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Preface to ”Soil Management for Sustainability”

Soils are an essential and non-renewable natural resource, supplying goods and services

fundamental to ecosystems and human life. Soils are necessary for producing crops, feed, fiber, and

fuel, in addition to filtering and cleaning water. As a major carbon sink, soils also help to regulate the

emissions of carbon dioxide and other greenhouse gases, which is fundamental for climate regulation.

Nevertheless, evidence recently provided in the Status of the World’s Soil Resources report and

other studies show that about one-third of global soils are moderately or highly degraded due to

unsustainable management practices, aggravated by the increased frequency of extreme weather

events resulting in high soil erosion rates, with consequences for overall soil quality and ecosystem

services. Particularly in agricultural soils, there is a continuing degradation trend arising from highly

intensive agricultural systems, even though reduced tillage, crop rotations, and cover crops are

spreading due to the adoption of conservation agriculture as a sustainable soil management system.

Soil management is sustainable if “the supporting, provisioning, regulating, and cultural

services provided by soil are maintained or enhanced without significantly impairing either the soil

functions that enable those services, or biodiversity”. Thus, sustainable soil management (SSM)

is crucial for effective soil functioning, also strongly contributing to climate change adaptation

and mitigation, combating desertification, and promoting biodiversity. SSM is an integral part of

sustainable land management; thus, a territorial perspective is important in such studies. This

Special Issue welcomes research and review papers focusing on minimizing soil erosion; enhancing

soil organic matter content; fostering soil nutrient balance and cycles; preventing, minimizing,

and mitigating soil salinization and alkalinization; preventing and minimizing soil contamination;

preventing and minimizing soil acidification; preserving and enhancing soil biodiversity; minimizing

soil sealing; preventing and mitigating soil compaction; and improving soil water management.

However, the adoption of any sustainable soil management practice is highly dependent on the

environmental–socioeconomic context, and therefore, guidance from land-use planners and advisory

services should be made available from the local to regional scale. Monitoring and verifying that

sustainable management practices are being applied correctly and assessing their impacts on the

different ecosystem services is a major challenge. In this sense, geospatial modeling and the predictive

mapping of selected soil properties, coupled with land-use and soil management information and

other environmental covariates, is a valuable tool for assessing the improvement or degradation of

soil quality and ecosystem services.

Chiara Piccini, Rosa Francaviglia

Editors
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Abstract: The preservation of soils which provide many important services to society is a pressing
global issue. This is particularly the case in countries like Tanzania, which will experience rapid
population growth over coming decades. The country is also currently experiencing rapid land-use
change and increasing intensification of its agricultural systems to ensure sufficient food production.
However, little is known regarding what the long term effects of this land use change will be, especially
concerning soil quality. Therefore, we assessed the effect of irrigation and fertilization in agricultural
systems, going from low intensity smallholder to high intensity commercial production, on soil
organic carbon (SOC), total nitrogen (TN), and total phosphorous (TP) concentrations and stocks. Soil
sampling was conducted within Kilombero Plantations Ltd. (KPL), a high intensity commercial farm
located in Kilombero, Tanzania, and also on surrounding smallholder farms, capturing a gradient
of agricultural intensity. We found that irrigation had a positive effect on SOC concentrations and
stocks while fertilization had a negative effect. Rain-fed non-fertilized production had no effect on
soil properties when compared to native vegetation. No difference was found in concentrations of
TN or TP across the intensity gradient. However, TN stocks were significantly larger in the surface
soils (0–30 cm) of the most intensive production system when compared to native vegetation and
smallholder production.

Keywords: soil organic carbon; agricultural intensity; nitrogen; phosphorous; irrigation; fertilization

1. Introduction

The preservation of soils is central to many of the challenges facing society. These challenges
include ensuring food and energy security, climate change mitigation, biodiversity protection and the
continued provision of numerous ecosystem services [1]. The most important role that soils play for
society is in the provision of food. Large quantities of the earth’s topsoil have been directly altered for
anthropogenic land-use, with one third of all land cover (excluding Greenland and Antarctica) being
dedicated to agriculture [2]. Therefore, sustaining global food production represents both a challenge
for soils and an opportunity to ensure soil preservation through proper soil management.

Land 2020, 9, 121; doi:10.3390/land9040121 www.mdpi.com/journal/land1
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With the global population expected to reach 9 billion by 2050, an increasing demand for food
will place a significant pressure on land and soil. However, the expansion of global population will not
be homogeneous. Due to regional differences in birth rates and mortality, population related pressures
will be greater in some places than others. Sub-Saharan Africa will be the greatest contributor to the
expansion of the world’s population over coming decades, with the region becoming the world’s most
populous by 2100 [3]. Therefore, the importance of ensuring enough food is locally produced is one of
the greatest challenges for nations within this region, placing pressure on the region’s soils.

Tanzania is one such country, given that its population is expected to increase from 56 million in
2018 to 129 million by 2050 [3]. Food security is thus a critical challenge for the nation. This is further
complicated by climate change, which will likely have negative effects on crop yields as a result of
increased incidence of pest [4], changes in the availability of water resources [5], and heat stress [6].
While agriculture experiences the negative effects of climate change, it plays an important role as a
contributor to greenhouse gas (GHG) emissions [7]. Agriculture is also increasingly being discussed as
a potential mitigator of GHG emissions [8] through initiatives such as “4 per 1000” [9]. Due to the
rapidly expanding population and increase in agricultural area, increases in GHG emissions from
Tanzanian agriculture are among the fastest growing in the world [10].

Despite these challenges, Tanzania has great potential to succeed in meeting future production
demands locally. Providing 78% of employment and contributing to 29% of the nation’s gross domestic
product [11], the country’s agriculture sector is dominated by low intensity smallholder farming.
Further, only 15% of nation’s potential arable land is currently utilized for crop production, and
the majority of this cropland is rain-fed. Therefore, the country has opportunities to both expand
its production area and increase its production intensity. To meet future production needs, the
country has embarked upon a modernization process to commercialize its smallholder dominated
agricultural sector, via the Kilimo Kwanza (Agriculture First) initiative, and programs such as Southern
Agricultural Growth Corridor of Tanzania [12]. But to ensure food security and improve livelihoods,
this development of the sector needs to be achieved in a sustainable way.

The intensification of agriculture, through mechanization, crop selection, and the use of inorganic
inputs has increased production [13], but often at the expense of other ecosystem services. Within
Sub-Saharan Africa, where increased production has often been made possible through the conversion
of forest to agricultural land, agricultural intensification has increased threats to biodiversity [14]
and resulted in habitat loss and fragmentation [15]. This loss of biodiversity, coupled with the use
of pesticides, may have indirect negative consequences for crop production through detrimentally
effecting pollinators [16] and the loss of predators that feed on agricultural pests [17]. It may also lead
to lower inherent soil fertility [18], potentially resulting in negative effects on yields. However, the
significance of these effects is dependent on the original status of the soil and the land management
practices (LMPs) that are implemented.

A loss of soil organic carbon (SOC) is often noted as a consequence of agricultural production.
Winowiecki et al. [19] found that cultivation has a negative effect on soil organic carbon concentrations
when compared to non-cultivated land in Tanzania. Similar effects have been seen globally, with the
conversion of native forests to agriculture resulting, on average, in a 24% reduction in SOC stocks [20].
Yet, certain systems may also result in increased SOC. For example, the production of paddy rice has
been responsible for SOC accumulation [21,22], although at the expense of relatively higher methane
emissions, due to flooded fields limiting the degradation of organic matter [23]. However, the global
trend in SOC, as a result of agriculture, has been a net loss [24]. Changes in SOC are also associated
with changes in macronutrients, such as nitrogen (N) and phosphorus (P), which are chemically bound
to carbon (C) in organic compounds [25]. Thus, SOC reductions caused by agricultural activities may
result in loss of the soil nutrient capital. As well as being related to soil nutrient status, SOC also affects
soil compaction, with bulk density (BD) commonly being inversely related to SOC content [26]. This
makes changes in SOC a common indicator of soil fertility.

2



Land 2020, 9, 121

Considering that increased soil organic matter (including C, N, and P) may have yield benefits [27],
it is important to both quantify and mitigate any loss that may occur as a result of agricultural
intensification globally, particularly in countries like Tanzania that need to dramatically increase
agricultural output to meet the needs of their rapidly expanding population. However, little focus
has been put on assessing the effect on soils of land-use change for agriculture in Eastern Africa. In a
recent review [28], Namirembe et al. identified only 15 studies which assessed changes in SOC as a
result of bushland, woodland or forest conversion to agriculture in Ethiopia, Kenya, Rwanda, Tanzania,
Uganda, or Burundi. The average sampling depth of the identified studies was 32 cm. Further, less
focus has been put on comparing the effect of land-use conversion across a gradient of production
intensities. Therefore, in this under-represented area, there is a need to assess changes in soil properties
(and thus fertility) both along gradients of agricultural intensity, and at a depth in the soil profile where
such changes have largely been neglected so far.

The long-term effects of land-use change and agricultural intensification should be urgently
assessed in areas of Tanzania that are anticipated to experience a significant increase in both. In this
study, we aim to identify the effects of agricultural management along a gradient of agricultural
intensification within the Kilombero Valley, Tanzania. While the valley is dominated by smallholder
production, it is also the location of Kilombero Plantations Ltd. (KPL), an industrial producer of rice
and maize. Therefore, we consider the effect of agriculture management across a range of intensities,
from unfertilized and rain-fed smallholder (low intensity) to fertilized and irrigated industrial (high
intensity). We also compare agriculture to soil conditions under native vegetation. Specifically, we ask
how does agricultural intensity affect concentrations and stocks of soil organic carbon, soil nitrogen
and soil phosphorous?

2. Materials and Methods

2.1. Site Description

The Kilombero Valley is located in the Morogoro Region of southern central Tanzania. The
valley covers approximately 39,000 km2, with a complex network of streams moving down from the
surrounding mountains and joining to form Kilombero River. The northern and western sides of the
valley are bordered by the Udzungwa mountains, and the eastern side by the Mahenge highlands [29,30].
Annual precipitation ranges between 1200 and 1400 mm, falling mainly in the November to April wet
season. Mean daily temperature is 22–23 °C, with a relative humidity between 70% and 87% in forest
and highland areas, and 58% and 85% in the lowlands. Soils surrounding the study location, within
the catchment’s lowlands, are characterized as fluvisols [31].

The valley is home to both smallholder and commercial farms, with rice, maize and sugar
cane being major produced crops. There are nine small-to-medium scale irrigation schemes with
well-established irrigation infrastructure and two prominent commercial irrigation schemes in Msolwa
(sugar plantation) and Mngeta (rice and maize plantation).

Sampling for this research was conducted on and around Mngeta farm, operated by KPL. The
farm is an industrial rice and maize producer situated approximately 62 km west south west of Ifakara.
Purchased in 2006, the farm sits on the site of a former Tanzania–North Korean agricultural operation
which cleared the land for production during the 1980’s but was then later abandoned. Covering over
5000 ha, the farm grows both center-pivot irrigated and rain-fed rice during the wet season and maize
during the dry season. The farm fertilizes the rain-fed and irrigated areas using a combination of DAP,
MOP, Urea and Nitrabor as basal and top dressings, with total application rates of approximately
90–125 kg N ha−1 and 15–25 kg P ha−1 per crop. Rice yields on the commercial farm are typically
between 3 and 4 t ha−1, but with a large degree of variability between years and fields.

The land surrounding KPL is resident to smallholder farmers who also produce rice and maize.
Whilst the number of large scale production activities within Kilombero is increasing [32], agriculture
within the valley is dominated by smallholder and subsistence farming [33]. Yields on the surrounding
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smallholder farms can be as low as 1 t ha−1 in unfertilized rain-fed areas, up to 6 t ha−1 in fields
where System of Rice Intensification practices have been implemented. In both the KPL farm and
surrounding smallholder farms, land is ploughed prior to crop planting. Ploughing is conducted using
tractor drawn plough or, on smallholder land, using a power tiller. Although variable, plough depth is
between 15 and 30 cm.

As a result of migration to the valley, its agricultural area has increased by 3430 km2 (11.3%)
between 1990 and 2016 [33] mainly through the conversion of bushland and forest. The increasing
production area and intensity has led to increased crop production, but has resulted in changes in river
chemistry and biota [29], and also species loss and habitat fragmentation [34].

2.2. Sampling Methods

Field sampling was conducted between June and July 2018, after the harvesting of the wet season
rice crop and before the planting of maize, on and around the KPL farm. Four land management
practices (LMPs), detailed in Figure 1 and Table 1, were selected for comparison of soil properties. We
consider these LMPs to represent a gradient of production intensity, with mechanization and increasing
use of chemical inputs being markers of production intensity. We considered fields in the commercial
farm KPL (denoted by ‘C-’ in the LMP codes) and in the surrounding small holder farms (denoted by
‘S-’). Moreover, we identified fields that were either fertilized or left unfertilized (‘F’ vs. ‘U’), and either
irrigated or rain-fed (‘I’ vs. ‘R’). Soil samples were obtained at five sites within each LMP (Figure 1).
All sites had been consistently managed in the same way for at least 10 years, excluding the C-FI sites
where irrigation was introduced in the 2014–2015 growing season. Sites within C-FR were randomly
selected from within the area, covering 120 ha, reported by the KPL farm management as being solely
used for rain-fed rice production. Similarly, C-FI sites were randomly selected from within the pivot
irrigated areas installed in 2014, which cover an area of 250 ha, within the KPL farm. The selection
of smallholder fields that were neither irrigated or fertilized (S-UR) was limited to five small fields
(between 0.5 and 1.5 ha) that were found to be appropriate after interviewing a local extension officer
and farmers in the area. Therefore, for this LMP, a random site selection was not possible. However,
the sampled sites were scattered over a wide area and are thus regarded as representative of this land
management (Figure 1). Further, access to sites with native land cover (NAT) within the KPL farm was
restricted by the density of the vegetation within these areas. This meant that NAT sites were selected
by walking through the forest, on a path dictated by accessibility, and then digging at the location
reached after thirty minutes, this time equated to a distance that was deemed sufficient to ensure that
the sampled sites were representative of relatively undisturbed forest. The forest area within the farm
had been set aside as a wildlife refuge, and no signs of anthropogenic disturbance were observed.

Figure 1. Soil sampling locations (sites) on and around the Kilombero Plantations Ltd. farm.
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Table 1. Land management practices on the locations selected for soil sampling.

Land Management
Practice

Description Label Figure Label Color
Agricultural

Intensity

On-farm irrigated
(C-FI)

Fields within the industrial farm
on which irrigated and
chemically fertilized rice is
grown in the wet season.
Irrigated maize is grown in the
dry season. Fertilizer
application is provided
primarily via pivot
irrigation systems

C-FI  High intensity

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Low intensity

On-farm non irrigated
(C-FR)

Fields within the industrial farm
on which rain-fed and
chemically fertilized rice is
grown in the wet season. Fields
are not utilized in the
dry season.

C-FR  

Off-farm non irrigated
(S-UR)

Smallholder fields outside, but
located close to, the industrial
farm. Fields are used for rice
production, and are neither
irrigated or fertilized.

S-UR  

Native (NAT)

Undisturbed forest and
shrubland within the industrial
farm which has been set aside as
a green space

NAT  

The sampling protocol was adapted from Alavaisha et al. (2019) [32] to allow integration of the
current new dataset with previous soil analyses in the Kilombero Valley. For analysis of soil texture,
pH, SOC, total nitrogen (TN), and total phosphorous (TP), soil samples were taken at five points for
each site. One point was located at the center of the site and four at equidistant locations around a
10 m radius circle around the center point. Soils from each point were collected at six depths (0–20,
20–30, 30–40, 40–50, 50–60, and 60–80 cm) using a soil auger (Unoson Environment AB). The samples
from each of the five points were then homogenized, with visible roots removed, and stored in sealed
plastic bags. A single BD sample was taken, for each depth, at the center point of each site, with the
bulk density ring driven horizontally into the soil profile at each depth’s mid-point.

2.3. Soil Analysis

Laboratory analyses were conducted at the Department of Soil and Geological Science, Sokoine
University of Agriculture, Morogoro. Samples were air dried and passed through a 2 mm sieve, with
large particles not passing through being crushed and then passed through the sieve again [35]. Texture
was measured using the hydrometer bouyoucos method, pH with a Oakton Ion 700 bench meter
using a 1:2.5 soil-distilled water solution, and TN with a Foss Tecato Kjeltec™ 2100 Auto Distillation
Digestion system using the Kjeldahl method, as described by Klute (1986). SOC was measured via the
Walkley–Black method [36], and TP using the dry combustion method [37] measured with a Biomate 6
UV Spectrophotometer.

2.4. Statistical Procedure

The effects of land management practices, on concentrations of SOC, TN and TP, and on C:N
and C:P ratios, were analyzed with a mixed-effect model [38] accounting for the dependence of the
measurements taken in the same field. For each soil element, we determined the value of the logarithm
of the concentration (yij) in crop j = 1,...,20 at the i-th depth with i = 1,...,6 and then fit a model such that:

yij = α0 + Xβ+ Zθ+ γ j + δ jdi j + εi j, (1)

5
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where α represents an intercept term, X is a matrix of dummy variables labelling the crop type as
reported in Table S1 with β the related vector of regression coefficients measuring the additive effect
(on a log scale) of the land-use. The matrix Z contains additional confounders (the percentage of silt
and depth) with θ the related regression coefficients. Finally, γj and δj are crop-specific random effect
parameters representing crop-specific intercept and regression coefficient associated to the depth dij
of measurement i in crop j. The model specification is completed assuming εij represents a random
Gaussian noise. The mixed effect model was fitted in R utilizing the nlme package and using the
restricted maximum likelihood approach.

Stocks of SOC, TN and TP (Mg ha−1) were calculated for each soil sampling depth from the
percent concentrations at that depth (x):

Stockmn = Cmn × BDmn ×Dmn (2)

where m is the element (SOC, TN, TP), n the sampling depth, C and BD are the element concentration
(expressed as percentages on a dry weight basis) and soil bulk density (g cm−3) derived from the
laboratory analysis, respectively, and D the thickness of the sampling depth (cm). Stocks through the
profile were summed to calculate the stock of each element in the total soil profile, as well as for the
root zone (0–30 cm) and the subsoil (30–80 cm).

One-way analysis of variance (ANOVA) with Tukey’s honestly significant difference (HSD) post
hoc test was used to assess for significant difference (p < 0.05) in element stocks in root zone, subsoil and
full profile, and also in concentrations of SOC, TN, TP and C:N and C:P ratios at each sampling depth.

3. Results

We first present the observed concentrations of SOC and soil nutrients along vertical soil profiles,
comparing trends seen between land-use types; second, nutrient stocks are presented, and finally soil
C:N and C:P ratios. Variability in soil texture can also be found in the Supplementary Figure S1. The
complete original data file (Data S1) can also be found in the Supplementary Materials.

3.1. Observed Soil Organic Carbon and Nutrient Concentrations

3.1.1. Vertical Profiles of Soil Organic Carbon and Nutrient Concentrations

Depth had a significantly negative effect on SOC, TN and TP (p < 0.01) (Table 2). Percent SOC and
TN consistently decreased with increasing depth below the land surface within all LMPs (Table 3).
Reductions in TP concentrations were milder than for SOC and TP, and concentrations between 20 and
60 cm were more variable between sites within the two commercial LMPs, C-FR and C-FI, compared to
the two non-commercial LMPs (Table 3). In all LMPs, bulk density consistently increased with depth
(Table 3).
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While SOC concentrations decreased with increasing depth below the soil surface, the decrease
was more pronounced in the agricultural LMPs than the NAT sites. This can be seen in the larger
absolute values of the slope coefficients for the three agricultural LMPs compared against that of the
NAT sites in Figure 2a. TN concentration profiles were also less steep in NAT sites compared to two of
the agricultural LMPs (Figure 2b). Compared to SOC and TN, the concentration profiles for TP were
more variable between sites and LMPs, demonstrated by the larger standard errors in Figure 2c.

Figure 2. Slope coefficients (β) for a fitted single term exponential model (y = aeβx) for: (a), % SOC;
(b), % TN; (c), % TP. More negative values indicate steeper vertical declines in element concentrations.
Colored circles along the x-axis of each pane denote the results for each LMP, circles represent the
estimated β values for each LMP, black whiskers are the related standard errors (n = 5).

3.1.2. Differences in Soil Organic Carbon and Nutrient Concentrations between LMPs

We found some statistical differences between SOC concentrations in the four LMPs, seen in the
estimates of β and their marginal significance t-tests, reported in Table 2. Land management within
the irrigated C-FI sites had a mild but significantly positive effect on log % SOC (p = 0.048), while
fertilization had a significantly negative effect only at the 10% level (p = 0.085). Also, no difference was
detected between SOC concentrations between the native vegetation and the smallholder producers.
Analysis of SOC concentrations within individual soil layers found that between 40 and 60 cm,
concentrations of C-FR sites were significantly smaller (p < 0.05) than those of NAT sites (Table 3).

While fertilization had a significant effect on TP concentrations at the 10% level (p = 0.092), no
significant difference was found in concentrations of TN and TP between any of the four LMPs. Silt
content was also found to be significantly related to SOC and nutrient concentrations. Clay content
(Figure S1) and pH, which ranged from 5.05 and 6.49 between all sites and depths (mean 5.72), had no
significant effect and did not improve the model fit.

3.2. Carbon and Nutrient Stocks

Observed stocks of SOC across the entire sampled soil profile were highest within the NAT sites
with a mean value of 177 Mg ha−1 (Figure 3c). Similarly, SOC stocks were also higher in the NAT
sites between 30 and 80 cm than they were in the other LMPs (Figure 3b). However, only C-FR was
significantly different (p < 0.05) from NAT between 30–80 cm (Figure 3b). Conversely, while not
significantly different, NAT sites had the lowest mean SOC stocks in the surface soils (Figure 3a). Stocks
of TN were similar between all LMPs, with the mean values being marginally, but not significantly,
higher in the two fertilized LMPs (C-FR and C-FI) than in the non-fertilized ones (S-UR and NAT) at all
depths (Figure 3d–f). For TP, mean observed stocks were greater in the two fertilized LMPs than in the
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non-fertilized LMPs when comparing stocks in the surface soils (Figure 3g), the subsurface (Figure 3h),
and the total soil profile (Figure 3i). The difference in TP stocks was significant in C-FI compared to
S-UR and NAT at 0–30 cm (Figure 3g).

Figure 3. Stocks of SOC (a–c), TN (d–f) and TP (g–i) for: left, 0–30 cm, center 30–80 cm from the soil
surface; right, 0–80 cm from the soil surface. Note the different vertical scales between the two left
columns and the right one; black whiskers are standard errors (n = 5). Different letters (A or B) above
bars represent significant difference (p < 0.05) between LMPs determined using one-way analysis of
variance and Tukey’s honestly significant difference post hoc test.

3.3. C:N and C:P Ratios

There was a diverging trend in C:N and C:P ratios with increasing depth (Table 4), the difference in
mean values was more constrained in the surface layer (0–20 cm) than in any other soil layer. The most
pronounced difference in C:N ratios occurred between the C-FR and NAT, which were significantly
different (p < 0.05) between 30–60 cm (Table 4). Below 30 cm, mean C:N markedly decreases in C-FR.
For NAT, despite an increase at intermediate soil depths, the ratio was relatively consistent between
soil layers. Depth had a mild but significantly negative effect on both the C:N (p = 0.009) and C:P ratio

9
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(p = 0.001) (Table 2). With regard to management practices, irrigation had a significantly positive effect
on the C:N ratio (p < 0.009), and fertilization had a significantly negative effect on the C:N (p = 0.026)
and C:P ratios (p = 0.018) (Table 2).

Table 4. Means of the observed soil C:N (top) and C:P (bottom) ratios through the sampled depths for
each LMP. Bracketed numbers are standard error (n = 5). Different letters in the same column indicate
significant difference (p < 0.05) between LMPs determined using one-way analysis of variance and
Tukey’s honestly significant difference post hoc test.

0–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm 60–80 cm

C:N
NAT 14.6(3.24)a 15.9(1.34)a 16.6(1.35)b 18.2(2.96)b 13.3(0.61)b 12.4(1.02)a
S-UR 15.7(0.88)a 11.8(1.09)a 11.5(1.63)ab 11.4(1.79)ab 9.48(2.49)ab 9.37(2.64)a
C-FR 14.5(0.94)a 14.7(3.91)a 9.68(0.77)a 3.77(0.65)a 4.54(0.86)a 6.09(1.08)a
C-FI 16.7(0.64)a 14.8(0.73)a 10.1(1.13)a 9.39(1.50)a 9.09(0.72)ab 14.6(6.13)a

C:P
NAT 24.4(6.51)a 24.6(2.59)a 28.4(6.79)b 34.2(12.0)b 19.9(1.34)a 13.3(1.84)a
S-UR 30.0(5.70)a 32.4(11.41)a 19.9(4.69)ab 15.7(3.41)ab 19.7(11.3)a 26.7(19.5)a
C-FR 18.5(1.17)a 22.7(6.50)a 8.68(1.67)a 6.53(2.13)a 4.83(1.65)a 8.10(2.01)a
C-FI 21.5(1.99)a 13.9(2.34)a 13.5(4.46)ab 12.1(3.26)ab 5.90(1.89)a 9.89(3.54)a

4. Discussion

The conversion of native vegetation to agricultural land affects the physical, chemical, and
biological properties of soil, with the extent of these effects being controlled by the agricultural practices
implemented [39]. In turn, changes in soil properties may have positive or negative effects on crop
yields. For example, SOC has been shown to be positively correlated with yields of wheat and
maize [40]. However, little work has been done to investigate the effect of land-use change on soil
properties and nutrient stocks within Africa [41]. Given that the Sub-Saharan Africa population will
rapidly increase over coming decades, and this will likely lead to increasing conversion of native
vegetation to make room for agriculture, the effects of land-use change on soil properties and their
related ecosystem services should not be ignored. As such, this study provides valuable insights into
changes in soil properties in a data limited area which is currently undergoing significant land-use
conversion and agricultural intensification.

SOC concentrations seen across all sampling locations within this study agree with both in situ
measurements [32] and SOC values interpolated from a broad-scale survey [42] elsewhere in the
Kilombero Valley. Also, the concentrations of SOC and TN consistently decrease with soil depth—a
well-known pattern occurring in most ecosystems and attributed to the higher inputs of C and nutrients
at the soil surface compared to deeper soil layers [43,44]. As concentrations decrease with depth,
organic matter becomes progressively enriched in N and P, leading to lower C:N and C:P ratios at
depth, as also found in previous studies [45]. The increase in soil bulk density seen with depth (Table 3)
is not surprising. The opposing trends of SOC and bulk density are a common signal in soil profiles
due to the importance of SOC in regulating soil compressibility [46]. Changes among vertical profiles
and carbon or nutrient stocks along our agricultural intensity gradient are more subtle, as discussed in
the following sections.

4.1. Comparison of Soil Organic Carbon and Nutrient Concentrations between LMPs

We found that agricultural intensification has a significant positive effect on SOC concentrations at
our study location. No difference was detected between NAT and S-UR, suggesting that low intensity
smallholder production had little effect on SOC when compared to native vegetation. However,
irrigation was found to have a mild but significantly positive effect on SOC concentrations, and
fertilization had a significantly negative effect. The positive effect of irrigation on SOC concentrations
is likely due to the use of pivot irrigation systems allowing for the production of two crops (rice and
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maize) on the C-FI sites. Irrigation in arid and semi-arid areas commonly increases SOC concentrations,
but irrigation’s effect in humid or sub-humid areas is not consistently positive [47]. Here, the growth
of two crops increases the production of below ground biomass compared to single crop systems
which, when not balanced by higher C mineralization, will lead to increasing SOC concentrations.
Elsewhere in the Kilombero Valley, maize production has been found to increase SOC concentrations
when compared to rice production [32]. This result is consistent with our findings, because maize
produces more biomass than rice, and thus more residues that provide organic matter to the soil.

The negative effect of fertilization on SOC concentrations is likely not a direct consequence
of chemical fertilizer use. Fertilization generally increases SOC concentrations when compared to
unfertilized agriculture [48], because fertilization promotes plant growth. However, in the present
study, the use of fertilizer is noted as an indicator of production intensity, and only implemented
on the commercial farm sites. Therefore, the negative effect of fertilization on SOC concentrations
may actually be an indication of other land management practices, such as higher intensity tillage
on the commercial farm sampling locations (C-FI and C-FR) compared to the smallholder locations
(S-UR). Both no-till and intermediate intensity tillage may promote SOC retention compared to high
intensity tillage [49]. Previous studies in the Kilombero Valley found that fertilization had no effect
on SOC [32]. However, their study looked solely at smallholder production systems. Here, due to
a lack of intermediate LMPs between S-UR (non-irrigated and unfertilized smallholder) and C-FR
(commercial fertilized and non-irrigated), it is not possible to state whether this negative effect on SOC
is actually due to fertilization, or due to some other factor which is also associated with production on
the commercial farm.

No significant difference was seen in concentrations of TN or TP between any of the land-uses.
While this lack of difference may partially be due to the small number of plots sampled for each
land-use, due to the explorative nature of the study, it is also clear that there is little difference in the TN
and TP concentration profiles (Figure 2b,c). The three agricultural LMPs appear to have elevated SOC
concentrations in the surface soils and reduced concentrations in the deep soil layers when compared to
the native vegetation, resulting in a more negative slope coefficient for the agricultural soils (Figure 2a).
However, TN and TP do not follow a similar trend. Therefore, agriculture may have little effect on soil
nitrogen and phosphorous between the LMPs sampled within this study.

4.2. Comparison of Soil Organic Carbon and Nutrient Stocks between LMPs

Soil organic matter is a principal regulator of bulk density [26]. Our results are consistent with this
known relationship, with native vegetation having the lowest mean SOC concentrations and highest
bulk density in the upper sampling depths, and the highest SOC and lowest bulk density in the deeper
sampling depths, when compared to the agricultural LMPs (Table 3). Changes in SOC concentrations
affect soil quality, but it is also important to consider changes in SOC stocks to understand the net C
flux between soils and the atmosphere. While no significant difference in total SOC stocks was found
between the four LMPs, the higher mean SOC stocks in the sub-surface soils of the NAT sites compared
to the agricultural LMPs (Figure 3b) warrants further investigation to understand the effect of land
conversion on SOC storage at depth.

SOC in subsoils is often assumed to be more stable than within topsoils [50]—this has resulted
in the dynamics of subsoil SOC often being ignored [51]. However, knowledge of land conversion
impacts on subsoil SOC is increasing. Loss of SOC has been seen up to 1 m as a result of forest
conversion for crop production [52]. Loss of deep SOC is probably larger where native vegetation has
deeper roots than crops, such as in seasonally-dry forests like the Miombo woodland of Kilombero
Valley. Woodland species with deep roots might have contributed C to deep layers that are not reached
by crop roots after conversion—without fresh inputs, this deep SOC can be lost. The conversion of
tropical forest to cropland has, on average, been reported to reduce SOC stocks by 25% [41], with
soil sampling conducted to a mean depth of 36 cm (mostly overlapping with the plough layer). Such
shallow sampling depth likely skews attempts to quantify the effects of agriculture on nutrient stocks.
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Therefore, the effect of agriculture on soils is not limited to only those depths which are subject
to direct physical disturbance. In the Kilombero Valley, where additional native land is not only
likely to be converted to agriculture given current trends, but also where this ”new” agriculture will
become increasingly intensive, soil surveys should consider the role of deep soil layers in carbon
stock accounting.

Agricultural intensity has been positively correlated with phosphorous content [53], and is seen
here (Figure 3) with mean TP stocks increasing with increasing management intensity (S-UR < C-FR
< C-FI). However, the trend seen within this study was not significant. For TP, as well as SOC and
TN, this lack of significance may be due to the time scale on which intensified production has taken
place within the industrial farm. Sampling within the C-FI sites was conducted on the three oldest
pivot irrigation fields found within the farm. These pivots became operational during the 2014–2015
growing season, compared to other LMPs being implemented for at least 10 years. Changes in soil
properties are generally slow, and respond to land-use change over periods of decades [54]. Given the
short time since the initiation of the pivot irrigation system, and the growing of two crops on the C-FI
land, a more marked effect may be visible in future sampling on and around the farm.

4.3. Comparison of C:N and C:P Ratios between LMPs

Even though we do not see significant effects of irrigation and fertilization on TN and TP, the effect
of irrigation on C:N, and fertilization on both the C:N and C:P ratio (Table 2), as well as differences at
specific depths between LMPs (Table 4), may be evidence of changes that are not clear in the assessment
of individual elements. Conversion of grasslands to agricultural fields is known to lower the soil
organic matter C:N and C:P ratios, at least in the topsoil [55]. This nutrient enrichment of soil organic
matter can be explained by the accelerated decomposition occurring in agricultural fields, which tends
to release more C compared to N and P, especially in the plough layer. Here, we find larger changes in
C:N and C:P ratios at depth, which could be due to the removal of C-rich inputs from the deep roots of
the native vegetation. In particular, fertilization negatively affected the C:N and C:P ratios, indicating a
relatively larger enrichment in N and P in fertilized fields. This result is not unexpected, as fertilization
is likely increasing N and P concentrations in the crop biomass, which in turn promotes the formation
of organic matter with correspondingly higher N and P concentrations and lower C:nutrient ratios.
Moreover, the negative effect of fertilization on SOC (Table 2) suggests a second mechanism—C might
be preferentially removed via respiration, while nutrients are immobilized by soil microorganisms and
retained in the organic matter.

5. Conclusions

We studied the effect of agricultural production intensity on the concentration and stocks of
soil carbon and nutrients. Our results suggest that the concentrations of SOC, and stocks of SOC
and TP, are mildly affected by the conversion of native forest to agriculture and by the intensity of
production systems. While no consistent trend was seen across the whole gradient of intensity, we did
find a significant negative effect of fertilization and a significant positive effect of irrigation on SOC
concentrations. Despite the small effects on C and nutrient stocks, fertilization significantly decreased
organic matter C:N and C:P ratios, and irrigation increased the C:N ratio, suggesting that soil properties
are changing along the agricultural intensity gradient.

Concentrations of SOC in surface soils are presently greater than the thresholds below which
crop production is negatively impacted as reported in other studies. For example, maize yields can
be negatively affected as SOC concentrations decline below 2% in surface soils [40]. Our results also
suggest that it is unlikely that surface SOC concentrations would rapidly decrease below this threshold
in these relatively organic matter-rich soils. However, to further assess the effect of agricultural intensity
on yields, it would be valuable to look at changes in plant available forms of macro and micro nutrients.
This would require repeat sampling, as these forms are prone to large temporal variation, which is a
potential way forward for research within the Kilombero Valley.
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Whilst not statistically significant, all three agricultural LMPs point in the direction of increased
SOC stocks in surface soils and reduced SOC stocks in the subsoils, compared to native vegetation.
While often unaccounted for, the potential reduction in subsoil SOC stocks is an important factor
to consider with regard to climate change, as SOC loss at depth may reduce benefits gained from
increasing SOC stocks in surface soil.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/9/4/121/s1,
Figure S1: Soil texture ternary plot for each soil layer, for: (a) 0–20 cm; (b) 20–30; (c) 30–40 cm; (d) 40–50 cm;
(e) 50–60 cm; (f) 60–80 cm. Points consisting of an outer ring of a different color to its center represent points with
identical results between two LMPs. Table S1: Dummy variable values. A 1 denotes the presences of a specific
property, Data S1; the original data file containing all sampling results.
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Abstract: Two soil mapping methodologies at different scales applied in the same area were compared
in order to investigate the potential of their combined use to achieve an integrated and more accurate
soil description for sustainable land use management. The two methodologies represent the main
types of soil mapping systems used and still applied in soil surveys in Greece. Diomedes Botanical
Garden (DBG) (Athens, Greece) was used as a study area because past cartographic data of soil
survey were available. The older soil survey data were obtained via the conventional methodology
extensively used over time since the beginnings of soil mapping in Greece (1977). The second mapping
methodology constitutes the current soil mapping system in Greece recently used for compilation
of the national soil map. The obtained cartographic and soil data resulting from the application
of the two methodologies were analyzed and compared using appropriate geospatial techniques.
Even though the two mapping methodologies have been performed at different mapping scales,
using partially different mapping symbols and different soil classification systems, the description of
the soils based on the cartographic symbols of the two methodologies presented an agreement of
63.7% while the soil classification by the two taxonomic systems namely Soil Taxonomy and World
Reference Base for Soil Resources had an average coincidence of 69.5%.

Keywords: soil survey; soil classification; soil mapping; botanical garden

1. Introduction

Soil surveys provide a source of information and an inventory of soil parameters of an area
of interest assisting land users to make accurate predictions for the response of a specific land to a
certain use [1]. An integrated soil survey delineates the groups of soils of a region and describes their
characteristics by using a specific mapping and classification system. Taking into consideration this
information, the behavior of soils and their interaction with various land uses can be foreseen [2].
Therefore, there is an interdependent and interactive relationship between soil surveys and soil
mapping [3] since the information of soil properties and their spatial distribution, given by detailed
and accurate maps, are necessary for evaluation and land suitability analysis [4]. The landscape-soil
relationship is reflected and emphatically imprinted in soil surveys and soil maps [5] and therefore
together they consist an important driver for sustainable land management [6].

There are generally two approaches to mapping the soils, the modern and recently increasingly
used digital soil mapping (DSM) [7,8] and the traditional soil mapping. Traditional soil mapping is
conducted on the basis of Soil Mapping Unit (SMU), which is concerned as a distinguishable spatial
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object that delineates areas on the earth surface with similar physical and chemical properties [9]. This
approach indicates a certain degree of subjectivity in the delineations of SMUs [10] since their nature is
also transitional [11]. Actually, the physical soil in the landscape is segregated into discrete entities
via the SMUs [12], consisting of one or several Soil Typological Units (STUs) [13], that represent soil
volumes having the same arrangement of soil horizons (soil pedon) [14]. As the scale becomes more
detailed the number of STUs in an SMU diminishes up to the level of very detailed mapping, where
the SMU boundaries are identical to STU boundaries [14]. At the beginnings of soil mapping in Greece,
due to a lack of technology, the initial delineation of SMUs was carried out on topographic backgrounds
during field crossings of the mapped area and related observations of the environment [15]. With the
progress of technology, new computer-based techniques of preliminary delineation of SMUs were
developed [16]. SMU’s delineations are based on the principle that the same factors of soil genesis
create repeated geomorphological structures that can be identified both on a combination of various
cartographic backgrounds and on the Earth’s surface [2]. Those repetitive patterns are reflected
in soils under the effect of soil-forming factors and can be identified at scales from continental to
microscopic consisting the cornerstone for soil identification and mapping at various scales [2]. So,
a SMU corresponds to a specific area in the map as well as to a specific part of the landscape in the
physical environment [17].

The size of SMUs is determined from the mapping scale and the specific purposes of soil survey.
Specifically, the minimum legible delineation (MLD) is defined as the smallest distinguishable area of
any map that can be legibly delineated. MLD conventionally represents an area of 0.4 cm2 independently
of the mapping scale [1]. According to the mapping scale, the minimum legible area (MLA) that
can be defined on a map, is totally connected and emerges from MLD. In terms of investigating
which mapping scale is the most appropriate for the composition of a map for a specific soil/land
use, the MLA must be equal or smaller than the minimum area of mapping interest for this specific
soil/land use [1]. Taking into consideration the above-mentioned concepts, soil mapping of the same
area in semi-detailed and detailed scales will result in the creation of few and extended SMUs in the
first case and to more and less extended SMUs in the latter case, respectively. According to Food and
Agriculture Organization of the United Nations (FAO) guidelines technical paper [18] semi-detailed
soil surveys are typically at scales from 1:25,000 to 1:50,000, while detailed soil map’s scales ranging
from 1:10,000 to 1:25,000. The mapping scale largely influences the accuracy of soils grouping in
SMUs. Detailed and semi-detailed soil maps are widely used for agricultural applications such as land
resources assessment and land use planning [19].

The soil map of a country constitutes a basic national and infrastructural project for agricultural
development and for the sustainable management of the primary sector. [20]. In Greece, the first actual
integrated efforts for soil mapping have been carried out since 1977 through the implementation of
a relevant law (Government Gazette Issue 186/A’/30-6-1977) with economic assistance from United
Nations and Europe. Nowadays and due to the previous efforts, a plethora of soil surveys exist, mainly
in detailed scale (1:5000–1:20,000) [21], which cover approximately the 15% of the agricultural areas in
a fragmented pattern. Quite recently [22] the Greek Ministry of Rural Development and Food (Greek
Payment and Control Agency for Guidance and Guarantee Community Aid, 2014) has funded the
compilation of the national soil map in a semi-detailed scale (1:30,000) which includes approximately
the 85% of the agricultural areas of the country. The results of the old (before 2014) and the new (2014)
soil mapping of the agricultural areas in Greece present some spatial overlaps but mainly the two
efforts complement each other as far as their spatial distribution is concerned. Summarizing, today,
despite the numerous soil surveys in agricultural areas for which have been utilized considerable
financial resources and a lot of working time there is not available a united, normalized and integrated
soil map of the agricultural areas of Greece.

The objective of this study was the comparison of the two soil mapping systems (old and new)
in order to investigate the potential of their combined use utilizing the already existing soil maps in
Greece to complete the national soil map of the country. Particularly, the comparison focused on—(a)
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the volume of soil information that the two systems can record; (b) the reliability of the conclusions
drawn from them on soil’s characteristics and land utilization and (c) the potential for combining
them to create final and integrated thematic maps; combining the detailed spatial information of
conventional soil mapping (old) and the smaller-scale spatial information of current soil mapping
(new) in the study area of the DBG.

2. Materials and Methods

2.1. The Study Area

The Diomedes Botanical Garden (DBG) is located in Attica (Greece) west of Athens, covering an
area of approximately 175 ha (Figure 1). It is mostly a sloping area with slopes ranging from 2%–65%
and is crossed by few small gorges and waterways. The DBG is a social welfare area including a private
legal entity under the administration of National and Kapodistrian University of Athens. This garden
is covered by natural vegetation, which consists mainly of Pinus halepensis, Pinus brutia, Cupressus
sempervirens, Quercus coccifera, Pistacia lentiscus whereas a significant part of the garden is occupied
by “phrygana” with the most representative species to be Sarcopoterium spinosum, Cistus spp., Phlomis
fruticosa, Euphorbia acanthothamnos, Coridothymus capitatus and Satureja thymbra. The chasmophytic
vegetation of the garden is also remarkable consisting of Campanula celsii subsp. celsii, Inula verbascifolia
subsp. methanaea and so forth [23]. The garden was established at 1951, in the west region of Athens,
north of Aigaleo mountain in a hilly area where the dominant parent material is limestone, followed
by schist [24]. The study area is characterized by a Mediterranean climate, with long hot and dry
summers and moderately wet and cold winters. The annual precipitation is ranging between 259 and
576 mm, whereas the average annual temperature is approximately 19.8 ◦C [25]. This study area was
selected due to the availability of old mapping data and to its proximity to the Agricultural University
of Athens (AUA) facilities where most of the co-authors work. The lack of financial assistance in
completing this study had also a decisive influence in the selection of the study area.

Figure 1. The boundaries of the study area located west of Athens.

2.2. Conventional (Old) and Currently Applied (New) Soil Mapping Methodologies in Greece.

According to the conventional soil mapping system, SMUs were delineated in the field by using
topographical and geological maps of the interested area and the field work was partially confirmed

19



Land 2020, 9, 154

afterwards by laboratory soil analyses. Under the principles of the conventional soil mapping system,
topographic maps in a detailed scale (1:5000–1:10,000) [26] were the basic backgrounds for the initial
delineation of SMUs in the field. Actually, in this mapping methodology the preliminary delineations of
SMUs boundaries were carried out based on the detailed cartographic background of the topographic
map and then were identified on the basis of geological maps, macroscopical field characteristics
and measured soil properties. This kind of delineation method is called physiographic [27] since it
identifies the repeated geomorphological patterns depicted from the combination of the topographical,
geological and vegetative characteristics which consist a physiographic region. The final obtained
soil data originated from field observations including both description of representative soil profiles
accompanied by soil sampling for laboratory analysis and drilling holes by augers at distances
depending on the scale of soil mapping [28–30]. The soil survey system was developed after extensive
studies and significant experience in the countryside, taking into consideration the needs of cultivation
practices and the evaluation for various land uses [31]. In this context, soils characterized according to
their taxonomical category under the principles of United States Department of Agriculture (USDA)
Keys to Soil Taxonomy [32]. The specific key consists of 6 taxonomic categories with increasing detail
from the level of Order to the level of Series (Order, Suborder, Great group, Subgroup, Family, Series).
The majority of the soil surveys compiled via the conventional methodology (old) in Greece were
published at a scale ranging from 1:5000 to 1:20,000 [20]. According to this methodology, developed by
Yassoglou et al. [21,31], the soils were initially classified to the taxonomic level of Great group [33] or,
in some cases, to the level of Subgroup and afterwards were subdivided using a set of soil parameters
(depth, texture and so forth) which determine soil productivity and management (Families and Series
characteristics, in the broad context), in order the soil map to be published in a semi-detailed scale.
Finally, SMUs were coded using a mapping symbol in which soil properties were designated by
alphanumeric characters [34]. The alphanumeric expressions of the conventional method map symbol
for the alluvial plains or the lowlands of Greece correspond to eight (8) different descriptive soil
parameters, which are representative of the SMU properties and referred to: the degree of drainage
of the soil profile, soil texture at depths 0–25 cm, 25–75 cm and 75–150 cm, slope gradient, degree of
erosion, presence of carbonates in the soil profile and taxonomic characterization, through symbols of
Soil Taxonomy, referring to soil Order, Suborder and Great group/Subgroup (Appendix A, Table A1).

The criteria for the different soil Orders include properties that reflect major differences in the
genesis of soils such as the presence or absence of diagnostic horizons. The soil Suborders within
an Order are discerned on the basis of any soil property which can influence the absence of horizon
differentiation as for example the soil moisture regime. Great group category is a subdivision of a
suborder in which all the principal soil properties of the soil solum are considered collectively such as
the number and the kind of soil horizons [30], the moisture and the temperature regimes [35]. Subgroup
category identifies distinctive soil features among various soils within a soil Great group [36].

The previous described methodology for detailed soil mapping introduced by Yassoglou et
al. [21,31] used a different, more limited in extent and information, mapping symbol for the hilly or
mountainous residual soils of Greece. This symbol records seven (7) descriptive soil parameters (the
degree of drainage of the soil profile, parent material, soil depth, slope gradient, degree of erosion,
type of vegetation and taxonomic characterization). The two cartographic symbols of the conventional
method have four (4) soil properties in common and differ in five (5) properties those of soil texture
and inorganic carbonates for the lowlands and parent material, soil depth and vegetation type for the
hilly soils. (Appendices A and A.1, Tables A6 and A7). The mapping process for the hilly soils symbol
follows the principles outlined above.

In the framework of the new soil mapping system (currently applied), SMUs are preliminarily
delineated in a satellite orthoimage background or in an ortho-rectified photomap, usually of a
semi-detailed scale, using Geographic Information System (GIS) software. The delineation of SMUs
in this method is conducted on the basis of the image tone analysis macroscopically or by using
image analysis techniques. Topographic, geological and vegetation maps are also used auxiliary
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for the preliminary delineation of SMUs. As in the case of the conventional method this kind of
SMU delineation is in the context of physiographic method [27]. This soil mapping system uses
geometrically corrected satellite images and geological as well as vegetation maps in semi-detailed scale
(1:30,000–1:50,000) as its main background for the preliminary draw of SMUs. As in the conventional
method, the finalization of SMU limits is carried out by certain morphological soil properties identified
macroscopically in the field accompanied by both detailed description of the soil profiles and by
laboratory analyses of selected soil samples. The mapping symbol of the currently applied methodology
consists of coded letters and numbers presenting the following fourteen (14) soil properties: drainage
conditions, soil texture at depths of 0–25 cm, 25–75 cm and 75–150 cm, slope gradient of soil surface,
soil depth, rock fragments on soil surface, parent material, degree of soil erosion, presence of inorganic
carbonates, limiting layers, electrical conductivity, soil alkalization and soil taxonomic unit [22]
(Appendix A, Table A1). The taxonomic classification of soils in the context of the new soil mapping
method is carried out in accordance with the rules of World Reference Base for Soil Resources (WRB)
Taxonomy System [37]. The WRB system consists of two taxonomical categories in increasing detail
from Reference Soil Groups (RSGs) to Principal and Supplementary Qualifiers. RSGs are defined
according to primary soil-forming processes and the subsequent diagnostic soil features, excepting
the case where the parent material is of prominent significance. At the second level, soil units are
differentiated according to any secondary pedogenetic process that has a great influence on primary
soil features. Qualifiers are subdivided in Principal Qualifiers (PQs), describing typical characteristics
of RSGs and Supplementary Qualifiers (SQs), which describe additional characteristics of them [37].
The WRB classification system is recommended to be used only in soil mapping at scales from 1:250,000
to 1:1,000,000 indicating the Reference Soil Group name plus the first three PQs ranked in an order
of importance with the most significant PQ placed closest to the name of the RSG [37,38]. However,
as in the conventional method, new soil mapping approach also uses a combination of specific soil
parameters in its mapping symbol that eventually lead the delineation of SMUs to a semi-detailed scale.

2.3. Soil Mapping of the Study Area with the Two Methods

Prior to the official soil mapping of the country (1977) the first attempt for soil mapping conducted
on the study area of DBG at 1976 via the conventional soil mapping method [26]. Following the
prompts of the old mapping method SMUs were delineated locally in the field using a detailed
(1:5000) topographic map (Geographical Military Service of Greece—GMS) as the basic cartographic
background and utilizing observations from the natural landscape (geology, soils, vegetation) in
combination with geological information provided at 1:50,000 scale [24]. SMUs were delineated on
the basis of the attributes of the two mapping symbols (lowlands and hilly areas) of the conventional
method, mentioned in the previous section and soils were classified to the level of Subgroup [33,39].
The 1976 soil survey report [26] also provided descriptions of the five (5) representative soil profiles
and the results of the laboratory analyses of fourteen (14) soil samples, which were sampled from
the soil profiles obtained to verify the taxonomical units of the lowland soils (Appendix C–C1,
Table A13, Figure 2). These older analog (hard copies) cartographic and soil data, that were obtained
through the old methodology, were digitized and corrected geometrically in the ArcGIS v.10.4 software
(Environmental Systems Research Institute—ESRI, Redlands, California, United States of America).
Geometrical correction of the digitized old map grid was conducted based on a satellite orthoimage
(Greek Cadaster, year 2007) of the area pre-corrected in the national coordinate system (Greek Geodetic
Reference System 87—GGRS87). The geo-reference of the old map grid was achieved by identifying five
characteristic and unmodified points over the years, that were recognizable both on the satellite image
and on the map. In this way, the old and geographically uncorrected existing spatial soil information
was digitized and connected to a specific geographical coordinate system acting as a reference base
background for the spatial concurrence and comparison of the results of the two methodologies in
the next phase. Specifically, a geodatabase file was created in order to receive the cartographic and
analytical soil data of the 1976 mapping [25]. The overall digitization of the old mapping was carried
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out in order all the necessary soil data to be electronically available facilitating the comparison of the
two soil mapping systems (conventional and current). Each digitized polygon corresponded to a
particular SMU and to a specific soil group with similar soil properties which is different from the
rest SMUs. A weakness of the 1976 mapping was the limiting number of soil profiles due to lack of
adequate financial support. Additionally, no soil samples were taken to confirm the SMUs boundaries
of the hilly regions of the DBG. Those shortcomings were adequately addressed during the 2019 soil
mapping procedure.

Figure 2. Soil profiles sample sites of the conventional soil mapping method.

The second mapping of the study area was carried out in 2019 according to the currently used
soil mapping system following the physiographic methodology. In the context of the new soil
mapping system, the preliminary delineation of SMUs was achieved by incorporating three digitized
backgrounds in the GIS software, those of topography (GMS map at scale 1:50,000), geology [24] and
the geometrically corrected ortho-photo map of the interested area from the Greek Cadaster (2007) as
the main cartographic background at the scale 1:30,000. Finalization of SMUs boundaries was achieved
by complementary on-site visual observations in the field in order to confirm or correct the initial
delineated SMUs boundaries, using the Collector for ArcGIS software. Taking into consideration that
the laboratory soil sampling analyses as well as the descriptions of the lowlands soil profiles of the
1976 study remained unchanged, they were used in the new mapping system to confirm the delineated
SMUs of the lower parts of the Garden and to verify the corresponding taxonomical soil units. Based
on the mapping scale and the size of the mapped area twelve soil sampling sites were selected and two
soil samples were taken for laboratory analyses from the surface and subsurface horizons or layers of
each sampling site, where possible (Figure 3).
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Figure 3. Soil sampling sites of the currently applied mapping method.

The obtained results from the soil sample analyses, along with field measurements and
observations, were used to confirm delineations and mapping symbols of SMUs of the 2019 and 1976
mapping methodologies. In order to also cover the hilly areas of the DBG and to increase the number
of observations four (4) additional profiles were prepared and described in detail in existing soil cuts
confirming the delineations and classifications of both methods (Figures 4 and 5). The data were finally
introduced in a specific geodatabase, in the ArcGIS v.10.4 environment.

Figure 4. Profile sites of the new soil mapping method.
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Figure 5. Representative soil profiles described in 2019: (a) Cambisol formed on limestone parent
material with calcic horizon (Profile P1), (b) Cambisol formed on limestone parent material with a
petrocalcic horizon at the depth >80 cm (Profile P2), (c) Cambisol formed on limestone parent material
rich in rock fragments (Profile P3), (d) Leptosol formed on limestone parent material with bedrock at
depth ≥ 20 cm (Profile P4).

2.4. Comparison of the Results of the Two Methodologies

The comparison of the two methodologies was made on the basis of the spatial coincidence
between the two classification systems and the successful or not common description of the soils
achieved via the two cartographic symbols. Specifically, with the use of geospatial techniques, in the
ArcGIS v.10.4. environment, the eight taxonomic categories of the 2019 mapping system were used as
clipping surfaces for the extraction of the 1976 SMUs that spatially coincided with them. Subsequently,
the spatial correspondences between each taxonomic category of the 2019 mapping, that was used as
the base reference for the analysis and the taxonomic categories of the 1976 SMUs were emerged. Then,
an analysis of the participation rates (%) of the 1976 SMUs areas that presented the same classification
with each taxonomic category of the 2019 mapping was performed inside the eight clipped common
areas (Section 4.2, Appendix B, Table A11). Based on the areas, resulted from the participation rates and
grossed up to the total area of each taxonomic category of 2019 mapping, the percentages of agreement
between the classifications of the two methods were calculated (Section 4.2, Appendix B, Table A12).
The overall percentage of taxonomic coincidence between the two systems, presented in conclusions
(Section 5), emerged as the average of the individual percentages of agreement (Figure 6), (Appendix B,
Table A12). Afterwards, the properties of the cartographic symbols of the two methodologies were
compared in order to evaluate the description of the soils achieved by the two systems. Regarding
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the comparison of the two cartographic symbols, it was considered that the area corresponded to
each taxonomic category of 2019, multiplied by its individual percentage of agreement with the 1976
classification, defined the new area for the comparison of the two symbols concerning all of the other
soil properties except classification as it was already being evaluated. Then, depending on whether
it was observed inside the spatial boundaries of the eight new areas a coincidence or not of the soil
properties of the two symbols greater than 80% based on the participation rates, explained previously,
the areas corresponding to a common description of soil properties (except classification) between
the two systems were calculated. These areas were considered as the rates of success for the common
description of the soils by the symbols of the two methods. The overall percentage (Section 5) of success
for the common description of the soils by the mapping symbols of the two systems, presented in
conclusions (Section 5), emerged as the summation of the individual success rates respectively, grossed
up to the total area of DBG (Figure 6), (Appendix B, Table A12).

Figure 6. Schematic presentation showing the procedures for comparison of the two mapping systems.
The spatial object of WRB classification fragmented into 8 mapping units according to the 8 taxonomical
categories. The 8 mapping units also included all the information of the cartographic symbol of 2019
mapping. Each mapping unit was used as a clipping surface for the extraction of SMUs of 1976
mapping that contained all the information of the cartographic symbol of 1976 mapping including the
USDA classification.

3. Results

3.1. Soil Map and Soil Groups Derived by the Conventional Mapping System

According to the 1976 soil mapping, fifty-five (55) SMUs were identified [32], delineated and
described in the scale of 1:5,000 (Figure 7, Appendix A-A1, Table A1, Appendix B, Table A8). The main
identified soil order was Entisols covering 111.9 ha or 64.1% of the mapped area, while the next
important soil order was Inceptisols covering 62.7 ha or the 35.9% of the study area. The subgroup of
Lithic Xerorthents prevailed in Entisols covering 110 ha or the 98.3% of these soils. A small area of 1.1
ha or 1.0% of Entisols were characterized as Typic Xerofluvents. In addition, Typic Xerorthents also
covered a small area of 0.8 ha or the 0.7% of Entisols (Table 1., Figure 8). Typic Xerofluvents included
mainly deep, calcaric and medium textured allochthonous soils formed on Holocene alluviums
characterized by a xeric soil moisture regime and located in the lower part of the DBG. Typic or Lithic
Xerorthents are located in the hilly part of DBG, strongly sloping, formed mainly on limestone parent
material. These two Subgroups of Xerorthents are distinguished by the presence or not of a lithic
contact within 50 cm of the mineral soil surface. In Inceptisols the majority of the mapped soils were
characterized as Typic Calcixerepts (54.7 ha or the 87.2% of Inceptisols) while Petrocalcic Calcixerepts
covered 8 ha or the 12.8% of these soils. Typic Calcixerepts were soils mainly freely drained with
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presence of a calcic horizon within 100 cm of the mineral soil surface, while Petrocalcic Calcixerepts
were characterized by a petrocalcic horizon within 100 cm of the mineral soil surface (Figure 8).

Figure 7. Soil Mapping Units (SMUs) delineations and mapping symbols according to the conventional
mapping methodology (1976).

Figure 8. Soil taxonomic units (Subgroups) according to the conventional mapping methodology
(1976).
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Table 1. Grouping of soils according to the United States Department of Agriculture (USDA) taxonomical
system to the level of Subgroup.

Classification Number of Soil Mapping Units (SMUs) Area (ha)

Lithic Xerorthents 19 110
Typic Xerorthents 1 0.8
Typic Xerofluvents 1 1.1

Petrocalcic Calcixerepts 7 8
Typic Calcixerepts 27 54.7

Total 55 174.6

3.2. Soil Map and Soil Groups Derived From the Currently Applied (2019) Mapping Methodology

In the context of the 2019 mapping system, nineteen (19) SMUs were emerged, delineated and
described in the scale of 1:30,000 (Figure 9, Appendices A and A.1, Table A1, Appendix B, Table A9).
The prevailing RSG was Leptosols covering 106.9 ha or 61.4% of the area, while 52.3 ha were identified
as Cambisols corresponding to 30.1% of the mapped area. Calcisols occupied a small part of the DBG
covering 14.7 ha or 8.5% of the studied area. Calcaric Skeletic Nudilithic Leptosols (LP-nt.sk.ca) [1]
were the major soil group of Leptosols covering 38.1 ha or 35.6% of the RSGs followed by Skeletic
Calcaric Cambic Leptosols (LP-cm.ca.sk) occupying an area of 25.7 ha or 24.1% of the RSG. Skeletic
Calcaric Nudilithic Leptosols (LP-nt.ca.sk) and Cambic Calcaric Skeletic Leptosols (LP-sk.ca.cm) shared
almost the same percentages (20.4% and 19.9%) of Leptosols covering 21.8 and 21.3 ha respectively.
LP-nt.sk.ca were shallow soils (depth ≤ 25 cm) primarily with bedrock exposed on the soil surface,
having 40% (by volume) rock fragments and evidences of calcaric material. LP-cm.ca.sk characterized
as shallow soils (depth ≤ 25 cm) primarily having a cambic horizon (thickness ≥ 15 cm) with evidences
of calcaric material and presenting 40% (by volume) rock fragments. LP-nt.ca.sk were also shallow soils
(depth ≤ 25 cm) with bedrock partially exposed on the soil surface having evidences of calcaric material
as well as a considerable amount of rock fragments 40% (by volume). LP-sk.ca.cm were shallow soils
(depth ≤ 25 cm) primarily presenting 40% (by volume) rock fragments and also having evidence of
calcaric material and a cambic horizon (thickness ≥ 15 cm). As far as Cambisols is concerned, Leptic
Skeletic Calcaric Cambisols (CM-ca.sk.le) were the most significant group mapped covering 25.2 ha or
the 48.2% of the RSG. The second most important soil group of Cambisols was Skeletic Calcaric Leptic
Cambisols (CM-le.ca.sk) covering 18.6 ha or 35.5% of this area. Chromic Leptic Calcaric Cambisols
(CM-ca.le.cr) occupied 8.5 ha or 16.3% of Cambisols. Calcisols were grouped as Skeletic Cambic Petric
Calcisols (CL-pt.cm.sk) covering only 14.7 ha (Table 2., Figure 10). CM-ca.sk.le were soils with a cambic
horizon (thickness ≥ 15 cm) mainly presenting evidence of calcaric material, 40% (by volume) rock
fragments and bedrock at a depth ≤ 100 cm from the soil surface. CM-le.ca.sk were soils with a cambic
horizon (thickness ≥ 15 cm) mainly with bedrock at a depth ≤ 100 cm from the soil surface, having
also evidences of calcaric material and an amount of 40% (by volume) rock fragments. CM-ca.le.cr
were soils with a cambic horizon (thickness ≥ 15 cm) mainly with evidences of calcaric material having
bedrock at a depth ≤ 100 cm from the soil surface and a layer between 25 and 150 cm from the soil
surface (thickness ≥ 30 cm) having a Munsell color hue redder than 7.5 YR. CL-pt.cm.sk included
soils with a calcic or petrocalcic horizon at a depth ≤ 100 cm from the soil surface mainly presenting a
cemented or indurated layer starting at a depth ≤ 100 cm from the soil surface, evidences of a cambic
horizon (thickness ≥ 15 cm) and 40% (by volume) rock fragments (Figure 10). Fluvisols were not
possible to map, whereas Fluvents were found in the conventional method, because the MLA of the
currently applied methodology (due to the scale of 1:30,000) was 3.6 ha and Fluvents covered an area
of 1.1 ha.
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Figure 9. SMUs delineations and mapping symbols according to the currently applied methodology
(2019).

Figure 10. World Reference Base for Soil Resources (WRB) soil classification according to the currently
applied mapping methodology.
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Table 2. Grouping of soils according to the World Reference Base for Soil Resources (WRB) taxonomical
system to the level of third Principal Qualifier.

Classification Number of Soil Mapping Units (SMUs) Area (ha)

LP-nt.sk.ca 5 38.1
LP-sk.ca.cm 5 21.3
LP-nt.ca.sk 1 21.8
LP-cm.ca.sk 1 25.7
CM-le.ca.sk 2 18.6
CM-ca.sk.le 3 25.2
CM-ca.le.cr 1 8.5
CL-pt.cm.sk 1 14.7

Total 19 173.9

4. Discussion

As it was highlighted above, the numerical alteration between the fifty-five (55) and the nineteen
(19) SMUs of the conventional (old) and the current (new) soil mapping system, respectively, was
attributed to the different used scale of the two methodologies. As it had been thoroughly reported in
the case of the present work, the delineation of 1976 was mainly conducted on a detailed topographical
background of 1:5,000 scale under a detailed SMU delineation method, while the delineation of 2019
was mainly conducted on semi-detailed ortho-imagery backgrounds of 1:30,000, under a semi-detailed
SMU delineation methodology.

4.1. Data Provided by the Two Soil Mapping Systems

In the Appendix A (Table A1) the soil properties with the corresponding classes of the two mapping
symbols used by the conventional (1976) and currently applied (2019) systems are shown. The two
symbols and thus the two soil mapping systems recorded and transferred largely the same amount of
soil information since nine (9) of the fifteen (15) mapped soil properties were common between the two
systems (an example of a common soil property is given in Figures 11 and 12). The soil classification was
identified by using different taxonomical systems in the two mapping systems (USDA and WRB) but as
it will be discussed, the two classification systems were largely compatible concerning the types of soil
information recorded per taxonomic category. The cartographic symbol of the conventional method
included one (1) additional property concerning the prevailing type of vegetation. The cartographic
symbol of the new method included an additional set of five (5) soil properties, over that of the old
method, related to soil depth, presence of rock fragments (gravels and cobbles) on the soil surface,
limiting layers, electrical conductivity and alkalization. All the above-mentioned additional properties
are of great value for agricultural production and soil protection. Soil depth can be extracted inductively
and indirectly from the texture of the three soil layers of the lowlands old mapping symbol up to a
depth of 150 cm. However, it is very important the soil depth to be measured more accurate due to
its great importance on soil water storage capacity and plant growth. Parent material was presented
in the mapping symbol of the conventional system only for hilly soils. However, parent material is
a significant soil parameter even in transported allochthonous lowland soils affecting chemical and
physical properties. For example, soils formed on recent alluvial deposits are usually more fertile
compared to soils formed on alluvial terraces. Additionally, the percentage of rock fragments in the
soil surface affects soil moisture conservation and soil erosion susceptibility [40]. The conventional
mapping system for the alluvial soils (lowlands) recorded the presence of gravels in the three textural
layers, depending on the depth that they were observed (Appendix A, Table A1 and Appendix B,
Table A8). In fact, gravels affect effective soil water storage capacity and rooting depth considered
this recording as an advantage in relation to the new mapping system. The type and the kind of a
limiting layer is an important property to be recorded affecting soil water movement and penetration
of plant roots. Finally, electrical conductivity and alkalization are key soil parameters especially for
the characterization of the salt-affected soils of the lowlands and coastal areas. In conclusion, the new
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mapping symbol can be considered as an effort of unifying the two symbols used to cover the plain and
hilly soils according to the conventional mapping under one mapping symbol. Additionally, the new
mapping symbol included more soil characteristics, easily identified in the field, of great importance
for plant growth and soil protection. The use of one mapping system for all soils gives the opportunity
to the user of having a uniform soil database independently of the origin of the soils.

Figure 11. Drainage map of the conventional mapping system.

Figure 12. Drainage map of the currently applied mapping system.
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4.2. Reliability and Compatibility of the wo Mapping Systems

According to USDA [39] and WRB [37] soil taxonomical systems it was evident that there was an
identification between the general taxonomical classes of Order and Reference Soil Group (RSG) as
far as Inceptisols and Cambisols were concerned. Regarding the Order of Entisols on the basis of the
previously mentioned taxonomical systems they can only partially agree with the RSGs of Leptosols
and Fluvisols.

Based on the results of the present work, Skeletic Calcaric Nudilithic Leptosols (SMU 18 from the
2019 mapping including 82% of SMU 11 and 41% of SMU 12 of the 1976 mapping) corresponded to
Lithic Xerorthents in 93.6% of their area, highlighting an excellent agreement between the classifications
of the two systems (Table 3). In addition, the remaining soil parameters of the cartographic symbols
of SMUs of both mapping systems were largely coincided and characterized the soils mainly as
shallow, freely drained, strongly inclined, formed on limestone and subjected to none or weak erosion
(Appendix B, Table A10). The other 6.4% of Skeletic Calcaric Nudilithic Leptosols corresponded to
Typic Calcixerepts in 1976 mapping (SMU 18 from the 2019 mapping including 100% of SMU 43).
However, apart from the negligible mismatch in classification the soils of this group were similarly
characterized by the two methodologies as very well drained, shallow, strongly inclined, formed on
limestone and subjected to none or weak erosion (Appendix B, Table A10).

Table 3. Table of differences between the classifications of the two systems on a spatial basis.

WRB, 2019 USDA, 1976
Percentage (%) of 2019 Classification
Corresponding to 1976 Classification

CL-pt.cm.sk
Petrocalcic Calcixerepts 54.0

Typic Calcixerepts 6.0
Lithic Xerorthents 40.0

CM-ca.le.cr

Typic Calcixerepts 65.0
Typic Xerorthents 9.4
Lithic Xerorthents 9.4
Typic Xerofluvents 16.1

CM-le.ca.sk
Typic Calcixerepts 55.0
Lithic Xerorthents 45.0

CM-ca.sk.le
Typic Calcixerepts 58.0
Lithic Xerorthents 42.0

LP-nt.ca.sk
Lithic Xerorthents 93.6
Typic Calcixerepts 6.4

LP-nt.sk.ca
Lithic Xerorthents 75.9
Typic Calcixerepts 24.1

LP-sk.ca.cm
Lithic Xerorthents 75.6
Typic Calcixerepts 24.4

LP-cm.ca.sk
Lithic Xerorthents 73.2
Typic Calcixerepts 26.8

Calcaric Skeletic Nudilithic Leptosols (SMUs 2,4,6,11,16 from the 2019 mapping including 43% of
SMU 13, 92% of SMU 16, 12% of SMU 18, 65% of SMU 20, 100% of SMU 27,62% of SMU 31 of the 1976
mapping) characterized as Lithic Xerorthents in 75.9% of their area, noting a very good match between
the two classification systems (Table 3). The recorded soil properties by the two mapping methods in
this taxonomic group were largely coincided characterizing the soils mainly as shallow, freely drained,
strongly inclined, formed on limestone and subjected to no or weak erosion (Appendix B, Table A10).
The remaining 24.1% of Calcaric Skeletic Nudilithic Leptosols characterized as Typic Calcixerepts in
1976 mapping (SMUs 2,4,6,11,16 from the 2019 mapping including 48% of SMU 19, 15% of SMU 25, 52%
of SMU 28, 42% of SMU 32, 68% of SMU 33, 31% of SMU 34, 43% of SMU 35, 97% of SMU 44, 100% of
SMU 45, 30% of SMU 47) and recorded a small mismatch in the classification property. However, as far
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as the rest soil properties of this group are concerned the two mapping systems described the soils in a
similar way mostly as very well drained, formed on limestone, moderately to strongly inclined and
subjected to none or weak erosion (Appendix B, Table A10).

Cambic Calcaric Skeletic Leptosols (SMUs 1,8,9,12,17 from the 2019 mapping including 3.8% of
SMU 12, 13% of SMU 13, 98% of SMU 26, 7% of SMU 29, 14% of SMU 30, 37% of SMU 31,90% of SMU
36, 100% of SMU 37, 29% of SMU 39, 82% of SMU 49 of the 1976 mapping) corresponded to Lithic
Xerorthents in 75.6% of their area, presenting a very good match between the two classification systems
(Table 3). The two soil mapping methods characterized the soils of the above-mentioned group partly
in a similar manner mainly as very well drained, strongly inclined, formed on limestone and subjected
to none or weak erosion. There were some discrepancies in parent material and soil depth in SMUs 13
and 26 of the 1976 mapping characterized the soils as deep and formed on shale. The majority of the
soils of this group (1976 SMUs 30,31,36,39) according to the 1976 mapping were mainly recorded as
deep in contradiction to the 2019 mapping method (Appendix B, Table A10). The remaining 24.4% to
complete the class of Cambic Calcaric Skeletic Leptosols was characterized as Typic Calcixerepts in
1976 mapping (SMUs 1,8,9,12,17 from the 2019 mapping including 39% of SMU 14, 95% of SMU 15, 40%
of SMU 32, 13% of SMU 34). However, there was a close match with the rest soil properties between
the two systems that characterized the soils of this group as shallow, very well drained, moderately to
strongly inclined, formed on limestone and subjected to none or weak erosion (Appendix B, Table A10).

Skeletic Calcaric Cambic Leptosols (SMU 19 from the 2019 mapping including 54% of SMU 12
and 38% of SMU 13 of the 1976 mapping) characterized as Lithic Xerorthents in 73.2% of their area
and showed a very good match between the two classification methods (Table 3). The soil properties
mapped by the two methods for these soils were not similar because of the discrepancies of 1976 SMU
13 that characterized the soils mainly as deep and formed on shale (Appendix B, Table A10). The rest
26.8% of Skeletic Calcaric Cambic Leptosols corresponded to Typic Calcixerepts in 1976 mapping (SMU
19 from the 2019 mapping including 100% of SMU 51) and noted a mismatch in the classification and
in basic soils properties between the two systems since 1976 classification characterized soils of this
group mainly as deep and strongly inclined (Appendix B, Table A10).

Chromic Leptic Calcaric Cambisols (SMU13 from the 2019 mapping including 13% of SMU 34,
79% of SMU 40, 76% of SMU 41, 38% of SMU 42, 98% of SMU 46, 5% of SMU 47, 97% of SMU 50, 55%
of SMU 53 of the 1976 mapping) matched in 65.0% of their area to Typic Calcixerepts, demonstrating a
good agreement of the two classification systems (Table 3). The majority of these soils had the same
characteristics between the two mapping methods recorded mainly as deep, moderately fine textured
in the surface layer (0–25 cm), very well drained, slightly or moderately inclined with strong reaction
on the soil surface (Appendix B, Table A10). The remaining 35% of Chromic Leptic Calcaric Cambisols
was differentiated into three taxonomic categories of 1976 mapping those of Typic Xerorthents (SMU
13 from the 2019 mapping including 100% of SMU 55), Lithic Xerorthents (SMU 13 from the 2019
mapping including 100% of SMU 54) and Typic Xerofluvents (SMU 13 from the 2019 mapping including
100% of SMU 52). Although the taxonomic class of 2019 mapping was divided into 3 classes in 1976
mapping, it was observed a great overlap in the description of the soils of this group which were
mainly characterized as deep, very well drained, slightly or moderately inclined, with strong reaction
on the soil surface and subjected to none or weak erosion soils (Appendix B, Table A10).

Skeletic Cambic Petric Calcisols (SMU 15 from the 2019 mapping including 98% of SMU 1, 100%
of SMU 2, 100% of SMU 4, 100% of SMU 6, 100% of SMU 7, 100% of SMU 8, 100% of SMU 10, 100% of
SMU 48 of the 1976 mapping) characterized as Typic and Petrocalcic Calcixerepts in 60% of their area,
presenting a moderate good match between the classifications of the two systems (Table 3). Over one
half of Typic and Petrocalcic Calcixerepts classes (1976 SMUs 1,2,4,6,48) corresponding to the lowland’s
mapping system, were mostly characterized as very well drained soils, moderately fine textured in
the surface layer (0–25 cm), inclined, with strong reaction on the soil surface and subjected to none or
weak erosion as Skeletic Cambic Petric Calcisols (Appendix B, Table A10). The rest of the Typic and
Petrocalcic Calcixerepts class (1976 SMUs 7,8,10) presented the same soil characteristics as Skeletic
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Cambic Petric Calcisols except soil texture, which did not appear on the mapping symbol because they
were mapped as hilly soils. The remaining 40% of Skeletic Cambic Petric Calcisols corresponded to
Lithic Xerorthents (SMU 15 from the 2019 mapping including 100% of SMU 3, 100% of SMU 5, 100% of
SMU 9, 18% of SMU 11). However, apart from the considerable mismatch in classification the soils of
this group were similarly characterized by the two methodologies mainly as deep, very well drained,
strongly inclined, formed on limestone, with strong reaction on the soil surface and subjected to none
or weak erosion (Appendix B, Table A10).

Leptic Skeletic Calcaric Cambisols (SMUs 3,5,7 from the 2019 mapping including 55% of SMU 14,
93% of SMU 17, 46% of SMU 19, 98% of SMU 21, 98% of SMU 22, 97% of SMU 23, 97% of SMU 24, 82%
of SMU 25, 56% of SMU 35 of the 1976 mapping) corresponded to Typic Calcixerepts in 58% of their
area indicating a moderate good match between the classifications of the two methodologies (Table 3).
The two mapping methodologies had also the same results as far as soil parameters of the mapping
symbols are concerned and characterized the soils mainly as deep, very well drained, moderately
to strongly inclined, formed on limestone and subjected to none or weak erosion, except of a minor
mismatch of SMU 24 that characterized the soils as deep and formed on shale (Appendix B, Table A10).
The remaining 42% of Leptic Skeletic Calcaric Cambisols corresponded to Lithic Xerorthents (SMUs
3,5,7 from the 2019 mapping including 59% of SMU 18, 14% of SMU 20, 86% of SMU 29, 80% of SMU
30, 18% of SMU 49). This soil group had a moderate mismatch in classification but regarding the soil
properties of the mapping symbols of the two methods the results were similar and the soils were
characterized mainly as very well drained, moderately deep or deep, strongly inclined, formed on
limestone and subjected to none or weak erosion (Appendix B, Table A10).

Skeletic Calcaric Leptic Cambisols (SMUs 10,14 from the 2019 mapping including 48% of SMU 28,
18% of SMU 32, 30% of SMU 33, 44% of SMU 34, 97% of SMU 38, 19% of SMU 40, 24% of SMU 41,
63% of SMU 42, 3% of SMU 44, 64% of SMU 47, 45% of SMU 53 of the 1976 mapping) characterized
as Typic Calcixerepts in 55.0% of their area, presenting a moderate to good agreement between the
classifications of the two methodologies (Table 3) and a good match between the soil properties of the
two different mapping symbols that characterized the soils mainly as freely drained, deep, strongly
inclined and subjected to none or weak erosion (Appendix B, Table A10). The other 45.0% of the
Skeletic Calcaric Leptic Cambisols area was characterized as Lithic Xerorthents (SMUs 10,14 from
the 2019 mapping including 7% of SMU 13, 7% of SMU 16, 28% of SMU 18, 19% of SMU 20, 4% of
SMU 29, 5% of SMU 30, 10% of SMU 36, 71% of SMU 39) and a moderate mismatch was noted in the
classification property and a moderate mismatch in soil depth and parent material since SMU 13 was
differentiated from 2019 mapping characterized the soils as deep and formed on shale parent material
(Appendix B, Table A10).

5. Conclusions

Our study showed that the conventional mapping system was based on more detailed mapping
backgrounds and thorough crossings within the SMUs for their delineation. Following the conventional
soil mapping system, the delineated SMUs were smaller and more detailed than the SMUs of the
currently applied mapping system. Due to the technological shortcomings of that time and the absence
of a global or national geodetic reference system, the detailed delineations of SMUs of the conventional
system could not be placed in their exact positions due to errors generated during spatial information
transferring from the digitized and uncorrected old map grids to georeferenced backgrounds in modern
reference systems.

The comparison of the cartographic symbols of the two mapping systems (conventional and
currently applied) showed that the two mapping symbols convey a common critical mass of information
since nine over fifteen properties are common between them (Section 4.1.). However, the conventional
soil mapping system have used two cartographic symbols one for the hilly residual soils and one for
the lowland alluvial soils with the risk of creating confusion in organizing a database. In the opposite,
in the currently applied soil mapping system, one cartographic symbol was been assigned for both
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hilly residual soils and lowland alluvial soils providing the advantage of an easily established database.
(Section 4.1.). A major weakness of the new mapping symbol is that two soil parameters, namely
electrical conductivity and alkalization, require measurement in the field with scientific instruments or
laboratory soil analysis. This disadvantage differentiates the new symbol from the general philosophy
of creating soil cartographic symbols using parameters easily recognizable in the field.

The comparison of the taxonomic systems (WRB and USDA) of the two mapping methodologies
have shown an average coincidence of 69.5% (Section 4.2., Appendix B, Table A12). Regarding
the descriptions of the soils (except classification) based on the cartographic symbols of the two
methodologies (conventional and currently applied), the percentage of agreement between the two
methods reached 63.7% (Section 4.2., Appendix B, Table A12).

According to the results of this work, the two mapping systems (conventional and currently
applied) can be creatively combined and can function complementary to each other for a better mapping
of soils. In many cases the more detailed but uncorrected SMUs of the conventional mapping could
be used to highlight some important areas of specific agricultural management within the coarser
and georeferenced SMUs of the currently applied mapping system. Considering that the main soil
information recorded by the two systems is common, the two cartographic symbols could be combined
satisfactory for a more detailed and accurate description of soil parameters.

We finally consider the results of this work as a starting point in an effort of utilizing and integrating
the existing old soil mapping data in the national soil map of Greece. Of course, towards to this
direction several other assessments of the compatibility of the two systems, especially in extended and
lowland agricultural areas, should follow given that our work has been limited mainly to hilly forest
soils of a small area. At a country level, given that this effort will be massive and laborious, it is very
important to be supported as much as possible with the products and techniques of DSM [7,8]. In the
present study, digital mapping was not used supportively because the subject was the comparison of
two classical soil mapping methods and the study area was restricted.
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Appendix A

Appendix A.1. Guidelines for the Characterization of the Soil Properties Used in the Conventional and
Currently Applied Soil Mapping Symbols

Drainage Conditions
The characterization of the drainage conditions is based on the presence of iron or manganese mottles and the

subsoil colorings. The six (6) hydromorphic classes which are used in the soil mapping system are the following:

Class A—Very well drained soils

They are characterized by the absence of iron and manganese mottles throughout the whole soil profile. The
brownish colors prevail, the soil usually has a high hydraulic conductivity and the water is infiltrated into the
soil’s deepest layers. The soil remains wet only during the wet period of the year (wet months). Drainage is
not required.

Class B—Well drained soils

They are characterized by the presence of iron and manganese mottles or gray mottles at a depth between
100 and 150 cm from the soil surface. The brown colors prevail throughout the whole soil profile. During the
growing season, these soils are not sufficiently wet for a long period of time to adversely affect the growth of the
plants. Drainage is not required.

Class C—Moderately well drained soils

They are characterized by the presence of iron and manganese mottles or gray mottles at a depth between
50 and 100 cm from the soil surface. In some soils of this class, there may be mottles at depths of less than 50 cm
but its percentage is less than 2%. The underground aquifer in the wet months rises and may adversely affect
perennial crops. These soils require drainage for sensitive crops.

Class D—Imperfectly drained soils

They are characterized by the presence of iron and manganese mottles or some reductive spots at a depth
between 30 and 50 cm from the soil surface. The percentage of mottles in this layer is less than 20%. These
soils are characterized by high moisture for a long period of the year close to the soil surface, resulting adverse
consequences to the cultivations during the spring. Drainage is required for the perennial crops.

Class E—Poorly drained soils

They are characterized by the presence of iron and manganese mottles at a depth less than 30 cm from the
soil surface while the presence of iron and manganese mottles or reductive spots covers a percentage of 20–50% at
a depth between 30 and 50 cm from the soil surface. These soils have a high level of ground water table during the
wet months of the year. The cultivation of perennial crops or early spring crops requires drainage.

Class F, G—Very poorly drained soils

Soils with a permanent ground water table at a depth commonly higher than 75 cm from the soil surface.
If reducing conditions prevail at a percentage higher than 50 % at the depth of 75–150 cm, the soil is characterized
by F drainage class. If the reductive conditions prevail at a depth less than 75 cm, the soil is characterized by
G drainage class. If there is a seasonal fluctuation of the aquifer, the drainage class may be characterized by
combining two of the previous classes (e.g., E/F, E/G andso forth). These soils are wet to the surface for the longest
period of the year and therefore prevent the normal growth of most cultivations. Drainage is absolutely required.

Soil Texture

The soil texture is determining in the field using the sense of touch. The soil sample is moistened between
the fingers index and thumb and the soil aggregates are broken due to the pressure and friction applied to the soil.
The class of soil texture is determined accordingly to the sense of sticking (clay), gliding (silt) or gritting (sand).
Soils that have a high percentage of sand have a gritty sense. Soils that have a high percentage of silt feel smooth
while soils that have a high percentage of clay have a sticky feel. The corresponding symbols and sub-classes of
soil texture are shown in Table A2.
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Table A2. Classes of soil texture with the corresponding symbols for the three parts of soil profile.

Map Symbol
Part A

(0–25 cm)
Part B

(25–75 cm)
Part C

(75–150 cm)

1
Coarse-textured or layers

with predominant
coarse-textured materials

Coarse-textured,
moderately

coarse-textured or
predominant

coarse-textured materials

Coarse-textured,
moderately

coarse-textured or
predominant

coarse-textured materials

2
Moderately coarse-textured
or predominant moderately

coarse-textured materials

Medium-textured or
predominant

medium-textured
materials

Medium-textured or
predominant

medium-textured
materials

3
Medium-textured or

predominant
medium-textured materials

Moderately fine-textured
or predominant

moderately fine-textured
materials

Moderately fine-textured
or predominant

moderately fine-textured
materials

4
Moderately fine-textured or

predominant moderately
fine-textured materials

Fine-textured or
predominant

fine-textured materials

5
Fine-textured or

predominant fine-textured
materials

6 Muck Muck Muck

Coarse-textured Sandy (S), Loamy-sand (LS)

Moderately coarse-textured Sandy-loam (SL)

Medium-textured Loamy (L), Silty-loam (SiL), Silty (Si) andfine
Sandy-loam (fSL)

Moderately fine-textured Sandy-Clay-Loam (SCL), Clay-Loam (CL) and
Silty-Clay-Loam (SiCL)

Fine-textured Silty-Clay (SiC), Clay(C) and Sandy-Clay (SC)

Slope Gradient
The slope of the soil surface is determined on the field by the usage of a clysimeter, a topographical map or

through estimation after acquisition of relevant experience. The slope gradient is distinguished in the following
six (6) classes: almost flat (slope 0–2%), slightly inclined (slope 2–6%), moderately inclined (slope 6–12%), strongly
inclined (slope 12–18%), moderately steep (slope 18 –25%), steep (slope 25–35%) and very steep (slope > 35%).

Rock Fragments
The content of rock fragments (gravels and cobbles) on the soil surface is estimated in the field using the

classes which are shown in Table A3. Gravel is defined as the part of rock fragments with a diameter ranging from
2 mm to 7.5 cm. The cobbles include the rock fragments with a diameter > 7.5 cm.

Table A3. Classes of rock fragments with the corresponding symbols.

Map Symbol Class Description

1 Gravels (diameter 2 mm–7.5 cm) and cobbles (diameter > 7.5 cm) on the
soil surface in a percentage lower than 20 %

2 Gravels (diameter 2 mm–7.5 cm) and cobbles (diameter >7.5 cm) on the
soil surface in a percentage ranging from 20 % to 40 %

3 Gravels (diameter 2 mm–7.5 cm) and cobbles (diameter > 7.5 cm) on the
soil surface in a percentage higher than 60 %

Parent Material

The parent material in each SMU is determined by field observations and the use of geological maps.
As parent material is defined the upper geological layer on which the soil was formed. In each parent material a
letter of the alphabet was given as shown in Table A1 (Appendix A).
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Degree of Erosion

Erosion classes are defined by the presence or absence of diagnostic horizons and rills or gullies as follows
(Table A4):

Table A4. Erosion classes and their characteristics.

Map Symbol Class Description

0 No Erosion

1

Soils which have lost part of the surface horizon A but on average less than 25% of the
initial horizon A. Indications for erosion class 1 are (a) few rills, (b) concentration of soil
sediments at the base of the slope or in a cavity, (c) scattered spots where the horizon of

cultivation contains materials from the underlying horizon.

2

Soils which have lost an average of 25–75% of the initial A horizon. In erosion class 2,
the surface layer is consisted of a mixture of horizon A materials and the underlying
subsurface horizon. In some areas there may be a mixed state of spots without any

erosion signs and spots where all the A horizon has been removed. Where the horizon
A is thick enough, minimum or no mixing of horizon A materials with materials of the

underlying horizon has taken place.

3 Soils that have lost the whole A horizon and some of the deeper horizons to their
greatest extent. The initial soil can be identified only on individual spots.

4
Soils that have lost the whole horizon A and some or all of the deeper horizons to their
greatest extent. The initial soil can be identified only on individual spots. A complex

system of rills and gullies is observed on the soil surface.

Inorganic Carbonates

The inorganic carbonates are determined accordingly to their concentration and the depth where are detected
indirectly by the reaction in dilute hydrochloric acid as follows (Table A5):

Table A5. Classes of inorganic carbonates with the corresponding symbols.

Map Symbol Class Description

0 No reaction throughout the whole soil profile

1 No reaction at the surface horizon of 0–30 cm (part A) while there is reaction at the
subsurface horizon of 30–75 cm (part B) and/or at the substratum of 75–150 cm (part C).

2 Weak reaction on the surface horizon (part A) while the reaction at the deeper layers is
not taken into account.

3 Strong reaction on the soil surface, while the reaction at the deeper layers is not taken
into account.

Limiting Layers

The presence of limiting layers that affects the growth of plant roots was observed through opening holes
using soil-drills or in existing exposed soil profiles. As limiting layers are considered (a) solid rock, (b) cobbles or
sand, (c) solid horizons impervious to water and roots such as a fragipan horizon. The corresponding symbols are
given in Table A1 (Appendix A).

Electrical Conductivity

Electrical conductivity was recorded in the field according to the presence or absence of water-soluble salts
and the formation on the soil surface of a white crust. The recording of the presence of salts or not was confirmed
by laboratory measurement of the electrical conductivity of the soil. The following classes were distinguished
0–4 ds/m, 4–8 ds/m, 8–15 ds/m and> 15 ds/m with the corresponding symbols given in Table A1 (Appendix A).

Alkalization

The alkalization of the soil was determined according to the percentage of exchangeable sodium (ESP) and
the cation exchange capacity. In alkaline soils, the amount of sodium retained by clay minerals is 15% or greater
than the total cation exchange capacity (CEC). Alkalization was assessed based on previous soil studies and
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analyses. The used ESP classes were: ESP < 6, ESP = 6–15, ESP > 15% with the corresponding symbols given in
Table A1 (Appendix A).

Soil Classification

The classification of the soils in the context of the two mapping methodologies (1976 and 2019) was carried
out as described in the text of the present work based on the principles of USDA and WRB taxonomical keys.

Parent material of the hilly and mountainous soils

Table A6. Soil mapping symbols for the hilly and mountainous areas according to the parent material.

Parent Material/Soil Depth (cm) 0–30 30–100 100–150 >150

Granite 01 02 03 04
Limestone 11 12 13 14
Peridotite 21 22 23 24

Shale 31 32 33 34
Conglomerate Limestone Rock 41 42 43 44

Hornstone 51 52 53 54
Colluvial 61 62 63 64

Alluvial by diagenesis 71 72 73 74
Sandstone 81 82 83 84

Clayey Marls by diagenesis 91 92 93 94
Sandstone-Marls by diagenesis 891 892 893 894
Marls-Sandstone by diagenesis 981 982 983 984

Talc 771 772 773 774

Vegetation type of the hilly and mountainous soils

Table A7. Soil mapping symbols for the hilly and mountainous areas according to the type of vegetation.

Symbol Type of Vegetation

0 No vegetation
1 Shrubs
2 Not dense forests
3 Dense forests
4 Olives orchards
5 Vineyards
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Appendix B

Table A8. SMU numbering, symbolization, occupied area and soil’s taxonomy of the conventional
methodology (1976 mapping system).

SMU_No
Conventional
Soil Mapping

Symbol
Order Suborder Great Group Subgroup Area (ha)

1 A3×04×I/C03 Inceptisols Xerepts Calcixerepts Petrocalcic 1.3
2 A304I/B03 Inceptisols Xerepts Calcixerepts Petrocalcic 1.2
3 A12E/F03 Entisols Orthents Xerorthents Lithic 1.1
4 A334I/C03 Inceptisols Xerepts Calcixerepts Petrocalcic 0.4
5 A12E/F03 Entisols Orthents Xerorthents Lithic 1.3
6 A203I/B03 Inceptisols Xerepts Calcixerepts Petrocalcic 0.4
7 A12I/B03 Inceptisols Xerepts Calcixerepts Petrocalcic 0.8
8 A12I/C03 Inceptisols Xerepts Calcixerepts Petrocalcic 3.0
9 A12E/F03 Entisols Orthents Xerorthents Lithic 0.2

10 A12I/E03 Inceptisols Xerepts Calcixerepts Petrocalcic 0.9
11 A11E/F02 Entisols Orthents Xerorthents Lithic 17.6
12 A11E/G01 Entisols Orthents Xerorthents Lithic 14.7
13 A34E/D00 Entisols Orthents Xerorthents Lithic 28.7
14 A12I/E03 Inceptisols Xerepts Calcixerepts Typic 3.0
15 A11I/E03 Inceptisols Xerepts Calcixerepts Typic 2.3
16 A11E/H01 Entisols Orthents Xerorthents Lithic 10.6
17 A12E/E03 Inceptisols Xerepts Calcixerepts Typic 1.5
18 A12E/F03 Entisols Orthents Xerorthents Lithic 8.5
19 A12I/E03 Inceptisols Xerepts Calcixerepts Typic 2.0
20 A11E/F02 Entisols Orthents Xerorthents Lithic 4.9
21 A41I/D02 Inceptisols Xerepts Calcixerepts Typic 2.3
22 A12I/D03 Inceptisols Xerepts Calcixerepts Typic 0.6
23 A42I/C02 Inceptisols Xerepts Calcixerepts Typic 2.7
24 A34I/D03 Inceptisols Xerepts Calcixerepts Typic 3.7
25 A12I/D03 Inceptisols Xerepts Calcixerepts Typic 0.8
26 A33E/F03 Entisols Orthents Xerorthents Lithic 1.7
27 A11E/H00 Entisols Orthents Xerorthents Lithic 1.0
28 A11I/C00 Inceptisols Xerepts Calcixerepts Typic 1.7
29 A11E/F02 Entisols Orthents Xerorthents Lithic 2.7
30 A12E/F02 Entisols Orthents Xerorthents Lithic 2.8
31 A12E/F02 Entisols Orthents Xerorthents Lithic 2.6
32 A11I/E03 Inceptisols Xerepts Calcixerepts Typic 3.5
33 A12I/E03 Inceptisols Xerepts Calcixerepts Typic 1.4
34 A11I/D03 Inceptisols Xerepts Calcixerepts Typic 3.4
35 A44I/C03 Inceptisols Xerepts Calcixerepts Typic 1.7
36 A12E/F03 Entisols Orthents Xerorthents Lithic 3.6
37 A11E/F03 Entisols Orthents Xerorthents Lithic 3.5
38 A12I/E03 Inceptisols Xerepts Calcixerepts Typic 4.5
39 A42E/F03 Entisols Orthents Xerorthents Lithic 2.2
40 A12I/C03 Inceptisols Xerepts Calcixerepts Typic 0.5
41 A44I/C03 Inceptisols Xerepts Calcixerepts Typic 2.1
42 A11I/C03 Inceptisols Xerepts Calcixerepts Typic 1.2
43 A11I/E02 Inceptisols Xerepts Calcixerepts Typic 1.4
44 A11I/E00 Inceptisols Xerepts Calcixerepts Typic 2.2
45 A12I/C03 Inceptisols Xerepts Calcixerepts Typic 0.5
46 A4×04×I/B03 Inceptisols Xerepts Calcixerepts Typic 1.2
47 A44I/C03 Inceptisols Xerepts Calcixerepts Typic 1.1
48 A334I/B03 Inceptisols Xerepts Calcixerepts Typic 0.8
49 A11E/G01 Entisols Orthents Xerorthents Lithic 1.5
50 A404I/B03 Inceptisols Xerepts Calcixerepts Typic 1.1
51 A44I/E02 Inceptisols Xerepts Calcixerepts Typic 6.9
52 A334E/B03 Entisols Fluvents Xerofluvents Typic 1.1
53 A4×04×I/B03 Inceptisols Xerepts Calcixerepts Typic 0.6
54 A12E/B00 Entisols Orthents Xerorthents Lithic 0.8
55 A44E/D03 Entisols Orthents Xerorthents Typic 0.8
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Table A9. SMU numbering, symbolization, occupied area and soil’s taxonomy of the currently applied
methodology (2019 mapping system).

SMU_No
Current Soil

Mapping Symbol
Principal

Qualifier 3
Principal

Qualifier 2
Principal

Qualifier 1
RSG Area (ha)

1 A004D22L23R11LE Cambic Calcaric Skeletic Leptosols 1.9
2 A004F13L13R11LE Calcaric Skeletic Nudilithic Leptosols 2.2
3 A304E32L13R11CM Leptic Skeletic Calcaric Cambisols 5.6
4 A004F13L13R11LE Calcaric Skeletic Nudilithic Leptosols 0.4
5 A304E32L13R11CM Leptic Skeletic Calcaric Cambisols 16.2
6 A004D13L23R11LE Calcaric Skeletic Nudilithic Leptosols 5.9
7 A304F32L13R11CM Leptic Skeletic Calcaric Cambisols 3.4
8 A004E22L13R11LE Cambic Calcaric Skeletic Leptosols 4.2
9 A004F23L23R11LE Cambic Calcaric Skeletic Leptosols 7.1

10 A304F22L13R11CM Skeletic Calcaric Leptic Cambisols 4.2
11 A004G13L13R11LE Calcaric Skeletic Nudilithic Leptosols 12.5
12 A004D22L13R11LE Cambic Calcaric Skeletic Leptosols 4.2
13 A304C31L03R11CM Chromic Leptic Calcaric Cambisols 8.5
14 A304G32L13R11CM Skeletic Calcaric Leptic Cambisols 14.4
15 A334E52L13P11CL Skeletic Cambic Petric Calcisols 14.7
16 A004D13L03R11LE Calcaric Skeletic Nudilithic Leptosols 17.1
17 A004F22L13R11LE Cambic Calcaric Skeletic Leptosols 3.9
18 A004F22L13R11LE Skeletic Calcaric Nudilithic Leptosols 21.8
19 A004G21L13R11LE Skeletic Calcaric Cambic Leptosols 25.7
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Appendix C

Table A13. Soil analyses of the 14 soil samples of the 5 soil profiles of the 1976 mapping system.
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(%
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Sand
(%)

Silt
(%)

Clay
(%)

C
h

a
ra

ct
e
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z

a
ti

o
n

P5

0–10 69.3 15.8 14.8 SL 49.6 7.7 3.5 8 0.8 12.8 >45 2.1
10–22 64.2 17.7 18.1 SL 55.2 7.8 1.9 4 0.5 14.8 >45 1.2
22–52 57.5 25.4 17.1 SL 71.2 7.9 0.1 9 0.02 13.2 23 0.4
>52 53.1 26.2 20.6 SCL 66.4 7.9 0.1 9 0.02 15.0 30 0.4

P7
0–10 59.9 16.3 26.7 SCL 56 7.9 0.7 9 0.5 13.4 22 0.5
10–60 64.3 15.5 20.2 SCL 55.2 8.2 0.7 8 0.2 12.5 20 0.6
60–80 66.3 13.5 20.2 SCL 54.4 8.4 0.3 7 0.2 13.5 16 0.6

P8
0–10 71.2 17.4 11.1 SL 43.2 7.8 3.6 12 0.7 13.4 44 2.2
10–60 67.1 14.0 18.8 SL 41.6 7.8 1.2 13 0.4 13.5 15 0.8
60–80 66.2 19.5 21.3 SCL 52 7.8 0.7 6 0.3 15.3 17 0.6

P9
0–5 72.5 17.2 10.2 SL 34 7.9 8.7 14 0.3 16.3 >45 3.5

5–10 71.6 18.4 10.3 SCL 29.2 8.2 4 8 0.8 14.2 >45 2.1

P10
0–10 68.5 16.2 15.2 SL 27.6 7.9 6.7 13 0.8 15.8 >45 2.6
10–60 61.2 16.6 21.7 SCL 28.8 8.4 0.3 9 0.2 15.2 17 0.5

Note: a—Hydrometer method; b—Bernard Method; c—Soil: distilled water (w–v) suspension (1: 1);
d—Walkley-Black wet digestion; e—Ammonium acetate extraction; f—Gravimetric method; g—Olsen method;
h—Kjeldahl digestion.

Appendix C.1 Soil Profiles Description (1976)

Profile P5

Location: Diomedes Botanical Garden
Coordinates: x: 468,283, y: 4,206,607
Elevation: 145.0 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 2–6%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Inceptisol
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Table A14. Profile P5 horizons description.

Horizon Depth (cm) Description

A1 0–10
Dark reddish brown (5YR 4/8) moist; sandy loam (SL);

moderate, medium, subangular blocky (msbk); dry hard;
strongly effervescent; clear boundary

B1 10–22
Dark reddish brown (5YR 4/8) moist; sandy loam (SL);

moderate, medium, subangular blocky (msbk); dry hard;
strongly effervescent; clear boundary

C 22–52
Dark reddish brown (5YR 4/8) moist; sandy loam (SL);

moderate, medium, subangular blocky structure (msbk);
dry hard; strongly effervescent; smooth boundary

C >52
Dark reddish brown (5YR 4/8) moist; sandy clay loam
(SCL); moderate, medium, subangular blocky (msbk);

slightly hard; strongly effervescent

Profile P7

Location: Diomedes Botanical Garden
Coordinates: x: 468,220, y: 4,206,902
Elevation: 128.0 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 6–12%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Inceptisol

Table A15. Profile P7 horizons description.

Horizon Depth (cm) Description

A1 0–10
Reddish yellow (5YR 6/8) moist; sandy clay loam (SCL);
moderate, medium, subangular blocky (msbk); dry very
hard; gravels 40%strongly effervescent; clear boundary

B1 10–50
Yellowish red (5YR 6/8) moist; sandy clay loam (SCL);

moderate, medium, subangular blocky (msbk); dry very
hard; gravels 30%; strongly effervescent; clear boundary

B2 50–95
Yellowish red (5YR 6/8) moist; sandy clay loam (SCL);

moderate, medium, subangular blocky (msbk); dry very
hard; gravels 40%; strongly effervescent

Profile P8

Location: Diomedes Botanical Garden
Coordinates: x: 468,432, y: 4,206,812
Elevation: 133.0 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 2–6%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Inceptisol
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Table A16. Profile P8 horizons description.

Horizon Depth (cm) Description

A1 0–10
Yellowish red (5YR 5/8) moist; sandy loam (SL);

moderate, fine, subangular blocky (fsbk); dry very hard;
gravels 45%; strongly effervescent; clear boundary

B1 10–60
Yellowish red (5YR 4/8) moist; sandy loam (SL);

moderate, coarse, subangular blocky (csbk); dry very
hard; gravels 30%; strongly effervescent; clear boundary

B2 60–80
Yellowish red (5YR 6/8) moist; sandy clay loam (SCL);

moderate, fine, subangular blocky (fsbk); dry very hard;
gravels 40%; strongly effervescent

Profile P9

Location: Diomedes Botanical Garden
Coordinates: x: 468,521, y: 4,206,660
Elevation: 138.4 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 2–6%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Inceptisol

Table A17. Profile P9 horizons description.

Horizon Depth (cm) Description

A1 0–5
Dark reddish brown (5YR 3/4) moist; sandy loam (SL);
moderate, fine, subangular blocky (fsbk); dry slightly

hard; strongly effervescent; clear boundary

B1 5–20
Yellowish red (5YR 4/6) moist; sandy loam (SL);

moderate, coarse, subangular blocky (csbk); dry very
hard; gravels 30%; strongly effervescent

Profile P10

Location: Diomedes Botanical Garden
Coordinates: x: 468,540, y: 4,206,621
Elevation: 142.8 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 6–12%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Inceptisol
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Table A18. Profile P10 horizons description.

Horizon Depth (cm) Description

A1 0–10
Dark reddish brown (5YR 3/4) moist; sandy loam (SL);

moderate, medium, subangular blocky (msbk); dry slightly
hard; gravels 30%; strongly effervescent; clear boundary

B1 10–60
Yellowish red (5YR 4/6) moist; sandy loam (SL); moderate,

medium, subangular blocky structure (msbk); dry very hard;
gravels 35%; strongly effervescent

Note: Petrocalcic horizon is not formed in T5 soil profile but at a depth of 20–30 cm deeper from the soil surface
there is marl. In the rest of the soil profiles, the petrocalcic horizon is formed 100 cm deeper from the soil surface.

Table A19. Soil analyses of the 20 soil samples of the 12 soil sampling sites of the 2019 mapping system.

Sample Depth (cm)
Soil Texture Carbonates

(%)Sand (%) Silt (%) Clay (%) Characterization

1
(0–30) 42 32.9 25.1 L 20.2
(30–60) 38 29.7 32.3 CL 28.0

2
(0–30) 45.7 30 24.3 L 30.1
(30–60) 37.7 25.7 36.6 CL 33.0

3
(0–30) 28.6 42 29.4 CL 0.78
(30–60) 22.6 34 43.4 C 0.24

4
(0–30) 46.9 28 25.1 SCL 61.7
(30–60) 50.9 24 25.1 SCL 65.1

5
(0–30) 18.6 40 41.4 SiCL 1.63
(30–60) 18.6 32 49.4 C 1.80

6 (0–30) 30.6 30 39.4 CL 1.59

7
(0–30) 19.9 29 51.1 C 12.28
(30–60) 20.9 26 53.1 C 13.51

8
(0–30) 48.7 21 30.3 SCL 25.67
(30–60) 40 23.7 36.3 CL 30.10

9
(0–30) 25.2 31.4 43.4 C 32.15
(30–60) 20.1 35.1 44.8 C 38.08

12
(0–30) 25.2 36.7 38.1 CL 26.52
(30–60) 38.5 26.5 35 CL 25.44

Appendix C.2 Description of the 2019 roadside profiles.

Profile P1

Location: Diomedes Botanical Garden
Coordinates: x: 468,801, y: 4,206,553
Elevation: 146.6 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 6–12%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Cambisol (Inceptisol)
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Table A20. Profile P1 horizons description.

Horizon Depth (cm) Description

A 0–30 Yellowish red (5YR 4/6) moist; clay (C); fine, subangular blocky (fsbk);
dry hard; gravels 45%; strongly effervescent; clear boundary

B 30–60 Reddish brown (5YR 4/4) moist; clay (C); fine, subangular blocky
(fsbk); dry hard; gravels 30%; strongly effervescent;

Profile P2

Location: Diomedes Botanical Garden
Coordinates: x: 468,839, y: 4,206,180
Elevation: 200.0 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 18–25%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Cambisol (Inceptisol)
Remark: A petrocalcic horizon observed at depth >80 cm

Table A21. Profile P2 horizons description.

Horizon Depth (cm) Description

A 0–30 Yellowish red (5YR 4/6) moist; clay (C); fine, subangular blocky (fsbk);
dry hard; gravels 45%; strongly effervescent; clear boundary

B 30–60 Yellowish red (5YR 5/8) moist; clay (C); fine, subangular blocky (fsbk);
dry hard; gravels 30%; strongly effervescent;

C >60

Profile P3

Location: Diomedes Botanical Garden
Coordinates: x: 468,492, y: 4,206,244
Elevation: 198.4 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 18–25%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Cambisol (Inceptisol)

Table A22. Profile P3 horizons description.

Horizon Depth (cm) Description

A 0–10
Yellowish red (5YR 4/8) moist; clay loam (CL); moderate fine,
subangular blocky (fsbk); dry hard; gravels 30–45%; strongly

effervescent; clear boundary

B 10–30
Yellowish red (5YR 4/6) moist; clay loam (CL); moderate fine,

subangular blocky (fsbk); dry hard; gravels 30–45%;
strongly effervescent;
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Profile P4

Location: Diomedes Botanical Garden
Coordinates: x: 468,080, y: 4,206,429
Elevation: 156.8 m
Parent material: limestone
Landform: hilly
Hydrological group: well drained
Slope: 25–35%
Erosion: none
Vegetation: Pinus halepensis
Groundwater: deep
Classification: Leptosol (Entisol)

Table A23. Profile P4 horizons description.

Horizon Depth (cm) Description

A 0–10 Yellowish red (5YR 4/8) moist; loam (L); medium, subangular blocky
(fsbk); dry hard; gravels 45%; strongly effervescent; clear boundary

B 10–20 Yellowish red (5YR 4/6) moist; loam (L); medium; moderate fine,
subangular blocky (fsbk); dry hard; gravels 30%; strongly effervescent;
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Abstract: Available potassium (AVK) in the soil of cropland is one of the most important factors
determining soil quality and agricultural productivity. Thus, it is crucial to understand the variation
of AVK and its influencing factors for sustaining soil fertility and mitigating land degradation.
Farm households are the ultimate land users, and their land-use behaviors inevitably play an
important role in the variation of AVK. This paper, therefore, aims to explore the effects of households’
land-use behaviors on soil AVK from spatial and temporal perspectives. Taking an urban peripheral
region in Northeast China as the study area, we firstly use geostatistics (Kriging interpolation) and
GIS tools to map out the spatial AVK distributions in 1980, 2000, and 2010, based on soil sampling
data points, and then assess the impacts of land-use behaviors on AVK using econometric models.
The results show that, although the AVK content in the study area has a largely downward trend over
the 30 years, there are distinct trends in different stages. The disparity of trends can be attributed
to the changes in households’ land-use behaviors over time. The spatial variation of AVK is also
substantial and intriguing: the closer to the urban area, the greater the decline of soil AVK content,
while the farther away from the urban area, the greater the rise of soil AVK content. This spatial
disparity can too be largely explained by the obvious differences in households’ land-use behaviors
in various regions.

Keywords: soil available potassium; land-use behavior; spatial-temporal analysis; soil quality;
Kriging interpolation

1. Introduction

China faces the great challenge of meeting the ever-increasing food demand, due to its large and
ever-growing population and dietary shifts accompanying rapidly increasing income, with scarce
agricultural land. Land conservation is not only essential for the realization of sustainable social and
economic development in China, but also of great strategic significance for ensuring world food security
and stabilizing international food prices [1–3]. Chinese governments have prioritized maintaining the
soil quality of arable lands to safeguard national food security. Therefore, researches on how and where
improvements can be made to enhance the sustainability of agricultural production are of paramount
importance to policymakers. While much attention has been focused on maintaining the arable land
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area—as reflected by the so-called “cropland red line” policy, aiming to maintain at least 1.8 billion mu
(i.e., 0.12 billion ha) area of quality arable land, the deterioration of soil quality and land degradation
has long been overlooked. Recently, soil preservation has been recognized as one of the most important
factors restricting food security and agricultural product safety in China [4,5]. Potassium is one of
the four essential macronutrients (N, P, K, and S) needed by plants, which directly and indirectly
affect soil fertility. Soil available potassium (AVK) determined by ammonium acetate leaching-flame
photometric method is an effective method that determines soil availability of potassium, which can be
can directly absorbed and utilized by plants [6,7]. It is thus a good indicator of the supply capacity
of potassium nutrient and soil fertility of cropland, which in turn affects the yield and quality of
crops [8,9]. The critical soil test values or the AVK values at which relative yield to potassium fertilizer
application is equal to 90% for each crop in the study. Therefore, the study on the spatial and temporal
variation of AVK in soil and its influencing factors are critical for monitoring the dynamic evolution
characteristics of cropland soil fertility and scientific planning and management of croplands.

There is a growing body of literature on the spatial and temporal variations of soil fertility and its
driving factors [10,11]. The current literature mainly focused on two aspects. One is on the spatial
variation of soil physical properties and soil salinity from the perspective of natural science [12–14].
In past years, geostatistical methods have been increasingly used to analyze the spatial variation of
soil nutrients [15–17], for example, soil organic matter [18], NO−3-N [19], available phosphorus [5],
AVK [20,21], nugget effect and correlation degree [22], coefficient of variation [23]. At the same time,
studies on the influencing factors of soil fertility have gained much attention. Researches showed that
soil fertility changes are directly or indirectly affected by soil erosion, farming systems, land-use modes,
and fertilizer inputs [24–28]. However, the existing researches still have the following limitations:
firstly, the change of soil nutrient content is affected not only by natural conditions, but also by human
activities. In intensive land use areas, for example, in urban peripheral regions, human factors play
an important role. However, existing researches focus more on the natural perspective, and the
discussions on human production behavior and activities are relatively rare; convincing empirical
analyses are still lacking. Secondly, most studies have been either on the spatial variation or temporal
changes of soil nutrient content in a certain region. There is a lack of spatial-temporal analysis of
continuous monitoring data, especially in the area of intensive land use, where land-use behaviors
significantly influence soil nutrients changes. Thirdly, there are few researches on the mechanism of
the change of soil AVK based on multivariate data—especially on the data of soil fertility, the role of
farm households’ behaviors, and socio-economic statistics.

To bridge the existing research gaps, this study aims to investigate the link between soil AVK
and farm households’ behaviors from a theoretical and empirical perspective. For that, we take
a suburban area of Shenyang, a megacity in Northeast China, as the study area. This region is
at the interface between urban expansion and cropland conservation, and forms intricate regional
complexes [29–31]; substantial changes have taken place in both households’ land-use behaviors and
management measures ever since the implementation of the household contract responsibility system
(HRS) in China in the early 1980s. Small households, with diverse characteristics are the main land
users and the ultimate decision-makers on the ground. This provides a perfect setting to study how
land-use behaviors influence the change of soil AVK content.
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Specifically, we try to answer two research questions: first, what changes have taken place in
the content of AVK in cropland soil in the urban peripheral region, where land-use changes most
dramatically? Second, what is the relationship between these changes and the households’ land-use
behaviors? In this research, first of all, we embark on a multidisciplinary approach, by integrating
theories and methods from soil sciences, land-use change science, and household economics of social
sciences. Secondly, by revealing the temporal and spatial variation of soil AVK content, we hope to
provide technical guidance for the sustainable utilization of regional cropland by preserving the soil
quality of cropland, and at the same time, provide scientific bases for policymakers in designing policy
measurements in regulating households’ land-use behaviors to maintain and enhance cropland quality
and health, while improving agricultural productivity in intensive agricultural areas.

2. Conceptual Framework

Before the analytical study, here, we construct a conceptual framework to illustrate the causal
relationship between land-use behaviors and soil fertility change. This framework shows how
households’ decisions and behaviors affect the AVK content in soil from temporal and spatial
perspectives. Households are the ultimate decision-makers in the family-based farming system in China;
they are both producers and consumers; they make decisions on land use, capital, and labor inputs in
agricultural production to partially fulfil demand from consumers. According to household behavior
theory in neoclassical economics, the goal of household production is to maximize utility [32,33].
However, the utility function of households may vary in different stages of economic development,
and so does the goal of agricultural farming of households. The level of development has been
constantly changing. During this process, households generate and measure their own needs, namely
food demand and monetary demand. The former can meet the household consumption of food, and the
latter can meet the family’s money expenditure needs. Under the strong constraints of household
consumption, households have a priority to meet the needs of household food demand, and the
decision-making basis is the satisfaction of household food consumption capacity. After household
consumption is met, farmer households then focus on attaining the maximum economic value from
the land. The process would eventually match the value and function of the cropland, according to the
needs of the household.

However, the difference in households’ land-use targets in different periods results in the temporal
and spatial variability of households’ land-use behaviors. Generally speaking, since the reform and
opening up in the late 1970s, the main demands of households have shifted from food self-consumption,
to pursuing monetary returns from the land to meet the basic money expenditure needs on diversifying
food consumption, to the purchase of basic needs like clothing, and then to profit maximization demand,
based on the market-oriented production system. The land use target of households is consistent with
the realization of the goals of their economic activities. Households’ land-use behaviors vary in different
stages, accordingly. Specifically, it passed from the stage of maximizing grain production, to the stage
of grain production and profit optimization, and then to profit maximization. The differentiation
of households has also presented the stage of farm-oriented households, to part-time households,
and then to the off-farm oriented households, in different spatial extents at the same time. The change
of land-use pattern, degree, and input intensity would inevitably lead to different evolutionary laws of
soil AVK in time and space (see Figure 1).
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Figure 1. The theoretical analysis framework of the effects of households’ land-use behaviors on soil
available potassium (AVK).

3. Materials and Methods

3.1. Study Areas

Sujiatun District, our case study area, is located in the south of Shenyang City, 15 km away
from the center of Shenyang, which is the only mega-city in the three northeastern provinces of
China. The total area is 782 km2, located at east longitude ranging from 123◦09′ to 123◦47′ and north
latitude ranging from 41◦27′ to 41◦43′. The study area belongs to a continental semi-humid monsoon
climate of the warm temperate zone with four distinct seasons, abundant sunshine, and concentrated
rainfall. The annual average temperature is about 8 degrees Celsius, The average frost-free period
is 150.5 days, the longest is 175 days (1975). The shortest is 128 days (1972, 1974). The earliest final
frost date was April 20 (1967). The latest date is May 18 (1960). The annual average precipitation
is 659.6 mm, the highest year is 1055.3 mm (1953), and the lowest is 445 mm (1965). The annual
sunshine hours are 2527 h on average. Annual average evaporation 1430.3 mm. Sujiatun is a national
commodity grain base and demonstration area of grain self-sufficiency. It is also a demonstration
area of agricultural standardization production in Liaoning Province, a base of high-quality rice in
Shenyang City, and a suburban agricultural demonstration area [2]. In this study, we select Linhu
Street (near suburb), Yongle Township (outside suburb), and Wanggangbao Township (middle area) as
sample areas, which are located in the western plain area (see Figure 2). The soil type in this area is
cultivated loamy meadow soil, and the land use type is dry land. Under the condition of relatively
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homogeneous natural conditions, the change of AVK content in soil is mainly driven by human factors,
which determine the potassium balance of the agricultural production system. Thus this region makes
a suitable study area for our study.

 

Figure 2. Study area map and spatial distribution of soil sampling points in 1980, 2000, and 2010.

3.2. Data Collection and Processing

3.2.1. Soil Observations

To ensure the continuity and comparability of soil sample collection, the number and location of
sampling points were determined according to the difference of plot size, planting system, crop species,
and yield level of cropland. The sample points used in this study include soil observation data from three
periods, 1980, 2000, and 2010. The number of sampling points has increased over time, with 119 sampling
points collected in 1980, 141 sampling points collected in 2000, and 1437 sampling points collected in
2010. The initial soil data and sample distribution map in the year 1980 comprehensively used the
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data and soil map of the second national soil survey in Sujiatun District. The soil map at a scale of
1:50,000 was used to facilitate the collection of 119 sampling points—evenly distributed across the
study area—between May and June in 1980. Based on the main section of the second national soil
survey, 141 soil observations were collected from May to June in 2000. In 2010, as soil tests had become
more widespread in the region over time, the number of sampling points in the cropland concentrated
area increased to 1437 according to the geographical coordinates of the soil sample points in 2000.
Approximately 15~20 sampling points of the 0–20 cm soil layer of cropland were taken in a chessboard
spatial sampling pattern. GPS was used to obtain the geographic coordinates of soil sample points in
2000 and 2010. As the 2000 sampling points include the 1980 sampling points, the GPS locations of the
1980 sampling points can be determined. Removing the plant roots and debris, stones, insect corpses,
and other debris from the soil samples is a standard practice in preparing soil samples for analysis
using a soil sieve. Subsequently, soil samples were air-dried and passed through a 0.15–1.0 mm sieve
to remove plant roots and debris, stones, insect corpses, and other debris. The chemical analysis
methods of soil AVK in three periods were the same, which is the ammonium acetate leaching-flame
photometric method [6,7].

3.2.2. Socioeconomic Data

The socioeconomic data used in this study mainly comes from two sources, one is the statistical
data provided by the local statistical bureau and the other is the survey data of the households in the
study area.

The socioeconomic statistics are mainly derived from Shenyang Statistical Yearbook (1995–2010),
Shenyang City Economic Statistics Yearbook (1985–1991), Compilation of National Economic Data of
Sujiatun District (1984–1997) and Compilation of Statistical Materials of Sujiatun District (1998–2010).
The household-level data of this study comes from the sample survey of the households in Sujiatun
District from March to June 2010. To support this research, the soil sampling data and the
households’ survey data were designed to be matched with each other: while taking soil samples
in households’ land, the households were interviewed to record their land use, planting systems,
fertilization status, water conservancy facilities, irrigation water sources, irrigation systems, and average
yields. The sampling approach is based on the average distribution, according to the principle of
representativeness and variability. The clustering, stratification, and random sampling methods were
carried out to ensure the reliability of data collection. Overall 240 households were interviewed;
excluding non-representative invalid questionnaires, 238 valid questionnaires were obtained: 79, 78,
and 81 in Linhu Street, Wanggangbao Township, and Yongle Township, accounting for 33.2%, 32.8%,
and 34% of the total sample size, respectively.

3.3. Methodology

We first used geostatistical analysis, the Kriging interpolation method, to generate the soil
AVK surface maps, based on the soil survey data at sampling points. Then, we further related the
AVK content value to human activities, namely, the households’ land-use behaviors, by a linear
regression model.

3.3.1. Geostatistical Analysis Methodology

We firstly conducted spatial superposition analysis using the semi-variance function [34–37] and
the Kriging interpolation on the soil AVK in 1980, 2000, and 2010 [38–40]. The process is described as
follows: The coordinate transformation had to be carried out, because the reference ellipsoids used
in the two spatial coordinate systems are different. The land and topographic survey was based on
the Beijing 54 Coordinate System in China, while the GPS survey data was based on the WGS84
geocentric coordinate system. In China, the 1:50,000 soil map is projected to the two-dimensional
plane rectangular coordinate system, according to the three-degree band Gauss-Kruger, therefore the
GPS survey data needs to be reprojected to match with the GIS data. In this study, we used MapGIS®
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software to read in GPS data, complete precise projection conversion and data format conversion,
and then convert GPS data in the WGS84 coordinate system to Beijing 54 Coordinate system. Finally,
data in ESRI shapefile format was exported, which can be read by ESRI ArcView®. Thus, we obtained
the soil sampling point bitmaps of 1980, 2000, and 2010 at the plot scale. Then, we calculate the
theoretical model of the semivariance function, draw the graph, and count the area of each level by the
ESRI ArcGIS® v10.

3.3.2. Econometric Model Construction

Based on the theoretical analysis framework presented earlier, we constructed the following
econometric analysis model:

LUB = f (GCC, MCI, LII) (1)

The model indicates that households’ land-use behaviors (LUB), including land-use patterns,
land use levels, and land input intensity, can be quantified by three quantifiable dependent variables.
GCC indicates whether households plant economic crops, indicating the difference in land-use patterns;
MCI means the land multiple cropping index, indicating the difference in land use level; while LII
indicates the amount of land capital investment per unit area of household showing the difference in
household’s land input intensity.

AVK = g(LUB) (2)

Model (1) is brought into Model (2) to obtain Model (3) to model the effects of households’ land-use
behaviors on the change of AVK content in cropland.

AVK = g(LUB) = g[ f (GCC, MCI.LII)] = h
(
GCC+/−, MCI+/−, LII+/−) (3)

The model represents the theoretical model of the relationship between households’ land-use
behavior and AVK content.

In addition, it should be noted that the above model is only a general model of the interaction
mechanism between the land-use behavior of households and the change of AVK in cropland. In specific
applications, we need to choose a specific model form according to the specific characteristics of each
study area, as well as the availability of data.

4. Results

4.1. Temporal and Spatial Evolution Characteristics of AVK

4.1.1. Temporal Evolution Characteristics of Soil AVK

Using the semi-variance model parameters fitted in GS+win9® (a software platform developed by
Tetoc scientific instrument in China). The optimal models are exponential, spherical, and exponential
in 1980, 2000, and 2010, respectively. The coefficients of determination R2 are 0.878, 0.775, and 0.838,
respectively. It indicates that the interpolation models have good accuracy, and the interpolated
values are consistent with the spatial distribution characteristics of soil AVK. Based on the result of
the semi-variance model, the Ordinary Kriging interpolation method was chosen in Geostatistical
module of ArcGIS® 9.3 to interpolate the soil AVK levels [18] in the three periods, respectively (Table 1).
The root-mean-square errors (RMSE) are 2.176 in 1980, 3.173 in 2000, and 2.749 in 2010, respectively.
This meets the standard requirements for the accuracy of spatial interpolation. As a result, the soil AVK
grade area tables and spatial interpolation maps of AVK1980, AVK2000, and AVK2010 were obtained
(Figure 3).
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Table 1. Statistics on the area of AVK in various levels from 1980 to 2010.

Region Level Content
In 1980 In 2000 In 2010

Area (ha) Ratio (%) Area (ha) Ratio (%) Area (ha) Ratio (%)

Linhu
Street

I ≥180 183 1.6 — — — — — — — —
II 160–180 1923 17.1 — — — — — — — —
III 140–160 684 6.1 — — — — — — — —
IV 120–140 147 1.3 34 0.3 559 5.0
V 100–120 164 1.5 1037 9.2 2314 20.6
VI <100 66 0.6 2097 18.7 295 2.6

Wanggangbao
Township

I ≥180 343 3.1 — — — — — — — —
II 160–180 1976 17.6 — — — — 35 0.3
III 140–160 1146 10.2 — — — — 778 6.9
IV 120–140 117 1.0 123 1.1 2135 19.0
V 100–120 — — — — 1673 14.9 634 5.7
VI <100 — — — — 1785 15.9 — — — —

Yongle
Township

I ≥180 — — — — — — — — — — — —
II 160–180 — — — — — — — — 492 4.4
III 140–160 1930 17.2 — — — — 2879 25.7
IV 120–140 2542 22.7 699 6.2 976 8.7
V 100–120 — — — — 2619 23.3 124 1.1
VI <100 — — — — 1154 10.3 — — — —

Total

I ≥180 526 4.7 — — — — — — — —
II 160–180 3899 34.7 — — — — 522 4.7
III 140–160 3760 33.5 — — — — 3663 32.6
IV 120–140 2806 25.0 856 7.6 3670 32.7
V 100–120 164 1.5 5329 47.5 3070 27.4
VI <100 66 0.6 5036 44.9 295 2.6

AVK levels were grouped according to national soil survey levels—Level 1: > 180 mg/kg, Level 2:
160–180 mg/kg, Level 3: 140–160 mg/kg, Level 4: 120–140 mg/kg, Level 5: 100–120 mg/kg, and Level 6:
< 100 mg/kg. In general, the soil AVK positively correlate soil quality and crop productivity. Thus,
soil in Level 1 is the best, while Level 5 is the worst in terms of soil quality. From the temporal
evolution, it can be seen that the average content of AVK in the soil in 1980 was 149.58 mg/kg,
which was mainly distributed in Level II (160–180 mg/kg), III (140–160 mg/kg), and IV (120–140 mg/kg).
Among them, the area of cropland in Level II was the largest (3899 ha), accounting for 34.7%, mainly
distributed in Linhu Street and Wanggangbao Township. Followed by Level III, the cropland area was
3760 ha, accounting for 33.5%, mainly distributed in the north of Yongle Township and the south of
Wanggangbao Township. Soil AVK was high on the whole, and specifically, the content in the north was
higher than that in the south. By 2000, the average content of AVK in soil was 103.62 mg/kg, which was
mainly distributed in Level IV (120–140 mg/kg), V (100–120 mg/kg), and VI (less than 100 mg/kg).
Among them, the area of cropland in Level V was the largest, accounting for 47.5% of the total area of
cropland in the study area, which mainly located in the middle south of Wanggangbao Township and
middle west in Yongle Township. Then followed by Level VI, the area is 5036 ha, accounting for 47.5%,
which mainly distributed in Linhu Street and Wanggangbao Township. In short, from 1980 to 2000,
the content of AVK in soil decreased significantly. By 2010, the average content of AVK in soil was
134.29 mg/kg, mainly distributed in Level III, IV, and V, and the area was 3657 ha, 3670 ha, and 3072 ha,
respectively. During the 30 years from 1980 to 2010, the average content of AVK in soil decreased,
but the trends vary spatially among places. AVK decreased in the first 20 years and increased in the next
10 years, but the ranges of change were different. The average annual decrease was 0.51 mg/kg. In the
first two decades (1980–2000), the average content of AVK decreased by 46.04 mg/kg, with an average
annual decrease of 2.30 mg/kg, while the average annual increase in the next 10 years (2000–2010) was
1.5 mg/kg.
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Figure 3. Spatial distribution of soil AVK content in the study area from 1980 to 2010. (a) Distribution
of AVK in 1980 (b). Distribution of AVK in 2000 (c). Distribution of AVK in 2010 (d). Change trend of
AVK in 1980–2000 (e). Change trend of AVK in 2000–2010 (f). Change trend of AVK in 1980–2010.
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4.1.2. Spatial Distribution Characteristics of Soil AVK

As shown in Table 2 and Figure 3, the changes of AVK varied over time and space from 1980 to
2010. The magnitude of the AVK increase was between 0 and 30 mg/kg. Overall, an area of 3512 ha,
or 31.30% of the total area of the study area, showed an increase of AVK over that study period. It was
mainly distributed in the south of Yongle Township. The range of the AVK decline was between −60
to −30 mg/kg to 0 mg/kg, accounting for 53.97% of the total area of the study area. It was mainly
distributed in Linhu Street and Wanggangbao Township. The results showed that the content of AVK
in the soil near the peripheral region of the city showed a downward trend, and the extent of the
decline was gradually increasing, while it showed a slightly increasing trend far away from the city.
From 1980 to 2000, the soil AVK content showed a downward trend. The largest decline was more
than 60 mg/kg, covering an area of 4508 ha, accounting for 40.17% of the total area of the study area.
It mainly distributed in Linhu Stree and Wanggangbao Township. While the declining trend was more
moderate in Yongle Township, and the range was 0~30mg/kg, indicating a trend that the nearer the city
is, the larger the decline is. From 2000 to 2010, the soil AVK in the whole study area showed an upward
trend. The largest increase was more than 30 mg/kg, covering an area of 5788 ha, accounting for 51.59%
of the total area of the study area, mainly concentrated in the southern part of Wanggangbao Township
and Yongle Township. That is, the farther away from the urban area is, the greater the increase is.

Table 2. Distribution of AVK content in cropland soil.

Period Area and Proportion
Range of Content Various (mg/kg)

<−60 −60–−30 −30–0 0–30 >30

2010–1980
Area (ha) 1595 3334 2721 3512 57

Proportion (%) 14.22% 29.72% 24.25% 31.30% 0.51%

2000–1980
Area (ha) 4508 3843 2826 43 -

proportion (%) 40.17% 34.25% 25.19% 0.39% -

2010–2000
Area (ha) - - 340 5092 5788

proportion (%) - - 3.03% 45.38% 51.59%

4.2. Households’ Land-Use Behaviors Change over Time and Its Effect on Soil AVK

4.2.1. Households’ Land-Use Behaviors Change over Time

Based on the above theoretical analysis and socioeconomic and environmental changes in the
study area, this paper mainly selects some specific indicators to represent land-use behaviors. The areas
of grain crops and cash crops are used to measure land-use type, the multiple cropping index is
regarded as land use degree (or land use intensity), while chemical fertilizer input is used as land
input intensity.

Land-Use Type Change over Time

Figure 4 displays the change in planting area of grain crops (corn and rice) and cash crops
(vegetables and melons) from 1980 to 2010 in the Sujiatun District. It indicates that grain crops planting
area has declined overall, from 32,457 ha in 1980 down to 25,812 ha in 2010. The total decrease amounts
to 6645 ha in 30 years, with an average annual reduction of 221.5 ha. In particular, the reduction in grain
crop area has become more pronounced since 2000. By 2003, the area of grain crops was essentially
equal to those of cash crops.

The change in the vegetable planting area has gone through three stages: slow growth, rapid growth,
and stabilization (Figure 5). In the first 10 years, the vegetable planting area increased slowly from
2271 ha in 1983 to 3271 ha in 1990, with an average annual growth of 100 ha. In the second 10 years,
from 1991 to 1999, the vegetable planting area showed a rapid growth trend, from 4030 ha in 1992
to 8230 ha in 2000, with an average annual growth of 420 ha. In the last 10 years, from 2001 to 2010,
the area remained at a high level—about 8000 ha overall.
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Figure 4. Changes in planting area of grain crops and cash crops in the study area from 1980 to 2010.

Figure 5. Change of economic crop planting area from 1980 to 2010.

The change in the planting area of melon and fruit mainly experienced two stages. In the first two
decades, the area of melon and fruit cultivation stayed at a low level with an average area of 257 ha.
However, during the last 10 years, from 2001 to 2010, the area of the melon and fruit area began to rise
rapidly to 565 ha in 2010, which increased nearly four times in ten years.

Land Use Degree Change over Time

As an indicator to measure land-use degree, the multiple cropping index can reflect the final impact
of population pressure on the cropping system under certain natural resource conditions. The multiple
cropping index of households in Sujiatun District from 1980 to 2010 shows that households’ land-use
degree is gradually increasing, which can be roughly divided into three stages (shown in Figure 6).
In the first stage from 1980 to 1990, the multiple cropping index increased from 100.23% to 102.96%,
with a peak of 105.04% in 1986 and a trough of 100.16% in 1989. In the second stage between 1991 and
2000, the change of multiple cropping index is in a relatively stable stage with an annual growth rate of
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0.026%. However, the multiple cropping index first rose sharply and then grew steadily in the third
stage from 2001 to 2010. The multiple cropping index rose from 103.42% in 2000 to 111.88% in 2010,
with a trough of 101.27% in 2003 and a peak of 112.37% in 2006.
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Figure 6. Change of the multiple cropping index of Sujiatun District from 1980 to 2010.

Land Input Intensity Change over Time

It can be seen from Figure 7 that the application intensity of potash fertilizer and compound
fertilizer increased from 1980 to 2010, increasing from 0 kg/ha to 96 kg/ha and 20 kg/ha to 257 kg/ha,
respectively. The temporal trends of these two fertilizers differed significantly. For the amount of
potash fertilizer applied, the changes can be divided into three phases: slow rise (1980–1995), rapid rise
(1996–2005), and slow decline (2006–2010). In contrast, the compound fertilizer side, the application
amount experienced a slow increase stage (1980–2000), and a significant increase stage (2000–2010).
The average annual increase was 3.9 kg/ha in the first stage, while the application amount was 15.9 kg/ha
in the second stage, nearly four times as much as the former.
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Figure 7. Change of application of potash fertilizer and compound fertilizer from 1980 to 2010.
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4.2.2. Impact of Households’ Land-Use Behaviors on Temporal Evolution on AVK

In the first stage (1980–2000), the soil AVK content in the whole study area decreased, and the
average content decreased from 149.56 mg/kg in 1980 to 103.52 mg/kg in 2000. This time corresponds
to the early stage of reform and opening up in China, and GDP per capita has gradually increased
from a low level at RMB 1013 (USD 680) in 1980 (shown in Figure 8), and then grew to RMB 10,125
(USD 1212) in 1995 and RMB 15,666 (USD 1982) in 20001. Under such a socioeconomic background,
households’ land-use behaviors are mainly characterized by the cultivation of corn and rice, and the
area of cash crops remained low, but started to slowly increase. As a result of the cultivation of corn
and rice, the multiple cropping index also grew slowly. In terms of agricultural inputs, the input of
compound fertilizer and potash fertilizer is at a low level, and this leads to a significant decline in soil
AVK content in this area.

Figure 8. Trends of GDP per capita and primary industry employment ratio from 1980 to 2010.

In the second stage (2000–2010), the soil AVK content in the whole study area tended to increase,
and the average content increased from 103.52 mg/kg in 2000 to 134.27 mg/kg in 2010. At this
stage, GDP per capita increased from RMB 15,666 (USD 1892) in 2000 to RMB 62,357 (USD 9211) in
2010—nearly an four-fold increase. The labor force engaged in agriculture also began to shift and
differentiate. The proportion of employment in agriculture dropped from 23.5% in 2000 to 10.9%
in 2010. Under the influence of the external socioeconomic environment, the land use behavior of
households had also undergone major changes. The proportion of cash crops increased rapidly, and so
did multiple cropping index and fertilizer application; all of them reached a high level in 2010. Negative
potassium balance can happen when potassium removal from agricultural cultivation is greater than
the application of potassium fertilizer. The deficiency of potassium fertilizer has become the main
constrain for the increase in crop yield. Realizing the problem, farm households have increased the
amount of potassium fertilizer since 1998. While after 2005, local soil and fertilizer stations began to
promote soil testing and customized fertilization technology, so that households gradually learned
that an optimal ratio of nitrogen, phosphorus, and potassium in the soil could increase the yield
more effectively. As a result of these changes in the land-use behaviors of the households, the AVK

1 USD/RMB exchange rate was USD 1 = RMB1.49 in 1980; USD 1 = RMB 8.351 in 1995; USD 1 = RMB 8.2784 in 2000; USD 1 =
RMB 6.7695 in 2010.
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content increased significantly and households began to practice intensive farming to obtain the
maximal benefit.

4.3. Temperal Evolution of Households’ Land-Use Behaviors and Its Effect on Soil AVK

4.3.1. Spatial Variation of Households’ Land-Use Behaviors

Spatial Variations of Land Use Type

Through the investigation on the three study areas, it was found that there were obvious spatial
differences in households’ crop selection behaviors, and the crop selection options were divided into
three types of households including grain crops only, both grain crops and cash crops, and cash crops
only. Moreover, as the distance from the city center increases, the grain crop area gradually decreases,
while the cash crops area gradually increase. As shown in Table 3, Linhu Street, the closest to Shenyang
City, 93.7% of the respondents in this area only planted grain crops, while the proportion in Yongle
Township, the farthest from the city center, is just 2.5%. Nearly 45% of the respondents in Wanggangbao
Township selected both grain crops and cash crops, where is in the middle of the three study area.

Table 3. Land-use behavior of households in the study area.

Land–Use Behavior Classification
Linhu Street

Wanggangbao
Township

Yongle Township Total

Obs Proportion % Obs Proportion % Obs Proportion % Obs Proportion %

GCC
Grain crops only 74 93.7 23 29.5 2 2.5 115 48.3
Both grain crops
and cash crops 1 1.3 35 44.9 31 38.3 50 21.0

Cash crops only 4 5.10 20 25.6 48 59.2 73 30.7

MCI

1.0 74 93.7 39 50.0 2 2.5 115 48.3
1.0–1.5 3 3.8 26 33.3 22 27.2 51 21.4
1.5–2.0 0 0 5 6.4 32 39.5 37 15.6
2.0–2.5 0 0 3 3.9 12 14.8 15 6.3
2.5–3.0 2 2.5 5 6.4 13 16.0 20 8.4

LII

self–employed
(day per mu)

0–10 56 70.9 29 37.2 19 23.5 104 43.7
10–20 19 24.1 40 51.3 26 32.1 85 35.7
20–30 2 2.5 5 6.4 11 13.6 18 7.6
>30 2 2.5 4 5.1 25 30.8 31 13.0

employment
(day per mu)

0 47 59.9 63 80.8 9 11.1 119 50.0
1–10 30 38.0 6 7.7 21 25.9 57 23.9
11–20 2 2.5 5 6.4 23 28.4 30 12.6
>20 0 0.0 4 5.1 28 34.6 32 13.5

capital investment
(Yuan per mu) a

¥0–500 ($0–74) 72 91.1 38 48.7 9 11.1 119 50.0
¥500–1000
($74–128) 6 7.6 17 21.8 7 8.6 30 12.6

¥1000–1500
($128–222) 1 1.3 16 20.5 9 11.1 26 10.9

>¥1500(>$222) 0 0 7 9.0 56 69.1 63 26.5

Note: a The value in brackets is US dollars. USD/RMB exchange rate was USD 1 = RMB 6.7695 in 2010.

Spatial Evolution of Land Use Degree

Regarding the multiple cropping index (MCI), we divided the respondents into five groups
between 1.0 and 3.0, with 0.5 as intervals. The results show that the farther from the city center is,
the higher of MCI is. The MCI values of 93.7% of the respondents in Linhu Street were 1.0—as they
mainly grew corn once per year, while half of the respondents in Wanggangbao Township have MCI
values above 1.0. However, the proportion of respondents, whose MCI is above 1.0 in Yongle Township,
is about 97.5%; specifically, 39.5% of them have MCI between 1.5 and 2.0, and more than 30% of them
have MCI over 2.0.

Spatial Evolution of Land Input Intensity

Land investment mainly includes labor input and capital investment, and the labor force is divided
into self-employed labor and employment. Therefore, this study is mainly focused on the differences in
household’s self-employment input, employee input, and household’s capital investment. The spatial
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evolution between self-employment and employment is similar, that is, as the distance from the city
increases, the number of self-employed and employment inputs increased gradually. In terms of the
capital investment intensity, the proportion of households in Linhu Street decreased with the increase
of land input intensity, which are 91.1%, 7.6%, 1.3%, and 0.0%, respectively. In the opposite direction of
Yongle Township, the proportion increased by 11.1%, 8.6%, 11.1%, and 69.2%, respectively, meaning
the land input intensity was higher. Wanggangbao Township in the outer peripheral region is located
between the first two regions, and the change range is relatively small.

These results indicate that with the accelerating process of industrialization and urbanization,
households’ land-use targets and land use types in the study area have significantly diverged.
Specifically, the households in the suburban Linhu Street mainly engage in off-farm work or business,
and agriculture becomes less important in livelihood. Farmers plant grain crops such as corn,
which are time-saving and labor-saving, with low land-use and labor intensity. While the households
who are in the outer suburb of Yongle Township mainly involved in agriculture. They planted
vegetables and greenhouse vegetables, meaning the land use degree and land input intensity are the
highest. The households in Wanggangbao Township located in the middle place, are mainly part-time
households, and they plant both corn and vegetables. As a result, the land use degree and land input
intensity are also in the middle of Linhu Street and Yongle Township. The differences in land-use
behaviors of various types of households in different regions are bound to have different effects on the
changes of AVK in cropland soil.

4.3.2. Empirical Results of the Impact of Households’ Land-Use Behavior in Spatial Evolution on AVK

To quantitively analyze the impact of households’ land-use behaviors on the AVK content,
multiple linear regression models were used by testing and comparing different model estimation
forms. As shown in Table 4, land use types, land use degree and input intensity have different effects
on the change of AVK content in cropland soil. Specifically, households’ crop selection behavior has a
significant positive impact on the soil AVK content in Wanggangbao Township, with a significant level
of 1%. It indicates that when other conditions remain unchanged, the switch from grain to cash crops
will lead to an increase of soil AVK by an average of 61.205 mg/kg. The multiple cropping index had a
significant negative impact on AVK in Linhu Street. While holding other variables constant, soil AVK
in the study area decreases by an average of 15.469 mg/kg for each additional unit of the multiple
cropping index. While land input intensity has a significant positive impact on the soil AVKcontent
in Wanggangbao Township and Yongle Township, indicating that land input intensity increases by
1 yuan per mu unit, the average AVK content increased by 0.009 mg/kg and 0.037 mg/kg, respectively.
That is, the impact on Yongle Township was greater than that on Wanggangbao Township.

Table 4. Estimation results.

Linhu Street Wanggangbao Township Yongle Township

B t-Value Beta B t-Value Beta B t-Value Beta

GCC 61.205 *** 2.702 0.399
MCI −15.469 * −1.817 −0.282
LII 0.009 * 1.509 0.073 0.037 * 1.884 0.225

Note: *, **, *** denote statistical significance at 10%, 5%, and 1%. The factor corresponding to the parameter is
blank, which means that the model has not reached a significant level. B value is the coefficient of the regression
equation. The positive value of the coefficient indicates that the explained variable increases correspondingly when
the explanatory variable increases by one unit value, while the negative value indicates that the explained variable
decreases correspondingly when the unit value is increased. Beta value is expressed as the relative weight of each
explanatory variable in the model. The larger the absolute value, the greater the effect of the factor.

Due to the different effects of land-use behaviors of households in various regions, the soil AVK
appears obvious spatial differences. The main reason is that households in the suburban Linhu street
are affected by urban expansion and with more off-farm employment opportunities. The households
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there mainly plant corn and other field crops, and land use degree and land input intensity are both
low, due to the relatively low efficiency of agricultural production. While the households in the remote
suburb of Yongle Township, they mainly plant land vegetables and greenhouse vegetables to meet the
need of urban residents, with the highest level of land use degree and land input intensity. Households
in Wanggangbao Township in the middle of the study area can choose both grain crops and cash crops,
and they mainly grow corn and terrestrial vegetables, with higher land-use degrees and greater land
input intensity. The resulting land-use intensity forms a ring structure surrounding the central city and
resembles a distribution pattern of “anti Thunen circle” in space, which is a special manifestation of
classical agricultural location theory.

5. Discussion

Compared with previous studies [5,19,41], this study reveals the temporal and spatial evolution
characteristics of soil AVK in the marginal zone of large cities based on continuous, high-density soil
sampling data, and discusses the underlying reasons for this evolutionary feature from the micro
perspective of households, according to long-term sequence statistics and households’ survey data.
It answers what kind of change takes place in the AVK content in time and space at the plot scale,
and its relationship with households’ land-use behavior in the peripheral region of the big cities. It is
of great significance to explore the regular pattern of soil fertility change in cropland. On one hand,
this study establishes links between soil science and economics, and reveals the influence mechanism
of households’ land-use behaviors on soil AVK content from the temporal and spatial dimensions,
which may inspire future multi-disciplinary researches. On the other hand, this study has important
policy implications. Generally, the fringe area of large cities is the most sensitive area for developing
urban modern agriculture. The understanding of how households’ land-use behaviors affect the AVK
content of the soil helps the government and policymakers to propose corresponding systems and
policies to regulate households’ agricultural production activities and promote the sustainability of
soil production capacity and environment. Finally, it realizes the dynamic analysis using multivariate
data, including the soil survey data, households’ survey data, and socio-economic statistics.

Although we have obtained important and interesting research results, there is no denying that
this study still has the following limitations: firstly, regarding the data, we only obtained three phases
data of soil AVK content, therefore, it is impossible to analyze the impact of households’ land-use
behavior on soil AVK content in the time dimension, by constructing an econometric time series
analysis—which still lacks in this research, as we only have a households survey at a single point in
time. Secondly, biophysical factors in this study, given the relatively short-time period, are assumed to
be constant, despite the fact that biophysical factors and human factors are the two most important
factors for the quality of soil quality change. The biophysical factors, such as topography, climate,
parent material, and organisms, usually change slowly compared to human factors, so the effects need
to be analyzed on a medium and long term basis. Additionally, we selected the area that is least affected
by biophysical factors and greatest influenced by human factors as the study area. Nevertheless, future
researches should examine how biophysical factors, especially climate change affect long-term soil
AVK content.

With the increasing influences of human activities on land quality, social, economic, and human
factors have become increasingly prominent in affecting the quality of cropland. Therefore,
multidisciplinary and multi-dimensional pattern detection and analysis are important to investigate
the temporal and spatial dynamics of cropland quality, such as the connecting spatial information
data with socialeconomic data of microeconomic subjects. The multi-model coupling process and
mechanism analysis are therefore promising and important fields for future researches in this regard,
for example, the simulation of households’ land-use behaviors affecting the quality of cultivated land
under different incentive policies and measurements. At the same time, the soil quality variation of
croplands is a dynamic and complex process. Further researches are thus needed on the optimization
of spatial soil sampling to facilitate the continuous soil quality monitoring. In addition, panel data on
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households’ land-use behaviors, which is lacking in this research, would help greatly in deepening
the research.

6. Conclusions

This paper constructs a theoretical analysis framework for the impact of households’ land-use
behaviors on soil AVK content from the spatial and temporal dimensions. The empirical research
was conducted based on the matching data of high-density soil sampling data, long-term sequence
statistics, and cross-sectional household survey data in the Sujiatun area of Shenyang City, Liaoning
Province, China, comprehensively using the approach of geostatistics, econometric methods, and GIS.
The results of this study can be summarized as:

(1) Although the AVK content of the soil in the study area has a largely downward trend in the
past 30 years, there are different trends in different stages. This variation can be attributed to to
the gradual evolution of households’ land-use behaviors. From 1980 to 2000, the average value
of AVK decreased from 149.56 mg/kg to 103.52 mg/kg, due to the underdeveloped economy,
limited investment capacity, technology level, and management level, as well as the plunder of
cropland. After the year 2000, with the acceleration of the urbanization process and driven by
economic interests, households gradually seek to maximize profits by increasing agricultural
production. This was achieved by improving potassium use management: the use of potassium
soil test, potassium nutrient budgeting, and the increasing use of potassium fertilizers. As a result,
the average of AVK rose to 134.27 mg/kg in 2010 with an increased rate of 29.70% compared to
the year 2000.

(2) The spatial variation of AVK is also substantial and intriguing. The closer to the urban area,
the greater the decline of soil AVK content, while the farther away from the urban area, the greater
the rise. This can be attributed to the differences in households’ land-use behaviors in different
areas. The households in the near peripheral region mainly engage in off-farm work and only
cultivate time and labor-saving corns. This leads to a low land-use degree and low input intensity,
while the households further away from the city center mainly rely on agriculture as the major
income source and pursue profit maximization resulting in the highest land-use degree and land
input intensity.

This research provides a glimpse of how the land-use behaviors of small farm households
influence the soil AVK through an empirical study in Northeastern China. It reveals the complex
spatial dynamics of soil AVK driven by socioeconomic development. The results also shed light on
how policy measurements can be designed to steer farmer’s behaviors and preserve soil for sustainable
agricultural production.
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Abstract: Organic matter, an important component of healthy soils, may be used as an indicator
in sustainability assessments. Managing soil carbon storage can foster agricultural productivity
and environmental quality, reducing the severity and costs of natural phenomena. Thus, accurately
estimating the spatial variability of soil organic matter (SOM) is crucial for sustainable soil management
when planning agro-environmental measures at the regional level. SOM variability is very large in
Italy, and soil organic carbon (SOC) surveys considering such variability are difficult and onerous.
The study concerns the Abruzzo Region (about 10,800 km2), in Central Italy, where data from 1753
soil profiles were available, together with a Digital Elevation Model (DEM) and Landsat images.
Some morphometric parameters and spectral indices with a significant degree of correlation with
measured data were used as predictors for regression-kriging (RK) application. Estimated map of
SOC stocks, and of SOM related to USDA (United States Department of Agriculture) texture—an
additional indicator of soil quality—were produced with a satisfactory level of accuracy. Results
showed that SOC stocks and SOM concentrations in relation to texture were lower in the hilly area
along the shoreline, pointing out the need to improve soil management to guarantee agricultural
land sustainability.

Keywords: soil organic carbon; digital soil mapping; regression-kriging; central Italy

1. Introduction

One of the main challenges for the future is to maintain soil functions, but despite many efforts
to promote more sustainable land management, soil degradation in the European Union (EU) is
increasing [1], with a severe impact on food production and the supply of ecosystem services. Among
the soil properties impacting soil quality, soil organic carbon (SOC)—and soil organic matter (SOM)
derived from its determination—deserves special attention, representing a key indicator for evaluating
soil quality [2], but also impacting the chemical and physical properties of the soil and its overall
health. Properties affected by organic matter include soil structure, water holding capacity, diversity
and activity of soil organisms, buffering capacity, and nutrient availability. SOM also regulates the
efficiency of soil amendments, fertilizers, pesticides, and herbicides. According to the Food and
Agriculture Organization of the United Nations (FAO) [3], one of the characteristics of sustainable soil
management (SSM) is a stable or increasing storage of SOM, ideally close to the optimal level for the
local environment, for all land uses. Thus, the most efficient way to improve soil quality is to stimulate
better SOM management.

SOC is also an essential component of the global carbon cycle [4], representing one of the
largest reservoirs of terrestrial carbon that may influence global warming [5,6]. The global carbon
budget, and the CO2 emissions associated with its major components (i.e., atmosphere, ocean, fossil
fuels, soil, and biosphere) is vital to support the environmental policy addressing climate change [7].
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SOC sequestration, resulting from increased soil C inputs and/or reduced C losses [1,8,9], has been
recognized as an important process to mitigate the rise of the atmospheric greenhouse gas (GHG)
concentration. SSM measures such as increasing SOC stocks can thus mitigate the climate change, at
least for several years after their adoption [10].

Soil carbon losses are related to changes in land use, soil management, and climate change issues.
Across Europe, most soils have unbalanced SOC/SOM contents, resulting from non-conservative land
management practices and land use. The consequence is an acceleration of SOM decomposition [11],
and opposing this process is highly advisable to ensure sustainability in European arable soils [12].

The decrease of SOC/SOM is particularly relevant within the Mediterranean area, in consequence
of the decreased soil fertility and the increased risk of soil erosion and desertification [13]. It was
estimated that 74% of the territory in southern Europe has soils with less than 2% of organic carbon
(i.e., 3.4% organic matter in the shallow layers) [14]). In Italy, SOC/SOM variability is very high due to
the peculiar geological and geomorphological situation, and soil surveys taking into consideration a
similar variability are difficult and onerous. In areas with Mediterranean climates, like central and
southern Italy, SOC/SOM degradation is higher due to the coupled effect of high temperatures and low
soil moisture, increasing the mineralization rate. Moreover, lower SOC/SOM accumulation often results
from intensive and non-conservative agronomic practices (e.g., deep tillage), usually adopted in clayey
soils of these areas to enhance soil structure, permeability, and aeration, and to assist crop growth,
especially in hilly lands [15,16]. A similar soil management causes higher aeration, accelerating the
SOC/SOM degradation rate, and the mixing with underlying horizons with lower SOC/SOM, diluting
SOC/SOM in the arable layer. The soil is thus more exposed to wind and water erosion [17]. Therefore,
ongoing interest in ensuring a sustainable use and management of European soil resources give rise to
a priority need for reliable quantitative information on the present state of SOC/SOM.

SOC/SOM distribution is controlled by many factors (e.g., climate, hydrology, soil type, land
use, etc. [18]), whose spatial variation is often wide and not linear. Thus, an accurate estimate of
such spatial variability is crucial in soil quality evaluation and in assessing the carbon sequestration
potential, providing an operative tool for land use planners and decision makers. Mapping SOM is a
common task in site-specific crop management, whereas mapping SOC and its changes over time is an
important issue in research and in quantifying and monitoring changes in soil carbon stocks. Both
objectives can be achieved at minimum cost and high accuracy and precision [19].

Up-to-date and accurate information on SOC/SOM is essential for tailoring site-specific
management, but traditional mapping is labor-intensive, time-consuming, and requires expensive
sample collection. Point samples at the local scale are usually more easily available, but such soil
information needs to be interpolated in space from a limited number of observations, estimating soil
properties over the whole area of interest. Studies have revealed that there is a significant correlation
among terrain variables and SOC/SOM [20,21], meaning that spatial estimates can be improved by
using auxiliary data—exhaustive and spatially extensive—that can provide relevant information at
unsampled locations. It has been largely demonstrated that spatial prediction methods based on
ancillary information usually produce maps with higher accuracy, given that the primary and secondary
variables are significantly correlated [22,23]. Digital soil mapping (DSM) techniques have gained more
increasing appeal in recent years, providing rapid and cost-efficient tools for mapping soil properties
across large areas. These methods integrate measured data and auxiliary information, usually available
at finer spatial resolution than the point values of a primary target sampled variable [24]. Several
authors have used DSM techniques for SOC/SOM mapping, for example, Adhikari et al. [25] adopted
regression-kriging (RK) in Denmark, using 18 environmental variables as predictors for mapping the
spatial distribution of SOC. Guo et al. [26] applied random forest plus residuals kriging in an area
of China to estimate the spatial arrangement of SOM. Song et al. [27] combined estimation methods
with local terrain features to enhance their SOC prediction performance. Wang et al. [28] tested
three machine learning techniques for mapping SOC stocks in Australia, using several environmental
covariates from remote sensing. Lamichhane et al. [29] reviewed the applications of different DSM
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techniques reported in the scientific literature from 2013 until 2019 for mapping SOC concentration
and stocks.

Spatial interpolation by RK is a method that merges a regression of the primary dependent variable
on secondary ancillary variables with simple kriging of the regression residuals [30–33]. Ancillary
information is often derived from the digital elevation model (DEM), which provides topographic
information that allows for the calculation of terrain parameters, and from satellite imagery, both easily
available at relatively low cost. Since maintaining or increasing SOM is one of the main targets of SSM,
our research question was whether such a technique, already tested in limited areas in Italy [15,34],
could be suitable for SOM assessment at the regional level. We hypothesized that RK could yield
accurate estimates for site-specific analyses without further sampling expenses. The Abruzzo region in
central Italy was chosen as the study area due to the complexity of its territory, and for the availability
of suitable data for RK application.

In this framework, the study aimed to provide a spatial evaluation—at a regional level—of SOC,
soil USDA (United States Department of Agriculture) texture, and SOM levels based on the soil texture
from point data, estimating values in non-sampled locations by applying RK. Then, by transferring
them into a GIS software, we can produce a reliable estimate and a valid evaluation tool for a SSM.

2. Materials and Methods

2.1. Study Area

The study area, located in central Italy, consists of about 10,800 km2 corresponding to the territory
of the Abruzzo region. Among the 20 administrative regions of Italy, Abruzzo is one of the most
mountainous, located in the central peninsular part of the country. Bordered by the Adriatic Sea in the
east and by the Apennines in the west, its territory is very complex and heterogeneous. Within a few
kilometers, the environment changes from high mountains (Gran Sasso and Maiella) to the seashore,
passing through all the intermediate landscapes: mountain grasslands and woods, hills, plains and
river basins. While the mountain ranges lie along a NW–SE direction, the rivers cross them toward the
sea along a SE–NW direction. About 40% of the total surface is represented by utilized agricultural
area. Along the coastline, the climate is Mediterranean, warm and dry, gradually becoming continental
moving inlands. Mean annual air temperature goes from 6 ◦C in the mountains to 15 ◦C near the sea.
Mean annual rainfall ranges from 600–800 mm in the plains and in the river basins to 1000–1200 mm in
the hills, reaching 1600 mm in the mountains. Summer is everywhere the dry season.

Soil regions (SR) are the largest units of soil description, depicting areas with similar soil-forming
conditions. These are usually defined as typical associations of dominant soils, occurring in areas
limited by a specific climate and/or a characteristic association of parent material. In our study area,
soils belong to SRs 61.3, 61.1, and 16.4, as defined by the European Soil Bureau [35]:

• SR61.3: Hills of central and southern Italy on Pliocene and Pleistocene marine deposits and
Holocene alluvial sediments along the Adriatic Sea;

• SR 61.1: Apennine and anti-Apennine relieves on sedimentary rocks (Tertiary arenaceous marly
flysch) of central and southern Italy; and

• SR16.4: Apennine relieves on Mesozoic and Tertiary limestone, dolomite, and marl, and
intra-mountain plains [36].

In Figure 1, the digital elevation model of the region is reported, together with the location of the
sampling points and the boundaries of the SRs.
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Figure 1. Digital elevation model draped on a hillshade, with the location of the sampling points and
boundaries of the soil regions.

A land use map of the Abruzzo Region is reported as Supplementary Material (Figure S1).

2.2. Data Collection

The study dataset, provided by the Regional Agency for Agricultural Extension Services of
Abruzzo Region (ARSSA), consists of 1753 georeferenced soil samples collected by an auger (0–25 and
25–50 cm) in accessible agricultural and forest land. The physical and chemical routine analyses
included the measurement of particle size distribution according to the pipette method [37] and of
SOC content according to the modified Walkley–Black method [38]. The SOC stock in kg m−2 for each
soil profile was calculated as follows:

SOCstock =
n∑
1

soc× bd× th× (100− gr)
100

× 10−1 (1)

where soc is the organic carbon concentration in % for each soil horizon; bd is the bulk density of the
soil horizon in g cm−3 estimated by suitable pedofunctions, different for each type of horizon [39];
th is the thickness of the horizon in cm; gr is the gravel content in %; and n is the number of horizons in
the soil profile.

The SOM content was then evaluated from SOC [40] by means of the following formula:

SOM = SOC × 1.724 (2)

From an agronomic standpoint, the pedo-climatic context cannot be neglected in the evaluation of
SOM, because in different soil types, the same amount of SOM can differently impact soil functions.
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Thus, the SOM content of the study area was classified into four different levels (i.e., very low, low,
medium, and high) based on the USDA textural classes [41], as detailed in Table 1.

Table 1. Levels defined for Soil Organic Matter (SOM) evaluation based on USDA (United States
Department of Agriculture) textural classes [41].

USDA Texture Class SOM Content

Very Low Low Medium High

%
Sand, Loamy Sand, Sandy Loam <0.8 0.8–1.4 1.5–2.0 >2.0

Loam, Sandy Clay, Sandy Clay Loam, Silty Loam, Silt <1.0 1.0–1.8 1.9–2.5 >2.5
Clay, Clay Loam, Silty Clay, Silty Clay Loam <1.2 1.2–2.2 2.3–3.0 >3.0

Land use, vegetation, climate, and terrain features are the main factors affecting soil properties
at the landscape scale, particularly in hills, hence DEM-derived terrain attributes can be used for the
prediction of the spatial distribution of soil features. Ancillary data for the area were derived from:
(i) a 30 m degraded version of the 20 m DEM provided by the Land Information Service of the Abruzzo
Region; (ii) from Landsat 7 TM imagery (three visible bands and four infrared bands), and (iii) the
1:250,000 Soil Subsystems Map of Abruzzo available from ARSSA [42].

From the DEM, the following morphometric attributes were derived:

• Elevation (ELEV);
• slope gradient (SLOPE);
• curvature plan and profile (PLANC and PROFC), obtained from the second derivative of the

maximum slope direction and the perpendicular one respectively [43];
• solar radiation (SOLAR);
• Topographic Wetness Index (TWI);
• flow accumulation (FLOWACC), which represents the contributing area (i.e., the surface over

which water from rainfall, snowfall, etc. can be aggregated) [44]; and
• Stream Power Index (SPI).

TWI is a parameter correlating topography and the water movement in slopes, used to display
the spatial distribution of soil moisture and the shallow saturation degree:

TWI = ln(As/tanβ) (3)

where As is the specific catchment area and β is the slope [45].
SPI is used to describe potential flow erosion and related landscape processes. When specific

catchment area and slope steepness increase, both the amount of water contributed by upslope areas
and the velocity of water flow also increase, hence stream power and potential erosion increase:

SPI = As × tanβ (4)

where As is the specific catchment area and β is the slope [46].
From the Landsat 7 TM imagery (July 2016, cloud cover 0%), Clay Index (CI) and Normalized

Difference Vegetation Index (NDVI) were calculated. CI is correlated with the clay content of the soil:

CI =MIR/MIR2 (5)

where MIR is Mid Infra Red (band 6) and MIR2 is Mid Infra Red (band 7) [47]. NDVI gives a quantitative
and qualitative estimation of the vegetation:

NDVI = (NIR − R)/(NIR + R) (6)
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where NIR is Near Infra Red (band 5) and R is Red (band 4) [48].
From the 1:250,000 Soil Subsystems Map of Abruzzo Region by ARSSA [42], an additional

variable—SST86—was derived, defined by 29 different soil systems and 87 soil subsystems.
Converting the map into a raster, all these soil units were grouped in a single categorical variable.

Finally, a multivariate correlation analysis allowed us to consider as suitable covariates for
prediction only those auxiliary data with a relatively stronger spatial correlation with the target
soil variables.

2.3. Data Processing and Validation of Results

RK, a sort of BLUP (Best Linear Unbiased Prediction) method for spatial data, assumes that the
local mean varies continuously into each neighborhood, and can be estimated by combining both
directly measured data and correlated ancillary information [28,29]. The technique uses multiple
regression to depict the relationship linking the field primary variable and the secondary data. Kriging
is then applied to the regression residuals, and the results from both regression and kriging are joined
to obtain the estimation [49,50].

The available measured dataset was randomly divided in a training dataset (75% of total samples),
and a test dataset (25% of total samples), using only the training part for prediction and the test one to
validate the results.

For estimating the target variables (SOC, sand and clay) by RK, the computational steps reported
below were followed [34]:

1. set up and import predictor data layers (land-surface parameters and soil subsystems map);
2. match soil samples in the training dataset with land-surface parameters and build the regression

matrix. Since using the calculated parameters and indices directly as predictors may cause
multicollinearity and redundancy effects, the covariates were transformed in principal components
(PCs) [51]. Eleven orthogonal and independent components were defined, and the choice of
predictors for each variable was then performed by a stepwise regression, considering only the
components significant at p < 0.001;

3. linear regression analysis and derivation of the regression residuals, resolving the regression
coefficients by means of a maximum likelihood algorithm [52];

4. analysis of residuals for detecting spatial autocorrelation, and fitting of the theoretical
variogram models;

5. run the interpolation; and
6. visualization and validation of the results using the test dataset.

A flowchart of the procedure is reported in Figure 2. The software SAGA 7.6.3 [53] and ILWIS 3.8.6
Open [54] were used for the derivation of parameters and indices, and for PCs definition. The statistical
software R 3.6.3, with the packages sp and rgdal for spatial data preparation and gstat for geostatistical
modeling and prediction, was used to perform the regression analysis [55]. The software ArcGIS 10.2®

was used for drawing the estimated maps of SOC in kg m−2, soil texture (USDA classification), and
SOM levels based on the USDA texture as specified in Table 1.
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Figure 2. Flowchart showing the computational procedure for Digital Soil Mapping (DSM) based on
Regression Kriging (RK) [47].

To assess the precision of prediction, estimated values from the training dataset were compared
with the correspondent values from the test dataset and not used in the estimation procedure.
Such validation allowed us to evaluate the accuracy of the prediction model by measuring the root
mean square prediction error (RMSE):

RMSE =

√√√√√ N∑
i=1

(
Ẑ(xi) −Z(xi)

)2
N

(7)

where Ẑ(xi) and Z(xi) are the estimated values and actual observations, respectively, and N is the
number of validation points. The RMSE expresses the difference between the model estimations and
the observed values, presented in the same unit of measurement. If the value of RMSE is close (lower)
to the standard deviation of the data, then the model is a good fit [56]. The Geostatistical Analyst
extension of the software ArcGIS 10.2® was used to validate the estimation results.

3. Results and Discussion

Pre-processing of data included basic statistics calculation and frequency distribution analysis.
Two variables needed to be transformed to approach a normal distribution: sand (square root) and
SOC (cube root). The 11 parameters and indices derived from ancillary data (ELEVATION, SLOPE,
PROFC, PLANC, TWI, SOLAR, FLOWACC, SPI, CI, NDVI, SST86) were converted in PCs. Table 2
shows the matrix of transformation coefficients, calculated from the covariance matrix. The PC1 and
PC2 components were the most significant ones for the prediction of all the target variables. The last
component—PC11—was excluded a priori to avoid any rounding effect in the PCs computation with
ILWIS [46].
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Table 2. Matrix of principal components coefficients and their significance for prediction.

ElevationSlope Profc Planc Twi Solar Flowacc SPI CI NDVI SST86 Sand Clay SOC

PC1 0.277 0.236 0.334 0.334 0.256 0.419 0.026 0.055 0.358 0.404 0.330 *** *** ***
PC2 −0.344 −0.514 0.108 0.146 0.522 0.417 0.103 −0.051 −0.257 −0.238 0.036 *** *** ***
PC3 −0.371 −0.104 −0.022 −0.010 0.148 −0.040 0.042 0.026 0.433 0.443 −0.664 ** *** ***
PC4 −0.065 0.223 0.424 0.422 −0.398 0.258 −0.183 −0.224 −0.228 −0.206 −0.429 ***
PC5 0.474 0.305 −0.184 −0.099 0.370 0.193 0.157 0.366 −0.228 −0.174 −0.474 *** ** ***
PC6 0.326 −0.331 −0.175 −0.441 −0.293 0.570 −0.168 −0.295 0.098 0.117 −0.097 *** ***
PC7 −0.574 0.525 −0.154 −0.326 −0.084 0.422 −0.065 0.212 −0.011 −0.052 0.166 * ***
PC8 0.028 0.009 −0.013 −0.020 0.309 −0.110 −0.941 0.071 −0.009 −0.011 −0.010 * *
PC9 0.023 0.104 0.711 −0.612 0.204 −0.162 0.079 −0.174 −0.055 −0.021 −0.039 *
PC10 −0.013 0.361 −0.320 0.056 0.336 −0.056 0.063 −0.801 −0.045 0.013 −0.009 *** ***
PC11 0.040 0.013 0.018 0.007 0.041 0.020 0.011 −0.035 0.707 −0.703 −0.026

R2 0.72 0.81 0.93

Significance codes: *** = 0.001; ** = 0.01; * = 0.05.

The target variables were strongly correlated with the principal components, as can be seen
from the R2 values from the linear regression. As explained in the previous section, the choice of
the components to be used as predictors was performed by the stepwise regression, considering a
significance level of 0.001. For SOC estimation, the sum of PC1—PC2—PC3—PC5—PC7 was used; for
sand estimation, the predictor was the sum of PC1—PC2—PC5—PC6—PC10 components; for clay
estimation, the sum of PC1—PC2—PC3—PC4—PC6—PC10 components was chosen. Notably, all the
components selected as predictors were related to the soil type and position.

RK was applied to the SOC content of the training dataset as well as to the sand and clay data to
estimate soil texture. The prediction accuracy was evaluated comparing the values estimated using the
training dataset with the measured values from the test dataset that did not enter in the estimation.
The calculated RMSE was 0.31 for SOC, 1.76 for sand, and 11.56 for clay, lower than the standard
deviation of the measured data of 0.38, 2.09, and 15.02, respectively, and thus considered a very good
result, notwithstanding the irregular distribution of the sampling points.

In Figure 3, the estimated map of SOC is reported, showing that about 88% of the area has a SOC
content below 3.0 kg m−2.

In Figure 4, the map of USDA soil texture, estimated from sand and clay data using the training
dataset, is reported, showing that the prevailing textures are loam and sandy loam.

Finally, SOM in g kg−1 was evaluated from SOC (Equation (2)), then SOM values were ranked in
four classes (very low, low, medium, high) based on the estimated USDA texture (according to Table 1).
The obtained map is reported in Figure 5.

The observed SOM levels were related to soil morphology: in the hilly belt along the coast, the
map shows essentially a very low content, while in the interior, where soils are mainly under forest,
the SOM content reached a high class in most of the territory (about 53%). In the coastal area, the
SOM depletion can be considered both as a cause and effect of the active erosion on hills, usually
exacerbated by intensive agricultural practices. This area is indeed intensely cropped, as can be seen
from the land use map (Figure S1). Previous studies of the same type carried out in the northern part
of the region, concerning a vineyard district, showed that an intervention to enhance SOM content is
necessary [15,16,23,34]. Such a result is in line with the findings by Berhongaray et al. [57], who reported
that cultivation caused a reduction of 16% in SOC content at 50 cm depth in the Argentine Pampas.

In Abruzzo, an improvement in agro-environmental planning is required to ensure an appropriate
SOC/SOM content to soils, so that they can maintain their ecological and socio-economical functions,
and crop yield sustainability in agricultural lands. Stimulating the adoption of SSM practices through
the dissemination activity of agricultural extension services is fundamental to preserve soil resources.
Such practices can enhance soil quality (water holding capacity, infiltration, soil structure, and soil
fertility), improve the SOM cycle, and effectively contribute to climate change mitigation. A rational
soil management can also help to reduce GHG emissions, especially carbon dioxide emissions, favoring
a decrease in soil organic carbon losses, increasing the organic matter input, or combining both of
them [15].

86



Land 2020, 9, 349

 

Figure 3. Soil organic carbon content predicted by RK.

 

Figure 4. Soil texture predicted by RK (USDA).
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Figure 5. SOM levels based on the USDA texture predicted by RK.

This study, defining the current SOC/SOM status in a region of central Italy, provides evidence
that SOM management in its agricultural areas should be improved. The results of our study show
that in Abruzzo, most arable lands are susceptible to soil degradation, sped-up by dry conditions and
high temperatures causing a rapid mineralization of SOM. These areas need appropriate management
to guarantee agricultural land sustainability. Adopting conservative practices such as conservation
tillage or no-tillage (e.g., direct seeding), improving rotations with forage crops, returning crop residues
to soil, growing green manure crops, and supplying the soil with proper exogenous organic matter
could lead to an appropriate SOM restoration [16]. Permanent grasslands are effective for soil carbon
accumulation in mineral soils and the adoption of agroforestry—the integration of trees and shrubs on
agricultural land—and crop diversification might contribute to SSM [1].

An accurate state-of-the-art of SOC/SOM distribution would allow us to foresee future trends,
and to evaluate the effectiveness of soil conservation practices stabilizing and increasing carbon stock
in soils, which should be adopted for a more sustainable soil management. As in our case, mapping
SOC over a large area in Bosnia and Herzegovina by classical geostatistical methods [58] showed
that the spatial distribution of SOC concentration was strongly influenced by the intense farming
practices. In this case, however, the environmental variables had a reduced capacity to explain the
spatial variability of SOC. In Brazil, Bonfatti et al. [59] applied RK for mapping SOC, finding again a
similar situation: soils under arable crops and vineyard showed the lowest concentration.

In the northern part of Abruzzo, similar mapping work was carried out comparing ordinary
kriging and RK as spatial interpolators, and their performance resulted in being approximately the
same [34], depending on the available auxiliary information. Mapping targeted soil parameters such
as SOC/SOM applying RK, both in limited areas [15] and at the regional level, can represent a valid
tool, providing useful and accurate information to assess soil degradation in a cost-effective and little
time-consuming way. Such maps can also improve the process of carbon budgeting and reporting—in
line with global initiatives of minimizing greenhouse gas emission—and thus the impacts of climate
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change [60]. Moreover, they can really help farmers in managing soils, can influence and support local
land-use planners, and can also be easily updated whenever new data become available.

4. Conclusions

A spatial representation of SOM is essential to supply a useful and proper reference tool to decision
makers, facilitating and optimizing the regional planning of agro-environmental measures for a SSM.
Soil surveys taking into account the extremely large variability of the Italian territory are very difficult
and onerous. However, most soil attributes are spatially correlated with ancillary variables derived
from DEM, Landsat imagery. and existing soil subsystem maps.

In the Abruzzo region, analyzing the available data and estimating values in non-sampled
locations by means of RK—integrating measured data and ancillary variables—allowed us to map soil
texture, SOC, and SOM levels based on the USDA texture with an acceptable precision. These maps,
obtained at relatively low costs, could also be less accurate than the traditional ones, but providing
the associated estimation error may anyway bring added value. The observed SOC/SOM distribution
appears to be linked to the soil morphology and to the land use: low or very low in intensively cropped
hills near the shore, and high in mountains and forest land.

RK proved to be a rapid and cost-efficient tool for mapping soil properties across large areas,
allowing us to easily monitor their changes over time. Maps can be updated every time new information
and/or new data become available. In the next future, it is hoped that this technique will be successfully
coupled and associated with traditional soil surveying and mapping procedures, and then applied at
the national level.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/9/10/349/s1,
Figure S1: Land use map (from CORINE Land Cover, https://land.copernicus.eu/pan-european/corine-land-cover/
clc2018).
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Abstract: Soil organic carbon (SOC) is an important indicator of soil quality and directly determines soil
fertility. Hence, understanding its spatial distribution and controlling factors is necessary for efficient
and sustainable soil nutrient management. In this study, machine learning algorithms including
artificial neural network (ANN), support vector machine (SVM), cubist regression, random forests
(RF), and multiple linear regression (MLR) were chosen for advancing the prediction of SOC. A total
of sixty (n = 60) soil samples were collected within the research area at 30 cm soil depth and measured
for SOC content using the Walkley–Black method. From these samples, 80% were used for model
training and 21 auxiliary data were included as predictors. The predictors include effective cation
exchange capacity (ECEC), base saturation (BS), calcium to magnesium ratio (Ca_Mg), potassium to
magnesium ratio (K_Mg), potassium to calcium ratio (K_Ca), elevation, plan curvature, total catchment
area, channel network base level, topographic wetness index, clay index, iron index, normalized
difference build-up index (NDBI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI),
normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI) and
land surface temperature (LST). Mean absolute error (MAE), root-mean-square error (RMSE) and
R2 were used to determine the model performance. The result showed the mean SOC to be 1.62%
with a coefficient of variation (CV) of 47%. The best performing model was RF (R2 = 0.68) followed
by the cubist model (R2 = 0.51), SVM (R2 = 0.36), ANN (R2 = 0.36) and MLR (R2 = 0.17). The soil
nutrient indicators, topographic wetness index and total catchment area were considered an indicator
for spatial prediction of SOC in flat homogenous topography. Future studies should include other
auxiliary predictors (e.g., soil physical and chemical properties, and lithological data) as well as cover
a broader range of soil types to improve model performance.

Keywords: geostatistic; machine learning; geospatial modeling; predictive mapping; soil fertility
indices; environmental covariates

1. Introduction

Globally, soils of the humid tropics have received overwhelming acceptance for agriculture.
However, these soils in southeastern Nigeria have the potential that could be exploited for crop
production. Unfortunately, they are both highly weathered and leached soils formed on alluvial
deposits under excessive rainfall and high-temperature conditions [1,2]. This soil like other soils
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weathers through the actions of environmental conditions (i.e., topography, and other soil-forming
factors) to give the soil their genetic properties (e.g., soil pH, texture, clay, CEC, exchangeable cations) [3].
Soil texture, nutrient status, and mineralogical properties of alluvial deposits bear the imprints of
quartz oxides, which are not rich in most plant growth nutrients [4]. This status gives low crop yield
if there is no application of appropriate nutrient amendments. For example, the yield of fresh fruit
bunches (FFB) is estimated at 3–5 t·ha−1 from University of Calabar Teaching and Research Farm;
under alluvial deposits soil is far less than the national average of 8–12 FFB t·ha−1 and world-record
yields of 25–35 t·ha−1 in Malaysia [5].

Soil organic carbon (SOC) is an essential indicator of soil quality, and directly determines soil
fertility and plant productivity [5]; it plays a significant role in supplying nutrients to the soil and in
the formation of improved soil structure. In previous years, several soil researchers have reported
variability of SOC in different ecological zones of the world [6–8]. These studies are in line with
the different assumptions, including the fact that variation in crop yield within a given field reflects
variation in SOC [9]. Their studies further explained that in order to achieve appropriate soil nutrient
management for uniform crop yield, it is necessary to know where the low SOC, as well as soil
nutrients, reside within a given field, and how much carbon or soil nutrient is present. This is
essentially the importance of quantitative soil mapping. The accurate and up-to-date information
obtained in the process ensures the application of site-specific nutrient management to match spatially
variable conditions.

Variability of soil nutrients is a significant constraint for sustainable crop production due to the
resulting non-uniformity of output across different sections of the field. One way of minimizing
heterogeneity in the soil resulting in different crop yields is through digital soil mapping (DSM), but it
is often constrained by within-site variability [10]. These issues became the target of a site-specific
cropping system, otherwise known as precision agriculture. The technique of precision agriculture can
delineate sites for specific management. Precision agriculture has now been developed to spatially
varied nutrients and soil properties within a field relying on geospatial technologies and utilizing soil
properties, remote sensing data, digital elevation model (DEM), micro-climatic data, and geology [11].
Precision agriculture allows farm managers to manage within-field variability to maximize the
cost–benefit ratio of the proposed crop enterprise. Besides that, specific landscape attributes control
the spatial distribution of SOC coupled with the interactive action of soil-forming factors [3,12].

In agro-ecosystems, the spatial distribution of soil properties is affected by natural ecological
processes influenced by many factors, including climate, soil type, topography, and land use. It thus
becomes a challenge to accurately model SOC at farm scales [10,13] over a broader area that spans
several kilometres without taking into consideration these factors. Before the advent of geospatial
technologies, the spatial distribution of soil properties including SOC was assessed from conventional
soil surveys and laboratory analyses of collected soil samples utilizing classical statistics; an approach
that is tedious, time-consuming, and expensive. The traditional soil survey method could not
provide detailed information about soil variation required for many environmental applications. Thus,
alternative approaches are needed. As an alternative, the digital soil mapping (DSM) technique was
developed and became one focus of soil and environmental science. Under the framework of the DSM,
several geostatistics prediction methods, as found in John et al. [9], have been developed to predict the
spatial distribution of soil properties.

Through the advances in technology, there is a comprehensive application of machine learning
algorithms such as multiple linear regression (MLR), artificial neural network (ANN), support vector
machine (SVM), decision tree, cubist regression, and random forests in soil studies using auxiliary
environmental data [8,14].

Environmental auxiliary data such as digital elevation models (DEM), remote sensing, climatic data,
and geology have been combined via predictive models to estimate soil properties. A large number of
existing DEM data sets (e.g., SRTM DEM and Aster GDEM) [6,15,16] has been used to extract terrain
attributes (e.g., elevation, slope, aspect, topography wetness index) as predictors for predicting soil
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properties. Remote sensing images, on the other hand, have also served as excellent data for both
qualitative and quantitative study of soil properties, including SOC [7,8,15]. Previous studies on
predicting SOC primarily utilized multi-spectral optical sensors, including Landsat [6,8], MODIS [17],
SPOT [18], RapidEye [19], Landsat and MODIS [15], and Landsat and ALOS PALSAR [20].
Remote sensing data provides a cost-effective, reproducible, and spontaneous approach to quantifying
SOC variability [21]. This technique is achieved through the correlation between soil reflectance and
SOC. In [22] it is reported that the increase in SOC is inversely proportional to an overall decrease in
reflectance in the visible (Vis, 400–700 nm), near-infrared (NIR, 700–1400 nm), and shortwave infrared
(SWIR, 1400–2500 nm) regions of the electromagnetic spectrum (McMorrow et al. [23,24]).

Fathololoumi et al., [25] worked on improved digital soil mapping with multitemporal remotely
sensed satellite data fusion in Iran using random forest (RF) and cubist models. Their results showed
that the cubist model exhibited greater accuracy than RF in the modeling of SOC. While in the
high-resolution mapping of soil properties using remote sensing variables in southwestern Burkina
Faso (studies conducted by Forkuor et al. [19]), RF performed better in the prediction of SOC. In addition,
in the prediction and mapping of soil organic carbon using MLA in Northern Iran by Emadi et al. [15],
the deep neural network (DNN) model was reported as a superior algorithm with the lowest prediction
error and uncertainty. Bian et al. [7] utilizes multiple stepwise regression (MSR), boosted regression
trees (BRT) model, and boosted regression trees hybrid residuals kriging (BRTRK) to model SOC in
northeastern coastal areas of China. Similarly, Taghizadeh-Mehrjardi et al. [6] use the artificial neural
network (ANN), support vector regression (SVR), k-nearest neighbour (kNN), random forest (RF),
regression tree model (RT), and genetic programming (GP) to predict SOC. Their study recommended
the combination of ANN and equal-area spline functions for predicting SOC spatial distribution in the
Baneh region of Iran.

Despite the acceptability of MLA in DSM, few or no studies have considered the incorporation of
soil nutrient indicators and environmental data in modeling SOC in southeastern Nigeria and the world
at large. Additionally, the Nigeria environment is yet to get acquainted with the modeling program
involving MLA in soil mapping, and no feasible study has been carried out elucidating this approach,
despite the region’s active engagement in agriculture production. Consequently, a fundamental
knowledge gap remains, hindering the ability of farm managers and agronomists to improve the land
and soil quality. Furthermore, we hypothesize that in flat terrain configuration, soil nutrient indicators
play many roles in explaining SOC distribution to ancillary environmental data. Therefore, in this
study, we applied five machine learning algorithms (RF, Cubist, ANN, MLR, and SVM) to estimate
the SOC variability in a flat alluvial terrain condition with environmental variables and soil nutrient
indicators known to influence SOC variability in the alluvial deposit of Calabar, Nigeria.

2. Materials and Methods

2.1. Description of the Study Area

The study was conducted in Calabar, Cross River State. The study area extends from latitudes
4◦57’ N–5◦00’ N and longitude 8◦19’ E–8◦24’ E (Figure 1), and spreads over an area of approximately
60 km2 with an elevation range of 1 to 102 m above sea level. The area is characterized by a humid
tropical climate with distinct wet and dry seasons. This area receives average annual rainfall exceeding
2500 mm per annum; and the average minimum and maximum temperatures of this area are about
22 ◦C and 30 ◦C, respectively, with a mean relative humidity of 83% [26]. The principal crops grown
in the area include maize, sugar cane, cassava, groundnut, oil palm and vegetable crops (okra,
Telfairia occidentalis, pepper, waterleaf, Amaranthus cruentus, etc.). The soils of the study area are
developed on coastal plain sand parent material [27]. They are characterized by udic moisture regime
and isohyperthemic temperature regimes, respectively [28]. Furthermore, according to USDA soil
taxonomic classification, the soil order of the region is overwhelmingly Ultisols, and the soil is classified
as Typic kandiudults [29].
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Figure 1. Geographical position of the study area in Cross River State.

2.2. Soil Sampling Regime and Laboratory Analysis

A total of sixty (n = 60) composite soil samples were collected at a depth of 0–30 cm with the aid
of a soil auger at a sampling density of one sample per 3.3 m2 and were thoroughly mixed in a Ziploc
bag to obtain a homogenized sample. The soil sampling at 0–30 cm is the depth of the tillage zone.
We sampled to this depth because there is no significant accumulation of SOC beyond 30 cm in the
alluvial deposit. The sampling was aided by a hand-held global positioning system (GPS) (Garmin
eTrex 10). These samples were adequately labeled and transported to the laboratory for analysis.

The samples were air-dried, ground, and passed through a 0.5 mm sieve. The SOC was
determined by the standard Walkley–Black wet oxidation method using acid dichromate (K2Cr2O7)
solution, as outlined in Udo et al. [30]. At the same time, effective cation exchange capacity (ECEC),
base saturation, calcium (Ca), magnesium (Mg), and potassium (K) were obtained by standard
laboratory procedure prescribed by Udo et al. [30]. These analyses were carried out at the University of
Calabar Soil Science Department Laboratory. The soil nutrient indicators used as part of the explanatory
variables was estimated from the already laboratory-measured soil properties, for example, Ca2+ to
Mg2+, K+ to Mg2+ and K+ to Ca2+ ratios were calculated using their representative basic cations;
furthermore, in this study, they are represented as Ca_Mg, K_Mg, K_Ca, respectively.

2.3. Environmental Covariates

Environmental covariates were derived from both the digital elevation model (DEM), obtained at
the spatial resolution of 30 m from ASTER GDEM, and Landsat 8 operational land imager (OLI) and
a thermal infrared sensor (TIRS) acquired at https://earthexplorer.usgs.gov. DEM was processed using
System for Automated Geoscientific Geographical Information System (SAGA-GIS) software terrain
analysis toolbox.

The Landsat 8 Operation Land Imager (OLI) remote sensing data Path 187/Row 57
was acquired 2 January 2018 (growing season) with a cloud cover of 6.31% and SCENE_ID
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“LC81880562018361LGN00”, and used to derived spectral indices and land surface temperature
(LST) (Table 1). The images contain nine spectral bands with a resolution of 30 m (multi-spectral), 15 m
(panchromatic), and 100 m (TIRS bands 10 and 11), resampled to 30 m. The Landsat images were
geometrically corrected and projected to a World Geodetic System 1984 (WGS 84) into a Universal
Transverse Mercator (UTM) Zone 32N coordinate system. Detailed specifications and preprocessing
method of the Landsat 8 OLI images to obtain surface reflectance images can be found in Roy et al. [31].
The area of interest (AOI) was demarcated in the satellite images with the help of the polygon feature
using the ArcGIS 10.8 software (ESRI, Redlands, USA) environment.

Table 1. Environmental covariates for soil organic carbon prediction.

Environmental Covariates Variable Description

Landsat 8 OLI

b3 Green, 0.525–0.600 μm

b4 Red, 0.630–0.680 μm

b5 NIR, 0.845–0.885 μm

Clay index (CI) CI = SWIR1
SWIR2

Iron index Iron index = Red
Blue

Normalized Difference build-up
Index (NDBI)

NDBI =(SWIR – NIR)
(SWIR+NIR)

Ratio Vegetation Index (RVI) RVI = NIR
RED

Soil Adjusted Vegetation Index
(SAVI)

SAVI = (NIR – RED)
(NIR+RED+L) × (1 + L)

Normalized Difference Vegetation
Index (NDVI)

NDVI =(Band 5 – Band 4)
(Band 5+Band 4)

Normalized Difference Moisture
Index (NDMI)

NDMI =(NIR – SWIR)
(NIR+SWIR)

Land surface temperature (LST) LST = BT{1+[(λBT/ρ)lnε]}

ASTER GDEM

Elev Elevation
PCurv Plan curvature
TCA Total catchment area

CNBL Channel Network base level
TWI Topographic wetness index

Retrieval of land surface temperature (LST) from thermal infrared sensor (TIRS) band 10 was carried
out according to the following sequence of steps. The first step involves the conversion of the Digital
number (DN) of the thermal infrared band into spectral radiance (Lλ) as presented in Equation (1):

Lλ = ML ×Qcal + AL (1)

where, Lλ = atmospheric spectral radiance (SR) in watts/(m2 · srad · μm), ML = band-specific
multiplicative rescaling factor from the metadata, Qcal = corresponds to band 10, AL = band-specific
additive rescaling factor from the metadata.

The second step involves the conversion of spectral radiance to brightness temperature in Celsius.

BT =
K2

ln
(K1

Lλ+1
) − 273.15 (2)

where, BT is the satellite brightness temperature in Celsius, and K1 and K2 represent thermal conversion
from the metadata.

Lλ = spectral radiance at the sensor′s aperture
[
W/
(
m2 · sr · μm

)]
where, W = Atmospheric water vapor content.
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The next step was the calculation of the normalized difference vegetation index (NDVI),
the proportion of vegetation (PV), which is highly related to the NDVI, and emissivity (ε), which is
related to the PV.

NDVI =
(Band 5 − Band 4)
(Band 5 + Band 4)

(3)

Estimation of the proportion of vegetation PV

PV =

[
NDVI − NDVImin

NDVImax − NDVImin

]2
(4)

Estimation of land surface emissivity (LSE)

ε = 0.004 × PV + 0.986 (5)

Calculation of land surface temperature

LST =
BT{

1 + [(λBT/ρ)lnε]
} (6)

where LST is Celsius, BT is the at-sensor brightness temperature in Celsius, λ (10.8μm) is the wavelength
of the emitted radiance: ρ = h × c/σ = 1.438 × 10−2 mK, σ is the Stefan–Boltzmann constant, h is Planck’s
constant, c is the velocity of light, and ε is the land surface emissivity (LSE). The computation of other
covariates from Landsat 8 OLI is shown in Table 1.

2.4. Machine Learning Techniques

In this study, five ML algorithms, including random forest (RF), cubist regression, artificial neural
networks (ANN), support vector machine (SVM), and multiple linear regression, were chosen. A brief
description of the ML techniques used in this study are presented as follows:

2.4.1. Random forest

Random forests (RF) is an ensemble of classification and regression trees (CART). This MLA
was developed by Breiman [32] and is said to be as accurate as or better than adaptive boosting,
yet computationally faster [33,34]. RF algorithm can handle both continuous and categorical variables.
The RF algorithm is quite robust to noise in predictors and thus does not require a pre-selection of
variables [35]. In RF, two hyperparameters are usually modified by users to regulate the complexity
of the models, including (a) the number of trees (or iterations) (ntree), which also corresponds to the
numbers of decision trees; random forests will overfit if the number is too large; (b) and mtry depicts
the number of indicators that are randomly sampled as candidates at each split. In this case study,
we will tune two parameters, namely the ntree and the mtry parameters that have the following effect
on our random forest model.

In this present study, the model performance is obtained from each combination of the
hyperparameters tuning with the grid search method [36] with cross-validation (CV) methods.
K-fold CV is one of the extensively employed CV methods in machine learning and there is no definite
rule for selecting the value of k. However, a value of k = 5 or 10 is ubiquitous in the field of applied
machine learning and in this present study, we adopted this k = 10 in five repetitions. This was executed
to avoid bias in data selection during RF hyperparameters tuning. According to Rodriguez [37],
the bias of an accurate estimate will be smaller when the number of folds is either five or ten.

2.4.2. Cubist Regression

The cubist model was developed by Quinlan [38] as a rule-based model which is an extension of the
M5 tree model. According to Kuhn [39], the model structure consists of a conditional component—or

98



Land 2020, 9, 487

piecewise function acting as a decision tree, coupled with multiple linear regression models. The trees
are reduced to a set of rules which are eliminated via pruning or combined for simplification. The main
benefit of the cubist method is to add multiple training committees and boosting to make the weights
more balanced [38–40]. The cubist model adds boosting with training committees (usually greater than
one) which is similar to the method of “boosting” by sequentially developing a series of trees with
adjusted weights. The number of neighbours in the cubist model is applied to amend the rule-based
prediction [39]. This model was implemented in R with tuning two hyper-parameters: neighbors
(Instances) and committees (Committees). These two parameters are the most likely parameters to
have the largest effect on the final performance of the cubist model. Cubist followed a similar approach
in RF

2.4.3. Artificial Neural Network

In predictive modeling and forecasting, as well as nonlinear and impermanent time series of
processes where there is no exact solution and clear relationship to recognize and describe them,
artificial neural networks have shown good performance. The frequently used ANN model is referred
to as the multilayer perceptron (MLP). This model is occasionally used as a substitute for a feed-forward
network. The MLP requires a well-known output so that to learn and train the network; this type of
neural network is referred to as a supervised network. MLP produces a model that plots the input
to the output using training data so that subsequently, the model is applied to predict the output
when it is unknown. In the present study, and after some preliminary tests to choose the model,
multilayer feed-forward back-propagation ANN was applied [41]. The ANN models are well adapted
for modeling nonlinear behaviour. They have the capacity of learning for complex relationships
between multiple inputs and output variables. The ANN model was run in R using the package “nnet.”
The best structure for the ANN model was obtained by changing the size (number of units in the
hidden layer).

2.4.4. Multiple Linear Regression

Multiple linear regression (MLR) is a machine learning algorithm applied to regress a target
variable that is SOC in this study against some selected covariates (e.g., environmental variables and
soil nutrient indicators). In soil spatial prediction functions, MLR is a least-squares model where
a targeted soil property is predicted from selected explanatory variables. So, in this present research,
a linear relationship was established for SOC (response variable) using the explanatory variables.
A simple MLR equation is presented in Equation (1).

y = a +
n∑

i−1

bi × xi ± εi (7)

where n = number of predictors; y = response variable (SOC); xi = explanatory variables or predictors
(environmental and soil nutrient indicators variables); a = intercept (constant term); bi = partial
regression coefficients; εi = the model’s error term (also known as the residuals).

This was automatically implemented in R using the k = 10 folds CV in five repetitions. In addition,
the tuning parameter “intercept” was held constant at a value of true

2.4.5. Support Vector Machine (SVM)

Support vector machine (SVM) is a machine learning algorithm that produces an optimal
separating hyperplane to differentiate classes that overlap and are not separable in a linear way.
It was originally developed for classification purposes; however, it can also be used for regression
problems [42]. In this study, SVM for regression (SVR) was implemented. SVR is a kernel-based
learning regression method that was proposed by Cherkassky [43]. It is based on the computation of
a linear regression function in a multidimensional feature space. Hence, modeling a linear regression
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hyperplane for nonlinear relationships is possible with the feature space. Two forms of SVM regression,
namely, “epsilon (ε)-SVR” and “nu (v)-SVR,” are commonly used in the SVM model. The original
SVM formulations for regression (SVR) use parameter cost (c) and epsilon (ε) to apply a penalty to
the optimization for points that are incorrectly predicted. Several studies, including Siewert [44] and
Zhang et al. [45] have utilized SVR in environmental monitoring studies to predict SOC. In SVM
regression, the Gaussian Radial Basis Function (RBF) kernel was applied. We employed the RBF
kernel to obtain an optimal SVM regression model which is important to obtain the best set of penalty
parameters C and kernel parameters gamma (γ) for the SOC training datasets. In the present study,
we evaluated the training set and then tested the model performance on the validation set.

2.5. Data Scaling and Partitioning

The dataset used for modeling (n = 60) was scaled to a range between 0 and 1, indicating the
lowest and the highest value, respectively. To evaluate the suitability of the different models for SOC
prediction, a completely random technique was applied to divide the dataset into training (80%),
and test (20%) datasets. Each model was fitted using the train data while the test data was used for
validation. A 10-fold cross-validation was applied to the training dataset for each of the models used
in the study and repeated five times. This and all modeling were performed in R software [46].

2.6. Model Validation and Accuracy Assessment

From the pool of twenty (22) SOC predictors, only the significant predictors (p-value < 0.1)
were selected to build a prediction model. This was established using a simple correlation matrix.
The models selected for this study were evaluated for their performance. The models were trained
with 80% of the dataset (i.e., 48 observation points) and the validation set was tested by the remaining
20% of the dataset (i.e., 12 observation points). Mean absolute error (MAE), root-mean-square error
(RMSE) and R2 were used to determine the model performance according to the following equations:

MAE =
1
n

n∑
i=1

∣∣∣SOC(Xi) − SOC
(
X̂i
)
| (8)

RMSE(%) =

√√
1
n

n∑
i=1

[SOC
(
X̂i
)
− SOC(Xi)]

2
(9)

R2(%) = 1−
∑

i [SOC(Xi) − SOC
(
X̂i
)
]
2

∑
i [SOC(Xi) − SOC

(
X̂i
)
]
2 (10)

where n = the size of the observations, SOC(Xi) =measured response and SOC(X̂i) = predicted response
values, respectively, for the i-th term observation, SOC(Xi) being the average of the response variable.
Furthermore, a good model prediction was expected to have low MAE and RMSE as well as an R2

value close to 1. Li et al. [47] proposes a classification criterion for R2 values: R2 < 0.50 (unacceptable
prediction), 0.50 ≤ R2 < 0.75 (acceptable prediction) and R2 ≥ 0.75 (good prediction). The same criterion
was applied in the current study.

3. Results and Discussion

3.1. Descriptive Statistics

The descriptive statistics of the SOC of the study site are shown in Table 2. SOC value ranged
from 0.32 to 3.10% with the mean of 1.62% and coefficient of variation (CV) of 47%. According to
the classification proposed by Wilding and Drees [48], SOC samples indicated high variability
(CV > 35%) which may be attributed to random factors such as environmental factors and measurement
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errors [49,50]. Using Landon [51] rating for tropical soils, the SOC of the study was generally
low. The low SOC in the soil is consistent with the findings by Akpan-Idiok and Ogbaji [29] and
Taghizadeh-Mehrjardi et al. [6] in Cross River State, and also with that of Bednář and Šarapatka [52] in
the Czech Republic. The low SOC content may be attributed to the disturbance of the topsoil (0–30 cm)
during tillage activities in preparation of the site for planting, in addition to high temperature, and
high erodibility of the soils resulting from high rainfall intensity experienced in the area [1].

Table 2. Descriptive statistics of soil organic carbon (SOC).

n Mean Median SD Min Max 1st Quartile 3rd Quartile CV

→%←
SOC 60 1.62 1.38 0.76 0.32 3.10 1.0 2.24 47

Furthermore, intensive cultivation depletes soil organic matter accumulation, and in turn lowers
SOC content through the increase in decomposition rate generated by the change in the aggregate
structure of the soil due to the cultivation and mixing effect of tillage [53]. The current study is
supported by the plausible reasons that intensive cultivated systems reduce SOC contents due to
increased mineralization created through soil surface disturbance [54–57].

3.2. Correlation between SOC and Environmental Variables and Soil Indicators

Figure 2 shows the correlation between SOC and environmental variables and soil indicators.
SOC was weakly correlated with b5 (r = 0.2), clay_index (r = 0.2), LST(r = −0.2), RVI (r = 0.2),
SAVI (r = 0.2) and NDVI (r = 0.2) obtained from Landsat satellite imagery. Similarly, SOC was weak
but significantly correlated with elevation (r = −0.2), total catchment area (r = 0.2), topographic wetness
index (r = 0.2) and channel network base level (r = 0.2) derived from digital elevation model (DEM).
The result obtained here showed that environmental variables obtained from Landsat imagery gave
a poor relationship with SOC in a flat topographical system. Environmental variations in areas with
a small range of topography, such as plains, are usually very small [20]. This factor including but
not limited to the time of acquiring spaceborne data and intensive crop cultivation utilizing chemical
fertilizers in the area, could be responsible for the low correlation between SOC and NDVI in the
studied soil. Furthermore, NDVI may only show a high contribution to SOC when the crops are
producing more crop biomass. The result is supported by the findings of Florinsky et al. [58] and
Mosleh et al. [10].

Additionally, the effect of environmental variables for SOC in this low-relief area was weakly
correlated, and the spatial variability of SOC cannot be obtained by total dependence on both terrain
and remote sensing parameters. On the other hand, a good relationship was obtained between SOC
and soil nutrient indicators. That is, SOC was strongly correlated with ECEC (r = 0.50), base saturation
(BS) (r = 0.60), K_Ca (r = −0.60) and moderately correlated with Ca_Mg (r = 0.40). ECEC and BS
increase with an increase in organic matter accumulation [56,59]. The observation between soil nutrient
indicators (Ca_Mg and K_Ca) and SOC represents that the accumulation of organic materials in the
soil surface may increase or decrease Ca, Mg and K in the soil.
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Figure 2. Correlation matrix between SOC (%) and environmental variables and soil nutrient indicators.

3.3. Modeling Approach and Variables of Importance in the Individual Models

The optimum selection strategy of covariates is that the correlation between the covariates
and the response variable is significant or high, and the covariates are obtained effortlessly [16].
Among 22 explanatory variables, only 14 of the explanatory variables that showed a significant
correlation with SOC were selected (p < 0.01). These variables were b5, clay_Index, LST, RVI, SAVI,
NDVI, elevation, total catchment area, topographic wetness index, channel network base level, ECEC,
BS, K_Ca and Ca_Mg.

For RF prediction model, as shown in Figure 3, Ca_Mg, BS, ECEC, K_Ca, topographic wetness
index best predictors to explain the variability of SOC in a flat terrain system. In addition, the result
reveals that the soil nutrient indicators contribute much more compared to environmental variables in
estimating SOC in a flat topographic system.

Similarly, the environmental variables show their inability to contribute to SOC prediction in low
relief conditions. This result is supported by Mosleh et al. [10]. They conducted a study in Iran and stated
that environmental variables are not essential relative variables in low relief conditions. Furthermore,
Solly et al.’s [60] report supported this current study through the study done in Switzerland on the
preservation of SOC using cation exchange capacity plus mean annual temperature, mean annual
precipitation, and leaf area index. Their study concludes that soil physical and chemical properties
serve as better predictors in a homogenous terrain. Similar conclusions were reported by Song et al. [61],
who noted that local environmental attributes play a less significant role than other predictors on a flat
terrain system. Li et al. [62] inferred that environmental attributes could capture large-scale influences
of soil transport but not those occurring at a flat topographic condition. Thus, the over-employment of
environmental factors in small-scale flat terrain areas reduces the prediction accuracy and increases the
calculation complexity.

Presented in Figure 4 is the cubist model prediction using the calibration set. The plot showed
a similar output with RF. Ca_Mg was the best predictor with BS, b5, ECEC and topographic wetness
index following. Similarly, in the artificial neural network model (Figure 5), the best predictor is ECEC,
closely followed by BS, Ca_Mg, K_Ca and b5. Landsat near-infrared band (b5) gave a 50% contribution
to SOC prediction, and this is reverse to a region with strong undulating topography as reported
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by Emadi et al. [15] for complex terrain. This output is also similar to the previous models and still
powerfully reveals the dominance of soil nutrient indicators in the estimation of SOC.

Figure 3. Relative importance variable for SOC using random forest (RF) model.

Figure 4. Relative importance variable for SOC using cubist model.
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Figure 5. Relative importance variable for SOC using an artificial neural network model.

According to Figure 6, MLR presented high relative importance (>50%) of the explanatory
variables. ECEC was the best predicting variable and then followed by BS, Ca_Mg, clay_index and LST.
In Figure 7, the support vector machine model followed a similar pattern as compared to other models
(i.e., RF and cubist). That is, soil nutrient indicators do a better job in estimating SOC to environmental
variables in flat terrain condition under small-scale.

Figure 6. Relative importance variable for SOC using multiple linear regression (MLR).
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Figure 7. Relative importance variable for SOC using support vector machine (SVM).

Support vector machine model yielded Ca_Mg as the best predictor and then followed by BS, ECEC,
K_Ca, b5, clay_index and topographic wetness index. The percentage contribution by topographic
wetness index to SOC prediction is above the value reported by Emadi et al. [15]. However, they follow
a similar pattern in that they contribute a little amount in SOC variability in low relief conditions.
In all the five MLAs, NDVI made little or no contribution to SOC estimation, and this is contrary to
what is experienced in more complex terrain.

3.4. SOC Estimation Using Different MLAs

Prediction model accuracy was assessed using standard validation indices such as MAE, RMSE and
R2 by 10-fold cross-validation and repeated five times. The results for both the calibration and the
validation datasets are listed in Table 3. The model output was good using the calibration dataset
(n = 48) except for MLR that gave an unacceptable prediction with calibration datasets (0 < R2 < 0.50).
In the calibration, the best performing model was ANN followed by RF, cubist, SVM and MLR with R2

values of 0.94, 0.64, 0.54, 0.52 and 0.42, respectively. Using the validation dataset, the proposed MLA
models showed their capabilities to predict SOC contents at an unsampled location in the southeastern
region of Nigeria. The best performing model was RF (R2 = 0.68) followed by the cubist model
(R2 = 0.51), SVM (R2 = 0.36), ANN (R2 = 0.36) and MLR (R2 = 0.17). According to Li et al.’s [47]
proposed model accuracy classification, RF and cubist models gave acceptable prediction as they fell
within 0.50 < R2 < 0.75, while ANN, MLR and SVM gave unacceptable prediction (0 < R2 < 0.50) for
SOC in flat terrain conditions. The R2 value reported in the current study was higher than that of Wang
et al. [20]. They achieved an R2 mean value of 0.48 of the total spatial SOC variability using the RF
algorithm in a flat terrain of semiarid pastures of eastern Australia. Using, MLR, ECEC was the most
important variable with lower R2 value when compared to Nath [63] who reported R2 of 0.31 with
curvature as the important variable.

The RF algorithm showed the lowest mean MAE value (0.17) of the five studied ML algorithms.
The cubist algorithm had the highest error with mean RMSE values of 0.57 compared with other ML
models; meanwhile, RF outperformed with the lowest mean RMSE value (0.20). Contrary to the report
by Emadi et al. [15] who stated that ANN, RF and cubist models had a similar predictive ability to forecast
SOC in the Mazandaran province of Iran, in this current study, only RF and cubist models showed similar
predictive ability. In addition, the study also contradicts the report by Taghizadeh-Mehrjardi et al. [6]
and Zhang et al. [45] that reported ANN as the best model. Concerning R2, the low predictive ability
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of ANN has been reported by Mosleh et al. [10]. However, this model could be improved by the
acquisition of large datasets and parameters in order to fit the model that yields good performance [64].

Table 3. SOC calibration and validation results of the five machine learning models by
10-fold cross-validation.

Model Calibration (n = 48) Validation (n = 12)

MAE RMSE R2 MAE RMSE R2

RF 0.15 0.17 0.64 0.17 0.20 0.68
Cubist 0.18 0.22 0.54 0.49 0.57 0.51
ANN 0.04 0.06 0.94 0.22 0.26 0.36
MLR 0.60 0.77 0.42 0.23 0.28 0.17
SVM 0.17 0.21 0.52 0.19 0.22 0.36

RF: random forest; ANN: artificial neural network; MLR: multiple linear regression; SVM: support vector machine.

Figure 8 shows the scattered plots of RF, cubist, ANN, MLR and SVM predicted versus the
measured SOC, respectively. In the figures, the central lines (1:1 line in black color) represented
(predicted =measured). In Figure 8A reveals that RF scattered plots were more closed to the measured
line than others. The plot further substantiated the MAE, RMSE, R2 values obtained here, indicating RF
as the best model predicting SOC at point scale for both calibration and test datasets using both
environmental and soil nutrient indicators as variables.

 
Figure 8. Measured vs. predicted values of soil organic carbon using five machine learning
algorithms:(A) RF, (B) cubist, (C) ANN, (D) MLR and (E) SVM. (RF: random forest; cubist: regression
tree; ANN: artificial neural networks; MLR: Multiple linear regression; SVM: support vector machine).

Generally, Bou Kheir et al. [65] reported that SOC variation in the floodplain of Denmark
is explained by both environmental variables, remote sensing data, and soil-related data.
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Wiesmeier et al. [66] reported that land use, soil types, and parent materials were the most critical
variables controlling SOC distribution. Adhikari et al. [67] demonstrated the usefulness of
environmental variables plus soil-related variables in explaining the SOC distribution down the
soil depth in flat terrain. Besides the works mentioned above, this current study seems to contribute
to the variables of choice in SOC prediction by including soil nutrient indicators (Ca_Mg, ECEC, BS,
K_Ca) and these soil nutrient indicators are vital in crop growth and development. What happens
in a flat terrain condition is that there is a slow rate of organic matter degradation and since soil
organic matter has a large exchangeable site, basic cations (Ca2+, Mg2+, K+ and Na+) are absorbed into
the soil solution [68–70]. On the other hand, environmental variables that are supposed to facilitate
the process of soil organic matter decomposition are impeded because these activities are carried on
a homogenous terrain. Thus, they make very little or no contribution to SOC prediction as exposed in
this current paper.

3.5. Digital Soil Mapping of SOC

The spatial result of digital SOC maps was produced with extracted cultivated land via the
different models (RF, cubist, ANN, MLR and SVM) (Figure 9). RF and cubist models’ predicted SOC
maps (Figure 8A) were relatively similar to the measured SOC map (Figure 9B) and showed substantial
spatial variability of SOC. High predicted SOC values occurred in the center, northeastern, eastern and
northwestern and southern parts of the research area, where the land was mainly covered by groundnut,
pumpkin, litter falls as a result of dense vegetation cover. In addition, long-term application of organic
manure could explain the high SOC contents in these parts of the research area used for cultivation.
Similarly, the dominant low values were observed in all the parts of the maps were possible because of
the loss of soil nutrients in the area through active cultivation without proper management procedures.

Figure 9. Prediction maps for soil organic carbon.

107



Land 2020, 9, 487

The maps generated by the MLR and SVM models are presented in Figure 9E,F, which highlight
the high and low values in all the geographical positions of the maps. Compared with the RF, cubist,
MLR and SVM models, the map of ANN more strongly manifested low SOC values in all the parts
with high values at the center of the study area. Moreover, the map obtained by MLR resembled that
of the SVM model (however, the map acquired by MLR ranged from 1.0 to 3.0% while SVM ranged
from 1.0 to 2.6%).

4. Conclusions

In conclusion, among several predictors considered in this current study, environmental variables
(b5, topographic wetness index and total catchment area), and soil nutrient indicators (Ca_Mg, ECEC,
BS, K_Ca) had a significant influence on SOC distribution in the study area. They are valuable indicators
in SOC prediction in flat homogenous topography. The RF model was the best model in the study.
The resulting SOC map from RF prediction showed low SOC in the east and high SOC in the west
direction of the site. The map suggests the gradual transportation and deposition of soil sediments.
The study confirmed that SOC distribution could be digitally mapped through the five models as
expected but more accurately with either RF or cubist models. Moreover, soil nutrient indicators,
topographic wetness index and total catchment area were closely related to the SOC content in flat
slope conditions.

From the study, soil nutrient program for SOC improvement could be implemented via RF
and cubist models, incorporated into the digital soil mapping approach. However, RF showed to
be a useful tool in prediction. The accuracy indicated that they act to reduce bias, and they can
accommodate random inputs and random features to produce good results in classification—less so in
regression. Cubist models generally give better results than those produced by simple techniques such
as multivariate linear regression, while also being easier to understand than ANN.

Typically, low SOC levels require the application of organic manures, fallow cropping systems,
organic fertilizer application and residual cropping to increase SOC levels. Through the application of
MLAs in conjunction with digital soil mapping, the proper understanding of existing soil conditions
may be gathered and thus allow precise soil management for sustainable crop production. This research
sets a precedent for future digital soil mapping in other regions of Nigeria. Future studies should
include other auxiliary predictors (e.g., soil physical and chemical properties, and lithological data) as
well as cover a broader range of soil types to improve model performance.
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Abstract: Oil sands surface mining and processing in Alberta generate large volumes of fluid tailings
and process water high in salts and metals, which must be reclaimed. We investigated growth
of four common plants (two native and two non-native) found in boreal oil sands reclamation
sites as influenced by substrate type (tailings cake, and mixtures of cake-sand, cake-peat, and cake-
forest floor mineral mix) and water quality (0%, 50%, and 100% oil sands process water). Overall,
cake-peat supported the highest aboveground biomass among substrates whereas cake and cake-
sand performed poorly, possibly due to high sodium and chloride concentrations. Adding process
water to substrates generally reduced growth or increased mortality. Grasses had greater growth
than forbs, and for each functional group, non-native species performed better than native species.
Hordeum vulgare had the highest overall growth with no mortality followed by Agropyron trachycaulum
with negligible (0.5%) mortality. Chamerion angustifolium was most affected by the treatments with the
lowest growth and highest mortality (56%). Sonchus arvensis had higher growth than C. angustifolium
but its slow growth makes it less suitable for reclaiming tailings. Our results indicate that H. vulgare
and A. trachycaulum could be good candidates for use in initial reclamation of oil sands tailings.

Keywords: boreal plants; forest land reclamation; oil sands; process water; tailings cake

1. Introduction

The oil sands deposits in northern Alberta, Canada, represent the world’s third largest
oil deposit, with proven reserves of 165.4 billion barrels [1]. Oil sands surface mining results
in severe forest disturbance. Following mine closure, disturbed lands are to be returned
to an equivalent land capability, which can support land uses similar to the pre-disturbed
land [2]. The Government of Alberta has also implemented a directive for progressive
reclamation to ensure that all fluid tailings from a mining project are ready to reclaim ten
years after the end of mine life [3].

The extraction process generates large volumes of fluid fine tailings comprised of
connate and process water, sand, silt, clay, residual bitumen, inorganic salts, and organic
compounds [4–6]. Process water is classified as free water, residing on top of the tailings
material, or pore water, trapped within the fine spaces of tailings deposits. Oil sands fluid
fine tailings is generally composed of 70–80% water, 20–30% solids, and 1–3% residual
bitumen [5], and is alkaline and slightly brackish with high concentrations of organic
acids [4]. The suspended solids in oil sands tailings are dominated by quartz and clays
from the McMurray Formation, predominantly kaolinite, illite, and montmorillonite [7].
The total dissolved solids (TDS) in process water vary and change over time (for example,
ranging from 600 to 2200 mg L−1) as TDS mostly depends on the type of ore being mined.
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The aqueous cations are dominated by sodium while the anions are a mix of chloride,
sulphate, and bicarbonate [8].

A variety of chemical, physical, and mechanical methods are used or are being tested
to speed up the tailings dewatering process, with the objective of more quickly producing
a solid deposit with sufficient strength for reclamation. One of the first commercially im-
plemented tailings management method was composite or consolidated tailings where fine
and coarse tailings are mixed along with sufficient gypsum to create a non-segregating solid
mixture, which can settle to approximately 70 wt.% solids after one to two years. Another
commercially used method is centrifugation in combination with chemical amendments
to rapidly dewater tailings to produce tailings cake, with a typical solids content of 55 to
60 wt.%. In this study, we focus on tailings cake produced by centrifugation. As tailings
are being reclaimed, it is important to understand the effects of dewatered tailings (as
substrates) and process water (as groundwater seepage) on plant development and growth.

Response of plant growth to tailings or process water have been shown to vary
depending on species. Above- and belowground biomass of one-month-old jack pine
seedlings treated with process water was reduced by 31% and 20%, respectively, compared
to seedlings irrigated with deionized water [9]. A positive correlation was also found
between needle necrosis and tissue sodium and chloride for seven-month-old seedlings
treated with process water [9]. Pouliot et al. [10], however, observed no stress signs after
two growing seasons for fen vascular plants irrigated with process water, but groundwater
discharge of process water adversely affected mosses under dry conditions. For raspberry
grown in soil amended with 15% (by volume) fluid fine tailings, shoot and root dry
weights reduced by more than 50%, but in conifer seedlings, shoot and root dry weights
were not significantly different from those in control soils with no fluid fine tailings after
3 months [11]. Although plant responses to tailings or process water have been documented,
it is unclear how the synergistic stress of tailings and process water may affect growth and
development of common species in boreal reclamation sites. Knowledge of the combined
effect of tailings and process water on plant growth will help identify species that would
be suitable for consideration in reclaiming oil sands tailings.

A desirable goal for reclaimed land in the oil sands region in northern Alberta is to
have a functioning forest ecosystem composed of native plant species. However, substan-
tial changes in forest ecosystems due to mining activities, e.g., increased soil salinity [12],
may hinder growth of native species and favor non-native ones. Mixing contaminated sed-
iments with soil [13] or modifying the physiochemical environment of contaminated sites
through the addition of organic matter and nutrients in addition to planting native species
acclimated to contaminated soils [14,15] may reduce the concentration of contaminants
such as excess salts and improve plant growth. There is limited literature on the effect
of heavy metals from process water on boreal plant health. However, it is well known
that some heavy metals can accumulate within plants at high concentrations without
any indication of stress [16–18]. Increase in concentrations of these metals above plant
threshold levels would modify plant physiological processes [19]. Consequences include
visible changes in plant morphology, such as chlorosis and necrosis in leaves, stunted plant
growth, and changes in root structure [19–22].

In the current study, we investigated the response of four native and non-native plant
species commonly found in newly reclaimed areas in the boreal forest region of Canada:
Chamerion angustifolium (L.) Holub (fireweed, native forb), Sonchus arvensis L. (perennial
sow thistle, non-native forb), Agropyron trachycaulum (Link) Malte (slender wheatgrass,
native grass), and Hordeum vulgare L. (barley, non-native grass). Our objectives were
to determine the effect of oil sands tailings, mixtures of treated oil sands tailings and
reclamation substrates, and oil sands process water on aboveground biomass and mortality
of these four plants.
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2. Materials and Methods

2.1. Experimental Set Up

This was a randomized, complete block design, greenhouse pot study with 4 species ×
4 substrates × 3 water quality treatments × 6 blocks (gradient of sunlight and temperature
within greenhouse as influenced by distance of pots to greenhouse window) for a total
of 288 pots. Additionally, control pots with no plants were set up for each substrate ×
water combination, with 6 replicates for each combination for a total of 72 control pots. The
greenhouse temperature was set at 22–24 ◦C during the day (1000–2000 h) and 18–22 ◦C at
night (0100–0600 h), relative humidity was set to 30% and 40% during the day and night,
respectively, and an artificial light source (LumiGrow Pro 650) was turned on automatically,
within a 16-h period (0500–2100), when natural light intensity fell below 200 W m−2.

2.2. Substrates and Process Water

We used four tailings substrates: (i) pure centrifuge tailings cake, and mixtures (1:1 by
volume) of (ii) tailings cake and forest floor mineral mix (FFMM) (cake-FFMM), (iii) tailings
cake and sphagnum peat moss (cake-peat), and (iv) tailings cake and sand (cake-sand).

The tailings cake was created by centrifuging a mixture of fluid fine tailings (obtained
from an operational mine site in northern Alberta), gypsum (~900 ppm), and a high
molecular weight anionic polymer, A3338 polymer (~1000 ppm). The resulting tailings
cakes had 55.7 wt.% solids. The sand and sphagnum peat moss were commercially obtained,
and FFMM was obtained from an operational mine site in northern Alberta and consisted
of forest floor materials mixed with the underlying mineral soil.

Three types of irrigation water were used, which differed in quality: 0%, 50%, and
100% process water. The 0% process water consisted of reverse osmosis water whereas the
100% process water was the centrate water obtained from the centrifugation process used
to produce the tailings cake. The 50% process water was made up of equal proportions of
reverse osmosis water and 100% process water.

Chemical characterization of the substrates and process water used for the experiment
(Table 1) was done by CanmetENERGY, Natural Resources Canada, Devon, AB, Canada.
Tailings cake and tailings cake mixtures were slightly alkaline to alkaline (pH of 7.2–8.2). In
general, concentrations of ions in the 100% process water were approximately double that
of the 50% process water and were both substantially greater than the 0% process water.
The 0% process water was slightly acidic (pH of 6.7) and the 50% and 100% process water
were alkaline (pH of 8.2). To estimate soil nutrient supply rates during the period of the
experiment, a pair of anion and cation plant root simulator (PRS; Western Ag Innovations,
Saskatoon, SK, Canada) probes were installed to a depth of 9–10 cm in the control pots.
PRS probes give estimates of soil nutrient supply rates by attracting and adsorbing ions
on negatively and positively charged ion-exchange membranes [23,24]. The probes were
removed after eight weeks, washed with reverse osmosis water and sent to Western Ag
Innovations for extraction and laboratory analysis.

Table 1. Chemical characteristics of substrates and process water used for plant growth. EC, TDS, and SAR represent
electrical conductivity, total dissolved solids and sodium adsorption ratio, respectively.

Substrate Water

Cake
Sand

+ Cake
FFMM +

Cake
Peat

+ Cake
Reverse
Osmosis

50% Process
Water

100% Process
Water

Percent solids (%) 56 78 73 53
pH 7.90 8.21 7.87 7.17 6.71 8.24 8.26

EC (mS/cm) 2.79 4.95 4.73 2.39 0.02 1.16 2.18
TDS Calculated (g/L) 3.69 5.64 4.82 2.86 0.02 1.06 1.87
SAR Concentrations mg/kg mineral solids mg/L

Na 867 910 754 559 4.1 285 495
Cl− 215 212 202 190 1.11 133.5 238

CO3
2− 5.5 5.5 <3.8 <3.8 <3.8 5.9 13

HCO3− 1266 1567 1678 471 12.7 466 858
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Table 1. Cont.

Substrate Water

SO4
2− 837 1766 1214 1017 2.30 94.9 151

Ca 85 368 294 86 0.33 11.4 21.4
K 42 56 78 44 <0.01 7.73 13.1

Mg 35 97 116 53 0.37 7.73 12.4
S 319 614 435 383 0.88 36.5 58.9
B 5.49 6.67 6.16 6.27 0.14 0.81 1.34

Ba 0.96 0.83 0.71 8.21 0.00 0.22 0.39
Al 0.07 0.04 0.63 1.49 0.00 0.03 0.02

2.3. Plants

The species selected for this experiment were Chamerion angustifolium (L.) Holub
(native forb), Sonchus arvensis L. (non-native forb), Agropyron trachycaulum (Link) Malte
(native grass), and Hordeum vulgare L. (non-native grass). These are common plant species
found in newly reclaimed areas or used as cover species in reclamation and are fast
growing herbaceous species suitable for short-term greenhouse experiments. They are also
representatives of both native and non-native grasses and forbs.

Seeds of S. arvensis were obtained from Canadian Natural Resources Limited (Fort
McKay, AB) and seeds of the remaining species were obtained from commercial sources
across Canada and the United States of America. The seeds were germinated under
greenhouse conditions in styroblocks (plug size of 2.5 cm in diameter and 11.3 cm in length)
using a commercial garden soil and watered as needed. Five average-sized seedlings of
each species were transplanted into 1.5-L pots filled with the experimental substrates and
allowed to settle for one week before watering with the process water. During this period,
plants were manually watered to field capacity with greenhouse irrigation water and those
that died were replaced. At the end of this period, three healthy plants were selected for
the experiment, and the remaining plants were uprooted from the pots. The plants were
then watered manually each day with the process water on an as needed basis.

We applied a 20-20-20 nitrogen, phosphorus, and potassium fertilizer at rates of
75 mL per week (recommended rates by manufacturers) for the first four weeks and
15 mL biweekly (equivalent to the rate used in reclamation practices, i.e., 100 kg nitrogen
ha yr−1) for the last four weeks of the experiment. Fertilization is commonly used in oil
sands reclamation in Alberta to ensure that planted or naturally regenerated plants have
adequate nutrients for establishment and early growth [25].

Plants were grown under the experimental conditions for eight weeks and mortality
was recorded in the final week of the experiment. At the end of the 8-week period,
plants were clipped at the soil surface and dried to a constant weight at 40 ◦C to obtain
aboveground biomass.

2.4. Data Analysis

Mixed model analysis of variance (ANOVA), with block as the random factor, was
used to test for differences in aboveground biomass and mortality among substrates and
watering treatments for each species at the end of the study. Tukey’s procedure was
used for pairwise comparisons. Cube root transformation was applied to C. angustifolium
aboveground biomass to meet ANOVA assumption of homoscedasticity. Differences
in nutrient concentrations were also tested among substrates with one-way ANOVA.
Correlation analyses (spearman rank correlation) were performed between nutrient supply
rates from the control pot and aboveground biomass for each species. Mixed model
ANOVA and multiple comparison tests were performed with nlme [26] and emmeans [27]
packages, respectively. Correlation coefficients and associated probability values were
calculated with psych package [28]. ANOVA and correlation analysis were performed with
R statistical software [29], and statistical significance was considered at p < 0.05.
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3. Results

Across all treatments, the grasses, H. vulgare (10.73 g) and A. trachycaulum (7.85 g),
exhibited 2–8 times greater aboveground biomass than the forbs, S. arvensis (5.01 g) and
C. angustifolium (1.28 g), and the introduced species performed better than the native species
within each functional group (Figure 1a–d.) Among substrates, cake-peat supported the
overall highest aboveground biomass (6.83 g), followed by cake-FFMM (6.24 g), cake
(6.20 g), and cake-sand (5.61), and the 0% process water, overall, supported a higher
aboveground biomass (6.72 g) than the 50% (6.45 g) and 100% (5.49 g) process water. There
were varying responses of aboveground biomass to substrate and water treatments among
the four species.

F p
F p

F  p

F p
F p

F  p

F p
F p

F  p

F p
F p

F p

Figure 1. Total aboveground biomass (mean and standard error) of four understory species (a). Chamerion angustifolium; (b).
Sonchus arvensis; (c). Agroypyron trachycaulum; (d) Hordeum vulgare, commonly found in newly reclaimed areas in the boreal
forest region of Canada, under four soil amendments and three watering treatments.

The treatment effects were most pronounced in C. angustifolium (Figure 1a), with
cake supporting 67% lower aboveground biomass than cake-peat (p < 0.001), and cake-
sand supporting 70% or 82% lower aboveground biomass than cake mixed with FFMM
(p = 0.035) or peat (p < 0.001), respectively. For the same species, watering with 100%
process water reduced aboveground biomass by 79% (p < 0.001) and 68% (p = 0.007)
compared to watering with 0% and 50% process water, respectively. For S. arvensis, cake-
sand supported 13% and 11% lower biomass than cake-peat (p = 0.004) and cake (p = 0.030),
respectively, and cake-FFMM supported 11% lower biomass than cake-peat (p = 0.021).
Watering with 100% and 50% process water also reduced aboveground biomass by 16 %
(p < 0.001) and 10% (p = 0.003), respectively, compared to watering S. arvensis with 0%
process water (Figure 1b). Differences in aboveground biomass among substrates was only
found between cake-peat (8.40 g) and cake-sand (7.24 g) (p = 0.013) for A. trachycaulum, and
for the same species, watering with 100% process water reduced aboveground biomass
by 23% (p < 0.001) and 18% (p = 0.005) compared to watering with 0% and 50% process
water, respectively (Figure 1c). Substrate × process water interaction effect on variation in
aboveground biomass was only observed for H. vulgare. Cake-sand watered with 100%

117



Land 2021, 10, 25

process water had 25% or 26% lower aboveground biomass than cake watered with 50%
(p = 0.023) or 0% (p = 0.020) process water (Figure 1d).

In relation to supply rates of nutrients (Table 2), C. angustifolium aboveground biomass
was positively correlated with nitrate (p = 0.030), phosphorus (p = 0.040), and magnesium
(p = 0.010), and S. arvensis was positively correlated with magnesium (p = 0.040). No
significant relationships were found between the other species and nutrients supply rates
(Table 2).

Table 2. Spearman rank correlations between plant aboveground biomass and nutrient supply
rates across substrates and watering treatments. Statistically significant correlations are marked
with asterisk.

Species NH4
+ NO3

− P K Ca S Mg

Chamerion angustifolium 0.56 0.64 * 0.61 * 0.30 0.13 −0.10 0.75 *
Sonchus arvensis 0.55 0.20 0.49 0.34 −0.13 −0.13 0.61 *

Agropyron trachycaulum 0.29 0.53 0.57 0.00 0.38 0.13 0.52
Hordeum vulgare 0.34 0.15 0.44 0.42 −0.34 −0.31 0.34

Mortality was only observed among the native species. C. angustifolium had the highest
mortality across treatments (56%), followed by a negligible amount for A. trachycaulum
(0.5%) (Figure 2). For C. angustifolium, 100% and 50% process water had 36% (p = 0.004) and
29% (p = 0.022), respectively, higher mortality than 0% process water, but neither substrate
nor substrate × water interaction effect was significant.

F p
F p

F p

Figure 2. Mortality (mean and standard error) for Chamerion angustifolium under four soil amend-
ments and three watering treatments.

Mixing cake with peat substantially reduced concentrations of sodium, chloride, and
the carbonate, HCO3

−, from 867 mg kg−1, 215 mg kg−1, and 1266 mg kg−1, respectively, to
559 mg kg−1 (p = 0.003), 190 mg kg−1 (p = 0.033), and 471 mg kg−1 (p < 0.001), respectively
(Table 1). On the other hand, electrical conductivities and concentrations of macronutrients
(calcium, potassium, magnesium, and sulfur) tended to increase when cake was mixed
with sand or FFMM but not with peat (Table 1). Supply rates of nitrogen, phosphorus, and
potassium were generally lower for cake-sand compared to that of the other substrates
(Table 3).
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Table 3. Mean values (associated standard errors) of supply rates of nutrients over an 8-week period for tailings cake and
cake-amendments under three watering treatments.

Nutrient Supply Rate (μg 10 cm−2 8 Weeks−1)

Substrate Process Water (%) NH4
+ NO3

− P K Ca S Mg

Cake 0 8.2 0.0 7.4 44.9 1700.6 270.3 505.2
(2.6) (0.0) (2.5) (3.2) (51.9) (54.3) (25.1)

Cake 50 6.0 0.0 3.0 47.3 1592.4 238.2 490.5
(1.3) (0.0) (0.9) (3.2) (84.3) (39.6) (24.3)

Cake 100 6.3 0.0 1.3 45.7 1444.2 266.8 469.3
(1.8) (0.0) (0.3) (3.2) (43.90) (66.1) (21.8)

Cake + FFMM 0 4.6 2.8 5.5 30.4 2144.3 315.8 530.0
(1.6) (2.8) (0.7) (1.1) (71.0) (56.2) (22.0)

Cake + FFMM 50 5.2 2.6 3.7 32.5 2025.5 302.7 508.6
(2.0) (1.8) (0.7) (1.7) (84.1) (24.0) (19.2)

Cake + FFMM 100 3.09 5.7 3.9 32.0 1997.4 336.0 479.0
(0.9) (3.9) (0.3) (1.7) (111.9) (58.0) (18.0)

Cake + Peat 0 19.8 0.2 2.1 49.6 1845.5 638.4 569.8
(3.0) (0.2) (0.4) (2.3) (59.8) (82.6) (17.5)

Cake + Peat 50 16.3 0.07 2.0 51.8 1742.3 500.4 540.2
(2.9) (0.1) (0.1) (2.2) (46.7) (65.9) (12.0)

Cake + Peat 100 12.9 0.0 2.0 53.0 1659.2 599.3 530.3
(3.6) (0.0) (0.4) (2.3) (86.2) (51.5) (17.0)

Cake + Sand 0 2.4 0.0 2.2 27.1 2117.6 875.8 379.2
(0.3) (0.0) (0.3) (1.4) (62.7) (80.4) (16.7)

Cake + Sand 50 2.0 0.00 1.3 29.9 2083.4 723.6 395.7
(0.4) (0.0) (0.1) (2.1) (109.3) (28.0) (23.7)

Cake + Sand 100 2.5 0.0 1.0 30.8 1990.2 615.7 382.8
(0.8) (0.0) (0.1) (1.5) (86.4) (45.5) (10.0)

4. Discussion

We examined the effect of oil sands tailings, mixtures of treated oil sands tailings and
reclamation substrates, and oil sands process water on aboveground biomass and mortality
of four plants (C. angustifolium, S. arvensis, A. trachycaulum and H vulgare) commonly found
in boreal oil sands reclamation sites. Overall, cake-peat supported the highest aboveground
biomass among substrates whereas cake and cake-sand performed poorly. Another study
also reported that consolidated tailings amended with peat improved germination, survival,
and growth compared to plants growing directly in consolidated tailings [30]. In the present
study, mixing cake with peat reduced pH and substantially reduced the concentrations of
sodium, chloride, and carbonates. The high pH of tailings could result in plant mineral
deficiency by reducing available macronutrients (e.g., phosphorus and nitrogen) and trace
elements [30]. Salts are also known to adversely affect plant water balances by targeting
the osmotic gradient across cells [31,32]. In particular, chloride has been observed to
accumulate in shoots while the buildup of sodium in plant tissue has the potential to
interfere with enzymes participating in chlorophyll production, and the accumulation
of both ions within plant tissue can reduce photosynthesis and growth [33–35]. The
better growth performance of plants grown in cake-peat in our study may be due to the
reduced pH and salt content of the cake-peat substrate. Organic contaminants in the
process water were not measured; however, the higher organic carbon content of the peat
is expected to also cause sorption of dissolved organics to the peat, reducing the toxicity of
the water [36,37].

On the other hand, mixing cake with sand resulted in sodium, chloride, and carbonates
concentrations comparable to levels found in cake. This is possibly due to the presence of
soluble mineral material in the sand. Supply rates of nitrogen, phosphorus, and potassium
were also generally low for cake-sand compared to the other substrates. Consequently,
this caused poor growth of plants grown in the cake-sand substrate. Compensating
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for nutrient deficiencies, e.g., through fertilization, should be combined with processes
that reduce salinity, e.g., addition of organic matter to reduce evapotranspiration, in
tailings reclamation.

Addition of process water to the tailings and tailings mixes adversely affected plant
performance by reducing plant growth or increasing mortality. This may be due to the
presence of naphthenic acids and salts in process water [35]. The combined impact of
naphthenic acids and excess salts could exceed the sum of the individual effects of each
of them [38] and increase water stress, interfere with respiration, and be toxic for organ-
isms [35,39]. Leaf tip necrosis was observed in common herbaceous and woody forest
plants grown hydroponically and subjected to undiluted process water treatment [40],
possibly due to buildup of toxic compounds in the process water or nutritional deficiencies
resulting from excess salts [40,41]. In our study, similar growth levels were observed
between plants watered with reverse-osmosis water and those watered with equal propor-
tions of centrate water and reverse-osmosis water. This suggests some interaction with
process water will not be overly detrimental to the growth of plants.

We also found that the grasses had better growth performance than did forbs. Similar
findings have been reported by Naeth and Wilkinson [42]. H. vulgare also had the best
growth performance among all species. The ability of H. vulgare to germinate and establish
on tailings under controlled conditions suggest that it is a good candidate for early tailings
reclamation efforts, such as erosion control and phytoremediation [34]. A. trachycaulum
showed good health across all treatments, but its aboveground biomass accumulation
was less than H. vulgare over the study period. The slow growth of A. trachycaulum
restricts the quantity of potentially toxic ions it can remove from contaminated soils [30].
It can, however, be used in combination with H. vulgare in reclamation efforts to increase
vegetation cover, and consequently long-term stabilization [43] of tailings.

The native forb, C. angustifolium, has been suggested as a suitable species for reclaiming
disturbed forests because it can establish on reclaimed soils (especially, a forest floor mineral
mix) and capture soil nutrients effectively [44]. However, its growth on tailings and tailing
mixes was the poorest, exhibiting the greatest mortality, and surviving plants showed
average-to-poor health. This may be due in part to nutritional deficiencies of the tailings
and tailing mixtures since seedling establishment of the species may be confined to areas
that are rich in nutrients [45]. C. angustifolium growth was positively correlated with
macronutrients (nitrates, phosphorus, magnesium), which supports the observation that
the factors that influence successful establishment of C. angustifolium may be site and soil
specific [44]. Reclaiming tailings with C. angustifolium will be a challenge because of its poor
performance on tailings and potential soil specificity. S. arvensis exhibited better growth
performance than C. angustifolium. However, its very slow growth on tailings makes it
potentially less suitable for phytoremediation in these substrates compared to H. vulgare or
A. trachycaulum. It should be noted that while S. arvensis may occur in reclaimed areas, it
would not be specifically planted as it is classified as a noxious weed in Alberta [46].

Within each functional group, non-native species had better growth than native species.
Naeth and Wilkinson [42] also found that non-native species had higher emergence and
establishment on consolidated tailings than native species. Because native species are suited
to the pre-disturbed ecosystem, their decline in novel environments following mining can
be expected. However, native boreal species have been shown to exhibit varying tolerance
to salt [47]. Salt tolerant population of A. trachycaulum can be found in a dry area, in
Southern Alberta, with an underlying marine shale formation [48]. Understanding salt
tolerance levels of native species as well as differences among accessions is important to
determine their suitability for land reclamation [30].

5. Conclusions

This study tested the suitability of common boreal plants to the combined effect of
fluid fine tailings cake, mixtures of tailings cake and reclamation substrates, and process
water. Our results showed that mixing peat with cake tailings can reduce salinity and
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improve plant growth. Additionally, H. vulgare and A. trachycaulum exhibited greater
overall aboveground biomass and lower mortality and could therefore be suitable for
initial reclamation of oil sands tailings. Because our study was performed under controlled
greenhouse conditions, caution must be taken when extrapolating these studies to field
sites where conditions such as extreme temperatures and competition exist.
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Abstract: The Mun River Basin is one of Thailand’s major grain-producing areas, but the production
is insufficient, and most of the cultivated lands are rain-fed and always unused in the dry season. All
this makes it necessary to determine the status of soil nutrients and soil quality in the dry season
to improve soil conditions, which will be useful for cultivation in the farming period. The aim of
this study was to construct a soil-quality assessment based on soil samples, and in the process the
minimum data set theory was introduced to screen the assessment indicators. The geographically
weighted regression method was used to complete the spatial interpolation process of indicators, and
the fuzzy logic model was constructed to evaluate the soil quality. The results showed that the spatial
distributions of soil quality and indicators were similar. The soil quality was the best in the upstream
while poor in the downstream, and the dry fields in the west and the forests in the east of the basin
were better than other areas nearby. However; the soil qualities of paddy fields in the middle and
east of the basin were poor due to the lack of soil nutrient supply when the fields were unused

Keywords: Mun River; soil quality; GWR; fuzzy logic model; dry season

1. Introduction

Soil is an indispensable resource and the basis of most natural ecological and social
environments [1]. Soil quality has a great influence on the vegetation that grows in it,
especially for crops, which make it important to maintain soil attributions for food security
and sustainable development [2]. There is no definition of soil quality that is universally
accepted so far, but most scholars believe that soil productivity accounts for a great portion
of soil quality [3,4].

There has been much research on soil quality, whose objects include forests [5], grass-
lands, farmland, and other types [6–8]. The research methods have also developed from
qualitative expressions in the past to statistics and model construction based on quantita-
tive data [9]; for example, commonly used methods include principal component analysis,
analytic hierarchy process, regression analysis, fuzzy analysis, and artificial neural net-
works [10–14]. Comparing the processes, methods, and results of previous research, it is
found that there are still some problems and defects: first, there is a lot of redundancy
among the indicators selected in the evaluation process, and there is a lack of a screening
mechanism [15]. Second, most of the research is based on the data of sampling points,
and the research results on the point scale are used to replace the entire area; some of
the methods used in the spatial expansion of the research are mostly geostatistical meth-
ods [16,17], which are very dependent on the number of sampling points, otherwise the
accuracy of the result is difficult to guarantee. Additionally, the determination of index
thresholds and the division of the quantitative classification range of research results in

Land 2021, 10, 61. https://doi.org/10.3390/land10010061 https://www.mdpi.com/journal/land

123



Land 2021, 10, 61

most evaluation processes being unreasonable. Most of the indicators are standardized
and graded directly according to some rules [18], and these grades are directly used for
evaluation [19,20]. This strict classification method is very questionable, and it is necessary
to make some improvements.

The Mun River Basin is in the northeast Thailand and occupies a large part of the
Nakhon Ratchasima Plateau. It is one of Thailand’s major grain-producing areas, but the
average yield is low. This area is divided into dry season and rainy season because of
the tropical monsoon climate [21], and rice is grown on most farmland during the rainy
season, but the farmland is unused in dry season [22]. The soil-quality research in tropical
regions is significantly less than in other climate regions, let alone the area with obvious
tropical monsoon climate such as the Mun River Basin, and there has been no research on
soil quality in the dry season in the Mun River Basin until now. Thus, it is necessary to
carry out relevant research in this area, which will not only provide scientific reference for
identifying tropical soil characteristics, but also provide practical basis for regional land
improvement and agricultural development.

Based on the above description of the evaluation method and process, this study
aims to evaluate the soil quality in the dry season in the Mun River Basin, and introduces
the minimum data theory [23–25], geographic weighted regression model [26] and fuzzy
logic model [27] to process and analyze the process of the indicator selection, indicator
spatialization, and comprehensive evaluation respectively. The results of the study can
provide basic information for soil improvement in the rainy season and will hopefully be
helpful in improving the soil in the study area, especially for the rainy season when the
crops are growing.

2. Data and Materials

2.1. Study Area

The Mun River Basin is in northeast Thailand and includes 10 provinces. The Mun
River is a tributary of the Mekong River, and the basin is approximately in the range of
14◦07′–16◦23′ N and 101◦16′–105◦38′ E with an area of 70,435.94 km2. The terrain generally
shows a trend of higher west and lower east with the elevation in the range of 17–1300 m,
and the mountains are mainly distributed on the southern boundary of the basin (Figure 1).
It has a tropical monsoon climate, and the dry season is from mid-October to the end of
April of the next year with a lower precipitation than rainy season. The soil texture types of
the basin mainly include light clay, loam, sandy clay loam, and sandy loam, the proportions
are about 18.70%, 17.97%, 10.90% and 52.44% respectively, and sandy loam is the main
soil. Approximately 78% of the study area is farmland, and 75% of which are paddy fields,
and approximately 90% of the paddy fields are rain-fed, which makes many arable lands
unused during the dry season.

2.2. Soil Sampling

The surface soil was used for the quality assessment, and the samples were collected
from 19 February 2017, to 1 March 2017. Considering that there are few land-use types and
soil types in the Mun River Basin, and the spatial distribution of each land-use type also
has a certain pattern, most of which are farmland, and forests are mainly distributed in the
southern region, moreover, combine the terrain conditions of the basin, road distribution,
and other factors, the research laid out a 10 km × 10 km grid throughout the study area for
sampling. However, some sample points were moved to adjacent positions because of the
accessibility or operability limitations, and some locations are not even allowed to enter,
which resulted in the spatial inhomogeneity of final samples. The soil layer of 0–20 cm
under the surface was collected, and each soil sample was placed in a sealed bag. The
surrounding characteristics of each sampling point were recorded, including latitude and
longitude, and a total of 67 samples were collected. Some samples outside the study area
were collected because of the accessibility limitations (Figure 1). All samples were dried
naturally or in a dryer, ground, and sieved before analyses in the laboratory.
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Figure 1. Scope of the study area and sampling locations.

According to household surveys, data inquiries and consultations with native experts
about the soil properties, 8 indicators in advance were chosen for the soil-quality assess-
ment, which included soil pH, total nitrogen (TN), available phosphorus (AP), soil particle
composition (clay, silt and sand), soil organic matter (SOM) and soil electronic conductivity
(EC). The soil particle composition was detected using a laser particle analyzer, and the
SOM and TN were measured by Walkley-Black method and Kjeldahl digestion method
respectively [28,29], while AP was obtained through extracting samples with a 0.5 mol/L
sodium bicarbonate solution and detecting with a spectrophotometer [30]. Soil pH was
measured using the electrometric method on a soil/water suspension, and EC was detected
by a conductivity meter in the field.

2.3. Auxiliary Data

The auxiliary data is mainly used in the processes of evaluation indicators screening,
indicator interpolation, and comprehensive evaluation, which mainly included elevation,
topography, distance from river, land-use type, soil type, normalized differential vegetation
index (NDVI), environmental vegetation index (EVI), modified soil adjusted vegetation
index (MSAVI) and meteorological data. The land-use status of 2017 was generated by
interpreting remote sensing images based on the land-use type of 2016, which was obtained
from the Land Development Department of Thailand, and from which the distance from
river was extracted through distance model of ArcGIS software. The spatial analyst
tools were used to obtain the elevation and topography indexes based on the digital
elevation model (DEM), which was downloaded from the Geospatial Data Cloud (http:
//www.gscloud.cn/). The NDVI, EVI, and MSAVI were generated from the remote sensing
images, or could be downloaded from the United States Geological Survey (USGS)/Earth
Resources Observation and Science (EROS) Center. The soil type, meteorological data,
and other data were obtained from different government departments of Thailand. The
projection systems of all spatial datasets were converted to the WGS84-based Transverse
Mercator orthographic projection coordinate system, and the spatial resolution was set to
250 m × 250 m. Moreover, the questionnaire surveys about crop fertilization and yield
were conducted aimed to analyze the soil conditions properly.
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3. Methods

3.1. Geographically Weighted Regression

Geographically Weighted Regression (GWR) was selected for the spatial interpolation,
and it is similar to the traditional multiple linear regression, but the difference is that the
sample locations are considered in the model [31].

y = β0 +
m

∑
j=1

β jxj

where y is the dependent variable, xj represents independent variable values, β0 is an inter-
cept, β j indicates regression coefficients of different independent variables. The coefficient
is unique in in each location, which can be obtained by weighted least squares approach:

ˆ
β =

[
XTWX

]−1
XTWY

where Y is a (n × 1) dependent data vector, n is the number of observation data for the
location to be calculated, X is a [n × (m × 1)] independent variable matrix, one column of
which is intercepts, while W is a spatially weighted diagonal matrix:

Wij = e−0.5(dij/r)2

where Wij is the weight of the observed data at location j for determining the dependent
variable at location i and r is a bandwidth. The equation indicates that the weight of
the observed data is a continuous distance attenuation function, and a modified Akaike
information criterion (AICc) is introduced to obtain a reasonable r, which can reduce
the complexity of the model and instances of under-smoothing [32]. All soil samples
were divided for training (50 samples) and verification (17 samples), and the elevation,
topography, distance from river, NDVI, EVI, MSAVI and meteorological data were used as
auxiliary data in the interpolation process [26].

3.2. Fuzzy Logic Model

The fuzzy membership of an indicator refers to the possibility that the indicator be-
longs to a certain grade, and a fuzzy function is introduced to obtain the fuzzy membership
of the indicator and then which specific grade the indicator belongs to is determined
according to some principles [20,33]. The common fuzzy membership function is a bell-
shaped function:

MFxi =
[
1/

(
1 + ((xi − b)/d)2

)]

where 0 < MFxi ≤ 1, represents the fuzzy membership of indicator i; xi is the specific
value of i and d is the transition width of i, while the d is always set to be the difference
of indicator values when the membership is 0.5 and 1 [14,33], and b is the indicator value
when the membership is 1 (Figure 2).

According to the description above, it is an important process to set a suitable range
for each indicator, which can be used to gain the membership value through functions
while the indicator value belongs to the range, otherwise, it will be set to be 0 or 1. The
suitable ranges of the indicators are summarized through consulting previous studies,
documentations, standards, and specifications. The integrated weighting method is used
to get the final evaluation:

MF =
n

∑
i=1

MFxi wi

where wi is the weight of different indicator, which can be obtained by the analytic hierarchy
process. Additionally, some indicators cannot be used for the soil-quality evaluation
because of the redundancy among the primary indicators, and the indicator screening
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process is necessary. The minimum dataset (MDS) theory was selected in the study, in which
a principal component analysis (PCA) is the main method used for the MDS establishing,
and the indicators with high factor loadings in the components with eigenvalues ≥ 1 were
selected to reflect the soil quality, and the land-use types and soil types were used as the
auxiliary data in the screening process [12].

Figure 2. The fuzzy logic models. (A) and (B) represent the positive and negative indicators, respectively.

4. Results

4.1. Descriptive Statistics

First, outlier tests were conducted on the indicators, and the values that exceeded the
threshold range (u − 3s, u + 3s) (where u and s are the mean and standard deviation of the
indicator value respectively) would be regarded as outliers, which would be set to the maxi-
mum or minimum of the remaining values. Table 1 was the descriptive statistics of the data
after removing the outliers and Table 2 showed the correlation among different indicators.

Table 1. Basic statistics of the indicators.

Minimum Maximum Mean SD Skewness Kurtosis K-S Test CV

pH 4.60 8.00 6.02 0.71 0.81 0.06 0.04 11.84
EC (us/cm) 21.67 732.00 182.73 167.67 1.72 2.48 0.01 91.76

Clay (%) 2.88 46.46 14.49 9.86 1.11 0.46 0.01 68.07
Sand (%) 47.10 96.54 78.47 12.33 −0.60 −0.54 0.16 15.71
Silt (%) 0.00 15.95 7.04 4.71 0.26 −1.19 0.22 66.88

SOM (%) 0.10 3.56 1.26 0.81 1.21 1.18 0.09 64.02
AP (mg/kg) 24.93 284.70 64.93 64.82 2.65 6.35 0.00 99.84

TN (%) 0.01 0.15 0.06 0.03 1.30 1.55 0.13 54.69

SD: Standard deviation; CV: Coefficient of variation.

Table 1 indicated that all indicators showed moderate variation, as all the CV values
were less than 100, but the AP was so high that it would be strong variation. Table 2
showed that the correlation coefficients between most indicators were significant at 0.01
and 0.05 levels. There was a high correlation between SOM and TN, and the physical
properties of soil had a serious impact on SOM and TN as the correlation coefficients
between them were highly significant at 0.01 level.
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Table 2. Correlation coefficients between indicators.

SOM AP TN Clay Sand Silt pH EC

SOM 1
AP 0.23 1
TN 0.89 ** 0.25 * 1

Clay 0.62 ** −0.01 0.57 ** 1
Sand −0.60 ** 0.05 −0.55 ** −0.93 ** 1
Silt 0.25 * −0.09 0.25 * 0.35 ** −0.66 ** 1
pH 0.12 0.21 0.14 0.16 −0.07 −0.16 1
EC 0.36 ** 0.21 0.44 ** 0.22 −0.20 0.05 0.27 * 1

**, *: Correlation is significant at the 0.01 level and 0.05 level, respectively.

4.2. Interpolation of Soil Indicators

According to the MDS model process, this research had screened out four indicators
for soil-quality assessment, including TN, AP, SOM, and soil pH, while the seven auxiliary
indicators including elevation, terrain curvature, topographic index, distance to rivers,
NDVI, EVI, and MSAVI that were preselected for GWR construction were not all used as
the multicollinearity among other variables exceeded the tolerance of the model. Moreover,
there were no auxiliary indicators selected for the interpolation of pH, and the kriging
method was used to obtain the spatial distribution of pH.

Figure 3 showed that all indicators had certain spatial distribution characteristics
and their prediction accuracies were reasonable, with mean error of each indicator was
close to 0 and root mean square error of each indicator did not exceed 0.5. The SOM
had an obvious ladder-like distribution in space, with its content gradually declined from
upstream to downstream of the river, and the mountainous area in the south edge had a
higher content than the internal flat area of the basin. The areas near the Mun River and
its tributaries displayed different spatial characteristics of SOM content in upstream and
downstream areas; it was lower along the rivers than the other regions upstream, while
it was higher along the rivers than other regions downstream. The content of TN was
very low throughout the basin, and its spatial distribution was similar to that of SOM,
which declined from west to east gradually, and the highest content was concentrated in
the mountains of the southwest, but it was lower in the south edge of the basin. Compared
to SOM, the contents along the rivers were not very different from other areas near the
rivers. The AP, of which the content was higher over the basin than the other indicators,
displayed high values in upstream and downstream areas and low values in the middle
of the stream; it was at the lowest level in the southwest especially. The content of AP
along the rivers in downstream areas was higher than in the surrounding areas. The soil
was mainly acidic over the basin according to the spatial distribution of pH, whose value
declined from the periphery to the inside of the basin, and the lowest value was about 5.3,
which was strongly acidic soil.

Furtherly, the land use (Figure 4) was used for analysis, overlaid with the spatial
distribution of assessment indicators, and the mean of the indicators in different land-use
type are shown in Table 3:
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Figure 3. The spatial distributions of the four assessment indicators.

 
Figure 4. The spatial distribution of different land-use type.
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Table 3. The statistics of the indicators in different land-use type.

Land-Use Type
Area Proportion

(%)
SOM (%) TN (%) AP (mg/kg) pH

Farmland 72.125 1.181 0.060 72.503 6.058
Forest 13.076 1.475 0.069 70.202 6.572

Grassland 3.422 1.236 0.062 77.452 6.236
Wetland 4.059 1.147 0.059 71.954 5.983

Garden plot 0.825 1.477 0.073 88.948 6.473
Others 0.430 1.115 0.057 66.917 6.274

Residence 6.062 1.204 0.061 72.478 6.074

Figure 4 and Table 3 show that the main land-use types are farmland, followed by
the forest, and their total area proportion exceeded 85%. From the figure, we could also
find that the forest was mainly distributed in the southern part of the basin, where there
were many mountains and the terrain is too steep to be used as farmland. The contents of
SOM and TN were plenty in the forest, and its soil did not show strong acidity or alkalinity,
most of which are neutral according to the measurement of soil pH. However, the content
of AP in the forest was lowest than that in other land-use types. the soil condition of the
farmland was not very good because the content of SOM and TN was very low, and the
soil was strongly acidic. In addition, the soil condition value of all indicators in paddy and
dry fields had large differences. The mean values of SOM, TN, AP, and pH in the dry fields
were 1.433, 0.074, 83.491 and 6.424, and they were 1.115, 0.057, 68.296 and 5.957 in paddy
field, respectively.

4.3. Result of Soil-Quality Assessment

The suitable ranges of all indicators selected for the assessment were determined
through summarizing the research results, expert opinions, standards, and literature [34,35].
The parameter b and d were obtained for the fuzzy logic function (Table 4), and then the
membership of the four indicators were generated. The pH had a double trend, and it was
positive when its value was less than 7, on the contrary it was negative.

Table 4. The parameters of the fuzzy logic function.

Indicator Range b d Tendency

TN 0.01–0.075 0.075 0.025 Positive
AP 20–120 120 50 Positive
pH 5.5–7 7 1 Positive
pH 7–8.5 7 1 Negative

SOM 0.6–1.5 1.5 0.5 Positive

The indicator weight was obtained based on the communality of each indicator
generated in the MDS construction process, and the soil-quality assessment result was
generated through integrated weighting method (Table 4). The result was divided into six
grades (I–VI) according to the natural breakpoint method, where the ranges were ≤0.49,
0.49–0.56, 0.56–0.65, 0.65–0.76, 0.76–0.88 and ≥0.88, and grade VI represented the best soil
quality. The result is shown in Figure 5.

Figure 5 showed that the best soil quality was distributed in the upstream area
of the basin and the soil quality were bad in most of the downstream, but it showed
a different situation in the southeast edge and some areas along the rivers, where it
was mainly in grade II in the middle of the basin. The statistics showed that grades II,
III, and IV were the most widely distributed, with areas of 19,571.13 km2, 14,413.06 km2

and 10,478.63 km2, respectively, and grades I, and VI were the smallest, with areas of
8863.25 km2 and 7974.19 km2, which were distributed in the east and west of the basin,
respectively. Grade V was mainly distributed in the upstream, and its area was about
9135.69 km2, especially in the southeast mountains of the study area (Table 5). The soil
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quality of farmland and forest is better with their mean values of soil quality of 0.63 and
0.72, which belonged to grades III and IV, respectively.

 

Figure 5. Assessment result of soil quality in the dry season.

Table 5. The area of different land-use type in different soil-quality grade.

Land-Use Type

Grade
I II III IV V VI Total

Farmland 7019.88 15,631.63 10,095.18 7216.27 5361.92 5477.20 50,802.08

Forest 457.05 1186.60 1939.27 1680.03 2783.37 1164.23 9210.55

Grassland 269.63 598.27 591.99 359.79 204.06 386.92 2410.66

Wetland 574.97 675.62 691.34 439.14 222.46 255.75 2859.27

Garden plot 21.42 78.39 98.72 102.26 79.24 200.84 580.87

Others 66.31 71.41 70.95 51.87 24.20 18.27 303.01

Residence 453.99 1329.19 925.61 629.27 460.45 470.98 4269.49

Total 8863.25 19,571.13 14,413.06 10,478.63 9135.69 7974.19 70,435.94

Table 5 showed the areas of different land-use type in different grade, and we could
find that most farmland was in grade II and III, which indicated that the soil quality of
farmland was in bad condition and some optimization policies should be carried out to
improve the land, fortunately, about 35% of farmland distributed in high grades, which
were mainly distributed in the western areas of the basin according to Figure 5. The dry
fields were in higher grades than paddy fields, and approximately 77% of dry fields were
in grade IV, V, and VI, while approximately 76% of paddy fields were in grades I, II, and
III. The forest had better soil quality than farmland, as most forests were in high grades,
which were also mainly distributed in the upstream areas. Additionally, the elevation was
divided into five levels (<170 m, 170–240 m, 240–370 m, 370–580 m and >580 m) according
to the natural breakpoint method and used to calculate the mean value of soil-quality
membership. The result showed that the higher the elevation, the better the soil quality.
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5. Discussion

The verification of the study results was not constructed because of the lack of related
studies, but we could get a general judgment according to the spatial similarity between
the indicators and soil quality based on that the spatial accuracy of all indicators had been
confirmed. The heavy weights of SOM and TN in the assessment process resulted in the
spatial distribution of soil quality being more similar to that of SOM and TN. Additionally,
the AP mainly influenced the southwest of the basin, but the low-grade soil quality in
the middle of the basin was mainly caused by soil pH. From the above, we thought the
assessment result was credible and reasonable.

The soil quality of the basin showed some obvious regularity in space and different
land-use type. First, most forests were undisturbed, which made the soil nutrients accu-
mulate through the decomposition of dead branches and leaves year by year, and which
furtherly led to rich SOM and TN. The abundance of SOM limited the conversion of AP,
which, coupled with the impact of rain, made AP less abundant in the forest. Secondly, the
soil quality in farmland was poor because most farmland in the dry season was unused.
The soil was dry, and there was not a soil nutrient supply, as the crop residues could not be
decomposed. However, there were some dry fields in the upstream where the terrain was
very undulating that were not suitable for paddy fields, so artificial fertilization activities
would increase soil quality, and the assessment result also showed that the soil-quality
value of the dry field was obviously higher than that of paddy fields. Thirdly, the western
part of the basin had a complex topography and was the main forest distribution area,
which led to the better soil quality than other areas, while the terrain was gentle in the
central and eastern part of the basin, and the main land-use type was paddy field there,
but it was unused in dry season, and all above made the soil quality poor. However, the
areas near the rivers were still available for cultivation because of fertilization played an
important role in improving the soil quality.

The assessment result was reasonable as the spatial regularity was consistent with
questionnaire surveys, but there still were some insufficiencies. First, the number of
sample points was insufficient, and the samples were not distributed evenly in the study
area, which would make the assessment process imprecise and lead to the absence of
spatial details, especially the number of samples were very small in the east of the basin.
Secondly, the number of assessment indicators in this study were fewer than other studies
on soil-quality assessment, mover over, there were no biological indicators because of the
restrictions of experimental conditions. We will continue our studies in the Mun River
Basin, and we will do our best to solve these problems in the near future.

6. Conclusions

The soil nutrient indicators of the Mun River Basin were regularly distributed in
space. The contents of SOM and TN were very low in the basin, but they had similar
spatial distributions rules, with higher values in the west of the basin than other areas,
and their contents were high in mountainous forests and dry fields but low in the paddy
fields of the flat terrain area. The content of AP was very high in the basin, but it was
very different between forests and farmland, with the lowest values distributed in forest
areas. The pH showed that the land was very acidic in the middle of the basin. The
assessment results of soil quality also had a decreasing trend from the west to east area,
and the dry fields in the west and the forests in the east of the basin were better than other
surrounding areas; however, the soil quality of paddy fields in the middle and east of the
basin was poor due to the lack of soil nutrient supply when the fields were unused, so the
assessment result was useful for soil-quality improvement in the rainy season according to
the spatial distributions of soil nutrient indicators. In addition, the limited soil samples
and incomplete indicator system would cause the imprecise assessment result, and these
shortcomings are what we should solve in future studies.
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Abstract: Recent decades have seen a progressive degradation of soils owing to an intensification
of farming practices (weeding and high trafficking), increasing use of pesticides and fertilizers,
mainly nitrogen, resulting in a steady decline in soil organic matter, a key component to maintain
soil fertility. The work has coupled the normalized difference vegetation index (NDVI) of wheat
cultivation in Central Italy to soil properties where the wheat was grown to identify the properties
linked to within-field variability in productivity. NDVI was assessed through Copernicus Sentinel-2
(S-2) data during the wheat anthesis phase. The main outcome showed a significant correlation of
NDVI variability to soil colloidal status and to the relative quantity in the exchange complex of the
Ca2+ ions. No relationship emerged between NDVI and soil macronutrients (nitrogen, phosphorus,
and potassium) concentration. The work suggested that such elements (nitrogen, especially) should
not be provided solely considering the vegetation index spatial variations. Rational and sustainable
management of soil fertility requires the integration of the NDVI data with the whole complex of soil
physical/chemical status. In this way, the identification of the real key factors of fertility will avoid
the negative impact of overfertilization. As an example, a fertilization plan was simulated for the
sunflower–wheat sequence. The results showed that in the study area additional supplies of N and K
would be unnecessary.

Keywords: remote sensing; soil degradation; vegetation index; colloid index; fertilization; nitrogen;
phosphorus; potassium; calcium

1. Introduction

Approximately 81% of the organic carbon resources that are actively involved in the
global carbon cycle are stored in soils [1]. Soil organic matter (SOM) represents one of
the largest reservoirs of carbon on the global scale; its quantity and quality are important
in the management of soil fertility, nutrient supply, and carbon dynamics [2]. Preserving
and/or increasing the SOM pool ensures favorable nutrient conditions for field crops
and, in turn, contributes to securing food security [3,4]. It has been remarked that soil
degradation should be recognized, alongside climate change, as one of the most pressing
problems facing humanity particularly in arid and semi-arid regions where salt-induced
soil degradation coupled to intensive farming is a major cause of soil organic carbon (SOC)
loss [5], the main component of SOM.

Although poor irrigation tilling practices coupled to the extensive use of pesticides and
fertilizers represent a major cause of soil organic matter loss, degradation of the fertile layer
of the soil, and its desertification [6,7], a few farming practices can be employed to improve
soil functional qualities and increase SOC, including optimal fertilization, crop–grassland
rotation, and amendments [5].

In the Mediterranean area, a typical agriculture soil is characterized by a high content
of clay and active limestone; declining SOM; and by a high level of degradation due to
intensive use, frequent mineral fertilization, weeding, no addition of organic matter, and
intense traffic of heavy-weight machinery [6].
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Available multi-layered studies associate vegetation indexes from remote sensing to
nitrogen fertilization [8], to the content [9] or to the supply of N, P, and K [10], to soil
texture [11], or soil type [12]. Less frequent (or absent) is the association between remote
data and specific soil chemical and physical features.

Remote sensing technologies have proven to be viable for assessing and mapping
the availability of agro-forestry resources such as productivity, residual biomass, and
crop yields [13] as well as to optimize the interaction crop–soil environment with the
final objective of increasing the sustainability of yield by means of more judicious input
management [14,15]. Focused mainly on site-specific fertilization [16,17], remote sensing
application has progressively been extended to the analysis of all the sources of intra-field
variation [18,19] such as yield, soil, crop, anomalous factor (i.e., weeds or pathogens), and
management variability (from tillage to the application of fertilizers or pesticides).

Depending on the properties of the instrument and platform, remote sensing data
are available from coarse (more than one kilometer) to fine (sub-meter) spatial resolution,
and at variable temporal resolution, daily to monthly [20]. The main remote and proximal
sensing technologies employed in precision agriculture include satellite platforms, drones,
and sensors installed on tractors [15]. Earth observation satellites record and collect
spatial information regularly, with wide coverage and low cost, and therefore represent
an advantageous tool for the detection of natural and agricultural resources over the last
decades [21]. Sentinels 1 and 2 or lower resolution satellite missions have been used
to create dynamic cropland masks [22]; perform crop type mapping [23]; estimate soil
moisture [24,25]; monitor rice production [26]; estimate plant parameters such as leaf area
index [27,28]; or aid in within-field decisions in precision agriculture settings for crop yield
mapping, fertilizer use, and minimizing nitrogen loss to water [8,29,30].

We hypothesized that the mineral status of the soil layer where the great part of wheat
roots are distributed, due to its influence on plant nutritional status [31,32], should be
picked up by remotely sensed normalized difference vegetation index (NDVI) layer.

An exploratory investigation was applied to infer a fundamentally general relationship
among exploratory (soil mineral status) and response variables (NDVI) from remote sensing
in a typical Mediterranean field. A wheat cultivation was set up in late 2018 to evaluate
the contribution of NDVI, calibrated by soil chemical properties monitoring (Figure 1).
The study attempted to answer two key questions: (1) which soil nutritional elements and
physical features account for the within-field spatial variation of crop productivity, and (2)
whether and how the NDVI can be used as a proxy of soil mineral status.

Figure 1. Graphical rendering of the multi-layered concept of the study: remote sensing sensor and
soil mineral status to spatially characterize crop productivity.
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2. Methods

2.1. Study Site

A 5.0 ha experimental field crop, spatially located in the northeastern outskirts of
Rome, central Italy (Figure 2, Latitude 42.103° N, 12.628° E), was set up in 2018. The field
is property of the Research Center for Engineering and Agro-Food Processing (CREA) to
pursue academic investigations.

Figure 2. The study area is located in Italy (inset), region of Lazio, province of Rome, and it is part of
the CREA experimental farm. Sentinel 2 Normalized Difference Vegetation Index (NDVI) map for
the date 16 May 2019 is overlaid on the study area, the random sampling points are numbered 1 to
20; metric coordinates in WGS 84/UTM zone 33N coordinate reference system shown on frame.

Geologic formation outcrops throughout the area consist of volcanic tuff effusive
types of lower and middle Pleistocene. These formations are connected to the intense
volcanic activity of the northern Lazio region at the time, particularly associated with
the calderas activity of the area. The predominant rock types are pyroclastic launch
products, mainly composed of loose sand-lapilli levels and sometimes with the presence
of cineritic levels more or less cemented. The pyroclastics are leucititic type, which is of
significant importance in the process of alteration, show an intense activity of quaternary
hydrothermal type, which led to the formation of Analcime (natural zeolite). This confers
special properties to the soil in terms of water retention and nutrients release (less water
and nutrients available in the real conditions with respect to the analytical data, as captured
by the zeolite lattice structure). The southern part of the experimental farm of CREA
also includes a portion of an alluvial valley of a secondary stream of the Tevere River.
The alluvio-colluvial deposits here consist of fine sandy loam and fine sediment resulting
from erosion and reworking of the deposits and soils of the slopes [33]. Soils are of volcanic
origin and are classified as Typic Argixeroll [34], soil profile was described in [35].

From the climatic and pedoclimatic point of view, according to the long-term data
(30 years) of the ISIS 1.0 database, the average annual air temperature is 13.7 °C, the average
annual rainfall is 890 mm, equivalent to an aridity index calculated with the De Martonne
equation of 37.5 class (35–40) moderately humid. The thermal regime of the soil is thermal
(15–22) with an average soil temperature of 16.3 °C at 0.50 m depth. The water regime is
xeric (80–115 days), with 88 cumulated dry days per year. Climatic data were collected by
the monitoring station adjacent to the study area [33].
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The soil being tested was characterized through a complete physical-chemical anal-
ysis, in order to evaluate the characteristics of the mineralogical components and the
relationships between them; the reactions and the electrical conductivity that influence the
bioavailability of many nutrients; the level of chemical fertility, through the determination
of the nutrient content and the colloidal capacity of the soil, which indicates the state
of aggregation of the particles; the drainage ratio; and the buffering power of the soil.
The analysis involved the collection within the area of twenty random sampling points
considered as replicates. The sampling points were randomly drawn in a downsized study
area to account for a 10 m border effect (Figure 2).

A 2 kg soil sample from the 0–20 cm layer in each sampling point was collected. At
wheat heading 50% of roots are localized in the 0–20 cm soil layer while a further 10%
being found in the 20–40 cm layer [36]. The figures were confirmed by the authors of [37]
by modeling root distributions of eleven temperate crops: at least half of the root biomass
could be found in the upper 20 cm of soil, 61–68% of wheat roots are found in the 0–30 cm
soil layer.

Soil characterization was carried out according to the Italian official method of analy-
sis [38] by a UNI CEI EN ISO/IEC 17025:2005-certified laboratory. Particle size distribution
was determined by gravimetric method; pH in H2O with a potentiometer; total organic car-
bon through Walkley and Black’s method; total nitrogen with Kjeldahl’s method; available
phosphorus by means of Olsen’s procedure; cation exchange capacity and exchangeable
cations measured in the extracted soil solution (ammonium acetate) by using the atomic
absorption spectroscopy (AAS, model AA240FS, Varian, Crawley—UK); assimilable metals
by extraction with diethylenetriaminepentaacetic acid (DTPA); and spectrometric analysis
with a inductive coupled plasma spectrophotometer model iCAP Pro (ICP-OES, Thermo
Fisher Scientific, Waltham—USA). Soil analyses included macro- and micronutrients as
well as soil particle size distribution (Table 1).

According to the US classification standards, soil particles are divided into three
grades: clay particles <2 μm, silt particles ≥ 2 μm < 50 μm, and sand ≥ 50 μm < 2000 μm.

Among the derived chemical properties, exchangeable potassium, magnesium, sodium,
and calcium are defined in % of the CEC; colloids index is defined according to [39]

CI = 10 · SOM% + Clay% (1)

Table 1. Soil analyses and associated units of measure carried out on the 20 sampling set points. Percentages are mass over
mass (m/m). Abbreviations: Tot., Total; Act., Active; Av., Available; Ass., Assimilable; Sol., soluble; Exc., exchangeable;
CEC, Cation Exchange Capacity; EC, Electrical Conductivity; CI, Colloids Index; SOM, Soil Organic Matter.

Physical Properties Chemical Properties Derived Chemical Properties

Sand [%] Tot. and Act. limestone [%] Magnesium/potassium ratio
Silt [%] Tot. organic carbon [%] Carbon/nitrogen ratio

Clay [%] Tot. nitrogen [%] SOM [%]
Particles size distribution [%] Av. phosphorus [mg kg−1] CI [%]

pH Ass. iron [mg kg−1] Exc. potassium [% of CEC]
EC [mS cm−1] Ass. manganese [mg kg−1] Exc. magnesium [% of CEC]

Ass. copper [mg kg−1] Exc. sodium [% of CEC]
Ass. zinc [mg kg−1] Exc. calcium [% of CEC]

Sol. boron [mg kg−1]
Sol. cobalt [mg kg−1]

Exc. calcium [mg kg−1]
Exc. magnesium [mg kg−1]
Exc. potassium [mg kg−1]

Exc. sodium [mg kg−1]
CEC [meq 100 g−1]
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2.2. Vegetation Model

At the end of 2018, the study area was sown with durum wheat. The cultivation
was conducted following the common farming practices of the area. A linear model
was set up to investigate the effect of chemical and physical properties of the soil and
soil/vegetation moisture on the Normalized Difference Vegetation Index (NDVI) of the
wheat crop growing during winter and spring of 2019, on the same 20 sampling points
identified for soil analysis. NDVI is directly related to the photosynthetic capacity and
therefore to the energy absorption of plant canopies [40,41], thus proving to be an excellent
predictor of productivity and yield [30].

NDVI was estimated for the study area on all available passes of the satellites of the
Copernicus Sentinel-2 (S-2) mission in 2019 as

NDVIt,x,y =
ρ842,t,x,y − ρ490,t,x,y

ρ842,t,x,y + ρ490,t,x,y
(2)

where NDVIt,x,v is NDVI at time t and spatial coordinates x, y; ρ490,t,x,y and ρ842,t,x,y are
the spectral reflectances of the central wavelengths of the near-infrared and red bands of
S-2 recorded at time t and at x, y coordinates. These spectral reflectances are themselves
ratios of the reflected over the incoming radiation in each spectral band.

The S-2 satellites aim at providing multispectral data with a 5-day revisit frequency
and 10 meters spatial resolution [42]. The medium-to-high spatial resolution granted the in-
dependence assumption of the sampling points locations (i.e., a one-to-one correspondence
links the soil sampling point set and the S-2 pixel set). Cloud and cirrus formations were
detected and removed through the quality assurance metadata provided and the resulting
pixels masked from NDVI calculation.

The NDVI profile of the study area (Figure 3) helped in tracing the timing of phenology
of the crop. At the latitudes of the study, wheat sowing takes place between the end of
October and the beginning of November. Field observation [43], phenological model [44,45],
or analysis of vegetation index [46] confirmed that in Mediterranean environments, the
anthesis occurs between the end of spring frosts and the beginning of the summer drought,
corresponding to the end of April–first half of May. The passage from anthesis to maturity
is a crucial phase shift because the photosynthates accumulated in the photosynthetic
organs (source) relocate towards the ear (sink) for grain filling [47,48]. NDVI was further
calculated for the 20 sampling points set, on the peak season day image, this NDVIx,y
variable was used as a model predictor. The estimation of the NDVI profiles was performed
in Google Earth Engine [49].

Soil chemical and physical features on the 20 sampling points set along with vegetation
and soil moisture were included in the model as potential explanatory variables. Moisture
was proxied by extracting the C-band Synthetic Aperture Radar (SAR) Ground Range
Detected (GRD) single bands on the sampling points for the Sentinel-1 image available
on 15 May 2019. Vertical–Vertical (VV) and Vertical–Horizontal (VH) bands report the
portion of the outgoing radar signal that the target redirects directly back towards the radar
antenna; in VV mode, the microwaves of the electric field are oriented in the vertical plane
for both signal transmission and reception whereas in VH mode the backscatter signal is
received in the horizontal plane.

The image was preprocessed on Google Earth Engine (apply orbit file, GRD border
noise removal, thermal noise removal, radiometric calibration, and terrain correction).
The process to define the optimal minimal model of NDVI prediction from the starting
comprehensive model formed by all explanatory variables included four steps. First,
all variables were standardized (i.e., centered on their mean and scaled by their standard
deviation) to ease interpretation of model coefficients and avoid issues due to multi-
collinearity of explanatory variables. In these standardized models, a unit increase in an
explanatory variable is equal to its standard deviation, and it affects the predictive variable
by a unit of its standard deviation. Intercept term was dropped from the standardized
models of the successive steps.

139



Land 2021, 10, 80

Figure 3. Average NDVI profile for 2019 in the study area. Dots are NDVI values averaged over the
study area on available S-2 date (i.e., not masked due to low QA metadata). Crop peak phase was
detected to be on 16 May, vertical dashed segment.

Second step concerned feature selection of explanatory variables. Firstly highly
correlated variables were removed. If two variables had a high correlation (pairwise
absolute correlation cutoff: 0.95), the variable with the largest mean absolute correlation
was removed. Highly correlated removed variables included carbon/nitrogen ratio, organic
carbon, SOM, and exchangeable calcium (mg kg−1) (Figure 4). Second, important variables
were selected by fitting an unsupervised random forest classification model over different
tuning parameters and filtering out the least significant variables based on the importance
measure, on a percentage scale (cutoff: 40%). Among the remaining explanatory variables,
Colloids Index (CI), CEC, exchangeable Calcium (% of CEC), and total nitrogen were
selected in order of decreasing importance. This intermediate linear model explained 67%
of variance in NDVI (Adjusted R-squared: 0.6782); residual standard error was 0.55 on
16 degrees of freedom.

The third step involved stepwise model selection, based on Akaike’s An Information
Criterion (AIC) value, of a set of linear models fitted using generalized least squares.
Each variable was considered for subtraction from the set of explanatory variables based
on AIC value.

Heteroskedasticity and spatial correlation were accounted for in the fourth step.
A slightly increasing linear relationship in residuals vs. NDVI values for the explanatory
variables was accounted for by weighting observations by selecting variance functions that
minimized AIC while being not significantly different from the optimal model. Variance
functions chosen were

• an exponential function for CI (where denotes the variance function evaluated at CI
and t is the variance function coefficient, t = −0.39);

• a power function for exchangeable Ca (t = −0.32).

Similarly, spatial autocorrelation was accounted for by evaluating the better perform-
ing correlation structure (longitude + latitude) in terms of AIC that resulted the spherical
spatial correlation (where d is the range and n is the nudge, d = 91.2, n = 0.004). Model esti-
mation was performed in R 3.6.3 [50], stepwise procedure by package MASS 7.3–51.5 [51],
GLS modeling by package nlme 3.1–144 [52], variable importance by packages caret
6.0–85 [53], and randomForest 4.6–14 [54]; general data table management was performed
by package data.table 1.12.8 [55].
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Figure 4. Correlation matrix among exploratory variables. Correlation values are color-coded as
squares whose size is proportional to their significance, insignificant (p < 0.01) correlation values are
struck with a black cross. VV: backscatter of single co-polarization, Vertical transmit/Vertical receive,
VH: backscatter of Vertical transmit/Horizontal receive polarisation. See Table 1 for soil abbreviations.

2.3. Fertilization Plans

For applying the procedure to a case study, nitrogen, phosphorus, and potassium
fertilization plans were computed from soil chemical and physical analyses of the 20 sam-
pling points set, following the indications formulated in the regulation drawn up by the
Lazio Region [56]. Soil nutrient balances taking into account inputs and losses of N, P, and
K were computed to satisfy the nutrient demands of sunflower and wheat. As an example,
nitrogen balance (a dynamic element considered fundamental for productivity) included
seven components: N crop demand for sunflower and for wheat, availability of N for the
crop, N leakage caused by rainfall, N leakage due to immobilization processes, residual N
supply from previous crop, residual N supply from previous organic fertilizations, and
supply of N from natural and anthropic sources. Expected yields were estimated from 2019
average yields in the province of Rome (http://dati.istat.it/): 1330 kg/ha for sunflower
and 3000 kg/ha for wheat. The fertilization plan was estimated by fertplan 0.1 [57], an R
package specifically developed; spatialization of the fertilization plan from the sampling
set was performed by ordinary kriging in R 3.6.3 by package gstat 2.0–4 [58].

3. Results

All the analyzed soil samples fall within the clayey loam or silty clayey loam USDA
classification (Table 2; Figure 5) and have a sub-alkaline reaction. Workability is diffi-
cult with a tendency to retain too much water, often resulting in stagnant water after
heavy rainfall. Water stagnation can be a serious problem for most crops. It often causes
stunted growth and rot or other diseases. Therefore, this type of soil requires drainage of
surface waters.
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Table 2. Descriptive statistics for remote sensing and soil physical properties on sampling point set. Abbreviations:
AVG: average, MIN: minimum value, MAX: maximum value, STD: standard deviation, CV: coefficient of variation (i.e.,
STD/AVG · 100); NDVI: Normalized Difference Vegetation Index. See Table 1 for soil physical abbreviations and units of
measures and Figure 4 for remote sensing abbreviations.

Remote Sensing Properties Soil Physical Properties

NDVI VH VV Moisture Sand Silt Clay pH EC
×104 Backscatter % % % % mS cm−1

AVG 9288 −21.4 −15.08 20.5 25 38 37 7.9 0.47
MIN 9124 −22.9 −16.72 18.2 16 21 34 7.4 0.32
MAX 9404 −19.6 −13.16 23.8 41 48 40 8.0 0.65
STD 76.27 0.98 0.89 1.29 7.0 7.6 2.2 0.10 0.06
CV 0.82% −4.50% −5.90% 6.28% 28% 20% 5.9% 1.7% 13%

Figure 5. Ternary plot of soil texture (USDA) on the sampling point set. Soil texture classes are Cl
(clay), SiCl (silty clay), SaCl (sandy clay), ClLo (clay loam), SiClLo (silty clay loam), SaClLo (sandy
clay loam), Lo (loam), SiLo (silty loam), SaLo (sandy loam), Si (silt), LoSa (loamy sand), Sa (sand).

Total limestone is high, with a high content of active limestone (Table 3). The cation
exchange capacity is high (>30 meq 100 g−1), as the basic cations saturation rate and colloids
index. Calcium is the most present exchangeable cation, and the activity of limestone causes
this metal to completely saturate the exchange complex. The content of organic matter
and total nitrogen can be classified as medium; given the sub-alkaline nature of the soil,
potassium is also well represented. The available phosphorus is low, highlighting a high
degree of immobilization of the element due to the excess of Ca and the presence of active
limestone. Metallic microelements are represented in good quantities, in particular as
regards Fe and Mn. Among the macronutrients, N and K concentrations are widely above
the levels of sufficiency for an average demanding crop, so their supply is not required.
Phosphorus, on the other hand, is affected by the high degree of immobilization of the
soil, so it must necessarily be added with specific fertilizations. In addition to water, soil
also retains nutrients, greatly increasing its chemical fertility. The presence of calcium
carbonates derived from the degradation of the original or secondary minerals, associated
with mineral or organic colloids, contribute to the formation of a stable structure. On the
other side, the release of sodium from sodium salts, represents a highly destructuring factor.
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Table 3. Descriptive statistics for soil chemical properties on sampling point set. See Tables 1 and 2
for abbreviations and units of measures.

AVG MIN MAX STD CV

Tot. lime [%] 9.69 0.6 17.4 4.01 41.40%
Act. lime [%] 4.30 0.0 6.5 1.55 36.00%

SOM [%] 2.63 1.97 3.56 0.352 13.40%
Org. C [%] 1.52 1.14 2.06 0.204 13.40%
Tot. N [%] 0.157 0.122 0.205 0.019 11.80%
Ass. P [mg kg−1] 14.1 11.0 21.0 2.57 18.20%
Ass. Fe [mg kg−1] 23.4 16.4 32.0 3.99 17.10%

Ass. Mn. [mg kg−1] 36.3 22.8 70.4 12 33.00%
Ass. Cu [mg kg−1] 4.91 4.0 6.40 0.676 13.80%
Ass. Zn [mg kg−1] 1.31 0.60 3.40 0.626 48.00%
Exc. Ca [mg kg−1] 5852 4940 6640 390 6.67%
Exc. Mg [mg kg−1] 149.5 124 218 20.2 13.50%
Exc. K [mg kg−1] 365.3 285 492 58.7 16.10%

Exc. Na [mg kg−1] 87.95 66 124 14.2 16.20%
Exc. Ca [% of CEC] 91.71 89.17 92.93 0.909 0.99%
Exc. Mg [% of CEC] 3.875 3.254 6.141 0.588 15.20%
Exc. K [% of CEC] 2.953 2.174 4.211 0.549 18.60%

Exc. Na [% of CEC] 1.201 0.894 1.637 0.173 14.40%
Sol. B [mg kg−1] 0.872 0.5 1.36 0.21 24.00%

Sol. Co [mg kg−1] 0.014 0.01 0.02 0.005 36.20%
CEC [meq 100 g−1] 31.8 27.3 35.8 1.95 6.11%

Mg/K 1.37 0.9 2 0.27 19.70%
C/N 9.71 9.34 10 0.153 1.58%

CI [%] 63.2 57 71.6 3.7 5.85%

These soils, very common in the Mediterranean area, are generally used for the
cultivation of cereals, oil, or industrial crops, resulting in a massive use of fertilizers and
pesticides to prevent a decrease of their fertility. Their tendency to lose their structure can
be contrasted with the addition of organic matter to counteract the excessive presence of
clay and silt.

The NDVI from Sentinel-2 optical bands is very close to the theoretical maximum
(1× 104) and with fairly low variability among the sampling set (Coefficient of Variation 1%,
Table 2), whereas microwave bands from remote sensing exhibit higher spatial diversity.

Colloids Index (CI) and exchangeable Calcium (% of CEC) were the explanatory
variables selected in the optimal vegetation model after pruning of all the other explana-
tory variables:

NDVI = f (β1 · CI + β2 · Ca) (3)

Standardized beta coefficients along with standard deviation of the explanatory vari-
ables are given in Table 4. Residual standard error of the optimal model decreased to 0.31 on
18 degrees of freedom while ANOVA confirmed it to be not significantly different from the
intermediate model, built after variable selection. Neither of the three soil macronutrients
(N, P, and K) nor carbon and any of the micronutrients were able to explain variation of
NDVI in the field, during the key phenological phase of anthesis-start of grain filling of the
wheat grown in 2019.
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Table 4. Vegetation model results. β coefficients and their standards errors in standardized form together with their
significance values and cross-correlation. β coefficients are converted to unstandardized form by multiplying their variable
standard deviations. Colloid Index is defined in Equation (1). Exc. Ca. is defined as % of Cation Exchange Capacity (Table 1).
Abbreviations: Expl., Exploratory; Var., Variable; std. err., standard error; std. dev., standard deviation.

Expl. Var. Standardized β± std. Err. t-Value p-Value Correlation Var. Std. Dev. β± Std. Err.

CI 0.66 ± 0.04 15.91 0 3.7 2.5 ± 0.15
Exc. Ca 0.29 ± 0.05 5.4 0 −0.08 0.91 0.27 ± 0.01

Nevertheless, among the sampling point set, although the NDVI range is very narrow
(Figure 6), its variability is largely related to soil colloidal status (CI) and, to a lesser extent,
to relative quantity in the exchange complex of the Ca2+ ions. Colloids index, in turn,
heavily depends on SOM variations (×10) coupled to clay soil quantity [39] so that a limited
increase in SOM can greatly improve soil colloid status leading to an increase in NDVI.

Figure 6. Data distribution (jittered dots) and boxplot of the predictive model variable (NDVI) and
explanatory variables. See Table 1 for abbreviations.

The spatialized fertilization plans and the relative doses, calculated in accordance
with the regional guidelines, showed a different pattern of within-field variability for N, P,
and K. The maps confirmed as N and K concentrations were above the demand for both
sunflower and wheat. Phosphorus, instead, must be supplied at concentrations ranging
from 37 kg P2O5 ha−1 to 77 kg P2O5 ha−1 for sunflower, and with concentrations ranging
from 56 to 98 kg P2O5 ha−1 for wheat (Figure 7).
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Figure 7. Spatialized fertilization plans for the three main macronutrients for sunflower and wheat crops: from left-most
panel to right-most panel: nitrogen, phosphorus, and potassium. Excess nutrient concentration in soil is shown in negative
figures (the lower concentration the more excess of nutrient), whereas a demand for nutrient is shown in positive figures
(the higher concentration the more demand for nutrient).

4. Discussion

Normalized Difference Vegetation Index (NDVI) was estimated from Sentinel 2 satel-
lites constellation data on a 5 ha wheat field crop during the phenological time-step of the
start of grain filling period to test whether it can be a reliable proxy for the mineral status of
the soil. NDVI from Sentinel 2 is commonly used for crop yield mapping, fertilizer use, and
minimizing nitrogen loss to water [8], usually in precision agriculture settings [59] despite
its medium-to-low spatial resolution. A limitation of this study concerns the saturation
effect that may affect NDVI by losing its linear relationships with aboveground biomass at
higher biomass values. The saturation effects may hinder its estimation performance and
confound its relationship to soil chemical/physical properties. A multi-sensor approach
might help overcoming this effect (see, e.g., in [60]).

Soil mineral status was sampled in the layer where the great part of wheat roots are
distributed [37], particularly in clayey, unstructured soils, with high bulk density and
worked at shallow depths in the Mediterranean climate, characterized by low rainfall and
low soil moisture content [61].

On the one hand, despite the fact that the availability of the three macronutrients
(nitrogen, phosphorus, and potassium) is commonly associated to soil fertility and crop
growth, they did not account for the spatial variation of NDVI over the study field nor did
any of the micronutrients sampled or any other soil physical features. On the other hand,
NDVI variability was associated with the soil colloidal status and, in particular, with the
components most active in determining the flocculation of the clays and the aggregation
of the soil particles, i.e., the organic matter and the Ca2+ ions adsorbed on the exchange
complex [62].

The role of SOM is highlighted by the positive correlation between NDVI and the
colloids index: even small variations in organic matter can significantly influence the
structure of the soil, inducing improvements in soil physical-chemical fertility and in plant
nutrition. The presence of higher quantities of Ca2+ ions induces the formation of a larger
number of bonds between the mineralogical component and the organic matter, which
causes the formation of a higher number of stable soil aggregates [63].

An important ecosystem property that contributes to soil organic carbon (SOC) stabi-
lization and soil structure stability is the interaction between SOC and cations or minerals.
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SOC can be stabilized by organo-cation or organo-mineral interactions [64]. When the
polyvalent cations concentration is high, it becomes sufficient to flocculate and precipitate
soluble organic matter. In particular, research in Ca-rich field environments has highlighted
a positive correlation between exchangeable Ca2+ and SOC concentration. Ca is a plant
macronutrient, and it has a localized positive effect on net primary productivity and soil
organic matter inputs both for aboveground and belowground biomass. Exchangeable Ca
concentration is correlated with a reduction of SOC leaching, photo-oxidation and respira-
tion [65]. Furthermore, the role of clays can also have different effects on the stabilization
of soil aggregates, depending on clay mineralogy, particularly at large clay contents. Wud-
divira and Camps-Roach [66], by treating a clayey-kaolinitic soil and a sandy-kaolinitic
soil with Ca2+ and organic matter, improved aggregation within a short time, while the
same treatment on a clayey-smectic soil gave the opposite effect, suggesting the need for
adequate time for aggregate improvement through Ca2+ bridging.

The lack of relation between N, P, and K content in the soil and NDVI has been
validated by elaborating fertilization plans both for a successive sunflower crop and
for a successive wheat crop elaborated following the current regulations enacted by the
competent regional administration. An excess of nitrogen and potassium (K2O) and a slight
demand for phosphorus (P2O5) were highlighted by both fertilization plans, although with
spatial variations within the field. However, it must be stressed that most of the phosphorus
added to the soil is likely to be immobilized, due to the high active limestone content of
the soil.

Often, spatial variability of NDVI is commonly associated with nitrogen demand by
the crop so that N fertilization plans are deployed by thresholding NDVI into spatially
explicit classes and assigning them different N concentrations [17,67]. Although limited
to the specific condition of the study, a lower demand for macronutrients may be a less
frequent condition than one might think and hence to be worthy of investigation. Should
our results be confirmed on wider soil contexts, in Mediterranean intensively used soils
the traditional macronutrient fertilization practices could be limited. As the vegetation
model has suggested that NDVI variability is to be associated with the variability in SOM,
an organic fertilization could be better suited to increase soil matter and crop yield than
classic N or NP, or NPK fertilization. Higher SOM tends to mean a larger soil microbial
population and therefore potentially higher N supply through mineralization [68]. Second,
it should be emphasized that careful evaluation of soil chemical and physical properties
should be instrumental to the deployment of properly conceived fertilizations treatments
even in precision agriculture frameworks.

5. Conclusions

The commonly used Normalized Difference Vegetation Index from the Sentinel-2
satellite constellation has demonstrated to be very sensible even to the narrow crop pro-
ductivity variations in the field. For the specific conditions of the study, NDVI variability
was influenced by the colloidal status of the soil more than its nutrient availability. Further
research is needed to confirm whether the relationship between NDVI and colloid index
reported still holds in other clayey soils and in other soil contexts.

Fertilization plans that do not take into consideration soil chemical and physical fea-
tures may wrongly supply one or more macronutrients under the simplifying assumption
that NDVI is solely correlated to nitrogen availability. Variations in crop productivity can
be associated with different functional qualities of the soil. Nitrogen, due to its dynamism
and its mobility, is the main factor of crop production variability in soils with low fer-
tility. In clay soils, functional qualities can be connected to other factors, first of all the
content of organic matter, exchangeable cations, and the quantity and composition of the
clay minerals.

Soil and fertility degradation caused by the extensive use of pesticides and fertilizers
can be tackled by applying a reasoned analysis of soil properties viewed as a whole system.
An integrated agro-ecological assessment coupled to remote sensing can provide useful
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insights into a more sustainable and targeted fertilization approach. This is particularly true
in intensively used soils, such as those the study was based on, where soil organic matter
is steadily declining. This approach (i.e., use the NDVI/soil characteristics association)
can play a remarkable role to better target the nutrient inputs and to avoid unjustified use
of fertilizer.

Author Contributions: M.B.: Data curation, Software, Visualization, Writing—review and editing.
E.S.: Validation, Writing—review and editing. C.B.: Conceptualization, Methodology, Writing—
review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Italian Ministry of Agriculture, Food and Forestry
Policies (MiPAAF), grant DM 36503.7305.2018, 20/12/2018 sub-project “Tecnologie digitali inte-
grate per il rafforzamento sostenibile di produzioni e trasformazioni agroalimentari (AgroFiliere)”
(AgriDigit programme).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Zenodo/GitHub
at doi 10.5281/zenodo.4442166.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schlesinger, W. An overview of the C cycle. In Soils and Global Change; Lal, R., Kimble, J., Levin, J., Stewart, B.A., Eds.; CRC: Boca
Raton, FL, USA, 1995; pp. 9–26.

2. Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter
stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [CrossRef]

3. Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281.
[CrossRef]

4. Branca, G.; Lipper, L.; McCarthy, N.; Jolejole, M.C. Food security, climate change, and sustainable land management. A review.
Agron. Sustain. Dev. 2013, 33, 635–650. [CrossRef]

5. Ritsema, C.J.; Lynden, G.W.J.V.; Jetten, V.G.; Jong, S.M.D. DEGRADATION. In Encyclopedia of Soils in the Environment; Hillel, D.,
Ed.; Elsevier: Oxford, UK, 2005; pp. 370–377. [CrossRef]

6. Pereira, P.; Brevik, E.C.; Oliva, M.; Estebaranz, F.; Depellegrin, D.; Novara, A.; Cerdà, A.; Menshov, O. Chapter 3—Goal Oriented
Soil Mapping: Applying Modern Methods Supported by Local Knowledge. In Soil Mapping and Process Modeling for Sustainable
Land Use Management; Pereira, P., Brevik, E.C., Muñoz-Rojas, M., Miller, B.A., Eds.; Elsevier: Oxford, UK, 2017; pp. 61–83.
[CrossRef]

7. Purwanto, B.H.; Alam, S. Impact of intensive agricultural management on carbon and nitrogen dynamics in the humid tropics.
Soil Sci. Plant Nutr. 2020, 66, 50–59. [CrossRef]

8. Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional
and Simple Precision Practices. Agronomy 2019, 9, 278. [CrossRef]

9. Song, Y.Q.; Zhao, X.; Su, H.Y.; Li, B.; Hu, Y.M.; Cui, X.S. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote
Sensing at Regional Scale. Sensors 2018, 18, 3086. [CrossRef]

10. Khitrov, N.B.; Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Trubnikov, A.V.; Petukhov, D.A.; Kulyanitsa, A.L. A study of the
responsiveness of crops to fertilizers by zones of stable intra-field heterogeneity based on big satellite data analysis. Arch. Agron.
Soil Sci. 2020, 66, 1963–1975. [CrossRef]

11. Tewes, A.; Hoffmann, H.; Nolte, M.; Krauss, G.; Schäfer, F.; Kerkhoff, C.; Gaiser, T. How Do Methods Assimilating Sentinel-2-
Derived LAI Combined with Two Different Sources of Soil Input Data Affect the Crop Model-Based Estimation of Wheat Biomass
at Sub-Field Level? Remote Sens. 2020, 12, 925. [CrossRef]

12. Hongo, C.; Sigit, G.; Shikata, R.; Niwa, K.; Tamura, E. The Use of Remotely Sensed Data for Estimating of Rice Yield Considering
Soil Characteristics. J. Agric. Sci. 2014, 6, 13.

13. Bascietto, M.; Sperandio, G.; Bajocco, S. Efficient Estimation of Biomass from Residual Agroforestry. ISPRS Int. J. Geo-Inf. 2020,
9, 21. [CrossRef]

14. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps.
Biosyst. Eng. 2013, 114, 358–371. [CrossRef]

15. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020,
236, 111402. [CrossRef]

16. Auernhammer, H. Precision farming—The environmental challenge. Comput. Electron. Agric. 2001, 30, 31–43. [CrossRef]

147



Land 2021, 10, 80

17. Basso, B.; Fiorentino, C.; Cammarano, D.; Schulthess, U. Variable rate nitrogen fertilizer response in wheat using remote sensing.
Precis. Agric. 2016, 17, 168–182. [CrossRef]

18. Pallottino, F.; Antonucci, F.; Costa, C.; Bisaglia, C.; Figorilli, S.; Menesatti, P. Optoelectronic proximal sensing vehicle-mounted
technologies in precision agriculture: A review. Comput. Electron. Agric. 2019, 162, 859–873. [CrossRef]

19. Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132.
[CrossRef]

20. Ginaldi, F.; Bajocco, S.; Bregaglio, S.; Cappelli, G. Spatializing Crop Models for Sustainable Agriculture. In Innovations in
Sustainable Agriculture; Farooq, M., Pisante, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 599–619.
[CrossRef]

21. Kasampalis, D.; Alexandridis, T.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop
Models: A Review. J. Imaging 2018, 4, 52. [CrossRef]

22. Valero, S.; Morin, D.; Inglada, J.; Sepulcre, G.; Arias, M.; Hagolle, O.; Dedieu, G.; Bontemps, S.; Defourny, P.; Koetz, B. Production
of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions. Remote Sens.
2016, 8, 55. [CrossRef]

23. Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al.
Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite
Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [CrossRef]

24. Boke-Olén, N.; Ardö, J.; Eklundh, L.; Holst, T.; Lehsten, V. Remotely sensed soil moisture to estimate savannah NDVI. PLoS ONE
2018, 13, e0200328. [CrossRef]

25. Taktikou, E.; Bourazanis, G.; Papaioannou, G.; Kerkides, P. Prediction of Soil Moisture from Remote Sensing Data. Procedia Eng.
2016, 162, 309–316. [CrossRef]

26. Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted
by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [CrossRef]

27. Campos-Taberner, M.; García-Haro, F.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Busetto, L.; Katsantonis, D.; Stavrakoudis,
D.; Minakou, C.; Gatti, L.; et al. Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal
Dynamics of Leaf Area Index. Remote Sens. 2017, 9, 248. [CrossRef]

28. Clevers, J.; Kooistra, L.; van den Brande, M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content
of a Potato Crop. Remote Sens. 2017, 9, 405. [CrossRef]

29. Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2.
Remote Sens. Environ. 2019, 233, 111410. [CrossRef]

30. Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring Within-Field Variability of Corn Yield using Sentinel-2 and
Machine Learning Techniques. Remote Sens. 2019, 11, 2873. [CrossRef]

31. Jonard, M.; Fürst, A.; Verstraeten, A.; Thimonier, A.; Timmermann, V.; Potočić, N.; Waldner, P.; Benham, S.; Hansen, K.; Merilä, P.;
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Abstract: Soil organic carbon (SOC) is a crucial indicator of soil health and soil productivity. The long-
term implications of rapid urbanization on sustainability have, in recent years, raised concern. This
study aimed to characterize the SOC stocks in the Johannesburg Granite Dome, a highly urbanized
and contaminated area. Six soil hydropedological groups; (recharge (deep), recharge (shallow),
responsive (shallow), responsive (saturated), interflow (A/B), and interflow (soil/bedrock)) were
identified to determine the vertical distribution of the SOC stocks and assess the variation among
the soil groups. The carbon (C) content, bulk density, and soil depth were determined for all soil
groups, and thereafter the SOC stocks were calculated. Organic C stocks in the A horizon ranged, on
average, from 33.55 ± 21.73 t C ha−1 for recharge (deep) soils to 17.11 ± 7.62 t C ha−1 for responsive
(shallow) soils. Higher C contents in some soils did not necessarily indicate higher SOC stocks due to
the combined influence of soil depth and bulk density. Additionally, the total SOC stocks ranged
from 92.82 ± 39.2 t C ha−1 for recharge (deep) soils to 22.81 ± 16.84 t C ha−1 for responsive (shallow)
soils. Future studies should determine the SOC stocks in urban areas, taking diverse land-uses
and the presence of iron (Fe) oxides into consideration. This is crucial for understanding urban
ecosystem functions.

Keywords: soil quality; soil organic carbon stocks; and urban areas

1. Introduction

An increasing urban population has stimulated interest in the status and sustainable
use of soil resources in urban areas. Anthropogenic activities have largely contributed
to the variation of urban soil properties [1]. Urban soils are generally characterized by
increased bulk density, pH levels, and carbon (C) content due to organic pollutants at
industrial sites, increased residential waste, traffic, and infrastructure [2–5]. Conversely, a
study by [6] found that soil pH and bulk density were not significantly different in urban
areas. However, soils in the city of Johannesburg, the economic hub of Africa, are diverse
in both physical and biochemical aspects. Gold mine tailings across the city are often laden
with lead and arsenic [7,8], reducing agricultural productivity and overall soil quality.

Soils provide essential ecological services, such as nutrient cycling, biomass produc-
tion, a habitat for soil organisms, storage and filtration of water, and C storage [9]. Soil
organic carbon (SOC), a measurable component of soil organic matter (SOM), is an impor-
tant soil quality indicator, as it influences climate change mitigation [10,11], soil fertility,
porosity, aggregation, and water-holding capacity [12,13]. Soils act as either a source or sink
of atmospheric carbon dioxide (CO2) and thus play a crucial role in the storage of carbon
(C). Extensive cultivation and deforestation are part of the largest anthropogenic sources of
CO2 [14]. Carbon dioxide emissions in areas affected by deforestation were 0.4 Pg C yr−1,
approximately 0.3 Pg C yr−1 less than the average from 1997 to 2008. Soil organic matter is
primarily derived from plant residues [15] and is a source of essential plant nutrients, such
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as nitrogen, phosphorus, potassium, calcium, and magnesium. Furthermore, SOM binds
soil particles and forms aggregates, improving the water-holding capacity of soils [16]. Pre-
vious research found urban soils often are water deficient [17], but Mao et al. [6] discovered
that soil moisture content and SOC increased notably from the urban periphery to the core.

In recent decades, environmental policy-making has integrated the protection of soil
resources to promote sustainability. There is a need for detailed soil quality data in urban
areas due to unsustainable development. Although urban areas occupy about 0.5% of
the global land surface [18], they are responsible for approximately 70–75% of global
anthropogenic CO2 emissions [19]. Rapid urbanization leads to environmental challenges,
such as the modification of local and regional climate [20], the loss of biodiversity caused by
the destruction of natural habitats [21], as well as the degradation of water resources [22].
The characterization of urban SOC stocks is, therefore, crucial for understanding urban
ecosystem functions.

Carbon storage in South African cities has hardly been researched. Generally, 58%
of soils in South Africa have less than 0.5% SOC and only 4% of soils have more than 2%
SOC [23]. Recently, there has been increased interest in quantifying C storage in urban
areas [24–26]. Some research indicated that SOC stocks are not significantly different across
urban areas [6,24]. Moreover, in the United Kingdom, the total SOC storage was estimated
to be about 17.6 kg m−2 for urban areas [25]. One study [26], which aimed to describe
the impacts of urbanization on the SOC stocks in north-eastern China, found a decrease
from 2.77 ± 1.09 kg m−2 to 2.16 ± 0.93 kg m−2 over two decades. The loss in carbon was
attributed to rapid urbanization.

Here, we hypothesize that an increase in the retention of water and a higher bulk
density result in greater SOC stocks. This study aims to determine the vertical distribution
of SOC stocks in six hydropedological groups identified in the Johannesburg Granite Dome
area and assesses the variation among the groups.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Johannesburg Granite Dome area (Figure 1), partly
located in the Upper Crocodile catchment. The catchment area is part of the Witwatersrand
Supergroup, underlain by a combination of granitic, gneissic, and granodiorite rocks, which
have been weathered and modified by tectonic processes [27]. The research site has soils
that have been severely altered by sand mining [28]. Due to the soil-forming process of
ferrolysis (reduction of free iron (III) oxides to Fe2+ followed by the oxidation of Fe2+), soils
in this area have limited clay accumulation. Johannesburg has a semi-arid environment.
It is a summer rainfall area, receiving most of its rainfall between October and March.
The region has a mean annual precipitation of 682 mm and mean annual evaporation of
approximately 1700 mm [27].

Johannesburg is the primary economic hub of sub-Saharan Africa, with a population
of 5.7 million people [29]. The Johannesburg Granite Dome area is drained by the Jukskei
and Crocodile Rivers, recognized as a stressed catchment in South Africa [27]. The study
area, with a total surface area of 768 km2, was identified by the South African Department
of Environmental, Forestry, and Fisheries as one of the catchments that required urgent
attention in terms of environmental quality. The main drivers of a decline in environmental
quality are agricultural, domestic, industrial, and mining processes [10]. Catchments in
this area have been studied previously [30–32]; however, quite a few focus on soil quality.
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Figure 1. Location of the sampling sites within Johannesburg Granite Dome.

2.2. Soil Data and Analysis

A total of 93 sampling sites were randomly identified within the study area as part
of a previous research project to determine the hydropedological behaviour of the catch-
ment [33]. Soil samples were collected throughout the soil profiles using an auger and
then classified according to the South African Soil Classification System [34] and the Food
and Agricultural Organization (FAO) World Reference Base (WRB) [35]. At each sampling
site, all the diagnostic soil horizons (A, B, and C) were sampled, irrespective of soil depth.
Using the South African Soil Classification System, a total of 17 soil forms were identified
(Table 1). For simplification, these soil forms were regrouped into six hydropedological
groups, as described by [36], namely: recharge (deep), recharge (shallow), responsive (sat-
urated), responsive (shallow), interflow (A/B), and interflow (soil/bedrock) soils. These
hydropedological groupings were selected for this study because they capture some of
the key factors affecting soil C content [37], such as soil moisture, drainage, texture, aer-
ation, and position in the landscape. A brief description of the dominant properties of
these hydropedological groups is presented in Table 1. Soil samples were dried at room
temperature, sieved through a 2 mm screen, and then analysed for SOC content.
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Table 1. Description of the six hydropedological groups and the respective South African and FAO WRB soil classifica-
tion systems.

Hydropedological Group Soil Forms [34] WRB [35] Description

Recharge (deep) Glencoe, Clovelly, Hutton,
Constantia, Griffin

Plinthosols, Acrisol,
Arenosols

These soils show limited signs of
saturation and water flows vertically

through and out of the soil profile.

Recharge (shallow) Glenrosa, Mispah Leptosols
These soils also show limited signs of
wetness, where water flows vertically

into the underlying bedrock.

Responsive (saturated) Westleigh, Kroonstad,
Katspruit Plinthosols, Gleysols

These soils show prolonged periods
of saturation and typically result in
overland flow due to limited water

storage capacity.

Responsive (shallow) Dresden, Mispah Plinthosols, Leptosols

Shallow soils with a permeable
underlying rock. These soils have

limited water storage capacity,
promoting overland flow.

Interflow (A/B) Longlands, Wasbank Plinthosols, Planosols,
Acrisols, Luvisols

These are typically duplex soils, with
clayey topsoil horizons, facilitating

build-up of water.

Interflow (soil/bedrock) Avalon, Pinedene,
Fernwood, Tukulu

Plinthosols, Lixisols,
Arenosols, Stagnosols,

Acrisols,

In these soils, a freely drained soil
horizon overlies a relatively

impermeable bedrock, leading to
periodic saturation.

2.2.1. Soil Bulk Density

A total of 14 undisturbed core samples (730 cm3) were collected from the diagnostic
horizons of the representative profiles to determine bulk density. Bulk density was calcu-
lated by dividing the oven-dried soil weight by total core volume, as described in [38]. Due
to time and cost constraints, a limited number of samples were collected, which resulted in
some standard deviation calculations being equal to zero (Table 2).

Table 2. Summary of the mean soil bulk density, C content, and SOC stocks for each hydropedological group at the
respective soil horizons (mean ± standard deviation).

Hydropedological
Group

Average Soil Depth
(cm)

Horizon
Bulk Density

(g cm−3)
Soil C (%)

SOC Stocks
(t C ha−1)

n

Recharge
(deep) 20 A 1.51 ± 0 1.33 ± 0.85 35.05 ± 22.41 29

50 B 1.56 ± 0.72 0.53 ± 0.13 41.42 ± 10.87 28
180 C 1.41 ± 0.11 0.24 ± 0.06 16.35 ± 5.92 20

Total 250 92.82 ± 39.2 77

Recharge
(shallow) 15 A 1.46 ± 0 1.14 ± 0.44 25.50 ± 9.77 9

80 B 1.26 ± 0 0.34 ± 0.37 27.84 ± 29.89 9
15 C 1.40 ± 0.16 0.11 ± 0.14 2.83 ± 3.97 9

Total 110 56.17 ± 43.63 27

Responsive
(saturated) 15 A 1.21 ± 0 1.58 ± 0.76 30.16 ± 14.55 13

30 B 1.55 ± 0 0.58 ± 0.18 27.61 ± 8.51 13
110 C 1.50 ± 0.07 0.32 ± 0.20 29.93 ± 21.55 13

Total 155 87.7 ± 44.61 39
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Table 2. Cont.

Hydropedological
Group

Average Soil Depth
(cm)

Horizon
Bulk Density

(g cm−3)
Soil C (%)

SOC Stocks
(t C ha−1)

n

Responsive
(shallow) 15 A 1.41 ± 0 1.00 ± 0.44 17.11 ± 7.62 5

10 B 1.55 ± 0 0.28 ± 0.39 4.27 ± 6.02 5
30 C 1.45 ± 0 0.10 ± 0.22 1.43 ± 3.20 5

Total 55 22.81 ± 16.84 15

Interflow (A/B) 15 A 1.39 ± 0 1.17 ± 0.59 19.54 ± 9.83 15
30 B 1.45 ± 0.01 0.45 ± 0.20 19.44 ± 8.49 15
15 C 1.47 ± 0.07 0.19 ± 0.16 5.51 ± 4.66 15

Total 60 44.49 ± 22.98 45

Interflow
(soil/bedrock) 15 A 1.43 ± 0 1.01 ± 0.35 23.21 ± 8.11 22

35 B 1.57 ± 0.06 0.47 ± 0.26 26.23 ± 13.25 22
60 C 1.46 ± 0.10 0.25 ± 0.08 12.30 ± 5.59 18

Total 110 61.74 ± 26.95 62

2.2.2. Soil C Content and Soil C Stocks

A total of 265 soil samples were collected from the diagnostic horizons to analyse SOC
content. Soil organic carbon content was analysed by dry combustion adapted from [39],
with a TruSpec Leco CN analyser.

To calculate the soil C stocks in terms of the mass of C in tons per hectare (t C ha−1),
the soil C at each sampling location was multiplied by the corresponding soil bulk density
and soil horizon thickness, as presented in Equation (1).

SOC stocks = Soil C × BD × t, (1)

where:

SOC stocks = soil carbon stocks (t C ha−1);
Soil C = soil C carbon (%);
BD = soil bulk density (g cm−3);
t = soil depth (cm).

2.2.3. Spatial Representation of Carbon Stocks

The calculated SOC stocks data were applied to the map units of an existing Johan-
nesburg Granite Dome hydropedological soil map by [40]. The map was created using
multinomial logistic regression, with a point accuracy of 80% and a Kappa statistic value
of 0.71. A Kappa coefficient value closer to one is preferred, as it indicates that the map
provides a good representation of reality. Two choropleth SOC stocks maps were created;
one representing the SOC stocks in the A horizon and the other for the total SOC stocks.
Although soil observations were only made in selected hillslopes, the C stocks could be
mapped for the entire area.

2.2.4. Statistical Analysis

All data were tested for normality and homogeneity using the Shapiro–Wilk and
Levene’s test, respectively. Thereafter, statistical analyses were then performed with the
IBM SPSS Statistics Version 26 software package (SPSS Inc. IBM Corp. Armonk, New York,
USA). All measured and calculated parameters were subjected to a two-way analysis of
variance (ANOVA) to determine the significant differences between SOC and SOC stocks
among the soil hydropedological groupings. Since the data were unbalanced (sample sizes
are not all equal), Welch’s test was used to determine the equivalence of the standardized
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means. Furthermore, means were compared with Tukey’s honestly significant difference
(HSD) post-hoc tests at the 95% confidence level.

3. Results

Soil C Content and Soil C Stocks

A summary of the measured soil C, bulk density, and the calculated C stocks for all
soil hydropedological groups at the different soil depths, is indicated in Table 2. There was
no significant difference between the soil group for the C content; however, there were
significant differences among the diagnostic soil horizons (F = (2, 247) = 105.35, p = 0.000).
In addition, there was a statistical correlation between the interaction of the soil groups
and diagnostic soil horizons and SOC stocks (F = (10, 247) = 2.58, p = 0.005).

(a) Recharge (deep) soils

The results showed that the soil C content ranged, on average, between 0.24 ± 0.06%
for Horizon C to 1.33 ± 0.85% for Horizon A. The steepest decline (0.8%) was observed
from Horizon A to Horizon B (Figure 2a). Additionally, the B and A horizons contained
the majority of the SOC stocks, with 41.42 ± 10.87 and 35.05 ± 22.41 t C ha-1, respectively.
However, the mean soil C content measured in Horizon A (1.33 ± 0.85%) was significantly
higher than that in Horizon B (0.53 ± 0.13%). These soils recorded the highest mean C
stocks in the A and B horizons as well as total C stocks (92.82 ± 39.2 t C ha−1) of all the
hydropedological groups.

 

 

 

Figure 2. The vertical distribution of soil carbon within the (a) recharge (deep); (b) recharge (shallow); (c) responsive (saturated);
(d) responsive (shallow); (e) interflow (A/B); and (f) interflow (soil/bedrock) soil profiles for the A, B, and C horizons.
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(b) Recharge (shallow) soils

The A horizon contained the most soil C (1.14 ± 0.44%); however, this was not reflected
in the SOC stocks (25.50 ± 9.77 t C ha−1). The B horizon showed the highest SOC stocks
(27.84 ± 29.89 t C ha−1). Similar to recharge (deep) soils, the steepest decline (0.8%) was
observed from the A to B Horizon (Figure 2b). These soil profiles did not follow the trend
of a decrease in SOC stocks with an increase in soil depth. This highlights the contrast
between C (%) and C stocks (t C ha−1). The SOC stocks ranged between 2.83 ± 3.97 (C
horizon) and 27.84 ± 29.89 t C ha−1 (B horizon). The total C stocks recorded for these soils
were 56.17 ± 43.63 t C ha−1.

(c) Responsive (saturated) soils

These soils displayed the highest mean soil C content (1.58 ± 0.76%), in comparison
to all other hydropedological groups, in the A Horizon. The steepest decline (1%) was
observed from Horizon A to Horizon B, which was the steepest decline from any horizon
in all the soil groups (Figure 2c).

These soils were the only group to record mean soil C stocks over 25 t C ha−1 in
all soil horizons. Although these soils also recorded the highest mean C contents in all
horizons, this did not translate into the highest mean SOC stocks available. The soil C
content ranged, on average, between 0.32 ± 0.20% for the C horizon and 1.58 ± 0.76% for
the A horizon. The average SOC stocks in these soils ranged between 27.61 ± 8.51 t C ha−1

for the B horizon and 30.16 ± 14.55 t C ha−1 for the A horizon. These soils further recorded
the second highest total C stocks, 87.7 ± 44.61 t C ha−1.

(d) Responsive (shallow) soils

These soils recorded the lowest mean soil C content in all three horizons (1.00 ± 0.44,
0.28 ± 0.39, and 0.10 ± 0.22%, respectively) as well as the lowest total C content (0.46 ± 0.52%).
Soil C content in these soils gradually decreased by 0.72% from the A horizon to the B
horizon and by 0.18% from the B to C horizon (Figure 2d).

The average SOC stocks in these soils were mainly located in the A horizon, with
17.11 ± 7.62 t C ha−1. The B and C horizons both recorded values below 5 t C ha−1,
4.27 ± 6.02 and 1.43 ± 3.20 t C ha−1, respectively. Out of all the hydropedological groups,
these were also the lowest SOC stocks recorded. The mean SOC stocks in all horizons failed
to exceed 20 t C ha-1, with total SOC stocks of 22.81 ± 16.84 t C ha−1. These soils followed
the trend of a decrease in SOC stocks with an increase in soil depth.

(e) Interflow (A/B) soils

The results showed that the soil C content ranged, on average, between 0.19 ± 0.16% for
Horizon C to 1.17 ± 0.59% for Horizon A. The steepest decline (0.72%) was observed from
Horizon A to Horizon B, with a 0.26% decline from Horizon B to Horizon C (Figure 2e).

Furthermore, the A and B horizons showed the highest SOC stocks, with 19.54 ± 9.83
and 19.44 ± 8.49 t C ha−1, respectively. These soils followed the trend of a decrease in SOC
stocks with an increase in soil depth, with the C horizon recording 5.51 ± 4.66 t C ha−1.
Similar to responsive (shallow) soils, the mean soil C stock values in all horizons failed to
exceed 20 t C ha−1, with total C stocks of 44.49 ± 22.98 t C ha−1.

(f) Interflow (soil/bedrock) soils

Similar to all other hydropedological groups, the soil C content was mainly concen-
trated in the A horizon. It ranged, on average, between 0.25 ± 0.08% (horizon C) and
1.01 ± 0.35%. The steepest decline (0.54%) was observed from Horizon A to Horizon B
(Figure 2f). Like the recharge (deep) and recharge (shallow) soils, these soils also recorded
the highest SOC stocks in the B horizon (26.23 ± 13.25 t C ha−1). The mean SOC stocks
ranged, on average, between 12.30 ± 5.59 and 26.23 ± 13.25 t C ha−1. The total SOC stocks
recorded for these soils were 61.74 ± 26.95 t C ha−1.

Soil organic carbon stocks, both in the topsoil and entire soil profile, are graphically
presented in Figure 3.
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Figure 3. The spatial distribution of soil carbon stocks within (a) the A horizon; and (b) the entire
soil profile.

4. Discussion

In this study, the results showed that soil groups had no significant impact on the soil
C content, but the diagnostic soil horizons did have a significant impact on soil C. Further-
more, the interaction between soil groups and diagnostic soil horizons had a significant
impact on the SOC stocks. The amount of soil C is dependent on soil moisture, drainage,
texture, aeration, vegetation, and position in the landscape [41]. In urban areas, population
changes and population density affect CO2 emissions. Research in the United States found
that large cities with a greater population size resulted in increased emissions [42]. Addi-
tionally, Rybski et al. [43] presented evidence to support that urban emissions are largely
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dependent on the degree of the city’s development. In this study, however, we have no
data to discuss the effect of population changes and density, soil texture, land management,
and vegetation on urban emissions.

4.1. Soil Carbon Content

Soil organic matter is a key component of any terrestrial ecosystem, and any variation
in its abundance and composition has important effects on many of the processes that
occur within soil systems [44]. Soil organic matter decomposition is influenced by soil
moisture content [44,45]. Soil organic matter decomposition is inadequate in dry conditions,
resulting in relatively low C contents. In this study, soil groups had no significant impact on
soil C contents and, therefore, differences in SOC stocks could not be due to soil moisture.
This was observed in recharge (deep) and recharge (shallow) soils with limited signs of
saturation, which had important soil C pools within the first 70 and 95 cm, respectively.
Similarly, Parajuli & Duffy [46] found that the C amount was not influenced by soil
moisture. Conversely, Liu et al. and Hobley et al. [47,48] described the accumulation of
SOC at increasing levels of soil moisture. It is worth noting that the shallow soils in the
catchment, namely, recharge (shallow), responsive (shallow), and interflow (A/B), had
lower amounts of C than the deep soils at relatively the same depths. This could be due to
fewer disturbances in the soils. Future studies in the city of Johannesburg could research
the effect of land-use and land management on C capture and storage. Understanding the
effect of land management practices on SOC sequestration is crucial for adopting effective
management strategies.

4.2. Soil Carbon Stocks

Organic carbon stocks can differ significantly due to the influence of land manage-
ment [24,49]. Traffic in urban areas has an impact on soil bulk density. Previous studies
reported a strong correlation between bulk density and SOC stocks [50–52], which is consis-
tent with the results of the present study in which the SOC stocks increased with increasing
bulk density (Table 2). Soil C contents were significantly different in all diagnostic soil
horizons, influencing the amount of SOC stocks in the individual horizons. Soil depth also
played an important role in the calculation of SOC stocks. The deep soil groups (recharge
(deep), responsive (saturated), and interflow (soil/bedrock)) had the three highest SOC stocks
because deeper diagnostic horizons have a high capacity to store significant amounts of C.

Soils in the study area were formed during the process of ferrolysis. During the
dry season, Fe2+ is oxidized to produce Fe3+ oxides. The presence of Fe3+ oxides affects
the C dynamics in soils [53,54]. A study [55] found that soils with a higher clay content
have higher SOC stocks because clay protects SOM from decomposition, whereas [56]
determined the opposite to be true. They found that clay-textured soils accelerated SOM
decomposition. To determine the role of Fe3+ oxides on SOC stocks in this area, analysis
should be done on samples collected during the wet season. In wet conditions, Fe3+ is
reduced to produce Fe2+. Ferrolysis results in the seasonal destruction and translocation of
clay [57].

5. Conclusions

The findings in this study demonstrated that the majority of SOC stocks were con-
tained near the surface layer of the soil groups studied. It was also shown that there is a
combined effect of bulk density, soil depth, and soil C in diagnostic horizons on the accu-
mulation of SOC stocks within the soils. The presence of Fe3+ oxides may have contributed
to the observed SOC stocks; however, this needs to be researched further. Soil C was
significantly higher in the deeper soils at relatively similar depths, possibly due to fewer
soil disturbances. It was also discovered that a relatively high C content did not necessarily
translate to high SOC stocks. Therefore, it can be concluded that SOC stocks should be used
to determine the C storing capacity of soils, rather than C content, because bulk density
and soil depth are also taken into consideration. The role of land management on the SOC
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stocks in Johannesburg should be monitored as it may be necessary to continually revise
management strategies for modified urban environments.
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Abstract: Soils in floodplains and riparian zones provide important ecosystem functions and services.
These ecosystems belong to the most threatened ecosystems worldwide. Therefore, the management
of floodplains has changed from river control to the restoration of rivers and floodplains. However,
restoration activities can also negatively impact soils in these areas. Thus, a detailed knowledge
of the soils is needed to prevent detrimental soil changes. The aim of this review is therefore to
assess the kind and extent of soil information used in research on floodplains and riparian zones.
This article is based on a quantitative literature search. Soil information of 100 research articles
was collected. Soil properties were divided into physical, chemical, biological, and detailed soil
classification. Some kind of soil information like classification is used in 97 articles, but often there is
no complete description of the soils and only single parameters are described. Physical soil properties
are mentioned in 76 articles, chemical soil properties in 56 articles, biological soil properties in 21
articles, and a detailed soil classification is provided in 32 articles. It is recommended to integrate at
least a minimum data set on soil information in all research conducted in floodplains and riparian
zones. This minimum data set comprises soil types, coarse fragments, texture and structure of the soil,
bulk density, pH, soil organic matter, water content, rooting depth, and calcium carbonate content.
Additionally, the nutrient and/or pollution status might be a useful parameter.

Keywords: soil protection; restoration; floodplain; soil bioengineering

1. Introduction

Floodplains and their soils are an important part of the river system and fulfil impor-
tant ecological, economic, and social functions like natural flood protection, sustaining
high biological diversity or filtering and storing water [1,2]. Floodplains can be regarded
as hotspots for biogeochemical processes such as denitrification [3,4] or eutrophication [1].
Floodplains are regularly flooded by the adjacent river [5]. Thus, the lateral connection to
the river is essential for the functioning of a floodplain [6]. The riparian zone is charac-
terized as the zone between the low-water and the high-water mark [7,8]. Both represent
ecotones at the transition between aquatic and terrestrial environments [6]. Riparian zones
hence are the last point in the landscape where nutrients can be intercepted before they
enter the rivers [9]. Often, the terms floodplain and riparian zone are treated as synonyms
in the literature or are not clearly differentiated from each other. Floodplains do not only
provide a wide range of ecosystem services, but also are one of the most threatened ecosys-
tems in the world [2,10]. Today, many floodplains worldwide are degraded because of
high hydromorphological and diffuse pollution pressures, dam building, diversion, or ab-
straction of water or clearing of land and cannot deliver the ecosystem services in the same
extent as a natural floodplain [1,11,12]. Approximately 70–90% of Europe’s floodplains
are degraded [12]. The dynamic flow regime of the river is essential not only to the river
functioning, but also to the ability of the floodplain to provide ecosystem services [11].

Soils in the floodplains and the riparian zone are strongly influenced by the adjacent
river. These soils are often called alluvial soils as their physical, morphological, chemical,
and mineralogical properties are influenced by the alluvial parent material derived from
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the river. The development of alluvial soils strongly depends on the flow regime [13].
Sediment transport and deposition are characteristic processes for the development of
alluvial soils [14]. Recent alluvial soils are often classified into the reference soil group of
Fluvisols in the world reference base for soil resources or into the order of Entisols (suborder
Fluvents) in the US soil taxonomy [13,15,16]. Older alluvial soils can be transformed into
multiple different soil types [13]. Fluvisols are characterized by fluvic material and can
occur on any continent and in any climate zone. They occupy less than 350 million ha
worldwide [15]. Naturally Fluvisols are fertile soils having been used by humans since
the prehistoric times. Soils in the floodplain or riparian zone influenced by groundwater
and showing classic gleyic properties can also be classified as Gleysols. These are soils
that typically occupy low positions in the landscape with high groundwater tables and
can also occur on any continents and in any climate zones. The parent material on which
Gleysols develop can be a wide range of unconsolidated deposits, but often they also
develop on fluvial, marine, or lacustrine deposits like Fluvisols [15]. Through their special
characteristics these alluvial soils are able to provide information on past and present
fluvial dynamics and ecosystem structure through their morphology [17,18].

In the past decades, floodplain management has changed from river control to
the restoration of floodplains and rivers which can reduce the pressures and restore re-
lated functions and services [1,2,10,19–21]. In Europe, several directives like the Water
Framework Directive (Directive 2000/60/EC), the Habitat and Birds Directives (Coun-
cil Directive 92/43/EEC and Directive 2009/147/EC) or the Floods Directive (Directive
2007/60/EC) foster the restoration of river and floodplain ecosystems [22]. The decade
of 2021–2030 is also assigned as the United Nations decade on ecosystem restoration. It
emphasizes that nowadays there is still an urgent need to restore degraded ecosystems
(https://www.decadeonrestoration.org/).

Restoration activities in floodplains and riparian zones, however, can also affect soils
in these areas through the use of heavy machinery, resulting in soil compaction, or the
disturbance and mixing of the soil [23–25]. These negative effects and disturbances can
persist, at least for a decade [23,25]. Soil development is, compared to the changes in
vegetation or hydrology, a slow process [26,27] which explains why soils would not recover
within a relatively shorter period after the restoration impact [25]. The assessment of the
positive or negative impacts of restoration on riparian and floodplain soils, is of major
importance [28] as crucial ecosystem services and functions are associated with soils in this
zone [29].

The aim of this review is therefore to assess if and how riparian soils and soil properties
are addressed in the research on floodplain and river restoration and in the research on
floodplains and riparian zones with direct implications to future restoration projects.

The objectives of this review are:

1. To give an overview on research in floodplains and riparian zones of the world with
implication to restoration projects in the last 20 years;

2. To assess in which kind and to what extent soils are addressed in the research;
3. To recommend further research needs on soil protection in floodplains.

2. Materials and Methods

This literature review is based on the principles of Pickering and Byrne [30] and the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guide-
lines [31]. In July 2020 a literature research was performed in Scopus and Web of Science.
As the search for the terms “soil protection” in combination with “floodplain restoration” or
“river restoration” resulted in only 12 or 10 articles, respectively, a broader understanding of
soil protection had to be applied. In a first search article titles, keywords, and abstracts were
searched for the terms soil, protection, river or floodplain, restoration, or construction and
additionally water framework directive or WFD. A second search in the same databases in
article titles, keywords, and abstracts with the terms soil, restoration, and riparian zone
was performed. The review should cover all aspects of soil protection in floodplains and
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riparian zones and hence the search terms have not been further specified. The search was
limited to literature published between the years 2000 and 2020 to focus on activities since
the implementation of the Water Framework Directive in 2000. The results of the search are
shown in a PRISMA flow diagram (Figure 1).

Figure 1. Flow diagram of the quantitative literature research performed in July 2020 (diagram
adapted from Moher et al. [31]).

After duplicates were removed the search returned 1038 records. These articles were
screened by abstract and 860 were excluded. Only journal articles were included. Books
and conference proceedings were excluded from the beginning. Articles were excluded if
the study area was different from rivers, streams, floodplains, or riverine/riparian wetlands.
Water reservoirs, wetlands with no further specification (e.g., as riparian wetland) and
artificial wetlands (e.g., treatment wetlands), coastal areas (like mangroves), and lakes
were not considered for this review. Articles only concerning other topics like vegetation
or forest growth, seedbanks, fish productivity, the functioning of a special geomaterial or
geosynthetic, a construction work in a place different than a floodplain or river, landfills,
etc., and no direct link to soil and soil protection were also excluded. The spatial scale
was set to the floodplain or riparian zone. No restrictions were made to the geographic
or climatic region. Articles at the spatial scale of river basins or watersheds and no direct
reference to the soils in the riparian zone were also excluded. Only research articles fully
written in English were considered for this review. This resulted in 178 full-text articles
which were assessed for eligibility. Another 78 articles did not meet the criteria mentioned
above. Finally, 100 full-text articles were included in the qualitative analysis.

The 100 articles were scanned for study region, year, and available soil informa-
tion in the research. The soil information was grouped into categories including soil
properties (physical, chemical, and biological), detailed soil classification, other type
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of classification like alluvial soils, and other soil information like the use of soil maps
(Appendix A Table A1).

3. Results

3.1. Overview on Research in Floodplains and Riparian Zones of the World

Research on soil protection was conducted on every continent or geographic region,
respectively, with the exception of Antarctica (Table 1). Most research (44 published articles)
focusses on soil protection in floodplains and riparian zones in North America. In second
place, 25 articles have been published about study sites in Europe. In one article research
was conducted in Europe and North America. Then, 12 articles focused on research in Asia,
12 in Oceania, four in South America, and one in Africa. In three articles the geographic
region was not specified, for example when research focused on models or frameworks
without the need of a special study area.

Table 1. Number of articles on soil protection in floodplains or riparian zones per geographic region.

Africa Asia Europe
North

America
South

America
Oceania 2 Not

Specified
Total

1 12 25 1 44 1 4 12 3 100
1 One article covered study sites in Europe and North America. 2 Oceania here only comprises Australia and
New Zealand. For a detailed classification of the continents c.f. the United Nations definitions on geographic
regions (https://unstats.un.org/unsd/methodology/m49/).

In total, research was conducted in over 24 different countries; half of them are in
Europe. In most countries less than four studies have been realized. Most studies were
carried out in the USA, followed by Australia with 11 studies and China with eight. Five
studies were realized in Switzerland (Table 2). One article did not restrict the research to
a specific country but focused on the whole Alpine area [32]. Studies in the USA were
conducted in 22 different states.

Table 2. Number of study sites per country. Only countries with more than four studies are considered
in this table.

USA Australia China Switzerland

41 11 8 5

Regarding the climate zones after Schultz [33] approximately 50% of the articles
covered study sites in the midlatitudes. Over 40% were carried out in the subtropics and
dry tropics. In the boreal zone 2% of the studies were realized. In the humid tropics 3% of
the studies were realized. In 2% of the studies no climate region could be assigned.

The number of articles published per year between 2000 and 2020 shows that only
about one-third (33 articles) of the 100 articles has been published in the first decade
between 2000 and 2010 (Figure 2). More than two-thirds of the considered papers have
been published in the second decade between 2010 and July 2020 (67 articles), indicating
an increasing interest in this topic. Most papers were published in 2017 and 2019 with 10
and nine papers each year.
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Figure 2. Number of articles on research on floodplains and riparian zones published each year
between 2000 and 2020 (in 2020 until July).

Methods used over the period considered did not change significantly over time. Most
research was done by field work (approx. 74%), e.g., soil surveys, field mapping, field
experiments, and sampling. Laboratory experiments were carried out in about 10% of the
studies. About 16% used models for the research, e.g., GIS-based models. Most studies
included statistical analysis. Some studies used combined methods, e.g., field work and
modeling.

3.2. Soil Information in the Articles on Soil Properties

Soil information in the articles was divided into physical, chemical, and biological
soil properties, soil classification, and other soil information (Table 3). Soil information
is vastly used in the examined research articles. Only three articles did not mention any
soil information. In the remaining articles soil information is used to a different extent.
A detailed table with the parameters of each soil information category is provided in the
Appendix A (Table A1).

Table 3. Number of articles per soil information category (chemical, physical, biological properties,
soil classification, other soil information, and no soil information).

Physical
Properties

Chemical
Properties

Biological
Properties

Detailed
Classification

Other Soil
Classification

Other Soil
Information

No Soil
Information

76 56 21 32 6 9 3

In 76 articles some kind of physical soil parameters were used either to describe the
study region or were investigated during the study. Physical soil parameters described
by the different authors mainly contained classical soil physical parameters like texture
and other descriptions of particle sizes and particle contents (e.g., fine material or coarse
elements), electrical conductivity, porosity, soil temperature, or (dry) bulk density. In many
cases soil parameters concerning the water household of soils like soil moisture content,
(saturated) hydraulic conductivity, water holding capacity, infiltration, permeability, or
field capacity are used, too. Some authors described more general parameters like the
drainage situation or hydric conditions of the sites, but did not go into more detail. Other
physical parameters mentioned were the pore-water pressure, the Atterberg limits, the
specific gravity of the soil, (effective) cohesion, soil erodibility or an erosion coefficient,
shear strength or shear stress, the (internal) friction angle, the van Genuchten parameters,
and the rooting zone.

Chemical soil parameters were mentioned in 56 articles. Soil chemical parameters can
be divided into several categories. In many articles nutrients were assessed, with focus on
inorganic nitrogen (N) forms (NO3

−, NO2
−, NH4

+, N2O, total N), different phosphorus
(P) speciations (e.g., plant available P, soluble reactive P, total P) and potassium (K) (e.g.,
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total K, plant available K). Despite being nutrients, especially nitrogen and phosphorus
are seen as non-point source pollutants, too. Other contaminants investigated are (heavy)
metals like Cd, Pb, Hg, Zn, Cr, Cu, and others. In one paper organo-chlorine pesticides
were examined. Another important soil chemistry category is soil organic matter (SOM).
Here, different forms and types of SOM were addressed, like total carbon, inorganic and
organic carbon, recalcitrant organic carbon (ROC), refractory index for carbon (RIC), or
coarse particular organic matter (CPOM). Other parameters assessed were pH, salinity,
CaCO3, C/N, and isotopic ratios of C and N. One article mentioned the fertility of the soils
investigated, but did not go further into detail.

Soil biological parameters were considered in 21 articles, containing data on soil
organisms and processes driven by these inhabitants. In the research, soil invertebrates,
soil microbial community structure (e.g., denitrifier and ammonium oxidizer density), and
microbial number, species traits, operational taxonomic units and phylogenetic diversity,
soil enzyme activity, denitrification enzyme activity (DEA), and actual denitrification were
addressed. Other parameters were net potential nitrification, net potential N mineralization,
potential mineralizable N, potential denitrification (rate), potential C mineralization, and
microbial biomass C. Besides soil invertebrates and microorganisms, also root parameters,
like root density, total belowground plant biomass, and root exudates, were examined. One
article mentioned general biological activity features, but did not provide more details.

Some kind of soil classification/taxonomy is mentioned in 38 articles, whereas it has
to be differentiated between a detailed classification from a common classification system
or another soil description. Detailed soil description is provided in roughly one-third of
the considered articles for this review (32 articles) and comprises descriptions on soil series,
soil associations, soil types, soil map units, or soil orders based on the US Soil Taxonomy,
the WRB, the Australian classification system, the French classification system, and others.
In most articles these parameters are mentioned in detail (Which soil types? Which soil
series?), but in few articles it is only mentioned that soil map units for example are used,
but not which ones. In the remaining six articles soils are described more in general, for
example as alluvial or hydric soils, but do not classify the soils in a common pedological
classification system.

In the 32 articles that provide a detailed soil classification it is interesting in which
combination and to which extent soil classification is combined with soil physical, chemical,
and biological parameters (Table 4).

Table 4. Combination of physical, chemical, and biological soil properties in the 32 articles that
provide a detailed soil classification [number of articles]. Articles that provide other soil information
were not considered.

Physical +
Chemical +
Biological

Properties +
Classification

Physical +
Chemical

+ Properties +
Classification

Physical
Properties +

Classification

Chemical
Properties +

Classification

Biological
Properties +

Classification

Classification
Only

6 12 5 3 0 6

Only six articles consider physical, chemical, and biological soil properties in combi-
nation with a detailed soil classification. Approximately one-third (12 articles) additionally
mention soil physical and chemical parameters in their research. Five articles provide
physical soil properties and three articles chemical soil properties in a combination with
a detailed soil classification. Additional soil biological properties without chemical or
physical properties were not covered in the research. Six articles provided a detailed soil
classification only.

Good examples of the provision and use of soil information are mostly those articles
that explicitly address soil properties in their research. For example, to describe the
morphology of riparian soils in a restored floodplain in Switzerland as a restoration
monitoring measure, Fournier et al. [34] provide not only detailed soil taxonomy, but also

168



Land 2021, 10, 149

basic soil physical (texture, coarse soil), soil chemical (organic matter content and type,
hydromorphological features), and soil biological parameters (root density and general
biological activity features). In a comparison of the effects of different stream restoration
practices (designed channel restoration vs. ecological buffer restoration) on riparian soils,
beside USDA soil map units, the soil organic matter content, bulk density, soil moisture,
texture, and root biomass were used and compared [25]. Other examples are the studies of
Kauffman et al. [35], Clement et al. [36], Smith et al. [37], and Sutton-Grier et al. [38] which
all provide soil information from all categories in their research.

In the 68 articles that do not provide a detailed soil description from a common soil
classification, 11 articles, however, provide information on soil physical, soil chemical, and
soil biological properties (Table 5).

Table 5. Combination of physical, chemical, and biological soil properties in the 68 articles that do
not provide a detailed soil classification [number of articles].

Physical +
Chemical +
Biological
Properties

Physical +
Chemical +
Properties

Physical +
Biological
Properties

Chemical +
Biological
Properties

Biological
Properties

Only

Chemical
Properties

Only

Physical
Properties

Only

11 16 3 1 0 7 24 1

1 15 out of the 24 covered engineering topics.

In 16 articles a combination of soil physical and soil chemical parameters is used. Soil
physical parameters in combination with soil biological parameters were covered in three
articles. Soil chemical parameters and soil biological parameters have been combined in
one article only. If only one soil property was investigated or mentioned, most articles (24)
provided information on soil physical parameters only, seven on soil chemical parameters
only. Only soil biological parameters were used in none of the reviewed articles. Fifteen out
of the 24 articles which provide soil physical parameters covered engineering topics only.

Soil information that could not be classified into the before mentioned categories is
used in nine articles. These data comprise information on the use of soil maps or soil
databases for example, the number and lower boundary of the soil layers or information on
soil morphology (soil typicality, dynamism, and diversity). In some cases, soil properties
that are taken from the maps or databases are further specified, but in other articles there is
no further information on the kind of soil properties (chemical, physical, biological) or soil
taxonomy.

3.3. Information on Soils in Articles in Connection with Engineering and Land Management

In total, 18 articles covered engineering topics, like soil bioengineering, river bank
stability, or erosion control which can also be understood as some kind of soil protection.
In these articles physical soil properties are considered only, e.g., shear strength, cohesion,
texture or hydraulic conductivity. In the engineering articles neither soil chemical properties
nor soil biological properties were used. None of the articles provided a detailed soil
classification. One article considers additional soil biological properties (root system and
root biomass) [39].

Another 32 articles deal with land management and land use, restoration planning,
and the evaluation of restoration efficiency. In this category no clear pattern of the use of
soil information is observable. Chemical and physical soil properties are described in the
same extent in the articles as detailed soil classification (16, 24 and 16 articles, respectively).
Soil biological properties play a minor role and are mentioned in six articles only. The
provision of soil data differs between the 32 articles as few articles provide chemical,
physical, biological soil properties in combination with a detailed soil classification (three
articles), most do mention only parts of the different soil data types in a variable proportion.
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4. Research Needs on Soil Protection in Floodplains

The results in Section 3.1 show that research on floodplains and riparian zones is not
evenly distributed worldwide. Most research in the regarded period was conducted in
North America and Europe, providing a broad base of knowledge on restoration of flood-
plains and the riparian zones in these areas. Other regions like Oceania, South America,
Asia, and Africa are underrepresented in the research which leads to a lack of knowledge
not only on restoration in riparian zones and floodplains, but also on soil information in
these regions. More research in these regions of the world is highly recommended. When
regarding the countries in which research on the individual continents is conducted it
becomes clear that research mostly concentrates on single countries like the USA, Australia,
Brazil, and China. The number of articles published on floodplain and riparian zone
research was not distributed evenly over the two decades considered in this review. With
two-thirds of the articles published in the second half of the reviewed period this shows
the increasing concern and importance of research in the floodplains and riparian zones.

To protect soils and to interpret results of the research in the soil context it is important
to know detailed properties of the regarded soils. Soil properties are described in most
reviewed articles, but the extent of the provision and description of the soil properties varies
considerably. Soil properties are important indicators when evaluating the soil quality and
assessing soil functions [40]. Basically, soil quality is the capacity of a soil to function [41].
Soil quality depends on soil inherent and dynamic properties. Inherent properties are
mostly influenced by the soil-forming factors (e.g., parent material, topography, time).
Dynamic properties are influenced by human management and natural disturbances (e.g.,
land use or the construction of buildings or roads). Typical inherent soil properties are
the soil texture or the drainage class. Management-dependent soil properties comprise
among others the organic matter content, infiltration, biological activity, or soil fertility. The
different soil properties can interact and limit other soil properties. Finally, the dynamic soil
properties provide information about the ability of a soil to provide ecological functions
and services [40]. Indicators for soil quality are traditionally divided into soil physical, soil
chemical, and soil biological parameters [40,42]. In the reviewed articles over 75% provide
information on soil physical parameters and hence information on the soil hydrologic
status, on the availability of nutrients, on aeration, limitations on root growth, or the ability
to withstand physical disturbances [40,42]. This information on soil physical parameters is
very important for soil protection. Although not every article contains the same physical
parameters, basic information on texture or particle sizes and soil moisture are given in
most articles. Chemical parameters, mentioned in over 50% of the reviewed articles, are
important to evaluate nutrient availability, water quality, buffer capacity, or the mobility of
contaminants. Soil biological parameters, like abundance and biomass of soil organisms
and their byproducts can also serve as an indicator for a functioning soil [42]. Biological
soil parameters are assessed only in about 20% of the articles. It can be summarized that
in current research in floodplain and riparian zones soil physical properties, chemical
properties, and biological properties are used. There is a lack of information, especially
on soil chemical and soil biological parameters. Both parameters can provide important
insights in soil functioning and the reaction of the soils to certain conditions.

A detailed description from a common soil classification system like the WRB, the
US soil taxonomy or a national classification system can be very informative not only for
soil scientists. Soil classification systems are based on soil properties that are defined in
diagnostic horizons, properties, and materials [15]. Therefore, when providing a detailed
soil description from a common soil classification system, a lot of information on soil
physical, soil chemical, and soil biological properties can be derived from using this
classification. This information is missing, however, in about two-thirds of the reviewed
literature. In these articles that do not provide a detailed soil description from a common
soil classification system the majority of the authors though provide additional information
on physical, chemical, and biological soil properties or combinations of these properties.
The group of the articles with only physical soil data described mostly comprises articles
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dealing with engineering topics. In this group, except for one article that mentions some
soil biological characteristics [39], soil is characterized by the physical characteristics only
while other parameters like chemical or biological parameters are not considered. In this
field, soil seems to be a granular medium only, serving as a building material, not as an
important ecosystem compartment. But even if the physical and geotechnical properties of
soils are most important for engineering purposes, a pedologicalview of soils, integrating
some basic information on soil classification, on chemical and biological properties, might
be valuable for engineers, too. As engineering measures usually comprise the use of
(heavy) machinery, these measures can also be considered as a kind of construction work.
This usually implies that the floodplain and riparian soils, adjacent to the riverbank or
engineering site, are affected by these measures, too. Therefore, at least a minimum dataset
on the soils of the whole site should be considered in projects, working in floodplains and
riparian zones.

Other, more general, soil descriptions like the term “alluvial soils” for example, can
give only general information on the soil development and on-site characteristics, but do
not provide detailed information on the soil properties. As the physical, morphological,
chemical, and mineralogical properties of these soils are strongly influenced by the alluvial
parent material coming from the river, the soil characteristics, e.g., the soil texture and
the related properties, can vary considerably [13]. In contrast, when a soil is classified
within a common classification system, for example as a Gleysol (WRB), it is obvious
that this soil must be saturated with groundwater long enough to develop these gleyic
properties [15]. In the WRB, additional information on the soils and their properties can
be deduced from the principal and supplementary qualifiers, such as the presence of an
organic surface layer (qualifier: histic) or non-cemented secondary carbonates accumulated
(qualifier: calcaric). Information on organic horizons or layers or waterlogging conditions
due to high groundwater tables in floodplains and riparian zones are very valuable as
especially these soils are highly susceptible to compaction for example [43]. So even if
there is no additional information on physical, chemical, or biological soil properties, from
a detailed soil description many soil characteristics can be deduced.

If a detailed investigation and description of the soils and their characteristics of
the study sites is not possible there are other opportunities that should be considered to
assess at least basic soil information of the site. For most regions of the world free soil
information is available online from different organizations. A compendium of available
data worldwide and for specific regions has been provided by ISRIC, the International
Soil Reference and Information Centre for example [44]. They also maintain other useful
sites and services like the World Soil Information Service (WoSIS) [45] and the SoilGrids
platform [46] which can be helpful to consider.

As the results show, soil information is available in the large majority of the research
papers, but it becomes also clear that in most cases soil information is incomplete or very
specific only. To protect soils in floodplains and riparian zones, especially in the context
of restoration works, a more pedological view of soils is necessary. This would not only
be important for restoration projects directly, but also for all research in floodplains and
riparian zones with the objective to contribute to restoration projects, for example in the
prioritization of restoration areas.

Restoration projects impact soils in floodplains and riparian zones [25] and can there-
fore often be regarded as construction works. In recent years, soil protection on construc-
tion sites has become more and more important, for example in Switzerland or Germany.
Known as “Bodenkundliche Baubegleitung” in the German-speaking area, it aims to protect
soils from physical disturbance and contamination prior to and during construction. This
means that after finishing the construction, the soil should be able to fulfil its natural func-
tions again [47,48]. Detrimental soil changes that can occur on construction sites comprise
soil compaction, erosion and discharge of substances, contamination, mixing of different
soil substrates, and mixing of natural soil substrate with technogenic materials [48]. The
soil protection on construction sites concept has not been developed for restoration projects,
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but as many restoration projects are comparable to construction sites, this concept is also
applicable to restoration projects.

Soil protection on construction sites is not only applied during the construction
works, but also prior to the construction in the planning process and is also involved
post-construction in the monitoring and documentation of the project [47,48]. The lack of
sound knowledge about soils has been identified as one of the factors hampering effective
ecological restoration [49]. In the soil protection on construction sites concept various soil
information is assessed for planning the construction work and appropriate soil protection
measures during construction. This soil information comprises information on the soil
types and their special characteristics (e.g., susceptibility to compaction or organic soils),
coarse fragments, texture and structure of the soil, bulk density, pH, soil organic matter
content, water content, rooting depth, and calcium carbonate content [47,48]. This soil
information could be applied as a minimum dataset on soils in all research in floodplains
and riparian zones and in restoration projects. Additionally, the nutrient and/or pollution
status of the soil might be a useful parameter to be considered. The parameters proposed
for the minimum soil data set contain stable and dynamic parameters. For dynamic
parameters a continuous monitoring program might be useful. If not, many dynamic
parameters like the physiological rooting depth for example can be deduced from easy to
assess parameters like soil depth and soil texture. Also in the USDA stream restoration
handbook [50] it is recommended to obtain background information on the sites, i.e., about
soils. In general, to avoid detrimental soil changes many parts of the soil protection on
construction sites concept could be easily integrated in the protocols for river, floodplain
or riparian buffer restoration projects, as well as in soil bioengineering practices. In soil
bioengineering practices there is great potential to integrate this minimum soil data set and
soil protection measures during construction. Rey et al. [51] highlight the importance of the
incorporation of current findings of the research in geosciences, for example soil science,
in soil bioengineering practices. Further, scientist and practitioners should cooperate and
exchange current issues and knowledge.

5. Conclusions

1. Research on floodplains and riparian zones of the world is not distributed evenly
over the different continents, with the majority of research in this area conducted in
North America, especially in the USA. The research on floodplains and riparian zones
is also not distributed evenly over the time covered in this review with two-thirds of
the research published in the second decade between 2010 and 2020.

2. Soils are somehow addressed in most articles, but the kind and extent of provided soil
information varies significantly between the articles. Mostly physical soil information
is provided, followed by chemical soil information. Only one-fifth provides soil
biological information. One-third provides a detailed soil description from a common
classification system. Soil information in the field of engineering is limited to physical
data only.

3. Soils are addressed in the majority of the research, but soil information is often
incomplete from a soil scientists’ view. It is recommended to integrate at least a
minimum data set on soil information in all research conducted in floodplains and
riparian zones. This minimum data set comprises soil data used in the soil protection
on construction sites concept: soil types and associated special characteristics (e.g.,
susceptibility to compaction), coarse fragments, texture and structure of the soil,
bulk density, pH, soil organic matter content, water content, rooting depth, and
calcium carbonate content. Additionally, the nutrient and/or pollution status might
be a useful parameter. Further, at least the use of regional soil databases can give
important information on the soils in the study area, if field work is not possible.
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Abbreviations

As Arsenic
ASC Australian Soil Classification System
C Carbon
CaCO3 Calcium carbonate
Cd Cadmium
C/N Carbon/nitrogen ratio
CPOM Coarse particular organic matter
Cr Chromium
Cu Copper
DEA Denitrification enzyme activity
DOC Dissolved organic carbon
DOM Dissolved organic matter
DON Dissolved organic nitrogen
EC Electrical conductivity
Fe Iron
Hg Mercury
IC Inorganic carbon
K Potassium
N Nitrogen
Ni Nickel
NO3

− Nitrate
NO3

−-N Nitrate nitrogen
NO2

− Nitrite
NH4

+ Ammonium
NH4

+-N Ammonia nitrogen
N2O Nitrous oxide
NO Nitric oxide
NZG New Zealand Soil Classification
OC Organic carbon
OM Organic matter
P Phosphorus
PB Lead
PO4

3− Phosphate
RIC Refractory index for carbon
ROC Recalcitrant organic carbon
RO Réferentiel Pédologique (=French Soil Classification)
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S Sulfur
Sb Antimony
SiBCS Sistema Brasileiro de Clasifição de Solos (=Brazilian Soil Classification System)
Sn Tin
SOC Soil organic carbon
SOM Soil organic matter
SRP Soluble reactive P
TC Total carbon
TDC Total dissolved carbon
TDN Total dissolved nitrogen
TBGB Total belowground biomass
TK Total potassium
TN Total nitrogen
TOC Total organic carbon
TP Total phosphorus
V Vanadium
WRB World Reference Base for Soil Resources
Zn Zinc
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Abstract: Soil ecosystem services (ES) (e.g., provisioning, regulation/maintenance, and cultural)
and ecosystem disservices (ED) are dependent on soil diversity/pedodiversity (variability of soils),
which needs to be accounted for in the economic analysis and business decision-making. The con-
cept of pedodiversity (biotic + abiotic) is highly complex and can be broadly interpreted because
it is formed from the interaction of atmospheric diversity (abiotic + biotic), biodiversity (biotic),
hydrodiversity (abiotic + biotic), and lithodiversity (abiotic) within ecosphere and anthroposphere.
Pedodiversity is influenced by intrinsic (within the soil) and extrinsic (outside soil) factors, which are
also relevant to ES/ED. Pedodiversity concepts and measures may need to be adapted to the ES frame-
work and business applications. Currently, there are four main approaches to analyze pedodiversity:
taxonomic (diversity of soil classes), genetic (diversity of genetic horizons), parametric (diversity of
soil properties), and functional (soil behavior under different uses). The objective of this article is
to illustrate the application of pedodiversity concepts and measures to value ES/ED with exam-
ples based on the contiguous United States (U.S.), its administrative units, and the systems of soil
classification (e.g., U.S. Department of Agriculture (USDA) Soil Taxonomy, Soil Survey Geographic
(SSURGO) Database). This study is based on a combination of original research and literature review
examples. Taxonomic pedodiversity in the contiguous U.S. exhibits high soil diversity, with 11 soil
orders, 65 suborders, 317 great groups, 2026 subgroups, and 19,602 series. The ranking of “soil
order abundance” (area of each soil order within the U.S.) expressed as the proportion of the to-
tal area is: (1) Mollisols (27%), (2) Alfisols (17%), (3) Entisols (14%), (4) Inceptisols and Aridisols
(11% each), (5) Spodosols (3%), (6) Vertisols (2%), and (7) Histosols and Andisols (1% each). Tax-
onomic, genetic, parametric, and functional pedodiversity are an essential context for analyzing,
interpreting, and reporting ES/ED within the ES framework. Although each approach can be used
separately, three of these approaches (genetic, parametric, and functional) fall within the “umbrella”
of taxonomic pedodiversity, which separates soils based on properties important to potential use.
Extrinsic factors play a major role in pedodiversity and should be accounted for in ES/ED valuation
based on various databases (e.g., National Atmospheric Deposition Program (NADP) databases).
Pedodiversity is crucial in identifying soil capacity (pedocapacity) and “hotspots” of ES/ED as part
of business decision making to provide more sustainable use of soil resources. Pedodiversity is not a
static construct but is highly dynamic, and various human activities (e.g., agriculture, urbanization)
can lead to soil degradation and even soil extinction.

Keywords: climate change; extinction; food; land use; market; pedocapacity; security; soil capacity

1. Introduction

Soils are complex, dynamic bodies that form from interactions among the Earth’s
various spheres (atmosphere, biosphere, lithosphere, hydrosphere) within the ecosphere,
which is modified by the anthroposphere (the sphere of human influence) (Figure 1a).
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The uniqueness of soils is that they are not discrete entities; but instead, soils form a contin-
uum (pedosphere), which varies both with depth and horizontal distance [1,2]. The concept
and measures of soil diversity/pedodiversity (variability of soils) are highly complicated
because pedodiversity (biotic + abiotic) results from atmospheric diversity (abiotic + biotic),
biodiversity (biotic), hydrodiversity (abiotic + biotic), and lithodiversity (abiotic) within
the ecosphere, which is modified by the anthroposphere (Figure 1b). According to Mattson,
1938 [3], soils can be a product of two- or three-sphere combinations; therefore, pedodiver-
sity can be based on two- or three-sphere combinations as well (Figure 1b). A definition
of pedodiversity from Odeh (1998) [4] is “variability of soil in a specific area or region,
as determined by its constitution, types, attributes and the conditions under which the
various types were formed.” The concept of pedodiversity (biotic + abiotic) can be widely
interpreted based on a range of definitions, depending on the type of pedodiversity (e.g.,
taxonomic, genetic, parametric, and functional) [5] (Table 1). Pedodiversity is influenced
by intrinsic (within pedodiversity itself) and extrinsic factors (environmental factors from
atmosphere, biosphere, lithosphere, the hydrosphere, ecosphere, and anthroposphere that
control and influence pedogenesis) (Figure 1) [6].

Previous studies have examined the concept and measures of pedodiversity from
a pedological point of view and concluded its importance for the sustainable use of soil
resources [7–11]. Ibáñez et al. (1995) [11] examined pedodiversity from an ecological
point of view and concluded that “patterns of biodiversity, geomorphological diversity
and pedodiversity have great similarities, suggesting that there are universal regularities
common to the organization of biotic and abiotic ecological structures.”

Figure 1. The scope of soil diversity (pedodiversity) (biotic + abiotic): (a) soil and relationship between soil components
from the Earth’s various diverse spheres; (b) formation of two-sphere, three-sphere, and four-sphere (e.g., pedodiversity)
systems in nature (A = atmospheric diversity (abiotic + biotic); B = biodiversity (biotic); H = hydrodiversity (abiotic + biotic);
L = lithodiversity (abiotic) (adapted from Mattson, 1938 [3]; Mikhailova et al., 2020 [12]; Ibáñez et al., 1998 [13]). Pedodiver-
sity is influenced by intrinsic (within soil itself) and extrinsic (environmental) factors (e.g., atmospheric deposition).

Guo et al. (2003) [14] reported the taxonomic structure, spatial distribution, and rela-
tive abundance of soils in the contiguous United States (U.S.) by order (11), suborder (52),
great groups (232), subgroups (1175), family (6226), and series (13,129) using the STATSGO
(1997 version) database. Amundson et al. (2003) [2] examined “natural” soil diversity and
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land use in the U.S. based on U.S. Department of Agriculture (USDA) Soil Taxonomy [15],
the State Soil Geographic (STATSGO) dataset (1997), and two numerical parameters: se-
ries density and series abundance. The same study quantified rare, unique, and endangered
soils in the U.S. and listed directions for future research, including establishing the societal
value of undisturbed soils, monitoring changes in pedodiversity, and focusing conservation
efforts on soil diversity “hotspots” [2].

Table 1. Examples of soil diversity (pedodiversity) types.

Types of Soil Diversity (Pedodiversity) Examples

Taxonomic (diversity of soil classes) USDA Soil Taxonomy (e.g., soil order, series)
Genetic (diversity of genetic horizons) A, B, etc.

Parametric (diversity of soil properties) Soil organic matter (SOM), calcium carbonate (CaCO3), etc.
Functional (soil behavior under different use) Interpretive models to predict soil behavior

Soil and its diversity (pedodiversity) play significant roles in underlying ecosystem
goods and services for humans [16–18], who have developed a human-centered ecosys-
tem services framework [19] as an approach for valuing these goods and services in
both economic and non-economic ways [20]. In fact, pedodiversity can be considered
an ecosystem good and service in its own right [2]. According to Bartkowski (2017) [21],
economic valuations of diversity are rare and often focus primarily on biodiversity [22,23].
Previous research on biodiversity and its significance lists the following benefits [24]:
(1) biodiversity supports healthy ecosystems by increasing ecosystem stability, while the
loss of biodiversity can reduce their function and efficiency; (2) the relationship between
the loss of biodiversity and ecosystem function is not linear, with greater impact as the
loss of biodiversity increases; (3) both variety of species and key individual species are
critical for ecosystem functioning, with diversity across trophic levels potentially having
a more important function compared to species within trophic levels. From a business
point of view, Stephenson (2012) [25] describes the utility of biodiversity to: (1) identify
the stock, its physical state, and spatial patterns of biodiversity in relation to the key
ecosystem services (e.g., water and carbon sequestration), which are at risk and have a
high value (e.g., social, economic); (2) assess biodiversity trends, high-risk biodiversity loss
with its key drivers as well as a reference point against which progress can be measured;
(3) develop a long-term coordinated vision assessing trade-offs and potential synergies
including cost-benefit analyses; (4) identify and implement a cost-effective policy option;
and (5) monitor progress towards objectives and reviewing and revising policies over time
based on the progress.

Ecosystem services (ES) are goods and services provided by functioning ecological
systems that directly and/or indirectly benefit human populations (e.g., food and cli-
mate regulation) [16–18]. At the same time, however, functioning ecological systems also
can present detrimental effects for humans or so-called ecosystem disservices (ED) (e.g.,
social cost of carbon dioxide) [12]. Adhikari and Hartemink (2016) [16] examined the
link between soil properties and ES without including the concept of pedodiversity and
its measures in their literature review. Chandler et al. (2018) [26] proposed integrating
soil analyses within frameworks for ES and the organizational hierarchy of soil systems.
Mikhailova et al. (2020) [12] pointed out that applications of ES to soils are narrowly
defined (e.g., soil-based, pedosphere-based), treating soil as a closed system instead of
an open system, which requires a soil systems-based approach to ES. Mikhailova et al.
(2020) [12] suggested including the contributions of the Earth’s spheres (atmosphere, bio-
sphere, hydrosphere, lithosphere, ecosphere, and anthroposphere) in the economic analysis
of soil ES. Because most soils have been modified by humans, Mikhailova et al. (2020) [12]
examined the business side of ecosystem services of soil systems and proposed to use
the term “soil systems goods and services” (SSGS) instead of “soil ecosystem goods and
services.” Applications of biodiversity concepts and their measures to pedodiversity can
be problematic, because they have not been designed explicitly for pedodiversity and its
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associated ES/ED valuations. Pedodiversity concepts and measures in their current forms
have not been considered in ES/ED valuations and business decision making. Most likely,
the types of pedodiversity and measurement approaches listed in Table 1 cannot be used
solely on their own in ES/ED but must be applied in combination with each other or even
all together concerning specific ES/ED within a particular administrative extent.

The objective of this study is to illustrate the application of pedodiversity concepts
and measures to value ES/ED, with examples provided primarily from the contiguous
U.S., its administrative units, and the USDA Soil Taxonomy system of soil classification.
Although the focus of the examples is on the U.S., the applications and measures described
should be readily applicable to other geographic areas and market economies.

2. Materials and Methods

2.1. Data Compilation and Analyses

Soil survey information (including soil orders, suborders, great groups, subgroups,
families and series) was obtained from Soil Survey Geographic (SSURGO) Database
(2020) [27]. The information for each state in the contiguous U.S. was extracted using
Zonal Statistics (Tables) spatial analyst tool in ArcGIS® Pro 2.6 (ESRI, Redlands, CA, USA),
while the information for the regions and the Land Resource Regions (LRR) was computed
by developing a Structured Query Language (SQL) code that was utilized in SSURGO
webpage (https://sdmdataaccess.nrcs.usda.gov/, accessed on 10 October 2020). All this
information was then used to create a Microsoft Excel file with the soil survey informa-
tion for each boundary. Examples of soil ES/ED and their monetary valuations were
obtained from various literature sources using the Web of Science [28]. These examples
encompass the three major groups of ES commonly used in the literature: provisioning,
regulation/maintenance, and cultural [29].

2.2. The Accounting Framework

Table 2 provides a conceptual overview of the accounting framework for market
and non-market valuation of benefits/damages from three groups of ES (provisioning,
regulation/maintenance, and cultural) based on biophysical and administrative accounts
with examples primarily from the U.S. and its soils, as well as the related market-based
information obtained from U.S. sources.

Table 2. A conceptual overview of the accounting framework for a systems-based approach in the ecosystem services (ES)
valuation of various soil ecosystem goods and services based on soil diversity (pedodiversity) (adapted from Groshans et al.,
2018 [30]).

STOCKS FLOWS VALUE

Biophysical Accounts
(Science-Based)

Administrative
Accounts

(Boundary-Based)
Monetary Accounts Benefits/Damages Total Value

Soil extent: Administrative extent: Ecosystem good(s) and
service(s): Sector: Types of value:

Examples of valuations based on soil diversity (pedodiversity)

Examples of valuations based on the interaction of soil diversity (pedodiversity) and the Earth’s spheres

Soil diversity
(pedodiversity),
organizational

hierarchy of
soil systems

Administrative,
organizational

hierarchy

Provisioning,
regulation/

maintenance and
cultural

Environment,
agriculture, industry,

etc.

Market and
non-market
valuations
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2.3. The Total Economic Value (TEV) Framework with Insurance Value

Table 3 provides a conceptual overview of the total economic value (TEV) framework
with insurance value adapted from various sources to provide a general explanation of
valuation methods used in the examples primarily from the U.S., which may apply to other
market economies. It should be noted that the relevance and applications of economic
valuation to soil systems are not always clearly defined and can be subject to interpretation.

Table 3. The total economic value (TEV) framework with insurance value (adapted from Nimmo-Bell (2011) [31], NZIER,
2018 [32], Baveye et al., 2016 [18], and Bartkowski et al., 2020 [20]).

Total Economic Value (TEV)

Instrumental Value
(Benefits to Humans)

Intrinsic Value
(Benefits to

Nature)

Use Values
Insurance

Value

Actual Use Values Passive Use Values Unknown

Direct Use Value
(extractive and
non-extractive

uses)

Indirect Use
Value

(functional
benefits)

Altruistic Value
(for others)

Bequest Value
(for others)

Existence Value
(for life)

The amount
available to
replace lost

value

Consumptive and
non-consumptive
(e.g., agriculture)

e.g., ecosystem
services

e.g., preserving
resource so others

can use it now

e.g., preserving
resource so others
can use it in the

future

e.g., resource
preservation

e.g., buffering
capacity

Option Value

———————————————————————- Decreasing Tangibility of Value to User —————————————————————>

3. Results

3.1. Intrinsic Factors: Examples of Valuations Based on Pedodiversity and Ecosystem Services
3.1.1. Examples of Taxonomic Pedodiversity and Ecosystem Services in the
Contiguous U.S.

Pedodiversity is influenced by intrinsic (within the soil) factors, including taxonomic,
genetic, parametric, and functional pedodiversity, which provide an important context for
analyzing, interpreting, and reporting ES/ED within the ES framework. Although each
approach can be used separately, three of these approaches (genetic, parametric, and func-
tional) fall within the “umbrella” of taxonomic pedodiversity, which separates soils based
on properties important for potential use. Pedodiversity in the U.S. can be quantified and
valued within the framework of the USDA Soil Taxonomy (Soil Survey Staff, 1999 [15]),
an international system of soil classification, with the purpose of organizing soils into
groups with similar properties. Soil individual (a three-dimensional body) is the object of
soil classification in Soil Taxonomy, which is based on a nested and hierarchical system
with six taxonomic categories: order, suborder, great group, subgroup, family, and series
(e.g., Cecil (Fine, kaolinitic, thermic Typic Kanhapludults) (Table 4). Table 4 demonstrates
an example of criteria and sequence of taxonomic categories used to classify mineral soils
(this sequence is different for organic soils and soils with permafrost). Soil Taxonomy is the
basic system of soil classification for making and interpreting soil surveys, which can be
used with the ES framework (Figure 2, Table 5).
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Table 4. Example of criteria and sequence of taxonomic categories used to classify soils.

Taxonomic
Category Explanation Example

Increase in
Specificity

Order Highest category, diagnostic horizons Ultisols  
Suborder The difference in moisture regimes Udults

Great Group Presence of key horizons Hapludults
Subgroup Proximity to “central concept” Typic Kanhapludults

Family Particle-size classes and their substitutes fine
Human-altered and human-transported

material classes
Mineralogy classes kaolinitic

Cation-exchange activity classes
(CEC/% clay)

Calcareous and reaction classes
Soil temperature classes thermic

Soil depth classes
Rupture-resistance classes

Classes of coatings on sands
Classes of permanent cracks

Series Smallest unit Cecil

 

Figure 2. Example of a soil map generated with Web Soil Survey (WSS) [33] showing soil cover and
land use.

Table 5. Example of different soil properties (e.g., physical soil properties) in the Web Soil Survey (WSS) [33].

Map Symbol and Soil Name Depth Sand Silt Clay Organic Matter

In Pct Pct Pct Pct

ClC2-Cecil sandy loam, 6 to
10 percent slopes, moderately

eroded

0-5 59-70-75 10-20-35 5-10-15 0.5-0.5-1.0
5-54 15-30-40 6-16-26 35-54-59 0.0-0.1-0.5

54-80 35-40-50 17-27-40 20-33-34 0.0-0.1-0.5

Note: Three values are provided to identify the expected Low (L), Representative (R), and High (H).

Pedodiversity data in soil surveys and databases (e.g., maps, depth of soil horizons,
and soil properties) are useful in business applications because they provide information
about the pedodiversity of soil capital and the necessary data to calculate stocks of soil biotic
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(e.g., organic carbon) and abiotic (e.g., sand, silt, clay, and calcium carbonate) resources
within different extents (e.g., science-based, administrative based, or in combination; by soil
depth, by soil horizon, etc.). This information is essential for various ES/ED applications
(e.g., provisioning and regulating) and even cultural ecosystem services. The names of
some soil series used in the U.S. reflect cultural and historical heritage. For example,
the name of New Mexico State Soil “Penistaja” is derived from the Navajo name meaning
“forced to sit” [34].

The most general category of soil orders in Soil Taxonomy provides a useful framework
and description of soil, which can be applied to describe the soil stock and its composition,
its potential for delivering key ES, and constraints (ED) at several soil system scales, for ex-
ample, world, continent, region, country, and watershed (Table 6). General characteristics
and constraints of these soil orders provide both qualitative and quantitative measures
regarding the ability of these soils to supply ES/ED within a geographic area.

Table 6. Soil diversity (pedodiversity) is expressed as taxonomic diversity at the level of soil order and ecosystem
services types.

Stocks Ecosystem Services

Soil Order General Characteristics and Constraints Provisioning Regulation/Maintenance Cultural

Slight Weathering

Entisols Embryonic soils with ochric epipedon x x x
Inceptisols Young soils with ochric or umbric epipedon x x x
Histosols Organic soils with ≥20% of organic carbon x x x
Gelisols Frozen soils with permafrost x x x
Andisols Volcanic soils x x x

Intermediate Weathering

Aridisols Dry soils. Common in desert areas x x x
Vertisols Soils with swelling clays x x x
Alfisols Clay-enriched B horizon with B.S. ≥ 35% x x x

Mollisols Carbon-enriched soils with B.S. ≥ 50% x x x

Strong Weathering

Spodosols Coarse-textured soils with albic and spodic horizons x x x
Ultisols Highly leached soils with B.S. < 35% x x x
Oxisols Highly weathered soils rich in Fe and Al oxides x x x

Note: B.S. = base saturation.

Taxonomic pedodiversity in the contiguous U.S. exhibits a wide range of soil diversity,
with 11 soil orders, 65 suborders, 317 great groups, 2026 subgroups, and 19,602 series
(Table 7). Table 7 shows the “soil order abundance”—total area of each soil order within
the contiguous U.S. based on Soil Survey Geographic (SSURGO) Database (2020) with the
following distribution: (1) Mollisols (27%), (2) Alfisols (17%), (3) Entisols (14%), (4) Incep-
tisols and Aridisols (11% each), (5) Spodosols (3%), (6) Vertisols (2%), and (7) Histosols
and Andisols (1% each). In terms of the degree of weathering: slightly-weathered soils are
27%, intermediately-weathered soils are 58%, and strongly-weathered soils are 15% of the
total area.

Information about taxonomic pedodiversity can be linked to various ES/ED. In terms
of provisioning ES, 58% of the contiguous U.S. is occupied by soils with high and moderate
fertility status (without taking into account the past and present land use). It also can
be used to analyze the patterns of value for regulating ES. Mikhailova et al. (2019) [35]
provided a valuation of soil organic carbon (SOC) stocks in the contiguous U.S. based
on taxonomic pedodiversity and the avoided social cost of carbon (SC-CO2) emissions,
which varied by the degree of soil weathering as indicated by soil order information.
This study found the following distribution of SC-CO2 contribution within the contiguous
U.S.: slightly-weathered soils (38%), intermediately-weathered soil (51%), and strongly-
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weathered soils (11%). In another example, according to Mikhailova et al. (2019) [36],
Mollisols have the highest total soil carbon (TSC, soil organic + soil inorganic carbon)
storage midpoint value ($7.78T) based on the social cost of carbon (SC-CO2) and avoided
emissions provided by carbon sequestration, which is about 30% of the total midpoint value
for the contiguous U.S. These types of analyses are useful in identifying soil “hotspots”
with regards to various ES/ED applications at different scales which has the potential
to be managed with precision agriculture [2,37]. It can be concluded that taxonomic
pedodiversity provides an important context for analyzing, summarizing, and presenting
soil data for ES/ED applications.

Soil series is also a useful taxonomic category to describe pedodiversity regarding
ES/ED at more detailed scales (e.g., farm and field), and this category is closely allied to
interpretive uses (e.g., suitabilities and limitations for crop production and construction)
(Table 7). Soil series consist of pedons that are grouped together based on similarity in
pedogenesis, soil chemistry, and physical properties [38]. The number of soil series within
the soil extent can describe its diversity (Table 7). According to Table 7, Mollisols have the
highest number of soil series (5569), followed by Entisols (3700). Amundson et al. (2003) [2]
proposed to apply a commonly used biodiversity parameter (“species density”) to soil
diversity, which they called a “series density” parameter (number of series divided by
100,000 ha) (Table 7).

Table 7. Soil diversity (pedodiversity) is expressed as the number of soil classes (taxonomic pedodi-
versity) within soil orders in the contiguous United States (U.S.) based on Soil Survey Geographic
(SSURGO) Database (2020) [27].

Soil Order Suborders Great Groups Subgroups Series Series Density

Slight Weathering

Entisols 25 56 246 3700 3.5
Inceptisols 26 67 386 3610 4.6
Histosols 7 25 73 334 3.1
Gelisols * 2 2 2 2 -
Andisols 13 26 90 642 9.3

Intermediate Weathering

Aridisols 17 44 283 2374 2.9
Vertisols 7 31 101 394 3.0
Alfisols 14 49 331 3242 2.5

Mollisols 23 55 422 5569 2.8

Strong Weathering

Spodosols 9 26 92 591 2.4
Ultisols 9 27 107 1091 1.3
Oxisols - - - - -

Totals 65 317 2026 19,602 2.7

Note: * Soil order of Gelisols was reported for the state of Washington with an area of 11 m2. Series density equals
the number of series divided by 100,000 ha.

Taxonomic pedodiversity can also be used within administrative boundaries (e.g.,
Land Resource Regions, LRRs) (Table 8). Land Resource Regions (LRRs) are defined by the
USDA using major land resource area (MLRA) and agricultural markets, which are denoted
using capital letters (A, B, C, etc.; see Table 8 notes). The contiguous U.S. comprises 20 of
the 28 LRRs. The LRRs with the highest number of soil orders are: (1) A—Northwestern
Forest, Forage and Specialty Crop Region (11), and (2) E—Rocky Mountain Range and
Forest Region (10). The LRRs with the highest number of series are: (1) D—Western Range
and Irrigated Region (5739), (2) E—Rocky Mountain Range and Forest Region (3611),
and (3) A—Northwestern Forest, Forage, and Specialty Crop Region (2065). The LRRs
with the highest series density are: (1) A—Northwestern Forest, Forage and Specialty
Crop Region (11.4), and (2) C—California Subtropical Fruit, Truck and Specialty Crop
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Region (8.6), and (3) S—Northern Atlantic Slope Diversified Farming Region (7.2). Accord-
ing to Table 7, the average series density for the contiguous U.S. is 2.7 series/100,000 ha,
and slightly-weathered soils have the highest series densities with Andisols in the lead
(9.3 series/100,000 ha). Variation in soil series density can relate to ES/ED, but it depends
on the properties of the soil series within an area and the interpretive uses. Soil ES related
to agriculture can be reduced in some areas by high soil variability, which can impact
the soil productivity at the farm scale. For example, in areas with soils derived from
glacial materials, the high variability of soil properties can occur at the field scale limiting
agricultural use and productivity.

Table 8. Soil diversity (pedodiversity) is expressed as the number of soil classes (taxonomic pedodi-
versity) within Land Resource Regions (LRRs) for the contiguous United States (U.S.) Soil Survey
Geographic (SSURGO) Database (2020) [27].

LRRs Orders Suborders Great Groups Subgroups Series Series Density

A 11 53 159 567 2065 11.4
B 8 41 108 377 1482 5.7
C 9 38 107 294 1264 8.6
D 9 51 185 977 5739 4.5
E 10 52 165 783 3611 6.9
F 7 25 69 243 865 2.5
G 7 33 94 369 1957 3.8
H 8 27 69 270 1080 1.8
I 6 22 57 184 538 3.2
J 6 22 58 214 606 4.3
K 7 24 61 267 1265 4.2
L 6 19 53 185 819 6.8
M 8 31 89 352 1834 2.6
N 8 31 88 300 1700 2.8
O 7 17 43 128 346 3.7
P 8 27 88 316 1468 2.2
R 7 27 82 242 1321 4.4
S 8 23 66 192 712 7.2
T 9 29 93 295 854 3.7
U 8 22 50 127 279 3.3

Totals 11 65 317 2026 19,602 2.7

Note: A = Northwestern Forest, Forage and Specialty Crop Region; B = Northwestern Wheat and Range
Region; C = California Subtropical Fruit, Truck and Specialty Crop Region; D = Western Range and Irri-
gated Region; E = Rocky Mountain Range and Forest Region; F = Northern Great Plains Spring Wheat Region;
G = Western Great Plains Range and Irrigated Region; H = Central Great Plains Winter Wheat and Range Region;
I = Southwest Plateaus and Plains Range and Cotton Region; J = Southwestern Prairies Cotton and Forage Region;
K = Northern Lake States Forest and Forage Region; L = Lake States Fruit, Truck and Dairy Region; M = Central
Feed Grains and Livestock Region; N = East and Central Farming and Forest Region; O = Mississippi Delta
Cotton and Feed Grains Region; P = South Atlantic and Gulf Slope Cash Crops, Forest and Livestock Region;
R = Northeastern Forage and Forest Region; S = Northern Atlantic Slope Diversified Farming Region; T = Atlantic
and Gulf Cost Lowland Forest and Crop Region; U = Florida Subtropical Fruit, Truck Crop and Range Region.
Series density equals the number of series divided by 100,000 ha.

Taxonomic pedodiversity within administrative boundaries (e.g., LRRs) can be bro-
ken down by soil orders with their corresponding areas for qualitative and quantitative
assessments of soil stocks for ES/ED assessments (Table 9). For example, for the LRR
A—Northwestern Forest, Forage and Specialty Crop Region, the area of soil orders were
distributed as follows: Entisols (3%), Inceptisols (37%), Histosols (0%), Andisols (20%),
Vertisols (1%), Alfisols (13%), Mollisols (11%), Aridisols (0%), Spodosols (5%), and Ultisols
(2%). This type of analysis is useful in identifying hotspots (e.g., soils with high fertility
status; soils with the high social cost of carbon (SC-CO2) emissions) [37,39].
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Table 9. Soil diversity (pedodiversity) by soil order (taxonomic pedodiversity) within Land Resource Regions (LRRs) for
the contiguous United States (U.S.) Soil Survey Geographic (SSURGO) Database (2020) [27].

Slight <————————————————– Degree of Weathering and Soil Development ————————————> Strong

Slight Weathering Intermediate Weathering Strong Weathering

LRRs
Enti-
sols

Incepti-
sols

Histo-
sols

Andi-
sols

Verti-
sols

Alfi-
sols

Molli-
sols

Aridi-
sols

Spodo-
sols

Ulti-
sols

Area (km2)

A 5517 58,562 756 31,792 869 20,490 17,235 21 7706 15,577
B 10,114 2118 75 735 536 1123 96,455 38,224 0 0
C 27,378 14,900 450 14 9701 32,638 35,314 5891 0 396
D 253,840 30,096 225 3286 10,548 44,608 173,838 439,983 0 4121
E 29,371 102,155 724 27,487 1825 58,240 171,044 13,110 124 0
F 39,138 12,568 916 0 14,337 12,880 277,240 3636 0 0
G 192,349 45,344 79 0 23,681 37,585 122,002 88,697 0 0
H 64,551 51,798 0.21 124 9249 83,914 332,943 12,012 0 0
I 3636 13,797 0 0 11,528 28,910 88,233 23,691 0 0
J 6432 9976 0 0 29,024 63,995 31,348 0 0 1058
K 35,700 22,652 47,791 0 64 86,599 21,525 0 56,948 0
L 13,173 14,287 5281 0 0 52,200 12,324 0 8804 0
M 43,269 32,020 4659 0 3295 256,429 365,036 0 14 2538
N 18,594 103,952 23 0 331 163,582 20,069 0 654 250,411
O 9761 19,274 703 0 28,771 29,086 2822 0 0 411
P 53,392 53,155 2556 0 10,452 115,700 2295 0 1251 385,496
R 14,067 130,799 10,428 0 0 25,480 638 0 97,131 2070
S 5883 31,348 617 0 1.50 17,149 315 0 325 36,382
T 27,168 12,076 18,587 0 14,965 35,179 8497 329 18,182 70,396
U 19,185 2085 9491 0 11 12,344 3476 0 23,952 4079

Totals 872,518 762,962 103,361 63,438 169,189 1,178,131 1,782,649 625,594 215,091 772,935

Note: A = Northwestern Forest, Forage and Specialty Crop Region; B = Northwestern Wheat and Range Region; C = California Subtropical
Fruit, Truck and Specialty Crop Region; D = Western Range and Irrigated Region; E = Rocky Mountain Range and Forest Region;
F = Northern Great Plains Spring Wheat Region; G = Western Great Plains Range and Irrigated Region; H = Central Great Plains Winter
Wheat and Range Region; I = Southwest Plateaus and Plains Range and Cotton Region; J = Southwestern Prairies Cotton and Forage
Region; K = Northern Lake States Forest and Forage Region; L = Lake States Fruit, Truck and Dairy Region; M = Central Feed Grains and
Livestock Region; N = East and Central Farming and Forest Region; O = Mississippi Delta Cotton and Feed Grains Region; P = South
Atlantic and Gulf Slope Cash Crops, Forest and Livestock Region; R = Northeastern Forage and Forest Region; S = Northern Atlantic Slope
Diversified Farming Region; T = Atlantic and Gulf Cost Lowland Forest and Crop Region; U = Florida Subtropical Fruit, Truck Crop and
Range Region.

For example, Mollisols have both high fertility status and a high potential for the
social cost of carbon (SC-CO2). Taxonomic pedodiversity within the boundaries of states
and regions (Table 10) reveals that the states with the highest number of soil orders are:
(1) Washington (11), (2) California and Oregon (10 each), and (3) Idaho and Montana
(9 each). States with the highest number of soil series are: (1) California (2689), (2) Washing-
ton (1548), and (3) Idaho (1529). Table 11 provides a detailed distribution of various soil
orders by state and region, with qualitative and quantitative assessments of soil stocks for
ES/ED assessments. For example, for the state of Connecticut, the areas of soil orders are
distributed as follows: Inceptisols (84%), Histosols (8%), Entisols (6%), and Mollisols (2%).
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Table 10. Soil diversity (pedodiversity) expressed as the number of soil classes (taxonomic pedodiversity) within states
(regions) in the contiguous United States (U.S.) based on Soil Survey Geographic (SSURGO) Database (2020) [27] with
comparisons based on STATSGO (1997) [2].

State (Region)
Orders

2020 (1997)
Suborders Great Groups Subgroups

Series
2020 (1997)

Series Density
2020 (1997)

Connecticut 4 11 17 37 106 (86) 8.5 (6.7)
Delaware 6 13 23 46 70 (52) 13.9 (9.9)

Massachusetts 6 (5) 15 33 71 202 (129) 10.7 (6.2)
Maryland 7 19 47 105 287 (187) 11.4 (6.8)

Maine 5 (4) 16 36 79 231 (111) 2.9 (1.3)
New Hampshire 5 (4) 14 31 66 185 (127) 8.1 (5.3)

New Jersey 6 (7) 16 36 84 169 (148) 9.5 (7.5)
New York 7 25 64 168 823 (347) 6.9 (2.7)

Pennsylvania 7 17 46 109 391 (248) 3.4 (2.1)
Rhode Island 3 9 14 22 42 (45) 16.3 (15.9)

Vermont 6 18 39 102 231 (192) 9.7 (7.7)
West Virginia 7 (6) 17 40 88 250 (163) 4.1 (2.6)

(East) 7 29 100 293 1763 3.5

Iowa 6 (5) 35 17 118 486 (262) 3.4 (1.8)
Illinois 6 36 15 133 487 (358) 3.4 (2.5)
Indiana 7 (6) 35 16 126 451 (365) 4.8 (3.9)

Michigan 6 19 49 181 694 (371) 4.7 (2.5)
Minnesota 7 (6) 23 55 199 754 (620) 3.6 (2.8)
Missouri 6 18 41 142 403 (365) 2.3 (2.0)

Ohio 6 16 43 134 528 (339) 5.0 (3.2)
Wisconsin 7 (6) 19 48 176 663 (428) 4.7 (2.9)

(Midwest) 8 30 93 403 3071 2.6

Arkansas 6 18 47 129 397 (261) 2.9 (1.9)
Louisiana 7 15 39 115 253 (304) 2.3 (2.5)
Oklahoma 7 23 56 184 389 (463) 2.2 (2.6)

Texas 8 30 98 410 1512 (996) 2.3 (1.4)

(South Central) 9 33 110 517 2249 2.1

Alabama 8 19 48 127 365 (321) 2.8 (2.4)
Florida 8 (7) 22 49 150 340 (298) 2.5 (2.0)
Georgia 7 20 46 133 363 (250) 2.4 (1.6)

Kentucky 5 (6) 16 32 95 286 (211) 2.8 (2.0)
Mississippi 8 (7) 20 50 110 297 (220) 2.4 (1.8)

North Carolina 7 (6) 20 43 116 355 (228) 2.8 (1.8)
South Carolina 7 18 39 105 232 (214) 3.0 (2.7)

Tennessee 7 (6) 19 43 135 621 (344) 6.0 (3.2)
Virginia 8 (7) 20 54 129 529 (265) 5.2 (2.5)

(Southeast) 8 27 87 371 2169 2.1

Colorado 8 35 93 347 1292 (856) 5.1 (3.2)
Kansas 7 23 55 168 473 (370) 2.2 (1.7)

Montana 9 44 128 464 1465 (693) 4.2 (1.8)
North Dakota 6 (7) 20 43 128 282 (272) 1.6 (1.5)

Nebraska 7 (6) 21 44 131 428 (268) 2.2 (1.3)
South Dakota 7 (6) 28 72 225 751 (563) 3.9 (2.8)

Wyoming 8 (7) 40 108 403 1448 (794) 6.3 (3.1)

(Northern Plains) 11 53 173 811 4619 2.9

Arizona 7 (6) 26 68 222 915 (423) 3.4 (1.4)
California 10 52 161 597 2689 (1755) 7.6 (4.3)

Idaho 9 45 131 454 1529 (1083) 7.8 (5.0)
New Mexico 8 (7) 31 88 299 1174 (744) 4.1 (2.4)

Nevada 8 33 88 378 1361 (1354) 5.1 (4.7)
Oregon 10 47 139 462 1481 (1075) 6.2 (4.3)

Utah 8 (7) 35 95 369 1415 (1006) 7.6 (4.6)
Washington 11 (9) 45 132 438 1548 (912) 9.6 (5.1)

(West) 11 63 260 1421 9375 4.8

Totals 11 65 317 2026 19,602 2.7

Note: Series density equals the number of series divided by 100,000 ha.
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Table 11. Soil diversity (pedodiversity) by soil order (taxonomic pedodiversity) in the contiguous United States (U.S.) based
on Soil Survey Geographic (SSURGO) Database (2020) [27].

State (Region)

Slight <——————————– Degree of Weathering and Soil Development ————————–> Strong

Slight Weathering Intermediate Weathering Strong Weathering

Enti-
sols

Incepti-
sols

Histo-
sols

Andi-
sols

Verti-
sols

Alfi-
sols

Molli-
sols

Aridi-
sols

Spodo-
sols

Ulti-
sols

Area (km2)

Connecticut 784 10,374 1052 0 0 0 196 0 0 0
Delaware 1072 125 121 0 0 59 0 0 27 3639

Massachusetts 3832 11,552 1542 0 0 0 3 0 1977 13
Maryland 2162 3254 591 0 0 2602 34 0 47 16,576

Maine 1099 21,286 6286 0 0 0 18 0 51,895 0
New Hampshire 1206 8697 1617 0 0 0 3 0 11,277 0

New Jersey 3587 3180 724 0 0 1734 0 0 1484 7078
New York 7238 63,843 3518 0 0 20,233 856 0 22,167 576

Pennsylvania 4200 44,708 223 0 0 24,961 138 0 203 40,858
Rhode Island 489 2036 58 0 0 0 0 0 0 0

Vermont 905 9265 395 0 0 1010 137 0 12,053 0
West Virginia 4257 18,871 33 0 0 13,980 122 0 482 23,702

(East) 29,768 197,828 13,844 0 0 63,022 1119 0 106,720 92,025

Iowa 9611 12,070 152 0 295 34,439 87,234 0 0 0
Illinois 12,239 4947 380 0 0 61,155 65,121 0 0 107
Indiana 6276 9429 1301 0 0 51,962 21,045 0 3 3568

Michigan 18,137 12,051 13,295 0 0 44,231 12,865 0 46,952 0
Minnesota 16,942 20,714 28,759 0 4387 44,288 93,878 0 254 0
Missouri 8837 5657 0 0 2759 91,360 40,204 0 0 28,667

Ohio 5739 13,700 406 0 0 66,356 12,555 0 0 6685
Wisconsin 16,878 4976 14,587 0 0 63,450 15,799 0 24,849 2
(Midwest) 93,424 78,531 60,744 0 6866 477,096 337,608 0 68,509 38,778

Arkansas 7324 13,765 0 0 7097 35,779 3745 0 0 68,121
Louisiana 8525 12,317 7165 0 15,743 41,476 1168 0 0 22,879
Oklahoma 17,904 21,679 0 0 6501 45,022 71,197 266 0 14,078

Texas 41,454 64,235 0 0 61,723 170,569 218,194 79,732 15 24,727
(South Central) 70,892 105,988 8092 0 95,568 297,126 296,443 75,817 10 132,467

Alabama 21,800 20,410 1084 0 3168 7298 1296 0 19 75,872
Florida 35,568 5929 12,643 0 13 15,803 5477 0 33,349 27,708
Georgia 14,331 10,028 1582 0 0 3408 3 0 3286 116,647

Kentucky 3021 26,852 0 0 0 44,876 3233 0 0 23,865
Mississippi 21,348 18,906 761 0 8967 30,808 478 0 1 41,313

North Carolina 8450 25,796 4882 0 0 6675 363 0 2736 76,622
South Carolina 6663 8167 462 0 0 7287 232 0 1156 54,521

Tennessee 7234 21,321 0 0 100 28,366 4600 0 0 42,657
Virginia 5445 20,589 817 0 23 10,560 645 0 28 64,607

(Southeast) 98,026 139,879 24,312 0 13,943 164,043 14,144 0 46,166 551,642

Colorado 53,635 17,712 397 0 1824 41,700 91,424 47,089 107 0
Kansas 16,343 5552 0 0 9457 11,254 169,487 156 0 76

Montana 70,088 89,506 486 8600 11,800 41,922 115,914 12,518 5 0
North Dakota 13,271 7352 20 0 6962 832 150,151 0 0 0

Nebraska 92,172 5574 22 0 620 3165 96,746 119 0 0
South Dakota 30,742 9172 13 0 16,518 5851 126,070 3549 0 0

Wyoming 69,454 23,384 253 356 639 24,678 55,786 54,725 0 0
(Northern Plains) 343,944 154,780 726 1551 42,374 121,581 836,422 113,683 112 75

Arizona 88,659 2472 4 0 3483 11,706 33,412 127,130 0 0
California 83,218 64,545 734 2928 15,945 69,846 81,653 25,034 47 10,023

Idaho 9126 34,112 176 19,004 1111 12,205 77,220 44,184 0 17
New Mexico 63,846 8102 10 86 1898 32,215 61,969 11,6232 0 0

Nevada 74,116 5633 4 165 870 1306 62,434 12,4888 0 0
Oregon 5819 52,931 521 25,895 2265 14,876 95,277 29,023 692 12,577

Utah 68,382 5582 7 7 440 2700 47,003 60,909 0 0
Washington 9542 31,326 872 37,798 47 6443 53,974 9927 8847 3093

(West) 369,521 174,653 2229 83,077 26,562 156,171 516,161 593,340 10,273 26,557

Totals 982,571 859,445 116,378 72,379 190,455 1326,421 2009,454 704,900 242,181 870,043

Note: Soil order of Gelisols was reported for the state of Washington with an area of 11 m2.
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3.1.2. Examples of Genetic Pedodiversity and Ecosystem Services

Genetic pedodiversity refers to the diversity of genetic horizons (soil layers commonly
parallel to the soil surface), which designation indicates a qualitative description of changes)
(Figure 3, Table 12) [15,40]. Diagnostic horizons are quantitatively defined and not equiva-
lent to the genetic horizons in Soil Taxonomy [15]. Soil horizons are integral components
of the taxonomic pedodiversity and can be used to compute distinct or combined stocks
within the soil (Figure 3, Table 12).

<------- Slight Weathering -------- Intermediate Weathering --------- Strong Weathering -----> 
Histosols Gelisols Alfisols Mollisols Ultisols Oxisols 

      

Figure 3. Examples of variations of soil horizons in different soil profiles.

Table 12. Examples of soil profile horizons (master horizons and corresponding lowercase letters commonly used with
these horizons) and ecosystem services (adapted from Hartemink et al. (2020) [40].

Soil Profile Horizons Ecosystem Services

Master Horizons
(Lowercase Letters)

Description Provisioning
Regulation and

Maintenance
Cultural

O Horizon with organic matter and plant litter x x ND
i Slightly decomposed organic matter (fibric) x x ND
e Intermediately decomposed organic matter (hemic) x x ND
a Highly decomposed organic matter (sapric) x x ND

A Zone of organic matter accumulation in the soil x x ND
p Plowing or other disturbance x x ND

E Zone of maximum eluviation x x ND

B Zone of maximum illuviation x x ND
c Concretions or nodules x x ND
b Buried x x ND
f Frozen (permafrost) x x ND
g Strong gleying (mottling) x x ND
h Illuvial accumulation of organic matter (OM) x x ND
j Jarosite (yellow sulfur mineral) x x ND
jj Cryoturbation (frost churning) x x ND
k Accumulation of carbonate (CaCO3) x x ND
m Cementation or induration x x ND
n Accumulation of sodium x x ND
o Accumulation of Fe and Al oxides x x ND
q Accumulation of silica x x ND
s Illuvial accumulation of OM and Fe and Al oxides x x ND
ss Slikenslides (shiny clay wedges) x x ND
t Accumulation of silicate clays x x ND
v Plinthite (high iron, red material) x x ND
w Distinctive color or structure x x ND
x Fragipan (high bulk density, brittle) x x ND
y Accumulation of gypsum (CaSO4·2H2O) x x ND
z Accumulation of soluble salts x x ND

C Weathered or soft rock x x ND

R Bedrock, consolidated rock x x ND

Note: ND = not determined. “True soil” = A, E, B. Regolith (weathered material) = O, A, E, B, C. Contributions of the different soil horizons
to ES will vary with soil order, geographic location, environmental conditions, anthropologic setting, etc.
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Numerous combinations of master horizons and their lowercase letters describe the
incredible diversity of soil resources in the landscape. Soil horizons vary in thickness and
exhibit within-horizon lateral and vertical variation [40]. Although all of the horizons
in Table 12 present various types of value (e.g., market and non-market), some of these
horizons can be over-exploited for their ES. For example, horizon A is commonly plowed
for agricultural production and subject to nutrient depletion and erosion [41]. Ireland had
to pass policies to protect peatlands, which often contain soil order of Histosols with
horizon O in various stages of decomposition (lowercase letters: i, e, a, Table 12), which is
used for multiple purposes (e.g., fuel and horticulture) [42]. Permafrost (indicated by the
lowercase letter f in Table 12) is thawing rapidly, releasing large amounts of carbon dioxide
and methane gases [43].

3.1.3. Examples of Parametric Pedodiversity and Ecosystem Services

Parametric pedodiversity refers to the diversity of soil properties, which are also
often used in the context of taxonomic and genetic pedodiversities. Soil properties vary
by soil type and exhibit within-horizon lateral and vertical variation [40]. Although there
is no standardized list of soil properties, Adhikari and Hartemink (2016) [16] provided
key soil properties related to ES: soil organic carbon; sand, silt, clay, and coarse fragments;
pH; depth to bedrock; bulk density; available water capacity; cation exchange capacity;
electrical conductivity; soil porosity and air permeability; hydraulic conductivity and
infiltration; soil biota; soil structure and aggregation; soil temperature; clay mineralogy,
and subsoil pans. This list seems to focus primarily on soil physical properties, but soil
chemical properties and qualitative soil descriptions (e.g., official soil series descriptions)
are also important in ES/ED valuations. Soil chemical properties (e.g., plant nutrients) are
essential for agricultural production, and it is important to monitor the supply of these nu-
trients to meet the yearly recommended dietary allowances and intakes by population [44].
For example, Zurqani et al. (2019) [45] quantified the yearly human demand for major and
trace elements in Libya by different administrative units with the future goal of linking it
with the provisioning ES supply by the country’s soils.

Very often, soil properties serve multiple ES/ED. For example, Groshans et al. (2018) [30]
determined the provisioning value of soil inorganic carbon (SIC) based on liming replace-
ment cost within the contiguous U.S. However, SIC can also be valued as a regulating
ES/ED, and Groshans et al. (2019) [46] estimated the value of SIC stocks based on the
avoided social cost of carbon emissions (SC-CO2). There are numerous challenges in using
appropriate soil data sources and valuation methods for soil properties. For example,
Mikhailova et al. (2019) [47] compared field sampling and soil survey database for spatial
heterogeneity in surface granulometry (sand, silt, and clay) for potential use in ES/ED val-
uations and concluded that field sampling provided more detailed information. The same
study revealed that soil texture and coarse fragments are lithospheric-derived resources
(Figure 1) and can be valued based on “soil” or “mineral” stock. Among soil properties,
soil organic matter (SOM) and soil organic carbon (SOC) are the most researched soil prop-
erties because of their significance in provisioning (e.g., soil fertility) and regulating (e.g.,
carbon sequestration) ES. Guo et al. (2006) [39] reported spatial variability of soil carbon
(SOC, SIC) in each of the soil orders within the contiguous U.S., and potential decline in
SOC in the 0–20 cm depth (e.g., rooting depth of most crops) compared to 20–100 cm depth.
Taxonomic pedodiversity and human demand for soil nutrients can adversely affect soil
health and nutritional security [48].

3.1.4. Examples of Functional Pedodiversity and Ecosystem Services

Functional pedodiversity refers to soil behavior under different uses. Taxonomic and
genetic pedodiversities influence soil behavior under current and potential uses. Ac-
cording to Amundson et al. (2003) [2], “in less than two centuries, the landscape of the
U.S. has been transformed to the degree that would astound our 19th-century predeces-
sors”. According to Merrill and Leatherby (2018) [49], “the 48 contiguous states alone are
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1.9 billion-acre jigsaw puzzle of cities, farms, forests and pastures that Americans use to feed
themselves, power their economy and extract value for business and pleasure” with six ma-
jor types of land: cropland (391.5M acres, where M = million = 106), forest (538.6M acres),
pasture/range (654M acres), urban (69.4M acres), special use (168.6M acres), and miscella-
neous (68.9M acres). Soils under different uses make a significant contribution to various
ES/ED in the contiguous U.S., but monetary valuations of these ES/ED are rare at this scale.
For example, Groshans et al. (2018) [46] assessed the value of SIC for provisioning ES for
LRRs based on liming replacement cost (a 2014 U.S. average price of $10.42 per U.S. ton of
agricultural limestone). The LRRs with the highest midpoint total replacement cost value
of SIC storage were: (1) D—Western Range and Irrigated Region ($1.10T), (2) H—Central
Great Plains Winter Wheat and Range Region ($926B), and (3) M—Central Feed Grains
and Livestock Region ($635B) [46]. On an area basis, the highest replacement cost values
were: (1) I—Southwest Plateaus and Plains Range and Cotton Region ($3.33 m−2), (2) J—
Southwestern Prairies Cotton and Forage Region ($2.83 m−2), and (3) H—Central Great
Plains Winter Wheat and Range Region ($1.59 m−2) [46]. The LRRs with the highest mean
replacement cost values per area over the depth interval 0–20 cm were: (1) I—Southwest
Plateaus and Plains Range and Cotton Region ($0.43 m−2), (2) J—Southwestern Prairies
Cotton and Forage Region ($0.27 m−2) and (3) D—Western Range and Irrigated Region
($0.11 m−2) [46]. Over the depth interval 0–100 cm, the highest mean replacement cost
values were: (1) I—Southwest Plateaus and Plains Range and Cotton Region ($1.86 m−2),
(2) J—Southwestern Prairies Cotton and Forage Region ($1.49 m−2) and (3) F—Northern
Great Plains Spring Wheat Region ($0.70 m−2) [46].

Traditionally, provisioning ES have been seen as the primary value from the soil;
however, in the face of potentially severe economic impacts from climate change, regulat-
ing ES should be recognized for their potential to provide ES through mitigation of net
CO2 release through different management regimes designed to maximize CO2 uptake
and minimize CO2 release. Site-specific management of soil carbon “hotspots” through
precision agriculture could serve to reduce CO2 emission and provide regulating ES to
humanity [37]. Although no economic system has been developed to coordinate long-term
practices to sequester C [50], any contribution to CO2 reduction would help mitigate emis-
sions from fossil fuels. Different soil carbon (SOC, SIC, and TSC) should be accounted for
in the mitigation efforts. A few studies attempted to put a monetary value on regulating
ES/ED from SOC, SIC, and TSC within the contiguous U.S. using the social cost of carbon
(SC–CO2) of $42 per metric ton of CO2, which is applicable for the year 2020 based on 2007
U.S. dollars and an average discount rate of 3% [35,36,46,51]. According to Mikhailova
et al. (2019) [36], the LRRs with the highest TSC storage value (based on the avoided social
cost of carbon emissions) were: (1) M—Central Feed Grains and Livestock Region ($2.82T),
(2) D—Western Range and Irrigated Region ($2.64T), and (3) H—Central Great Plains
Winter Wheat and Range Region ($2.48T). The value of TSC based on area density within
LRR boundaries were ranked: (1) I—Southwest Plateaus and Plains Range and Cotton
Region ($6.90 m−2), (2) J—Southwestern Prairies Cotton and Forage Region ($6.38 m−2),
and (3) U—Florida Subtropical Fruit, Truck Crop and Range Region ($6.25 m−2) [36].

3.2. Extrinsic Factors: Examples of Monetary Valuations Based on Interaction of Soil Diversity
(Pedodiversity) and the Earth’s Spheres

Pedodiversity is influenced by extrinsic (outside soil) factors from atmosphere, bio-
sphere, hydrosphere, lithosphere, ecosphere, and anthroposphere (Figure 1), which can
increase or decrease the value of ES/ED associated with pedodiversity. Valuations of both
intrinsic and extrinsic factors can be made within biophysical accounts (e.g., within soil
order boundaries) and then “translated” into the administrative accounts for decision
making. For example, Figure 4 demonstrates the share between values of total soil carbon
(intrinsic) and average annual total (extrinsic) monetary values of non-constrained poten-
tial soil inorganic carbon (SIC) sequestration from combined atmospheric Ca2+ and Mg2+

deposition (2000–2015) for different regions in the contiguous U.S. based on an avoided
SC–CO2 of $42 per metric ton of CO2. In this case, both intrinsic (TSC) and extrinsic (poten-
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tial for SIC sequestration from atmospheric Ca2+ and Mg2+ deposition) factors are spatially
heterogeneous without considering physical and economic constraints for achieving the
maximum potential for SIC sequestration from atmospheric sources [52]. Both intrinsic
and extrinsic factors limit pedodiversity in its ability to supply ES/ED.

Figure 4. Total soil carbon (intrinsic, top number) and average annual total (extrinsic, bottom number) monetary values of
non-constrained potential soil inorganic carbon (SIC) sequestration from combined atmospheric Ca2+ and Mg2+ deposition
(2000–2015) for different regions in the contiguous United States (U.S.) based on an avoided SC–CO2 of $42 per metric ton of
CO2 [51] (adapted from Mikhailova et al., 2019 [36]; Mikhailova et al., 2020 [52]). Note: M = million = 106, B = billion = 109,
and T = trillion = 1012.

Climate change is another set of extrinsic factors impacting the value of ES/ED derived
from pedodiversity. Global warming threatens the existence of soil order of Gelisols
because of thawing permafrost. Gelisols store large amounts of soil organic matter (SOM),
and its decomposition can release large amounts of carbon dioxide and methane [53].
An increase in both ambient and soil temperature can intensify SOM decomposition and
lead to self-ignition conditions in soil carbon-rich soils (e.g., Gelisols, Histosols), leading to
wildfires [54]. Climate change is also predicted to increase global water erosion from 30
to 66% [55].

Urbanization, another example of extrinsic factors, alters soils in various ways (e.g.,
erosion and pollution) and creates ES/ED specific to urban soil diversity (urban pedodi-
versity), which requires adjustment of valuations to urban environments [56,57]. Urban-
ization alters the stocks and flows of ES/ED provided by soils in urban and non-urban
environments since urban environments are not self-supporting, which creates a significant
demand for ES from urban fringes and beyond [58].

3.3. Pedodiversity Threats and Losses in the Contiguous U.S. in Relation to Ecosystem Services
3.3.1. Land Cover Change (LCC) as a Threat to Pedodiversity

Pedodiversity in the contiguous U.S. is experiencing significant threats and losses,
especially in agriculturally productive and important soils (e.g., Alfisols and Mollisols) and
regions (e.g., Midwest, Northern Plains, South Central) that is driven by land cover change
(e.g., urbanization, deforestation, and agricultural expansion) [2]. These soils and regions
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have high provisioning ES value, which can result in unsustainable use accompanied by
the loss of regulating and provisioning ES services [59]. Although the economic value
of ES from agriculturally productive soils is somewhat reflected in the total value of
U.S. agricultural production, the social costs associated with this production and rates
of soil diversity (pedodiversity) extinction are rarely reported (Table 13) [2]. The total
social costs of agricultural production (present and past) are difficult to quantify because
they are impacted by numerous factors, but on-going research on ES/ED provides useful
insight into potential valuation methods. This type of analysis should account for ES
and ED (actual or realized, and potential) provided by pedodiveristy using biophysical
(e.g., soil orders) and administrative (e.g., states) accounts. For example, Groshans et al.
(2018) [30,59] assessed the midpoint total provisioning value of SIC for ES for Mollisols in
the contiguous U.S. based on liming replacement costs (average price of limestone in 2014,
$10.42 per U.S. ton) in 2 m soil depth at $23.2B, USD (where B = billion = 109). A follow-up
study estimated the regulating value of SIC for ES/ED for Mollisols in the contiguous U.S.
based on a social cost of carbon (SC-CO2) of $42 U.S. dollars and reported a total midpoint
value of $3.57T, USD (where T = trillion = 1012) [48].

Soil organic carbon is particularly important for agricultural production,
and Mikhailova et al. (2019) [35] estimated the value of SOC stocks in the contiguous
United States based on the avoided social costs of carbon emissions and reported that the
total calculated monetary value for SOC storage in the contiguous U.S. was between $4.64T
and $23.1T, with a midpoint value of $12.7T [35]. Soil orders with the highest midpoint
SOC storage values were (1): Mollisols ($4.21T), (2) Histosols ($2.31T), and (3) Alfisols
($1.48T) [35]. The midpoint values of SOC normalized by area within soil order bound-
aries were ranked: (1) Histosols ($21.58 m−2), (2) Vertisols ($2.26 m−2), and (3) Mollisols
($2.08 m−2) [35]. States with the highest midpoint values of SOC storage were: (1) Texas
($1.08T), (2) Minnesota ($834B), and (3) Florida ($742B) [35]. Midpoint values of SOC nor-
malized by area within state boundaries were ranked: (1) Florida ($5.44 m−2), (2) Delaware
($4.10 m−2), and (3) Minnesota ($3.99 m−2) [35]. Regions with the highest midpoint values
of SOC storage were: (1) Midwest ($3.17T), (2) Southeast ($2.44T), and (3) Northern Plains
($2.35T) [35]. Midpoint values of SOC normalized by area within region boundaries were
ranked: (1) Midwest ($2.73 m−2), (2) Southeast ($2.31 m−2), and (3) East ($1.82 m−2) [35].

Mapping can provide spatial context between population, urbanization, and endan-
gered soil series (Table 13, Figures 5 and 6). Results show that there is a link between
states and regions with a high number of endangered soil series and the value of pro-
visioning and regulating ES (California; Midwest, Northern Plains, and South-Central
regions). States and regions with zero endangered series represent areas with generally
low productivity soils such as Aridisols (e.g., Arizona and New Mexico), Ultisols (e.g.,
Georgia, South Carolina, and North Carolina), and Entisols and Inceptisols (e.g., Maine and
Vermont) (Table 13, Figure 5).

Some states and regions have low human populations, but some of the highest pro-
portions of endangered rare soil series (Table 13, Figure 5). For example, the Northern
Plains region has only 4.19% of the total U.S. population and some of the highest numbers
of endangered soil series [60,61]. In the Midwest, Iowa has almost 81% of its rare soil series
endangered, but it has only 0.95% of the total U.S. population (Table 13, Figure 5) [60,61].
Similarly, Kansas has nearly 43% of its rare soil series endangered, but it has only 0.88%
of the U.S. population. These states have some of the highest values associated with
provisioning ES from SOC, SIC, and TSC, as well as regulating ES/ED associated with
these carbon stocks. A mismatch between “potential” and “realized” supply/demand of
flow-dependent ES/ED [62] is not a new phenomenon for Kansas, which experienced soil
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Table 13. Pedodiversity and selected population statistics in the contiguous United States (U.S.) (adapted from Amundson
et al., 2003 [2], and Wikipedia [60]).

State (Region) Orders Series
Rare

Series
Endangered

Series

% of Rare
Series

Endangered

Extinct Soil
Series

Percent of
the Total

U.S.
Population

(2019)

Percent
Urban

Population
within State

(2010)

Connecticut 4 86 8 4 50.0 1.07 88.0
Delaware 6 52 0 0 0.0 0.29 83.3

Massachusetts 5 129 5 0 0.0 2.09 92.0
Maryland 7 187 7 0 0.0 1.82 87.2

Maine 4 111 8 0 0.0 0.41 38.7
New Hampshire 4 127 10 0 0.0 0.41 60.3

New Jersey 7 148 22 2 9.1 2.68 94.7
New York 7 347 37 2 5.4 5.86 87.9

Pennsylvania 7 248 20 0 0.0 3.86 78.7
Rhode Island 3 45 2 0 0.0 0.32 90.7

Vermont 6 192 24 0 0.0 0.19 38.9
West Virginia 6 163 11 0 0.0 0.54 48.7

(East) n/a n/a n/a n/a n/a n/a 19.54 n/a

Iowa 5 262 26 21 80.8 0.95 64.0
Illinois 6 358 44 29 65.9 6 3.82 88.5
Indiana 6 365 44 36 81.8 2 2.03 72.4

Michigan 6 371 86 10 11.6 3.01 74.6
Minnesota 6 620 122 65 53.3 6 1.70 73.3
Missouri 6 365 27 12 44.4 4 1.85 70.4

Ohio 6 339 46 21 45.7 2 3.52 77.9
Wisconsin 6 428 51 8 15.7 1.75 70.2

(Midwest) n/a n/a n/a n/a n/a n/a 18.63 n/a

Arkansas 6 261 3 1 33.3 0.91 56.2
Louisiana 7 304 41 10 24.4 1 1.40 73.2
Oklahoma 7 463 46 3 6.5 1.19 66.2

Texas 8 996 176 6 3.4 8.74 84.7

(South Central) n/a n/a n/a n/a n/a n/a 12.24 n/a

Alabama 8 321 19 0 0.0 1.48 59.0
Florida 7 298 67 9 13.4 3 6.47 91.2
Georgia 7 250 4 0 0.0 3.20 75.1

Kentucky 6 211 14 0 0.0 1.35 58.4
Mississippi 7 220 17 2 11.8 0.90 49.3

North Carolina 6 228 18 0 0.0 3.16 66.1
South Carolina 7 214 13 0 0.0 1.55 66.3

Tennessee 6 344 44 3 6.8 2.06 66.4
Virginia 7 265 10 0 0.0 2.57 75.5

(Southeast) n/a n/a n/a n/a n/a n/a 22.74 n/a

Colorado 8 856 153 0 0.0 1.74 86.2
Kansas 7 370 14 6 42.9 0.88 74.2

Montana 9 693 188 21 11.2 0.32 55.9
North Dakota 7 272 26 10 38.5 0.23 59.9

Nebraska 6 268 23 14 60.9 2 0.58 73.1
South Dakota 6 563 61 18 29.5 0.27 56.7

Wyoming 7 794 121 0 0.0 0.17 64.8

(Northern Plains) n/a n/a n/a n/a n/a n/a 4.19 n/a

Arizona 6 423 27 0 0.0 2.19 89.9
California 10 1755 671 104 15.5 1 11.9 95.0

Idaho 9 1083 361 49 13.6 0.54 70.6
New Mexico 7 744 139 0 0.0 0.63 77.4

Nevada 8 1354 399 1 0.3 0.93 94.2
Oregon 10 1075 301 16 5.3 1.27 81.0

Utah 7 1006 279 5 1.8 0.97 90.6
Washington 9 912 462 25 5.4 3 2.29 84.0

(West) n/a n/a n/a n/a n/a n/a 20.72 n/a

Totals n/a n/a n/a n/a n/a n/a 98.06 80.7

Note: n/a = not available. For “series abundance,” the following categories are defined [2]: (a) rare soils—less than 1000 ha total area in the
US, and (b) endangered soils as those rare or rare-unique soil series that have lost more than 50% of their area to various land disturbances.
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degradation and the Dust Bowl in the past due to a combination of prolonged drought
and “suitcase farming,” which was sponsored by “non-resident farmers” [63]. From the
ES framework perspective, examining the potential for dry land farming in the 1920s,
it would have indicated limitations due to intrinsic factors (high soil erodibility because
of silty soil texture) and extrinsic factors (susceptibility of this area to regular droughts).
According to Lee and Gill [64], the soil and drought conditions were compounded by an
economic collapse that reduced crop value. Social costs associated with the Dust Bowl
went far beyond the boundaries of the states where it originated, with almost half a
million Dust Bowl refugees, massive quantities of topsoil being deposited in the Atlantic
Ocean and impacting the air quality of Washington D.C. and other faraway states [64].
The ES framework, in combination with detailed spatial and temporal environmental data,
can be used to inform sustainable decision-making to help avoid and mitigate similar and
other disasters.

Figure 5. Number of endangered soil series [2] and percent of the total U.S. population (2019) [60] in the contiguous United
States (U.S.).

For example, land cover change maps over time can provide insight into geographical
patterns of ES stocks, flows, and values. Urbanization trends increase demand for ES,
which are not always supplied by local soil resources and require soil ecosystem goods
and services to be “imported” from soil stocks in other geographic areas (Figures 6 and 7).
Figure 7 shows large urban area increases in the states of Texas, California, Florida, Arizona,
Georgia, and North Carolina. Increases in urban areas in states can be accompanied by
decrease in the agricultural areas (e.g., Florida, Arizona, and Georgia) and/or loss of forest
areas (e.g., California, Arizona, Texas, and Georgia) (Figures 8 and 9).

In some cases, states increase the flow of ecosystem goods and services by increasing
the agricultural area within the state based on available soil resources (e.g., Texas) (Figure 8).
In other cases, an increase in the flow of ecosystem goods and services by increasing the
agricultural area may be limited because of constraints associated with inherently low-
fertility soils and other extrinsic factors (e.g., low precipitation).
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Figure 6. Number of endangered soil series [2] and percent of the urban population within each state (2010) [61] in the
contiguous United States (U.S.).

Figure 7. Urban land cover changes over time from 2001 to 2011 in the contiguous United States (U.S.) (adapted from
Wentland et al. (2020) [65]).
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Figure 8. Agricultural land cover changes over time from 2001 to 2011 in the contiguous United States (U.S.) (adapted from
Wentland et al. (2020) [65]).

Figure 9. Forest land cover changes over time from 2001 to 2011 in the contiguous United States (U.S.) (adapted from
Wentland et al. (2020) [65]).
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According to Wentland et al. (2020) [65], overall U.S. land cover has seen declines in
agricultural areas, forests, and pasture, and increases in developed areas as well as bar-
ren, and scrub/shrub land cover classes. These declines are mostly concentrated in the
Southeastern U.S. [65].

Land cover and its change are important in ES valuations. Wetland et al. (2020) [65] es-
timated the total value of private land in the contiguous United States at $25.1T
(T = trillion = 1012) in 2016 using the Zillow Transaction and Assessment Dataset, which in-
cludes individual property attributes linked to market transaction price data. These values
do not necessarily represent ES values (intrinsic and extrinsic) because there are no avail-
able tools for the public to appraise any facet of ES values. Land price values can vary
based on times of economic growth or decline. For example, Wentland et al. (2020) [65]
reported a 28% decline in land value during a financial crisis in the last decade without
ES valuation. This is a clear evidence that land value and ES value are not connected,
which can be an essential consideration for future research. There may be limited instances
where the land value is tied to agricultural productivity (provisioning ES). Soil ecosystem
goods and services are no longer used locally but are subject to a vast global distribution
network, contributing to biogeochemical cycles’ destabilization.

3.3.2. Climate Change as a Threat to Pedodiversity

Climate change poses a range of unique threats (e.g., changes in temperature, pre-
cipitation, and extreme conditions) to pedodiversity and its ES, which will be discussed
following the concept of pedodiversity and its measures outlined in this study. Since pe-
dodiversity (biotic + abiotic) forms from the interaction of various spheres (biosphere,
lithosphere, hydrosphere, atmosphere, ecosphere, and anthroposphere), climate change
threats will be multifaceted and complex. Both biotic and abiotic aspects of pedodiversity
are sensitive to climate change and include the following examples relevant to ED:

• Biotic (e.g., increase in soil organic matter decomposition rates due to increase in
temperature and precipitation [66] leading to increase in soil CO2 emissions and
associated social costs);

• Abiotic (e.g., increase in soil erosion due to an increase in precipitation and extreme
rainfall events [67]).

Pedodiversity is influenced by intrinsic (within the soil) and extrinsic (outside soil)
factors, where climate change is an extrinsic factor (e.g., changes in temperature, precipita-
tion) with subsequent effect on alterations in intrinsic soil characteristics and properties
(e.g., soil temperature and moisture regimes, and moisture content). In terms of taxonomic
pedodiversity (diversity of soil classes), climate change poses an existential threat to the soil
order of Gelisols. Climate change can lead to changes in soil classification, especially with
regards to the use of soil temperature (e.g., pergelic, subgelic, cryic, and frigid) and moisture
regimes (e.g., udic and ustic). An example of climate-induced changes in genetic diversity
(diversity of soil horizons) includes the potential disappearance of permafrost, which is
indicated by the lowercase letter “f” (frozen) in the soil profile. Climate change will impact
parametric pedodiversity (diversity of soil properties) in various ways; for example, it can
reduce soil organic matter content because of increased decomposition due to temperature.
Soil pH can become more acidic because of increased precipitation and leaching, and in the
case of agricultural soil, more liming material will need to be applied to compensate for the
reduction in provisioning service provided by soil. Functional pedodiversity (soil behavior
under different uses) will be affected in many parts of the world because of climate change.
For example, global sea rise will influence soils under rice production, resulting in annual
crop losses of up to $10.59 billion USD [68].

Projections of future U.S. climate change predict that the entire U.S. is likely to warm
over the next 40 years, with an increase of 1–2 ◦C over much of the country and a 2–3 ◦C
increase in the interior of the country [69]. Reilly et al. (2003) [70] examined the effects of
climate change on provisioning ES from U.S. agriculture and reported a potential shift of
crop production northwards and a positive overall increase in agricultural production with
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regional differences (e.g., possible declines in production in the Southern U.S.). These ES
changes are likely to be accompanied by ED in the form of increased social costs associ-
ated with carbon dioxide emissions, soil erosion, depletion of soil nutrients, and others,
which contribute to the issues of soil and human security worldwide [71]. Climate change
in combination with population growth may increase demand for soil nutrients, which re-
placement from soil weathering is relatively slow in comparison with “anthropogenic use
rate” [72]. Since pedodiversity is not evenly distributed within most geographic areas,
soil nutrient depletion can be more acute in some places leading to prohibitively high
replacement costs associated with fertilizer and liming applications. If the nutrients (e.g.,
base cations) are not replaced through liming and fertilization, it will alter the soil chemical
composition, which can change its pedodiversity classification. Climate change will have a
direct impact on the classification of soils, with some soil types disappearing and others
changing in both extent and properties. Soil carbon changes associated with climate change
and increased organic matter decomposition will also change how soils are classified as
they are “decarbonized.”

4. Discussion

Pedodiversity is a source of various ecosystem goods, services, and disservices, and its
value is as complex as its concept. The total economic value (TEV) of pedodiversity is only a
portion of the total system value (TSV) of pedodiversity because pedodiversity and ES form
a multilayered relationship with the general trend of decreasing the tangibility of the value
of soil to users (Table 3) from the monetary value (e.g., actual use values: consumptive
food production) to pedodiversity value (e.g., intrinsic value) (Figure 10) [72,73].

Currently, there are four main approaches to analyze pedodiversity: taxonomic (di-
versity of soil classes), genetic (diversity of genetic horizons), parametric (diversity of
soil properties), and functional (soil behavior under different use). The concept of pe-
dodiversity and its classification varies by country; therefore, its applications to ES are
country-specific [74]. According to Gerasimova (2010) [74], “the American Soil Taxonomy
is the main and single classification in 45 countries, whereas, in 80 countries, it is used along
with the national classifications”. Despite differences in country-specific classifications,
these soil classifications provide science-based soil information that can be integrated with
administrative accounts (Table 2). Taxonomic, genetic, parametric, and functional pedo-
diversity provide an essential context for analyzing, interpreting, and reporting ES/ED
within the ES framework for business applications. Although each approach can be used
separately, three of these approaches (genetic, parametric, and functional) fall within
the “umbrella” of taxonomic pedodiversity, which separates soils based on properties
important to potential use.

Taxonomic pedodiversity provides a general description of the stock, its type, and spa-
tial (both horizontal and vertical) distribution, which are particularly useful in agricultural
business applications (e.g., soil productivity ratings in soil survey). For example, an area
abundance of soil orders describes the spatial distribution within defined administrative
boundaries (e.g., LRRs defined by the USDA based on MLRAs and agricultural markets)
(Table 9). The phrases “portfolio effect” and “evenness effect” [75] are often applied to
describe the theoretical links between biodiversity and ecosystem function. The “portfo-
lio effect” is the analogy between the stock market and species diversity, where having
more species allows a system to better respond to external stimuli. At the same time,
the “evenness effect” finds that having similar numbers of species can help buffer against
disturbances [76]. The concepts of “portfolio effect,”, “evenness effect,” and the newly
proposed “distribution effect” can also be applied to pedodiversity with various degrees of
interpretation (Figures 11 and 12).
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Figure 10. The newly expanded scope of pedodiversity valuation pyramid with a comparison of total economic value (TEV)
and total system value (TSV) of ecosystem services (ES) and disservices (ED) (adapted from Gantioler et al., 2000 [76]).

Figure 11 illustrates these concepts using the contiguous United States as an example.
In this context, the “portfolio effect” is defined as the number of different stocks (soil orders)
within the country (Figure 11). The “distribution effect” shows the distribution of stocks
(soil orders), its variation (e.g., slightly-weathered, intermediately-weathered, and strongly-
weathered soils), and associated avoided or realized social costs of SOC, SIC, and TSC
within the country.

Figure 12 illustrates these concepts using three states (Iowa, Rhode Island, and Geor-
gia). In this context, the “portfolio effect” is defined as the number of different stocks
(soil orders) within each state: Iowa (5), Rhode Island (3), and Georgia (7) (Figure 12).
The “distribution effect” shows the distribution of stocks (soil orders) and its variation (e.g.,
slightly-weathered, intermediately-weathered, and strongly-weathered soils) within the
state: Iowa (skewed towards intermediately-weathered soils), Rhode Island (skewed to-
wards slightly-weathered soils), and Georgia (skewed towards strongly-weathered soils).

The “evenness effect” describes instances when similar soil types are evenly rep-
resented (an example is not shown) (e.g., Mollisols and Alfisols are both fertile soils).
For each state, a paired graph shows the proportion of total area occupied by soil order
and value of soil organic carbon (SOC) based on avoided social cost of CO2, with Iowa
having largest values, mainly from Alfisols and Mollisols, low total value in Rhode Island,
and intermediate value in Georgia based on Ultisols and Histolsols.

Another pedodiversity measure, series density, provides important information about
soil diversity, but its interpretation can differ from biological species density. While higher
levels of species density are often seen as an advantage when describing biological sys-
tems [77], areas with higher soil series density (e.g., typical for soils derived from glacial
parent material) may have less agricultural productivity compared with more homogenous
and productive soils (e.g., typical for soils derived from loess parent material).

210



Land 2021, 10, 288

      

0

20

40

60

80

100
En

tis
ol

s

In
ce

pt
is

ol
s

H
is

to
so

ls

An
di

so
ls

Ve
rti

so
ls

Al
fis

ol
s

M
ol

lis
ol

s

Ar
id

is
ol

s

Sp
od

os
ol

s

U
lti

so
ls

Pr
op

or
tio

n 
of

 to
ta

l a
re

a 
(%

)

(a) Contiguous United States

  

$10T

$5T

0

$5T

$10T

En
tis

ol
s

In
ce

pt
is

ol
s

H
is

to
so

ls

An
di

so
ls

Ve
rti

so
ls

Al
fis

ol
s

M
ol

lis
ol

s

Ar
id

is
ol

s

Sp
od

os
ol

s

U
lti

so
ls

Av
oi

de
d 

so
ci

al
 c

os
t  

   
   

R
ea

liz
ed

 s
oc

ia
l c

os
t (b) Contiguous United States

                 SOC

 

  

$10T

$5T

0

$5T

$10T

En
tis

ol
s

In
ce

pt
is

ol
s

H
is

to
so

ls

An
di

so
ls

Ve
rti

so
ls

Al
fis

ol
s

M
ol

lis
ol

s

Ar
id

is
ol

s

Sp
od

os
ol

s

U
lti

so
ls

Av
oi

de
d 

so
ci

al
 c

os
t  

   
   

R
ea

liz
ed

 s
oc

ia
l c

os
t Contiguous United States

                 SIC
(c)

  

$10T

$5T

0

$5T

$10T

En
tis

ol
s

In
ce

pt
is

ol
s

H
is

to
so

ls

An
di

so
ls

Ve
rti

so
ls

Al
fis

ol
s

M
ol

lis
ol

s

Ar
id

is
ol

s

Sp
od

os
ol

s

U
lti

so
ls

Av
oi

de
d 

so
ci

al
 c

os
t  

   
   

R
ea

liz
ed

 s
oc

ia
l c

os
t Contiguous United States

                 TSC
(d)

 

Figure 11. Diagram showing how “portfolio effect” and “distribution effect” of pedodiversity can vary within the country:
(a) pedodiversity by soil order area; (b) value of soil organic carbon (SOC) storage, (c) value of soil inorganic carbon (SIC)
storage, (d) value of total soil carbon (TSC) storage in the upper 2 m depth based on avoided or realized social cost of CO2

(SC-CO2) of $42 (USD) per metric ton of CO2 [30,35,36,51] by soil order. Note: T = trillion = 1012.

Some regions with homogenous soils are characterized by low ES and productivity
(e.g., Aridisols). In terms of pedodiversity and ES, it is not just the density or numbers
of different soils, but their properties (e.g., chemical and physical) as they relate to the
effectiveness (level of performance) and reliability (consistency and predictability) to
drive production including agriculture [78]. The soil-to-agricultural market value chain is
heavily dependent on large homogeneous areas of soils with high agricultural productivity
associated with “soil carbon hotspots” (e.g., Midwest, Northern Plains in the U.S.) [37].
These areas have the most significant pedodiversity loss (and even extinction) and some of
the lowest proportion of the U.S. population (Table 12, Figure 5). There is a potential to
manage these “hotspots” with precision agriculture technology. It should be noted that not
all homogeneous soil areas necessarily have a high ES value.

Loss of pedodiversity may continue, considering projected world population
growth [79,80], given that the Midwest and Northern Plains regions export large quanti-
ties of agricultural products to the world. Economic estimates focus on the profit from
provisioning ES through the sales of agricultural products without considering regulating
(e.g., the social cost of pollution including greenhouse emissions) and replacement cost
associated with loss of soil nutrients (Figure 6) [80,81].
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Figure 12. Diagram showing how the “portfolio effect” and the “distribution effect” of pedodiversity can vary by state:
(a,c,e) pedodiversity by soil order area; (b,d,f) value of soil organic carbon (SOC) storage in the upper 2 m depth based
on avoided or realized social cost of CO2 (SC-CO2) of $42 (USD) per metric ton of CO2 [35,51] by soil order. Note:
B = billion = 109.

This focus on the direct use value, with little or no regard to the passive and intrinsic use-
values, may lead to unsustainable use of pedodiversity (Table 3 and Figure 10). The amount
available to replace the lost value of pedodiversity, through insurance value (Table 3) may
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not be possible. For example, replacement of some soil nutrients (e.g., phosphorus and
potassium) may not be economically feasible since their mineral supply is very limited
in the world [81,82]). Estimates of social costs can be performed based on taxonomic
pedodiversity (biophysical accounts) (Table 14) and using administrative (boundary-based)
accounts (Table 15).

Table 14. Degree of soil development and area-normalized midpoint values of soil organic carbon
(SOC) storage in the upper 2 m depth within the contiguous United States (U.S.), based on midpoint
SOC numbers from Guo et al., 2006 [39] and a social cost of carbon (SC-CO2) of $42 (USD) per metric
ton of CO2 [51].

Slight <—————————– Degree of Weathering and Soil Development —————————> Strong

Slight Weathering Intermediate Weathering Strong Weathering

Soil
Order

Midpoint SOC
Value per Area

($ m−2)

Soil
Order

Midpoint SOC
Value per Area

($ m−2)
Soil Order

Midpoint SOC
Value per Area

($ m−2)

Entisols 1.23 Aridisols 0.62 Spodosols 1.89

Inceptisols 1.37 Vertisols 2.26 Ultisols 1.09
Histosols 21.58 Alfisols 1.16 Oxisols -
Gelisols - Mollisols 2.08

Biocapacity and ecological footprint are commonly used in environmental carrying ca-
pacity (ECC) assessments (e.g., urban areas) [83], and clearly, pedocapacity, or the capacity
of the soil to provide various ES, should be a part of these calculations as well. The value
of pedocapacity should include both intrinsic (e.g., avoided social costs) and extrinsic (e.g.,
realized social costs) estimates. Extrinsic realized social costs may be impossible to estimate
because their impacts extend beyond the pedosphere boundary, such as in the case of
realized social costs of carbon (SC-CO2) (Figure 13). Limited biocapacity (including pedoca-
pacity) in urban areas often results in urban areas exceeding their ECC, sometimes crossing
into other countries [83].

Table 15. Integration of biophysical accounts (science-based) and administrative accounts (boundary-
based). Degree of soil development and area-normalized midpoint values of soil organic carbon
(SOC) storage in the upper 2 m depth within the contiguous United States (U.S.), based on midpoint
SOC numbers from Guo et al., 2006 [39] and a social cost of carbon (SC-CO2) of $42 (USD) per metric
ton of CO2 [51].

Slight ←—————————– Degree of Weathering and Soil Development ————————–→ Strong

Slight Weathering Intermediate Weathering Strong Weathering

State (Region)

Midpoint
SOC Value

per Area
($ m−2)

State (Region)

Midpoint
SOC Value

per Area
($ m−2)

State (Region)

Midpoint
SOC Value

per Area
($ m−2)

Connecticut 2.42 Iowa 3.16 Alabama 1.42
Delaware 4.10 Illinois 1.96 Florida 5.44
Maryland 2.06 Indiana 2.16 Georgia 2.08

Maine 2.54 Michigan 3.71 Kentucky 1.12
New Hampshire 2.40 Minnesota 3.99 Mississippi 1.60

New Jersey 2.56 Missouri 1.36 North Carolina 3.42
New York 2.08 Ohio 1.57 South Carolina 2.77

Pennsylvania 0.91 Wisconsin 3.17 Tennessee 1.09
Rhode Island 2.70 (Midwest) 2.73 Virginia 1.23

Vermont 2.23 (Southeast) 2.31

West Virginia 0.74
(East) 1.82
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(a)                                                       (b) 

Figure 13. Relationship between intrinsic (e.g., avoided social costs) and extrinsic (e.g., realized social costs) estimates of
social costs associated with pedosphere in general (a), and using the state of Iowa and soil organic carbon (SOC) as an
example (b) based on midpoint SOC numbers from Guo et al., 2006 [41] and a social cost of carbon (SC-CO2) of $42 (USD)
per metric ton of CO2 [51].

Most research efforts are focused on documenting biodiversity loss, but pedodiversity
loss can be of catastrophic consequence to humanity; therefore, it is important to understand
the extinction patterns and their underlying processes [84]. Global warming has various
impacts on the soil, especially on soil organic matter (SOM) decomposition, which is an
oxidation process accompanied by oxygen consumption and CO2 release [85]:

R-(C, 4H) + 2O2 → CO2↑ + 2H2O + energy (478 kJ mol−1 C) (1)

The decomposition of SOM, which is accompanied by the release of CO2 and other
gases, accelerates in the presence of increased heat (e.g., global warming) and can be
compared to a “fire triangle.” Analogous to the “fire triangle,” the “SOM decomposition
triangle” represents the three items (soil organic matter, oxygen, and heat) that feed
SOM decomposition emissions of CO2 and other invisible gases that fuel global warming
(Figure 14). Unlike a regular fire, which is visible, the invisible greenhouse gases are like
an invisible “fire” that can only be prevented and minimized by identifying the location of
“fuel loading” (soil organic matter) throughout the landscape.

Figure 14. The “SOM decomposition triangle” represents the three items (soil organic matter, oxygen,
and heat) that feed soil decomposition emissions of CO2 and other gases that fuel global warming.
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The Earth’s regions and soils with high SOM levels (e.g., Histosols, Gelisols, Alfisols,
Mollisols, and Vertisols) tend to be more susceptible to greenhouse gas emissions with
increasing global temperatures. Histosols and Gelisols are of particular concern because
they are threatened by draining (Histosols) and thawing (Gelisols), which can cause soil
degradation with global consequences [86,87]. For example, Pastick et al. (2015) [86]
reported that 16 to 24% (out of 38%) of near-surface permafrost will disappear by the end
of the 21st century. States and regions with a higher proportion of their area occupied by
high-risk soils (“hotspots”) [37] are experiencing the highest losses in ES (especially in
provisioning), which is often caused by the demand for ES (e.g., provisioning) outside their
boundaries. According to Hansjurgens et al. (2018) [88], pedodiversity distribution around
the world poses an important question about “fairness” not only in the provisioning of
ES but also in the associated and past ED costs. Administrative accounts (e.g., states and
regions) in combination with pedodiversity concepts can provide information to develop
cost-effective policy options to manage benefits (ES) and risks (ED) from pedodiversity.
These benefits and risks often extend beyond the boundaries of individual states and
regions (e.g., greenhouse emissions), therefore creating a need for a long-term coordinated
vision, collaboration, and monitoring. It should be noted that both the ES framework
and its valuation measures are human-centric, bias, and focused on short-term human
scale interests instead of treating and valuing pedodiversity at a long-term geologic time
scale [12,20]. According to Table 3 and Figure 10, pedodiversity tangibility values tend
to decrease from “actual use” values to “intrinsic” values (benefits to nature). Soil series
are often associated with these monetary “actual use” values (e.g., provisioning: food,
etc.) because they represent soil properties within property boundaries in contrast to soil
orders, which are often associated with large spatial extents which cross multiple property
boundaries representing “intrinsic” values and social costs (Figure 15). According to
Guerry et al. (2015) [89], “perhaps the most difficult challenge in the path of success is
removing the fundamental asymmetry at the heart of economic systems, which rewards
the production of marketed commodities but not the provision of nonmarketed ecosystem
services or the sustainable use of natural capital that supports these services.”

Figure 15. Taxonomic pedodiversity and tangibility of value to the user (adapted from Soil Survey
Staff, 1999 [15]).
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Market transformations of pedodiversity can result not only in welfare but damages
as well [90], which can pose a threat to soil security, national security, food security, infras-
tructure, and human life [91–93]. Pedodiversity can be both valuable and problematic to
human well-being, depending on the point of view. The value of pedodiversity is that it is
a human construct, which is used to “categorize” the soil continuum in a discrete way [93]
and can be applied to ES/ED within administrative boundaries for socio-economic analysis.
The problem with the discretization of both soils and related ES/ED is that it can oversim-
plify the complex nature of pedodiversity, which is a product of the interaction between the
Earth’s various spheres and their diversities (Figure 1). For example, Bach et al. (2020) [94]
discusses the contribution of soil biodiversity to ES, which varies by soil type (taxonomic
pedodiversity) and would require integration of pedodiversity with soil biodiversity for
sustainable soil management. Human activity (e.g., agriculture and urbanization) can erode
soil pedodiversity by converting soils to more uniform human-altered soils (Anthrosols)
with a reduction in soil ES [95]. The perception of pedodiversity [96] and its contribution to
ES/ED depends on the human “behavioral dimensions” (“human nature”), which are less
understood in both perceived ES benefits and ED, especially with regards to regulating
ES/ED (e.g., greenhouse gas emission) which tend to be of global significance [97].

5. Conclusions

This study examined the application of soil diversity (pedodiversity) concepts (tax-
onomic, genetic, parametric, and functional) and its measures to value ES/ED with ex-
amples based on the contiguous United States (U.S.), its administrative units, and the
systems of soil classification (e.g., U.S. Department of Agriculture (USDA) Soil Taxonomy,
Soil Survey Geographic (SSURGO) Database). Pedodiversity provides an important con-
text (e.g., “portfolio effect”, “distribution effect”, and “evenness effect”) for analyzing,
interpreting, and reporting ES/ED within the ES framework for business applications.
Taxonomic pedodiversity in the contiguous U.S. exhibits high soil diversity, which is not
evenly distributed within administrative units. Pedodiversity distribution around the
country poses an important question about “fairness” not only in the provisioning of ES
but also in the associated and past ED costs. Pedodiversity in the U.S. is under various
threats, including land cover change (urbanization, agriculture, deforestation) and climate
change (existential threat to the soil order of Gelisols). Pedodiversity losses are especially
high in agriculturally productive and important soils (e.g., Alfisols, Mollisols) and regions
(e.g., Midwest, Northern Plains, South Central) with some of the lowest proportions of U.S.
total population. There is a mismatch between “potential” and “realized” supply/demand
of flow-dependent ES/ED. With over 80% of the U.S. population living in urban environ-
ments, there is an increase in demand for ES, which is not always supplied by local soil
resources and requires soil ecosystem goods and services to be “imported” from other
geographic areas. The flow of ecosystem goods and services is often accompanied by the
expansion of agricultural areas based on available soil resources. Low-fertility soils and
other extrinsic factors (e.g., low precipitation) may limit the flow of ecosystem goods and
services. Climate change will have a direct impact on pedodiversity and the classification of
soils, with some soil types disappearing and others changing in both extent, and properties.
Administrative accounts (e.g., states and regions) in combination with pedodiversity con-
cepts can provide information to develop cost-effective policy options to manage benefits
(ES) and risks (ED) from pedodiversity. These benefits and risks often extend beyond the
boundaries of individual states and regions (e.g., greenhouse emissions), creating a need
for a long-term coordinated vision, collaboration, and monitoring.
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Abstract: Sustainable management of soil carbon (C) at the state level requires valuation of soil C
regulating ecosystem services (ES) and disservices (ED). The objective of this study was to assess
the value of regulating ES from soil organic carbon (SOC), soil inorganic carbon (SIC), and total soil
carbon (TSC) stocks, based on the concept of the avoided social cost of carbon dioxide (CO2) emissions
for the state of South Carolina (SC) in the United States of America (U.S.A.) by soil order, soil depth
(0–200 cm), region and county using information from the State Soil Geographic (STATSGO) database.
The total estimated monetary mid-point value for TSC in the state of South Carolina was $124.36B
(i.e., $124.36 billion U.S. dollars, where B = billion = 109), $107.14B for SOC, and $17.22B for SIC. Soil
orders with the highest midpoint value for SOC were: Ultisols ($64.35B), Histosols ($11.22B), and
Inceptisols ($10.31B). Soil orders with the highest midpoint value for SIC were: Inceptisols ($5.91B),
Entisols ($5.53B), and Alfisols ($5.0B). Soil orders with the highest midpoint value for TSC were:
Ultisols ($64.35B), Inceptisols ($16.22B), and Entisols ($14.65B). The regions with the highest midpoint
SOC values were: Pee Dee ($34.24B), Low Country ($32.17B), and Midlands ($29.24B). The regions
with the highest midpoint SIC values were: Low Country ($5.69B), Midlands ($5.55B), and Pee Dee
($4.67B). The regions with the highest midpoint TSC values were: Low Country ($37.86B), Pee Dee
($36.91B), and Midlands ($34.79B). The counties with the highest midpoint SOC values were Colleton
($5.44B), Horry ($5.37B), and Berkeley ($4.12B). The counties with the highest midpoint SIC values
were Charleston ($1.46B), Georgetown ($852.81M, where M = million = 106), and Horry ($843.18M).
The counties with the highest midpoint TSC values were Horry ($6.22B), Colleton ($6.02B), and
Georgetown ($4.87B). Administrative areas (e.g., counties, regions) combined with pedodiversity
concepts can provide useful information to design cost-efficient policies to manage soil carbon
regulating ES at the state level.

Keywords: accounting; carbon emissions, CO2; climate change; inorganic; organic; pedodiversity

1. Introduction

Economic valuation of soil carbon is vital for achieving the United Nations (UN)
Sustainable Development Goals (SDGs), especially SDG 13: “Take urgent action to com-
bat climate change and its impacts on future climate” [1]. The ecosystem services (ES)
framework is often used in connection with UN SDGs because it is focused on the eco-
nomic valuation of benefits (ES) and/or disservices (ED) people obtain from nature [2].
The ES framework includes three general categories of services: provisioning, regulat-
ing/maintenance, and cultural supporting services [2]. Although TSC is composed of SOC

Land 2021, 10, 309. https://doi.org/10.3390/land10030309 https://www.mdpi.com/journal/land
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and SIC, only SOC is currently included in the list of soil properties important for ES [3].
Soil organic carbon is derived from living matter and tends to be concentrated in the topsoil
(Table 1). In a well-aerated soil, all of the organic compounds found in plant residue are
subject to enzymatic oxidation. This reaction is accompanied by oxygen consumption and
CO2 release [4], which is often associated with ED in the form of realized social costs of
carbon dioxide (CO2) emissions [5]. Soil organic carbon is a fraction of soil organic matter
(SOM) of <2 mm particle size fraction (Table 1). Soil databases provide SOM (%) and/or
SOC (%) in their reports listed in the tables of soil physical properties. Soil organic matter
contributes to numerous soil functions (e.g., nutrient and energy reserve, etc.), which
are linked to ecosystem goods and services (e.g., nutrient storage and availability, gas
regulation, etc.) [6,7]. The role of SOM in delivering these ecosystem goods and services
varies with scales from local (e.g., fertility maintenance) to global (e.g., mitigation of carbon
emissions) [6,7]. Soil inorganic carbon, which is found in different types of carbonates (e.g.,
calcium, magnesium), is also essential in various ES/ED (e.g., provisioning services as a
liming material for food production). It is reported as calcium carbonate (CaCO3, %) of
<2 mm particle size fraction in the tables of soil chemical properties (Table 1).

Previous research on social costs of SOC and SIC in the U.S.A. was conducted at
various scales using both biophysical (e.g., soil orders) and administrative accounts (e.g.,
states, regions, farm, etc.) [8–10]. These analyses allowed estimation of potential social
costs of soil carbon, which is useful for decision-making at the national level using detailed
tables and maps of social costs of C showing areas with high soil C content, which can
become “soil carbon hotspots” upon disturbance [10]. At the national level, the analysis
showed that states have different types of soils with various soil C types (e.g., Maryland is
dominated by SOC, state of New Mexico is dominated by SIC) [11], which requires soil-
and carbon-specific management strategies. Some states demonstrated more soil variability
compared to others.

Table 1. Total soil carbon: soil organic matter (SOM), soil organic carbon (SOC), soil inorganic carbon (SIC), and carbon
sequestration pathway (adapted from Mikhailova et al., 2019 [8]).

Total soil carbon, TSC (Biotic + Abiotic) = Soil organic carbon, SOC (Biotic) + Soil inorganic carbon, SIC (Abiotic)

Biotic Abiotic

Soil organic matter (SOM) of <2 mm
particle size fraction Soil organic carbon (SOC) Soil inorganic carbon (SIC)

- Fresh residue, decomposing organic
matter, stable organic matter (humus),

and living organisms.
or

- “Continuum of organic material in all
stages of transformation and

decomposition or stabilization [12].”

- Carbon fraction of soil organic matter of
<2 mm particle size fraction.

- Carbon fraction of calcium carbonate
(CaCO3) of <2 mm particle size fraction.

Conversion (using Van Bemmelen factor of 0.58 or 1.724):
SOM (%) = SOC (%) × 1.724 or
SOC (%) = SOM (%) × 0.58 [13]

Conversion: CaCO3 (%) = SIC (%) ×
100/12 or SIC (%) = CaCO3 (%) × 0.12

Pathways to increased C sequestration: Additions of organic matter (e.g., compost
additions, etc.); land/agricultural management (e.g., no-till operations, land

conservation, etc.); afforestation, etc. [6,7].

Pathways to increased C sequestration:
Additions of Ca2+ and Mg2+ cations

outside the soil (e.g., atmospheric
deposition, etc.) [14].
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Figure 1. General soil map of South Carolina (U.S.A.) (33.8361◦ N, 81.1637◦ W) (adapted from [15]).

The ES framework is increasingly being used to address environmental concerns
(e.g., global warming, climate change, etc.), but because of “the difficulty in relating soil
properties to ES, soil ES are still not fully considered in the territorial planning decision
process” [16]. According to Fossey et al., 2020 [16], soil databases play an essential role in
assessing ES/ED in territorial planning. For sustainable soil C management decisions at the
state level and its counties, it is critical to determine soil C and the distribution of its social
costs within the state overall and by individual counties linked to biophysical units (e.g.,
soil orders). This type of analysis will allow prioritization of soil C management within
the state based on this distribution. The hypothesis of this study is that pedodiversity
concepts overlayed with administrative units (Figures 1 and 2) can be used to identify
spatial patterns of soil carbon hotspots for sustainable management.

The specific objective of this study was to assess the value of SOC, SIC, and TSC in the
state of South Carolina (U.S.A.) based on the social cost of carbon (SC–CO2) and avoided
emissions provided by carbon sequestration, which the U.S. Environmental Protection
Agency (EPA) has determined to be $46 per metric ton of CO2, which is applicable for the
year 2025 based on 2007 U.S. dollars and an average discount rate of 3% [17]. This study
provides the monetary values of SOC, SIC, and TSC for soil depth (0–200 cm) across the
state and by considering different spatial aggregation levels (i.e., region, county) using State
Soil Geographic (STATSGO) database, and information previously reported by Guo et al.
(2006) [18].

2. Materials and Methods

The Accounting Framework

This study used both biophysical (science-based, Figure 1) and administrative (boundary-
based, Figure 3) accounts to calculate monetary values for SOC, SIC, and TSC (Tables 2 and 3).
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Table 2. A conceptual overview of the accounting framework used in this study (adapted from Groshans et al., 2018 [19]).

Biophysical Accounts
(Science-Based)

Administrative Accounts
(Boundary-Based)

Monetary Account(s) Benefit(s) Total Value

Soil extent: Administrative extent: Ecosystem good(s) and
service(s): Sector: Types of value:

Separate constitute stock 1: Soil organic carbon (SOC)

Separate constitute stock 2: Soil inorganic carbon (SIC)

Composite (total) stock: Total soil carbon (TSC) = Soil organic carbon (SOC) + Soil inorganic carbon (SIC)

Environment: The social cost of carbon (SC-CO2)
and avoided emissions:

- Soil order
- State

- Region
- County

- Regulating (e.g., carbon
sequestration)

- Carbon
sequestration

- $46 per metric ton of CO2 (2007
U.S. dollars with an average

discount rate of 3% [16])

Figure 2. Administrative map of South Carolina (U.S.A.) (33.8361◦ N, 81.1637◦ W) with 46 counties and four regions [20].
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Table 3. Soil diversity (pedodiversity) by soil order (taxonomic pedodiversity), region, and county in South Carolina (U.S.A.)
based on Soil Survey Geographic (SSURGO) Database (2020) [15].

County (Region)
Total Area

(km2)
(Rank)

Slight <————————————————————- Degree of Weathering and Soil Development ——————————————————————–> Strong

Slightly Weathered Moderately Weathered Strongly Weathered

Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols

Area (km2)

Anderson 1841 (14) 102 0 0 0 0 0 1739

Cherokee 1012 (44) 118 94 0 100 0 0 700

Greenville 1916 (11) 108 166 0 0 0 0 1642

Oconee 1620 (23) 37 56 0 0 0 0 1527

Pickens 1257 (35) 39 55 0 0 0 0 1163

Spartanburg 1881 (12) 8 161 0 77 0 0 1635

Union 1322 (32) 74 61 0 364 0 0 823

(Upstate) 10,849 (4) 486 593 0 541 0 0 9229

Abbeville 1269 (34) 52 38 0 401 0 0 778

Aiken 2758 (4) 445 213 11 5 0 0 2084

Chester 1493 (25) 60 82 0 570 6 0 775

Edgefield 1289 (33) 101 56 0 61 0 0 1071

Fairfield 1683 (20) 1 175 0 585 0 0 922

Greenwood 1171 (38) 0 116 0 335 0 0 720

Kershaw 1871 (13) 383 161 20 47 0 0 1260

Lancaster 1409 (30) 53 151 0 62 0 0 1143

Laurens 1837 (15) 125 19 0 351 0 0 1342

Lexington 1756 (17) 454 86 0 36 0 10 1170

Newberry 1621 (22) 70 64 0 278 0 0 1209

Richland 1827 (16) 163 360 8 19 0 0 1277

Saluda 1170 (39) 19 83 0 77 0 0 991

York 1753 (18) 5 134 0 577 0 0 1037

(Midlands) 22,899 (1) 1931 1738 31 3404 6 10 15,779

Chesterfield 2053 (9) 173 655 0 23 0 0 1202

Clarendon 1566 (24) 39 192 6 0 0 0 1329

Darlington 1442 (28) 36 258 9 0 0 1 1138

Dillon 1040 (42) 91 128 8 0 0 19 794

Florence 2046 (10) 97 224 0 0 0 2 1723

Georgetown 2064 (8) 351 274 57 409 0 115 858

Horry 2888 (1) 252 431 64 287 0 330 1524

Lee 1058 (40) 29 131 0 1 0 0 897

Marion 1241 (36) 107 286 27 0 0 49 772

Marlboro 1230 (37) 75 269 81 17 0 2 786

Sumter 1694 (19) 9 350 0 4 0 2 1329

Williamsburg 2400 (6) 25 209 0 0 0 3 2163

(Pee Dee) 20,722 (3) 1284 3407 252 741 0 523 14,515

Allendale 1055 (41) 25 101 6 0 0 0 923

Bamberg 1018 (44) 126 1 0 41 0 3 847

Barnwell 1416 (29) 78 138 0 0 0 0 1200

Beaufort 1402 (31) 698 34 6 40 23 210 391

Berkeley 2809 (3) 145 208 23 409 0 137 1887

Calhoun 748 (46) 66 26 0 0 0 0 656

Charleston 2317 (7) 765 332 0 727 0 273 220

Colleton 2677 (5) 280 49 88 140 85 109 1,926

Dorchester 1455 (26) 274 17 1 280 0 30 853

Hampton 1443 (27) 136 87 3 101 0 40 1076

Jasper 1669 (21) 318 58 57 246 116 24 850

McCormick 921 (45) 64 65 0 247 0 0 545

Orangeburg 2844 (2) 73 18 0 25 0 1 2,727

(Low Country) 21,774 (2) 3048 1134 184 2256 224 827 14,101

Totals 76,252 6749 6872 475 6942 230 1360 53,624
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The present study is based on the SOC [21], SIC [21], TSC estimated values for the
SOC, SIC, and TSC storage (in Mg or metric tons) and content (in kg m−2) in the contiguous
U.S. from Guo et al. (2006) [18]. A monetary valuation for TSC was calculated using the
social cost of carbon (SC-CO2) of $46 per metric ton of CO2, which is applicable for 2025
based on 2007 U.S. dollars and an average discount rate of 3% [17]. According to the EPA,
the SC-CO2 is intended to be a comprehensive estimate of climate change damages. Still,
it can underestimate the true damages and cost of CO2 emissions due to the exclusion of
various important climate change impacts recognized in the literature [17]. Soil carbon (SC)
storage and content numbers were then converted to U.S. dollars and dollars per square
meter in Microsoft Excel using the following equations, with a social cost of carbon of
$46/Mg CO2:

$ = (SC Storage, Mg) × 44 Mg CO2
12 Mg TSC

× $46
Mg CO2

(1)

$
m2 =

(
SC Content,

kg
m2

)
× 1 Mg

103 kg
× 44 Mg CO2

12 Mg TSC
× $46

Mg CO2
(2)

Table 4 presents area-normalized content (kg m−2) and monetary values ($ m−2) of
soil carbon, which were used to estimate total soil carbon storage and total soil carbon value
by multiplying corresponding content (values) numbers by an area of a particular soil order
within a county (region) (Table 3). For example, for the soil order of Entisols, Guo et al.
(2006) [18] reported an area-normalized midpoint SOC content number of 8.0 kg·m−2 in
the upper 2 m (Table 4), which was used to calculate the total SOC storage in soil order
by multiplying its area in particular county or region. Then, the reported area-normalized
midpoint SOC content number of 8.0 kg·m−2 in the upper 2 m (Table 4) was converted
to monetary values ($ m−2) of soil organic carbon using a social cost of carbon (SC-CO2)
of $46 per metric ton of CO2 (2007 U.S. dollars with an average discount rate of 3% [17]),
which is $1.35 m−2 to calculate the total monetary value of SOC storage.

Table 4. Area-normalized content (kg m−2) and monetary values ($ m−2) of soil organic carbon (SOC), soil inorganic carbon
(SIC), total soil carbon (TSC) by soil order based on numbers in the upper 2 m of the soil based on data from Guo et al., 2006 [18]
and a social cost of carbon (SC-CO2) of $46 per metric ton of CO2 (2007 U.S. dollars with an average discount rate of 3% [17]).

Soil Order

SOC Content SIC Content TSC Content SOC Value SIC Value TSC Value

Minimum–Midpoint–Maximum Values Midpoint Values

(kg m−2) (kg m−2) (kg m−2) ($ m−2) ($ m−2) ($ m−2)

Slightly Weathered

Entisols 1.8–8.0–15.8 1.9–4.8–8.4 3.7–12.8–24.2 1.35 0.82 2.17
Inceptisols 2.8–8.9–17.4 2.5–5.1–8.4 5.3–14.0–25.8 1.50 0.86 2.36
Histosols 63.9–140.1–243.9 0.6–2.4–5.0 64.5–142.5–248.9 23.62 0.41 24.03

Moderately Weathered

Alfisols 2.3–7.5–14.1 1.3–4.3–8.1 3.6–11.8–22.2 1.27 0.72 1.99
Mollisols 5.9–13.5–22.8 4.9–11.5–19.7 10.8–25.0–42.5 2.28 1.93 4.21

Strongly Weathered

Spodosols 2.9–12.3–25.5 0.2–0.6–1.1 3.1–12.9–26.6 2.07 0.10 2.17
Ultisols 1.9–7.1–13.9 0.0–0.0–0.0 1.9–7.1–13.9 1.20 0.00 1.20

Note: TSC = SOC + SIC.
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3. Results

The total estimated monetary mid-point value for TSC in the state of South Carolina
was $124.36B (i.e., $124.36 billion U.S. dollars, where B = billion = 109), $107.14B for SOC,
and $17.22B for SIC. The state of South Carolina ranked 31st for TSC, 25th for SOC, and
32nd for SIC. Figure 3 shows the distribution of soil carbon by South Carolina regions.

3.1. Storage and Value of SOC by County, Region, and Soil Order for the State of South
Carolina (U.S.A.)

Soil orders with the highest midpoint storage and value for SOC were: Ultisols
($64.35B), Histosols ($11.22B), and Inceptisols ($10.31B) (Tables 5 and 6). The regions
with the highest midpoint storage and SOC values were: Pee Dee ($34.24B), Low Country
($32.17B), and Midlands ($29.24B) (Tables 5 and 6). The counties with the highest midpoint
SOC storage and values were Colleton ($5.44B), Horry ($5.37B), and Berkeley ($4.12B)
(Tables 5 and 6).

3.2. Storage and Value of SIC by County, Region, and Soil Order for the State of South
Carolina (U.S.A.)

Soil orders with the highest midpoint storage and value for SIC were: Inceptisols ($5.91B),
Entisols ($5.53B), and Alfisols ($5.0B) (Tables 7 and 8). The regions with the highest midpoint
SIC storage and values were: Low Country ($5.69B), Midlands ($5.55B), and Pee Dee ($4.67B)
(Tables 7 and 8). The counties with the highest midpoint SIC storage and values were
Charleston ($1.46B), Georgetown ($852.81M), and Horry ($843.18M) (Tables 7 and 8).

3.3. Storage and Value of TSC (SOC + SIC) by County, Region, and Soil Order for the State of
South Carolina (U.S.A.)

Soil orders with the highest midpoint storage and value for TSC were: Ultisols ($64.35B),
Inceptisols ($16.22B), and Entisols ($14.65B) (Tables 9 and 10). The regions with the highest
midpoint TSC storage and values were: Low Country ($37.86B), Pee Dee ($36.91B), and
Midlands ($34.79B) (Tables 9 and 10). The counties with the highest midpoint TSC storage and
values were Horry ($6.22B), Colleton ($6.02B), and Georgetown ($4.87B) (Tables 9 and 10).

Figure 3. Distribution of soil carbon by region in the state of South Carolina: (a) Upstate, (b) Midlands,
(c) Pee Dee, and (d) Low Country.

227



Land 2021, 10, 309

Table 5. Mid-point total soil organic carbon (SOC) storage values by county, region, and soil order for the state of South
Carolina (U.S.A.), based on mid-point soil organic carbon (SOC) content numbers in the upper 2 m of the soil based on data
from Guo et al., 2006 [18].

County
(Region)

Total Storage
(kg)

(Rank)

Slight <———————————————————– Degree of Weathering and Soil Development ———————————————————–> Strong

Slightly Weathered Moderately Weathered Strongly Weathered

Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols

Total Storage (kg)

Anderson 1.32 × 1010 (19) 8.16 × 108 0 0 0 0 0 1.23 × 1010

Cherokee 7.50 × 109 (43) 9.44 × 108 8.37 × 108 0 7.50 × 108 0 0 4.97 × 109

Greenville 1.40 × 1010 (15) 8.64 × 108 1.48 × 109 0 0 0 0 1.17 × 1010

Oconee 1.16 × 1010 (28) 2.96 × 108 4.98 × 108 0 0 0 0 1.08 × 1010

Pickens 9.06 × 109 (37) 3.12 × 108 4.90 × 108 0 0 0 0 8.26 × 109

Spartanburg 1.37 × 1010 (16) 6.40 × 107 1.43 × 109 0 5.78 × 108 0 0 1.16 × 1010

Union 9.71 × 109 (34) 5.92 × 108 5.43 × 108 0 2.73 × 109 0 0 5.84 × 109

(Upstate) 7.87× 1010 (4) 3.89× 109 5.28× 109 0 4.06× 109 0 0 6.55× 1010

Abbeville 9.29 × 109 (36) 4.16 × 108 3.38 × 108 0 3.01 × 109 0 0 5.52 × 109

Aiken 2.18 × 1010 (5) 3.56 × 109 1.90 × 109 1.54 × 109 3.75 × 107 0 0 1.48 × 1010

Chester 1.11 × 1010 (30) 4.80 × 108 7.30 × 108 0 4.28 × 109 8.10 × 107 0 5.50 × 109

Edgefield 9.37 × 109 (35) 8.08 × 108 4.98 × 108 0 4.58 × 108 0 0 7.60 × 109

Fairfield 1.25 × 1010 (24) 8.00 × 106 1.56 × 109 0 4.39 × 109 0 0 6.55 × 109

Greenwood 8.66 × 109 (39) 0 1.03 × 109 0 2.51 × 109 0 0 5.11 × 109

Kershaw 1.66 × 1010 (11) 3.06 × 109 1.43 × 109 2.80 × 109 3.53 × 108 0 0 8.95 × 109

Lancaster 1.03 × 1010 (33) 4.24 × 108 1.34 × 109 0 4.65 × 108 0 0 8.12 × 109

Laurens 1.33 × 1010 (17) 1.00 × 109 1.69 × 108 0 2.63 × 109 0 0 9.53 × 109

Lexington 1.31 × 1010 (20) 3.63 × 109 7.65 × 108 0 2.70 × 108 0 1.23 × 108 8.31 × 109

Newberry 1.18 × 1010 (27) 5.60 × 108 5.70 × 108 0 2.09 × 109 0 0 8.58 × 109

Richland 1.48 × 1010 (14) 1.30 × 109 3.20 × 109 1.12 × 109 1.43 × 108 0 0 9.07 × 109

Saluda 8.50 × 109 (40) 1.52 × 108 7.39 × 108 0 5.78 × 108 0 0 7.04 × 109

York 1.29 × 1010 (21) 4.00 × 107 1.19 × 109 0 4.33 × 109 0 0 7.36 × 109

(Midlands) 1.73× 1011 (3) 1.54× 1010 1.55× 1010 4.34× 109 2.55× 1010 8.10× 107 1.23× 108 1.12× 1011

Chesterfield 1.59 × 1010 (12) 1.38 × 109 5.83 × 109 0 1.73 × 108 0 0 8.53 × 109

Clarendon 1.23 × 1010 (25) 3.12 × 108 1.71 × 109 8.41 × 108 0 0 0 9.44 × 109

Darlington 1.19 × 1010 (26) 2.88 × 108 2.30 × 109 1.26 × 109 0 0 1.23 × 107 8.08 × 109

Dillon 8.86 × 109 (38) 7.28 × 108 1.14 × 109 1.12 × 109 0 0 2.34 × 108 5.64 × 109

Florence 1.50 × 1010 (13) 7.76 × 108 1.99 × 109 0 0 0 2.46 × 107 1.22 × 1010

Georgetown 2.38 × 1010 (4) 2.81 × 109 2.44 × 109 7.99 × 109 3.07 × 109 0 1.41 × 109 6.09 × 109

Horry 3.19 × 1010 (2) 2.02 × 109 3.84 × 109 8.97 × 109 2.15 × 109 0 4.06 × 109 1.08 × 1010

Lee 7.77 × 109 (42) 2.32 × 108 1.17 × 109 0 7.50 × 106 0 0 6.37 × 109

Marion 1.33 × 1010 (18) 8.56 × 108 2.55 × 109 3.78 × 109 0 0 6.03 × 108 5.48 × 109

Marlboro 2.01 × 1010 (8) 6.00 × 108 2.39 × 109 1.13 × 1010 1.28 × 108 0 2.46 × 107 5.58 × 109

Sumter 1.27 × 1010 (23) 7.20 × 107 3.12 × 109 0 3.00 × 107 0 2.46 × 107 9.44 × 109

Williamsburg 1.75 × 1010 (10) 2.00 × 108 1.86 × 109 0 0 0 3.69 × 107 1.54 × 1010

(Pee Dee) 1.91× 1011 (1) 1.03× 1010 3.03× 1010 3.53× 1010 5.56× 109 0 6.43× 109 1.03× 1011

Allendale 8.49 × 109 (41) 2.00 × 108 8.99 × 108 8.41 × 108 0 0 0 6.55 × 109

Bamberg 7.38 × 109 (44) 1.01 × 109 8.90 × 106 0 3.08 × 108 0 3.69 × 107 6.01 × 109

Barnwell 1.04 × 1010 (32) 6.24 × 108 1.23 × 109 0 0 0 0 8.52 × 109

Beaufort 1.27 × 1010 (22) 5.58 × 109 3.03 × 108 8.41 × 108 3.00 × 108 3.11 × 108 2.58 × 109 2.78 × 109

Berkeley 2.44 × 1010 (3) 1.16 × 109 1.85 × 109 3.22 × 109 3.07 × 109 0 1.69 × 109 1.34 × 1010

Calhoun 5.42 × 109 (46) 5.28 × 108 2.31 × 108 0 0 0 0 4.66 × 109

Charleston 1.94 × 1010 (9) 6.12 × 109 2.95 × 109 0 5.45 × 109 0 3.36 × 109 1.56 × 109

Colleton 3.22 × 1010 (1) 2.24 × 109 4.36 × 108 1.23 × 1010 1.05 × 109 1.15 × 109 1.34 × 109 1.37 × 1010

Dorchester 1.10 × 1010 (31) 2.19 × 109 1.51 × 108 1.40 × 108 2.10 × 109 0 3.69 × 108 6.06 × 109

Hampton 1.12 × 1010 (29) 1.09 × 109 7.74 × 108 4.20 × 108 7.58 × 108 0 4.92 × 108 7.64 × 109

Jasper 2.08 × 1010 (6) 2.54 × 109 5.16 × 108 7.99 × 109 1.85 × 109 1.57 × 109 2.95 × 108 6.04 × 109

McCormick 6.81 × 109 (45) 5.12 × 108 5.79 × 108 0 1.85 × 109 0 0 3.87 × 109

Orangeburg 2.03 × 1010 (7) 5.84 × 108 1.60 × 108 0 1.88 × 108 0 1.23 × 107 1.94 × 1010

(Low Country) 1.90× 1011 (2) 2.44× 1010 1.01× 1010 2.58× 1010 1.69× 1010 3.02× 109 1.02× 1010 1.00× 1011

Totals (kg) 6.34× 1011 5.40× 1010 6.12× 1010 6.65× 1010 5.21× 1010 3.11× 109 1.67× 1010 3.81× 1011
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Table 6. The total dollar value of soil organic carbon (SOC) by county, region, and soil order for the state of South Carolina
(U.S.A.), based on mid-point soil organic carbon (SOC) numbers for the upper 2 m from Guo et al. 2006 [18] and a social
cost of carbon (SC-CO2) of $46 per metric ton of CO2 (2007 U.S. dollars with an average discount rate of 3% [17]).

County (Region)
Total Value

($)
(Rank)

Slight <———————————————————– Degree of Weathering and Soil Development ———————————————————–> Strong

Slightly Weathered Moderately Weathered Strongly Weathered

Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols

Value ($)

Anderson 2.22 × 109 (19) 1.38 × 108 0 0 0 0 0 2.09 × 109

Cherokee 1.27 × 109 (43) 1.59 × 108 1.41 × 108 0 1.27 × 108 0 0 8.40 × 108

Greenville 2.37 × 109 (15) 1.46 × 108 2.49 × 108 0 0 0 0 1.97 × 109

Oconee 1.97 × 109 (28) 5.00 × 107 8.40 × 107 0 0 0 0 1.83 × 109

Pickens 1.53 × 109 (37) 5.27 × 107 8.25 × 107 0 0 0 0 1.40 × 109

Spartanburg 2.31 × 109 (16) 1.08 × 107 2.42 × 108 0 9.78 × 107 0 0 1.96 × 109

Union 1.64 × 109 (34) 9.99 × 107 9.15 × 107 0 4.62 × 108 0 0 9.88 × 108

(Upstate) 1.33 × 1010(4) 6.56× 108 8.90 × 108 0 6.87× 108 0 0 1.11 × 1010

Abbeville 1.57 × 109 (36) 7.02 × 107 5.70 × 107 0 5.09 × 108 0 0 9.34 × 108

Aiken 3.69 × 109 (5) 6.01 × 108 3.20 × 108 2.60 × 108 6.35 × 106 0 0 2.50 × 109

Chester 1.87 × 109 (30) 8.10 × 107 1.23 × 108 0 7.24 × 108 1.37 × 107 0 9.30 × 108

Edgefield 1.58 × 109 (35) 1.36 × 108 8.40 × 107 0 7.75 × 107 0 0 1.29 × 109

Fairfield 2.11 × 109 (24) 1.35 × 106 2.63 × 108 0 7.43 × 108 0 0 1.11 × 109

Greenwood 1.46 × 109 (39) 0 1.74 × 108 0 4.25 × 108 0 0 8.64 × 108

Kershaw 2.80 × 109 (11) 5.17 × 108 2.42 × 108 4.72 × 108 5.97 × 107 0 0 1.51 × 109

Lancaster 1.75 × 109 (33) 7.16 × 107 2.27 × 108 0 7.87 × 107 0 0 1.37 × 109

Laurens 2.25 × 109 (17) 1.69 × 108 2.85 × 107 0 4.46 × 108 0 0 1.61 × 109

Lexington 2.21 × 109 (20) 6.13 × 108 1.29 × 108 0 4.57 × 107 0 2.07 × 107 1.40 × 109

Newberry 1.99 × 109 (27) 9.45 × 107 9.60 × 107 0 3.53 × 108 0 0 1.45 × 109

Richland 2.51 × 109 (14) 2.20 × 108 5.40 × 108 1.89 × 108 2.41 × 107 0 0 1.53 × 109

Saluda 1.44 × 109 (40) 2.57 × 107 1.25 × 108 0 9.78 × 107 0 0 1.19 × 109

York 2.18 × 109 (21) 6.75 × 106 2.01 × 108 0 7.33 × 108 0 0 1.24 × 109

(Midlands) 2.92 × 1010(3) 2.61× 109 2.61 × 109 7.32 × 108 4.32× 109 1.37× 107 2.07× 107 1.89 × 1010

Chesterfield 2.69 × 109 (12) 2.34 × 108 9.83 × 108 0 2.92 × 107 0 0 1.44 × 109

Clarendon 2.08 × 109 (25) 5.27 × 107 2.88 × 108 1.42 × 108 0 0 0 1.59 × 109

Darlington 2.02 × 109 (26) 4.86 × 107 3.87 × 108 2.13 × 108 0 0 2.07 × 106 1.37 × 109

Dillon 1.50 × 109 (38) 1.23 × 108 1.92 × 108 1.89 × 108 0 0 3.93 × 107 9.53 × 108

Florence 2.54 × 109 (13) 1.31 × 108 3.36 × 108 0 0 0 4.14 × 106 2.07 × 109

Georgetown 4.02 × 109 (4) 4.74 × 108 4.11 × 108 1.35 × 109 5.19 × 108 0 2.38 × 108 1.03 × 109

Horry 5.37 × 109 (2) 3.40 × 108 6.47 × 108 1.51 × 109 3.64 × 108 0 6.83 × 108 1.83 × 109

Lee 1.31 × 109 (42) 3.92 × 107 1.97 × 108 0 1.27 × 106 0 0 1.08 × 109

Marion 2.24 × 109 (18) 1.44 × 108 4.29 × 108 6.38 × 108 0 0 1.01 × 108 9.26 × 108

Marlboro 3.39 × 109 (8) 1.01 × 108 4.04 × 108 1.91 × 109 2.16 × 107 0 4.14 × 106 9.43 × 108

Sumter 2.14 × 109 (23) 1.22 × 107 5.25 × 108 0 5.08 × 106 0 4.14 × 106 1.59 × 109

Williamsburg 2.95 × 109 (10) 3.38 × 107 3.14 × 108 0 0 0 6.21 × 106 2.60 × 109

(Pee Dee) 3.22 × 1010(1) 1.73× 109 5.11 × 109 5.95 × 109 9.41× 108 0 1.08× 109 1.74 × 1010

Allendale 1.43 × 109 (41) 3.38 × 107 1.52 × 108 1.42 × 108 0 0 0 1.11 × 109

Bamberg 1.25 × 109 (44) 1.70 × 108 1.50 × 106 0 5.21 × 107 0 6.21 × 106 1.02 × 109

Barnwell 1.75 × 109 (32) 1.05 × 108 2.07 × 108 0 0 0 0 1.44 × 109

Beaufort 2.14 × 109 (22) 9.42 × 108 5.10 × 107 1.42 × 108 5.08 × 107 5.24 × 107 4.35 × 108 4.69 × 108

Berkeley 4.12 × 109 (3) 1.96 × 108 3.12 × 108 5.43 × 108 5.19 × 108 0 2.84 × 108 2.26 × 109

Calhoun 9.15 × 108 (46) 8.91 × 107 3.90 × 107 0 0 0 0 7.87 × 108

Charleston 3.28 × 109 (9) 1.03 × 109 4.98 × 108 0 9.23 × 108 0 5.65 × 108 2.64 × 108

Colleton 5.44 × 109 (1) 3.78 × 108 7.35 × 107 2.08 × 109 1.78 × 108 1.94 × 108 2.26 × 108 2.31 × 109

Dorchester 1.86 × 109 (31) 3.70 × 108 2.55 × 107 2.36 × 107 3.56 × 108 0 6.21 × 107 1.02 × 109

Hampton 1.89 × 109 (29) 1.84 × 108 1.31 × 108 7.09 × 107 1.28 × 108 0 8.28 × 107 1.29 × 109

Jasper 3.51 × 109 (6) 4.29 × 108 8.70 × 107 1.35 × 109 3.12 × 108 2.64 × 108 4.97 × 107 1.02 × 109

McCormick 1.15 × 109 (45) 8.64 × 107 9.75 × 107 0 3.14 × 108 0 0 6.54 × 108

Orangeburg 3.43 × 109 (7) 9.86 × 107 2.70 × 107 0 3.18 × 107 0 2.07 × 106 3.27 × 109

(Low Country) 3.22 × 1010(2) 4.11× 109 1.70 × 109 4.35 × 109 2.87× 109 5.11× 108 1.71× 109 1.69 × 1010

Totals ($) 1.07 × 1011 9.11× 109 1.03 × 1010 1.12 × 1010 8.82× 109 5.24× 108 2.82× 109 6.43 × 1010
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Table 7. Mid-point total soil inorganic carbon (SIC) storage by county, region, and soil order for the state of South Carolina
(U.S.A.), based on mid-point soil inorganic carbon (SIC) contents in the upper 2 m based on data from Guo et al., 2006 [18].

County
(Region)

Total Storage
(kg)

(Rank)

Slight <———————————————————– Degree of Weathering and Soil Development ———————————————————–> Strong

Slightly Weathered Moderately Weathered Strongly Weathered

Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols

Total Storage (kg)

Anderson 4.90 × 108 (43) 4.90 × 108 0 0 0 0 0 0

Cherokee 1.48 × 109 (29) 5.66 × 108 4.79 × 108 0 4.30 × 108 0 0 0

Greenville 1.37 × 109 (30) 5.18 × 108 8.47 × 108 0 0 0 0 0

Oconee 4.63 × 108 (45) 1.78 × 108 2.86 × 108 0 0 0 0 0

Pickens 4.68 × 108 (44) 1.87 × 108 2.81 × 108 0 0 0 0 0

Spartanburg 1.19 × 109 (32) 3.84 × 107 8.21 × 108 0 3.31 × 108 0 0 0

Union 2.23 × 109 (17) 3.55 × 108 3.11 × 108 0 1.57 × 109 0 0 0

(Upstate) 7.68× 109 (4) 2.33× 109 3.02× 109 0 2.33× 109 0 0 0

Abbeville 2.17 × 109 (19) 2.50 × 108 1.94 × 108 0 1.72 × 109 0 0 0

Aiken 3.27 × 109 (10) 2.14 × 109 1.09 × 109 2.64 × 107 2.15 × 107 0 0 0

Chester 3.23 × 109 (11) 2.88 × 108 4.18 × 108 0 2.45 × 109 6.90 × 107 0 0

Edgefield 1.03 × 109 (37) 4.85 × 108 2.86 × 108 0 2.62 × 108 0 0 0

Fairfield 3.41 × 109 (9) 4.80 × 106 8.93 × 108 0 2.52 × 109 0 0 0

Greenwood 2.03 × 109 (21) 0 5.92 × 108 0 1.44 × 109 0 0 0

Kershaw 2.91 × 109 (13) 1.84 × 109 8.21 × 108 4.80 × 107 2.02 × 108 0 0 0

Lancaster 1.29 × 109 (31) 2.54 × 108 7.70 × 108 0 2.67 × 108 0 0 0

Laurens 2.21 × 109 (18) 6.00 × 108 9.69 × 107 0 1.51 × 109 0 0 0

Lexington 2.78 × 109 (14) 2.18 × 109 4.39 × 108 0 1.55 × 108 0 6.00 × 106 0

Newberry 1.86 × 109 (23) 3.36 × 108 3.26 × 108 0 1.20 × 109 0 0 0

Richland 2.72 × 109 (15) 7.82 × 108 1.84 × 109 1.92 × 107 8.17 × 107 0 0 0

Saluda 8.46 × 108 (38) 9.12 × 107 4.23 × 108 0 3.31 × 108 0 0 0

York 3.19 × 109 (12) 2.40 × 107 6.83 × 108 0 2.48 × 109 0 0 0

(Midlands) 3.29× 1010 (2) 9.27× 109 8.86× 109 7.44× 107 1.46× 1010 6.90× 107 6.00× 106 0

Chesterfield 4.27 × 109 (5) 8.30 × 108 3.34 × 109 0 9.89 × 107 0 0 0

Clarendon 1.18 × 109 (34) 1.87 × 108 9.79 × 108 1.44 × 107 0 0 0 0

Darlington 1.51 × 109 (28) 1.73 × 108 1.32 × 109 2.16 × 107 0 0 6.00 × 105 0

Dillon 1.12 × 109 (35) 4.37 × 108 6.53 × 108 1.92 × 107 0 0 1.14 × 107 0

Florence 1.61 × 109 (26) 4.66 × 108 1.14 × 109 0 0 0 1.20 × 106 0

Georgetown 5.05 × 109 (2) 1.68 × 109 1.40 × 109 1.37 × 108 1.76 × 109 0 6.90 × 107 0

Horry 4.99 × 109 (3) 1.21 × 109 2.20 × 109 1.54 × 108 1.23 × 109 0 1.98 × 108 0

Lee 8.12 × 108 (39) 1.39 × 108 6.68 × 108 0 4.30 × 106 0 0 0

Marion 2.07 × 109 (20) 5.14 × 108 1.46 × 109 6.48 × 107 0 0 2.94 × 107 0

Marlboro 2.00 × 109 (22) 3.60 × 108 1.37 × 109 1.94 × 108 7.31 × 107 0 1.20 × 106 0

Sumter 1.85 × 109 (24) 4.32 × 107 1.79 × 109 0 1.72 × 107 0 1.20 × 106 0

Williamsburg 1.19 × 109 (33) 1.20 × 108 1.07 × 109 0 0 0 1.80 × 106 0

(Pee Dee) 2.76× 1010 (3) 6.16× 109 1.74× 1010 6.05× 108 3.19× 109 0 3.14× 108 0

Allendale 6.50 × 108 (41) 1.20 × 108 5.15 × 108 1.44 × 107 0 0 0 0

Bamberg 7.88 × 108 (40) 6.05 × 108 5.10 × 106 0 1.76 × 108 0 1.80 × 106 0

Barnwell 1.08 × 109 (36) 3.74 × 108 7.04 × 108 0 0 0 0 0

Beaufort 4.10 × 109 (6) 3.35 × 109 1.73 × 108 1.44 × 107 1.72 × 108 2.65 × 108 1.26 × 108 0

Berkeley 3.65 × 109 (7) 6.96 × 108 1.06 × 109 5.52 × 107 1.76 × 109 0 8.22 × 107 0

Calhoun 4.49 × 108 (46) 3.17 × 108 1.33 × 108 0 0 0 0 0

Charleston 8.66 × 109 (1) 3.67 × 109 1.69 × 109 0 3.13 × 109 0 1.64 × 108 0

Colleton 3.45 × 109 (8) 1.34 × 109 2.50 × 108 2.11 × 108 6.02 × 108 9.78 × 108 6.54 × 107 0

Dorchester 2.63 × 109 (16) 1.32 × 109 8.67 × 107 2.40 × 106 1.20 × 109 0 1.80 × 107 0

Hampton 1.56 × 109 (27) 6.53 × 108 4.44 × 108 7.20 × 106 4.34 × 108 0 2.40 × 107 0

Jasper 4.37 × 109 (4) 1.53 × 109 2.96 × 108 1.37 × 108 1.06 × 109 1.33 × 109 1.44 × 107 0

McCormick 1.70 × 109 (25) 3.07 × 108 3.32 × 108 0 1.06 × 109 0 0 0

Orangeburg 5.50 × 108 (42) 3.50 × 108 9.18 × 107 0 1.08 × 108 0 6.00 × 105 0

(Low Country) 3.36× 1010 (1) 1.46× 1010 5.78× 109 4.42× 108 9.70× 109 2.58× 109 4.96× 108 0

Totals (kg) 1.02× 1011 3.24× 1010 3.50× 1010 1.14× 109 2.99× 1010 2.65× 109 8.16× 108 0
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Table 8. The total dollar value of soil inorganic carbon (SIC) by county, region, and soil order for the state of South Carolina
(U.S.A.), based on mid-point soil inorganic carbon (SIC) numbers for the upper 2 m from Guo et al. 2006 [18] and a social
cost of carbon (SC-CO2) of $46 per metric ton of CO2 (2007 U.S. dollars with an average discount rate of 3% [17]).

County (Region)
Total Value

($)
(Rank)

Slight <———————————————————– Degree of Weathering and Soil Development ———————————————————–> Strong

Slightly Weathered Moderately Weathered Strongly Weathered

Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols

Value ($)

Anderson 8.36 × 107 (43) 8.36 × 107 0 0 0 0 0 0

Cherokee 2.50 × 108 (29) 9.68 × 107 8.08 × 107 0 7.20 × 107 0 0 0

Greenville 2.31 × 108 (30) 8.86 × 107 1.43 × 108 0 0 0 0 0

Oconee 7.85 × 107 (45) 3.03 × 107 4.82 × 107 0 0 0 0 0

Pickens 7.93 × 107 (44) 3.20 × 107 4.73 × 107 0 0 0 0 0

Spartanburg 2.00 × 108 (32) 6.56 × 106 1.38 × 108 0 5.54 × 107 0 0 0

Union 3.75 × 108 (17) 6.07 × 107 5.25 × 107 0 2.62 × 108 0 0 0

(Upstate) 1.30× 109(4) 3.99× 108 5.10× 108 0 3.90× 108 0 0 0

Abbeville 3.64 × 108 (19) 4.26 × 107 3.27 × 107 0 2.89 × 108 0 0 0

Aiken 5.56 × 108 (10) 3.65 × 108 1.83 × 108 4.51 × 106 3.60 × 106 0 0 0

Chester 5.42 × 108 (11) 4.92 × 107 7.05 × 107 0 4.10 × 108 1.16 × 107 0 0

Edgefield 1.75 × 108 (37) 8.28 × 107 4.82 × 107 0 4.39 × 107 0 0 0

Fairfield 5.73 × 108 (9) 8.20 × 105 1.51 × 108 0 4.21 × 108 0 0 0

Greenwood 3.41 × 108 (21) 0 9.98 × 107 0 2.41 × 108 0 0 0

Kershaw 4.95 × 108 (13) 3.14 × 108 1.38 × 108 8.20 × 106 3.38 × 107 0 0 0

Lancaster 2.18 × 108 (31) 4.35 × 107 1.30 × 108 0 4.46 × 107 0 0 0

Laurens 3.72 × 108 (18) 1.03 × 108 1.63 × 107 0 2.53 × 108 0 0 0

Lexington 4.73 × 108 (14) 3.72 × 108 7.40 × 107 0 2.59 × 107 0 1.00 × 106 0

Newberry 3.13 × 108 (23) 5.74 × 107 5.50 × 107 0 2.00 × 108 0 0 0

Richland 4.60 × 108 (15) 1.34 × 108 3.10 × 108 3.28 × 106 1.37 × 107 0 0 0

Saluda 1.42 × 108 (38) 1.56 × 107 7.14 × 107 0 5.54 × 107 0 0 0

York 5.35 × 108 (12) 4.10 × 106 1.15 × 108 0 4.15 × 108 0 0 0

(Midlands) 5.55× 109(2) 1.58× 109 1.49× 109 1.27× 107 2.45× 109 1.16 × 107 1.00 × 106 0

Chesterfield 7.22 × 108 (5) 1.42 × 108 5.63 × 108 0 1.66 × 107 0 0 0

Clarendon 2.00 × 108 (34) 3.20 × 107 1.65 × 108 2.46 × 106 0 0 0 0

Darlington 2.55 × 108 (28) 2.95 × 107 2.22 × 108 3.69 × 106 0 0 1.00 × 105 0

Dillon 1.90 × 108 (35) 7.46 × 107 1.10 × 108 3.28 × 106 0 0 1.90 × 106 0

Florence 2.72 × 108 (26) 7.95 × 107 1.93 × 108 0 0 0 2.00 × 105 0

Georgetown 8.53 × 108 (2) 2.88 × 108 2.36 × 108 2.34 × 107 2.94 × 108 0 1.15 × 107 0

Horry 8.43 × 108 (3) 2.07 × 108 3.71 × 108 2.62 × 107 2.07 × 108 0 3.30 × 107 0

Lee 1.37 × 108 (39) 2.38 × 107 1.13 × 108 0 7.20 × 105 0 0 0

Marion 3.50 × 108 (20) 8.77 × 107 2.46 × 108 1.11 × 107 0 0 4.90 × 106 0

Marlboro 3.38 × 108 (22) 6.15 × 107 2.31 × 108 3.32 × 107 1.22 × 107 0 2.00 × 105 0

Sumter 3.11 × 108 (24) 7.38 × 106 3.01 × 108 0 2.88 × 106 0 2.00 × 105 0

Williamsburg 2.01 × 108 (33) 2.05 × 107 1.80 × 108 0 0 0 3.00 × 105 0

(Pee Dee) 4.67 × 109(3) 1.05× 109 2.93× 109 1.03× 108 5.34× 108 0 5.23 × 107 0

Allendale 1.10 × 108 (41) 2.05 × 107 8.69 × 107 2.46 × 106 0 0 0 0

Bamberg 1.34 × 108 (40) 1.03 × 108 8.60 × 105 0 2.95 × 107 0 3.00 × 105 0

Barnwell 1.83 × 108 (36) 6.40 × 107 1.19 × 108 0 0 0 0 0

Beaufort 6.98 × 108 (6) 5.72 × 108 2.92 × 107 2.46 × 106 2.88 × 107 4.44 × 107 2.10 × 107 0

Berkeley 6.15 × 108 (7) 1.19 × 108 1.79 × 108 9.43 × 106 2.94 × 108 0 1.37 × 107 0

Calhoun 7.65 × 107 (46) 5.41 × 107 2.24 × 107 0 0 0 0 0

Charleston 1.46 × 109 (1) 6.27 × 108 2.86 × 108 0 5.23 × 108 0 2.73 × 107 0

Colleton 5.84 × 108 (8) 2.30 × 108 4.21 × 107 3.61 × 107 1.01 × 108 1.64 × 108 1.09 × 107 0

Dorchester 4.44 × 108 (16) 2.25 × 108 1.46 × 107 4.10 × 105 2.02 × 108 0 3.00 × 106 0

Hampton 2.64 × 108 (27) 1.12 × 108 7.48 × 107 1.23 × 106 7.27 × 107 0 4.00 × 106 0

Jasper 7.37 × 108 (4) 2.61 × 108 4.99 × 107 2.34 × 107 1.77 × 108 2.24 × 108 2.40 × 106 0

McCormick 2.86 × 108 (25) 5.25 × 107 5.59 × 107 0 1.78 × 108 0 0 0

Orangeburg 9.34 × 107 (42) 5.99 × 107 1.55 × 107 0 1.80 × 107 0 1.00 × 105 0

(Low Country) 5.69 × 109(1) 2.50× 109 9.75× 108 7.54× 107 1.62× 109 4.32× 108 8.27 × 107 0

Totals ($) 1.72 × 1010 5.53× 109 5.91× 109 1.95× 108 5.00× 109 4.44× 108 1.36× 108 0
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Table 9. Mid-point total soil carbon (TSC) storage by county, region, and soil order for the state of South Carolina (U.S.A.),
based on mid-point (TSC) contents in the upper 2 m based on data from Guo et al. 2006 [18].

County
(Region)

Total Storage
(kg)

(Rank)

Slight <———————————————————– Degree of Weathering and Soil Development ———————————————————–> Strong

Slightly Weathered Moderately Weathered Strongly Weathered

Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols

Total Storage (kg)

Anderson 1.37 × 1010 (26) 1.31 × 109 0 0 0 0 0 1.23 × 1010

Cherokee 8.98 × 109 (42) 1.51 × 109 1.32 × 109 0 1.18 × 109 0 0 4.97 × 109

Greenville 1.54 × 1010 (20) 1.38 × 109 2.32 × 109 0 0 0 0 1.17 × 1010

Oconee 1.21 × 1010 (31) 4.74 × 108 7.84 × 108 0 0 0 0 1.08 × 1010

Pickens 9.53 × 109 (39) 4.99 × 108 7.70 × 108 0 0 0 0 8.26 × 109

Spartanburg 1.49 × 1010 (22) 1.02 × 108 2.25 × 109 0 9.09 × 108 0 0 1.16 × 1010

Union 1.19 × 1010 (32) 9.47 × 108 8.54 × 108 0 4.30 × 109 0 0 5.84 × 109

(Upstate) 8.64× 1010 (4) 6.22× 109 8.30× 109 0 6.38× 109 0 0 6.55× 1010

Abbeville 1.15 × 1010 (34) 6.66 × 108 5.32 × 108 0 4.73 × 109 0 0 5.52 × 109

Aiken 2.51 × 1010 (7) 5.70 × 109 2.98 × 109 1.57 × 109 5.90 × 107 0 0 1.48 × 1010

Chester 1.43 × 1010 (24) 7.68 × 108 1.15 × 109 0 6.73 × 109 1.50 × 108 0 5.50 × 109

Edgefield 1.04 × 1010 (37) 1.29 × 109 7.84 × 108 0 7.20 × 108 0 0 7.60 × 109

Fairfield 1.59 × 1010 (17) 1.28 × 107 2.45 × 109 0 6.90 × 109 0 0 6.55 × 109

Greenwood 1.07 × 1010 (36) 0 1.62 × 109 0 3.95 × 109 0 0 5.11 × 109

Kershaw 1.95 × 1010 (11) 4.90 × 109 2.25 × 109 2.85 × 109 5.55 × 108 0 0 8.95 × 109

Lancaster 1.16 × 1010 (33) 6.78 × 108 2.11 × 109 0 7.32 × 108 0 0 8.12 × 109

Laurens 1.55 × 1010 (19) 1.60 × 109 2.66 × 108 0 4.14 × 109 0 0 9.53 × 109

Lexington 1.59 × 1010 (18) 5.81 × 109 1.20 × 109 0 4.25 × 108 0 1.29 × 108 8.31 × 109

Newberry 1.37 × 1010 (25) 8.96 × 108 8.96 × 108 0 3.28 × 109 0 0 8.58 × 109

Richland 1.76 × 1010 (13) 2.09 × 109 5.04 × 109 1.14 × 109 2.24 × 108 0 0 9.07 × 109

Saluda 9.35 × 109 (40) 2.43 × 108 1.16 × 109 0 9.09 × 108 0 0 7.04 × 109

York 1.61 × 1010 (16) 6.40 × 107 1.88 × 109 0 6.81 × 109 0 0 7.36 × 109

(Midlands) 2.06× 1011 (3) 2.47× 1010 2.43× 1010 4.42× 109 4.02× 1010 1.50× 108 1.29× 108 1.12× 1011

Chesterfield 2.02 × 1010 (10) 2.21 × 109 9.17 × 109 0 2.71 × 108 0 0 8.53 × 109

Clarendon 1.35 × 1010 (28) 4.99 × 108 2.69 × 109 8.55 × 108 0 0 0 9.44 × 109

Darlington 1.34 × 1010 (29) 4.61 × 108 3.61 × 109 1.28 × 109 0 0 1.29 × 107 8.08 × 109

Dillon 9.98 × 109 (38) 1.16 × 109 1.79 × 109 1.14 × 109 0 0 2.45 × 108 5.64 × 109

Florence 1.66 × 1010 (15) 1.24 × 109 3.14 × 109 0 0 0 2.58 × 107 1.22 × 1010

Georgetown 2.89 × 1010 (3) 4.49 × 109 3.84 × 109 8.12 × 109 4.83 × 109 0 1.48 × 109 6.09 × 109

Horry 3.68 × 1010 (1) 3.23 × 109 6.03 × 109 9.12 × 109 3.39 × 109 0 4.26 × 109 1.08 × 1010

Lee 8.59 × 109 (43) 3.71 × 108 1.83 × 109 0 1.18 × 107 0 0 6.37 × 109

Marion 1.53 × 1010 (21) 1.37 × 109 4.00 × 109 3.85 × 109 0 0 6.32 × 108 5.48 × 109

Marlboro 2.21 × 1010 (8) 9.60 × 108 3.77 × 109 1.15 × 1010 2.01 × 108 0 2.58 × 107 5.58 × 109

Sumter 1.45 × 1010 (23) 1.15 × 108 4.90 × 109 0 4.72 × 107 0 2.58 × 107 9.44 × 109

Williamsburg 1.86 × 1010 (12) 3.20 × 108 2.93 × 109 0 0 0 3.87 × 107 1.54 × 1010

(Pee Dee) 2.19× 1011 (2) 1.64× 1010 4.77× 1010 3.59× 1010 8.74× 109 0 6.75× 109 1.03× 1011

Allendale 9.14 × 109 (41) 3.20 × 108 1.41 × 109 8.55 × 108 0 0 0 6.55 × 109

Bamberg 8.16 × 109 (45) 1.61 × 109 1.40 × 107 0 4.84 × 108 0 3.87 × 107 6.01 × 109

Barnwell 1.15 × 1010 (35) 9.98 × 108 1.93 × 109 0 0 0 0 8.52 × 109

Beaufort 1.68 × 1010 (14) 8.93 × 109 4.76 × 108 8.55 × 108 4.72 × 108 5.75 × 108 2.71 × 109 2.78 × 109

Berkeley 2.80 × 1010 (5) 1.86 × 109 2.91 × 109 3.28 × 109 4.83 × 109 0 1.77 × 109 1.34 × 1010

Calhoun 5.87 × 109 (46) 8.45 × 108 3.64 × 108 0 0 0 0 4.66 × 109

Charleston 2.81 × 1010 (4) 9.79 × 109 4.65 × 109 0 8.58 × 109 0 3.52 × 109 1.56 × 109

Colleton 3.57 × 1010 (2) 3.58 × 109 6.86 × 108 1.25 × 1010 1.65 × 109 2.13 × 109 1.41 × 109 1.37 × 1010

Dorchester 1.36 × 1010 (27) 3.51 × 109 2.38 × 108 1.43 × 108 3.30 × 109 0 3.87 × 108 6.06 × 109

Hampton 1.27 × 1010 (30) 1.74 × 109 1.22 × 109 4.28 × 108 1.19 × 109 0 5.16 × 108 7.64 × 109

Jasper 2.52 × 1010 (6) 4.07 × 109 8.12 × 108 8.12 × 109 2.90 × 109 2.90 × 109 3.10 × 108 6.04 × 109

McCormick 8.51 × 109 (44) 8.19 × 108 9.10 × 108 0 2.91 × 109 0 0 3.87 × 109

Orangeburg 2.09 × 1010 (9) 9.34 × 108 2.52 × 108 0 2.95 × 108 0 1.29 × 107 1.94 × 1010

(Low Country) 2.24× 1011 (1) 3.90× 1010 1.59× 1010 2.62× 1010 2.66× 1010 5.60× 109 1.07× 1010 1.00× 1011

Totals (kg) 7.36× 1011 8.64× 1010 9.62× 1010 6.77× 1010 8.19× 1010 5.75× 109 1.75× 1010 3.81× 1011
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Table 10. Total soil carbon (TSC) values by county, region, and soil order for the state of South Carolina (U.S.A.), based on
mid-point total soil carbon (TSC) numbers for the upper 2 m from Guo et al. 2006 [18] and a social cost of carbon (SC-CO2)
of $46 per metric ton of CO2 (2007 U.S. dollars with an average discount rate of 3% [17]).

County (Region)
Total Value

($)
(Rank)

Slight <———————————————————– Degree of Weathering and Soil Development ———————————————————–> Strong

Slightly Weathered Moderately Weathered Strongly Weathered

Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols

Value ($)

Anderson 2.31 × 109 (26) 2.21 × 108 0 0 0 0 0 2.09 × 109

Cherokee 1.52 × 109 (42) 2.56 × 108 2.22 × 108 0 1.99 × 108 0 0 8.40 × 108

Greenville 2.60 × 109 (20) 2.34 × 108 3.92 × 108 0 0 0 0 1.97 × 109

Oconee 2.04 × 109 (31) 8.03 × 107 1.32 × 108 0 0 0 0 1.83 × 109

Pickens 1.61 × 109 (39) 8.46 × 107 1.30 × 108 0 0 0 0 1.40 × 109

Spartanburg 2.51 × 109 (22) 1.74 × 107 3.80 × 108 0 1.53 × 108 0 0 1.96 × 109

Union 2.02 × 109 (32) 1.61 × 108 1.44 × 108 0 7.24 × 108 0 0 9.88 × 108

(Upstate) 1.46 × 1010(4) 1.05 × 109 1.40 × 109 0 1.08 × 109 0 0 1.11 × 1010

Abbeville 1.93 × 109 (34) 1.13 × 108 8.97 × 107 0 7.98 × 108 0 0 9.34 × 108

Aiken 4.24 × 109 (7) 9.66 × 108 5.03 × 108 2.64 × 108 9.95 × 106 0 0 2.50 × 109

Chester 2.41 × 109 (24) 1.30 × 108 1.94 × 108 0 1.13 × 109 2.53 × 107 0 9.30 × 108

Edgefield 1.76 × 109 (37) 2.19 × 108 1.32 × 108 0 1.21 × 108 0 0 1.29 × 109

Fairfield 2.69 × 109 (17) 2.17 × 106 4.13 × 108 0 1.16 × 109 0 0 1.11 × 109

Greenwood 1.80 × 109 (36) 0 2.74 × 108 0 6.67 × 108 0 0 8.64 × 108

Kershaw 3.30 × 109 (11) 8.31 × 108 3.80 × 108 4.81 × 108 9.35 × 107 0 0 1.51 × 109

Lancaster 1.97 × 109 (33) 1.15 × 108 3.56 × 108 0 1.23 × 108 0 0 1.37 × 109

Laurens 2.62 × 109 (19) 2.71 × 108 4.48 × 107 0 6.98 × 108 0 0 1.61 × 109

Lexington 2.69 × 109 (18) 9.85 × 108 2.03 × 108 0 7.16 × 107 0 2.17 × 107 1.40 × 109

Newberry 2.31 × 109 (25) 1.52 × 108 1.51 × 108 0 5.53 × 108 0 0 1.45 × 109

Richland 2.97 × 109 (13) 3.54 × 108 8.50 × 108 1.92 × 108 3.78 × 107 0 0 1.53 × 109

Saluda 1.58 × 109 (40) 4.12 × 107 1.96 × 108 0 1.53 × 108 0 0 1.19 × 109

York 2.72 × 109 (16) 1.09 × 107 3.16 × 108 0 1.15 × 109 0 0 1.24 × 109

(Midlands) 3.48 × 1010(3) 4.19 × 109 4.10 × 109 7.45 × 108 6.77 × 109 2.53× 107 2.17× 107 1.89 × 1010

Chesterfield 3.41 × 109 (10) 3.75 × 108 1.55 × 109 0 4.58 × 107 0 0 1.44 × 109

Clarendon 2.28 × 109 (28) 8.46 × 107 4.53 × 108 1.44 × 108 0 0 0 1.59 × 109

Darlington 2.27 × 109 (29) 7.81 × 107 6.09 × 108 2.16 × 108 0 0 2.17 × 106 1.37 × 109

Dillon 1.69 × 109 (38) 1.97 × 108 3.02 × 108 1.92 × 108 0 0 4.12 × 107 9.53 × 108

Florence 2.81 × 109 (15) 2.10 × 108 5.29 × 108 0 0 0 4.34 × 106 2.07 × 109

Georgetown 4.87 × 109 (3) 7.62 × 108 6.47 × 108 1.37 × 109 8.14 × 108 0 2.50 × 108 1.03 × 109

Horry 6.22 × 109 (1) 5.47 × 108 1.02 × 109 1.54 × 109 5.71 × 108 0 7.16 × 108 1.83 × 109

Lee 1.45 × 109 (43) 6.29 × 107 3.09 × 108 0 1.99 × 106 0 0 1.08 × 109

Marion 2.59 × 109 (21) 2.32 × 108 6.75 × 108 6.49 × 108 0 0 1.06 × 108 9.26 × 108

Marlboro 3.73 × 109 (8) 1.63 × 108 6.35 × 108 1.95 × 109 3.38 × 107 0 4.34 × 106 9.43 × 108

Sumter 2.45 × 109 (23) 1.95 × 107 8.26 × 108 0 7.96 × 106 0 4.34 × 106 1.59 × 109

Williamsburg 3.15 × 109 (12) 5.43 × 107 4.93 × 108 0 0 0 6.51 × 106 2.60 × 109

(Pee Dee) 3.69 × 1010(2) 2.79 × 109 8.04 × 109 6.06 × 109 1.47 × 109 0 1.13 × 109 1.74 × 1010

Allendale 1.54 × 109 (41) 5.43 × 107 2.38 × 108 1.44 × 108 0 0 0 1.11 × 109

Bamberg 1.38 × 109 (45) 2.73 × 108 2.36 × 106 0 8.16 × 107 0 6.51 × 106 1.02 × 109

Barnwell 1.93 × 109 (35) 1.69 × 108 3.26 × 108 0 0 0 0 1.44 × 109

Beaufort 2.84 × 109 (14) 1.51 × 109 8.02 × 107 1.44 × 108 7.96 × 107 9.68 × 107 4.56 × 108 4.69 × 108

Berkeley 4.73 × 109 (5) 3.15 × 108 4.91 × 108 5.53 × 108 8.14 × 108 0 2.97 × 108 2.26 × 109

Calhoun 9.92 × 108 (46) 1.43 × 108 6.14 × 107 0 0 0 0 7.87 × 108

Charleston 4.75 × 109 (4) 1.66 × 109 7.84 × 108 0 1.45 × 109 0 5.92 × 108 2.64 × 108

Colleton 6.02 × 109 (2) 6.08 × 108 1.16 × 108 2.11 × 109 2.79 × 108 3.58 × 108 2.37 × 108 2.31 × 109

Dorchester 2.30 × 109 (27) 5.95 × 108 4.01 × 107 2.40 × 107 5.57 × 108 0 6.51 × 107 1.02 × 109

Hampton 2.15 × 109 (30) 2.95 × 108 2.05 × 108 7.21 × 107 2.01 × 108 0 8.68 × 107 1.29 × 109

Jasper 4.25 × 109 (6) 6.90 × 108 1.37 × 108 1.37 × 109 4.90 × 108 4.88 × 108 5.21 × 107 1.02 × 109

McCormick 1.44 × 109 (44) 1.39 × 108 1.53 × 108 0 4.92 × 108 0 0 6.54 × 108

Orangeburg 3.53 × 109 (9) 1.58 × 108 4.25 × 107 0 4.98 × 107 0 2.17 × 106 3.27 × 109

(Low Country) 3.79 × 1010(1) 6.61 × 109 2.68 × 109 4.42 × 109 4.49 × 109 9.43 × 108 1.79 × 109 1.69 × 1010

Totals ($) 1.24 × 1011 1.46 × 1010 1.62 × 1010 1.14 × 1010 1.38 × 1010 9.68 × 108 2.95 × 109 6.43 × 1010
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4. Discussion

Pedodiversity (soil diversity) in South Carolina is a source of various ES goods,
services, and disservices (ED). This study demonstrates the value of regulating ES/ED in
the state and its regions and counties. According to Mikhailova et al. (2021) [22], taxonomic
pedodiversity (e.g., soil order) “provides a general description of the stock, its type, and
spatial distribution,” which is often rereferred to as a “portfolio” to describe the link
between pedodiversity and its stocks. South Carolina soil “portfolio” is composed of
seven soil orders: Entisols (9% of the total state area), Inceptisols (9%), Histosols (1%),
Alfisols (9%), Mollisols (0%), Spodosols (2%), and Ultisols (70%) (Figure 4, Table 11). Highly
weathered Ultisols have the highest proportion of the total area of the state (Figure 4a),
which contributes to the highest SOC and TSC storage and their associated social costs
of carbon. The contribution of SIC to associated social costs of carbon is small at the state
level and primarily associated with Inceptisols, Entisols, and Alfisols.

Figure 4. Diagram showing how the “portfolio-effect” and “distribution-effect” of pedodiversity can vary within the state:
(a) pedodiversity by soil order area; (b) value of soil organic carbon (SOC) storage, (c) value of soil inorganic carbon (SIC)
storage, (d) value of total soil carbon (TSC) storage in the upper 2-m depth based on avoided or realized the social cost of
CO2 (SC-CO2) of $46 (USD) per metric ton of CO2 [17] by soil order. Note: B = billion = 109.

Soil “portfolio” differs within each county, and Figure 5 illustrates this concept using
three counties from different regions: Anderson (Upstate), Newberry (Midlands), and
Colleton (Low Country).
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Figure 5. Diagram showing how the “portfolio-effect” and “distribution-effect” of pedodiversity can vary by county: (a,c,e)
pedodiversity by soil order area; (b,d,f) value of soil organic carbon (SOC) storage in the upper 2-m depth based on avoided
or realized the social cost of CO2 (SC-CO2) of $46 (USD) per metric ton of CO2 [17] by soil order. Note: B = billion = 109.

In all three cases, Ultisols occupy the largest proportion of the area in each county. The
type of soil order influences the value of SOC storage. In Colleton County, the soil order of
Histosols contributes to the social costs of C as much as the Ultisols even though its area
is much smaller (Figure 5) because of high SOC content of 142.5 kg m−2. Figures 4 and 5
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represent social costs of soil C from different point of views: “avoided” versus “realized”
social costs. Soil carbon stored in the soil represents the “avoided social cost” of soil C if
not converted to CO2 and released into the atmosphere. When CO2 is released into the
atmosphere, it becomes the “realized social cost” because of the damages from global
warming. In South Carolina, Histosols and Alfisols are particularly sensitive to climate
change because of relatively high soil C content, which is most likely to experience higher
decomposition rates due to increases in temperature and precipitation. All soils in the state
of South Carolina have low recarbonization potential.

Table 11. Distribution of soil carbon regulating ecosystem services in the state of South Carolina (U.S.A.) by soil order
(photos courtesy of USDA/NRCS [23]) in the upper 2-m depth based on avoided or realized the social cost of CO2 (SC-CO2)
of $46 (USD) per metric ton of CO2 [17].

Soil Regulating Ecosystem Services in the State of South Carolina

Slight <————————————- Degree of Weathering and Soil Development —————————————-> Strong

Slightly Weathered
18%

Moderately Weathered
9%

Strongly Weathered
72%

Entisols
9%

Inceptisols
9%

Histosols
1%

Alfisols
9%

Mollisols
0%

Spodosols
2%

Ultisols
70%

The social cost of soil organic carbon (SOC) in USD: $107.14B

$9.11B $10.30B $11.20B $8.82B $524.00M $2.82B $64.30B

9% 10% 10% 8% 0% 3% 60%

The social cost of soil inorganic carbon (SIC) in USD: $17.22B

$5.53B $5.91B $195.00M $5.00B $444.00M $136.00M $0

32% 34% 1% 29% 3% 1% 0%

The social cost of total soil carbon (TSC) in USD: $124.36B

$14.60B $16.20B $11.40B $13.80B $968.00M $2.95B $64.30B

12% 13% 9% 11% 1% 2% 52%

Sensitivity to climate change

Low Low High High High Low Low

Soil organic and inorganic carbon sequestration (recarbonization) potential

Low Low Low Low Low Low Low

Note: Entisols, Inceptisols, Alfisols, Mollisols, Spodosols, Ultisols are mineral soils. Histosols are mostly organic soils. M = million = 106;
B = billion = 109.

Amelung et al. (2020) [24] proposed linking soil C sequestration to food security using
soil- and site-specific potentials and opportunities for soil C sequestration. In this respect,
the state of South Carolina faces serious limitations in both soil- (dominated by highly-
weathered soil order, Ultisols) and site-specific (high demand for soil C due to rapid
urbanization and population growth; rapid changes in coastal areas, etc.) potentials. Soil
order Histosols (which often contains organic soils) is located in the coastal areas of the
state and can be drained for agriculture and urbanization, leading to high losses of soil
C into the atmosphere [24]. Recarbonization of soils in the state of South Carolina may
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not be economically feasible due to past excessive levels of soil degradation [25], high
fertilization and liming costs (including transportation) associated with increasing soil C in
mostly highly-weathered and acid soils in the state. It should be noted that the reported
soil survey-based C values may be an overestimate of actual soil C measured in the field,
but the overall trends for the soil orders should be similar [10]. Soil C should be regularly
monitored to quantify soil contributions to ES and its flows [26,27].

5. Conclusions

This study examined the application of soil diversity (pedodiversity) concepts (taxo-
nomic) and its measures to value soil C regulating ES/ED in the state of South Carolina
(U.S.A.), its administrative units (regions, counties), and the systems of soil classification
(e.g., U.S. Department of Agriculture (USDA) Soil Taxonomy, Soil Survey Geographic
(SSURGO) Database) to be considered in territorial planning. Pedodiversity provides a
critical context (e.g., “portfolio-effect,” “distribution-effect,” “evenness-effect,” etc.) for
analyzing, interpreting, and reporting ES/ED within the ES framework for sustainable
management of soil carbon within the state. Taxonomic pedodiversity in South Carolina
exhibits high soil diversity (7 soil orders: Entisols, Inceptisols, Histosols, Alfisols, Mollisols,
Spodosols, and Ultisols), which is not evenly distributed within the state, regions, and coun-
ties. In general, pedodiversity tends to increase from the Upstate to Low Country, where
three counties (Beaufort, Colleton, and Jasper) have all seven orders. Similarly, soil carbon
storage and its associated social costs tend to increase in a similar geographic direction.
Ultisols occupy the highest proportion of the state area (70%) and have the highest SOC
storage and related social costs of carbon ($64.30B). The contribution of SIC to associated
social costs of carbon is small ($17.22B) at the state level and primarily associated with
Inceptisols ($5.91B), Entisols ($5.53B), and Alfisols ($5.00B). In the state of South Carolina,
Histosols and Alfisols are particularly sensitive to climate change because of relatively
high soil C content, which is most likely experience higher rates of decomposition due to
increases in temperature and precipitation. All soils in the state of South Carolina have
low recarbonization potential. Administrative areas (e.g., counties, regions) combined with
pedodiversity concepts can provide useful information to design cost-efficient policies to
manage soil carbon regulating ES at the state level.

Author Contributions: Conceptualization, E.A.M.; methodology, E.A.M., M.A.S. and H.A.Z.; formal
analysis, E.A.M.; writing—original draft preparation, E.A.M.; writing—review and editing, E.A.M.,
C.J.P., G.C.P. and M.A.S.; visualization, H.A.Z., L.L. and Z.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the reviewers for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

237



Land 2021, 10, 309

Abbreviations

ED Ecosystem disservices
ES Ecosystem services
EPA Environmental Protection Agency
SC-CO2 Social cost of carbon emissions
SDGs Sustainable Development Goals
SOC Soil organic carbon
SIC Soil inorganic carbon
SOM Soil organic matter
SSURGO Soil Survey Geographic Database
TSC Total soil carbon
USDA United States Department of Agriculture
U.S.A. United States of America
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Abstract: Agricultural land reclamation of coastal tidal land (CTL) with organic amendments may
modulate the soil properties, and therefore promote crop growth. However, the linkages between soil
nutrient contents, pools, stoichiometry, and crop growth under the supplement of organic amend-
ments in CTL is limited. In this study, six treatments including the control (CK), organic manure
(OM), polyacrylamide plus organic manure (PAM + OM), straw mulching plus organic manure
(SM + OM), buried straw plus organic manure (BS + OM), and bio-organic manure plus organic
manure (BM + OM) were conducted to explore these linkages in newly reclaimed CTL in Jiangsu
Province, eastern China. The results showed that the application of different soil reclamation treat-
ments increased soil nutrient contents, pools, and modulated their stoichiometric ratio, which thus
promoted the growth of oat. Soil under all reclamation treatments increased the contents of surface
soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP), and the BM + OM treatment
had the highest increase, which increased by 11.7–182.4%, 24.3–85.7%, 3.2–29.4%, respectively. The
highest soil C pools were observed in the oat heading stage (36.67–41.34 Mg C ha−1), whereas the
soil N and P pools were more stable during the oat growth period. Similarly, the highest surface soil
C/N and C/P were observed in the oat heading stage (11.23–14.67 and 8.97–14.21), whereas the N/P
in surface soil increased compared with the CK treatment during the oat growth period, with the
exception of the filling stage. Land reclamation treatments significantly promoted oat growth by
changing soil C, N, and P contents, pools, and stoichiometry, among which soil SOC, TN, TP, C/P,
and N/P are more closely related to oat growth (p < 0.05).

Keywords: land reclamation; ecological stoichiometry; redundancy analysis; coastal tidal land

1. Introduction

With an increasingly prominent contradiction between human and land resources, the
agricultural reclamation of coastal tidal land (CTL) has become an important approach
to increase the cultivated land, as well as improve agricultural productivity and ensure
food security [1–3]. However, soil salinization seriously limits the soil quality and inhibits
the growth and yield of crops in newly reclaimed coastal tidal land [4]. For instance, the
increase of the salt ions can lead to physiological water shortage of plants and inhibit
nutrient absorption, thus resulting in dysplasia of plants and reduction in crop yields [5–7].
Earlier study indicated that the increase of Na+ and Mg2+ ions may cause the structural
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damage and photosynthesis disorder of plant cells, and thus inhibit the production of
chlorophyll [8]. Therefore, the physical (deep ploughing, straw/film mulching, etc.),
chemical (macromolecular polymer, organic/inorganic fertilizer, biochar, gypsum, etc.),
biological (bio-organic fertilizer, salt-tolerant plants, etc.), and engineering (irrigation and
drainage system) improvement have been widely applied to reclaim the saline soil [9–12].
Many studies have confirmed that land reclamation apparently affected the contents of soil
C, N, P, and their pools. For instance, straw returning can improve soil physical properties,
inhibit soil salinity, and increase the content of soil organic carbon and total nitrogen [9,13].
Previous studies have indicated that application of organic and inorganic fertilizer can
reduce soil salinity, improve soil nutrient content and pools, and promote crop yields [14,15].
For example, application of chemical fertilizer can accelerate the consumption of soil
organic carbon, whereas the straw returning can offset the mineralization of organic carbon
and increase the soil C pool [16]. Moreover, appropriate application of polyacrylamide
(PAM) can improve the soil nutrient retention capacity [17]. Besides, the planting of salt-
tolerant plants can improve the physicochemical properties, reduce the soil salinity, and
increase the soil nutrient content of CTL [18]. For instance, oat (Avena sativa L.) cultivation
is considered as an efficient reclamation approach to improve CTL due to its high capacity
to accumulate salt ions in straw biomass [18].

Ecological stoichiometry deals with the balance of multiple chemical elements (mainly
C, N, and P) in the process of ecologic interaction [19], which is used to track the changes
of ecosystem structure and nutrient cycling [20]. Soil nutrient directly affects the growth
and productivity of plant communities, and soil C/N/P stoichiometry is considered an
important indicator of soil nutrient characteristics [21]. Therefore, the study of soil C/N/P
stoichiometry can indicate soil nutrient status, which is conducive to a better understanding
of soil limiting elements, and scientifically adjusts the fertilization type, so as to promote
plant growth and improve crop productivity [22,23]. Large numbers of studies have
demonstrated that land reclamation can affect the soil C/N/P stoichiometry. For example,
intensive fertilization in farmland has led to a decrease in C/N and C/P, and the N/P was
more sensitive to nitrogen addition [24]. Besides, deep plowing broke the nutrient fixation
status, and significantly increased the soil C/N and reduced the C/P [25]. Straw mulching
directly affected the rate of mineralization and decomposition of nutrients by the adjusted
soil temperature and water content, which in turn caused the changes in soil C/N/P [26].

Although the impact of different land reclamation treatments on soil nutrients have
been fully revealed, the linkages between soil nutrient contents, pools, stoichiometry, and
crop growth under the supplement of organic amendments in CTL is limited. Therefore,
we hypothesized that different soil reclamation treatments can increase soil nutrient con-
tent, pools, and modulate their stoichiometric ratio, thus promoting the growth of oat.
Specifically, the objectives of this study were to: (1) identify the effect of different land
reclamation treatments on C, N, and P contents, pools, stoichiometry, and oat growth; and
(2) explore the linkages between soil C, N, and P contents, pools, stoichiometry, and oat
growth parameters following the reclamation of CTL.

2. Materials and Methods

2.1. Study Area

This experiment was carried out in Tongzhou Bay (32◦11′ N, 121◦22′ E), Nantong City,
Jiangsu Province, eastern China (Figure 1). The region has a subtropical monsoon climate,
with an average annual temperature of about 14–15 ◦C. The average annual rainfall is
about 1000–1080 mm, which is relatively concentrated from June to September. The area
was reclaimed for marine aquaculture in 2008, and the experiment field was established
in 2016. The groundwater depth is 1.2–1.8 m. The soil is characterized by a sandy loam
texture, high bulk density, salinity, and sodicity, and has low nutrients (Table 1).
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Figure 1. Location of the study area.

Table 1. Soil properties before field experiment.

Soil Depth
(cm)

Sand
(%)

Silt
(%)

Clay
(%)

BD
(g cm−3)

EC1:5

(dS m−1)
pH1:2.5

SOC
(g kg−1)

TN
(g kg−1)

TP
(g kg−1)

0–10 79.35 17.45 3.19 1.49 1.82 8.06 4.13 0.55 0.73
10–20 79.01 17.72 3.26 1.53 1.43 8.16 4.04 0.54 0.69
20–40 80.54 16.37 3.08 1.52 2.32 7.98 3.69 0.47 0.67

Note: BD, bulk density; EC, electrical conductivity; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus.

2.2. Experimental Design

In this experiment, 18 plots (3 × 2 m) were insulated by double-layer plastic sheets
buried to 60 cm deep and 50 cm wide to the soil surface to reduce interference between
the plots. Due to the high soil bulk density, all plots were plowed to 20 cm deep before
the experiment. The following 6 reclamation treatments were applied: (1) control (CK); (2)
organic manure (OM); (3) polyacrylamide plus organic manure (PAM + OM); (4) straw
mulching plus organic manure (SM + OM); (5) buried straw plus organic manure (BS + OM);
and (6) bio-organic manure plus organic manure (BM + OM). All treatments were randomly
designed and repeated three times, and the specific measures of each treatments are shown
in Table 2. The physicochemical properties of all applied amendments are presented in
Table 3. All treatments were conducted in September 2016. Oat seed was sown in drill
(drill spacing 60 cm) with 90 kg ha–1 on 3 November 2016, and the urea (46% N) was
sprayed with 180 kg ha–1 on the soil surface at the jointing stage (March 2017). The field
management practices were consistent with local farmers, and the crop was harvested on
2 June 2017. The oat growing period can be divided into the seedling stage (0–60 days),
jointing stage (60–90 days), heading stage (90–120 days), filling stage (120–150 days), and
maturation stage (150–210 days).
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Table 2. Experimental treatment design and specific measures.

Treatment Specific Measures References

CK No application of amendments.

OM Chicken manure was evenly applied at soil surface at 15 ton ha–1, then the plot was ploughed
and harrowed to a depth of 10–15 cm with a physically acceptable evenness and mellowness.

[27]

PAM + OM
Both nonionic polyacrylamide (5%, approximately 2 ton ha–1) and chicken manure (15 ton ha–1)
were evenly applied at soil surface, then the plot was ploughed and harrowed to a depth of 10–15
cm with a physically acceptable evenness and mellowness.

[28]

SM + OM
Chicken manure (15 ton ha–1) was evenly applied at soil surface, and the plot was ploughed and
harrowed to a depth of 10–15 cm with a physically acceptable evenness and mellowness, then the
wheat straw (15 ton ha–1) was cut to 10 cm long and evenly mulched.

[29]

BS + OM

Wheat straw (15 ton ha–1) was cut to 10 cm long and evenly buried nearly 20 cm underground
after removal of soil, followed by the addition of chicken manure (15 ton ha–1); thereafter, the plot
was ploughed and harrowed to a depth of 10–15 cm with a physically acceptable evenness and
mellowness.

[30]

BM + OM

Both Jiahua (a compound bio-organic manure made from cow dung and crushed corn straw by
deep fermentation and decomposition of Bacillus and Saccharomyces, containing approximately
2.0 × 108 CFU of viable bacteria g−1) and chicken manure were evenly applied at soil surface at a
rate of 15 ton ha–1, and the plot was ploughed and harrowed to a depth of 10–15 cm with a
physically acceptable evenness and mellowness.

[28]

Note: CK, control; OM, organic manure; PAM + OM, polyacrylamide plus organic manure; SM + OM, straw mulching plus organic manure;
BS + OM, buried straw plus organic manure; BM + OM, bio-organic manure plus organic manure.

Table 3. Physicochemical properties of soil amendments.

Amendment TOC (%) TN (%) TP (%)

Chicken manure 13.14 1.42 0.87
Polyacrylamide – 0.07 –

Wheat straw 16.53 0.62 0.23
Jiahua bio-organic manure 27.10 4.58 3.63

Note: TOC, total organic carbon; TN, total nitrogen; TP, total phosphorus; “–”, not determined.

2.3. Soil Sampling and Determination

After the oats were sown, a composite soil sample was randomly collected at 0–10 cm
(surface layer), 10–20 cm (subsurface layer), and 20–40 cm (deep layer) in each plot with
five replicates at 30-day intervals. A total of 432 soil samples were collected during the
whole oat growing period. All samples were stored in polyethylene bags and brought
back to the laboratory. After removing all visible plant roots, stones, and organisms,
soil samples were naturally air-dried and passed through a 0.149 mm sieve to measure
physicochemical properties. All methods applied for measuring the soil physicochemical
properties have been described in detail by Lu [31]. Briefly, soil bulk density (BD) was
determined by oven drying to constant mass at 105 ◦C for 48 h; soil organic carbon (SOC)
was determined by potassium dichromate oxidation-spectrophotometry; soil total nitrogen
(TN) was determined by the Kjeldahl method; soil total phosphorus (TP) was determined
by the colorimetric method after digestion with hydrofluoric and perchloric acid. The pools
of SOC, TN, and TP were calculated using the following equation:

YP =
n

∑
i=1

Xi × BDi × Di × 0.1 (1)

where YP is the pools of SOC, TN, and TP; Xi is the concentration of SOC, TN, and TP in
the ith layer; BDi is the bulk density of the ith layer; Di is the depth interval of ith layer;
and 0.1 is the conversion factor from g cm−2 to kg m−2.
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2.4. Determination of Oat Growth Parameters

During the oat growing period, 5 oat plants were randomly selected from each plot,
and the plant height and stem diameter were recorded every 30 days. The plant height was
determined by measuring the absolute height from the ground to the highest position of
the main stem with a steel tape, and the stem diameter was measured by vernier caliper
from the internode position at the base of the main stem.

2.5. Statistical Analysis

The measured soil properties and oat growth parameters were analyzed with one–way
ANOVA to test the significant differences among the different reclamation treatments, and
the means comparisons were separated using the Fisher’s least significant difference (LSD)
test at p = 0.05. Redundancy analysis (RDA) was applied to clarify the relationship between
oat growth, soil C, N, and P content, pools, and stoichiometry. All data analyses were
carried out in SPSS 20.0 for Windows software package and Canoco 4.5 for Windows
software package.

3. Results

3.1. Soil C, N, and P Content

During the oat growing period, the content of SOC under different reclamation treat-
ments in all soil layers showed a trend of first increasing and then decreasing with the
highest content observed in the heading stage (Figure 2). In the surface layer, compared
with the CK treatment, the SOC content of each reclamation treatment gradually increased,
especially under the BM + OM treatment, which increased by 11.7–182.4%. However,
compared with the CK treatment, the content of SOC in the subsurface layer increased by
0.0–40.0% during the entire growing season, except for the SM + OM treatment. Addition-
ally, no significant differences were observed in SOC content between different treatments
during the entire growing season in the subsurface layer, except for the heading stage;
whereas no significant differences were found in the SOC content in the seedling, heading,
and maturation stage among different treatments in the deep layer. The content of TN in
all soil layers remained relatively stable under different treatments during the oat growing
season, except for the BM + OM treatment (Figure 2). In the surface layer, the content
of TN under the PAM + OM treatment was slightly lower than that of the CK treatment
(decreased by 9.1%) during the filling stage, whereas soils under the BM + OM, BS + OM,
SM + OM, and OM treatments were higher than that of the CK treatment, and increased
by 24.3–85.7%, 9.1–47.2%, 12.1–25.0%, and 1.2–22.9%, respectively. Besides, there were no
significant differences in TN content between different reclamation treatments in subsur-
face and deep layers during the oat growing season, except for the heading stage in the
subsurface layer and the filling stage in the deep layer, respectively. The dynamics of TP
content in all soil layers were similar to that of TN content (Figure 2). Throughout the oat
growing season, BM + OM, BS + OM, OM, SM + OM, and PAM + OM treatments increased
surface layer TP content by 3.2–29.4%, 0.5–17.4%, 3.8–14.8%, 4.9–10.4%, and −0.5–13.6%
compared with the CK treatment. In general, there were no significant differences in TP
content between different reclamation treatments during the jointing, heading, and filling
stages in the surface layer, whereas no significant differences were observed in TP content
during the middle and later stages of oat growth in subsurface and deep layers.
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Figure 2. Dynamics of soil organic carbon, total nitrogen, and total phosphorus contents under different oat growth stages
in 0–10 cm (a), 10–20 cm (b), and 20–40 cm (c). SS: seedling stage; JS: jointing stage; HS: heading stage; FS: filling stage; MS:
maturation stage. Values are means of three replicates ± SD; error bars refer to standard deviation; values having different
lowercase letters on the bars indicate significant differences among different treatments (least significant difference (LSD),
p < 0.05).

3.2. Soil C, N, and P Pools

During the oat growing period, the soil organic carbon pools (SOCP) under different
reclamation treatments in the 0–40 cm soil layer showed a trend of first increasing and
then decreasing (Figure 3). Except for the BS + OM treatment (filling stage), the highest
SOCP under different treatments were found in the heading stage. Compared with the CK
treatment, the SOCP increased to different degrees under different reclamation treatments
in seedling, filling, and maturation stages. Among them, the BM + OM and BS + OM treat-
ments showed significant differences in SOCP in seedling and filling stages, respectively,
whereas there were no significant differences between the treatments in the heading and
maturation stage. In the jointing stage, the SOCP in OM treatment was significantly higher
than other treatments.

Generally, soil total nitrogen pool (TNP) under the BS + OM treatment was slightly
higher than that of other treatments (Figure 3). In the seedling and maturation stages,
the TNP under different reclamation treatments increased by 6.5–19.9% and 6.0–11.2%,
respectively, compared with the CK treatment. However, no significant differences were
observed in TNP under different treatments at jointing and heading stages. Besides, the
TNP under the PAM + OM treatment was significantly lower than CK, OM, SM + OM, and
BS + OM treatments.

During the oat growing season, soil total phosphorus pool (TPP) remained relatively
stable under different reclamation treatments, and no significant differences were observed
between different treatments in seedling and heading stages (Figure 3). The TPP in the
jointing stage was similar to the maturation stage, with the highest value in the BS + OM
treatment, whereas the lowest value was in the SM + OM treatment. Additionally, TPP
under the SM + OM treatment in the filling stage was significantly lower than that of CK,
OM, PAM + OM, and BS + OM treatments.
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Figure 3. Dynamics of SOCP (a), TNP (b), and TPP (c) under different oat growth stages in 0–40 cm. SOCP: soil organic
carbon; TNP: total nitrogen; TPP: total phosphorus pools; SS: seedling stage; JS: jointing stage; HS: heading stage; FS: filling
stage; MS: maturation stage. Values are means of three replicates ± SD; error bars refer to standard deviation; values having
different lowercase letters on the bars indicate significant differences among different treatments (LSD, p < 0.05).

3.3. Soil C, N, and P Stoichiometry

Soil C/N roughly increased first and then decreased with the growth of oat under
different treatments and soil layers, and reached the highest value at the heading stage
(Figure 4). In the surface layer, significant differences were found in soil C/N between dif-
ferent treatments in the seedling, jointing, heading, and filling stage, whereas no significant
difference was found in the maturation stage. Among them, soil C/N of the BM + OM
treatment was significantly higher than that of other treatments at the seedling stage, and
the PAM + OM treatment had the lowest soil C/N at jointing and heading stages and the
highest C/N at the filling stage. The C/N of the subsurface layer did not differ significantly
under different treatments. Similarly, in the deep layer, there was no significant difference
in C/N at seedling, heading, and maturation stages. The C/N of the deep layer under CK
and OM treatments were apparently higher than that of other treatments at the jointing
stage, whereas BS + OM and BM + OM treatments at the filling stage were notably higher
than that of CK, OM, and PAM + OM.

The dynamic of soil C/P during the oat growing period was similar to that of C/N,
with the highest value appearing at the heading stage (Figure 4). Overall, the BM + OM
treatment had a significant impact on the C/P of different soil layers. In the surface layer,
compared with the CK treatment, soil C/P under the BS + OM and BM + OM treatments
increased by 1.0–44.5% and 28.0–126.3%, respectively, during the whole oat growth period.
There was no significant difference between OM and CK treatments. Additionally, PAM
+ OM and SM + OM treatments were significantly lower than the CK treatment at the
jointing stage, whereas they were significantly higher than the CK treatment at the filling
stage and seedling stage, respectively. The reclamation treatments have little effect on the
C/P in the subsurface layer. Except that the BM + OM treatment was significantly higher
than other treatments at the heading stage, and there was no significant difference in C/P
between different treatments at other growth stages. Soil C/P under different treatments in
the deep layer is not significantly different at the heading stage. However, in the seedling
and maturation stages, the C/P under BM + OM treatment was significantly higher than
other treatments.

Soil N/P fluctuated slightly under different treatments during the oat growing season
(Figure 4). In the surface layer, soil N/P under BM + OM and BS + OM (except the
filling stage) treatments was significantly higher than the CK treatment throughout the
oat growing season. Compared with the CK treatment, the N/P of the subsurface layer
under BS + OM, PAM + OM, and OM treatments, respectively, decreased by 1.2–17.5%,
3.6–12.9%, 1.1–12.0%, and no significant differences were found between jointing and filling
stages. Moreover, no significant differences were observed between reclamation treatments
throughout the growth period in the deep layer.
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Figure 4. Dynamics of soil C/N, C/P, and N/P under different oat growth stages in 0–10 cm (a), 10–20 cm (b), and 20–40 cm
(c). SS: seedling stage; JS: jointing stage; HS: heading stage; FS: filling stage; MS: maturation stage. Values are means of
three replicates ± SD; error bars refer to standard deviation; values having different lowercase letters on the bars indicate
significant differences among different treatments (LSD, p < 0.05).

3.4. Oat Growth Parameters

During the growth period of oat, all reclamation treatments can increase the stem
diameter and plant height of oat in varying degrees (Figure 5). The stem diameter and
plant height of oat under the BM + OM treatment was much higher than that of other
treatments. As the growing season progressed, there were no significant differences in
stem diameter under BS + OM, SM + OM, and PAM + OM treatments except for the
maturation stage. Similarly, the plant height under PAM + OM, SM + OM, and BS + OM
treatments were significantly higher than that of the OM treatment in the heading, filling,
and maturation stage.

3.5. Redundancy Analysis

In this study, RDA was performed to explore the relationship between oat growth
parameters and soil C, N, and P indicators at each oat growth period. As shown in
Figure 6, the first two axes in the seedling, jointing, heading, filling, and maturation stages
cumulatively explained 75.4%, 96.9%, 98.8%, 76.9%, and 63.0% of the variation of oat
growth, which indicates that the first two axes can fully explain the relationship between
oat growth and soil C, N, and P indicators. During the oat grown season, soil C, N, and
P contents and their stoichiometry are positively correlated with oat growth parameters,
whereas soil N and P pool in jointing and filling stages are negatively correlated (Figure 6).
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Figure 5. Dynamics of oat stem diameter (a) and plant height (b) under different growth stages. SS: seedling stage; JS:
jointing stage; HS: heading stage; FS: filling stage; MS: maturation stage. Values are means of three replicates ± SD; error
bars refer to standard deviation; values having different lowercase letters on the bars indicate significant differences among
different treatments (LSD, p < 0.05).

 

Figure 6. Coordination biplots of redundancy analysis (RDA) displaying the relationship between
oat growth parameters and surface soil C, N, and P indicators in SS (a), JS (b), HS (c), FS (d), and MS
(e). Oat growth parameters are response variables and soil C, N, and P indicators are explanatory
variables. The positive and negative correlation between two soil properties depends on the same
or opposite direction of arrows, and the correlation is determined by the projection length of the
arrows of two soil properties. PH: plant height; SD: stem diameter; SOC: soil organic carbon; TN:
total nitrogen; TP: total phosphorus; SOCP: soil organic carbon pool; TNP: total nitrogen pool; TPP:
total phosphorus pool; SS: seedling stage; JS: jointing stage; HS: heading stage; FS: filling stage; MS:
maturation stage.
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4. Discussion

4.1. Response of Soil Nutrient Contents, Pools, and Stoichiometry Following Agricultural
Land Reclamation

Land reclamation of CTL with organic and inorganic amendment may alter the
mineralization and decomposition processes of soil nutrients [12,32]. In this experiment,
soil C, N, and P contents, pools, and stoichiometry under different land reclamation
treatments generally decreased with the increase of soil depth. This might be attributed to
the various amendments that are mainly carried out in the upper soil layer, and the litter of
oat plants is also concentrated on the soil surface. Earlier studies have indicated that organic
manure was an efficient way to supplement the soil nutrients [11,33]. For example, the
organic manure compost increased the cation exchange capacity, available macro-nutrient
contents, and biological activities, whereas it decreased the soil salinity [11,14]. In the
present experiment, application of chicken manure has increased the content of SOC, TN,
and TP in the surface soil. Polyacrylamide changes the soil structure and improves soil
water retention and corrosion resistance, which is conducive to maintaining soil moisture
and fertility [34,35]. In this experiment, the content of SOC, TN, and TP in the surface
layer under PAM + OM treatment basically increased during the oat growing period
(Figure 1). Earlier studies have also shown that PAM as a structural modifier can effectively
change the structure of soil aggregates, retaining soil water content and fertility, and
reducing the loss of soil N, P, and other nutrient elements, and improving the stability of
agricultural production [17]. Numerous studies have shown that straw is rich in organic
matter and nutrient elements such as nitrogen, phosphorus, and potassium, and straw
returning can increase the number and activities of microorganisms and promotes the
decomposition of organic nutrients, resulting in the increase of soil nutrients [30,36]. In our
study, the SOC, TN, and TP contents of the soil under treatments of SM + OM and BS + OM
roughly increased, and the BS + OM is more conducive to the enhancement of deep soil
fertility than that of SM + OM, which is consistent with Zhao et al. [13]. Many studies
have shown that the bio-organic fertilizer provided a large amount of organic matter for
microorganisms [12,37]. Similarly, the SOC, TN, and TP contents of the surface soil under
the BM + OM treatment increased significantly in our experiment, which might be due
to the bio-organic fertilizer used in this experiment containing the organic matter ≥45%
and total nutrients (N + P + K) ≥12%, as well as containing a large number of microbial
communities, which are beneficial to the release of available nutrients [28].

Application of organic amendment may also change the soil C, N, and P pools. In
our study, the SOCP under different land reclamation treatments roughly increased from
the seedling to heading stage, and then decreased from the heading to maturation stage,
which is similar to the results of a previous study [21]. In addition, SOCP at the seedling,
filling, and maturation stages increased significantly under different reclamation treat-
ments, whereas at the jointing and heading stages it decreased (Figure 3). This may be
owing to the gradual decomposition of organic amendment in the early oat growth period
providing enough carbon source, while the oat grows rapidly at the heading stage, and the
enhancement of photosynthesis improves the carbon fixation capacity of oat [38]. In this
experiment, soil TNP and TPP basically remained stable throughout the growth period,
which was not consistent with former studies that confirmed that the application of organic
fertilizers can increase soil carbon and nitrogen pools [39]. It may be because nitrogen is
usually present in organic matter in the form of organic nitrogen, which makes the changes
in soil carbon and nitrogen more synchronized [40]. The decline in the phosphorus pool
may be caused by the reduction in the fixation of inorganic phosphorus after the application
of organic fertilizers, and part of the organic phosphorus in organic fertilizers is easily
decomposed [41]. In general, fertilizers gradually dissolved and were slowly absorbed by
the soil under different reclamation treatments. Therefore, the soil C, N, and P contents and
pools increased in the early stage of oat growth, and the application of urea at the jointing
stage further improved the soil N content and pool. After that, the oat enters the rapid
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growth stage and needs to absorb a large amount of soil nutrients to maintain growth,
resulting in the decline of soil C, N, and P content and pools.

Land reclamation remarkably altered soil C/N/P stoichiometry, ascribing to the
disproportionate increase of C, N, and P content. In our study, soil C/N, C/P, and N/P
under different reclamation treatments were between 4.73–17.23, 3.69–15.22, and 0.58–0.96,
respectively. SOC is a key factor to adjust soil C/N and C/P changes under different
reclamation treatments, whereas soil N/P changes are mainly controlled by TN in this
study. Generally, the soil C/N ratio is inversely proportional to its decomposition rate, and
soil with a lower C/N ratio has faster mineralization [23]. The soil C/P ratio is considered
an important indicator for assessing the mineralization ability of soil phosphorus, which
can measure the potential of soil organic matter mineralization to release phosphorus or
absorb and retain phosphorus [22,23]. In this experiment, soil C/N and C/P of each soil
layer under different treatments generally increased first and then decreased, which might
be due to the relatively high temperature in the seedling, filling, and maturation stages, and
enhanced the soil microbial activities and accelerated the decomposition of organic matter,
resulting from the decrease of SOC [42]. Simultaneously, the increase in precipitation can
increase the mineralization rate of soil nitrogen, and ultimately lead to a decrease in soil
C/N, which is consistent with the results of Yan [43]. The soil N/P ratio has been suggested
to be useful for assessing N or P limitations [19,22]. Soil N/P in this study was much lower
than the average level of Chinese national wetlands (13.6), which suggest that N is the
main limiting element in this area [20].

4.2. Linkages between Soil Nutrient Contents, Pools, Stoichiometry, and Oat Growth Following
Agricultural Land Reclamation

Land reclamation with organic amendments altered soil C, N, and P content, pools,
and stoichiometry, thereby promoting the growth of oat. Our experiment indicated that
the stem diameter and plant height of oat under BM + OM, BS + OM, SM + OM, and
PAM + OM treatments were significantly higher than that of the OM treatment, while
oat cannot germinate under the CK treatment due to high salinity. This is consistent
with previous studies which demonstrated that the application of organic amendments
in saline soils can improve soil structure, reduce soil salinity, increase nutrient contents,
and thus promote the plant growth and crop yield [44,45]. However, the growth of oat in
the middle and later stages of the OM treatment was slower than that of other treatments,
which, due to the increase of soil salinity, inhibited the oat growth [28]. PAM modifier
plays an important role in reducing nutrient loss [34] and can significantly promote oat
growth (Figure 5). Straw returning to the field has been demonstrated to reduce soil
water evaporation, regulate soil temperature, release a large amount of organic matter and
nutrient elements during the process of decay, and promote crop growth and yield [9,13].
The effects of SM + OM and BS + OM treatments on oat growth are more obvious in the
filling stage and maturation stage. This might be attributed to the slow decomposing
rate of straw due to lower temperatures in the early stage (winter), and the accelerated
decomposition of straw as the temperature rises in the later stage (spring) to release a large
amount of nutrients, which ensures nutrient supply and enables rapid plant growth [46].
In this experiment, the BM + OM treatment significantly promoted the oat growth, which
can be ascribed to the bio-organic fertilizer-enhanced soil microbial activity, and which
continuously provides nutrients for plant growth [47].

Redundancy analysis revealed that soil SOC, TN, TP, C/P, and N/P is highly correlated
with oat growth throughout the growth period of oat, indicating that soil C, N, and P
content and their stoichiometric relationships are important factors affecting the growth of
oat. Previous studies have shown that C, N, and P are essential nutrients for crop growth,
and appropriate N and P content are beneficial to the increase of vegetation height, density,
and biomass [48]. The phosphorus content in the study area was relatively low and stable
under different soil reclamation treatments (Figure 3), and the fluctuation of C and N
content led to changes in soil C/P and N/P, which ultimately affected the growth of oat.
In this experiment, the correlation between SOCP, TNP, TPP, and oat growth are weak or
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even negatively correlated during oat growing season, which ascribes to the oat absorbing
a large amount of N and P elements in the jointing and filling stages to meet the growth of
oat, resulting in the decrease of N and P pools.

5. Conclusions

Our study revealed that the applied land reclamation treatments can be considered as
an efficient approach to increase surface soil nutrients and pools. During the oat growth
period, the BM + OM treatment significantly increased SOC, TN, and TP content, with the
increasing rate of 11.7–182.4%, 24.3–85.7%, and 3.2–29.4%, respectively. The highest SOCP
was observed in the oat heading stage (36.67–41.34 Mg C ha−1), whereas the differences in
TNP and TPP under all land reclamation treatments were not significant. The C/N and C/P
ratio under different reclamation treatments showed a trend of increasing first and then
decreasing, with the highest value in the oat heading stage (11.23–14.67 and 8.97–14.21),
whereas the N/P fluctuates with the growth of oat. Simultaneously, the C/N/P ratio
of all treatments indicated that the study area was regarded as N limited. Moreover,
land reclamation treatments promoted the growth of oat, among which the highest stem
diameter and plant height of oat were observed in the BM + OM treatment (12.27 mm
and 108.06 cm). Furthermore, we observed soil C, N, and P contents and stoichiometry
(p < 0.05) were more closely related to the oat growth compared with their pools. This
study suggested that BM + OM can be recommended as priority agricultural management
for reclamation of CTL.
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Abstract: Sustainable agriculture largely depends on soil biodiversity and requires efficient methods
to assess the effectiveness of agronomic planning. Knowledge of the landscape and relative pedosite
is enriched by data on the soil microarthropod community, which represent useful bio-indicators for
early soil-quality detection in land-use change (LUC). In the hilly Maremma region of Grosseto, Italy,
two areas, a >10ys meadow converted into a vineyard and an old biodynamic vineyard (no-LUC),
were selected for evaluating the LUC effect. For maintaining soil vitality and ecosystem services by
meadow, the vineyard was planted and cultivated using criteria of the patented “Corino method”.
The aim was to evaluate the LUC impact, within one year, by assessing parameters characterizing
soil properties and soil microarthropod communities after the vineyard was planted. The adopted
preservative method in the new vineyards did not show a detrimental impact on the biodiversity of
soil microarthropods, and in particular, additional mulching contributed to a quick recovery from soil
stress due to working the plantation. In the short term, the adopted agricultural context confirmed
that the targeted objectives preserved the soil quality and functionality.

Keywords: sustainability; vineyards; best agronomic practices; Collembola; Acari

1. Introduction

In terms of soil functionality maintenance, high-quality soils have ensured the in-
tegration of soil productivity with other ecosystem services. During the last few years,
European policies have enhanced compliance and rules to avoid land degradation [1].
Sustainable development goals for soil management address efforts of rural development
and, simultaneously, protection of soil functionality [2]. To support short-term needs and
long-term (global) goals, the conventional practices for the new planting of vineyards
should be reviewed.

The global agriculture challenge is to increase the output from available land while
reducing the negative effects of its use [3]. The traditional agricultural landscape is disap-
pearing due to land-cover changes, and these modifications in vegetation impact regional
climate, carbon sequestration, and biodiversity [4]. During the last few years, concern
for the environment and sustainability has compelled many governments to adjust land-
use policies to balance multiple uses of land resources [4] by increasing expectations
that productive agricultural landscapes should be managed by coupling preservation
or enhancement of biodiversity [5]. At the various trophic levels in the food chain, the
interactions between the communities of soil can be altered according to different strategies
of soil management: farming increase and agronomic practices (i.e., land-leveling soil and
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deep tillage) impact belowground biodiversity [5]. Furthermore, the conversion of natural
habitats to agriculture or other intensive human land uses leads to biodiversity loss [6].

Changes in land use have mainly been studied regarding their consequences on pro-
ductivity and human well-being [7], while their effects on the environment have been
poorly investigated [8]. Referring to land-use change (LUC), only a few current Eu-
ropean monitoring systems have focused on the status and/or trends recorded in soil
functions [9,10]. High activity in physicochemical processes and richness of organisms is
recognized in the upper soil layer (from 0 to 20 cm); however, at the same time, this is the
layer most vulnerable to erosion and degradation [3]. Usually, the conversion of natural
habitat to agricultural land results in the reduction of the edaphic species’ richness, along
with lower genetic variability and the loss of functional groups/ecosystem functions [11].
Microtopographical changes occurring during and after the planting of vineyards induce
soil structural changes, which directly affect ecosystem services and biodiversity for a
potentially long time lag [12]. However, little is known about how soil structural changes
occur during and after the planting of vineyards and which key factors and processes play
a major role in soil degradation due to cultivation works. In viticulture, deep earthworks
performed before the plantation of vine plants severely affect the properties of the soil pro-
file, vine phenology, and grape yield by altering the ecosystem functioning for years [13,14].
After deep tillage, soil organism communities are simplified and often need several years to
recover [14,15] (Figure 1a). Deep ploughing may not be beneficial for soil types high in clay,
as it can simply reseal the clay bank [16]. Conventional ploughing (≥30 cm depth) hinders
soil aggregate formation and depletes soil organic matter, thus returning soils to early
stages of ecological succession and stimulating soil erosion with the loss of the nutrient-rich
upper soil layer [14]. Furthermore, the economic issue must also be considered. In hilly
Italian viticultural areas, the cost of a new vineyard, including mechanization and labor,
amounts to approximately EUR 20,000/ha [17].

Figure 1. A cross-section of the soil profile in two different examples of management for starting new
vineyards in hilly areas: (a) no land-use change, deep earthworks, and substitution of an ancient
vineyard by implying a recovery time for soil functions and grape production >4 years [10]; (b) land-
use change with the “Corino method” by maintaining the soil “heritage” using perennial meadows
as the biological potential ecosystem service described in this study case (pre- and post-LUC).
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The area selection of a new vineyard can be the starting point for a well-prepared
soil bed: some sites are suited to low-mowed row middles of native vegetation, while
others may require annual planting of winter grasses [16]. Recently, the culture, lifestyle,
landscape patrimony, longevity of vineyards, and asset value of the land, as well as farmers’
profit margins, were jointly considered in the “Corino method”, aiming at increasing
the vitality of the soil and the health of the environment, producers, and consumers [18]
(Figure 1b). The benefits provided by minimal soil disturbance are multiple: they rely
on physical (i.e., erosion reduction, increase of water retention, temperature), chemical
(organic carbon storage, nutrient availability, pH), and biological (diversity of organisms,
soil quality) properties of soils [19].

Under reduced mechanical disturbance, maintaining the soil profile results in a posi-
tive effect on the stability of soil aggregates and mycorrhizal associations. The development
of grass cover protects soils from erosion and extreme temperatures [8].

Soils with a good structure allow air, water, and nutrients to move freely through
pores within and between the aggregates, thereby influencing the water and nutrient reser-
voir for vine growth [20]. The content of organic matter and other chemical parameters
of soil impact nutrient availability and, indirectly, crop plant growth. Concerning soil
organic matter in the soil agro-ecosystems, the more considered living soil components
are plant and microorganism contributions [21,22]. Studies focusing on the mesofauna
community have not been provided to assess the effects of land use on soil biodiversity.
Several ecosystem functions are ascribable to mesofauna and strictly related to soil fertility
and agricultural production (i.e., the decomposition of the organic matter and nutrient
cycling) [23,24]. A more diverse and abundant soil community provides better soil func-
tions [25], efficiently returning ecosystem processes [26,27]. The biomass and density of the
microarthropod population closely reflect the resource availability [25], promoting organic
matter breakdown and the recycling of essential nutrients for plant growth [8,28].

Assessments of soil biodiversity can be highly indicative to estimate the impact of
human activity and soil biological quality. To quickly assess soil disturbance, the presence
of most adapted forms of hypogeal life and assemblage of the edaphic arthropod fauna
community can represent a useful tool [2,29,30]. By evaluating the microarthropods’ level
of adaptation to the soil, the multitaxon indication by the index of Biological Soil Quality
(BSQar) can provide efficient information [29]. Several studies have been carried out
in vineyards for the evaluation of soil biodiversity and variability among management
systems [31], the influence of soil physical and chemical characteristics on the edaphic
community [15], and comparison of different ecological indices, e.g., the Shannon diversity
index, etc. [30,32,33]. Considering the richness and abundance of soil arthropods as biotic
factors, to be incorporated in landscape modeling, their use may implement, at a low cost,
the evaluation of short-term conservation in viticulture.

This study aimed to estimate the effects on the short-term change in soil biodiversity
for a pluriannual meadow after its conversion into a vineyard, by following rules in the
cited Corino method. This purpose was pursued by evaluating if the entire soil-beneficial
“inheritance” passes on from the meadow to the vineyard. The approach is based on the
possible role, through LUC, of the previous natural habitat (meadow) not as a competitor—
i.e., for water availability—but rather as valuable and functional in maintaining ecosystem
services, in addition to being a resource involved in assuring natural mulching.

2. Materials and Methods

2.1. Study Area

The study area is in the central part of the Maremma region (Grosseto province,
Tuscany, Italy) (Figure 2), and is characterized by hills between 300 and 600 m above
sea level, dotted with sulfur-rich sources of water (such as those of nearby the Saturnia-
Springs). Soils are shallow but rich in substances useful for the vine plant. The climate
is mild, typically Mediterranean, with a constant wind all year round and a dry summer
period. Viticulture is the primary activity in the local agricultural economy; its ancestral
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link with grapes has been strong since the time of the Etruscans, who settled in this area
between the sixth and the first century B.C.

 
 

Figure 2. Two study areas (satellite image source: Google 2019): the LUC area (5100 m2, Coord. X: 42.639210, Y: 11.539317)
and no-LUC area (8200 m2; coord. X: 42.619682, Y: 11.537605) delineated by the dotted white circles and 4 different plots
(VV area: 4200 m2; VM area: 4000 m2; VN area: 3000 m2; MC area: 2100 m2) delineated by the red boxes. The schematic
representation of the experimental design describes the steps during the conversion process (LUC) from meadows to new
vineyards by conservative practices in the upper soil layer (from 0 to 20 cm).

The area extends to approximately 1.8 ha and consists of two areas, distant 2 km,
selected as part of a vegetable-based biodynamic farm (La Maliosa Farm, Saturnia, Italy)
(Figure 2). The studied vineyards lie on south-/southwest-facing slopes, about 300 m
above sea level, in a complex mosaic landscape characterized by multicultivar vine-
yards surrounded by natural elements such as natural boundaries (i.e., trees and high
fences). Farm management was based on the Corino method (IT Patent approved in
2019, IT201700005484A1), a set of agricultural practices developed by the farm owner and
focused on soil vitality and environmental health [16]. The method makes use of good
protection against erosion and the improvement of self-fertility by exploiting the role of
green manure and natural mulching to improve the soil structure. The strengthening of
the living organisms, helped by a gas exchange of oxygen/CO2, will provide sustainable
vitality in soil and permanent benefit for grapevines.

Here, vineyards have been rewarded by adopting Tuscan Maremma’s historical native
vine varieties (mainly Ciliegiolo, Sangiovese, Procanico, and Cannonau grigio). The vine
plants were reclaimed from a >50-year-old and semiabandoned vineyard; this choice
exploited the wealth of grapevine germplasm, both for the red and white vines selected
and retrieved within the farm. For vine disease containment, powdered sulfur of 80 kg/ha
and copper metal of less than 3 kg/ha/year were applied. The vine vegetation was
arranged on stakes without shoot topping to prolong the foliar activity until late in the
season, and pruning mixed with arch, spurred cordon, and sapling.

Considering the soil as a living organism to be preserved in its functions, the vineyard
location and grape varieties were chosen to minimize preplanting earthworks and to
maintain the natural grassland bed.

The vine rows were not oriented along the maximum gradient of the land, but instead
where natural terraces allowed the mitigation of soil erosion, to save the value of the
landscape and to maximize the physiological functions of the young plants [16]. In all
vineyards, the inter-row spaces were kept under natural grass cover throughout the year.
The grass was periodically mowed (two times/year), shredded together with plant residues,
and spread on the soil surface as a source of organic matter and to avoid possible plant
competition. The contemporary adoption of intercropping with mulches, green manure,
and periodic cultivation equipment with manual management (no mould-board plough
use) was aimed at enhancing vital soil processes both in the short and long term.
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Four vineyards were selected in the two different areas (Figure 2): Vigna Nuova
(VN) and Monte Cavallo (MC), in the LUC area, established in March 2014 after land-
use conversion from grassland; and Vigna Vecchia (VV) and Vigna Maliosa (VM), in the
no-LUC area, with pluridecennial vine plants.

A first soil sampling was carried out in June 2013 to gain information about mi-
croarthropod communities and soil texture in all sites. A few months later, in November
2014, two experimental subplots were selected within each area: (1) one managed by
straw mulching (mu) between vine plants, in order to reduce soil erosion, control weed
development, and improve soil moisture content; and (2) a second one kept as a control
plot without any mulching treatment. Different soil-sampling procedures were planned
according to the specific analyses to be performed. In each vineyard, three soil cores
(7 × 5 cm, 10 cm depth) were collected from the intrarow space, at 20 cm from the vine
plant, for zoological analysis. Close to these soil cores, three subsamples were collected by
auger to 20 cm depth for chemical (total organic C, total N, total CaCO3, pH, and electrical
conductivity) and physical (particle-size distribution) analyses.

2.2. Soil Properties and Microarthropod Communities

Soil texture was determined using the SediGraph method [34] and the USDA clas-
sification [35]. The extraction of micro-arthropods was carried out by Berlese-Tullgren
selectors for 5 days; specimens were collected in jars with 80% ethanol solution and were
counted at a stereomicroscope (10×–60×). Mean microarthropod density was calculated
by year (pre- and post-LUC), area (ancient vineyards, grassland, and new vineyards) and
plot (VV, VM, NV, and MC). To determine the effects of LUC, differences in the popula-
tion structure were analyzed among arthropod densities of three main abundant groups:
Acari, Collembola, and “other arthropods”. In order to assess the biological soil quality
(BSQar), the microarthropods were separated into biological form (BF) morphotypes (see
Parisi et al. [29]) according to their degree of morphological adaptation to soil life. Each BF
was associated with a score, ranging from 1 (surface-living organisms) to 20 (deep-living
organisms). Generally, the soil was considered to have a good “biological quality” when
the soil fauna community was abundant and diversified in well-adapted forms to an
edaphic environment. For estimating the complexity, stability, and thus general health of
soil ecosystem, the following diversity indices were also calculated: taxa richness (S), the
Margalef index [36], the Shannon diversity index (H’) [37], Buzas and Gibson’s evenness
index (E’) [38], Simpson’s index (1-D) [39], and the Berger–Parker index [40].

2.3. Mulching Effect on Soil

After LUC, each vineyard was split into two subplots: (1) added straw mulch (mu) and
(2) control without mulching (no-mulch). The soil chemical parameters in both subplots
were subjected to a Pearson’s correlation coefficient. The material for chemical analysis
was sampled by 3 topsoil (0–20 cm) cores randomly in each subplot using a hand-auger.
The samples were air-dried and sieved through a 2 mm mesh before analysis. For C and N
determination, a representative fraction from each sample was ground and homogenized
to 0.5 mm. TOC and TN were measured by dry combustion on a Thermo Flash 2000 CN
soil analyzer. Then, 70 mg soil was weighed into an Sn-foil capsule to analyze the total
C (organic C + mineral C) and N contents. Separately, 20 to 40 mg of soil was weighed
into an Ag-foil capsule, pretreated with 10% Cl until complete removal of carbonates, and
then analyzed for total C content (corresponding to the TOC content). The total equivalent
CaCO3 content was calculated from the difference between the total C measured before and
after the HCl treatment [41]. Soil pH was measured potentiometrically in a 1:2.5 soil:water
suspension. Electrical conductivity was measured in a 1:2 soil:water extract after 2 h of
shaking, overnight standing, and filtration.
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2.4. Data Analysis

The effect of LUC on arthropod density was assessed by comparing, within the same
year, VV, VM (no-LUC area), MC, and VN (LUC area) by means of one-way ANOVA
followed by Tukey’s post-hoc test. Richness (S), Shannon (H’), Simpson (1-D), evenness (E),
Margalef, and Berger–Parker were calculated and compared by the bootstrap method. The
effects of LUC were evaluated by mean BSQar values (Mann–Whitney test; p < 0.05). The
impact of mulching on soil chemical properties was assessed through one-way ANOVAs
within each vineyard. The relationships between soil parameters and the abundance
of microarthropod groups (Acari, Collembola and other arthropods) were evaluated by
correlation analysis (Pearson’s “r” coefficient, p < 0.05). All analyses were performed using
standard methods with PAST software [42].

3. Results

3.1. Soil Properties and Microarthropod Communities

In the no-LUC area, the soil texture was silty-clay (SIC), and in the pre-LUC area
it was clay-loam (CL) (Table 1). After LUC, no significant variations in the fine soil-
particle distribution were registered, and the textural class was unchanged. In the no-LUC
vineyards, in the second year, the sand percentage increased, probably due to light farming
interventions to prevent soil compaction.

Table 1. Soil textural classification by individual size-groups (%) of mineral particles.

2013 2014

Sand (%) Clay (%) Silt (%)
USDA
Class

Sand (%) Clay (%) Silt (%) USDA Class

Vigna Vecchia (VV) 15.66 43.79 40.55 silty_clay 21.56 39.19 39.25 clay_loam
Vigna Maliosa (VM) 10.97 43.25 45.78 silty_clay 35.75 37.09 32.15 clay_loam
Monte Cavallo (MC) 28.40 34.90 36.6 clay_loam 27.44 35.42 37.14 clay_loam
Vigna Nuova (VN) 30.88 34.73 34.39 clay_loam 32.68 34.23 33.09 clay_loam

On the whole, 6647 microarthropods were collected. The most abundant group
was Acari (61%), followed by Collembola (29%). The other microarthropod group was
composed of 21 biological forms (BFs). Araneida and Palpigrada were present only in
grasslands; and Coleoptera, Isopoda, and Embioptera disappeared in plots after planting
vineyards (post-LUC area). The soil dwellers (i.e., Protura, Diplura, Pseudoscorpiona,
Diplopoda, Pauropoda, and Symphyla) were sporadic but present.

Regarding abundance, no substantial difference was registered between LUC (meadow/
vineyard) and no-LUC (vineyard) areas, in the two years considered (2013: F1,11 = 2.988;
P = 0.146; 2014: F1,11 = 3.097; P = 0.109). Only light differences in total microarthropod
density were due to the plot (F3,11 = 9.4; P < 0.01), in 2013, with the lower density in VM;
however, this value of abundance was similar to that registered in MC, the long-standing
meadow; in 2014, no difference was detected (F3,11 = 1.380; P = 0.317).

The BSQar index showed the highest value in meadows (Figure 3). The second-year
evaluation (Y2) showed that the vineyard plantation did not affect soil quality despite the
soil perturbation, and the BSQar values were similar to the ancient vineyards (no-LUC)
(Mann–Whitney test, not significant at 5% level) (Figure 3). The decrease of BSQar value
after LUC was associated with a loss of six arthropod groups, especially euedaphic forms
in the no-mulch vineyards (Appendix A Table A1).
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Figure 3. Biological soil quality by BSQar index in the experimental areas. Data were expressed as
mean ± SD and 95% confidence interval by different letters. Significance was evaluated within the
year (Mann–Whitney test, p < 0.02).

By referring to vineyards, after LUC, the diversity richness of soil arthropods became
similar between areas (Table 2); the loss of richness in ex-meadow (post-LUC area) affected
the Shannon and Simpson’s indices, showing a decrease of relative frequencies of soil
dominant groups.

Table 2. Biodiversity indices calculated in the no-LUC area and LUC area: S (richness), N (total
abundance), H’(Shannon), E (Evenness), 1-D (Simpson’s). Significant differences are in bold (Monte
Carlo permutation test [42]).

2013 2014

Diversity
Index

No-LUC
Area

Pre-LUC
Area

p (eq)
No-LUC

Area
Pre-LUC

Area
p (eq)

S 11 19 13 12
N 550 1132 1241 293
H’ 1.05 1.07 0.72 1.64 1.28 0.00
E 0.26 0.15 0.00 0.40 0.30 0.04

1-D 0.47 0.50 0.43 0.73 0.55 0.00
Margalef 1.60 2.60 0.00 1.67 1.98 0.42

Berger- Parker 0.71 0.67 0.16 0.43 0.64 0.00

Concerning biodiversity, the meadow area showed high values of taxa richness of
microarthropods; furthermore, different groups were well represented in their natural soil
habitat (Figure 4). At the same time, the H’, 1-D, and Berger–Parker indices registered
in the old vineyard (no-LUC area) were similar to those of the meadow, probably due
to similar habitat conditions (inter-row long-term management within permanent cover
grass) (Table 2).
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Figure 4. Individual-based taxon rarefaction curves, by year and area, that differentially estimate the
relative importance of taxa richness change in composition of the arthropod community. Delimited
area around the curves indicates 95% confidence interval.

By including small and rare taxa, the rarefaction curve begins to level off at a new
plateau: pre-LUC meadows showed the highest diversity (Figure 4); however, after LUC,
the diversity-rarefaction curve denoted changes in taxa richness, independently of the
reduction of specimens (Figure 4).

3.2. Post-LUC Mulching Effect on Soil

The BSQar values registered in the second year were all ≥110 (Table A1), and no
significant decrease was registered between pre- and post-LUC areas (Mann–Whitney
test, P = 0.334). High values of biodiversity were obtained where the mulch was added.
Nevertheless, the application of a mulch layer closely around the vine plants changed the
arthropod assemblages in soils, promoting the presence of epe- and hemiedaphic forms in
both areas (Figure 5).

Figure 5. Composition of microarthropod communities by three morpho-functional levels in the different areas: (a) LUC
area and (b) no-LUC area, by mulching (mu) effect.

The effect of mulching was different in two areas (Table 3). In old vineyards, the
abundance and richness were similar, independent of the mulching addition; while the
other biodiversity indices were higher in plots where straw mulch was not added. A
positive effect of mulching on biodiversity was registered in new vineyards by determining
differences in S, H’, and 1-D.
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Table 3. Diversity indices of soil arthropods between different inter-row managements (mulch;
no mulch plots) in 2014 according to richness (S), total abundance of arthropods (N), Shannon
(H’), Evenness (E), Simpson’s (1-D), and Margalef. Significant differences are in bold (Monte Carlo
permutation test [42]).

Old Vineyard New Vineyard

Diversity
Index

Mulch No Mulch p (eq) Mulch No Mulch p (eq)

S 13 13 n.s. 16 12 0.0254
N 1946 1241 709 293
H’ 1.13 1.64 0.0001 1.51 1.28 0.0212
E 0.23 0.40 0.0001 0.28 0.30 0.6038

1-D 0.58 0.73 0.0001 0.64 0.55 0.0044
Margalef 1.58 1.69 0.6725 2.29 1.94 0.2107

Soil electrical conductivity (EC) increased with mulching in the new vineyard (F3,20 = 16.7;
p < 0.001), whereas it did not differ in the old vineyard (Figure 6). Soil TOC and TN con-
tents were generally low and did not significantly change related to the floor management,
except for a slight increasing trend under mulching (P = 0.68 and P = 0.81, respectively).

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 6. The evaluation of post-LUC mulching effects (mu) by separate ANOVAs on selected soil chemical properties
((a) pH, (b) TN, (d) EC, (e) TOC, (g) CaCO3 (h) C/N) (TOC = total organic carbon; TN = total nitrogen; EC = electrical
conductivity; CaCO3 = total equivalent Ca carbonate; C/N = Carbon-to-Nitrogen ratio) and the average of abundance
of three main edaphic animal groups, (c) Acari, (f) Collembola, (i) other arthropods in four different management areas
(no-LUC; no-LUC (mu); post-LUC; post-LUC (mu)). Error bars indicate the mean standard error and different letters show
statistically significant differences between variables (ANOVA; Tukey’s test, p < 0.05).
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The correlation analysis performed on soil properties showed a strong relationship
between TOC and TN (R2 = 0.97, p < 0.01) (Table 4).

Table 4. Pearson’s correlation coefficients (significance level, two-tailed test: p < 0.05 *; p < 0.01 **) showing interactions
among chemical properties of superficial soil samples and mean abundance of arthropod groups in different vineyards.

pH EC TOC TN CaCO3 Acari Collembola
Other
Arthr.

pH
EC 0.58 (**)

TOC −0.15 0.33
TN −0.1 0.39 0.97 (**)

CaCO3 0.96 (**) 0.56 (**) −0.3 −0.26
Acari −0.39 −0.16 0.16 0.18 −0.44 (*)
Coll. −0.24 −0.06 0.34 0.34 −0.28 0.84 (**)

other arthr. −0.21 −0.26 −0.21 −0.2 −0.22 0.52 (**) 0.28

Moreover, the abundance of Collembola and other arthropods were positively related
to the Acari (R2 = 0.84 **; R2 = 0.52 ** respectively), while the mites appeared to be negatively
affected by CaCO3 (R2 = −0.44 *).

4. Discussion

In the case study, soil arthropod biodiversity was used as an indicator to assess the
impact of LUC when planting vineyards in a meadow. In the Mediterranean region,
where susceptible land suffers the most degradation because of topographical and climate
characteristics [43], the habitat transformation should be carefully chosen according to the
soil and environmental specificities [44,45]. Differently from deep soil working [14,45], the
Corino method indicates preserving the top layer during a new vineyard planting to protect
the soil floor heritage. As soon as LUC was adopted, the complexity of microarthropod
communities indicated a short-term restored soil biological diversity [18]. A high number
of arthropods, belonging to different taxa, was recorded in the meadow, with Acari and
Collembola as dominating groups. Usually, identifying diversity richness is an important
indication of the management and preservation of biofunctionality of soil [23].

The entire soil arthropod community was promptly able to react to soil perturbation,
probably due to the maintenance of physical and chemical properties in the soil. Further-
more, according to Wong et al. [46], grapevine planting can cause a partial dissolution of
soil carbonates, strongly characterizing the mineral phase of the soil and subsequently
increasing the soluble salt concentration of the soil solution. It is extremely difficult for most
plants to survive in soil whose structure has been destroyed, leading to the clay particles
clogging the pore spaces [47,48]; also in vineyards [13]. In this study, the soil textural group
did not change post-LUC, remaining moderately fine (clay-loam class texture). Vineyard
age and vine age can represent a key issue for soil biota [31]. Among the tested vineyard
plots, after LUC, the total abundances of soil microarthropods, independent of the sampling
time and arthropod life cycles, were similar to those in the no-LUC areas. The method
allowed the preservation of several patterns of euedaphic groups: Acari; Collembola; and
some smaller Symphyla, Pauropoda, Diplura, and Hymenoptera Formicidae have been
surviving in the soil, and a few months after the planting, they recolonized areas. The spa-
tiotemporal patterns of Acari and Collembola may be due to changes in microclimatic soil
properties, adaptive phenological characteristics of the organisms themselves, or pressure
from a combination of different anthropogenic environmental change drivers [49,50].

The ANOVA showed only a slight difference in total microarthropod density due to
the plot (F3,11 = 9.9; P < 0.01) in 2013, with the lower density in VM; however, this figure
was similar to that registered in MC, the long-standing meadow. In 2014, concerning plot
or areas, no difference was detected.

An excessive reduction in biological soil components and the loss of microarthropod
species with unique functions in nutrient cycles may lead to degradation of soil and loss of
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agricultural productive capacity [51,52]. This aspect, not even adequately considered, is
now assuming importance in providing the basic information required for assessment of
sustainable ecosystem services in grape production [53–55]. Studies suggest that organically
managed fields contain greater abundance and diversity of arthropods than conventionally
managed ones [31,56], but evidence among different strategies in starting new vineyards is
not available. This study confirmed, in post-LUC areas, that some groups are very sensitive
to recent soil disturbance, such as pseudoscorpions or diplurans, and that their presence is
highly associated with environment and soil-specific parameters [57].

Under added mulching, there was a minor increase in the average OC and total N
contents. However, overall, the chemical parameters were similar. Only the electrical
conductivity (EC) in the new vineyard was significantly higher compared to sites with
no-mulching management, supporting soil mineral composition and interactions with
soil organic matter and microbial activity [44]. Whereas mulching can provide immediate
effects in terms of soil erosion reduction, soil temperature, and moisture control, its con-
tribution to soil organic carbon enrichment also may require longer periods, especially in
fine-textured or clayey soils [58]. Field screening performed in experimental sites indicated
facilitated growth of new plants, probably favored by easy rooting and availability of
rich oligo-elements [59]. In the present study, the scarce accumulation of organic matter
in the upper soil layers seemed to have no influence on the abundance of microarthro-
pods and might not necessarily be a limiting factor for the qualitative performance of the
vineyard [60].

According to Decaëns et al. [61], the most abundant microarthropod groups were the
soil-dwelling organisms: Acari (more than 50%) and Collembola (about 30%). Considering
Acari, the highest presence of oribatids, living in dense clusters in the decomposing litter of
the upper soil layers, is favored by thick organic horizons, acidic conditions, and recalcitrant
litter materials [62].

On the whole, the complexity of the microarthropod population structure did not
show significant differences, although the number of euedaphon groups was quite high, as
evidenced in all plots by the BSQar values. The soil biological quality index proved to be a
good indicator of soil-stress conditions at different levels. Protura, Diplura, and Pauropoda,
even if they affect soil processes less compared to soil-dwelling organisms [27], are highly
sensitive to soil-stress conditions, and can be relevant for biomonitoring purposes [29,63].
Taxa richness and other ecological indicators, such as the Shannon and Simpson’s diversity
indexes, confirmed the evidence showed by the BSQar index, where the grassland is the
habitat with the highest biodiversity [64]. According to Gope and Ray [65], the dynamics of
microarthropods were probably dependent on the combined effect of vegetation cover and
soil characteristics. Not all groups responded to the same extent: soil microarthropods with
a larger body size appeared to be primarily affected by short-term consequences of LUC
(disturbance, loss of habitat) [60], and after LUC, some functional groups, as the predators
Palpigrada and Araneidae, disappeared. Nevertheless, the application of a mulch layer
significantly increased the abundance of different arthropod predators [66], especially
predator mites. Overall, a more diverse and abundant soil microarthropod community
seems to provide better soil functions by reflecting the resource availability in the soil
ecosystem [64].

5. Conclusions

Monitoring soil biodiversity enables the detection of biodiversity hot spots, as well as
areas susceptible to changes, and helps to achieve successful implementation of ecosystem
management. According to Novara et al. [43], the high eco-mosaic complexity of landscape
significantly contributes to the ecosystem resilience. Despite the short time elapsed from
LUC, the agronomic strategy employed in planting and managing new vineyards shows a
great potential regarding landscape preservation. The strategy provides significant support
to address and harmonize changes that are brought about by social, economic, and envi-
ronmental processes. Based on the FAO input [3], new approaches, inspired by traditional
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agricultural management, can limit the problems caused by the continuous simplification
of agro-ecosystems and the “one-size-fits-all” approach to vineyard management to obtain
economic benefits [43]. The economic benefits of adopting a targeted approach rather than
a conventional one for vineyard management can improve outputs in crop yield and fruit
quality and/or reduced inputs [47].

Our research will continue in the future with the aim of monitoring/determining
long-term effects of LUC based on the selected soil biological quality indicators. Monitoring
soil quality means improving soil management so that it functions optimally now and is
not degraded for future use.

6. Patents

Farming was done according to the Corino method (IT Patent approved in 2019,
IT201700005484A1), a completely vegetal-based, closed-cycle agricultural method.

The object of the patent for the Corino method is a process to produce grapes that
comprises several phases, such as the use of native vines. As described in the patent, the
Corino method represents a humanized system with minimal environmental impact, and
constitutes a significant step in technological development, as well as a fascinating return
to origins, quality, and excellence.

In addition to the Corino method, the patent covers two products; namely, the grapes
and the wine obtained through the Corino method. The main essential characteristics of
the wine described in the patent are the absence of added sulfur dioxide, and the absence
of additional chemical and microbiological interventions during its production.
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Appendix A

Table A1. EMI values for biological forms (BF) and BSQar indexes calculated by three morpho-functional levels [29] in the
first (Y1) and second (Y2) years, in the different areas (no-LUC, LUC), considering mulching (mu) effect.

Y1 Y2

No-LUC Area Pre-LUC Area No-LUC Area Post-LUC Area

BF VV VM Pre-VN
Pre-
MC

VV
(mu)

VV VM
(mu)

VM
VN

(mu)
VN MC

(mu)
MC

Acari 20 20 20 20 20 20 20 20 20 20 20 20
Collembola 20 20 20 20 20 20 20 20 20 20 20 20
Diplura 20 20 20 20 20 20
Pauropoda 20 20 20 20 20 20 20 20 20
Protura 20 20 20 20
Pseudoscorpionida 20 20 20
Embioptera 20 20
Palpigrada 20
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Table A1. Cont.

Y1 Y2

No-LUC
Area

Pre-LUC Area No-LUC Area Post-LUC Area

BF VV VM
Pre-
VN

Pre-
MC

VV
(mu)

VV VM
(mu)

VM
VN

(mu)
VN MC

(mu)
MC

Chilopoda 20 10 10 10 10 10 10 10 10
Coleoptera 6 20 20 20 6 1 6
Diplopoda 20 20 10 20 20 20 20 20
Symphyla 20 20 20 20 20 20 20

Isopoda 10 10 10 10 10 10 10
Diptera larvae 10 10 10 10 10 10 10 10 10 10 10
Coleoptera
larvae 10 10 10 10 10 10 10
Hymenoptera 5 5 5 5 5 5
Araneidae 5 5

Psocoptera 1 1 1 1
Hemiptera 1 1 1 1
Thysanoptera 1 1 1
Diptera 1 1 1 1

BSQar * 96 93 247 134 156 185 146 141 173 126 167 110

References

1. Egidi, G.; Zambon, I.; Tombolin, I.; Salvati, L.; Cividino, S.; Seifollahi-Aghmiuni, S.; Kalantari, Z. Unraveling Latent Aspects of
Urban Expansion: Desertification Risk Reveals More. Int. J. Environ. Res. Public Health 2020, 17, 4001. [CrossRef]

2. Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to
make land degradation neutrality and restoration work. Land 2018, 7, 133. [CrossRef]

3. FAO. The State of Food and Agriculture Trends and Challenges. 2017. Available online: http://www.fao.org/3/a-i6583e.pdf
(accessed on 16 March 2021).

4. Kanianska, R. Agriculture and Its Impact on Land-Use, Environment, and Ecosystem Services, Landscape Ecology. In Landscape
Ecology-The Influences of Land Use and Anthropogenic Impacts of Landscape Creation; Almusaed, A., Ed.; InTech: Rijeka, Croatia, 2016;
pp. 1–138. [CrossRef]

5. FAO-ITPS. Protocol for the Assessment of Sustainable Soil Management; FAO: Rome, Italy, 2020; Available online: http://www.fao.
org/fileadmin/user_upload//GSP/SSM/SSM_Protocol_EN_006.pdf (accessed on 9 March 2021).

6. Hansen, A.J.; DeFries, R.S.; Turner, W. Land use change and biodiversity. Land Chang. Sci. 2004, 6, 277–299.
7. Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.;

Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective.
Anthropocene 2015, 12, 29–41. [CrossRef]

8. Conti, D.F. Conservation agriculture and soil fauna: Only benefits or also potential threats? A review. ECronicon Agric. 2015, 2.5,
473–482.

9. Van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer,
R.E. Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ. Res. Lett. 2017,
12, 124007. [CrossRef]

10. Nejadhashemi, A.; Wardynski, B.; Munoz, J. Evaluating the impacts of land use changes on hydrologic responses in the
agricultural regions of Michigan and Wisconsin. Hydrol. Earth Sys. Sci. Discuss 2011, 8, 3421–3468. [CrossRef]

11. Vandermeer, J.; Van Noordwijk, M.; Anderson, J.; Ong, C.; Perfecto, I. Global change and multi-species agroecosystems: Concepts
and issues. Agric. Ecosyst. Environ. 1998, 67, 1–22. [CrossRef]

12. De Groot, G.A.; Jagers op Akkerhuis, G.A.J.M.; Dimmers, W.J.; Charrier, X.; Faber, J.H. Biomass and diversity of soil mite
functional groups respond to extensification of land management, potentially affecting soil Ecosystem Services. Front. Environ.
Sci. 2016, 4, 15. [CrossRef]

13. Costantini, E.A.; Agnelli, A.E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G. Short term recovery of
soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming. Soil 2015, 1, 443–457.
[CrossRef]

14. Costantini, E.A.; Valboa, G.; Gagnarli, E.; Mocali, S.; Fabiani, A.; Priori, S.; Simoni, S.; Storchi, P.; Perria, R.; Vignozzi, N.; et al. Soil
Resilience and Yield Performance in a Vineyard Established after Intense Pre-Planting Earthworks, PICO presentation in Session
SSS10.7. In Proceedings of the European Geosciences Union General Assembly, Wien, Austria, 23–28 April 2017.

267



Land 2021, 10, 358

15. Mania, E.; Piazzi, M.; Gangemi, L.; Rossi, A.E.; Cassi, F.; Isocrono, D.; Pedullà, M.; Guidoni, S. The Soil Biodiversity as a Support
to Environmental Sustainability in Vineyard. In Proceedings of the XI International Terroir Congress, Willamette Valley, OR, USA,
10–14 July 2016; pp. 316–320.

16. White, R.E. Soils for Fine Wine, 2nd ed.; Winetitles; Oxford University Press: New York, NY, USA, 2003; pp. 1–279.
17. Morando, A.; Lavezzaro, S.; Corradi, C. Costi d’impianto e produzione del vigneto. Vitenda 2018, 23, 81–94.
18. Corino, L. The Essence of Wine and Natural Viticulture; Quintadicopertina: Genova, Italy, 2018; pp. 1–114.
19. Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 2008, 363,

543–555. [CrossRef] [PubMed]
20. Longbottom, M. Managing Grapevine Nutrition in a Changing Environment; Research to Practice Manual Australian Wine Research

Institute: Adelaide, Australia, 2009.
21. Balser, T.C.; Gutknecht, J.L.M.; Liang, C.F. How Will Climate Change Impact Soil Microbial Communities? In Soil Microbiology and

Sustainable Crop Production; Dixon, G.R., Tilston, E.L., Eds.; University of Reading Press: Reading, UK, 2010; pp. 373–397.
22. Bardgett, R.D.; Hobbs, P.J.; Frostegard, A. Changes in soil fungal: Bacterial biomass ratios following reductions in the intensity of

management of an upland grassland. Biol. Fertil. Soils 1996, 22, 261–264. [CrossRef]
23. Brussaard, L.; Behan-Pelletier, V.; Bignell, D.E.; Brown, V.K.; Didden, W.; Folgarait, P.; Fragoso, C.; Freckman, D.W.; Gupta,

V.V.S.R.; Hattori, T. Biodiversity and ecosystem functioning in soil. Ambio 1997, 26, 563–570.
24. Wall, D.; Nielsen, U.N. Biodiversity and Ecosystem services: Is it the same below ground? Nat. Educ. Knowl. 2012, 3, 8.
25. Nakamoto, T.; Jamagishi, J.; Miura, F. Effect of reduced tillage on weeds and soil organisms in winter wheat and summer maize

cropping on Humic Andosols in Central Japan. Soil Till. Res. 2006, 85, 94–106. [CrossRef]
26. Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and

ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [CrossRef]
27. Barrios, E. Soil biota ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [CrossRef]
28. Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, W.H.; van der Putten, W.D.H. Ecological Linkages between aboveground

and belowground biota. Science 2004, 304, 1629–1633. [CrossRef] [PubMed]
29. Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. micro-arthropod communities as a tool to assess soil quality and

biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [CrossRef]
30. Menta, C.; Conti, F.D.; Pinto, S.; Bodini, A. Soil Biological Quality index (BSQ—ar): 15 years of application at global scale. Ecol.

Indic. 2017, 85, 773–780. [CrossRef]
31. Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M.R.; Corino, L.; Simoni, S. Study

case of micro-arthropod communities to assess soil quality in different managed vineyards. Soil 2015, 1, 527–536. [CrossRef]
32. Galli, L.; Capurro, M.; Menta, C.; Rellini, I. Is the QBS—ar index a good tool to detect the soil quality in Mediterranean areas? A

cork tree Quercus suber L. (Fagaceae) wood as a case of study. Ital. J. Zool. 2014, 81, 126–135. [CrossRef]
33. Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and

Framework for Evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [CrossRef]
34. Andrenelli, M.C.; Fiori, V.; Pellegrini, S. Soil particle-size analysis up to 250μm by X-ray granulometer: Device set-up and

regressions for data conversion into pipette-equivalent values. Geoderma 2013, 192, 380–393. [CrossRef]
35. USDA ARS/NRCS. Soil Quality Test Kit Guide, Section II. Background & Interpretive Guide for Individual Tests. Available

online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052490.pdf (accessed on 9 March 2021).
36. Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71.
37. Shannon, C.A. Mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
38. Buzas, I.A.; Gibson, T.G. Species diversity: Benthonic Forminifera in western North Atlantic. Science 1969, 163, 72–75. [CrossRef]
39. Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [CrossRef]
40. Berger, W.H.; Parker, F.L. Diversity of planktonic foraminifera in deep-sea sediments. Science 1970, 168, 1345–1347. [CrossRef]
41. Sequi, P.; De Nobili, M. Frazionamento del Carbonio Organico. In Metodi di Analisi Chimica del Suolo; Violante, P., Ed.; Franco

Angeli: Milano, Italy, 1970; pp. 1–13.
42. Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeon.

Electr. 2001, 4, 9.
43. Novara, A.; Cerdà, A.; Gristina, L. Sustainable vineyard floor management: An equilibrium between water consumption and soil

conservation. Environ. Sci. Health 2018, 5, 33–37. [CrossRef]
44. Chou, M.Y.; Vanden Heuvel, J.; Bell, T.H.; Panke-Buisse, K.; Kao-Kniffin, J. Vineyard under—vine floor management alters soil

microbial composition while the fruit microbiome shows no corresponding shifts. Sci. Rep. 2018, 8, 11039. [CrossRef]
45. Gay, S.H.; Louwagie, G.; Sammeth, F.; Ratinger, T.; Cristoiu, A.; Marechal, B.; Prosperi, P.; Rusco, E.; Terres, J.; Adhikari, K.; et al.

Addressing soil degradation in EU agriculture: Relevant processes practices and policies. In Technical Report JSC on the Project
‘Sustainable Agriculture and Soil Conservation (SoCo); (JRC Working Papers JRC50424); Louwagie, G., Gay, S.H., Burrell, A., Eds.;
European Commission: Luxembourg, 2009. [CrossRef]

46. Wong, V.N.L.; Dalal, R.C.; Greene, R.S.B. Carbon dynamics of sodic and saline soils following gypsum and organic material
additions: A laboratory incubation. Appl. Soil Ecol. 2009, 41, 29–40. [CrossRef]

47. Proffitt, T.; Bramley, R.; Lamb, D.; Winter, E. Precision Viticulture–A New Era in Vineyard Management and Wine Production; Winetitles
Pty Ltd.: Ashford, Australia, 2006; pp. 1–90.

268



Land 2021, 10, 358

48. Capello, G.; Biddoccu, M.; Ferraris, S.; Cavallo, E. Effects of Tractor Passes on Hydrological and Soil Erosion Processes in Tilled
and Grassed Vineyards. Water 2019, 11, 2118. [CrossRef]

49. Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.;
Caruso, G.; et al. Soil ecosystem functions in a high—density olive orchard managed by different soil conservation practices.
Appl. Soil Ecol. 2019, 134, 64–76. [CrossRef]

50. Taylor, A.R.; Pflug, A.; Schroeter, D.; Wolter, V. Impact of micro-arthropod biomass on the composition of the soil fauna community
and ecosystem processes. Eur. J. Soil Biol. 2010, 46, 80–86. [CrossRef]

51. Rana, N.; Rana, S.A.; Khan, H.A.; Sohail, M.J.I. Assessment of handicaps owing to high input (hip) farming on the soil macro—
invertebrates diversity in sugarcane field. Pak. J. Agric. Sci. 2010, 47, 271–278.

52. Wolters, V.; Silver, W.L.; Bignell, D.E.; Coleman, D.C.; Lavelle, P.; van der Putten, W.H.; de Ruiter, P.; Rusek, J.; Wall, D.H.;
Wardle, D.A.; et al. Effects of global changes on above—And belowground biodiversity in terrestrial ecosystems: Implications for
ecosystem functioning. BioScience 2000, 50, 1089–1098. [CrossRef]

53. Cheeke, T.E.; Cruzan, M.B.; Rosenstiel, T.N. A field evaluation of arbuscular mycorrhizal fungal colonization in multiple lines of
Bt and non-Bt maize. App. Environ. Microbiol. 2013, 79, 4078–4086. [CrossRef]

54. Pizzigallo, A.; Granai, C.; Borsa, S. The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. J.
Environ. Manag. 2008, 86, 396–406. [CrossRef] [PubMed]

55. Heller, M. Food Product Environmental Footprint Literature Summary: Wine. In Monographic Report by: Center for Sustainable
Systems University of Michigan; State of Oregon, Dept Environmental Quality: Portland, Oregon, USA, 2017; pp. 1–17.

56. Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol.
Conserv. 2005, 122, 113–130. [CrossRef]

57. Ruiz, N.; Lavelle, P.; Jimenez, J. Soil Macrofauna Field Manual: Technical Level; Food and Agriculture Organization of The United
Nations (FAO): Rome, Italy, 2008; p. 100.

58. Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The Immediate Effectiveness of Barley Straw Mulch
in Reducing Soil Erodibility and Surface Runoff Generation in Mediterranean Vineyards. Sci. Total Environ. 2016, 547, 323–330.
[CrossRef] [PubMed]

59. Rawson, G.A. The Influence of Geology and Soil Characteristics on the Fruit Composition of Winegrape (Vitis Vinifera cv. Shiraz)
Hunter Valley New South Wales: Implications for Regionality in the Australian Wine Industry. Ph.D. Thesis, University of
Newcastle, Callaghan, Australia, 2002.

60. Postma-Blaauw, M.B.; Goede, R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L. Soil biota community structure and abundance under
agricultural intensification and extensification. Ecology 2010, 91, 460–473. [CrossRef] [PubMed]

61. Decaëns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.J.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol.
2006, 42, S23–S38. [CrossRef]

62. Maraun, M.; Scheu, S. The structure of oribatid mite communities (Acari Oribatida): Patterns mechanisms and implications for
future research. Ecography 2000, 23, 374–382. [CrossRef]

63. Menta, C. Soil Fauna Diversity–Function Soil Degradation Biological Indices Soil Restoration. In Agricultural and Biological
Sciences “Biodiversity Conservation and Utilization in a Diverse World”; Lameed, G.A., Ed.; InTech: Rijeka, Croatia, 2012. Avail-
able online: https://www.intechopen.com/books/biodiversity-conservation-and-utilization-in-a-diverse-world/soil-fauna-
diversity-function-soil-degradation-biological-indices-soil-restoration (accessed on 7 March 2021).

64. Menta, C.; Leoni, A.; Gardi, C.; Conti, F.D. Are grasslands important habitats for soil micro-arthropod conservation? Biodivers.
Conserv. 2011, 20, 1073–1087. [CrossRef]

65. Gope, R.; Ray, D.C. Ecological studies on soil microarthropods in Banana (Musa sp.) Plantation of Cachar district (Assam). Indian
J. Environ. Ecoplan. 2006, 12, 105–109.

66. Miura, F.; Nakamoto, T.; Kaneda, S.; Okano, S.; Nakajima, M.; Murakami, T. Dynamics of soil biota at different depths under two
contrasting tillage practices. Soil Biol. Biochem. 2008, 40, 406–414. [CrossRef]

269





land

Article

Responses of Soil Infiltration to Water Retention Characteristics,
Initial Conditions, and Boundary Conditions

Lesheng An 1, Kaihua Liao 2,* and Chun Liu 1

��������	
�������

Citation: An, L.; Liao, K.; Liu, C.

Responses of Soil Infiltration to Water

Retention Characteristics, Initial

Conditions, and Boundary

Conditions. Land 2021, 10, 361.

https://doi.org/10.3390/land10040361

Academic Editor: Chiara Piccini

Received: 27 February 2021

Accepted: 23 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Resources and Environment, Anqing Normal University, Anqing 246133, China;
als00316@163.com (L.A.); yixiang0302@126.com (C.L.)

2 Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology,
Chinese Academy of Sciences, Nanjing 210008, China

* Correspondence: khliao@niglas.ac.cn; Tel.: +86-25-86882139

Abstract: (1) Background: Simulation of soil water infiltration process and analysis of its influencing
factors are important for water resources management. (2) Methods: In this study, the relative
contributions of the soil water retention characteristics (SWRC) estimation, initial water content, and
constant pressure head at upper boundary to the cumulative infiltration under various soil conditions
were quantified based on the 1-D Richards’ equation and 900 scenarios. Scenario simulations were
performed for two SWRC estimation methods (Jensen method and Rosetta); three different initial
water contents (0.15, 0.20, and 0.25 cm3/cm3); five different constant pressure heads (0.5, 1, 2, 4, and
8 cm); and thirty soil samples with varying texture and bulk density. (3) Results: Rosetta representing
the drying branch of the SWRC yielded higher simulated cumulative infiltration compared with the
Jensen method representing the wetting branch of the SWRC. However, the Jensen method–predicted
cumulative infiltration fluxes matched well with the measured values with a low RMSE of 0.80 cm.
(4) Conclusions: The relative contribution of the SWRC estimation method to cumulative infiltration
(19.1–72.2%) was compared to that of constant pressure head (14.0–65.5%), and generally greater
than that of initial water content (2.2–29.9%). Findings of this study have practical significance for
investigating the transport of water, nutrients, and contaminants in the unsaturated zone.

Keywords: soil infiltration; Jensen method; Rosetta; 1-D Richards’ equation

1. Introduction

Knowledge of the soil water infiltration process is important for the management of
water resources across spatio-temporal scale [1]. For example, urban development causes
water losses. Some of them can have a substantial effect on the catchment, including soil
drought. To estimate water losses due to urbanization, we need to know the process of
water infiltration [2–4]. In addition, water infiltration has a substantial influence on avail-
ability of water and nutrients for plants, microbial activity, and chemical weathering [5,6].
In the 20th century, numerous models were established to study the process of soil infiltra-
tion, such as Richards’ equation [7], the Green–Ampt model [8], the Philip model, and the
Horton model [9,10]. Richards’ equation had rigorous physical basis since this model was
derived based on the Darcy–Buckingham Law and mass conservation for water movement
in unsaturated soils [11]. Therefore, it has been often applied as a reference to test the
accuracy of the other infiltration models [12–14].

Analytical solutions of Richards’ equation require the soil water retention curve
(SWRC), which relates pressure head and soil water content. Soil water infiltration has
been widely reported to be influenced by the SWRC, which is closely related to basic
soil properties (e.g., texture and bulk density) [15]. However, direct measurement of the
SWRC is time consuming and laborious [16]. Pedotransfer functions (PTFs) (e.g., Rosetta)
were often used to predict the SWRC from easily measurable soil properties [17]. For
example, Liao et al. [18] applied PTFs to assess the SWRCs and their spatial variability in
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Qingdao City, China. Minasny et al. [19] used artificial neural networks (ANNs) coupled
with bootstrap aggregation to predict the SWRC and hydraulic conductivities. However,
the majority of PTFs were developed to estimate the drying branch of the SWRC and
neglected the wetting branch of the curve. The hysteresis phenomenon was always found
when measuring the SWRC in laboratory [20–22]. Recently, Jensen et al. [23] proposed a
theoretical approach to predict the drying branch of the SWRC from soil texture.

Richards’ equation can be solved analytically with simple geometric condition as well
as initial and boundary conditions [24,25]. Previous studies have found that soil infiltration
was influenced by the initial water content. For example, Hino et al. [26] indicated that the
loss of infiltrated rainfall was significantly correlated with the initial water content when it
does not exceed the infiltration rate of the soil. Leuther et al. [27] found that the infiltration
front stability is dependent on the initial water content of the soil from two orchards in
Israel. In addition, the boundary condition was also found to affect the water infiltration of
soil in previous studies. As reported by Feng et al. [28], the higher water ponding depth
at the soil surface induced a monotonic increase in infiltration rate for a water-repellent
sand. A similar result was also observed by Hsu et al. [29] for prewetted sand columns.
In this case, the relative impact of the SWRC estimation on the soil infiltration may rely
on the settings of the initial and boundary conditions. Previous studies mostly considered
only one or two factors affecting soil infiltration (e.g., Hsu et al. [29], Lassabatere et al. [30],
and Bughici and Wallach [31]). Only a few studies assessed the coupling effects of multiple
factors on soil infiltration. For example, Gong et al. [15] evaluated the coupling effects of
surface charges, adsorbed counterions, and grain-size distribution on soil water infiltration.
However, the response of soil infiltration to the interactions among the SWRC estimation,
initial water content, and boundary condition has been rarely investigated.

The objectives of this study were to (i) compare the Jensen method– and Rosetta-
predicted SWRC for simulating soil infiltration process based on an indoor downward
water infiltration experiment in a soil column and (ii) quantify the relative contributions
of the SWRC estimation, initial water content, and boundary condition to soil infiltration
based on scenario analysis, with consideration of various soil conditions.

2. Materials and Methods

2.1. Soil Data Resources

Thirty soil samples were selected from the Unsaturated Soil Hydraulic Database (UN-
SODA) database [32] (Table 1). The soil particle-size distribution, organic matter content
(OMC), and bulk density (BD) of the 30 soils were provided. The modified logistic growth
(MLG) model was applied to obtain the full description of soil particle-size distribution [33]:

W = 1/(1 + a * exp (−b * Dc)), (1)

where W is the cumulative weight percentage (%) corresponding to particle diameter D
(μm), and a, b and c are empirical parameters. Figure 1 shows that the predicted cumulative
grain-size distribution by using the MLG model matched well with the measured one.
The clay (<0.002 mm), silt (0.002–0.05 mm), fine sand (0.05–0.5 mm), and coarse sand
contents (0.5–2 mm) of each soil sample were then determined. From Table 1, the BD, OMC,
coarse sand, fine sand, silt, and clay contents ranged between 0.72–1.81 g/cm3, 0.00–5.60%,
0.00–80.00%, 4.40–100.00%, 0.00–55.91%, and 0.00–62.00%, respectively, indicating a large
discrepancy among different samples. In addition, it was also found that the content of
organic matter in soil with low BD was generally higher [34].
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Table 1. Basic soil properties of the 30 soil samples selected from the Unsaturated Soil Hydraulic
Database UNSODA.

Soil Code
Bulk Density

(g/cm3)
Organic

Matter (%)
Coarse

Sand (%)
Fine Sand

(%)
Silt (%) Clay (%)

SC1010 1.64 0.01 7.90 75.10 14.00 3.00
SC1011 1.52 - 7.30 75.20 14.50 3.00
SC1012 1.40 - 9.50 73.00 15.00 2.50
SC1013 1.49 - 8.00 77.00 13.00 2.00
SC1014 1.53 - 8.40 78.60 11.00 2.00
SC1015 1.72 - 8.30 73.70 12.00 6.00
SC1020 1.61 - 80.00 10.00 5.50 4.50
SC1021 1.58 - 72.00 17.00 5.00 6.00
SC1022 1.60 - 76.30 13.00 6.40 4.30
SC1023 1.67 - 78.40 15.60 4.00 2.00
SC1024 1.68 - 72.30 22.70 3.00 2.00
SC1030 1.48 1.70 8.60 70.40 13.70 7.30
SC1031 1.48 0.20 9.30 69.70 13.20 7.80
SC1032 1.53 0.10 11.00 69.00 12.20 7.80
SC1041 1.51 0.78 7.50 85.50 5.00 2.00
SC1300 1.26 - 0.03 38.81 29.77 31.40
SC1301 1.27 - 0.03 38.81 29.77 31.40
SC1310 1.60 - 0.00 95.60 2.40 2.00
SC1410 1.41 - 0.00 100.00 0.00 0.00
SC2020 0.72 5.60 0.00 4.40 33.60 62.00
SC2021 0.89 5.60 0.00 4.40 33.60 62.00
SC2022 0.75 5.60 0.00 4.40 33.60 62.00
SC2310 1.71 - 9.99 89.29 0.72 0.01
SC3340 1.41 0.89 16.01 81.81 2.17 0.02
SC4690 1.32 - 0.06 23.31 54.83 21.80
SC4700 1.28 - 0.08 11.21 55.91 32.79
SC4710 1.28 - 0.01 50.69 37.79 11.51
SC4720 1.48 - 8.90 82.61 8.49 0.00
SC4940 1.76 - 38.02 35.11 0.57 26.30
SC4941 1.81 - 40.90 31.13 0.27 27.70

Figure 1. Measured and predicted cumulative grain-size distribution curve for soil sample with a
code of 3340 (SC3340) by using the modified logistic growth model.

2.2. The Jensen Method

Jensen et al. [23] developed a theoretical approach to predict the drying branch of
the SWRC from texture by scaling volumetric particle fractions to pore volume fractions.
The reason is that there is a similar shape between the particle-size distribution and the
SWRC [35]. They proposed five functions for water contents at pF 1.7, 2.0, 2.2, 2.7, and 3.0.
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Recently, Liao et al. [36] further modified the Jensen method for estimating the wetting
branch of the SWRC. For pF 1.7, 2.0, and 2.2, the functions of water contents are expressed as

θ(Ψ) = ω θs (1 − (VCS + β1 VFS) * (VCS + VFS)), (2)

where ω is an empirical parameter, θs is the saturated water content, VCS and VFS are the
relative volume coarse sand and fine sand, respectively, and β1 is a parameter reflecting the
water filling degree of the pores of the fine sand fraction. For pF 2.7 and 3.0, the functions
of water contents are obtained:

θ(Ψ) = ω θs (1 − (VCS + β1 VFS + β2 VS) * (VCS + VFS + VS)), (3)

where vs. is the relative volume silt, and β2 is a parameter reflecting the water filling
degree of the pores of the silt fraction. The ω and β1 values ranged between 0.63–0.72 and
0.87–0.96 for the five pF values, respectively, while the β2 value equaled to 1 at pF 2.7 and
3.0. The obtained five data pairs of pressure head and water content were then used to
parameterize the van Genuchten [20] model to predict the continuous wetting branch of
the SWRC. The van Genuchten model is given as

θ(h) = θr + (θs − θr)/[1 + (α h) n] (1 − 1/n), (4)

where θr is the residual water content (cm3/cm3), and α and n are shape-defining parameters.
Rosetta implemented five hierarchical PTFs for the estimation of SWRC [17]. The

hierarchical in PTFs allowed the estimation of van Genuchten model parameters using
limited (textural classes only) to more extended (texture, BD, and one or two water retention
points) input data. Rosetta was based on ANN analyses combined with the bootstrap
method, thus allowing the program to provide uncertainty estimates of the predicted
SWRC. In this study, for a comparison purpose, the soil water retention parameters were
predicted with both the modified Jensen method [36] (representing the wetting branch of
the SWRC) and the Rosetta software [17] (representing the drying branch of the SWRC)
using particle-size distribution and bulk density.

2.3. Soil Water Infiltration Experiment

An indoor ponded infiltration experiment was performed in a single vertical column
of uniformly packed loam passed through a 2 mm sieve. The soil BD, OMC, coarse sand,
fine sand, silt, and clay contents were 1.40 g/cm3, 2.04%, 0.50%, 45.11%, 44.80%, and 9.59%,
respectively. θs was determined as 0.372 cm3/cm3 using the gravimetric method, while the
saturated hydraulic conductivity (Ks) was measured as 0.057 cm/min in the laboratory by
variable falling head method. Figure 2 shows the sketch map of the experiment equipment.
The soil column had a size of 60 cm in height and 18.3 cm in width. There were gravel
layer and drainage room under the soil column. After installing the soil column, the
height of the Markov bottle was then fixed to ensure ponded infiltration under the constant
pressure head of 2 cm. The Markov bottle readings were recorded in the process of soil
infiltration. The experiment was over when the water was overflowed from the drainage.
Due to the short duration of the experiment, the effect of evaporation on soil infiltration
can be neglected.
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Figure 2. Sketch map of the soil water infiltration experiment equipment.

2.4. Numerical Method and Scenario Simulation

The 1-D Richards’ equation was employed to simulate the soil infiltration process and
can be formulated as

∂θ/∂t = ∂/∂z [K (∂h/∂z + 1)], (5)

where t is time, z is the spatial coordinate, and K is the unsaturated hydraulic conductivity,
which can be determined by the Mualem [37] model. The solution of Equation (5) requires
knowledge of the initial soil profile water distribution:

θ(z, t) = 0.08 cm3/cm3 t = 0, (6)

The upper boundary condition is defined by the constant pressure head at the soil surface:

h(z, t) = 2 cm z = 0, t > 0, (7)

While the lower boundary condition was defined as the free drainage at the depth of
60 cm:

∂h/∂z = 0 z = 60 cm, t > 0, (8)

The 1-D Richards’ equation was solved by the Galerkin finite element method. In
order to assess the coupling effects of the SWRC estimation, initial water content and upper
boundary condition on soil infiltration with consideration of various soil conditions, a
total of 900 scenarios were established: (i) 30 soil samples from the UNSODA database
representing different soil conditions; (ii) two SWRC estimations (using the Jensen method
and Rosetta software [17]) reflecting hysteresis impacts on soil infiltration; (iii) three initial
water contents which are 0.15, 0.20, and 0.25 cm3/cm3, indicating the relative dry, inter-
mediate and relatively wet conditions, respectively; and (IV) five constant pressure head
values (0.5, 1, 2, 4, and 8 cm) at the upper boundary. For each soil sample, the Ks value was
estimated with Rosetta using soil texture and bulk density. All scenario simulations were
run with the same lower boundary condition (free drainage).

2.5. Evaluation Criteria and Contribution Rate Analysis

The performance of the model was evaluated by the coefficient of determination
(R2), the root mean squared error (RMSE). A good model will have a high R2 and low
RMSE. The multiple regression method was applied to quantify the relative contribution
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rates of different influencing factors to cumulative infiltration for each soil sample. The
standardized regression equation can be expressed as

YCI = a1 X1 + a2 X2 + a3 X3, (9)

where YCI is the standardized cumulative infiltration, a1, a2, and a3 are the standardized
regression coefficients, and X1, X2, and X3 are the standardized values of the independent
variables. The classical approach of the dummy variables was used for qualitative variable,
i.e., the SWRC estimation method (1 for Jensen method and 0 for Rosetta software). The
relative contribution rate of each factor to cumulative infiltration (CRi) can be calculated as

CRi = |ai|/(|a1| + |a2| + |a3|) (10)

3. Results and Discussion

3.1. Test of the Jensen Method and Rosetta Software for Simulating Soil Water Infiltration

The Jensen method and Rosetta software were tested for simulating the indoor soil
infiltration process. The θs, θr, α, and n values of the soil column obtained by the Jensen
method were 0.372 cm3/cm3, 0, 0.0408 cm−1, and 1.430, respectively, while those values
predicted with Rosetta were 0.370 cm3/cm3, 0.041 cm3/cm3, 0.0109 cm−1, and 1.517,
respectively. As expected, the Jensen method–predicted α was larger than the Rosetta-
estimated value. Figure 3a shows the predicted SWRCs of the soil column by using the
Jensen method and Rosetta software. A substantial difference was found between the
two SWRCs, showing that the Jensen method produced lower water contents than the
Rosetta at the same pressure heads. In this case, the Rosetta produced higher simulated
cumulative infiltration than the Jensen method using the 1-D Richards’ equation (Figure 3b).
The accuracy of the Rosetta was relatively low with a relatively high RMSE of 2.49 cm.
However, the Jensen method–predicted values matched well with the measured ones with
a low RMSE of 0.80 cm. The positions of the wetting front at different time for the Jensen
method and Rosetta software are shown in Figure 4. The wetting front obtained by the
Jensen method reached the depths of 18.0, 27.6, and 40.2 cm at time t = 50, 100, and 150 min,
respectively, whereas those predicted with Rosetta reached the depths of 28.2, 41.4, and
52.8 cm, respectively. As expected, the simulated wetting front by the Rosetta software
advanced more rapidly than that by the Jensen method during the infiltration process.

 
Figure 3. Comparison of the Jensen method and Rosetta software for (a) estimating the water retention curve of the soil
column and (b) simulating the soil infiltration process.
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Figure 4. Comparison of the wetting front simulated by the Jensen method and Rosetta software
at t = 50, 100, and 150 min after the infiltration.

Previous studies have been conducted to assess the hysteresis effect of SWRC on the
water infiltration of various textured soils. Huang et al. [38] indicated that the simulation
of the coarse-textured profile water content was improved during the infiltration process
when hysteresis was taken into account. In the study by Abbasi et al. [39], a large difference
was found between the measured fluxes and non-hysteresis-models-predicted values
during the infiltration processes of the loamy and sandy loam soil. In our study, it is
suggested that the Rosetta estimating the drying SWRC has to be used with caution when
applying this method to simulate the infiltration process. In contrast, the Jensen method
representing the wetting SWRC was demonstrated to be capable of predicting the water
infiltration of the loam soil. However, this method was still needed to be validated for
different textured soils.

3.2. Coupling Influences of the SWRC Estimation, Initial Water Content, and Upper
Boundary Condition

Solving 1-D Richards’ equation by different scenarios, 900 cumulative soil infiltration
fluxes were obtained. For each soil sample, the average infiltration fluxes decreased as
the increase in the initial water content (Figure 5). For example, the average of infiltration
fluxes of SC1300 obtained by the Jensen method decreased from 5.62 cm to 5.20 cm as
the initial water content increasing from 0.15 cm3/cm3 to 0.25 cm3/cm3. The relative
contributions of various factors to cumulative soil infiltration were quantified by the
regression method (Figure 6). Results indicated that initial water content had a generally
lesser contribution (2.2–29.9%) to cumulative infiltration compared to the SWRC estimation
method (19.1–72.2%) and constant pressure head (14.0–65.5%).
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Figure 5. Average cumulative infiltration fluxes and their standard deviation (error bars) under three
initial water contents and five constant pressure heads at upper boundary for soil samples with codes
of (a) 1300, (b) 2020 and (c) 4720.

From Figure 5, the average infiltration fluxes decreased as increasing initial water
content. This finding agreed with classical theory of infiltration that predicted cumulative
infiltration to decrease as increases of initial water content [9]. For any SWRC prediction
method, an increase in constant pressure head resulted in an increase in infiltration fluxes
at any point in time. Therefore, the relationship between constant pressure head and
cumulative infiltration was independent of initial water content. The above results are
consistent with many previous studies [29,40,41]. In addition, SC4720 with a low OMC
and clay content produced higher cumulative infiltration fluxes than SC1300 and SC2020
with a high OMC and clay content at the same initial water content and constant pressure
head (Figure 5). Previous studies also observed that various soil conditions (e.g., texture,
structure, and OMC) largely influenced soil infiltration and redistribution processes [42,43].
In the study by Franzluebbers [44], the stratification ratio of soil OMC (OMC at 0–3 cm
depth divided by that at 6–12 cm depth) was found to control the water infiltration rate.
Zhao et al. [42] indicated that a sandy loam soil can produce 23% higher infiltration than
the clay and silt loam soils. Therefore, soil infiltration was synthetically affected by the
static soil properties and dynamic factors (initial water content and constant pressure head).
In previous studies, soil infiltration had also been demonstrated to be affected by soil
properties, initial water content, and constant pressure head. For example, in the study by
Camps-Roach et al. [45], the dynamic effect of the capillary pressure on water infiltration
was related to the soil parameters (e.g., grain-size distributions). Hsu et al. [29] reported
that the magnitude of the dynamic effect of capillary pressure depended primarily on the
initial moisture content, not the constant pressure head. The results suggested that the
effects of different factors on soil infiltration were dynamic and intertwined.
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Figure 6. Relative contribution rates of different factors (parameter estimation methods, initial water
contents, and constant pressure heads at upper boundary) to cumulative infiltration fluxes for the
30 soils investigated.

Influences of the SWRC estimation method, initial water content, and constant pres-
sure head on the cumulative infiltration substantially varied under different soil conditions.
Figure 7 shows the relationships between the relative contribution of the parameter esti-
mation to soil infiltration and basic soil properties for the 30 soil samples. There was a
bell-shape relationship between the relative contribution of the parameter estimation and
BD, showing that the BD of 1.40 g/cm3 corresponded to the maximum relative contribution
rate. This is related to the similar relationship between the SMBE and BD. However, the
relative contribution of the parameter estimation was negatively and positively correlated
with the clay and fine sand contents at the 0.01 level of significance, respectively.

 

 
Figure 7. Relationships between the relative contribution of parameter estimation to cumulative
infiltration fluxes and (a) bulk density, (b) clay, and (c) fine sand contents.
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The relative contribution of the parameter estimation gradually increased with the
soil texture from fine to coarse, yet the relative contribution of the initial and boundary
conditions gradually decreased (figures not shown). The reason may be that there was
a lager difference between the drying SWRC and wetting SWRC (hysteresis effect) for
the coarser-textured soils than for the finer-textured soils [46]. Elmaloglou and Diaman-
topoulos [47] also found that the hysteresis decreased the soil leakage more in the loamy
sand (6.4–10.3%) than in the silt loam (3.6–6.4%). Besides the SWRC estimation method,
initial water content, and constant pressure head considered in this study, the vertical
heterogeneity of soil texture greatly influenced soil infiltration as reported in the study
of Zhu and Mohanty [48]. Huang et al. [38] found that the vertical change of soil texture
led to the increase of water storage compared with homogeneous soil profile with similar
texture. In addition, climate change and tillage conversion also affected the soil infiltration.
For example, air temperature changed the soil evapotranspiration rate and soil moisture
content, which in turn influenced soil infiltration [49]. Conversion from conventional tillage
to conservation tillage has been demonstrated to increase saturated hydraulic conductivity
and water infiltration due to greater soil organic carbon accumulation over time in conser-
vation tillage [50,51]. Therefore, to comprehensively detect the mechanisms of the water
infiltration, investigations on the coupling effects of multiple factors (e.g., vertical change
of soil texture and hydraulic properties, climate change, and tillage conversion) on soil
infiltration under different land use types (e.g., farmland and garden) are still needed for
future research.

4. Conclusions

This study compared the derived theoretical functions and Rosetta software for es-
timating the wetting SWRC of the 30 soil samples from UNSODA and for simulating
the infiltration process of a loam soil using a downward infiltration experiment. The
Jensen method was found to have better performance in estimating the wetting SWRC
and simulating the cumulative infiltration than the Rosetta software in terms of RMSE.
The 1-D Richards’ equation and scenario simulation were used to quantify the response
of cumulative infiltration to the coupling interactions among SWRC estimation method,
initial water content and constant pressure head.

As expected, an increase in constant pressure head resulted in an increase in the
cumulative infiltration. The cumulative infiltration decreased as the initial water content
increased. The SWRC estimation method and constant pressure head had a generally
greater contribution to cumulative infiltration than initial water content. The relative
contribution of the SWRC estimation to infiltration had a bell-shape relationship with the
BD and a significant (p < 0.01) linear relationship with the clay and fine sand contents. This
indicated that influences of the SWRC estimation method on the cumulative infiltration
largely depended on the soil condition. The above results suggest that more efforts need
to be made to obtain a high-precision SWRC and accurately describe the upper boundary
conditions in the simulation of soil infiltration process.
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Abstract: Evaluations of gross mineralization (MNorg) and nitrification (ONH4) can be used to evaluate
the supply capacity of inorganic N, which is crucial in determining appropriate N fertilizer application.
However, the relevant research for banana plantations to date is limited. In this study, natural forest
and banana plantations with different cultivation ages (3, 7, 10, and 22 y) were chosen in a subtropical
region, and the 15N dilution technique was used to determine the gross MNorg and ONH4 rates.
The objective was to evaluate the effect of the conversion of natural forests to banana plantations
on inorganic N supply capacity (MNorg + ONH4) and other relevant factors. Compared to other
natural forests in tropical and subtropical regions reported on by previous studies, the natural forest
in this study was characterized by a relatively low MNorg rate and a high ONH4 rate in the soil,
resulting in the presence of inorganic N dominated by nitrate. Compared to the natural forest, 3 y
banana cultivation increased the MNorg and ONH4 rates and inorganic N availability in the soil, but
these rates were significantly reduced with prolonged banana cultivation. Furthermore, the mean
residence times of ammonium and nitrate were shorter in the 3 y than in the 7, 10, and 22 y banana
plantations, indicating a reduced turnover of ammonium and nitrate in soil subjected to long-term
banana cultivation. In addition, the conversion of natural forest to banana plantation reduced the
soil organic carbon (SOC), total N and calcium concentrations, as well as water holding capacity
(WHC), cation exchangeable capacity (CEC), and pH, more obviously in soils subjected to long-term
banana cultivation. The MNorg and ONH4 rates were significantly and positively related to the SOC
and TN concentrations, as well as the WHC and CEC, suggesting that the decline in soil quality
after long-term banana cultivation could significantly inhibit MNorg and ONH4 rates, thus reducing
inorganic N supply and turnover. Increasing the amount of soil organic matter may be an effective
measure for stimulating N cycling for long-term banana cultivation.

Keywords: banana plantation; 15N tracing; mineralization; nitrification; inorganic N supply and
turnover

1. Introduction

Due to the high economic benefits it offers, the banana (Musa nana) has been widely
cultivated as a food source of regional populations in subtropical and tropical regions
around the world, occupying an extremely important position in local markets [1,2]. Banana
plantation area and production have increased from approximately 4.55 million ha and
67.2 million tons in 2000 to 5.16 million ha and 117 million tons in 2019, respectively [3]. In
China, banana plantation area and production amounted to approximately 0.36 million
ha and 12.0 million tons in 2019 [3]. To increase banana growth and yield, a suitable
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nitrogen (N) management strategy is required [4], since N is the main element limiting
crop growth [5]. The current recommended rate of N fertilizer application for bananas is
between 250 and 600 kg N ha–1, in the form of split application or basal application [6,7].

In soil, inorganic N, such as ammonium (NH4
+) and nitrate (NO3

–), are the main N
forms available for crop uptake [8,9]. In previous studies, the net transformation method for
determining changes in NH4

+ and NO3
– concentrations has been widely used to evaluate

soil N availability and its environmental effects, but this method cannot identify the
production process [9,10]. In soil, inorganic N is produced mainly through the conversion
of organic N to NH4

+ (i.e., mineralization) and the subsequent oxidation of NH4
+ to NO3

–

(i.e., nitrification) [11–13]. Thus, the determination of gross mineralization and nitrification
rates using the 15N dilution technique can provide a better understanding of the process
and intensity of inorganic N production, which has been widely conducted in various
ecosystems (e.g., forest, agriculture, grass) [14–16]. However, the relevant information
regarding changes in gross mineralization and nitrification is limited for banana plantations
in tropical or subtropical regions. Considering the wide distribution of banana plantations
around the world, the investigation of gross mineralization and nitrification rates as a
means of evaluating inorganic N supply is crucial to guide N fertilizer application.

At present, the unreasonable rates of fertilization and tillage in banana plantations
lead to low fertilizer use efficiency, reductions in yield and quality, etc. [2,17]. Moreover,
in the past decade, large banana plantations have been abandoned due to the outbreak
of banana wilt disease [18]. Consequently, excessive logging and forest clearing for new
banana plantations have been enacted in order to meet the strong market demand for
bananas [19]. Previous studies have found a high N retention capacity in the highly
weathered soils of natural forests in subtropical or tropical regions, which exhibit high gross
mineralization rates along with low gross nitrification rates [11,13]. During the conversion
of forest to farmland, an input of N, preferentially provided in inorganic form, as well
as frequent irrigation and tillage can greatly change the soil properties and biochemical
environment (e.g., soil organic matter, water holding capacity and pH) [20–23], which may
affect mineralization and nitrification rates, and N availability in soils. At the initial stage
of banana cultivation via conversion from forests, tillage can increase the soil’s porosity
and subsequently the O2 diffusion into the soil, which could increase microbial abundance
and activity, thus accelerating the decomposition of soil organic matter [24], suggesting a
possible increase in mineralization rate. In addition, the application of organic fertilizer
can increase the active organic matter sufficiently to stimulate an increase in mineralization
rate [25]. On the other hand, increases in soil aeration and N fertilizer application during
agricultural cultivation can stimulate increases in the abundance and activity of nitrifying
microorganisms, such as ammonia-oxidizing archaea (AOA) and ammonia-oxidizing
bacteria (AOB) [26,27], thereafter possibly increasing the oxidation of NH4

+ to NO3
–. These

results indicate that the short-term conversion of natural forests to banana plantations
may increase the NO3

– production rate in soils. In soil, NH4
+ is lost to the atmosphere

through ammonia volatilization, but NO3
– is more easily lost through leaching, runoff, and

the emission of nitrogenous gases due to denitrification [28,29], especially in subtropical
and tropical regions with high rainfall [30]. This may ultimately lower the sustainable
supply capacity of soil inorganic N. Noticeably, this stimulating effect of mineral N fertilizer
application on gross mineralization and nitrification rates may gradually decrease with
the prolonged cultivation of banana, possibly due to the decline in soil quality [15,31]. For
example, long-term rubber or oil cultivation sites converted from forests cause significant
reductions in the organic carbon (C) and total N (TN) concentrations in soils, as well as
the macro-aggregate levels, but cause increases in micro-aggregate [32,33]. Due to the
decline in soil organic carbon (SOC) and macro-aggregate levels, the soil can become
hard and compacted [34]. If this holds true for long-term banana cultivation as well, the
rates of mineralization and nitrification and the inorganic N supply may be reduced as
the reduction in substrate, the occurrence of soil compaction, and the input of organic N
fertilizer prevent the effective conversion of N to a form available for plant uptake. Thus,
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we hypothesized that (1) short-term banana plantations converted from natural forests
cause increase mineralization and nitrification rates, thus stimulating inorganic N supply,
and (2) long-term banana cultivation causes significant reductions in both rates, and reduce
inorganic N supply.

To verify our hypotheses, soils were sampled from natural forests and banana plan-
tations with different ages of cultivation (3, 7, 10, and 22 y) in the subtropical region of
Southwestern China. The purpose of this study was to determine the mineralization and
nitrification rates in soils using the 15N tracing approach, and thus to evaluate the effects of
the conversion of natural forests to banana plantations on the soil’s inorganic N supply
capacity.

2. Material and Methods

2.1. Site Description and Sample Collection

The studied sample sites were located in Gulinqing Nature Reserve, Maguan County,
Southeastern Yunnan Province, China (103◦54′ E, 22◦43′ N) (Figure 1). This region is
characterized by a typical subtropical monsoon climate. The annual average temperature is
between 18.2 and 22.2 ◦C, and the annual average precipitation is 1700 mm, which mainly
occurs from May to October. The main tree species of the natural forest are Dipterocarpus
tonkinensis, Pometia tomentosa, Altingia yunnanensis, Shorea chinensis var. kwangsiensis, Burre-
tiodendron hsienmu, Castanopsis fabri, Caryota urens, Lithocarpus truncatus, Fagus longipetiolata,
Alnus nepalensis, Cunninghamia lanceolata, Dendrocalamus strictus, and Arenga pinnata. Four
banana plantations with 3-, 7-, 10-, and 22-year cultivation ages were chosen, all of which
were converted from natural forests. The slope (approximately 8◦) and altitude (approx-
imately 450–650 m) were relatively consistent between the natural forest and the four
banana plantations. Approximately 2400 bananas ha−1 were planted, and commercial
organic fertilizer was applied at a rate of 36,000 kg ha−1 y−1 as the base fertilizer. Inorganic
fertilizers were applied five to six times each year in a circular trench approximately 20 cm
away from the banana plants. According to the field investigation, these plantations were
fertilized with approximately 320–380, 220–240, and 150–530 kg ha−1 y−1 of N, phospho-
rus (P), and potassium (K), respectively. The organic fertilizer contained 3.1 g N kg−1,
3.0 g P kg−1, and 2.1 g K kg−1. The soil of this area is a mixed soil deriving from carbonate
rock and basalt weathering, and is classified as Latosol (US Soil Taxonomy), containing
18.5% clay, 65.6% sand, and 15.9% silt.

In July, 2020, three natural forest sites and three sites for each banana plantation type
were selected as spatial replicates. The distance between each site exceeded 300 m. Five
plots (about 1 × 1 m) were randomly established at intervals of 20 m for each site. Due to
the high exposure rate of carbonate rock (20%), the soil layer was relatively thin (<40 cm).
After removing the litter layer, the soils were sampled at the banana plantations’ cultivation
horizon using a hand auger (5 cm diameter) to a 0–15 cm depth, and all subsamples were
mixed to form one composite sample. The sampling method for the natural forest was
identical to that of the banana plantations. Fresh soil was passed through a 2 mm sieve
after removing litter, plant roots, stones, and other impurities. All soils were immediately
placed in a covered cooler with ice for transport to the laboratory. Subsequently, the soils
were divided into two constituent parts. A portion of fresh soil was used to determine
gross mineralization and nitrification rates and bacterial or archaeal amoA abundance, and
the other portion of soil was air-dried to determine its basic physicochemical properties.
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Figure 1. Location of the study site (a) in Gulinqing Nature Reserve, Maguan County, Yunnan
Province, China, and an illustration of the land use types (b).

2.2. Gross Mineralization and Nitrification Rates

The gross mineralization and nitrification rates were quantified using 15N pool dilution
techniques [14,35,36]. A series of 30 g samples of fresh soil (oven-dried) were weighted
into 250 mL Erlenmeyer flasks for each soil, and these were subsequently pre-incubated at
25 ◦C for 24 h. After the pre-incubation, 1 mL of 15NH4NO3 or NH4

15NO3 (10 atom% 15N
excess) solution, containing 1.5 mg NH4

+–N kg–1 and 1.5 mg NO3
−–N kg–1, was evenly

applied to the soil in each Erlenmeyer flask. Noticeably, the amount of applied NH4NO3
was relatively higher in this study compared to that previously reported [14,32]. Due to
the rapid conversion of NH4

+ to NO3
− in soils under natural forest conditions with a high

pH [30,31], the application of a small amount of NH4NO3 can lead to a relatively low NH4
+

content in the soil after 24 h of incubation, which cannot satisfy the determination criteria of
15N. As such, NH4NO3 was applied at the relatively high rate of 50 mg NH4

+-N kg−1 and
50 mg NO3

−-N kg−1. Consequently, the potential rather than actual gross nitrification rate
was measured. Distilled water was added to adjust the soil’s moisture to 60% water holding
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capacity (WHC). Then, the flasks were capped with plastic film with small holes in it and
incubated for 24 h at 25 ◦C. The soil samples in the Erlenmeyer flasks were extracted with
150 mL 2M KCl solution at 0.5 and 24 h after NH4NO3 application in order to determine
the NH4

+ and NO3
− concentrations and the respective 15N atom% excess.

2.3. Analyses

Soil pH was determined using a SevenExcellenceTM pH/mV detector. After carbonate
removal using 1.0 M HCl, an elemental analyzer (Sercon Integra 2) was used to determine
the TN and SOC concentrations. The neutral ammonium acetate exchange method was
used to determine the soil’s cation exchange capacity (CEC) [37]. Total X-ray fluorescence
spectroscopy was used to quantify the total calcium (Ca), magnesium (Mg), P, and K con-
centrations in the soil. The soil’s available K (AK) and available P (AP) were extracted with
neutral NH4OAc and NH4F–HCl solutions, respectively, and subsequently determined via
use of a flame photometer and a spectrophotometer. A continuous flow analyzer (Skalar,
Breda, The Netherlands) was used to determine the NH4

+ and NO3
– concentrations in

the extract. In addition, the KCl extracts were gradually distilled with magnesium oxide
(MgO) and Devarda’s alloy so as to separate the pools of NH4

+ and NO3
− for 15N mea-

surements [38]. In brief, 100 mL of KCl extract was steam-distilled with MgO to convert
the NH4

+ into ammonia (NH3), and then Devarda’s alloy was added, and it was distilled
again to convert NO3

– into NH3 through the reduction of NO3
− to NH4

+. The NH3 was
trapped in a boric acid solution in a conical flask, acidified, and converted into ammonium
sulfate ((NH4)2SO4) using 0.02 M H2SO4. According to our preliminary experiment, the
recovery ratios of NH4

+ and NO3
- using the distillation method were 98–102% and 96–98%,

respectively. The H2SO4 solution containing NH4
+ was then evaporated to dryness at

80 ◦C in order to analyze the 15N atom% excess with an isotope mass spectrometer (Sercon
Integra 2, SerCon Ltd., Crewe, UK).

2.4. Bacterial or Archaeal amoA Abundance Analysis

The FastDNA® Spin Kit for Soil (MP Biomedicals, OH, USA) was used to extract soil
DNA, which was subsequently stored at –20 ◦C until use. A spectrophotometer (Nanodrop
ND-2000, NanoDrop Technologies, DE, USA) was used to quantify soil DNA quantity
and purity. The abundances of bacterial (AOB) and archaeal (AOA) amoA genes were
determined via the quantitative PCR method on a real-time detection system (Bio-Rad
CFX96, Laboratories Inc., Hercules, CA, USA). The primers of bacterial and archaeal
amoA genes were amoA-1F/amoA-2R and Arch-amoA-F/Arch-amoA-R, respectively [39,40].
Detailed information about the quantitative PCR analysis can be obtained from Zhu et al.
(2018) [41].

2.5. Data and Statistical Analyses

The gross mineralization and nitrification rates, expressed as mg N kg−1 d−1, were
calculated via the equation of Kirkham and Bartholomew (1954) [35], as follows:

Mineralization
(
MNorg

)
=

[
NH+

4
]

0 −
[
NH+

4
]

t
t

×
log

(
APE0
APEt

)

log [
NH+

4 ]0
[NH+

4 ]t

(1)

where t is the incubation time (day), [NH4
+] is the NH4

+ concentration (mg N kg−1), and
APE is the 15N atom% excess of NH4

+.

Nitrification (ONH4) =
[NO–

3]0 − [NO–
3]t

t
×

log
(

APE0
APEt

)

log [NO–
3]0

[NO–
3]t

(2)
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where t is the incubation time (day), [NO3
−] is the NO3

- concentration (mg N kg−1), and
APE is the 15N atom% excess of NO3

−.
The mean residence times of NH4

+ (MRT NH4
+) and NO3

− (MRT NO3
−), expressed

as d, were calculated following the equation of Corre et al. (2007) [42].

MRT NH4
+ =

c
(
NH+

4
)

MNorg
(3)

MRT NO3 =
c(NO–

3)

ONH4
(4)

where c(NH4
+) and c(NO3

−) are the initial NH4
+ and NO3

− concentrations (mg N kg−1)
in the studied soils, respectively. If the MRT value of a certain N pool is high, this indicates
low turnover.

The supply capacity of inorganic N was calculated by MNorg plus ONorg [13]. SPSS
23 software (SPSS, Chicago, IL, USA) was used to analyze the relationships between
soil properties, AOA and AOB abundances, and MNorg and ONorg rates. Analysis of
variance (ANOVA) was used to compare the differences in soil properties, AOA and AOB
abundances, and MNorg and ONorg rates between natural forests and banana plantations at
the p = 0.05 level.

3. Results

3.1. Soil Physical and Chemical Properties, AOA and AOB Abundances

The conversion of natural forest to banana plantations reduced the SOC, TN, and CaO
concentrations, as well as the WHC, CEC, and pH, more significantly as the cultivation
ages increased (Table 1), but this process significantly increased the AK and AP concentra-
tions. In all the studied soils, NO3

− dominated the inorganic N pool with NO3
−/NH4

+

ratios of 2.31 (natural forest) and 3.47–8.15 (banana plantations). The difference in NH4
+

concentration between natural forests and banana plantations was not significant due
to the high variation; however, the highest NO3

– concentration (70.9 mg N kg−1) was
found in soil under 10 y banana cultivation conditions. The other three banana cultivation
conditions manifested concentrations of 17.1–46.2 mg N kg−1 (p < 0.05). The SOC and
TN concentrations were significantly positively related to CaO, CEC, and WHC (p < 0.05),
and a significant and positive relationship was also found between CaO and pH (p < 0.05)
(Table 2).

Table 1. Physical and chemical properties of soils under natural forest and banana plantation conditions with different
cultivation ages.

Parameter i Natural Forest 3 y ii 7 y 10 y 22 y

SOC (g C kg−1) 34.6 ± 6.29 a 32.9±3.14 a 21.4±1.47 b 20.0±2.36 b 19.7±3.34 b
TN (g C kg−1) 3.25 ± 0.18 a 2.92 ± 0.18 a 2.06 ± 0.06 b 1.88 ± 0.09 b 1.99 ± 0.29 b

pH 6.75 ± 0.09 a 6.29 ± 0.08 b 5.05 ± 0.39 c 4.65 ± 0.22 cd 4.30 ± 0.16 d
WHC 0.92 ± 0.15 a 0.73 ± 0.02 b 0.69 ± 0.02 bc 0.67 ± 0.01 c 0.58 ± 0.03 d

CEC (cmol kg−1) 18.4 ± 1.25 a 15.6 ± 0.85 b 11.3 ± 0.07 c 10.6 ± 0.38 c 11.5 ± 0.49 c
CaO (%) 8.39 ± 3.13 a 3.94 ± 0.52 b 1.77 ± 0.48 c 1.45 ± 0.46 c 1.54 ± 0.53 c

AP (mg kg−1) 3.27 ± 0.51 c 173 ± 26.0 a 136 ± 10.3 b 197 ± 18.2 a 159 ± 19.6 a
AK (mg kg−1) 236 ± 103 b 783 ± 227 a 848 ± 331 a 800 ± 87.1 a 761 ± 74.8 a

NH4
+ (mg N kg−1) 9.45 ± 0.36 a 6.35 ± 2.54 a 15.0 ± 8.41 a 10.2 ± 5.34 a 4.85 ± 0.7 a

NO3
− (mg N kg−1) 21.9 ± 1.41 c 29.7 ± 6.79 c 46.2 ± 3.55 b 70.9 ± 12.7 a 17.1 ± 5.36 c

NO3
−/NH4

+ 2.31 ± 0.07 b 5.08 ± 1.63 a 3.65 ± 1.53 ab 8.15 ± 4.07 a 3.47 ± 0.78 ab
AOA abundance

×107 amoA gene copies (g dry soil)−1 11.6 ± 1.23 a 14.4 ± 2.45 a 5.55 ± 3.23 b 3.66 ± 1.45 b 1.45 ± 0.29 b

AOB abundance
×105 amoA gene copies (g dry soil)−1 19.6 ± 3.20 a 24.6 ± 4.98 a 6.48 ± 3.13 b 11.6 ± 2.64 b 9.14 ± 3.78 b

i SOC, soil organic C; TN, total N; WHC, water holding capacity; CEC, cation exchange capacity; AP, available P; AK, available K; AOA,
archaeal amoA gene; AOB, bacterial amoA gene. ii 3, 7, 10, and 22 y represent the cultivation durations of the banana plantations that were
converted from natural forests. Identical letters for the same value indicate that there were no significant differences in the soils under
natural forest conditions and in the four banana plantations in the same region at p = 0.05.288
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Table 2. The relationships between soil properties, gross mineralization (MNorg) and nitrification
(ONorg) rates, and archaeal amoA gene (AOA) and bacterial amoA gene (AOB) abundances (n = 12),
under banana plantation conditions.

NH4
+ NO3

− MNorg ONH4 MRT NH4
+ MRT NO3

−

SOC –0.09 –0.22 0.87 ** 0.70 * –0.39 –0.39
TN –0.22 –0.34 0.91 ** 0.72 ** –0.58 –0.51
pH –0.21 –0.14 0.87 ** 0.83 ** –0.53 –0.48

WHC 0.30 0.37 0.51 0.57 0.06 0.08
CEC –0.34 –0.47 0.96 ** 0.87 ** –0.64 * –0.65 *
CaO –0.10 –0.33 0.84 ** 0.78 ** –0.33 –0.42
AP –0.09 0.47 –0.14 0.04 0.18 0.10
AK –0.19 0.23 –0.01 0.01 –0.18 –0.18

AOA 0.04 –0.15 0.83 ** 0.79 ** –0.25 –0.29
AOB –0.31 –0.19 0.80 ** 0.87 ** –0.43 –0.54

*, p < 0.05; **, p < 0.01.

The AOA and AOB abundances in soils under 3 y banana cultivation conditions
were 1.2 times higher than those in natural forests, but these values gradually decreased
as banana cultivation time lengthened. Both the AOA and the AOB abundances were
significantly related to SOC, TN, WHC, CEC, CaO, and pH (p < 0.05) (Table 2).

3.2. Gross Mineralization (MNorg) and Nitrification (ONorg) Rates

Compared to those under natural forest conditions (1.70 and 6.30 mg N kg−1 d−1),
the MNorg and ONorg rates were significantly increased to 3.23 and 11.9 mg N kg−1 d−1 in
the soil under 3 y banana cultivation conditions, respectively, but decreased to 0.65–1.26
and 3.41–4.92 mg N kg−1 d−1 with the prolongation of banana cultivation (Figure 2).
Contrastingly, the 3 y banana cultivation conditions lowered the residence times of NH4

+

and NO3
– to 2.07 and 2.88 d, respectively, compared to those in natural forests (5.57 and

3.62 d), while long-term banana cultivation (>3 y) increased the residence times of NH4
+

(5.83–15.8 d) and NO3
– (5.02–15.0 d) (Figure 3). Both the MNorg and ONorg rates in soils

under banana cultivation conditions were significantly positively related to SOC, TN, WHC,
CEC, and pH (p < 0.05) (Table 2). In addition, the ONorg rate was significantly positively
related to AOA and AOB abundances (p < 0.05) (Table 2).
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Figure 2. MNorg and ONH4 rates in soils under natural forest conditions and in banana plantations
with different cultivation durations. Identical letters for MNorg and ONH4 indicate there were no
significant differences in soils under natural forest conditions and in the four banana plantations in
the same region, at p = 0.05. MNorg, the mineralization of organic N to NH4

+; ONH4, the oxidation of
NH4

+ to NO3
−.

Figure 3. Mean residence times of NH4
+ (MRT NH4

+) and NO3
− (MRT NO3

−) in soils under natural
forest conditions and in banana plantations with different cultivation durations. Identical letters
for MRT NH4

+ and MRT NO3
− indicate there were no significant differences in soils under natural

forest conditions and in the four banana plantations in the same region, at p = 0.05.

4. Discussion

4.1. Low Supply Capacity of Inorganic N in Soils under Natural Forest Conditions

The soil MNorg rates under natural forest conditions reached 1.70 mg N kg−1 d−1,
which was significantly lower than the rates in other natural forests in tropical or subtropical
regions, as reported by previous studies (2.29–9.20; average, 4.31 mg N kg−1 d−1) [11–13],
suggesting a low inorganic N supply capacity in our studied soils under natural forest con-
ditions. However, higher ONH4 rates (6.30 mg N kg−1 d−1) were found in our studied soils
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than in the highly weathered soils under natural forest conditions in subtropical or tropical
regions (0.06–1.97, average 0.75 mg N kg−1 d−1) [11–13], suggesting the rapid oxidation
of NH4

+ to NO3
− and inorganic N dominated by NO3

−. This was supported by the high
NO3

−/NH4
+ ratio (2.31) found in soil under natural forest conditions. Considering the

high rainfall in this region, the NO3
− in soil can easily be lost through leaching and runoff,

and thus inorganic N cannot be effectively conserved in soil. This result was inconsistent
with those of previous studies conducted in natural forests in tropical or subtropical regions,
in which high inorganic N supply and N retention capacities were found due to the high
MNorg and low ONH4 rates [11,12,28]. Our study, and other previous studies, have inferred
a large variability in N dynamics under tropical or subtropical conditions.

The characteristics of the transformation of soil N in natural forests may be greatly
related to differences in soil type. In this study, the soil was composed of a mixture of
carbonate rock and basalt weathering, and was characterized by a relatively high Ca
content. Calcium can react with organic matter to form stable calcium humate [43], which
is more difficult to break down for soil organisms, thereby leading to a decline in MNorg
rate even when the content of soil organic matter (SOM) is high. Previous studies have
found that the ONH4 rate is significantly positively related to pH in the soil [44,45]. Forest
soil that has developed from basalt or granite in subtropical/tropical regions has a low
pH (<4.5), which can inhibit the ONH4 rate [11,13]. In this study, however, the soils were
characterized by a relatively high pH (5.42), which could increase the abundance and
activity of nitrifying microorganisms [46,47]. This might explain why a high ONH4 rate was
found in the studied soils under natural forest conditions. A high level of NO3

− production
through ONH4 in soil may increase the rate of denitrification in subtropical regions with
high rainfall, thus subsequently increasing the nitrogenous gas emission potential [48].
Noticeably, the gross ONH4 rate may be overestimated in this study due to the application
of NH4

15NO3 to the soils. Further in situ experiments must be conducted to elucidate the
actual dynamic changes in the NO3

– of soil under natural forest conditions.

4.2. Response of MNorg and ONorg Rates to Banana Cultivation

Previous studies found significantly positive relationships between SOC and TN
concentrations and MNorg rate [9,13,15], indicating that the SOM level is a critical driver of
MNorg. Although the conversion of natural forests to banana plantations reduces the SOC
and total N concentrations (Table 1), large variations in MNorg rate were found in banana
plantations with different cultivation durations. Compared to natural forest conditions,
short-term banana cultivation greatly increased the MNorg rate, but this rate gradually de-
creased with prolonged banana cultivation. This result supports our hypothesis, and may
be attributed to changes in SOM quality and quantity [25,32]. The conversion of natural
forests to banana plantations significantly reduces soil organic matter, thus reducing the
substrate of MNorg. At the initial stage of banana cultivation, however, organic fertilizer
application and the separation of stable calcium humate via reductions in Ca2+ protection
can increase the soil’s labile organic matter content [49,50], which could stimulate the min-
eralization of organic N to NH4

+, and even a decline in TN concentration (Table 1). When
the labile organic matter is gradually consumed through continuous banana cultivation, the
stimulating effect on MNorg may not offset the decline in MNorg caused by the reduction in
TN content. The mechanisms by which organic N quality affects MNorg need investigating
in the future.

Generally speaking, management measures (e.g., tillage and fertilization) can increase
the soil ONH4 rate [12,13]. Indeed, 3 y banana cultivation increased the ONH4 rate to
11.9 mg N kg−1 d−1 compared to natural forest conditions, but this was not the case for
the long-term (>3 y) banana cultivation assessed in this study, wherein the ONH4 rate was
significantly reduced. This result supported Hypothesis 1. The different responses of ONH4
to various banana cultivation conditions may be related to changes in soil properties (e.g.,
pH, SOC, structure) [13,31]. Nitrogen fertilizer can increase the abundance and activity of
nitrifying microorganisms, in order to increase the ONH4 rate in soils with high pH when
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natural forests are converted to banana plantations. However, due to the reductions in SOC
and total N concentrations with the increasing duration of crop cultivation (Table 1), the
reduction in macro-aggregates and the increase in micro-aggregates can cause the surface
soil layer to become hard and compacted [34], which can reduce soil permeability and thus
inhibit nitrifying microbial abundance and activity [31]. This inhibiting effect may be more
obvious in soils composed of carbonate rock, which is characterized by a lower content
of acid-insoluble matter and a heavy texture [51,52]. In addition, after long-term banana
cultivation, the concentrations of SOC and TN, as well as the water holding capacity, CEC,
and pH, are also reduced, thus deteriorating the soil condition, and all of these factors
may have an adverse effect on the growth of nitrifying microorganisms and thus inhibit
ONH4 [15,31]. Indeed, the ONH4 rate was found to be significantly positively related to the
abundance of AOA and AOB, as well as the SOC, TN, CEC, WHC, and pH (Table 2), which
supports the above speculation.

Due to the decline in the MNorg and ONH4 rates, long-term banana cultivation signifi-
cantly reduces inorganic N supply capacity, while increasing the resident time of inorganic
N, compared to short-term banana cultivation. This result is consistent with Hypothesis 2,
implying the reduced turnover of inorganic N in soils under long-term banana cultivation
conditions in subtropical regions. According to previous studies [11,13,31], as well as our
present result that MNorg and ONH4 rates were positively related to SOC and TN concentra-
tions, organic N fertilizer should be recommended over mineral N fertilizer to stimulate
the supply and turnover of inorganic N in long-term banana plantations.

5. Conclusions

The present study highlights the fact that short-term (3 y) banana cultivation causes
increased mineralization and nitrification rates, as well as increasing the turnover rate for
inorganic N in the soil, but these rates are significantly reduced with the prolongation of
banana cultivation. These results, combined with those of the previous studies, suggest the
rapid reduction in soil inorganic N supply when natural forests are converted to economic
crop plantations. In such cases, soil N cycling is blocked, and the applied N fertilizers
cannot be effectively converted into a form of N that is available for banana uptake,
suggesting low N use efficiency and high N loss potential. This is mainly attributed to the
reduction in soil quality, i.e., reduced soil organic matter content, and high clay content.
Considering the prevalence of banana cultivation worldwide, developing appropriate
management measures in future will be necessary in order for banana plantations in
specific regions to increase their inorganic N supply and turnover.
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Abstract: Given that cultivated land serves as a strategic resource to ensure national food security,
blind emphasis on improvement of food production capacity can lead to soil overutilization and
impair other soil functions. Therefore, we took Heilongjiang province as an example to conduct a
multi-functional evaluation of soil at the provincial scale. A combination of soil, climate, topography,
land use, and remote sensing data were used to evaluate the functions of primary productivity, provi-
sion and cycling of nutrients, provision of functional and intrinsic biodiversity, water purification
and regulation, and carbon sequestration and regulation of cultivated land in 2018. We designed a
soil function discriminant matrix, constructed the supply-demand ratio, and evaluated the current
status of supply and demand of soil functions. Soil functions demonstrated a distribution pattern
of high grade in the northeast and low grade in the southwest, mostly in second-level areas. The
actual supply of primary productivity functions in 71.32% of the region cannot meet the current
needs of the population. The dominant function of soil in 34.89% of the area is water purification
and regulation, and most of the cultivated land belongs to the functional balance region. The results
presented herein provide a theoretical basis for optimization of land patterns and improvement of
cultivated land use management on a large scale, and is of great significance to the sustainable use of
black soil resources and improvement of comprehensive benefits.

Keywords: agroecosystems; Heilongjiang province; supply and demand; soil multifunctionality;
spatial scales

1. Introduction

Soil provides basic services for maintaining and guaranteeing agricultural production,
plant growth, animal habitats, biodiversity, and environmental quality, and is one of the
core elements linking the entire natural ecosystem [1]. Soil is the key foundation for
cultivated land to perform its functions, a limited resource essential to the maintenance and
sustainable use of land, and essential for cultivated land to have multifunctional roles [2].
Agriculture is facing the challenge of increasing primary productivity to meet the growing
global demand for food security [3]. However, most of the soil resources in the world
are in a barren or worse state, and one third of cultivated land is moderately or highly
degraded [4]. The total amount of cultivated land resources in China is only 135 million ha,
and the per capita cultivated land is only 0.30 ha, which is lower than the world’s per capita
level of 0.37 ha; thus, China is facing a serious shortage of cultivated land [5]. The cultivated
land area of black soil in Northeast China accounts for 27% of China’s total cultivated
land [6], and the total grain output accounts for 25% of China’s total output. However,
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commodity grain accounts for 33% of China’s agricultural production. Because of long-term
and high-intensity utilization, cultivated land resources in the black soils area have been
overdrawn for a long time, and the excessive input of chemical fertilizers and pesticides
has broken the original stable micro-ecological system of the black soils. The degradation
of soil functions like soil biodiversity, nutrient maintenance, carbon storage, buffering, and
water purification and regulation has become a shortcoming that restricts the improvement
of regional food production capacity and sustainable agricultural development and poses a
serious threat to national food security in Heilongjiang province [7]. In China, the Ministry
of Natural Resources conducts surveys and evaluations of the quality of agricultural land
and the Ministry of Agriculture and Rural Affairs evaluates the quality of cultivated land.
These agencies have formed a farmland resource evaluation system that takes the county
as the project unit and the field as the evaluation unit and summarizes the results at
the provincial and national scales, providing a solid foundation for the utilization and
management of cultivated land. However, these tasks were restricted by the scientific
methods and protection concepts of the time. This is because they ignored the general
principle of scales in land quality evaluation. Specifically, there were problems of mixed
scales, and it was difficult to describe scales accurately and quickly above the county level.
This situation cannot meet the management needs of different levels. Additionally, the two
sets of plans mainly characterize the production potential and serve cultivation. However,
they have insufficient consideration of soil function and soil environmental conditions,
and the research results have a single effect, which makes it difficult to serve the current
multi-target soil health management and protection. As a result, a relatively new practice
to fulfil this goal has emerged in which researchers have begun to calculate multiple soil
functions to guide the sustainable use of cultivated land [8].

Soil function indicates a soil-based ecosystem service that consists of a series of
soil processes that support the provision of ecosystem services and contribute to the
production of goods and services that are beneficial to human social requirements and
the environment [9]. The carbon, nitrogen, water, and biological reservoirs in soil make
a significant contribution to the sustainability of the earth [10]. The core of ecosystem
processes is the biogeochemical cycles of carbon, nitrogen, and water. Understanding and
evaluating the natural capital savings of soil from the perspective of ecosystem service
functions can improve the resource utilization efficiency of production activities [11]. The
core of ecosystem processes is the biogeochemical cycle of carbon, nitrogen and water.
Understanding and evaluating the natural capital savings of soil from the perspective of
ecosystem service functions can improve the resource utilization efficiency of production
activities [12], by increasing the ability of soil to retain water and fertilizer and preventing
soil erosion, both of which increase and stabilize crop yields. In addition, increasing soil
carbon storage helps slow climate change [13]. The nutrient cycle represented by the
nitrogen cycle provides nutrient support for the production of biomass [14]. Ecosystem
services related to the soil water cycle include food and water security supply services, soil
storage water and purification water flow regulation services and support services [15]. Soil
biodiversity is closely related to the formation of ecosystem services [16]. Soil ecological
services comprise supporting services for biological production, habitat, species, and
genetic diversity, services providing nutrients, water, and mineral raw materials, and
services that regulate water, the carbon cycle, and greenhouse gas emissions, as well as
services that preserve the soil landscape and cultural relics [17]. Therefore, the ability of
soils to provide multiple ecosystem functions simultaneously is known as soil ecosystem
multifunctionality [18,19], which provides a simple metric to assess the overall functioning
of ecosystems or treatments [20]. However, there is still no consensus on the quantitative
standards and methods for the versatility of ecosystems. This is mainly because of the
structural complexity and functional diversity of ecosystems [21]. Soil function and its
ecosystem service are used when evaluating soil quality for land use and management [9].
If one or more soil functions are restricted, soil quality may be threatened by compaction,
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erosion, loss of biodiversity and organic matter, salinization, pollution, or desertification,
which influences the rational utilization and protection of the soil.

There is currently no soil function classification and evaluation system in the world.
The European Commission’s soil protection strategy was an important initiative that
brought the concept of soil functions to the attention of the wider public and placed the
concept on the political agenda. Seven soil functions were defined in the strategy: (i)
production of food and biomass, (ii) storage, filtering, and transformation of compounds,
(iii) habitats for living creatures and gene pools, (iv) the physical and cultural environment,
(v) a source of raw materials, (vi) a carbon pool, and (vii) archives of geological and archae-
ological heritage [22]. Guerra et al. described and analyzed four soil ecosystem functions
across soil macroecological studies and 17,186 sampling sites: (i) decomposition, (ii) soil
respiration, (iii) nutrient cycling, and (iv) water infiltration [23]. Schulte et al. classified
soil functions into five categories: primary productivity, water purification and regulation,
carbon sequestration and regulation, provision of functional and intrinsic biodiversity,
and nutrient supply and circulation [24]. In 1997, Zhao Qiguo et al. pointed out that soil
quality evaluation in agricultural systems should take soil function as a central task, but
mainly focus on the evaluation of soil production functions [5]. Based on the classification
of ecosystem service function types, the classification of soil functions can be continuously
improved, the characterization indicators of soil functions can be selected, and the indi-
cators can be classified and interpreted [25,26]. Under the precondition of being in favor
of protection of soil functions, most soil evaluations conducted to date have been based
on individual or comprehensive evaluations of soil functions through reasonable selection
of evaluation methods [27–30]. For example, Thoumazeau et al. proposed an integrated
indicator set, Biofunctool®, to evaluate the impact of agricultural land management on
soil functions. This set consists of 12 rapid and economical field indicators, including
soil active organic carbon, soil basic respiration, earthworm activity, available nitrogen,
and infiltration rate and stability of soil aggregates, to assess three dynamic soil functions;
namely, carbon conversion, nutrient cycling, and structure maintenance [31,32]. In terms of
the integration of multiple function evaluation results, Schulte et al. conceptually described
the cooperative weighing of soil functions of various land use types such as cultivated land,
forest land, and grassland based on the theory of functional soil management [24,33]. Land
use types have different requirements for various soil functions. In terms of evaluation
indicators and their weights, prior knowledge such as literature and expert experience is im-
portant for the selection of indicators and determination of weights [3]. The Delphi method
and analytic hierarchy process commonly used in previous studies are typical applications
of traditional expert systems. However, these methods are often criticized for being more
subjective [34]. Poorly subjective methods can also be used in practical applications, such
as meta-analysis or structural equation modeling [23,35]. The soil functions of cultivated
land mainly involve five aspects that contribute to increased agricultural productivity
and provide other regulatory and supportive ecosystem services: primary productivity,
provision and cycling of nutrients, provision of functional and intrinsic biodiversity, water
purification and regulation, and carbon sequestration and regulation [8]. In other countries,
the theoretical framework, index selection, and standardization of soil function evaluation,
and the mapping method of evaluation results have been relatively systematic [36,37],
providing a reference for the development of soil multifunctionality evaluation and change
analysis in China [38–44]. Existing studies on large scale soil function are still slightly
inadequate in China. Therefore, we have taken Heilongjiang province as our research area,
selecting evaluation indicators according to local conditions, establishing a soil function
evaluation model to reveal regional differences in soil functions and providing references
for the sustainable use of land resources and the formulation of cultivated land protection
policies based on evaluation of the supply and demand of soil functions. The specific
purposes of this article are to: (A) evaluate the soil function of paddy fields and dry land in
Heilongjiang province and the current situation of supply and demand by using the multi-
factor comprehensive evaluation method and analyzing the main restrictive factors of the
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soil function in each region; and (B) divide the cultivated land use function region guided
by the dominant function of soil, combine this with analysis of soil function restriction,
and put forward corresponding utilization optimization and regulation suggestions for
different areas. The research frame diagram is shown in Figure 1.

Figure 1. The research frame diagram.

2. Materials and Methods

2.1. Study Area

Being in the northernmost location and highest latitude in China (Figure 2), Hei-
longjiang province is a vast area, with a high biodiversity environment, diverse landform
types, rich natural resources, and a large area of fertile black soil. The province has a total
land area of 47.07 million ha, which accounts for 4.9% of China, making it the sixth largest
province in the country. Because of its large area of cultivated land per capita, Heilongjiang
province is an important agricultural province in China. Given that the plains are flat
and open with high soil nutrient content, good agricultural cultivation conditions, and
high concentrated and contiguous cultivated land, the region is suitable for large-scale
mechanized operations [45]. The cultivated land quality in the Songnen Plain and Sanjiang
Plain ranks first in China, with the black soil area accounting for about 33% [46]. Hei-
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longjiang province contains the highest proportion of black soil in China, and nearly 30%
of the high-quality cultivated land is located in the black soil area of Northeast China. It is
primarily underlaid by Black soil, Meadow soil, Dark brown soil, Albic soil, Chernozem
soil, and Chestnut soil. The black soil is loose and high in organic matter content, making
it suitable for cultivation. Nevertheless, the recent rapid development of urbanization in
Heilongjiang province has had adverse effects on land in the region, causing serious erosion
and desertification [47]. Moreover, because of the vast area and the unreasonable structure
of cultivated land utilization, the cultivated land use pattern urgently needs to be optimized.

Figure 2. Location of the study area. Source: Drawn by the authors.

2.2. Construction of an Evaluation Method System of Soil Function
2.2.1. Construction of Evaluation Indicator System at the Provincial Scale

The primary productivity function is the ability of soil to produce plant biomass for
human use and to provide food, feed, fiber, and fuel within the boundaries of natural or
managed ecosystems [48]. The water purification and regulation function is the ability
of the soil to absorb, store, and transport water for later use, prevent long-term drought,
floods, and soil erosion, and remove harmful compounds from water [49]. The carbon se-
questration and regulation function is the ability of soil to store carbon in an unstable form
with the purpose of slowing down the increase in the concentration of carbon dioxide in the
atmosphere [50]. The provision of functional and intrinsic biodiversity function includes
numerous soil biological processes. Soil can provide habitats for animals, plants, and mi-
croorganisms, supporting their life activities and protecting biodiversity [51]. The function
of provision and cycling of nutrients indicates the ability of soil to absorb and maintain
nutrients, produce and retain the nutrients absorbed by crops, promote soil biochemical
processes, and provide and retain nutrients [52]. We constructed a provincial-scale soil
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function evaluation indicator system for cultivated land (Table 1) based on existing large-
and medium-scale soil function evaluation indicator systems [53–55] that considered the
availability of data and was founded on the principles of stability, dominance, spatial vari-
ability, regionality, and systemicity [56,57]. Due to difficulty obtaining soil biological data,
we indirectly characterized the large-scale soil biological diversity from the perspective of
the suitability of the soil biological habitat and the suitable soil conditions for biological
survival [58,59]. However, during practical evaluation and application, these indicators
can be combined with necessary supplements or simplifications according to the actual
data collection of the study area. It is important to note that the five soil function models
show overlap in terms of data input. For example, soil organic carbon supports multiple
soil ecosystem functions that are underpinned by processes such as C sequestration, N
mineralization, aggregation, promotion of plant health, and compound retention [60]. Soil
organic carbon is considered to be an important indicator for monitoring soil degradation
and soil erosion because it affects soil aggregation and stability [61], and is the primary
component influencing soil fertility [62]. Soils with higher organic carbon contents have
better buffering and a stronger capacity to preserve soil water and fertilizer [63], and
the amount of soil carbon sequestration is principally reflected in the soil organic carbon
content [64]. In addition, increasing soil organic carbon in agricultural soils can enhance
a myriad soil biological processes [60]. Therefore, soil organic carbon is input into all
five function models. This creates interconnections between soil functions as observed
in the field; however, the threshold values and decision rules used to assess the input at-
tributes are unique for each model [65]. As several indicators use the same input variables,
statistical correlations among indicators are expected.

Table 1. Evaluation indicator system for cultivated land soil function.

Soil Function Indicator

Primary productivity

Soil texture
Soil thickness/cm

Available soil moisture/mm
pH

Gravel contents
Soil organic carbon

Bulk density
Slope

≥10◦ Effective accumulated temperature

Provision and cycling of nutrients

Soil texture
Soil thickness

pH
Soil organic carbon

CEC
Bulk density

Provision of functional and intrinsic
biodiversity

Bulk density
Soil organic carbon

pH
≥10◦ Effective accumulated temperature

Annual cumulative precipitation
Soil thickness

Available soil moisture
Soil texture
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Table 1. Cont.

Soil Function Indicator

Water purification and regulation

Soil texture
Soil thickness

Available soil moisture
Base saturation%
Gravel contents

Soil organic carbon
CEC
pH

Bulk density

Carbon sequestration and regulation

Soil thickness
Soil texture

Bulk density
Soil organic carbon

Gravel contents

2.2.2. System for Evaluation of Soil Function Supply and Demand

Soil function is transferred from cultivated land ecosystems to social economic systems
for utilization by humans, and the functional service flow is considered the actual supply.
Human demand is formed by the consumption and use of products and services produced
by soil functions. When there is small human demand or a high soil function, the soil
function enables satisfaction of human demand (actual supply is greater than or equal
to human demand). When human demand for the utilization of soil function is beyond
its capacity, the actual supply will be less than or equal to human needs. The actual
supply of soil functions can be employed by human society. To meet human requirements,
however, the actual supply of soil functions may exceed its own capacity. A demand matrix
was then assigned through the supply capacity of soil functions and human demand for
soil functions to spatially support evaluation of the status of the supply and demand of
soil functions, and select the indicator of “supply-demand ratio” to explain the surplus
relationship between actual supply and demand, that is, whether the actual supply of soil
functions enables us to meet the current requirements of human society [8].

2.3. Collection and Processing of Basic Data

Remote sensing data primarily consisted of Landsat satellite remote sensing data
and the Normalized Differential Vegetation Index (NDVI). The remote sensing data of
Heilongjiang land use stems from the geospatial data cloud, and collected Landsat 8 remote
sensing data from September 2018. After acquiring the images, the ENVI 5.1 software was
applied for splicing, radiometric calibration, atmospheric correction, geometric correction,
mosaic cutting, remote sensing interpretation, and supervision classification of images
to six types of land use: cultivated land, woodland, grassland, water area, urban and
rural, industrial and mining, residential, and unused with the Kappa coefficients of 0.84
to meet the demand for accuracy [66]. NDVI data originated from NASA, and vegetation
index data was processed in a linear manner to acquire the standard vegetation index.
Meteorological data such as rainfall and accumulated temperature originated from the
National Meteorological Science Data Sharing Service Platform, while soil data including
the CEC, pH, gravel content, soil organic carbon, and bulk density were acquired from
SoilGrids (https://soilgrids.org), while soil texture, soil thickness, available soil moisture,
and base saturation were obtained from the Harmonized World Soil Database. Terrain data
were mainly digital elevation data (DEM) derived from the geospatial data cloud. The grid
method was applied to divide the evaluation unit in the research, and the cultivated land
spot was extracted from the land use status map in 2018 after image interpretation, with
a 1 × 1 km grid to sample the study area at equal intervals. ArcGIS 10.6 was employed
to merge small map spots to generate 134,449 evaluation units. To facilitate subsequent
evaluation and analysis, each unit was given a unique identification code.
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2.4. Evaluation Indicator Gradation System

The optimal gradation and assignment of each indicator lies in a value of 100 points,
with the worst value being 60 points, and the others referring to the classification standards
of cultivated land quality in the northeast reported in “Cultivated Land Quality Gradation”
(GB/T 33469-2016), “Agricultural Land Quality Gradation Regulations” (GB/T 28407-2012),
and the gradation and assignment methods described in related studies [67–69]. The value
was assigned in accordance with the degree of impact of indicators on soil functions and
adjusted based on the foundation of the actual situation of the study area. The soil function
supply matrix proposed by Coyle et al. represents the supply proportion (grid size) of five
soil functions of different land use types [70], with the horizontal axis indicating land use
type and the vertical axis five soil functions, white for primary productivity, purple for
provision and cycling of nutrients, blue for water purification and regulation, green for
provision of functional and intrinsic biodiversity, and dark gray for carbon sequestration
and regulation (Figure 3). This matrix was used as a reference to determine the proportion
of cultivated soil functions in this study.

Figure 3. The supply matrix of cultivated land soil function (Adapted with permission from ref. [70].
Copyright 2016 Copyright Coyle, et al.).

The importance between two indicators was determined in combination with the
opinions of five experts and the differences in accordance with the relevant literature. The
solution to the article was to use a weighted average to assign the scoring value of each
level of expert, and constructed the judgment matrix to ensure that the restrictions of each
indicator and the total sorts and the single hierarchical arrangement passed the consistency
test (random conformance rate, CR < 0.1) to gain the gradation and assignment and weight
of evaluation indicators shown in Table 2.
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Table 2. Grading assignment criteria and weights of cultivated land soil function evaluation indicators.

Soil
Function

Indicator
Grading Assignment Criteria of Indicators Indicator

Weight
Data Source
of Indicator

Weight of
Function100 90 80 70 60

Primary
productivity

Soil texture Loam Clay Sand 0.1052 Harmonized
World Soil
Database

0.6912

Soil thickness/cm ≥100 (100, 80] (80, 60] <60 0.0540
Available soil
moisture/mm 150 125 100 75 50 0.2100

pH [5.5, 7.5) [7.5, 8.5) ≥8.5 or
<5.5 0.0879

SoilGridsGravel contents ≤4 (4, 6] (6, 8] (8, 11] >11 0.0316
Organic carbon ≥90 (90, 70] (70, 50] (50, 40] <40 0.2857

Bulk density
g/cm3 [1, 1.25) [1.25, 1.45) ≥1.45 or

<1 0.1566

Slope <2 [2, 6) [6, 15) [15, 25) 0.0457 DEM data
≥10◦ Effective
accumulated
temperature

≥2600 (2600,
2480]

(2480,
2360]

(2360,
1995] <1995 0.0232 Meteorological

data

Provision
and cycling
of nutrients

Soil texture Loam Clay Sand 0.0350 Harmonized
World Soil
Database

0.2258

Soil thickness ≥100 (100, 80] (80, 60] <60 0.1482

pH [5.5, 7.5) [7.5, 8.5) ≥8.5 or
<5.5 0.2640

SoilGridsOrganic carbon ≥90 (90, 70] (70, 50] (50, 40] <40 0.4350
CEC/cmol/kg ≥20 (20, 15.4] (15.4, 10.5] (10.5, 6.2] <6.2 0.0363

Bulk density [1, 1.25) [1.25, 1.45) ≥1.45 or
<1 0.0815

Carbon
sequestration

and
regulation

Soil thickness ≥100 (100, 80] (80, 60] <60 0.0756 Harmonized
World Soil
Database

0.0242

Soil moisture Loam Clay Sand 0.1427

Bulk density [1, 1.25) [1.25, 1.45) ≥1.45 or
<1 0.2694

SoilGridsOrganic carbon ≥90 (90, 70] (70, 50] (50, 40] <40 0.4690
Gravel contents ≤4 (4, 6] (6, 8] (8, 11] >11 0.0434

Provision of
functional

and intrinsic
biodiversity

Bulk density [1, 1.25) [1.25, 1.45) ≥1.45 or
<1 0.1091

SoilGrids

0.0242

Organic carbon ≥90 (90, 70] (70, 50] (50, 40] <40 0.3021

pH [5.5, 7.5) [7.5, 8.5) ≥8.5 or
<5.5 0.2001

≥10◦ Effective
accumulated
temperature

≥2600 (2600,
2480]

(2480,
2360]

(2360,
1995] <1995 0.0476 Meteorologic-

al
dataAnnual

cumulative
precipitation

≥640 (640, 590] (590, 550] (550, 520] <520 0.0476

Soil thickness ≥100 (100, 80] (80, 60] <60 0.0917 Harmonized
World Soil
Database

Available soil
moisture 150 125 100 75 50 0.0476

Soil texture Loam Clay Sand 0.1543

Water
purification

and
regulation

Soil texture Loam Clay Sand 0.0487
Harmonized
World Soil
Database

0.0346

Soil thickness ≥100 (100, 80] (80, 60] <60 0.0944
Available soil

moisture 150 125 100 75 50 0.3037

Base
Saturation/% ≥80 (80, 50] <50 0.0252

Gravel contents ≤4 (4, 6] (6, 8] (8, 11] >11 0.0487

SoilGrids
Organic carbon ≥90 (90, 70] (70, 50] (50, 40] <40 0.1913

CEC 0.0294

pH [5.5, 7.5) [7.5, 8.5) ≥8.5 or
<5.5 0.0944

Bulk density [1, 1.25) [1.25, 1.45) ≥1.45 or
<1 0.1640
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2.5. Soil Function Evaluation Model

The multi-factor comprehensive evaluation method was employed to establish a soil
function evaluation model of cultivated land:

Ci =
n

∑
i=1

Fij Wij (1)

where Ci indicates the comprehensive evaluation score of the i-th evaluation unit; Fij is the
score of the j-th evaluation indicator of the i-th evaluation unit; Wij is the weight of the
j-th evaluation factor of the i-th evaluation unit. The soil function evaluation results were
divided into three levels using Jenks natural breaks classification, with the highest quality
being the first-level function and the worst quality the third-level function.

2.6. Supply and Demand Ratio of Soil Function

The supply and demand matrix of soil function was established with reference to the
ecosystem service matrix method, with the soil function evaluation results as the actual
supply of soil functions and application of the following five-point system to the supply
of paddy fields and dry land: 1 = low supply capacity, 2 = general supply capacity, 3 =
medium supply capacity, 4 = high supply capacity, 5 = very high supply capacity.

First-level soil function supply is assigned 5 points, second-level 3 points, and third-
level 1 point. By employing the ecosystem service valuation method and the Delphi
method [71], a five-point system was assigned to the soil function requirements of the two
types of cultivated land (dryland and paddy field) based on expert knowledge, targeting
interviews, and statistical data, with 1 to 5 representing low to high demand. In accordance
with the results of supply and demand assignments, a supply and demand evaluation
matrix of cultivated soil function was then constructed (Figure 4).

Figure 4. Soil function supply matrix of cultivated land in Heilongjiang province.

The supply-demand ratio refers to whether the total amount of soil function in a
certain area can meet the demand, reflecting the balance between the actual supply and
demand of soil function. The supply and demand of cultivated land function is classified
into three types based on the supply-demand ratio: full satisfaction, general satisfaction,
and dissatisfaction.

The supply-demand ratio of soil function = human needs/actual supply (2)

A supply-demand ratio of soil function of less than 1 suggests a surplus state in
which the supply of soil function can meet the demand, while a supply-demand ratio of 1
indicates a balanced condition in which the supply of soil function enables basic satisfaction
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of the demand, and a supply-demand ratio of more than 1 indicates a loss status in which
the function of soil supply is unable to meet the demand.

3. Results

3.1. Analysis of Evaluation Results of Cultivated Land Soil Function

(1) The function of primary productivity
The second-level function dominated the paddy fields and drylands, accounting for

46.36% and 53.52%, respectively. As shown in Figure 5, there were second-level function
areas scattered in the central part and some counties and cities in the south and north,
first-level areas located in the cities of Hulin, Baoqing, Fujin, Raohe, Tongjiang, and Fuyuan
County in the northeast, as well as parts of Suileng County, Hailun, and Bei’an in the central
part, and third-level districts concentrated in the 15 counties and cities in the southwest and
a small area of Ning’an and Dongning County in the southwest. The primary productivity
was found to be principally influenced by indicators of slope, soil texture, soil thickness,
and pH. Owing to the sticky soil texture, poor drainage, and excessive soil moisture in
the southwestern region, the available nutrients are not easily released, resulting in low
soil fertility and the accumulation of salt in the soil surface. This leads to intensified soil
salinization, high pH, and alkaline soil [72]. There are more sandstorms and droughts in the
western region, which causes serious soil erosion and a thin soil layer, resulting in soils not
conducive to cultivated production [73]. The southeast is hilly, and most of the cultivated
land has a slope of more than 5◦, which is subject to sloping ridge-tillage and longitudinal
ridge-tillage. This practice, coupled with excessive development and utilization by humans,
has resulted in serious soil erosion in the southeast region, therefore, the soil is characterized
by stripped topsoil, a thin soil layer, and descending fundamental fertility.

Figure 5. The grade of soil primary productivity function of paddy fields and drylands.

(2) The function of provision and cycling of nutrients
Most land in paddy fields and dry land were second-level function, followed by

first-level function, and then third-level function. The third-level zone is distributed in the
southwest, and the main influencing factor is CEC, that is, soil with high CEC enables the
retention of more nutrients and exertion of better cushioning performance than that with
low CEC (Figure 6). There were some third-level zones, especially in the area bordering
Inner Mongolia, which is characterized by frequent windy weather year round, a dry
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climate, and low rainfall. In recent years, deforestation and overgrazing have resulted
in serious soil desertification and low CEC in desertified areas, which has impacted the
circulation and storage of soil nutrients [74].

Figure 6. The grade of provision and cycling of nutrients function in paddy fields and drylands.

(3) The function of provision of functional and intrinsic biodiversity
The provision of functional and intrinsic biodiversity in paddy fields and drylands

demonstrated a decreasing spatial distribution pattern from northeast to southwest (Figure 7).
This function was primarily affected by pH and annual accumulated precipitation, and
the suitable pH range is an imperative condition for the survival of animals and plants.
The soil types in the southwestern part consisted of meadow chernozem, hydrochloride
meadow soil, and hydrochloride chernozem, with the average pH ranging from 8 to
8.5, showing strong alkalinity and low nutrient content. Additionally, the low annual
accumulated precipitation in the southwest is unable to meet the requirements of animal
and plant survival. Land utilization methods influence the composition of soil biological
communities [74], and paddy soil can provide soil organisms with a more stable source of
nutrients such as water and organic carbon sources. In addition, paddy soil holds more soil
biomass than dry land soil, which suggests that paddy soil biodiversity is slightly better
than that of dry soil [75].
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Figure 7. The grade of provision of functional and intrinsic biodiversity function in paddy fields and drylands.

(4) The function of water purification and regulation
Water purification and regulation functions in most areas of paddy fields and dry

land are at a high level (Figure 8). The first-level area had the widest range, primarily
distributed in the central, northeastern, and most of the northwestern areas of the province.
The second and third-level area was mainly scattered in the north of Ning’an, the east of
Shuangcheng, the middle of Boli County, the west of Longjiang County, and the northeast
of Fuyu County. As the prime factor, soil organic carbon and available soil moisture
were the main influencing factors, and higher organic carbon content contributes to the
purification and buffering function [76]. When compared with dryland soil, paddy field soil
has stronger carbon sequestration ability and organic carbon content, as well as more stable
soil natural water content. The content of organic carbon and available soil moisture in
the southwest was lower than the overall average level of the study area, and the unequal
water and heat and seasonal rainfall have caused serious soil erosion, desertification, and
thinning of the soil layer, which will affect the functional performance of water purification
and regulation.
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Figure 8. The grade of soil water purification and regulation function in paddy fields and drylands.

(5) The function of carbon sequestration and regulation
The first-level of carbon sequestration and regulation districts were principally dis-

tributed in the cities of Tongjiang, Fujin, Hulin, and Mishan, as well as Raohe County,
Fuyuan County, and Baoqing County in the northeast, and part of the cities of Wudalianchi,
Bei’an, and Hailun as well as Suileng County in the middle. The second-level area was
concentrated in the middle, south, and north, while the third-level area includes most of
the southwest and a small part of the south (Figure 9). Cultivated land utilization is an im-
portant factor of human activities that affects the carbon cycle of soil ecosystems, and there
are significant differences in soil organic carbon content under different cultivated methods.
Some studies have shown that rice has the best ability to absorb carbon and produce oxygen
among the main crops per unit area, resulting in an obvious carbon sequestration effect of
paddy soil and high organic carbon content [77,78], and the organic carbon content serves
as a significant factor. Sanjiang Plain is located in the northeast, where the soil conditions
are better than those in the southwest because there is a large area of meadow soil and black
soil that is soft, fertile, and rich in organic matter. Organic matter with high content can
improve the structure of soil aggregates, increase the exchange capacity of soil ions, and
strengthen the ability of soil to fix carbon and release oxygen. There is serious soil erosion
in the southwestern region, and the existing research demonstrates that the low organic
matter content and clay particles of eroded soil lead to the 20% lower carbon sequestration
capacity than that of high-quality soil. Therefore, the spatial distribution law gradually
decreased from northeast to southwest.
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Figure 9. The grade of soil carbon sequestration and regulation function in paddy fields and drylands.

(6) Comprehensive Evaluation Results of Soil Function
The soil function gradation presented a spatial distribution pattern of high in the

northeast and low in the southwest, with the third-level area distributed in a small portion
in the south (Figure 10). This function predominated by the second-level area of soil
function, which accounts for 46.59% of land area. The first-level area was mainly distributed
in the east and northeast, and as well as in a small portion of the central part in strips,
accounting for 28.56% with comprehensively unrestricted or low indicators and highly
functional soil. The third-level area was scattered in 17 counties and cities in the southwest
of Ning’an, the eastern part of Dongning County, and the intersecting part of the northern
area of Boli County and the eastern part of Yilan County. The dry climate, low rainfall,
and frequent windy weather year-round in the southwestern part has caused serious
soil erosion and desertification. The soil types in this area include meadow chernozem,
hydrochloride meadow soil, and hydrochloride chernozem, which have a high calcium
carbonate content, average pH of more than 8, and strong alkalinity, as well as a low
content of organic matter and micronutrient elements that influence the performance of soil
function [79]. The northeast region is located in the Sanjiang Plain, which is characterized
by small slopes, flat terrain, and balanced water and heat resources. The soil types in this
region primarily consist of meadow soil and black soil, which are thick and fertile.
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Figure 10. The grade of soil function in Heilongjiang province.

3.2. Soil Function Supply-Demand Ratio

Through regional statistics (Figures 11 and 12), the supply and demand of primary
productivity function was predominated by functional dissatisfaction, which accounted for
71.32%. This was followed by the functional satisfaction area, which was scattered in the
east and occupies 17.00%. The spatial pattern of provision and cycling of nutrient functions
showed a gradual increase from southwest to northeast, and the functional satisfaction
area is primarily distributed in the northeast, which accounted for 39.39%. The zone of
general satisfaction was found to be roughly the same as that of dissatisfaction, accounting
for 29.03% and 31.58%, respectively, and this zone was concentrated in the southwest. The
functional and intrinsic biodiversity function of 72.53% can satisfy the requirements of
human society, while 13.00% scattered in the central and southern can basically meet this
demand, and 14.47% was the functional dissatisfaction area, which was mainly distributed
in the southwest. The spatial distribution of water purification and regulation functions
and carbon sequestration and regulation functions showed the same trend, presenting
a spatial pattern of high in the middle and low in the surrounding area. Overall, more
than 50% had strong supply capacity to enable a surplus, while most of the southwestern
region and a small part of the south had inferior supply capacity that resulted in a state of
insufficient supply and weak functionality.
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Figure 11. Proportion of supply and demand area of cultivated land soil function.

From a spatial point of view, the supply capacity of the five soil functions in the
northeast was relatively strong and in a surplus state, while the supply and demand in
the southwest and a small part of the southeast are out of balance and cannot meet the
functional requirements. The main reason for this spatial distribution was that the northeast
portion is in the Sanjiang Plain, where there is uniform water and heat, flat terrain, less
erosion and soil-water loss, and a deep soil layer. Moreover, the region is dominated by a
large area of black soil and meadow soil with a balanced acidity-alkalinity, rich nutrient
storage, high organic carbon content, and strong water storage and fertilizer retention
capacity, which is beneficial to the growth of animals and plants [80]. The main soil types
in the southwestern region are aeolian sandy soil and saline-alkali soil. In some low-lying
areas, standing water lies in the large area of sodic alkaline soil that bears high salt content
and soil alkalinity as well as poor ventilation and water permeability, and is unsuitable for
animal and plant growth. Additionally, the border with inner Mongolia is characterized
by strong winds throughout the year and little rainfall, making the region susceptible to
wind erosion and drought, prominent soil sandification problems, and poor water and
fertility retention. As a mountainous area, the southeastern region is characterized by
large slopes, serious soil erosion, and water-soil loss, resulting in thin cultivated soil layers,
loss of soil nutrients, low soil fertility, susceptibility to drought and waterlogging, and
inferior functionality.
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Figure 12. Distribution map of supply-demand ratio of cultivated land soil function.

3.3. Identification of Dominant Soil Function of Cultivated Land

Soil has a variety of functional attributes and states, which are usually characterized
by a combination of functions. Therefore, we determined the best soil function in the
evaluation unit as the dominant function (Figure 13). The largest area of dominant function
was water purification and regulation, with 6.11 million ha, or 34.89% of the total area.
This was mainly distributed in Suibin County and Luobei County in the northwest and
northeast. Soil has a strong ability to absorb and store water, and can therefore effectively
prevent natural disasters such as droughts and floods in the region. The second largest area
of dominant function was the carbon sequestration and regulation function area, which
accounted for about 29.57% of the total and was mainly distributed in the southwest. This
area was characterized by a high capacity to store carbon in an unstable form, which can
effectively slow the release of carbon dioxide into the atmosphere and adjust the field
microclimate. The provision and cycling of nutrients and provision of functional and
intrinsic biodiversity were slightly less distributed, while the dominant function with the
smallest area was the primary productivity, which had an area of only 0.24 million ha, or
1.35% of the total. This area was mainly distributed in Fujin in the east of the study area
and Hailun in the center of the area.

312



Land 2021, 10, 605

Figure 13. Dominant soil functions of cultivated land in Heilongjiang province.

3.4. Cultivated Land Use Zoning Based on Soil Functions

To clarify the dominant soil functions and functionalities and combine these with
the evaluation results for the five soil functions while ensuring the spatial continuity and
integrity of the division, the county and city are set as the basic units and the soil function
supply and demand evaluation results are superimposed on the basis of the dominant
function of the soil to divide the cultivated land into use function zones (Figure 14).

(1) Functional balance region
Most areas in Heilongjiang province were functionally balanced. The five soil func-

tions were in a balanced development, and the compound value of the soil was relatively
high. Based on the favorable soil functional conditions, it is necessary to strictly protect
and expand the high-yield and stable cultivated land. While maintaining the soil function
of the existing cultivated land, deep ploughing is used to break the bottom of the soil
plow and increase the permeability of the soil, improve the water storage capacity and
water retention capacity of the soil, and promote increased crop production [81]. In the
functional balance region, we suggest the characteristics of agricultural production be
highlighted with special attention given to various functions such as farmland production
ecology. Additionally, the layout of farmland should be optimized and the development of
ecological agriculture promoted. To avoid destroying the soil, the requirements of "hiding
grain in the ground" should be followed to develop ecological fertile land. The compound
functions of farmland soil agricultural production, water conservation, and biodiversity
should be considered. Additionally, construction of an agro-ecological leisure tourism
complex to guide the rational and compound use of farmland space and further enhance
its versatility is suggested [82].

(2) Food supply region
Food supply regions were dominated by the functions of primary productivity and

nutrient cycling and supply. The terrain in these areas is mainly valley plains, hilly plains,
and slightly inclined high plains, and these areas are characterized by abundant surface
water, fertile black soil, high natural fertility, rich mineral nutrients, moderate texture,
good agricultural utilization conditions, large and concentrated cultivated land, and high
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productivity. However, this region was densely populated with a limited amount of
cultivated land. The region was also affected by restrictions such as urban construction and
poor ecological soil functions. The food supply region could benefit from increased road
construction to increase the accessibility of field roads, as well as improved cultivated land
irrigation and drainage equipment to ensure the water conditions required for crop growth
are met. Additionally, farming conditions should be improved through measures such as
land consolidation and land development. This area could also be enhanced by adopting
agricultural modern management measures [72]. Food supply regions are considered
key areas for high-standard farmland construction. In such regions, it is important to
promote measures to return straw to the field, increase the number of soil aggregates,
increase soil porosity, and reduce soil compactness [83]. At the same time, these areas can
adopt agricultural modernization management measures to enhance the overall utilization
efficiency of farming, promote agricultural production mechanization and industrialization,
improve farming techniques, strengthen agricultural training and guidance for farmers,
and introduce characteristic cash crops based on regional characteristics. It is also possible
to mobilize farmers’ production enthusiasm through the implementation of agricultural
subsidies to ensure high and stable grain production in the region [84]. Based on the original
land, we suggest implementation of cultivated land utilization and protection measures,
promotion of biological control measures, optimization of farming methods, and promotion
of cultivated land rotation while avoiding long-term overload cultivation. Finally, soil can
be improved through various utilization measures such as rotation, allowing fields to lay
fallow, and alternative planting ecological quality [85].

(3) Ecological agriculture region
The north-central and southeastern parts of Heilongjiang province are typical eco-

logical agricultural regions. The terrain in the north-central part is characterized by hills
and undulating mountains. The complex terrain is not conducive to agricultural farming,
and there are serious water and soil erosion phenomena in the region [86]. This is mainly
because part of the cultivated land was woodland and grassland before reclamation, and
the soil was fertile. However, because large areas have been subject to land reclamation for
many years, the original forest belt was cut down by farmers and the vegetation coverage
rate declined, causing gully erosion to become more serious and soil fertility to decrease
annually. As a result, the functions of primary productivity and nutrient supply and circula-
tion are weak [87]. However, the climate is suitable and rainfall is sufficient. For cultivated
land with a larger slope, the farming method can be improved. Alternatively, some fruit
trees with higher economic benefits can be selected according to local climatic conditions,
and a combination of trees should be adopted by fruit farmers. The planting mode takes
advantage of the developed root system of fruit trees to reduce soil erosion, consolidate
soil, store water, and improve the ecological environment. For some difficult-to-use hills
and sloping lands, it is possible to return farmland to grassland, rotate crops and pastures,
or plant multiple crops, all of which can improve soil fertility and increase the economic
benefits of farmers [88]. Because of the characteristics of the regional topography and the
advantages of mountain landscapes, biodiversity can be protected and mountain tourism
and agricultural areas can be developed.

(4) Functionally vulnerable region
Functionally vulnerable regions were mainly distributed in counties and cities in

the southwest, which is characterized by low-lying, poorly drained, and poor climatic
conditions. These regions border Inner Mongolia and are affected by the Siberian dry
monsoon, which is characterized by little rainfall and high evaporation. These conditions
eventually lead to soil water storage. In these regions, poor capacity and serious soil
salinization have led to soil fertility loss, soil stickiness, soil compaction, and difficulty in
utilization. These areas have also long been subject to erroneous production activities such
as blind land reclamation, improper irrigation and drainage, and over-grazing, which have
caused serious soil desertification, fragile ecological functions, and restricted use of soil
functions. Focusing on soil improvement, we suggest advanced irrigation and drainage
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technology be introduced, and that reasonable irrigation and drainage be used to promote
soil desalination. Additionally, the groundwater level should be controlled to a critical
depth to effectively prevent salt reverse. It is also important to choose salt-tolerant crops
and promote the planting of salt-tolerant or salt-resistant crops, as well as to encourage
the return of straw to the field, increase the application of organic fertilizers and soil
nutrients, improve soil physical and chemical properties, reduce soil water evaporation,
promote soil aggregation, and stabilize soil in these regions [89]. Integrating fragmented
land and developing innovative agricultural planting technology will help break through
the limitations of climate and water resources. For soil desertification areas, ecological
conservation can be adopted, starting with protection of the land ecosystem, as well as
adjusting the planting structure and layout [90].

Figure 14. Cultivated land use zones in Heilongjiang province.

4. Discussion and Prospects

The establishment of macro-scale soil function evaluation theories and methods is a
bottleneck that needs to be broken through in the field of natural resource management in
China [3]. This article describes an evaluation method that is pertinent for the study area.
However, the method described herein would be difficult to apply to other areas, especially
while large-scale soil biodiversity surveys in China are still in their infancy. Large-scale
evaluation of cultivated land soil function is a complex and comprehensive process. The
availability of indicators and data quality are essential to soil function evaluation. Here, we
discuss some limitations of our study dataset and then look in depth at how the evidence
supports our research hypotheses. The protection of national food security is inseparable
from the management and protection of soil health. It is important to re-evaluate the
properties and functions of soil, and to plan and expand the mission of soil science. Based
on this, the present article discusses the current key research directions, provides a reference
for future studies, and provides guidance for agricultural production.
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4.1. Soil Function Evaluation Scale and Indicator

Soil function assessments have evolved over time with changes in the objectives, tools,
methods, and indicators of these assessments [91]. For example, the main objective of
assessments before the 1970s was determining the suitability of soils for crop growth, while
after 2010 the objective changed to evaluation of multi-functionality, ecosystem services,
resistance, and resilience of soils. This change in objectives has resulted in more advanced
methods and novel indicators for determination of soil function being developed (Table 3).

Table 3. Evolution of soil function assessment over time in terms of objectives, tools, methods, and indicators.

Before 1970 1970–1990 1990–2010 2010 Onwards

Objectives suitability for crop
growth productivity productivity, environment,

animal/human health

multi-functionality,
ecosystem services,

resistance and resilience

Tools visual/analytical/digital

Methods soil assessment based on color, structure,
macrofauna

soil quality test kits, and
(bio)chemistry, multivariate

statistics

high-throughput methods,
add microbiology

Indicator trends few indicators many indicators minimum data sets novel indicators

Soil is an ecosystem that has different states under different spatial scopes, different
time frames, and different management methods [92]. Conducting analyses on different
scales solves different problems. Additionally, soil is the result of the combined effects of
soil-forming factors at different scales [93]. At the national scale, policy makers need to
analyze the overall quality and trends of soil resources to ensure national food security. At
the watershed scale, the general public hopes to maintain a healthy production and living
environment in the region. At the field scale, farmland managers are concerned about the
productivity and sustainability of the soil. The existing literature mainly focuses on the
evaluation of soil quality at small and medium spatial scales under specific land use or
agricultural land conditions. However, there is almost no related research on cross-spatial
scales or multi-functional dimensions [94], which makes it difficult to satisfy different levels
of soil health protection decision-making and management behavior needs. Therefore, soil
protection needs to be controlled at the macro level, but also implemented at the micro
level. China’s land resource management and utilization decision-making levels include
townships, counties, cities, provinces, and countries. The indicators, units, methods, and
applications of soil function evaluations at different scales have their own characteristics [3].
The soil function evaluation indicators and importance of different scales are not fixed,
but should be adjusted according to the temporal and spatial change in characteristics
of indicators and the purpose of soil management. Data conditions are the main factor
restricting the selection of indicators; however, from the perspective of scale differentiation,
the availability of data and the selection of indicators are consistent. The large spatial
scale mainly focuses on the endogenous potential and evolution trends of soil functions,
and static indicators that can reflect the inherent properties of the soil should be used
and be relatively consistent with the results of wide-area digital soil mapping. The small
spatial scale mainly focuses on the performance of soil functions in the current state. It is
necessary to adopt dynamic indicators that can respond to farmland management measures
and be obtained through sampling tests [95,96]. Because China has a vast territory and
large geographical differences, it is possible to select representative plots under different
soil types, land use types, ecological environments, and soil management scenarios to
reveal the law of spatial differentiation characteristics of soil functional supply capacity at
different scales, and to establish a minimum indicator set for soil function evaluation in
different regions [97].
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4.2. Classification and Evaluation of Soil Ecosystem Service Function

The soil system is a living system that performs soil functions that provide various
ecosystem services [98]. Soils provide a wide range of goods and services that are im-
portant for human well-being and sustainable socio-economic development, which are
collectively known as ecosystem services [26,99]. However, in recent years, soil function
has declined sharply due to the influence of climate change and human activities, seriously
threatening the survival and development of human beings [100]. Soil ecosystem services
are terminal services formed by soil ecosystems under the effect of human value orienta-
tion and the direct contributions of ecosystems to human benefits [101]; accordingly, each
soil ecosystem service reflects different soil functions [102]. The various divisions of soil
functions have made people realize the multiple uses of soil, as well as the effects that
environmental interference and anthropogenic activities have on soil functions. Currently,
one of the greatest challenges is determining how to quantify soil ecosystem services [103].
Some unsustainable management measures such as traditional farming, unreasonable
fertilization, and blind use of herbicides and pesticides have led to the devaluation and
degradation of soil ecosystem services. Conversely, sustainable soil management measures
such as conservation tillage, organic agriculture, cover crops, and crop diversification
have positive effects on soil ecosystem services [104]. Soil function evaluation has shifted
from focusing only on soil production functions in the early days to comprehensive soil
multi-function evaluation. Comprehensive coordination and weighing of the diversity of
soil ecosystem services are conducted through comprehensive evaluation of soil functions
to achieve sustainable soil management and use [105]. However, the comprehensive evalu-
ation of soil functions cannot be simply additive, as soil is suitable for plant habitat and
crop production functions simultaneously. Therefore, when conducting a comprehensive
evaluation, attention should be paid to the correlation between various soil functions [106].
The soil system integrates physical, chemical, and biological factors and processes, soil
properties that are key to providing a particular soil ecosystem service are identified and
related to context-specific environmental variables. Thus, soil ecosystem services assess-
ments can benefit from research into dynamic spatio-temporal modelling of soil properties
and processes [107].

4.3. Pay More Attention to Soil Biodiversity

Biodiversity not only provides humans with abundant food resources, but also plays
an essential role in maintenance of water and soil, climate regulation, water conservation,
and air purification [108,109]. Ecologists often pay more attention to above-ground bio-
diversity than soil biodiversity [110]. However, these two types of diversity are closely
related, and soil biodiversity significantly affects the function of ecosystems [111,112]. In
addition, Cameron et al. found that areas of mismatch between aboveground and soil
biodiversity cover 27% of the terrestrial surface of the Earth [113]. The soil acts as a com-
posite living entity [114], and a more diverse soil biome is conducive to increasing the
nutrients needed to produce high-yield and high-quality crops, as well as to protecting
crops from pests, pathogens, and weeds. Long-term application of organic fertilizers and
chemical fertilizers can be properly combined to increase the community diversity of key
soil groups [115]. However, the input of a large number of chemicals and unreasonable
management during intensive agricultural production can lead to decreased soil biodiver-
sity, an imbalance in microbial flora, simplification of soil food webs, increased occurrence
of pests and diseases, and severe reductions in crop yields [116]. Indeed, the quantity of
soil organisms and their activities can sensitively reflect changes in soil health and human
management, and can therefore be used as an ecological indicator of soil changes. Soil
biodiversity indicators mainly include microbial biomass, soil microorganisms, pathogens,
large and medium-sized soil animals, soil enzymes and plants. The EcoFinders (Ecological
Function and Biodiversity Indicators in European Soils) project of the European Union has
been trying to identify indicators that can comprehensively reflect soil biodiversity, includ-
ing soil biological community structure and functional gene expression [117]. However,
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this project is challenged by the following: (1) measurement of most biological indicators
takes a long time and the technical requirements and costs are high [118]; (2) there are many
types, individuals, and rapid changes among soil organism populations, as well as a certain
amount of functional redundancy [99]; (3) a high-resolution, quantitative understanding of
the abundance or functional composition of active soil organisms has not been developed
to date [119]. Soil is a challenging habitat, and finding clear and unambiguous relationships
between soil characteristics and the overall soil biodiversity is very difficult. At a large
scale, it is possible to indirectly characterize soil biological diversity from the perspective
of suitability of the soil biological habitat and the suitable soil conditions for biological
survival. The most important drivers of soil biodiversity on a global scale have been found
to be aridity, mean annual temperature, plant richness and cover, soil pH, C content, and
clay percentage [120].

4.4. Utilization and Protection of Black Soil Cultivated Land

Black soil is the most fertile and productive soil, which makes it suitable for farming.
Strengthening the protection of black soil has become a great concern to all sectors of
society [121]. The Great Plains of Ukraine, the Mississippi River Basin in North America,
the Black Soil Region of the Northeast Plain of China, and the Pampas Prairie of South
America are the four largest black soil regions in the world. Heilongjiang province is located
at the core of the Black Soil Region of Northeast China. Since the reclamation of black soil
in China, there have been several periods of rotation and fallow, low-intensity utilization by
humans and livestock, and high-intensity utilization of mechanization. The natural fertility
of black soil has declined annually, the soil has degraded, the organic matter content has
been sharply reduced, the cultivation layer has become thin, and the plow bottom has
thickened [45]. Because of long-term and unreasonable soil management techniques such as
soil plowing, allowing cultivated layers to remain bare, and wanton land reclamation, the
original stable micro-ecosystem of black soil in this region has been broken, resulting in soil
biodiversity, nutrient maintenance, carbon storage, water purification and water regulation
degradation [122,123]. Protection of black soil requires engineering, agronomic, biological,
and other measures to create a deep and fertile cultivated layer that stabilizes and increases
crop yields. After several years of cultivation, fertilization plans need to be developed to
maintain and improve soil fertility [6]. Soil fertilization measures include organic fertilizer
application and crop rotation [120]. Returning more than 80% of agricultural production
waste to the field after the harmless treatment can ensure that the soil organic matter does
not decrease, and may even lead to its slowly increasing. Additionally, straw deep return
protection technology can be used to maintain and increase the organic matter content of
the 0–20 cm black soil layer [124]. It is worth noting that although plowing is conducive
to the release of soil microbial activities and soil nutrients, as well as the mineralization
of soil materials, plowing also loosens the topsoil, which accelerates the wind and water
erosion of the soil and accelerates the decomposition rate of soil organic matter. No-tillage
straw mulch is a typical protective tillage measure, but it is still not clear if no-tillage, no
mulch, or less tillage is the best protective tillage measure [125].

5. Conclusions

Here, an evaluation system for the five functions of primary productivity (provision
and cycling of nutrients, provision of functional and intrinsic biodiversity, water purifi-
cation and regulation, and carbon sequestration and regulation) was developed based
on soil attribute data. Using the soil function discriminant matrix method, soil functions
based on supply-demand ratios were constructed to evaluate the current status of supply
and demand of soil functions. The comprehensive evaluation results of soil functions in
Heilongjiang province demonstrated a distribution pattern of high grade in the northeast
and low grade in the southwest, mostly in second-level areas. The paddy fields and dry
land showed similar primary productivity functions as well as provision and cycling of
nutrient functions, while the intrinsic biodiversity, water purification and regulation, and
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carbon sequestration and regulation functions of paddy fields are better than those of
dry land. The actual supply of primary productivity functions in 71.32% of the region
cannot meet the current needs of life. The dominant function of soil in 34.89% of the area is
water purification and regulation, and most of the cultivated land belongs to the functional
balance region. Cultivated land use zoning and optimization research ideas based on
soil multifunctionality make up for the lack of research on large-scale agricultural soil
health management and protection in China, and are of great importance to the targeted
protection and utilization of black soil.
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