that the result is a multivector and not a
scalar nor a complex number, as in the traditional apparent power, S̄. For this example
(balanced and sinusoidal), the result is a spinor, where the scalar part is the active power P,
while the bivector part is the well-known reactive power Q.

3.3. Current Decomposition

GA can be used to decompose currents in components that are relevant for engineering
purposes (e.g., filter design), as in other power theories [6,30]. For sinusoidal single-phase
circuits, the current can be decomposed into two terms: active and reactive, i.e., current in
phase and in quadrature with respect to the voltage, respectively. However, if the source
voltage is not sinusoidal, an additional term appears. This term is commonly known as
scattered current in the CPC theory [27].

In GA, it is possible to decompose currents by applying Kirchhoff laws [31]. In the
case under study, the current decomposition yields:

iR = YRuRN = (GR + BRσ12)uRN
iS = YSuSN = (GS + BSσ12)uSN
iT = YTuTN = (GT + BTσ12)uTN

(27)

which can be expressed in array form as:⎡⎣ YRuRN
YSuSN
YTuTN

⎤⎦ =

⎡⎣ GRuRN
GSuSN
GTuTN

⎤⎦
︸ ︷︷ ︸

ip

+

⎡⎣ BRσ12uRN
BSσ12uSN
BTσ12uTN

⎤⎦
︸ ︷︷ ︸

iq

(28)

Therefore, the current can be decomposed into a parrallel current array ip (proportional
to the voltage) and a quadrature current array iq (in quadrature with the voltage). This
finding is inline with Shepherd and Zakikhany theory [4]. The squared norm of ip can be
calculated using (9):

‖ip‖2 = ip · ip = G2
R‖uRN‖2 + G2

S‖uSN‖2 + G2
T‖uTN‖2 (29)

Note that for a balanced load, GR = GS = GT = G. Therefore, the active power can be
written as:

P = R‖ip‖2 (30)

Since the voltages of the system under study are balanced, then ‖u‖2 = 3‖uRN‖2.
Therefore:

G =
P

3‖uRN‖2 (31)

Figure 5 shows a three-phase balanced circuit equivalent to that depicted in Figure 2.
When these circuits are supplied with the same voltage u, both demand the same active
power P. In this case, the active power can be easily calculated:

P = Ge‖uRN‖2 + Ge‖uSN‖2 + Ge‖uTN‖2 (32)
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Therefore, the equivalent conductance Ge is:

Ge =
P

‖uRN‖2 + ‖uSN‖2 + ‖uTN‖2 = G (33)

The same analysis can be carried out for the susceptance Be by using an equivalent
load written in terms of reactances. Therefore, it is possible to derive a general expression
for the equivalent admittance:

Ye = (YR + YS + YT)/3 = Ge + Beσ12 (34)

This expression simplifies the decomposition of currents into components that are
significant for the engineering practice. As shown in (29), Ge (the scalar part of Ye) is related
to the parallel current, which, for sinusoidal systems, matches the active current, i.e., the
minimum current that produces the same active power P. Be (the bivector part of Ye) is
the equivalent susceptance, and leads to the quadrature current. This current does not
produce net power transfer and increases the total current, thereby increasing losses. For
this example, the geometric power associated to the current components can be obtained
as in (8):

P = Ma = Mp = uip
Q = MN = Mq = uiq

(35)

Compared to the traditional apparent power, the three-phase geometric apparent
power defined in this work fulfills the Tellegen’s Theorem and is conservative (see
references [10,11,20]) since:

M = Ma + MN = Mp + Mq (36)

iR

iS

iT

R

S

T

N

Ge

Ge

Ge

Figure 5. Equivalent three-phase balanced resistor.

3.4. Voltage Transformation Using Geometric Rotors

One of the most interesting features of GA is its ability to spatially manipulate geo-
metric objects. For example, it is widely used in computer graphics to perform translations,
reflections, or, more interestingly, rotations. In electrical engineering, a transformer can be
considered as an element that causes a phase shift and a scaling of voltage or current signals
between its primary and secondary terminals. This translates into a scaling and rotation in
the geometrical domain, so that a voltage or current vector applied to the primary will be
seen as a rotated and scaled vector in the secondary.

On the basis of the circuit in Figure 2, a three-phase transformer can be placed between
the source and the load according to Figure 6. Let us assume that the transformer has a
connection group Dy11. Therefore, the voltages of the secondary will be shifted by 11π

6
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and scaled by 1√
3

N1
N2

with respect to the primary. For the symmetric case, represented by
Equations (13) and (14), the time domain voltage in the secondary is

u′RN(t) =
√

2√
3

N1

N2
cos

(
ωt− 11π

6

)
u′SN(t) =

√
2√
3

N1

N2
cos

(
ωt− 3π

6

)
u′TN(t) =

√
2√
3

N1

N2
cos

(
ωt− 7π

6

) (37)

which translates to the geometric domain as

u′RN =
1√
3

N1

N2

(√
3

2
σ1 +

1
2

σ2

)
, u′SN = − 1√

3
N1

N2
σ2, u′TN =

1√
3

N1

N2

(
−
√

3
2

σ1 +
1
2

σ2

)
(38)

It is easy to prove that this operation corresponds to a rotation plus a scaling in the
geometric domain. For this purpose, it is enough to establish the geometric object associated
with the rotation, as well as the scale factor. In this way, the result can be expressed
compactly in geometrical terms as

u′ =
1√
3

N1

N2
RuR† (39)

where

R = e
11π
12 σ12 = cos

11π

12
+ sin

11π

12
σ12 (40)

Note that the rotor angle is just half of the full rotation angle, because the rotation
is a sandwich operation that operates half on each side of the vector. The detail of the
development of (39) is as follows

u′ =
1√
3

N1

N2
RuR† =

1√
3

N1

N2

⎡⎣ RuRN R†

RuSN R†

RuTN R†

⎤⎦ =
1√
3

N1

N2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
11π
12 σ12 σ1e−

11π
12 σ12

e
11π
12 σ12

(
−1

2
σ1 +

√
3

2
σ2

)
e−

11π
12 σ12

e
11π
12 σ12

(
−1

2
σ1 −

√
3

2
σ2

)
e−

11π
12 σ12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1√
3

N1

N2

⎡⎢⎢⎢⎢⎢⎣

√
3

2
σ1 +

1
2

σ2

−σ2

−
√

3
2

σ1 +
1
2

σ2

⎤⎥⎥⎥⎥⎥⎦

(41)

Figure 6. Three phase circuit with a Dy11 transformer with N1 and N2 windings for the primary and
secondary, respectively.
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4. Case II: Balanced, Symmetric and Non-Sinusoidal

In this section, the proposed theory is applied to a three-phase circuit that operates in
balanced, symmetric and non-sinusoidal conditions.

4.1. Current, Voltage and Impedance Calculations

Consider again the example in Figure 2, but supplied with a non-sinusoidal, symmetric
and positive sequence voltage:

uRN(t) = ∑n
k=1

√
2Uk cos(kωt + ϕk)

uSN(t) = ∑n
k=1

√
2Uk cos(kωt− k

2π

3
+ ϕk)

uTN(t) = ∑n
k=1

√
2Uk cos(kωt + k

2π

3
+ ϕk)

(42)

Table 1 shows the well-known mapping for frequency and symmetrical sequence
component depending on the harmonic order. Only three-wire systems will be considered
in this work. Therefore, zero-sequence voltage and current will not be considered since it is
guaranteed that they will not affect power calculations. The addition of the fourth wire is a
relevant topic for further research.

Based on (6), the voltage in the geometric domain is:

uRN = ∑n
k=1(uk1σ2k−1 + uk2σ2k)

uSN = ∑n
k=1

(
−1

2
uk1σ2k−1 +

√
3

2
uk2σ2k

)

uTN = ∑n
k=1

(
−1

2
uk1σ2k−1 −

√
3

2
uk2σ2k

) (43)

where uk1 = Uk cos ϕk and uk2 = Uk sin ϕk. The current array can be calculated as in (27),
yielding:

i =

⎡⎣ iR
iS
iT

⎤⎦ = ip + iq =

⎡⎢⎣ iRp

iSp

iTp

⎤⎥⎦+

⎡⎢⎣ iRq

iSq

iTq

⎤⎥⎦ =

⎡⎢⎣ ∑n
k=1 GRk (uk1σ2k−1 + uk2σ2k)

∑n
k=1 GSk (− 1

2 uk1σ2k−1 +
√

3
2 uk2σ2k)

∑n
k=1 GTk (− 1

2 uk1σ2k−1 −
√

3
2 uk2σ2k)

⎤⎥⎦
︸ ︷︷ ︸

ip

+ (44)

+

⎡⎢⎣ ∑n
k=1 BRk σ(2k−1)(2k)(uk1σ2k−1 + uk2σ2k)

∑n
k=1 BSk σ(2k−1)(2k)(− 1

2 uk1σ2k−1 +
√

3
2 uk2σ2k)

∑n
k=1 BTk σ(2k−1)(2k)(− 1

2 uk1σ2k−1 −
√

3
2 uk2σ2k)

⎤⎥⎦
︸ ︷︷ ︸

iq

As in the sinusoidal case, it is possible to find an equivalent admittance for each of the
harmonics present in the system:

Yek = Gek + Bekσ(2k−1)(2k) =
1
3
(YRk + YSk + YTk ) (45)

Using the same rationale of (31), and similar to the approach of CPC theory by Prof.
Czarnecki, the equivalent conductance and susceptance for each harmonic is:

Gek =
Pk
‖u‖2 = Gk, Bek =

Qk
‖u‖2 = Bk (46)
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Equation (33) is still valid even if u is non-sinusoidal, and it can be simplified as follows

Ge =
P
‖u‖2 (47)

Table 1. Sequences for the different harmonic orders in a balanced three-phase system for
h = 1, 2, . . . , ∞.

Harmonic Order Radian Frequency Sequence

3h− 2 (3h− 2) ω1 positive (+)
3h− 1 (3h− 1) ω1 negative (−)

3h 3h ω1 zero (0)

4.2. Current Decomposition

The current consumed by loads is commonly decomposed for engineering purposes.
The main idea is to split the current into virtual components that can be used, for example,
to design and control active compensators. Current decomposition is based on Fryze’s
ideas, where active and non-active currents are defined [6]. In this work, the equivalent
conductance is used to calculate the active current [12]:

ia = Geu =
u
‖u‖2 Ma (48)

The current ia is part of ip, as already shown in the literature [32,33]. Therefore, the
scattered current becomes:

is = ip − ia (49)

The total current can be decomposed as follows:

i = ip + iq = ia + is + iq (50)

The three components in the left-hand side part of (50) are in quadrature. Therefore:

ia · is = 0, ia · iq = 0, is · iq = 0

4.3. Numerical Example

The circuit in Figure 2 will be analysed for the case of a non-sinusoidal symmetric
voltage source such as:

uRN(t) =
√

2[230 cos ωt + 110 cos 2ωt]

uSN(t) =
√

2[230 cos(ωt− 2π/3) + 110 cos(2ωt + 2π/3)]

uTN(t) =
√

2[230 cos(ωt + 2π/3) + 110 cos(2ωt− 2π/3)]

(51)

where the harmonic sequences presented in Table 1 have been taken into account. The
transformation to the geometric domain follows the rules presented in (6), thus

uRN = 230σ1 + 110σ3

uSN = 230e−2π/3σ12 σ1 + 110e2π/3σ34 σ3

uTN = 230e2π/3σ12 σ1 + 110e−2π/3σ34 σ3

(52)

The voltage array u can be expressed as:

u = u1 + u2 (53)

where u1 and u2 are the voltages of the fundamental and the second harmonic, respectively.
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The impedance for each frequency should be obtained in order to calculate the current.
Since the load is balanced, then ZRk = ZSk = ZTk = Zk. The impedances are:

Z1 = 0.7071 + 0.7071 σ12, Y1 = 0.7071− 0.7071 σ12

Z2 = 0.7071 + 1.4142 σ34, Y2 = 0.2828− 0.5657 σ34

Now, the current array can be calculated as in (22):

i =
2

∑
k=1

ik = i1 + i2 = Y1u1 + Y2u2 (54)

By substituting numerical values in (54):

i =

⎡⎣+162.63σ1 + 162.63σ2 + 31.11σ3 + 62.22σ4
−222.16σ1 + 59.53σ2 + 38.33σ3 − 58.06σ4

59.53σ1 − 222.16σ2 − 69.44σ3 − 4.16σ4

⎤⎦ =

⎡⎣ 162.63σ1 + 31.11σ3
−81.32σ1 + 140.84σ2 − 15.55σ3 − 26.94σ4
−81.32σ1 − 140.84σ2 − 15.55σ3 + 26.94σ4

⎤⎦
︸ ︷︷ ︸

ip

+

⎡⎣ + 162.63σ2 + 62.22σ4
−140.85σ1 − 81.32σ2 + 53.88σ3 − 31.11σ4

140.85σ1 − 81.32σ2 − 53.88σ3 − 31.11σ4

⎤⎦
︸ ︷︷ ︸

iq

(55)

It can be verified that ip and iq are orthogonal since ip · iq = 0.
As the voltage and current of the load are known, the apparent geometric power can

be calculated:
M = ui = Ma + MN (56)

where

Ma = P = 122, 485

MN = 112, 217σ12 + 20, 534σ34︸ ︷︷ ︸
QB

−16, 100σ13 − 5, 366σ14 − 5, 366σ23 + 16, 100σ24

The units of active power are Watts [W] and every bivector in MN has units of VoltAmperes
[VA]. The terms σ(2k−1)(2k) refer to the reactive power of the harmonic k, in the Budeanu’s
sense [34] (voltage and current components of the same frequency that are in quadrature).
The non-active power MN includes all the components that do not produce active power P.
The active current can be obtained by using (48):

ia =Geu =
P
‖u‖2 u =

122, 485
195, 300

⎡⎣+230σ1 + 110σ3

−115σ1 + 199.19σ2 − 55σ3 − 95.26σ4

−115σ1 − 199.19σ2 − 55σ3 + 95.26σ4

⎤⎦ (57)

=

⎡⎣+144.25σ1 + 68.99σ3
−72.12σ1 + 124.92σ2 − 34.49σ3 − 59.74σ4
−72.12σ1 − 124.92σ2 − 34.49σ3 + 59.74σ4

⎤⎦
The norm of the active current is ||ia|| = 159.9 A and the norm of the total current is

||i|| = 240.29 A. The scattered current can be calculalated by using (49):

is = ip − ia (58)
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is =

⎡⎣+162.63σ1 + 31.11σ3
−81.32σ1 − 140.84σ2 − 26.94σ3 − 15.56σ4
−81.32σ1 + 140.84σ2 + 26.94σ3 − 15.56σ4

⎤⎦
︸ ︷︷ ︸

ip

−

⎡⎣+144.25σ1 + 68.99σ3
−72.12σ1 + 124.92σ2 − 34.49σ3 − 59.74σ4
−72.12σ1 − 124.92σ2 − 34.49σ3 + 59.74σ4

⎤⎦
︸ ︷︷ ︸

ia

=

=

⎡⎣+18.39σ1 − 37.88σ3
−9.19σ1 + 15.92σ2 + 18.94σ3 + 32.80σ4
−9.19σ1 − 15.92σ2 + 18.94σ3 − 32.80σ4

⎤⎦ (59)

The norm of the scattered current is ‖is‖ = 42.10 A. The above results are in line with those
obtained by using complex numbers (which are omitted for the sake of brevity).

Figure 7 shows the waveforms of the source voltage and several current components.
The active current is proportional to the sum of the fundamental and second harmonic
components of the voltage waveform. This current is part of the parallel current, along
with the scattered current. It can observed that all the currents are balanced, as expected.

Figure 7. Voltage and current waveforms for Example 2. (a) Load current, (b) parallel current,
(c) quadrature current, (d) active current and voltage, and (e) scattered current.
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5. Conclusions

In this paper, GA was applied in order to analyse and solve symmetric and balanced
three-phase electrical circuits that operate under sinusoidal and non-sinusoidal conditions.
The concept of geometric vector was presented in polar coordinates so that operations
such as voltage and current vector rotations can easily be performed. The Argand diagram
σ1-σ2 was used to depict vectors, while the scalar-bivector one was introduced in order
to depict impedances/admittances and power components. This is a clear difference
compared to traditional representations based on complex numbers. It has been shown
that the proposed theory can be applied directly over three-phase electrical circuits using
Kirchhoff and Ohm’s law. The use of the geometric apparent power M and the current
decomposition with relevant engineering meaning provide additional features compared
to traditional power theories. The examples presented in the paper verify the validity of
the proposed theory. Further developments will include the addition of a fourth wire and
unbalanced loads under asymmetrical and distorted voltage conditions. This fact requires
the use of orthogonal transformations, such as the one derived from the application of
the symmetrical components. It can be addressed through the addition a higher number
of dimensions.
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Abstract: The Hochschild cohomological dimension of any commutative k-algebra is lower-bounded
by the least-upper bound of the flat-dimension difference and its global dimension. Our result is
used to show that for a smooth affine scheme X satisfying Pointcaré duality, there must exist a vector
bundle with section M and suitable n which the module of algebraic differential n-forms Ωn(X, M).
Further restricting the notion of smoothness, we use our result to show that most k-algebras fail to be
smooth in the quasi-free sense. This consequence, extends the currently known results, which are
restricted to the case where k = C.

Keywords: hochschild cohomology; homological dimension theory; non-commutative geometry;
quasi-free algebras; pointcaré duality; higher differential forms

1. Introduction

Non-commutative geometry is a rapidly developing area of contemporary mathemat-
ical research that studies non-commutative algebras using formal geometric tools. The
field traces its most evident origins back to the results of [1], which show that any compact
Hausdorff space can be fully reconstructed, and largely understood, from its associated
C�-algebra of functions C(X). However, the trend of understanding geometric properties
via algebraic dual theories is echoed throughout mathematics; with notable examples
coming from the duality between finitely generated algebras and affine schemes (see [2]),
the description of any smooth manifold M through its commutative algebra C∞(M), and
ultimately culminating with the work of [3,4] describing the duality relationship between
algebra and geometry in full generality.

Though a large portion of the interest in non-commutative geometry stems from its
connections with physics, see [5–7]. A. Connes largely made these connections through
the cyclic cohomology theory of [8], a generalized de Rham cohomology theory for non-
commutative spaces, which closely tied through the Connes complex to one of the central
tools of non-commutative geometry and the central object of study of this paper, namely
Hochschild (co)homology.

Hochschild (co)homology, originally introduced in [9], is a cohomology theory for
non-commutative k-algebras. Since its introduction, it has become a key tool and object of
study in non-commutative geometry since the results of [10] (and more recently generalized
in [11] to characteristic p fields); which identifies the Hochschild homology of commutative
k-algebras over a characteristic 0 field k, to the module of Khäler differentials over their
associated affine scheme. Likewise, the result identifies Hochschild’s cohomology theory
with the modules of derivations and, therefore, with the tangential structure over the
commutative algebra’s associated affine scheme. Likewise, in these cases, Pointcaré duality-
like results can also be entirely formulated between these structures and the Hochschild
(co)homology theories as shown in [12].

This article focuses on a fundamental non-commutative geometric invariant derived
from the Hochschild (co)homology, namely its (co)homological dimension. We focus on the
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interplay between this (co)homological invariant of commutative k-algebras over general
commutative rings k, and its implications on various notions of smoothness of its associated
dual non-commutative space; such as the quasi-freeness (or formal smoothness) of [13,14],
or more generally, the vanishing of their higher modules of differential forms as seen in [12].

The relationship between the Hochschild (co)homology theory and smoothness has
seen study in the case where k is a field in [15,16]. However, the general case is still far from
understood and this is likely due to it requiring a more subtle treatment offered by the
less-standard tools of relative homological-algebraic (see [17,18] for example). Indeed, this
paper proposes a set of lower-estimates of this invariant, which can be easily computed
from local data of any commutative k-algebra over a commutative ring k with unity.

The paper’s main results are used to show that for any smooth affine scheme X there
must exist a vector bundle on X with section M and a suitably small natural number
n for which the module of algebraic differential n-forms with values in M, denoted by
Ωn(X, M) is non-trivial. Our results are also used to derive simple tests for a k-algebras’
quasi-freeness. This latter application extends known results of [14] in the special case
where k = C. Using this result, we conclude that typical k-algebras are not quasi-free.
Concrete applications are considered within the scope of arithmetic geometry.

Organization of the Paper

The paper is organized as follows. Section 2 contains the paper’s main theorems as
well as its non-commutative geometric questions consequences. Each result is followed
by examples which unpack the general implications in the context of algebraic geometry.
Appendix A contains detailed background material in the relative homological algebraic
tools required for the paper’s proofs is included after the paper’s conclusion. Likewise, the
paper’s proofs and any auxiliary technical lemma is also relegated to Appendices B–D.

2. Main Result

From here on out, A will always be a commutative k-algebra. The remainder of this
paper will focus on establishing the following result. An analogous statement was made
in [14] that all affine algebraic varieties over C of dimension at greater than 1 fail to have
a quasi-free C-algebra of functions. Once, the assumption that k = C is relaxed, we find
an analogous claim is true; however, the analysis is more delicate. Our principle result is
the following.

Theorem 1 (Lower-Bound on Hochschild Cohomological Dimension). Let A be a commu-
tative k-algebra and m be a non-zero maximal ideal in A such that Am is has finite ki−1[m]-flat
dimension and D(ki−1[m]) is finite. Then:

f dAm
(Mm)− D(ki−1[m])− f dkm(Am) ≤HCdim(A|k)

Theorem 1 allows for an easily computable lower-bound on the Hochschild cohomo-
logical dimension of nearly any commutative k-algebra A, granted that it is smooth in the
classical sense at-least at one point. The next result, obtains an even simpler criterion under
the additional assumption that A is k-flat.

Theorem 2. Let k be of finite global dimension, A be a k-algebra which is flat as a k-module.
Then M:

f dA(M)− D(k) ≤ HCdim(A|k). (1)

Example 1. Let A be a commutative k-algebra and m be a non-zero maximal ideal in A such that
Am is has finite ki−1[m]-flat dimension, D(ki−1[m]), and A is Cohen-Macaulay at some maximal
ideal m. Then

Krull(Am)− D(ki−1[m])− f dm(Am) ≤ HCdim(A|k).
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Example 2. Let k be of finite global dimension, A be a k-algebra which is flat as a k-module. Then,
for every A-module M, if x1, .., xn is a regular sequence in A then:

n− D(k) ≤ HCdim(A|k). (2)

Furthermore if A is commutative and Cohen-Macaulay at a maximal ideal m then:

Krull(Am)− D(k) ≤ HCdim(A|k). (3)

Next, we consider the implications of our dimension-theoretic formulas within the
scope of algebraic geometry from the non-commutative geometric vantage-point.

2.1. Non-Triviality of Higher Differential Forms

The paper’s provides a homological argument showing that a smooth affine scheme
must have some non-trivial module of higher-differential forms. These begin with the
non-triviality of the Hochschild homology modules.

To show our result, we begin by recalling the terminology introduced in [12]. Recall
that a k-algebra is satisfies Pointcaré duality in dimension d if the dualising module ωA �
Extd

E k
A
(A, A) satisfies Exti

E k
A
(A, k) = 0 for every i 	= d and if in addition pdE k

A
(ωA) < ∞.

We also recall that an A-bimodule M is invertible if and only if there exits another A-
bimodule, which we denote by M−1, for which M⊗A M−1 ∼= M−1 ⊗A M ∼= A in A ModA.

Corollary 1 (Non-Triviality of Hochschild Homology Modules). Let k be a commutative ring
and X be a d-dimensional smooth affine scheme over k whose coordinate ring satisfies Pointcaré
duality in dimension d and is invertible. Then, there is an A-bimodule M and some 0 ≤ n ≤
d− f dA(M) + D(k) satisfying

HHn(A, M) 	∼= 0.

On applying the Hochschild-Kostant-Rosenberg Theorem to Corollary 1, we imme-
diately obtain the claimed result. Recall that Ωn(X, M) denotes the algebraic differential
n-forms on the affine scheme X with coefficients in the vector bundle whose section is the
k[A]-bimodule M.

Corollary 2. Let k be a commutative ring and X be a d-dimensional smooth affine scheme over k
whose coordinate ring satisfies Pointcaré duality in dimension d and is invertible. Then, there exists
a some 0 ≤ n ≤ d− f dA(M) + D(k) and a vector bundle whose section is the k[A]-module M for
which the algebraic differential n-forms for which

Ωn(X, M) 	∼= 0.

Next, we use Theorem 1 to demonstrate the rarity of commutative quasi-free k-algebras.

2.2. Quasi-Free Algebras are Uncommon

Corollary 3 (Krull Dimension-Theoretic Criterion for Quasi-Freeness). Let A be a commu-
tative k-algebra and m be a non-zero maximal ideal in A such that Am is has finite ki−1[m]-flat
dimension, D(ki−1[m]), and A is Cohen-Macaulay at some maximal ideal m. Then, A is not
Quasi-free if

Krull(Am) ≤ 2 + D(ki−1[m])− f dm(Am).

Let us also consider the simpler form implied by Theorem 2.

Corollary 4. If k is of finite global dimension, A is a k-algebra which is flat as a k-module, and if
Am’s Krull dimension is at least 2 + D(k) then A is not Quasi-free.

We unpack Theorem 2 in the context of classical algebraic and arithmetic geometry.
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Examples

To build intuition before proceeding, we consider a counter-intuitive consequence.
Namely, that most examples of smooth commutative algebras fail to be quasi-free, even
when k 	= C. This makes smoothness, in the sense of [14], very rare in the non-commutative
category. The following example from arithmetic geometry is of interest.

Let be an affine algebraic C-variety V(A). For any point x in V(A) the ideal generated
by the collection of regular functions on V(A) vanishing at the point x is denoted by I (x);
in fact I (x) is a maximal ideal in A [19]. Moreover, for any affine-algebraic variety V(A)
there exists a point x such that AI (x) is regular. Since every regular local C-algebra is
Cohen Macaulay at its maximal ideal, then A is Cohen-Macaulay at I (x). Since C is a field
it is a regular local ring of Krull dimension 0; the Auslander-Buchsbaum-Serre theorem thus
implies D(k) = Krull(k) = 0, moreover AI (x) is a C-vector space whence it is a C-free
and so is a C-flat module. Therefore Theorem 2 applies if Krull(A) ≥ 2. We summarize
this finding as follows.

Corollary 5. If X is an affine C-variety and k[A]’s Krull dimension is greater than 1 then the
C-algebra A is not quasi-free

Remark 1. Corollary 5 implies that any affine algebraic C-variety which is not a disjoint union of
curves or points has a coordinate ring which fails to be quasi-free over C.

Example 3. The C-algebra C[x1,1, x1,2, x2,1, x2,2](det) is not quasi-free.

Proof. C[x1,1, x1,2, x2,1, x2,2](det) is of Krull dimension 4 > 1 [20] therefore Theorem 2
applies.

Corollary 6 (Arithmetic Polynomial-Algebras). The Z-algebra Z[x1, .., xn] fails to be quasi-free
for values of n > 1.

Proof. Since Z[x1, ...xn] is Cohen-Macaulay at the maximal ideal (x1, ...xn, p) and is of Krull
dimension n + 1 = Krull(Z[x1, ...xn]). Moreover, one computes that D(Z) = 1. Whence by
point 2 of Theorem 2: Z[x1, .., xn] fails to be Quasi-free if 2 ≤ Krull(Z[x1, ...xn])− D(Z) =
(n + 1)− 1 = n.

The contributions of the paper are now summarized.

3. Conclusions

This paper’s main result derived a general lower bound on the Hochschild cohomolog-
ical dimension of an arbitrary commutative k-algebra A over a general commutative ring k.
Theorem 1 derived, the lower-bound for this (co)homological invariant was expressed in
terms of other (co)homological dimension-theoretic invariants, namely the flat dimension
over A, the global dimension of A, and the flat dimension of A over k; where each quantity
was appropriately localized. Examples 1 and 2, built on these results to lower-bound the
Hochschild cohomological dimension purely in terms of easily computable quantities,
such as the Krull dimension, when A was Cohen-Macaulay. Theorem 2 then expresses a
non-localized analog of Theorem 1 wherein no commutativity of A was required.

The paper’s results have then been applied the results to purely geometric questions.
First, the dimension-theoretic formula was used in Corollary 2 to show infer the non-
triviality of certain higher algebraic differential forms of any smooth affine scheme with
values in a vector bundle with a non-trivial section. The dual result was also considered in
Corollary 1 where dimension-theoretic conditions were obtained for the non-vanishing of
some of the Hochschild homology modules under Pointcaré duality in the sense of [12].

Next, using the general (co)homological dimension-theoretic estimates, a result of [14],
which showed that most commutative affine k-algebras fail to be smooth in the non-
commutative sense formalized by quasi-freeness, was extended from the simple case where

140



Mathematics 2021, 9, 251

k was a field to the general case where k is simply a commutative ring. Specifically, in
Corollaries 3 and 4, easily applicable dimension-theoretic tests for the non-quasi-freeness
(non-formal smoothness) of a commutative k-algebra over a general ring k were derived.
The tools are simple and only require a simple computation involving the Krull dimension
of A, the flat-dimension of k at one point, and the base ring’s global dimension to identify
if A’s associated non-commutative space is quasi-free or not.
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Appendix A. Background

This appendix contains the necessary background material for the formulation of this
paper’s main results. We refer the reader in further reading to the notes of [21].

Appendix A.1. Relative Homological Algebra

The results in this paper are formulated using the relative homological algebra, see [17]
for example. The theory is analogous to standard homological algebra; see [22] for example,
but in this case, one builds the entire theory relative to a suitable subclass of epi(resp.
mono)-morphisms. In our case, these are defined as follows.

Definition A1 (E k
A-Epimorphism). For any k-algebra A, an epimorphism ε in A Mod is an

E k
A-epimorphism if and only if ε’s underlying morphism of k-modules is a k-split epimorphism in

k Mod. The class of these epimorphisms is denoted E k
A.

Definition A2 (E k
A-Exact sequence). An exact sequence of A-modules:

...
φi−1−−→ Mi

φi−→ Mi+1
φi+1−−→ Mi+2

φi+2−−→ ... (A1)

is said to be E k
A-exact if and only if for every integer i the there exists a morphism of k-modules

ψi : Mi+1 → Mi such that:
φi = φi ◦ ψi ◦ φi. (A2)

In particular, a short exact sequence of A-modules which is E k
A-exact is called an E k

A-short
exact sequence.

Remark A1. Property (A2) is called E k
Ae -admissibility [18]. Alternatively, it is called E k

Ae -
allowable [23].

Example A1. The augmented bar complex ĈB�(A) of a k-algebra A is E k
Ae -exact.

Definition A3 (E k
A-Projective module). If A is a k-algebra and P is an A-module, then P is said

to be E k
A-projective if and only if for every E k

A-short exact sequence:

0 −→ M
η−→ N ε−→ N′ −→ 0 (A3)
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the sequence of k-modules:

0 −→ HomA(P, M)
η�−→ HomA(P, N)

ε�−→ HomA(P, N′) −→ 0 (A4)

is exact.

Remark A2. This definition is equivalent to requiring that P verify the universal property of
projective modules only on E k

A-epimorphisms [23].

Example A2. A⊗n+2 is E k
Ae -projective for all n ∈ N.

E k
A-projective A-modules have analogous properties to projective A-modules. For

example, E k
A-projective A-modules admit the following characterization.

Proposition A1. For any A-module P the following are equivalent:

• E k
A-Short exact sequence preservation property P is E k

A-projective.
• E k

A-lifting property For every E k
A-epimorphism f : N → M if there exists an A-module

morphism g : P → M then there exists an A-module map f̃ : P → N such that f ◦ f̃ = g.
• E k

A-splitting property Every short E k
A-exact sequence of the form:

Eπ : 0 −→ M −→ N −→ P −→ 0 (A5)

is A-split-exact.
• E k

A-free direct summand property There exists a k-module F, an A-module Q and an

isomorphism of A-modules φ : P⊕Q
∼=→ A⊗k F.

Remark A3. If F is a free k-module, some authors call A⊗k F an E k
A-free module. In fact this

gives an alternative proof that Ae ⊗k A⊗n ∼= A⊗n+2 is E k
Ae -free for every n ∈ N.)

Proof. See [23] pages 261 for the equivalence of 1, 2 and 3 and page 277 for the equivalence
of 1 and 4.

For a homological algebraic theory to be possible, one needs enough projective
(resp. injective) objects. The next result shows that there are indeed enough E k

A-projectives
in A Mod.

Proposition A2 (Enough E k
A-projectives). If A is a k-algebra and M is an A-module then there

exists an E k
A-epimorphism ε : P → M where P is an E k

A-projective.

Proof. By Proposition A1 A⊗k M is E k
A-projective. Moreover, the A-map ζ : A⊗k M → M

described on elementary tensors as (∀a⊗k m ∈ A⊗k M)ζ(a⊗k m) := a ·m is epi and is
k-split by the section m �→ 1⊗k m.

Since there are enough projective objects, then one can build a resolution of any
A-module by E k

A-projective modules.

Definition A4 (E k
A-projective resolution). If M is an Ae-module then a resolution P� of M is

called an E k
A-projective resolution of M if and only if each Pi is an E k

A-projective module and P� is
an E k

A-exact sequence.

Example A3. The augmented bar complex ĈB�(A) of A is an E k
Ae -projective resolution of A.

Remark A4. A nearly completely analogous argument to Example A3 shows that for any
(A, A)-bimodule M, M⊗A ĈB�(A) is an E k

Ae -projective resolution of M, see for details [24].

142



Mathematics 2021, 9, 251

Following [18], the E k
A-relative derived functors of the tensor product and the HomA-

functors are introduced, as follows.

Definition A5. E k
A-relative Tor

If N is a right A-module, M is an A-module and P� is an E k
A-projective resolution of N then

the k-modules H�(P� ⊗A M) are called the E k
A-relative Tor k-modules of N with coefficients in the

A-module M and are denoted by Torn
E k

A
(N, M).

Let H� (resp. H�) denote the (co)homology functor from the category of chain
(co)complexes on an A-module to the category of A-modules. The E k

A-relative Tor functors
are defined as follows.

Example A4. The E k
A-relative Tor functors may differ from the usual (or "absolute") Tor functors.

For example consider all the Z-algebra Z, any Z-modules N and M are E Z
Z -projective. In particular,

this is true for the Z-modules Z and Z/2Z. Therefore Torn
E Z
Z
(Z,Z/2Z) vanish for every positive n,

however Torn
Z(Z,Z/2Z) does not. For example, Tor1

Z(Z,Z/2Z) ∼= Z/2Z [22].

Similarly there are E k
A-relative Ext functors.

Definition A6 (E k
A-relative Ext). If N is and M are A-modules and P� is an E k

A-projective
resolution of N then the k-modules H�(HomA(P�, M)) are called the E k

A-relative Ext k-modules of
N with coefficients in the A-module M and are denoted by Extn

E k
A
(N, M).

The E k
A-relative homological algebra is indeed well defined, since both the definitions of

E k
A-relative Ext and E k

A-relative Tor are independent of the choice of E k
A-projective resolution.

Theorem A1 (E k
A-Comparison theorem). If P� and P′� are E k

A-projective resolutions of an A-
module N then for any A-module M there are natural isomorphisms:

H�(HomE k
A
(P�, N))

∼=→ H�(HomE k
A
(P′�, N)) (A6)

and if P� and P′� are E k
A-projective resolutions of a right A-module N then:

H�(P� ⊗A N)
∼=→ H�(P′� ⊗A N) (A7)

Proof. Nearly identical to the usual comparison theorem, see [23].

Example A5. The ExtZ and E Z
Z -relative Ext may differ. For example, one easily computes

Ext1
Z(Z,Z/2Z) ∼= Z/2Z. However, Ext1

E Z
Z
(Z,Z/2Z) ∼= 0.

Analogous to the fact that for any A-module P, P is projective if and only if Ext1
A(P, N) ∼=

0 for every A-module N there is the following result, which can be found in ([18],
Chapter IX).

Proposition A3. P is an E k
A-projective module if and only if for every A-module N:

Ext1
E k

A
(P, N) ∼= 0 (A8)

Using the theory of relative (co)homology, we are now in-place to review the Hochschild
cohomology theory over general k-algebras.
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Appendix A.2. Hochschild (Co)homological Dimension

Since CB�(A) is an E k
Ae -projective resolution of A then Theorem A1 and the definition

of the Ext�
E k

Ae
(A,−) functors imply that the Hochschild cohomology of A with coefficients

in of [9], denoted by HH�(A, N), can be expressed using the Ext�
E k

Ae
. We maintain this

perspective throughout this entire article.

Proposition A4. For every Ae module N there are k-module isomorphisms, natural in N:

HH�(A, N)
∼=→ Ext�

E k
Ae
(A, N) (A9)

Taking short E k
Ae -exact sequences to isomorphic long exact sequences.

Definition A7 (Hochschild Homology). The Hochschild homology HH�(A, N) of a k-algebra
A with coefficient in the (A, A)-bimodule N is defined as:

HH�(A, N) := H�(P� ⊗A N) (A10)

where P� is an E k
Ae -projective resolution of A.

Following the results of [10], the Hochschild cohomology has become the central tool
for obtaining non-commutative algebraic geometric analogues of classical commutative
algebraic geometric notions. The one of central focus in this paper, is the Hochschild
cohomological dimension,

Definition A8 (Hochschild cohomological dimension). The Hochschild cohomological dimen-
sion of a k-algebra A is defined as:

HCdim(A|k) := sup
M∈Ae Mod

(sup{n ∈ N#|HHn(A, M) 	 ∼=0}). (A11)

where N# is the ordered set of extended natural numbers.

The Hochschild cohomological dimension may be related to the following cohomo-
logical dimension.

Definition A9 (E k
A-projective dimension). If n is a natural number and M is an A-module then

M is said to be of E k
A-projective dimension at most n if and only if there exists a deleted E k

A-projective
resolution of M of length n. If no such E k

A-projective resolution of M exists then M is said to be of
E k

A-projective dimension ∞. The E k
A-projective dimension of M is denoted pdE k

A
(M).

The following is a translation of a classical homological algebraic result into the setting
of E k

Ae -projective dimension, Ωn(A/k) and Hochschild cohomology. Here, Ωn(A/k) �
Ker(b′n−1) and b′n−1 is the (n − 1)th differential in the augmented Bar resolution of A;
see [24] for details on the augmenter Bar complex.

Theorem A2. For every natural number n, the following are equivalent:

• HCdim(A|k) ≤ n
• A is of E k

Ae -projective dimension at most n
• Ωn(A/k) is an E k

Ae -projective module.
• HHn+1(A, M) vanishes for every (A, A)-bimodule M.
• Extn+1

E k
Ae
(A, M) vanishes for every Ae-module M.
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Proof. (1 ⇒ 4) By definition of the Hochschild cohomological dimension. (4 ⇔ 5) By
Proposition A4. (3⇒ 2) Since Ωn(A/k) is E k

Ae -projective:

0 → Ωn(A/k)→ CBn−1(A)
b′n−1→ ....

b′0→ A → 0

is a E k
Ae -projective resolution of A of length n. Therefore pdE k

Ae
(A) ≤ n.

(3⇔ 4) By Proposition A9 there are isomorphism natural in M:

(∀M ∈Ae Mod) HH1+n(A, M) ∼= Ext1+n
E k

Ae
(A, M) ∼= Ext1

E k
Ae
(Ωn(A/k), M).

Therefore for every Ae-module M:

Ext1
E k

Ae
(Ωn(A/k), M) ∼= 0 if and only if HH1+n(A, M) ∼= 0.

By Proposition A3 Ωn(A/k) is E k
A-projective if and only if Ext1

E k
Ae
(Ωn(A/k), M) ∼= 0.

(2 ⇒ 1) If A admits an E k
Ae -projective resolution P� of length n then Theorem A1

implies there are natural isomorphisms of Ae-modules:

(∀M ∈Ae Mod)Ext�
E k

Ae
(A, M) ∼= H�(HomAe(P�, M)). (A12)

Since P� is of length n all the maps pj : Pj+1 → Pj are the zero maps therefore so are
the maps p�j : HomAe(Pj) → HomAe(Pj+1). Whence (A12) entails that for all j > n + 1

Ext�
E k

Ae
(A, M) vanishes. By Proposition A4 this is equivalent to HHj(A, M) vanishing for

all j > n + 1 for all M ∈Ae Mod. Hence A is of Hochschild cohomological dimension at
most n.

Next, the non-commutative geometric object focused on in this paper is reviewed.

Appendix A.3. Quasi-Free Algebras

Many of the properties of an algebra are summarized by its Hochschild cohomological
dimension, see [10,17] for example. However, this article focuses on the following non-
commutative analogue of smoothness of [13], introduced by [14].

Remark A5. Due to their lifting property, the quasi-free k-algebras are considered a non-commutative
analogue to smooth k-algebras; that is k-algebras for which ΩA|k is a projective A-module.

This notion of smoothness has played a key role in a number of places in non-
commutative algebraic geometry, especially in the cyclic (co)homology of [25].

Definition A10 (Quasi-free k-algebra). A k-algebra for which all k-Hochschild extensions of A
by an (A, A)-bimodule lift is called a quasi-free k-algebra.

Corollary A1. For a k-algebra A, the following are equivalent:

• A is HCdim(A|k) ≤ 1.
• Ω1(A/k) is a E k

Ae -projective Ae-module.
• A is quasi-free.

One typically construct quasi-free algebras using Morita equivalences. However, the
next proposition, which extends a result of [14] to the case where k need not be a field, may
also be used without any such restrictions on k.

Proposition A5. If A is a quasi-free k-algebra and P is an E k
Ae -projective (A, A)-bimodule then

TA(P) is a quasi-free A-algebra.
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Proof. Differed until the appendix.

Example A6. Let n ∈ N. The Z-algebra TZ

(
n⊕

i=0
Z

)
is quasi-free.

Proof. Since all free Z-modules are projective Z-modules and all projective Z-modules are

E Z
Z -projective modules, the free Z-module

n⊕
i=0

Z is E Z
Z -projective. Whence Proposition A5

implies TZ

(
n⊕

i=0
Z

)
is a quasi-free Z-algebra.

Example A7. If A is a quasi-free k-algebra then TA(Ω1(A/k)) is a quasi-free A-algebra.

Proof. By Corollary A1 if A is quasi-free Ω1(A/k) must be an E k
Ae -projective (A, A)-

bimodule; whence Proposition A5 applies.

Next, we overview some relevant dimension-theoretic notions and terminology.

Appendix A.4. Classical Cohomological Dimensions

We remind the reader of a few important algebraic invariants which we will require.
The reader unfamiliar with certain of these notions from commutative algebra and algebraic
geometry is referred to [2,26] or to [19].

Definition A11 (A-Flat Dimension). If A is a commutative ring then the A-flat dimension
f dA(M) of an A-module M is the extended natural number n, defined as the shortest length of a
resolution of M by A-flat A-modules. If no such finite n exists n is taken to be ∞.

We will require the following result, whose proof can be found in [24].

Proposition A6. If n is a positive integer and if there exists a regular sequence x1, .., xn in A of
length n then:

n = f dA(A/(x1, .., xn)). (A13)

One more ingredient related to the flat dimension will soon be needed.

Proposition A7. If A is a commutative ring and m is a maximal ideal of A then for any A-module
M f dAm

(Mm) is a lower-bound for f dA(M).

Definition A12. A-Projective Dimension
If A is a commutative ring and M is an A-module then the A-projective dimension pdA(M)

of M is the extended natural number n, defined as the shortest length of a deleted A-projective
resolution of M. If no such finite n exists n is taken to be ∞.

Lemma A1. If A is a commutative ring and M is an A-module then f dA(M) ≤ pdA(M).

Proof. Since all A-projective A-modules are A-flat, then any A-projective resolution is a
A-flat resolution.

Lemma A2. If A is a commutative ring then for any A-module M the following are equivalent:

• The A-projective dimension of M is at most n.
• For every A-module N, the A-module ExtA

n+1(M, N) is trivial.
• For every A-module N and every integer m ≥ n + 1: ExtA

m(M, N) ∼= 0.

Proof. Nearly identical to the proof of Theorem A2, see page 456 of [22] for details.
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Definition A13 (Cohen-Macaulay at an Ideal). A commutative ring A is said to be Cohen-
Macaulay at a maximal ideal m if and only if either:

• Krull(Am) is finite and there is an Am-regular sequence x1, ..., xd in Am of maximal length
d = Krull(Am) such that {x1, .., xd} ⊆ m.

• Krull(Am) is infinite and for every positive integer d there is an Am-regular sequence x1, .., xd
in m on A of length d.

Proposition A8 ([24]). If A is a commutative ring which is Cohen Macaulay at the maximal ideal
m and Krull(Am) is finite then:

Krull(Am) = f dAm
(Am/(x1, .., xn)) ≤ pdA(Am/(x1, .., xn)) (A14)

Definition A14. Global Dimension
The global dimension D(A) of a ring A, is defined as the supremum of all the A-projective

dimensions of its A-modules. That is:

D(A) := sup
M∈A Mod

pdA(M). (A15)

The following modification of the global dimension of a k-algebra, does not ignore the
influence of k on a k-algebra A, as will be observed in the next section of this paper.

Definition A15. E k-Global dimension
The E k-global Dimension DE k (A) of a k-algebra A is defined as the supremum of all the

E k
A-projective dimensions of its A-modules. That is:

DE k (A) := sup
M∈A Mod

pdE k
A
(M). (A16)

Appendix B. Proofs

This appendix contains certain technical lemmas or auxiliary results that otherwise
detracted from the overall flow of the paper.

Appendix C. Technical Lemmas

We make use of the following result appearing in a technical note of Hochschild circa
1958, see [27].

Theorem A3 ([27]). If k is of finite global dimension, A is a k-algebra which is flat as a k-module
and M is an A-module then:

pdA(M)− D(k) ≤ pdE k
A
(M) (A17)

Proposition A9 (Dimension Shifting). If

...
dn+1−−→ Pn+jPn

dn−→ ...
d2−→ P1

d1−→ P0 −→ 0 (A18)

is a deleted E k
A-projective resolution of an A-module M then for every A-module N and for every

positive integer n there are isomorphisms natural in N:

Ext1
E k

A
(Ker(dn), N) ∼= Extn+1

E k
A
(A, N) (A19)

Proof. By definition the truncated sequence is exact:

...
dn+j−−→ Pn+j

dn+j−1−−−→ ...
dn+1−−→ Pn+1

η−→ Ker(dn) −→ 0, , (A20)
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where η is the canonical map satisfying dn = ker(dn) ◦ η (arising from the universal
property of ker(dn)). Moreover, since (A30) is E k

A-exact, dn is k-split; whence η must be
k-split. Moreover, for every j ≥ n + 1, dj was by assumption k-split therefore (A20) is
E k

A-exact and since for every natural number m > n Pm is by hypothesis E k
A-projective

then (A20) is an augmented E k
A-projective resolution of the A-module Ker(dn).

For every natural number m, relabel:

Qm := Pm+n and pm := dn+m. (A21)

By Theorem A1, for all N ∈A Mod and all m ∈ N, we have that:

Extm
E k

A
(Ker(dn), N) ∼=Hm(HomA(Q�, N))

=Ker(HomA(pn, N))/Im(HomA(pn+1, N))

=Ker(HomA(dn+m, N))/Im(HomA(dn+m+1, N))

=Hm+n(HomA(P�, N))
∼=Extm

E k
A
(A, N).

(A22)

Therefore, the result follows.

Appendix D. Auxiliary Results

Proof of Proposition A5. Let

0 → M → B π→ TA(P)→ 0 (A23)

be a k-Hochschild extension of TA(P) by M. We use the universal property of TA(P) to
show that there must exist a lift l of (A23).

Let p : TA(P) → A be the projection k-algebra homomorphism of TA(P) onto A. p
is k-split since the k-module inclusion i : A → TA(P) is a section of p; therefore p is an
E k

Ae -epimorphism and
0 → Ker(p ◦ π)→ B → A → 0 (A24)

is a k-Hochschild extension of A by the (A, A)-bimodule Ker(p ◦ π). Since A is a quasi-
free k-algebra there exists a k-algebra homomorphism l1 : A → B lifting p ◦ π. Hence B
inherits the structure of an (A, A)-bimodule and π may be viewed as an (A, A)-bimodule
homomorphism. Moreover, l1 induces an A-algebra structure on B.

Let f : P → TA(P) be the (A, A)-bimodule homomorphism satisfying the universal
property of the tensor algebra on the (A, A)-bimodule P. Since π : B → A is an E k

Ae -
epimorphism and since P is an E k

Ae -projective (A, A)-bimodule, Proposition A1 implies
that that there exists an (A, A)-bimodule homomorphism l2 : P → B satisfying π ◦ l2 = f .

Since l2 : P → B is an (A, A)-bimodule homomorphism to a A-algebra the universal
property of the tensor algebra TA(P) on the (A, A)-bimodule P, see [28], implies there is an
A-algebra homomorphism l : TA(P)→ B whose underlying function satisfies: l ◦ f = l2.

Therefore l ◦π ◦ l2 = l2; whence l ◦π = 1TA(P); that is l is a A-algebra homomorphism
which is a section of π, that is l lifts π.

Appendix D.1. Proof of Theorem 1

Our first lemma is a generalization of the central theorem of [27]; which does not rely
on the assumption that A is k-flat.

Lemma A3. If k is of finite global dimension and A is a k-algebra which is of finite flat dimension
as a k-module, then for every A-module M:

pdA(M)− D(k)− f dk(A) ≤ pdE k
A
(M) (A25)
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The proof of Lemma A3 relies on the following lemma.

Lemma A4. If A is a k-algebra such that f dk(A) < ∞ then:

(∀M ∈k Mod) pdA(A⊗k M)− f dk(A) ≤ pdk(M) (A26)

Proof. For every k-module M and every A-module N there is a convergent third quadrant
spectral sequence (see [22], page 667):

Extp
A(Tork

q(A, M), N)⇒
p

Extp+q
k (M, HomA(A, N)). (A27)

Moreover, the adjunction −⊗k A

�

HomA(A,−) extends to a natural isomorphism:

(∀p, q ∈ N)Extp+q
k (M, HomA(A, N)) ∼= Extp+q

A (M⊗k A, N). (A28)

Therefore there is a convergent third-quadrant spectral sequence:

Extp
A(Tork

q(A, M), N)⇒
p

Extp+q
A (M⊗k A, N). (A29)

If pdA(N) < ∞, then the result is immediate. Therefore assume that: pdA(N) < ∞. If
p + q > f dk(A) + pdA(N) then either p > pdA(N) or q > f dk(A). In the case of th

0 ∼= Ep,q
2
∼= Ep,q

∞ ∼= Extp+q
A (M⊗k A, N)

and in the latter case
0 ∼= Ep,q

2
∼= Ep,q

∞ ∼= Extp+q
A (M⊗k A, N)

also. Therefore

(∀N ∈ AMod) 0 ∼= Extn
A(M⊗k A, N)if n > f dk(A) + pdA(N);

hence: pdA(M⊗k A) ≤ f dk(A) + pdA(M).
Finally, the result follows since f dk(A) is finite and, therefore, can be subtracted

unambiguously.

Lemma A5. If A is a k-algebra then for any k-module M there is an E k
A-exact sequence:

0 −→ Ker(a) −→ A⊗k M α−→ M −→ 0 (A30)

where α be the map defined on elementary tensors (a⊗k m) in A⊗k M as a⊗k m �→ a ·m.

Proof. α is k-split by the map β : M → A⊗k M defined on elements m ∈ M as m �→ 1⊗k m.
Indeed if m ∈ M then:

α ◦ β(m) = α(1⊗k m) = 1 ·m = m. (A31)

Lemma A6. If M and N are A-modules then:

pdA(M) ≤ pdA(M⊕ N). (A32)

Proof.

(∀n ∈ N)(∀X ∈A Mod) Extn
A(M, X)⊕ Extn

A(N, X) ∼= Extn
A(M⊕ N, X). (A33)

Therefore Extn
A(M⊕ N, X) vanishes only if both Extn

A(M, X) and Extn
A(N, X) vanish.

Lemma A2 then implies: pdA(M) ≤ pd(M⊕ N).
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Proof of Lemma A3

Proof.

Case 1: pdE k
A
(M) = ∞

By definition pdA(M) ≤ ∞ therefore trivially if pdE k
A
(M) = ∞ then:

pdA(M) ≤ pdE k
A
(M) + D(k). (A34)

Since k’s global dimension is finite hence (A34) implies:

pdA(M)− D(k) ≤ ∞ = pdE k
A
(M). (A35)

Case 2: pdE k
A
(M) < ∞

Let d := pdE k
A
(M) + D(k) + f dk(A). The proof will proceed by induction on d.

Base: d = 0
Suppose pdE k

A
(M) = 0.

By Theorem A2 M is E k
A-projective. Lemma A5 implies there is an E k

A-exact se-
quence:

0 −→ Ker(a) −→ A⊗k M α−→ M −→ 0. (A36)

Proposition A1 implies that (A36) is A-split therefore M is a direct summand of
the A-module A⊗k M. Hence Lemma A6 implies:

pdA(M) ≤ pdA(M⊗k A). (A37)

Lemma A4 together with (A37) imply:

pdA(M) ≤ pdA(M⊗k A) ≤ pdk(M). (A38)

Definition A15 and (A38) together with the assumption that pdE k
A
(M) = 0 imply:

pdA(M) ≤ pdk(M) ≤ D(k) = D(k) + 0 + 0 = D(k) + pdE k
A
(M) + f dk(A). (A39)

Since k’s global dimension and f dk(A) are finite then (A39) implies:

pdA(M)− D(k)− f dk(A) ≤ pdE k
A
(M). (A40)

Inductive Step: d > 0
Suppose the result holds for all A-modules K such that pdE k

A
(K) + D(k) +

f dk(A) = d for some integer d > 0. Again appealing to Lemma A5, there
is an E k

A-exact sequence:

0 −→ Ker(a) −→ A⊗k M α−→ M −→ 0. (A41)

Proposition A1 implies A⊗k M is E k
A-projective; whence (A41) implies:

pdE k
A
(Ker(α)) + 1 = pdE k

A
(M). (A42)

Since Ker(α) is an A-module of strictly smaller E k
A-projective dimension than M

the induction hypothesis applies to Ker(α) whence:

pdA(Ker(α)) + 1 ≤pdE k
A
(Ker(α)) + 1 + D(k) + f dk(A)

≤pdE k
A
(M) + D(k) + f dk(A).

(A43)
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The proof will be completed by demonstrating that: pdA(M) ≤ pdA(Ker(α)) + 1.
For any N ∈A Mod Ext�A(−, N) applied to (A41) gives way to the long exact
sequence in homology, particularly the following of its segments are exact:

Extn−1
A (A⊗k M, N)→ Extn−1

A (Ker(a), N)
∂n
−→ Extn

A(M, N)→ Extn
A(A⊗k M, N) (A44)

Since A⊗k M is E k
A-projective pdE k

A
(A⊗k M) = 0, therefore by the base case

of the induction hypothesis pdA(A⊗k M) ≤ pdE k
A
+ D(k) + f dk(A) = D(k) +

f dk(A); thus for every positive integer n ≥ D(k) (in particular d is at least n):

(∀N ∈A Mod) Extn−1
A (A⊗k M, N) ∼= 0 ∼= Extn

A(A⊗k M, N); (A45)

whence ∂n must be an isomorphism. Therefore Lemma A2 implies pdA(M) is at
most equal to pdA(Ker(α)) + 1.
Therefore:

pdA(M) ≤ pdA(Ker(α)) + 1 (A46)

≤ pdE k
A
(Ker(α)) + 1 + D(k) + f dk(A) (A47)

≤ pdE k
A
(M) + D(k) + f dk(A). (A48)

Finally since k is of finite global dimension and A is of finite k-flat dimension then
(A48) implies:

pdA(M)− D(k)− f dk(A) ≤ pdE k
A
(M); (A49)

thus concluding the induction.

We will also require the following result.

Remark A6. Let A be a k-algebra, i : k → A the morphism defining the k-algebra A and m a

maximal ideal in A. For legibility the E
ki−1 [m]

Am
-projective dimension of an Am-module N will be

abbreviated by pdEm,k
(N) (instead of writing pd

E
k
i−1 [m]

Am

(N)).

Lemma A7. If A is a commutative k-algebra and m is a non-zero maximal ideal in A then for
every A-module M:

pdEm,k
(Mm) ≤ pdE k

A
(M), (A50)

where i : k → A is the inclusion of k into A.

Proof. Since m is a prime ideal in A, i−1[m] is a maximal ideal in ki−1[m], whence the
localized ring ki−1[m] is a well-defined sub-ring of Am. Let

...
dn+1−−→ Pn

dn−→ ...
d2−→ P1

d1−→ P0
d0−→ M −→ 0 (A51)

be an E k
A-projective resolution of an A-module M. The exactness of localization [26] implies:

....
dn+1−−→ Pn ⊗A Am

dn⊗A Am−−−−−→ ...
d2⊗A Am−−−−−→ P1 ⊗A Am

d1⊗A Am−−−−−→ P0 ⊗A Am
d0⊗A Am−−−−−→ M⊗A Am → 0 (A52)

is exact. It will now be verified that (A52) is a Em,k-projective resolution of the Am-
module Mm.

The dn ⊗A Am are ki−1[m]-split

Since (A51) was k-split then for every i ∈ N there existed a k-module homomorphism
si : Pn−1 → Pn (where for convenience write P−1 := M) satisfying di = di ◦ si ◦ di.
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Since Am is a ki−1[m]-algebra Am may be viewed as a ki−1[m]-module therefore the
maps: si ⊗A 1Am

are ki−1[m]-module homomorphisms; moreover they must satisfy:

di ⊗A 1Am
= di ⊗A 1Am

◦ si ⊗A 1Am
◦ di ⊗A 1Am

. (A53)

Therefore (A52) is ki−1[m]-split-exact.

The Pi ⊗A Am are Em,k-projective

For each i ∈ N if Pi is E k
A-projective therefore Proposition A1 implies there exists

some A-module Q and some k-module X satisfying:

Pi ⊕Q ∼= A⊗k X. (A54)

Therefore we have that:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼=(Pi ⊗A Q)⊗A Am

∼=(A⊗k X)⊗A Am

∼=(A⊗k X)⊗A (Am ⊗ki−1 [m]
ki−1[m])

(A55)

Since A, k and ki−1[m] are commutative rings the tensor products −⊗A −, −⊗k −
and −⊗ki−1 [m]

− are symmetric [22], hence (A55) implies:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼=(A⊗k X)⊗A (Am ⊗ki−1 [m]
ki−1[m])

∼=(Am ⊗A A)⊗ki−1 [m]
(ki−1[m] ⊗k X)

(A56)

Since A is a subring of Am then (A56) implies:

(Pi ⊗A Am)⊕ (Q⊗A Am) ∼= Am ⊗ki−1 [m]
(ki−1[m] ⊗k X). (A57)

(ki−1[m] ⊗k X) may be viewed as a ki−1[m]-module with action ·̂ defined as:

(∀c ∈ k)(∀(c′ ⊗k x) ∈ ki−1[m] ⊗k X) c·̂(c′ ⊗k x) := c · c′ ⊗ x. (A58)

Since (ki−1[m] ⊗k X) is a ki−1[m]-module then for each i ∈ N (Pi ⊗A Am) is a direct
summand of an Am-module of the form Am ⊗ki−1 [m]

X′ where X′ is a ki−1[m]-module,
thus Proposition A1 implies that Pi ⊗A Am is Am-projective.

Hence (A52) is an Em,k-projective resolution of M⊗A Am
∼= Mm; whence:

pdEm,k
(Mm) ≤ pdE k

A
(M). (A59)

All the homological dimensions discussed to date are related as follows:

Proposition A10. If A is a commutative k-algebra and m be a non-zero maximal ideal in A such
that Am has finite ki−1[m]-flat dimension and D(ki−1[m]) is finite then there is a string of inequalities:

f dAm
(Mm)− D(ki−1[m])− f dk(A) ≤pdAm

(Mm)− D(ki−1[m])− f dk(A)

≤pdEm,k
(Mm)

≤pdE k
A
(M)

≤DE k (A).

Proof.
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• By definition: pdE k
A
(M) ≤ DE k (A).

• By Lemma A7: pdEm,k
(Mm) ≤ pdE k

A
(M)

• Since Am is flat as a ki−1[m]-module and D(ki−1[m]) is finite Lemma A3 entails:
pdAm

(Mm)− D(ki−1[m])− f dk(A) ≤ pdEm,k
(Mm)

• Lemma A1 implies:
f dAm

(Mm) ≤ pdAm
(Mm). (A60)

Since the global dimension of ki−1[m] was assumed to be finite (A60) implies:

f dAm
(Mm)− D(ki−1[m]) ≤ pdAm

(Mm)− D(ki−1[m]). (A61)

Lemma A8. If A is a commutative k-algebra and M and N be A-modules, then there are natu-
ral isomorphisms:

Extn
E k

A
(M, N) ∼= HHn(A, Homk(M, N)) ∼= Extn

E k
Ae
(A, Homk(M, N)). (A62)

Proof.

• For any (A, A)-bimodule X, X⊗A M is an (A, A)-bimodule [22] [Cor. 2.53].
• Moreover, there are natural isomorphisms [22]:

HomA Mod(X⊗A M, N)
∼=→ HomA ModA(X, Hom

k Mod(M, N)) [Thrm. 2.75]. (A63)

In particular (A63) implies that for every n in N there is an isomorphism which is
natural in the first input:

HomA Mod(A⊗n ⊗A M, N)
ψn→ HomA ModA(A⊗n, Hom

k Mod(M, N)). (A64)

whence if b′n+1 : A⊗n+3 → A⊗n+2 is the nth map in the Bar complex (recall Example A3)
and for legibility denote HomA ModA(b

′
n, Homk(M, N)) by βn. The naturality of the

maps ψn imply the following diagram of k-modules commutes:

Hom
A Mod(A⊗n+2 ⊗A M, N) Hom

A ModA
(A⊗n+2, Hom

k Mod(M, N))

HomA Mod(A⊗n+3 ⊗A M, N) HomA ModA (A⊗n+3, Hom
k Mod(M, N))

ψn

ψn+1

ψ−1
n+1 ◦ βn ◦ ψn βn

. (A65)

• Therefore for every n in N:

(ψ−1
n+2 ◦ βn+1 ◦ ψn+1) ◦ (ψ−1

n+1 ◦ βn ◦ ψn) =βn+1 ◦ βn

=0.
(A66)

Whence < HomA Mod(A⊗�+2 ⊗A M, N), (ψ−1
�+1 ◦ β� ◦ ψ�) > is a chain complex. More-

over, the commutativity of (A65) implies that:

(∀n ∈ N) Hn(HomA Mod(A⊗�+2 ⊗A M, N)) = Ker(ψ−1
�+1 ◦ β� ◦ ψ�)/Im(ψ−1

n+2 ◦ βn+1 ◦ ψn+1)

∼=Ker(βn)/Im(βn+1)

=Hn(HomA ModA (A⊗�+2, Hom
k Mod(M, N)))

=HHn(A, Homk(M, N)).

(A67)

Furthermore Proposition A4 implies there are natural isomorphisms:

HHn(A, Homk(M, N)) ∼= Extn
E k

Ae
(A, Homk(M, N)); (A68)
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Whence for all n in N there are natural isomorphisms:

Hn(HomA Mod(A⊗�+2 ⊗A M, N)) ∼= HHn(A, Homk(M, N)) ∼= Extn
E k

Ae
(A, Homk(M, N)). (A69)

• Finally if M is an A-module then < HomA Mod(A⊗�+2 ⊗A M, N), (ψ−1
�+1 ◦ β� ◦ ψ�) >

calculates the E k
A-relative Ext groups of M with coefficients in N; therefore, by ([24],

pg. 289), there are natural isomorphisms:

Hn(HomA Mod(A⊗�+2 ⊗A M, N)) ∼= Extn
E k

A
(M, N). (A70)

• Putting it all together, for every n in N there are natural isomorphisms:

Extn
E k

Ae
(A, Homk(M, N)) ∼= HHn(A, Homk(M, N)) ∼= Extn

E k
Ae
(A, Homk(M, N)). (A71)

We may now prove Theorem 1.

Proof of Theorem 1.

• For any A-modules M and N Lemma A8 implied:

Ext�
E k

A
(N, M) ∼= HH�(A, Homk(N, M)). (A72)

Therefore taking supremums over all the A-modules M, N, of the integers n for
which (A85) is non-trivial implies:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|Extn(M, N) 	= 0})) (A73)

= sup
M,N∈A Mod

(sup({n ∈ N#|HHn(A, Homk(N, M)) 	= 0})). (A74)

Homk(N, M) is only a particular case of an Ae-module; therefore taking supremums
over all A-modules bounds (A87) above as follows:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|HH�(A, Homk(N, M)) 	= 0})) (A75)

≤ sup
M̃∈Ae Mod

(sup({n ∈ N#|HHn(A, M̃) 	= 0})). (A76)

The right hand side of (A89) is precisely the definition of the Hochschild cohomological
dimension. Therefore

DE k (A) ≤ HCdim(A|k) (A77)

Proposition A10 applied to (A90), which draws out the conclusion.
• Case 1: Krull(Am) is finite

Since A is Cohen-Macaulay at m there is an Am-regular sequence x1, .., xd in m of
length d := Krull(Am) in Am. Therefore Proposition A6 implies:

Krull(Am) = f dAm
(Am/(x1, .., xn)). (A78)

Part 1 of Theorem 1 applied to (A78) implies:

Krull(Am)− D(ki−1[m])− f dm(Am) = f dAm
(Am)− D(ki−1[m])− f dm(Am) ≤ HCdim(A|k). (A79)

Moreover, the characterization of quasi-freeness given in Corollary A1 implies that
A cannot be quasi-free if:

2 + D(ki−1[m])− f dm(Am) ≤ Krull(Am). (A80)
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• Case 2: Krull(Am) is infinite

For every positive integer d there exists an Am-regular sequence xd
1, .., xd

d in m of
length d. Therefore Proposition A6 implies:

(∀d ∈ Z+) d = f dAm
(Am/(xd

1, .., xd
d)). (A81)

Therefore part one of Theorem 1 implies:

(∀d ∈ Z+) d− D(ki−1[m])− f dm(Am) = f dAm
(Am/(xd

1, .., xd
d))− D(ki−1[m])− f dm(Am) ≤ HCdim(A|k). (A82)

Since D(k) and f dm(Am) are finite:

∞− D(ki−1[m])− f dm(Am) = ∞ ≤ HCdim(A|k). (A83)

Since Krull(Am) is infinite (A83) implies:

Krull(Am)− D(ki−1[m])− f dm(Am) = ∞ = HCdim(A|k). (A84)

In this case Corollary A1 implies that A is not quasi-free.

Appendix D.2. Proof of Theorem 2

Proof of Theorem 2. For any A-modules M and N Lemma A8 implied:

Ext�
E k

A
(N, M) ∼= HH�(A, Homk(N, M)). (A85)

Therefore taking supremums over all the A-modules M, N, of the integers n for
which (A85) is non-trivial implies:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|Extn(M, N) 	= 0})) (A86)

= sup
M,N∈A Mod

(sup({n ∈ N#|HHn(A, Homk(N, M)) 	= 0})). (A87)

Homk(N, M) is only a particular case of an Ae-module; therefore taking supremums over
all A-modules bounds (A87) above as follows:

DE k (A) = sup
M,N∈A Mod

(sup({n ∈ N#|HH�(A, Homk(N, M)) 	= 0})) (A88)

≤ sup
M̃∈Ae Mod

(sup({n ∈ N#|HHn(A, M̃) 	= 0})). (A89)

The right hand side of (A89) is precisely the definition of the Hochschild cohomological
dimension. Therefore

DE k (A) ≤ HCdim(A|k) (A90)

Proposition A10 applied to (A90) then draws out the conclusion.
Proposition A6 implies that:

n = f dA(A/(x1, .., xn)). (A91)

Therefore (1) applied to the A-module A/(x1, .., xn together with (A91) imply:

n− D(k) = f dA(A/(x1, .., xn) ≤ DE k ≤ HCDim(A/k). (A92)

If Ω1(A/k) is generated by a regular sequence x1, .., xn then Proposition A6 implies:

n = f dAe(A⊗k A/Ω1(A/k)) (A93)
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However by definition of Ω1(A/k) as the kernel of μA: A ⊗k A/Ω1(A/k) ∼= A.
Therefore:

n = f dAe(A). (A94)

Lemma A1 together with Lemma A3 imply:

n = f dAe(A) ≤ pdAe(A) ≤ pdE k
Ae
(A) + D(k). (A95)

Since D(k) is finite then (A95) entails:

n− D(k) ≤ pdE k
Ae
(A). (A96)

By Theorem A2 (A96) is equivalent to:

n− D(k) ≤ HCDim(A). (A97)

If A is Cohen-Macaulay at one of its maximal ideals m then there exists a maximal
regular x1, .., xd in Am with d = Krull(Am). Therefore (2) implies:

Krull(Am)− D(k) = d− D(k) ≤ D(Am)− D(k). (A98)

Since D(Am) ≤ D(A), then

Krull(Am)− D(k) ≤ D(Am)− D(k) ≤ D(A)− D(k). (A99)

Finally (1) applied to (A99) implies:

Krull(Am)− D(k) ≤ D(A)− D(k) ≤ HCDim(A). (A100)

Appendix D.3. Proofs of Consequences

Proof of Corollary 1. Since X is a smooth affine scheme its coordinate ring satisfies Point-
caré duality in dimension d then Van den Bergh’s Theorem ([12]) applied. Hence, we have
that for every M ∈Ae Mod

HHn(A, M) ∼= HHd−n(A, Hd−n(A, ω−1
A ⊗A M). (A101)

Since k[X] is flat as a k-module then we may apply Theorem 2 to the left-hand side
of (A101) to conclude that

0 	∼= HHn(A, M) ∼= HHd−n(A, ω−1
A ⊗A M), (A102)

for some A-bimodule M and some n ≥ f dA(M)−D(k). Again by Van den Bergh’s theorem
we conclude that HHm(A, ω−1

A ⊗A M) ∼= 0 for any m > d. Hence, (A102) must hold for
some A-bimodule M and some

f dA(M)− D(k) ≤ n ≤ d.

Thus, there exists an A-bimodule M′ and some non-negative integer n′ for which

0 ≤ n′ ≤ d− f dA(M) + D(k),

and HHn′(A, M′) 	∼= 0; where M′ � ω−1
A ⊗A M. Relabeling the index we obtain the conclu-

sion.
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Proof of Corollary 2. By the Hochschild-Kostant-Rosenberg ([10]) there are isomorphisms
of A-bimodules

HHn(A, M) ∼= Ωn(A, M) � Ωn(A)⊗A M, (A103)

for every A-bimodule M. In particular, (A103) holds for the A-bimodule M of
Corollary 1.
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Abstract: We provide explicit graded constructions of orbifold del Pezzo surfaces with rigid orbifold
points of type

{
ki × 1

ri
(1, ai) : 3 ≤ ri ≤ 10, ki ∈ Z≥0

}
as well-formed and quasismooth varieties

embedded in some weighted projective space. In particular, we present a collection of 147 such
surfaces such that their image under their anti-canonical embeddings can be described by using
one of the following sets of equations: a single equation, two linearly independent equations, five
maximal Pfaffians of 5× 5 skew symmetric matrix, and nine 2× 2 minors of size 3 square matrix. This
is a complete classification of such surfaces under certain carefully chosen bounds on the weights of
ambient weighted projective spaces and it is largely based on detailed computer-assisted searches by
using the computer algebra system MAGMA.

Keywords: orbifold del pezzo surfaces; hypersurfaces; complete intersections; pfaffians; graded ring
constructions

1. Introduction

A del Pezzo surface is a two dimensional algebraic variety with an ample anti-canonical divisor
class. The classification of nonsingular del Pezzo surfaces is well known and there are 10 deformation
families of such surfaces: P1 × P1, P2 and the blow up of P2 in d general points for 1 ≤ d ≤ 8. An
orbifold del Pezzo surface X is a del Pezzo surface with at worst isolated orbifold points, classically
known as a log del Pezzo surface with cyclic quotient singularities. We describe X to be locally
qGorenstein(qG)-rigid if it contains only rigid isolated orbifold points, i.e., the orbifold points are rigid
under qG-deformations. If it admits a qG-degeneration to a normal toric del Pezzo surface then it is
called a del Pezzo surface of class TG. The Fano index of X is the largest integer I such that KX = ID
for an element D in the class group of X.

The classification of orbifold del Pezzo surfaces has been an interesting area of research from
various points of view, such as the existence of Kahler–Einstein metric [1,2]. Recently, the classification
of orbifold del Pezzo surfaces has received much attention, primarily due to the mirror symmetry
program for Fano varieties by Coates, Corti et al. [3]. The mirror symmetry for orbifold del Pezzo
surface has been formulated in [4] in the form of a conjecture expecting a one to one correspondence
between mutation equivalence classes of Fano polygons with the (qG)-deformation equivalence classes
of locally qG-rigid del Pezzo surfaces of class TG. Therefore the construction of rigid orbifold del Pezzo
surfaces has important links with the mirror symmetry due to this conjecture. The conjecture has been
proved for smooth del Pezzo surfaces by Kasprzyk, Nill and Prince in [5]. Corti and Heuberger [6]
gave the classification of locally qG-rigid del Pezzo surfaces with 1

3 (1, 1) singular points. The del
Pezzo surfaces with a single orbifold point of type 1

r (1, 1) have been classified by Cavey and Prince [7].
The mutation equivalence classes of Fano polygons with rigid singularities of type{

k1 ×
1
3
(1, 1), k2 ×

1
6
(1, 1) : k1 > 0, k2 ≥ 0

}
and

{
k× 1

5
(1, 1) : k > 0

}
(1)
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have been computed in [8]. This is equivalent to the classification of del Pezzo surfaces of class
TG with the above given baskets; though it may be missing surfaces which do not admit a toric
degeneration and having one of the above type of baskets of singularities. By using birational
techniques, the classification of orbifold del Pezzo surfaces with basket consisting of a combination of
1
3 (1, 1) and 1

4 (1, 1) orbifold points was given by Miura [9].
In [6] the classification gave a total of 29 deformation families of del Pezzo surfaces with 1

3 (1, 1)
orbifold points which were divided into 6 different cascades; one of the cascades was first studied by
Reid and Suzuki in [10]. Moreover, good model constructions for all 29 surfaces were presented as
complete intersections inside the so called rep-quotient varieties (mainly simplicial toric varieties):
A geometric quotient V//G of a representation V of a complex Lie group G . Among those, six
of them can be described as a hypersurface in P3(ai) or as a complete intersection in P4(ai) or as
complete intersection in weighted Grassmannian wGr(2, 5) [11]. This motivated us to classify rigid del
Pezzo surfaces with certain basket of singularities which can be described by relatively small sets of
equations.

1.1. Summary of Results

We classify polarized rigid del Pezzo surfaces, under the bounds chosen in Section 3.2, which
contain baskets of orbifold points{

ki ×
1
ri
(1, ai) : 3 ≤ ri ≤ 10, ki ≥ 0

}
;

such that their images under their anti-canonical embedding can be described by one of the following
ways.

(i) as a hypersurface, i.e., by a single weighted homogenous equation; Xd ↪→ P3(ai).
(ii) as a codimension 2 weighted complete intersection, i.e., by 2 weighted homogeneous equations;

Xd1,d2 ↪→ P4(ai).
(iii) as a codimension 3 variety described by using five maximal Pfaffians of a 5× 5 skew symmetric

matrix;
Xd1,...,d5 ↪→ P5(ai).

In other words they are weighted complete intersections in weighted Grassmannian wGr(2, 5)
or (weighted) projective cone(s) over it [11–13].

(iv) as a codimension 4 variety described by using nine 2× 2 minors of a size 3 square matrix

Xd1,...,d9 ↪→ P6(ai).

Equivalently, they are weighted complete intersections in some weighted P2 × P2 variety or
(weighted) projective cone(s) over it [14].

We summarize the classification in form of the following theorem.

Theorem 1. Let X be an orbifold del Pezzo surface having at worst a basket

B =

{
ki ×

1
r
(1, a) : 3 ≤ r ≤ 10, ki ≥ 0

}
of rigid orbifold points and their image X ↪→ P(ai) under their anti-canonical embedding can be described as a
hypersurface or as a codimension 2 complete intersection or as a weighted complete intersection in wGr(2, 5) or
as a weighted complete intersection of weighted P2 × P2 variety. Then, subject to Section 3.2, X is one of the
del Pezzo surfaces listed in Tables A1–A4. In total there are 147 families of such del Pezzo surfaces, divided as
follows in each codimension.
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Hypersurface Complete intersection 4× 4 Pfaffians 2× 2 Minors

81 25 21 20

We construct these examples by first computing all possible candidate varieties with required
basket of orbifold points using an algorithmic approach developed in [15,16], under the bounds given
in Section 3.2. In case of codimension 1 and 2, the equations of these varieties are generic weighted
homogeneous polynomials of given degrees. In cases of codimension 3 and 4 they are induced from the
equations of the corresponding ambient weighted projective variety. We perform a detailed singularity
analysis of equations of these candidate varieties to prove the existence or non-existence of given
candidate surface. We calculate the qG-deformation invariants like the anti-canonical degree −K2

X and
first plurigenus h0(−KX) in all cases. We calculate their Euler number and Picard rank in hypersurface
case. In complete intersection case, we were able to calculate their Euler number and identify the
non-prime examples, i.e., those with the Picard rank greater than 1 by computing their orbifold Euler
number.

The computer search used to find these surfaces, based on the algorithm approach of [15,16], is an
infinite search. The search is usually performed in the order of increasing sum of the weights (W = ∑ ai
of the ambient weighted projective spaces. In each codimension and for each Fano index I, we provide
complete classification of rigid del Pezzo surfaces X ⊂ P(ai) satisfying W − I ≤ N where N ≥ 50
. If the last candidate example for computer search appears for W − I = q then we search for all
cases with N = maximum(50, 2q), to minimize the possibility of any further examples. This indeed
does not rule out a possibility of further other examples for larger value of W and I. It is evident
that for larger values of W most weights of P(ai) will be larger than 10, the highest local index of
allowed orbifold points in our classification, consequently the basket of orbifold points will very likely
contain orbifold points of local index r ≥ 11. In cases of hypersurfaces and complete intersections,
the classifications of tuples (dj; ai) which give rise to a quasismooth del Pezzo surfaces can be found
in [17,18] where dj denote the degrees of the defining equations and ai are weights of the ambient
weighted projective space. These classifications of tuples can perhaps be analyzed to give the bound
free proof of completeness of our results in codimension 1 and 2. However, their classification neither
contains computation of any of the invariants like h0(−KX),−K2

X and e(X) and nor do they compute
the basket of orbifold points lying on those surfaces.

1.2. Links with Existing Literature

A part of our search results recovers some existing examples in the literature, though a significant
subset of them have not been previoudly described in terms of equations. For example, the classification
of Fano polygons (equivalently of rigid del Pezzo surfaces of class TG) with basket of orbifold points
(1) is given in [8]. We give descriptions in terms of equations for six of their examples; listed as
14, 16, 23, 85, 109 and 130 in our tables. We also recover the classical smooth del Pezzo surfaces of
degrees 1, 2, 3, 4, 5, 6 and 8; listed as 3, 2, 1, 82, 107, 128 and 12 respectively in Tables A1–A4. Moreover, 7
of the 29 examples from [6] also appear in our list with one of them seemingly having a new description
as a complete intersection in a w(P2 × P2) variety, listed as 129 in Table A4. Some examples of Fano
index 1 and 2 in codimension 3 and 4 given in Tables A3 and A4 can be found in [19], primarily
appearing implicitly as a part of some infinite series of orbifold del Pezzo surfaces.

2. Background and Notational Conventions

2.1. Notation and Conventions

• We work over the field of complex numbers C.
• All of our varieties are projectively Gorenstein.
• For two orbifold points where 1

r (1, a) = 1
r (1, b) we choose a presentation 1

r (1, min(a, b)).
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• In all the tables, integers appearing as subscripts of X denote the degree of the defining
equations of the given variety, where dm means that there are m equations of degree d. Similarly,
P(· · · , am

i , · · · ) means that there are m weights of degree ai.
• We use the same notation for canonical divisor class KX and canonical sheaf ωX , if no confusion

can arise. We usually write KX = O(k) to represent KX = kD.

2.2. Graded Rings and Polarized Varieties

We call a pair (X, D) a polarized variety if X is a normal projective algebraic variety and D a
Q-ample Weil divisor on X, i.e., some integer multiple of D is a Cartier divisor. One gets an associated
finitely generated graded ring

R(X, D) =
⊕
n≥0

H0 (X,OX(nD)) .

It is called a projectively Gorenstein if the ring R(X, D) is a Gorenstein ring. A surjective morphism
from a free graded ring k[x0, ..., xn] to R(X, D) gives the embedding

i : X = ProjR(X, D) ↪→ P(a0, · · · , an)

where ai = deg(xi) and with the divisorial sheaf OX(D) being isomorphic to OX(1) = i∗OP(1).
The Hilbert series of a polarized projective variety (X, D) is given by

P(X,D)(t) = ∑
m≥0

h0(X, mD) tm, (2)

where h0(X, mD) = dim H0(X,OX(mD)). We usually write PX(t) for the Hilbert series and by the
standard Hilbert–Serre theorem [20] (Theorem 11.1), PX(t) has the following compact form

PX(t) =
N(t)

a

∏
i=0

(1− tai )

, (3)

where N(t) is a palindromic polynomial of degree q, as X is projectively Gorenstein.

2.3. Rigid Del Pezzo Surfaces

Definition 1. An isolated orbifold point Q of type 1
r (a1, . . . , an) is the quotient of An by the cyclic group μr,

ε : (x1, . . . , xn) �→ (εa1 x1, . . . , εan xn)

such that GCD(r, ai) = 1 for 1 ≤ i ≤ n, 0 < ai < r, and ε is a primitive generator of μr.

A del Pezzo surface X is a two dimensional algebraic variety with an ample anti-canonical divisor
class −KX . If, at worst, X contains isolated orbifold points then we call it an orbifold or a log del Pezzo
surface. The Fano index I of X is the largest positive integer I such that −KX = I · D for some divisor
D in the divisor class group of X. An orbifold del Pezzo surfaces X ⊂ P(ai) of codimension c is
well-formed if the singular locus of X consists of at most isolated points. It is quasismooth if the affine
cone X̃ = SpecR(X, D) ⊂ An+1 is smooth outside its vertex 0.

A singularity admitting a Q-Gorenstein smoothing is called a T-singularity [21]. A singularity
which is rigid under Q-Gorenstein smoothing is called a rigid or R-singularity [22]. The following
characterization of a T-singularity and R-singularity are useful in our context [7].

Definition 2. Let Q = 1
r (a, b) be an orbifold point and take m = GCD(a + b, r), s = (a + b)/m and

k = r/m then Q has a form 1
mk (1, ms − 1). Moreover Q is called a T-singularity if k | m [21] and an

R-singularity if m < k [22].
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In the two dimensional case, any orbifold point 1
r (a, b) can be represented as 1

r (1, a′) by choosing
a different primitive generator of the cyclic group μr and the following Lemma follows from it.

Lemma 1. Let Q1 = 1
r (1, a) and Q2 = 1

r (1, b) be isolated orbifold points. Then Q1 = Q2 if and only if
a = b or ab ≡ 1 mod r.

By using the fact that each orbifold point on a surface can be written as 1
r (1, a) and by applying

Lemma 1 on the all possible isolated rigid orbifold points of type 1
r (1, a); 3 ≤ r ≤ 10, we get to the

following Lemma.

Lemma 2. Let 3 ≤ r ≤ 10 then any isolated rigid orbifold point
1
r
(a, b) is equivalent to one of the following.

⎧⎨⎩
1
3 (1, 1), 1

5 (1, 1), 1
5 (1, 2), 1

6 (1, 1), 1
6 (1, 5), 1

7 (1, 1), 1
7 (1, 2),

1
7 (1, 3), 1

8 (1, 1), 1
8 (1, 5), 1

9 (1, 1), 1
9 (1, 4), 1

10 (1, 1), 1
10 (1, 3)

⎫⎬⎭
2.4. Ambient Varieties

In this section we briefly recall the definition of weighted Grassmannian wGr(2, 5) and w(P2×P2)
which we use, apart from weighted projective spaces, as rep-quotient varieties for the construction of
our rigid orbifold del Pezzo surfaces; following the notion introduced in [6].

2.4.1. Weighted Grassmannian wGr(2, 5)

This part is wholly based on material from ([11], Section 2). Let w := (w1, · · · , w5) be a tuple of
all integers or all half integers such that

wi + wj > 0, 1 ≤ i < j ≤ 5,

Then the quotient of the affine cone over Grassmannian minus the origin G̃r(2, 5)\{0} by C× given by:

ε : xij �→ εwi+wj xij

is called weighted Grassmannians wGr(2, 5) where xij are Plücker coordinates of the embedding

Gr(2, 5) ↪→ P
(∧2 C5

)
. Therefore we get the embedding

wGr(2, 5) ↪→ P
(
aij : 1 ≤ i < j ≤ 5, aij = wi + wj

)
.

The image of Gr(2, 5) and wGr(2, 5) under the Plücker embedding is defined by five 4× 4 Pfaffians of
the 5× 5 skew symmetric matrix ⎛⎜⎜⎝

x12 x13 x14 x15
x23 x24 x25

x34 x35
x45

⎞⎟⎟⎠ , (4)

where we only write down the upper triangular part. Explicitly, the defining equations are:

Pfi = xjkxlm − xjl xkm + xjmxlm,

where 1 ≤ j < k < l < m ≤ 5 are four integers and i makes up the fifth one in {1, 2, 3, 4, 5}. In examples
we usually write down the corresponding matrix of weights, replacing xij with aij to represent the
given wGr(2, 5).
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If wGr(2, 5) is wellformed then the orbifold canonical divisor class is

KwGr(2,5) =

(
−1

2 ∑
1≤i<j≤5

aij

)
D, (5)

for a divisor D in the class group of wGr(2, 5).

2.4.2. Weighted P2 × P2

This section recalls the definition of weighted P2 × P2 from [14,23]. Let b = (b1, b2, b3) and
c = (c1, c2, c3) be two integer or half integer vectors satisfying

b1 + c1 > 0, bi ≤ bj and ci ≤ cj for 1 ≤ i ≤ j ≤ 3,

and ΣP denotes the Segre embedding P2 × P2 ↪→ P8(xij). If Σ̃P is the affine of this Segre embedding,
then the weighted P2 × P2 variety wΣP is the quotient of the punctured affine cone Σ̃P\{0} by C×:

ε : xij �→ εbi+cj xij, 1 ≤ i, j ≤ 3.

Thus for a choice of b, c, written together as a single input parameter p = (b1, b2, b3; c1, c2, c3), we get
the embedding

wΣP ↪→ P8(aij : aij = bi + cj; 1 ≤ i, j ≤ 3).

The equations are defined by 2× 2 minors of a size 3 square matrix which we usually refer to as the
weight matrix and write it as⎛⎝a11 a12 a13

a21 a22 a23
a31 a32 a33

⎞⎠ where aij = bi + cj; 1 ≤ i, j ≤ 3. (6)

If wΣP is wellformed then the canonical divisor class is given by

KwΣP =

(
−∑

i=j
aij

)
D, (7)

for a divisor D in the class group of wΣP.

3. Computational Steps of The Proof

In this section we provide details of various steps of our calculations which together provide
the proof of Theorem 1. In summary, for each codimension and Fano index, we first search for the
list of candidate varieties using the algorithmic approach of [15,16]. The candidate lists comes with a
suggestive basket(s) of orbifold points and invariants. Then we perform theoretical analysis of each
candidate to establish the existence or non-existence of candidate surfaces with given basket and
invariants.

3.1. Algorithm

We briefly recall the algorithm from [16] which we used to compute the candidate lists of examples.
The key part of it is based on the orbifold Riemann–Roch formula of Bukcley, Reid and Zhou [24]
which provides a decomposition of the Hilbert series of X into a smooth part and a singular part.
It roughly states that if X is an algebraic variety with basket B = {ki × Qi : mi ∈ Z>0} of isolated
orbifold points then its Hilbert series has a decomposition into a smooth part Psm(t) and orbifold part
∑ kiPQi (t);

PX(t) = Psm(t) + ∑ kiPQi (t). (8)
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The algorithm searches for all orbifolds of fixed dimension n having fixed orbifold canonical class
KX = O(k) in a given ambient rep-quotient variety. Indeed, if X is a Fano variety of index I then
k = −I. The algorithm has the following steps.

(i) Compute the Hilbert series and orbifold canonical class of ambient rep-quotient variety.
(ii) Find all possible embeddings of n-folds X with ωX = O(k) by applying the

adjunction formula.
(iii) For each possible n-fold embedding of X, compute the Hilbert series PX(t) and the smooth

term Psm(t).
(iv) Compute the list of all possible n-fold isolated orbifold points from the ambient weighted

projective space containing X.
(v) For each subset of the list of possible orbifold points determine the multiplicities ki given in

Equation (8) of the orbifold terms PQi (t).
(vi) If ki ≥ 0 then X is a candidate n-fold with suggested basket of isolated orbifold points.

3.2. Bounds on Search Parameters

We perform our search in the order of increasing sum of the weights on the ambient weight
projective space P(a0, . . . , an) containing X. The search is theoretically unbounded in each codimension
in two directions: there is no bound on the sum of weights W = ∑ ai of the ambient weighted projective
space containing X and the Fano index I is also unbounded.

In each codimension, we at least search for polarized rigid del Pezzo surfaces X ↪→ P(ai) such that

W − I ≤ 50, for 1 ≤ I ≤ 10.

If the last candidate example is found for the adjunction number q = W − I of the Hilbert numerator
N(t), then we further search for all possible cases such that

W − I ≤ N where N = maximum(2q, 50),

to absolutely minimize the possibility of any missing examples. Similarly, in each codimension if we
find the last example in search domain W − I ≤ 50 for index I > 5 then we search for examples up to
index 2I. For example, in the hypersurface case the maximum value of I across all candidates was 8, so
we searched until index 16 in this case. Similarly, for index 2 hypersurfaces we got the last candidate
when W − 2 = 36 so we searched for all cases with W − 2 ≤ 72. Further details in each case can be
found in Table 1.

Table 1. The following table summarises the number of surfaces we obtained for each Fano index I in
each codimension and exact search domain in each case. First column contains the codimension of each
surface and the rest of the columns contain a pair of numbers. First number is the number of examples
of given index and the second one gives the maximum value of q = Wmax − I for which the last
candidate surface was found; the classification is complete until N = maximum(50, 2q). The entries
with no second number means that no examples were found for q ≤ 50.

Codimension
Fano Index, (q)

1 2 3 4 5 6 7 8 9–16

1 11 (28) 44 (36) 6 (15) 6 (21) 6 (21) 2 (16) 2 (17) 4 (15) 0

2 15 (22) 8 (29) 1 (26) 1 (22) 0 0 0 0

3 12 (33) 7 (43) 1 (19) 1 (26) 0 0 0 0

4 12 (42) 6 (48) 0 0 1 (30) 0 0 1 (42) 0

3.3. Computing Invariants

We describe how we calculate each of the following qG-deformation invariants appearing in
Tables A1–A4.
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(i) First plurigenus h0(−KX): If it is equal to zero then we can easily conclude that X does not
admit a qG-deformation to a toric variety and such surfaces are not of class TG. We compute it
as the coefficient of tI in the Hilbert series (2) where I is the Fano index of X.

(ii) Intersection number −K2
X: It can be defined as an anti-canonical degree of X which we

calculate from the Hilbert series PX(t) of X. In a surface case

PX(t) =
H(t)

(1− t)3 ,

where H(t) is a rational function with only positive coefficients. Then for a generic divisor D
in the class group, we have D2 = H(1). Consequently for an orbifold del Pezzo surface of
index I, we have −K2

X = I2D2.
(iii) Euler Characteristics e(X): We were able to compute the Euler characteristics of X in

hypersurface and complete intersection cases by using Blache’s formula ([25], 2.11-14);

e(X) = eorb(X) + ∑
r(Q)∈B

r− 1
r

(9)

where r is the local index of each orbifold point. It was applied in the Appendix of [26] to
illustrate the computation for a hypersurface. The formula has natural generalization to the
cases of complete intersections

Xd1,...,dk
⊂ P(a0, . . . , an)

in higher codimension. We can computer eorb(X) as:

eorb(X) = coefficient of tn−k in the series expansion of
(

∏(1 + ait)
∏(1 + dit)

deg(X)

)
. (10)

(iv) Picard rank ρ(x): We were able to calculate it explicitly when X is a hypersurface in P3(ai) by
using ([27], Sec. 4.4.1). Given a hypersurface

Xd ↪→ P(a0, a1, a2, a3),

let

l = coefficient of t2d−∑ ai in the series expansion of

(
∏

td−ai − 1
tai − 1

)
,

then ρ(X) = l + 1. In cases of complete intersection examples we were able to identify those
examples which are not prime, i.e., the Picard rank greater than 1. From [28], we know that
if the Picard rank of a log del Pezzo surface is 1 then 0 < eorb(X) ≤ 3. Therefore, for each
codimension 2, we complete the intersection in Table A2, we list eorb(X) and those with
eorb(X) > 3 have Picard rank greater than 1.

3.4. Theoretical Singularity Analysis

The last step of the calculation is the theoretical singularity analysis of each candidate orbifold.
We prove that the general member X in each family is wellformed and quasismooth. We first compute
the dimensions of intersection of all orbifold strata with X to establish that X is wellformed. This
should be less than or equal to zero for a surface to be wellformed, i.e., it does not contain any singular
lines.

The next step is to show that X is quasismooth. This is not so difficult when X is a hypersurface
or complete intersection: one can use the criteria given in ([29], Sec. 8). In cases of codimension 3 and 4
examples, we consider X as complete intersections in wGr(2, 5) or in the Segre embedding of weighted
P2 × P2 or in some projective cone(s) over either of those ambient varieties. So X may not only have
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singularities from the ambient weighted projective but it may also contain singularities on the base
loci of linear systems of the intersecting weighted homogeneous forms. In such cases we mostly prove
the quasismoothness on the base locus by using computer algebra system MAGMA [30]. We write
down explicit equations for X over the rational numbers and show that it is smooth, see ([19], Sec. 2.3)
for more details. To prove quasismoothness on an orbifold point Q of type 1

r (a, b), which is mostly a
coordinate point corresponding to some variables xi with deg(xi) = r, we proceed as follows. If c is
the codimension of X then we find c tangent variables xm [31], i.e., we find c polynomials having a
monomial of type xl

i xm. We can locally remove these variables by using the implicit function theorem.
Moreover, if two other variables have weights a and b modulo r then Q is a quasismooth point of type
1
r (a, b).

4. Sample Calculations

In this section we provide sample calculations of examples given in Tables A1–A4.

Example 1. #81 Consider the weighted projective space P(1, 5, 7, 10) with variables x, y, z and w respectively,
then the canonical class KP = O(−23). The generic weighted homogenous polynomial of degree 15,

f15 = k1 x15 + k2 y3 + k3 yw + k4 xz2 + · · · , ki ∈ C;

defines a del Pezzo surface X15 ↪→ P(x, y, z, w) of Fano index 8, i.e., KX = O(−8). The polynomial f15
does not contain monomials of pure power in w and z so X contains the orbifold points p1 = (0, 0, 0, 1) and
p2 = (0, 0, 1, 0). By applying the implicit function theorem we can remove the variable y near the point p1 by
using the monomial yw and x, z are local variables near this point. Therefore X contains an orbifold point of
type 1

10 (1, 7) = 1
10 (1, 3)(Lemma 1). Similarly, near p2 the local variables are y and w, so we get an orbifold

point of type
1
7
(5, 10) =

1
7
(3, 5) =

1
7
(1, 4) =

1
7
(1, 2).

The coordinate point of weight 5 does not lie on X but one dimensional singular stratum P1(y, w) intersects
with X non-trivially and by ([29], Lemma 9.4) the intersection is in two points. One of them is p1 and the other
can be taken as p3 = (0, 1, 0, 0) which corresponds to weight 5 variable. By using the above arguments we can
show that it is a singular point of type 1

5 (1, 2). Thus X contains exactly the same basket of singularities as given
by the computer search and it is a wellformed and quasismooth rigid del Pezzo surface of Fano index 8. Moreover,
the vector space

H0(X,−KX) = H0(X, 8D) =< x8, x3y, xz >,

so h0(−KX) = 3.

Example 2. #126 Consider the weighted Grassmannian wGr(2, 5)

wGr(2, 5) ↪→ P(12, 33, 54, 7) with weight matrix

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 3 3

3 5 5

5 5

7

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Then by Equation (5) the canonical divisor class KwGr(2,5) = O(−19). The weighted complete intersection
of wGr(2, 5) with two forms of degree 3 and two forms of degree 5;

X = wGr(2, 5) ∩ ( f3) ∩ (g3) ∩ ( f5) ∩ (g5) ↪→ P(x1,x2,y1,z1,z2,w1)
(12, 3, 52, 7)
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is a del Pezzo surface with KX = O(−19 + (3 + 3 + 5 + 5)) = O(−3). We can take X to be defined by the
maximal Pfaffians of ⎛⎜⎜⎜⎜⎜⎜⎝

x1 x2 f3 g3

y1 f5 g5

z1 z2

w1

⎞⎟⎟⎟⎟⎟⎟⎠ , (11)

where f3, g3, f5 and g5 are general weighted homogeneous forms in given variables and they remove the variables
of the corresponding degrees from the ambient wGr(2, 5). The coordinate point corresponding to w1 lies on
X. From the equations we have x1, x2 and y1 as tangent variables and z1, z2 as local variables. Therefore it is
an orbifold point of type 1

7 (5, 5) = 1
7 (1, 1). The locus X ∩ P(5, 5) is locally a quadric in P1 which defines two

points. By similar application of implicit function theorem we can show that each is an orbifold point of type
1
5 (1, 2). The restriction of X to weight 3 locus is an empty set, so X contains no further orbifold points. To show
the quasismoothness on the base locus we use the computer algebra and write down equations for X. For example,
if we choose

f3 = 3x3
1 + 3x3

2, f5 = x5
2 + x2

1y1 + x2
2y1 + z1 + z2,

g3 = x3
2 + y1, g5 = x5

1 + 2x2
1y1 + 3x2

2y1 + 3z2

then the Pfaffians of (11) gives a quasismooth surface. Thus X is an orbifold del Pezzo surface of Fano index 3
with singular points; 2× 1

5 (1, 2) and 1
7 (1, 1).

As we mentioned in Section 3.4 that we prove the existence of given orbifold del Pezzo surface
by theoretical singularity analysis. Then only those which are quasismooth, wellformed and having
correct basket of singularities appear in tables of examples. There are in total 8 candidate examples
which fails to be quasismooth and we discuss one of them below in detail. No candidate example fails
for not being wellformed.

Example 3. (Non working candidate) A computer search also gives a candidate complete intersection orbifold
del Pezzo surface of Fano index 2 given by

X6,30 ↪→ P(x,y,z,t,u)(1, 3, 9, 10, 15).

Then F6 = f (x, y) (since other variables have weight higher than 6) and

F30 = x30 + x27y + yz3 + · · ·

are the defining equations of X. The coordinate point p = (0, 0, 1, 0, 0) lies on X as no pure power of z appear in
F30. Now we can not find two tangent variables to z in the equations of X which implies that the rank of the
Jacobian matrix of X at p is equal to 1 which is less than its codimension, so X is not quasismooth at p. Thus, X
is a del Pezzo surface which is not quasismooth and does not appear in the following tables.

Concluding Remark: One can use this approach to construct and classify orbifold del Pezzo surfaces with any
quotient singularity in a given fixed format, under certain bounds. Moreover, we can also construct examples
with rigid orbifold points of type 1

r (1, a) for r ≥ 11 but as the weights higher the computer search output becomes
slower due to the nature of algorithm. Therefore, we restrict ourself to the cases with r ≤ 10.
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Appendix A. Table of Examples

Notations in Tables

• The column X represents a del Pezzo surface and the corresponding weighted projective space
containing X; the subscripts give the equation degrees of X. The column I lists the Fano index of
X.

• The next two columns contain the anti-canonical degree −K2
X and the first plurigenus h0(−KX).

If h0(−KX) = 0 the X is not of class TG.
• e(X) denotes the topological Euler characteristics of X, ρ(X) is the rank of Picard group of

X, and eorb(X) denotes the orbifold Euler number of X. ρ(X) is only listed in Table A1 of
hypersurfaces and eorb(X) only in Table A2 of complete intersections, as discussed in Section 3.3.

• The column B represents the basket of singular points of X.
• In Tables A3 and A4, the last column represents the matrix of weights, which provides weights of

ambient weighted projective space containing wGr(2, 5) or weighted P2 × P2 variety.
• We provide references to those examples which appeared in [6,8], primarily in a toric setting.

Table A1. Hypersurfaces in wP3.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

1 X3 ⊂ P(14) 1 3 4 9 7

2 X4 ⊂ P(13, 2) 1 2 3 10 8

3 X6 ⊂ P(12, 2, 3) 1 1 2 11 9

4 X10 ⊂ P(1, 2, 3, 5) 1 1/3 1 11 9 1
3 (1, 1) [6]

5 X12 ⊂ P(2, 32, 5) 1 2/15 0 10 8 4× 1
3 (1, 1), 1

5 (1, 1)

6 X15 ⊂ P(1, 3, 5, 7) 1 1/7 1 11 9 1
7 (1, 2)

7 X15 ⊂ P(32, 52) 1 1/15 0 11 9 5× 1
3 (1, 1), 3× 1

5 (1, 1)

8 X16 ⊂ P(1, 3, 5, 8) 1 2/15 1 12 10 1
3 (1, 1), 1

5 (1, 1)

9 X18 ⊂ P(2, 3, 5, 9) 1 1/15 0 9 7 2× 1
3 (1, 1), 1

5 (1, 2)

10 X20 ⊂ P(2, 52, 9) 1 2/45 0 10 8 4× 1
5 (1, 2), 1

9 (1, 1)

11 X28 ⊂ P(3, 5, 7, 14) 1 2/105 0 8 6 1
3 (1, 1), 1

5 (1, 2), 2× 1
7 (1, 2)

12 X2 ⊂ P(14) 2 8 9 4 2

13 X4 ⊂ P(13, 3) 2 16/3 6 6 4 1
3 (1, 1) [6]

14 X6 ⊂ P(13, 5) 2 24/5 6 8 6 1
5 (1, 1) [8]

15 X6 ⊂ P(12, 32) 2 8/3 3 8 6 2× 1
3 (1, 1) [6]

16 X7 ⊂ P(13, 6) 2 14/3 6 9 7 1
6 (1, 1)[8]

17 X8 ⊂ P(12, 3, 5) 2 32/15 3 10 8 1
3 (1, 1), 1

5 (1, 1)

18 X8 ⊂ P(13, 7) 2 32/7 6 10 8 1
7 (1, 1)

19 X9 ⊂ P(12, 3, 6) 2 2 3 11 9 1
3 (1, 1), 1

6 (1, 1) [8]

20 X9 ⊂ P(13, 8) 2 9/2 6 11 9 1
8 (1, 1)

21 X10 ⊂ P(12, 3, 7) 2 40/21 3 12 10 1
3 (1, 1), 1

7 (1, 1)

22 X10 ⊂ P(13, 9) 2 40/9 6 12 10 1
9 (1, 1)

23 X10 ⊂ P(12, 52) 2 8/5 3 12 10 2× 1
5 (1, 1) [8]

24 X11 ⊂ P(13, 10) 2 22/5 6 13 11 1
10 (1, 1)

25 X11 ⊂ P(12, 5, 6) 2 22/15 3 13 11 1
5 (1, 1), 1

6 (1, 1)

26 X11 ⊂ P(12, 3, 8) 2 11/6 3 13 11 1
3 (1, 1), 1

8 (1, 1)

27 X12 ⊂ P(12, 5, 7) 2 48/35 3 14 12 1
5 (1, 1), 1

7 (1, 1)
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Table A1. Cont.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

28 X12 ⊂ P(12, 62) 2 4/3 3 14 12 2× 1
6 (1, 1)[8]

29 X12 ⊂ P(12, 3, 9) 2 16/9 3 14 12 1
3 (1, 1), 1

9 (1, 1)

30 X13 ⊂ P(12, 5, 8) 2 13/10 3 15 13 1
5 (1, 1), 1

8 (1, 1)

31 X13 ⊂ P(12, 3, 10) 2 26/15 3 15 13 1
3 (1, 1), 1

10 (1, 1)

32 X13 ⊂ P(12, 6, 7) 2 26/21 3 15 13 1
6 (1, 1), 1

7 (1, 1)

33 X14 ⊂ P(12, 6, 8) 2 7/6 3 16 14 1
6 (1, 1), 1

8 (1, 1)

34 X14 ⊂ P(12, 72) 2 8/7 3 16 14 2× 1
7 (1, 1)

35 X14 ⊂ P(12, 5, 9) 2 56/45 3 16 14 1
5 (1, 1), 1

9 (1, 1)

36 X15 ⊂ P(12, 6, 9) 2 10/9 3 17 15 1
6 (1, 1), 1

9 (1, 1)

37 X15 ⊂ P(12, 5, 10) 2 6/5 3 17 15 1
5 (1, 1), 1

10 (1, 1)

38 X15 ⊂ P(1, 3, 6, 7) 2 10/21 1 11 9 2× 1
3 (1, 1), 1

6 (1, 1), 1
7 (1, 2)

39 X15 ⊂ P(12, 7, 8) 2 15/14 3 17 15 1
7 (1, 1), 1

8 (1, 1)

40 X16 ⊂ P(12, 6, 10) 2 16/15 3 18 16 1
6 (1, 1), 1

10 (1, 1)

41 X16 ⊂ P(12, 7, 9) 2 64/63 3 18 16 1
7 (1, 1), 1

9 (1, 1)

42 X16 ⊂ P(12, 82) 2 1 3 18 16 2× 1
8 (1, 1)

43 X17 ⊂ P(1, 3, 7, 8) 2 17/42 1 11 9 1
3 (1, 1), 1

7 (1, 1), 1
8 (1, 5)

44 X17 ⊂ P(12, 7, 10) 2 34/35 3 19 17 1
7 (1, 1), 1

10 (1, 1)

45 X17 ⊂ P(12, 8, 9) 2 17/18 3 19 17 1
8 (1, 1), 1

9 (1, 1)

46 X18 ⊂ P(12, 8, 10) 2 9/10 3 20 18 1
8 (1, 1), 1

10 (1, 1)

47 X18 ⊂ P(12, 92) 2 8/9 3 20 18 2× 1
9 (1, 1)

48 X19 ⊂ P(12, 9, 10) 2 38/45 3 21 19 1
9 (1, 1), 1

10 (1, 1)

49 X20 ⊂ P(12, 102) 2 4/5 3 22 20 2× 1
10 (1, 1)

50 X21 ⊂ P(3, 6, 72) 2 2/21 0 9 7 3× 1
3 (1, 1), 1

6 (1, 1), 3× 1
7 (1, 2)

51 X21 ⊂ P(1, 3, 9, 10) 2 14/45 1 13 11 2× 1
3 (1, 1), 1

9 (1, 1), 1
10 (1, 3))

52 X22 ⊂ P(1, 5, 7, 11) 2 8/35 1 10 8 1
5 (1, 1), 1

7 (1, 3)

53 X24 ⊂ P(3, 7, 82) 2 1/14 0 7 5 1
7 (1, 1), 3× 1

8 (1, 5)

54 X30 ⊂ P(3, 9, 102) 2 2/45 0 9 7 3× 1
3 (1, 1), 1

9 (1, 1), 3× 1
10 (1, 3))

55 X36 ⊂ P(1, 7, 12, 18) 2 2/21 1 11 9 1
6 (1, 1), 1

7 (1, 3)

56 X6 ⊂ P(12, 2, 5) 3 27/5 6 5 3 1
5 (1, 2)

57 X8 ⊂ P(12, 2, 7) 3 36/7 6 6 4 1
7 (1, 2)

58 X10 ⊂ P(1, 2, 52) 3 9/5 2 7 5 2× 1
5 (1, 2)

59 X12 ⊂ P(1, 2, 5, 7) 3 54/35 2 8 6 1
5 (1, 2), 1

7 (1, 2)

60 X14 ⊂ P(1, 2, 72) 3 9/7 2 9 7 2× 1
7 (1, 2)

61 X15 ⊂ P(1, 52, 7) 3 27/35 1 9 3 3× 1
5 (1, 2), 1

7 (1, 1)

62 X6 ⊂ P(12, 3, 5) 4 32/5 7 4 2 1
5 (1, 2)

63 X10 ⊂ P(1, 3, 52) 4 32/15 2 6 4 1
3 (1, 1), 2× 1

5 (1, 2)

64 X12 ⊂ P(1, 3, 5, 7) 4 64/35 2 6 4 1
5 (1, 2), 1

7 (1, 3)

65 X15 ⊂ P(1, 3, 5, 10) 4 8/5 2 7 5 1
5 (1, 2), 1

10 (1, 3)

66 X15 ⊂ P(3, 52, 6) 4 8/15 0 7 5 2× 1
3 (1, 1), 3× 1

5 (1, 2), 1
6 (1, 1)

67 X21 ⊂ P(1, 72, 10) 4 24/35 1 9 7 3× 1
7 (1, 3), 1

10 (1, 1)

68 X8 ⊂ P(1, 2, 3, 7) 5 100/21 5 4 2 1
3 (1, 1), 1

7 (1, 3)

69 X8 ⊂ P(12, 4, 7) 5 50/7 8 4 2 1
7 (1, 2)

70 X12 ⊂ P(1, 3, 4, 9) 5 25/9 3 5 3 1
3 (1, 1), 1

9 (1, 4)

71 X14 ⊂ P(2, 3, 72) 5 25/21 1 5 3 1
3 (1, 1), 2× 1

7 (1, 3)

72 X16 ⊂ P(1, 4, 7, 9) 5 100/63 2 6 4 1
7 (1, 2), 1

9 (1, 4)
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Table A1. Cont.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

73 X21 ⊂ P(3, 72, 9) 5 25/63 0 7 5 2× 1
3 (1, 1), 3× 1

7 (1, 3), 1
9 (1, 1)

74 X15 ⊂ P(1, 5, 7, 8) 6 27/14 2 5 3 1
7 (1, 3), 1

8 (1, 5)

75 X16 ⊂ P(1, 5, 82) 6 9/5 2 6 4 1
5 (1, 1), 2× 1

8 (1, 5)

76 X10 ⊂ P(1, 2, 5, 9) 7 49/9 6 3 1 1
9 (1, 4)

77 X12 ⊂ P(2, 3, 5, 9) 7 98/45 2 4 2 1
3 (1, 1), 1

5 (1, 2), 1
9 (1, 4)

78 X8 ⊂ P(1, 3, 5, 7) 8 512/105 5 4 2 1
3 (1, 1), 1

5 (1, 2), 1
7 (1, 2)

79 X14 ⊂ P(1, 5, 7, 9) 8 128/45 3 4 2 1
5 (1, 2), 1

9 (1, 4)

80 X15 ⊂ P(1, 6, 7, 9) 8 160/63 3 5 3 1
6 (1, 1), 1

7 (1, 3), 1
9 (1, 4)

81 X15 ⊂ P(1, 5, 7, 10) 8 96/35 3 5 3 1
5 (1, 2), 1

7 (1, 2), 1
10 (1, 3))

Table A2. Codimension 2 Complete Intersections.

S.No X I −K2
X h0(−KX) e(X) ρ(X) Basket B

82 X2,2 ⊂ P(15) 1 4 5 8 8

83 X42 ⊂ P(12, 22, 3) 1 4/3 2 10 28/3 1
3 (1, 1) [6]

84 X4,6 ⊂ P(1, 22, 32) 1 2/3 1 10 26/3 2× 1
3 (1, 1)[6]

85 X62 ⊂ P(12, 32, 5) 1 4/5 2 12 56/5 1
5 (1, 1) [8]

86 X62 ⊂ P(22, 33) 1 1/3 0 9 19/3 4× 1
3 (1, 1) [6]

87 X6,7 ⊂ P(1, 2, 32, 5) 1 7/15 1 11 133/15 2× 1
3 (1, 1), 1

5 (1, 1)

88 X6,8 ⊂ P(1, 2, 3, 4, 5) 1 2/5 1 10 46/5 1
5 (1, 2)

89 X82 ⊂ P(12, 42, 7) 1 4/7 2 14 92/7 1
7 (1, 1)

90 X6,10 ⊂ P(1, 32, 52) 1 4/15 1 12 136/15 2× 1
3 (1, 1), 2× 1

5 (1, 1)

91 X8,10 ⊂ P(2, 3, 4, 52) 1 2/15 0 8 86/15 1
3 (1, 1), 2× 1

5 (1, 2)

92 X9,10 ⊂ P(2, 32, 5, 7) 1 1/7 0 9 43/7 3× 1
3 (1, 1), 1

7 (1, 2)

93 X102 ⊂ P(12, 52, 9) 1 4/9 2 16 136/9 1
9 (1, 1)

94 X10,11 ⊂ P(1, 2, 52, 9) 1 11/45 1 13 473/45 2× 1
5 (1, 2), 1

9 (1, 1)

95 X10,12 ⊂ P(32, 52, 7) 1 8/105 0 10 512/105 4× 1
3 (1, 1), 2× 1

5 (1, 1), 1
7 (1, 2)

96 X10,12 ⊂ P(2, 3, 5, 6, 7) 1 2/21 0 8 122/21 2× 1
3 (1, 1), 1

7 (1, 3)

97 X6,8 ⊂ P(1, 32, 4, 5) 2 16/15 1 8 88/15 2× 1
3 (1, 1), 1

5 (1, 2)

98 X8,10 ⊂ P(1, 3, 4, 5, 7) 2 16/21 1 8 136/21 1
3 (1, 1), 1

7 (1, 3)

99 X8,12 ⊂ P(1, 3, 5, 6, 7) 2 64/105 1 10 736/105 2× 1
3 (1, 1), 1

5 (1, 1), 1
7 (1, 2)

100 X10,12 ⊂ P(3, 4, 52, 7) 2 8/35 0 6 124/35 2× 1
5 (1, 2), 1

7 (1, 3)

101 X9,14 ⊂ P(1, 3, 6, 7, 8) 2 1/2 1 10 61/8 1
3 (1, 1), 1

6 (1, 1), 1
8 (1, 5)

102 X12,14 ⊂ P(3, 4, 5, 7, 9) 2 8/45 0 6 164/45 1
3 (1, 1), 1

5 (1, 2), 1
9 (1, 4)

103 X14,15 ⊂ P(3, 6, 72, 8) 2 5/42 0 8 545/168 2× 1
3 (1, 1), 1

6 (1, 1), 2× 1
7 (1, 2), 1

8 (1, 5)

104 X11,18 ⊂ P(1, 3, 8, 9, 10) 2 11/30 1 12 1067/120 2× 1
3 (1, 1), 1

8 (1, 1), 1
10 (1, 3)

105 X12,14 ⊂ P(4, 5, 6, 72) 3 9/35 0 5 87/35 1
5 (1, 2), 2× 1

7 (1, 3)

106 X10,12 ⊂ P(3, 52, 6, 7) 4 64/105 0 6 232/105 2× 1
3 (1, 1), 2× 1

5 (1, 2), 1
7 (1, 2)
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Table A3. Codimension 3 Pfaffians.

S.No X I −K2 h0(−K) Basket B Weight Matrix

107
X2,2,2,2,2
⊂ P(16)

1 5 6

1 1 1 1
1 1 1

1 1
1

108
X3,3,4,4,4
⊂ P(13, 22, 3) 1 7/3 3 1

3 (1, 1) [6]

1 1 2 2
1 2 2

2 2
3

109
X4,4,6,6,6
⊂ P(13, 32, 5) 1 9/5 3 1

5 (1, 1) [8]

1 1 3 3
1 3 3

3 3
5

110
X4,5,6,6,7
⊂ P(12, 2, 32, 5) 1 17/15 2 1

3 (1, 1), 1
5 (1, 1)

1 1 2 3
2 3 4

3 4
5

111
X5,5,8,8,8
⊂ P(13, 42, 7) 1 11/7 3 1

7 (1, 1)

1 1 4 4
1 4 4

4 4
7

112
X6,7,8,9,10
⊂ P(1, 2, 32, 5, 7) 1 10/21 1 1

3 (1, 1), 1
7 (1, 4)

1 2 3 4
3 4 5

5 6
7

113
X6,6,10,10,10
⊂ P(13, 52, 9) 1 13/9 3 1

9 (1, 1)

1 1 5 5
1 5 5

5 5
9

114
X7,8,8,9,10
⊂ P(2, 32, 4, 52)

1 1/5 0 3× 1
3 (1, 1), 1

5 (1, 2), 1
5 (1, 1)

2 3 3 4
4 4 5

5 6
6

115
X6,7,10,10,11
⊂ P(12, 2, 52, 9) 1 38/45 2 1

5 (1, 2), 1
9 (1, 1)

1 1 4 5
2 5 6

5 6
9

116
X6,8,10,10,12
⊂ P(1, 32, 52, 7) 1 29/105 1 1

3 (1, 1), 1
5 (1, 1), 1

7 (1, 4)

1 1 3 5
3 5 7

5 7
9

117
X10,10,12,12,14
⊂ P(32, 52, 72)

1 3/35 0 3× 1
3 (1, 1), 1

5 (1, 1), 2× 1
7 (1, 4)

3 3 5 5
5 7 7

7 7
9
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Table A3. Cont.

S.No X I −K2 h0(−K) Basket B Weight Matrix

118
X11,12,12,15,16

⊂ P(2, 52, 6, 7, 9)
1 23/315 0 3× 1

5 (1, 2), 1
7 (1, 3), 1

9 (1, 1)

2 5 5 6

6 6 7

9 10

10

119
X4,7,8,8,9

⊂ P(12, 2, 3, 6, 7)
2 22/7 4 1

3 (1, 1), 1
6 (1, 1), 1

7 (1, 2)

1 1 2 5

2 3 6

3 6

7

120
X4,8,9,9,10

⊂ P(12, 2, 3, 7, 8)
2 43/14 4 1

7 (1, 1), 1
8 (1, 5)

1 1 2 6

2 3 7

3 7

8

121
X4,10,11,11,12

⊂ P(12, 2, 3, 9, 10)
2 134/45 4 1

3 (1, 1), 1
9 (1, 1), 1

10 (1, 3)

1 1 2 8

2 3 9

3 9

10

122
X8,9,12,13,14

⊂ P(1, 3, 5, 6, 7, 8)
2 19/30 1 1

3 (1, 1), 1
5 (1, 1), 1

8 (1, 5)

1 2 5 6

3 6 7

7 8

11

123
X12,12,14,15,15

⊂ P(4, 52, 72, 8)
2 11/70 0 2× 1

5 (1, 2), 2× 1
7 (1, 3), 1

8 (1, 1)

4 5 7 7

5 7 7

8 8

10

124
X14,14,15,15,16

⊂ P(3, 6, 72, 82)
2 1/7 0 1

3 (1, 1), 1
6 (1, 1), 1

7 (1, 2), 2× 1
8 (1, 5)

6 6 7 7

7 8 8

8 8

9

125
X16,17,17,18,18

⊂ P(3, 7, 82, 9, 10)
2 11/105 0 1

3 (1, 1), 1
7 (1, 1), 2× 1

8 (1, 5), 1
10 (1, 3)

7 8 8 9

8 8 9

9 10

10

126
X6,6,8,8,10

⊂ P(12, 3, 52, 7)
3 153/35 4 2× 1

5 (1, 2), 1
7 (1, 1)

1 1 3 3

3 5 5

5 5

7

127
X8,8,11,11,14

⊂ P(12, 4, 72, 10)
4 184/35 6 2× 1

7 (1, 3), 1
10 (1, 1)

1 1 4 4

4 7 7

7 7

10
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Table A4. Codimension 4 P2 × P2 .

S.No X I −K2 h0(−K) Basket B Weight Matrix

128
X29

⊂ P(17)
1 6 7

1 1 1
1 1 1
1 1 1

129
X2,34,44

⊂ P(14, 22, 3)
1 10/3 4 1

3 (1, 1) [6]
1 1 2
1 1 2
2 2 3

130
X2,44,64

⊂ P(14, 32, 5)
1 14/5 4 1

5 (1, 1) [8]
1 1 3
1 1 3
3 3 5

131
X2,54,84

⊂ P(14, 42, 7)
1 18/7 4 1

7 (1, 1)
1 1 4
1 1 4
4 4 7

132
X4,52,63,72,8
⊂ P(1, 22, 33, 5)

1 4/5 1 3× 1
3 (1, 1), 1

5 (1, 1)
1 2 3
2 3 4
3 4 5

133
X2,64,104

⊂ P(14, 52, 9)
1 22/9 4 1

9 (1, 1)
1 1 5
1 1 5
5 5 9

134
X5,62,72,82,9,10
⊂ P(1, 2, 32, 4, 52)

1 8/15 1 1
3 (1, 1), 1

5 (1, 2), 1
5 (1, 1)

1 2 3
3 4 5
4 5 6

135
X4,72,82,10,112,12
⊂ P(1, 22, 3, 52, 9)

1 26/45 1 1
3 (1, 1), 2× 1

5 (1, 2), 1
9 (1, 1)

1 2 5
2 3 6
5 6 9

136
X6,82,103,122,14
⊂ P(1, 32, 52, 72)

1 2/7 1 2× 1
7 (1, 4)

1 3 5
3 5 7
5 7 9

137
X7,8,10,112,122,15,16
⊂ P(1, 2, 52, 6, 7, 9)

1 86/315 1 1
5 (1, 2), 1

7 (1, 3), 1
9 (1, 1)

1 2 5
5 6 9
6 7 10

138
X10,112,123,132,14
⊂ P(3, 4, 52, 6, 72)

1 3/35 0 2× 1
5 (1, 2), 2× 1

7 (1, 4)
4 5 6
5 6 7
6 7 8

139
X8,9,11,123,13,15,16
⊂ P(2, 3, 52, 6, 7, 9)

1 38/315 0 1
3 (1, 1), 3× 1

5 (1, 2), 1
7 (1, 4), 1

9 (1, 1)
2 3 6
5 6 9
6 7 10

140
X4,82,92,12,132,14
⊂ P(1, 2, 3, 62, 72)

2 20/21 2 1
3 (1, 1), 2× 1

6 (1, 1), 2× 1
7 (1, 2)

1 2 6
2 3 7
6 7 11

141
X4,8,92,10,13,142,15
⊂ P(1, 2, 3, 6, 72, 8)

2 37/42 2 1
6 (1, 1), 1

7 (1, 1), 1
7 (1, 2), 1

8 (1, 5)
1 2 6
2 3 7
7 8 12

142
X4,8,9,11,12,15,162,17
⊂ P(1, 2, 3, 6, 7, 9, 10) 2 248/315 2 1

3 (1, 1), 1
6 (1, 1), 1

7 (1, 2), 1
9 (1, 1), 1

10 (1, 3)
1 2 6
2 3 7
9 10 14

143
X4,9,10,11,12,16,172,18
⊂ P(1, 2, 3, 7, 8, 9, 10) 2 451/630 2 1

7 (1, 1), 1
8 (1, 5), 1

9 (1, 1), 1
10 (1, 3)

1 2 7
2 3 8
9 10 15

144
X4,112,122,18,192,20
⊂ P(1, 2, 3, 92, 102)

2 28/45 2 1
3 (1, 1), 2× 1

9 (1, 1), 2× 1
10 (1, 3)

1 2 9
2 3 10
9 10 17

145
X14,152,163,172,18
⊂ P(3, 6, 72, 8, 9, 10)

2 16/105 0 3× 1
3 (1, 1), 1

6 (1, 1), 2× 1
7 (1, 2), 1

10 (1, 3)
6 7 8
7 8 9
8 9 10

146
X6,82,103,122,14
⊂ P(1, 32, 5, 72, 9)

5 250/63 4 2× 1
3 (1, 1), 2× 1

7 (1, 3), 1
9 (1, 1)

1 3 5
3 5 7
5 7 9

147
X14,152,163,172,18
⊂ P(6, 72, 8, 92, 10)

8 256/315 1 1
6 (1, 1), 2× 1

7 (1, 3), 2× 1
9 (1, 4), 1

10 (1, 1)
6 7 8
7 8 9
8 9 10
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