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1. Introduction

Linear and nonlinear integral equations of the first and second kinds have many
applications in engineering and real life problems. Thus, we try to find efficient and accurate
methods to solve these problems. The aim of this editorial is to overview the content
of the special issue “Integral Equations: Theories, Approximations and Applications”.
This special issue collects innovative contributions addressing the top challenges in integral
equations, integro-differential equations, multi dimensional problems, and ill-posed and
singular problems with modern applications. In response to our call, we had 15 submissions
from 16 countries (Azerbaijan, China, Egypt, Germany, India, Indonesia, Iran, Jordan,
Korea, Malaysia, Romania, Russia, Saudi Arabia, Taiwan, Vietnam, and Yemen), of which
10 were accepted and five were rejected. This issue contains 10 technical articles and one
editorial. It covers linear and nonlinear integral equations of the first and second kinds,
singular and ill-posed kernels, system of integral equations, high-dimensional problems
and especially new numerical, analytical, and semi-analytical methods for solving the
problems mentioned by focusing on modern applications.

This special issue focuses on linear and nonlinear integral equations of the first and
second kinds, singular and ill-posed kernels, system of integral equations, and high-
dimensional problems for solving challenging and applicable problems, especially using
novel numerical, analytical, and semi-analytical methods.

2. Brief Overview of the Contributions

Ibrahimov and Imanova in “Multistep Methods of the Hybrid Type and Their Appli-
cation to Solve the Second Kind Volterra Integral Equation” [1] have focused on solving the
integral equations with variable boundaries. For this aim, they have applied the advanced
and hybrid types of multi-step methods. They have tried to show the connection between
the obtained methods and some applicable methods to solve the first order initial-value
problems. Applying the methods mentioned, they can change the problem to a system of al-
gebraic equations. They have extended the methods for solving Volterra integro-differential
equations. The numerical results show the accuracy of the method.

“Integro-Differential Equation for the Non-Equilibrium Thermal Response of Glass-
Forming Materials: Analytical Solutions” has been published by A.A. Minakov and
C. Schick [2]. In this study, they have studied the non-equilibrium thermal response
of glass-forming substances with a dynamic (time-dependent) heat capacity to fast thermal
perturbations based on an integro-differential equation. They have found that the heat
transfer problem can be solved analytically for a heat source with an arbitrary time depen-
dence and different geometries. In addition, they showed that the method can be used to
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analyze the response to local thermal perturbations in glass-forming materials, as well as
temperature fluctuations during subcritical crystal nucleation and decay. The importance
of this paper is related to some applications of the thermal properties of glass-forming
materials, polymers, and nanocomposites.

Zhu et al. in [3] have studied the paper titled “A Type of Time-Symmetric Stochastic
System and Related Games”. This paper has been concerned with a type of time-symmetric
stochastic system, namely the so-called forward–backward doubly stochastic differential
equations, in which the forward equations are delayed doubly stochastic differential equa-
tions and the backward equations are anticipated backward doubly stochastic differential
equations. Under some monotonicity assumptions, the existence and uniqueness of mea-
surable solutions to forward–backward doubly stochastic differential equations have been
obtained. The future development of many processes depends on both their current state
and historical state, and these processes can usually be represented by stochastic differential
systems with time delay. Therefore, a class of nonzero sum differential game for doubly
stochastic systems with time delay has been studied in this paper. A necessary condition for
the open-loop Nash equilibrium point of the Pontriagin-type maximum principle has been
established, and a sufficient condition for the Nash equilibrium point has been obtained.
Furthermore, the above results have been applied to the study of nonzero sum differential
games for linear quadratic backward doubly stochastic systems with delay.

“Effects of Second-Order Velocity Slip and the Different Spherical Nanoparticles on
Nanofluid Flow” have been studied by Zhu [4]. The paper theoretically has investigated
the heat transfer of nanofluids with different nanoparticles inside a parallel-plate channel.
The second-order slip condition has been adopted due to the microscopic roughness in
the microchannels. After proper transformation, they have tried to convert the system of
nonlinear partial differential equations to the ordinary differential equations with unknown
constants, and they have solved the problem using the homotopy analysis method. As we
know, this method has some important applications to solve the integral equations. Several
graphs have been plotted to show the convergence regions. The semi-analytical expressions
between NuB and NBT are acquired. The results show that both first-order slip parameter
and second-order slip parameter have positive effects on NuB of the MHD flow.

Hashemizadeh et al. have presented the paper “Matrix Method by Genocchi Poly-
nomials for Solving Nonlinear Volterra Integral Equations with Weakly Singular Kernels”
in [5]. In this study, they have worked on the spectral method for solving nonlinear Volterra
integral equations with weakly singular kernels based on the Genocchi polynomials. Many
other interesting results concerning nonlinear equations with discontinuous symmetric
kernels with the application of group symmetry have remained beyond the scope of this
paper. In the proposed approach, relying on the useful properties of Genocchi polynomials,
they have produced an operational matrix and a related coefficient matrix to convert non-
linear Volterra integral equations with weakly singular kernels into a system of algebraic
equations. This method is very fast and gives high-precision solutions with good accuracy
in a low number of repetitions compared to other methods that are available. The error
boundaries for this method have also been presented. Some illustrative examples have been
provided to demonstrate the capability of the proposed method. In addition, the results
derived from the new method are compared to Euler’s method to show the superiority of
the proposed method.

Micula in [6] has focused on the paper titled “A Numerical Method for Weakly
Singular Nonlinear Volterra Integral Equations of the Second Kind”. This paper presents a
numerical iterative method for the approximate solutions of nonlinear Volterra integral
equations of the second kind, with weakly singular kernels. In this study, the existence and
uniqueness conditions of the solution have been proved using the unique fixed point of
an integral operator. Iterative application of that operator to an initial function yields a
sequence of functions converging to the true solution. Finally, an appropriate numerical
integration scheme (a certain type of product integration) has been used to produce the
approximations of the solution at given nodes. The convergence of the method and the
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error estimates have been illustrated by the author. The proposed method has been applied
to some numerical examples.

“Matrix Expression of Convolution and Its Generalized Continuous Form” has been
published by Y.H. Geum [7]. In this paper, they have considered the matrix expression of
convolution and its generalized continuous form. The matrix expression of convolution
is effectively applied in convolutional neural networks, and, in this study, we correlate
the concept of convolution in mathematics to that in the convolutional neural network.
Of course, convolution is one of the main processes of deep learning, the learning method of
deep neural networks, as a core technology. In addition to this, the generalized continuous
form of convolution has been expressed as a new variant of Laplace-type transform that
encompasses almost all existing integral transforms.

Chaharborj et al. in [8] have studied the paper titled “Detecting Optimal Leak Loca-
tions Using Homotopy Analysis Method for Isothermal Hydrogen-Natural Gas Mixture
in an Inclined Pipeline”. The aim of this article is to use the homotopy analysis method
to pinpoint the optimal location of leakage in an inclined pipeline containing hydrogen-
natural gas mixture by obtaining quick and accurate analytical solutions for nonlinear
transportation equations. Because of important applications of the homotopy analysis
method for solving different kinds of integral equations, we have accepted to publish
this paper on this issue. The homotopy analysis method utilizes a simple and powerful
technique to adjust and control the convergence region of the infinite series solution using
auxiliary parameters. The auxiliary parameters provide a convenient way of controlling the
convergent region of series solutions. Numerical results have indicated that the approach
is highly accurate, computationally very attractive, and easy to implement.

Noeiaghdam et al. have focused on “Error Estimation of the Homotopy Perturbation
Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels:
Application of the CADNA Library” in [9]. In this paper, they have studied the second kind
of linear Volterra integral equations with a discontinuous kernel obtained from the load
leveling and energy system problems. For solving this problem, they have proposed the
homotopy perturbation method. They have discussed the convergence theorem and the
error analysis of the formulation to validate the accuracy of the obtained solutions. In this
study, the Controle et Estimation Stochastique des Arrondis de Calculs method (CESTAC)
and the Control of Accuracy and Debugging for Numerical Applications (CADNA) library
have been used to control the rounding error estimation. The advantage of the discrete
stochastic arithmetic has been taken to find the optimal iteration, optimal error, and optimal
approximation of the homotopy perturbation method. The comparative graphs between
exact and approximate solutions show the accuracy and efficiency of the method.

Ameer et al. in [10] have published the paper titled “On (φ, ψ)-Metric Spaces with
Applications”. The aim of this article is to introduce the notion of a (φ, ψ)-metric space,
which extends the metric space concept. In these spaces, the symmetry property has been
preserved. They have presented a natural topology τ(φ, ψ) in such spaces and discuss
their topological properties. They also have established the Banach contraction principle
in the context of (φ, ψ)-metric spaces, and they have illustrated the significance of their
main theorem by examples. Ultimately, as applications, the existence of a unique solution
of Fredholm type integral equations in one and two dimensions have been ensured.

3. Conclusions and Outlook

The Special Issue Book “Integral Equations: Theories, Approximations, and Applica-
tions” presents a collection of articles dealing with relevant topics in the field of integral
equation. Various mathematical and computational techniques and approaches were
presented to solve the linear and nonlinear problems. The success of this Special Issue
has motivated the editors to propose a new Special Issue “Integral Equations: Theories,
Approximations, and Applications II” that will complement the present one with a focus
on modern applications of integral equations. We invite the research community to submit

3
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novel contributions covering numerical, analytical, and semi-analytical methods to solve
the multi-dimensional linear and nonlinear integral equations.
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Abstract: The paper presents an iterative numerical method for approximating solutions of two-
dimensional Fredholm–Volterra integral equations of the second kind. As these equations arise
in many applications, there is a constant need for accurate, but fast and simple to use numerical
approximations to their solutions. The method proposed here uses successive approximations of the
Mann type and a suitable cubature formula. Mann’s procedure is known to converge faster than the
classical Picard iteration given by the contraction principle, thus yielding a better numerical method.
The existence and uniqueness of the solution is derived under certain conditions. The convergence
of the method is proved, and error estimates for the approximations obtained are given. At the
end, several numerical examples are analyzed, showing the applicability of the proposed method
and good approximation results. In the last section, concluding remarks and future research ideas
are discussed.
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1. Preliminaries

Fredholm–Volterra equations are integral equations of the following type:

u(t, x) =

t∫

0

∫

Ω

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + f (t, x),

for (t, x) ∈ [0, T]×Ω, Ω a closed subset of Rn, n = 1, 2, 3.
One encounters these equations in many applications in areas of physics, engineering

or biology. In addition, many reformulations of boundary value problems can be written
as Volterra–Fredholm integral equations. They are also used to model the progress of an
epidemic and various other biological and physical problems. Integral equations with
symmetric kernels are of frequent occurrence in the formulation of electronic and optic
problems, as well as in optimization and spectral analysis.

In this paper, we consider mixed Fredholm–Volterra integral equations of the following form:

u(t, x) =
t∫

0

b∫

a

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + f (t, x), (1)

(t, x) ∈ D = [0, T]× [a, b], where K ∈ C(D× D×R) and f ∈ C(D).
Given the wide variety of applications, there have been substantial works on the

solvability of these equations and on studying their properties. Numerical approxima-
tions of their solutions have been studied via collocation methods [1–3], block-pulse func-
tions [4,5], Adomian decomposition methods [6], wavelet-based methods [7–9], iterative
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methods [10–15], differential quadratures [16], meshless procedures [17], etc. A simplified,
one-dimensional case was studied in [18]. More details and considerations can be found,
for example, in [19–22].

The aim of the present work is to develop a simple but quite accurate numerical
method for approximating the solution of such equations. We derive a method based on
fixed point theory for the existence and uniqueness of the solution, and on the use of an
appropriate cubature formula for the numerical approximation. As such, the advantage
of this new method consists mainly in the fact that it is easy to use and implement but
gives good approximations of the solution at a given set of nodes. Compared to other
classical methods used for integral equations, such as projection, Nyström or decomposition
methods, this procedure does not require solving in the end an algebraic system for the
values of the unknown function at the grid points. Such systems can be ill-conditioned, and
may require additional procedures, which increase the computational and implementation
cost of the resulting method, while decreasing its area of applicability. Instead, the proposed
scheme finds the approximations at the nodes iteratively, using previously found values.

The rest of the paper is organized as follows: in Section 2, we discuss the solvability
of Equation (1), via fixed point theory. Altman’s algorithm [23] is employed instead of
the classical Banach’s theorem. This uses a Mann-type iteration (see [24]), which, by
means of some parameters (the sequences εn and yn, respectively, from Theorem 1 below),
allows better control over the speed of convergence. With an appropriate choice of those
parameters, we obtain faster successive approximations than the ones provided by the
Picard-type iteration. In Section 3, we present a numerical method for approximating
the solution of Equation (1), using a suitable cubature formula. Then, we analyze the
convergence and give error estimates for the case when the two-dimensional trapezium
rule is used for the numerical approximation of the iterates. In Section 4 we apply the
proposed method to several numerical examples that are discussed in detail, showing
good agreement between the theoretical results and the practical ones. Section 5 contains
the concluding remarks on the procedure presented, and a discussion of ideas for future
research in this area.

2. Solvability of the Integral Equation

We analyze the solvability of Equation (1) via fixed point results. To this end, we define
the integral operator F : C(D)→ C(D) associated with Equation (1) by the following:

Fu(t, x) :=
t∫

0

b∫

a

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + f (t, x). (2)

Then, we find a solution of the Equation (1) by finding a fixed point of the operator F:

u = Fu. (3)

Let X = C(D), endowed with the Chebyshev norm:

||u|| := max
(t,x)∈D

|u(t, x)|, u ∈ X.

Then, it is known that (X, || · ||) is a Banach space and for some ρ > 0, the ball
Bρ := {u ∈ C(D)

∣∣ ||u− f || ≤ ρ} ⊆ X is a closed subset. The well-known contraction
principle holds for F : X → X. The speed of convergence can be improved by using the
following result due to Mann [24], also known as Altman’s algorithm [23]:

6
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Theorem 1. Consider (X, || · ||) a Banach space and T : X → X a q−contraction. Let 0 < εn ≤ 1
be a sequence of numbers satisfying the following:

∞

∑
n=0

εn = ∞. (4)

Then, we have the following:

(a) Equation u = Tu has exactly one solution u∗ ∈ X.
(b) The sequence of successive approximations

un+1 = (1− εn)un + εnTun, n = 0, 1, . . . (5)

converges to the solution u∗, for any u0 ∈ X.
(c) For every n ∈ N, the following error estimate holds:

||un − u∗|| ≤ e1−q

1− q
e−(1−q)yn ||u0 − Tu0|| (6)

where y0 = 0, yn =
n−1

∑
i=0

εi, for n ≥ 1.

The error estimate in Equation (6) is better than the classical error
qn

1− q
given by the

contraction principle. We will use this result for our integral operator F with εn =
1

n + 1
,

which satisfies the requirements of Theorem 1. Then, we have the following:

Theorem 2. Let K ∈ C(D× D×R), f ∈ C(D) and ρ1 := min
(t,x)∈D

f (t, x), ρ2 := max
(t,x)∈D

f (t, x).

Assume the following:

(i) there exists a constant L > 0 such that
∣∣K(t, x, τ, y, u)− K(t, x, τ, y, v)

∣∣ ≤ L||u− v||, (7)

for all (t, x), (τ, y) ∈ D and all u, v ∈ [ρ1 − ρ, ρ2 + ρ];
(ii)

q := LT(b− a) < 1; (8)

(iii)

MKT(b− a) ≤ ρ, (9)

where MK := max |K(t, x, τ, y, u)| over all (t, x), (τ, y) ∈ D and all u, v ∈ [ρ1− ρ, ρ2 + ρ].

Then, the operator F in Equation (2) has exactly one fixed point, i.e., Equation (3) has exactly
one solution u∗ ∈ BR, which can be obtained as the limit of the sequence of successive approximations
as follows:

un+1 =

(
1− 1

n + 1

)
un +

1
n + 1

Fun, n = 0, 1, . . . , (10)

starting with any arbitrary initial point u0 ∈ BR. Moreover, for every n ∈ N, the following error
estimate holds:

||un − u∗|| ≤ e1−q

1− q
e−(1−q)yn ||u0 − Fu0|| (11)

7
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where the sequence {yn} is defined by the following:

y0 = 0, yn =
n−1

∑
i=0

1
i + 1

, n ≥ 1. (12)

Proof. Let u be any arbitrary point in Bρ. For a fixed (t, x) ∈ D, we have the following:

|Fu(t, x)− f (t, x)| ≤
t∫

0

b∫

a

∣∣∣K
(
t, x, τ, y, u(τ, y)

)∣∣∣ dy dτ ≤ MKT(b− a).

Then, by Equation (9), Fu ∈ Bρ and, thus, F(Bρ) ⊆ Bρ. Now, for every fixed (t, x) ∈ D,
we use Equation (7) to obtain the following:

|Fu(t, x)− Fv(t, x)| ≤
t∫

0

b∫

a

∣∣∣K
(
t, x, τ, y, u(τ, y)

)
− K

(
t, x, τ, y, v(τ, y)

)∣∣∣ dy dτ

≤ L||u− v||
t∫

0

b∫

a

dy dτ

≤ q||u− v||.

Thus,

||Fu− Fv|| ≤ q||u− v||

and since q < 1, all the conclusions follow from Theorem 1.

Remark 1. Let us note that the Lipschitz and contraction conditions (7) and (8) can be quite
restrictive if required on the entire space. This is why we use only a local existence and uniqueness
result so that these conditions need only be satisfied for u ∈ Bρ, for some ρ > 0, which is much
more reasonable. This observation will also be important in the next section, when we discuss the
numerical approximation of the solution at the nodes (see Remark 2).

For more considerations and details on fixed points, see [21,24].

3. A Numerical Method for Solving the Integral Equation

In order to use the iterative procedure Equation (10), we have to approximate the
integrals numerically. Consider the following numerical integration scheme:

b∫

a

d∫

c

ϕ(s, w) dw ds =
m1

∑
i=0

m2

∑
j=0

aij ϕ(si, wj) + Rϕ, (13)

with nodes a = s0 < s1 < · · · < sm1 = b, c = w0 < w1 < · · · < wm2 = d, coefficients
aij ∈ R, i = 0, 1, . . . , m1, j = 0, 1, . . . , m2, such that there exists M > 0 with the following:

|Rϕ| ≤ M, (14)

where M→ 0 as m1, m2 → ∞.
For our purposes, let 0 = t0 < t1 < · · · < tm1 = T and a = x0 < x1 < · · · <

xm2 = b be partitions of [0, T] and [a, b], respectively, and let u0 = ũ0 ≡ f be the initial
approximation. We will use the successive iterations (10) and the numerical integration

8
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formula (13) to approximate un(tl , xk) by ũn(tl , xk), for l = 0, m1, k = 0, m2 and n = 0, 1, . . .
Let l ∈ {0, 1, . . . . , m1} and k ∈ {0, 1, . . . . , m2} be fixed. The following approximations hold:

u1(tl , xk) = Fu0(tl , xk)

=

tl∫

0

b∫

a

K
(
tl , xk, τ, y, f (τ, y)

)
dy dτ + f (tl , xk)

=
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, f (ti, xj)

)
+ RK + f (tl , xk)

= ũ1(tl , xk) + R̃1,

where

ũ1(tl , xk) =
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, f (ti, xj)

)
+ f (tl , xk).

We make the following notation for the maximum error at the nodes:

err(un, ũn) := max
(tl ,xk)∈D

|un(tl , xk)− ũn(tl , xk)|.

Then, by Equation (14), we have the following:

err(u1, ũ1) ≤ |R̃1| ≤ M. (15)

We continue with the next iteration:

u2(tl , xk) =

(
1− 1

2

)
u1(tl , xk) +

1
2




tl∫

0

b∫

a

K
(
tl , xk, τ, y, u1(τ, y)

)
dy dτ + f (tl , xk)




=

(
1− 1

2

)
ũ1(tl , xk) +

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)

+
1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, u1(ti, xj)

)
+ RK + f (tl , xk)

)

=

(
1− 1

2

)
ũ1(tl , xk) +

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)

+
1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũ1(ti, xj)

)
+ RK + f (tl , xk) (16)

+
l

∑
i=0

m2

∑
j=0

aijK
(

tl , xk, ti, xj, u1(ti, xj)− ũ1(ti, xj)
))

=

(
1− 1

2

)
ũ1(tl , xk) +

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũ1(ti, xj)

)
+ f (tl , xk)

)

+

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)

+
1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(

tl , xk, ti, xj, u1(ti, xj)− ũ1(ti, xj)
)
+ RK

)

= ũ2(tl , xk) + R̃2,

9
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with

ũ2(tl , xk) =

(
1− 1

2

)
ũ1(tl , xk) +

1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũ1(ti, xj)

)
+ f (tl , xk)

)
,

R̃2 =

(
1− 1

2

)(
u1(tl , xk)− ũ1(tl , xk)

)

+
1
2

(
l

∑
i=0

m2

∑
j=0

aijK
(

tl , xk, ti, xj, u1(ti, xj)− ũ1(ti, xj)
)
+ RK

)
.

The values ũ2(tl , xk) can be then computed from the values obtained in the previous

step. For the error estimate, let θ := L
m1

∑
i=0

m2

∑
j=0

∣∣aij
∣∣. We have, by Equation (15), the following:

err(u2, ũ2) ≤ |R̃2|

≤
(

1− 1
2

)
|R̃1|+

1
2

(
k

∑
i=0

m

∑
j=0
|aij| · L · |R̃1|+

∣∣RK
∣∣
)

≤
(

1− 1
2

)
M +

1
2

(
LM

m

∑
i=0

m

∑
j=0

∣∣aij
∣∣+ M

)
(17)

= M +
1
2

Mθ

≤ M(1 + θ).

Again, in a similar way, denoting by

ũn(tl , xk) =

(
1− 1

n

)
ũn−1(tl , xk)

+
1
n

(
l

∑
i=0

m2

∑
j=0

aijK
(
tl , xk, ti, xj, ũn−1(ti, xj)

)
+ f (tl , xk)

)
, (18)

for l = 0, 1, . . . , m1, k = 0, 1, . . . , m2, by induction, we find the following:

err(un, ũn) ≤ |R̃n|

≤
(

1− 1
n

)
|R̃n−1|+

1
n

(
θ|R̃n−1|+ M

)

≤ M
(
1 + θ + · · ·+ θn−2)

(
1− 1

n
+

1
n

)
+

1
n

Mθn−1 (19)

≤ M
(
1 + θ + · · ·+ θn−2)+ Mθn−1

= M
(
1 + θ + · · ·+ θn−1).

Then, we have the following approximation result:

Theorem 3. Assume the conditions of Theorem 2 hold. In addition, assume that the coefficients in
the numerical integration formula (13) satisfy the following:

θ = L
m1

∑
i=0

m2

∑
j=0

∣∣aij
∣∣ < 1. (20)

10
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Then, the following error estimate holds for every n ∈ N:

err(u∗, ũn) ≤
e1−q

1− q
e−(1−q)yn ||u0 − Fu0||+

M
1− θ

(21)

where u∗ is the true solution of Equation (3), ũn is the approximation given by Equation (18) and
the sequence {yn} is defined in Equation (12).

Proof. By Equations (19) and (20), for all l = 0, 1, . . . , m1 and k = 0, 1, . . . , m2

|un(tl , xk)− ũn(tl , xk)| ≤
M

1− θ
. (22)

Since
∣∣u∗(tl , xk)− ũn(tl , xk)

∣∣ ≤
∣∣u∗(tl , xk)− un(tl , xk)

∣∣+
∣∣un(tl , xk)− ũn(tl , xk)

∣∣,

the estimate in Equation (21) now follows from Equation (22) and Theorem 2.

Remark 2. Let us discuss condition (20), which can seem to be quite restrictive, especially since
it also involves the constant L. As we will see below, when the quadrature scheme used is the
trapezoidal rule, this condition reduces to the contraction condition (8) (whose applicability was
discussed earlier in Remark 1), and, thus, does not introduce any new restrictions. In fact, the
same thing is true for other fairly easy quadrature formulas, such as the midpoint or Simpson’s rule
(see [25]).

A Numerical Method Based on the Trapezoidal Rule

As discussed previously, we can use any numerical integration formula to approximate
the iterates un(xk), as long as it satisfies condition (20). In what follows, we propose one of
the simplest formulas, the two-dimensional trapezoidal rule:

b∫

a

d∫

c

ϕ(τ, y) dy dτ =
(b− a)(d− c)

4m1m2

[
ϕ(a, c) + ϕ(b, c) + ϕ(a, d) + ϕ(b, d)

+ 2
m1−1

∑
i=1

(
ϕ(τi, c) + ϕ(τi, d)

)
(23)

+ 2
m2−1

∑
j=1

(
ϕ(a, yj) + ϕ(b, yj)

)
+ 4

m1−1

∑
i=1

m2−1

∑
j=1

ϕ
(
τi, yj)

)]
+Rϕ,

using the nodes si = a +
b− a
m1

i, wj = c +
d− c
m2

j, i = 0, m1, j = 0, m2. The remainder is

the following:

Rϕ = −
[
(b− a)3(d− c)

12m2
1m2

ϕ(2,0)(ξ, η1) +
(b− a)(d− c)3

12m1m2
2

ϕ(0,2)(ξ1, η) (24)

+
(b− a)3(d− c)3

144m2
1m2

2
ϕ(2,2)(ξ, η)

]
, ξ, ξ1 ∈ (a, b), η, η1 ∈ (c, d),

where we use the notation ϕ(α,β)(t, x) =
∂α+β ϕ

∂tα∂xβ
(t, x).

11
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For fixed m1, m2, we consider the nodes tl =
T

m1
l, xk = a+

b− a
m2

k, l = 0, m1, k = 0, m2.

For simplicity, we will use the notation Kl,k,i,j = K
(
tl , xk, ti, xj, un(ti, xj)

)
. Then we have

the following:

tl∫

0

b∫

a

K
(
tl , xk, τ, y, un(τ, y)

)
dy dτ =

tl(b− a)
4lm2

[
Kl,k,0,0 + Kl,k,l,0 + Kl,k,0,m2

+Kl,k,l,m2 + 2
l−1

∑
i=0

(
Kl,k,i,0 + Kl,k,i,m2

)

+2
m2−1

∑
j=0

(
Kl,k,0,j + Kl,k,l,j

)
(25)

+4
l−1

∑
i=0

m2−1

∑
j=0

Kl,k,i,j

]
+ RK,

for each l = 0, 1, . . . , m1, k = 0, 1, . . . , m2. Since
tl
l
=

T
m1

, in this case, θ ≤ LT(b− a) = q,

which, by Equation (8) is strictly less than 1.
Next, let us discuss the bound M from Equation (14). By Equation (24), if K(2,0)(τ, y,

un(τ, y)
)
, K(0,2)(τ, y, un(τ, y)

)
and K(2,2)(τ, y, un(τ, y)

)
are bounded, then the remainder

RK is of the form O
(

1
m2

1

)
+ O

(
1

m2
2

)
. For simplicity, we write the function K emphasizing

only the variables that it is to be differentiated with respect to, i.e., K(τ, y, u(τ, y)). We have
the following:

K(2,0)(τ, y, un(τ, y)
)

=
∂2K
∂τ2

(
τ, y, un(τ, y)

)
+ 2

∂2K
∂τ∂u

(
τ, y, un(τ, y)

) ∂u
∂τ

(τ, y)

+
∂2K
∂u2

(
τ, y, un(τ, y)

)( ∂u
∂τ

(τ, y)
)2

+
∂K
∂u
(
τ, y, un(τ, y)

) ∂2u
∂τ2 (τ, y),

K(0,2)(τ, y, un(τ, y)
)

=
∂2K
∂y2

(
τ, y, un(τ, y)

)
+ 2

∂2K
∂y∂u

(
τ, y, un(τ, y)

) ∂u
∂y

(τ, y)

+
∂2K
∂u2

(
τ, y, un(τ, y)

)( ∂u
∂y

(τ, y)
)2

+
∂K
∂u
(
τ, y, un(τ, y)

) ∂2u
∂y2 (τ, y),

and a similar (albeit much longer) formula can be found for K(2,2)(τ, y, un(τ, y)
)
, involving

partial derivatives of K and un of up to order 4. For the partial derivatives of un, we have
the following:

un(t, x) =

t∫

0

b∫

a

K
(
t, x, τ, y, un−1(τ, y)

)
dy dτ + f (t, x),

∂un

∂x
(t, x) =

t∫

0

b∫

a

∂K
∂x
(
t, x, τ, y, un−1(τ, y)

)
dy dτ +

∂ f
∂x

(t, x),

∂un

∂t
(t, x) =

b∫

a

K
(
t, x, t, y, un−1(t, y)

)
dy

+

t∫

0

b∫

a

∂K
∂t
(
t, x, τ, y, un−1(τ, y)

)
dy dτ +

∂ f
∂t

(t, x),

12
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and so on, up to the partial derivatives of order 4.
It is now obvious that if K and f are C4 functions with bounded fourth order partial

derivatives, then there exists M > 0, independent of n, such that

|RK| ≤ M, (26)

with M→ 0 as m1, m2 → ∞. Thus, under these assumptions and those in Theorem 2, we
have the following error estimate:

err(u∗, ũn) ≤
e1−q

1− q
e−(1−q)yn ||u0 − Fu0||+

M
1− θ

, (27)

for all n = 1, 2, . . . , and {yn} given in Equation (12).

4. Numerical Examples

We now illustrate the applicability of the proposed method on several numerical
examples. All computations are completed in Matlab, in double precision arithmetic. In
general, the number of nodes is chosen such that the mesh size is around 0.05, which
is small enough to achieve good accuracy but not so small as to increase the number
of operations.

Example 1. First, let us consider the linear mixed Fredholm–Volterra equation:

u(t, x) =

t∫

0

2∫

0

xe−yu(τ, y) dy dτ + t(ex − tx), t ∈ [0, 1], (28)

with exact solution u∗(t, x) = tex.

We take ρ = 15.5. We have K(t, x, τ, y, u) = xe−yu,
∂K
∂u

= xe−y and the following:

LT(b− a) ≈ 0.74 < 1,

MKT(b− a) ≈ 15.37 ≤ ρ,

so all the hypotheses of Theorem 3 are satisfied. Additionally, for ρ = 15.5, we have that
u∗ ∈ Bρ.

We consider the two-dimensional trapezoidal rule with m1 = 18 and m2 = 36, with

the corresponding nodes ti =
1

m1
i, i = 0, m1 and xj =

2
m2

j, j = 0, m2. Table 1 contains the

errors err(u∗, ũn), with initial approximation u0(t, x) = f (t, x) = t(ex − tx). The CPU time
per iteration is approximately 1.01.

Table 1. Errors for Example 1, m1 = 18, m2 = 36.

n err(u∗, ũn)

1 1.080492× 10−1

5 1.210778× 10−4

10 5.837723× 10−6

Example 2. Next, consider the following nonlinear integral equation:

u(t, x) = 2
t∫

0

1∫

0

x2yτe−τeu(τ,y) dy dτ + x2(1− e−t), t ∈ [0, 1/4], (29)

whose exact solution is u∗(t, x) = tx2.

13
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Here, K =
∂K
∂u

= 2x2yτe−τeu Thus, for ρ = 1, we have the following:

LT(b− a) ≈ 0.33 < 1,

MKT(b− a) ≈ 0.33 ≤ ρ,

thus, Theorem 3 is applicable and u∗ ∈ Bρ.

Again, we use the trapezoidal rule with m1 = m2 = 18 and nodes ti =
1

4m1
i, i = 0, m1,

xj =
1

m2
j, j = 0, m2. The errors err(u∗, ũn) are given in Table 2, with initial approximation

u0(t, x) = f (t, x) = x2(1− e−t). The CPU time per iteration is approximately 0.89.

Table 2. Errors for Example 2, m1 = m2 = 18.

n err(u∗, ũn)

1 2.034743× 10−1

5 9.354733× 10−4

10 3.077314× 10−5

Example 3. Last, consider the nonlinear mixed Fredholm–Volterra equation as follows:

u(t, x) = 2
t∫

0

1∫

0

x cos τ(u(τ, y))2 dy dτ +
x sin t

9
(9− sin2 t), (30)

for t ∈ [0, 1/2]. The exact solution of Equation (30) is u∗(t, x) = x sin t.

We have K(t, x, τ, y, u) = 2xu2 cos τ and
∂K
∂u

= 4xu cos τ. Choosing ρ = 0.3, we obtain
the following:

LT(b− a) ≈ 0.53 < 1,

MKT(b− a) ≈ 0.28 ≤ ρ,

so Theorem 3 can be used and u∗ ∈ Bρ.

Again, the trapezoidal rule is used with m1 = m2 = 18 and nodes ti =
1

2m1
i, i = 0, m1

and xj =
1

m2
j, j = 0, m2. In Table 3 we give the errors err(u∗, ũn) with initial approximation

u0(t, x) = f (t, x) =
x sin t

9
(9− sin2 t). The CPU time per iteration is approximately 0.98.

Table 3. Errors for Example 3, m1 = m2 = 18.

n err(u∗, ũn)

1 2.733605× 10−1

5 7.890241× 10−4

10 2.766358× 10−5

5. Conclusions

We presented a numerical method for approximating solutions of two-dimensional
mixed Fredholm–Volterra integral equations of the second kind, using a combination of
successive approximations for fixed points and cubature formulas. In this paper, we used
Altman’s algorithm and the Mann iteration for finding fixed points of an integral operator
and the two-dimensional trapezium rule for the numerical integration of the iterates. This
has many advantages: in the first place, the fixed point result we used not only guarantees

14
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the existence of a unique solution, but also gives a procedure for finding it by successive
iterations. Moreover, Mann iterates converge faster than Picard ones (see [24]), so better
accuracy is obtained with fewer iterations. In addition, by using the trapezoidal rule,
the contraction condition for the integral operator also guarantees the convergence of
the numerical approximations. Secondly, the choice of the trapezoidal scheme makes the
method easy to use and implement since most mathematical software have this rule built-in.
Last, but not least, many popular approximation methods, such as Nyström, collocation,
Galerkin or Adomian decomposition methods, lead to difficult-to-solve systems of algebraic
equations that are many times ill-conditioned. Such problems are avoided here since the
computation of an approximate value only requires the values obtained at the previous step.
This reduces the computational and implementation cost of the method. Still, the method

proposed converges with order O
(

e−(1−q)yn
)
+O

(
1

m2
1

)
+ O

(
1

m2
2

)
(with {yn} given in

Equation (12)), producing good resulting approximations as the numerical examples show.
On the downside, there are some limitations to the types of equations that this method can
be applied to, due to the constraints in Theorem 2.

These ideas can be continued in studying other types of mixed integral equations,
such as equations in higher dimensions (Ω ⊆ R2 or R3), equations with singular kernels
(arising, for example, in reformulations of the heat equation), or kernels with modified
argument, etc. Other types of successive approximations or other numerical integration
schemes can also be explored.
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Abstract: There are some classes of methods for solving integral equations of the variable boundaries.
It is known that each method has its own advantages and disadvantages. By taking into account
the disadvantages of known methods, here was constructed a new method free from them. For
this, we have used multistep methods of advanced and hybrid types for the construction methods,
with the best properties of the intersection of them. We also show some connection of the methods
constructed here with the methods which are using solving of the initial-value problem for ODEs
of the first order. Some of the constructed methods have been applied to solve model problems. A
formula is proposed to determine the maximal values of the order of accuracy for the stable and
unstable methods, constructed here. Note that to construct the new methods, here we propose to
use the system of algebraic equations which allows us to construct methods with the best properties
by using the minimal volume of the computational works at each step. For the construction of
more exact methods, here we have proposed to use the multistep second derivative method, which
has comparisons with the known methods. We have constructed some formulas to determine the
maximal order of accuracy, and also determined the necessary and sufficient conditions for the
convergence of the methods constructed here. One can proved by multistep methods, which are
usually applied to solve the initial-value problem for ODE, demonstrating the applications of these
methods to solve Volterra integro-differential equations. For the illustration of the results, we have
constructed some concrete methods, and one of them has been applied to solve a model equation.

Keywords: Volterra integral equation; multistep method with constant coefficients; degree and sta-
bility; advanced multistep methods; hybrid method; multistep second derivative methods; necessary
condition for the convergency

1. Introduction

It is known that many problems of the natural sciences are reduced to the solving of
integral equations of variable boundaries, which are called integral equations of Volterra
type. Vito Volterra (proud Italian) fundamentally investigated these equations and also
reduced the mathematical models of many problems of the natural sciences to solve these
integral equations. As is known, to solve Volterra integral equations is one of the basic
directions in modern mathematics. For objectivity, let us note that scientists have met with
the need to solve integral equations with variable boundaries before Vito Volterra (see, for
example, [1–6]). Now, let us consider the following integral equation of Volterra type:

y(x) = f (x) +

β(x)∫

α(x)

K(x, s, y(s))ds, xε[x0, X]. (1)
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One of the popular Volterra integral equations can be written as:

y(x) = f (x) +
x∫

x0

K(x, s, y(s))ds, x0 ≤ s ≤ x ≤ X. (2)

This equation is taken as known, if given the functions f (x) and K(x, s, z).
Suppose that the given functions f (x) and K(x, s, z) are sufficiently smooth and

Equation (2) has the unique solution y(x), which is defined on the segment [x0, X]. It
follows that the solution y(x) is also a sufficiently smooth function. For the construction
of numerical methods to solve Equation (2), let us divide the segment [x0, X] to N equal
parts by using nodes xi+1 = xi + h (i = 0, 1, . . . , N). Here, 0 < h is the step size.

As is known, for the solving of Equation (2) there are numerous methods constructed
by different authors. There exists one-step and multistep methods constructed for the
solving of Equation (2). Let us note that some authors, for the solving of Equation (2), have
proposed to use the spline function or collocation methods (see, for example, [7–11]).

There are many works dedicated to the solving of integral equations, which have used
the quadrature methods (in [12] for the calculation of definite integrals proposed to use
the new way). Note that for solving Volterra integral equations, many authors constructed
methods which are different from the above noted (see, for example, [13–16]). It is known
that in this case the number of calculations increases when going from the current point
to the next. By taking into account this property, in [13] they have constructed a method
which is released from the indicated disadvantages. By generalization of this method,
here we have constructed more exact stable methods, which we have applied to solve
Equation (2). For the presentation of the essence of these methods, let us consider the
partial case of Equation (2) which is obtained when replacing K(x, s, y) = ϕ(s, y). In this
case Equation (2) can be written as the following:

y(x) = f (x) +
x∫

x0

ϕ( s, y(s))ds. (3)

It is not hard to understand that solving this equation is equivalent to solving the
following initial-value problem for ODEs of the first order:

y′(x) = f ′(x) + ϕ(x, y(x)), y(x0) = f (x0). (4)

It follows from here that the solution of the integral equation of (3) and the initial-value
problem (4) can be found by one and the same method. It is not the only case, when the
initial-value problem for ODEs and Volterra integral equations can be solved by one and
the same methods. To show this, let us consider the following case, when the function of
K(x, s, y) is degenerate and can be presented in the following form:

K(x, s, y) =
m

∑
j=1

aj(x)bj(s, y). (5)

By taking this in Equation (2), we receive:

y(x) = f (x) +
m

∑
j=1

aj(x)vj(x).

The function vj(x), j = 0, 1, . . . , m can be determined as the solution of the
following problem:

vj
′(x) = bj(x, y(x)), vj(x0) = 0 (j = 1, 2, . . . , m). (6)
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It is clear that by solving the system of ODEs (6), one can find the values of the function
y(x) at the nodes (mesh points) by using the solution of the system (6). Note that in this
case this system of ODEs and the integral equation of (2) can be solved by one and the
same methods. Thus, there are some domains in which the integral equation of (2) and
the initial-value problem for ODEs can be solved by one and the same methods. Here,
it is shown that this domain can be extended and the error received in this case can be
estimated (see, for example, [17–19]).

It is not difficult to prove that by using the Lagrange interpolation polynomial the
function K(x, s, y) can be presented as:

K(x, s, y) =
k

∑
j=1

lj(x)bj(s, y) + Rk(x), (7)

where lj(x) (i = 1, 2, . . . , m) are the basic Lagrange function and Rm(x) is the remain-
der term. By comparison of the equality of (5) and (7) we receive some connection
between them.

2. Construction of Multistep Methods to Solve Both Equations (2) and (4)

Let us note that the known multistep method with constant coefficients can be applied
to solve the Volterra integral equation. In the result of which, one can constructed by the
following method (see, for example, [17–19]):

k

∑
i=0

αiyn+i =
k

∑
i=0

αi fn+i + h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
. (8)

For the construction methods with the improved properties, here we have used the
generalization of the multistep methods, which can be written as the following (see, for
example, [20–28]):

m

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i (n = 0, 1, . . . , N − l; l = max(m, k)). (9)

For the value m ≥ k from the method of (9), it follows the known multistep methods,
but for the value m < k it follows advanced methods (formally), but in reality these
methods do not depend on each other. Therefore, each of them is an independent object
of investigation. The stable advanced method is more accurate (p ≤ k + l + 1, for k ≥ 3l,
and m = k− l, here, p is the degree and k is the order of finite-difference method (9)) (see,
for example, [23,24]). Let us note that by Dahlquist’s laws, there exists stable methods
of type (8) which have the degree pmax = 2[k/2] + 2. Here, we use the conceptions of
the stability, degree, and order, defined by Dahlquist (see, for example, [21–28]). By the
above-described way, we find that the stable methods of the advanced type are more exact
than the stable multistep methods. However, unstable multistep methods are more exact
than the advanced method. Namely, p ≤ 2k for method (8) and p ≤ 2k− l for method (9).

Advanced methods have been constructed by Kouella for the calculation of the return
of Holliley’s comet. Note that some advanced concrete methods have been constructed
by known scientists such as Laplace, Steklov, etc. However, all stable advanced methods
constructed by different specialists had the degree p ≤ 2[k/2] + 2. That is, they obeyed
the law of Dahlquist. The advantages and disadvantages of advanced methods have been
shown in [23,24], and for the correction of some of the disadvantages of the advanced
method there have been constructed special predictor–corrector methods (see, for exam-
ple, [29]). Note that if m > k in this case method (9) will be explicit and the maximal value
for stable explicit methods can be found by the formula p ≤ m. Thus, it is proven that
stable advanced methods are more exact than the explicit and implicit methods of type (9).
Now, let us investigate these methods by using their other properties.
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If method (9) is applied to solve the problem (4), then we receive:

m

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

βi ϕn+i. (10)

where fm = f (xm), ϕm = ϕ(xm, ym), and αj, βi (j = 0, 1, . . . , m; i = 0, 1, . . . , k) are the
coefficients of method (10) or (9).

Let us input m = k. In this case, for the value αk 6= 0, we receive the implicit method if
βk 6= 0. If we compare these methods, then we find that the explicit (βk = 0) methods can
be applied to solve some problems. However, in the application of implicit methods arises
some difficulties for elimination, of which here it is proposed to use the predictor–corrector
methods. Now, let us consider the application of the advanced methods. For this, we have
k = m + l and αk−l 6= 0. In this case, method (10) can be written as:

m

∑
i=0

αi(yn+i − fn+i) = h
m−1

∑
i=0

βi ϕn+i + h
m+l

∑
i=m

βi ϕn+i. (11)

In the application of this method arises some difficulties related to the calculation of
the second part, which is located on the right hand side of the equality of (11).

It is evident that for the calculation of the second sum on the right hand side of
equality (11), we need to define the values yn+m, yn+m+1, . . . , yn+m+l . This difficulty can
be solved by using some methods for the calculation of values yn+m+j (0 ≤ j ≤ l). For
this aim, one can use the predictor–corrector methods. Let us note that if method (11) is
implicit, then it will take place that l = 0. In this case, one can also use predictor–corrector
methods (see [29]). For the sake of objectivity, let us note that for using method (11), one
can use the same predictor–corrector method in both the cases l = 0 and l 6= 0. Therefore,
in the using of method (11), additional difficulties do not arise for the case l > 0.

Let us note that method (10) can be applied to the solving of Equation (2), from the
results of which one can receive the following:

m

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
. (12)

It is clear that this method can be written as method (11), and in the application of
them to solve some problems can be used in the above-described way. Therefore, let us
consider the determination of the values of the coefficients αi, β

(j)
i (i, j = 0, 1, . . . , k), as

the basic properties of the multistep methods depend on the values of their coefficients. For
this aim let us suppose that by any methods we have found the values of the coefficients
αi, β

(j)
i (i, j = 0, 1, . . . , k), by the choosing of which method (12) can have the degree of p.

The conception of degree can be defined by the following way:

Definition 1. The integer p is called the degree for method (12), if the following holds:
m

∑
i=0

αi(y(xn+i)− f (xn+i)) = h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, y(xn+i)

)
+ O

(
hp+1

)
, h→ 0. (13)

where y(xm) is the exact value of the solution of the problem (2) at the point xm (m ≥ 0).

By the above-described way we have constructed methods (8) and (12) to solve the
Volterra integral equation of the second kind, presented by the equation of (2). It is known
that both theoretical and practical interests are stable methods with a high order of accuracy.
Therefore, let us define the maximum values of the degree for the methods (8) and (12).
For this, let us consider the following theorem:
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Theorem 1. If the methods (8) and (12) have the degree of p and p1, respectively, then 1 ≤ p ≤ 2k
and 1 ≤ p1 ≤ k + m.

If methods (8) and (12) are stable, then the following holds:

1 ≤ p ≤ 2[k/2] + 2, 1 ≤ p1 ≤ k + l + 1 (if m = k− l and k ≥ 3l).

Proof. It is obvious that the theorem also holds in the case K(x, s, y) = ϕ(s, y). In this case,
methods (8) and (12) will match with method (9) (and in the case m = k). By Dahlquist’s
rule we find that p1 ≤ k + m, and the method with the degree pmax = m + k (and also
for the case m = k) is unique. If these methods are stable, then there are methods with
the degree:

p ≤ 2[k/2] + 2, p1 ≤ k + l + 1,

for all the values of K. �

Generally speaking, there is no uniqueness for the methods of type (8) and (12) from
the corresponding conditions (see [20,23]).

From here we find that the local truncation error for this method can be presented
as O

(
hp+1). It is not difficult to understand that the equality of (13) will also hold in the

case when K(x, s, y) = ϕ(s, y). In this case we find that the integral equation of (2) will
be same with the equation of (3) (see, for example, [1,30–34]). By the above-described
way we have proved that the solution of the integral equation of (3) coincides with the
solution of the initial-value problem for ODEs of the first order, which have been written
as the problem of (4). It follows that to the solving of the Equation (3) can been applied the
methods constructed for solving the initial-value problem for ODEs. Taking into account
that in the method of (12) one can replace the function of K(x, s, y) with the function of
ϕ(s, y), then we find that in this case from method (12) one can receive the following:

m

∑
i=0

αiyn+i =
m

∑
i=0

αi fn+i + h
k

∑
i=0

k

∑
j=i

β
(j)
i ϕ(xn+i, yn+i). (14)

If in the method of (14) we use the next replacement:

k

∑
j=i

β
(j)
i = βi (i = 0, 1, . . . , k), (15)

then the receiving method will be same as method (10).
If we assume that the coefficients βi (0 ≤ i ≤ k) are known, then it follows that

(15) is the system of linear algebraic equations. Note that the solution of this system
is not unique. Generally speaking, finding the solution of system (15) is not difficult.
As seen from here, the value of the degree p is independent from the coefficients of
β
(j)
i (i, j = 0, 1, . . . , k). Let us prove that the value of p depends on the values of the coef-

ficients of αi, βi (i = 0, 1, . . . , k). To illustrate this, here we propose to use the following
Taylor series:

y(x + ih) = y(x) + ihy′(x) +
(ih)2

2!
y′′ (x) + · · ·+ (ih)p

p!
yp(x) + O

(
hp+1

)
, (16)

y′(x + ih) = y′(x) + ihy′′ (x) +
(ih)2

2!
y′′′ (x) + · · ·+ (ih)p−1

(p− 1)!
yp(x) + O(hp). (17)
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By taking into account these series in (14), we receive the following:

m
∑

i=0
αi(y(x + ih)− f (x + ih))− h

k
∑

i=0
βi ϕ(x + ih) =

m
∑

i=0
αi((y(x)− f (x) + h(

m
∑

i=0
iαi −

k
∑

i=0
βi)(y(x)− f (x))′

+h2
(

m
∑

i=0

i2
2! αi −

k
∑

i=0
βi

)
(y(x)− f (x))′′ + · · ·+ h

(
m
∑

i=0

i2
2! αi −

k
∑

i=0

ip−1

(p−1)! βi

)
(y(x)− f (x))p

+O(hp+1) = 0

(18)

where x = x0 + nh is a fixed point and (y(x)− f (x))(j) = ϕj(x, y)(j = 0, 1, . . . , p)
(it follows from here the equality which is similar to Equation (4)).

Suppose that the following equalities hold:

m

∑
i=0

αi = 0;
k

∑
i=0

βi =
m

∑
i=0

iαi;
k

∑
i=0

iβi =
m

∑
i=0

i2

2!
αi, . . . ,

k

∑
i=0

ip−1

(p− 1)!
βi =

m

∑
i=0

ip

p!
αi. (19)

Then, from (18), we receive the following:

m

∑
i=0

αi(y(x + ih)− f (x + ih))− h
k

∑
i=0

βi ϕ(x + ih) = O(hp+1), h→ 0, (20)

where x = x0 + nh is a fixed point.
In this case we find that the method of (14) has the degree of p. Now, let us prove

that if the asymptotic equality of (20) holds, then the system of algebraic Equation (19) will
have a solution. It is not hard to understand that, if the asymptotic equality of (20) holds,
then we find that the following also holds:

m
∑

i=0
αi(y(x)− f (x)) + h(

m
∑

i=0
iαi −

k
∑

i=0
βi)(y′(x)− f ′(x)) + h2(

m
∑

i=0

i2
2! αi −

k
∑

i=0
iβi)(y′′ (x)− f ′′ (x)) + · · ·

+ hp(
m
∑

i=0

ip

p! αi −
k
∑

i=0

ip−1

(p−1)! βi)(y(p)(x)− f (p)(x)) = 0
(21)

Let us consider the following notation:

z(x) = y(x)− f (x).

It is known that if z(x) is a sufficiently smooth function, then z(x), z′(x), . . . , zp(x)
is the independent linear system, if z(j)0 (0 ≤ j ≤ p). If we take this into account in the
equality of (21), then from that it follows the system of (19). It follows from here that
the fulfillment of the condition (19) for the coefficients of method (14) is necessary, and
is a sufficient condition for the holding of the asymptotic equality of (20). Thus, we have
proved the following lemma:

Lemma 1. In order for the method of (14) to have a degree p, the satisfaction of its coefficients by
the system of algebraic Equation (19) is necessary and sufficient.

In the system of (19) there are k + m + 2 unknowns and p + 1 equations. Equation (19)
is a system of linear algebraic equations and in the case p + 1 = k + m + 2, the determinant
of this system is nonzero (in this case receiving the Vandermond determinant). As was
noted above, the condition αm 6= 0 must hold. By taking into account this condition, we
receive p+ 1 = k+m+ 2. It follows that p ≤ k+m. In the case m = k, from here we receive
Dahlquist’s rule, which can be written as p ≤ 2k (pmax = 2k or pmax = k + m). One can
prove that the method with the degree pmax = k + m is unique (see, for example, [33–36]).
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Comment 1. In the above-described method for the comparison of the advanced and multistep
methods, we usually use the values of the variables m and k. Note that the advanced methods can
not be received from the multistep methods. For the proving of this, let us consider the following
k-step methods:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i. (22)

We usually suppose that αk 6= 0, which has a relation with finding the value yn+k
as the solution of the finite-difference equation of (22). From here, we find that in the
case αk = 0, the equality (22) is transferable to the other class method. As was noted, if
method (22) is stable and αk 6= 0, then p ≤ 2[k/2] + 2, and there are stable methods with
the degree pmax = 2[k/2] + 2 for all the values of the order k.

Note that here we used the following definition for the stability:

Definition 2. Method (9) is called stable if the roots of the following polynomial

ρ(λ) = αmλm + αm−1λm−1 + · · ·+ α1λ + α0

lie inside the unit circle, on the boundary of which there are no multiply roots.

Comment 2. As was noted above for method (9), the condition p ≤ k + m holds. If m = k − l
(l > 0 ) then we receive p ≤ 2k − l. However, if method (9) is stable, then p ≤ k + l + 1. It is not
hard to understand that the linear parts of the methods, which are investigated here, are the same.
Therefore, the conception of stability for them is defined in one and the same way. It follows from
here that the methods (9) and (22) are independent from each other, because these methods are the
independent objects of research.

For the construction of methods with a high order of accuracy or higher degrees, the
hybrid method is often used (see, for example, [37–43]). Therefore, let us consider the
following paragraph.

3. Construction of a Generalized Hybrid Method and Its Application

Let us remember some of the popular methods, which have been applied to solve the
problem (4). Among of them are the Euler methods (explicit and implicit) and trapezoidal
and midpoint rules. The midpoint rule differs from others in that this method uses
the calculation of variables of the type y(xn + h/2). This variable can be written in a
more general form as y(xn + νih), (|νi| < 1, i = 0, 1, 2, . . . , k). By the generalization of
the midpoint rule, one can construct the following hybrid method:

k

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

βi ϕn+i+νi (|νi| < 1, i = 0, 1, 2, . . . , k). (23)

In the work of [42], they constructed a hybrid method with the degree pmax = 4,
which can be received from method (23) in the case k = 1. However, from the multistep
method (22) for the case k = 1, one can receive the method with the degree pmax = 2. By
simple comparison, we find that the hybrid methods can be taken as the perspective. From
Equation (23) one can receive the midpoint rule, which can be taken as the explicit method.
It is known that this method has the degree p = 2. However, as was noted above from the
method of (22), one can receive the explicit method with the degree pmax = 1 for k = 1.
This comparison shows that the hybrid methods have some advantages over all the known
methods. Note that some hybrid methods have the extended region of stability and all the
methods investigated here are linear multistep methods; therefore, the linear part of these
methods has the same properties. It follows that the conception of stability and degree
can be defined in the same way for all linear methods. Let us note that the values of the
coefficients αi (i = 0, 1, . . . , k) can be different from the corresponding coefficients of the
other methods.
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Now, let us define the values of the coefficients αi, βi, νi(i = 0, 1, . . . , k). To this end,
let us use the following Taylor series:

y′(x + lih) = y′(x) + lihy′′ (x) +
(lih)

2

2!
y′′′ (x) + · · ·+ (lih)

p−1

(p− 1)!
yp(x) + O(hp) (24)

By taking into account Equations (16) and (24) in the method of Equation (23),
we receive:

k
∑

i=0
(αi(y(x + ih)− f (x + ih))− hβi ϕ(x + (i + vi)h, y(x + (i + vi)h))

=
k
∑

i=0
αi(y(x)− f (x)) + h

k
∑

i=0
(iαi − βi)(y′(x)− f ′(x)) + h2

k
∑

i=0
( i2

2! αi − liβi)(y′′ (x)

− f ′′ (x)) + · · ·+ hp
k
∑

i=0
( ip

p! αi − lp−1
i

(p−1)! βi)(y(p)(x)− f (p)(x)) + O(hp+1) = 0

(25)

where x = x0 + nh is a fixed point and li = i + νi (i = 0, 1, . . . , k).
By using the discussion, which we have used in the investigation of method (9),

and taking into account the comparison of asymptotic equality (18) with asymptotic
equality (25), we receive the following system for finding the determined values of the
coefficients αi, βi, νi(i = 0, 1, . . . , k) :

k

∑
i=0

αi = 0;
k

∑
i=0

βi =
k

∑
i=0

iαi;
k

∑
i=0

(i + νi)βi =
m

∑
i=0

i2

2!
αi, . . . ,

k

∑
i=0

(i + νi)
p−1

(p− 1)!
βi =

m

∑
i=0

ip

p!
αi. (26)

This is a nonlinear system of algebraic equations. In this system there are 3k + 3
unknowns, but the amount of equations in this system is equal to p + 1. Note that this is
a nonlinear system of algebraic equations, because defining the exact solution of such a
system is not easy. By taking this into account, scientists proposed to use some numerical
methods for solving them. For this, they used Mathcard 2015. Note that by using the
approximate solution of system (26), they have constructed some methods with the degree
of p. The application of some of them to solving model problems has shown that in reality,
the received results correspond to the results received by the methods with a degree less
than p. Therefore, finding a private solution of system (26) is very important. Let us note
that these results correspond to the theoretical.

The system of (26) to remember the nonlinear system of algebraic equations is used
for finding the coefficients of the Gauss method. Therefore, some solutions of this system
will be also solutions of the corresponding Gauss system which is used for finding Gauss
nodes and coefficients (see, for example, [43–49]).

To solve system (26) is more simple than the corresponding Gauss system, and usually
by the solution of (26) one can construct hybrid methods which are different from Gauss
methods. By taking into account these properties, here we have proposed to construct
stable methods with high degrees. For this, let us consider the following method:

k

∑
i=0

αiyn+i =
k

∑
i=0

αi fn+i + h
k

∑
i=0

βi ϕn+i + h
k

∑
i=0

γi ϕn+i+νi . (27)

One can consider this method as the linear combination of methods (10) and (23). It is
easy to prove that the system of algebraic equations which has been constructed for finding
the coefficients of method (27) can be constructed as the linear combination of systems
(26) and (19), respectively. By the generalization of the system (26) or (19), we receive the
following system of algebraic equations:

k
∑

i=0
αi = 0;

k
∑

i=0
(βi + γi) =

k
∑

i=0
iαi;

k
∑

i=0
(iβi + liγi) =

m
∑

i=0

i2
2! αi, . . . ,

k
∑

i=0

(
(i)p−1

(p−1)! βi +
lp−1
i

(p−1)! γi

)

=
m
∑

i=0

ip

p! αi, (li = i + νi, 0 ≤ i ≤ k).
(28)
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By taking into account the series (16), (17), and (24) in the equality of (27), one can
receive the system of (28), in the case when the method will have the degree of p. Now, let
us investigate the solvability of the system (28).

As was noted above, the system (28) is nonlinear, therefore to find the exact solution of
that is perhaps not always possible. Hence, let us consider an investigation of the system of
(28). In this system participates 4k + 4 unknowns and p + 1 nonlinear algebraic equations.
Let us consider the case p + 1 ≤ 4k + 4. Note that without breaking the generality one can
take αk = 1. By taking this into account, let us investigate the system of (28) for p ≤ 4k + 2.
It is clear that in the case of k = 1, there does not arise a question on the stability of the
methods of type (27). Let us in the system of (28) take k = 1. In this case, from system (28)
we receive the following (by taking into account the condition α1 = 1, we receive α0 = −1):

β0 + γ0 + β1 + γ1 = 1; β1 + l j
0γ0 + l j

1γ1 = 1/(j + 1) (1 ≤ j ≤ 5). (29)

By using the solution of system (29) one can construct the following method:

yn+1 = yn + h
(
y′n+1 + y′n

)
/12 + 5h

(
y′n+β + y′n+1−β

)
/12, β =

(
5−
√

5
)

/10. (30)

This method has the degree p = 6. Similar investigations have been given by some
authors (see, for example, [32,39–42,45]). For the application of this method to solve
Equation (2), it can be presented in the following form:

yn+1 − fn+1 = yn − fn + h(K(xn+1, xn+1, yn+1) + K(xn+1, xn, yn) + 2K(xn, xn, yn))/24
+5h

(
K
(
xn+1, xn+β, yn+β

)
+ K

(
xn+β, xn+β, yn+β

)
+ K

(
xn+1, xn+1−β, yn+1−β

)

++ K
(
xn+1−β, xn+1−β, yn+1−β

))
/24.

(31)

In the construction, method (30) has used the solution of system (29) and the solution
of system (15) by the addition of the following:

k

∑
j=1

γ
(j)
i = γi (i = 0, 1, . . . , k). (32)

By this way one can construct the following multistep hybrid method:
k
∑

i=0
αi(yn+i − fn+i) = h

k
∑

i=0

k
∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
+

+h
k
∑

i=0

k
∑
j=i

γ
(j)
i K

(
xn+i+νj , xn+i+νi , yn+i+νi

)
, (|νi| < 1; i = 0, 1, . . . , k)

(33)

by taking into account the solutions of the systems (15) and (32).
Hence, note that method (31) can be received from the method of (33) as the partial

case. The solution of systems (15) and (32) is not unique, and the order of accuracy of
method (33) is independent from the solution of mentioned systems. As was proved above,
the exactness of the methods of type (33) depends on the values of the coefficients βi, γi,
and νi (i = 0, 1, . . . , k), which can be found as the solution of system (28).

For the construction of methods of type (33), with high accuracy, let us consider the
case of k = 2.

At first, let us define the values of αi(i = 0, 1, 2) by taking into account that the con-
structed method must be stable. It is clear that in this case the roots of the following polynomial:

λ2 + α1λ + α0 = 0

must satisfy the condition of stability. Here, we have considered the following variant:

α1 = 0, α0 = −1, α2 = 1.
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In this case, by using the solution of nonlinear system (28) and taking into account the
solution of systems (15) and (32), one can construct the following method:

yi+2 = yi + h
(
9y′i+2 + 64y′i+1 + 9y′i

)
/90 + 49h

(
y′n+1+α + y′n+1−α

)
/90, α =

√
21/7. (34)

For the application of this method to solve nonlinear Volterra integral equations of
second order, that can be modified as following:

yi+2 = yi + fi+2 − fi + h(9K(xi+2, xi+2, yi+2) + 32K(xi+2, xi+1, yi+1) + 32K(xi+1, xi+1, yi+1) + 5K(xi+1, xi, yi)
+4K(xi, xi, yi))/90 + 49h(K(xn+2, xn+1+α, yn+1+α)

+K(xn+1+α, xn+1+α, yn+1+α)) + K(xn+1, xn+1−α, yn+1−α) + K(xn+1−α, xn+1−α, yn+1−α))/180
(35)

It is not difficult to prove that the method of (34) can be presented in another form,
which will be different from the formula (35). As was noted above, for the construction
of more exact methods one can use advanced (forward-jumping) methods. However,
some specialists, for the construction of more exact methods, proposed using the multistep
second derivative methods with constant coefficients. For receiving some information
about these methods, one can use the content of the following section.

4. On Some Properties of Multistep Second Derivative Methods with
Constant Coefficients

In the last sections, we have given some information about advanced methods which
have comparisons with multistep methods. Note that multistep second derivative methods
can also be the advanced type. By taking into account this property, let us consider the
following multistep second derivative methods, which are fundamentally investigated by
some authors (see, for example, [46–48]):

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i + h2
k

∑
i=0

γiy
′′
n+i. (36)

This method, after application to the solving of problem (2), can be presented as
the following:

k

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
+ h2

k

∑
i=0

k

∑
j=i

γ
(j)
i G

(
xn+j, xn+i, yn+i

)
(37)

where the function of G(x, x, y) is defined as: G(x, x, y) = d
dx K(x, s, y(s))

∣∣∣s=x.
Depending on the used way to construct method (37), the function G(x, z, y) can be
defined in another form, but the received results of which will be the same with the method
of (37). It follows to note that if in method (37) we input K(x, s, y) = ϕ(s, y), then method
(36) can be received from method (37) as the partial case.

To explain the above description, it is enough to apply methods (36) and (37) to solve
the following problem:

y′ = ϕ(x, y), y(x0) = y0, x0 ≤ x ≤ X.

In this case we receive:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βi ϕn+i + h2
k

∑
i=0

γign+i, (38)

k

∑
i=0

αiyn+i = h
k

∑
i=0

k

∑
j=i

β
(j)
i ϕn+i + h2

k

∑
i=0

k

∑
j=i

γ
(j)
i gn+i, (39)

where the function g(x, y) is defined as g(x, y) = ϕ′x(x, y) + ϕ′y(x, y)ϕ(x, y).
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It is evident that if we take

k

∑
j=i

β
(j)
i = βi;

k

∑
j=i

γ
(j)
i = γi (i = 0, 1, 2, . . . , k), (40)

then from the formula (39) follows method (38). Therefore, to define the values of the
coefficients β

(j)
i , γ

(j)
i (i, j = 0, 1, 2, . . . , k), one can use the system (40), and the sys-

tem of equations, which are independent from the determination of the coefficients
βi, γi (i = 0, 1, 2, . . . , k), participate in the formula of (36). By taking this into account, let
us consider the definitions of the values of the coefficients αi, βi, γi (i = 0, 1, 2, . . . , k). To
this end, one can use the scheme which was used in the construction of system (28). In this
case, the system of algebraic equations for finding the values of the coefficients αi, βi, γi in
one variant can be written in the following form:

k

∑
i=0

αi = 0;
k

∑
i=0

βi = iαi;
k

∑
i=0

iβi +
k

∑
i=0

γi =
m

∑
i=0

i2

2!
αi, . . . ,

k

∑
i=0

il

l!
βi +

k

∑
i=0

il−1

(l − 1)!
γi =

m

∑
i=0

il+1

(l + 1)!
αi, (l = 2, 3, . . . , p). (41)

Note that the system of (28) is nonlinear, but system (41) is linear. By taking into
account that the determinant of system (41) is nonzero, we find that if the amount of the
unknowns and of the equations are the same, then we find that system (41) has a unique
solution. Note that the amount of unknowns in system (41) is equal to 3k + 3, but the
amount of equations is equal to p + 1. It follows that if p < 3k + 1 then the system of (41)
will have any solution, but in the case p = 3k + 1, the corresponding solution of system (41)
will be unique. It follows from here that pmax = 3k + 1. Note that the degree p for method
(36) can be defined as follows (see, for example, [46–48]):

Definition 3. The integer p is called the degree for method (36) if the following holds:

k

∑
i=0

(αiy(x + ih)− hβiy′(x + ih)− h2γiy′′ (x + ih)) = O(hp+1), h→ 0. (42)

Let us note that this and definition 1 are the same.
It is not difficult to prove that if method (36) is stable then the relationship between k

and p (order and degree) can be presented as p ≤ 2k + 2, and there exists stable methods
with the degree p = 2k + 2 for all the values of k (order). For the value k = 1 we find
that the maximal value for stable and unstable methods are the same; in other words,
3k + 1 = 2k + 2 for k = 1. Note that in this case (k = 1) there are not any unstable methods,
so the one-step method satisfies the condition of stability. By simple comparison we find
that the stable methods of type (27) are more exact than the stable methods of type (39),
but application of hybrid methods of type (23) or (27) is more difficult. Note that these
difficulties are related to the calculation of the values yn+i+νi (i = 0, 1, . . . , k). It is evident
that for the calculation of these values arises the necessity to construct a special method for
calculating them. Therefore, to give some advantages of these methods are difficult.

If there exist methods for calculations of the values yn+i+νi (i = 0, 1, . . . , k), then
the methods of hybrid types will have some advantages. It is not difficult to prove that
the hybrid methods constructed by using the methods of type (38) will be more exact
than the known methods, but will have a more complex structure. As was noted above,
the system (41) is linear; therefore, the system (41) can be solved by using the known
methods. However, in the increasing the values of order k the values of the calculation
in the determination of the values of the coefficients αi, βi, γi (i = 0, 1, 2, . . . , k) also
increase. For decreasing the values of the calculation works, here we have proposed a
new way for the calculation of the values of the coefficients αi, βi, γi (i = 0, 1, 2, . . . , k)
(see [49]). To this end, we required analyticity from the solution of the considered problem.
In the work of [48], they proposed a way by which the condition of analyticity of the
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solution could be simplified and replaced with the conditions that usually are used in
other works (see, for example, [48]). For the method to have a degree of p one can use the
following way, which is received by using the above-mentioned results:

α0 = −ρ0 + ρ1 − ρ2 + · · ·+ (−1)k−1ρk−2 + (−1)kρk−1,

αi =
k−1

∑
j=i−1

(−1)j−i+1(j + 1)j(j− 1) . . . (j− i + 2)ρj/i!; i = 1, 2, . . . , k.

β0 = δ0 − δ1 + δ2 + · · ·+ (−1)k−1δk−1 + (−1)kδk,

βi =
k

∑
j=1

(−1)j−1 j(j− 1) . . . (j− i + 1)δj/i!; i = 1, 2, . . . , k. (43)

γ0 = l0 + l1 − l2 + · · ·+ (−1)k−1lk−1 + (−1)klk,

γi =
k

∑
j=1

(−1)j−1 j(j− 1) . . . (j− i + 1)lj/i!; i = 1, 2, . . . , k.

The variables ρi, δi, li (i = 0, 1, 2, . . . , k) can be defined from the following system
of linear algebraic equations.

j

∑
i=0

ciρj−i +
j

∑
i=1

(−1)j−i+1li−1/(j− i + 1) = δj, j = 0, 1, . . . , k; ρk = 0, (44)

j+k

∑
i=j+1

ciρj+k−i +
j

∑
i=j

(−1)ili+k−1/i = 0, j = 0, 1, . . . , k;

j+2k

∑
i=j+k−1

ciρj+2k−i +
j+2k

∑
i=j+k

(−1)ilj+2k−i/i = 0; j = 1, 2, . . . , k;

3k+1

∑
i=2k+2

ciρ3k+1−i +
3k+1

∑
i=2k+1

(−1)il3k+1−i = C,

where C is the constant for the coefficient of the main leading term in the expansion of the er-
ror of method (39), but the coefficients ci (i = 0, 1, . . .) are defined by the following formula:

ci =
1
i!

1∫

0

u(u− 1) . . . (u− i + 1)du; (i = 1, 2, . . .), c0 = 1, c1 = 1/26, c2 = − 1
12

, . . .

It is easy to prove that the coefficients can be calculated by the following formula:

cm =
m

∑
i=1

(−1)i−1cm−i/(i + 1) (m ≥ 1, c0 = 1).

Note that someone may think that finding a solution to systems (43) and (44) is more
difficult than finding the solution to system (41). However, it is not. As is known, scientists
have mostly constructed stable methods, considering that they are convergent. By taking
this into account, we find that, basically, one can assume that the values of the quantities
ρi (i = 0, 1, . . . , k− 1) are known. In this case, we find that to solve the system of (44)
is simplified. As a result of which, we obtain the actual solution of one system, which is
system (43). By using this solution in the system of (42) we can compute the values of
the unknowns δj (j = 0, 1, . . . , k). By using these values one can find the values of the
coefficients αi, βi, γi (i = 0, 1, 2, . . . , k). Taking into account the solution of the systems
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(42) and (43), here we have constructed stable methods with the degree p = 8 for k = 3.
The constructed stable method with the degree p = 8 can be written as the following:

yn+3 = (yn+2 + yn+1 + yn)/3 + h
(
10, 781y′n+3 + 22, 707y′n+2 + 16, 659y′n+1 + 4285y′n

)
/27, 216

−h2(2099y′′n+3 − 7227y′′n+2 − 2853y′′n+1 − 979y′′n
)
/45, 360 + 3h9y(9)n /156, 800 + O

(
h10). (45)

Let us consider a comparison of the hybrid method of type (34) with method (45).
These methods have the degree p = 8 and are stable. Note that method (34) has the order
of k = 2, but method of (45) has the order k = 3. It follows that for using method (45) we
must know the values (yn, yn+1 and yn+2) but for using method (34) we must know two
values (yn and yn+1). For the application of method (45) it is necessary to use one explicit
method as the predictor formula. However, for the application of method (34) to solve
some problems, it needs to use two methods for the calculation of the values of the type
y(xm ± νh) (|ν| < 1). If in the method of (36) or (38) we input k = 2 then the degree for the
stable methods will hold the condition of p ≤ 6. It follows that to give some advantages of
any of these methods is difficult. Each of them has its own advantages and disadvantages.
Now let, us apply method (45) to solve a Volterra integral equation. In this case we receive
the following:

yn+3 = (yn+2 + yn+1 + yn)/3 + fn+3 − ( fn+2 + fn+1 + fn)/3 + h(10, 781K(xn+3, xn+3, yn+3)
+11, 707K(xn+3, xn+2, yn+2) + 11, 000K(xn+2, xn+2, yn+2) + 8659K(xn+2, xn+1, yn+1)

+8000K(xn+1, xn+1, yn+1) + 2185K(xn+2, xn, yn) + 2100K(xn, xn, yn)/27, 216
−h2(2099G(xn+3, xn+3, yn+3)− 7000G(xn+3, xn+2, yn+2)− 227G(xn+2, xn+2, yn+2)

−1453G(xn+2, xn+1, yn+1)− 1400G(xn+1, xn+1, yn+1)− 9006(xn+1, xn, yn)
−79G(xn, xn, yn))/45, 360

(46)

It is not easy to determine the value of yn+3 by method (46), so, as in this case, we
receive the nonlinear algebraic equation. For solving this equation, here we propose to use
the predictor–corrector methods (see, for example, [29]). To this end, one can use the stable
explicit methods as the predictor methods. In this case, the degree for this method will
satisfy the condition p ≤ 6, but method (46) has the degree p = 8. It follows that for the
construction of methods with suitable accuracy, the condition k ≥ 4 must be held. However,
one can use the suitable stable explicit method (46) as the predictor and corrector method.

It is obvious that someone can propose a way to increase the accuracy of the calculated
values yn+3, which differ from the above description. Note that similar difficulties arise in
the application of the quadrature method to solve the nonlinear Volterra integral equations.

Thus, we have shown that by using the properties of the investigated problem one can
choose a suitable method. Lately, the specialists have predominantly used hybrid methods.
Here, we have a comparison of the same numerical methods by using the conception
stability, degree, and the volume of the computational works on each step. However, some
authors, for the comparison of numerical methods, use the conception of the region of
stability. This question can be solved by taking into account the results received when
using predictor–corrector methods. Usually, the values found by the predictor–corrector
methods are used for the definition of the boundaries for the step size h > 0.

As is known, for the construction of the multistep methods are usually given the
amount of mesh points. Therefore, to find some relation between the order k and the degree
p for the investigated multistep methods is very important. It is known that one of the
important questions in the investigation of multistep methods is defining the necessary
conditions for their convergence. These conditions for method (36) and the methods which
are received from that as partial cases, for example, method (22), have been investigated
by Dahlquist (see, for example, [27]). By taking this into account, in the next section let us
define the necessary condition for the convergence of method (33), which was received by
the application of method (27) to solve Volterra integral equations.

5. The Conditions Imposed on Coefficients of Method (33)

Let us suppose that method (33) is convergence and prove that the following condi-
tions are satisfied.
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A. The coefficients αi, βi, γi, νi (i = 0, 1, . . . , k) are real numbers and αk 6= 0;
B. The characteristic polynomials:

ρ(λ) ≡
k

∑
i=0

αiλ
i; δ(λ) ≡

k

∑
i=0

βiλ
i; γ(λ) ≡

k

∑
i=0

γiλ
i;

have no common factor different from the constant;
C. The conditions P ≥ 1 and δ(1) + γ(1) 6= 0 hold.
The necessity of the condition αk 6= 0 is proved above. Therefore, condition A is

obvious. Let us consider condition B and suppose otherwise. It follows that the polynomials
have a common factor, which differs from the constant. Denote that by ϕ(λ). Then, one can
write ϕ(λ)const, and by the E, denote the shift operator. In this case, the following holds:

Eiy(x) = y(x + ih) or ∑k
i=0 αiyn+i = ∑k

i=0 αiy(x + ih) = ∑k
i=0 αiEiy(x), here

x = x0 + nh is a fixed point.
It is easy to see that one can write the following:

EjEiK(xn, xn, yn) = K
(
xn+j, xn+i, yn+i

)
= K(xn+i + (j− i)h, xn+i, yn+i) (47)

If for the fixed point x = xn + ih, passing the limit to respect the first argument, then
we receive:

lim
h→0

K(x + (j− i)h, x, y(x)) = K(x, x, y(x)).

By using this in the equality of (47) we receive:

lim
h→0

EjEiK(xn, xn, yn) = EiK(xn, xn, yn).

Hence, x = xn + ih is fixed.
If we use these properties in the following expression:

lim
h→0

k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i) =

k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+i, xn+i, yn+i). (48)

By taking into account the systems of (15) and (32) in the equality of (48), we receive:

k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i) =

k

∑
i=0

βiK(xn+i, xn+i, yn+i) + O(h).

Thus, we find that method (33) can be written as:

k

∑
i=0

αi(yn+i − fn+i)− h
k

∑
i=0

βiK(xn+i, xn+i, yn+i)− h
k

∑
i=0

γiK(xn+i+νi , xn+i+νi , yn+i+νi ) = O(hr), (r > 1) (49)

From here we receive:

ρ(E)(yn − fn)− hδ(E)K(xn, xn, yn)− hγ(E)K(xn, xn, yn) = 0. (50)

By the above-described way, we prove that the finite-difference Equations (33) and (50)
are equivalents. Note that Equation (49) is homogeneous, therefore the solvability theorem
for the finite-difference Equations (33) and (50) are the same. By this assumption, we find
that the polynomials ρ(λ), δ(λ), and γ(λ) have the common factor, which is denoted by
ϕ(λ). If we use the function ϕ(λ) in the equality of (50), then we receive:

ϕ(E)(ρ1(E)(yn − fn)− hδ1(E)K(xn, xn, yn)− hγ1(E)K(xn, xn, yn)) = 0. (51)
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By using the condition ϕ(λ) 6= const, in the equality of (51) we receive the following:

ρ1(E)( yn − fn)− hδ1(E)K(xn, xn, yn)− hγ1(E)K(xn, xn, yn) = 0, (52)

where ϕ(λ)ρ1(λ) = ρ(λ); ϕ(λ)δ1(λ) = δ(λ); ϕ(λ)γ1(λ) = γ(λ).
By the simple comparison of Equations (50) and (52) we find that these equations are

equivalents. Note that the finite-difference Equation (50) has the order of k, and the order
of Equation (52) satisfies the condition k1 < k (k1- is the order of Equation (52)). It is known
that for the k1- initial values the finite-difference Equation (52) has the unique solution. It
is easy to prove that in this case the solution of the Equation (51) will be unique for the k1-
initial values (k1 < k satisfies). It is known that the finite-difference equation of the order k
has a unique solution if it must be given k- initial values (solvability theorem). Obtaining a
contradiction shows that the condition of B takes place. Now, let us prove the validity of
the condition C.

It is evident that Equation (50) can be written as:

ρ(E)(y(x)− f (x)) = O(h), (53)

where x = x0 + nh is fixed. If, here, we pass the limit for the h→ 0 , then we receive:

ρ(1) = 0, (54)

so y(x) f (x). This condition is called the necessary condition for the convergence of method
(33). By taking the equality of (50), we receive the following:

(E− 1)ρ1(E)(yn − fn)− h(δ(E) + γ(E))K(xn, xn, yn) = 0

or,
ρ1(E)(yn+1 − yn − fn+1 + fn)− h(δ(E) + γ(E))K(xn, xn, yn) = 0. (55)

By changing the meaning of variable n from zero to m and summing the received
equalities, one can find the following:

ρ1(E)(ym+1 − y0 − fm+1 + f0) = (δ(E) + γ(E))h
m

∑
l=0

K(xl , xl , yl). (56)

If, here, we pass the limit for h→ 0 , and take into account the equality of (48), then
we receive:

ρ1(1)(y(x)− y0 − f (x) + f0) = (δ(1) + γ(1))
x∫

x0

F(x, s, y(s))ds, (57)

where x = x0 + mh is a fixed point.
By the comparison of Equation (57) with Equation (2) and taking into account y(x0) =

f (x0), we receive:
ρ1(1) = δ(1) + γ(1). (58)

By using ρ(1) = 0, one can write:

ρ1(λ) =
ρ(λ)− ρ(1)

λ− 1
.

Hence, we have:

ρ1(1) = lim
λ→1

ρ(λ)− ρ(1)
λ− 1

or ρ1(1) = ρ′(1).
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By taking this into account in the equality of (58), one can write the following:

ρ′(1) = δ(1) + γ(1). (59)

By comparison of equalities (54) and (58) with the first two equations of system (28),
we receive the conditions that p ≥ 1 satisfies. Now, we prove that δ(1) + γ(1) 6= 0, and
when supposing otherwise, input δ(1) + γ(1) = 0. In this case, from Equation (59) we
receive ρ′(1) = 0. Thus, by using Equation (54) we receive ρ(1) = ρ′(1) = 0. It follows
from here that λ=1 is twice the root of the polynomial ρ(λ). Now, we prove that in this case
method (33) is not convergence. To this end, we use the following error of method (33):

εm = y(xm)− ym (m = 0, 1, 2, . . .).

Let us in the equality of (33) change the approximate values ym by its exact values.
Then, we receive:

k

∑
i=0

(αi(y(xn+i)− f (xn+i))− h
k

∑
j=i

(β
(j)
i K

(
xn+j, xn+i, y(xn+i) + γ

(j)
i K

(
xn+j+νi , xn+i+νi , y(xn+i)

))
) = Rn. (60)

where Rn- is the reminder term.
If we subtract equality (33) from (60), then we receive

k

∑
i=0

(αiεn+i − h
k

∑
j=i

(β
(j)
i L(ξn+i)εn+i + γ

(j)
i L(ξn+i))εn+i+νi ) = Rn, (61)

where

Li(ξn+i) = K′y
(

xn+j, xn+i, ξn+i
)
; Li
(
ξn+i

)
= K′y

(
xn+j+νj , xn+i+νi , ξn+i

)
,

Variable ξn+i lies between the values of yn+i and y(xn+i), but ξn+i lies between the
values of yn+i+νi and y

(
xn+i+νi

)
, respectively. The Equation (61) is the nonhomogeneous

finite-difference equation. The corresponding homogeneous equation has the following
form:

k

∑
i=0

αiεn+i = 0. (62)

Let us note that one can receive Equation (62) from Equation (61) by going to the limit
as the h→ 0 .

As is known, the general solution of a homogeneous finite-difference equation with
constant coefficients can be written as the following:

εm = c1λm
1 + c2λm

2 + · · ·+ ckλm
k
(
λi 6= λj i f i 6= j

)
, (63)

where λl(l = 0, 1, . . . , k) are the roots of the characteristic polynomial ρ(λ). If we use the
condition ρ1(1) = ρ(1) = 0, we find that λ = 1 is twice the root. In this case the solution of
Equation (62) can be presented in the following form:

εm = c1 + c2m + c3λm
3 + · · ·+ ckλm

k . (64)

As follows from here, the error of the investigated method is unbounded. Hence, if in
Equation (64) we pass the limit as the step size tends to zero, (i.e., h→ 0), then we receive
εm → ∞ . By this way, we have proved that if δ(1) + γ(1) = 0, then the method does not
converge, which contradicts the assumption. Thus, we have proved that the conditions A,
B, and C take place.

Note that Dahlquist’s results can be received from the results received here. It follows
that the results obtained here are the development of Dahlquist’s rule.
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6. Remark

By establishing the direct relation between ODE and Volterra integral equations, we
have constructed numerical methods for the solving of both Volterra integral equations
and ODE. Now, we want to illustrate that one can construct simple methods for solving
ODE and the Volterra integral equation and also Volterra integro-differential equations.
For simplicity, we input f (x) ≡ 0, and in this case we have:

y(xn+1) =

xn+1∫

x0

K(xn+1, s, y(s))ds,

or,

y(xn+1) =

xn∫

x0

K(xn+1, s, y(s)ds +

xn+1∫

xn

K(xn+1, s, y(s))ds. (65)

The first integral can be presented as the following:

xn∫

x0

K(xn+1, s, y(s))ds =
xn∫

x0

K(xn, s, y(s)ds + h
xn∫

x0

K′X(ξn, s, y(s))ds (xn < ξn < xn + h).

By taking into account that the function K(x, s, y) and its derivatives are bounded,
then for the fixed point x0 + nh, we receive:

lim
h→0

xn∫

x0

K(xn+1, s, y(s))ds =
xn∫

x0

K(xn, s, y(s))ds.

By taking this in Equation (65) for the calculation of the value yn+1 ≈ y(xn+1), we
receive the following:

yn+1 = yn +

xn+1∫

xn

K(xn+1, s, y(s))ds. (66)

From here one can obtain the following methods:

yn+1 = yn + hK(xn+1, xn+1, yn+1); yn+1 = yn + hK(xn+1, xn, yn);

yn+1 = yn + hK(xn+1, xn, yn); yn+1 = yn + h(K(xn+1, xn+1, yn+1) + K(xn+1, xn, yn))/2.

By the generalization of these methods, we receive the following known quadrature
formula:

yn+1 = yn + h
1

∑
i=0

1

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i).

For the construction of methods of hybrid type it is enough to apply the midpoint rule
to the calculation of integrals. In this case, we receive:

yn+1 = yn + hK
(

xn+1, xn+ 1
2
, yn+ 1

2

)
.

By using the exact solution of Equation (2), one can write the following:

y′(x) = K(x, x, y(x)) +
x∫

x0

K′x(x, s, y(s)ds, y(x0) = 0. (67)
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If we apply the multistep method with constant coefficients to solve the problem (67),
then we receive:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiK(xn+i, xn+i, yn+i) + h
k

∑
i=0

βi




xn∫

x0

K′x(xn+i, s, y(s))ds +

xn+i∫

xn

K′x(xn+i, s, y(s))ds


. (68)

From this equality one can write the following:

h
k

∑
i=0

βi

xn∫

x0

K′x(xn+i, s, y(s))ds =
k

∑
i=0

αiyn+i − h
k

∑
i=0

βi(K(xn+i, xn+i, yn+i) +

xn+i∫

xn

K′x(xn+i, s, y(s))ds. (69)

The right hand side of this equality results in the application of the following method:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i, (70)

to solve the following initial value problem:

y′(x) = K(x, x, y(x)) +
x∫

xn

K′x(x, s, y(s))ds, y(xn) = yn

By taking into account that method (70) has the degree of p, then from the equality of
(69) we find that the following holds:

h
k

∑
i=0

βi

xn∫

x0

K′x(xn+i, s, y(s))ds = O(hp+1).

Thus, we prove that if method (70) has the degree of p, then method (68) has also the
degree of p.

Let us approximate the function of K′x(xn+i, s, y(s)) in the following form:

hK′x(xn+m, s, y(s)) =
k

∑
j=0

bjK
(
xn+j, s, y(s)

)
.

By using this formula, one can write the following:

h
k

∑
i=0

βi

xn+i∫

x0

K′x(xn+i, s, y(s))ds =
k

∑
i=0

βi

xn+i∫

xn

k

∑
j=0

bjK
(
xn+j, s, y(s)

)
ds.

By using some quadrature formulas for the calculation of the definite integral, one
can write:

k

∑
i=0

βi

xn+i∫

xn

k

∑
j=i

bjK
(
xn+j, s, y(s)

)
ds = h

k

∑
i=0

k

∑
j=i

β̃(j)K(xn+j, xn+i, yn+i).

If we take this in the equality of (68), then we receive the following method:

k

∑
i=0

αiyn+i = h
k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i),

where β
(j)
i = βi +

k
∑
j=i

β̃(j).
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This method is the same as method (8).

7. Numerical Results

For the illustration of receiving theoretical results, let us consider the following model:

y(x) = 1 + λ

x∫

0

y(s)ds, (71)

the exact solution for which can be presented as y(x) = exp(λx), where λ = const.
This example well describes the behavior properties of the errors received in the

application of the method which we used to solve Equation (2). Note that this integral
equation has a direct relation with the following problem:

y′ = λy, y(0) = 1,

describing the behavior of the solution in the following problem:

y′ = f (x, y), y(x0) = y0,

which was fundamentally investigated by Dahlquist. Example (71) has been solved by
using the methods (31), (34), and the following:

yn+1 = yn + h(y′n+α+y′n+1−α)/2, α =
1
2
−
√

3/6. (72)

Results are tabulated in Table 1.

Table 1. The results received for the case h = 0.05 and λ = 1, 5, 10.

x

λ = 1 λ = 5 λ = 10 λ = 15

Method 34 Method 72 Method
34

Method
72

Method
34

Method
72

Method
34

Method
72

0.1 5.2 × 10−12 5.0 × 10−9 2.4 × 10−8 4.1 × 10−6 1.2 × 10−6 1.0 × 10−4 1.4 × 10−5 8.4 × 10−4

0.4 3.0 × 10−11 2.5 × 10−8 4.6 × 10−7 7.4 × 10−5 1.1 × 10−4 8.4 × 10−3 5.7 × 10−3 3.0 × 10−1

0.7 7.3 × 10−11 6.0 × 10−8 3.6 × 10−6 5.8 × 10−4 3.7 × 10−3 3.0 × 10−1 9.1 × 10−1 4.8 × 101

1.0 1.4 × 10−10 1.1 × 10−7 2.3 × 10−5 3.7 × 10−3 1.0 × 10−1 8.5 × 100 1.1 × 102 6.1 × 103

In Tables 1–5 we have tabulated the results received by the application of methods (34)
and (72) to solve example (71) for the different values of step size h > 0 and parameter λ.

Table 2. The results received for the case h = 0.05 and λ = −1, −5, −10.

x
λ = 1 λ = 5 λ = 10

Method 34 Method 72 Method 34 Method 72 Method 34 Method 72

0.1 1.9 × 10−9 5.5 × 10−7 7.9 × 10−6 4.4 × 10−4 3.5 × 10−4 1.0 × 10−2

0.4 1.7 × 10−8 3.0 × 10−6 2.3 × 10−4 8.0 × 10−3 4.7 × 10−2 7.6 × 10−1

0.7 4.2 × 10−8 7.1 × 10−6 1.9 × 10−3 6.1 × 10−2 1.7 × 100 2.7 × 101

1.0 8.3 × 10−8 1.4 × 10−5 1.2 × 10−2 4.0 × 10−1 5.1 × 101 7.6 × 102
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Table 3. The results received for the case h = 0.01 and m = 1, 5, 10, 15.

x
λ = −1 λ = −5 λ = −10

Method 34 Method 72 Method 34 Method 72 Method 34 Method 72

0.1 1.7 × 10−9 5.0 × 10−7 9.1 × 10−5 2.9 × 10−3 5.1 × 10−4 1.0 × 10−2

0.4 8.0 × 10−9 1.5 × 10−6 2.8 × 10−5 5.6 × 10−4 3.1 × 10−5 4.4 × 10−4

0.7 1.1 × 10−8 1.9 × 10−6 2.5 × 10−6 4.9 × 10−5 6.4 × 10−7 8.0 × 10−6

1.0 1.2 × 10−8 2.0 × 10−6 1.8 × 10−7 3.4 × 10−6 1.0 × 10−8 1.2 × 10−7

Table 4. The results received for the case h = 0.01 and λ = −1, −5, −10, −15.

x
λ = −1 λ = −5 λ = −10 λ = −15

Method
34

Method
72

Method
34

Method
72

Method
34

Method
72

Method
34

Method
72

0.1 4.3 × 10−12 3.8 × 10−9 9.3 × 10−9 1.6 × 10−6 1.9 × 10−7 1.7 × 10−5 8.8 × 10−7 5.3 × 10−5

0.4 1.4 × 10−11 1.1 × 10−8 8.9 × 10−9 1.5 × 10−6 4.0 × 10−8 3.3 × 10−6 4.2 × 10−8 2.4 × 10−6

0.7 1.9 × 10−11 1.5 × 10−8 3.5 × 10−9 5.7 × 10−7 3.5 × 10−9 2.9 × 10−7 8.2 × 10−10 4.6 × 10−8

1.0 2.0 × 10−11 1.5 × 10−8 1.1 × 10−9 1.8 × 10−7 2.5 × 10−10 2.0 × 10−8 1.3 × 10−11 7.3 × 10−10

Table 5. The results received for the case h = 0.01 and λ = ±1, ±5, ±10, ±15.

x m = 1 m = 5 m = 10 m = 15 m = −1 m = −5 m = −10 m = −15

0.1 1.4 × 10−8 1.2 × 10−5 3.1 × 10−4 2.5 × 10−3 1.1 × 10−8 5.0 × 10−6 5.0 × 10−5 1.6 × 10−4

0.4 7.4 × 10−8 2.2 × 10−4 2.5 × 10−2 8.9 × 10−1 3.4 × 10−8 4.4 × 10−6 1.0 × 10−5 7.2 × 10−6

0.7 1.7 × 10−7 1.7 × 10−3 8.7 × 10−1 1.4 × 102 4.4 × 10−8 1.7 × 10−6 8.8 × 10−7 1.4 × 10−7

1.0 3.4 × 10−7 1.1 × 10−2 2.5 × 101 1.8 × 104 4.6 × 10−8 5.5 × 10−7 6.2 × 10−8 2.2 × 10−9

By the simple comparison of the received results one can argue that obtaining results
is justified. Note that the results received for the negative m (m < 0) are better than the
received results for the positive (m > 0). It follows from the fact that the exact values of
the solution will be sufficiently small for large values of the quantity of |m| (m < 0).

According to the results in Tables 1–4, we find that the results obtained by us-
ing method (34) are better. It is naturally because method (34) is more accurate than
method (72), having the degree p = 4. Note that these methods have the hybrid type. Now,
let us compare the results obtained by the hybrid and advanced methods. For this purpose,
let us solve example (71) by the application of the following method, which is received
from method (10), having the degree p = 3 :

yn+1 = yn + h
(
8y′n+1 + 5y′n − y′n+2

)
/12 (73)

Results for this method are tabulated in Table 5.
The results received by method (73) can be taken as better, which is explained by the

fact that in method (73) the information about the solution at the previous and the next
points is used.

8. Conclusions

Here, we have considered the comparison of some numerical methods, which have
been applied to solve Volterra integral equations. To this end, we used the conception of
stability and degree (order of accuracy) of the investigated methods. We also constructed
a formula by which one can define the maximal value for the degree of the stable and
unstable multistep methods having different forms (advanced, hybrid, etc.). We prove that
the multistep second derivative methods and multistep methods of hybrid type, which
have been applied to solve Volterra integral equations, are more exact than the others.
These results can be taken as the development of Dahlquist’s results, which were received
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for the multistep second derivative, and show that hybrid methods have an application
to solve Volterra integral equation of the second kind. Additionally, here we find the
necessary condition for the convergence of the methods proposed to solve Volterra integral
equations. For the investigation of the convergence of proposed methods, here we used
the theory of finite-difference equations with constant coefficients. Therefore, multistep
methods, here, are investigated in a very simple form. We prove that the initial value
problem for ODE and the Volterra integral equation can be solved by one and the same
methods. Here, algorithms have been constructed using a similar form to (50) and (51).
Some of the received results are illustrated by the model equations. The methods proposed
here are promising and we hope that they will find their followers.
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Abstract: An integro-differential equation describes the non-equilibrium thermal response of glass-
forming substances with a dynamic (time-dependent) heat capacity to fast thermal perturbations. We
found that this heat transfer problem could be solved analytically for a heat source with an arbitrary
time dependence and different geometries. The method can be used to analyze the response to local
thermal perturbations in glass-forming materials, as well as temperature fluctuations during subcrit-
ical crystal nucleation and decay. The results obtained can be useful for applications and a better
understanding of the thermal properties of glass-forming materials, polymers, and nanocomposites.

Keywords: non-equilibrium heat transfer problem; time-dependent response function; second-kind
integro-differential equations; Volterra integral equations

1. Introduction

The dynamic heat capacity cdyn(t) of glass-forming liquids and glasses, considered
as a function of time t, has been intensively studied since the pioneering work of Birge
and Nagel published in 1985 [1]. However, much earlier, experiments on the dispersion
and absorption of ultrasonic waves in polyatomic gases and liquids were explained by the
relaxation of the specific heat in these substances. The experiments were comprehensively
reviewed by Herzfeld and Litovitz in 1959 [2]. The relaxation of the specific heat of
polyatomic gases and liquids is caused by a slow energy exchange between the external
(translational) and internal (vibrational and rotational) degrees of freedom. Thus, the
energy exchange in polyatomic gases is characterized by a limited set of characteristic
relaxation times τi [2]. The spectrum of relaxation times of glass-forming liquids and
glasses is extremely broad, and it can be considered as a continuous spectrum [3–24].
Naturally, this broad spectrum is observed not only for the relaxation of the dynamic heat
capacity [3–7,18–20] but also for dielectric susceptibility [8–18], light scattering [23], and
viscosity [8,24–26]. Since the specific heat of glass-forming substances depends on time,
it follows that the thermal response of these materials to a thermal perturbation at time
t depends on the temperature distribution T

(
t,
→
r
)

in the system in previous times. This
effect is especially significant for fast local thermal perturbations [27,28].

The time dependence of the heat capacity of glass-forming liquids and glasses leads
to a non-equilibrium (non-Fourier) thermal response of these materials to fast thermal
perturbations. This non-equilibrium thermal response can be described by the integro-
differential heat equation considered in [27–29]. This equation can be solved similarly
to the second-kind Volterra integral equations. Volterra integral equations have several
applications in many branches of science, technology, and industry. Viscoelasticity is one
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of the fields of physics where the Volterra equations are often used [25]. The applications
of Volterra equations in renewable energy is an example of their use in industry [30–32].
Volterra integro-differential equations are usually difficult to solve analytically; therefore,
approximate solutions and numerical methods are often used [33]. An interesting method
for the numerical solution to nth-order integro-differential equations has been developed
based on the integral mean value theorem [34]. However, to better understand the nature
of physical phenomena, it is crucial to establish qualitative relationships between physical
parameters and the ongoing physical processes. Thus, we focused on finding analytical
solutions of the integro-differential heat equation that describe the non-equilibrium thermal
response of glass-forming materials.

The heat transfer equation considered in this article was solved analytically and
may be of interest for various applications. In previous articles, we found solutions for
the equation with rectangular pulsed heat sources [28,29]. In this study, we focused on
analytical solutions of the equation for a heat source with arbitrary time dependence. These
solutions can be useful for studying local thermal perturbations in glass-forming materials,
as well as temperature fluctuations during subcritical crystal nucleation and decay; these
temperature fluctuations can have a significant effect on the kinetics of crystal nucleation
in glass-forming materials.

The heat transfer problem with memory was analyzed in general terms by Miller
in 1978 [35]. For an external heat flux represented by a smooth function, he proved the
existence, uniqueness, and continuous dependence on parameters of the solution for heat
transfer with memory. In this study, we considered a special case of integro-differential
heat equations with kernels corresponding to glass-forming materials with dynamic heat
capacity; these equations can be solved analytically. We focused on an external heat flux
Φ
(

t,
→
r
)

acting on finite intervals in space and time. In this study, we restricted ourselves

to considering the multiplicatively separable heat flux Φ
(→

r
)

F(t). We considered the heat
flux as a continuous and piecewise smooth function. Thus, we assumed that both F(t)
and Φ

(→
r
)

were continuous piecewise smooth functions. This is a sufficient condition
for the absolute and uniform convergence of the Fourier series of the functions F(t) and
Φ
(→

r
)

[36]. In addition, we focused on the dynamic behavior of substances with a dynamic
heat capacity and restricted ourselves to considering only homogeneous boundary value
problems.

The rest of the paper is organized as follows. Sections 2 and 3 formulate the heat
transfer problem to be solved. Sections 4 and 5 discuss solutions for rectangular-pulsed,
sinusoidal, and arbitrary heat sources that were considered for planar and spherical geome-
tries. In Section 6, the effect of the relaxation time distribution on the thermal responses
is discussed for different temperatures and materials. It is shown that the effect of the
time dispersion of the dynamic heat capacity on the thermal response T(t, r) during local
heating was significant. Examples of solutions T(t, r) for real glass-forming materials were
considered. The temperature dependence of the relaxation-time distribution was taken
into account.

2. Applicability of the Heat Equation with Dynamic Heat Capacity

In this study, we focused on the heat equation for non-metallic glass-forming materials
at temperatures T outside the low-temperature range. Nonlocal effects of heat conduc-
tion [37] were not taken into account for (∂ ln(T)/∂x)−1 � lph, where lph is the phonon
mean-free-path. Furthermore, for small temperature changes, we considered the thermal
parameters of materials independent of T. However, the temperature dependence of the
relaxation time spectrum of the dynamic heat capacity cdyn(t) is discussed in Section 6.
This relaxation time spectrum is very broad in glass-forming materials. Therefore, the time
dispersion of the dynamic heat capacity is significant over a wide range of time scales.
Conversely, the thermal conductivity λ of non-metallic glass-forming materials can be con-
sidered an equilibrium (time-independent) thermal parameter, at least for t > 1 ns and at
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temperatures above the low-temperature range. In fact, thermal excitations associated with
thermal conductivity come to local equilibrium much faster than in 1 ns in glass-forming
liquids and glasses [38–41], and the phonon mean free path is about 1 nm or less [41–47].
Therefore, we focused on the diffusion-type Fourier heat conduction. However, we took
into account the fact that the local heat absorption at a given moment of time t is deter-
mined not only by a change in the local temperature T

(
t,
→
r
)

at this moment but also at
each previous moment. The temporal dispersion of the dynamic heat capacity cdyn(t) of
glass-forming materials can be described within the framework of the linear response
theory [6,48], similarly to the temporal dispersion of the dielectric constant [49].

3. Heat Equation with Dynamic Heat Capacity

Heat transfer in glass-forming materials with a dynamic heat capacity cdyn(t) can be
described using the following integro-differential heat equation [27,28]:

∂

∂t

∫ ∞

0
ρcdyn(τ)T′

(
t− τ,

→
r
)

dτ = λ∆T
(

t,
→
r
)
+ Φ

(
t,
→
r
)

, (1)

where T′
(

t,
→
r
)

= ∂
∂t T
(

t,
→
r
)

, ∆ is the Laplacian, and Φ
(

t,
→
r
)

is the external heat flux.
Equation (1) can be used for glass-forming substances at least for t > 1 ns and length scales
greater than 1 nm.

Consider the problem with zero initial conditions Φ
(

t,
→
r
)
= 0 and T

(
t,
→
r
)
= 0 for

t ≤ 0. Thus, from Equation (1) we obtain:

∂

∂t

∫ t

0
ρcdyn(t− τ)T′

(
τ,
→
r
)

dτ − λ∆T
(

t,
→
r
)
= Φ

(
t,
→
r
)

. (2)

Equation (2) can be solved if the dynamic heat capacity cdyn(t) is a given function.
Usually, relaxation phenomena in glass-forming materials are described by the stretched
exponential Kohlrausch relaxation function exp

(
−(t/τK)

β
)

for β ∈ (0, 1], where β and
the Kohlrausch relaxation time τK characterize the relaxation time spectrum (for more
details, see [50,51]). As a completely monotonic function, the stretched exponent can be
represented as a continuous sum of exponentials (see Bernstein’s theorem [52]). It should
be noted that typical relaxation functions, such as exponential, stretched exponential, and
power-law relaxation functions, are completely monotonic [53]. Thus, we assumed that
the dynamic heat capacity cdyn(t) is a completely monotonic function of time; therefore,
cdyn(t) can be represented as a continuous sum of exponentials, as seen in Equation (3):

cdyn(t) = c0 − (c0 − cin)
∫ ∞

0
H(τ0)exp(−t/τ0)dτ0, (3)

where c0 and cin are the equilibrium and initial heat capacities, that is, cdyn(t)→ cin
as t→ 0 and cdyn(t)→ c0 as t→ ∞ . The distribution function H(τ0) is normalized as
follows:

∫ ∞
0 H(τ0)dτ0 = 1. However, for practical use, cdyn(t) can be given on a finite

interval [τmin, τmax] if this interval is wide enough (see [28] for details). The distribution
function H(τ0) can be found by using broadband heat capacity spectroscopy [19], as was
done in [27–29] (see Example 3).

As a first step, consider the solution to Equation (2) for the auxiliary problem, which
corresponds to the dynamic heat capacity cdyn(t) obeying the Debye relaxation law:

cdyn(t) = c0[1− ε0exp(−t/τ0)], (4)

where ε0 = (c0 − cin)/c0. Subsequently, the final solution for any given cdyn(t) can be
obtained using the solution for an arbitrary positive τ0 if H(τ0), c0, and cin are speci-
fied. This final solution can be represented as a continuous sum of solutions depending
on τ0 and distributed according to the normalized distribution function H(τ0). Using
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Equations (2) and (4), we obtain the following integro-differential equation with a differ-
ence kernel:

∂

∂t
T
(

t,
→
r
)
− D0∆T

(
t,
→
r
)
=

Φ
(

t,
→
r
)

ρc0
+ ε0

∂

∂t

∫ t

0
exp
(
− t− τ

τ0

)
T′
(

τ,
→
r
)

dτ, (5)

where D0 = λ/ρc0 is the equilibrium thermal diffusivity of the glass-forming substance,
τ0 is a positive parameter, and 0 < ε0 < 1. Usually, in glass-forming materials, ε0 is in the
range 0.2–0.3 [19,54] and sometimes even more [55].

Next, consider a one-dimensional example for a sample with a flat geometry. After
that, the spherically symmetric problem in three dimensions can be reduced to the one-
dimensional problem mentioned above by using T(t, r) = U(t, r)/r.

4. Heat Equation with Dynamic Heat Capacity: Plane Geometry

As a basic example, consider a one-dimensional problem with homogeneous boundary
and initial conditions. Consider an infinite plate of thickness d. Let the x-axis be directed
along the normal to the plate surface. In many practically important cases, the heat flux
Φ(t, x) can be considered as a multiplicatively separable function Φ(x)F(t), for example, in
laser [56,57] and Joule heating [58], as well as local heating due to crystal nucleation [59–61].
Thus, we consider the heat flux in the form Φ(x)F(t) with continuous piecewise smooth
F(t) and Φ(x) functions. Let the heat flux Φ(x)F(t) be distributed on the domain [0, d] and
act during the time interval

[
0, τp

]
, i.e., F(t) = 0 for t ≤ 0 and τp ≤ t. Suppose the dynamic

heat capacity is described by Equation (4). Then, from Equation (5), we obtain:

∂

∂t
T(t, x)− D0∂2T(t, x)/∂x2 =

Φ(x)F(t)
ρc0

+ ε0
∂

∂t

∫ t

0
exp
(
− t− τ

τ0

)
T′(τ, x)dτ. (6)

We focused on the dynamic behavior of the thermal response T(t, x) to the external
heat flux Φ(x)F(t) in materials with a dynamic heat capacity. Suppose the temperature
increases from the initial (thermostat) temperature. Thus, consider a homogeneous bound-
ary value problem for the boundary conditions T(t, 0) = 0, T(t, d) = 0, and the zero initial
condition T(t, x) = 0 for t ≤ 0. The solution T(t, x) can be represented as a series:

T(t, x) = ∑
n=1

ψn(t)sin
(πnx

d

)
, (7)

where the functions ψn(t) must satisfy Equation (8):

ψ′n(t) +
ψn(t)

τn
=

ΦnF(t)
ρc0

+ ε0
∂

∂t

∫ t

0
exp
(
− t− τ

τ0

)
ψ′n(τ)dτ, (8)

where ψ′n(t) =
∂
∂t ψn(t), Φn = 2

d

∫ d
0 Φ(x)sin(πnx/d)dx, and τ−1

n = D0(πn/d)2.
Let T̆(t, x) and ψ̃n(t) denote the solutions of the conventional Equations (6) and (8)

with ε0 = 0, respectively. The solution ψ̃n(t) can be represented by Equation (9) [62]:

ψ̃n(t) =
Φn

ρc0

∫ t

0
F(τ)exp

(
− t− τ

τn

)
dτ. (9)

For example, consider the solution to Equation (8) with ε0 = 0 for F(t) = θ(t), where
θ(t) is the Heaviside unit step function (with the condition θ(0) = 0). Denote this solution
by χ̃n(t). Then, we have χ̃n(t) = Φn

ρc0
τn(1− exp(−t/τn)). Next, for a sinusoidal heat

source Fm(t) of duration τp, where Fm(t) = sin
(
πmt/τp

)
for t ∈

[
0, τp

]
and Fm(t) = 0
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outside
(
0, τp

)
, we obtain the solution ψ̃n,m(t) of Equation (8) with ε0 = 0, as seen in

Equations (10) and (11):

ψ̃n,m(t) =
Φn

ρc0

1
τn

sin
(
πmt/τp

)
+ πm

τp

[
exp(−t/τn)− cos

(
πmt/τp

)]

(
1
τn

)2
+
(

πm
τp

)2 for 0 ≤ t ≤ τp, (10)

ψ̃n,m(t) =
Φn

ρc0

πm
τp

exp(−t/τn)
[
1− exp(τp/τn)cos(πm)

]

(
1
τn

)2
+
(

πm
τp

)2 for τp ≤ t. (11)

Thus, for the conventional Equation (6) with ε0 = 0 and the sinusoidal heat source
Fm(t), the solution is:

T̆m(t, x) = ∑n=1 ψ̃n,m(t)sin
(πnx

d

)
. (12)

To find the solutions T(t, x) and ψn(t) of Equations (6) and (8) with nonzero positive
ε0 and τ0, we first solve an auxiliary problem with F(t) = θ(t), where θ(t) is the Heaviside
unit step function, as seen in Equation (13). The solution to this auxiliary problem is
denoted by ϕn(t):

ϕ′n(t) +
ϕn(t)

τn
=

Φn

ρc0
θ(t) + ε0

∂

∂t

∫ t

0
exp
(
− t− τ

τ0

)
ϕ′n(τ)dτ. (13)

Equation (13) can be solved using the Laplace transform method (see Appendix A for
details). In fact, the solution is obtained similarly to the Volterra integral equations with a
difference kernel [63]. Thus, we have:

ϕn(t) =
Φn

ρc0
τn

[
1 +

τ0γnµn(exp(−µnt)− exp(−γnt))
(γn − µn)

+
µnexp(−γnt)− γnexp(−µnt)

(γn − µn)

]
, (14)

ϕ′n(t) =
Φn

ρc0

τnγnµn

(γn − µn)
[(τ0γn − 1)exp(−γnt) + (1− τ0µn)exp(−µnt)], (15)

where −γn and −µn are the roots of the polynomial (1− ε0)p2 + p
(

τ−1
n + τ−1

0

)
+ τ−1

n τ−1
0

(see Appendix A). The parameters γn and µn are real-valued and positive. Moreover,
γn − µn > 0 for any positive τn and τ0, and 0 < ε0 < 1. It can also be shown that ϕn(t)
continuously tends to the solution χ̃n(t) = Φn

ρc0
τn(1− exp(−t/τn)) of Equation (8) with

ε0 = 0 and F(t) = θ(t) as ε0 → 0 or τ0 → 0 .
Let us consider the problem with nonzero ε0 and τ0 for the sinusoidal heat source

Fm(t). The solution to this problem can be obtained using the Duhamel integral [62,63] (see
Appendix A for details). Thus, the solution to Equation (8) for the sinusoidal heat source
Fm(t) can be represented by Equation (16):

ψn,m(t) =
∫ t

0
Fm(τ)ϕ′n(t− τ)dτ. (16)

From Equation (16) we obtain:

ψn,m(t) = Φn
ρc0

τnγnµn
(γn−µn)[

(γnτ0−1)
[
γnsin(πmt/τp)+ πm

τp (exp(−γnt)−cos(πmt/τp))
]

(γn)
2+
(

πm
τp

)2 +
(1−µnτ0)

[
µnsin(πmt/τp)+ πm

τp (exp(−µnt)−cos(πmt/τp))
]

(µn)
2+
(

πm
τp

)2

]

for 0 ≤ t ≤ τp,

(17)
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ψn,m(t) = Φn
ρc0

πmτn
τp

γnµn
(γn−µn)[

(γnτ0−1)[exp(−γnt)−cos(πm)exp(γn(τp−t))]

(γn)
2+
(

πm
τp

)2 +
(1−µnτ0)[exp(−µnt)−cos(πm)exp(µn(τp−t))]

(µn)
2+
(

πm
τp

)2

]

for τp < t.

(18)

It can be shown that ψn,m(t) continuously tends to the solution ψ̃n,m(t) as ε0 → 0 or
τ0 → 0 . Thus, the solution to Equation (6) with nonzero ε0 and τ0 for the sinusoidal heat
source Fm(t) is:

Tm(t, x) = ∑n=1 ψn,m(t)sin
(πnx

d

)
. (19)

Finally, in the case of nonzero ε0 and τ0, we obtain the solution to the problem for an
arbitrary F(t). Indeed, if F(t) is a continuous piecewise smooth function on the interval[
0, τp

]
, then the Fourier series in Equation (20) converges absolutely and uniformly to

F(t) [36]. Thus, we represent F(t) on the interval
[
0, τp

]
using the Fourier series, as seen in

Equation (20):

F(t) = ∑m=1 Cmsin
(
πmt/τp

)
for 0 ≤ t ≤ τp and F(t) = 0 for τp ≤ t, (20)

where Cm are the Fourier coefficients Cm = 2
τp

∫ τp
0 F(t)sin

(
πmt/τp

)
dt. Since Equation (6)

is linear with respect to T(t, x), it follows that the solution T(t, x) of Equation (6) can be
represented as a linear combination of solutions Tm(t, x) for sinusoidal heat sources Fm(t)
with corresponding coefficients Cm. Therefore, we obtain a solution to Equation (6) for an
arbitrary continuous piecewise-smooth heat flux Φ(x)F(t) distributed on the domain [0, d]
and acting during the time interval

[
0, τp

]
, as seen in Equation (21). The series shown in

Equation (21) converges uniformly and absolutely [36]:

T(t, x) = ∑m=1 ∑n=1 Cmψn,m(t)sin
(πnx

d

)
. (21)

Example 1. Let the heat flux Φ(x) be uniformly distributed on the domain
[

d−x0
2 , d+x0

2

]
with

density Φ0. Then:

Φn = Φ0
4sin(πn/2)

πn
sin
(πnx0

2d

)
. (22)

Denote by T̆p(t, x) the solution to the conventional Equation (6) with ε0 = 0 for the
rectangular heating pulse of duration τp, i.e., Fp(t) = θ(t)

(
1− θ

(
t− τp

))
. Then,

T̆p(t, x) = ∑n=1

[
χ̃n(t)− χ̃n

(
t− τp

)
θ
(
t− τp

)]
sin
(πnx

d

)
, (23)

where χ̃n(t) = Φn
ρc0

τn(1− exp(−t/τn)) and Φn is determined using Equation (22). Note that

τn ∼ 1
n2 . Thus, the series in Equation (23) converges as fast as the series SN = ∑N

n=1 1/n3,
which converges to the Riemann zeta function ζ(3) = 1.20205 . . . as N → ∞ [64]. The
remainder (ζ(3)− SN) is less than 0.1% of ζ(3) for N = 20. Thus, to obtain an accuracy of
about 0.1%, it is sufficient to take the series in Equation (23) up to N = 20. The examples in
this section are calculated with N = 30.

The solution of Equation (6) with ε0 = 0 for the sinusoidal heat source Fm(t) with
m = 1 is equal to:

T̆1(t, x) = ∑n=1 ψ̃n,1(t)sin
(πnx

d

)
, (24)

where ψ̃n,1(t) is determined using Equations (10) and (11) for m = 1. Here again, Φn is
given by Equation (22).
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Similarly, solutions to Equation (6) with nonzero ε0 and τ0 for the rectangular and
sinusoidal heating sources are represented by Equations (25) and (26):

Tp(t, x) = ∑n=1

[
ϕn(t)− ϕn

(
t− τp

)
θ
(
t− τp

)]
sin
(πnx

d

)
, (25)

T1(t, x) = ∑n=1 ψn,1(t)sin
(πnx

d

)
, (26)

where ϕn(t) and ψn,1(t) are determined using Equation (14) and Equations (17) and (18),
respectively, with Φn being the same as in Equations (23) and (24).

For example, let ε0 = 1/3, τ0 = 30 ns, and τp = 10 ns. Let d = 100 nm, x0 = 50 nm,
and the thermal parameters of the substance are typical for those of glass-forming polymers.
Thus, we take ρ = 1 g/cm3, ρc0 = 2 × 106 J/m3K, λ = 0.3 W/mK, D0 = 1.5 × 10−7 m2/s,
and Φ0 = ρh0, where h0 = 200 J/g is the heat release during crystallization. We focused
on the nanometer and nanosecond scales since they are close to real processes during
subcritical crystal nucleation [59–61]. First, we verified that Equation (21) gave the correct
solution T(t, x) for a rectangular pulsed heat source. Indeed, the solutions T̆p(t, x) and
Tp(t, x) represented by Equations (23) and (25) coincided with the results T̆(t, x) and T(t, x)
calculated using the Fourier series (see Equation (21)) for m up to 45 (see Figure 1b). In
addition, Figure 1b shows that the effect of the temporal dispersion of the dynamic heat
capacity on the temperature was significant.
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Figure 1. (a) Rectangular heating pulse Fp(t) with duration τp = 10 ns. (b) Time dependences T̆p

(
t, d

2

)
and T̆

(
t, d

2

)
(shown

using squares and circles), as well as Tp

(
t, d

2

)
and T

(
t, d

2

)
for ε0 = 1/3 and τ0 = 30 ns (shown using up and down

triangles).

As an example of an arbitrary function F(t), consider the continuous piecewise smooth
function FA(t) shown in Figure 2. Let FA(t) denote the Fourier series approximating FA(t),
as seen in Equation (27):

FA(t) = ∑M
m=1 CA

msin
(
πmt/τp

)
for 0 ≤ t ≤ τp and FA(t) = 0 for τp ≤ t. (27)

For example, let us take N = 30 and M = 30. Figure 2a shows that FA(t) was well
approximated by FA(t) at M = 30. The solution TA(t, x) for the heating source with FA(t)
is represented by Equation (28), where ψn,m(t) are determined by Equations (17) and (18)
with corresponding coefficients CA

m (see Equation (27)):

TA(t, x) = ∑M
m=1 ∑N

n=1 CA
mψn,m(t)sin

(πnx
d

)
. (28)
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Figure 2. (a) Heating pulses F1(t), FA(t), and FA(t) (shown using squares, circles, and crosses, respectively). (b) Time

dependences of T̆1

(
t, d

2

)
and T̆A

(
t, d

2

)
(shown using squares and circles), as well as T1

(
t, d

2

)
and TA

(
t, d

2

)
for ε0 = 1/3 and

τ0 = 30 ns (shown using up triangles and down triangles). The inset shows the ratios δT1 and δTA (shown using squares
and circles).

The solutions TA(t, x) and T1(t, x) can be compared with T̆A(t, x) and T̆1(t, x), re-
spectively. Let δT(t, x) = (T(t, x) − T̆(t, x))/T̆(t, x) denote the relative contribution to
the solution associated with the temporal dispersion of the dynamic heat capacity. This
contribution reached about 50% (see Figure 2b). Thus, the effect of the temporal dispersion
of the dynamic heat capacity on T(t, r) was significant, especially at the beginning of the
heating process. The position of the peak of the time dependence T̆1

(
t, d

2

)
was shifted

relative to the peak of the heating pulse F1(t), as well as T̆A

(
t, d

2

)
relative to FA(t) (see

Figure 2b). Indeed, the thermal response usually lagged behind the heat source. Thus, the
peak of the dependences T̆1

(
t, d

2

)
and T̆A

(
t, d

2

)
appeared at around 8 ns and 7 ns, respec-

tively. However, the maxima of F1(t) and FA(t) were at 5 ns and about 4 ns, respectively.
Interestingly, this shift decreased due to the dynamic heat capacity. Thus, the peaks of the
dependences T1

(
t, d

2

)
and TA

(
t, d

2

)
appeared around 7.5 ns and 6.5 ns, respectively. In

fact, the dynamic heat capacity was less than the equilibrium heat capacity, especially at
the beginning of the heating process.

The cylindrically symmetric problem can be solved in the same way as in [29]. Below,
we consider only an example of a spherically symmetric problem.

5. Heat Equation with Dynamic Heat Capacity: Spherical Geometry

Consider a spherically symmetric problem with a spherical heat source Φ(r)F(t) of
radius r0 that is concentrically located in a spherical sample of radius R. The boundary
condition is T(t, R) = 0 and the initial condition is T(t, r) = 0 for t ≤ 0. From Equation (5),
we have:

∂

∂t
T(t, r)− D0

1
r

∂2

∂r2 [rT(t, r)] =
Φ(r)F(t)

ρc0
+ ε0

∂

∂t

∫ t

0
exp
(
− t− τ

τ0

)
T′(τ, r)dτ. (29)

By replacing rT(t, r) with U(t, r) in Equation (29), we obtain a one-dimensional prob-
lem, as seen in Equation (30); this problem is similar to that discussed earlier. The boundary
and initial conditions are U(t, 0) = 0, U(t, R) = 0, and U(t, r) = 0 at t ≤ 0.

U′(t, r)− D0∂2U/∂r2 =
rΦ(r)F(t)

ρc0
+ ε0

∂

∂t

∫ t

0
exp
(
− t− τ

τ0

)
U′(τ, r)dτ, (30)
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where the prime means the derivative with respect to the time variable. Thus, the solution
T(t, x) is:

T(t, r) = ∑n=1 ψn(t)
sin(πnr/R)

r
, (31)

where the functions ψn(t) must satisfy Equation (32):

ψ′n(t) +
ψn(t)

τn
=

rΦnF(t)
ρc0

+ ε0
∂

∂t

∫ t

0
exp
(
− t− τ

τ0

)
ψ′n(τ)dτ, (32)

where Φn = 2
R
∫ R

0 rΦ(r)sin(πnr/R)dr and τ−1
n = D0(πn/R)2. The functions ψn(t) for

different F(t) can be obtained in the same way as before (see Example 1).

Example 2. Let the heat flux Φ(r) be uniformly distributed on the domain [0, r0] with density
Φ0. Then:

Φn = 2RΦ0
sin(πnr0/R)− (πnr0/R) · cos(πnr0/R)

(πn)2 . (33)

For heating pulses Fp(t) and FA(t), similar to those in Figures 1 and 2, consider
the solutions T̆p(t, r) and Tp(t, r), as well as T̆A(t, r) and TA(t, r). In addition, consider
the solutions T̆2(t, r) and T2(t, r) for the sinusoidal heat source Fm(t) with m = 2. Let
R = 300 nm, r0 = 30 nm, τp = 2 ns, ε0 = 1/3, and τ0 = 5 ns, along with the same thermal
parameters as in the above example. The series in Equation (31) converges as fast as
the series SN = ∑N

n=1 1/n2, which converges to π2/6 as N → ∞ [64]. The remainder(
π2/6 − SN

)
is less than 1% of π2/6 for N = 65. Thus, to obtain an accuracy better than

1%, it is sufficient to take the series in Equation (31) up to N = 100. All the examples below
were calculated with N = 100 and, as before, M = 30. Since R� r0, it does not matter how
large the parameter R is, as long as we consider a sufficiently short time t. This was verified
by direct calculation of T̆A and TA at R = 300 nm and 1000 nm (see Figure 3). Moreover,
the solutions for different heating pulses practically did not change with the distance at
r > 80 nm (see Figure 3). As seen in Figure 3, the effect of the temporal dispersion of the
dynamic heat capacity was significant. Interestingly, the effect of the temporal dispersion
of the dynamic heat capacity could even lead to a change in the sign of the solution T2(t, r).
Indeed, T2(t, r) had a sign that was opposite to T̆2(t, r) at r < 21 nm and t0 = 1.5 ns (see
Figure 3b). A similar effect can occur when the temperature changes during the nucleation
and decay of subcritical crystals.

The effect of the temporal dispersion of the dynamic heat capacity was most significant
in the case of fast and local heating; this effect was most pronounced at the beginning of
the heating process. This effect increased with increasing τ0 and reached saturation at τ0 in
the order of r0

2/D0, that is, at about 10 ns at r0 = 30 nm and D0 in the order of 10−7 m2/s
(see Figure 4). Note, in the case of glass-forming substances, the relaxation times τ0 have a
broad distribution. Next, we considered the influence of this distribution on the solution
T(t, r) for the spherically symmetric problem.
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respectively), as well as Tp(t, 0), T2(t, 0), and TA(t, 0) for ε0 = 1/3 and τ0 = 5 ns (shown using open squares, circles, and up
triangles, respectively) and (b) the corresponding spatial temperature distributions at t0 = 1.5 ns and R = 300 nm. Similar
dependences for T̆A and TA were calculated at R = 1000 nm (shown using down triangles).
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Figure 4. Time dependences of TA(t, 0) at τ0 = 0.2 ns, 0.5 ns, 1 ns, 2 ns, 5 ns, 30 ns, and 300 ns (shown
using squares, circles, up triangles, down triangles, diamonds, stars, and crosses, respectively),
as well as T̆A(t, 0) (shown using filled squares). The inset shows TA(t0, 0) as a function of τ0 at
t0 = 1.4 ns.

6. Dependence of the Solution T(t, r) on the Distribution of Relaxation Times τ0

As before, consider a spherically symmetric problem with a spherical heat source
Φ(r)F(t) of radius r0 that is concentrically positioned in a spherical sample of radius R.
The boundary and initial conditions are the same as in Section 5. Suppose the dynamic
heat capacity is represented by Equation (3) or by the same equation in a finite interval
[τmin, τmax]. Then, using the distribution function H(τ0), we can obtain the desired solution
as a linear combination of solutions for different τ0. The distribution function H(τ0) can be
found using broadband heat capacity spectroscopy [19].
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Example 3. Consider the Kohlrausch relaxation law (stretched exponential), which is often used for
glass-forming substances. Then, the dynamic heat capacity can be represented using Equation (34):

cdyn(t) = c0

[
1− ε0exp

(
−(t/τK)

β
)]

. (34)

For example, let β = 0.5. Then, the normalized distribution function is
H(τ0) =

exp(−τ0/4τK)√
4πτKτ0

[50,51], where the Kohlrausch relaxation time τK determines the
distribution width, and the average relaxation time is 〈τ0〉AV = 2τK [64]. In fact, the shape
of the distribution function H(τ0) is not very significant since the effect of the temporal
dispersion of the dynamic heat capacity is saturated with increasing τ0. For example,
consider the uniform distribution Hu(τ0) = 1

4τK
on the interval [0, 4τK] and Hu(τ0) = 0

outside of this interval. In this case, the average relaxation time is also 2τK. Comparing
the results calculated using the Kohlrausch distribution H(τ0) =

exp(−τ0/4τK)√
4πτKτ0

and the uni-
form distribution Hu(τ0), it can be seen that the results are very close to each other (see
Figures 5 and 6). The value of the average relaxation time is a more significant parameter.
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Figure 6. (a) Time dependences of ෰ܶଵ(ݐ, 0), ଵܶ(ݐ, 0, ߬௄( ௜ܶ௡)), and ଵܶ(ݐ, 0, ߬௄( ௠ܶ௔௫)) (shown using squares, circles, and trian-
gles, respectively) and (b) the corresponding spatial temperature distributions at ݐ଴ = 1.5 ns for PS at ௜ܶ௡ = 400 K and a 
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lated using the uniform distribution ܪ௨(߬଴). 

Figure 5. (a) Time dependences of T̆1(t, 0), T1(t, 0, τK(Tin)), and T1(t, 0, τK(Tmax)) (shown using
squares, circles, and triangles, respectively) (b) and corresponding spatial temperature distributions
at t0 = 1.5 ns for PS at Tin = 500 K and a sinusoidal heat source F1(t). Similar dependences were
found for T1(t, r, τK(Tin)) (shown using stars), which were calculated using the uniform distribution
Hu(τ0). PS: polystyrene.
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The dynamic heat capacity cdyn(t) can be set on a finite interval [τmin, τmax] if this
interval is wide enough. It is sufficient to take [τmin, τmax] = [0.001τK, 15τK] for an accuracy
of about 1%. Thus:

cdyn(t, τK) = c0

[
1− ε0

∫ τmax

τmin

exp(−τ0/4τK)√
4πτKτ0

exp(−t/τ0)dτ0

]
. (35)

The distribution function in Equation (35) depends on the Kohlrausch relaxation time
τK; this relaxation time can be found using broadband heat capacity spectroscopy [19], as
was done in [28]. Heat capacity spectroscopy allows one to obtain the frequency depen-
dence of the dynamic heat capacity. Let ωmax denote the frequency of the maximum of the
imaginary part of the dynamic heat capacity. In fact, τK = 0.74/ωmax [28]. ωmax can be
obtained for different temperatures T from the Vogel–Fulcher–Tammann–Hesse relation
log(ωmax) = A− B/(T − T0), where A, B, and T0 are measured in the experiment [19].
Thus, one can obtain the Kohlrausch relaxation time τK(T) for different temperatures.
Consider the solution T(t, r, τK(Tin)) for τK(Tin), where Tin is the initial temperature at
t ≤ 0. Compare this solution with T(t, r, τK(Tmax)), where Tmax is the maximum tempera-
ture reached by the sample during the pulsed heating. Since τK(T) changes with heating
between τK(Tin) and τK(Tmax), it follows that the correct solution T(t, r) is between the so-
lutions obtained for τK(Tin) and τK(Tmax), i.e., T(t, r, τK(Tmax)) < T(t, r) < T(t, r, τK(Tin)).

For example, let Tin = 500 K. Consider the solution T1(t, r) for the sinusoidal heat
source Fm(t) with m = 1, where Fm(t) = sin

(
πmt/τp

)
for t ∈

[
0, τp

]
and Fm(t) = 0 outside[

0, τp
]
. Let us take the same thermal and size parameters as in the above example. Thus,

we obtained τK(Tin) = 13.1 ns for Tin = 500 K and τK(Tmax) = 3.2 ns for Tmax = 553 K,
using the parameters A = 10.2, B = 388 K, and T0 = 341.5 K for polystyrene (PS) [19]. The
difference between the solutions obtained for τK(Tmax) and τK(Tin) was less than 5% of the
temperature change near the maximum of the curves shown in Figure 5. The influence of the
temporal dispersion of the dynamic heat capacity was much greater than this difference (see
Figure 5). Moreover, the effect of changing τK(T) upon heating was insignificant at lower
Tin since τK(T) increased with decreasing T and the influence of the temporal dispersion
of the dynamic heat capacity saturated with increasing τK (see Figure 6). Therefore, we
obtained τK(Tin) = 200 µs for Tin = 400 K and τK(Tmax) = 120 ns for Tmax = 455 K using
the parameters A, B, and T0 for PS [19]. Thus, we obtained the solutions T(t, r, τK(Tin))
and T(t, r, τK(Tmax)), which were practically the same (see Figure 6). In fact, the difference
between T(t, r, τK(Tin)) and T(t, r, τK(Tmax)) was negligible in a wide temperature range
from the glass transition temperature to 400 K for PS.

Similar calculations for poly(methyl methacrylate) (PMMA) provided an insignificant
difference between the solutions T(t, r, τK(Tin)) and T(t, r, τK(Tmax)) calculated in a wide
temperature range from the glass transition temperature even up to 700 K (see Figure 7).
For example, we obtained τK(Tin) = 127 ns for Tin = 700 K and τK(Tmax) = 107 ns for
Tmax = 755 K using the parameters A = 7.3, B = 185 K, and T0 = 354.3 K for PMMA [19].
Thus, the calculation of the influence of the temporal dispersion of the dynamic heat
capacity for constant τK(Tin) was quite accurate, even if the temperature change was about
50 K (see Figures 5–7).

Summing up, we concluded that the calculations can be carried out for a constant
Kohlrausch relaxation time, determined at Tin, and for sufficiently large (about 50 K)
temperature changes during heating. This holds for a wide temperature range for Tin.
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7. Conclusions

An integro-differential equation describes the non-equilibrium thermal response of
glass-forming substances with a dynamic (time-dependent) heat capacity to fast thermal
perturbations. We found that the corresponding heat transfer problem could be solved
analytically for a heat source with an arbitrary time dependence and different geometries.
The solutions provide analytical expressions for fast thermal processes on nanosecond
and longer timescales. It was shown that the effect of the time dispersion of the dynamic
heat capacity on the thermal response T(t, r) upon local heating was significant in glass-
forming materials. This effect was enhanced when the relaxation time of the dynamic
heat capacity increased. However, this effect reached saturation at tens of nanoseconds.
Because of this saturation, in many practical cases, the effect of the time dispersion of the
dynamic heat capacity on the thermal response T(t, r) can be calculated using the relaxation
time distribution fixed at a constant initial temperature. This effect can be crucial for
highly localized and short processes, such as crystal nucleation. The method of analytical
calculations described in this work can be applied to an arbitrary time dependence of a
local thermal perturbation, for example, the formation of a crystal nucleus in glass-forming
materials. The results obtained can be useful for applications and a better understanding
of the thermal properties of glass-forming substances, polymers, and nanocomposites.
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Nomenclature
Latin Symbols
cdyn(t) dynamic heat capacity (J·kg−1·K−1)
cin initial part of cdyn(t) (J·kg−1·K−1)
c0 equilibrium heat capacity (J·kg−1·K−1)
D0 thermal diffusivity D0 = λ/ρc0 (m2·s−1)
d sample thickness (m)
F(t) heat flux time dependence (dimensionless)
H(τ0) distribution function (s−1)
h0 heat release (J·kg−1)
lph phonon mean-free-path (m)
r, x space variables (m)
R radius of spherical sample (m)
r0 radius of spherical heat source (m)
t time (s)
T(t, x) solution to non-equilibrium heat equation (K)
T̆(t, x) solution to conventional heat equation (K)
δT(t, x) non-equilibrium component of the solution T(t, x) (K)
x0 thickness of the flat heat source (m)
Greek Symbols
β Kohlrausch coefficient (dimensionless)
γn nth relaxation parameter (s−1)
ε0 (c0 − cin)/c0 (dimensionless)
θ(t) Heaviside unit step function (dimensionless)
λ thermal conductivity (W·K−1·m−1)
µn nth relaxation parameter (s−1)
ρ density (kg·m−3)
τK Kohlrausch relaxation time (s)
τn time constant of nth component (s)
τ0 Debye relaxation time (s)
τp duration of the heating pulse (s)

Φ
(→

r
)

F(t) volumetric heat flux (W·m−3)

Φ
(→

r
)

heat flux space dependence (W·m−3)
Φn
ρc0

nth Fourier components (K/s)
χn, ϕn nth Fourier components (K)
ψn,m(t) n,mth Fourier component (K)

Appendix A

Consider the solutions ψn(t) and ϕn(t) of Equations (8) and (13), respectively. These
equations are equivalent to Equations (A1) and (A2):

ψ′n(t) +
ψn(t)

τn
=

ΦnF(t)
ρc0

+ ε0ψ′n −
ε0

τ0

∫ t

0
exp
(
− t− τ

τ0

)
ψ′n(τ)dτ, (A1)

ϕ′n(t) +
ϕn(t)

τn
=

Φn

ρc0
θ(t) + ε0 ϕ′n −

ε0

τ0

∫ t

0
exp
(
− t− τ

τ0

)
ϕ′n(τ)dτ, (A2)

where their Laplace transforms are:

(
p + τ−1

n

)
ψn(p) =

Φn

ρc0
F(p) + pε0ψn(p)− ε0

τ0

pψn(p)(
p + τ−1

0

) , (A3)

(
p + τ−1

n

)
ϕn(p) =

Φn

ρc0
p−1 + pε0 ϕn(p)− ε0

τ0

pϕn(p)(
p + τ−1

0

) , (A4)
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where ψn(p), ϕn(p), and F(p) are the Laplace transforms of ψn(t), ϕn(t), and F(t), respec-
tively. Let us verify that the solution to Equation (A1) is equal to the following Duhamel
integral [50,51]:

ψn(t) =
∫ t

0
F(τ)ϕ′n(t− τ)dτ. (A5)

Note that ϕn(0) = 0 (see Equation (14)). Then, the Laplace transform of Equation (A5) is
equal to ψn(p) = F(p)pϕn(p) [62]. By assumption, the functions ϕn(p) satisfy Equation (A4).
Accordingly, substituting ψn(p)/F(p)p for ϕn(p) into Equation (A4) and multiplying both
sides of Equation (A4) by the factor F(p)p, we obtain Equation (A3). Then, after the
inverse Laplace transform, we have Equation (A1). Therefore, the Duhamel integral (see
Equation (A5)) is a solution to Equation (A1). In fact, the existence of the solution ψn(t)
follows from Equation (A5) since F(t) and ϕn(t) are smooth and bounded, and therefore,
integrable functions. Moreover, since Equation (A1) is linear with respect to ψn(t), the
uniqueness of the solution ψn(t) follows from the fact that ψn(t) = 0 if F(t) = 0 (see
Equation (A5)).

Below, we use some results from our previous article [28]. Equation (A4) is equivalent
to Equation (A6):

ϕn(p) =
Φn

ρc0

(
p + τ−1

0

)

p
[
(1− ε0)p2 + p

(
τ−1

n + τ−1
0

)
+ τ−1

n τ−1
0

] . (A6)

Therefore:

ϕn(p) =
Φn

ρc0

(
p + τ−1

0

)

(1− ε0)p(p + γn)(p + µn)
, (A7)

where

γn =

(
τ−1

n + τ−1
0

)
+

√
(τ−1

n − τ−1
0 )

2
+ 4ε0/τnτ0

2(1− ε0)
, (A8)

µn =

(
τ−1

n + τ−1
0

)
−
√
(τ−1

n − τ−1
0 )

2
+ 4ε0/τnτ0

2(1− ε0)
. (A9)

Thus, from Equation (A7) and using the identity (1− ε0)τ0γnµn = τ−1
n , we have:

ϕn(p) =
Φn

ρc0
τn

[
p−1 +

τ0γnµn

(γn − µn)

(
1

p + µn
− 1

p + γn

)
+

1
(γn − µn)

(
µn

p + γn
− γn

p + µn

)]
. (A10)

Note that γn and µn are real-valued, positive, and γn − µn > 0 for any τn, τ0, and
0 < ε0 < 1. Then, after the inverse Laplace transform of Equation (A10), we obtain the
solution ϕn(t) of Equation (13) (see Equation (14)).
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Abstract: This paper is concerned with a type of time-symmetric stochastic system, namely the so-
called forward–backward doubly stochastic differential equations (FBDSDEs), in which the forward
equations are delayed doubly stochastic differential equations (SDEs) and the backward equations
are anticipated backward doubly SDEs. Under some monotonicity assumptions, the existence and
uniqueness of measurable solutions to FBDSDEs are obtained. The future development of many
processes depends on both their current state and historical state, and these processes can usually
be represented by stochastic differential systems with time delay. Therefore, a class of nonzero sum
differential game for doubly stochastic systems with time delay is studied in this paper. A necessary
condition for the open-loop Nash equilibrium point of the Pontriagin-type maximum principle are
established, and a sufficient condition for the Nash equilibrium point is obtained. Furthermore,
the above results are applied to the study of nonzero sum differential games for linear quadratic
backward doubly stochastic systems with delay. Based on the solution of FBDSDEs, an explicit
expression of Nash equilibrium points for such game problems is established.

Keywords: backward doubly stochastic differential equations; stochastic differential game; maximum
principle; Nash equilibrium point; time-delayed generator

1. Introduction

In 1994, Pardoux and Peng [1] put forward the following backward doubly stochastic
differential equations (BDSDEs):

p(t) = ξ +
∫ T

t
F(s, p(s), q(s))ds +

∫ T

t
G(s, p(s), q(s))

←−
d B(s)−

∫ T

t
q(s)
−→
d W(s), 0 ≤ t ≤ T, (1)

which can be applied to produce a probabilistic expression of certain quasilinear stochastic
partial differential equations (SPDEs). Because of its importance to SPDEs, the interest in
BDSDEs has increased considerably (see [2–15]). At the same time, the stochastic control
problem of backward doubly stochastic systems has been studied extensively (see [16–21]).

In 2003, Peng and Shi [22] introduced the following time-symmetric fully coupled
forward–backward stochastic systems:





y(t) = x +
∫ t

0
f (s, p(s), y(s), q(s), z(s))ds−

∫ t

0
z(s)
←−
d B(s)

+
∫ t

0
g(s, p(s), y(s), q(s), z(s))

−→
d W(s),

p(t) = Φ(y(T)) +
∫ T

t
F(s, p(s), y(s), q(s), z(s))ds−

∫ T

t
q(s)
−→
d W(s)

+
∫ T

t
G(s, p(s), y(s), q(s), z(s))

←−
d B(s),

(2)
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which are the so-called forward–backward doubly stochastic differential equations (FBDS-
DEs). The forward and backward equations in Equation (2) are the BDSDE in Equation (1)
with stochastic integrals in different directions. Therefore, the FBDSDE in Equation (2)
is established to provide a more general framework of fully coupled forward–backward
stochastic differential equations. Under some monotone assumptions, Peng and Shi [22]
obtained the unique solvability of FBDSDEs (2). Zhu et al. [23,24] have extended the results
in [22] to different dimensions and the weaker monotonic assumptions, and gave the prob-
abilistic interpretation for the solutions to SPDEs combined with algebra equations. Zhang
and Shi [25] and Shi and Zhu [26] studied the stochastic control problem of FBDSDEs.

Game theory has penetrated into economic theory and attracted more and more
research. It was first proposed by Von Neumann and Morgenstern [27]. Nash [28] has done
groundbreaking work on non-cooperative games and presents the concept of a classic Nash
equilibrium. Zhao et al. [29] studied the optimal investment and reinsurance of insurers
in default securities under a mean-variance criterion in the jump-diffusion risk model.
Many papers on stochastic differential game problems driven by backward stochastic
differential equations have been published (see [30–32]). The differential game problem
for forward–backward doubly stochastic differential equations was addressed in [33].
However, the future evolution of a lot of processes depends not only on their current
state, but also on their historical state, and these processes can usually be characterized
by stochastic differential equations with time delay. The optimal control problem for
stochastic differential equations with delay was discussed in [34–39]. The nonzero sum
differential game of the stochastic differential delay equation was studied in [40,41]. Shen
and Zeng [42] researched the optimal investment and reinsurance with time delay for
insurers under a mean-variance criterion.

The extra noise {B(t)} in Equation (1) can be regarded as some additional financial
information that is not disclosed to the public in practice, such as in the derivative securities
market, but is available to some investors. Arriojas et al. [43] and Kazmerchuk et al. [44]
obtained the option pricing formula with time delay based on the stock price process with
time delay. As far as we know, there is little discussion about differential games of doubly
stochastic systems with delay. In this article, we will discuss this direction, that is, the
following nonzero sum differential game driven by doubly stochastic systems with time
delay. The control system is





dy(t) = f (t, y(t), z(t), yδ(t), zδ(t), v1(t), v2(t))dt− z(t)
←−
d B(t)

+g(t, y(t), z(t), yδ(t), zδ(t), v1(t), v2(t))
−→
d W(t), t ∈ [0, T],

y(t) = φ(t), z(t) = ψ(t), t ∈ [−δ, 0],

where (y(·), z(·)) ∈ Rn × Rn×d is the state process pair, 0 < δ < T is a constant time
delay parameter, and yδ(t) = y(t− δ), zδ(t) = z(t− δ). We denote J1(v(·)) and J2(v(·)),
v(·) = (v1(·), v2(·)), which are the cost functionals corresponding to the players 1 and 2:

Ji(v1(·), v2(·)) = E
{∫ T

0
li(t, y(t), z(t), yδ(t), zδ(t), v1(t), v2(t))dt + Φi(y(T))

}
, i = 1, 2.

Our task is to find (u1(·), u2(·)) ∈ U1 ×U2 such that





J1(u1(·), u2(·)) = min
v1(·)∈U1

J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = min

v2(·)∈U2
J2(u1(·), v2(·)).

To figure out the above nonzero sum differential game problem, it is natural to involve
the adjoint equation, which is a kind of anticipated BDSDE (see [45,46]). It is therefore
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necessary to explore the following general FBDSDE with the forward equation being a
delayed doubly SDE and the backward equation being the anticipated BDSDE:





dy(t) = f (t, y(t), p(t), z(t), q(t), yδ(t), zδ(t))dt− z(t)
←−
d B(t)

+g(t, y(t), p(t), z(t), q(t), yδ(t), zδ(t))
−→
d W(t), t ∈ [0, T],

−dp(t) = F(t, y(t), p(t), z(t), q(t), pδ+(t), qδ+(t))dt− q(t)
−→
d W(t)

+G(t, y(t), p(t), z(t), q(t), pδ+(t), qδ+(t))
←−
d B(t), t ∈ [0, T],

y(t) = φ(t), t ∈ [−δ, 0],
z(t) = ψ(t), t ∈ [−δ, 0],
p(T) = Φ(y(T)), p(t) = ξ(t), t ∈ [T, T + δ],
q(t) = η(t), t ∈ [T, T + δ],

where yδ(t) = y(t− δ), zδ = z(t− δ), pδ+(t) = p(t + δ), qδ+ = q(t + δ).
Our work differs from the above in the following distinctions. First of all, we in-

troduce a time-symmetric stochastic system, which generalizes the results in [22] to a
more general case: forward doubly stochastic differential equations (SDEs) with delay as
forward equations and anticipated backward doubly stochastic differential equations as
backward equations. Secondly, we investigate the problem of a nonzero sum differential
game driven by doubly stochastic systems with time delay, which enriches the types of
stochastic delayed differential game problems. Finally, we explore the linear quadratic (LQ)
games for a doubly stochastic system with time delay, and use the solution of the above
general FBDSDE to give an explicit expression of the unique equilibrium point.

The structure of this paper is as follows. We give the framework of the doubly
stochastic games with delay and a preliminary view on the general FBDSDE in Section 2.
We set up a necessary condition for the open-loop Nash equilibrium of such games to
form a Pontryagin maximum principle in Section 3. Section 4 is devoted to the verification
theorem of a sufficient condition for Nash equilibrium. In order to visually demonstrate the
above results, the nonzero sum differential game for LQ double stochastic delay systems
is studied in Section 5. By using the results of our FBDSDE, the explicit representation of
Nash equilibrium points for LQ game problems is obtained. For the convenience of the
reader, we present the skeleton of the proof on uniqueness and existence for the general
FBDSDE in Section 6. Finally, we conclude this article with a summary.

2. Formulation of Problems and Preliminaries
2.1. Notations and Formulation of Problems

Suppose (Ω,F , P) is a probability space, and [0, T] is a fixed arbitrarily large time
duration throughout this paper. Let {W(t); 0 ≤ t ≤ T} and {B(t); 0 ≤ t ≤ T} be two
mutually independent standard Brownian motions defined on (Ω,F , P), with values
in Rd and Rl , respectively. Let N denote the class of P-null elements of F . For each
t ∈ [0, T], we define Ft

.
= FW

t ∨ F B
t,T , where FW

t = N ∨ σ{W(r)−W(0); 0 ≤ r ≤ t},
F B

t,T = N ∨ σ{B(T)− B(r); t ≤ r ≤ T}. Note that the collection {Ft, t ∈ [0, T]} is neither
increasing nor decreasing, and it does not produce a filtration. E denotes the expectation on
(Ω,F , P). EFt := E[·|Ft] denotes the conditional expectation under Ft. We use the usual
inner product 〈·, ·〉 and Euclidean norm |·| in Rn, Rm,Rm×l and Rn×d. The symbol “>” that
appears on the superscript indicates the transpose of the matrix. All the equations and
inequalities mentioned in this paper are in the sense of dt× dP almost surely on [0, T]×Ω.
We introduce the following notations:

L2(FT ;Rn) ={ξ : ξ is an Rn-valued, FT-measurable random variable s.t. E|ξ|2 < ∞},
L2
F (0, T;Rn) ={v(t), 0 ≤ t ≤ T : v(t) is an Rn-valued, Ft-measurable process

s.t. E
∫ T

0
|v(t)|2dt < ∞}.
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We take into account the following controlled doubly stochastic differential systems
with delay:





dy(t) = f (t, y(t), z(t), yδ(t), zδ(t), v1(t), v2(t))dt− z(t)
←−
d B(t)

+g(t, y(t), z(t), yδ(t), zδ(t), v1(t), v2(t))
−→
d W(t), t ∈ [0, T],

y(t) = φ(t), z(t) = ψ(t), t ∈ [−δ, 0],
(3)

where (y(·), z(·)) ∈ Rn × Rn×d is the state process pair, 0 < δ < T is a constant time
delay parameter, and yδ(t) = y(t− δ), zδ(t) = z(t− δ). Here, f : [0, T]× Rn × Rn×d ×
Rn ×Rn×d ×Rk1 ×Rk2 → Rn, g : [0, T]×Rn ×Rn×d ×Rn ×Rn×d ×Rk1 ×Rk2 → Rn×l

are given functions, and φ(·), ψ(·) ∈ L2
F (−δ, 0;Rn) are the initial paths of y, z, respectively.

Let Ui be a nonempty convex subset of Ri and vi(·) be the control process of player
i, i = 1, 2. We denote by Ui the set of Ui-valued control processes vi ∈ L2

F (0, T;Rki ) and
it is called the admissible control set for player i, i = 1, 2. Each element of Ui is called an
(open-loop) admissible control for player i, i = 1, 2. In addition, U = U1 ×U2 is called the
set of admissible controls for the two players.

We assume that

Hypothesis 1 (H1). f and g are continuously differentiable with respect to (y, yδ, z, zδ, v1, v2),
and their partial derivatives are bounded.

Now, if both v1(·) and v2(·) are admissible controls, and assumption (H1) holds, then
doubly stochastic differential equation with delay (3) admits a unique solution (y(·), z(·)) ∈
L2
F (−δ, T;Rn) × L2

F
(
−δ, T;Rn×l

)
(see [20]). The two players have their own benefits,

which are described by the cost functional

Ji(v1(·), v2(·)) = E
{∫ T

0
li(t, y(t), z(t), yδ(t), zδ(t), v1(t), v2(t))dt + Φi(y(T))

}
,

where li : [0, T]×Rn ×Rn×d ×Rn ×Rn×d ×Rk1 ×Rk2 → R and Φi : Rn → R are given
functions, i = 1, 2.

We also assume

Hypothesis 2 (H2). li is continuously differentiable in (y, z, yδ, zδ, v1, v2), its partial derivatives
are continuous in (y, z, yδ, zδ, v1, v2) and bounded by c(1 + |y|+ |z|+ |yδ|+ |zδ|+ |v1|+ |v2|).
Moreover, Φi(y) is continuously differentiable in y and Φiy(y) is bounded by c(1 + |y|).

Assume that each participant wants to minimize her/his cost functional Ji(v1(·), v2(·))
by selecting an appropriate admissible control vi(·)(i = 1, 2). Then the problem is to find a
pair of admissible controls (u1(·), u2(·)) ∈ U1 ×U2 such that





J1(u1(·), u2(·)) = min
v1(·)∈U1

J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = min

v2(·)∈U2
J2(u1(·), v2(·)). (4)

We call the above problem a doubly stochastic differential game with time delay.
For simplicity’s sake, let us write it as Problem (A). If we can find an admissible control
u(·) = (u1(·), u2(·)) satisfying Equation (4), then we call it an equilibrium point of Problem
(A) and denote the corresponding state trajectory by (y(·), z(·)) = (yu(·), zu(·)).
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2.2. The General FBDSDE

We deal with the following general FBDSDE, in which the forward equation is a
delayed doubly SDE, and the backward equation is the anticipated BDSDE:





dy(t) = f (t, y(t), p(t), z(t), q(t), yδ(t), zδ(t))dt− z(t)
←−
d B(t)

+g(t, y(t), p(t), z(t), q(t), yδ(t), zδ(t))
−→
d W(t), t ∈ [0, T],

−dp(t) = F(t, y(t), p(t), z(t), q(t), pδ+(t), qδ+(t))dt− q(t)
−→
d W(t)

+G(t, y(t), p(t), z(t), q(t), pδ+(t), qδ+(t))
←−
d B(t), t ∈ [0, T],

y(t) = φ(t), t ∈ [−δ, 0],
z(t) = ψ(t), t ∈ [−δ, 0],
p(T) = Φ(y(T)), p(t) = ξ(t), t ∈ [T, T + δ],
q(t) = η(t), t ∈ [T, T + δ],

(5)

where yδ(t) = y(t− δ), zδ = z(t− δ), pδ+(t) = p(t + δ), qδ+ = q(t + δ), and

F : Ω× [0, T]×Rn ×Rm ×Rn×l ×Rm×d ×Rm ×Rm×d → Rm,
f : Ω× [0, T]×Rn ×Rm ×Rn×l ×Rm×d ×Rn ×Rn×l → Rn,
G : Ω× [0, T]×Rn ×Rm ×Rn×l ×Rm×d ×Rm ×Rm×d → Rm×l ,
g : Ω× [0, T]×Rn ×Rm ×Rn×l ×Rm×d ×Rn ×Rn×l → Rn×d,
Φ : Ω×Rn → Rm.

Given an m× n full-rank matrix H. Let us introduce some notation:

u =




y
p
z
q


,




yδ(·)
pδ+(·)
zδ(·)

qδ+(·)


 =




α
µ
β
ν


, A(t, u, α, µ, β, ν) =




−H>F(t, u, µ, ν)
H f (t, u, α, β)
−H>G(t, u, µ, ν)

Hg(t, u, , α, β)


.

where H>G =
(

H>G1 · · ·H>Gl
)

and Hg = (Hg1 · · ·Hgd).
Similar to [23,35,47], we present the definition of solution to FBDSDEs (5) as follows:

Definition 1. A quadruple of Ft-measurable stochastic processes (y, p, z, q) : Ω × [−δ, T] ×
[0, T + δ]× [−δ, T]× [0, T + δ]→ Rn×Rm×Rn×l ×Rm×d is called a solution of FBDSDE (5),
if (y, p, z, q) ∈ L2

F (−δ, T;Rn)× L2
F (0, T + δ;Rm)× L2

F
(
−δ, T;Rn×l

)
× L2
F
(

0, T + δ;Rm×d
)

and satisfies FBDSDE (5).

We suppose the following Assumption (H3) holds:

Hypothesis 3 (H3).

(i)
∫ T

0

〈
A(t, u, α, µ, β, ν)− A

(
t, ū, ᾱ, µ̄, β̄, ν̄

)
, u− ū

〉
dt

≤
∫ T

0
[−µ1

(
|H(y− ȳ)|2 + |H(z− z̄)|2

)
− µ2

(∣∣∣H>(p− p̄)
∣∣∣
2
+
∣∣∣H>(q− q̄)

∣∣∣
2
)
]dt,

∀u = (y, p, z, q), ū = (ȳ, p̄, z̄, q̄) ∈ Rn ×Rm ×Rn×l ×Rm×d;
(ii) 〈Φ(y)−Φ(ȳ), H(y− ȳ)〉 ≥ β1|H(y− ȳ)|2, ∀y, ȳ ∈ Rn;

where µ1, µ2 and β1 are given non-negative constants with µ1 + µ2 > 0, and
µ2 + β1 > 0. Moreover we have µ1 > 0, β1 > 0 (resp., µ2 > 0) when m > n
(resp., m < n);

(iii) for each u, α, µ, β, ν, A(·, u, α, µ, β, ν) is an Ft-measurable vector process
defined on [0, T] with A(·, 0) ∈ L2

F (0, T), and for each y ∈ Rn, Φ(y) is an
FT-measurable random vector with Φ(0) ∈ L2(FT ;Rm);

(iv) A(t, u, α, µ, β, ν) and Φ satisfy the Lipschitz conditions: there exist constants
k > 0 and 0 < λ < 1 such that ∀u, ū, α, ᾱ, µ, µ̄, β, β̄, ν, ν̄, ∀t ∈ [0, T],∣∣ f (t, u, α, β)− f

(
t, ū, ᾱ, β̄

)∣∣ ≤ k
(
|u− ū|+ |α− ᾱ|+

∣∣β− β̄
∣∣),

|F(t, u, µ, ν)− F(t, ū, µ̄, ν̄)| ≤ k
(
|u− ū|+EFt [|µ− µ̄|+ |ν− ν̄|]

)
,
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∣∣g(t, u, α, β)− g
(
t, ū, ᾱ, β̄

)∣∣
≤ k(|y− ȳ|+ |p− p̄|+ |q− q̄|+ |α− ᾱ|) + λ(|z− z̄|+

∣∣β− β̄
∣∣),

|G(t, u, µ, ν)− G(t, ū, µ̄, ν̄)|
≤ k

(
|y− ȳ|+ |p− p̄|+ |z− z̄|+EFt [|µ− µ̄|]

)
+ λ(|q− q̄|+EFt [|ν− ν̄|]),

|Φ(y)−Φ(ȳ)| ≤ k|y− ȳ|.

By the similar method of [23,35,47], we can prove the following Theorem 1. For the
convenience of the reader, we present the skeleton of the proof in Section 6.

Theorem 1. Under assumption (H3), then FBDSDE (5) has a unique solution (y, p, z, q) ∈
L2
F (−δ, T; Rn)× L2

F (0, T + δ;Rm)× L2
F
(
−δ, T;Rn×l

)
× L2

F
(

0, T + δ;Rm×d
)

.

3. Necessary Maximum Principle

For convex admissible control sets, the classical method to obtain the necessary op-
timality condition is the convex perturbation method. Let u(·) = (u1(·), u2(·)) be an
equilibrium point of Problem (A) and (y(·), z(·)) be the corresponding optimal trajectory.
Let (v1(·), v2(·)) be such that (u1(·) + v1(·), u2(·) + v2(·)) ∈ U1 ×U2. Since U1 and U2 are
convex, for any 0 ≤ ρ ≤ 1, (uρ

1(·), uρ
2(·)) = (u1(·)+ ρv1(·), u1(·)+ ρv1(·)) is also in U1×U2.

As illustrated before, we denote by (yuρ
1 (·), zuρ

1 (·)) and (yuρ
2 (·), zuρ

2 (·)) the corresponding
state trajectories of the game system in Equation (3) along with the controls (uρ

1(·), u2(·))
and (u1(·), uρ

2(·)).
For convenience, we use the following notations throughout this paper:

ϕ(t) = ϕ(t, y(t), z(t), yδ(t), zδ(t), u1(t), u2(t)),

ϕuρ
1 (t) = ϕ(t, yρ(t), zρ(t), yρ

δ(t), zρ
δ(t), uρ

1(t), u2(t)),

ϕuρ
2 (t) = ϕ(t, yρ(t), zρ(t), yρ

δ(t), zρ
δ(t), u1(t), uρ

2(t)),

where ϕ means one of f , g, li, i = 1, 2.
We bring in the following variational equation:





dy1
i (t) = [ fy(t)y1

i (t) + fz(t)z1
i (t) + fyδ (t)y

1
iδ(t) + fzδ (t)z

1
iδ(t) + fvi (t)vi(t)]dt

+[gy(t)y1
i (t) + gz(t)z1

i (t) + gyδ (t)y
1
iδ(t) + gzδ (t)z

1
iδ(t) + gvi (t)vi(t)]

−→
d W(t)

−z1
i (t)
←−
d B(t),

y1
i (t) = 0, z1

i (t) = 0, t ∈ [−δ, 0], (i = 1, 2).

(6)

By (H1) and Theorem 3.1.1 in [20], it is easy to see that there is a unique adapted
solution to Equation (6).

For t ∈ [0, T], ρ > 0, we set

ỹρ
i (t) =

yuρ
i (t)− y(t)

ρ
− y1

i (t),

z̃ρ
i (t) =

zuρ
i (t)− z(t)

ρ
− z1

i (t), (i = 1, 2).

We have the following:

Lemma 1. Let the hypotheses (H1) and (H2) be true. Then, for i = 1, 2,

lim
ρ→0

sup
0≤t≤T

E|ỹρ
i (t)|2 = 0, (7)

lim
ρ→0

E
∫ T

0
|z̃ρ

i (t)|2dt = 0. (8)
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Proof of Lemma 1. For i = 1, we have




dỹρ
1(t) = [

1
ρ

(
f uρ

1 (t)− f (t)
)
− fy(t)y1

1(t)− fz(t)z1
1(t)− fyδ

(t)y1
1δ(t)

− fzδ
(t)z1

1δ(t)− fv1(t)v1(t)]dt

+[
1
ρ

(
guρ

1 (t)− g(t)
)
− gy(t)y1

1(t)− gz(t)z1
1(t)− gyδ

(t)y1
1δ(t)

−gzδ
(t)z1

1δ(t)− gv1(t)v1(t)]
−→
d W(t)− z̃ρ

1(t)
←−
d B(t),

ỹρ
1(t) = 0, z̃ρ

1(t) = 0, t ∈ [−δ, 0],

or




dỹρ
1(t) = [Aρ

1(t, ·)ỹ
ρ
1(t) + Āρ

1(t, ·)ỹ
ρ
1δ(t) + Bρ

1(t, ·)z̃
ρ
1(t)

+B̄ρ
1(t, ·)z̃

ρ
1δ(t) + Gρ

1(t)]dt
+[Cρ

1(t, ·)ỹ
ρ
1(t) + C̄ρ

1(t, ·)ỹ
ρ
1δ(t) + Dρ

1(t, ·)z̃
ρ
1(t)

+D̄ρ
1(t, ·)z̃

ρ
1δ(t) + Gρ

2(t)]
−→
d W(t)− z̃ρ

1(t)
←−
d B(t),

ỹρ
1(t) = 0, z̃ρ

1(t) = 0, t ∈ [−δ, 0],

where we denote

Aρ
1(t) =

∫ 1

0
fy(t, y1(t) + λ(yuρ

1 (t)− y(t)), zuρ
1 (t), y

uρ
1

δ (t), z
uρ

1
δ (t), uρ

1(t), u2(t))dλ,

Bρ
1(t) =

∫ 1

0
fz(t, y(t), z1(t) + λ(zuρ

1 (t)− z(t)), y
uρ

1
δ (t), z

uρ
1

δ (t), uρ
1(t), u2(t))dλ,

Āρ
1(t) =

∫ 1

0
fyδ

(t, y(t), z(t), y1δ(t) + λρ(y1
1δ(t) + ỹρ

1δ(t)), z
uρ

1
δ (t), uρ

1(t), u2(t))dλ,

B̄ρ
1(t) =

∫ 1

0
fzδ

(t, y(t), z(t), yδ(t), z1δ(t) + λρ(z1
1δ(t) + z̃ρ

1δ(t)), uρ
1(t), u2(t))dλ,

Cρ
1(t) =

∫ 1

0
gy(t, y1(t) + λ(yuρ

1 (t)− y(t)), zuρ
1 (t), y

uρ
1

δ (t), z
uρ

1
δ (t), uρ

1(t), u2(t))dλ,

Dρ
1(t) =

∫ 1

0
gz(t, y(t), z1(t) + λ(zuρ

1 (t)− z(t)), y
uρ

1
δ (t), z

uρ
1

δ (t), uρ
1(t), u2(t))dλ,

C̄ρ
1(t) =

∫ 1

0
gyδ

(t, y(t), z(t), y1δ(t) + λρ(y1
1δ(t) + ỹρ

1δ(t)), z
uρ

1
δ (t), uρ

1(t), u2(t))dλ,

D̄ρ
1(t) =

∫ 1

0
gzδ

(t, y(t), z(t), yδ(t), z1δ(t) + λρ(z1
1δ(t) + z̃ρ

1δ(t)), uρ
1(t), u2(t))dλ,

Gρ
1(t) =

∫ 1

0
( fv1(t, y(t), z(t), yδ(t), zδ(t), u1(t) + ρλv1(t), u2(t))− fv1(t))v1(t)dλ

+[Aρ
1(t)− fy(t)]y1

1(t) + [Bρ
1(t)− fz(t)]z1

1(t)

+[Āρ
1(t)− fyδ

(t)]y1
1δ(t) + [B̄ρ

1(t)− fzδ
(t)]z1

1δ(t),

Gρ
2(t) =

∫ 1

0
(gv1(t, y(t), z(t), yδ(t), zδ(t), u1(t) + ρλv1(t), u2(t))− gv1(t))v1(t)dλ

+[Cρ
1(t)− gy(t)]y1

1(t) + [Dρ
1(t)− gz(t)]z1

1(t)

+[C̄ρ
1(t)− gyδ

(t)]y1
1δ(t) + [D̄ρ

1(t)− gzδ
(t)]z1

1δ(t).

Using Itô’s formula to
∣∣∣ỹρ

1(t)
∣∣∣
2

on [0, t], through (H1), we get

E
∣∣∣ỹρ

1(t)
∣∣∣
2
+E

∫ t

0
|z̃ρ

1(s)|2ds

≤ C0E
∫ t

0

∣∣∣ỹρ
1(s)

∣∣∣
2
ds +

1
2
E
∫ t

0

∣∣∣z̃ρ
1(s)

∣∣∣
2
ds + C1(E

∫ t

0
(|Gρ

1(s)|2 + |G
ρ
2(s)|2)ds.
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Applying Grownwall’s inequalities, we can easily get the desired result. Again, we
can prove that for i = 2. The proof is complete.

Based on (u1(·), u2(·)) being an equilibrium point of Problem (A), then

ρ−1[J1(u
ρ
1(·), u2(·))− J1(u1(·), u2(·))] ≥ 0, (9)

ρ−1[J2(u1(·), uρ
2(·))− J2(u1(·), u2(·))] ≥ 0. (10)

From Equations (9) and (10) and Lemma 1, we obtain the following variational in-
equality.

Lemma 2. Let assumptions (H1) and (H2) hold. Then

E
∫ T

0

[
liy(t)y1

i (t) + liz(t)z1
i (t) + liyδ

(t)y1
iδ(t) + lizδ

(t)z1
iδ(t) + livi (t)vi(t)

]
dt

+E[Φiy(y(T))y1
i (T)] ≥ 0, (i = 1, 2). (11)

Proof of Lemma 2. For i = 1, from Equation (7), we derive

ρ−1E[Φ1(yuρ
1 (T))−Φ1(y(T))]

= ρ−1E
∫ 1

0
Φ1y(y(T) + λ(yuρ

1 (T)− y(T)))(yuρ
1 (T)− y(T))dλ

→ E[Φ1y(y(T))y1
1(T)], ρ→ 0.

Similarly, we have

ρ−1
{
E
∫ T

0
[luρ

1
1 (t)− l1(t)]dt

}

→ E
∫ T

0

[
l1y(t)y1

1(t) + l1z(t)z1
1(t) + l1yδ

(t)y1
1δ(t) + l1zδ

(t)z1
1δ(t) + l1v1 (t)v1(t)

]
dt, ρ→ 0.

Let ρ → 0 in Equation (9), so, for i = 1, Equation (11) is established. Similarly, we can prove
that the conclusion holds for i = 2. The proof is complete.

Let us define the Hamiltonian function Hi : [0, T]×Rn ×Rn×d ×Rn ×Rn×d ×Rk1 ×
Rk2 ×Rn ×Rn×l → R, i = 1, 2 as follows:

Hi(t, y, z, yδ, zδ, v1, v2, pi, qi)

= 〈 f (t, y, z, yδ, zδ, v1, v2), pi〉+ 〈g(t, y, z, yδ, zδ, v1, v2), qi〉+ li(t, y, z, yδ, zδ, v1, v2), i = 1, 2.

We introduce the following adjoint equation





−dpi(t) = {Hiy(t, Θ(t), u1(t), u2(t), pi(t), qi(t))
+EFt [Hiyδ

(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), pi(t + δ), qi(t + δ))]}dt
+{Hiz(t, Θ(t), u1(t), u2(t), pi(t), qi(t))
+EFt [Hizδ

(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), pi(t + δ), qi(t + δ))]}←−d B(t)
−qi(t)

−→
d W(t),

pi(T) = Φiy(y(T)), pi(t) = 0, qi(t) = 0, t ∈ [T, T + δ], (i = 1, 2).

(12)

where Θ(t) := (y(t), z(t), yδ(t), zδ(t)).

Remark 1. It is easy to see that the adjoint Equation (12) above is a linear anticipated BDSDE, then the
unique solvability of Equation (12) can be guaranteed by theorem 3.2 in [45] and theorem 2.4 in [46].

Theorem 2 (Necessary maximum principle). Suppose (H1) and (H2) hold, and (u1(·), u2(·)) is an
equilibrium point of Problem (A) and (y(·), z(·)) is the corresponding state trajectory. Then we have
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〈H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t)), v1 − u1(t)〉 ≥ 0,

〈H2v2 (t, Θ(t), u1(t), u2(t), p2(t), q2(t)), v2 − u2(t)〉 ≥ 0,

hold for any (v1, v2) ∈ U1 × U2, a.e., a.s., where (pi(·), qi(·)(i = 1, 2) is the solution of the adjoint
Equation (12).

Proof of Theorem 2. For i = 1. Using Itô’s formula to 〈p1(t), y1
1(t)〉, we obtain

E〈Φ1y(y(T)), y1
1(T)〉

= E
∫ T

0
〈p1(t), fy(t)y1

1(t) + fz(t)z1
1(t) + fyδ (t)y

1
1δ(t) + fzδ (t)z

1
1δ(t) + fv1 (t)v1(t)〉dt

+E
∫ T

0
〈− f>y (t)p1(t)− g>y (t)q1(t)− l1y(t)

+EFt [− f>yδ
(t + δ)p1(t + δ)− g>yδ

(t + δ)q1(t + δ)− l1yδ
(t + δ)], y1

1(t)〉dt

+E
∫ T

0
〈q1(t), gy(t)y1

1(t) + gz(t)z1
1(t) + gyδ (t)y

1
1δ(t) + gzδ (t)z

1
1δ(t) + gv1 (t)v1(t)〉dt

+E
∫ T

0
〈− f>z (t)p1(t)− g>z (t)q1(t)− l1z(t)

+EFt [− f T
zδ
(t + δ)p1(t + δ)− gT

zδ
(t + δ)q1(t + δ)− l1zδ

(t + δ)], z1
1(t)〉dt.

Combining the initial conditions and the termination conditions, we get

E
∫ T

0
[〈p1(t), fyδ (t)y

1
1δ(t)〉 − 〈EFt [ f>yδ

(t + δ)p1(t + δ)], y1
1(t)〉]dt

= E
∫ T

0
〈p1(t), fyδ (t)y

1
1δ(t)〉dt−E

∫ T+δ

δ
〈 f>yδ

(t)p1(t), y1
1δ(t)〉dt

= E
∫ δ

0
〈p1(t), fyδ (t)y

1
1δ(t)〉dt−E

∫ T+δ

T
〈 f>yδ

(t)p1(t), y1
1δ(t)〉dt

= 0.

Similarly, we have

E
∫ T

0
[〈p1(t), fzδ (t)z

1
1δ(t)〉 − 〈EFt [ f>zδ

(t + δ)p1(t + δ)], z1
1(t)〉]dt = 0,

E
∫ T

0
[〈q1(t), gyδ (t)y

1
1δ(t)〉 − 〈EFt [g>yδ

(t + δ)q1(t + δ)], y1
1(t)〉]dt = 0,

E
∫ T

0
[〈q1(t), gzδ (t)z

1
1δ(t)〉 − 〈EFt [g>zδ

(t + δ)q1(t + δ)], z1
1(t)〉]dt = 0.

Then, we get

E
∫ T

0

[
l1y(t)y1

1(t) + l1z(t)z1
1(t) + l1yδ

(t)y1
1δ(t) + l1zδ

(t)z1
1δ(t) + l1v1 (t)v1(t)

]
dt

+E〈Φ1y(y(T)), y1
1(T)〉

= E
∫ T

0
〈 f>v1

(t)p1(t) + g>v1
(t)q1(t) + l1v1 (t), v1(t)〉dt.

According to Lemma 2, we have

E
∫ T

0
〈H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t)), v1(t)〉dt ≥ 0.

Because v1(t) satisfies u1(t) + v1(t) ∈ U1, we have

E
∫ T

0
〈H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t)), v1 − u1(t)〉dt ≥ 0, ∀v1 ∈ U1,
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which means that

E〈H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t)), v1 − u1(t)〉 ≥ 0, a.s. (13)

At present, take an arbitrary element F of σ-algebra Ft, and set

w(t) = v1F + u(t)1Ω−F.

Obviously, w(t) is an admissible control.
We apply the inequality in Equation (13) to w(t), and get

E[1F〈H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t)), v1 − u1(t)〉] ≥ 0, ∀F ∈ Ft,

which contains that

E[〈H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t)), v1 − u1(t)〉|Ft] ≥ 0.

The expression within the conditional expectation is Ft-measurable, so the result follows.
Following the above proof, we can prove that the other inequality is true for any v2 ∈ U2. The proof
is completed.

4. Sufficient Maximum Principle
In this section, the sufficient maximum principle for Problem (A) is investigated. Let (y(t), z(t),

u1(t), u2(t)) be a quintuple satisfying Equation (3), and suppose there exists a solution (pi(t), qi(t))
of the corresponding adjoint forward SDE (12). We assume that:

Hypothesis 4 (H4). For i = 1, 2, for all t ∈ [0, T], Hi(t, y, z, yδ, zδ, v1, v2, pi, qi) is convex in (y, z, yδ, zδ,
v1, v2), and Φi(y) is convex in y.

Theorem 3 (Sufficient maximum principle). Suppose (H1), (H2) and (H4) are true. In addition, the
following conditions hold

H1(t, Θ(t), u1(t), u2(t), p1(t), q1(t)) = min
v1∈U1

H1(t, Θ(t), v1(t), u2(t), p1(t), q1(t)), (14)

H2(t, Θ(t), u1(t), u2(t), p2(t), q2(t)) = min
v2∈U2

H2(t, Θ(t), u1(t), v2(t), p2(t), q2(t)). (15)

Then (u1(·), u2(·)) is an equilibrium point of Problem (A).

Proof of Theorem 3. For any v1(·) ∈ U1, we consider

J1(v1(·), u2(·))− J1(u1(·), u2(·))

= E
∫ T

0
[l1(t, Θ(t), v1(t), u2(t))− l1(t, Θ(t), u1(t), u2(t))]dt

+E[Φ1(yv1 (T))−Φ1(y(T))].

Now we put into use Itô’s formula to 〈p1(t), yv1 (t)− y(t)〉 on [0, T], and get

E
〈
Φ1y(y(T)), yv1 (T)− y(T)

〉

= −E
∫ T

0
〈yv1 (t)− y(t), H1y(t, Θ(t), u1(t), u2(t), p1(t), q1(t))

+EFt [H1yδ
(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), p1(t + δ), q1(t + δ))]〉dt

+E
∫ T

0
〈p1(t), f (t, Θ(t), v1(t), u2(t))− f (t, Θ(t), u1(t), u2(t))〉dt

−E
∫ T

0
〈zv1 (t)− z(t), H1z(t, Θ(t), u1(t), u2(t), p1(t), q1(t))

+EFt [H1zδ
(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), p1(t + δ), q1(t + δ))]〉dt

+E
∫ T

0
〈q1(t), g(t, Θ(t), v1(t), u2(t))− g(t, Θ(t), u1(t), u2(t))〉dt.
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Since Φ1 is convex, we have

Φ1(yv1 (T))−Φ1(y(T)) ≥ 〈Φ1y(y(T)), yv1 (T)− y(T)〉.

Then, we have

J1(v1(·), u2(·))− J1(u1(·), u2(·))

≥ E
∫ T

0
[H1(t, Θ(t), v1(t), u2(t), p1(t), q1(t))− H1(t, Θ(t), u1(t), u2(t), p1(t), q1(t))]dt

−E
∫ T

0
〈yv1 (t)− y(t), H1y(t, Θ(t), u1(t), u2(t), p1(t), q1(t))

+EFt [H1yδ
(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), p1(t + δ), q1(t + δ))]〉dt

−E
∫ T

0
〈zv1 (t)− z(t), H1z(t, Θ(t), u1(t), u2(t), p1(t), q1(t))

+EFt [H1zδ
(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), p1(t + δ), q1(t + δ))]〉dt.

Based on the convexity of H1 with respect to (y, z, yδ, zδ, v1, v2), we achieve

H1(t, Θ(t), v1(t), u2(t), p1(t), q1(t))− H1(t, Θ(t), u1(t), u2(t), p1(t), q1(t))

≥ 〈yv1 (t)− y(t), H1y(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉
+〈zv1 (t)− z(t), H1z(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉
+〈yv1

δ (t)− yδ(t), H1yδ
(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉

+〈zv1
δ (t)− zδ(t), H1zδ

(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉
+〈v1(t)− u1(t), H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉.

Noticing the fact that

E
∫ T

0
〈yv1

δ (t)− yδ(t), H1yδ
(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉dt

−E
∫ T

0
〈yv1 (t)− y(t),EFt [H1yδ

(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), p1(t + δ), q1(t + δ))]〉dt

= E
∫ T

0
〈yv1

δ (t)− yδ(t), H1yδ
(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉dt

−E
∫ T+δ

δ
〈yv1

δ (t)− yδ(t), H1yδ
(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉dt

= E
∫ δ

0
〈yv1

δ (t)− yδ(t), H1yδ
(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉dt

−E
∫ T+δ

T
〈yv1

δ (t)− yδ(t), H1yδ
(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉dt

= 0.

Similarly, we have

E
∫ T

0
〈zv1

δ (t)− zδ(t), H1zδ
(t, Θ(t), u1(t), u2(t), p1(t), q1(t))〉dt

−E
∫ T

0
〈zv1 (t)− z(t),EFt [H1zδ

(t + δ, Θ(t + δ), u1(t + δ), u2(t + δ), p1(t + δ), q1(t + δ))]〉dt

= 0.

Then, we get

J1(v1(·), u2(·))− J1(u1(·), u2(·))

≥ E
∫ T

0
〈H1v1 (t, Θ(t), u1(t), u2(t), p1(t), q1(t)), v1(t)− u1(t)〉dt.

Finally, by the necessary optimality conditions in Equation (14), we obtain

J1(v1(·), u2(·))− J1(u1(·), u2(·)) ≥ 0.
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This implies that

J1(u1(·), u2(·)) = min
v1(·)∈U1

J1(v1(·), u2(·)).

In the same way

J2(u1(·), u2(·)) = min
v2(·)∈U2

J2(u1(·), v2(·)).

Hence, the desired conclusion is drawn. The proof is completed.

5. Applications in LQ Doubly Stochastic Games with Delay
In this section, our maximal principle is used for the nonzero sum differential game problem of

LQ doubly stochastic systems with delay. To simplify the notation, let us assume that d = l = 1. The
control system is





dy(t) = [A(t)y(t) + B(t)z(t) + Ā(t)yδ(t) + B̄(t)zδ(t) + E1(t)v1(t)
+E2(t)v2(t)]dt− z(t)

←−
d B(t)

+[C(t)y(t) + D(t)z(t) + C̄(t)yδ(t) + D̄(t)zδ(t)]
−→
d W(t), t ∈ [0, T],

y(t) = ξ(t), t ∈ [−δ, 0],
z(t) = η(t), t ∈ [−δ, 0],

(16)

where (ξ(·), η(·)) ∈ L2
F (−δ, T;Rn) is the initial path of (y, z). A, Ā, B, B̄, C, C̄, D, D̄ are n× n bounded

matrices, v1(t) and v2(t), t ∈ [0, T] are two admissible control processes, i.e., Ft-measurable square-
integrable processes taking values in Rk. E1 and E2 are n × k bounded matrices. We denote
J1(v1(·), v2(·)) and J2(v1(·), v2(·)), which are the cost functionals corresponding to the players
1 and 2:

Ji(v1(·), v2(·)) =
1
2
E{
∫ T

0
[〈Mi(t)y(t), y(t)〉+ 〈Ri(t)z(t), z(t)〉+ 〈Ni(t)vi(t), vi(t)〉]dt

+〈Qiy(T), y(T)〉}, i = 1, 2, (17)

where Mi(t), Ri(t), Qi, i = 1, 2 are n×n non-negative symmetric bounded matrices, and Ni(t), i = 1, 2
are k× k positive symmetric bounded matrices and the inverse N−1

i (t), i = 1, 2 are also bounded.
Our task is to find (u1(·), u2(·)) ∈ Rk ×Rk such that





J1(u1(·), u2(·)) = min
v1(·)∈U1

J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = min

v2(·)∈U2

J2(u1(·), v2(·)).
(18)

We need the following assumption:

Hypothesis 5 (H5). Ei(Ni)
−1E>i S = SEi(Ni)

−1E>i

where S = A, Ā, B, B̄, C, C̄, D, D̄, and i = 1, 2. Now, with the help of the above general FBDSDE, the
explicit expression for the Nash equilibrium point of the above game problem can be obtained.

Theorem 4. The mapping

(u1(t), u2(t)) = (N−1
1 (t)E>1 (t)p1(t), N−1

2 (t)E>2 (t)p2(t)), t ∈ [0, T], (19)

is one Nash equilibrium point for the above game problems in Equations (16)–(18), where
(y(t), z(t), p1(t), p2(t), q1(t), q2(t)) is the solution of the following general FBDSDE:
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



dy(t) = [A(t)y(t) + B(t)z(t) + Ā(t)yδ(t) + B̄(t)zδ(t)
−E1(t)N−1

1 (t)E>1 (t)p1(t)− E2(t)N−1
2 (t)E>2 (t)p2(t)]dt− z(t)

←−
d B(t)

+[C(t)y(t) + D(t)z(t) + C̄(t)yδ(t) + D̄(t)zδ(t)]
−→
d W(t), t ∈ [0, T],

−dpi(t) = {A>(t)pi(t) + C>(t)qi(t) +EFt [Ā>δ+(t)piδ+(t))]
+EFt [C̄>δ+(t)qiδ+(t)] + Mi(t)y(t)}dt− qi(t)

−→
d W(t)

+{B>(t)pi(t) + D>(t)qi(t) +EFt [B̄>δ+(t)piδ+(t)]
+EFt [D̄>δ+(t)qiδ+(t)] + Ri(t)z(t)}

←−
d B(t), t ∈ [0, T],

y(t) = ξ(t), t ∈ [−δ, 0],
z(t) = η(t), t ∈ [−δ, 0],
pi(T) = Qiy(T), pi(t) = 0, t ∈ [T, T + δ], i = 1, 2,
qi(t) = 0, t ∈ [T, T + δ], i = 1, 2.

(20)

Similar to [31,48], the proof of Theorem 4 is easy to give, and we have therefore excluded it.
For sake of clarity, we give the following Problem (S), which is a special case of Problem (A). To

simplify the notation, let us assume that n = d = l = k = 1. The control system is




dy(t) = [yδ(t) + zδ(t) + v1(t) + v2(t)]dt− z(t)
←−
d B(t) + yδ(t)

−→
d W(t), t ∈ [0, T],

y(t) = ξ(t), t ∈ [−δ, 0],
z(t) = η(t), t ∈ [−δ, 0],

where (ξ(·), η(·)) ∈ L2
F (−δ, T;R) is the initial path of (y, z). v1(t) and v2(t), t ∈ [0, T] are two

admissible control processes, i.e., Ft-measurable square-integrable processes taking values in R.
We denote J1(v1(·), v2(·)) and J2(v1(·), v2(·)), which are the cost functionals corresponding to the
players 1 and 2:

Ji(v1(·), v2(·)) = E
{

1
2

∫ T

0
v2

i (t)dt + y(T)
}

, i = 1, 2.

Our task is to find (u1(·), u2(·)) ∈ Rk ×Rk such that





J1(u1(·), u2(·)) = min
v1(·)∈U1

J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = min

v2(·)∈U2

J2(u1(·), v2(·)).

Then the Hamiltonian functions are

Hi(t, yδ, zδ, v1, v2, pi, qi) = [yδ + zδ + v1 + v2]pi + yδqi +
1
2

, i = 1, 2,

where (p1(t), p2(t), q1(t), q2(t)) is the solution of the following adjoint equations:




−dpi(t) = {EFt [piδ+(t))] +EFt [qiδ+(t)]}dt− qi(t)
−→
d W(t)

+EFt [piδ+(t)]
←−
d B(t), t ∈ [0, T],

pi(T) = 1, pi(t) = 0, t ∈ [T, T + δ], i = 1, 2,
qi(t) = 0, t ∈ [T, T + δ], i = 1, 2.

It is easy to see that the above equation is the anticipated BDSDE, which is solvable theorem
3.2 in [45] and theorem 2.4 in [46]. From the maximum principle, we get that (u1(t), u2(t)) =
(p1(t), p2(t)), t ∈ [0, T] is one Nash equilibrium point for the above game in Equations (16)–(18).

6. The Proof of Theorem 1
Proof of Theorem 1. Since the initial path of (y, z) in [−δ, 0] and the terminal conditions and trajec-
tories of (p, q) in [T, T + δ] are given in advance, we only need to consider (yt, pt, zt, qt), 0 ≤ t ≤ T.

Uniqueness Let U = (y, p, z, q) and Ū = (ȳ, p̄, z̄, q̄) be two solutions of Equation (3). We set
Û = U − Ū = (ŷ, p̂, ẑ, q̂) = (y− ȳ, p− p̄, z− z̄, q− q̄).
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Applying Itô’s formula to 〈Hŷ, p̂〉 on [0, T], we have

E〈Hŷ(T), Φ(y(T))−Φ(ȳ(T))〉

= E
∫ T

0

〈
A(t, U(t), α(t), µ(t), β(t), ν(t))− A

(
t, Ū(t), ᾱ(t), µ̄(t), β̄(t), ν̄(t)

)
, Û(t)

〉
dt

≤ −µ1E
∫ T

0

(
|H(y(t)− ȳ(t))|2 + |H(z(t)− z̄(t))|2

)
dt

−µ2E
∫ T

0

(∣∣∣H>(p(t)− p̄(t))
∣∣∣
2
+
∣∣∣H>(q(t)− q̄(t))

∣∣∣
2
)

dt.

By virtue of (H3), it follows that

µ1E
∫ T

0

(
|H(y(t)− ȳ(t))|2 + |H(z(t)− z̄(t))|2

)
dt

+µ2E
∫ T

0

(∣∣∣H>(p(t)− p̄(t))
∣∣∣
2
+
∣∣∣H>(q(t)− q̄(t))

∣∣∣
2
)

dt ≤ 0.

If m > n, µ1 > 0, then we have |H(y(t)− ȳ(t))|2 ≡ 0 and |H(z(t)− z̄(t))|2 ≡ 0. Thus
y(t) ≡ ȳ(t) and z(t) ≡ z̄(t). In particular, Φ(y(T)) = Φ(ȳ(T)). Consequently, from the uniqueness
result of the anticipated BDSDE (see [45,46]), it follows that p(t) ≡ p̄(t) and q(t) ≡ q̄(t).

If m < n, µ2 > 0, then we have
∣∣∣H>(p(t)− p̄(t))

∣∣∣
2
≡ 0 and

∣∣∣H>(q(t)− q̄(t))
∣∣∣
2
≡ 0. Thus

p(t) ≡ p̄(t) and q(t) ≡ q̄(t). From the uniqueness result of the delayed doubly SDE (see [20]), it
follows that y(t) ≡ ȳ(t) and z(t) ≡ z̄(t).

Similarly to the above arguments, the desired result can be obtained easily in the case n = m.
The uniqueness is proved.

The proof of the existence is a combination of the above technique and a priori estimate
technique introduced by Peng [49]. We divide the proof of existence into three cases: m > n, m < n
and m = n.

Case 1 If m > n, then µ1 > 0, β1 > 0. We consider the following family of FBDSDEs
parametrized by α ∈ [0, 1]





dy(t) = [α f (t, U(t), yδ(t), zδ(t)) + f0(t)]dt− z(t)
←−
d B(t)

+[αg(t, U(t), yδ(t), zδ(t)) + g0(t)]
−→
d W(t), t ∈ [0, T],

−dp(t) = [αF(t, U(t), pδ+(t), qδ+(t)) + (1− α)µ1Hy(t) + F0(t)]dt
+[αG(t, U(t), pδ+(t), qδ+(t)) + (1− α)µ1Hz(t) + G0(t)]

←−
d B(t)

−q(t)
−→
d W(t), t ∈ [0, T],

y(t) = φ(t), t ∈ [−δ, 0],
z(t) = ψ(t), t ∈ [−δ, 0],
p(T) = αΦ(y(T)) + (1− α)Hy(T) + ϕ,
p(t) = ξ(t), t ∈ [T, T + δ],
q(t) = η(t), t ∈ [T, T + δ],

(21)

where U = (y, p, z, q) and (F0, f0, G0, g0) ∈ L2
F
(

0, T;Rm+n+m×l+n×d
)

and ϕ ∈ L2(FT ;Rm) are
arbitrarily given vector-valued random variables. When α = 1 the existence of the solution of
Equation (21) implies clearly that of Equation (5). Due to the existence and uniqueness of the delayed
doubly SDE (see [20]), when α = 0, the Equation (21) is uniquely solvable. The following a priori
lemma is a key step in the proof of the method of continuation. It shows that for a fixed α = α0 ∈ [0, 1),
if Equation (21) is uniquely solvable, then it is also uniquely solvable for any α ∈ [α0, α0 + γ0], for
some positive constant γ0 independent of α0.

Lemma 3. We assume m > n. Under assumptions (H3), there exists a positive constant γ0 such that if a
priori, for each ϕ ∈ L2(FT ;Rm), (F0, f0, G0, g0) ∈ L2

F
(

0, T;Rm+n+m×l+n×d
)

, Equation (16) is uniquely

solvable for some α0 ∈ [0, 1), then for each α ∈ [α0, α0 + γ0], and ϕ ∈ L2(FT ;Rm), (F0, f0, G0, g0) ∈
L2
F
(

0, T;Rm+n+m×l+n×d
)

, Equation (16) is also uniquely solvable in L2
F (−δ, T;Rn)× L2

F (0, T + δ;Rm)×
L2
F (−δ, T;Rn×l)× L2

F
(

0, T + δ;Rm×d
)

.
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Proof of Lemma 3. Since for ϕ ∈ L2(FT ;Rm), (F0, f0, G0, g0) ∈ L2
F
(

0, T;Rm+n+m×l+n×d
)

, there

exists a unique solution to Equation (16) for α = α0. Thus for each Ū = (ȳ, p̄, z̄, q̄) ∈ L2
F (−δ, T;Rn)×

L2
F (0, T + δ;Rm)× L2

F
(
−δ, T;Rn×l

)
× L2

F
(

0, T + δ;Rm×d
)

, there exists a unique quadruple U =

(y, p, z, q) ∈ L2
F (−δ, T;Rn) ×L2

F (0, T + δ;Rm)× L2
F
(
−δ, T;Rn×l

)
× L2

F
(

0, T + δ;Rm×d
)

satisfying
the following equations





dy(t) = [α0 f (t, U(t), yδ(t), zδ(t)) + γ f (t, Ū(t), ȳδ(t), z̄δ(t)) + f0(t)]dt
+[α0g(t, U(t), yδ(t), zδ(t)) + γg(t, Ū(t), ȳδ(t), z̄δ(t))
+g0(t)]

−→
d W(t)− z(t)

←−
d B(t), t ∈ [0, T],

−dp(t) = [α0F(t, U(t), pδ+(t), qδ+(t)) + (1− α0)µ1Hy(t)
+γ(F(t, Ū(t), p̄δ+(t), q̄δ+(t))− µ1Hȳ(t)) + F0(t)]dt
+[α0G(t, U(t), pδ+(t), qδ+(t)) + (1− α0)µ1Hz(t)
+γ(G(t, Ū(t), p̄δ+(t), q̄δ+(t))− µ1Hȳ(t)) + G0(t)]

←−
d B(t)

−q(t)
−→
d W(t), t ∈ [0, T],

y(t) = φ(t), t ∈ [−δ, 0],
z(t) = ψ(t), t ∈ [−δ, 0],
p(T) = α0Φ(y(T)) + (1− α0)Hy(T) + γ(Φ(ȳ(T))− Hȳ(T)) + ϕ,
p(t) = ξ(t), t ∈ [T, T + δ],
q(t) = η(t), t ∈ [T, T + δ],

where γ ∈ (0, 1) is independent of α0. We will prove that the mapping defined by

U = Iα0+γ(Ū) :

L2
F (−δ, T;Rn)× L2

F (0, T + δ;Rm)× L2
F
(
−δ, T;Rn×l

)
× L2

F
(

0, T + δ;Rm×d
)

→ L2
F (−δ, T;Rn)× L2

F (0, T + δ;Rm)× L2
F
(
−δ, T;Rn×l

)
× L2

F
(

0, T + δ;Rm×d
)

is contractive for a small enough γ > 0.

Let Ū′ = (ȳ′, p̄′, z̄′, q̄′) ∈ L2
F (−δ, T;Rn)× L2

F (0, T + δ;Rm)× L2
F
(
−δ, T;Rn×l

)
× L2

F (0, T + δ;

Rm×d
)

and (y′, p′, z′, q′) = U′ = Iα0+δ(Ū′).

̂̄U = Ū − Ū′ =
(̂̄y, ̂̄p, ̂̄z, ̂̄q

)
=
(
ȳ− ȳ′, p̄− p̄′, z̄− z̄′, q̄− q̄′

)
,

Û = U −U′ = (ŷ, p̂, ẑ, q̂) =
(
y− y′, p− p′, z− z′, q− q′

)
.

Applying Itô’s formula to 〈Hŷ, p̂〉 on [0, T], it follows that

(1− α0 + α0β1)E|Hŷ(T)|2 + µ1E
∫ T

0

(
|Hŷ(t)|2 + |Hẑ(t)|2

)
dt

≤ γCE
∫ T

0

(∣∣∣ ̂̄U(t)
∣∣∣
2
+ |̂̄yδ(t)|2 + |̂̄zδ(t)|2 + |̂̄pδ+(t)|2 + |̂̄qδ+(t)|2

)
dt

+γCE
∫ T

0

∣∣∣Û(t)
∣∣∣
2
dt + γC

(
E|ŷ(T)|2 +E|̂̄y(T)|2

)

≤ γC
[
E
∫ T

0

(
|̂̄y(t)|2 + |̂̄z(t)|2

)
dt +E

∫ T+δ

0

(
|̂̄p(t)|2 + |̂̄q(t)|2

)
dt
]

+γCE
∫ T

0

∣∣∣Û(t)
∣∣∣
2
dt + γC

(
E|ŷ(T)|2 +E|̂̄y(T)|2

)
, (22)

with some constant C > 0. Hereafter, C will be some generic constant, which can be different from
line to line and depends only on the Lipschitz constants k, λ, µ1, β1, H and T. It is obvious that
1− α0 + α0β1 ≥ β, β = min(1, β1) > 0.

On the other hand, for the difference of the solutions ( p̂, q̂) = (p− p′, q− q′), we apply a
standard method of estimation. Applying Itô’s formula to | p̂(t)|2 on [t, T], we have
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E
∫ T

0

(
| p̂(t)|2 + |q̂(t)|2

)
dt

≤ γC
[
E
∫ T

0

(
|̂̄y(t)|2 + |̂̄z(t)|2

)
dt +E

∫ T+δ

0

(
|̂̄p(t)|2 + |̂̄q(t)|2

)
dt
]

+C
(
E|ŷ(T)|2 + δE

∣∣̂̄y(T)
∣∣2
)
+ CE

∫ T

0

(
|ŷ(t)|2 + |ẑ(t)|2

)
dt. (23)

Combining the estimates in Equations (22) and (23), for a sufficiently large constant C > 0, we
have

E
∫ T

−δ

(
|ŷ(t)|2 + |ẑ(t)|2

)
dt +E

∫ T+δ

0

(
| p̂(t)|2 + |q̂(t)|2

)
dt +E|ŷ(T)|2

≤ γCE
∫ T

−δ

(
|̂̄y(t)|2 + |̂̄z(t)|2

)
dt +E

∫ T+δ

0

(
|̂̄p(t)|2 + |̂̄q(t)|2

)
dt +E

∣∣̂̄y(T)
∣∣2.

We now choose γ0 =
1

2C
. It is clear that, for each fixed γ ∈ [0, γ0], the mapping Iα0+γ is

contractive in the sense that

E
∫ T

−δ

(
|ŷ(t)|2 + |ẑ(t)|2

)
dt +E

∫ T+δ

0

(
| p̂(t)|2 + |q̂(t)|2

)
dt +E|ŷ(T)|2

≤ 1
2
E
∫ T

−δ

(
|̂̄y(t)|2 + |̂̄z(t)|2

)
dt +E

∫ T+δ

0

(
|̂̄p(t)|2 + |̂̄q(t)|2

)
dt +E

∣∣̂̄y(T)
∣∣2.

Thus this mapping has a unique fixed point U = (y, p, z, q) ∈ L2
F (−δ, T;Rn)× L2

F (0, T + δ;Rm)×
L2
F
(
−δ, T;Rn×l

)
× L2

F
(

0, T + δ;Rm×d
)

, which is the solution of Equation (16) for α = α0 + γ, as

γ ∈ [0, γ0]. The proof is complete.

Case 2 If m < n, then µ2 > 0. We consider the following equations




dy(t) =
[
α f (t, U(t), yδ(t), zδ(t)) + (1− α)µ1H>p(t) + f0(t)

]
dt

+
[
αg(t, U(t), yδ(t), zδ(t)) + (1− α)µ1H>q(t) + g0(t)

]−→
d W(t)

−z(t)
←−
d B(t), t ∈ [0, T],

−dp(t) = [αF(t, U(t), pδ+(t), qδ+(t)) + F0(t)]dt− q(t)
−→
d W(t)

+[αG(t, U(t), pδ+(t), qδ+(t)) + G0(t)]
←−
d B(t), t ∈ [0, T],

y(t) = φ(t), t ∈ [−δ, 0],
z(t) = ψ(t), t ∈ [−δ, 0],
p(T) = αΦ(y(T)) + ϕ,
p(t) = ξ(t), t ∈ [T, T + δ],
q(t) = η(t), t ∈ [T, T + δ].

(24)

When α = 1, the existence of the solution of Equation (24) implies clearly that of Equation (16).
Due to the existence and uniqueness of the anticipated BDSDE (see [45,46]), when α = 0, we know
that Equation (24) is uniquely solvable. By the same techniques, we can also prove the following
lemma similar to Lemma 3.

Lemma 4. Assume m < n. Under assumption (H3), there exists a positive constant γ0 such that if a priori,
for each ϕ ∈ L2(FT ;Rm), and (F0, f0, G0, g0) ∈ L2

F
(

0, T;Rm+n+m×l+n×d
)

, Equation (24) is uniquely

solvable for some α0 ∈ [0, 1), then for each α ∈ [α0, α0 + γ0], and ϕ ∈ L2(FT ;Rm), (F0, f0, G0, g0) ∈
L2
F
(

0, T;Rm+n+m×l+n×d
)

, Equation (24) is also uniquely solvable in L2
F (−δ, T;Rn)× L2

F (0, T + δ;Rm)×
L2
F (−δ, T;Rn×l)× L2

F
(

0, T + δ;Rm×d
)

.

Case 3 m = n. From (H3), we only need to consider two cases as follows:

(1) If µ1 > 0, µ2 ≥ 0, β1 > 0, we can have the same result as Lemma 3.
(2) If µ1 ≥ 0, µ2 > 0, β1 ≥ 0, the same result as Lemma 4 holds.

Now we give the proof of the existence of Theorem 1.
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Proof of the Existence of Theorem 1. For the first case where m > n, we know that for each ϕ ∈
L2(FT ;Rm), and (F0, f0, G0, g0) ∈ L2

F
(

0, T;Rm+n+m×l+n×d
)

, Equation (21) has a unique solution

as α = 0. It follows from Lemma 3 that there exists a positive constant γ0 = γ0(k, λ, β1, µ1, H, T)
such that for any γ ∈ [0, γ0] and ϕ ∈ L2(FT ;Rm), and (F0, f0, G0, g0) ∈ L2

F
(

0, T;Rm+n+m×l+n×d
)

,
Equation (21) has a unique solution for α = γ. Since γ0 depends only on k, λ, β1, µ1, H, T, we can
repeat this process for N times with 1 ≤ Nγ0 < 1 + γ0. In particular, for α = 1 with (F0, f0, G0, g0) ≡
0, and ϕ ≡ 0, ψ ≡ 0, Equation (21) has a unique solution in L2

F (−δ, T;Rn)× L2
F (0, T + δ;Rm)×

L2
F
(
−δ, T;Rn×l

)
× L2

F
(

0, T + δ;Rm×d
)

.
In the case where m < n and m = n, our desired result can be obtained similarly. The proof of

the existence of Theorem 1 is complete.

Remark 2. In the proof of the Existence of Theorem 1, (i) and (ii) in (H3) can be replaced by

(i)′
∫ T

0

〈
A(t, u, α, µ, β, ν)− A

(
t, ū, ᾱ, µ̄, β̄, ν̄

)
, u− ū

〉
dt

≥
∫ T

0
[µ1

(
|H(y− ȳ)|2 + |H(z− z̄)|2

)
+ µ2

(∣∣∣H>(p− p̄)
∣∣∣
2
+
∣∣∣H>(q− q̄)

∣∣∣
2
)
]dt,

∀u = (y, p, z, q), ū = (ȳ, p̄, z̄, q̄) ∈ Rn ×Rm ×Rn×l ×Rm×d, ∀t ∈ [0, T].
(ii)′ 〈Φ(y)−Φ(ȳ), H(y− ȳ)〉 ≤ −β1|H(y− ȳ)|2, ∀y, ȳ ∈ Rn.

where µ1, µ2 and β1 are given non-negative constants with µ1 + µ2 > 0 and µ2 + β1 > 0. Moreover we have
µ1 > 0, β1 > 0 (resp., µ2 > 0) when m > n (resp., m < n).

7. Conclusions
The future evolution of a lot of processes depends not only on their current state, but also

on their historical state, and these processes can usually be characterized by stochastic differential
equations with time delay. In this article, we have discussed a class of differential games driven
by doubly stochastic systems with time delay. To deal with the above nonzero sum differential
game problem, it is natural to involve the adjoint equation, which is a kind of anticipated BDSDE.
It is therefore necessary to explore a kind of general FBDSDE with the forward equation being a
delayed doubly SDE and the backward equation being an anticipated BDSDE, which are so-called
time-symmetry stochastic systems. This kind of FBDSDE covers a lot of the previous results, which
promotes the results in [35] to doubly stochastic integrals, and extends the results in [23] to the case
that involves the time delay and anticipation. We have adopted the convex variational method, and
established a necessary condition and a sufficient condition for the equilibrium point of the game.
In the LQ game problem, the state equation and the adjoint equation are completely coupled, then
a class of linear FBDSDE is constructed, in which the forward equation is an anticipated forward
doubly SDE and the backward equation is a delayed backward doubly SDE. By means of the unique
solvability of the FBDSDE, the explicit expression for the Nash equilibrium point of the LQ game
is obtained. Many financial and economic phenomena can be modeled by the LQ model, and we
expect that the LQ game driven by doubly stochastic systems with time delay can be widely applied
in these fields.

Notwithstanding that we are committed to the above game problem, we are also able to progress
some consequences of optimal control for BDSDEs with time delay, for example Xu and Han [19,20].
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Abstract: The paper theoretically investigates the heat transfer of nanofluids with different nanopar-
ticles inside a parallel-plate channel. Second-order slip condition is adopted due to the microscopic
roughness in the microchannels. After proper transformation, nonlinear partial differential sys-
tems are converted to ordinary differential equations with unknown constants, and then solved by
homotopy analysis method. The residual plot is drawn to verify the convergence of the solution.
The semi-analytical expressions between NuB and NBT are acquired. The results show that both
first-order slip parameter and second-order slip parameter have positive effects on NuB of the MHD
flow. The effect of second-order velocity slip on NuB is obvious, and NuB in the alumina–water
nanofluid is higher than that in the titania–water nanofluid. The positive correlation between slip
parameters and Ndp is significant for the titania–water nanofluid.

Keywords: nanofluid; second-order slip velocity; nanoparticles migration; homotopy analysis method

1. Introduction

Modern industrial applications are expected to achieve higher heat transfer rates,
so how to improve the heat transfer performance of heat exchanger becomes the main
problem concerned by researchers. Meanwhile, microchannels have many applications
such as automobile cooling systems and electronic devices in micro-sized cooling systems.
Li et al. [1] and Duan et al. [2] studied the heat transfer rates of nanofluid in microchannels.

To study the flow of nanofluid, homogeneous flow models and dispersion models
have been proposed. In 2006, Buongiorno [3] showed that the dispersed effects can be
completely ignored due to the size of nanoparticles, and Brownian diffusion and ther-
mophoresis are important in nanofluids. Based on the above analysis, he proposed that
the homogeneous models are more appropriate for predicting the heat transfer coefficient.
By using this model, Yang et al. [4] studied the variation of forced convection transport with
temperature jump in continuous flow and slip flow regimes. F. Hedayati et al. [5] studied
the variation of TiO2 − H2O nanofluid mixing convection within vertical microchannel of
nanoparticle migration and asymmetric heating. R.S.Andhare et al. [6] studied pressure
drop characteristics of a flat plate manifold microchannel heat exchanger. O.D. Makinde
et al. [7] studied MHD variable viscosity reacting flow with thermophoresis and radiative
heat transfer. A.Malvandi et al. [8] discussed effects of nanoparticle migration on alumina–
water nanofluid.

Boundary conditions are critical to the model; initially, the common velocity slip is the
Maxwell [9] slip condition. Kou et al. [10] studied the effects of wall slip and temperature
jump on heat and mass transfer characteristics of evaporative films. A.A. Avramenko
et al. [11] investigated mixed convection in a circular microchannel with the slip boundary
conditions. As micro/nanotechnology develops, the size of micro/nanodevices are getting
smaller and smaller. The Navier slip condition will break down at higher shear rates.
In 1997, Thompson [12] developed a nonlinear slip model based on the first-order slip
model proposed by Maxwell. However, many researchers found that the model could
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not predict the flow at a high Kn number. The values calculated by the second-order slip
boundary condition are closer to the experimental data. Beskok and Karniadakis [13]
improved a second-order slip conditions. Based on Beskok and Karniadakis, Wu [14]
improved the slip condition. Zhu et al. [15] and Almutairi et al. [16] described the effects
of second-order velocity slip.

However, as a result of the migration of nanoparticles under second-order slip condi-
tion and the influence of different nanoparticles, the heat transfer of nanofluids is limited.
Besides, there is little attention paid to the analytic solution [17]. In this paper, the overall
goal is to study the fully developed convection of nanofluids in a parallel plate channel
theoretically. Two water-based nanofluids, containing alumina and titania nanoparticles,
respectively, are considered. The governing partial differential equations are transformed
into ordinary differential equations with an unknown constant by using similar variables,
which are solved by the homotopy analysis method (HAM).

2. Mathematical Analysis

Considering a stable, incompressible, laminar flow in a parallel-plate channel with
a uniform magnetic field, the upper wall of the parallel plate channel remains insulated,
while the lower wall receives a constant cooling heat flow. Taking parallel to the wall
as the x-axis and perpendicular to the wall as the y-axis, a two-dimensional coordinate
frame is established. Nanofluids have been studied using an improved two-component
heterogeneous model. Hence, the mass, momentum, thermal energy, and nanoparticle
fraction equations of the flow system can be expressed as follows:

∂i(ρUi) = 0 (1)

∂t(ρUi) + ∂j(ρUiUj) = −∂iP + ∂jµ(∂iUj + ∂jUi)− σ0B2
0Ui (2)

∂t(ρcT) + ∂i(ρcUiT) = ∂i(k∂iT) + ρc(DB∂iφ +
DT
TC

∂iT)∂iT + Q0(T − Tw)−
∂qr

∂y
(3)

∂t(φ) + ∂i(Uiφ) = ∂i(DB∂iφ +
DT
TC

∂iT) (4)

when the nanoparticle volume fractions are different, ρ, µ, k, and c also change. The
expressions are as follows:

µ(φ) =

{
µb f (1 + 39.11φ + 533.9φ2), Alumina−−water

µb f (1 + 5.45φ + 108.2φ2), Titania−−water
(5)

k(φ) =

{
kb f (1 + 7.47φ), Alumina−−water

kb f (1 + 2.92φ− 11.99φ2), Titania−−water
(6)

ρ = φρp + (1− φ)ρb f , c =
φρpcp + (1− φ)ρb f cb f

ρ
(7)

where p stands for particle and b f stands for base fluid. Moreover, the thermal physical
properties of Al2O3 nanoparticles, TiO2 nanoparticles, and the base fluid (water) are also
analyzed as follows:

cpb f = 4182 J/kgK, kb f = 0.597 W/mK, ρb f = 998.2 kg/m3, µb f = 9.93 ∗ 10−4 kg/ms
cpAl2O3

= 773 J/kgK, kAl2O3 = 36 W/mK, ρAl2O3 = 3380 kg/m3

cpTiO2
= 385 J/kgK, kTiO2 = 8.4 W/mK, ρTiO2 = 4175 kg/m3

Based on material performance of a typical water-based nanofluid with alumina
(titania/water) nanoparticles, the coefficients of Equation (3) can be calculated [3] by
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scale analysis. Scale analysis indicates that the heat conduction term is about 1000 times
more than virtue of nanoparticle diffusion. Actually, heat transfer in connection with the
diffusion of nanoparticles ρc(DB∂iφ + DT

TC
∂iT)∂iT can be neglected in comparison with

heat conduction and convection. When the flow velocity is very low, the Re is very small.
Therefore, compared with viscous resistance [8], inertia effect can be ignored. Assuming
hydrodynamically and thermally fully developed conditions, Equations (1)–(4) can be
simplified as follows [18]:

− dP
dx

+
d

dy
(µ(φ)

dU
dy

)− σ0B2
0U = 0 (8)

∂

∂y
(k(φ)

∂T
∂y

) + Q0(T − Tw)−
∂qr

∂y
= 0 (9)

∂

∂y
(DB

∂φ

∂y
+

DT
TC

∂T
∂y

) = 0 (10)

Radiant heat flux qr is described by Rosseland approximation [17] as follows:

qr = −
4σ∗

3δ

∂T4

∂y
(11)

Assuming that temperature difference is small enough in the flow, using Taylor
series to expand T4, and ignoring the higher-order terms, T4 can be expressed as a linear
function [19]. The approximate expression is as follows:

T4 ∼= 4T3
∞T − 3T4

∞ (12)

The following appropriate transformations are:

η =
y
H

, u =
U

Um
, Ha2 =

σB2
0 H2

µw
, θ =

kw(T − Tw)

qwH

σ =
(dp/dx)
Um/H2 , NBT =

DB
DT

kwTC
qwH

, γ =
Q0qwH3

kw
, α =

dP/dx
(µb f uB)/H2

(13)

Equations (8)–(10) can be reduced to:

µ(φ)
d2u
dη2 +

dµ(φ)

dη

du
dη
− Ha2u− α = 0 (14)

k(φ)
d2θ

dη2 +
dk(φ)

dη

dθ

dη
+ γθ +

16σ∗

3k∗
d2θ

dη2 = 0 (15)

NBT(1 + γθ)2 ∂φ

∂η
− φ

∂θ

∂η
= 0 (16)

3. Boundary Conditions

At micro- or nanoscale, the slip boundary condition can be used to predict accurately.
In current investigations, the most common velocity slip is the Maxwell [9] slip condition.
The Maxwell expression is:

−−→uslip = −2− β

βµw
ξ−→τ − 3

4
NPr(δ− 1)

δp
−→q (17)

where −→τ = S · (n ·Π), −→q =
−→
Q · S.
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Beskok and Karniadakis [13] improved the second-order slip conditions:

us − uw =
2− σv

σv
[Kn(

∂u
∂n

)s +
Kn2

2
(

∂2u
∂n2 )s] (18)

where ( ∂
∂n ) shows gradients normal to the wall surface. Based on Beskok and Karniadakis,

Wu [14] improved the slip condition in detail:

uslip =
2
3
(

3−ωl3

ω
− 3

2
1− l2

Kn
)λ

∂u
∂y
− 1

4
[l4 +

2
Kn2 (1− l2)]λ2 ∂2u

∂y2 = A
∂u
∂y

+ B
∂2u
∂y2 (19)

where l = min[ 1
Kn , 1]. The expression of velocity boundary condition is as follows:

y = 0 : U = N1
∂U
∂y

+ N2
∂2U
∂y2 (20)

y = H : U = −N1
∂U
∂y
− N2

∂2U
∂y2 (21)

The other boundary conditions are as follows:

y = 0 : −kw
∂T
∂y

= qw,
∂φ

∂y
= −DT

DB

1
TC

∂T
∂y

(22)

y = H :
∂T
∂y

= 0,
∂φ

∂y
= −DT

DB

1
TC

∂T
∂y

(23)

Substituting Equation (13) into Equations (20)–(23), the boundary conditions are as
follows:

η = 0 : u = λ1
∂u
∂η

+ λ2
∂2u
∂η2 ,

∂θ

∂η
= 1, θ = 0, φ = φw (24)

η = 1 : u = −λ1
∂u
∂η
− λ2

∂2u
∂η2 (25)

In actual applications, the mass flow rate is specified through the channels. Therefore,
the average fluid velocity is introduced:

Um =

∫ H
0 Udy
∫ H

0 dy

Dimensionless variables can be obtained as follows:
∫ 1

0
udη = 1 (26)

The average of the parameters on the cross section can be calculated using the follow-
ing formula [20]:

〈Γ〉 = 1
A

∫ 1

0
dA =

∫ 1

0
Γdη

Further, θB and φB can be worked out as follows:

θB =
< ρcuθ >

< ρcu >
, φB =

< uφ >

< u >
(27)
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According to the bulk properties and hydraulic diameter of nanofluids, the Nusselt
number can be assessed as [21]:

NuB =
hH
kB

=
1
θB

kw

kB
(28)

The non-dimensional pressure drop can be defined as:

Ndp =
−(dp/dx)
(µb f uB)/H2 = −α (29)

In addition, the semi-analytical relationship between NuB and NBT in the alumina–
water nanofluid can be obtained as:

a1 = 2.1494(−248469− 551.028NBT + 72.1567N2
BT − 0.0184761N3

BT) (30)

b1 = −68012.1 + 2498.11NBT + 45.6722N2
BT − 1.80232N3

BT + 0.000305721N4
BT (31)

c1 =
(−0.00184879 + 0.000522536NBT − 0.0000613978N2

BT + 1.57212× 10−8N3
BT)

−0.0600415 + 0.0000151093NBT

× 7.47 + 1
(32)

NuBAl2O3
=

a1

b1c1
(33)

The semi-analytical relation between NuB and NBT in the titania–water nanofluid can
be obtained as:

a2 = 2.1494(−202053− 426.941NBT + 46.4139N2
BT − 0.00159493N3

BT) (34)

b2 = −20516.7 + 623.982NBT + 7.42706N2
BT − 0.334142N3

BT + 7.1142× 10−6N4
BT (35)

c2 =
(−0.00148734 + 0.000369449NBT − 0.0000394933N2

BT + 1.35712× 10−9N3
BT)

−0.0488208 + 1.73602× 10−6NBT

× 7.47 + 1
(36)

NuBTiO2
=

a2

b2c2
(37)

4. Application of HAM

In this article, to obtain the series solutions, we adopt homotopy analysis method
(HAM). HAM is one of the well-known semi-analytical methods for solving various
types of linear and nonlinear differential equations (ordinary as well as partial). This
method is based on coupling of the traditional perturbation method and homotopy in
topology. By this method, one may obtain an exact solution or a power series solution
which converges in general to the exact solution. HAM consists of the convergence control
parameter, which controls the convergent region and rate of convergence of the series
solution. We select the initial guess solutions:

u0(η) = −0.1 + η − η2

θ0(η) = η − 2η2

φ0(η) = φB

(38)

What calls for special attention is that the boundary condition (26) is not yet used,
which can be used to determine the unknown parameter αk−1. For example, when k = 1,
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we are able to obtain u1(η) and its integration with η in the range [0, 1], which is the
function of α0. Using the boundary condition (26), we obtain:

α0(η) = 1 (39)

In this way, uk(η), θk(η), φk(η), αk(η) can be successively worked out one after another
according to the order k = 0, 1, 2, .... At mth-order, we obtain:

u(η) = u0(η) +
m

∑
k=1

uk(η)

θ(η) = θ0(η) +
m

∑
k=1

θk(η)

φ(η) = φ0(η) +
m

∑
k=1

φk(η)

α = α0 +
m

∑
k=1

αk

(40)

The auxiliary linear operators are:

Lu =
d2u
dη2 , Lθ =

d2θ

dη2 , Lφ =
dφ

dη
(41)

The properties of the auxiliary linear operator are as follows:

Lu[C1 + C2η + C3η2] = 0, Lθ [C4 + C5η + C6η2] = 0, Lφ[C7 + C8η] = 0 (42)

where Ci, i = 1, ..., 8 are constants.
Next, construct the mth-order deformation equation as follows:

Lu[um(η)− χmum−1(η)] = qhuRm(η)

Lθ [θm(η)− χmθm−1(η)] = qhθ Rm(η)

Lφ[φm(η)− χmφm−1(η)] = qhφ(η)Rm(η)

(43)

5. Convergence of the HAM Solutions

Liao [22] showed that the values of auxiliary parameters hu, hθ , and hφ can adjust and
control the convergence of the series solutions. Directly selecting the appropriate values
of hu, hθ , and hφ ensures the convergence of the series solutions. Figures 1 and 2 give the
respective valid ranges of hθ , hφ. The valid ranges are as follows:





0 ≤ hu ≤ 0.4
−0.8 ≤ hθ ≤ −0.35
−3 ≤ hφ ≤ 0.1

In addition, one way to find the appropriate hu, hθ , and hφ is to utilize the residual
error. In this article, the residual error Em,t [23] is defined as follows:

Em,θ =
∫ 1

0
kθ′′ + k′θ′ + γθ +

16σ∗

3k∗
θ′′dη (44)

Using the square residual error function, it is found that the residual error becomes
more and more accurate as the order of HAM approximation increases (Figure 3). Finally,
α of the HAM solution agrees well with the BVPh 2.0 solution (Table 1). BVPh 2.0 is a free
software package for nonlinear boundary-value and eigenvalue problems based on HAM.
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In addition, it serves to show that the current results are in accordance with the results
given by Yang et al. [24] (Table 2) greatly.

Figure 1. hθ-curve of θ′′(0).

Figure 2. hφ-curve of φ′(1).

Table 1. Comparison of HAM results with BVPh2.0 results.

φB
α

BVPh2.0 HAM Relative Error(%)

0.01 −0.00286834 −0.00286673 0.05624769
0.02 −0.00396349 −0.00394892 0.36760532
0.03 −0.00527046 −0.00529243 0.33803511
0.04 −0.00678941 −0.00671253 1.13235171
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Figure 3. The residual errors with HAM approximations order m in different nanofluids.

Table 2. Comparison of HAM results with those of C. Yang et al. [24].

NBT
NuB

Yang et al. [24] HAM Relative Error(%)

0.1 7.26823 7.26679 0.01981
0.2 7.55883 7.55889 0.00079
0.3 7.69768 7.69418 0.04547
0.4 7.79492 7.79163 0.04225
0.5 7.85227 7.85200 0.00344
0.6 7.90000 7.90338 0.04278
0.7 7.94920 7.94526 0.04956
0.8 7.95957 7.95947 0.00126
0.9 7.97313 7.97791 0.05995
1 8.04496 8.04478 0.00224
2 8.12940 8.12983 0.00529

10 8.21841 8.21630 0.02567

6. Results and Discussion

The effects of NBT , λ2 and λ1 on the nanoparticle velocity u/uB, the nanoparticle
volume fraction φ/φB, temperature profiles θ/θB, and Nusselt number NuB are shown in
Figures 4–14. In these figures, η = 1 corresponds to the adiabatic wall, whereas η = 0
corresponds to the cooled wall.

The slip parameter characterizes slip resistance at the surface. The first-order ve-
locity slip parameters λ1 and second-order velocity slip parameters λ2 affect the flow and
heat. Figures 4–6 depict the effects of second-order velocity slip λ2 on u/uB, φ/φB, and
θ/θB. Figures 7–9 illustrate the effects of first order velocity slip λ1 on u/uB, φ/φB, and
θ/θB. Figures 4 and 7 show that u/uB is lower near the walls and peaks near the middle of
the microchannel. As Figure 4 reveals, the increase in λ2 causes momentum to build up
in the core area, with the velocity profile becoming more uniform as the slip parameters
decrease. Figure 7 shows that an increase in λ1 results in the momentum accumulation at
the core region. The second-order slip condition shows a prominent effect on the velocity
profile u/uB in Figures 4 and 7. Assuming that mass flows are constant, in order to satisfy
continuity, they must increase in the core region as the magnitude of the velocities at
the boundary decreases. Meanwhile, in Figures 5 and 8, the temperature profile θ/θB
decreases and then increases toward the upper wall. The titania–water nanofluid tem-
perature changes more gently than that of the alumina–water nanofluid. The minimum
of the temperature profile is increasing and shifts toward the upper wall with increasing
λ2 . Figure 8 shows no significant variation in the dimensionless temperature for λ1. In
addition, with increasing λ2 or λ1, the volume fraction φ/φB of nanoparticles shows an
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increasing trend in Figures 6 and 9. Hence, s more uniform distribution of the volume
fraction emerges.

Figure 4. The effects of λ2 on the nanoparticle velocity u/uB.

Figure 5. The effects of λ2 on the temperature profiles θ/θB.

Figure 6. The effects of λ2 on the nanoparticle volume fraction φ/φB.
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Figure 7. The effects of first-order velocity slip parameters λ1 on the nanoparticle velocity u/uB.

Figure 8. The effects of first-order velocity slip parameters λ1 on θ/θB.

Figure 9. The effects of first-order velocity slip parameters λ1 on φ/φB.
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Figure 10. The effects of NBT on the nanoparticle velocity u/uB.

Figure 11. The effects of NBT on the temperature profiles θ/θB.

Figure 12. The effects of NBT on the nanoparticle volume fraction φ/φB.
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Figure 13. The effects of second-order velocity slip parameters λ2 on NuB.

Figure 14. The effects of φB on NuB.

Figures 10–12 plot the effects of NBT on u/uB, φ/φB, and θ/θB. Apparently, on
the cooling wall, the concentration of nanoparticles is higher; at the adiabatic wall, the
nanoparticle concentration is lower. Hence, the trend of the nanoparticle motion is moving
from the adiabatic wall toward the cooled wall; accordingly, an uneven distribution of
nanoparticles is constructed. This motion makes the viscosity near the cold wall much
greater than that near the adiabatic wall, thus increasing the velocity near the adiabatic
wall and decreasing the velocity near the cold wall. Therefore, the velocity profile deforms
and its peak moves toward the adiabatic wall. As a result, at higher values of NBT , φ/φB
becomes more uniform, which can be observed in Figure 12. At higher value of NBT , with
momentum enhanced, the heat transfer rate of the cooling wall also increases. Therefore,
the increase of NBT gives rise to an increase in the temperature gradient of the cooling wall,
as shown in Figure 11.

Figure 13 depicts the effect of λ2 on the Nusselt number NuB. One thing to note is that
the growth trend for NuB with the increase in λ2 comes from the momentum accumulation
near the wall. Therefore, the second-order slip parameter plays a positive role in NuB of
the MHD flow. As a result, compared with Navier’s condition, under second-order slip
conditions, nanofluids transfer heat more efficiently. It also must be stated that the effect of
the slip parameters on NuB is quite protensive; it rests with the type of nanoparticle. In
alumina–water nanofluid, the sensitivity on NuB is much higher than that of titania–water
nanofluid, since the corresponding NuB of alumina–water nanofluid is higher than that
of titania–water nanofluid. Figure 14 depicts the φB on the NuB. It can be obtained that
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increasing φB leads to a decrease NuB because the increasing φB can increase the thermal
conductivity and viscosity near walls.

Table 3 gives Ndp with different λ2, λ1, NBT , and φB when Ha = 0, respectively. It can
be concluded that both one-slip parameter and second-order slip parameter have positive
correlation with the pressure drop ratio of the nanofluid to base fluid Ndp. As λ2 or λ1
decreases, the frictional forces on the walls diminish because of the velocity jumps at the
walls. However, the positive correlation is significant to titania–water nanofluid. Because
of a slight increase in viscosity at the wall, NBT has a minor positive effect on Ndp and φB
has a minor negative effect on Ndp.

Table 3. Ndpwith different λ2, λ1, NBT , and φB when Ha = 0.

λ2 λ1 NBT φB
Types of Fluids

Al2O3-Water TiO2-Water

0.1 0.1 0.5 0.01 0.000127706 0.000129222
0.2 0.000131924 0.014154800

0.2 0.000179880 0.020517000
10 0.000127722 0.000127916

0.04 0.000119804 0.000127917

Table 4 gives NuB with different λ2, λ1, NBT , and φB when Ha = 0, respectively. It can
be deduced that the velocity gradient at the wall of the microchannel increases. The slip
velocity increases with the increase of velocity gradient. Thus, momentum closer to the
wall increases and causes convective heat transfer to rise.

Table 4. NuBwith different λ2, λ1, NBT , and φB when Ha = 0.

λ2 λ1 NBT φB
Types of Fluids

Al2O3-Water TiO2-Water

0.1 0.1 0.5 0.01 5.62714 4.93726
0.2 8.57429 7.38838

0.2 8.95671 7.71938
10 8.69342 7.40811

0.04 8.56113 7.37139

7. Conclusions

In this paper, we conduct a theoretical study on the heat transfer of alumina/water
and titania/water nanofluids in a parallel-plate channel. We discuss the effects of Brownian
motion and thermophoresis. Their effects are characterized by the ratio of the Brownian
to thermophoretic diffusion coefficients NBT . Moreover, The second-order velocity slip
condition is considered. Analytic solutions are obtained by HAM. The main conclusions of
this paper can be drawn as follows:

a The semi-analytical relation between NuB and NBT is obtained.
b Both first-order slip parameter and second-order slip parameter have positive effects

on NuB of the MHD flow, but nanofluids can transfer heat more efficiently with a
second-order slip condition than with a Navier’s condition.

c In the alumina–water nanofluid, NuB is higher than that of titania–water nanofluid.
d The positive correlation between slip parameters and Ndp is significant for the titania-

water nanofluid.
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Symbol Description
B0 magnetic field strength
Cp specific heat (m2/s2K)
DB Brownian motion constant
DT thermophoresis diffusion coefficient
H radius (m)
h heat transfer coefficient (W/m2K)
Ha Hartmann number
HTC dimensionless heat transfer coefficient
k thermal conductivity (W/mK)
T∞ free stream temperature
NBT ratio of the Brownian to

thermophoretic diffusivities
Np non-dimensional pressure drop
Nu Nusselt number
p pressure (Pa)
qw surface heat flux
qr radiative heat flux
φ nanoparticle volume fraction
ρ density
η transverse direction
λ1, λ2 slip parameters of velocity
B bulk mean
U axial velocity (m/s)
T temperature (K)
k thermal conductivity
µ dynamic viscosity (kg/m s)
σ∗ Stefan–Boltzman constant
γ ratio of wall and fluid temperature

difference to absolute temperature
Subscripts
x, y coordinate system
p nanoparticle
b f base fluid
i velocity components
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Abstract: In this study, we present a spectral method for solving nonlinear Volterra integral equations
with weakly singular kernels based on the Genocchi polynomials. Many other interesting results
concerning nonlinear equations with discontinuous symmetric kernels with application of group
symmetry have remained beyond this paper. In the proposed approach, relying on the useful
properties of Genocchi polynomials, we produce an operational matrix and a related coefficient
matrix to convert nonlinear Volterra integral equations with weakly singular kernels into a system of
algebraic equations. This method is very fast and gives high-precision answers with good accuracy
in a low number of repetitions compared to other methods that are available. The error boundaries
for this method are also presented. Some illustrative examples are provided to demonstrate the
capability of the proposed method. Also, the results derived from the new method are compared to
Euler’s method to show the superiority of the proposed method.

Keywords: nonlinear Volterra integral equation; weakly singular kernels; Abel’s integral equations;
the Genocchi polynomials; operational matrix

1. Introduction

Spectral schemes are invaluable tools for the numerical solution of fractional partial
differential equations (FPDEs), ordinary differential equations (ODEs), integral equations (IEs),
and integrodifferential equations (IDEs).

Spectral approaches are a class of schemes used in applied mathematics and scientific
computing to numerically solve certain differential equations and nonlinear integral equations.
In recent years, these approaches have been used in modeling of many problems of physical
phenomena, engineering and chemical processes in chemical kinetics [1], super fluidity biology and
economics [2], axially symmetric problems in the case of an elastic body containing an inclusion [3],
and fluid dynamics [4], and the Hammerstein integral equation is employed for modeling nonlinear
physical phenomena such as electromagnetic fluid dynamics reformulation of boundary value problems
with a nonlinear boundary condition [5].

Various numerical approaches have been presented for solving a class of nonlinear singular
integral equations including Abel’s integral equation, Hammerstein integral equation, Volterra integral
equation, etc. For example, Noeiaghdam et al. in [6] applied the Laplace homotopy analysis method to
solve Abel’s integral equation, and validation of this method was discussed in [7]. Also, the numerical
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studies on the Volterra integral equation with discontinuous kernels can be found in [8,9]. Allaei et al.
in [10] presented an analytical and computational method for a class of nonlinear singular integral
equations. Maleknejad et al. in [11] proposed a new numerical approach for solving the nonlinear
integral equations of Hammerstein and Volterra–Hammerstein. In [12], the authors applied the
operational Tau method (OTM) to find a numerical solution for weakly singular Volterra integral
equations (WSVIEs) and Abel’s equation.

Other researchers have attempted to solve nonlinear integral equations in recent years.
Among them, in recent years, Mehdi Dehghan et al. in [13] solved nonlinear fractional integrodifferential
equations (NFIDEs) by using the collocation numerical method. Li Zhu and Qibin Fan in [14]
presented a spectral method based on the second Chebyshev wavelet (SCW) operational matrix for
solving the fractional nonlinear Fredholm integrodifferential equation, and the Ferdholm and Volterra
integral equations.

Nemati in [15] applied a numerical approach for solving nonlinear fractional integrodifferential
equations with weakly singular kernels by using a modification of hat functions. Somveer et al. [16]
presented an efficient spectral method based on shifted Legendre polynomials for solving nonlinear
Volterra singular partial integrodifferential equations (PIDEs) which involve both integrals and
derivatives of a function.

Recently, with the effort of other scientists, many of the nonlinear differential and integral
equations which appear in different fields of physical phenomena and engineering were solved by
using numerical methods, and nonlinear differential and integral equations have also been explored in
delayed scaled consensus problems [17–24].

In the study of many nonlinear problems in heat conduction, boundary-layer heat transfer,
chemical kinetics, and superfluidity, we are often led to singular Volterra integral equations for which
real answers are hard to find [10]. In this article, we use efficient functions such as Genocchi polynomials
and their operational matrices to solve nonlinear Volterra integral equations with weakly singular
kernels of the following form:

y(t) = f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds, t > 0, (1)

where f (t) is in L2(<) on the interval 0 ≤ t, s ≤ T; g is locally Lipchitz continuous, smooth, and a
Hammerstein nonlinear function; and α, β are real positive numbers.

For future works, we can use other polynomials like Chebyshev, Lagger, etc. for implementation,
and by comparing the archived results, we can expand the present method and implement it on the
system of nonlinear Volterra integral equations or nonlinear Volterra integral equations of mixed type.
Because of important applications of the first kind of Volterra integral equations with discontinuous
kernels in load leveling problems and power engineering systems, the proposed method can also be
used for future works.

The rest of the article is organized as follows: In Section 2, we state some necessary basic definitions
and properties of Genocchi polynomials. Numerical implementation of the suggested technique based
on Genocchi polynomials is shown in Section 3. Section 4 estimates the error analysis of our proposed
technique. In Section 5, two examples with tables and graphs are presented to show the efficiency and
accuracy of the proposed scheme. Section 6 provides some discussion and concluding remarks.

2. Genocchi Polynomials and Their Properties

2.1. Definition of the Genocchi Polynomials

Genocchi polynomials and Genocchi numbers have been widely applied in many branches
of mathematics and physics such as complex analytic number theory, homotopy theory,
differential topology, and quantum physics (quantum groups) [25,26]. The Genocchi polynomials
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Gn(x) and numbers Gn are usually expressed by using the exponential generating functions Q(t, x)
and Q(t) respectively as follows:

Q(t) =
2t

et + 1
=
∞∑

n=0

Gn
tn

n!
, (|t| < π), (2)

Q(t, x) =
2text

et + 1
=
∞∑

n
Gn(x)

tn

n!
, (|t| < π), (3)

where Gn(x) is the well-known Genocchi polynomials of order n. Also, we note that the Genocchi
polynomials can be determined as follows:

Gn(x) =
n∑

k=0

(
n
k

)
Gn−kxk = 2Bn(x) − 2n+1Bn(x), (4)

where the Genocchi number Gn−k is obtained by the following relation:

Gn = 2(1− 2n)Bn, (5)

Bn is the famous Bernoulli number.
The first few Genocchi numbers are given in the table below:

n 0 1 2 4 6
Gn 0 1 −1 1 −3

We also have to pay attention that G2n+1 = 0, n = 1, 2, 3, . . .. We list the first few Genocchi
polynomials that are given as follows:

G0(x) = 0,
G1(x) = 1,
G2(x) = 2x− 1,
G3(x) = 3x2 − 3x,
G4(x) = 4x3 − 6x2 + 1,
G5(x) = 5x4 − 10x3 + 5x.

(6)

The Genocchi polynomials are depicted in Figure 1 for different n:

Figure 1. The plots of the Genocchi polynomials.
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Therefore, some of the important basic properties of the Genocchi polynomials are as follows:

∫ 1

0
Gn(x)Gm(x)dx =

2(−1)nn!m!
(n + m)!

Gm+n, n, m ≥ 1, (7)

dGn(x)
dx

= nGn−1(x), n ≥ 1, (8)

Gn(1) + Gn(0) = 0, n > 1, (9)

Also, by using them in Relations (5) and (9), we can write the following:

Gn(x) =
∫ x

0
nGn−1(x)dx + Gn, n ≥ 1. (10)

For more information, you can refer to References [27] and [28], which discuss the Genocchi
polynomials extensively.

2.2. Approximation of Arbitrary Function by Applying Genocchi Polynomials

The approximation theory plays an important role in solving a variety of differential equations.
The main goal of this section is to approximate the arbitrary function f (x) ∈ L2[0, 1] by Genocchi
polynomials. Let

{
G1(x), G2(x), . . . , GN(x)] ⊆ L2[0, 1] be the set of Genocchi polynomials and

P = span
{
G1(x), G2(x), . . . , GN(x)

}
. Since P is a finite dimensional subspace of the L2[0, 1] space,

therefore f (x) as an arbitrary element of the L2[0, 1] space has a unique best approximation in P,
say f ∗(x), such that ∥∥∥ f (x) − f ∗(x)

∥∥∥
2 ≤

∥∥∥ f (x) − y(x)
∥∥∥

2 : ∀y(t) ∈ P. (11)

Therefore, inequality (11) requires that the following equation to be true.

〈
f (x) − f ∗(x), y(t)

〉
= 0 : ∀y(t) ∈ P. (12)

where 〈., .〉 denotes the inner product.
Any arbitrary function f (x) ∈ L2[0, 1] can be expanded in the finite series to the number of the

Genocchi polynomials as follows:

f (x) ≈ f ∗(x) =
N∑

n=1

cnGn(x) = CTG(x), (13)

where T means transpose and the Genocchi coefficient vector C and Genocchi vector G(x) are given by
the following:

C = [c1, c2, . . . , cN]
T, G(x) = [G1(x), G2(x), . . . , GN(x)]

T. (14)

Hence, the coefficient cn can be obtained using the Genocchi polynomials as follows:

cn =
1

2n!

(
f (n−1)(0) + f (n−1)(1)

)
, n = 1, . . . , N. (15)

Of course, we have to note the important fact that calculating the approximation coefficient by the
Genocchi polynomials in Equation (15) for a function that is not (n − 1) differentiable at the points
x = 0, x = 1 leads to failure. The following example illustrates the problem.
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Let N = 3, f (x) = x3/2, f (x) =
3∑

n=1
cnGn(x) = c1G1(x) + c2G2(x) + c3G3(x);

c3 = 1
2×3!

[
d2

dx2 x3/2
∣∣∣∣
x=0

+ d2

dx2 x3/2
∣∣∣∣
x=1

]

= 1
2×3!

[
1

4
√

x

∣∣∣∣
x=0

+ 1
4
√

x

∣∣∣∣
x=1

]
.

(16)

To avoid this problem for functions that are not (n− 1) differentiable at points x = 0, x = 1, we use
the matrix approach taken in the next section to compute the unknown approximation coefficients.

2.3. Using the Matrix Approach to Compute the Genocchi Approximation Coefficients

In this section, we compute the Genocchi coefficient vector C using the matrix method. Before we
apply this approach, we need to demonstrate and verify the following theorems. We first introduce
Theorem 1, which gives the expression and proof of integration of the two Genocchi polynomials
on arbitrary interval [a, b], 0 ≤ a ≤ b which will be used to prove Theorem 2. Therefore, the proof of
Theorem 1 is of particular important.

Theorem 1. Let us assume that Gn(x) and Gm(x) are two Genocchi polynomials for x ≥ 0:

γn,m(x) =
∫ x

0 Gn(x)Gm(x)dx

=
n−1∑
r=0

(−1)r n(r)
(m+1)(r+1) (Gn−r(x)Gm+1+r(x) −Gn−r(0)Gm+1+r(0)),

(17)

where n(r), (m + 1)(r+1) are respectively the falling and rising factorials. In particular, we have the following
relations for [a, b], 0 ≤ a ≤ b:

γ
(a,b)
n,m =

∫ b
a Gn(x)Gm(x)dx = γn,m(b) − γn,m(a)

=
n−1∑
r=0

(−1)r n(r)
(m+1)(r+1) (Gn−r(b)Gm+1+r(b) −Gn−r(a)Gm+1+r(a)),

γ
(0,1)
n,m =

n−1∑
r=0

(−1)r n(r)
(m+1)(r+1) (Gn−r(1)Gm+1+r(1) −Gn−r(0)Gm+1+r(0)),

(18)

Proof. See [26]. �

On the other hand, by applying Theorem 1, we can calculate the arbitrary function approximation
coefficients with the matrix approach by using the following theorem.

Theorem 2. Suppose that f (x) ∈ L2[0, 1] is an arbitrary function and
{
Gi(x) : i = 1, . . . , N

}
is the set of

the Genocchi polynomials up to order N. Let Y = span{G1, . . . , GN} . Since Y is a finite dimensional closed
subspace of L2[0, 1] , then ∃ f ∗(x) ∈ Y is the unique best approximation in the Genocchi polynomials such
that any arbitrary function f (x) can be expressed in terms of the Genocchi polynomials by unique coefficient
cn, n = 0, 1, . . . , N:

f (x) ≈ f ∗(x) =
N∑

n=1

cnGn(x) = CTG(x), (19)

where C consisting of the unique coefficient is called the Genocchi coefficient matrix C given by the following:

CT = FTT(0,1)−1
, (20)
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where F =
∫ 1

0 f (x)Gm(x)dx, m = 0, 1, . . . , N and T(0,1) =
[∫ 1

0 Gn(x)Gm(x)dx
]

N×N
is the matrix derived in

Theorem 1.

Proof. Assume that f (x) ∈ L2[0, 1]. Therefore, this arbitrary function can be approximated using
Equation (13) as follows:

f (x) ≈
N∑

n=1

cnGn(x) = CTG(x), (21)

Therefore,
∫ 1

0 f (x)Gm(x)dx =
∫ 1

0

(
N∑

n=1
cnGn(x)

)
Gm(x)dx

=
N∑

n=1
cn

∫ 1
0 Gn(x)Gm(x)dx.

(22)

Let the first side of Equation (22) have fm =
∫ 1

0 f (x)Gm(x)dx alternatives; thus, we have the following:

fm =
∫ 1

0

(
N∑

n=1
cnGn(x)

)
Gm(x)dx

=
N∑

n=1
cn

∫ 1
0 Gn(x)Gm(x)dx,

m = 1, . . . , N.

(23)

In fact, we can construct Equation (23) as a system of N equations for which the matrix representation
of the device is as follows:




f1
.
.
.

fN




= [c1, . . . , cN]




γ
(0,1)
1,1 . . . γ

(0,1)
1,N

γ
(0,1)
2,1 . . . γ

(0,1)
2,N

. . . . . .

. . . . .

. . . . .

γ
(0,1)
N,1 . . . γ

(0,1)
N,N




,

FT = CTT(0,1)

(24)

Therefore, we have the Genocchi coefficient matrix C as follows:

CT = FTT(0,1)−1
, (25)

where γi, j can be calculated by using Theorem 1. �

3. Implementation of the Genocchi Polynomial Method for Solving Nonlinear Volterra Integral
Equations with Weakly Singular Kernels

In this section, we implement a new spectral approach based on the Genocchi polynomials to
solve the following equation:

y(t) = f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds, t > 0,

where f (t) is in L2(<) on the interval 0 ≤ t, s ≤ T; g is locally Lipchitz continuous, smooth, and a
Hammerstein nonlinear function; and α, β are real positive numbers.
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Let us assume that function f (x) ∈ L2[0, 1] is arbitrary; then, we can approximate it, as follows:

f (x) ≈
N∑

n=1

cnGn(x) = CTG(x) = CTGXx, (26)

where C = [c1, c1, . . . , cN]
T is a vector of unknown coefficient; Xx = [1, x, x2, . . . , xn]

T;
and G(x) = [G1(x), G2(x), . . . , GN(x)]

T = GXx, where G is a n × n matrix of coefficients that can be
approximated by Xx.

Thus, we need to compute the following integral before applying the new approach to
solve Equation (1).

∫ x

0

tm

(x− t)α
dt =

Γ(1− α)Γ(m + 1)
Γ(m− α+ 2)

x(m−α+1), m = 0, 1, . . . . (27)

Therefore, by considering Relation (27), we let

z(s) = g(y(s)), 0 ≤ s ≤ 1. (28)

since we have

y(t) = f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds, t > 0. (29)

By substituting Equation (29) into Equation (28), we have

z(t) = g( f (t) −
∫ t

0

sβ

(t− s)α
g(y(s))ds), 0 ≤ t ≤ 1. (30)

We approximate Equation (30) as follows:

CTG(t) = g( f (t) −
∫ t

0

sβ

(t− s)α
CTGXsds), 0 ≤ t ≤ 1, (31)

and

CTG(t) = g( f (t) −CTG
∫ t

0

sβ

(t− s)α
Xsds), 0 ≤ t ≤ 1. (32)

Thus, we need to convert the integral part of Equation (32) to the matrix form. Therefore,

by assuming Xs =
[
1, s, s2, . . . , sn

]T
, we can write the following:

∫ t
0

sβ
(t−s)α .Xsds =

[∫ t
0

sβ
(t−s)α ds,

∫ t
0

sβ
(t−s)α .sds, . . . ,

∫ t
0

sβ
(t−s)α .snds, . . .

]T

=
[∫ t

0
sβ

(t−s)α ds,
∫ t

0
sβ+1

(t−s)α ds, . . . ,
∫ t

0
sβ+n

(t−s)α ds, . . .
]T

,
(33)

and using Equation (27), we have

∫ t

0

sβ+m

(t− s)α
ds =

Γ(1− α)Γ(β+ m + 1)
Γ(β+ m− α+ 2)

t(β+m−α+1), m = 0, 1, 2, . . . . (34)

Therefore, by using Relation (34), we can rewrite Equation (33) as follows:

∫ t
0

sβ
(t−s)α .Xsds =

[
Γ(1−α)Γ(β+1)

Γ(β−α+2) t(β−α+1), Γ(1−α)Γ(β+2)
Γ(β−α+3) t(β−α+2), . . .

, Γ(1−α)Γ(β+m+1)
Γ(β+m−α+2) t(β+m−α+1), . . .

]T
.

(35)
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If we consider γm,m =
Γ(1−α)Γ(β+m+1)

Γ(β+m−α+2) , m = 0, 1, 2, . . ., then, we can reconstruct Equation (35) in
the matrix form as follows:

∫ t

0

sβ

(t− s)α
.Xsds =




γ0,0 0 0 · · · 0
0 γ1,1 0 0 0
0 0 γ2,2 0 0
...

...
...

. . .
...

0 0 0 · · · γm,m







tβ−α+1

tβ−α+2

...
tβ+m−α+1

...




= ΩΠ, (36)

where Ω is an infinite diagonal matrix and

Π =
[
tβ−α+1, tβ−α+2, · · · , tβ+m−α+1, · · ·

]T
. (37)

Now, each element of infinite vector Π can be approximated by using the Genocchi polynomials
as follows:

tβ+m−α+1 =
∞∑

i=1

am,iGi(t) = ∂mGXt, ∂m = [am,1, am,2, . . .], m = 0, 1, . . . , (38)

and we obtain

Π = [∂1GXt, ∂2GXt, . . . , ∂mGXt, . . .]
T = AGXt, A = [∂1, ∂2, . . . , ∂m, . . .]T. (39)

Substituting (39) in (32), we have

∫ t

0

sβ

(t− s)α
.Xsds == ΩAGXt. (40)

By using Equations (40) and (39), we get

CTG(t) = g( f (t) −CTGΩAGXt), 0 ≤ t ≤ 1. (41)

We select N nodal points of the Newton–Cotes rule for finding vector C as follows:

xp =
2p− 1

2N
, p = 1, 2, . . . , N, (42)

By collocating Equation (41) at the points xp, we have

CTG(xp) = g( f (xp) −CTGΩAGXxp), 0 ≤ t ≤ 1,
p = 1, 2, . . . , N.

(43)

We can solve the nonlinear system (43) by using the Newton iteration scheme to calculate
unknown vector C. After calculating unknown vector C by solving the nonlinear Equation (43), we use
Equations (29), (31), and (32) to obtain the approximate solution of Equation (1), as follows:

yn(t) = f (t) −CTGΩAG(t), 0 ≤ t ≤ 1. (44)

4. Error Analysis

In this section, we perform error estimation of the approximation solution to find the error
boundaries of the new numerical approach by applying the Genocchi polynomials. Consider the
nonlinear Volterra integral equations with weakly singular kernels of the form Equation (1),
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We suppose that Ω = L2[0, 1],
{
G1(t), G2(t), . . . , Gn(t)

} ⊂ Ω, and T = Span
{
G1(t), G2(t), . . . , Gn(t)

}
.

Here, we let y(t) be an arbitrary function of Ω, so, it has the best approximation of T. Let yn ∈ T, that is,

∃yn ∈ T : ∀h ∈ T
∥∥∥y− yn

∥∥∥
2 ≤

∥∥∥y− h
∥∥∥

2, (45)

where
∥∥∥y(t)

∥∥∥2
2 =

∫ 1
0

∣∣∣y(t)
∣∣∣
2
dt. y(t) is approximated by using the truncated Genocchi polynomials:

y(t) ' yn =
N∑

n=1

cnGn(t) = CTG(t), (46)

where CT = [c1, c2, . . . , cN] and G(x) = [G1(x), G2(x), . . . , GN(x)]
T.

In the following study, we present an upper bound for the error of Equation (45).
Let en(t) = y(t) − yn(t) be the error function of Equation (1), where y(t), yn(t) are the exact and
approximate solutions

Therefore, the mean error bound is presented as follows:

∥∥∥en(t)
∥∥∥2

2 =
∥∥∥y(t) − yn(t)

∥∥∥
2 =

∫ 1
0

∣∣∣y(t) − yn(t)
∣∣∣2dt

=
∫ 1

0

∣∣∣∣∣
(

f (t) −
∫ t

0
sβ

(t−s)α g(y(s))ds
)
−

(
f (t) −

∫ t
0

sβ
(t−s)α g(yn(s))ds

)∣∣∣∣∣
2
dt

=
∫ 1

0

∣∣∣∣
∫ t

0
sβ

(t−s)α (g(y(s)) − g(yn(s)))ds
∣∣∣∣
2
dt.

(47)

On the other hand, g(s) is continuous on the interval [0, 1] and locally Lipchitz continuous in
s ∈ R; therefore, there is a constant C1 > 0 such that

∣∣∣g(y(s)) − g(yn(s))
∣∣∣ ≤ C1

∣∣∣y(s) − yn(s)
∣∣∣. (48)

Then, by using Equations (47) and (48), we have

∥∥∥en(t)
∥∥∥2

2 ≤
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∣∣∣y(s) − yn(s)
∣∣∣ds

)2
dt

=
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∣∣∣∣∣∣y(s) −
N∑

n=1
cnGn(s)

∣∣∣∣∣∣ds
)2

dt

=
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∣∣∣∣∣∣
∞∑

n=N+1
cnGn(s)

∣∣∣∣∣∣ds
)2

dt

≤
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∞∑
n=N+1

|cn|
∣∣∣Gn(s)

∣∣∣ds
)2

dt.

(49)

By substituting (4) into (49), we get

∥∥∥en(t)
∥∥∥2

2 ≤
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∞∑
n=N+1

|cn|
∣∣∣∣∣∣

n∑
k=0

(
n
k

)
Gn−ksk

∣∣∣∣∣∣ds
)2

dt

≤
∫ 1

0

(∫ t
0

sβ
(t−s)α ·C1

∞∑
n=N+1

|cn|
n∑

k=0

(
n
k

)
|Gn−k|skds

)2

dt

=
∫ 1

0

(
n∑

k=0

∞∑
n=N+1

·C1|cn|
(

n
k

)
|Gn−k|

∫ t
0

sβ+k

(t−s)α ds
)2

dt,

(50)

where γ(t, β,α) is defined by

γ(t, β,α) =
∫ t

0

sβ

(t− s)α
ds = B(1− α, 1 + β)t1−α+β. (51)
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On the other hand, B(α, β) is the beta function that is usually defined by

B(α, β) =
∫ 1

0
τα−1(1− τ)β−1dτ, (Re(α) > 0, Re(β) > 0). (52)

Therefore, by using Inequality (51) and Equation (52), we get

∥∥∥en(t)
∥∥∥2

2 ≤
∫ 1

0




n∑

k=0

∞∑

n=N+1

·C1|cn|
(

n
k

)
|Gn−k|B(1− α, 1 + β+ k)t1−α+β+k




2

dt. (53)

and
∥∥∥en(t)

∥∥∥
2 ≤

√√√ n∑

k=0

∞∑

n=N+1

1
2(−α+ β+ k) + 3

(
C1|cn|

(
n
k

)
|Gn−k|B(1− α, 1 + β+ k)

)2

. (54)

5. Illustrative Examples

In this section, two numerical examples are performed to check the perfection of the proposed
method as well as the accuracy and efficiency of the Genocchi polynomials scheme.

In order to demonstrate the error of a new numerical approach based on Genocchi polynomials,
we define the notations as follows:

e2(N) =
∥∥∥y− yn

∥∥∥∞ = max
∣∣∣y− yn

∣∣∣,
0 ≤ t ≤ 1

en(t) =
∣∣∣y− yn

∣∣∣,

ξn =
(∫ T

0 w(t)e2
n(t)dt

) 1
2
,

(55)

where y(t) is the exact solution and yn(t) is the approximate function to the proposed method and
we have w(t) = 1. In our implementation, the calculations are done on a personal computer with
core-i5 processor, 2.67 GHZ frequency, and 4 GB memory, and the codes were written in Mathematica
11 software.

Example 1. We consider the following nonlinear Volterra integral equation which was proposed in [10]:

y(t) = t
1
3 +

4Γ
(

4
3

)
Γ
(

13
6

)

√
π

t
3
2 −

∫ t

0

s1/2y2(s)

(t− s)2/3
ds, t ∈[0, 1]. (56)

The exact solution of this equation is y(t) = t1/3.

We solved this equation with the proposed numerical method by using different values of N.

The diagonal matrix Ω with elements Γ[1−α]Γ[m+1+β]
Γ[m−α+2+β] , m = 0, 1, . . . , N, and vector Π for N = 5 are obtain

in the following forms:

Ω =




2.52393 0 0 0 0 0
0 2.06503 0 0 0 0
0 0 1.82209 0 0 0
0 0 0 1.66364 0 0
0 0 0 0 1.54891 0
0 0 0 0 0 1.4604




,

Π = [x5/6, x11/6, x17/6, x23/6, x29/6, x35/6]
T

.
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Also, the unknown vector elements C are as follows:

c0 = 0.529883, c1 = 0.598039, c2 = −0.351362, c3 = 0.343517,
c4 = −0.104667, c5 = 0.0717268

After numerical computations, a system of algebraic nonlinear equations is obtained under the
proposed method. Therefore, by solving this system, we obtain the approximate solution for N = 5
as follows:

y5(t) = f (t) −CTGΩAG(t) = t1/3 − 0.151891t5/6 + 2.18117t3/2 − 3.56596t11/6

+ 3.71576t17/6 − 4.02725t23/6 + 2.47707t29/6 − 0.628499t35/6.

According to the error boundaries in Relation (55), we have
∥∥∥e5(t)

∥∥∥
2 ≤ 0.000598532.

Figure 2 is devoted to comparing the exact solution with the approximate solution obtained from
the proposed method for N = 5. Observing Figure 2, overlap of the exact and approximate solutions
shows the exactness and correctness of the proposed method. The absolute error functions with
N = 5, 10, 18, 20 are shown in Figures 3–6. Therefore, these plots quickly explain that the proposed
approach has small absolute errors.

Figure 2. Plot of comparison between the exact and approximate solutions of Example 1 for N = 5.

Figure 3. Plot of the absolute error with N = 5 for Example 1.
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Figure 4. Plot of the absolute error with N = 10 for Example 1.

Figure 5. Plot of the absolute error with N = 15 for Example 1.

Figure 6. Plot of the absolute error with N = 20 for Example 1.

We reported the numerical results of the exact and approximate solutions for various values N on
the interval [0, 1] in Table 1. On the other hand, numerical results are showed for different values N in
Table 2. The absolute error functions are displayed for various values of N on the interval [0, 1] for
this problem in Table 3. Also, Table 4 compares the numerical results of a new proposed numerical
approach with Euler’s method [10] for different values of N. Also, Table 4 indicates that the new
numerical method has better accuracy and efficiency compared to the old method.
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Table 1. Approximate and exact values of nonlinear Volterra integral equations with N = 5, 10, 15, 20
for Example 1.

N = 5 N = 10 N = 15 N = 20 yExact

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.585076 0.584768 0.584793 0.584797 0.584804
0.4 0.736620 0.736795 0.736802 0.736804 0.736806
0.6 0.843508 0.843427 0.843431 0.843434 0.843433
0.8 0.928164 0.928313 0.928317 0.928319 0.928318
1.0 1.00041 0.99996 1.000001 1.000001 1.000000

Table 2. Numerical results of ζN for different values N on the interval [0, 1] for Example 1.

N ζN Computing Time (s)

5 5.98532 × 10−4 0.321
10 1.14944 × 10−4 0.357
15 4.48214 × 10−5 0.420
20 2.85973 × 10−5 0.451

Table 3. The absolute error function of various values N on the interval [0, 1] for Example 1.

t e5(t) e10(t) e15(t) e20(t)

0.0 0.000000000 0.0000000000 0.00000000 0.00000000
0.2 0.000272294 0.0000359627 0.00001089 6.67632 × 10−6

0.4 0.000185829 0.0000111075 3.8548 × 10−6 2.25757 × 10−6

0.6 0.000075540 5.5081 × 10−6 1.83763 × 10−6 9.72768 × 10−6

0.8 0.000153622 4.62581 × 10−6 1.11576 × 10−6 2.18163 × 10−6

1.0 0.000406512 0.0000397521 8.73408× 10−6 9.0017 × 10−6

Table 4. Comparison of maximum absolute errors between a new approach approximate solution and
Euler’s method on [0, ε] for Example 1.

Euler’s Method [10] Our Method (Genocchi Polynomials)

N
ε = 0 ε = 0.01 ε = 0.02 ε = 0.03

N
ε = 0 ε = 0.01 ε = 0.02 ε = 0.03

e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N)

80 0.67 × 10−2 6.60 × 10−3 6.50 × 10−3 6.30 × 10−3 5 0.000 1.851 × 10−3 2.343 × 10−3 2.427 × 10−3

160 3.21 × 10−3 3.10 × 10−3 3,10 × 10−3 3.03 × 10−3 10 0.000 6.595 × 10−4 6.704 × 10−4 6.704 × 10−4

320 1.55 × 10−3 1.50 × 10−3 1.50 × 10−3 1.50 × 10−3 15 0.000 3.193 × 10−4 3.193 × 10−4 3.178 × 10−4

640 753 × 10−4 7.40 × 10−4 7.20 × 10−4 7.20 × 10−4 20 0.000 2.305 × 10−4 2.305 × 10−4 2.305 × 10−4

Example 2. Next, we discuss the following Lighthill’s equation which was proposed in [10] and extensively
studied in [10,29,30]. The authors employed the iterative method and schemes to solve this integral equation.

y(t) = 1−
√

3
π

∫ t

0

s
1
3 y4(s)

(t− s)
2
3

ds, t ∈[0, 1]., (57)

The numerical results for this example are obtained by the presented approach for different values
of N and are given in Tables 5 and 6. Also, in Table 7, the maximum absolute errors can be compared
with those that were achieved by Euler’s method in [10] by different values of N on the interval [0, ε].
We can see that our proposed method is very fast compared to Euler’s method. Figure 7 displays the
convergence approximate solutions using our method (Genocchi polynomials) and the Picard iteration
y2 with different values of N on the interval [0, ε] with ε = 0.002 for this problem.
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Table 5. Numerical results on the interval [0, ε], with ε = 0.002 for Example 2.

N ζN Computing Time (s)

5 1.912914 × 10−4 0.351
10 1.087754 × 10−4 0.402
15 9.106063 × 10−5 0.457
20 7.200394 × 10−5 0.530

Table 6. The approximate solutions by different values of N and M for Example 2.
∥∥∥yN − yM

∥∥∥∞
t N = 5; M = 7 N = 7; M = 10 N = 10; M = 12 N = 12; M = 13

0.0000 1.11022 × 10−16 1.12022 × 10−16 0.000000000 0.000000000

0.0004 0.000507344 0.000477524 0.000214749 0.0000875408

0.0008 0.000800212 0.000750437 0.000336102 0.0001366621

0.0012 0.001041861 0.000973492 0.000434214 0.0001761062

0.0016 0.001254042 0.001167461 0.000518585 0.0002097873

0.002 0.001445845 0.001341082 0.000593241 0.000239374

Table 7. Comparison of maximum absolute errors e∞(N) =
∥∥∥y2 − yN

∥∥∥ ∞ between our method (Genocchi
polynomials) and Euler’s method: the Picard iterate y2 was used on [0, ε] for Example 2.

Euler’s Method [10] Our Method (Genocchi Polynomials)

N
ε = 0.002 ε = 0.003 ε = 0.008

N
ε = 0.002 ε = 0.003 ε = 0.008

e∞(N) e∞(N) e∞(N) e∞(N) e∞(N) e∞(N)

40 3.60 × 10−2 3.00 × 10−2 1.70 × 10−2 5 6.165 × 10−3 7.441 × 10−3 9.878 × 10−3

80 2.10 × 10−2 1.7 × 10−2 9.10 × 10−3 10 3.378 × 10−3 3.386 × 10−3 4.162 × 10−3

160 1.01 × 10−2 8.4 × 10−3 4.00 × 10−3 12 2.785 × 10−3 3.113 × 10−3 3.222 × 10−3

320 4.00 × 10−3 3.00 × 10−3 1.30 × 10−3 15 2.151 × 10−3 2.311 × 10−3 2.232 × 10−3

Figure 7. Plot of approximate solutions by our method (Genocchi polynomials) with different values of
N on the interval [0, ε] with ε = 0.002 for Example 1.

6. Conclusions and Future Work

In the study of many nonlinear problems in heat conduction, boundary-layer heat transfer,
chemical kinetics, and superfluidity, we are often led to singular Volterra integral equations that are
difficult to solve analytically. In this article, a spectral method based on Genocchi polynomials is
presented for solving nonlinear Volterra integral equations with weakly singular kernels. An error
analysis of the spectral approach has been done. Two numerical examples are provided to confirm the
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applicability and accuracy of the scheme. Also, the proposed method results have been compared
with Euler’s method to show the superiority of the present method with better results in smaller N.
For future works, we can use other polynomials like Chebyshev, Lagger, etc. for implementation,
and by comparing the archived results, we can expand the present method and implement it on the
system of nonlinear Volterra integral equations and nonlinear Volterra integral equations of mix type
or the first kind of Volterra integral equations with discontinuous kernels.
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Abstract: This paper presents a numerical iterative method for the approximate solutions of nonlinear
Volterra integral equations of the second kind, with weakly singular kernels. We derive conditions
so that a unique solution of such equations exists, as the unique fixed point of an integral operator.
Iterative application of that operator to an initial function yields a sequence of functions converging
to the true solution. Finally, an appropriate numerical integration scheme (a certain type of product
integration) is used to produce the approximations of the solution at given nodes. The resulting
procedure is a numerical method that is more practical and accessible than the classical approximation
techniques. We prove the convergence of the method and give error estimates. The proposed method
is applied to some numerical examples, which are discussed in detail. The numerical approximations
thus obtained confirm the theoretical results and the predicted error estimates. In the end, we discuss
the method, drawing conclusions about its applicability and outlining future possible research ideas
in the same area.

Keywords: weakly singular Volterra integral equations; Picard iteration; product integration;
numerical approximation

MSC: 65R20; 45D05; 45E10; 37C25; 65D30

1. Introduction

Many fields in the area of Applied Mathematics rely on knowledge of integral equations, as they
arise naturally in various applications in Mathematics, Engineering, Physics, and Technology. They can
be used to model a wide range of physical problems such as heat conduction, diffusion, continuum
mechanics, geophysics, electricity, magnetism, neutron transport, traffic theory, and many more.
Integral equations provide solutions in designing efficient parametrization algorithms for algebraic
curves, surfaces, and hypersurfaces. Many initial and boundary value problems associated with
ordinary and partial differential equations can be reformulated as integral equations.

Singular and weakly singular integral equations are of particular interest, since they are used to
solve inverse boundary value problems whose domains are fractal curves, where classical calculus
cannot be used. Abel equations and other fractional order integral equations were studied extensively
and are used in modeling various phenomena in biophysics, viscoelasticity, electrical circuits, etc.

Solvability and properties of singular Volterra integral equations were studied using various
analytical and approximating methods. We mention existence (and uniqueness) results [1–3], resolvent
methods [4], Laplace transforms [2,5,6], fixed point theorems [3,7], etc. Numerical solutions have been
found, using product integration [8], collocation and iterated collocation [9–12], homotopy perturbation
transform method [2,13], Tau method based on Jacobi functions [14], Nyström methods [8], quadrature
schemes [15], variational iteration methods [6], block-pulse wavelets [16], modified quadratic spline
approximation [17], reproducing kernel method [18], etc.
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Researchers around the world have studied properties of the solutions, such as regularity [9,19],
properties of the resolvent [4], monotonicity [20] and others [21–23].

In many applications modeled by integral equations, the kernels are not smooth, making it
difficult both to find a solution and to approximate it numerically, as the convergence of approximate
methods depends in general on the smoothness of the solution. Thus, classical analytical methods,
such as projection methods perform poorly in such cases, as the linear system they lead to is generally
badly conditioned and difficult to solve. Proof of convergence and error estimation can also be
laborious, when classical calculus cannot be used. Oftentimes, they also have a high implementation
cost. Hence, there is a high need for speedy, easy to use numerical methods for these types of equations.
The method we propose is based on a classical fixed point result, adapted appropriately. Then, for the
approximation of the integrals involved, the product integration numerical scheme we use is also quite
efficient, since most of the computations can be done only once, not at each iteration.

In this paper, we consider a Volterra integral equation of the type

u(t) =

t∫

0

K(t, s, u(s)) ds + f (t), t ∈ [0, T], (1)

with the kernel of the form

K(t, s, u(s)) = a(t, s, u(s))(t− s)α−1 (2)

where 0 < α < 1 and a : [0, T]× [0, T]×R → R, f : (0, T] → R are continuous functions. Later on,
other smoothness assumptions will be made on a and f .

We derive conditions under which results from fixed point theory will provide the existence of
a unique solution of this equation, as well as a sequence of successive iterations to approximate it.
We briefly summarize the main results for the existence of fixed points of an operator on a Banach space.

Definition 1. Let (X, || · ||) be a Banach space. A mapping T : X → X is called a q−contraction if there
exists a constant 0 ≤ q < 1 such that

||Tx− Ty|| ≤ q||x− y||,

for all x, y ∈ X.

On Banach spaces, the well known contraction principle holds:

Theorem 1. Consider a Banach space (X, || · ||) and let T : X → X be a q−contraction. Then

(a) T has exactly one fixed point, which means equation x = Tx has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations xn+1 = Txn, n ∈ N, converges to the solution x∗, where x0

can be any arbitrary point in X;
(c) for every n ∈ N, the following error estimate

||xn − x∗|| ≤ qn

1− q
||Tx0 − x0||

holds.

Remark 1. Theorem 1 remains valid when X is replaced by a closed subset Y ⊆ X, satisfying T(Y) ⊆ Y.

We use Banach’s theorem to establish, under certain conditions, the existence and uniqueness
of a solution of Equation (1) and to approximate it by applying the operator successively. Then we
use a suitable numerical integration scheme to approximate the values of the solution at given nodes.
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The numerical method thus resulted is quite easy to use and implement, while giving accurate
approximations.

The paper is organized as follows. In Section 2 we derive necessary conditions for the existence
and uniqueness of the solution and discuss its regularity. In Section 3 the numerical method is
described, by use of a special type of product integration. The convergence and error analysis of
the method are also discussed in details. Numerical examples are given in Section 4, illustrating the
applicability of the proposed method. In Section 5, the advantages of this new method are summarized
and future possible work ideas in the same area are discussed.

2. Existence and Uniqueness of the Solution

To solve Equation (1), we apply the contraction principle to the associated integral operator

Fu(t) =

t∫

0

a(t, s, u(s))(t− s)α−1 ds + f (t). (3)

Remark 2. Since a ∈ C ([0, T]× [0, T]×R) and f ∈ C(0, T], it is well known that the operator F : C[0, T]→
C[0, T] is well defined, i.e., F

(
C[0, T]

)
⊆ C[0, T] (for the proof, see e.g., [7]).

Then we solve the integral Equation (1) by finding a fixed point for the operator F:

u = Fu. (4)

We consider the space X = C[0, T] equipped with the Bielecki norm

||u||τ := max
t∈[0,T]

|u(t)| e−τt, u ∈ X,

for some suitable constant τ > 0. Then, as is well known, (X, || · ||τ) is a Banach space (see e.g., [24])
and we have the following result.

Theorem 2. Let F : (X, || · ||τ)→ (X, || · ||τ) be defined by Equation (3). Assume that there exists a constant
L > 0 such that

|a(t, s, u)− a(t, s, v)| ≤ L|u− v|, (5)

for all t, s ∈ [0, T] and all u, v ∈ R. Then

(a) Equation (4) has a unique solution u∗ ∈ X;
(b) the sequence of successive approximations

un+1 = Fun, n = 0, 1, . . . (6)

converges to the solution u∗ for any u0 ∈ X;
(c) for every n ∈ N, the following error estimate

||un − u∗||τ ≤ qn

1− q
||Fu0 − u0||τ (7)

holds, where q :=
LΓ(α)

τα
is the contraction constant.
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Proof of Theorem 2. Let t ∈ [0, T] be fixed. By Equation (5), we have

|Fu(t)− Fv(t)| ≤
t∫

0

∣∣a(t, s, u(s))− a(t, s, v(s))
∣∣(t− s)α−1 ds

≤ L
t∫

0

∣∣u(s)− v(s)
∣∣(t− s)α−1 ds

= L
t∫

0

∣∣u(s)− v(s)
∣∣e−τseτs(t− s)α−1 ds

≤ L||u− v||τ
t∫

0

eτs(t− s)α−1 ds

= L||u− v||τeτt
τt∫

0

e−y
(

1
τ

y
)α−1 1

τ
dy

≤ LΓ(α)
τα
||u− v||τeτt,

where the change of variables y = τ(t− s), 0 ≤ y ≤ τt was used and Γ(α) =
∞∫

0

e−xxα−1dx denotes

Euler’s Gamma function. Then

|Fu(t)− Fv(t)|e−τt ≤ LΓ(α)
τα
||u− v||τ ,

for every t ∈ [0, T] and, so,

||Fu− Fv||τ ≤ LΓ(α)
τα
||u− v||τ .

We can choose τ > 0 such that q :=
LΓ(α)

τα
< 1, so F is a q−contraction. The conclusions now

follow from Theorem 1.

Next, we address the question of smoothness of the solution of Equation (1). The following
result holds:

Theorem 3. Let the conditions of Theorem 2 hold. If, in addition, f ∈ C2,1−α(0, T] and a ∈
C2 ([0, T]× [0, T]×R), then u∗ ∈ C2,1−α(0, T], also.

Remark 3. For the proof, see e.g., [19] (with i = j = k = 0 and ν = 1− α).

The Lipschitz condition in Theorem 2 can be very prohibitive if required on the entire space. To be
able to use it on a wider range of applications, we restrict it to a closed subset. Let || · || denote the
Chebyshev norm on C[0, T] (which is equivalent to the Bielecki norm) and consider the closed ball
BR := {u ∈ C[0, T]

∣∣ ||u− f || ≤ R}, for some R > 0. Then BR ⊆ X and we have the following result.

Theorem 4. Let us suppose that there exists a constant L > 0 such that

|a(t, s, u)− a(t, s, v)| ≤ L|u− v|, (8)
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for all t, s ∈ [0, T] and all u, v ∈ [R1 − R, R2 + R], where R1 := min
t∈[0,T]

f (t), R2 := max
t∈[0,T]

f (t). Further

assume that
MTα

α
≤ R, (9)

where M := max |a(t, s, u)| over all t, s ∈ [0, T] and all u, v ∈ [R1 − R, R2 + R]. Then the conclusions of
Theorem 2 hold on BR.

Proof of Theorem 4. By Remark 1, all we need to show is that F(BR) ⊆ BR. Let u ∈ BR. Then, for all
t ∈ [0, T],

R1 − R ≤ u(t) ≤ R2 + R,

so, for u ∈ BR, conditions in Equations (8) and (9) hold.
Fix t ∈ [0, T]. We have

|Fu(t)− f (t)| ≤
t∫

0

∣∣a(t, s, u(s))
∣∣(t− s)α−1 ds

≤ M
t∫

0

(t− s)α−1 ds

≤ MTα

α
≤ R.

Thus, ||Fu− f || ≤ R and F(BR) ⊆ BR.

3. Numerical Method

We have now established that under the conditions of Theorem 4 a unique solution of Equation (1)
exists and that it can be obtained as the limit of the sequence of successive approximations given in
Equation (6). Still, the integrals involved in the iteration process cannot be computed exactly, so they
have to be approximated numerically. We now proceed to approximate the values of the solution u∗(t)
at a given set of nodes 0 = t0 < . . . < tm = T. That means the singular integrals in Equation (6) have
to be approximated numerically at the nodes.

3.1. Product Integration

For the numerical solution, we use product integration (see [24]). The idea is to approximate
the integral

I(ϕ) =

b∫

a

ϕ(s)w(s) ds,

for ϕ a smooth function and a singular weight function w, using a sequence of functions ϕm such that
||ϕ− ϕm|| → 0 as m→ ∞ and the integrals

Im(ϕ) =

b∫

a

ϕm(s)w(s) ds

can be easily computed. Then

|I(ϕ)− Im(ϕ)| ≤ ||ϕ− ϕm||
b∫

a

|w(s)| ds, (10)
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so Im(ϕ)→ I(ϕ) as m→ ∞, at least as fast as ϕm → ϕ. Hence, for a set of nodes a = s0 < . . . < sm = b,
we use the approximation formula

I(ϕ) =
m

∑
k=1

sk∫

sk−1

ϕ(s)w(s) ds

≈
m

∑
k=1

sk∫

sk−1

ϕk(s)w(s) ds =
m

∑
k=0

wk ϕ(sk), (11)

with the error given in Equation (10).
One of the easiest (in terms of keeping the algebra simple) product integration methods is the

so-called product trapezoidal rule. The name comes from the fact that the idea is the same as the one
used to produce the trapezoidal rule, i.e., start with piecewise linear interpolation of the function ϕ,
in order to obtain the sequence ϕm.

Next, we derive the formulas for approximating

I(ϕ) =

b∫

0

ϕ(s)(b− s)α−1 ds,

for ϕ ∈ C2[0, b] and w(s) = (b− s)α−1, 0 < α < 1. Let sk = kh = k
b
m

, for k = 0, . . . , m. Let

ϕm(s) =
1
h
[
(sj − s)ϕ(sj−1) + (s− sj−1)ϕ(sj)

]
, for s ∈ [sj−1, sj], j = 1, . . . , m.

Then

||ϕ− ϕm|| ≤
h2

8
||ϕ′′||∞ and

|I(ϕ)− Im(ϕ)| ≤ h2

8
bα

α
||ϕ′′||∞ =

b2

8m2
bα

α
||ϕ′′||∞. (12)

Now,

I(ϕ) ≈
m

∑
k=0

wk ϕ(sk), (13)

where

w0 =
1
h

s1∫

s0

(s1 − s)w(s) ds, wm =
1
h

sm∫

sm−1

(s− sm−1)w(s) ds,

wj =
1
h




sj∫

sj−1

(s− sj−1)w(s) ds +

sj+1∫

sj

(sj+1 − s)w(s) ds


 , j = 1, . . . , m− 1.
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To simplify the computations, we make the substitution s− sj−1 = hy, 0 ≤ y ≤ 1. We get

w0 = h
1∫

0

(1− y)w(s0 + hy) dy = h
1∫

0

(1− y)(b− hy)α−1dy

wm = h
1∫

0

yw(sm−1 + hy) dy = h
1∫

0

y (b− h(m− 1 + y))α−1 dy

wj = h
1∫

0

yw(sj−1 + hy) dy + h
1∫

0

(1− y)w(sj + hy) dy

= h
1∫

0

(1− y) (b− h(j− 1 + y))α−1 dy + h
1∫

0

y (b− h(j + y))α−1 dy.

Let

ψ1(i) =

1∫

0

y
(

b− h(i + y)
)α−1

dy,

ψ2(i) =

1∫

0

(1− y)
(

b− h(i + y)
)α−1

dy, i = 0, 1, . . . , m− 1. (14)

Then the coefficients in Equation (13) can be written as

w0 = hψ2(0), wm = hψ1(m− 1),

wj = hψ1(j− 1) + hψ2(j), j = 1, . . . , m− 1. (15)

Next, we apply these formulas to the integrals in Equation (6), i.e., to

Fun(tk) =

tk∫

0

a (tk, s, un(s)) (tk − s)α−1 ds,

for h = T/m and tk = kh, k = 0, 1, . . . , m. For a fixed k ∈ {0, . . . , m}, let w(k)(s) = (tk − s)α−1 denote
the weight function. On each interval [0, tk], we use the nodes {t0, . . . , tk}. Please note that on each

subinterval [0, tk], we still have the same step size
tk
k
=

kh
k

= h. We now have

tk∫

0

a (tk, s, un(s)) (tk − s)α−1 ds =

tk∫

0

a (tk, s, un(s))w(k)(s) ds

=
k

∑
j=0

wj,ka
(
tk, tj, un(tj)

)
+ Rn,k. (16)

In analogy to Equation (14), for i = 0, 1, . . . , let

ψ1,k(i) =

1∫

0

y
(

tk − h(i + y)
)α−1

dy = hα−1
1∫

0

y(k− i− y)α−1dy, (17)

ψ2,k(i) =

1∫

0

(1− y)
(

tk − h(i + y)
)α−1

dy = hα−1
1∫

0

(1− y)(k− i− y)α−1dy.
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Now, the coefficients in Equation (16) can be expressed as

w0,k = hψ2,k(0), wk,k = hψ1,k(k− 1),

wj,k = hψ1,k(j− 1) + hψ2,k(j), j = 1, . . . , k− 1. (18)

Remark 4. It is worth mentioning that by Equation (17), the functions ψ1,k and ψ2,k can be computed once,
for k = 0, . . . , m and then be used in Equation (18) to find the coefficients wj,k at every step, they do not have to
be computed at each iteration n. This makes the implementation of the method very efficient.

By Equation (12), the error bound satisfies

∣∣Rn,k
∣∣ ≤ h2

8
Tα

α
||a (t, s, un(s))

′′
s || (19)

Let us notice that this bound does not depend on k, thus, we will simply write Rn, not Rn,k.
Also, let us note the following thing that will be useful in the next subsection: for a fixed k ∈ {0, . . . , m},
we have

k

∑
j=0

wj,k = h
k−1

∑
j=0

(
ψ1,k(j) + ψ2,k(j)

)

=
hα

α

k

∑
j=0

[
(k− j)α − (k− j− 1)α

]
(20)

=
(hk)α

α
≤ Tα

α
.

3.2. Convergence and Error Analysis

Assuming the conditions of Theorems 3 and 4 hold, one can choose u0 ∈ BR ∩ C2,1−α(0, T],
such that un ∈ BR ∩ C2,1−α(0, T]. To analyze the convergence and give an error estimate, we make the
following notations. Let

Ma = max
r≤2

∣∣∣ ∂ra(t, s, u)
∂tr1 ∂sr2 ∂ur3

∣∣∣, r = r1 + r2 + r3,

M f = max{|| f ||, || f ′||, || f ′′||},

over all t ∈ [0, T], s ∈ [0, t) and u ∈ [R1 − R, R2 + R]. If f ∈ C2,1−α(0, T] and
a ∈ C2 ([0, T]× [0, T]× [R1 − R, R2 + R]), one can find a constant M0 > 0 such that the remainder in
Equation (19) satisfies

∣∣Rn
∣∣ ≤ h2

8
Tα

α
M0, n = 0, 1, . . . (21)

The constant M0 may depend on Ma, M f or τ, but not on m, k or n.
To simplify the writing, we make the following notation. Let

γ =
LTα

α
.
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Next we define our numerical method using Equation (5) iteratively, with initial point u0 ≡ f .
For every k = 0, m, we have

u0(tk) = f (tk), (22)

un+1(tk) =

tk∫

0

a (tk, s, un(s)) (tk − s)α−1ds + f (tk), n = 0, 1, . . .

We will approximate un(tk) by ũn(tk), obtained by applying Equation (16) to the integrals above:

u1(tk) =

tk∫

0

a (tk, s, f (s)) (tk − s)α−1ds + f (tk)

=
k

∑
j=0

wj,ka
(
tk, tj, f (tj)

)
+ R1 + f (tk) (23)

= ũ1(tk) + R̃1,

with

ũ1(tk) =
k

∑
j=0

wj,ka
(
tk, tj, f (tj)

)
+ f (tk).

Denote the error at the nodes by

e(un, ũn) := max
tk∈[0,T]

|un(tk)− ũn(tk)|.

By Equation (21), we have

e(u1, ũ1) = |R̃1| = |R1| ≤
h2

8
Tα

α
M0. (24)

Similarly, we get

u2(tk) =

tk∫

0

a (tk, s, u1(s)) (tk − s)α−1ds + f (tk)

=
k

∑
j=0

wj,ka
(
tk, tj, u1(tj)

)
+ R2 + f (tk)

=
k

∑
j=0

wj,ka
(
tk, tj, ũ1(tj) + R̃1

)
+ R2 + f (tk)

= ũ2(tk) + R̃2,

where

ũ2(tk) =
k

∑
j=0

wj,ka
(
tk, tj, ũ1(tj)

)
+ f (tk).
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We have, by Equations (21) and (24),

e(u2, ũ2) = |R̃2| ≤ L|R̃1|
k

∑
j=0

wj,k + |R2|

≤ L|R̃1|
Tα

α
+ |R2|

≤ L
h2

8
Tα

α
M0

Tα

α
+

h2

8
Tα

α
M0 (25)

=
h2

8
Tα

α
M0(1 + γ).

In a similar fashion, we get

un(tk) =

tk∫

0

a (tk, s, un−1(s)) (tk − s)α−1ds + f (tk)

=
k

∑
j=0

wj,ka
(
tk, tj, un−1(tj)

)
+ Rn + f (tk)

=
k

∑
j=0

wj,ka
(
tk, tj, ũn−1(tj) + R̃n−1

)
+ Rn + f (tk)

= ũn(tk) + R̃n,

with

ũn(tk) =
k

∑
j=0

wj,ka
(
tk, tj, ũn−1(tj)

)
+ f (tk). (26)

The values ũn(tk) can always be computed from the values at the previous step and, for the error,
by induction, we have

e(un, ũn) = |R̃n| ≤ L|R̃n−1|
k

∑
j=0

wj,k + |Rn|

≤ L|R̃n−1|
Tα

α
+ |Rn|

≤ h2

8
Tα

α
M0γ

(
1 + · · ·+ γn−1

)
+

h2

8
Tα

α
M0 (27)

=
h2

8
Tα

α
M0 (1 + · · ·+ γn) .

Now we can give the following error estimate for our numerical method.

Theorem 5. Assume the conditions of Theorem 4 hold with f ∈ C2,1−α(0, T] and
a ∈ C2 ([0, T]× [0, T]× [R1 − R, R2 + R]). Furthermore, assume that

γ :=
LTα

α
< 1. (28)

Then the following error estimate holds

e(u∗, ũn) ≤
qn

1− q
||Fu0 − u0||τ +

T2

8m2
Tα

α
M0

1
1− γ

, (29)
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for all n = 1, 2, . . . and any m ∈ N∗, where u∗ is the true solution of Equation (4) and ũn are the approximations
given by Equation (26).

Proof of Theorem 5. By Equations (27) and (28),

e(un, ũn) ≤
T2

8m2
Tα

α
M0

1
1− γ

.

Then, by Theorem 4,

e(u∗, ũn) ≤ e(u∗, un) + e(un, ũn)

≤ qn

1− q
||Fu0 − u0||τ +

T2

8m2
Tα

α
M0

1
1− γ

,

where q is the contraction constant given in Theorem 2.

4. Numerical Experiments

In this section, we give numerical examples of nonlinear weakly singular integral equations,
to show the applicability of the method proposed.

Example 1. Consider the integral equation

u(t) =
1

12

t∫

0

u2(s)(t− s)−1/2 ds + t1/2
(

1− 1
9

t
)

, t ∈ [0, 1],

with exact solution u∗(t) =
√

t.

We have α = 1/2, a(t, s, u) =
1

12
u2 and f (t) = t1/2

(
1− 1

9
t
)

. Let us check that all our theoretical

assumptions are met.

For the function f , R1 = 0, R2 = 8/9 and we choose R = 1. Then M =
1

12

(
17
9

)2
≈ 0.2973 and

for all u ∈ [R1 − R, R2 + R],

MTα

α
≈ 0.5947 ≤ R.

We have
∂a
∂u

=
1
6

u, so taking L = max
∣∣∣ ∂a
∂u

∣∣∣, over u ∈ [R1 − R, R2 + R], L ≈ 0.3148 and

γ ≈ 0.6296 < 1.

Also, choosing τ = 1, we have

LΓ(α)
τα

≈ 0.5580 < 1.

Thus, all conditions of Theorem 5 are satisfied.
We apply the product trapezoidal rule for the values m = 12 and m = 24, with the corresponding

nodes tk =
1
m

k, k = 0, m. In Table 1 we give the errors e(u∗, ũn), with initial approximation u0(t) = f (t).

Figure 1 displays the graphs of the true solution u∗(t) and of the approximate solution ũn, for n = 10
iterations and m = 24 nodes, for the values t ∈ [0, 1]. As both the errors in Table 1 and the graphs in
Figure 1 show, there is very good agreement between the true values and the approximate ones of the
solution at the nodes t0, . . . , tm.
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Table 1. Errors e(u∗, ũn) for Example 1.

n m

12 24

1 1.084348 × 10−1 1.882162 × 10−2

5 2.799553 × 10−4 5.567188 × 10−6

10 6.813960 × 10−7 4.690204 × 10−9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true solution

approximate solution

Figure 1. Example 1, n = 10, m = 24.

Example 2. Next, consider the equation

u(t) =
1

18

t∫

0

(
sin2 s + u2(s)

)
(t− s)−2/3 ds + cos t− 1

6
t1/3, t ∈

[
0,

π

4

]
,

whose exact solution is u∗(t) = cos t.

Now α = 1/3, a(t, s, u) = 1/18
(
sin2 s + u2) and f (t) = cos t− t1/3/6. We check the applicability

of the method, by verifying all the theoretical assumptions. Here, R1 = f (π/4) ≈ 0.5533, R2 = 1 and
taking R = 1/2, we have, for u ∈ [R1 − R, R2 + R], M = 11/72 ≈ 0.1528 and

MTα

α
≈ 0.4229 ≤ R.

Again, taking L = max
∣∣∣ ∂a
∂u

∣∣∣, over u ∈ [R1 − R, R2 + R], we get L = 1/6 and

γ ≈ 0.4613 < 1.

For τ = 5, we have

LΓ(α)
τα

≈ 0.7227 < 1.

So all conditions in Theorem 5 are verified.

122



Symmetry 2020, 12, 1862

Table 2 contains the errors e(u∗, ũn), with initial approximation u0(t) = f (t), for the values

m = 12 and m = 24, with nodes tk =
π

4m
k, k = 0, m. Figure 2 shows the graphs of the true solution

u∗(t) and of the approximate solution ũn, for n = 10 iterations and m = 24 nodes, for t ∈ [0, π/4].

Table 2. Errors e(u∗, ũn) for Example 2.

n m

12 24

1 1.002977 × 10−1 3.014020 × 10−2

5 2.315358 × 10−4 4.412851 × 10−5

10 9.363611 × 10−7 5.525447 × 10−9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.7

0.75

0.8

0.85

0.9

0.95

1

true solution

approximate solution

Figure 2. Example 2, n = 10, m = 24.

As seen in the examples above, the proposed method produces approximations that are in very
good agreement with the exact values of the solution, thus confirming the theoretical results and error
estimates given in the previous section.

5. Conclusions

In this paper, we presented a numerical iterative method for approximating solutions of nonlinear
Volterra integral equations of the second kind, with weakly singular kernels. We used Banach’s
fixed point theorem to establish the existence and uniqueness of the solution and to find a sequence
converging to it (Picard iteration). Then we employed the product trapezoidal rule to approximate
each iteration at a given set of nodes in the domain. The present method is fairly simple to use,
its convergence is based on a classical fixed point result. It is also quite efficient and inexpensive in
(the cost of) implementation, most of the computations can be done only once, not at each iteration
(see Remark 4). Thus, when only values of the solution at some points are needed (as is the case in
many applications), this method is more practical and accessible than other classical methods.

Yet, the method converges quite fast, with order O(qn) with respect to the number of successive
approximations and order O

(
1

m2

)
with respect to the number of nodes. As the examples show, it gives

good approximations even with a relatively small number of iterations and of quadrature nodes.
In future works, other types of singularity of the kernel can be explored for Volterra or Fredholm

integral equations. Also, more complicated kernels can be considered, such as kernels containing
modified (or delayed) arguments, or other special types of kernels. Various other iteration techniques
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for fixed point successive approximations can be employed, such as Mann iteration, Krasnoselskii
iteration, and others.
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Abstract: In this paper, we consider the matrix expression of convolution, and its generalized
continuous form. The matrix expression of convolution is effectively applied in convolutional
neural networks, and in this study, we correlate the concept of convolution in mathematics to that in
convolutional neural network. Of course, convolution is a main process of deep learning, the learning
method of deep neural networks, as a core technology. In addition to this, the generalized continuous
form of convolution has been expressed as a new variant of Laplace-type transform that, encompasses
almost all existing integral transforms. Finally, we would, in this paper, like to describe the theoretical
contents as detailed as possible so that the paper may be self-contained.

Keywords: matrix expression of convolution; Laplace-type transforms; convolution neural
network; kernel

1. Introduction

Deep learning means the learning of deep neural networks, called deep and if multiple hidden
layers exist. Deep learning allows computational models that are composed of multiple processing
layers to learn representations of data with multiple levels of abstraction [1]. The convolution in
convolutional deep neural network (CNN) is the tool for obtaining a feature map from the original
image data, it sweeps the original image with a kernel matrix, and transforms the original data into
a different shape. This distorted image is called a feature map. Therefore, in CNN, the convolution
can be regarded as a tool that creates a feature map from the original image. Herein, the concept of
convolution in artificial intelligence is demonstrated mathematically.

The core concept of CNN is the convolution which applies the weight to the receptive fields
only, and it transforms the original data into a feature map. This process is called convolution.
This is a similar principle to integral transform. The method of Integral transform maps from the
original domain to another domain to solve a given problem more easily. Since the matrix expression
of convolution is an essential concept in artificial intelligence, we believe that this study would
certainly be meaningful. In addition to this, the generalized continuous form of convolution has also
been studied, and thus this form is expressed as a new variant of Laplace-type transform.

On one hand, the transform theory is extensively utilized in fields involving medical
diagnostic equipment, such as magnetic resonance imaging or computed tomography.
Typically, a projection data are obtained by an integral transform, and an image using an inverse
transform is produced. Although plausible integral transforms exist, almost all existing integral
transforms are not sufficiently satisfied with fullness, and can be interpreted as a Laplace-type
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transform. One of us proposed a comprehensive form of the Laplace-type integral transform in [2].
The present study is being conducted to investigate the matrix expression of convolution and its
generalized continuous form.

In [2], a Laplace-type integral transform was proposed, expressed as

Gα( f ) = G( f ) = uα
∫ ∞

0
e−

t
u f (t)dt. (1)

For values of α as 0, −1, 1, and −2, we have, respectively, the Laplace [3], Sumudu [4], Elzaki [5],
and Mohand transforms [6]. This form can be expressed in various manners. Replacing t by ut,
we have

G( f ) = uβ
∫ ∞

0
e−t f (ut)dt,

where β = α + 1. In the form, β values of 1, 0, 2, and −1 correspond to the Laplace, Sumudu, Elzaki,
and Mohand transforms, respectively. If we substitute u = 1/s in (1), we then obtain the simplest form
of the generalized integral transform as follows:

G( f ) = sγ
∫ ∞

0
e−st f (t)dt,

where γ = −α. In this form, the Laplace, Sumudu, Elzaki, and Mohand transforms have γ values
of 0, 1, −1, and 2, respectively. It is somewhat paved, but essentially a simple way to derive the
Sumudu transform is to multiply the Laplace transform by s. Similarly, it can be obtained multiply
by s−1 to obtain the Elzaki transform, and multiply by s2 to obtain the Mohand transform. The natural
transform [7] can be obtained by substituting f (t) with f (ut). Additionally, by substituting t = ln x,
the Laplace-type transform G( f ) can be expressed as

s−α
∫ ∞

1
f (ln x)x−s−1 dx.

As a similar form, there is a Mellin transform [8] of the form
∫ ∞

0
f (x)xs−1 dx.

As shown above, many integral transforms have their own fancy masks, but most of
them can essentially be interpreted as Laplace-type transforms. From a different point of view,
a slight change in the kernel results in a significant difference in the integral transform theory.
Meanwhile, plausible transforms exist, such as the Fourier, Radon, and Mellin transforms.
Typically, if the interval of integration and the power of kernel are different, it can be interpreted
as a completely different transform. Studies using Laplace transform were conducted in [9,10].
The generalized solutions of the third-order Cauchy–Euler equation in the space of right-sided
distributions has found [9], studied the solution of the heat equation without boundary conditions [10],
and investigated further properties of Laplace-type transform [11]. As an application, a new class
of Laplace-type integrals involving generalized hypergeometric functions has been studied [12,13].
As for research related to the integral equation, Noeiaghdam et al. [14] presented a new scheme based
on the stochastic arithmetic. The scheme is presented to guarantee the validity and accuracy of the
homotopy analysis method. Different kinds of integral equations such as singular and first kind are
considered to find the optimal results by applying the proposed algorithms.

The main objective of this study is to investigate the matrix expression of convolution and its
generalized continuous form. The generalized continuous form of the matrix expression was carried
out in the form of a new variant of Laplace-type transform. The obtained result are as follows:

128



Symmetry 2020, 12, 1791

(1) If the matrix representing the function (image) f is A and the matrix representing the function
g is B, then the convolution f ∗ g is represented by the sum of all elements of A ◦ B and this is
the same as tr(ABT) where ◦ is array multiplication, T is the transpose, and tr is the trace.
Thus, the convolution in artificial intelligence (AI) is the same as tr(ABT).

(2) The generalized continuous form of the convolution in AI can be represented as

V( f ) = Φ(u)
∫ ∞

0
e−t∆ f (t) dt,

where Φ(u) is an arbitrary bounded function and

∆ = ∆(δ, u) =
ln[1 + δ−1

u ]

δ− 1
.

2. Matrix Expression of Convolution in Convolutional Neural Network (CNN)

Note that functions can be interpreted as images in artificial intelligence (AI). The convolution is
changed from

∫ t
0 f (τ)g(t− τ)dτ to

t

∑
τ=0

f (τ)g(t− τ)

by the discretization. The convolution in CNN is the tool for obtaining a feature map from the
original image data, plays a role to sweeping the original image with kernel matrices (or filter), and it
transforms original data into a different shape. In order to calculate the convolution, each n× n part of
the original matrix is element-wise multiplied by the kernel matrix and all its components are added.
Typically, the kernel matrix is using by 3× 3 matrix. On the one hand, the pooling (or sub-sampling) is
a simple job, reducing the size of the image made by convolution. It is the principle that the resolution
is increased when the screen is reduced.

Let the matrix representing the function f is A and the matrix representing the function g is B.
For two matrices A and B of the same dimension, the array multiplication (or sweeping) A ◦ B
is given by

(A ◦ B)ij = (A)ij(B)ij.

For example, the array multiplication for 2× 2 matrices is

(
a b
c d

)
◦
(

e f
g h

)
=

(
ae b f
cg dh

)
.

The array multiplication appears in lossy compression such as joint photographic experts group
and the decoding step. Let us look at an example.

Example 1. In the classification field of AI, the pixel is treated as a matrix. When the original image is




1 2 3 0 0
0 1 2 1 0
3 0 1 0 1
1 0 2 1 0
0 1 1 2 0




,

array multiplying the kernel matrix 


2 0 1
0 1 2
2 0 1



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on the first 3× 3 matrix, we obtain the matrix



2 0 3
0 1 4
6 0 1


 .

Now, adding all of its components, we obtain 17. Next, if we array-multiply the kernel matrix to the
3× 3 matrix 


2 3 0
1 2 1
0 1 0




on the right and add all the components, we get 8 by stride 1. If we continue this process to the final matrix



1 0 1
2 1 0
1 2 0


 ,

we get 6. Consequently, the original matrix changes to



17 8 10
8 5 10
12 8 6




by using the convolution kernel. This is called the convolved feature map.

This is just an example for understanding, and in perceptron the output uses a value between
−1 and 1 using the activation function. Note that the perceptron is an artificial network designed to
mimic the brain’s cognitive abilities. Therefore, the output of neuron (or node) Y can be represented as

Y = sign[
n

∑
i=1

xiwi −Θ] =

{
1 X ≥ Θ

−1 X < Θ
,

where w is a weight, Θ is the threshold value, and X is the activation function with X = ∑n
i=1 xiwi.

In the backpropagation algorithm of deep neural network, the sigmoid function

Ysigmoid =
1

1 + e−x

is used as the activation function [15]. This function is easy to differentiate and ensures neuron output
is in [0, 1]. If max-pulling is applied to the above convolved feature map, the resulting matrix becomes
1× 1 matrix (17) = 17.

As discussed above, convolution in AI can be obtained by array multiplication. We would like to
associate this definition with matrix multiplication in mathematics.

Definition 1. (Convolution in AI) If the matrix representing the function (image) f is A and the matrix
representing the function g is B, then the convolution f ∗ g is represented by the sum of all elements of
A ◦ B and this is the same as tr(ABT) where ◦ is array multiplication, T is the transpose, and tr is the trace.
Thus, the convolution in AI is the same as tr(ABT), the sum of all elements on the diagonal with the right side
facing down in ABT .

Typically, the convolution kernel is used as a 3× 3 matrix, but for easy understanding, let us
consider a 2× 2 matrix.
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Example 2. If

A =

(
a b
c d

)

and

B =

(
e f
g h

)
,

then the convolution in AI is calculated as ae + b f + cg + dh by the sweeping. On the other hand,

ABT =

(
a b
c d

)(
e g
f h

)
=

(
ae + b f ag + bh
ce + d f cg + dh

)
,

and
tr(ABT) = ae + b f + cg + dh

for T is the transpose and tr is the trace. This is the same result as in AI.

3. Generalized Continuous Form of Matrix Expression of Convolution

If the matrix representing a function f is A and the matrix representing a function g is B, then the
convolution of the functions f and g can be denoted by tr(ABT). Intuitively, the diagonal part of BT

corresponds to a graph of g(t− τ). The overlapping part of the graph can be interpreted as the concept
of intersection, that is, the concept of multiplication. Thus, the generalized continuous form of the
convolution in AI can be represented in a variant of Laplace-type transform given by

Gα( f ) = G( f ) = uα
∫ ∞

0
e−

t
u f (t)dt

= uα
∫ ∞

0
lim
δ→1

(1 +
δ− 1

u
)−

t
δ−1 f (t)dt.

If f (t) is a function defined for all t ≥ 0, an integral of Laplace-type transform vi( f ) is given by

F(∆) = vi( f ) =
∫ ∞

0
e−t∆(δ,u) f (t) dt

=
∫ ∞

0
[1 +

δ− 1
u

]−
t

δ−1 f (t) dt

for δ > 1 with

∆(δ, u) =
ln[1 + δ−1

u ]

δ− 1
.

Additionally, let Φ(u) be an arbitrary bounded function and let V( f ) be a variant of Laplace-type
transform of f (t). If f (t) is a function defined for all t ≥ 0, V( f ) is defined by

V( f ) = Φ(u)
∫ ∞

0
e−t∆ f (t) dt

= Φ(u)
∫ ∞

0
[1 +

δ− 1
u

]−
t

δ−1 f (t) dt

for δ > 1 with ∆ = ∆(δ, u).
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Based on the above two definitions, it is clear that the above variant of Laplace-type transform is
represented as V( f ) = Φ(u) · vi( f ) for an arbitrary function Φ(u). If so, let us see the relation with
other integral transforms. Since

V( f ) = Φ(u)
∫ ∞

0
e−t∆ f (t) dt,

if δ → 1+ and Φ(u) = uα, then it corresponds to the Gα transform. When we take δ → 1,
Φ(u) = 1, and u = 1/s, we get the Laplace transform. Similarly, when we take δ → 1,
Φ(u) = u−1 (δ → 1, Φ(u) = u), we get the Sumudu transform (Elzaki transform), respectively.
In order to obtain a simple form of generalization, it is better to set φ(u) to uα for an arbitrary integer α.
However, it is judged that φ(u) is better than uα as a suitable generalization, where φ(u) is a bounded
arbitrary function. The reason is that φ(u) can express more integral transforms.

Lemma 1. (Lebesgue dominated convergence theorem [16,17]). Let (X, M, µ) be a measure space and suppose
{ fn} is a sequence of extended real-valued measurable functions defined on X such that

(a) limn→∞ fn(x) = f (x) exists µ-a.e.
(b) There is an integrable function g so that for each n, | fn| ≤ g µ-a.e.
Then, f is integrable and

lim
n→∞

∫

X
fndµ =

∫

X
f dµ.

Beppo Livi’s theorem is a special form of Lemma 1. Its contents are as follows:

∫ ∞

∑
n=1

gn dµ =
∞

∑
n=1

∫
gn dµ

for (gn) is a nondecreasing sequence. The details are can be found on page 71 in [16]. Note that the
convolution of f and g is given by

( f ∗ g)(t) =
∫ ∞

0
f (τ)g(t− τ) dτ.

The following theorem is as follows. Since the proof is not difficult, we would like to cover just
a few.

Theorem 1.

(1) (Duality with Laplace transform) If £( f ) = F∗(s) is the Laplace transform of a function f (t), then it
satisfies the relation of V( f ) = Φ(u) · F∗(∆).

(2) (Shifting theorem) If f (t) has the transform F(u), then eat f (t) has the transform Φ(u) · F(∆ − a).
That is,

V[ eat f (t)] = Φ(u) · F(∆− a).

Moreover, If f (t) has the transform F(u), then the shifted function f (t − a)h(t − a) has the
transform e−a∆ ·Φ(u)F(∆). In formula,

V [ f (t− a)h(t− a)] = e−a∆ ·Φ(u)F(∆)

for h(t− a) is Heaviside function (We write h since we need u to denote u-space).

(3) (Linearity) Let V( f ) be the variant of Laplace-type transform. Then V( f ) is a linear operation.
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(4) (Existence) If f (t) is defined, piecewise continuous on every finite interval on the semi-axis t ≥ 0
and satisfies

| f (t)| ≤ Mekt

for all t ≥ 0 and some constants M and k, then the variant of Laplace-type transform V( f ) exists for all
∆ > k.

(5) (Uniqueness) If the variant of Laplace-type transform of a given function exists, then it is
uniquely determined.

(6) (Heaviside function)

vi[ h(t− a)] =
∫ ∞

0
e−t∆h(t− a) dt =

∫ ∞

a
e−t∆ · 1 dt

= e−a∆/∆,

where h is Heaviside function.

(7) (Dirac’s delta function) We consider the function

fk(t− a) =

{
1/k if a ≤ t ≤ a + k

0 otherwise.

In a similar way to Heaviside, taking the integral of Laplace-type transform, we get

vi[ fk(t− a)] =
∫ ∞

0
e−t∆ fk(t− a) dt = − 1

k∆
[e−t∆]a+k

a

= − 1
k∆

(e−(a+k)∆ − e−a∆) = − 1
k∆

e−a∆(e−k∆ − 1).

If we denote the limit of fk as δ(t− a), then

vi(δ(t− a)) = lim
k→0

(vi)[ fk(t− a)] = e−a∆.

(8) (Shifted data problems) For a given differential equation y′′ + ay′ + by = r(t) subject to y(t0) = c0 and
y′(t0) = c1, where t0 6= 0 and a and b are constant, we can set t = t1 + t0. Then t = t0 gives t1 = 0 and
so, we have

y′′1 + ay′1 + by1 = r(t1 + t0), y1(0) = c0, y′1(0) = c1

for input r(t). Taking the variant, we can obtain the output y(t).

(9) (Transforms of derivatives and integrals) Let a function f is n-th differentiable and integrable, and let us
consider the fraction ∆ as an operator. Then V( f ) of the n-th derivatives of f (t) satisfies

vi( f (n)) = ∆nvi( f )−
n

∑
k=1

∆n−k f (k−1)(0) (2)

and

V [
∫ t

0
f (τ) dτ] = Φ(u) · 1

∆
V( f ).

(10) (Convolution) If two functions f and g are integrable for ∗ is the convolution, then V( f ∗ g) satisfies

V( f ∗ g) = Φ(u) · F(∆)G(∆)

for V( f ) = F(∆).
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Proof. (5) Assume that V( f ) exists by V( f1) and V( f2) both. If V( f1) 6= V( f2) for f1 = f2, then

V( f1)−V( f2) = Φ(u)
∫ ∞

0
e−t∆ f1(t) dt−Φ(u)

∫ ∞

0
e−t∆ f2(t) dt

= Φ(u)
∫ ∞

0
e−t∆( f1(t)− f2(t)) dt

= V( f1 − f2) = 0.

This is a contradiction on V( f1) 6= V( f2), and hence the transform is uniquely determined.
Conversely, if two functions f1 and f2 have the same transform (i.e., if V( f1) = V( f2)), then

V( f1)−V( f2) = Φ(u)
∫ ∞

0
e−t∆( f1(t)− f2(t)) dt = 0,

and so f1 = f2 a.e. Hence f1 = f2 excepting for the set of measure zero.
(9) Note that vi( f ) =

∫ ∞
0 e−t∆ f (t) dt, and let us approach the proof by induction. In case of n = 1,

vi( f ′) =
∫ ∞

0
e−t∆ f ′(t) dt.

Integrating by parts, we have

vi( f ′) = [e−t∆ f (t)]∞0 + ∆
∫ ∞

0
e−t∆ f (t) dt

= − f (0) + ∆vi( f ).

which is true by (2).
Next, let us suppose that n = m is valid for some m. Thus,

vi( f (m)) = ∆mvi( f )−
m

∑
k=1

∆m−k f (k−1)(0)

holds for f (m) is the m-th derivative of f . Let us show that

vi( f (m+1)) = ∆m+1vi( f )−
m+1

∑
k=1

∆m+1−k f (k−1)(0). (3)

Now we start with the left-hand side of (2).

vi( f (m+1)) =
∫ ∞

0
e−t∆ f (m)(t) dt

= ∆vi( f (m))− f (m)(0)

= ∆[∆mvi( f )−
m

∑
k=1

∆m−k f (k−1)(0)]− f (m)(0)

= ∆m+1vi( f )−
m

∑
k=1

∆m+1−k f (k−1)(0)]− f (m)(0)

= ∆m+1vi( f )−
m+1

∑
k=1

∆m+1−k f (k−1)(0).

Therefore, this theorem is valid for an arbitrary natural number n. Putting g(t) =
∫ t

0 f (τ)dτ,

vi( f (t)) = vi(g′(t)) = ∆vi(g)− g(0) = ∆vi(g)
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follows.

As the direct results of (9), vi( f ′) = ∆vi( f ) − f (0) and vi( f ′′) = ∆2vi( f ) − ∆ f (0) − f ′(0)
are follow.

For example, we consider y′′ − y = t subject to y(0) = 1 and y′(0) = 1. Taking the integral of
Laplace-type transform on both sides, we have

∆2Y− ∆y(0)− y′(0)−Y = 1/∆2

for Y = (vi)(y). Organizing this equation, we get (∆2 − 1)Y = ∆ + 1 + 1/∆2. Simplification gives

Y =
1

∆− 1
+

1
∆2 − 1

− 1
∆2 .

From the relation of V( f ) = Φ(u) · F∗(∆), we have the solution

y(t) = −t + 2 sin ht + cos ht = et + sin ht− t,

where h is hyperbolic function.

Example 3. (Integral equations of Volterra type) Find the solution of

(1) y(t) +
∫ t

0
(t− τ)y(τ)dτ = 1.

(2) y(t)−
∫ t

0
y(τ) sin(t− τ)dτ = t.

(3) y(t)−
∫ t

0
(1 + τ)y(t− τ)dτ = 1− sinh t.

Solution.

(1) Since this equation is y + y ∗ t = 1, taking the integral of Laplace-type transform on both sides,
we have

Y + (Y · 1
∆2 ) =

1
∆

for Y = vi(y). Thus

Y =
∆

∆2 + 1

and so, we obtain the solution y = cos t.

Let us do the check by expansion. Expanding, we get y′′(t) + y(t) = 0. Since
∫ a

a f = 0, we get
y(0) = 1 and y′(0) = 0. Thus, we obtain y = cos t.

(2) This is rewritten as a convolution
y(t)− y ∗ sin t = t.

Taking the integral of Laplace-type transform, we have

Y(u)−Y(u)
1

∆2 + 1
= Y(u)(1− 1

∆2 + 1
) =

1
∆2

for Y = vi(y). The solution is

Y(u) =
1

∆2 +
1

∆4

and gives the answer

y(t) = t +
1
6

t3.
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(3) Note that the equation is the same as y− (1 + t) ∗ y = 1− sinh t. Taking the transform, we get

Y− (
1
∆
+

1
∆2 )Y =

1
∆
− 1

∆2 − 1
,

and hence

Y (1− 1
∆
− 1

∆2 ) =
∆2 − ∆− 1
∆(∆2 − 1)

.

Simplification gives

Y =
∆

∆2 − 1
,

and so, we obtain the answer
y(t) = cosh t

by the relation of V( f ) = Φ(u) · F∗(∆).

Let us turn the topic to initial value problem of the convolution. The initial value problem

ay′′ + by′ + cy = f (t), y(0) = y0, y′(0) = y′0

gives
(a∆2 + b∆ + c)Y(∆)− (a∆ + b)y(0)− ay′(0) = F(∆),

where Y(∆) = vi(y) and F(∆) = vi( f ). Simplification gives

Y(∆) =
1

a∆2 + b∆ + c
· F(∆) + y0 ·

a∆ + b
a∆2 + b∆ + c

+y′0 ·
a

a∆2 + b∆ + c
.

If we put the system function H(∆) = (a∆2 + b∆ + c)−1, then

Y(∆) = H(∆)F(∆) + y0(a∆ + b)H(∆) + y′0aH(∆).

Since H(∆)F(∆) = vi(h)vi( f ) = vi(h ∗ f ) for H(∆) = vi(h(t)), taking the inverse transform,
we have

y = (h ∗ f ) + y0 vi−1{(a∆ + b)H(∆)}

+y′0 vi−1{aH(∆)}.

Theorem 2. (Differentiation and integration of transforms) Let us put V = F(∆) and Y = V(y). Then

(1) V(tn f (t)) = Φ(u) · (−1)n dn

dsn F(∆)

(2) V( f (t)/t) = Φ(u)
∫ ∞

∆
F(δ )dδ.

Proof. This is an immediate consequence of V( f ) = Φ(u) · F∗(∆) and V( f ) = Φ(u) · vi( f ).
For this reason, detailed proofs are omitted.

The statements below are the immediate results of Theorem 2.

(1) V(t f (t)) = −Φ(u)F′(∆)

(2) V(t f ′(t)) = −Φ(u)(Y + ∆
dY
d∆

)

(3) V(t f ′′(t)) = Φ(u) · (−2∆Y− ∆2 dY
d∆

+ y(0))
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Let us check examples for temperature in an infinite bar and displacement in a semi-infinite string
by the variant of Laplace-type transform.

Example 4. (Semi-infinite string) Find the displacement w(x, t) of an elastic string subject to the following
conditions [3].

(a) The string is initially at rest on the x-axis from x = 0 to ∞.
(b) For t > 0 the left end of the string is moved in a given fashion, namely, according to a single sine wave

w(0, t) = f (t) =

{
sin 2t if 0 ≤ t ≤ π

0 otherwise.

(c) Furthermore, w(x, t)→ 0 as x → ∞ for t ≥ 0.

Then the displacement w is

w(x, t) = f (t− x
c
)h(t− x

c
) =

{
sin 2(t− x

c ) if x/c < t < x/c + π

0 otherwise,

where h is Heaviside function.

The proof is simple, and the interchangeability of limit and integral in the proof process guarantees
its validity by the Lebesgue dominated convergence theorem.

Example 5. (Temperature in an infinite bar) Find the temperature w in an infinite bar if the initial temperature is

f (x) = w(x, 0) =

{
k0 (constant) if |x| < 1

0 otherwise

with w(0, t) = 0.

Solution. Taking the integral of Laplace-type transform on both sides of wt = c2wxx, we have

∆F− w(x, 0) = c2 ∂2F
∂x2

for F(x, u) = vi[w(x, t)]. Organizing the equality, we get

∂2F
∂x2 −

∆
c2 F = − 1

c2 w(x, 0).

Organizing this equality, we get

F(x, u) = A(u)e−
√

∆x/c + B(u)e
√

∆x/c

+e−
√

∆x/c
∫ c

2
√

∆
e
√

∆x/c 1
c2 w(x, 0) dx

−e
√

∆x/c
∫ c

2
√

∆
e−
√

∆x/c 1
c2 w(x, 0) dx, (4)

where the Wronskian W = 2
√

∆/c. The value limx→∞ f (x) = 0 gives limx→∞ F(x, u) = 0, and hence
B(u) = 0. Thus, from (4), we get

F(x, u) = A(u)e−
√

∆x/c
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+
w(x, 0)
2c
√

∆
(e−
√

∆x/c
∫

e
√

∆x/c dx− e
√

∆x/c
∫

e−
√

∆x/c dx).

By the direct calculation, we have

F(x, u) = A(u)e−
√

∆x/c +
w(x, 0)

∆
.

From the formula of vi( f ) = F(∆) for F(s) = £( f ) and s = ∆, we know

vi(
k

2
√

πt3
e−

k2
4t ) = e−k

√
∆ (k > 0)

and vi(1) = 1/∆. Taking the inverse transform, we obtain the temperature w(x, t) as follows:

w(x, t) = A(t) ∗ x

2c
√

πt3
e−

x2

4c2t + k0

on |x| < 1, and ∗ is the convolution. In case of |x| > 1, we have the solution

w(x, t) = A(t) ∗ x

2c
√

πt3
e−

x2

4c2t .

In the above equality, we note that

vi−1 [A(u)e−
√

∆x/c] = vi−1 [vi(A(t)) · vi(
x

2c
√

πt3
e−

x2

4c2t )]

= vi−1 [vi {A(t) ∗ x

2c
√

πt3
e−

x2

4c2t }] = A(t) ∗ x

2c
√

πt3
e−

x2

4c2t

because vi( f ∗ g) = F(∆)g(∆) for vi( f ) = F(∆).

4. Conclusions

In this study, the concept of convolution in convolutional neural networks (CNN) was presented
mathematically and tried to connect with the concept of convolution in mathematics. As a continuous
form of convolution in CNN, a new form of Laplace-type transform has been proposed. In the
future, we will study the change of convolution in CNN by changing the stride. In addition to this,
we shall also explore the possibility of our applying our newly defined Laplace-type transform in
obtaining certain new and interesting results involving generalized hypergeometric functions that
would certainly unify and generalized the results available in the literature and may be potentially
useful from an applications point of view.
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Abstract: The aim of this article is to use the Homotopy Analysis Method (HAM) to pinpoint the optimal
location of leakage in an inclined pipeline containing hydrogen-natural gas mixture by obtaining quick
and accurate analytical solutions for nonlinear transportation equations. The homotopy analysis
method utilizes a simple and powerful technique to adjust and control the convergence region of the
infinite series solution using auxiliary parameters. The auxiliary parameters provide a convenient
way of controlling the convergent region of series solutions. Numerical solutions obtained by HAM
indicate that the approach is highly accurate, computationally very attractive and easy to implement.
The solutions obtained with HAM have been shown to be in good agreement with those obtained using
the method of characteristics (MOC) and the reduced order modelling (ROM) technique.

Keywords: hydrogen; natural gas; gas mixture; homotopy analysis method; method of characteristics;
reduced order modelling; leak locations

1. Introduction

One of the strategies to reduce gas transportation costs is the use of natural gas pipeline networks
by petroleum companies [1]. These networks are capable of supplying gas in long distances under
high pressure and through compression stations [2]. Changes in pipeline pressure are a function of gas
velocity, valve closure time, and arrangement of the closing valve [3].

When the valve is closed at the end of the pipeline, there is the possibility of the occurrence of
maximum pressure, which can be decreased in short times during its closure. It is of utmost importance
to control factors affecting transient pressure, such as initial pressure and mass ratio. This is because
the damage caused by this pressure is not evident shortly after the event [4–6].

Several studies have been conducted on transient flow in the mixtures of hydrogen and natural
gas with the use of isothermal flow and horizontal pipelines, which is not the case in reality [2,7–9].
Furthermore, another study has made an attempt to study the flow of these mixtures under high
pressure through inclined pipelines [10]. In most pipelines working under high pressure, there are slow
and fast fluid transients. As gas properties are not constant, a one-dimensional and non-isothermal
gas flow model should be presented to simulate these transients [2].

The reason for proposing hydrogen and natural gas mixtures is their transportation through the
same pipelines for the purpose of cost reduction. This is while the existing lines are just designed for
natural gas, whose properties are significantly different from that of hydrogen [11,12]. The solution to
this problem has been the mixture of the both with a great deal of care and attention, as hydrogen is a
reactive gas with high pressure that can cause leakage [13,14]. This problem is of great importance
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since leakage can cause many economic, environmental, and safety problems and threaten industries
and citizens by wasting natural gas [14].

According to the reports, two thirds of the 375 pipeline events between 1994 and 1999 were caused
by leakage [4]. In addition, high-pressure wave celerity causes pipe splitting, and even, exploding,
sometimes making intense holes that lead to inward collapse of pipes, necessitating the careful study
of pressure wave celerity.

Studies have been done on leakage and its location for natural gas [15,16], leading to the
introduction of methods [17,18], such as the acoustic method (AM) [18,19] and the negative pressure
wave method (NPW) [20,21]. Means of transients and using unsteady-state tests, which give rise
to small overpressure, can be considered as an appropriate method for detecting leaks locations in
pressurised pipes [22]. Autocorrelation analysis of vibro-acoustic signals measured in a test field and
amplitude distortion of measured leak noise signals caused by instrumentation have been used for
water leak detection in [23,24]. In water-filled small-diameter polyethylene pipes by means of acoustic
Emission Measurements, [25] has been used for detecting leak locations. However, there is paucity of
research on this issue for hydrogen or its mixture with natural gas [15,16]. In this regard, isothermal
and non-isothermal flow models have been proposed for hydrogen and natural gas mixtures [7,8,14].

There have been several studies on the detection of leakage location through novel approaches.
For example, new leakage detection using AM [26] and new algorithm based on the attenuation of
NPW in isothermal cases have been introduced in recent years [27].

Accordingly, the present study made an attempt to determine leakage location in an inclined
pipe for isothermal flow containing hydrogen-natural gas mixture with the use of homotpy analysis
method. This method is used for solving the governing equations, leading to quick and accurate
analytical solutions for nonlinear transportation equations. Factors affecting pressure and celerity
waves in inclined pipes, such as inclination angles and mass ratio of mixtures, have also been discussed.
The obtained results are in good agreement for isothermal flow in a horizontal pipeline. Results showed
that pressure drop and leak discharge are increased with an increase in the inclination angle, while the
celerity wave and the leak location do not seem to be affected.

2. Mathematical Formulation

Figure 1 shows an inclined pipeline, which has a reservoir at the top and a valve at its bottom.
The governing equations consist of three partial differential equations that are all coupled, non-linear and
hyperbolic. The non-isothermal flow in the pipeline, a homogenous mixture of hydrogen and natural
gas, was considered to be one-dimensional that is compressible and covers transient condition [7].

Lθ

Constant

Pressure

Reservoir P2

P1

leak

Pp

XL

pipe 1

pipe 2

valve

Figure 1. An inclined pipeline with a reservoir at the top and a valve at its bottom.

2.1. Governing Equation

The governing equations for the transport of hydrogen/natural gas mixture in an inclined pipeline
from the principle of conserving mass and momentum are given by the following,
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∂ρ

∂t
+

∂ρu
∂x

= 0, (1)

∂ρu
∂t

+
∂(ρu2 + P)

∂x
+

f ρu|u|
2D

+ ρg sin(θ) = 0, (2)

with u = Q/A, A = πD2/4, ρ is density, u is the gas velocity, P is the pressure, e is the gas internal
energy per unit mass, D is the diameter of the pipeline, f is the coefficient of friction, g is the gravitational
force and θ is an angle between the friction force and the direction.

Boundary conditions of this equations depend on the types of closure and the valve operational
time. The boundary conditions at the initial point x = 0 and at the end point x = L, respectively are
given by,

ρ(0, t) = ρ0(t), u(0, t) = u0(t), (3)

ρ(L, t) = ρL(t), u(L, t) = uL(t), (4)

where ρ0 and u0 are defined as density and gas velocity at the inlet pipeline, respectively and ρL and
uL are defined as density and gas velocity at the outlet pipeline, respectively. The initial conditions
that are assumed to be in a steady state condition at t = 0 are [7],

∂ρu
∂x

(x, 0) = 0, (5)

∂(ρu2 + P)
∂x

(x, 0) +
f ρu|u|

2D
+ ρg sin(θ) = 0, (6)

The commonly used equation of state for perfect gas is as follows:

P = ρRT, (7)

where,

R: is the specific gas constant.
T: is temperature.

The equation of state for the compressible flow, where there is a celerity pressure wave, is:

P = c2ρ, (8)

The following equations are also achieved from ideal gas relation,

Cp − Cv = R, γ =
Cp

Cv
, Cv =

R
γ− 1

. (9)

where,

Cv: is the specific heat at constant volume.
Cp: is the specific heat at constant pressure.
R: is the specific gas constant.
P: is pressure.
γ: is the flow process index.

2.2. Hydrogen-Natural Gas Mixture Equation

The mass ratio and the density of hydrogen-natural gas mixture are defined as,
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φ =
mh

mh + mg
,

1
ρ
=

vh + vg

mh + mg
, (10)

with ρh = mh
vh

, ρg =
mg
vg

, ρh = ρh0

( P0
P
) 1

n1 and ρg = ρg0

( P0
P
) 1

n2 . Where mg, mh, Vg and Vh are defined as
the mass of natural gas and hydrogen and volume of natural gas and hydrogen, respectively.

Therefore, the expression of the average density of the gas mixture is given by,

ρ =

[
φ

ρh0

(
P0

P

) 1
n1

+
1− φ

ρg0

(
P0

P

) 1
n2

]−1

. (11)

The celerity pressure wave for compressible flow is defined as,

c =
(

∂ρ

∂P

)− 1
2

s
, (12)

where the subscript s is defined the constant entropy condition. The derivative of Equation (11) with
respect to P, and substituting into Equation (12), then the celerity pressure wave yields [7],

c =

[
φ

ρh0

(
P0

P

) 1
n1

+
1− φ

ρg0

(
P0

P

) 1
n2

]
×
[

1
P

[
φ

n1ρh0

(
P0

P

) 1
n1

+
1− φ

n2ρg0

(
P0

P

) 1
n2
]]− 1

2

. (13)

The properties of hydrogen and natural gas used in the calculations are shown in the Table 1.
For the simulation, the parameters are assumed as Table 2.

Table 1. Hydrogen properties in working conditions, P = 35 bar and T = 15 ◦C = 288 K (See [7]).

Symbol Fluid Properties Values (J/kgK)

Hydrogen Natural Gas

Cp Specific heat at constant pressure 14,600 1497.5
Cv Specific heat at constant volume 10,440 1056.8
R Gas constant 4160 440.7

Table 2. Parameters used for the simulation (See [7]).

Symbols Values Symbols Values

Pipe length L = 600 m Mass ratio φ = 0, 0.5, 1
Time t = 20 Angle θ = 0, π/6, π/4, π/3

Pipe diameter D = 0.4 m Mass flow Q0 = 55 kg/s
Friction coefficient f = 0.03 Absolute pressure P0 = 35 bar

Temperature T = 15 ◦C = 288 K

3. Homotopy Analysis Method

A brief description of the standard homotopy analysis method (HAM) presented by [28–32].
This will be followed by a description of the algorithm of the homotopy analysis method (HAM). First,
we consider the following differential equation,

N
[
u(x, t)

]
= G (x, t), (14)

where N are nonlinear operators, x and t denotes the independent variable, u(x, t) are unknown
functions, and G (x, t) are known analytic functions. For G (x, t) = 0, Equation (14) reduces to
the homogeneous equation. By means of generalizing the traditional homotopy method, Liao [28]
constructed the so-called zero-order deformation equation,
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(
1− q

)
L
[
Ψ(x, t; q)− u0(x, t)

]
= qh̄H (x, t)

{
N
[
Ψ(x, t; q)

]
− G (x, t)

}
(15)

where p ∈ [0, 1] is an embedding parameter, h̄ are nonzero auxiliary functions, L is an auxiliary
linear operator, u0(x, t) are initial guesses of u(x, t), H (x, t) denotes a nonzero auxiliary function and
Ψ(x, t; q) are unknown functions. It is important to note that one has great freedom to choose auxiliary
objects such as h̄ and L in HAM. Obviously, when q = 0 and q = 1, Equation (15) becomes,

Ψ(x, t; 0) = u0(x, t), Ψ(x, t; 1) = u(x, t), (16)

Thus, as q increases from 0 to 1, the solution Ψ(x, t; q) varies from the initial guesses u0(x, t) to the
solutions u(x, t). Expanding Ψ(x, t; q) in Taylor series with respect to q, one has

Ψ(x, t; q) = u0(x, t) +
∞

∑
m=1

um(x, t)qm, (17)

where,

um(x, t) =
1

m!
∂mΨ(x, t; q)

∂qm |q=0, (18)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters h̄, and the auxiliary
functions are so properly chosen, then series Equation (17) converges at q = 1, and one has,

u(x, t) = u0(x, t) +
∞

∑
m=1

um(x, t), (19)

which must be one of the solutions of the original nonlinear equations, as proved by Liao [28]. As h̄ = −1
and H (x, t) = 1, Equation (15) becomes,

(
1− q

)
L
[
Ψ(x, t; q)− u0(x, t)

]
=q
{

N
[
Ψ(x, t; q)

]
− G (x, t)

}
, (20)

which is used mostly in the homotopy perturbation method. Define the vectors,

−→u m =
{

u0(x, t), u1(x, t), ..., um(x, t)
}

, (21)

Differentiate the zeroth-order deformation Equation (14) m-times with respect to q and then
dividing them by m! and finally setting q = 0, we get the following mth-order deformation equation,

L
[
um(x, t)− χmum−1(x, t)

]
= h̄Rm

(−→u m−1(x, t)
)

, (22)

where,

Rm

(−→u m−1(x, t)
)
=

1
(1−m)!

∂m−1
{

N
[
Ψ(x, t; q)

]
− G (x, t)

}

∂qm−1 , (23)

with,

χm =

{
0, m ≤ 1

1, m > 1
(24)

It should be noted that the linear Equation (22), which has linear boundary conditions, governs
um(x, t) for m ≤ 1 [33]. Boundary conditions stem from the main problem, the solution for which can
be provided by Matlab, Maple, or Mathematica. The requirement for the limit of Equation (17) is that
it should meet the conditions of the main equation N

[
u(x, t)

]
= 0 when it is convergent at q = 1.

It is noteworthy that drawing “h̄-curves” or “curves for convergence-control parameter” aim to find a
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proper convergence-control parameter h̄, a convergent series solution, or and accelerate its convergence
rate. It is such that these curves with unknown quantities are drawn against h̄ to approximately find
the convergence region, though they are just graphical. This is because it is not possible to find which
h̄0 ∈ Rh provides the fastest convergent series (see Liao [28,34] for further reading). Another note to be
made is that a unique solution is achieved when Equation (14) accepts a unique solution; otherwise,
many possible solutions will be obtained from HAM.

3.1. Solving the Steady State Equations by High-Order Deformation HAM

We define the vectors,




−→
P (x) =

{
P0(x), P1(x), ..., Pm(x)

}

−→u (x) =
{

u0(x), u1(x), ..., um(x)
} (25)

Differentiating Equations (5) and (6) m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equations,





L1

[
Pm(x)− χmPm−1(x)

]
= h̄R1

m

(−→
P m−1(x),−→u m−1(x)

)
,

L2

[
um(x)− χmum−1(x)

]
= h̄R2

m

(−→
P m−1(x),−→u m−1(x)

)
,

(26)

with the initial conditions,

P(0) = P0, u(0) = u0, (27)

where,




R1
m

(−→
P m−1(x),−→u m−1(x)

)
= dPm−1(x)

dx + ∑m−1
i=0 Pm−1−i(x)∑i

j=0
1

uj(x)
dui−j(x)

dx ,

R2
m

(−→
P m−1(x),−→u m−1(x)

)
= dum−1(x)

dx + ∑m−1
i=0 um−1−i(x)∑i

j=0
1

Pj(x)
dPi−j(x)

dx

+ ∑m−1
i=0 cm−1−i ∑i

j=0 ci−j ∑
j
k=0 Pj−k(x)∑k

l=0
1

ul(x)
dPk−l(x)

dx

+ f
2D |um−1(x)|+ um−1(x)g sin(θ),

(28)

with the celerity pressure wave ci defined as follows,

ci =

[
φ

ρh0

(
P0

Pi(x)

) 1
n1

+
1− φ

ρg0

(
P0

Pi(x)

) 1
n2

]

×
[

1
Pi(x)

[
φ

n1ρh0

(
P0

Pi(x)

) 1
n1

+
1− φ

n2ρg0

(
P0

Pi(x)

) 1
n2
]]− 1

2

.

with the following linear operators,

L1

[
Ψ1(x; q)

]
=

dΨ1(x; q)
dx

, L2

[
Ψ2(x; q)

]
=

dΨ2(x; q)
dx

, (29)

with the property that,

L1

[
C1

]
= 0, L2

[
C2

]
= 0, (30)

which implies that,

L −1
1

(
.
)
=
∫ x

0

(
.
)

dx, L2

(
.
)
=
∫ x

0

(
.
)

d, (31)
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Now, the solution of the mth-order deformation Equations (5) and (6) becomes,





Pm(x) = χmPm−1(x) + h̄L −1
1

[
H (x, t)R1

m

(−→
P m−1(x),−→u m−1(x)

)]
,

um(x) = χmum−1(x) + h̄L −1
2

[
H (x, t)R2

m

(−→
P m−1(x),−→u m−1(x)

)]
,

(32)

which can be easily solved by a symbolic computation software such as Matlab, Maple, and Mathematica.
Therefore, we will have P(x) and u(x) as follows,

P(x) ' PM(x) = P0(x) +
M

∑
m=1

Pm(x), (33)

u(x) ' uM(x) = u0(x) +
M

∑
m=1

um(x). (34)

Furthermore, to construct the zeroth-order deformation equations we can define the nonlinear

operators N1

[
Ψ1(x; q)

]
and N2

[
Ψ2(x; q)

]
as follows,





N1

[
Ψ1(x; q)

]
= Ψ1(x; q) dΨ2(x;q)

dx + Ψ2(x; q) dΨ1(x;q)
dx

N2

[
Ψ2(x; q)

]
=

d
[

Ψ1(x;q)Ψ2(x;q)2+c2Ψ1(x;q)
]

dx + f
2D Ψ1(x; q)Ψ2(x; q)|Ψ2(x; q)|+ Ψ1(x; q)g sin(θ)

(35)

with the celerity pressure wave c defined as follows,

c =

[
φ

ρh0

(
P0

Ψ1(x; q)

) 1
n1

+
1− φ

ρg0

(
P0

Ψ1(x; q)

) 1
n2

]

×
[

1
Ψ1(x; q)

[
φ

n1ρh0

(
P0

Ψ1(x; q)

) 1
n1

+
1− φ

n2ρg0

(
P0

Ψ1(x; q)

) 1
n2
]]− 1

2

. (36)

3.2. Solving Isothermal Flow of Hydrogen-Natural Gas Mixture by HAM

We define the vectors,




−→
P (x, t) =

{
P0(x, t), P1(x, t), ..., Pm(x, t)

}

−→u (x, t) =
{

u0(x, t), u1(x, t), ..., um(x, t)
} (37)

Differentiating Equations (1) and (2) m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equations,





L1

[
Pm(x, t)− χmPm−1(x, t)

]
= h̄R1

m

(−→
P m−1(x, t),−→u m−1(x, t)

)
,

L2

[
um(x, t)− χmum−1(x, t)

]
= h̄R2

m

(−→
P m−1(x, t),−→u m−1(x, t)

)
,

(38)

with the initial and boundary conditions as follows,

{
P(x, 0) = P0(x), u(x, 0) = u0(x);

P(0, t) = P0(t), u(0, t) = u0(t) or P(L, t) = PL(t), u(L, t) = uL(t),
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where,





R1
m

(−→
P m−1(x, t),−→u m−1(x, t)

)
= ∂Pm−1(x,t)

∂t + ∑m−1
i=0 ui(x, t) ∂Pm−1−i(x,t)

∂x

+ ∑m−1
i=0 Pi(x, t) ∂um−1−i(x,t)

∂x ,

R2
m

(−→
P m−1(x),−→u m−1(x)

)
= ∂um−1(x,t)

∂t + ∑m−1
i=0 um−1−i(x)∑i

j=0
1

Pj(x,t)
∂Pi−j(x,t)

∂t

+ ∑m−1
i=0 ui(x, t) ∂um−1−i(x,t)

∂x

+ ∑m−1
i=0 um−1−i(x, t)∑i

j=0 ui−j(x, t)∑
j
k=0

1
Pk(x,t)

∂Pj−k(x,t)
∂x

+ ∑m−1
i=0 cm−1−i(x, t)∑i

j=0 ci−j(x, t)∑
j
k=0

1
Pk(x,t)

∂Pj−k(x,t)
∂x

+ f
2D ∑m−1

i=0 ui(x, t)|um−1−i(x, t)|+ g sin(θ)

(39)

with the celerity pressure wave ci defined as follows,

ci =

[
φ

ρh0

(
P0

Pi(x, t)

) 1
n1

+
1− φ

ρg0

(
P0

Pi(x, t)

) 1
n2

]

×
[

1
Pi(x, t)

[
φ

n1ρh0

(
P0

Pi(x, t)

) 1
n1

+
1− φ

n2ρg0

(
P0

Pi(x, t)

) 1
n2
]]− 1

2

.

with the following linear operators,

L1

[
Ψ1(x, t; q)

]
=

∂Ψ1(x, t; q)
∂t

, L2

[
Ψ2(x, t; q)

]
=

∂Ψ2(x, t; q)
∂t

, (40)

with the property that,

L1

[
C1

]
= 0, L2

[
C2

]
= 0, (41)

which implies that,

L −1
1

(
.
)
=
∫ t

0

(
.
)

dt, L2

(
.
)
=
∫ t

0

(
.
)

dt, (42)

Now, the solution of the mth-order deformation Equations (1) and (2) becomes,





Pm(x, t) = χmPm−1(x, t) + h̄L −1
1

[
H (x, t)R1

m

(−→
P m−1(x, t),−→u m−1(x, t)

)]
,

um(x, t) = χmum−1(x, t) + h̄L −1
2

[
H (x, t)R2

m

(−→
P m−1(x, t),−→u m−1(x, t)

)]
,

(43)

which can be easily solved by a symbolic computation software such as Matlab, Maple, and Mathematica.
Therefore, we will have P(x, t) and u(x, t) as follows,

P(x, t) ' PM(x, t) = P0(x, t) +
M

∑
m=1

Pm(x, t), (44)

u(x, t) ' uM(x, t) = u0(x, t) +
M

∑
m=1

um(x, t). (45)
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Furthermore, to construct the zeroth-order deformation equations we can define the nonlinear

operators N1

[
Ψ1(x, t; q)

]
and N2

[
Ψ2(x, t; q)

]
as follows,





N1

[
Ψ1(x, t; q)

]
= ∂Ψ1(x,t;q)

∂t +
∂

[
Ψ1(x,t;q)Ψ2(x,t;q)

]

∂x

N2

[
Ψ2(x, t; q)

]
=

∂

[
Ψ1(x,t;q)Ψ2(x,t;q)

]

∂t +
∂

[
Ψ1(x,t;q)Ψ2(x,t;q)2+c2Ψ1(x,t;q)

]

∂x

+ f
2D Ψ1(x, t; q)Ψ2(x, t; q)|Ψ2(x, t; q)|+ Ψ1(x, t; q)g sin(θ)

with the celerity pressure wave c defined as follows,

c =

[
φ

ρh0

(
P0

Ψ1(x,t;q)

) 1
n1

+ 1−φ
ρg0

(
P0

Ψ1(x,t;q)

) 1
n2

]

×
[

1
Ψ1(x,t;q)

[
φ

n1ρh0

(
P0

Ψ1(x,t;q)

) 1
n1

+ 1−φ
n2ρg0

(
P0

Ψ1(x,t;q)

) 1
n2
]]− 1

2

.

(46)

3.3. Results and Discussion

For solving the Equations (5) and (6) by suing the homotopy analysis method according the
Equations (25)–(36) we can have,

R1
1 = 0,

R2
m = f u0

2d + g sin(θ)
u0

,
P1(x) = P0,

u1(x) = u0 + h̄
(

f u0x
2d + g sin(θ)x

u0

)
,

R1
2 = P0 h̄

u0

(
f u0
2d + g sin(θ)

u0

)
,

R2
2 = h̄

(
f u0
2d + g sin(θ)

u0

)
+ 1102500 h̄

P0u0

(
f u0
2d + g sin(θ)

u0

)

+ f
2d

(
u0 + h̄

(
f u0x
2d + g sin(θ)x

u0

))
+
(

1
u0
− h̄ x

u0
2

(
f u0
2d + g sin(θ)

u0

))
g sin (θ)

+

(
h̄2(2 g sin(θ)d+ f u0

2)x2

2u0
4d

(
f u0
2d + g sin(θ)

u0

))
g sin (θ) ,

P2(x) = P0 +
h̄2P0x

u0

(
f u0
2d + g sin(θ)

u0

)
,

u2(x) = u0 + h̄
(

f u0x
2d + g sin(θ)x

u0

)

+h̄
(

h̄2(2 g sin(θ)d+ f u0
2)g sin(θ)x3

6u0
4d

(
f u0
2d + g sin(θ)

u0

))

+ h̄
2

(
f h̄
2d

(
f u0
2d + g sin(θ)

u0

)
− h̄ g sin(θ)

u0
2

(
f u0
2d + g sin(θ)

u0

))
x2

+h̄
(

h̄
(

f u0
2d + g sin(θ)

u0

)
x + 1102500 h̄ x

P0u0

(
f u0
2d + g sin(θ)

u0

))

+h̄
(

f u0x
2d + g sin(θ)x

u0

)
,

...

therefore, pressure P(x) is as follows,

P(x) ' P0 +
3h̄2P0x f

4d + 3h̄2P0xg sin(θ)
2u0

2 + 5 P0x3 h̄4g2(sin(θ))2 f
24 u0

4d

+ P0x3 h̄4g3(sin(θ))3

6u0
6 + P0x3 h̄4g sin(θ) f 2

12u0
2d2 + P0x3 h̄4 f 3

96 d3

− P0x2 h̄3g2(sin(θ))2

4u0
4 − P0x2 h̄3 f g sin(θ)

8u0
2d + h̄3P0x f

4d

+ h̄3P0xg sin(θ)
2u0

2 + 275625 xh̄3 f
2 du0

+ 275625 xh̄3g sin(θ)
u0

3 + ...,

(47)
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Equation (47) is a approximation solution for pressure P to the problem Equations (25)–(36) in
terms of the convergence parameters h̄ and order m = 12 with H (x) = 1. To find the valid region
of h̄, the h̄-curves given by the 12th-order HAM approximation at different values of x are drawn in
Figure 2; this figure shows the interval of h̄ in which the value of P12 is constant at certain x, and M;
we chose the horizontal line parallel to x-axis (h̄) as a valid region which provides us with a simple
way to adjust and control the convergence region.

Figure 3 is showing the comparison between the homotopy analysis method with Subani et al.,
2017 and Elaoud et al., 2010 methods. In this comparison the order of homotopy analysis method
have been used as M = 5 and M = 12. The auxiliary parameter h̄ is chosen as h̄ = −0.15 from the
convergence interval as showed in the Figure 2. As seen from this figure, with order M = 12 the
homotopy analysis method is comparable with Subani et al., 2017 and Elaoud et al., 2010 methods.
In this problem the auxiliary parameter H (x, t) is chosen equal 1.

Figure 2. h̄-curve for HAM approximation solution P12(x) of the problem Equations (5) and (6) at
different values of x.

Figure 3. Comparison between homotopy analysis method of orders M = 5, 12 for h̄ = −0.1; with
Subani et al., 2017 and Elaoud et al., 2010 methods.
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Now we want to solve the Equations (1) and (2) with the homotopy analysis method
(Equations (37)–(46)) using the following initial approximations,

P0(x, t) = x(x−L)(1+t)
(x+t)(x−L+t)P0(x) + t(x−L)(1+x)

(x+t)(x−L+x)P0(t) +
xt(1+x−L)

xt+x−L PL(t), (48)

u0(x, t) = x(x−L)(1+t)
(x+t)(x−L+t)u0(x) + t(x−L)(1+x)

(x+t)(x−L+x)u0(t) +
xt(1+x−L)

xt+x−L uL(t), (49)

we guessed the initial approximations Equations (48) and (49) using the initial and boundary conditions
(for x = 0, L results will be as Equations (3) and (4)). Therefore, using the homotopy analysis method
for solving the Equations (1) and (2) with the initial approximation Equations (48) and (49) can obtain
the following results,

P0(x, t) = − xa0

P0
2t

+
x

P0t
+

1
P0
− xa0

P0
2 −

xa0

P0
2L
− x

P0L
− x

P0
− xta0

P0
2L
− xta0

P0
2L2

+
xtPL

P0
2L
− xtPL

P0
2 ,

u0(x, t) = − xb0

u02t
+

x
u0t

+
1
u0
− xb0

u02 −
xb0

u02L
− x

u0L
− x

u0
− xtb0

u02L
− xtb0

u02L2

+
xtuL

u02L
− xtuL

u02 ,

R1
1 = xPL + u0a0 + 2 u0P0 + P0b0 + 2 xuLa0 − 2 xuLP0 + 2 xb0PL − 2 xu0PL

− xPL
L

+
xa0

L
+

xa0

L2 +
P0b0

L
+ 2 xP0b1 + 2 xb0a0 + 2 xu0a1 + 2 xu0a0

+2 xu0P0 + 2 xP0b0 − 2
u0P0

t
+

u0a0

t
+

P0b0

t
+

xP0

t2 −
xa0

t2 +
u0a0

L

+2
u0P0

L
+ 4

xb0a0

tL
− 2

xP0b0

tL
− 2

xu0a0

tL
− 8

xu0P0

tL
− 4

xP0b0

t2

+6
xu0P0

t2 + 2
xb0a0

t2 − 4
xu0a0

t2 + 8
xb0a0

L
+ 8

xu0P0

L
+ 2

xP0b1

t

+4
xb0a0

t
+ 2

xu0a1

t
− 2

xu0a0

t
− 8

xu0P0

t
− 2

xP0b0

t
+ 2

xuLP0

L

+2
xP0b1

L
+ 2

xu0a1

L
+ 10

xu0P0

L2 + 6
xb0a0

L2 − 2
xb0PL

L
+ 2

xu0PL
L

−2
xuLa0

L
,
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R1
2 = 1102501− 1102500 x + u0 +

u0

L
+ 2

xu0b0a0

t2P0
+ 8

xu0b0a0

P0L
− 2

xu0a0

P0tL

−2
xu0a0

2

P0
2tL

+ 2
xb0a0

P0tL
− 2

xu0
2a0

P0tL
− 2

xu0
2a0

2

P0
2tL

+
x f u0b0

tD
+ 4

xu0b0a0

P0t

+2
xu0a0PL

P0
2L

+ 2
xu0

2a0PL

P0
2L

+ 6
xu0b0a0

P0L2 − 2
xu0b0PL

P0L
− 2

xu0uLa0

P0L

+
x f u0b0

DL
+ u0

2 + 1102500 L−1 − 1102500 t−1 + g sin (θ)− 2
xu0

2a0PL

P0
2

+2
xu0b0PL

P0
− 3

xu0a0

P0L
− 4

xu0a0
2

P0
2L

+ 4
xb0a0

P0L
− 2

xu0
2a0

P0L
− 4

xu0
2a0

2

P0
2L

+
x f u0b0

D
− 2

xu0a0

P0t
− 2

xu0a0
2

P0
2t

+ 2
xu0

2a1

P0t
− 2205000

xa0

P0tL

−2205000
xa0

2

P0
2tL
− 2

xu0
2a0

2

P0
2t

+ 2
xb0a0

P0t
− 2

xu0
2a0

P0t
+ 2

xu0a1

P0t

− f u0
2x

tD
+ 2

xu0uLa0

P0
+ 2205000

xa0PL

P0
2L

+
f u0

2x
DL

+ 2
xu0a1

P0L
− 3

xu0a0
2

P0
2L2

−2
xu0a0PL

P0
2 + 3

xb0a0

P0L2 −
xb0PL
P0L

− xu0PL
P0L

− xuLa0

P0L
+ 2

xu0
2a1

P0L

−3
xu0

2a0
2

P0
2L2

+ xb0 + 3307500
x
L2 + xu0

2 − u0
2

t
+ 1102500

a0

P0
+ 4

xu0b0a0

P0tL

+4
xu0

L2 + 5
xu0

2

L2 − 2 xu0uL + 2 xu0b0 + 2
xb0

L
+

xb0

L2 + 2205000
xPL
P0

+
u0a0

P0
+ 3

xu0
2

t2 + 3
xu0

t2 +
u0

2

L
+ 1102500

a0

P0L
+ 2

xu0

L
+ 2205000

xa1

P0

−2205000
xa0

P0
− 1102500

xa0
2

P0
2 + 4

xu0
2

L
− 2

xu0

t
− 4

xu0
2

t
+ 1102500

a0

P0t

+
u0

2a0

P0
− 2

xb0

t2 + 1102500
x
t2 +

1
2

f u0
2

D
− u0

t
− xu0a0

t2P0
− xu0a0

2

t2P0
2 +

xb0a0

t2P0

−2
xu0

2a0

t2P0
− xu0

2a0
2

t2P0
2 + 2

xu0b0a0

P0
+

xb0PL
P0

+
xu0PL

P0
+

xuLa0

P0

+2205000
xa1

P0L
− 3307500

xa0
2

P0
2L2
− 2205000

xa0PL

P0
2 − 2205000

xPL
P0L

+2
xu0uL

L
+ 2

xu0b0

L
− 2

xu0

tL
+ 2205000

xa1

P0t
− 2205000

xa0

P0t

−2205000
xa0

2

P0
2t
− 4

xu0
2

tL
+

u0
2a0

P0t
− 2

xu0b0

t2 − 1102500
xa0

2

t2P0
2 +

u0a0

P0L

+
u0

2a0

P0L
− xu0a0

P0
− xu0a0

2

P0
2 + 2

xu0
2a1

P0
− 4410000

xa0

P0L
− 4410000

xa0
2

P0
2L

− xu0
2a0

2

P0
2 +

xb0a0

P0
+ 2

xu0a1

P0
+

u0a0

P0t
+

f u0
2x

D
,
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P1(x, t) =
xtPL

xt− L + x
− x2Lta1

(x + t) (x− L + t)
− xLta0

(x + t) (x− L + t)

− P0tLx
(x + t) (2 x− L)

+ 2
h̄ x2b0a0

tL
− h̄ x2P0b0

tL
− h̄ x2u0a0

tL

−4
h̄ x2u0P0

tL
+

1
2

h̄ x2PL +
1
2

h̄ x2P0

t2 − 1
2

h̄ x2a0

t2 + h̄ x2uLa0

−h̄ x2uLP0 + h̄ x2P0b1 + h̄ x2b0PL − h̄ x2u0PL + h̄ x2b0a0

+h̄ x2u0a1 + h̄ x2u0a0 + h̄ x2u0P0 + h̄ x2P0b0 −
1
2

h̄ x2PL
L

+
1
2

h̄ x2a0

L
+

1
2

h̄ x2a0

L2 + h̄ xu0a0 + 2 h̄ xu0P0 + h̄ xP0b0

+
x3a1

(x + t) (x− L + t)
+

x2a0

(x + t) (x− L + t)
+

x2tPL
xt− L + x

+
h̄ x2u0a1

L
+ 5

h̄ x2u0P0

L2 + 3
h̄ x2b0a0

L2 − h̄ x2b0PL
L

+
h̄ x2u0PL

L

− h̄ x2uLa0

L
+ 4

h̄ x2u0P0

L
+ 2

h̄ x2b0a0

t
+

h̄ x2u0a1

t
+

h̄ x2P0b1

t

−2
h̄ x2P0b0

t2 +
h̄ x2b0a0

t2 + 3
h̄ x2u0P0

t2 − 2
h̄ x2u0a0

t2 +
h̄ x2uLP0

L

+
h̄ x2P0b1

L
+ 4

h̄ x2b0a0

L
− 4

h̄ x2u0P0

t
+

h̄ xP0b0

L
+

h̄ xu0a0

L

+2
h̄ xu0P0

L
+

h̄ xu0a0

t
− 2

h̄ xu0P0

t
+

h̄ xP0b0

t
+

x3ta1

(x + t) (x− L + t)

− x2La1

(x + t) (x− L + t)
+

x2ta0

(x + t) (x− L + t)
− xa0L

(x + t) (x− L + t)

+
P0tx2

(x + t) (2 x− L)
− P0tL

(x + t) (2 x− L)
+

P0tx
(x + t) (2 x− L)

− xtPLL
xt− L + x

− h̄ x2u0a0

t
− h̄ x2P0b0

t
,
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u1(x, t) =
x3tb1

(x + t) (x− L + t)
− x2Lb1

(x + t) (x− L + t)
+

x2tb0

(x + t) (x− L + t)

− xLb0

(x + t) (x− L + t)
+

u0tx2

(x + t) (2 x− L)
− u0tL

(x + t) (2 x− L)

+
u0tx

(x + t) (2 x− L)
+

xtuL
xt− L + x

− xtuLL
xt− L + x

+ 1102500
h̄ x2a1

P0L

−1653750
h̄ x2a0

2

P0
2L2
− 1102500

h̄ x2a0PL

P0
2 − 1102500

h̄ x2PL
P0L

−551250
h̄ x2a0

2

t2P0
2 −

1
2

h̄ x2u0a0
2

P0
2 +

h̄ x2u0
2a1

P0
− 2205000

h̄ x2a0
2

P0
2L

− h̄ x2u0

tL
− 2

h̄ x2u0
2

tL
+ 1102500

h̄ x2a1

P0t
− 1102500

h̄ x2a0
2

P0
2t

+
1
2

h̄ x2b0PL
P0

+
1
2

h̄ x2u0PL
P0

− 1
2

h̄ x2u0
2a0

2

P0
2 − h̄ x2u0b0

t2

+
h̄ x2u0a1

P0
+

1
2

h̄ x2b0a0

P0
+

h̄ x2u0uL
L

+
h̄ x2u0b0

L
− 1

2
h̄ x2u0a0

P0

−2205000
h̄ x2a0

P0L
− 1102500

h̄ x2a0

P0t
+

1
2

h̄ x2 f u0
2

D
+

h̄ xu0
2a0

P0

+
1
2

h̄ x2uLa0

P0
+ 1102500

h̄ xa0

P0t
+

h̄ xu0a0

P0
+ 1102500

h̄ xa0

P0L

+
1
2

h̄ f u0
2x

D
− h̄ x2u0

2a0PL

P0
2 +

h̄ x2u0b0PL
P0

+
h̄ x2u0uLa0

P0

+1102500
h̄ x2a0PL

P0
2L

+
1
2

h̄ x2 f u0
2

DL
− 2

h̄ x2u0
2a0

2

P0
2L

+
1
2

h̄ x2 f u0b0

D

− h̄ x2u0a0
2

P0
2t

+
h̄ x2u0

2a1

P0t
− 1102500

h̄ x2a0
2

P0
2tL
− h̄ x2u0

2a0
2

P0
2t

+
h̄ x2u0a1

P0t
+

h̄ x2b0a0

P0t
− 1102500

h̄ x2a0

P0tL
− 1

2
h̄ x2 f u0

2

tD

+
h̄ x2u0a1

P0L
− 3

2
h̄

x2u0a0
2P0

2L2 − h̄ x2u0a0PL

P0
2 +

3
2

h̄ x2b0a0

P0L2

−1
2

h̄ x2b0PL
P0L

+
h̄ x2u0b0a0

P0
− 1

2
h̄ x2u0a0

t2P0
− 1

2
h̄ x2u0a0

2

t2P0
2

+
1
2

h̄ x2b0a0

t2P0
− h̄ x2u0

2a0

t2P0
− 1

2
h̄ x2u0

2a0
2

t2P0
2 − 2

h̄ x2u0a0
2

P0
2L

+2
h̄ x2b0a0

P0L
− h̄ x2u0

2a0

P0t
− 3

2
h̄ x2u0a0

P0L
− h̄ x2u0

2a0

P0L
− h̄ x2u0a0

P0t

+
h̄ xu0a0

P0L
+

h̄ xu0
2a0

P0L
+

h̄ xu0a0

P0t
+

h̄ xu0
2a0

P0t
− x2Ltb1

(x + t) (x− L + t)

− xLtb0

(x + t) (x− L + t)
− u0tLx

(x + t) (2 x− L)
− 1

2
h̄ x2u0PL

P0L
− 1

2
h̄ x2uLa0

P0L

+
h̄ x2u0

2a1

P0L
− 3

2
h̄ x2u0

2a0
2

P0
2L2

+ 3
h̄ x2u0b0a0

P0L2 − h̄ x2u0b0PL
P0L

− h̄ x2u0uLa0

P0L
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+
1
2

h̄ x2 f u0b0

DL
+ 1102500

h̄ x
L

+ h̄ u0x− 1102500
h̄ x
t

+ h̄ xu0
2 +

1
2

h̄ x2b0

+
1
2

h̄ x2u0
2 + 1653750

h̄ x2

L2 + 551250
h̄ x2

t2 −
h̄ xu0

2

t
+ h̄ g sin (θ) x

+
h̄ x2b0

L
+

h̄ x2u0

L
+

5
2

h̄ x2u0
2

L2 − h̄ x2u0uL +
1
2

h̄ x2b0

L2 + 2
h̄ x2u0

L2

+h̄ x2u0b0 − 2
h̄ x2u0

2

t
− 1102500

h̄ x2a0

P0
+ 2

h̄ x2u0
2

L
− h̄ x2u0

t

+1102500
h̄ x2PL

P0
+ 1102500

h̄ x2a1

P0
− 551250

h̄ x2a0
2

P0
2 − h̄ x2b0

t2

+
3
2

h̄ x2u0

t2 +
3
2

h̄ x2u0
2

t2 +
h̄ u0x

L
+ 1102500

h̄ xa0

P0
+

h̄ xu0
2

L
− h̄ u0x

t

+
x3b1

(x + t) (x− L + t)
+

x2b0

(x + t) (x− L + t)
+

x2tuL
xt− L + x

+
h̄ x2u0b0a0

t2P0

+4
h̄ x2u0b0a0

P0L
− h̄ x2u0

2a0
2

P0
2tL

+
1
2

h̄ x2 f u0b0

tD
+ 2

h̄ x2u0b0a0

P0t
− h̄ x2u0a0

2

P0
2tL

+
h̄ x2b0a0

P0tL
− h̄ x2u0a0

P0tL
− h̄ x2u0

2a0

P0tL
+

h̄ x2u0a0PL

P0
2L

+
h̄ x2u0

2a0PL

P0
2L

+2
h̄ x2u0b0a0

P0tL
− 551250 h̄ x2 + 1102501 h̄ x,

therefore, pressure P(x, t) is as follows,

P(x, t) ' 2txPL
tx−L+x −

2x2Lta1
(x+t)(x−L+t) −

2xLta0
(x+t)(x−L+t)

− 2tP0Lx
(x+t)(2 x−L) +

2h̄ x2b0a0
tL − h̄ x2P0b0

tL − h̄ x2u0a0
tL − 4h̄ x2u0P0

tL

+ 1
2 h̄ x2PL +

1
2

h̄ x2P0
t2 − 1

2
h̄ x2a0

t2 + h̄ x2uLa0 − h̄ x2uLP0 + h̄ x2P0b1

+h̄ x2b0PL − h̄ x2u0PL + h̄ x2b0a0 + h̄ x2u0a1 + h̄ x2u0a0 + h̄ x2u0P0

+h̄ x2P0b0 − 1
2

h̄ x2PL
L + 1

2
h̄ x2a0

L + 1
2

h̄ x2a0
L2 + h̄ xu0a0 + 2 h̄ xu0P0

+h̄ xP0b0 +
2x3a1

(x+t)(x−L+t) +
2x2a0

(x+t)(x−L+t) +
2x2tPL

tx−L+x

+ h̄ x2u0a1
L + 5h̄ x2u0P0

L2 + 3h̄ x2b0a0
L2 − h̄ x2b0PL

L + h̄ x2u0PL
L − h̄ x2uLa0

L

+ 4h̄ x2u0P0
L + 2h̄ x2b0a0

t + h̄ x2u0a1
t + h̄ x2P0b1

t − 2h̄ x2P0b0
t2 + h̄ x2b0a0

t2

+ 3h̄ x2u0P0
t2 − 2h̄ x2u0a0

t2 + h̄ x2uLP0
L + h̄ x2P0b1

L + 4h̄ x2b0a0
L − 4h̄ x2u0P0

t
+ h̄ xP0b0

L + h̄ xu0a0
L + 2h̄ xu0P0

L + h̄ xu0a0
t − 2h̄ xu0P0

t + h̄ xP0b0
t

+ 2x3ta1
(x+t)(x−L+t) −

2x2La1
(x+t)(x−L+t) +

2x2ta0
(x+t)(x−L+t)

− 2xa0L
(x+t)(x−L+t) +

2tP0x2

(x+t)(2 x−L) −
2tP0L

(x+t)(2 x−L)

+ 2tP0x
(x+t)(2 x−L) −

2txPL L
tx−L+x −

h̄ x2u0a0
t − h̄ x2P0b0

t + ...,

(50)

Equation (50) is a approximation solution for pressure P(x, t) to the problem Equations (1) and (2)
in terms of the convergence parameters h̄ with H (x) = 1. To find the valid region of h̄, the h̄-curves
given by the 12th-order HAM approximation at different values of t and x = 0 are drawn in Figure 4;
this figure shows the interval of h̄ in which the value of P12(0, t) is constant at certain t, and M; we chose
the horizontal line parallel to t-axis (h̄) as a valid region which provides us with a simple way to adjust
and control the convergence region.
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Figure 4. h̄-curve for HAM approximation solution P12(x, t) of the problem Equations (1) and (2)
at different values of t and x = 0.

3.4. Leak Detection Using Homotopy Analysis Method

Because of a small orifice between the high-pressure pipeline and the environment, the orifice of
leak can be simulated leaning on the flow rate. The discharged flow from the orifice can be computed
by the following Equation [7],

Ql =
ρlCd Al

√
2Pl/ρl

XL
, (51)

where Al is the leak orifice area with radius rl , Pl is the pressure of gas mixture at the leak position and
ρl is the density of gas mixture at the leak position respectively, Cd is a discharge coefficient and XL is
the distance of leak from the reservoir.

Analyzing transient pressure wave for hydrogen/natural gas mixtures is based on transmission
and reflection properties of pressure wave effected by a downstream valves sudden closure. When the
initial pressure wave reaches the leak, it will produce a reflection as it arrives back at the downstream
end section. Then, the difference in time between the initial transient wave and the reflected wave is
measured and the leakage position in the pipeline is computed by,

XL = L− ∆tlc∆tl

2
, (52)

where XL is defined as the distance between the leak and upstream end section, ∆tl is the difference of
time between the initial transient wave and reflected wave and c∆tl is defined as the transient celerity
wave at time.

3.5. Results and Discussion

Figure 5 presents the transient pressure of hydrogen natural gas mixture for isothermal flow when
leakage occurs at XL = L/3 in horizontal pipeline. The homotopy analysis method of order M = 12
with h̄ = −0.5 has been used. This figure shows the comparison between homotopy analysis method
from order 12 and Subani et al. method [7] when φ = 0.25 and φ = 0.5.

Figure 6 shows the transient pressure of hydrogen natural gas mixture (φ = 0.5) for isothermal
flow when leakage occurs at XL = L/3 in an inclined pipeline with θ = 15. Black line is homotopy
analysis method from order 12 with h̄ = −0.5 and red line is Subani et al. method. As indicated in
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Figures 5 and 6, the leak point are estimated at ts = 0.81 and at ts = 0.808 for Subani et al. method and
HAM respectively.

The transient pressure of mixture of natural gas and hydrogen with a mass ratio of φ = 0.5
is shown in Figure 7 in case of isothermal flow and leak location at XL = L/3 with diverse angles.
The homotopy analysis method from order 12 and h̄ = −0.5 has been used. Red line is for θ = 0 and
black line is for θ = 15.

The celerity wave distribution is presented in Figure 8 as a function of time. In this case, the valve
of the horizontal pipeline containing different mass ratios of a mixture of gas and hydrogen is abruptly
closed when the leakage is at XL = L/3. The values of celerity wave of the leak point for various mass
rations are 819.20 ms−1, 964.60 ms−1 and 1086.60 ms−1 for φ = 0.25, 0.5 and 0.75, respectively.

As shown in Figures 6 and 7, the occurrence of the leakage is possible when ∆tl is equal to 0.808 s.
Equation (53) can be used to calculate the leak location of the mixture of natural gas and hydrogen in
case of an isothermal flow in a horizontal pipeline as follows:

XL = 600− 0.808× 964.6
2

' 210.3. (53)

As seen earlier, there are various mass ratios of the mixture and various angles of the pipeline
each with a specific leak location at XL = L/3, the values of which are presented in Table 3. It can be
inferred that the leak location is not a function of pipe angle, it is rather a function of the mass ratio of
the natural gas and hydrogen mixture. Therefore, mass ratio is of utmost importance here.

The real location of leak is 200 m, when the leak location is at XL = L/3. The leak location
calculations by Subani et al. and HAM turned out to be 211.10 m and 210.30 m, respectively. It is a
mixture of natural gas and hydrogen with a mass ratio of 0.5. When the mass ration is increased to
0.75, the leakage location is less than 200 m. Therefore, when the mass ratio is decreased, the location
is greater than 200 m. This is contrary to the calculations since the calculated value is less than 200 m
when the mass ratio is 0.5. This is an indication of the dependence of leak location of mass ratio of the
mixture considered. As Elaoud et al., (2010) state, the most important part in early determination of a
leak close to the reservoir or compressor is the bottom of the pipeline.

Figure 9 shows the leak location with respect to the gas mixture (φ). As can be seen from this
figure, there is a steep slope for the values φ ∈ [0, 0.25] and φ ∈ [0.75, 1], but for values φ ∈ [0.25, 0.75]
there is a mild slope.

Table 3. Leak location for the hydrogen-natural gas mixture for isothermal flow at leakage XL = L/3.

Gas Mixture Pipeline’s Angle Leak Location (m)

(φ) (θ) Subani et al., Method HAM

0 0◦ 439.4 439.8
15◦ 439.4 439.8

0.25 0◦ 268.3 269.04
15◦ 268.3 269.04

0.5 0◦ 211.1 210.3
15◦ 211.1 210.3

0.75 0◦ 160.6 161.01
15◦ 160.6 161.01

1 0◦ 95.8 96.2
15◦ 95.8 96.2
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Figure 5. Transient pressure of hydrogen natural gas mixture for isothermal flow when leakage occurs
at XL = L/3 in horizontal pipeline when φ = 0.25 and φ = 0.5.
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Figure 6. Transient pressure of hydrogen natural gas mixture for isothermal flow when leakage occurs
at XL = L/3 in an inclined pipeline when θ = 15◦ and φ = 0.5.
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Figure 7. Transient pressure of hydrogen natural gas mixture with φ = 0.5 for isothermal flow when
leakage occurs at XL = L/3 with different angles θ. HAM with order 12 and h̄ = −0.5.
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Figure 8. Celerity wave of hydrogen natural gas mixture for isothermal flow when leakage occurs at
XL = L/3 in horizontal pipeline with different mass ratio φ.
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Figure 9. Leak location with respect to the gas mixture (φ).

In real (physical) pipelines, noise is expected to affect measurements [35,36]. The possible effects
of noisy signals on the performance of the proposed method are Brownian motion or Wiener process
or White noise, as the physical model of the stochastic procedure, as an indexed collection random
variables. A Wiener process (notation W = (Wt)t≥0) is named in the honor of Prof. Norbert Wiener;
other name is the Brownian motion (notation B = (Bt)t≥0). Wiener process is Gaussian process. As any
Gaussian process, Wiener process is completely described by its expectation and correlation functions.
A Brownian motion, also called a Wiener process, is obtained as the integral of a white noise signal
as follows,
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W(t) =
∫ t

0

dW(τ)

dτ
dτ. (54)

The effects of noisy signals on the effectiveness of the proposed method and possible effects of
noisy signals on the performance of leak locations will be proposed in the future works, by introducing
white noise in the simulations.

For accurate pinpointing, we can use the zero-gradient control (ZGC) method which we have
discussed in our recently published paper [6] about optimal mixture and controlling the pressure.
In our next manuscript with title “Detecting Optimal Leak Locations using Delta Method and Zero
Gradient Control for Non-isothermal Hydrogen/Natural Gas Mixture in an Inclined Pipeline” we used
the delta method (DM) and zero gradient control (ZGC) method for detecting optimal leak locations.
In our future works we will mixed the proposed methods with Artificial intelligence, Neural Network
and Deep Learning [37] to predict and estimate the optimal mixture parameter for achieving more
accurate pinpointing.

4. Conclusions

The homotopy analysis method used to solve the flow equations of hydrogen natural gas mixture
in an inclined pipeline. To validate the approximation series for pressure compared with the Subani et al.
method. The results in Figures 3, 5 and 6 show that the obtained results using proposed method are in
good agreement with the reduced order modelling (ROM) proposed by Subani et al, in 2017. Then,
homotopy analysis method is working as well as other methods and give the semi-analytical solutions.

The leak locations were detected using the homotopy analysis method for horizontal pipeline
(θ = 0◦) and inclined pipeline (θ = 15◦) for gas mixture φ = 0, 0.25, 0.5, 0.27, 1. Using the homotopy
analysis method the celerity wave at leak point of the pipeline are 819.20 ms−1, 964.60 ms−1 and
1086.60 ms−1 for φ = 0.25, 0.5 and 0.75, respectively.

In an inclined pipeline θ = 15◦ the leak location for gas mixture φ = 0.5 using the Subani et al.
method (ROM) and homotopy analysis method respectively are 211.1 m and 210.3 m. Because of
the real leak location is supposed at 200 m when the leak is located at XL = L/3, the result of HAM
method is more accurate than ROM method. As can be seen from Figure 9, with increases the gas
mixture φ from 0 to 1 the leak location decreases and there is a steep slope for φ ∈ [0, 0.25] ∪ [0.75, 1],
and a mild slope for φ ∈ [0.25, 0.75].

The proposed HAM method is employed without using linearization, discretization, or
transformation. It may be concluded that the HAM is very powerful and efficient in finding the
analytical solutions for a wide class of gas transportation equations in a pipeline.
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Abstract: This paper studies the second kind linear Volterra integral equations (IEs) with a
discontinuous kernel obtained from the load leveling and energy system problems. For solving this
problem, we propose the homotopy perturbation method (HPM). We then discuss the convergence
theorem and the error analysis of the formulation to validate the accuracy of the obtained solutions.
In this study, the Controle et Estimation Stochastique des Arrondis de Calculs method (CESTAC)
and the Control of Accuracy and Debugging for Numerical Applications (CADNA) library are
used to control the rounding error estimation. We also take advantage of the discrete stochastic
arithmetic (DSA) to find the optimal iteration, optimal error and optimal approximation of the HPM.
The comparative graphs between exact and approximate solutions show the accuracy and efficiency
of the method.

Keywords: stochastic arithmetic; homotopy perturbation method; CESTAC method; CADNA library;
Volterra integral equation with piecewise continuous kernel

1. Introduction

The problem of finding approximate solution for linear Volterra IEs is one of the oldest problems
in the applied mathematics researches. Specially, this problem with discontinuous kernel has many
applications in the load leveling problems, energy storage with renewable and diesel generation,
charge/discharge storages control and others [1–3].
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There are various methods for solving linear and nonlinear problems [4–10] specially the Volterra
IEs with discontinuous kernel. Muftahov et al. in [11] applied the Lavrentiev regularization and
direct quadrature method, Sidorov in [12] used the successive approximations and Noeiaghdam et al.
studied the Taylor-collocation method for solving Volterra IEs with discontinuous kernel [1,13]. Also,
the nonlinear system of Volterra IE with applications was studied in [14,15]. Furthermore, the existence
of a continuous solution depending on free parameters and sufficient conditions for the existence of
a unique continuous solution of the system of Volterra IE with discontinuous kernels were derived
in [16]. The class of integral operator equations of Volterra type with applications to p-Laplacian
equations was illustrated in [17]. The problem of generalized solution (in the Sobolev-Schwartz sense)
to the Volterra equations with piecewise continuous kernel was illustrated in [18]. Belbas and Bulka
in [19] considered the multiple Volterra IEs. The problem of global solution’s existence and blow-up of
nonlinear Volterra IEs were discussed in [20]. For systematic study of the qualitative theory of Volterra
IE with discontinuous kernels readers may refer to monograph [21] and part 1 in monograph [22].

The parametric continuation method for the first time was justified by Bernstein [23] for partial
differential equations. Here readers may also refer to excellent review by Lusternik [24]. In community
of numerical analysts the parametric continuation method is known as the HPM. This method is
among of semi-analytical methods that was popularized by J.H. He [25–27]. Then, this method has
been extended by many other researchers for solving different problems. The HPM was applied to
find the approximate analytical solution of the Allen-Cahn equation in [28], to study the maximum
power extraction from fractional order doubly fed induction generator based wind turbines in [29],
dissipative nonplanar solitons in an electronegative complex plasma in [30] and others [31–33].
Convergence of the parameter continuation method in the homotopy method based on the theorem of
V.A. Trenogin (see [34], Section 14, p. 146) will be global with respect to a parameter if there is an a
priori estimate of the solution for all values of the parameter (this condition can be replaced with a more
stringent requirement for the existence of a unique solution bounded for all values of the parameter).
If there is no a priori estimate of the solution, then on the basis of the inverse operator theorem (see [34]
p. 135), at least local convergence in the homotopy method can be guaranteed. Due to the models
complexity, we addressed only some classes of the results in this field. Many other interesting results
concerning nonlinear equations with discontinuous symmetric kernels with application of group
symmetry have remained beyond this paper. Results of present paper in combination with methods of
representation theory and group analysis in the bifurcation theory [35,36] make it possible to construct
solutions of nonlinear models with discontinuous kernels using the HPM.

In the mentioned studies and many other researches, the numerical results have been obtained
from the floating point arithmetic (FPA) and the accuracy of the method has been discussed using the
traditional absolute error as follows

|w(t)− wn(t)| < ε, (1)

where w(t) and wn(t) are the exact and approximate solutions. This condition depends on the existence
of the exact solution and optimal value of ε. Also, based on condition (1) we will not be able to find
the more accurate approximation because we do not have information about optimal ε and in some
cases we do not know the exact solution. For small values of ε, the numerical algorithm can not be
stopped and extra iterations will be produced without improving the accuracy. For large values of ε,
the numerical algorithm will be stopped in initial steps without producing enough iterations. Moreover,
in condition (1), researchers do not have any idea about optimal approximations, optimal errors or
numerical instabilities. The aim of this study is to apply the HPM to solve the second kind linear
Volterra IEs with jumping kernel and validate the numerical results using the CESTAC method [37–40].
In this method, instead of applying the condition (1), we need to produce other and better condition
without having the disadvantages of (1) as follows:

|wn(t)− wn+1(t)| = @.0, (2)
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where @.0 is the informatical zero sign [41] and wn(t) and wn+1(t) are two successive approximations.
Condition (2) is based on the DSA and Theorem 2 can support us to apply this condition theoretically.
In this condition, not only we do not need to have the exact solution but also we would be able to
identify the optimal approximation, optimal iteration and optimal error of numerical procedure.

Also, the CADNA library is applied as an important software for this validation. The CESTAC
method and the CADNA library have been introduced and developed during decades by researchers
from LIP6, the computer science laboratory in Sorbonne University in Paris, France (https://www-
pequan.lip6.fr/). This principle was introduced in [38] and it was extended to various quadrature rules
in [42–44] and others [45,46]. The CADNA library should be done on the LINUX operating system
and its codes should be written using C, C++ or ADA codes [40,47–49]. The CESTAC method is based
on the DSA and instead of applying the absolute error to show the precision of method, a termination
criterion is applied based on two successive approximations [50–53]. Thus in this technique we do not
need to have the exact solution to compare the results. Also, we will prove that number of common
significant digits (NCSD) of two successive approximations are almost equal to the NCSD of exact
and approximate solutions. So the new theorem gives the license to apply the new stopping condition
instead of previous one. This technique has some advantages than other methods based on the
FPA [37,39,50,52,53]. Due to the advantages of the CESTAC method we can find the optimal iteration
of iterative and numerical methods, optimal approximation and optimal error. Furthermore, the extra
iterations can be neglected and some of numerical instabilities can be detected too [13,54–56].

In recent years, this scheme was applied to estimate the round-off errors in different problems such
as the numerical integration rules by Newton-Cotes and Gaussian rules [54,57–60], interpolation [61],
solving IEs by Sinc-collocation method [55,62], homotopy analysis method for solving IEs [63] and
Taylor-collocation method for discontinuous Volterra IEs [13]. Furthermore, this technique is applied
for finding the optimal regularized parameter of the regularization method [56], solving ill-posed
problems [56] and many other topics [64–66].

This paper is arranged as follows: In the next section, the preliminaries are described regarding to
the HPM. In third section, the DSA and the CESTAC method are discussed. Also, algorithm of the
CESTAC method and sample code of the CADNA library are presented. In forth section the main
idea is described. Then using the HPM we solve the second kind linear Volterra IEs with jumping
kernel. Furthermore, the convergence theorem is proved. Also, a theorem is presented which proves
that instead of traditional absolute error which depends on the exact and approximate solutions,
a termination criterion can be applied which depends on two successive approximations. Section five
includes some examples. Also, several tables are presented to show the efficiency of method. The last
section is conclusion.

2. Preliminaries

For operator F, given function g and prepared function x we get the following operator equation as

F(x) = g(z), z ∈ Γ. (3)

We can write the operator F in the following form

F(x) = L(x) +N (x), (4)

where the remain part of F showed by N and L is the linear operator. Now, Equation (3) can be
presented as

L(x) +N (x) = g(z), z ∈ Γ. (5)

According to the traditional homotopy [25–27], for parameter â ∈ [0, 1], the homotopy operator H
can be presented as

H(v, â) = (1− â)(L(v)−L(x0)) + â(F(v)− g(z)), (6)
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where v(z, â) is defined on Γ× [0, 1]→ R and x0 is the initial guess of Equation (3). Now, by applying
Equation (4) we get

H(v, â) = L(v)−L(x0) + âL(x0) + â(N (v)− g(z)). (7)

Putting â = 0 in Equation (7) leads to H(v, 0) = L(v)−L(x0) and we get L(v)−L(x0) = 0. Now,
for â = 1 we have H(v, 1) = 0 which it can produce the solution of Equation (3). Thus, when â : 0→ 1
we can change the solution v from x0 to x. Now, the power series

v =
∞

∑
j=0

âjvj, (8)

can be applied to find the solution of H(v, â) = 0. Then comparing the same powers of parameter â
we can find the successive functions vj, j = 0, · · · , n.

Finally, applying

w = lim
â→1

v =
∞

∑
j=0

vj, (9)

the solution of Equation (3) can be found and the n-th order approximation is in the following form

wn =
n

∑
j=0

vj. (10)

3. Stochastic Arithmetic and the CESTAC Method

In this section, the CESTAC method is described and the algorithm of this method is presented.
Also, a sample program of the CADNA library is demonstrated and finally advantages of presented
method based on the DSA are investigated in comparison with the traditional FPA [37–40,50].

Assume that some representable values are produced by computer and they are collected in set A.
Then W ∈ A can be produced for w ∈ R withR mantissa bits of the binary FPA in the following form

W = w− χ2E−Rξ, (11)

where sign of w showed by χ, missing segment of the mantissa presented by 2−Rξ and the binary
exponent of the result characterized by E. Moreover, there are single and double precisions by choosing
R = 24, 53 [40,50–53].

Assume ξ is the casual variable that uniformly distributed on [−1, 1]. After making perturbation
on final mantissa bit of w we will have (µ) and (σ) as mean and standard deviation for results of W
which they have important rule in precision of W. Repeating this process J times for Wi, i = 1, . . . , J we
will have quasi Gaussian distribution for results. It means that µ for these data equals to the exact w.
It is clear that we should find µ and σ based on Wi, i = 1, . . . , J. For more consideration, the following
Algorithm 1 is presented where τδ is the value of T distribution as the confidence interval is 1− δ with
J − 1 freedom degree [52].

Usually, in order to find the numerical results we need to apply the usual packages like
Mathematica and Matlab. Here, instead of them we introduce the CADNA library and the CESTAC
method to validate the numerical results [1,55,56,62].

This library should run on LINUX operating system and all commands should be written by C,
C++, FORTRAN or ADA codes [13,54,59,60,63].

We have many advantages to apply the CESTAC method and the CADNA library instead of
traditional schemes using the FPA. In this method, a novel criterion independence of absolute error
and tolerance value like ε is presented. Applying the CADNA library, we can find the optimal
iteration, approximation and error of numerical methods. Moreover, the numerical instabilities can be
identified [13,54–56]. A sample program of the CADNA library is presented as
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Algorithm 1:
Step 1- Make the perturbation of the last bit of mantissa to produce J
samples of W as Φ =

{
W1, W2, ..., WJ

}
.

Step 2- Find Wave =
∑J

i=1 Wi

J
.

Step 3- Compute σ2 =
∑J

i=1(Wi −Wave)2

J − 1
.

Step 4- Find the NCSDs of w and Wave applying CWave ,w = log10

√
J |Wave|
τδσ

.

Step 5- Print W = @.0 if Wave = 0, or CWave ,W ≤ 0.

]include <cadna.h>
cadna−init(-1);
main()
{
double−st Parameter;
do
{
Write the main codes here;
printf(" %s ",strp(Parameter));
}
while(u[n]-u[n-1]!=0);
cadna−end();
}

4. Main idea

Consider the following second kind linear IE

w(t) = g(t) +
∫ t

0
k(t, s)w(s)ds, a = 0 ≤ t ≤ T ≤ b, (12)

where k(t, s) is discontinuous along continuous curves γi, i = 0, 1, · · · , m− 1 and it can be written in
the following form

w(t) = g(t) +
∫ γ1(t)

γ0(t)
k1(t, s)w(s)ds +

∫ γ2(t)

γ1(t)
k2(t, s)w(s)ds + · · ·+

∫ γm(t)

γm−1(t)
km(t, s)w(s)ds, (13)

and finally for brief form we get

w(t) = g(t) +
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)w(s)ds. (14)

Indeed, the kernel is the principal part of the IE (14). One may think about considered Volterra IE
as generalization of classic Duhamel integral. So, the kernel can be understood as instrumental response
function (IF, or spectral sensitivity, transmission function, point spread function, frequency response),
see e.g., [67]. In this study, we do not focus on specific physical problems, but more on numerical
aspects of solutions only.

Based on the HPM and applying Equations (4) and (5) for solving Equation (14), operators L(v)
and N (v) should be defined as follows

L(v) = v,
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and

N (v) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)w(s)ds. (15)

For next step, using Equation (7) the homotopy map can be constructed as follows

H(v, â) = v(t)− w0(t) + â

[
w0(t)−

m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)w(s)ds− g(t)

]
, (16)

and we have

∞

∑
j=0

âjvj(t) = w0(t) + â[g(t)− w0(t)] +
∞

∑
j=1

âj
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)vj−1(s)ds. (17)

Now, Equation (17) can be written in the following form

∞

∑
j=0

âjvj(t) = w0(t) + â[g(t)− w0(t)] +
∞

∑
j=1

âj Aj−1(t), (18)

where

Aj−1(t) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)vj−1(s)ds.

By disjointing the different powers of â in both sides of Equation (18) the following successive
iterations can be obtained as

â0 : v0(t) = w0(t),

â1 : v1(t) = g(t)− w0(t) + A0(t)

= g(t)− w0(t) +
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)v0(s)ds,

â2 : v2(t) = A1(t) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)v1(s)ds,

...
...

...

ân : vn(t) = An−1(t) =
m

∑
i=1

∫ γi(t)

γi−1(t)
ki(t, s)vn−1(s)ds.

(19)

Applying Equation (10) and successive iterations (19), the approximate solution of Equation (14) can
be obtained.

Theorem 1. Assume that functions ki(t, s) and g(t) of Equation (14) are continuous in η1 = [a, b]× [a, b]
and η = [a, b] respectively where these functions are bounded. If

∃αi, N1; |ki(t, s)| ≤ αi, |g(t)| ≤ N1, ∀s, t ∈ η, i = 1, 2, · · · , m,

then for initial approximation w0 which is continuous in [a, b], the series solution (9) will be uniformly
convergent to the exact solution for each â ∈ [0, 1].
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Proof. Assume w0(t) ∈ C[a, b], then we have a positive number N0 such that |w0(t)| ≤ N0. Therefore,
we can write

|v0(t)| = |w0(t)| ≤ N0,

|v1(t)| =

∣∣∣∣g(t)− w0(t) +
∫ γ1(t)

γ0(t)
k1(t, s)v0(s)ds +

∫ γ2(t)

γ1(t)
k2(t, s)v0(s)ds

+ · · ·+
∫ γm(t)

γm−1(t)
km(t, s)v0(s)ds

∣∣∣∣

≤ |g(t)|+ |w0(t)|+
∫ γ1(t)

γ0(t)
|k1(t, s)||v0(s)|ds +

∫ γ2(t)

γ1(t)
|k2(t, s)||v0(s)|ds

+ · · ·+
∫ γm(t)

γm−1(t)
|km(t, s)||v0(s)|ds|

≤ N1 + N0 + α1N0(γ1 − γ0) + α2N0(γ2 − γ1) + · · ·+ αmN0(γm − γm−1) = β,

|v2(t)| =

∣∣∣∣
∫ γ1(t)

γ0(t)
k1(t, s)v1(s)ds +

∫ γ2(t)

γ1(t)
k2(t, s)v1(s)ds

+ · · ·+
∫ γm(t)

γm−1(t)
km(t, s)v1(s)ds

∣∣∣∣ ,

|v2(t)| ≤
∫ γ1(t)

γ0(t)
|k1(t, s)||v1(s)|ds +

∫ γ2(t)

γ1(t)
|k2(t, s)||v1(s)|ds

+ · · ·+
∫ γm(t)

γm−1(t)
|km(t, s)||v1(s)|ds

≤ α1(γ1 − γ0)β + α2(γ2 − γ1)β + · · ·+ αm(γm − γm−1)β

= β
m

∑
i=1

αi(γi − γi−1).

Accordingly, we obtain the following general form

|vj(t)| ≤ β

(
m

∑
i=1

α
j−1
i

(γi − γi−1)
j−1

(j− 1)!

)
, s, t ∈ [a, b], j ≥ 2. (20)

Finally, for series solution (8) and for any â ∈ [0, 1] we can write

∞

∑
j=0

âjvj(t) ≤
∞

∑
j=0
|vj(t)| ≤

∞

∑
j=0

aj = N0 + β + β exp

(
m

∑
i=1

αi(γi − γi−1)

)
,

where a0 = N0, a1 = β, aj = β
(

∑m
i=1 α

j−1
i

(γi−γi−1)
j−1

(j−1)!

)
, j ≥ 2. It means that series solution (8) for any

â ∈ [0, 1] is uniformly convergent in interval [a, b].

From Equation (20), the following remark can be deduced:
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Remark 1. Based on the n-th order approximate solution (10), the error function En = supt∈[a,b] |w(t)−
wn(t)| can be approximated as follows:

|w(t)− wn(t)| =

∣∣∣∣∣
∞

∑
j=0

vj(t)−
n

∑
j=0

vj(t)

∣∣∣∣∣ =
∣∣∣∣∣

∞

∑
j=n+1

vj(t)

∣∣∣∣∣ ≤
∞

∑
j=n+1

|vj(t)|

≤ β
∞

∑
j=n+1

(
m

∑
i=1

α
j−1
i

(γi − γi−1)
j−1

(j− 1)!

)
.

Order of error En can be obtained in the following form:

En = O
[

∞

∑
j=n+1

1
(j− 1)!

(
m

∑
i=1

α
j
i(γi − γi−1)

j

)]
= O

(
Ln

n!

)
,

where L is a positive real number.

Definition 1 ([38]). For numbers z1, z2 ∈ R, the NCSDs can be computed as follows:

(1) for z1 6= z2,

Cz1,z2 = log10

∣∣∣∣
z1 + z2

2(z1 − z2)

∣∣∣∣ = log10

∣∣∣∣
z1

z1 − z2
− 1

2

∣∣∣∣ , (21)

(2) for all real numbers z1, Cz1,z1 = +∞.

Theorem 2. Let w(t) and wn(t) be the exact and numerical solutions of problem (12) which wn(t) is obtained
by using the HPM and Equation (10). Based on assumptions of Theorem 1 and Remark 1 for n enough large
we have

Cwn(t),wn+1(t) ' Cwn(t),w(t), (22)

where Cwn(t),w(t) shows the NCSDs of wn(t), w(t) and Cwn(t),wn+1(t) is the NCSDs of two successive iterations
wn(t), wn+1(t).

Proof. Using Definition 1 and Remark 1 we get

Cwn(t),wn+1(t) = log10

∣∣∣∣
wn(t)

wn(t)− wn+1(t)
− 1

2

∣∣∣∣

= log10

∣∣∣∣
wn(t)

wn(t)− wn+1(t)

∣∣∣∣+ log10

∣∣∣∣1−
1

2wn(t)
(wn(t)− wn+1(t))

∣∣∣∣

= log10

∣∣∣∣
wn(t)

wn(t)− wn+1(t)

∣∣∣∣+O
(
wn(t)− wn+1(t)

)

= log10

∣∣∣∣
wn(t)

(wn(t)− w(t))− (wn+1(t)− w(t))

∣∣∣∣+O
[
(wn(t)− w(t))− (wn+1(t)− w(t))

]

= log10

∣∣∣∣∣∣
wn(t)

(wn(t)− w(t))
[
1− wn+1(t)−w(t)

wn(t)−w(t)

]

∣∣∣∣∣∣
+O(En) +O(En+1)

= log10

∣∣∣∣
wn(t)

wn(t)− w(t)

∣∣∣∣− log10

∣∣∣∣1−
wn+1(t)− w(t)

wn(t)− w(t)

∣∣∣∣+O
(

Ln

n!

)

= log10

∣∣∣∣
wn(t)

wn(t)− w(t)

∣∣∣∣− log10

∣∣∣∣1−
wn+1(t)− w(t)

wn(t)− w(t)

∣∣∣∣+O
(

Ln

n!

)
.

(23)
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Also,

Cwn(t),w(t) = log10

∣∣∣∣
wn(t)

wn(t)− w(t)
− 1

2

∣∣∣∣

= log10

∣∣∣∣
wn(t)

wn(t)− w(t)

∣∣∣∣+O(wn(t)− w(t))

= log10

∣∣∣∣
wn(t)

wn(t)− w(t)

∣∣∣∣+O
(

Ln

n!

)
.

(24)

Applying Equations (23) and (24) we have

Cwn(t),wn+1(t) = Cwn(t),w(t) − log10

∣∣∣∣1−
wn+1(t)− w(t)

wn(t)− w(t)

∣∣∣∣+O
(

Ln

n!

)
.

From Remark 1, we can write wn+1(t)−w(t)
wn(t)−w(t) =

O
(

Ln+1
(n+1)!

)

O( Ln
n! )

= O
(

1
n

)
. Thus for n enough large we get

O
(

1
n

)
<< 1 and consequently

Cwn(t),wn+1(t) ' Cwn(t),w(t).

Theorem 2 shows that when n increases, the NCSDs between two sequential results obtained from
the algorithm is almost equal to the common significant digits of the n-th iteration and the exact solution
at the given point t which means that for an optimal index like n = no pt, when wn(t)−wn+1(t) = @.0
then wn(t)− w(t) = @.0.

5. Numerical Results

In this section, several examples of second kind linear Volterra IEs with discontinuous kernel
are presented. The numerical process is based on the HPM that we discussed in previous sections.
Also, using the CESTAC method and the CADNA library for all examples we will arrange some
numerical procedures based on the following algorithm to find the optimal approximation, optimal
error and optimal step of the HPM for solving linear Volterra IEs with jumping kernels. Having the
exact solution in the examples is only to compare the numerical results based on both conditions (1)
and (2). Some comparative graphs between exact and approximate solutions are plotted to show the
accuracy and efficiency of the method.

Algorithm 2:
Step 1- Let n = 1.
Step 2- Do the following steps while |wn(t)− wn+1(t)| 6= @.0
{
Step 2-1- Produce wn(t) using Equations (10) and (19).
Step 2-2- Print n, wn(x), |w(t)− wn(t)| , |wn(t)− wn+1(t)|.
Step 2-3- n = n + 1.
}

Example 1. Consider the following second kind Volterra IE with discontinuous kernel

w(t) = −t +
13t2

9
− 41t3

162
− 5t4

324
+
∫ t

3

0
(s + t)w(s)ds +

∫ t

t
3

w(s)ds, (25)
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with exact solution w(t) = t2 − t. Applying the homotopy map (16) and relations (17), (18) and successive
iterations (19) we get

â0 : v0(t) = w0(t) = g(t) = −t +
13t2

9
− 41t3

162
− 5t4

324
,

â1 : v1(t) = g(t)− w0(t) +
∫ t

3

0
(s + t)v0(s)ds +

∫ t

t
3

v0(s)ds

= −4t2

9
+

577t3

1458
− 1055t4

26244
− 3199t5

787320
− 23t6

1417176
,

â2 : v2(t) =
∫ t

3

0
(s + t)v1(s)ds +

∫ t

t
3

v1(s)ds

=
104t3

729
+

5365t4

59049
− 411953t5

63772920
− 1237231t6

1721868840
− 761899t7

216955473840
− 713t8

520693137216
,

ân : vn(t) =
∫ t

3

0
(s + t)vn−1(s)ds +

∫ t

t
3

vn−1(s)ds, n ≥ 2,

and finally using series solution (10), the approximate solution for n = 5 can be obtained as follows

w5(t) = −t + t2 + 0.000166742 t7 − 0.0000302385 t8 − 1.52193× 10−6 t9 − 5.93206× 10−9 t10

−2.63436× 10−12 t11 − 1.3852× 10−16 t12 − 8.13306× 10−22 t13 − 4.25383× 10−28 t14.

In this example, in order to show the accuracy of method, the CESTAC method and the CADNA library
are applied according to Algorithm 2. Also, instead of applying the termination criterion (1) and using the
traditional absolute error, the stopping condition (2) is applied. This condition is based on two successive
approximations wn(t) and wn+1(t). When the difference of these terms is @.0 the CESTAC algorithm will be
stopped. It shows that the NCSDs of the difference between two successive iterates is zero. The numerical results
using the DSA are presented in Table 1 for t = 0.2 in double precision. According to this table the optimal step
of iterations for the HPM is nopt = 10, the optimal approximation is −0.16 and the optimal absolute error is
0.231× 10−13. Figure 1, shows the comparison between the exact and approximate solutions for optimal value
nopt = 10 obtained from the CESTAC method.

0.2 0.4 0.6 0.8 1.0
t

-0.25

-0.20

-0.15

-0.10

-0.05

w(t)

w10(t)

w(t)

Figure 1. Comparison between the exact and optimal approximate solutions for nopt = 10.
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Table 1. Applying Algorithm 2 for Example 1 with t = 0.2.

n wn(t) |wn(t)−wn+1(t)| |w(t)−wn(t)|
1 −0.158949024126688 0.158949024126688 0.1050975873312× 10−2

2 −0.159947054328260 0.9980302015726× 10−3 0.529456717393× 10−4

3 −0.159997865982876 0.508116546153× 10−4 0.21340171239× 10−5

4 −0.159999928407226 0.2062424350× 10−5 0.715927734× 10−7

5 −0.159999997943235 0.695360085× 10−7 0.2056764× 10−8

6 −0.159999999946935 0.20037004× 10−8 0.530644× 10−10

7 −0.159999999999848 0.52913× 10−10 0.151× 10−12

8 −0.159999999999976 0.128× 10−12 0.231× 10−13

9 −0.159999999999999 0.23× 10−13 @.0
10 −0.160000000000000 @.0 @.0

Example 2. Consider the following Volterra IE [11]

w(t) =
1
8

t3 − 271
8192

t4 − 1099
20480

t5 − 31
40960

t6 +
∫ t

4

0
(1 + t + s)w(s)ds +

∫ t
2

t
4

(2 + ts)w(s)ds +
∫ t

t
2

(1 + t + s)w(s)ds, (26)

where the exact solution is w(t) = t3

8 . Applying the homotopy map (16) and relations (17), (18) and successive
iterations (19) we can find the approximate solution in the following form

w5(t) = 0.125 t3 − 2.60209× 10−18 t8 − 2.32004× 10−6 t9 − 0.0000188571 t10 − 0.0000644212 t11

−0.000118496 t12 − 0.000123946 t13 − 0.0000701359 t14 − 0.0000170219 t15 − 2.00669× 10−7 t16

−2.8387× 10−10 t17 − 5.39533× 10−14 t18 − 1.37516× 10−18 t19 − 4.46435× 10−24 t20

−1.5236× 10−30 t21

In this example, the DSA and the CADNA library are applied to validate the numerical approximations.
Also, using the stopping condition (2) we do not need to have the exact solution to show that accuracy of presented
method. The numerical results are presented in Table 2 for t = 0.3 by applying Algorithm 2. Using these results,
the optimal approximation is 0.337499999999999× 10−2 and the optimal absolute error is 0.26× 10−15 and
nopt = 11 is the optimal step of iteration for HPM method for solving Example 2. Comparison between the exact
and approximate solutions for nopt = 11 is demonstrated in Figure 2.

0.2 0.4 0.6 0.8 1.0
t

0.02

0.04

0.06

0.08

0.10

0.12

w(t)

w11(t)

w(t)

Figure 2. Comparison between the exact and optimal approximate solutions for nopt = 11.
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Table 2. Applying Algorithm 2 for Example 2 with t = 0.3.

n wn(t) |wn(t)−wn+1(t)| |w(t)−wn(t)|
1 0.333953193046557× 10−2 0.333953193046557× 10−2 0.35468069534420× 10−4

2 0.337246339699770× 10−2 0.3293146653212× 10−4 0.253660300229× 10−5

3 0.337484790802514× 10−2 0.238451102744× 10−5 0.15209197485× 10−6

4 0.337499213815335× 10−2 0.14423012820× 10−6 0.7861846644× 10−8

5 0.337499968103952× 10−2 0.7542886169× 10−8 0.31896047× 10−9

6 0.337499999258881× 10−2 0.31154929× 10−9 0.741118× 10−11

7 0.337499999979560× 10−2 0.720678× 10−11 0.20439× 10−12

8 0.337499999998390× 10−2 0.18830× 10−12 0.1609× 10−13

9 0.337499999999973× 10−2 0.1582× 10−13 0.26× 10−15

10 0.337499999999998× 10−2 0.25× 10−15 @.0
11 0.337499999999999× 10−2 @.0 @.0

Table 3. Numerical approximations for Example 3 with t = 0.2.

n wn(t) |wn(t)−wn+1(t)| |w(t)−wn(t)|
1 0.997548914719302× 10−5 0.997548914719302× 10−5 0.245108528069× 10−7

2 0.100010710205707× 10−4 0.255818733777× 10−7 0.10710205707× 10−8

3 0.999995689009746× 10−5 0.111413047328× 10−8 0.4310990253× 10−10

4 0.100000016025571× 10−4 0.4471245970× 10−10 0.16025571× 10−11

5 0.999999994481069× 10−5 0.16577464× 10−11 0.5518930× 10−13

6 0.100000000017666× 10−4 0.5695594× 10−13 0.17666× 10−14

7 0.999999999994729× 10−5 0.18193× 10−14 0.527× 10−16

8 0.100000000000014× 10−4 0.5418× 10−16 0.14× 10−17

9 0.999999999999996× 10−5 0.15× 10−17 0.3× 10−19

10 0.100000000000000× 10−4 @.0 @.0

Example 3. Consider the following linear Volterra IE of the second kind

w(t) = t5 − 811201
1572864

t6 +
38249

14680064
t7 − 3938545

939524096
t8

+
∫ t

8

0
(1− 3t− s)w(s)ds +

∫ t
2

t
8

(2 + s3 − t)w(s)ds +
∫ 3t

4

t
2

(2t2s + 1)w(s)ds− 4
∫ t

3t
4

w(s)ds,

(27)

where the exact solution is w(t) = t5.
The numerical results are presented in Table 3. The optimal iteration of the HPM for solving this example

is nopt = 10, the optimal approximation is 0.1× 10−4 and the optimal error is 0.3× 10−19 . To validate the
results, the CADNA library is applied based on the termination criterion (2). Theorem 2 is able to permit us
to apply the stopping condition instead of the traditional condition (1). In Figure 3, the graph of exact and
approximate solutions for optimal value nopt = 10 is studied.
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Figure 3. Comparison between exact and optimal approximate solutions for nopt = 10.

6. Conclusions

Volterra IEs with discontinuous kernel are among applicable problems in power engineering and
especially in load leveling problems. In this study, we applied the HPM while the CESTAC method
and the CADNA library used to examine the numerical results. Applying this method not only the
optimal iteration of the HPM, the optimal approximation and the optimal error can be found but also
some of numerical instabilities can be detected. Furthermore, the substantial theorem is provided
which approves the appropriateness of the termination criterion (2) instead of traditional absolute
error. We will focus on validating the nonlinear Volterra IEs with discontinuous kernel in fuzzy and
crisp forms using the CESTAC method for our future works.

Author Contributions: Conceptualization, D.N.S., J.H., N.S. and S.N.; methodology, S.N., D.N.S.; software, S.N.;
validation, D.N.S., A.D. and N.S.; formal analysis, Z.A., N.S.; data curation, D.N.S., A.D.; writing—original draft
preparation, S.N., D.N.S.; writing—review and editing, A.D., M.S., J.H., Z.A. and M.A.F.A.; supervision, D.N.S.;
project administration, D.N.S.; funding acquisition, D.N.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was partially supported by the base part of the Government Assignment for
Scientific Research from the Ministry of Science and Higher Education of Russia (project code: FZZS-2020-0039).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Noeiaghdam, S.; Sidorov, D.; Muftahov, I.; Zhukov, A.V. Control of Accuracy on Taylor-Collocation Method
for Load Leveling Problem. The Bulletin of Irkutsk State University. Ser. Math. 2019, 30, 59–72. [CrossRef]

2. Sidorov, D.; Muftahov, I.; Tomin, N.; Karamov, D.; Panasetsky, D.; Dreglea, A.; Liu, F.; Foley, A. A Dynamic
Analysis of Energy Storage with Renewable and Diesel Generation using Volterra Equations. IEEE Trans. Ind.
2019, 14, 3451–3459. [CrossRef]

3. Sidorov, D.; Zhukov, A.; Foley, A.; Tynda, A.; Muftahov, I.; Panasetsky, D.; Li, Y. Volterra Models in Load
Leveling Problem. E3S Web Conf. 2018, 69, 01015. [CrossRef]

175



Symmetry 2020, 12, 1730

4. Fariborzi Araghi, M.A.; Noeiaghdam, S. Homotopy analysis transform method for solving generalized
Abel’s fuzzy integral equations of the first kind. In Proceedings of the 4-th Iranian Joint Congress on Fuzzy
and Intelligent Systems (CFIS), Zahedan, Iran, 9–11 September 2015. [CrossRef]

5. Fariborzi Araghi, M.A.; Noeiaghdam, S. Homotopy regularization method to solve the singular Volterra
integral equations of the first kind. Jordan J. Math. Stat. 2018, 10, 1–12.

6. Srivastava, H.M.; Günerhan, H.; Ghanbari, B. Exact traveling wave solutions for resonance nonlinear
Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity. Math. Methods Appl. Sci.
2019, 42, 7210–7221. [CrossRef]

7. Sabir, Z.; Günerhan, H.; Guirao, J.L.G. On a new model based on third-order nonlinear multisingular
functional differential equations. Math. Probl. Eng. 2020, 2020. [CrossRef]

8. Gao, W.; Ghanbari, B.; Günerhan, H.; Baskonus, H.M. Some mixed trigonometric complex soliton solutions
to the perturbed nonlinear Schrödinger equation. Mod. Phys. Lett. B 2020, 34, 2050034. [CrossRef]

9. Sidorov, N.A.; Leontev, R.Y.; Dreglya, A.I. On small solutions of nonlinear equations with vector parameter
in sectorial neighborhoods. Math. Notes 2012, 91, 90–104. [CrossRef]

10. El-Nabulsi, R.A. Nonlocal Effects to Neutron Diffusion Equation in a Nuclear Reactor. J. Comput. Theor. Transp.
2020, 49, 267–281. [CrossRef]

11. Muftahov, I.; Tynda, A.; Sidorov, D. Numeric solution of Volterra integral equations of the first kind with
discontinuous kernels. J. Comput. Appl. Math. 2017, 313, 119–128. [CrossRef]

12. Sidorov, D.N. On Parametric Families of Solutions of Volterra Integral Equations of the First Kind with
Piecewise Smooth Kernel. Differ. Equ. 2013, 49, 210–216. [CrossRef]

13. Noeiaghdam, S.; Sidorov, D.; Sizikov, V.; Sidorov, N. Control of accuracy on Taylor-collocation method
to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method.
Appl. Comput. Math. 2020, 19, 87–105.

14. Sidorov, D.; Tynda, A.; Muftahov, I.; Dreglea, A.; Liu, F. Nonlinear Systems of Volterra Equations with
Piecewise Smooth Kernels: Numerical Solution and Application for Power Systems Operation. Mathematics
2020, 8, 1257. [CrossRef]

15. Raffou, Y.N. Classification of positive solutions of nonlinear system of Volterra integral equations.
Ann. Funct. Anal. 2011, 2, 34–41. [CrossRef]

16. Sidorov, D. Solvability of system of integral Volterra equations of the first kind with piecewise continuous
kernels. Russ. Math. (Iz.VUZ) 2013, 57, 54–63. [CrossRef]

17. Goodrich, C.S. Perturbed Integral Operator Equations of Volterra Type with Applications to p-Laplacian
Equations. Mediterr. J. Math. 2018, 15. [CrossRef]

18. Sidorov, D.N. Generalized Solution to the Volterra Equations with Piecewise Continuous Kernels.
Bull. Malays. Math. Sci. Soc. 2014, 37, 757–768.

19. Belbas, S.A.; Bulka, Y. Numerical solution of multiple nonlinear Volterra integral equations. Appl. Math.
Comput. 2011, 217, 4791–4804. [CrossRef]

20. Sidorov, D.N. Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral
equations. Differ. Equ. 2014, 50, 1217–1224. [CrossRef]

21. Sidorov, D. Integral Dynamical Models: Singularities, Signals And Control; World Scientific Series on Nonlinear
Sciences Series A; Chua, L.O., Ed.; World Scientific Press: Singapore, 2015; Volume 87.

22. Sidorov, N.; Sidorov, D.; Sinitsyn, A. Toward General Theory of Differential-Operator and Kinetic Models; World
Scientific Series on Nonlinear Sciences Series A; Chua, L.O., Ed.; World Scientific Press: Singapore, 2020;
Volume 97.

23. Bernstein, S. Sur la nature analytique des solutions des certaines equations aux derivees partielles du second
ordre. C. R. Acad. Sci. Paris 1903, 137, 778 –781.

24. Lyusternik, L.A. Certain questions in non-linear functional analysis. Uspekhi Mat. Nauk 1956, 11, 145–168.
25. He, J.H. Homotopy perturbation technique. Comput. Meth. Appl. Mech. Engrg. 1999, 178, 257–262. [CrossRef]
26. He, J.H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems.

Internat. J. Non- Mech. 2000, 35, 37–43. [CrossRef]
27. He, J.H. Homotopy perturbation method: A new non-linear analytical technique. Appl. Math. Comput. 2003,

135, 73–79.
28. Hussain, S.; Shah, A.; Ayub, S.; Ullah, A. An approximate analytical solution of the Allen-Cahn equation

using homotopy perturbation method and homotopy analysis method. Heliyon 2019, 5, e03060. [CrossRef]

176



Symmetry 2020, 12, 1730

29. Abolvafaei, M.; Ganjefar, S. Maximum power extraction from fractional order doubly fed induction generator
based wind turbines using homotopy singular perturbation method. Int. J. Electr. Power Energy Syst. 2020,
119, 105889. [CrossRef]

30. Kashkari, B.S.; El-Tantawy, S.A.; Salas, A.H.; El-Sherif, L.S. Homotopy perturbation method for studying
dissipative nonplanar solitons in an electronegative complex plasma. Chaos Solitons Fractals 2020, 130, 109457.
[CrossRef]

31. Bota, C.; Caruntu, B. Approximate analytical solutions of nonlinear differential equations using the Least
Squares Homotopy Perturbation Method. J. OfMath. Anal. Appl. 2017, 448, 401–408. [CrossRef]

32. Eshkuvatov, Z.K.; Samihah Zulkarnain, F.; Long, N.M.A.N.; Muminov, Z. Homotopy perturbation method
for the hypersingular integral equations of the first kind. Ain Shams Eng. J. 2018, 9, 3359–3363. [CrossRef]

33. Javeed, S.; Baleanu, D.; Waheed, A.; Shaukat Khan, M.; Affan, H. Analysis of Homotopy Perturbation
Method for Solving Fractional Order Differential Equations. Mathematics 2019, 7, 40. [CrossRef]

34. Trenogin, V.A. Functional Analysis; Fizmatlit: Moscow, Russia, 2007.
35. Sidorov, N.; Loginov, B.; Sinitsyn, A.; Falaleev, M. Lyapunov-Schmidt Methods in Nonlinear Analysis and

Applications; Kluwer Academic Publisher: Dordrecht, The Netherlands; Boston, UK; London, UK, 2002.
36. Trenogin, V.A.; Sidorov, N.A.; Loginov, B.V. Potentiality, group symmetry and bifurcation in the theory of

branching equation. Differ. Integral Equ. 1990, 3, 145–154.
37. Alt, R.; Lamotte, J.-L.; Markov, S. Stochastic arithmetic, Theory and experiments. Serdica J. Comput. 2010,

4, 1–10.
38. Chesneaux, J.M.; Jézéquel, F. Dynamical control of computations using the Trapezoidal and Simpson’s rules.

J. Univers. Comput. Sci. 1998, 4, 2–10.
39. Chesneaux, J.M. Stochastic arithmetic properties. IMACS Comput. Appl. Math. 1992, 81–91.
40. Chesneaux, J.M. CADNA, an ADA Tool for Round-Off Error Analysis and for Numerical Debugging; ADA in

Aerospace: Barcelone, Spain, 1990.
41. Vignes, J. Zéro mathématique et zéro informatique, in: La Vie des Sciences. Comptes Rendus De L’Académie De

Sci. 1987, 4, 1–13.
42. Jézéquel, F.; Rico, F.; Chesneaux, J.-M.; Charikhi, M. Reliable computation of a multiple integral involved in

the neutron star theory. Math. Comput. Simul. 2006, 71, 44–61. [CrossRef]
43. Jézéquel, F.; Chesneaux, J.-M. Computation of an infinite integral using Romberg’s method. Numer. Algorithms

2004, 36, 265–283. [CrossRef]
44. Scott, N.S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M. Numerical ’health check’ for scientific codes: The CADNA

approach. Comput. Phys. Commun. 2007, 176, 507–521. [CrossRef]
45. Jézéquel, F. Dynamical control of converging sequences computation. Appl. Numer. Math. 2004, 50, 147–164.

[CrossRef]
46. Jézéquel, F. A dynamical strategy for approximation methods. C. R. Acad. Sci. Paris-Mécanique 2006, 334,

362–367. [CrossRef]
47. Jézéquel, F.; Chesneaux, J.-M. CADNA: A library for estimating round-off error propagation.

Comput. Phys. Commun. 2008, 178, 933–955. [CrossRef]
48. Lamotte, J.-L.; Chesneaux, J.-M.; Jézéquel, F. CADNA−C: A version of CADNA for use with C or C++

programs. Comput. Phys. Commun. 2010, 181, 1925–1926. [CrossRef]
49. Eberhart, P.; Brajard, J.; Fortin, P.; Jézéquel, F. High Performance Numerical Validation using Stochastic

Arithmetic. Reliab. Comput. 2015, 21, 35–52.
50. Graillat, S.; Jézéquel, F.; Wang, S.; Zhu, Y. Stochastic arithmetic in multi precision. Math. Comput. Sci. 2011,

5, 359–375. [CrossRef]
51. Graillat, S.; Jézéquel, F.; Picot, R. Numerical Validation of Compensated Summation Algorithms with

Stochastic Arithmetic. Electron. Notes Theor. Comput. Sci. 2015, 317, 55–69. [CrossRef]
52. Vignes, J. Discrete Stochastic Arithmetic for Validating Results of Numerical Software. Spec. Issue

Numer. Algorithms 2004, 37, 377–390. [CrossRef]
53. Vignes, J. A stochastic arithmetic for reliable scientific computation. Math. Comput. Simul. 1993, 35, 233–261.

[CrossRef]
54. Noeiaghdam, S.; Fariborzi Araghi, M.A. Finding optimal step of fuzzy Newton-Cotes integration rules by

using the CESTAC method. J. Fuzzy Set Valued Anal. 2017, 2017, 62–85. [CrossRef]

177



Symmetry 2020, 12, 1730

55. Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Valid implementation of Sinc-collocation method
to solve the fuzzy Fredholm integral equation. J. Comput. Appl. Math. 2020, 370, 112632. [CrossRef]

56. Noeiaghdam, S.; Fariborzi Araghi, M.A. A Novel Approach to Find Optimal Parameter in the
Homotopy-Regularization Method for Solving Integral Equations. Appl. Math. Inf. Sci. 2020, 14, 1–8.

57. Abbasbandy, S.; Fariborzi Araghi, M.A. Numerical solution of improper integrals with valid implementation.
Math. Comput. Appl. 2002, 7, 83–91. [CrossRef]

58. Abbasbandy, S.; Fariborzi Araghi, M.A. A stochastic scheme for solving definite integrals. Appl. Numer. Math.
2005, 55, 125–136. [CrossRef]

59. Fariborzi Araghi, M.A.; Noeiaghdam, S. A Valid Scheme to Evaluate Fuzzy Definite Integrals by Applying
the CADNA Library. Int. Fuzzy Syst. Appl. 2017, 6, 1–20. [CrossRef]

60. Fariborzi Araghi, M.A.; Noeiaghdam, S. Dynamical control of computations using the Gauss-Laguerre
integration rule by applying the CADNA library. Adv. Appl. Math. 2016, 16, 1–18.

61. Abbasbandy, S.; Fariborzi Araghi, M.A. The use of the stochastic arithmetic to estimate the value of
interpolation polynomial with optimal degree. Appl. Numer. Math. 2004, 50, 279–290. [CrossRef]

62. Fariborzi Araghi, M.A.; Noeiaghdam, S. Valid implementation of the Sinc-collocation method to solve linear
integral equations by the CADNA library. J. Math. Model. 2019, 7, 63–84.

63. Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Finding optimal convergence control parameter
in the homotopy analysis method to solve integral equations based on the stochastic arithmetic. Numer.
Algorithms 2019, 81, 237–267. [CrossRef]

64. Khojasteh Salkuyeh, D.; Toutounian, F. Optimal iterate of the power and inverse iteration methods.
Appl. Numer. Math. 2009, 59, 1537–1548. [CrossRef]

65. Khojasteh Salkuyeh, D.; Toutounian, F. Numerical accuracy of a certain class of iterative methods for solving
linear system. Appl. Math. Comput. 2006, 176, 727–738.

66. Graillat, S.; Jézéquel, F.; Ibrahim, M.S. Dynamical Control of Newton’s Method for Multiple Roots of
Polynomials. Reliab. Comput. 2016, 21, 117–139.

67. Sizikov, V.S.; Sidorov, D.N. Discrete Spectrum Reconstruction Using Integral Approximation Algorithm.
Appl. Spectrosc. 2017, 71, 1640–1651. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

178



symmetryS S

Article

On (φ, ψ)-Metric Spaces with Applications

Eskandar Ameer 1, Hassen Aydi 2,3,4,∗ , Hasanen A. Hammad 5,∗ ,
Wasfi Shatanawi 4,6,7 and Nabil Mlaiki 6

1 Department of Mathematics, Taiz University, Taiz, Yemen; eskandar.msma154@iiu.edu.pk
2 Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4 China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;

wshatanawi@psu.edu.sa
5 Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
6 Department of Mathematics and General Sciences, Prince Sultan University, P. O. Box 66833,

Riyadh 11586, Saudi Arabia; nmlaiki@psu.edu.sa
7 Department of Mathematics, Hashemite University, Zarqa 13133, Jordan
* Correspondence: hassen.aydi@tdtu.edu.vn (H.A.); hassanein_hamad@science.sohag.edu.eg (H.A.H.)

Received: 11 August 2020; Accepted: 29 August 2020; Published: 5 September 2020
����������
�������

Abstract: The aim of this article is to introduce the notion of a (φ, ψ)-metric space, which extends the
metric space concept. In these spaces, the symmetry property is preserved. We present a natural
topology τ(φ,ψ) in such spaces and discuss their topological properties. We also establish the Banach
contraction principle in the context of (φ, ψ)-metric spaces and we illustrate the significance of our
main theorem by examples. Ultimately, as applications, the existence of a unique solution of Fredholm
type integral equations in one and two dimensions is ensured and an example in support is given.

Keywords: (φ, ψ)-metric space; topological property; fixed point; Fredholm integral equation
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1. Introduction

Fixed-point technique offers a focal concept with many diverse applications in nonlinear
analysis. It is an important theoretical tool in many fields and various disciplines such as topology,
game theory, optimal control, artificial intelligence, logic programming, dynamical systems (and chaos),
functional analysis, differential equations, and economics.

Recently, many important extensions (or generalizations) of the metric space notion have been
investigated (as examples, see References [1–5]). In 1989, the class of of b-metric spaces has been
introduced by Bakhtin [6], that is, the classical triangle inequality is relaxed in the right-hand term by a
parameter s ≥ 1. This class was formally defined by Czerwik [7] (see also References [8,9])) in 1993 with
a view of generalizing the Banach contraction principle (BCP). The above class has been generalized by
Mlaiki et al. [10] and Abdeljawad et al. [11], by introduction of control functions (see also Reference [12]).
Fagin et al. [13] presented the notion of an s-relaxed metric. A 2-metric introduced by Gahler [14] is a
function defined on =×=×= (where = is a nonempty set), and verifies some particular conditions.
Gahler showed that a 2-metric generalizes the classical concept of a metric. While, different authors
established that no relations exist between these two notions (see Reference [15]). Mustafa and Sims [16]
initiated the class of G-metric spaces. Branciari [17] gave a new generalization of the metric concept by
replacing the triangle inequality with a more general one involving four points. Partial metric spaces
have been introduced by Matthews [18] (for related works, see References [19–21]) as a part of the
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discussion of denotational semantics in dataflow networks. Jleli and Samet [22] introduced the notion
of a JS-metric, where the triangle inequality is replaced by a lim sup-condition. Very recently, Jleli and
Samet [23] also introduced the concept of F -metric spaces. For this, denote by Ξ the set of functions
F : (0, ∞)→ (−∞, ∞) satisfying the following conditions:

(F1) F is non-decreasing;
(F2) for each sequence {tn} ⊂ (0, ∞);

lim
n→+∞

F(tn) = −∞ i f and only i f lim
n→+∞

tn = 0.

Definition 1 ([23]). Let = be a nonempty set and D : =×= → [0, ∞) be a function. Assume that there exist
a function F ∈ Ξ and α ∈ [0, ∞) such that for σ, ς ∈ =,

(D1) D(σ, ς) = 0 if and only if σ = ς;
(D2) D(σ, ς) = D(ς, σ);
(D3) for each n ∈ N with n≥ 2, and for each {ui}n

i=1 ⊂ = with (u1, un) = (σ, ς) , we have,

D(σ, ς) > 0⇒ F (D(σ, ς)) ≤ F

(
n−1

∑
i=1

D(ui, ui+1)

)
+ α.

Then D is said to be a F-metric on =. The pair (=, D) is said to be a F-metric space.

In this paper, we present a new generalization of the concept of metric spaces, namely, a
(φ, ψ)−metric space. We compare our concept with the existing generalizations in the literature. Next,
we give a natural topology τφ,ψ on these spaces, and study their topological properties. Moreover, we
establish the BCP in the setting of (φ, ψ)-metric spaces. As applications, we ensure the existence of a
unique solution of two Fredholm type integral equations.

2. On (φ, ψ)−Metric Spaces

Definition 2. Let D be the set of functions φ : (0, ∞)→ (0, ∞) such that:

(φ1) φ is non-decreasing;
(φ2) for each positive sequence {tn},

lim
n→∞

φ(tn) = 0 if and only if lim
n→∞

tn = 0.

Let ψ : (0, ∞)→ (0, ∞) be such that:

(i) ψ is monotone increasing, that is, σ < ς⇒ ψ (σ) ≤ ψ (ς);
(ii) ψ(t) ≤ t for every t > 0.

We denote by Ψ the set of functions satisfying (i)–(ii).

Now, we introduce the notion of (φ, ψ)-metric spaces.

Definition 3. Let = be a nonempty set and d : =×= → [0, ∞) be a function. Assume that there exist two
functions ψ ∈ Ψ and φ ∈ D such that for all σ, ς ∈ =, the following hold:

(d1) d(σ, ς) = 0 if and only if σ = ς;
(d2) d(σ, ς) = d(ς, σ);
(d3) for each n ∈ N, n ≥ 2, and for each {ωi}n

i=1 ⊂ = with (ω1, ωn) = (σ, ς) , we have

d(σ, ς) > 0⇒ φ (d(σ, ς)) ≤ ψ

(
φ

(
n−1

∑
i=1

d(ωi, ωi+1)

))
.
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Then d is named as a (φ, ψ)-metric on =. The pair (=, d) is called a (φ, ψ)-metric space. It is known that
property (d2) states that this metric should measure the distances symmetrically.

Remark 1. Any metric on = is a (φ, ψ)-metric on =. Indeed, if d is a metric on =, then it satisfies (d2) and
(d2). On the other hand, by the triangle inequality, for every (σ, ς) ∈ =×=, for each integer n ≥ 2, and for
each {ωi}n

i=1 ⊂ = with (ω1, ωn) = (σ, ς),

d(σ, ς) ≤
n−1

∑
i=1

d(ωi, ωi+1).

It yields that
d(σ, ς) > 0⇒ ed(σ,ς) ≤ e[∑

n−1
i=1 d(ωi ,ωi+1)].

That is,

d(σ, ς)ed(σ,ς) ≤
n−1

∑
i=1

d(ωi, ωi+1)
(

e[∑
n−1
i=1 d(ωi ,ωi+1)]

)
.

Thus,

φ (d(σ, ς)) ≤ ψ

(
φ

(
n−1

∑
i=1

d(ωi, ωi+1)

))
.

Then (d3) holds with φ (t) = tet and ψ (t) = t.

Example 1. Let = = N and let d : =×= → [0, ∞) be defined by

d (σ, ς) =

{
|σ− ς| , if (σ, ς) /∈ [0, 2]× [0, 2] ,
(σ−ς)2

9 if (σ, ς) ∈ [0, 2]× [0, 2] ,

for all σ, ς ∈ =. It is easy to see that d satisfies (d1) and (d2). But, d does not verify the triangle inequality.
Indeed,

d (0, 2) =
4
9
>

2
9
=

1
9
+

1
9
= d (0, 1) + d (1, 2) .

Hence, d is not a metric on =. Further, let σ, ς ∈ = such that d (σ, ς) > 0. Let {ωi}n
i=1 ⊂ = where n ≥ 2

and (ω1, ωn) = (σ, ς) . Consider,

I = {1, 2, 3, ..., n− 1 : (ωi, ωi+1) ∈ [0, 2]× [0, 2]} ,

and
J = {1, 2, 3, ..., n− 1} \I.

Hence, we have

n−1

∑
i=1

d(ωi, ωi+1) = ∑
i∈I

d(ωi, ωi+1) + ∑
j∈J

d(ωj, ωj+1)

= ∑
i∈I

(ωi+1 −ωi)
2

9
+ ∑

j∈J

∣∣ωj+1 −ωj
∣∣ .
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Now, we have two cases:

Case 1: If (σ, ς) /∈ [0, 2]× [0, 2] , we have

d (σ, ς) = |σ− ς| ≤
n−1

∑
i=1
|ωi+1 −ωi|) ≤

n−1

∑
i=1

4
3
|ωi+1 −ωi|)

= ∑
i∈I

4 |ωi+1 −ωi|
3

+ ∑
j∈J

4
3

∣∣ωj+1 −ωj
∣∣

≤ ∑
i∈I

4 |ωi+1 −ωi|
3

+ ∑
j∈J

4
∣∣ωj+1 −ωj

∣∣ .

Observe that
|ωi+1 −ωi|

3
≤ (ωi+1 −ωi)

2

9
.

Thus, we get that

d (σ, ς) ≤ 4

[
∑
i∈I

(ωi+1 −ωi)
2

9
+ ∑

j∈J

∣∣ωj+1 −ωj
∣∣
]

= 4
n−1

∑
i=1

d(ωi, ωi+1).

Case 2: If (σ, ς) ∈ [0, 2]× [0, 2] , we have

d (σ, ς) =
|σ− ς|2

9
≤ |σ− ς|

3

= ∑
i∈I

|ωi+1 −ωi|
3

+ ∑
j∈J

∣∣ωj+1 −ωj
∣∣

3

≤ ∑
i∈I

|ωi+1 −ωi|
3

+ ∑
j∈J

3
∣∣ωj+1 −ωj

∣∣

≤ ∑
i∈I

|ωi+1 −ωi|2
3

+ ∑
j∈J

3
∣∣ωj+1 −ωj

∣∣

=
1
3

[
∑
i∈I

|ωi+1 −ωi|2
9

+ ∑
j∈J

∣∣ωj+1 −ωj
∣∣
]

=
1
3

n−1

∑
i=1

d(ωi, ωi+1).

By combining the above, we conclude that for all σ, ς ∈ =, for each integer n ≥ 2, and for each
{ωi}n

i=1 ⊂ = with (ω1, ωn) = (σ, ς), we have

d (σ, ς) > 0⇒ d (σ, ς) ≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1).

Therefore,

d (σ, ς) ed(σ,ς) ≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1)e[
1
3 ∑n−1

i=1 d(ωi ,ωi+1)]

≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1)e[∑
n−1
i=1 d(ωi ,ωi+1)].
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It further implies that

d (σ, ς) ed(σ,ς) ≤ 1
3

n−1

∑
i=1

d(ωi, ωi+1)e[∑
n−1
i=1 d(ωi ,ωi+1)].

Therefore, d is a (φ, ψ)-metric.

Remark 2. It should be noted that the class of (φ, ψ)-metric spaces is effectively larger than the set of F-metric
spaces. Indeed, a (φ, ψ)-metric is a F−metric by considering φ (t) = e f (t) and ψ (t) = e−αt. We present an
easy example to show that a (φ, ψ)-metric need not be a F -metric.

Example 2. Let = = [0, 1]. Define d : =×= → [0, ∞) as

d (σ, ς) =

(
σ− ς

6

)2
.

Clearly, d is a (φ, ψ) -metric on = with φ(t) = t and ψ(t) = t
36 . Assume that there are F ∈ Ξ and

α ∈ [0, ∞). Let n ∈ N and ωi =
i
n for i = 0, 2, ..., n. Using (D3), we obtain

f (d(0, 1)) ≤ f (d(0, ω1) + d(ω1, ω2) + ... + d(ωn−1, 1)) + α, n ∈ N.

Thus,

f (
1

36
) ≤ f (

1
36n

) + α, n ∈ N.

Using (F2), we get

lim
n→∞

f (
1

36n
) + α = −∞,

which is a contradiction. Therefore, d is not a F-metric space on =.

3. Topology of (φ, ψ)-Metric Spaces

Here, we study the natural topology defined on (φ, ψ) -metric spaces.

Definition 4. Let (=, d) be a (φ, ψ)-metric space and M be a subset of =. M is said to be (φ, ψ)-open if for
each σ ∈ M, there is r > 0 so that B(σ, r) ⊂ M, where

B(σ, r) = {ς ∈ = : d(σ, ς) < r} .

A subset Z of = is called (φ, ψ)-closed if =\Z is (φ, ψ)-open. We denote by τ(φ,ψ) the set of all (φ, ψ)-open
subsets of =.

Proposition 1. Let (=, d) be a (φ, ψ) -metric space. Then τ(φ,ψ) is a topology on =.

Proposition 2. Let (=, d) be a (φ, ψ)-metric space. Then, for each nonempty subset C of=, we have equivalence
of the following assertions:

(i) C is (φ, ψ) -closed.
(ii) For any sequence {σn} ⊂ =, we have

lim
n−→∞

d (σn, σ) = 0, σ ∈ = ⇒ σ ∈ C.

Proof. Suppose that C is (φ, ψ)-closed. Let {σn} be a sequence in C such that

lim
n−→∞

d (σn, σ) = 0, (1)
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where σ ∈ =. Assume that σ ∈ =\C. Since C is (φ, ψ)-closed, =\C is (φ, ψ)-open. Hence, there is r > 0
so that B(σ, r) ⊂ =\C, that is, B(σ, r) ∩ C = ∅. Also, by (1), there is N ∈ N so that

d (σn, σ) < r, n ≥ N.

That is, σn ∈ B(σ, r), n ≥ N. Hence, σN ∈ B(σ, r) ∩ C. It is a contradiction, and so σ ∈ C. That is,
(i)⇒ (ii) is proved. Conversely, assume that (ii) is verified. Let σ ∈ =\C. We now show that there
is some r > 0 so that B(σ, r) ⊂ =\C. We argue by contradiction. assume that for each r > 0, there is
σr ∈ B(σ, r) ∩ C. Thus, for each n ∈ N, there is σn ∈ B(σ, 1

n ) ∩ C. Then {σn} ⊂ C and

lim
n−→∞

d (σn, σ) = 0.

By (ii), we get σ ∈ C, which is a contradiction with σ ∈ =\C. Thus, C is (φ, ψ)-closed and so
(ii)⇒ (i).

Proposition 3. Let (=, d) be a (φ, ψ)-metric space, α ∈ = and r > 0. Let B(α, r) be the subset of = given as

B(α, r) = {σ ∈ = : d(α, σ) ≤ r} .

Assume that for each sequence {σn} ⊂ =, we have

lim
n−→∞

d (σn, σ) = 0, σ ∈ = ⇒ d (σ, ς) ≤ lim sup
n→∞

d (σ, ς) , ς ∈ =. (2)

Then B(α, r) is (φ, ψ)-closed.

Proof. Let {σn} ⊂ B(α, r) be a sequence so that

lim
n−→∞

d (σn, σ) = 0, σ ∈ =.

From Proposition 2, we show that σ ∈ B(α, r). By using the definition of B(α, r), we obtain
d (σn, σ) ≤ r, n ∈ N. Taking lim supn→∞, by (2), we get

d (σ, ς) ≤ lim sup
n→∞

d (σn, ς) ≤ r,

which yields that σ ∈ B(α, r). Consequently, B(α, r) is (φ, ψ)-closed.

Remark 3. Proposition 3 gives only a sufficient condition ensuring that B(α, r) is (φ, ψ)-closed. An interesting
problem is devoted to get a sufficient and necessary condition under which B(α, r) is (φ, ψ)-closed.

Definition 5. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. Let C be the closure of C
with respect to the topology τ(φ,ψ), that is, C is the intersection of all (φ, ψ)-closed subsets of = containing C.
Obviously, C is the smallest (φ, ψ)-closed subset containing C.

Proposition 4. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. If σ ∈ C,
then B(σ, r) ∩ C 6= ∅ for r > 0.

Proof. Let ψ ∈ Ψ and φ ∈ D be such that (d3) holds. Define

C′= {σ ∈ = : for every r > 0, there is c ∈ C : d (σ, ς) < r} .
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By (d1), it is easy to see that C ⊂ C′. Next, we will show that C′ is (φ, ψ)-closed. Let {σn} be a
sequence in C′ such that

lim
n−→∞

d (σn, σ) = 0, σ ∈ =. (3)

By (3), there are some δ > 0 and N ∈ N so that

d (σn, σ) <
δ

2
, for n ≥ N.

Since σN ∈ C, there is α ∈ C so that

d (σN , α) <
δ

2
, for n ≥ N.

If d (σ, α) > 0, by (d3), we have

φ (d (σ, α)) ≤ ψ [φ (d (σN , σ) + d (σN , α))] ≤ ψ [φ (δ)]

< φ (δ) .

Hence,
φ (d (σ, α)) < φ (δ) .

Using (φ1), we get
d (σ, α) < δ.

Hence, in all cases, we obtain d (σ, α) < δ, which yields that σ ∈ C′. Then by Proposition 2, C′ is
(φ, ψ)-closed, which contains C. Then C ⊂ C′.

Definition 6. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in =. We say that {σn} is
(φ, ψ)-convergent to σ ∈ = if {σn} is convergent to σ with respect to the topology τ(φ,ψ), that is, for each
(φ, ψ)-open subset Òσ of = containing σ, there is N ∈ N so that σn ∈ Òσ for any n ≥ N. Here, σ is called the
limit of {σn}.

The next result comes directly by combining the above definition and the definition of τ(φ,ψ).

Proposition 5. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in = and σ ∈ =. We have
equivalence of the following assertions:

(i) {σn} is (φ, ψ)-convergent to σ.
(ii) lim

n−→∞
d (σn, σ) = 0.

In the following, the limit of a (φ, ψ)-convergent sequence is unique.

Proposition 6. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in =. Then

lim
n−→∞

d (σn, σ) = lim
n−→∞

d (σn, ς) = 0⇒ σ = ς.

Proof. Let σ, ς ∈ = be so that

lim
n−→∞

d (σn, σ) = lim
n−→∞

d (σn, ς) = 0.

Assume that σ 6= ς. By (d1), d (σ, ς) > 0. Using (d3), there are ψ ∈ Ψ and φ ∈ D such that

φ (d (σ, ς)) ≤ ψ [φ (d (σn, σ) + d (σn, ς))]

< φ (d (σn, σ) + d (σn, ς)) ,
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for every n. Next, in view of (d2) and (φ2),

lim
n−→∞

φ (d (σn, σ) + d (σn, ς)) = 0,

and so φ (d (σ, ς)) = 0, which is a contradiction, and so σ = ς.

Definition 7. Let (=, d) be a (φ, ψ)-metric space. Let {σn} be a sequence in =. Then,

(i) {σn} is (φ, ψ)-Cauchy if lim
n,m−→∞

d (σn, σm) = 0.

(ii) (=, d) is (φ, ψ)-complete, if any (φ, ψ)-Cauchy sequence in = is (φ, ψ)-convergent to some element in =.

Proposition 7. Let (=, d) be a (φ, ψ)-metric space. If {σn} ⊂ = is (φ, ψ)-convergent, then it is (φ, ψ)-Cauchy.

Proof. Let ψ ∈ Ψ and φ ∈ D be such that (d3) holds. Let σ ∈ = be so that

lim
n−→∞

d (σn, σ) = 0.

For any δ > 0, there is N ∈ N such that

d (σn, σ) + d (σm, σ) < δ, n, m ≥ N. (4)

Let m, n ≥ N. We consider the two following cases.

Case 1: If σn = σm. Here, by (d1),

d (σn, σm) = 0 < δ.

Case 2: If σn 6= σm. Here, from (4),

0 < d (σn, σ) + d (σm, σ) < δ.

One writes
φ (d (σn, σ) + d (σm, σ)) < φ (δ) .

It implies that
ψ (d (σn, σ) + d (σm, σ)) < ψ (φ (δ)) .

Now, using (d3), we obtain

φ (d (σn, σm)) ≤ ψ (φd (σn, σ) + d (σm, σ)) < ψ (φ (δ))

< φ (δ) ,

which implies from (φ1) that
d (σn, σm) < δ.

Hence,
d (σn, σm) < δ, n, m ≥ N.

Consequently,
lim

n,m−→∞
d (σn, σm) = 0,

that is, {σn} is (φ, ψ)-Cauchy.

Now, we study the compactness on (φ, ψ)-metric spaces.

Definition 8. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. then C is called
(φ, ψ)-compact if C is compact with respect to the topology τ(φ,ψ) on =.
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Proposition 8. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. Then, we have equivalent
of the following assertions:

(i) C is (φ, ψ)-compact.
(ii) For each sequence {σn} ⊂ C, there is a subsequence {σn(k)} of {σn} so that

lim
k−→∞

d
(

σn(k), σ
)
= 0.

Proof. Assume that C is (φ, ψ)-compact. Note that the set of decreasing sequences of nonempty
(φ, ψ)-closed subsets of C has a nonempty intersection. Let {σn} be a sequence in C. For any n ∈ N,
let Zn = {σm : m ≥ n}. Clearly, Zn+1 ⊂ Zn for each n ∈ N. This implies that {Zn}n∈N is a decreasing
sequence of nonempty (φ, ψ)-closed subsets of Z. Thus, there is σ ∈ ∩n∈NZn. Given an arbitrary
element ε > 0. Since σ ∈ Z0, by Proposition 4, there are n0 ≥ 0 and σn0 ∈ C so that d (σn0 , σ) < ε.
Continuing in this direction, for any k ∈ N, there are n(k) ≥ k and σn(k) ∈ C so that

d
(

σn(k), σ
)
< ε.

Consequently,
lim

k−→∞
d
(

σn(k), σ
)
= 0.

Since C is (φ, ψ)-compact, one says that C is (φ, ψ)-closed, and σ ∈ C.Hence, we established that
(i)⇒ (ii). Conversely, suppose that (ii) is satisfied. Let ψ ∈ Ψ and φ ∈ D such that (d3) is satisfied.

First, we claim that

∀r > 0, ∃(σ0), i = 1, ..., n ⊂ C : C ⊂ ∪
i=1,...,n

B(σi, r). (5)

We argue by contradiction. Suppose there is r > 0 so that for any finite number of elements
(σ0), i = 1, ..., n ⊂ C,

C  ∪
i=1,...,n

B(σi, r).

Let σ1 ∈ C be a fixed element. Then

C  B(σ1, r).

That is, there is σ2 ∈ C so that d (σ1, σ2) ≥ r. Also,

C  B(σ1, r) ∪ B(σ2, r).

So there is σ3 ∈ C so that d (σi, σ3) ≥ r for i = 1, ..., n. Continuing in this direction and by
induction, we build a sequence {σn} ⊂ C so that d (σn, σm) ≥ r, n, m ∈ N. Note that we could bot
extract from {σn} any (φ, ψ)-Cauchy subsequence, and so (from Proposition 7), any (φ, ψ)-convergent
subsequence. We get so a contradiction with (ii), which proves (5). Next, let {Òi}i∈I be an arbitrary
family of (φ, ψ)-open subsets of = so that

C ⊂ ∪i∈IÒi. (6)

We claim that
∀r0 > 0 : ∀σ ∈ C, ∃i ∈ I : B(σ, r0) ⊂ Òi. (7)
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We argue by contradiction. Assume that for every r > 0, there is σr ∈ C so that B(σr, r)  Òi,
for all i ∈ I. Particularly, for all n ∈ N, there is σn ∈ C so that B(σn, 1

n )  Òi for all i ∈ I. By (ii),

we build a subsequence
{

σn(k)

}
from {σn} so that

lim
k−→∞

d
(

σn(k), σ
)
= 0, (8)

for some σ ∈ C. Moreover, using (6), there is j ∈ I so that σ ∈ =. In view of the fact that Òj is a
(φ, ψ)-open subset of =, there is r0 > 0 so that B(σ, r0) ⊂ Òj. Now, for each n(k) ∈ N and for every
q ∈ B(σn(k),

1
n(k) ), one writes

d (σ, q) > 0⇒ φ (d (σ, q)) ≤ ψ
(

φ
(

d
(

σ, σn(k)

)
+ d

(
σn(k), q

)))

< ψ

(
φ

(
d
(

σ, σn(k)

)
+

1
n(k)

))

φ

(
d
(

σ, σn(k)

)
+

1
n(k)

)
.

Using (8) and (φ2), there is K ∈ N so that

φ

(
d
(

σ, σn(k)

)
+

1
n(k)

)
< φ (r0)

for each k ≥ K. It yields that

d (σ, q) > 0⇒ φ (d (σ, q)) < φ (r0) .

Consequently, by (φ1), we find that d (σ, q) < r0. Hence, we get

B(σn(k),
1

n(k)
) ⊂ B(σ, r0),

for n(k) ∈ N. Thus,

B(σn(k),
1

n(k)
) ⊂ Òj, n(k) ∈ N.

We get a contradiction with respect to

B(σn(k),
1

n(k)
)  Òi, n(k) ∈ N.

for all i ∈ I. Then (7) holds. Further, by (5), there is
{

σp
}

p=1,...,n ⊂ C so that

C ⊂ ∪
p=1,...,n

B(σp, r0).

But by (7), for any p = 1, ..., n, there exists i(p) ∈ I such that B(σp, r0) ⊂ Òi(p), which yields

C ⊂ ∪
p=1,...,n

Òi(p).

Thus, C is (φ, ψ)-compact, and so (ii)⇒(i).
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Definition 9. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. The subset C is said to be
sequentially (φ, ψ)-compact, if for each sequence , there are a subsequence

{
σn(k)

}
of {σn} and σ ∈ C so that

lim
k−→∞

d
(

σn(k), σ
)
= 0.

Definition 10. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =. The subset C is called
(φ, ψ)-totally bounded if

∀r > 0, ∃(σ0), i = 1, ..., n ⊂ C : C ⊂ ∪
i=1,...,n

B(σi, r).

Due to the proof of Proposition 8, we may state the following proposition.

Proposition 9. Let (=, d) be a (φ, ψ)-metric space. Let C be a nonempty subset of =.

(i) C is (φ, ψ)-compact if and only if C is sequentially (φ, ψ)-compact.
(ii) If C is (φ, ψ)-compact, then C is (φ, ψ)-totally bounded.

4. Banach Contraction Principle on (φ, ψ)-Metric Spaces

In this section, we prove a new version of the BCP in the context of (φ, ψ)-metric spaces.

Theorem 1. Let (=, d) be a complete (φ, ψ)-metric space and T : = → = be a self-mapping. Suppose that
there exists λ ∈ (0, 1) such that for all σ, ς ∈ =,

d (T (σ) , T (ς)) ≤ λd (σ, ς) . (9)

Then T has a unique fixed point in =.

Proof. Let σ0 ∈ =. Define the sequence {σn} in = by

σn+1 = T (σn) , where n ∈ N.

If for some n, d (σn, σn+1) = 0, then σn is a fixed point of T. Without restriction of the generality,
we may suppose that d (σn, σn+1) > 0 for all n. Using (9), we get

d (σn, σn+1) ≤ λd (σn−1, σn) ≤ λ2d (σn−2, σn−1)

≤ ... ≤ λnd (σ0, σ1) ,

for all n ∈ N. Thus,
m−1

∑
i=n

d (σi, σi+1) ≤
λn

1− λ
d (σ0, σ1) , m > n.

Hence, by (φ1), we have

φ

(
m−1

∑
i=n

d (σi, σi+1)

)
≤ φ

(
λn

1− λ
d (σ0, σ1)

)
, m > n.

Since ψ is monotone increasing, we obtain for m > n,

ψ

(
φ

(
m−1

∑
i=n

d (σi, σi+1)

))
≤ ψ

(
φ

(
λn

1− λ
d (σ0, σ1)

))

< φ

(
λn

1− λ
d (σ0, σ1)

)
.
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Since
lim

n−→∞

λn

1− λ
d (σ0, σ1) = 0,

by (φ2), we have

lim
n−→∞

φ

(
λn

1− λ
d (σ0, σ1)

)
= 0. (10)

Using (d3), we obtain

d (σn, σm) > 0, m > n⇒ φ (d (σn, σm)) ≤ ψ

(
φ

(
m−1

∑
i=n

d (σi, σi+1)

))

< φ

(
λn

1− λ
d (σ0, σ1)

)
.

It implies that

φ (d (σn, σm)) < φ

(
λn

1− λ
d (σ0, σ1)

)
.

By using (10), we obtain
lim

n,m−→∞
φ (d (σn, σm)) = 0.

Then from (φ2), we have
lim

n,m−→∞
d (σn, σm) = 0.

Therefore, {σn} is a (φ, ψ)-Cauchy sequence in =. Since = is (φ, ψ)-complete, we can find σ∗ ∈ =
such that

lim
n→∞

d (σn, σ∗) = 0. (11)

Next, we prove that T (σ∗) = σ∗. We argue by contradiction. Assume that d (T (σ∗) ,σ∗) > 0.
By using (d3), we obtain

φ (d (T (σ∗) , σ∗)) ≤ ψ (φ (d (T (σ∗) , T (σn)) + d (T (σn) , σ∗)))

< φ (d (T (σ∗) , T (σn)) + d (T (σn) , σ∗)) ,

for n ∈ N. By (9) and (φ1),

d (T (σ∗) , σ∗) < λd (σ∗,σn) + d (σn+1,σ∗) .

By using (φ2) and (11), we get

lim
n→∞

φ (λd (σ∗,σn) + d (σn+1,σ∗)) = 0,

which is a contradiction. Therefore, d (T (σ∗) , σ∗) = 0 and T (σ∗) = σ∗. Thus, T has a fixed point
σ∗ ∈ =. Next, we prove that T has at most one fixed point. Assume that σ∗ and ζ∗ are two fixed points
of T such that σ∗ 6= ζ∗. Then from (9), we have

0 < d (σ∗, ς∗) = d (T (σ∗) ,T (ς∗)) ≤ λd (σ∗, ς∗) < d (σ∗, ς∗) .

It is a contradiction. Hence, T has a unique fixed point in =.
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Corollary 1. Let (=, d) be a (φ, ψ)-metric space. Suppose there exist a continuous comparison function ψ ∈ Ψ
and φ ∈ D so that (d3) holds. Let S : B(σ0, r)→ = be a given mapping, where σ0 ∈ = and r > 0. Assume that:

(i) Suppose that for each sequence {σn} ⊂ =, we have

lim
n→∞

d (σn, σ) = 0⇒ d (σ, ς) ≤ lim
n→∞

sup d (σn, ς) , ς ∈ =;

(ii) (=, d) is (φ, ψ)-complete;
(iii) There exists λ ∈ (0, 1) such that

d(S(σ), S(ς)) ≤ λd(σ, ς), (σ, ς) ∈ B(σ0, r)× B(σ0, r);

(iv) There exists 0 < ε < r such that

φ (λε + d(Sσ0, σ0)) ≤ φ (ε) .

Then S has a fixed point.

Proof. Consider 0 < ε < r such that (iv) is satisfied. First, we will show that

S (B(σ0, ε)) ⊂ B(σ0, ε).

Let σ ∈ B(σ0, ε), that is, d(σ0, σ) ≤ ε. Assume that d(Sσ, σ0) > 0. By (d3),

φ (d(Sσ, σ0)) ≤ ψ (φ (d(Sσ, Sσ0) + d(Sσ0, σ0))) .

Using (iii), we obtain

φ (d(Sσ, σ0)) ≤ ψ (φ (d(Sσ, Sσ0) + d(Sσ0, σ0)))

≤ ψ (φ (λd(σ, σ0) + d(Sσ0, σ0)))

≤ ψ (φ (λε + d(Sσ0, σ0)))

< φ (λε + d(Sσ0, σ0))

≤ φ (ε) .

Hence, by (φ1), we have d(Sσ, σ0) ≤ ε, which yields S (σ) ∈ B(σ0, ε). Therefore,

S (B(σ0, ε)) ⊂ B(σ0, ε).

Further, the mapping S : B(σ0, ε)→ B(σ0, ε) is well-defined, and the Banach contraction condition
holds. Next, since the condition of Proposition 3 is satisfied, it is known that B(σ0, ε) is (φ, ψ)-closed,
so from (i), it is (φ, ψ)-complete. Finally, the result is deduced by using Theorem 1.

5. Solving a Nonlinear Fredholm Integral Equation

This section is devoted to discusses the existence and uniqueness of a solution of a Fredholm type
integral equation of the 2nd kind [24–29]. Consider the equation below:

σ(µ) = β(µ) +

v∫

u

Ω(µ, `)< (µ, `, σ(`)) d`, µ ∈ [u, v]. (12)

Let Θ = C[u, v] be the set of all continuous functions defined on [u, v]. For σ, ζ ∈ Θ and q > 1,
define d : Θ×Θ→ [0, ∞) by

d (σ, ζ) =

(
1
6

sup
µ∈[u,v]

|σ(µ)− ζ(µ)|
)q

.
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Then (Θ, d) is a complete (φ, ψ)−metric space with φ(ρ) = ρ and ψ(ρ) = ρ
6q .

To study the existence of a solution for the problem (12), we state and prove the theorem below.

Theorem 2. Consider the problem (12) via the assumptions below:

(†1) < : [u, v]× [u, v]×R→ R, Ω : [u, v]× [u, v]→ R, and β : [u, v]→ R are continuous functions;
(†2) For µ ∈ [u, v], we have

sup
µ∈[u,v]

v∫

u

Ω(µ, `)d` ≤ 1;

(†3) For q > 1, consider

|< (µ, `, σ(`))−< (µ, `, ζ(`))| ≤ 1
q
√

3
|σ(`)− ζ(`)| .

Then the nonlinear integral equation (12) has a unique solution in Θ.

Proof. Define the operator T : C[u, v]→ C[u, v] by

Tσ(µ) = β(µ) +

v∫

u

Ω(µ, `)< (µ, `, σ(`)) d`, µ ∈ [u, v]. (13)

The solution of problem (12) is a fixed point for the operator (13). By hypotheses (†1)− (†3),
we have

d (Tσ(µ), Tζ(µ))

=

(
1
6

sup
µ∈[u,v]

|Tσ(µ)− Tζ(µ)|
)q

=
1
6q


 sup

µ∈[u,v]

∣∣∣∣∣∣

v∫

u

Ω(µ, `)< (µ, `, σ(`)) d`−
v∫

u

Ω(µ, `)< (µ, `, ζ(`)) d`

∣∣∣∣∣∣




q

≤ 1
6q


 sup

µ∈[u,v]

v∫

u

Ω(µ, `) |< (µ, `, σ(`))−< (µ, `, ζ(`))| dν




q

≤ 1
6q


 sup

µ∈[u,v]

v∫

u

Ω(µ, `)




q

× sup
`∈[u,v]

(
1

q
√

3
|σ(`)− ζ(`)|

)q

≤ 1
3

sup
`∈[u,v]

(
1
6
|σ(`)− ζ(`)|

)q

= λd (σ(µ), ζ(µ)) .

Thus, the condition (9) of Theorem 1 holds with λ = 1
3 . Therefore, all hypotheses of Theorem 1

are fulfilled. So the problem (12) has a unique solution in Θ.

The example below supports Theorem 2.

Example 3. The following problem:

σ(µ) =
1

36

1∫

0

`2σ(`)d`, µ ∈ [0, 1], (14)

has a solution in C[0, 1].
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Proof. Define the operator T : C[0, 1] → C[0, 1] by Tσ(µ) = 1
36

1∫
0
`2σ(`)d`. Customize Ω(µ, `) = `

6 ,

β(µ) = 0 and < (µ, `, σ(`)) = `σ(`)
6 in Theorem 2. Note that

• < and Ω are continuous functions;
• For µ ∈ [0, 1], we have

sup
µ∈[u,v]

v∫

u

Ω(µ, `)d` = sup
µ∈[0,1]

1∫

0

`

6
d` =

1
12

< 1;

• Take q = 2. For ` ∈ [0, 1], we get

|< (µ, `, σ(`))−< (µ, `, ζ(`))| =

∣∣∣∣
`σ(`)

6
− `ζ(`)

6

∣∣∣∣

=
`

6
|σ(`)− ζ(`)|

≤ 1√
3
|σ(`)− ζ(`)| .

Therefore, the stipulations of Theorem 2 are justified, hence the mapping T has a unique fixed
point in C[0, 1], which is the unique solution of the equation (14).

6. Solving a Two-Dimensional Nonlinear Fredholm Integral Equation

In many problems in engineering and mechanics under a suitable transformation, two-dimensional
Fredholm integral equations of the second kind appear. For example, in the calculation of plasma physics,
it is usually required to solve some Fredholm integral equations, see References [30–32].

Now, consider the two-dimensional Fredholm integral equation of the shape:

ζ(r, j) = e(r, j) +
1∫

0

1∫

0

Ω(r, j, f , g)k(r, j, ζ( f , g))d f dg; (r, j) ∈ [0, 1]2, (15)

where e, Ω and k are given continuous functions defined on L2(C ([0, 1]× [0, 1])) and ζ is a function
in L2(C ([0, 1]× [0, 1])).

Let ∇ = C([0, 1]) be the set of all real valued continuous functions on [0, 1]. Consider the same
distance of the above section, then for σ, ζ ∈ ∇, the pair (∇, d) is a complete (φ, ψ)−metric space with
φ(ρ) = ρ and ψ(ρ) = ρ

6q .
Now, we consider the problem (15) under the hypotheses below:

(‡1) Ω : [0, 1]4 → R, and k : [0, 1]2 ×R→ R and e : [0, 1]2 → R are continuous functions;
(‡2) for all σ, ζ ∈ ∇, there is a constant κ < 1 such that

|k(r, j, σ( f , g))−k(r, j, ζ( f , g))| ≤ 1
q
√

2κ
|σ(h, g)− ζ(h, g)| , q > 1;

(‡3) we have
1∫

0

1∫
0

Ω(r, j, f , g)d f dg ≤ κ.

Our related theorem in this part is listed as follows.

Theorem 3. The problem (15) has a unique solution in L2(C ([0, 1]× [0, 1])) if the hypotheses (‡1)− (‡3) hold.
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Proof. Define the operator T : ∇ → ∇ by

T (ζ(τ, µ)) = e(r, j) +
1∫

0

1∫

0

Ω(r, j, f , g)k(r, j, ζ( f , g))d f dg, (a, b) ∈ [0, 1]× [0, 1], (16)

then for q > 1, we get

1
6q |T (σ(r, j))− T (ζ(r, j)))|q

=
1
6q

∣∣∣∣∣∣

1∫

0

1∫

0

Ω(r, j, f , g)k(r, j, σ( f , g))d f dg−
1∫

0

1∫

0

Ω(r, j, f , g)k(r, j, ζ( f , g))d f dg

∣∣∣∣∣∣

q

≤ 1
6q




1∫

0

1∫

0

Ω(r, j, f , g) |k(r, j, σ( f , g))−k(r, j, ζ( f , g))| d f dg




q

≤ 1
6q




1∫

0

1∫

0

Ω(r, j, f , g)d f dg




q

(|k(r, j, σ( f , g))−k(r, j, ζ( f , g))|)q

≤ 1
6q κq

(
1

q
√

2κ
|σ(h, g)− ζ(h, g)|

)q

=
1
2

(
1
6
|σ(h, g)− ζ(h, g)|

)q
.

Taking the supremum, we get

d(Tσ, Tζ) =

(
1
6

sup
µ∈[u,v]

|T (σ(r, j))− T (ζ(r, j)))|
)q

≤ 1
2

(
1
6

sup
µ∈[u,v]

|σ(h, g)− ζ(h, g)|
)q

= λd(σ, ζ).

Thus, from Theorem 1, the operator (16) has a unique fixed point in L2(C ([0, 1]× [0, 1])), which is
considered as the unique solution of the problem (15).

7. Conclusions

In this manuscript, we initiated the concept a (φ, ψ)-metric space. It is a generalization of the
metric space setting. We also presented its topological structure natural topology. The Banach contraction
principle in this class has been established. Moreover, we gave some examples and applications in support
of the introduced new concepts and presented results. As perspectives, it is an open problem to treat
the cases of Kannan, Chatterjea, Hardy-Rogers, Ćirić and Suzuki type contractions. Also, it would be
interesting to investigate the case of common fixed points.
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2. Aydi, H.; Lakzian, H.; Mitrović, Z.D.; Radenović, S. Best proximity points of MF-cyclic contractions with
property UC. Numer. Funct. Anal. Optim. 2020, 41, 871–882. [CrossRef]

3. Gupta, V.; Shatanawi, W.; Kanwar, A. Coupled fixed point theorems employing CLRΩ-Property on V-fuzzy
metric spaces. Mathematics 2020, 8, 404. [CrossRef]

4. Ameer, E.; Aydi, H.; Arshad, M.; De la Sen, M. Hybrid Ćirić type graphic (Υ, Λ)-contraction mappings with
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