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Preface to ”Rainfall-Induced Landslides Hazard”

Landslides can cause human injury, loss of life and economic devastation, and destroy

construction works and cultural and natural heritage. The level of risk as a consequence of landslides

depends on the hazard associated, that is, on the recurrence or temporal probability that one or

more landslide process will affect a terrain unit. This is why knowledge into the frequency with

which these processes occur or important activity changes arise, together with the different types of

landslides and their sizes or intensity classes, provides valuable information to aid in predicting the

transient behavior linked to the destructiveness of these natural events. Landslides are frequently

triggered by hydro-meteorological phenomena, mainly as a consequence of intensive rainfall, and

have led to losses of millions of dollars and thousands of fatalities. In recent decades, there has

been significant improvement in landslide observation with hazard assessment modeling using

numerical and analytical methods. These developments offer new displays for modeling landslide

hazards, leading to new insights into their functioning and new approaches to process modeling

to obtain better prediction. Within this framework, the challenge of this book is to describe the

latest developments and applications of these numerical and analytical methods to improve our

understanding of rainfall-induced landslide models and other aspects of landslide hazard. With this

aim, a discussion on this topic is stimulated, collecting a number of manuscripts recently published

in a Special Issue from the journal Hydrology, which focused on the benefits obtained by the use of

new algorithms and measurement systems for landslide-hazard assessment.

Clemente Irigaray

Editor
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Abstract: Rainfall thresholds are one of the most widely applied methods for indirectly estimating
landslide return periods, which are subsequently used in hazard analyses. In this study, the starting
point is an incidence database of landslides and erosive processes affecting the road network of the
province of Jaén (southern Spain), in which the positions and dates of civil repair works can be found.
Meanwhile, the use of a daily rainfall database in a dense grid (1 km) allowed for the estimation
of the rainfall series at each incidence point with high precision. Considering the news in the local
media and applying spatial proximity, temporal proximity, and maximum return period criteria,
rainfall events of various duration (1 to 90 days) could be associated approximately with each point.
Then, the rainfall thresholds and their return periods were estimated. A linear equation was adjusted
for the rainfall duration threshold (E = 6.408 D + 74.829), and a power-law curve was adjusted for the
intensity–duration pair (I = 47.961 D−0.458). Non-significant differences were observed between the
thresholds and the return periods for the lower and higher magnitude incidences, but the durations
for the former were lower (1–13 days), compared to those of the latter (7–22 days). From the equations,
rainfall events of different durations could be estimated for use in hazard analysis, as well as for the
future development of warning systems.

Keywords: rainfall-induced; landslides; erosion processes; road network; Jaén province; rain-
fall thresholds

1. Introduction

Landslides are considered one of the most important natural hazards worldwide,
causing thousands of victims per year and costs worth billions of euros [1–6]. Landslides
originate in different mountainous regions in Europe [7], such as the Alps, Norway, and the
Mediterranean countries [8,9], and specifically in Spain and the Betic Cordilleras [10–12].
Compared with other risk phenomena, such as earthquakes or floods, the effects of land-
slides are more diffuse and continuous in space and time; thus, according to some studies,
their impact has been underestimated [4]. Despite this, they produce significant damage
to infrastructure, properties, and the environment itself, as well as interrupting socio-
economic activity [1–3].

One of the most effective measures for risk prevention and mitigation is its evalua-
tion which, according to the classic formulation of Varnes [1], includes both the hazard
(probability that a potentially harmful phenomenon occurs in a given space and time)
and the exposure and vulnerability of the elements at risk. For the former, there exist

Hydrology 2021, 8, 100. https://doi.org/10.3390/hydrology8030100 https://www.mdpi.com/journal/hydrology
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deterministic methods based on precise knowledge of the factors conditioning the instabil-
ity [13]. These include geotechnical properties, terrain morphology, and the hydrological
conditions usually conditioned by rainfall as the triggering factor [14–18]. However, the
difficulty of obtaining accurate data [19], especially for studies carried out in a more or
less extensive area, leads to probabilistic methods being more frequently applied in hazard
studies. Probabilistic methods are based on correlation analyses between determinant
factors and landslides, both by means of bivariate approaches [12,20,21] and multivariate
ones [3,21–23]; however, in recent years, machine learning techniques have become increas-
ingly used [21,24]. The first step in these analyses is to elaborate inventories or databases
that collect the spatial locations, occurrence times (dating), and thematic attributes of the
movements [11,25]. For this, direct observation, geomatics data capture techniques, and in
situ or laboratory tests of the different terrain properties are used [11,26].

Among them, dating is usually one of the most complicated issues for landslides,
due to their aforementioned diffuse and continuous nature [27,28]. Direct dating requires
recording by direct observation or in-situ sensors; however, geomatics techniques, such
as Global Navigation and Satellite Systems (GNSS), photogrammetry, optical remote
sensing (ORS), LiDAR, and Interferometry of Synthetic Aperture Radar (InSAR), have
allowed for important advances, especially following their spatial and temporal resolution
increases [29,30]. Another option is indirect dating from triggering factors [26,31], such
as earthquakes and/or rainfall, which are more easily recorded by different instruments,
usually gauges or digital sensors. Considering that rainfall is the triggering factor in most
cases, it is necessary to establish the relationship between rainfall and landslides, which
have been done in numerous studies worldwide [32–38].

Many of these studies have allowed the calculation of rainfall thresholds using em-
pirical methods [9,19,28,36,39–54], especially for shallow movements (debris and mud
flows, shallow slides and even erosion processes, especially gullies [55,56]), where the
correlation with intense rainfall events is clearer, although it has also been applied to
deep ones [40]. As in the aforementioned deterministic methods [14–18], these thresholds
are based on the fact that an increase in rainfall leads to a change in the hydrological
soil conditions and then in slope instability. Thus, some approaches have used not only
the triggering rainfall, but the antecedent rainfall that influences the hydrological condi-
tions [16,18,19,32,35,40,57,58] and, in some cases, so-called hydro-meteorological thresholds
have been developed [59–62]. Other studies have considered the influence of conditioning
factors on the thresholds [45,50], even the main annual precipitation (MAP) [47,63].

In some works, very precise knowledge of the rainfall data (hourly), as well as the
moment in which the movement starts, have been used [9,19,41–50,53]; meanwhile, in
others, only the daily rainfall data are known [28,36,40,51,52]. There are even cases in which
the landslide time or date can only be approximated [36,40,43,51] and reconstructed after
subsequent inventories and/or reviews from the news found in the media [28,40,51,52]. In
any case, following [42], different variables can be used to define these thresholds, such
as the total event rainfall (E), rainfall event–duration (E–D), intensity–duration (I–D), and
rainfall event–intensity (E–I). Although most studies have been carried out at the local
level, there are some cases of application over large regions [42–46], as well as works
and databases that collect indices all over the world [43,54]. Moreover, some works have
led to the development of algorithms and computational tools that can calculate these
thresholds [48,49].

Once the thresholds are determined, they can be applied to predict the probability of
landslide occurrence by determining the return periods [19,28,36,40,41,51,52], which can be
incorporated into the corresponding hazard maps [64,65]. Likewise, they can be integrated
into (early) warning systems [21,63,64], which can prevent the population and authorities
from being subjected to landslides in those cases in which the rainfall threshold is reached.

The objective of this study is the determination of rainfall thresholds that cause
landslides or erosion processes associated with the road network of the Jaén province. For
this, an incidence inventory or database between 1997 and 2013 and a rainfall database

2



Hydrology 2021, 8, 100

between 1971 and 2016 are available. Then, news from the local media were also considered
in the analysis that allowed associating incidences with rainfall events. This has led to the
calculation of rainfall thresholds and the return periods, thus allowing for hazard modelling
in the province of Jaén and the development of warning systems in future works.

2. Materials and Methods

2.1. Study Area

The study area (Figure 1) corresponds to the province of Jaén (13,486 km2). It coincides
approximately with the natural region of the eastern or upper Guadalquivir River basin.
The altitude ranges between 152 and 2160 m, with an average value of 715 m. The average
slope is 12.21◦, although it is also very variable between the mountain ranges and the lower
lands of the Guadalquivir valley.

 

Figure 1. Location, geological setting, and climatic characterization: (a) location; (b) geological setting; (c) mean annual
precipitation (MAP) of the province; (d) series of annual precipitation; and (e) monthly precipitation.
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From the geological and morphological point of view, three domains can be distin-
guished which, from South to North, are as follows (Figure 1b):

• The External Zones of the Betic Cordillera, which are made up of mesozoic and
cenozoic carbonate or loamy-clayey rocks, structured as a fold and thrust belt from the
lower Miocene to the present [66], in which several paleogeographic domains appear
(Prebetic and Subbetic). The Betic External Zone form several mountain ranges (Sierra
Cazorla and Segura, Sierra Mágina and Sierra Sur of Jaén), partially isolated by main
rivers and tributaries of the Guadalquivir River.

• The sedimentary infill of the Guadalquivir basin, differentiated into two parts. In
the north, the Guadalquivir basin is filled with Miocene loamy and clayey sediments,
which are slightly deformed and which overlie the tabular cover of the Iberian Massif,
made up of Triassic clays and sandstones and Jurassic limestones. In the south, the
infill of the basin is highly deformed by the Betic Miocene displacements, which
incorporate tectonically Betic soft materials as Triassic evaporites (salt and gypsum)
or Cretaceous clayey marls [66].

• The Variscan Domain, which constitutes the outcropping basement of the Iberian
Massif, in which metapelites (slates, grauwackes, and so on) and intruding igneous
rocks (granites and granodiorites) are the predominant lithologies.

Over all these materials, quaternary deposits related to present fluvial dynamics and
slope sediments are located.

From the climatic point of view, the province of Jaén corresponds mostly to the hot
summer Mediterranean (Csa de Koppen) [67] climate type. More specifically, it can be
catalogued as the Mediterranean meridional type of the Guadalquivir valley [68]. This
is characterized by a mean annual precipitation (MAP) between 500 and 650 mm, with
maximum values distributed between the autumn, winter, and spring and minimum
values in the summer. Meanwhile, the average temperatures are 17–18.5 ◦C, with very
pronounced maximum values in summer. However, there are sectors in the province with
MAP higher than 1000 mm in the mountain ranges (Mediterranean mountain), and others
with MAP that does not reach 400 mm in the southeast (Mediterranean arid), as shown in
Figure 1c.

Thus, at a central point representative of the average physical conditions of the
province (point 066 of the incidence database, see below), the MAP was 533 mm within the
period considered (1971–2016), with a minimum value of 223 mm in the hydrological year
2004–2005 and a maximum value of 1026 mm, which was reached in 2009–2010 (Figure 1d).
This wide interval shows the variability of precipitation over the years, with a standard
deviation of 172 mm and coefficient of variation of 0.32. Within the year, rainfall was higher
between November and April (50–60 mm) and lower between June and September (below
25 mm), with a monthly average rainfall of 41.4 mm (Figure 1e).

The predominant land-use is agricultural crops; within them, olive grove constitutes
44% (5928 km2) of the province’s surface area [69]. To a lesser extent, other crops (e.g.,
cereal) and areas of natural vegetation appear in the mountains, along with scrub and
coniferous/hardwood forests.

The province has a population of 638,000 inhabitants, with only 2 urban areas exceed-
ing 50,000 inhabitants [70], and a low industrial activity focused on agriculture. On the
other hand, it has a road network of different orders (state, regional, and provincial), in
which the A-44 and A-316 highways stand out. This study is focused on the extensive and
penetrative road network of the Provincial Deputy of Jaén, which is about 1600 km long.
This network is a fairly representative sample of the different physical environments of the
province and, so, its study can provide valuable information on the instability conditions,
not only in the network environment, but also in the whole province.

2.2. Incidence Database

The overall methodology followed in this study is shown in Figure 2. The first step
is the elaboration of the database of incidences on the road network of the Jaén province.

4
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This includes data extracted from the files of the works carried out for their repair and
maintenance, completed with field data and other data extracted from previous maps.
The database has been elaborated through the years, by gathering information on road
interventions that took place from 1998 to 2013.

Figure 2. Methodology workflow.

Thus, the original database included data identifying the incidence (coordinates,
project, works, and so on); vegetation and land-use; geomorphological and topographic
data; geotechnical data (load capacity, constructive conditions, and so on); hydrogeology
(drainage and permeability); description of the incidence (year, month, typology of inci-
dence, roads, kilometres, and so on); geology (lithology and surface formations); road data
(road surface, slope, curvature radius, and so on); and, finally, the constructive solution
adopted. The database was subsequently tested on the ground, especially with regard to
geology and the descriptions of the incidences, as well as morphological aspects.

Finally, the recorded and reviewed incidences were digitized onto the orthophotogra-
phy and subsequently refined using several GIS tools (e.g., clipping, buffering). The result
was an enriched incidence inventory or database of the road network of the province. A
basic distinction was made between two categories: the lower magnitude and shallower
processes that affect the road surface, road cuts, and embankments; and the higher mag-
nitude processes that involve a certain general slope instability. Among the former, the
following types were differentiated: erosive processes (gullies), undercut of road embank-
ments, and small slides and collapses of the road cuts. Among the latter, slides, earth or
mud flows, and creeping processes were differentiated. The inventory is presented and
described in Section 3.1.

2.3. Rainfall Data Processing

Different meteorological databases were used to estimate the rainfall series:

5
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• Spain02 Database, high-resolution daily precipitation data, developed by the Institute
of Physics of Cantabria (Spain) and the Spanish Meteorological Agency (AEMET)
from a dense network of more than 2500 quality-controlled stations for precipitation
and near 250 for temperatures. The Spain02.v5 provides daily data from 1951 to
2015, gridded in increments of 0.1◦, corresponding approximately to a resolution of
10 km [71,72].

• RIA database, a network of agroclimate information by the Department of Agriculture,
Fisheries, and Rural Development of the Andalusian Government [73]. It contains
updated data on the networks of automatic meteorological stations (~120 stations),
which are equipped with electronic sensors and distributed throughout the Andalu-
sian territory.

• Database of the network of the Automatic Hydrological Information System (SAIH)
from the Authority of the Guadalquivir River Hydrographical Basin [74].

• Data obtained by the Atmosphere and Solar Radiation Modeling (MATRAS) research
group from the Weather Research and Forecasting (WRF) model using the Integrated
Forecasting System (IFS) reanalysis data provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) and local data of the meteorological station of the
University of Jaén [75].

The data processing comprised the integration of the previous databases and the
application of physical and statistical filters, which allowed us to obtain an interpolated
regular grid at 1 km. This grid was used to assign a daily rainfall value, from 1971 to 2016,
to each of the 186 incidence points of the road network in the province of Jaén. The value
assigned was that of the closest grid node which, taking into account its resolution, is a
point located at a small distance (lower than 1 km). For the daily precipitation values in the
province of Jáen, three zones can be considered, in two of which the WRF underestimates
the precipitation and, in the other, it is weakly overestimated. To reduce the uncertainty of
the data provided by the WRF, we used data obtained at ground stations as control points.
Using geostatistical techniques, the uncertainty was less than 12% in all cases. Therefore,
although the densification of the grid tended to smooth the real values, the estimation error
and the uncertainty derived was low.

2.4. Rainfall Event Identification

The identification of rainy events associated with the landslides and erosive processes
in the study area was based on relating the incidence database with the rainfall series.

First, from the daily data, the accumulated rainfall over 2 days, 3 days, 5 days, 7 days
(1 week), 10 days, 15 days, 30 days (1 month), 45 days, 60 days (2 months), 75 days,
and 90 days (3 months) were calculated, in order to analyse the influence of short- and
medium-term rainfall on the generation of landslide and erosion processes.

Then, different rainfall variables could be defined: rainfall amount associated with
the event (E) in mm; duration of the event (D) in days; and the intensity (I), which was
calculated as the relationship between the rainfall and the duration of the event and
expressed in mm/day. For each rainfall event–duration (E–D) pair, the probability of
exceedance and return period (T) in years were calculated considering a Weibull series, as
in previous studies [36,40,51,52].

Meanwhile, the incidence database only included information about the month in
which the civil work started, while the accurate date when the incidence occurred remained
unknown. Thus, additional information was used, in order to estimate a more precise date.
For this, we used information found in the media, especially the news published in the
local and regional press, such as the IDEAL newspaper [76], which has a historical record
since 2006 and can be accessed freely on the internet. This approach has been used in some
previous works [28,40]. After a deep search, based on terms such as landslides (and their
synonymous terms in Spanish), road affected, traffic interruption, and so on, a total of
98 news items were found between 2006 and 2013, of which 27 events were directly related
to the incidences (i.e., landslides or erosive processes). These are summarized in Table 1.

6
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Table 1. News about incidences registered in the local media: S, slides; R, (rock)falls; M, mud and
earth; U, road undercut; W, water, F, floods; T, traffic cuts. Sectors: SS, Sierra Sur; SM, Sierra Mágina;
SC, Sierra Cazorla; SG, Sierra Segura; J, Jaén (capital city); CH, Central Hills; W, Western sector; N,
Northern sector; Gen., general.

Date Description Zone

12/09/2006 R, M, W, F SS, W
06/04/2007 R, M SG
10/09/2008 M, W, T CH, N
08/08/2009 R N
11/08/2009 M, T SS
25/12/2009 M, T Gen.
28/12/2009 R, M, F, T SS, SC, J, CH
07/01/2010 W, T SS, SM, SC, SG, W
11/01/2010 R, U, F, T SS, SC, W
15/01/2010 S, R SS, W
19/01/2010 S, R, U, T SS, SC, J, CH
19/02/2010 S, R, U Gen.
21/02/2010 S, R, U SS, SC, SG, J, CH
23/02/2010 R, F, T Gen.
07/03/2010 S, T SS, J, W
10/03/2010 S, U, F SS, SM, CH
30/10/2010 R, W, T SM, CH
08/12/2010 R SS, J, N
20/12/2010 R, M, W Gen.
02/05/2011 M, T CH, N
04/11/2012 R, W, T Gen.
06/11/2012 T J, W, N
08/11/2012 T SC, CH, W, N
11/03/2013 S, M, U, T SG, CH, W, N
13/03/2013 S, M, U, T Gen.
19/03/2013 R SS
01/04/2013 R, F, T SC, SG, CH, W, N

Then, three criteria were applied: the spatial proximity, the temporal proximity, and
the magnitude of the rainy event.

1. The spatial proximity between the approximate location in the media and the inci-
dence coordinates were estimated in the GIS. First, sections of roads and affected
towns or municipalities mentioned in the news were selected. Then, a spatial query
allowed for the identification of those incidences close to them. Five classes were
established, depending on the distance: Class 1, 0–1 km; Class 2, 1–2 km; Class 3,
2–5 km; Class 4, 5–10 km; and Class 5, more than 10 km.

2. The temporal proximity was addressed by analysing the time interval between the
date of the news appearing in the local media and the month associated with the
previously selected incidences. Five classes were also considered: Class 1, 0–3 months;
Class 2, 3–6 months, Class 3, 6–12 months, Class 4, 12–24 months; and Class 5, more
than 24 months. Summing the classes for the spatial and temporal proximities, only
those incidences with a maximum of 6 points (e.g., Class 3 in both, or Classes 2 and
4 in each one) were selected. Thus, each incidence point could be associated with
several rainfall events and their rainfall–duration (E—D) pairs. In addition to the
events identified from the news, the complete rainfall series for the two years previous
to the month of each incidence were examined, searching for the major events in each
interval of duration. If events different from the above were found, they were also
added to the database.

3. Finally, the magnitudes of the rainfall events were considered. First, following some
previous studies [36,40,51], the E–D pair with the longest return period was selected,
for each of the events associated with an incidence, as the one most likely to trigger
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it. Moreover, according to [40], of all the possible events (E–D pairs) associated
with each incidence, those which presented a return period of fewer than five years
were discarded, as they were considered non-relevant for incidence triggering. This
procedure allowed for enrichment of the incidence database, thus including several
E–D pairs for each incidence (see some examples in the results Section 3.2).

2.5. Rainfall Threshold Calculation

Prior to the determination of the thresholds, the rainfall variables were analysed, by
calculating their mean and modal values, both globally and for each of the typologies
considered, in order to determine whether there were differences between the landslides of
different typologies and magnitudes.

In this work, the determination of thresholds of the rainfall–duration (E–D) type was
considered, which usually respond to linear equations of the type:

E = a × D + b, (1)

although equations with a power-law can also fit:

E = α Dβ. (2)

This type of threshold has been considered more appropriate for cases where only daily
data are available [28,51,52]. They allow for knowledge of the amount of rainfall necessary
to generate landslide or erosive processes, depending on the number of days. Nevertheless,
thresholds of the intensity–duration (I–D) type were also determined, although these are
more commonly used when intensity per hour (mm/hour) data are available [42,43]. In
this case, power-law equations were adjusted. Both thresholds were calculated globally for
all the incidence points, but they were also discriminated by typologies.

3. Results

3.1. Incidence Database

The incidence database is shown in the map of Figure 3. It shows the typology and
magnitude of the incidences, according to published classifications of landslides [77,78],
and includes some significant examples in the study area. In general, practically all
the incidences corresponded to shallow phenomena but, within them, two types were
differentiated, depending on their size or magnitude [79]:

• Very shallow processes, with magnitude between extremely and very small (<5000 m3).
These correspond to ruptures in the road cut, either of the slide or collapse-rockfall
typologies, but also undercuts of the road embankment. Meanwhile, erosive processes
(gullies) were identified, which also produce incidences on the roads.

• Shallow processes in which there is mobilization of the slope where the road is located,
with a magnitude generally between small and medium (5000–500,000 m3). Within
these, slope movements of a slide or flow type were considered, according to [77,78].
Soil creeping processes were also distinguished from those flows which were well-
defined in the landscape.

The distribution by typology is shown in Table 2. As can be observed, there were
46 incidences corresponding to gully processes, 47 punctual incidences in road cuts (38 land-
slides and 9 collapses), and 30 incidences associated to undercutting in road embankments.
Then, 77 incidences were directly related to the road; that is, to human activity. More-
over, there were 63 landslides of higher magnitude, among which 21 slides, 26 flows, and
16 creeping areas were identified.
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Figure 3. Map of incidences. Points: (009), gully; (019), undercutting of the road embankment; (035), flow; (047), creeping
process; (054), slide in the road cut; (065), collapse over the road; (074), creeping process; (110), flow and gullies; (112), flow
and creep; (180), slide in the slope of the road.
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Table 2. Distribution of incidences by typologies.

Magnitude Typology Number

Lower magnitude
Very shallow

Gullies 46
Undercut in road

embankments 30

Slides in road cuts 38
Collapses in road cuts 9

Higher magnitude
Shallow

Slides 21
Flows 26
Creep 16

Meanwhile, Table 3 shows the distribution of the year in which the civil works to
repair the road started. Most of them were concentrated into two years, 2010 (61 incidences)
and 2013 (70 incidences).

Table 3. Distribution of incidences by year in which the civil work started.

Year Number Year Number

1998 2 2006 2
1999 5 2007 1
2000 3 2008 2
2001 3 2009 3
2002 2 2010 61
2003 1 2011 18
2004 3 2012 3
2005 4 2013 70

3.2. Rainfall Events

Figure 4 shows the daily rainfall series associated with the aforementioned significant
incidence points (shown in the map of Figure 3), where different rainfall events can be
observed. Following the methodology described, the rainfall events associated with each
incidence were searched in the two years (24 months) previous to the starting of the repair
work. Thus, Figure 5 shows the two-year rainfall series for different event durations in two
significant incidence points (099 and 181, not shown in Figure 3). Some arrows in red have
been included to point out the rainfall events identified in each incidence, which were later
used in the thresholds calculation.

A total of 446 rainfall events (E–D pairs) associated with the 186 incidence points
were found that met the established criteria of spatial and temporal proximity, as well as
the maximum return periods. Thus, 17 points were associated with 4 potential events,
60 points with 3, 86 points with 2, and 21 points with a single event. Meanwhile, some
events affected the whole province in a general way and, therefore, the provincial road
network, while others affected more restricted sectors. Some of them, those affecting a
minimum of 5 points, are shown in Table 4.

Figure 6 also shows isohyets (rainfall) maps of some general events of different dura-tion.
Among the general events, those occurring in the autumn–winter of the hydrological

year 2009–2010 stood out: 25–30/12/2009, with rainfall close to 150 mm and exceeding
200 mm, in 5 and 15 days, respectively, at about 20–25 points of the provincial network
(Figures 5c and 6b); the events of 06–13/01/2010, with rainfall that exceeded 300 mm in
30 days (Figure 6c); and, finally, the accumulated rainfall that occurred on 22/02/2010,
when 570 mm was reached in 75 days at 41 points (Figure 6d) and on 02/03/2010 with
660 mm in 90 days (Figure 5i). In all these cases, the return periods were quite long,
generally between 15 and 22.5 years and, in some cases, reaching the total period analysed
(45 years).
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Figure 4. Rainfall series of the incidence points shown in Figure 3.
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Figure 5. Rainfalls series (two-year) for the incidence points 099 and 174: (a,b), Daily rainfall; (c,d), 7-day antecedent rainfall;
(e,f), 15-day antecedent rainfall; (g,h), 30-day antecedent rainfall; and (i,j), 90-day antecedent rainfall. Red arrows represent
the days (E–D pairs) selected as rainfall events for each point.
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Table 4. Main rainfall events associated to incidences. Sector: SS, Sierra Sur; SM, Sierra Mágina; SC, Sierra Cazorla; SG,
Sierra Segura; J, Jaén sector; CH, Central Hills; W, Western sector; N, Northern sector; Gen., General.

Date
Number of

Points
Mean E (mm)

Modal D
(Days)

Mean I (mm/d)
Modal T
(Years)

Sector

03/11/1997 5 94.20 2 47.10 15.00 SS, SM, W
31/12/1997 5 411.25 60 6.74 9.00 SS, SC, SG
20/10/1999 6 50.38 1 50.38 22.50 SC, SG, W
28/03/2004 6 75.67 3 27.92 11.25 SS, W, N
08/04/2008 5 50.50 1 50.50 15.00 SS, CH, W
25/12/2009 18 143.29 5 28.66 45.00 Gen.
30/12/2009 26 210.34 15 14.02 22.50 Gen.
06/01/2010 10 268.50 30 8.95 7.50 SS, SM, SC, SG
11/01/2010 7 344.27 30 11.48 22.50 SS, SC, W
13/01/2010 13 324.08 30 10.80 15.00 Gen.
15/02/2010 6 435.90 60 7.15 22.50 SS, SM, CH
22/02/2010 41 568.15 75 7.58 15.00 Gen.
02/03/2010 11 662.56 90 7.36 15.00 Gen.
30/10/2010 6 36.75 1 36.75 5.00 SM, SG, CH
06/12/2010 13 79.40 2 39.70 6.43 SS, SM, SG, N
31/12/2010 5 362.00 45 8.04 11.25 CH
14/02/2011 6 45 1. 37.50 6.43 SS, SG, CH
27/09/2012 15 59.20 1 59.20 11.25 SS, CH, W
03/11/2012 59 72.27 2 36.14 15.00 Gen.
08/11/2012 51 151.38 7 21.63 9.00 Gen.
11/03/2013 43 119.42 7 17.06 5.00 Gen.
18/03/2013 6 166.30 15. 11.09 6.43 SS

The second important rainy period occurred in the year 2012–2013, with several events:
03–08/11/2012, with daily rainfall that exceeded 50 mm, 2-day rainfall around 70 mm, and
weekly rainfall that reached 150 mm (Figures 5b–d and 6e,f), all generalized in the road
network (50–60 points). The return period was 9 to 15 years. Subsequently, on 18/03/2013,
rainfall of 166 mm was reached in 15 days at 43 points, with a return period of 6 years.

More locally, there were other rainfall events potentially associated with incidences
such as those at the end of 1997, when 400 mm was exceeded in 60 days (Figure 6a), mainly
in the mountain ranges; spring 2004 or 2008, with more than 50 mm in 1 day in different
sectors; autumn–winter 2010, with 80 mm in 2 days, 230 mm in 15 days (Figure 5e) and
360 mm in 45 days (Figure 5g) in the mountain ranges and the central hills; or those of the
end of summer 2012, with almost 60 mm in a day in the southern and western parts of the
province (Figure 5b). In all of these events, the return periods were between 5 and 10 years.
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Figure 6. Isohyets maps of some events: (a) 31/12/1997 (D = 60 days); (b) 30/12/2009 (D = 15 days); (c) 13/01/2010 (D = 30
days); (d) 22/02/2010 (D = 75 days); (e) 03/11/2012 (D = 2 days); and (f) 08/11/2012 (D = 7 days).
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3.3. Rainfall Thresholds

Table 5 shows the mean values of the rainfall amount, duration, and intensity (E, D and
I) variables, as well as the modal value of the duration, the total events, and discriminated
by typology. Likewise, Figure 7 shows the histograms of the duration of the events.

Table 5. Mean values of rainfall amount (E), duration (D), and intensity (I) for the rainfall events.

Typology Mean E (mm) Mean D (days) Modal D (days) Mean I (mm/day)

Gullies 147.33 11.78 1 28.11
Road embankment 126.81 8.84 1 32.55
Slides in road cuts 171.84 15.42 7 26.66
Collapses 209.05 26.45 1 20.49

Lower magnitude
(very shallow) 155.29 13.40 1 28.09

Slides 234.79 23.65 1 21.77
Flows 211.68 19.75 7 21.97
Creep 227.87 21.95 7 22.79

Higher magnitude
(shallow) 223.40 21.60 7 22.11

Total 178.96 16.25 7 26.01

From the data shown in Table 5 and Figure 7, a shorter duration of rain events was
generally observed in the lower magnitude incidences, with an average value of 13.70 days
(the modal value being 1 day). Meanwhile, for the higher magnitude incidences, such as
slides, flows, and creeping processes, the average duration was 21.60 days with a modal
value of 7 days. In the lower magnitude incidences, the average rainfall was 223 mm and
the intensity was 22 mm/day. For the higher magnitude landslides, the average rainfall
was 155 mm, with an average intensity of 28 mm/day.

Regarding the thresholds, Table 6 shows the equations obtained both for the rainfall–
duration (E–D) threshold (linear and power-law adjustment), and for the intensity–duration
(I–D) threshold (power-law adjustment). The table also shows the coefficient of determi-
nation (R2) of the adjustment. Figure 8 shows these thresholds for lower and higher
magnitude incidences.

As can be seen from Table 6 and Figure 8, the equations were quite similar for both the
lower and higher magnitude incidences; although, in the case of linear adjustments, the
intercept in the former (72)—especially in the collapses (61)—was lower than that in the
latter (82), the slopes being similar. In the same way, the power-law base was somewhat
lower in the lower magnitude incidences (47.5) than in the higher magnitude ones (49.7),
both for the E–D and I–D thresholds.

Table 6. Equations for E–D (linear and power-law) and I–D thresholds.

Typology E–D (Linear) E–D (Power-Law) I–D (Power-Law)

Equation R2 Equation R2 Equation R2

Gullies E = 6.294 D + 73.187 0.90 E = 47.283 D0.543 0.90 I = 47.283 D−0.457 0.87
Road embankment E = 5.985 D + 73.909 0.90 E = 51.155 D0.516 0.87 I = 51.155 D−0.484 0.85
Slides in road cuts E = 6.586 D + 70.301 0.92 E = 46.313 D0.554 0.89 I = 46.313 D−0.446 0.84
Collapses E = 5.595 D + 61.023 0.85 E = 39.080 D0.564 0.94 I = 39.080 D−0.436 0.90

Very shallow E = 6.222 D + 71.908 0.90 E = 47.481 D0.540 0.89 I = 47.481 D−0.460 0.86

Slides E = 6.793 D + 74.106 0.95 E = 47.089 D0.543 0.94 I = 47.089 D−0.451 0.91
Flows E = 6.293 D + 87.366 0.94 E = 51.721 D0.523 0.93 I = 51.722 D−0.477 0.91
Creeping E = 6.488 D + 85.464 0.93 E = 50.537 D0.546 0.94 I = 50.537 D−0.454 0.91

Shallow E = 6.527 D + 82.424 0.94 E = 49.752 D0.538 0.93 I = 49.752 D−0.462 0.91

Total E = 6.408 D + 74.829 0.92 E = 47.961 D0.542 0.91 I = 47.961 D−0.458 0.88
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Figure 7. Duration of rainfall event for incidences of the different typologies (a): Gullies; (c): undercut in road embankments;
(e): slides in road cuts; (g): collapses; (i): total of lower magnitude (very shallow) incidences; (b): slides; (d): flows; (f): creep;
(h): total of higher magnitude (shallow) incidences; and (j) all incidences.
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Figure 8. Rainfall thresholds: (a) E–D for lower magnitude incidences; (b) I–D for lower magnitude incidences; (c) E–D
for higher magnitude incidences; (d) I–D for higher magnitude incidences; (e) E–D for all incidences; and (f) I–D for
all incidences.

4. Discussion

From the results obtained, it can be observed that the road network in the Jaén province
was affected by numerous incidences in the period studied. A set of 186 incidences was
registered, of which 123 (66%) corresponded to lower magnitude processes (gullies, under-
cut of road embankments, slides and collapses in road cuts,) and 63 (33%) corresponded to
processes that were also shallow but of higher magnitude, affecting the entire slope (slides,
flows, and creeping). Although all the movements affected the road network, some of them
(undercut on road embankment, slides and collapses in road cuts, comprising 47% of the
incidences) can be considered as directly related to human activities.

The temporal distribution was quite irregular, concentrated mainly in two years: 2010
(with 60 incidences) and 2013 (with 71), representing more than 75% of incidences.

This distribution seems to be related to the occurrence of rainy periods in the province.
Without the contribution of other factors, given the low tectonic activity [80], rainfall
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was the main triggering factor for landslides in the province. As indicated in the in-
troduction, the relationship between landslides and rainfall has been well-established
throughout the world [32,33,35], particularly in Europe [42,43] and in the Mediterranean
countries [8,9,44,46]. In Spain, these relationships have also been found [28,51,52,81].

Thus, the simple observation of the distribution of the mean annual precipitation
(MAP) of point 066, representative of the whole province (Figure 1d), as well as the series
of daily rainfall associated with different incidence points (Figure 4), allowed for the
establishment of this relationship. Thus, considering the mean annual precipitation (MAP)
of 533 mm at point 066, 1026 mm was reached in the hydrological year 2009–2010, 911 mm
in 2010–2011, and 950 mm in 2012–2013. The activity of these years has also been observed
in natural slopes of some sectors of the province [30]. Meanwhile, the remaining years
barely exceeded 600 mm, except for 1976–1977, 1995–1998, and 2003–2004. However,
discarding the first years in which there was no recording of incidences, the intense rainfall
of other years, such as 1997–1998 and 2003–2004, was not reflected in the incidence database,
as explained by the lower magnitude of the rainfall events or because the incidences were
not registered (being in the first years of the database elaboration).

Analysis of the rainfall series associated with each incidence made it possible to
more precisely identify a set of possible events for each point in different intervals of
antecedent rainfall (duration), based on criteria of spatial and temporal proximity, in
relation to the news that had appeared in the local media. Figure 5 shows some of these
possible events with different durations, associated with two significant incidence points
of different magnitude. Thus, for the point 099 (a higher magnitude incidence), several
events were observed in the hydrological years 2009–2010 and 2010–2011; while, for the
point 174 (a lower magnitude incidence), several events took place in the hydrological
year 2012–2013. Some of these events corresponded to those that occurred with different
magnitude in some sectors of the province, or those affecting the whole of the road network
in a generalized way, as shown in Table 7. They also coincided with the years in which the
MAP was higher, as mentioned above.

Table 7. Comparison of the calculated thresholds with those obtained by other authors.

Threshold Type This Study Other Studies 1

E–D linear E = 6.228 D + 69.716 (low) E = 6.21 D + 90.8 (low) [51]
(mm–days) E = 6.408 D + 74.829 (mean) E = 6.98 D + 181.3 (mean) [51]

E = 4.57 D + 133 [81]

E–D power-law E = 47.961 D0.542 E = 73.33 D0,76 (Ecuador) [52]
(mm–days) E = 52.34 D0,42 (Spain) [52]

E–D linear
(mm–hours) E = 0.267 D + 74.829 E = 70.00 + 0.2625 D [83]

E–D power-law E = 8.557 D0.542 E = 7.7 D0.39 [46]
(mm–hours) E = 8.6 D0.41 [47]

E = 5.6 D0.40 [49]
E = 6.0 D0.47 [50]
E = 6.1 D0.52 [53]

I–D I = 47.961 D−0.458 I = 88.005 D−0.69 [28]
power-law (mm/days–days) I = 68.645 D−0.593 [82]

I = 84.3 D−0.57 [40]

I–D I = 8.557 D−0.458 I = 0.48 + 7.2 D−1 [15]
power-law (mm/hours–hours) I = 9.40 D−0.56 [42]

I = 2.20 D−0.44 [43]
I = 7.17 D−0.55 [44]

IMAP–D IMAP = 0.0187 D−0.484 I MAP = 0.76 D−0.33 [19]
(%–hours) I MAP = 0.007 D−0.54 [42]

I MAP = 0.0016 D−0.40 [43]
1 Some thresholds are average values from the considered studies.
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At the point 099 (whose civil works started in June 2011), the two-year antecedent
rainfall series began in the hydrological year 2009–2010, with a rainfall of 150 mm in 7 days
to more than 200 mm in 15 days in December. Rainfall continued in January, reaching
more than 300 mm in 30 days and, in February–March, it exceeded 570 mm in 75 days
and 680 mm in 90 days, more than the annual precipitation in most of the province. After
summer 2010, the rainfall recovered, reaching values of 120 mm in 7 days, 230 mm in
15 days, and near 340 m in 30 days for December. Thus, four E–D pairs were selected,
for different dates that met the aforementioned criteria (Figure 5), with return periods
higher than 20 years (even reaching 45 years), as the most important events of the entire
rainfall series. Meanwhile, at point 174 (whose civil works started in June 2013), the series
of antecedent rainfall reached important values from September and, especially, November
2012, with events of daily rainfall greater than 60 mm and weekly rainfall of 150 mm,
accumulating about 300 mm in 30 days by the end of this month. After this rainy period,
the rainfall decreased, but recovered in March 2013 and reached values close to 130 mm
in 7 days. Then, four E–D pairs were selected, with return periods always greater than
5 years (mostly between 10 and 20 years). These two particular examples coincided with
the following analysis, in which the lower magnitude incidences were usually related to
intense rainfall of short duration (1–7 days), while higher magnitude incidences required a
longer duration (1–3 months).

Analysis of the average values of the considered variables showed some aspects
of interest, such as a shorter duration of the events associated with lower magnitude
incidences (mode of 1 day and mean of about 13 days), compared to those of higher
magnitude (mode of 7 days and mean higher than 20 days). Consequently, the amount of
rainfall was lower in the former (around 150 mm) than in the latter (around 225 mm), unlike
the intensity (28 and 22 mm/day, respectively). This difference in behaviour has been
pointed out in previous studies considering deep landslides [36,40], where the duration
of antecedent rainfall ranged between less than 15 days for shallow landslides to more
than 30 days for deeper ones [36,40]. Usually, the prediction is more complex for deeper
landslides, for which it is necessary to consider the antecedent rainfall that determines
the soil moisture conditions in the medium-term [16,18,19,28,40–43,51,52,57,59–62,81], or
even the variation in annual rainfall over several years [58]. These landslides are triggered
by a reduction in the shear strength of affected soils and rocks, related to the constant
increase in groundwater level as an effect of long-term rainfall periods [40]. Although deep
landslides were not considered in the strict sense in this study, a certain difference was
observed between the lower and higher magnitude incidences, with respect to the duration
of events causing the incidences.

In any case, the consideration of antecedent rainfall provides a simple way to introduce
hydrogeological conditions into these studies, even when only shallow landslides are
analysed. Some studies, which have mainly used daily data (such as in this one), have
been based on the analysis of rainfall duration periods longer than 1 month [51], while
other, more sophisticated methods distinguish between the antecedent and triggering
rainfall [28,52]. The use of a calibrated antecedent rainfall that decreases with time [38,40]
provides another way to simulate the hydrological conditions; however, in this preliminary
study, in which the incidence date had high uncertainty, a simple method based only on
rainfall amount–duration pairs was applied.

Regarding the rainfall thresholds, we focused especially on E–D type pairs, as they
are two truly independent variables [45,46,56]. In addition, in this case (as in other ones),
we utilised daily data [28,40,51,52,62,82], which can make it difficult to accurately calculate
the intensity, with respect to those other studies that use hourly data [42,43]. Nevertheless,
the adjustment of linear equations was tested, with good results, as in previous studies
with daily data [51], as well as power-law curves for both the E–D and I–D thresholds
(Table 6 and Figure 8). The different thresholds show a good general fit (R2 higher than
0.9), without significant differences between them. Moreover, normalized thresholds using
the MAP were calculated, and all the equations were expressed using the duration (D) in
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hours in order to facilitate comparison with other studies. Most of these results were not
included in the previous section, for simplicity, but are summarized in Table 7, where a
comparison with the thresholds obtained by other authors is shown.

In general, the thresholds were within an order of magnitude of those corresponding
to other studies, validating the results of this work. However, it must be taken into account
that some of them used lower value thresholds; that is, thresholds adjusted such that only
a reduced percentile (10, 5, or 1%) of the landslides is under the threshold curve. In this
study, we mainly considered thresholds adjusted to the mean values, but the threshold of
lower values (5%) was also calculated for the linear adjustment (Table 7, low). From both
thresholds, the rainfall amount and intensity corresponding to the different durations were
calculated, which could be used to develop a warning system regarding the activation of
incidences in the road network of the province of Jaén (Table 8).

Table 8. Rainfall and intensity for the different durations considered in the thresholds of mean and lower values.

1 d 2 d 3 d 5 d 7 d 10 d 15 d 30 d 45 d 60 d 75 d 90 d

E med 81 88 94 107 120 139 171 267 363 459 555 652
E min 76 82 88 101 113 132 163 257 350 443 537 630
I med 81 44 31 21 17 14 11 9 8 8 7 7
I min 76 41 29 20 16 13 11 9 8 7 7 7

Hydro-meteorological thresholds [59–62] are increasingly being used to overcome
the drawbacks of rainfall thresholds, which do not consider adequately the hydrological
conditions of slopes and, besides, produce a great proportion of false positives in the pre-
diction, thus limiting the development of warning systems. There exist different methods
to determine these thresholds, some of them based on hydro(geo)logical models which
take into account detailed data of the phreatic level, soil humidity, porosity, permeability,
saturation, rainfall, and so on [59–61], while others are based on data at the basin level,
such as rainfall, evapotranspiration, runoff, and so on [62]. In both, additional data are
necessary, which were not available in this case, such that they were discarded herein.

Considering the differences by typology, only small differences were observed be-
tween the values obtained; the intercept of linear adjustment and the base of the power-law
being somewhat higher in the incidences of higher magnitude than in the lower magni-
tude ones. It must be taken into account that, in any case, the incidences affecting the
road network were always shallow, and moreover, the temporal resolution of the data
(daily rainfall) was most likely too low to find differences. Differences between the inci-
dences more directly related to the human activities regarding to those less related were
not observed. The only typology that presented a certain difference with respect to the
remaining incidences, were the collapses (with a lower slope and intercept). This typology
is usually associated with steeper areas and road cuts (which are prone to landslides) and
the thresholds are likely lower than in other incidences. However, as discussed above,
the duration showed higher values in the higher magnitude incidences then in the lower
magnitude ones.

The importance of assessing the uncertainty in the determination of rainfall thresh-olds
has been discussed in several studies, given that they are based on empirical data which
are not always acquired with the required accuracy [42–44], both in the spatiotemporal
component and in the measurement component (rainfall gauges). Approaches based on
bootstrapping techniques [45] have been proposed, in order to estimate the uncertainty
of the power-law parameters (α as the base or scaling parameter; and β as the exponent
or the shape parameter) in the E–D thresholds. These approaches have been used in
other studies oriented to the development of warning systems [45,46,48,49,53], where
uncertainty values representing 5–10% of these parameters have been found [50]. The
influence of the temporal resolution on the uncertainty has also been analysed, resulting
in smaller scaling parameters (intercepts in logarithmic scale), higher shape parameter
(slopes), shorter ranges of validity of the thresholds, and higher uncertainties when the
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temporal resolution decreased [53]. In this study, the main uncertainty source was not the
spatial component, as the meteorological data grid was quite dense (1 km) but, instead,
the temporal component (daily rainfall resolution), and especially the uncertainty of the
incidence date. This date was estimated from the month when the civil work started,
applying the criteria of spatial and temporal proximity to the news appearing in the
local media, as well as the magnitude of the event (return period). In these conditions, a
validation analysis with the use of positive and negative events is difficult to implement.
These limitations, in terms of the data, and the preliminary nature of the study, led us to not
consider the uncertainty analysis. Nevertheless, future works utilising more data and with
the objective of developing a warning system should address these concerns regarding
validation and uncertainty analyses.

Finally, a brief note on the relationships between landslide activity, rainfall, and the
global climate could be necessary, although it exceeds the objectives of this study. Several
studies [36–38,40,52] have pointed to a relationship between rainfall of high intensity
(which generates landslides) and global climatic phenomena. Among these, the well-
known teleconnections stand out, such as the South Pacific-El Niño oscillation (ENSO), the
North Atlantic oscillation (NAO), or the Western Mediterranean oscillation (WeMo). All of
them are related, and may have an influence on the rainfall of the Iberian Peninsula and
the Mediterranean [84,85], as has been observed in the Balearic Islands [37].

It is well-known that the high negative anomalies of the NAO (NAOi) are the origin
of rainy winters and storms in Portugal and the whole of the Iberian Peninsula [84], thus
producing floods [86] and landslides [28,36,40,52]. In this case, they are mainly related to
deep landslides [40], but also to shallow landslides [36,52]. Meanwhile, the WeMo also
seems to influence the rainfall in the Mediterranean area of the Iberian Peninsula [87].
Thus, in southern Spain, the relationships between both indices and rainfall have been
analysed [52]. Although a significant correlation has not been obtained, two of the wettest
hydrological years, such as 1995–1996 and 2009–2010 (the latter being one of the years with
the highest activity in the study area), were observed to be related to negative anomalies of
both indices.

Regarding the role of climate change in rainfall-triggered landslides, this is an inter-
esting issue currently in discussion [88], although the prediction of rainfall events that
generate landslides has shown a high level of uncertainty [89]. However, it seems clear
that a global climate change scenario, in which severe events such as intense rainfalls
are expected [90], should influence landslide activity [91], specifically the rainfall thresh-
olds [88]. Predictions for Spain and the Mediterranean [92,93] have pointed out, in this
direction, that Severe Weather Threats (SWEATs) are estimated to increase in the near
future, especially in the summer and autumn [94]. Thus, higher levels of hazard and risk
affecting civil infrastructure in the province of Jaén are also expected, as has been shown
by a preliminary approach, in which a 30% increase in daily rainfall was found in some
sectors of the province [95].

5. Conclusions

Rainfall thresholds are one of the most widely applied methods for indirectly estimat-
ing landslide return periods, which are subsequently used in hazard analyses. They are
also used in the implementation of early-warning systems.

In this work, the starting point was an incidence database in the road network of
the province of Jaén, in which the positions and dates of civil repair works are contained.
Moreover, a meteorological database with daily rainfall data in a dense grid (1 km) allowed
us to link the rainfall series to the incidence points accurately. Then, the identification of
rainfall events that potentially generated landslides and erosion processes was addressed,
using criteria related to the spatial proximity, temporal proximity, and return period,
additionally considering the news appearing in the local media.

Regarding the results, some relevant aspects could be extracted:
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• Several events were identified, the most important being related to the hydrological
years 2009–2010 and 2012–2013. Some of them were located in specific areas and
other ones affected practically the entire road network. The return periods of these
significant events were always greater than 5 years and, in some cases, exceeded
10–20 years.

• The lower magnitude incidences usually presented a shorter duration (mode of
1–15 days), compared to those of higher magnitude (7–30 days). Consequently, the
amount of rain was lower in the former (around 150 mm) than in the latter (around
225 mm).

• The thresholds obtained for both the rainfall–duration (E–D) and intensity–duration
(I–D) pairs were on the same order of magnitude as those calculated by other authors,
some of them in a similar environment (i.e., Mediterranean countries). The different
types of thresholds tested (E–D or I–D, linear or power-law) showed a good fit, without
significant differences, likely due to duration data being in units of days, not in hours,
and the shallow nature of all the incidences.

• In this case, there were no differences in the thresholds between the lower and higher
magnitude incidences, unlike the variables (E, I, D) themselves.

• Finally, from the thresholds, rainfall amounts and intensities for different durations
of the events were calculated (e.g., about 80 mm for 1 day and more than 250 mm
for 1 month), considering not only the threshold adjusted to the mean values but the
threshold adjusted to the lower values.

Future improvements to the study should first address extension of the database to
other roads, and even the inclusion of landslides on natural slopes, which would allow the
thresholds and calculated variables to be refined. In this sense, recording the incidences or
landslides with precise knowledge of the date of occurrence could contribute to this refine-
ment. The use of more accurate data would also allow for addressing advanced models, in
which antecedent and triggering rainfalls are distinguished and, even (if additional data
were available), the determination of hydro-meteorological thresholds. Another future
approach consists of estimating the uncertainty of the models and their validation (e.g.,
using different samples of incidences for training and testing, or by means of temporal
validation). Then, these thresholds may be reliably used in hazard analysis or for the
implementation of (early) warning systems in the study area.
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Abstract: Every year, institutions spend a large amount of resources to solve emergencies generated
by hydrogeological instability. The identification of areas potentially subject to hydrogeological
risks could allow for more effective prevention. Therefore, the main aim of this research was to
assess the susceptibility of territories where no instability phenomena have ever been detected. In
order to obtain this type of result, statistical assessments of the problem cannot be ignored. In
this case, it was chosen to analyse the susceptibility to landslide using a flexible method that is
attracting great interest in the international scientific community, namely the Weight of Evidence
(WoE). This model-building procedure, for calculating landslide susceptibility, used Geographic
Information Systems (GIS) software by means of mathematical operations between rasters and took
into account parameters such as geology, acclivity, land use, average annual precipitation and extreme
precipitation events. Thus, this innovative research links landslide susceptibility with triggering
factors such as extreme precipitation. The resulting map showed a low weight of precipitation in
identifying the areas most susceptible to landslides, although all the parameters included contributed
to a more accurate estimate, which is necessary to preserve human life, buildings, heritage and any
productive activity.

Keywords: GIS; weight of evidence; susceptibility map; landslides; extreme precipitation

1. Introduction

1.1. State of the Art

The Italian territory is subject to a high level of hydrogeological instability and also
the province of Macerata is no exception with 7.3% [1] of the territory affected by landslide
hazard of grade 3 and 4, where 4 represents the maximum hazard. It follows that landslides
susceptibility, which is the statistical likelihood of a landslide occurring in an area, is a
very important issue that needs to be studied in depth, also because of the huge resources
that are absorbed to deal with emergencies. In this context, climate change is exacerbating
the hydrogeological risk and this influence has been demonstrated in numerous stud-
ies [2,3]. Hydrogeological risk determines the risk related to the instability of slopes, due
to particular geological and geomorphological aspects of these, or of watercourses due to
the particular environmental conditions, with possible consequences on the safety of the
population and the safety of services and activities on a given territory. Climate change
is a trigger for increased hydrogeological risk, it is largely generated by an increase in
greenhouse gases which absorbs heat and retain it by gradually releasing it [4], this energy
growth, affects both precipitation and temperature. Obviously, it would be useful to work
in upstream using countermeasures to contrast climate change by reducing CO2 emissions
or reusing them [5]. However, it is necessary to take note of the current situation, where
climate is increasingly the crucial issue. Recently, a lot of research has been carried out
to study the impact of climate change on hydrogeological risk, especially landslides [6],
although there are other factors that greatly influence terrain stability, such as land use [7].
It is precisely land use that can cause an amplification of the possibility of landslides due
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to the increase in erosion caused by anthropogenic changes, but also to natural phenomena
such as the growth of vegetation or the properties of the soil itself [8]. Other factors influ-
encing landslides include slope [9], lithology [10] and seismic risk [11]; these parameters
which contribute to hydrogeological instability lead us to introduce another concept, that
of “susceptibility”. Landslide susceptibility is the probability that a landslide will occur
in a territory, depending on local conditions. It is a measure of the degree to which a
territory may be affected by landslides, i.e., an estimate of “where” landslides may occur.
There have been many attempts to obtain a probabilistic statistical model, that can allow
a reliable assessment of susceptibility [12,13]. The comparison of statistical models for
susceptibility calculation (certainty factor, weight of evidence, analytic hierarchy process,
etc.) is aimed at defining the best model that allows a minimization of errors, based on
landslides detected but deliberately not included in the model-building procedure [14,15].
In this case, the excellent results achieved in scientific literature by the Weight of Evidence
(WoE), led to consider it as a reference model for this study. The WoE was originally
introduced to assist mining research in identifying new deposits or more accurate reserve
estimates [16,17]. The application of this method with the help of Geographic Information
Systems (GIS) in the same way, has always been due to applications related to mining
research [16]. The maps produced by GIS with the WoE methods, allow areas to be dis-
criminated on the basis of factors that produce certain eventualities. In recent years, this
method has been widely applied to landslides as a forecasting tool, with the help of GIS
software all over the world [18,19]. Similarly, in Italy, this method has been considered
and tests have been carried out in very localized areas [20] and in the mountainous areas
of the Apennines and the Alps [21,22]. However the major problem in creating landslide
susceptibility maps, is represented by a complete sampling of the factors that can cause
instability. Most of the studies are based on small portions of homogeneous territory that
obviously cannot be representative of the total and above all, that show many different
combinations for example of lithologies, soils, land uses, etc. Instead, this study aims to
sample a very large area, carrying out an analysis of the whole territory of the Macerata
province, in central Italy. In this area, no studies have been carried out, using WoE and
GIS software to obtain a susceptibility map. In any case, the most innovative part of this
research lies in the inclusion of the extreme precipitation events, among the parameters
that can cause instability. Therefore, this research could represent a link between a study
on landslide susceptibility and a study on trigger thresholds. In fact, one of the factors
triggering landslides is frequently rainfall, so it is essential to carry out in-depth climatic
analyses of the area under investigation [23–25]. An in-depth analysis was carried out,
in terms of variation and magnitude of average and extreme rainfall. [26]. Increasingly
frequent extreme events dictated by climate change [27] lead to continuous adjustments
of susceptibility maps. Forecasting areas of potential instability is of great interest firstly
for the protection of human life, and secondly for the cost associated with emergency
management. Furthermore, in this area of Italy there are valuable crops, such as vines [28],
which can be adversely affected by slope instability and which must be protected to avoid
economic consequences.

1.2. Study Area

The study area is the province of Macerata, it is located in central Italy and overlooking
the Adriatic Sea, which is part of the Mediterranean Sea. The area is about 2779 Km2, 67% of
the territory is hilly and the remaining 33% is mountainous. To the west, the territory of the
province of Macerata (Figure 1) is bordered by the Sibillini mountains (South-western side
of the province), part of the Apennine chain, which reach peaks higher than 2200 m a.s.l.
Going eastwards there is a wide range of hills that gradually slopes down to the Adriatic
coast. Almost all the rivers in the area have a west-east direction except for the Nera
river, which crosses the municipalities of Visso and Castelsantangelo sul Nera, and one
of its tributaries, the Ussita, both flowing into the Tyrrhenian Sea after joining the Tevere
river (Figure 1). From a morphogenetic point of view, the structure of the Umbria-Marche

28



Hydrology 2021, 8, 5

Appenines is dominated by thrust faults, due to the collisional movement of the African
tectonic plate with the European one, while in some internal areas (Tuscany) in the same
period (Middle Miocene) there was an extensional tectonic and both are still active. The
Umbria-Marche Appenines show an arc with East-facing convexity where it is possible to
observe internal wrinkle ridges, an intermediate complex of synclines and external wrinkle
ridges.The internal wrinkle ridges consist of various asymmetrical east-vergent thrusting
folds, the middle complex of synclines goes from Urbania to Visso and it’s composed
by east-vergent thrust sheets, while the external wrinkle ridges is an anticlinal structure
thrusting over the foothills, named overthrust of the Sibillini Mountains [29]. Finally,
going eastwards, the foothills can be divided into two geomorphologic structures: the
“pedeappennino marchigiano”, characterised by anticlines with transpressive and normal
faults, and the periadritic basin with small folds east-vergent.

 

Figure 1. Geography of the province of Macerata [23].

From the point of view of landslides, the province of Macerata is a very heterogeneous
territory, with movements of very different types, often grouped by homogeneous zones of
acclivity or in relation to the geological substrate. In correspondence of mountain ridges
and steep slopes characterised by predominantly calcareous rocks, collapse phenomena
and deep-seated gravitational slope deformations (DGSD) are observed. Also in the high
energy areas of the relief, there are frequent phenomena of slide, debris flow and debris
avalanches, which involve eluvial colluvial deposits and clastic materials accumulated in
previous morphoclimatic phases. In the areas with outcrops of Plio-Pleistocene sediments,
mainly pelitic, and characterised by a lower gradient, the type of movement that prevails is
that of earthflow. Less deep phenomena such as soliflux landslides and plastic deformations
are also widespread in these areas. In the impluvial areas, where there are considerable
thicknesses of altered and and eluvial deposits, there are frequent mudflows originated
during heavy rainfall. In the hilly areas where the Plio-Pleistocene pelitic and pelitic-
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arenaceous sediments outcrop, the natural instability of these soils has been accelerated by
poor land management and, above all, by less maintenance management and, above all, less
maintenance of the surface water drainage network. Moreover, the profound changes in
the production methods of the agricultural system, which can be summarised as a reduced
anthropic presence in the area and a decrease in vegetation cover, have led to the breakdown
of delicate natural balances over the last thirty years. The development of settlements and
infrastructures, imposed by new socio-economic processes, has often taken place in an
uncontrolled manner, occupying areas whose stability was considered precarious.

Moreover, in the last period, this area of Italy has suffered periodically from strong
hydrogeological instability, due to two major seismic events in 1997 and 2016, which mainly
generated deep-seated gravitational slope deformations (DGSD) and collapses. In addition,
there have been extreme precipitation events such as the one in November 2013, which
activated existing landslides and uncovered new ones, especially in hilly areas.

2. Materials and Methods

2.1. Data Sampling and Preparation

For the analysis of susceptibility through GIS software, a detailed digital elevation
model (DEM) is primary, which was created with the help of the regional technical map
(CTR) [30]. This DEM was prepared with a resolution of 5m and on this basis the slope
map, which is very influential on landslide susceptibility, was obtained. The geological
map was digitized and the landslide map was obtained from the “River Basin Authorities
of the Marche Region”. The model validation was instead produced by introducing the
landslides from the IFFI project (inventory of landslide phenomena in Italy). Deep-seated
gravitational slope deformations (DGSD) and collapses were excluded from the landslide
map, due to activation phenomena not directly linked to extreme precipitation events, thus
the total number of landslides considered for this study was 4171 (Figure 2).

Figure 2. Map of sampled landslides.
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The land use map, on the other hand, was obtained from ISPRA (Istituto Superiore per
la Protezione e la Ricerca Ambientale), the italian institute that distributes the Corine Land
Cover for Italy, developed by Copernicus Global Land Services (CGLS), Europe’s leading
Earth monitoring programme. In order to complete the parameters that are part of the
model, the precipitation of the last 30 years were taken into account, through data of 10 rain
gauges in the province of Macerata and another 10 outside. The rainfall data were collected
by the Regional Civil Protection of the Marche Region and the Experimental Geophysical
Observatory of Macerata (OGSM). Firstly, a complete validation and homogenisation of the
climate data was carried out, following the guidelinesof the WMO (World Meteorological
Organization). Interpolation was carried out throughout the province by means of ordinary
cokriging based on altitude as an independent variable [31]. Ordinary cokriging (OCK),
is a geostatistical method used in relation to one or more independent variables [32] that
allow a better interpolation if there is a strong correlation between independent variable
(known throughout the territory) and dependent one (only some sample values).

ZOCK(u) =
n1(u)

∑
α1=1

λOCK
α1

(u)Z1(uα1) +
n2(u)

∑
α2=1

λOCK
α2

(u)Z1(uα2)

λOCK
α1

(u) and λOCK
α2

(u) = weights of the data

Z1(uα1) and Z1(uα2) = primary and secondary data

(1)

The altitude was chosen as an independent variable on the basis of a previous study
showing that it is the most correlated topographical parameter for this area [33]. Further-
more, a complex study was performed to find out the amount of precipitation in case of
extreme events. The method used to carry out the analysis was the Generalized Extreme
Value (GEV), chosen after an assessment of the goodness of fit in relation to precipitation
data. The GEV is a flexible model composed of three parameters: k for shape, σ for scale
and μ for location.

f(x) =

{
1
σ exp(−(1 + kz)−1/k(1 + kz)−1−1/k k �= 0
1
σ exp(−z − exp(−z)) k = 0

(2)

where z = (x−μ)
σ

The domain of the GEV depends on k:

1 + k (x−μ)
σ > 0 k �= 0

−∞ < x < +∞ k = 0
(3)

In order to assess the goodness of fit for each rain gauge, it was used the R software
with the package “extremes 2.0” analyzing the quantile plot and the histogram of fre-
quency [34]. Even the same software was used to calculate the return period. In fact the
return period 1/p was obtained through the procedure of the maximum likelihood zp with
a chance between 0 and 1:

zp = μ+
σ

k

(
[− log(1 − p)]−k − 1

)
(4)

Finally it was calculate the confidence interval of each return period in this way:

μ = zp +
σ

k

{
1 − [− log(1 − p)]−k

}
(5)

However, although the altitude is optimally correlated with the rainfall, it is not at
all correlated with the extreme rainfall events. Thus to have a good reliability, the rain
gauges of extreme events in 24 h near to the location of the analysis were interpolated
with an ordinary kriging (without altitude), instead of OCK. Ordinary kriging (OK) uses a
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semivariogram to express the strength of the spatial correlation as a function of distance
and similarity.

ZOK(u) = μ+ ε(u) (6)

μ = unknown constant, ε(u) = random error
The goodness of interpolations was evaluated with a cross-validation, performed with

GIS softwares, considering some statistical operators as: Mean Error, Root Mean Square
Error, Average Standard Error, Mean Standardized Error and Root Mean Square Error
Standardized [23]. With regard to extreme climatic events, the analysis was conducted on a
return time of 100 years for extreme climatic events considering time series of 50–60 years
of precipitation data for the hours 1-3-6-12-24 (Table 1). The confidence interval were
calculated through the “bootstrap” method, with 1000 attempt.

Table 1. Example of calculation of return period 100 years of precipitation for Tolentino rain gauge.

Rain Gauge Return Period 100 Years (mm)

Tolentino 1 h 58.0
Tolentino 3 h 72.3
Tolentino 6 h 84.8
Tolentino 12 h 108.8
Tolentino 24 h 137.9

The results of the analysis are showed with the Extreme Rainfall Intesity-Duration-
Frequency (IDF) curve (Figure 3), which relates the precipitation in millimeters to the return
period in years.

Figure 3. IDF curve of Tolentino for the interval time of 24 h. Dotted line is the confidence interval
after 1000 attempts. The black line is the one risulting from the analysis.

2.2. Model Building

Following this in-depth climatic analysis, the most relevant environmental problems
were identified, for this territory, according to databases obtained from the Basin Authority
of the Marche Region and the Marche Region itself. Landslides detected in the investiga-
tion area have been mapped and subsequently combined with the following parameters:
extreme events of precipitation, average annual precipitation, geology, land use and slope
angle, in order to predict quiescent or potential landslides. The evidences were divided in
classes and this analysis was based on the weight of each single class of values. Weight is a
function of how many landslides are present in each class and the final aim is to produce a
landslide susceptibility map. To create the susceptibility map, the classes of the various
evidences climatic interpolations (average precipitation and extreme events), lithology,
slope and land use become the subject of the WoE calculation (Figure 4). This calculation
performed by means of math tool between raster with GIS software, produces positive and
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negative weights for each class (Figure 5). Weights are estimated to be proportional to the
influence of each class on landslide and were calculated by the following equations [35]:

W+ = ln

⎛
⎜⎝

Landslide area in calss
Total landslide area
Stable area in class

Total stable area

⎞
⎟⎠ (7)

W− = ln

⎛
⎜⎝

Total landslide area outside calss
Total landslide area

stable area outside class
Total stable area

⎞
⎟⎠ (8)

The Equations (7) and (8) represents the start of the WoE method, which combine
evidence in support of an hypothesis. In this way can be possible to calculate the degree of
influence of each factors in the susceptibility analysis, with the aim of produce a map useful
to protection. However in this calculation it is essential to know the prior probability (Of) to
find the amount of study area affected by landslide (Af) over the whole study area (At) [20]:

Of =

Af
At

1 − Af
At

(9)

Furthermore there is another very important parameter which is the contrast (C) that
represents the differences between W+ and W− allowing the assessment if the investigated
factor is significant and influence the distribution of landslides in the area. A value of “C”
close to 0 determines that the parameter is of little significance, while a value of 2 attests
a good correlation. The final susceptibility map was obtained from the weights of each
parameter and the prior probability [20]:

Final P. = EXP
(
∑ W+ + ln Of

)
(10)

Figure 4. Model flow diagram.
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Figure 5. (Left) Geological map of Macerata Province; (Right) The weights calculated for the geology parameter, (W+) posi-
tive weights, (W−) negative weights, (C) contrast; formations are described by the CARG PROJECT [36].

Geology and Land use are categorized variable, therefore they did not need to be
categorized. On the other hand, choices were made for both climatic parameters and slope
gradients. Extreme precipitation events were divided into intervals of 5 mm of precipitation,
while annual precipitation was divided into intervals of 150 mm of precipitation. The
slopes were divided into four different classes, the first for assessing flat surfaces, the
second for assessing medium-low slopes, the third for medium-high slopes and the fourth
for high slopes. Obviously, these subdivisions are arbitrary and could influence the results
of the model to a greater or lesser degree. The only way to assess the presence of more
appropriate categories, would be to iteratively evaluate them.

3. Results

The landslide map (Figure 2) was overlapped with each influencing parameter in
order to find a statistical correlation. The weight of each parameter is a function of the
correlated density of instability. The sum of the different parameters determines a landslide
susceptibility map. The various thematic maps were overlapped with the landslide map
and the intersections obtained with GIS software, were assessed to calculate the weights and
the odds for the whole Province of Macerata. The WoE were obtained from 5 parameters:
Geology (Figure 5), Slope (Figure 6), Land use (Figure 7), Annual average precipitation
(Figure 8), Extreme events (Figure 9).

It is important for the Figures 5–9 (right) to observe the contrast (“C”) value, because a
positive one determine that landslides occur more frequently in the given class. For geology
(Figure 5) we have an high value of C for “Depositi Quaternari” (Quaternary deposits),
and positive but lower for RSA, FCO, FSD, FAA and LAG [36]. All the other formations do
not have a positive correlation of parameter C, which suggests that landslides do not occur
very frequently in these geological formations.
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Figure 6. (Left) Map of slope angle of Macerata province; (Right) The weights calculated for the slope parameter.

 
Figure 7. (Left) Land use of Macerata province, from Corinne Land Cover; (Right) The weights calculated for the land
use parameter.
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Figure 8. (Left) Annual average precipitation in Macerata Province; (Right) The weights calculated for annual average
precipitation parameter.

 

Figure 9. (Left) Annual extreme events of the Macerata Province; (Right) The weights calculated for extreme events parameter.
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The most frequent class of lanslides for the slope angle is between 5◦ and 30◦, while C
for all the other classes seems to be not very significant (Figure 6).

The land use (Figure 7 shows a higher contrast value for territories used for agricultural
practice as expected. In fact, from the table (Figure 7) seems the agricultural working of the
soil exposes it to problems of instability.

Average annual precipitation (Figure 8) not seem to be an highly correlated parameter,
and the most influent can be considered for the band 850–1000 m a.s.l.. It is interesting
to note a sort of inverse correlation between the amount of precipitation and the contrast,
perhaps distorted by the presence of lithologies less susceptible to landslides.

Average annual precipitation and extreme events (Figure 9) do not show values that
are decisive for the assessment of the landslide susceptibility, even if there are classes with
higher values of contrast than others. In any case, a strong relationship between extreme
precipitation and landslide susceptibility has not been found, which even highlighted areas
with low extreme precipitation as the most susceptible.

At the end of this procedure, all the results have been overlapped in order to create
a landslide susceptibility map; the value as specified in the methods was calculated on
the basis of the Equation (10). The weight of evidence for the province of Macerata is
represented by the map (Figure 10) in 5 levels of landslide susceptibility from S1 to S5
with each corresponding to a value between 0.0 and 1.0. Territories with a low probability
of being affected by landslides were classified as S1 and S2, a result from S3 to S4 has a
landslide susceptibility that starts to become important, while level S5 is an area subject to
major hydrogeological instability.

Figure 10. (Left) Landslide susceptibility of the Province of Macerata; (Right) Area of landslides introduced as a result of
the validation procedure, in relation to the landslide susceptibility level predicted by the model of this study.

It is important to note in the figure (Figure 10) that in the South-western area, the
most mountainous one, the level of landslide susceptibility is unusually low, due to the
weight geological formations which have a very low contrast (C), because of more coherent
rocks, less prone to the investigated movements. In fact, as specified in the description
of the most common movements for each zone of the study area, the mountainous zone
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shows deep-seated gravitational slope deformations (DGSD) and collapses, movements
not analysed in this study. Similarly, the piedmont area has a susceptibility mainly between
level 2 and level 3, which makes it an area of low criticality, although there are some areas
where susceptibility reaches level 4–5 and therefore need to be managed appropriately.
The riverbeds of the most important rivers obviously have a minimal susceptibility level
due to the almost non-existent slope as do the coastal stretches in the eastern part. On the
other hand, the territories where susceptibility is between S4 and S5 are located in the hilly
part, in the centre part of the study area. These areas show pelitic or pelitic-arenaceous
geological formations and a land use more oriented to agriculture which generate the most
important instability conditions.

Finally, in order to validate the work, many landslides from the IFFI database that
were not sampled to develop the model were included, amounting to a total landslide area
of 1644.359 Km2. This validation led to the assessment that about 70% of the landslides
introduced, are located in a territory with susceptibility level from 2 to 5, while only 30%
are located in a territory with low landslide susceptibility, so they can be considered not
predicted by the model.

4. Discussion

This study is an example of WoE for the creation of landslide susceptibility maps
through the use of GIS softwares, with the addition of an accurate analysis of extreme
precipitation. Extreme precipitation seems to have, in the literature, a great influence in
the territory subject to slow-motion landslides [37,38], because this type of landslides are
sensitive to soil saturation conditions. However, in this case, no statistically significant and
systematic values of influence of extreme events or average precipitation on landslides
were found. In particular, it is interesting to note that the C is greater in a low range of
extreme events, such as 140–145, however further clustering of the variable should be tested
in order to exclude this parameter from those influential for landslide susceptibility. There
is no growth in C to the increase of precipitation, which is also a result of the geographical
and geological characteristics of the area. This can lead to the assessment that the extreme
events in the area are not so different that they become significant and can discriminate one
area from another. The division into too many classes can be influential, but even reduced
classes do not have much higher C values. In any case, a significance of the extreme
event cannot be excluded, which is widely documented in the case of surface gravitational
phenomena [39,40]. Among the discriminating and statistically significant parameters for
the production of landslide movements, there are the slope gradient, which from 5 to 30◦
shows an excellent correlation, the agricultural terrain and the geological formation MUS,
according to the relevant scientific literature [9,41,42]. The validation procedure allowed,
the reliability of the model to be assessed at about 70%, in line with many other studies
that used the same or different calculation methods [15,43]. Despite the apparent lack
of significance of extreme events, the result was nevertheless achieved, in fact a reliable
susceptibility map was created according to all the factors considered, which provides a
priority for risk mitigation interventions.

5. Conclusions

This outcome, combined with the different parameters mentioned above (geology,
slope angle, land use, average precipitation, extreme events), composes a model that leads
to an automatic detection of possible landslide areas, in this case very focused on the
movements that can be originated by heavy rainfall. It would be interesting to study this
area further to evaluate other parameters to be included, in order to take into account
all possible landslide movements, without discriminating against some of them. This
consideration is very important because it allows to obtain a susceptibility map even where
the movements are not clear or studied, but only on the basis of possible combinations.
The susceptibility map of the province of Macerata, therefore, can lead to the use of this
tool for many protection purposes. This tool could support technical decisions, in order
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to prioritise interventions in a scientific way. The assessment is currently carried out
on the basis of previous evidence or emergencies. In this way it would be possible to
prevent the emergencies, improving this map also with other important features like soil
type, vegetation cover, etc. Obviously in the future it would be important to support this
susceptibility map, with a landslide hazard map, in order to create a real operating system.
Then the last step could be to create a risk map that takes into account people, heritage,
buildings, but also valuable crops, making a detailed assessment of the stability model.
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Abstract: In the research field on landslide hazard assessment for natural risk prediction and
mitigation, it is necessary to know the characteristics of the triggering factors, such as rainfall and
earthquakes, as well as possible. This work aims to generate and compare the basic information on
rainfall events triggering landslides in two areas with different climate and geological settings: the
Loja Basin in southern Ecuador and the southern part of the province of Granada in Spain. In addition,
this paper gives preliminary insights on the correlation between these rainfall events and major
climate cycles affecting each of these study areas. To achieve these objectives, the information on
previous studies on these areas was compiled and supplemented to obtain and compare Critical
Rainfall Threshold (CRT). Additionally, a seven-month series of accumulated rainfall and mean
climate indices were calculated from daily rainfall and monthly climate, respectively. This enabled
the correlation between both rainfall and climate cycles. For both study areas, the CRT functions
were fitted including the confidence and prediction bounds, and their statistical significance was also
assessed. However, to overcome the major difficulties to characterize each landslide event, the rainfall
events associated with every landslide are deduced from the spikes showing uncommon return
periods cumulative rainfall. Thus, the method used, which has been developed by the authors in
previous research, avoids the need to preselect specific rainfall durations for each type of landslide.
The information extracted from the findings of this work show that for the wetter area of Ecuador,
CRT presents a lower scale factor indicating that lower values of accumulated rainfall are needed to
trigger a landslide in this area. This is most likely attributed to the high soil saturation. The separate
analysis of the landslide types in the case of southern Granada show very low statistical significance
for translational slides, as a low number of data could be identified. However, better fit was obtained
for rock falls, complex slides, and the global fit considering all landslide types with R2 values
close to one. In the case of the Loja Basin, the ENSO (El Niño Southern Oscillation) cycle shows a
moderate positive correlation with accumulated rainfall in the wettest period, while for the case of
the south of the province of Granada, a positive correlation was found between the NAO (North
Atlantic Oscillation) and the WeMO (Western Mediterranean Oscillation) climate time series and the
accumulated rainfall. This correlation is highlighted when the aggregation (NAO +WeMO) of both
climate indices is considered, reaching a Pearson coefficient of –0.55, and exceeding the average of the
negative values of this combined index with significant rates in the hydrological years showing a
higher number of documented landslides.

Keywords: Critical Rainfall Thresholds; climate cycles; triggering factor; correlation
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1. Introduction

Landslides are considered to be one of the most serious hydrological hazards, producing isolated
or catastrophic events that result in costly damage and high rates of causalities. Quantitative reviews
on their effects at different territorial scales can be found in the literature (e.g., [1–6]). These studies
show thousands of fatalities a year globally, while the costs caused reach thousands of millions of
euros. This phenomenon appears in different types of landslides and under a variety of environmental
and climatic scenarios, which make it crucial to understand the hydrological mechanisms that lead to
the activation of such land processes with negative effects. In a hazard assessment, it is important to
define the thresholds under which landslides develop and their expected frequency. Considering that a
threshold is the limit of a quantity from which a process initiates or a state changes [7], a rainfall threshold
triggering landslides is related to the limit of hydrological conditions such as soil moisture, rainfall
intensity, or accumulated precipitation [8–12]. In the literature, there are numerous investigations on
establishing the minimum amount of precipitation that leads to landslides at different locations and
scales all over the world. A review of the different types of rainfall thresholds that trigger landslides and
the results from different locations are addressed in a more in-depth manner in [10], with corresponding
references. To define rainfall threshold, authors use two main types of approaches: physical ones
(process-based, conceptual) or empirical ones (historical, statistical). The physical or process-based
models incorporate the infiltration pattern into the slope instability analysis. These models are
characterized by the difficulty of gathering all the necessary information on hydrological, lithological,
morphological, and soil geomechanics parameters. This information gathering is costly and the
method is better suited to shallow landslides. The method used in this paper is of the second type,
where empirical rainfall thresholds are defined by exploring the rainfall events associated with the
occurrence of landslides. Unlike physically-based models, the empirically-based methods for the
acquisition phase of data are relatively inexpensive. In fact, the gathering of complementary data,
such as piezometric monitoring data and horary rainfall depth, was not available, or the boreoarctic
time to be collected for specific sites was too long in comparison with the scarce data that could
be expected. Instead, daily rainfall data were provided short-term, and the date of occurrence of
the landslides can be extracted from literary sources such as the press, libraries, published scientific
papers, and books. The precision of these models depends heavily on the quantity of data available to
characterize the hydrological scenarios producing landslides. However, in general, collecting the event
dates and detailed rainfall records for long periods is not a simple activity. This is essentially due to
the scarce amount of information available, which is neither systematic nor standardized. These data
are recorded every time a landslide is witnessed or documented [13,14]. After collecting the necessary
data, the empirically-based models are expressed by the correlation of precipitation measurements
(accumulated rainfall, duration, and intensity) related to individual or multiple rainfall events leading
(or not) to landsliding. When multiple rainfall events are considered, a curve representing the function
of the correlation between rainfall measurements can be depicted to visually distinguish between
the wet conditions that trigger landslides in an area and the rainfall conditions that do not. This is
known as a Critical Rainfall Threshold (CRT) curve. In this paper, the CRTs have been obtained
by combining the parameters of rainfall event duration and a measurement of cumulative rainfall.
This simple approach, which consists of fitting the function that correlates cumulative precipitation
and the duration of the rainfall events that trigger landslides, has been applied by different authors
in different ways. Several pieces of research take into account the cumulative event rainfall (E) for
shallow soil slips and landslides of a flow-like nature [15–20]. Conversely, deeper-seated landslides
need more time for the layered geomaterials involved in the slipping mass to reach predisposing
moisture conditions, so the antecedent rainfall (A) as the accumulated precipitation before the landslide
event is accounted for [21,22]. Moreover, several analyses combine both cumulative event rainfall and
antecedent rainfall [23–26]. Commonly, more than one duration is explored from periods ranging
from a few days to several months. However, the selection of the duration interval/s is not so trivial
if the information gathered is not precise and characterized by the uncertainty regarding the type,
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geometry, or depth of the failures being evaluated. This fact makes it difficult to apply a single rule to
the landslide events being studied. In this research, the main issues hampering the main objectives
coincides with those described in [14]. First, not all the public local organizations have implemented
procedures to facilitate timely and affordable access to the necessary information and data, which delays
or even prevents the most complete records on hazardous events. Similarly, some private companies
are reluctant to provide data companies with their data for reasons of legal protection, data privacy,
or other reasons of the company itself. Second, the supplied data and exploited information, such as
the information from local newspapers, seldom includes the most relevant data to solve the basic
problems involved in a landslide hazard analysis. That is basically the type of landslide, its geometry
and dimensions, the description of the mobilized materials, and the hydrogeological or geomechanical
parameters. This also applies to landslide or hydrogeological hazard catalogues or databases. Thus,
given the incomplete and imprecise nature of the necessary information, some considerations were
taken into account. Considering the above-mentioned lack of data and uncertainties about the landslide
type, this research applies a method to extract the information on the duration and coupled cumulative
rainfall regardless of landslide type, although a separation has been carried out where the information
gathered provided the classification of the different landslides. In addition, this method evaluates
a duration interval range from 1 to 90 days for each landslide event, with the selection of the most
significant rainfall and its respective duration. The selection of the rainfall event is based on the joint
visualization of the return periods of the different cumulative rainfalls, which help to distinguish those
uncommon events that are more probably related to the triggering of the recorded landslides. Thereby,
the selected rainfall events can include, or not include, the cumulative event rainfall related to the
date of the landslide event or a few days previous to its initiation, as discussed in [13]. Although,
in some cases, the type of landslide cannot be identified or was not correctly collected in the consulted
sources, this method has the advantage of being independent of the type of landslide. In other words,
the rainfall triggering each landslide is deduced from the spikes coinciding with uncommon return
periods of rainfall events with specific accumulated rainfall and duration. This means that the duration
of the rainfall events is not predefined by the expert, but is rather derived from each uncommon rainfall
event detected from the return period spectrum after considering the wide range of rainfall durations
(1–90 days). Accordingly, this method has been applied to both case studies as it can be used for a
single type of landslide or for a mixed dataset with different types of mass movements.

In previous research [13,27], the proposed method has been applied by using different functions
and rainfall parameters in both study areas. Conversely, this paper seeks to homogenize the CRT
analysis by using the same functions for every case, providing a comparison between both scenarios.
In addition to the information on triggering conditions, the present research deal with the correlation
of these rainfall thresholds and the landslide occurrences with the main climatic cycles affecting the
area under analysis. Both the weather models and CRTs (Critical Rainfall Threshold) provide valuable
information for the prediction of landslides events, despite the changing patterns in the space and time
of climatic cycles.

Considering the significance of this information as a contribution to upcoming research, this work
aims to produce initial insights on the CRT functions extracted from the information gathered for two
zones that are climatologically and environmentally different. The first zone is located at the Loja Basin
in southern Ecuador, while the second one is sited in the south of the province of Granada (Spain).
As a second objective, this work adds a graphical and quantitative analysis of the accumulated rainfall
during the wettest period and the relevant climatic indices greatly affecting each study area.

2. Insights on the Association of Teleconnections with Floods and Landslides

The teleconnection indices represent the variability in the flows or circulations that favors the
appearance of precipitation and controls the patterns of wet and drought periods.
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2.1. ENSO (El Niño Southern Oscillation)

The ENSO [28] represents the “balance” of sea pressure in the tropical Pacific Ocean.
This phenomenon develops in two phases. The warm phase “El Niño” [29] constitutes the oceanographic
and atmospheric periodic anomalies along the Oriental Equatorial Pacific and the southern coastal zone
of Ecuador and Peru. This phase causes sea surface temperature (SST) to increase in the Equatorial
Pacific. At the same time, SST warming favors evaporation and troposphere heating, leading to
atmospheric convection in its warm phase called El Niño. However, the cold phase, La Niña, can cause
droughts in multiple areas of South America. A warm phase is declared when the average of the SST
anomalies in the Niño 3–4 region (5N–5S, 170W–120W) are above the threshold of +0.5 ◦C for five
consecutive 3-month periods. The intensity of this phenomenon is measured by the Oceanic Niño
Index (ONI) as the deviation from this standard (greater than or equal to +0.5 ◦C). Reference [30]
states that the Southwest Pacific (SWP) droughts, landslides, and coastal flooding are linked to ENSO
and tropical cyclones. For example, during the moderate phases of El Niño in 2009 and La Niña in
2010, the above average landslide activity was detected peaking in November 2010 in Colombia and
Venezuela [31,32]. Also, 54% of the landslides accounted for within the period 2004–2016 in Brazil
occurred between 2009 and 2011, with peaks from December 2009 and April 2010 coinciding with a
strong El Niño, and January 2011 with a strong La Niña [33]. Similarly, “The Callapa mega-landslide”
was developed during the La Niña event of 2010–2011 in Bolivia [34].

In Colombia, La Niña events are associated with a high frequency of flooding, mass movements,
and infrastructure damages [35] (and references therein). The review of the database DesInventar for
the Antioquia (Colombian Andes) by [36] accounted for 3478 mass movements that caused 2065 deaths
and 74654 damaged houses during the period 1900–2017. The study area showed a greater number of
landslides during La Niña of almost equal distribution during the hydrological year.

In central-northern Chile, in the mid basin of Elqui River, at 40 km from the Pacific Ocean and an
elevation range between 400 and 3900 m, [37] (and references therein) concluded that the ENSO and
the number of landslides present a positive correlation.

Moreover, the more eastern countries (closer to the Atlantic Ocean) have been impacted by
excessive rainfall during ENSO, causing documented disasters. In other parts of the continent,
the ENSO effects do not show significant differences between the number of landslides linked to El
Niño, La Niña, and neutral years, probably due to the topographic features and the complex interaction
of the Pacific and Atlantic anticyclones [38]. This is well noted in northwestern Argentina to the south
of the Cordillera Oriental in the Central Andes [39]. However, the increasing number of landslides
have been also recorded in this area during the El Niño warm phases [38] (and references therein).
This increasing was found during the extraordinary storms of 1982–1983, 1991–1992, and 2015–2016
when a high number of debris flows and rockfalls caused incalculable damage to the International
Road to Chile and the Transandine International Railway on the margins of the Mendoza River [38,40].

When the SST rises due to ENSO events, the coastal northern Peru and southern Ecuador are
those which are most directly impacted as the warm phase destabilizes the lower atmosphere [41].

In Peru, the natural hazards are more frequent in coastal areas and in the Cordillera Occidental
and Cordillera Central, decreasing as one goes inland [42]. Despite the hyper-arid coastal climate of
northern Peru, the authors of [43,44] concluded that the region around the city of Trujillo experiences
some of the strongest ENSO signals associated with increases in rainfall, typically exceeding 40%.
For example, [44] found regional correlations between 0.58 and 0.78, considering the stations in the
cities of Trujillo, Chiclayo, and Piura. Similarly, a review of the homogeneous landslide database
DesInventar for the area of the Ancash Department (Peru) showed a major correlation of landslides
with El Niño episodes (41% of all the recorded catastrophes) between 1971 and 2009 [42]. More recently,
multiple regions located on the coast of northern Peru were seriously affected by floods during the first
three months of 2017 with the increasing SST yield in the El Niño of 2017 [45]. In that period, this area
received 10 times its average rainfall.
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The population and economic activity of the coastal zone of Ecuador are high. Thus, multiple
investigations have contributed to the Ecuadorian rainfall prediction in relation to El Niño events that
have caused floods and landslides, millions dollars’ worth of damage, and thousands of deaths [46]
(and references therein). In this area, historical El Niño events identified in 1982–1983, 1987–1988,
1991–1992, and 1997–1998 favored rainfall anomalies with valuable damage to livelihoods, agriculture,
and infrastructure.

2.2. NAO (North Atlantic Oscillation)

The NAO is one of the main sources of climate variability in the European region [47–49]. This is
formed by the pressure difference between two opposite sign action centers located in the North Atlantic,
one over the Azores and another over Iceland [50–53]. The NAO is correlated with temperature [54,55]
and precipitation extremes [56]. Several authors have demonstrated that the negative NAO phase has
favored anomalously high atmospheric instability over southern Europe, the Mediterranean Basin,
northern Africa, and northwest Africa for the last four decades in winter [57] (and references therein).

The NAO climatological phenomenon has notable effects on the northern Iberian Peninsula,
usually between December and February. Negative NAO and lower solar activity were primarily
responsible for the high frequency of floods during the autumns and winters of the last 2000 years in
western-central Europe. This information is derived from sedimentological studies on slackwater flood
deposits [58]. The expansion of this phenomenon has also been interpreted to reach the Mediterranean
moisture [59]. In the Mediterranean regions, significant storms and high levels of accumulated
precipitation are detected due to the changes in the atmospheric winter flow that can last even
four months (December–March) in extreme cases. The interaction of climatic influences and the
understanding of their trends is complex. Nevertheless, efforts have been made to study the interval
between prolonged and intense rainfall episodes resulting from the influence of the NAO. Portugal and
Spain are two countries directly affected by the NAO. In Portugal, [60] found significant anti-correlation
by applying the Pearson coefficient to the relationship between several precipitation indices and the
NAO index, except for the CDD (cumulative dry days).

Using the global extension of teleconnections, the NAO has also had a significant influence on
southern Spain, producing a decreasing trend in the annual rainfall in the western Mediterranean and a
rising number and intensity of heavy storms of very short duration [61–64]. In the Tramuntana Range
at the north-western part of the Majorca Island (central Mediterranean basin), [65] conducted a spectral
analysis to determine the presence and statistical significance of climate cycles. Thus, the analysis
of different long-term rainfall series permitted the identification of ENSO, NAO, Quasi-Biennial
Oscillation (QBO), and Hale and Sun Spot cycles as other signals related to solar activity. Among these,
the NAO cycles showed one of the most powerful signals (peaks) in the six-month frequency. In this
area, the NAO and ENSO peaks were well-matched with numerous landslide events from a detailed
inventory (174 events) dating back to 2005. That is the case of the period 2008–2010, when the island of
Majorca experienced the coldest and wettest winters of the last 40 years. Coinciding with the high
NAO and ENSO values of that period, 66 mass movements occurred in the Tramuntana range [65,66].

2.3. WeMO (Western Mediterranean Oscillation)

The WeMO index permits the study of rainfall patterns on the Iberian Peninsula, where NAO has
a lesser effect [67–69]. The WeMO index (WeMOi) is calculated as the standardized pressure difference
between Padua (northern Italy) and San Fernando (southeastern Spain) [67].

The literature on the influence of WeMO is very limited. Nevertheless, the research carried out
by [69] analyzed the dependency of rainfall on the WeMO index (WeMOi) in Catalonia (northeastern
Spain). They applied the Pearson correlation coefficient to the subperiods 1951–1981 and 1983–2014.
The first subperiod showed a significant negative correlation between annual rainfall totals and WeMOi,
while in the second interval, this significant correlation disappeared completely. It was also observed
that the decrease in WeMO was followed by a decrease in the variability of several rainfall indices,
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such as the variation coefficient (VC) and the consecutive disparity index (S1), though not for the CI
(daily concentration index). Thus, it was demonstrated that WeMO also has the potential to identify
the degree of rainfall variability. The WeMO was more sensitive for rainfall series with greater VCs,
but had almost null influence in the summer storms when the baric gradient was low [69].

3. Study Areas

3.1. Loja Basin (Southern Ecuador)

The area of the Loja Basin is characterized by a climate classed as warm and fully humid with a
warm summer (Cfb) [70] at an average elevation of 2100 m a.s.l., between the meridians 79◦10′ and
79◦15′, and between the parallels 3◦55′ and 4◦5′ (Figure 1). The low strength properties of the rocks
forming the gentle slopes of the valley, including the city area, appear as a main conditioning factor.
This particular geological setting, together with low but very continuous daily rainfall, is the main
cause of the frequent occurrence of landslides in this area [27]. This valley presents an average monthly
temperature of 16.2 ◦C, reaching minimums in the coldest month of July (14.9 ◦C), and its average
annual rainfall is 917 mm [71]. The continuity of the rainfall is represented by 59% of the pluviometry
records gathering quantities with a mean of 2.56 mm/24 h, and with the rainiest season concentrated
from December to April. The histogram depicting the monthly rainfall for the record covering the years
ranging from 1964 to 2015 shows maximum convexity during the October–April period (Figure 2).
It is in this period when storms and longer precipitation periods trigger floods and mass movements.
The weather in the southern part of Ecuador is mainly controlled by the global pressure systems of
the subtropical highs over the Atlantic Ocean and the subtropical high over the southeastern Pacific.
These systems contribute to the main westward wind streams arriving in southern Ecuador through
the mid-level layers (~850 to ~400 hPa) [72].

 

Figure 1. Location of the study areas. Basemap from ArcGIS® World Imagery.
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Figure 2. Histogram of the mean monthly precipitation for both study areas.

The Loja Basin is one of several Neogene intramontane basins that have been described in southern
Ecuador. Geologically, it is a sedimentary basin of lacustrine origin of the Miocene–Pliocene age,
with lithologies such as coarse-grained sandstones with intercalated sediments and conglomerates,
thick beds of massive limestone and layers of marl, and fine-grained sandstones and clays [73].
These sediments are layered on a metamorphic bedrock formed by impure fine to medium grain
quartzites, black phyllites, slates, and schists (some graphitic) of the Paleozoic age, forming the lowest
part of a mountain chain with elevations of approximately 2700 m a.s.l.

In the case of the Loja basin, the files of the Ecuadorian Secretary for Risk Management (SNGR)
and the newspapers “La Hora” and “El Comercio” were reviewed to extract essential information on
landslides caused by hydrological events. This review complemented previous research work [15] to
extract essential information on landslides caused by hydrological events. Thereafter, it was possible
to date up to 93 landslide events. The information reviewed did not contain specific data on the types
and geometries of the catalogued landslides. However, from previous studies ([27] and references
therein), it is known that the mass movements found in this area are commonly (85%) of the very
slow or creep type, such as earth-slide or earth-flow, and the complex types of the Cruden and Varnes
(1996) classification. They are very slow or creep landslides that accelerate gradually and become flows
after high precipitation events. The analysis focused on these types of landslides because they are the
most common and harmful in the study area. It also focused on applied superficial type landslides,
whose fault planes reach up to approximately 30 m.

The most characteristic landslides in the Loja Valley have lengths ranging from 100 to 250 m and
widths ranging from 60 to 150 m, which occur on slopes ranging from 10◦ to 40◦. These are mainly
associated with the clays, siltstones, and colluvial deposits of the Loja sedimentary basin (Figure 3).
Mineralogical analyses show that the main factor causing landslides is the presence of active clay
minerals in the geological formations involved [27].

 

Figure 3. Examples of geological sections in the area of the Loja Basin, in the directions NE-SW (a) and
in the direction SW-NE (b). Taken from [74].
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3.2. Southern Granada (Southern Spain)

The area studied in the south of the province of Granada is located on the southern slopes of
the Sierra Nevada in the Betic Cordillera with a general S–SW direction. The enclosed area, with an
extension of about 2370 km2, covers heights from 5 to 1450 m and extends between the meridians
3◦07′ and 3◦29′W and between the parallels 36◦41′ and 36◦′56N (Figure 1). The climate changes from
arid-steppe to cold-arid (BSk) at the base of the mountains, to an arid-steppe hot-arid (BSh) zone on
the coastal plain [75]. In this zone, the rainy and wet season is also related to the monthly interval
running from October to April (Figure 2), with an average temperature of 16 ◦C and minimums at
higher elevations. The summer period is dry, and temperatures can exceed 40 ◦C. The mean annual
precipitation reaches 650 mm, and the main system controlling the weather is the Azores anticyclone.
In winter, the Azores anticyclone high-pressure band is located between 40◦ and 30◦N, leaving the
progression of the Polar Front and Iceland Low moving downwards, which generates the majority of
convections in this region [76]. However, in the warm-dry season, stormy weather is caused by the
movement of the Azores anticyclone to the area between the latitudes 35◦ and 55◦N, when the Polar
Front and the Subtropical Jet cloud systems enter the study area. Elevation plays an important role
in this zone as an altitudinal gradient that generates cold temperatures and a rainfall gradient [13].
The south of the province of Granada is located in the Internal Zone of the Betic Cordillera, which is
mainly characterized by metamorphic rocks belonging to the Nevado-Filabride complex, composed of
Triassic calc-schists, marbles, phyllites, and quartzites [77], and the Alpujarride complex, with dark
schists and feldspathic mica-schists. These materials form the southern flank of the antiform of the
Sierra Nevada, which has steep slopes. The lower part of these mountains is covered by post-tectonic
Neogene and Quaternary deposits, such as marls, silts, and conglomerates. This lithology, combined
with the study area geomorphometry of high slopes and deep valleys, is associated with different
types of landslides [78,79]. The great number of mass movements in this area is represented by rapid
synchronic landslides like rock falls and debris flow affecting the regolith in the upper soil layers and
alluvial deposits downslope. However, a common case in the area consists of deeper seated quiescent
(or dormant) landsides with intermittent or diachronic activity and inactive landslides. In addition,
few cases are related to permanent slides with very slow displacements. Specifically, on the southern
border of the part of the Sierra Nevada, which belongs to the Internal Zone, the highest level of
instability has been observed, which is related to the periods with the highest precipitation rates.
Two major rainfall periods leading to multiple landslide occurrences were seen in the wet seasons
of 1996–1997 [80] and 2009–2010 [81] when large amounts of damage affected the roads and villages
located in this area. The predominant types catalogued coincided with rockfalls and translational and
rotational slides affecting jointed rock mass such as marble, phyllite, and schist, but also coincided with
debris flows and complex movements, such as a combination of small translational slides evolving into
debris flow. These complex movements and, in general, flow-like landslides developed on regolith
and alluvial deposits.

Research has recently been carried out in both study areas with the aim of making progress
and generating essential information to better understand the cause-effect relationship between the
variance of rainfall and the activation of different types of landslides. The authors of [13,27] determined
CRTs relating to mean intensity and duration extracted from rainfall events were causing landslides in
the study area south of the province of Granada. In the case of Loja Basin, the relationship between
duration and the accumulated rainfall for the rainfall events leading to landslides has been studied [27].
Using this previous work as a starting point, this paper seeks to compare both CRTs by adding
the homologous relationship (accumulated rainfall vs. duration) to the case of the southern part of
the province of Granada. This relationship has been used conventionally, although alternative CRT
functions can be derived by applying simple transformations. For example, ID (Intensity-Duration)
threshold curves can be obtained by applying the definition of the mean intensity (accumulated
rainfall/duration). The second objective of this research is to correlate the rainfall of the humid season

48



Hydrology 2020, 7, 45

with the indices of climate cycles that create atypical rainfall conditions in these areas. To generate this
information, first, the seven-month series are calculated.

Then, the time-series for the mean indices of the climate cycles are also calculated over the same
range of humid months, so the positive and negative phases of rainfall and climate cycles can be
compared. The graphical results are reported in this document and then contrasted in the discussion.
This work will add important information to be utilized for hazard assessment and the predictive
models of mass movements in a comparative way for two cases with different climates.

4. Materials and Methods

4.1. Materials

The baseline data are taken from the daily rainfall records available from previous work.
These records are formed by using daily rainfall data (mm/24 h) gathered from:

• La Argelia rainfall gauge in the case of the Loja Basin, which presents the longest record for the
area considered. These data were delivered by the INAMHI (Instituto Nacional de Meteorología e
Hidrología). The time series collected runs from April 1965 to April 2015.

• Twelve rainfall gauges distributed throughout the study area in the south of the province of
Granada. These data were provided by the Regional Water Agency Environmental Information
Network and the National Meteorological Institute (AEMET). The times series collected have
lengths starting from 1945, except for the cases of the meteorological stations S022, S220, S225,
S392, and S447, which started in the years 1947, 1963, 1984, and 2000, respectively. Moreover,
in general, these records reach the year 2011, except for the cases of S102, S153, and S220 ending in
the years 2004, 2008, and 2010, respectively.

Six rainfall gauges are available in the Loja Basin (Figure 1); however, the only gauge providing a
long and continuous record was that of the “La Argelia” meteorological station, so this was selected to
extract the accumulated rainfall associated with each landslide event. The 12 rainfall gauges available
in the area of southern Granada range between 300 and 1200 m a.s.l (Figure 4), except the rainfall gauges
S154 and S225, which are located close to the coastal zone at altitudes of 33 and 60 m. Considering that
the formation and extension of the precipitation cells can be affected by this altitude variability and
the long dimension of the study area from west to east, the authors of [13] selected the closest rainfall
gauges and used the longest records for each catalogued landslide to obtain the CRTs. However,
this area constitutes a continuous and nearly homogeneous climate throughout its west-east dimension,
composed of the southern face of the Sierra Nevada and the northern slope of the Guadalfeo River
valley. This area is nearly homogeneous in its exposition to humid Atlantic winds [82]. It constitutes the
windward of the humid winds leading to the known Föhn effect, when the water vapor is forced to rise
by the orogenic obstacle through the windward side. Thus, the humid winds reach a sufficient height,
resulting in adiabatic cooling and condensation that produce orographic precipitation, while in the
northern part of the Sierra Nevada (leeward side) descending winds are drier and warmer. This effect
is generalized throughout this study area so the mean monthly rainfall does not change significantly
from one measuring site to another. By visually analyzing the mean monthly values for all the stations
(Figure 4), it can be deduced that, except for the geographically lower gauges (S154 and S225), there are
no significant differences.

However, to verify this effect, the ANOVA (Analysis of the Variance) was applied (Table 1) to
contrast the variability of the monthly record registered on every rainfall gauge. By performing this
analysis, the hypothesis of similar averages for the distribution of the different rainfall gauges can be
accepted (p-value = 0.86). This fact was considered when analyzing the correlation between rainfall
and climatic cycles, so averaged monthly rainfall values was obtained by taking into account all the
rainfall gauges with the aim of using representative values for the entire area.
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Figure 4. Mean values and heights of the rainfall gauges of southern Granada.

Table 1. Analysis of the variance (ANOVA) of the different rainfall gauges of southern Granada.

ANOVA

Variance
Square Sum

(SS)
Degrees of

Freedom (DF)
Square

Mean (SM)
F Probability

Critical
Value of F

Between groups 5209.23 11.00 473.57 0.56 0.86 1.86
Within groups 111,843.41 132.00 847.30

Total 117,052.64 143.00

The landslide catalogues were gathered as follows:

• In the case of the Loja Basin, the files from the Ecuadorian Secretary for Risk Management (SNGR)
and “La Hora” and “El Comercio” newspapers were reviewed to extract essential information
about landslides triggered by hydrological events. For the SNGR database, the data referring to
the period from 2010 to 2015 were revised, while for the newspapers, the information available
from 2002 was examined. After this review, up to 93 landslide events could be dated.

• In the case of southern Granada, the newspaper IDEAL provided the majority of the data related
to landslides with its first issue from the 8 May 1932 [83]. This information was completed with
the data recorded in earlier research work [80]. Given the inconveniences and limited information
on landslides, only 20 landslides cases with the minimal information were found for this area.

In addition, the data series for climate indices were downloaded from the following sources:

• The monthly ENSO (El Niño Southern Oscillation) index for the period 1870–2019 from the
NOAA.ESRL [84].

• The monthly NAO (North Atlantic Oscillation) index for the period 1950–2019 from NOAA.CPC [85].
• The monthly WeMO (Western Mediterranean Oscillation) index for the period 1821–2018 from the

Climatological Group of the Barcelona University [86].

4.2. Methods

The procedure for analyzing the major differences between the two study areas regarding
landslide triggering begins by calculating the CRT curves. The detailed methodology to extract the
threshold values is presented in Palenzuela et al. [13], which permits the extraction of measurements
on accumulated rainfall that coincides with extreme return periods (T). The start and end of the rainfall
event is marked by the appearance of one or more consecutive T spikes. These spikes can coincide with
a short period of intense rainfall, including the date of the landslide activation or, on the other hand,
the anomalous T values can be associated with accumulated rainfall from the days before the date of the
landslide. In the latter case, the lagged date of landslide activation is probably due to the time needed
for the precipitation to infiltrate and saturate the soil layers above the slip plane. After determining the
accumulated precipitation (A) as the magnitude of the rainfall event, its duration (D) and intensity (I)
are calculated, as well as the associated return period (T) as the inverse of the frequency. The same
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CRT connecting A and D is utilized in both study areas with the aim of contrasting the values of the
hydrological variables and trends.

The second part of this analysis seeks to compare the relevant climate indices in each study area
against the accumulated rainfall during the wettest seasons and the number of landslides collected.
Considering the longer duration of the climate variability, which typically lasts about a year to several
years [87,88], this interval has been selected to include the more humid period from October to April
during which the greater number of landslides were also catalogued. Most of the landslide events
collected are related to specific periods with anomalous rainfalls. In the Loja Basin, [27] identified
a high number of landslides within the period 2014–2015 associated to 22 rainfall events with a
greater return period (up to 3.5 years). Whereas, in the area of southern Granada, the landslides
catalogued were concentrated between the wet seasons of 1996–1997 and 2009–2010 [13,80], some of
them associated with accumulated rainfall values corresponding to a very low recurrence (up to
40 years). These considerations make it interesting to evaluate the degree of influence that the main
climatic teleconnections affecting both study areas could have on the rainfall measured and, therefore,
on the landsliding events. Accordingly, in this second part of the analysis, the accumulated rainfall of
the wet seasons October to April for both study areas was assessed for the hydrological years of the
entire time-series. These time-series were fitting them with linear functions representing central values
that were subtracted to better show the variability (oscillation) of such variables. Thus, the greatest
variations around 0 represent the positive (wettest periods) and negative spikes (drought periods).
Regarding the climate indices, the mean values for the same period are calculated for the time-series of
ENSO, NAO, and WeMO indices. After these time-series for the interval of October–April are prepared,
their correlation with the accumulated rainfall is evaluated by using the Pearson coefficient.

5. Results

This section presents the main findings related to the characterization and contrasting of the
rainfall events triggering landslides in both study areas, as well as the comparison between the
variability of climate indices with the accumulated rainfall in the wettest rainy seasons. The outcomes
are discussed in the Conclusion section.

5.1. Critical Rainfall Thresholds

The daily rainfall values corresponding to the landslide dates and the 89 days previous to them
were automatically extracted from the rainfall series and added for durations ranging from 1 to 90 days
by using VBA (Visual Basic) macros. This operation permitted the calculation of the A, D, I, and T
measurements, as explained in Section 4.2, and in-depth in [13]. For comparison, the mean and
standard deviation of the rainfall variables for both study areas are summarized in Table 2.

Table 2. Summary of the rainfall variables for the events triggering catalogued landslides. Aver. and
SD stand for average and standard deviation, respectively.

Geolocation Climatic Zone Rainfall (E) Duration (E)

Aver. SD Aver. SD

Loja (southern Ecuador) Cfb 156.4 mm 115.2 mm 25.3 d 28.93 d
Granada (southern Spain) BSk 458.1 mm 233.5 mm 42.8 d 22.39 d

The resulting values of accumulated rainfall and duration for each event generating landslides were
represented in a scatter plot, a power-law curve was fitted (Table 3), and the confidence and prediction
bounds were added to represent the CRTs for every case. The minimum values of the scatter plot were
manually selected to adjust the threshold curve in every case. In addition, the statistical significance
was determined by obtaining the determination coefficient R2. In the Loja Basin, a generalization was
given for the landslide type as that of very slow mass movements that increased their displacement
rates as a consequence of the rainfall events.
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Table 3. Summary of CRT (Critical Rainfall Thresholds) parameters and statistical significance of the
curve fit.

Area Type α β R2

Loja Earth-slide, earth-flow, complex 7.33 0.76 1.02
Granada Translational slide 92.35 0.15 0.33
Granada Rock fall 63.74 0.39 1.00
Granada Complex 52.34 0.42 1.33
Granada All types 64.36 0.22 0.93

This led to a greater amount of data (Figure 5a) to apply to the curve-fitting process, which is
shown by its determination coefficient R2 = 1. In the case of southern Granada, the information revised
permitted the mass movements to be divided into three types: translational slides (5) (Figure 5b),
rock falls (6) (Figure 5c), and complex landslides (8) (Figure 5d), although the mixed case was
also considered (Figure 5e). In this case, the CRT function with the lowest statistical significance
corresponded to the translational slides, as a very low number of cases were collected for this type
with a high dispersion. On the contrary, rock falls and complex mass movements, as well as the mixed
case, show high statistical significance. By comparing both study areas, the scaling factor α is lowest
in the case of the Loja Basin while the shape factor β coincides with the highest value. This means
that the lowest values are needed to activate or reactivate mass movements in this area, but with
the increase in duration, the cumulative rainfall increases more quickly than in the case of southern
Granada. The different landslide types of the southern Granada area show that translational slides are
activated by the highest cumulative rainfall values, while and rock falls and complex slides shows
similar activation patterns. As expected, the case involving all the mass movements in southern
Granada results in a conservative curve with relative low values when compared with the CRT curves
of separated types.

 
(a) 

 

(b) 

Figure 5. Cont.
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Figure 5. Scatter plots of the rainfall thresholds and the fitted CRTs: (a) fitted curve for low to very
low mass movements in the Loja Basin (modified from [5]); (b–e) are fitted curves for the translational
slides, rock falls, complex landslides, and all the landslide types, respectively, in southern Granada.
Dash-dotted line: curve fit to lower values Rainfall-Duration; solid line: confidence bounds; dashed
line: prediction bounds. Red points are the manually selected points to fit the CRT curve.

5.2. Correlation Between Teleconnections and Accumulated Rainfall

The accumulated rainfall observed for the wet season October–April was extracted from the time
series and plotted together with the more significant short frequency climate indices in the study areas.
The visual information shows that, in general, the correlation between the wet seasonal rainfall with the
oscillation shown by the climatic-cycle indices is low (from 0.27 to 0.55, as absolute values). The rain
gauge of the La Argelia meteorological station was used for the Loja Basin, while for southern Granada,
the global average of all the rainfall gauges spatially distributed in the study area was calculated. In the
case of the Loja Basin, the positive and negative phases of the accumulated rainfall show numerous
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coincidences (in phase peaks) with the ENSO index (Figure 6a), and this is confirmed by the positive
correlation of 0.27 (Table 2). However, this pattern is not so clear at a monthly scale (Figure 6b). A strong
matching can be observed in the periods 1982–1984 and 1999–2000 when the highest rainfall peaks
were detected. With regard to the number of landslides, the highest spikes of this variable do not show
a clear matching with either the peaks of the ENSO index or the accumulated rainfall. For example,
the number of landslides (standardized from 0 to 4 in Figure 6a,b) registered from 2005 to 2010 are
equally distributed, independent of the positive and negative peaks of the ENSO index, whereas the
peak of the wet season 2007–2008 coincides with a relative maximum (high peak) of the climatic index.
On the contrary, the high number of landslides of December 2012 is correlated with a relative minimum
of the ENSO. Similarly, two peaks of the relative number of landslides catalogued in December 2012
and December 2014 coincide with two maximums of accumulated rainfall in the wet season. However,
the high rainfall peak of 2007–2008, coinciding with a positive peak of the ENSO index, shows a low
landslide count. In the case of southern Granada, the visual analysis shows many of the relative
minimums and maximums of NAO coinciding with the opposite phases of the variation of rainfall
(e.g., in yearly intervals from 1962–1964, 1968–1971, 1971–1973, 1991–1995, 1995–1997, and 2009–2011)
(Figure 6c), but there are also numerous peaks with the same phase, which explains the low correlation
coefficient (Table 4). The same relationship, although lower, is shown by the graphs with the WeMO
(Figure 6d). However, when the two phases of NAO and WeMO are added together, the correlation
with the accumulated rainfall reaches its highest value (Figure 6e), with a Pearson coefficient of –0.55.

Table 5 shows specific values for the hydrological years with well-documented landslides in the
zone of Granada. In this case, the two periods with the maximum number of landslides generated
during extremely humid seasons (1996–1997 and 2008–2009) fall within the amplitude of two significant
minimums (negative spikes) of the NAO and NAO +WeMO indices.

Table 4. Pearson coefficients for the correlation between the different climate indices and the
differences after subtracting the general trend from the observed accumulated rainfall for the wet
seasons October–April.

Geolocation Climate Index Pearson Coef.

Loja (southern Ecuador) ENSO 0.27

Granada (southern Spain)
NAO −0.44

WeMO −0.31
NAO +WeMO −0.55

 
(a) 

Figure 6. Cont.
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(b) 

(c) 

(d) 

(e)

Figure 6. Graph of the differences after subtracting the general trend from the accumulated rainfall
observed for the wet seasons October–April (dotted line) and the more significant climate indices
(solid line): (a) graph for the Loja Basin including the ENSO index; (b) graph for the Loja Basin
including the ENSO index for the monthly scale and the regression line of the ENSO index; (c) graph
southern Granada including the NAO index; (d) graph for southern Granada including the WeMO
index; (e) graph for southern Granada including the aggregation of NAO and WeMO indices. Triangles
represent the relative quantity of documented landslides by year.
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Thus, in general, low correlations were identified and a well-defined cause-effect link cannot
be determined. This fact can be attributed to one or both reasons: a) the limitation of the existing
data, such as incomplete landslide datasets, and b) the complex and changing patterns of the
climatic teleconnections.

Table 5. Magnitude of the negative spikes for the climate indices in southern Granada in hydrological
years with documented landslides.

Hydrological Year Index Values % Respect to Average of Negative Values

1995–1996
NAO −0.49 131.17

WeMO −1.15 266.82
NAO +WeMO −1.65 254.9

1996–1997
NAO −0.09 24.64

WeMO −0.69 159.56
NAO +WeMO −0.78 121.04

2008–2009
NAO −0.03 8.34

WeMO −0.42 96.33
NAO +WeMO −0.45 69.26

2009–2010
NAO −1.10 290.76

WeMO −0.84 193.66
NAO +WeMO −1.93 299.16

Average: NAO −0.38
WeMO −0.43

NAO +WeMO −0.65
1st quartile NAO −0.50

WeMO −0.61
NAO +WeMO −1.07

6. Conclusions

Despite the difficulties hampering progress and accurate results, this work is in line with the main
practices in landslide risk mitigation and reduction and provides a contribution to the knowledge
generation on landslide hazards. Specifically, this paper analyzes the relationship between landslide
development and the climate variability in two mountainous sites of southern Ecuador and southern
Spain. As a result, the information derived from this experimental research serves as a reference base
in the prevention of hydrological and climatological conditions that most likely lead to landslides
of different typology. In addition, a result comparison is depicted from the two areas with different
climate and geological settings.

In view of the comparative findings, it is clear that in the case of the humid climate of the Loja
Basin with thick layers of residual soils and meteorized rock, landslides occur with lower cumulative
rainfall. The average magnitude for the Loja case is in the order of 34% of the mean cumulative rainfall
in southern Granada. Similarly, the mean duration of the rainfall events that include the antecedent
rainfall until the date on which landslides are reported is slightly higher for Loja than the mean
duration in the case of southern Granada. This causes the higher recurrence of landslide events in the
Loja Basin, as reported in Soto et al. [27], and only 24% of the rainfall return periods exceeded 1 year.
On the contrary, Palenzuela et al. [13] stated that the return period of the first quartile of the catalogued
landslides did not exceeded 1.1 years. The extraction of the major rainfall characteristics (accumulated
rainfall and duration) related to the activation of landslides was used to estimate the CRTs for both cases.
After fitting the power law functions, it was revealed that for the Loja Basin, which has a predominance
of very low mass movements, the lowest minimum values are expected to activate/reactivate these
landslides when compared with those of southern Granada. This finding is probably related to the
wetter climate and greater number of rainy days, which favors a high saturation degree acting as a
predisposing factor. In the case of southern Granada, although a lower number of landslides was
catalogued, two of the types analyzed—rock fall and complex mass movements—showed maximum
statistical significance, while translational slides were weakly fitted due to the minimum number
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of catalogued events and their plotting dispersion. Under this relationship, the greater activation
values of cumulative rainfall were obtained for the case of translational slides with a smooth trend
corresponding with a low β value (β = 0.15). On the contrary, lower thresholds are attributed to rock
fall, complex landslides, and the global case, including every type of mass movement. This is probably
due to the shallower slip-planes and the low shear strength of the materials involved in rock falls and
complex slides (mainly shallow slides evolving to debris flow). The curve parametrization also shows
similar values in the cases of rock fall and complex landslides, although with higher α for the first
type. In addition, the accumulated rainfall for the wettest period for both study cases (October–April)
was calculated for all the hydrological years of the precipitation series. The general trend was then
subtracted to the new time series from both study areas to highlight their variability. Then, the major
climate indices were correlated with the remaining component. Although shorter or longer intervals
could be tried, this interval has been selected with the aim of getting insights of the correlation within
the more humid period from October to April, coinciding with the period when most of the landslides
were catalogued. The findings show a generalized low correlation, although with some matching
between the phases of the climatic oscillations and the accumulated rainfall, as well as with the number
of landslides. After analyzing the results for the time series of the Loja Basin, low correlation was
revealed. The ENSO index presents numerous hydrological years with in-phase coincidences between
accumulated rainfall and the ENSO index, but a significant number of cases do not follow this pattern,
which makes the degree of correlation decrease. More uncommonly, there are observations between
high rainfall peaks and the number of landslides that show a lack of events, or a nearly constant number
of them in years when the accumulated rainfall and/or the ENSO index are higher. For the series
of southern Granada, the independent correlations between te accumulated rainfall and the indices
of NAO and WeMO show negative coefficients. However, the strength of the correlation increases
with the combined NAO and WeMO indices, giving a Pearson coefficient of –0.55. This preliminary
information is important for hydrological risk management; however, there is low correlation between
large scale teleconnections and extreme rainfall that triggered landslides. The low correlation between
both variables is probably linked to the complex and non-persistent spatial-temporal patterns of all of
the climatic phenomena [29], which makes difficult to understand their history and the causes for their
recurrence and intensity. Thus, as stated in the literature [89–91] for the ENSO phenomenon, this fact
can generate differences in the phases and intensities at the global and local scales. Moreover, terrain
features make these patterns even more complex and less uniform in mountain ranges as rainfall cells
strongly depend largely on altitude, topographic barriers, and slope expositions [40]. Similarly, the lack
of landsliding events in the wet seasons when extreme rainfall was determined is probably due on the
one hand to the information biased in space and time. On the other hand, precipitation series cover the
dates of the landslide occurrences and antecedent periods and they are considerably long for calculating
rainfall frequencies and return periods. However, a longer sampled period for landsliding events
would be more suitable for the application of the statistical approach to evaluate this correlation [31],
providing more responses of positive (associated with landslides) and negative rainfall events. Thus,
the implementation of appropriate practices on landslide recording would improve drastically this
type the reliability and accuracy of this type of correlations. Additionally, the measurement of the
horary rainfall depth and the monitoring of the piezometric level are of significant importance as a
part of alert systems or prediction models at the scale of study-site cases.

In conclusion, a minimal correlation can be determined between climatic phenomena affecting a
significant part of global geography and the extreme rainfall-triggered landslides, but results have to
be considered as preliminary insights as more detailed information is necessary to accurately define
these patterns. The major inconvenience found in this research has been related to the scarce data on
landsliding that can be indirectly obtained. In the case of the Loja Basin, the number of landslides dated
was higher, but no detailed information could be gathered on the type, thickness, or volume and other
characteristics. On the contrary, in the case of southern Granada, the number of landslides collected was
lower, but some classes could be assigned to them. Thus, for the future advancements in landsliding
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hazard and prediction, systematic and appropriate practices to monitor both landslides and rainfall in
the spatial and time dimensions is highly recommended in the study areas. This can be developed
by implementing recently developed techniques like change detection analysis, or by exploiting the
high number of daily satellite images that are currently being recorded and applying automatic and
semi-automatic techniques. Nowadays, the integration of mobile and geospatial technologies and
paradigms such as Citizen Science (CitSci) and VGI (Volunteered Geographical Information) with the
automatic image processing through the implementation of AI (Artificial Intelligence) based models
appears as a power instrument to collect new environmental data [92]. Admittedly, to gain statistical
significance, an efficient plan for cataloguing and registering in situ data on the type, dimensions,
and geotechnical parameters of envisaged landslides is needed, as it is of major importance to calibrate
rainfall threshold curves. In addition, the application of time-series decomposition into trends and
periodicities (or oscillations) is recommendable to make progress in the prediction of extreme rainfall
recurrence. Currently, the modelling and prediction of time-series has been approached by using
new advanced data-based models such as soft-computing models or chaotic based models providing
the advantage for overcoming the problems of non-linear and non-stationary time-series [93,94].
Additionally, improvements on the accuracy of the prediction on rainfall patterns can be addressed by
applying novel precipitation models. However, where landslides have a high recurrence, like in the
case of the Loja Basin, forecast models integrating landslide thresholds with physical susceptibility
models (i.e., the Hydrological-Geotechnical model) will have an even more important role in the
mitigation of different type of landslides.
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Abstract: Forward logistic regression and conditional analysis have been compared to assess landslide
susceptibility across the whole territory of the Sicilian region (about 25,000 km2) using previously
existing data and a nested tiered approach. These approaches were aimed at singling out a statistical
correlation between the spatial distribution of landslides that have affected the Sicilian region in the
past, and a set of controlling factors: outcropping lithology, rainfall, landform classification, soil use,
and steepness. The landslide inventory used the proposal of building the models like the official
one obtained in the PAI (hydro geologic asset plan) project, amounting to more than 33,000 events.
The 11 types featured in PAI were grouped into 4 macro-typologies, depending on the inherent
conditions believed to generate various kinds of failures and their kinematic evolution. The study has
confirmed that it is possible to carry out a regional landslide susceptibility assessment based solely
on existing data (i.e., factor maps and the landslide archive), saving a considerable amount of time
and money. For scarp landslides, where the selected factors (steepness, landform classification, and
lithology) are more discriminate, models show excellent performance: areas under receiver operating
characteristic (ROC) (AUCs) average > 0.9, while hillslope landslide results are highly satisfactory
(average AUCs of about 0.8). The stochastic approach makes it possible to classify the Sicilian territory
depending on its propensity to landslides in order to identify those municipalities which are most
susceptible at this level of study, and are potentially worthy of more specific studies, as required by
European-level protocols.

Keywords: landslide susceptibility assessment; forward logistic regression; forward conditional
analysis; GIS; Sicily

1. Introduction

One of the most obvious effects of rapid territorial expansion in recent decades is the growing
impact that natural disasters have on man and his activities. Therefore, institutions are committed to
investing their resources in both the implementation of structural interventions to mitigate risk as well as
early warning systems, and in defining guidelines for land management and civil protection issues [1,2].
Landslides are among the major contributors to the dynamics of the morphological evolution of slopes
and occur when slope stability conditions change due to increased stress or decreased resistance along
a failure surface. A deformation occurring on a pre-existing failure surface is called re-activation,
whilst one along a new fracture plane is referred to as a neo-activation. International literature refers to
landslide susceptibility as the spatial probability for gravitational instability conditions within an area,
based on its physical-environmental conditions [3,4]. Therefore, depending on the spatial variability
of the physical-environmental features of the study area (typically, a river-basin or an administrative
territorial unit), a landslide susceptibility map allows the units into which it is subdivided to be
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differentiated, according to the higher or lower probability of a landslide occurring. Most approaches
and methods were designed to evaluate landslide susceptibility based on the identification and spatial
characterization of a set of control factors, and on quantifying the relationships between these and
an archive of past landslides. This concept is a reinterpretation of the actualism principle [5] from
a geomorphological point of view: the past and the present are the keys to the future [1,6–8]. This
principle suggests that the areas affected by landslides in the future will be those that share similar
characteristics to those already recorded in past landslides [7,8]. One of the first aspects to be faced in
planning research stages aiming to define a set of susceptibility conditions of an area is to establish the
scale and approach at which the analysis should be performed. Time- and economic resources-allowing
geostatistical approaches are often the most suitable for areas of hundreds or thousands of square
kilometers [4,9]. Landslide susceptibility assessment poses specific methodological issues when
performed for regional mapping purposes [2]. Indeed, within regional applications, overall forecasting
performance is seriously hindered by the lack of data required or the inaccuracy of these data: landslide
inventories and thematic maps of the controlling factors. Likewise, no matter what the resolution of
the processed data is, some basic issues in model building procedures, such as the modelling approach,
mapping units, landslide classification, and representation and validation strategies [1], need to be
optimized when applied to regional multi-scale assessment procedures. Thus, an expert European
landslide group has recently proposed some criteria for a multi-level method (TIER [10]) in order
to define shared approaches to landslide susceptibility mapping. Three susceptibility TIER levels
have been proposed and reference data and model building procedures have been recommended for
each one. The TIER approach is strictly dependent on the quality of the available data in landslide
inventories and on thematic maps, required for the whole European territory. This protocol consists
of three nested levels (TIER1, TIER2, and TIER3) with a gradually increasing degree of resolution
for the predictive models [10–13]. In a nested tiered approach, when the scale of work changes, the
resolution of the factors, the mapping units, as well as the complexity and the type of the techniques
used, may change too. The TIERS protocol features a high degree of objectivity and spatial and/or
time repeatability, which is why it represents an important safety benchmark for national and regional
administrations. For small-scale studies (smaller than 1:100,000), the methods recommended by the
Joint Research Centre (JRC research group) are those based on expert-driven approaches such as
conditional analysis, heuristics, and/or weighted factors. In this piece of research, we have had the
opportunity to verify and compare the use of the binary logistic regression (BLR) statistical technique
on extensive areas, in the range of tens of thousands of square kilometers, contrary to suggestions
by European Commission experts (Tier-based approach). We have then compared results with those
obtained through the conditional analysis (CA) approach and with those obtained by other authors
researching the same area [10,13,14]. Susceptibility scenarios described by the maps are also compared
and homogenized with those hazards arising from the PAI program [15], working towards a punctual
and detailed analysis of all possible discrepancies that may result. Further to validation, and once the
robustness of the scientific guidelines testing has been tested, the skills and the experience acquired
may be used as a basis for the drafting of a Sicilian municipality susceptibility map, a useful tool for
the policy-makers dealing with land management.

2. Study Area

The geological setting of Sicily (Figure 1) consists of three main structural elements [16,17]: a range
sector, running along the northern strip of the island, from the Peloritan Peaks to the Aegadian Islands,
where Triassic to Mesozoic structural–stratigraphic units, mainly characterized by carbonate (at the
base) to clayey (at the top) formations, tectonically overlap; a northwest-dipping foredeep area lying in
the mid-southern area of the Sicilian territory, consisting of Plio-Pleistocene pelagic marly limestones,
silty mudstones, and sandy clays overlying Messinian evaporites separated by the Sikan Peaks; the
Hyblean Plateau located in southeastern Sicily, made up of a Triassic-Liassic platform and scarp-basin
carbonates overlaid by Jurassic-Eocene pelagic carbonates and Tertiary open-shelf clastic deposits;
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southern and central Sicily feature Cretaceous-Lower Pleistocene clastic-terrigenous deposits and
Messinian evaporites [18].

 

Figure 1. Schematic structural map of Sicily [17]. (a) The three main geological structural elements of
Sicily; (b) distribution of the main stratigraphic–structural units.

The mechanical characteristics of outcropping lithotypes are among the main geo-environmental
factors directly influencing the geomorphological stability of Sicilian slopes. Slides and flows are
mainly located where the clay continental sequences outcrop. Hard block outcrops (metamorphic and
carbonate) are affected by falls, topples, and lateral spreading. The rainfall may cause denudation
slope actions able to generate, in the presence of debris on the metamorphic units, debris flows or
debris avalanches. The triggering factors which are most likely to influence the activation of landslides
in Sicily, are, in order: rainfall, human activity, volcanic eruptions, and earthquakes. Carbonatic rocks
outcropping in the foreland sector are almost exclusively affected by falls. Both the ductile clayey
formations and the weathered top coverage of the metamorphic units may experience rapid debris
avalanche/debris flow phenomena.

The geomorphological features of the island of Sicily have been crafted by the collision of the
Eurasian and African plates acting in synergy to shape the current landscape. The topography is directly
influenced by the stratigraphic structure of the area and by the surface uplifting and subduction that
occurred during the quaternary period, influenced heavily by significant eustatic sea level variations.
The changes to Sicily’s geology through the epochs have led to a mountainous and hilly terrain.

Furthermore, the influence of medieval human civilization is still apparent in the small Sicilian
urban centers. These historic centers are often surrounded by harsh terrain, where slopes with a
gradient of 50% or more can often be seen encompassing the centers, features which would have been
favorable to the population who first settled there when defending their land. This, however, leads to
limited space and opportunity for further urban development.

The flat areas of the island, a total of just 7% of the entire territory, are represented by the alluvial
plain of Catania, the coastal plain of Licata and Gela, the coastal area of Trapanese, and that between
Syracuse and Scicli, at the foot of the Monti Iblei.

From analysis of the rainfall data of the Sicilian stations, it is possible to highlight how the rainfall
is concentrated, especially in the October–March period, though it is somewhat appreciable in the
spring (April–May) and of little importance in the summer months. The maximum and minimum
values of average annual precipitation are respectively 919 mm in the Monreale station, in the province
of Palermo, and 510.6 mm in the Agrigento station. Frequently, at the highest peaks, there is snowfall,
of which there is no significant long-term data, due largely to the lack of a sufficient number of snow
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stations. A meteoric event of considerable importance in the northern mountain ranges, in particular
for the northern slopes of the Madonie due to the presence of fog, which, in addition to integrating
normal water supplies through condensation, performs a mitigating and compensating action for
extreme climatic events, limiting precipitation and keeping temperatures lower during periods of
summer water deficit, as well as decreasing the intensity of weather events harmful to plants, such as
late frosts. As regards the thermometric data, there is an inverse trend compared with that of rainfall,
as occurs throughout the Mediterranean region. There is, in fact, a gradual increase between March
and April, and a more marked increase from May to July–August—a period in which the absolute
maximum values are reached—beyond which the temperatures gradually decrease until October, and
then drop sharply until December and touch the minimum values in January–February which is the
coldest time of the year. The highest average annual temperature is 18.8 ◦C for the Cefalù (Palermo)
station, while the lowest, 13.3 ◦C, is recorded in Petralia Sottana (Palermo). The lowest average annual
minimum temperature value (9.3 ◦C) is recorded in the Petralia Sottana station, while the highest
annual average maximum temperature value (24.1 ◦C) in the Lentini (Siracusa) and Palermo stations
(Castelnuovo Institute).

3. Data Collection and Processing

3.1. Landslide Inventory

Landslides are natural events in the evolution of a slope. They are a problem and become a
hazard and/or risk when they interact with man and the man-made environment. Landslides can be
classified according to their movement types and the nature of the displaced material type, as well
as the state, distribution, and style of their activity [8,19–21]. As raised by [22], there is a conceptual
ambiguity concerning landslides stemming from the use of the very same term (i.e., landslide) for
both the landslide deposit (displacement volume) and the movement of material on a slope or a
pre-existing landslide body [20,23]. This is in addition to general confusion originating from the
variable and complex nature of the phenomenon itself [24], due to profoundly different morphological
characteristics, behavior, activity states, and their evolution. The construction of the landslide inventory
is a fundamental and critical step towards the application of statistical models designed to estimate
the probability of new activations affecting previously uninvestigated areas. A landslide inventory
commonly represents the sum of all the events that have occurred in an area. Alterations to a slope
profile, pointing to ongoing landslides, tend, over time, to become less evident because of erosion,
new landslides, human activity, and vegetation, making the “in landslide/not in landslide” border
hard to detect with the passage of time. Generally, “newer” phenomena generated by recent heavy
rainfall or earthquakes are more easily identifiable and interpretable than more remote ones, where
diagnostic elements begin to dissolve. Certainly, there is a critical issue concerning the updating of the
landslide inventory, as the public administration lacks economic and human resources. This shows,
even more clearly, the limitations of PAI methodology in mapping areas at risk, as it leads to a zoning
system, which is not closely related to all new activations. No systematic archive of slope instability
exists for the research area of this paper. The latest archive of slope failures is the one belonging to the
PAI project, which now holds 33,094 landslides (latest update May 2016) classified into 11 different
types. The landslides that were mapped within the PAI project affect an area of approximately 1300
square kilometers, approximately 5.1% of the size of the region (Table 1; Figure 2). The landslide
archive derives from a historical inventory and territorial analysis, completed with the execution of
inspections, which began in 2003. The archive is continuously updated by reports from the following:
literature and scientific publications; studies to support urban development projects in municipalities;
regional civil protection archives; and reports from local authorities to regional and national bodies
(Civil Protection, Territory and Environment Departments) of geomorphological phenomena that have
occurred (from 1998 to today).
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Figure 2. PAI landslide inventory. (a) Regional distribution of landslides; (b) detail of a portion of the
territory of landslides on the hillshade grid; (c) PAI landslides on orthophotos.

The PAI archive focuses more on urban and populated areas. In this piece of research, various
models were created to record landslides affecting scarps (scarp landslides; SCR_LSN) and landslides
lying over slopes (hillslope landslides; HILL_LSN).

3.2. Modelling Approach

A predictive model must represent the response of a natural system to the trigger conditions
described by its environmental features; the response may lie in the spatial distribution of new landslides
or in the so-called prediction image. The effectiveness of the model can be measured by comparing the
final expected results (the susceptibility map) with the actual results that are directly observed (the new
landslide map). When studying the natural environment, the use of models is essential, as they allow
for a simplification of the infinite natural variables, as well as operating within an acceptable processing
time with conventional computers. Thanks to a greater exchange of information, the development of
the hardware and software component for the acquisition and processing of data, and the interaction
between different research groups, the methods for assessing susceptibility from landslides have
evolved rapidly [3,4,24–27]. In the last decade, several applications have been carried out with the
aim of comparing results from different statistical approaches, as applied to the implementation of
models of landslide susceptibility on the same area, using the same landslide inventory and the same
control factors [28–31]. Although full agreement does not exist within the scientific community as
to what the best approach to follow is, the experience gained through our previous studies tells us
which statistical techniques may be adopted from among the many available (discriminant analysis,
conditional analysis, binary logistic regression, classification, and regression trees) and which one
leads to greater performance in terms of predictive fitting, and robustness [27,32–39].

3.3. Conditional Analysis (CA)

The CA statistical approach has been widely adopted in landslide susceptibility
assessment [24,26,33,40–44]. The CA concept is simple and easily manageable in a GIS environment.
That is why it is the single most recommended method when investigating the landslide susceptibility
conditions of larger areas and at scales greater than 1:100,000.
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The CA method is based on the concept that landslide density, computed on homogenous
domains, represents the relational function between the environmental variables and the framework of
a landslide area [2,26,45].

According to the CA concept, we must compute the density of cells in an unstable area for unique
condition units (UCUs), defined by overlapping and combining a set of selected control factors and
intersecting the UCU and landslide layers. From a statistical point of view, the landslide density
corresponds to the susceptibility value of an area in a landslide, linked to a particular combination of
control factors. Mathematically, this concept can be expressed as

P = δUCU(i) =
UCUunst(i)

UCU(i)
=

(
UCUunst(i)

UCUunst

)
∗
(

UCUunst
UCUall

)
(

UCU(i)
UCUall

) (1)

where probability (P) can be computed as the ratio between unstable (UCUunst) and total counts
(UCUall) of cells for the cells which have a value.

Landslide density is the relational function between the environmental conditions and the
landslides in a given area, meaning that a density ranking order corresponds to a scale of landslide
susceptibility [32,33,46].

3.4. Binary Logistic Regression (BLR)

One of the key points in determining the susceptibility conditions of an area with multivariate
statistical techniques is the selection of an appropriate number of factors that can justify the spatial
distribution of past and future forms of instability. In fact, many of these techniques provide an estimate
of the importance of each factor in relation to the others, or its specific contribution in generating a
particular type of landslide in the area under investigation. Many of these techniques rank, through
hierarchization, the contribution of each factor in determining the landslide-specificity of an area by
identifying the minimum and maximum number of factors needed, beyond which the performance
variation of the model may be defined as insignificant or even negative [47,48].

According to Hosmer and Lemeshow [49], the aim of an approach based on binary logistic
regression (BLR) is to enable the singling out of the best linear relationship between a dichotomous
dependent variable (such as 1 or 0 representing the “presence”/“absence” of landslides, respectively)
and a set of independent variables representing control geo-environmental factors. In the logistic
regression equation, the expected dependent variable f(x) may be expressed as

logit(x) = ln(odds) = ln
[

π

1− π
]
= α+ β1X1 + β2X2 + · · ·+ βpXp (2)

where logit(x) corresponds to a natural logarithm of odds [π/(1− π)], expressed as a ratio between
the likelihood of the presence of landslides (π) over the likelihood of their absence (1− π); α is the
intercept of the model; and β1, β2 up to βn are the coefficients, which measure the contribution of each
independent input variable [50–52].

In other words, the BLR allows us to estimate the contribution of each input variable using
its coefficient in the probability equation by adopting the maximum likelihood classifier concept.
Comparing the maximum likelihood computed for every β-value with each estimated error, the
significance of the coefficients is tested using the Wald test [31,49,53]. The probability of occurrence
can be estimated by multiplying the −2 log-likelihood ratio; thus, the negative log-likelihood (−2LL)
statistic is obtained, which has a chi-square (χ2) distribution. According to this approach, BLR is
executed through a stepwise procedure that allows the differentiation of only those predictor variables
with a significant impact on the performance of the multivariate model [36,54,55].

A problem arising when using BLR is that which is related to choosing the appropriate sample
size for an unstable area (positive cases) as opposed to stable ones (negative cases). Indeed, the number
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of positive cases is significantly lower than negative ones, thus generating an imbalance. Therefore,
it is one of the most important choices concerning the random selection technique likely to lead to a
balanced dataset of landslide and non-landslide pixels [56]. In this piece of research, the TANAGRA
open-source software was used to apply forward stepwise logistic regression [57].

3.5. Variables Selection and Factor Class Definition

Landslides are directly connected to the many environmental condition types, mainly depending
on slope morphology (slope angle, orientation slope, curvature, elevation, roughness, etc.) and other
intrinsic characteristics (lithology, soil use, tectonic condition, landform classification, etc.), while the
activation of new landslides depends on trigger factors, such as intensive rainfall or earthquakes [58–60].

All kinds of geo-environmental factors may be considered as potential predictive factors and
can be introduced into the analysis. All the factors should be drawn at a specific measurement for
classification (categorical, continuous). Acquiring each factor requires time and money. In addition,
we must also consider the computing time needed to process huge volumes of data. This is why only
those variables thought to be directly and/or indirectly capable of conditioning the established of a
slope, thanks to knowledge acquired from previous studies, may enter the analysis. The use and
reclassification of a limited number of factors also prevents the generation of a large number of not very
widespread mapping units and thus the overestimation of the density for untrained mapping units.

The CA method, requires preselecting the factors to be entered into the analysis, and then defining
the UCUs representing the mapping unit in this type of analysis. The univariate approach was followed
for each acquired variable and their density calculated for the different types of landslide analyzed
(scarp and hillslope landslide). The univariate approach was followed for each acquired variable and
their density calculated for the different types of landslide analyzed (scarp and hillslope landslide).
Univariate analysis allows to distinguish the significant from insignificant variables, and then combine
only those variables among them which are likely to be the most influential in the production of the
mapping units GRID layer. The following continuous and categorical variables have been acquired
and analyzed (Table 2).

Table 2. Geo-environmental factors and their spatial distribution.

Categorical Variables

Variable References Description Code
Percentage

Distribution (%)

Soil Use

(Corine Land
Cover project,

2006)

Continuous urban fabric USE_111 1.94
Discontinous urban fabric USE_112 2.42

Transitional areas USE_13 0.27
Green urban areas USE_14 0.06

Arable land USE_21 32.54
Permanent crops USE_22 21.61

Heterogeneous agricultural areas USE_23 14.97
Forest USE_31 7.79

Shrub and/or herbaceous
associations USE_32 17.31

Open spaces with little or no
vegetation USE_33 0.65

Water bodies USE_51 0.44
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Table 2. Cont.

Categorical Variables

Variable References Description Code
Percentage

Distribution (%)

Outcropping
lithology

Lithological
Complex

Continental clastic deposition
complex LITH_CDC 12.94

Phyllitic and metamorphic
complex LITH_PhMe 3.51

Sandy-calcarenitic complex LITH_SaCa 13.22
Evapotitic complex LITH_Ev 4.86

Conglomerate-sandstone LITH_CoSa 2.74
Clay complex LITH_Cl 34.13

Sandstone and clay LITH_SaCl 8.66
Carbonatic complex LITH_Ca 13.41

Volcanic complex LITH_Vo 6.53

Landform
classification

Landform
Classification
(Weiss, 2001)

Canyons LCL_CANY 7.51
Midslope drainage LCL_MDRG 2.27
Upland drainage LCL_UPDRN 2.32
U-shaped valleys LCL_USHP 2.92

Plains LCL_PLAINS 32.58
Open slopes LCL_OPEN 39.51
Upper slope LCL_UPPSL 2.80
Local ridge LCL_LOCRDG 0.00

Midslope ridge LCL_MRDG 2.00
Mountain tops LCL_MNTPS 8.07

Rainfall
(mm)

SIAS, 2015

0–450 RAIN_L 1.58
450–600 RAIN_M 63.32
600–800 RAIN_H 20.75
>800 RAIN_VH 14.34

Slope Angle
(Scarp

landslide)
Θ = TAN Δy/Δx

Canyons SLO_L 87.81
Midslope drainage SLO_M 10.72
Upland drainage SLO_H 1.47

Slope Angle
(Hillslope
landslide)

U-shaped valleys SLO_L 78.09
Plains SLO_M 15.28

Open slopes SLO_H 6.43
Upper slope SLO_VH 0.20

3.5.1. Continuous Variables

The 2-m ARTA-DEM was used and resampled to generate the digital elevation model (DEM).
Slope angle, slope aspect, and landform classification were calculated using the DEM.

• Slope angle (SLO) is usually considered as one of the main controlling factors in landslide
modelling. At first, SLO was classified into 5 natural break intervals [14], expressed in sexagesimal
degrees (0◦–5◦; 5◦–12◦; 12◦–18◦–18◦–32◦: > 32◦). The raster-file of the slope angle was obtained
by resampling the 2-meter resolution ARTA-DTM flight ATA (2007/2009) to 100 m per side. As
shown in Figure 3, the proposed reclassification for the slope angle for the hillslope landslide
does not reveal the theoretical concept for the slope increase, which corresponds to an increase
in the likelihood of landslides occurring. This does not happen with the scarp landslide, where
increasing the slope angle leads to an increase in the percentage of landslides.
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Figure 3. Univariate analysis for the continuous variables. Soil use. USE_111: continuous urban fabric;
USE_112: discontinuous urban fabric; USE_13: transitional areas; USE_14: green urban areas; USE_21:
arable land; USE_22: permanent crops; USE_23: heterogeneous agricultural areas; USE_31: USE_321:
shrub and/or herbaceous associations; USE_33: open spaces with little or no vegetation; USE_51:
water bodies. Landform classification. LCL_CANY: canyons; LCL_MDRG: midslope drainage;
LCL_UPDRN: upland drainage; LCL_USHP: U-shaped valleys; LCL_PLAINS: plains; LCL_OPEN:
open slopes; LCL_UPPSL: upper slope; LCL_LOCRDG: local ridge; LCL_MRDG: midslope ridge;
LCL_MNTPS: mountain tops. Rainfall (mm). PREC_L: 0–450; PREC_M: 450–600; PREC_H: 600–800;
PREC_VH: >800. Slope Angle (scarp landslide). SLO_L: 0◦–25◦; SLO_M: 25◦–35◦; SLO_H: >35◦; Slope

Angle (hillslope landslide). SLO_L: 0◦–15◦; SLO_M: 15◦–30◦; SLO_H: 30◦–45◦; SLO_VH: >45◦.

3.5.2. Category Variables

• Landform classification (LCL). Using an ArcMap open source tool, the LCL variable was derived
directly from the DEM. LCL provides a simple and repeatable method to classify the landscape
into slope position and landform category comparison. The different landform category classes
can be determined by classifying the combination of a small and large neighborhood topographic
position index (TPI) computed for each cell from different scales. The TPI is simply the difference
between a cell elevation value and the average elevation of the neighborhood around that cell.
Positive values mean the cell is higher than its surroundings, while negative values mean it is
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lower [61]. To compute the LCL, the small and the large neighborhood areas were set to 500 and
100 m, respectively. Ten landform classes were thus obtained (Table 2);

• Outcropping lithology (LITH). Together with the slope itself, the lithological conditions of an area
are the most important factors influencing the geomorphological processes on the slope. The
lithology controls the response of the slope in terms of the trigger-time of the collapse because of
rainfall or seismic forces and evolution of the process. The lithotypes cropping out in the map of
the Sicilian region were used in this research and grouped into 9 different “lithological complexes”,
according to their geotechnical characteristics. The output lithological complexes were named as
shown in Table 2. The clay complex is the most widespread one in the Sicilian territory, as it crops
out in almost 35% of the area (more than 50,000 hectares);

• Soil use (USE). In this test, we used a soil use map derived from the 1:100,000 Corine Land Cover
project (2006) based on a revised version of the Corine Land Cover 2000 dataset with the results of
Landsat 1988 and photointerpretation of aerial photos. Table 2 shows land cover characteristics in
11 different classes, for terrain units larger than 0.25 km2. The Corine 2006 map was converted
into a soil cover digital map provided by the Sicilian region, using the second level of the Corine
legend, except for the “urban areas” class, which has been divided into continuous (USE_111)
and discontinuous (USE_112) urban fabric, corresponding to level III of the Corine Land Cover
classification. Arable land (USE_21) covers more than 30% of the research area. Forest crops cover
about 7% of the area and mainly appear in the northeastern sectors. Areas covered by shrubby
and herbaceous vegetation associations are dispersed around the study area: they cover 17%.
Urban area cover is only 4.5%;

• Rainfall (RAIN). For rainfall, 280 rainfall stations were used to create the GRID rainfall map using
the inverse distance weighted method. The database from the Sicilian regional administration
office (http://www.osservatoriodelleacque.it) was used to extract the mean annual precipitation
(for the period 1921–2009). Regarding precipitation, Sicily can be divided into three main sectors
with three different pluviometric regimes: the northern sector: includes all the Tyrrhenian coast of
the island. Rainfall here is characterized by a rainy season (autumn–winter) and a dry spring
and summer. Eastern Sicily: in this area, rainfall is also greater in winter. Precipitation is often
concentrated into short spells and is sometimes very violent. This is because the precipitation
depression bearers come from Africa and are very hot and humid, favoring strong thermal
contrasts. Southern Sicily: includes all the area bordered by the Mediterranean Sea. As in the rest
of the island, winter is the rainy season. The number of rainy days is less than in the northern area
(<60 days per year). In some areas, rainfall is sparse, especially in the coastal zone. The areas with
the highest rainfall are the Madonie, Nebrodi, and Peloritani peaks, Etna, and the area south of
Palermo. The driest areas are the Plain of Catania and the southern coast, in particular, Gela city.

Generally, there are two reasons that lead us to choose the smallest possible number of
geo-environmental variables for the construction of the forecasting model, which allow the realization
of what is called the “best model” for a specific area, capable of providing an acceptable performance
forecast. On the one hand, achieving or obtaining each parameter requires spending a considerable
amount of time and money, on the other, a large number of environmental variables results in a large
number of possible combinations characterizing each of the territorial units chosen in an excessively
specific manner, as the basis for statistical analysis. A high number of combinations bring a progressive
decrease in the distribution of each combination class. The consequence is an unexpected decrease
in the performance of the susceptibility model caused by the inclusion of variables which are closely
related to a small number of cells, but poorly correlated to the global distribution of the remaining part,
thus affecting the choice of the most predictive variables. Even the selection of factors is an essential
step in landslide susceptibility assessment procedures, in which the nature of geomorphological criteria
takes priority.

An expert-driven univariate analysis procedure for the following 5 processing control variables
was carried out (Figure 3). Depending on the type of landslides, a maximum moderation criterion in
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the number of factors used is necessary to identify a first set of control factors that can be justified based
on morphodynamic models, defined as heuristic at first approximation, for the distribution of the
observed phenomena. Then, regression techniques may be applied to highlight the actual role played
by each of the geo-environmental variables considered. However, it is also common practice, and
recommended by applied statistics handbooks, to maintain certain diagnostic values of the variables
(i.e., slope), even when stepwise regression procedures have greatly reduced their influence. A type of
approach which, in a certain way, is the opposite of the analytical-geomorphological way, relying on
deterministic or physically based methods.

That is why, for example, for “Slope angle”, values were reclassified into 4 different classes (for
hillslope landslide) and 3 classes (landslide scarp). At this point, a new univariate analysis was carried
out and the results are shown in Figure 3.

4. Model-Building Strategy

The five reclassified geo-environmental variables were combined in unique conditions units
(UCUs) aiming to get all the possible combinations of the classes of the different factors in order to
assess the landslide susceptibility. The UCU layers were laid over with the landslide ones (SCR_LSN
and HILL_LSN, respectively). The landslide densities were computed for each UCU class combination,
as the ratio between landslide area counts and total pixel counts: according to Bayes’ theorem [26,45],
these values express the conditional probability of landslide occurrence, given a factor condition.
The variables were combined and a UCU layer was derived from these. The combination produced
a large number of combination classes (8355 for the HILL_LSN; 4173 for the SCR_LSN). The CA
method requires that the combination of output factors has total areas which are large enough to
guarantee the statistical significance of the “observed” sample. Table 3 shows the combination classes
of the most susceptible UCUs. The UCUs found to have the highest susceptibility values are those
characterized by predominantly consistent lithologies in SCR_LSN, (LITH_Ca), LCL_MNTPS (as
landform classification), and high and very high slope angle values. Though uncommon, these UCU
combinations have a susceptibility value of 100%. For hillslope landslides, clayey lithologies and open
space LCLs are the most widespread combinations capable of generating slope failures (Table 3).

Table 3. Most susceptible unique conditions units (UCUs) in the target area.

Most diffused UCUs for SCR_LSN

UCU Code Area (Ha) LCL LITH USE SLO RAIN δ

1502 2 LCL_MNTPS LITH_Ca USE_112 SLO_VH RAIN_VH 100.00%
1515 3 LCL_UPDRN LITH_Ca USE_23 SLO_VH RAIN_VH 100.00%
1204 8 LCL_USHP LITH_SaCa USE_13 SLO_H RAIN_H 100.00%
1517 3 LCL_MNTPS LITH_Ca USE_13 SLO_H RAIN_L 100.00%
1217 3 LCL_MNTPS LITH_Ca USE_13 SLO_VH RAIN_VH 100.00%
1001 2 LCL_UPDRN LITH_SaCa USE_13 SLO_H RAIN_VH 100.00%
4095 1 LCL_USHP LITH_CoSa USE_13 SLO_M RAIN_H 100.00%
1075 2 LCL_UPDRN LITH_Ca USE_13 SLO_VH RAIN_M 100.00%
3403 1 LCL_USHP LITH_Ca USE_13 SLO_VH RAIN_M 100.00%
3850 3 LCL_UPDRN LITH_CoSa USE_112 SLO_H RAIN_VH 100.00%

Most diffused UCUs for HILL_LSN

UCU Code Area (Ha) LCL LITH USE SLO RAIN δ

2778 14 LCL_OPEN LITH_CI USE_13 SLO_VH RAIN_VH 100.00%
3230 11 LCL_UPDRN LITH_CI USE_21 SLO_H RAIN_H 89.00%
2759 34 LCL_OPEN LITH_CI USE_21 SLO_L RAIN_M 62.00%
2777 17 LCL_OPEN LITH_CI USE_13 SLO_VH RAIN_M 57.00%
3370 13 LCL_UPDRN LITH_CI USE_32 SLO_VH RAIN_VH 36.00%
2711 45 LCL_OPEN LITH_CI USE_13 SLO_H RAIN_VH 31.00%
4376 14 LCL_OPEN LITH_SaCa USE_21 SLO_H RAIN_H 25.00%
2735 32 LCL_OPEN LITH_CI USE_13 SLO_M RAIN_L 24.00%
1272 14 LCL_UPDRN LITH_SaCa USE_21 SLO_M RAIN_VH 24.00%
3381 7 LCL_USHP LITH_CI USE_32 SLO_VH RAIN_VH 23.00%
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5. Results and Validation

Regardless of the statistical approach, models and susceptibility maps should always be validated
to test the forecasting performance of the proposed protocol. Generally, a statistical validation procedure
correlates the performance forecast (the expected landslides) that represents the space distribution of
the model created by using a part of the observed phenomena (training dataset) with the distribution
of a set of landslides which are not used in model-building (test dataset). This test dataset should
therefore be temporally or spatially different from the training dataset used for model building, but the
regional administration does not provide a systematic and continuous mapping of new landslides
which occur reasonably often and in all Italian regions and worldwide. Many validation approaches
have been presented in the last two decades in the relevant literature. In this paper, the random
partition strategy was used, based on the random partition of the slope failures in two balanced
populated training and test subsets to compare and estimate the robustness and reliability of the
susceptibility models proposed.

The models presented in this research were derived using the CA and BLR statistical approaches,
as the result of the average of 100 different replicas obtained by splitting the dependent variable, in
75% TRN_Subset and 25% TST_Subset randomly 100 times.

A reliable approach to test the performance of susceptibility models is the receiver operating
characteristic (ROC) curve, allowing the comparison of the predictive performance models. The ROC
curve is a plot of the probability expressing the sensitivity (TP rate) that represents the area classified
correctly as susceptible (x-axis) versus the 1-specificity (FP rate), representing the probability of false
prediction in response to an event for all the cutoff probability values (y-axis). ROC curve analysis
allows the differentiation between two classes of events: unstable and stable cells [62]. The quantitative
measure of model performance can be tested by computing the area under the curve (AUC) ranging
from 0 to 1 [63]. The closer the AUC values are to 1, the higher the predictive performance of the model
will be, while the closer the values are to 0.5 (random performance) the higher the inaccuracy of the
model will be [50,64,65]. A value equal to 1 denotes a perfect discrimination between positive and
negative cases. ROC curves were created for each of the two different statistical approaches (CA and
BLR). In Figure 4, the ROC curves for both CA and BLR models were drawn for the training and test
subsets with the aim of evaluating the model fitting for both approaches.

The BLR approach has been applied for forward stepwise selection independent predictive
variables [28]. As shown in Table 4, average results for the 100 different splits of dependent variables
in terms of SUCU. The model suite produced for SCR_LSN is characterized by a mean error rate of
0.17 (St.dev. 0.004) and AUC > 0.9 (outstanding). The graphs (Figure 4) show the average AUC values
are close to excellent for HILL_LSN (>0.77) according to Hosmer and Lemeshow [49].

For HILL_LSN, the mean error rate is higher (about 0.29) but still very stable (St. dev. 0.001): a
ranking of predictor variables derived from exploiting the forward stepwise statistical procedure.

Using BLR grid-cell-based models, the positive cases (unstable cells) are dramatically less than
the negative cases (stable cells) and a suite of 10 different models (both for SCR_LSN and HILL_LSN)
were prepared in order to estimate the model fitting, prediction skill, and robustness of the proposed
approach [22,28,30,36,66]. Each suite model is made up of a subset of the unstable/positive cells and
by an ever-changing subset which contains the stable/negative cells. The SCR_LSN grid-cell models
were prepared by merging 6674 positive cells (5% of the total area) with 10 different subset, randomly
selected negative 100 × 100 m cells. As for the HILL_LSN, suite models were created by merging
101,860 unstable cells (about 80% of the total area) and an equal number of stable cases. The negative
cases in the subset were randomly selected in order to prevent stable cells from overlapping.
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Figure 4. Receiver operating characteristic (ROC) curves: (a) conditional analysis (CA) for scarp
landslide (SCR_LSN); (b) CA for hillslope landslide (HILL_LSN); (c) binary logistic regression (BLR)
analysis for SCR_LSN; (d) BLR analysis for HILL_LSN.

Categorical variables were binarized and BLR was applied. Each model underwent the BLR
procedure 10 times. An open source statistical package (TANAGRA) was used to generate the
contingency tables (Table 4) and automatically extract the true positive (TP) and true negative (TN),
and single estimates of the sensitivity or hit rate (TP/(TP + FN)) and 1-specificity (FP/(TP + FN); [66–70].

For SCR_LSN, drawing from 18 predictors, 13 were always selected in all 100 model repeats
of the models. SLO, LCL_MNTPS, and USE_321 were systematically extracted as the first three
significant factors, and with positive coefficients. The regression coefficients, for each selected predictor,
were marked by conceptually coherent signs. A scan was easily imagined, and LCL_PLAINS and
LCL_OPEN had a negative coefficient instead (Table 5).
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Table 4. Contingency table for the 10-model suite. a for the SCR_LSN; b for HILL_SLN. TP = true
positives, TN = true negatives, FP = false positives, FN = false negatives.

(a)
TEST SUBSET-PREDICTION SKILL

PREDICTED YES PREDICTED NO RECALL FALL-OUT ERROR
RATE

AUC

YES NO YES NO YES
TP/oP

NO
TN/oN

YES
FP/pP

NO
FN/pN

M
O

D
E

L
S

1 13,648 2850 3011 13,861 0.819 0.829 0.173 0.178 0.176 0.916
2 13,672 2853 3008 13,837 0.820 0.829 0.173 0.179 0.176 0.916
3 13,849 2686 2831 14,004 0.830 0.839 0.162 0.168 0.165 0.921
4 13,802 2634 2878 14,056 0.827 0.842 0.160 0.170 0.165 0.923
5 13,686 2814 2994 13,876 0.821 0.831 0.171 0.177 0.174 0.917
6 13,735 2743 2945 13,947 0.823 0.836 0.166 0.174 0.170 0.919
7 13,732 2817 2948 13,873 0.823 0.831 0.170 0.175 0.173 0.917
8 13,794 2755 2896 13,935 0.826 0.835 0.166 0.172 0.169 0.918
9 13,790 2622 2890 14,068 0.827 0.843 0.160 0.170 0.165 0.923
10 13,781 2688 2902 14,002 0.826 0.839 0.163 0.172 0.168 0.917

ALL
13,748.9 2746.2 2930.3 13,945.9 0.824 0.835 0.166 0.174 0.170 0.919

65.1 86.2 60.9 83.6 0.004 0.005 0.005 0.004 0.004 0.003

(b)
TEST SUBSET-PREDICTION SKILL

PREDICTED YES PREDICTED NO RECALL FALL-OUT ERROR
RATE

AUC

YES NO YES NO YES
TP/oP

NO
TN/oN

YES
FP/pP

NO
FN/pN

M
O

D
E

L
S

1 206,596 100,179 48,054 154,471 0.811 0.607 0.327 0.237 0.291 0.776
2 206,596 100,179 48,054 154,471 0.811 0.607 0.327 0.237 0.291 0.775
3 207,100 100,614 47,550 154,036 0.813 0.605 0.327 0.236 0.291 0.776
4 206,960 101,894 47,550 154,036 0.813 0.602 0.330 0.236 0.293 0.772
5 206,275 99,734 48,375 154,916 0.810 0.608 0.326 0.238 0.291 0.776
6 206,665 100,608 47,659 153,889 0.813 0.605 0.327 0.236 0.291 0.766
7 206,991 100,761 47,659 153,889 0.813 0.604 0.327 0.236 0.291 0.775
8 206,455 99,808 48,195 154,842 0.811 0.608 0.326 0.237 0.291 0.775
9 206,755 101,015 47,895 153,635 0.812 0.603 0.328 0.238 0.292 0.773

10 206,880 101,576 47,770 153,074 0.812 0.601 0.329 0.238 0.293 0.775

ALL
206,727 100,636 47,876 154,125.9 0.811 0.604 0.327 0.237 0.292 0.774

259.0 710.5 285.3 562.8 0.001 0.002 0.001 0.001 0.001 0.003

The main significant controlling factors for SCR_LSN in the study area which showed a slope
angle for LCL_MNTPS was landform classification (positive coefficient), and LCL_PLAINS with a
negative coefficient.

On to the HILL_LSN, the predictors extracted by BLR, are more than those extracted for SCR
LSN, and above all, this slope angle variable does not appear to be as highly significant as may have
been imagined. This is probably due to the fact that the diagnostic areas used here (whole landslide
body area) are not so discriminant and able to determine the preparatory conditions for landslides.
Additionally, it may owe something to the reasonably large cell size. The PAI landslide inventory
is not characterized by high accuracy and some landslide typologies, like for “Areas with diffused
landslide”, do not allow a true discrimination of the geo-environmental variables which influence the
slope stability conditions. Among the variables, LCL PLAINS ranks as the first predictor extracted in
the analysis with a negative coefficient. Among all the variables, 20 were systematically extracted in all
100 different repeats, lithological conditions being those selected most frequently, and with a higher
weight. Among them, LITH_Ca is characterized by having a negative coefficient value (Table 6).
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Table 5. Factors analysis for SCR_LSN.

FACTORS ANALYSIS

SCR_LSN

Attribute Avg. (β) Avg. (Std-dev) Avg. Wald Avg. Signif Avg. OR Avg. RK n

SLO 0.111 0.003 1046.925 0.0000 1.118 1.0 100
LCL_MNTPS 0.822 0.084 95.372 0.0000 2.281 2.0 100

USE_321 0.977 0.070 195.690 0.0000 2.664 3.0 100
USE_111 2.237 0.207 116.737 0.0000 9.419 4.7 100

LCL_PLAINS −2.071 0.164 159.161 0.0000 0.127 5.1 100
LITH_Ca 0.624 0.091 53.558 0.0000 1.886 8.3 100
LITH_Ev 0.934 0.120 63.700 0.0000 2.596 8.5 100
USE_23 0.599 0.084 51.154 0.0000 1.827 9.4 100
USE_112 1.571 0.220 51.222 0.0000 4.901 9.7 100

LCL_OPEN −0.562 0.072 61.954 0.0000 0.570 10.0 100
LITH_SaCl −0.644 0.111 37.426 0.0062 0.531 10.1 100

LITH_PhMe −0.898 0.143 42.396 0.0002 0.413 10.3 100
LCL_USHP −0.743 0.178 18.055 0.0005 0.480 13.8 100
LITH_CDC 0.650 0.130 25.732 0.0003 1.947 12.0 97

USE_22 0.308 0.095 10.624 0.0024 1.362 15.2 52
LITH_Cl −0.028 0.106 5.054 0.2675 1.008 9.3 38

LITH_CoSa 0.576 0.179 10.373 0.0030 1.802 16.3 25
LITH_SaCa 0.329 0.156 7.230 0.1161 1.427 13.3 14

Table 6. Factors analysis for HILL_LSN.

FACTORS ANALYSIS

HILL_LSN

Attribute Avg. (β) Avg. (Std-dev) Avg. Wald Avg. Signif Avg. OR Avg. RK n

LCL_PLAINS −1.7649 0.0561 5788.5652 0.0050 0.1807 1.0 100
RAIN_H 0.0042 0.0001 3906.3562 0.0000 1.0042 2.0 100
LITH_Cl 4.2016 0.0893 2217.0432 0.0000 66.9131 3.0 100

LITH_SaCl 4.0756 0.0898 2062.8770 0.0000 58.9854 4.1 100
LITH_CoSa 4.3585 0.0930 2200.4857 0.0000 78.2727 4.9 100

LITH_Ev 4.0339 0.0927 1895.9701 0.0000 56.5819 6.0 100
LCL_MNTPS −0.5599 0.0548 775.7442 0.0334 0.6012 7.2 100

USE_22 −0.5557 0.0242 930.3611 0.0031 0.5768 8.0 100
USE_31 −0.7374 0.0296 930.1456 0.0000 0.4809 8.8 100

LITH_PhMe 3.6490 0.0927 1552.2501 0.0000 38.5212 10.4 100
LITH_CDC 3.6064 0.0919 1543.0805 0.0000 36.8982 11.4 100
LITH_Ca −3.3053 0.0903 1343.2796 0.0000 27.3051 12.4 100

LITH_SaCa 3.2414 0.0923 1234.5050 0.0000 25.6089 13.4 100
LCL_UPPSL −0.5569 0.0665 311.2864 0.0315 0.6040 14.4 100

USE_22 −0.6382 0.0565 133.4693 0.0000 1.9036 16.7 100
SLO 0.0130 0.0009 196.2342 0.0000 1.0130 16.8 100

LCL_USHP 0.4612 0.0612 171.5003 0.0001 1.6692 17.4 100
LCL_MRDG −0.3298 0.0699 106.7273 0.0154 0.7555 18.7 100

USE_51 −1.2700 0.1325 94.3962 0.0000 0.2827 20.1 100
USE_32 −0.1319 0.0225 85.1833 0.0019 0.8815 20.7 100
USE_14 −11.0917 79.2952 0.0235 0.8809 0.0000 22.9 94

LCL_CANY 0.3067 0.0563 114.4982 0.0005 1.4338 19.4 90
USE_33 −0.4630 0.1721 7.4578 0.0137 0.6318 12.3 47

USE_112 0.2241 0.0632 11.5918 0.0035 1.2653 23.0 43
USE_13 −0.3685 0.1254 8.7318 0.0044 0.6923 23.6 31
USE_21 0.0654 0.0419 10.9851 0.0024 1.0881 23.9 24

LSC_OPEN 0.2898 0.1851 63.6125 0.0693 1.5858 17.4 20
LCL_MDRG 0.2982 0.2121 25.2307 0.0123 1.6133 21.1 18

USE_23 0.3639 0.0903 15.6449 0.0003 1.4481 23.9 8
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6. Discussion

These analyses allow the generation of the susceptibility maps for SCR_LSN and HILL_LSN for
both CA and for BLR.

The GRID UCU layers were intersected with 100 different TRNsubset landslide layers (SCR_LSN
and HILL_SCR) and the mean density was calculated for each mapping unit. The susceptibility
model derived from the CA approach was obtained by assigning each UCU to its corresponding class,
according to its computed density. For each landslide type, the computed density corresponds to the
susceptibility function (SUCU) equivalent to the conditional probability of a new landslide, given the
selected predictive variables [44].

Although numerous studies on landslide susceptibility zoning have been published, no global
approach is yet shared by the scientific community to classify susceptibility maps. In the studies,
where the classification of territories in accordance with their level of landslide susceptibility is the aim,
it is appropriate to determine the optimal cutoff classification values which are capable of dividing
the mapping units mainly into two large domains: stable areas (susceptibility values are less than the
cutoff) to the left of the cutoff and unstable terrain (susceptibility greater than the cutoff) to the right
of the cutoff [66]. When statistical approaches such as CA and BLR are used, the statistical software
sets the significant cutoff (mcutoff) as equal to 0.5 by default [54,71–74] in order to correctly classify
the predicted stable or unstable cells. This research area is quite extensive (>25,000 km2), therefore,
it is useful to divide the territory into a few different classes, depending on the value of susceptibility,
and define some useful class range boundaries for the susceptibility (or density) index. The aim is to
be able to divide the entire Sicilian territory into four classes of susceptibility: very low, moderate,
high, and very high. To such an end, three cutoff values are required: the low cutoff (lcutoff), the central
cutoff (mcutoff), and the high cutoff (hcutoff). Operationally, the mcutoff is first identified graphically,
on the ROC curves, as the maximum value of the difference between the FP and TP rate. Subsequently,
with the same method, were identified the other limits of the classes for the areas to the right of the
mcuoff (high) and for the areas of the left of the mcuoff (low).

Table 7 shows the identification of mcutoff for the model obtained by following the CA for
SCR_LSN. The susceptibility maps based on both statistical approaches have been derived and with
test inventory subsets verified. Therefore, the maps presented in Figure 5 classify the Sicilian territory
with low, moderate, high and very high susceptibility values according to their degree of propensity to
instability and second cutoff probability values identified objectively.

Table 7. Cutoff range for (a) HILL_LSN and (b) SCR_LSN.

(a)

CA

Landslide Tipology

SCR_LSN HILL_LSN

Classes

Very Low 0–0.34 0–0.04
Moderate 0.34–2.5 0.04–0.07

High 2.5–12 0.07–0.16
Very High 0.78–1.00 0.16–1.00

(b)

BLR

Landslide Tipology

SCR_LSN HILL_LSN

Classes

Very Low 0–0.10 0–0.10
Moderate 0.1–0.15 0.1–0.28

High 0.15–0.48 0.28–0.48
Very High 0.48–1.00 0.48–1.00
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Figure 5. Susceptibility distribution for HILL_LSN using CA (a) and BLR analysis (b); susceptibility
distribution for SCR_LSN using CA (c) and BLR analysis (d).

The presented research is focused on verifying two main concepts: the first, to explore the
possibility of using existing data (landslide inventories, thematic maps of predictor variables) to create
regional landslide susceptibility models; the second, to verify the exploitability of CA, comparing it
with models based on BLR, in order to create landslide susceptibility models for areas and studies
bigger than 1:100,000.

When analyzing the maps presented in Figure 5, it is noteworthy that those created by BLR (b, d)
have a chromatic gradation indicating susceptibility conditions for Sicily which are generally higher
than those created by CA (a, c). Therefore, this remains an open question: Which statistical approach is
more representative of the conditions of susceptibility?

To answer this question, we analyzed the various sectors of the research area in detail and the
different maps were compared and analyzed (Figure 6).

In order to single out the targets in the present study, 75% of instability phenomena (training
subset) surveyed in the regional inventory of landslides, produced by the Environment and Territory
Department of the Sicilian region (ARTA) was used to create two different landslide susceptibility
maps: one based on the conditional analysis approach, and another on the binary logistic regression
approach. The slope failure archive was simplified into two main types based on expert judgment
of which preparatory variables they shared: the scarp landslide and hillslope landslide. The results
obtained by CA showed an outstanding predictive ability for models based on a small number of
predictive parameters combined in UCUs which were verified through spatial validation using a
test subset randomly extracted from the Sicilian regional landslide inventory that covers the entire
territory. ROC curve validation of the 100 different models showed the unquestionable excellence
and stability of the forecasting performance for both SCR_LSN and HILL_LSN. A quality control test
on four susceptibility maps was applied according to the degree of fit approach (DF) [24,27,73–75].
DF represents the percentage of an area subject to landslides for each range of classes of susceptibility
and is determined by cross-tabulation of the landslide test subset with the susceptibility class of maps.
DF can be expressed with the following formula:
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DF =
LSNi/Si∑

LSNi/Si
(3)

where LSN is the area occupied in the i-class of susceptibility and Si is the area of the i susceptibility
class [74,75].

Figure 6. Different classifications of susceptibility values for HILL_LSN (d,e,f) and SCR_LSN (a,b,c)
using BLR (a,d) and CA (b,e) reclassified. Figures (c) and (f) show the susceptibility values obtained
with the BLR technique and are shown with continuous values.

The percentage of area subject to landslides falling into the null or moderate susceptibility class
may be considered as a false negative error. The histograms shown in Figure 7 highlight an excellent
predictive ability of new landslides not seen in the construction of maps. The percentages of relative
accuracy are understood as the sum of the degrees of fit of the high and very high susceptibility
classes [27] and the value of R2 of the trend line confirms the goodness of the susceptibility performance
models created.
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Figure 7. Distribution of landslides by susceptibility classes.

The propensity of a territory to be affected by new landslides and the degree of hazard or risk that
characterizes it are usually expressed with the help of a map in which the area is divided into different
zones according to the different values that qualify it. In this mapping, the territory is zoned or divided
into homogeneous zones or user-defined fields/areas, the ranking of which is defined according to
their real or potential degree of landslide susceptibility [8].

From among the Italian regions, Sicily is one of areas most affected by geomorphological instability.
Landslide activity is a clear threat to the territory, facilities, and people present there. From this
point of view, each part of the territory is characterized by a landslide vulnerability value. Generally,
it depends on the territorial level of exposure to the threat, determined by the socio-economic value of
the assets as well as by their resistance to the stresses expected. Interaction between humans and the
natural environment is a very complex and diverse issue, not often approached in a systematic way,
as resources are primarily invested in risk-mitigating measures, while being severely limited when
it comes to the medium- and long-term research needed to understand the environment better and
more effectively. The current PAI archive version is highly dependent on the past instability scenario.
By looking at those that were counted and catalogued using a matrix system of evaluation, it is possible
to derive the conditions of the associated geomorphological risk. This last concept represents a big
step forward as it is now necessary to consider strongly the concept of landslide susceptibility which
would represent the adoption of a spatial analysis tool with predictive power. On this scale, output
cuts will be based on administrative boundaries (municipalities).

To meet this goal, the mean values of susceptibility (CA) and probability (BLR) were assigned to
each municipality of the Sicily region (the calculation was only performed for the 382 municipalities
included within the main island) in a GIS environment.

The output susceptibility values obtained by means of the two methods (CA and BLR) for the
municipal boundaries are represented as maps in Figure 8. The picture shows the susceptibility
maps relating to both conditional methods (a, b) and BLR (c, d) for the SCR_LSN and HILL_LSN
typologies, respectively. In particular, it is possible to observe that for the SCR_LSN types, maps (a, c)
are very different with regard to the distribution of the susceptibility values among the municipal
boundaries. On the other hand, the comparison between the maps concerning the HILL_LNS type
shows a convergence among the results and suitable differentiation for the urban units. Both statistical
approaches (CA and BLR) show higher susceptibility landslide values in the northeastern portion of
the island, in correspondence with the mountainous chains of Nebrodi and Peloritani in the province
of Messina.
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7. Final Remarks and Management Implications

The research results presented here have demonstrated the ability to leverage a set of existing
data already in the public administration to generate regional landslide susceptibility maps. A total of
100 performances executed for both the CA and BLR approaches have allowed susceptibility patterns
characterized by excellent performance to be obtained, with remarkable stability, robustness, and
reliability, even if CA generated more powerful models in terms of forecasted performance (AUC
curves). With the goal of creating, for the whole Sicilian territory, susceptibility maps that could be
useful for the purposes of effective land management and spatial urban planning, this study proposes
a reclassification method into four susceptibility map classes. The reclassified susceptibility maps,
determined by the identified cutoff boundaries, were validated quantitatively with the degree of fit
technique. Validations demonstrated the reliability of the maps created and the explorability of the
proposed protocol. However, some differences may be highlighted when comparing the final maps
generated with two different approaches. In fact, the maps generated with CA seem to better represent
the conditions leading to the failure of a territory than those created by BLR-generated ones. This is
more realistic for the SCR_LSN than for HILL_LSN. This is probably due to the fact that the BLR tries
to find a correlation equation between landslides and predictor training models, using a diagnostic
area (the entire area subject to landslides) not only representative of the trigger conditions, involving
areas only passively affected by the landslide and, in some cases generating an overestimation of the
susceptibility value.

Of the 382 of Sicilian municipalities examined, 244 (nearly 64%) were correctly classified as unstable
(i.e., prone to landslide instability) as they fall in the classes of high and/or very high susceptibility,
both for scarp and for hillslope landslides. We particularly want to highlight that susceptibility is
predicted as being very high in 90 of 108 municipalities in the province of Messina (more than 80%). The
municipalities featuring lower susceptibility values were those within the provinces of Syracuse and
Ragusa. This approach is based on the propensity for gravitational instability, unlike PAI, and allows
the concept of landslide density or density index to be overcome. Table 8 lists the top 10 municipalities
in order, compared to the size of an area that may be affected by new landslides in the future.

For each municipality surface area, the extension area has been reported, the density (D) which
corresponds to the landslide density for the current phenomena surveyed in the PAI and the P (or the
area which is located to the right of mcutoff) for each municipality, and finally, the difference between
the current framework of the landslide and that provided (Odd).

The table shows that the towns of Isola delle Femmine and Roccafiorita, which despite having a
higher SCR_LSN density (respectively 7.04% and 6.04%) are the last two municipalities in the table,
because of the difference, in terms of Odd, between the density and the future probability, which is
lower than that seen in the municipalities of San Vito Lo Capo and Frazzanò. Almost 4 km of new
territory in the municipality of San Vito Lo Capo, for example, could be affected by new SCR_LSN
activations in the future. Similarly, we can say that linked to HILL_LSN, the territory of Alcara Li Fusi
is the Sicilian municipality with the highest HILL_LSN density value, but the municipalities of Ficarra
(with 8 km2) and Sinagra (with 6.54 km2), both in the province of Messina, will be most affected by
new activations of hillslope landslides.

The large and widespread use of known geostatistical methods has gone through at least three
decades of landslide hazard studies, but still does not eliminate some of the conceptual and operational
bottlenecks, only sporadically resulting in the safety enforcement schemes by the authorities involved
in studying landslide risk in Italy.
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Table 8. The top 10 municipalities ordered according to the size of the area that may be affected by new
landslides in the future ((a) SCR_LSN in Table; (b) HILL_LSN).

(a) Munipality
Area
(km2)

P D odd km2

SAN VITO LO CAPO 3.6 4.42% 1.98% 2.44% 3.91
FRAZZANO’ 1.2 5.90% 3.02% 2.88% 1.46

GIARDINELLO 50.8 5.76% 2.33% 3.42% 0.89
ISNELLO 6.9 6.76% 3.70% 3.05% 0.82

TORRETTA 26.0 4.28% 1.61% 2.67% 0.69
SAN MARCO D’ALUNZIO 12.8 5.85% 2.58% 3.27% 0.23

BORGETTO 26.0 5.12% 2.97% 2.16% 0.14
CINISI 33.0 4.81% 2.57% 2.24% 0.14

ISOLA DELLE FEMMINE 60.2 10.70% 7.04% 3.66% 0.13
ROCCAFIORITA 25.5 9.49% 6.04% 3.45% 0.04

(b) Munipality
Area
(km2)

P D odd km2

FICARRA 215.6 88.85% 3.72% 85.13% 8.03
SINAGRA 70.0 93.26% 9.34% 83.91% 6.54

ALCARA LI FUSI 31.1 91.98% 16.74% 75.24% 5.21
CASTELL’UMBERTO 30.2 92.05% 7.31% 84.74% 2.21

SAN PIERO PATTI 14.4 89.30% 9.77% 79.52% 1.40
MONTAGNAREALE 11.4 89.73% 11.07% 78.66% 1.26

RACCUJA 15.8 88.78% 5.60% 83.19% 0.88
UCRIA 26.1 94.39% 3.14% 91.25% 0.82

SANT’ANGELO DI BROLO 18.5 89.90% 4.34% 85.56% 0.80
TORTORICI 23.9 89.21% 2.76% 86.46% 0.66

Since economic problems, which are common to all countries, do not allow either investment in
research projects on a medium- and long-term scale, the concept of landslide susceptibility should
represent, for all political and administrative actors dealing with environmental and territorial policies,
a new approach to the problem associated with mass movements. For this reason, the scientific
community is engaged in a continuous search for methods and techniques to estimate the degree of
real and potential instability, using the minimum amount of equipment, data, and economic resources
possible. Generally, substantial difficulty exists in identifying the most reliable procedures, allowing
this matter to be approached in a non-traditional manner based on modelling and investigative
techniques built on the exchange of experiences between experts, studies, and experiments on every
continent, and showing different strategies and possible technical combinations, depending on the
type and/or the number and complexity of the investigation, producing susceptibility, hazard, and risk
maps, used as the basis for decision-making processes in land management. In this framework, further
effort is needed in trying to make the different methods more objective and shared by all, in order to be
simple and repeatable and, most of all, in transferring the knowledge gained to laws that underpin
territorial planning, building regulations, and in civil defense plans [22].

Over the decades, many research groups and national and international commissions have tried to
provide precise definitions, in order to generate maps indicating the different urban planning vocation
of an area. For this reason, the scientific community is engaged in a continuous search for methods
and techniques to estimate the degree of real and potential instability, using the minimum amount of
equipment and possible economic resources.
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Abstract: The aim of this study was to estimate evapotranspiration (ET) using remote sensing and
the Surface Energy Balance Algorithm for Land (SEBAL) in the Ilam province, Iran. Landsat 8
satellite images were used to calculate ET during the cultivation and harvesting of wheat crops.
The evaluation using SEBAL, along with the FAO-Penman–Monteith method, showed that SEBAL
has a sufficient accuracy for estimating ET. The values of the Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), Mean Bias Error (MBE), and correlation coefficient were 0.466,
2.9%, 0.222 mm/day, and 0.97, respectively. Satellite images showed that rainfall, except for the last
month of cultivation, provided the necessary water requirements and there was no requirement
for the use of other water resources for irrigation, with the exception of late May and early June.
The maximum ET on the Ein Khosh Plain occurred in March. The irrigation requirements showed
that the Ein Khosh Plain in March, which witnessed the highest ET, did not experience any deficiency
of rainfall that month. However, during April and May, with maxima of 50 and 70 mm, respectively,
water was needed for irrigation. During the plant growth periods, the greatest and least amount of
water required were 231.23 and 19.47 mm/hr, respectively.

Keywords: Evapotranspiration; water requirement; remote sensing; SEBAL; Landsat 8

1. Introduction

Agriculture is one of the largest draws of freshwater resources. Because of the limited water
availability, agricultural sectors have been forced to increase their efficiency. One way to improve water
use management and increase the efficiency is to estimate the amount of water consumed by plants
and the amount involved in evapotranspiration (ET) [1]. Knowledge of ET is important for modeling
hydrologic fluxes and for proper water resource management. Spatial and temporal information on ET
not only quantifies water loss caused by evaporation, but also provides information on the relationship
between land use, water allocation, and water use [2].

In addition, an optimal use of water resources will save water during times when irrigation,
for instance, is not needed. Reducing the use of water in times when it is not required will not only
preserve water, but will also lower the soil water content and pore pressure. This, in turn, will improve
the stability of the soil and make it more resistant to landslides or other soil instabilities.
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In most parts of the world, post-rainfall ET is the second most important element of the water
cycle, so an accurate estimation at the regional scale is essential to developing appropriate management
strategies [3]. Due to the limited number of meteorological stations and the high cost of data collection,
satellite data is often used to provide near real-time information on meteorological and environmental
parameters. An important advantage of using remote sensing to aid water consumption is that ET
can be measured without the need to quantify other complex hydrological processes [4]. The Surface
Energy Balance Algorithm for Land (SEBAL) algorithm is one remote sensing algorithm that calculates
the actual ET based on an instantaneous energy balance at the surface of each pixel from a satellite
image. This technique has been applied in many countries with success [2]. Until now, different
methods and sensors have been used to estimate ET at regional and even global scales. The choice
of method and type of sensor depend on the amount of data required, access to the sensor images,
the size of the study area, and the objectives of the study.

Allen and Tasumi [5] estimated ET using SEBAL and Landsat satellite images in the Bear River
Basin, USA. They prepared monthly ET maps and provided the ET spatial distribution. Lysimetric
ground measurements were used to validate the SEBAL model data. Bastiaanssen et al. [2] estimated
ET using remote sensing and the SEBAL algorithm to study water storage plans in the Yakima basin in
Washington. The results show that the annual ET accuracy of a large basin is ~95%. Additionally, an 85%
accuracy was reported on a field scale and a ~95% accuracy was reported for seasonal estimations.

Kimura et al. [6] estimated the ET in the Loess Plateau of China using satellite images and the
SEBAL method. They provided comparisons of models and direct measurements. James et al. [7] and
Jiang et al. [8] used satellite information to detect crop uniformity, vegetation percentages, and water
stress and to manage irrigation systems in India, Pakistan, Sri Lanka, Argentina, and Iran. The results
showed that for 85% of the cases, the parameters estimated from remote sensing corresponded to field
measurements. Kosa [9] studied the effect of temperature on the actual ET based on Landsat satellite
imagery. The results show that the relationship between the temperature and actual evapotranspiration
is in the format of the polynomial equation and that this relationship can be used to estimate actual
evapotranspiration when the temperature is not known.

Merlin et al. [10] pointed to the importance of ET for estimating water in the soil, flood forecasting,
and rainfall and predicting changes in heat waves and drought. Senay et al. [11] estimated ET using
Landsat 8 satellite images through remote sensing in the Colorado River Basin. The results showed that
there were 12% and 1.3% differences between estimated and measured values for 20-day and monthly
periods, respectively. Zamani Losgedaragh and Rahimzadegan [12] evaluated SEBAL, Surface Energy
Balance System (SEBS), and METRIC models for estimating evaporation from a freshwater lake in Iran.
The results show the SEBAL inefficiency and the proper performance of SEBS and METRIC models for
estimating evaporation from the selected water body in comparison with evaporation pan data.

Elkatoury et al. [13] evaluated and compared SEBS models for estimating regional ET in Saudi
Arabia. They showed that the monthly ET results measured and calculated by SEBS models were
highly correlated and consistent. Faridatul et al. [14] improved remote sensing-based ET modeling in a
heterogeneous urban environment. An improved surface energy balance algorithm for urban areas
(uSEBAL) was proposed to make it suitable for estimating ET in urban environments. Finally, the
results were compared with the SEBAL algorithm. Jaafar and Ahmad [15] derived a novel time-series
of field-scale actual ET for the Bekaa Valley in Lebanon using two one-source energy balance models,
utilizing local weather data and all available original Level 1 Landsat thermal imagery and Level 2
surface reflectance products. The annual analysis showed no discernable trend in ET across the valley,
but there was an increase in irrigated agriculture in the Orontes Basin in the last five years.

Regarding the previous studies, ET estimates need to be evaluated and verified for each agricultural
product and environmental condition. Moreover, little research has been carried out in the field on
satellite estimates of ET for wheat crops, which is one of the most important agricultural products
of Iran. Therefore, this study aims to evaluate the efficiency of the SEBAL method using Landsat 8
satellite images (with an average spatial resolution) and vegetation indices. The main objectives of this
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study are (1) to evaluate spatial images of the SEBAL performance in actual ET validation estimation,
(2) to evaluate the water requirements for the Ein Khosh Plain, and (3) to discuss the water required for
irrigating the Ein Khosh Plain.

2. Materials and Methods

2.1. Study Area

As previously mentioned, the area focused on in this study is that of the Ein Khosh Plain. This is
part of the Plain lands of Dehloran city in the Ilam province in western Iran. Its area is approximately
34,500 hectares and is 90 km from Dehloran city. The latitude of the region extends from 47◦33′ to
47◦49′ east longitude and 32◦11′ to 30◦25′ north latitude. This area has the longest common border
between Iran and Iraq. The average height of the area is about 137 m above sea level and the average
annual temperature is 25.6 ◦C. The average annual rainfall is 271.5 mm, and the wet season peaks in
December and January. The dry period of the region is from approximately 1 April to 1 November.
A map showing the region and its location in Iran and the Middle East is provided in Figure 1.

Figure 1. Map showing the location of the study area—Khosh Plain in the Ilam province of Iran.

2.2. Satellite Images

Remote sensing data obtained by satellites have the advantage of being able to provide
simultaneous information over a large area. In this study, Landsat 8 satellite images processed
with 11 bands were used to estimate the actual ET rate [16]. The 11 bands of the Landsat 8 satellite are
listed in Table 1, along with wavelength and spatial resolution.

2.3. Calculation of Solar Radiation and ET

The Surface Energy Balance Algorithm for Land (SEBAL) was used to estimate the ET [17].
A conceptual schematic of SEBAL is presented in Figure 2.

Remote sensing was used to determine surface temperatures, estimates of net radiation (Rn),
soil heat (G), latent heat (λET) fluxes, and sensible heat (H) in units of W/m2. The latent heat flux
(λET) represents the rate of heat loss from the surface due to ET, which was calculated for each pixel
according to Equation (1):

λET = Rn −G−H (1)
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Table 1. Landsat 8 satellite characteristics [16].

Landsat 8
Operational Land
Imager (OLI) and
Thermal Infrared

Sensor (TIRS)

Bands Wavelength (μm) Spatial Resolution (m)

Band 1 – Coastal aerosol 0.43 – 0.45 30
Band 2 - Blue 0.45 – 0.51 30

Band 3 - Green 0.53 – 0.59 30
Band 4 - Red 0.64 – 0.67 30

Band 5 – Near Infrared (NIR) 0.85 – 0.88 30
Band 6 –SWIR 1 1.57 – 1.65 30
Band 7 – SWIR 2 2.11 – 2.29 30

Band 8 - Panchromatic 0.50 – 0.68 15
Band 9 - Cirrus 1.36 – 1.38 30

Band 10 - Thermal Infrared (TIRS) 1 10.60 – 11.19 100
Band 11 – Thermal Infrared (TIRS) 2 11.50 – 12.51 100

 

Figure 2. Principal components of the Surface Energy Balance Algorithm for Land (SEBAL) model [17].

Net radiation (Rn) is the difference between the incoming and outgoing radiative fluxes and was
calculated as shown in Equation (2).

Rn = (1− α)Rs↓ + RL↓ −RL↑ − (1− ε0)RL↓ (2)

where Rs↓ is the incoming short wavelength radiation flux, RL↓ is the incoming long wavelength radiative
flux, RL↑ represents the outgoing long wave length radiative flux, α represents the surface albedo, and
ε0 is the surface emissivity. These radiant fluxes were calculated as shown in Equations (3)–(5):

Rs↓ = Gsc. cosθ.r.τsw (3)

RL↑ = εo.σ.T4
s , (4)

RL↓ = εα.σ.T4
α. (5)

Here, Gsc is the solar constant (1367 W/m2), cosθ is the cosine of the solar incidence angle, r is
the Earth–Sun distance, and τsw is the atmospheric transmissivity. Values for Rs↓ can range from 200
to 1000 W·m−2, depending on the time and location of the image and on local weather conditions.
The symbol σ is the Stefan–Boltzmann constant (5.67 × 10−8 W·m−2·K−4), Ts is the surface temperature
(K), εa is the atmospheric emissivity, and Ta is the atmospheric temperature (K). The following empirical
equation for εa was applied using data from alfalfa fields in Idaho [18]:

εa = 0.85× (−Lnτsw)
0.09. (6)

Here, τsw is the atmospheric transmissivity calculated assuming clear sky and relatively dry
conditions. It was calculated using the elevation-based relationship of Allen et al. [19]. The soil heating
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(G) is the rate of heat storage in the soil and vegetation due to conduction. The ratio of G/Rn was
computed using the following empirical equation [20]:

G/Rn =
TS
α
(0.0038α+ 0.007α2)(1− 0.98NDVI4), (7)

where Ts is the surface temperature (◦C), α is the surface albedo, and NDVI is the normalized difference
in vegetation indices between −1 and +1. Values between 0 and ~0.2 correspond to bare soil or very
sparse vegetation, and NDVI > 0.2 for vegetated regions. If the NDVI value is less than zero, the surface
is assumed to be water and G/Rn = 0.5. For areas where Ts < 4 ◦C and α > 0.45, it is assumed to be
snow-covered and G/Rn = 0.5 (Allen et al. [21]). NDVI was calculated from Equation (8):

NDVI =
R′ −R
R′ + R

, (8)

where R is the reflectance in the red band and R′ is the reflectance in the near infrared band [20].
The sensible heat flux (H) is the rate of heat loss to the air by convection and conduction (Morse et al. [22]).
It was obtained from Equation (9):

H =
ρ.CP.(Ts − Tr)

ra
. (9)

Here, ρ is the air density (kg/m3), Cp is the specific heat of the air at a constant pressure
(1004 J·kg−1·K−1), Ts is the surface temperature (K), Tr is the air temperature at a reference level (K),
and ra is the aerodynamic resistance to heat transport (s/m) (Allen et al. [19]). The term ra was computed
using Equation (10):

ra = 1/(CH |V|), (10)

where CH is the convective heat transfer coefficient and V is the wind speed at the reference level
(Tasumi et al. [23]). The term ETinst (instantaneous value of ET) (J/kg) is the ratio of λET to λ (the latent
heat of vaporization) (J/kg) (Equation (11)):

ETinst = 3600
λET
λ

. (11)

Here, 3600 converts seconds to hours and λ is obtained according to Equation (12):

λ = 2.501− (Ta − 273) × 0.002361, (12)

where Ta is the atmospheric temperature (K). The ET24 (actual daily ET estimation) (mm/day) is more
applicable than ETinst. SEBAL calculates ET24 assuming that the ETrF is a 24-hour average (fixed over
24 h), according to

ET24 = ETrF× ETr−24. (13)

Here, ETr −24 is the 24-h ETr for the day on which the image was captured; it is calculated as the
sum of the hourly ETr values for that day (Allen et al. [19]). A reference value of ET (ET0) could be
obtained by using the FAO-Penman–Monteith method (Equation (14)):

ET0 =
Δ(Rn −G) + ρCP(ea − ed)/ra

Δ + γ(1 + rc/ra)
, (14)

where Δ represents the slope of the saturation vapor pressure curve (1/kPa), ρ is the atmospheric
density (kg/m3), CP is the specific heat of the air (kJ/g◦C), ea–ed represents the water vapor pressure
deficiency (kPa), and the terms rc and ra are the (bulk) surface and aerodynamic resistances (s/m) and γ
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psychometric constants (0.665 × 10−3 Pa) (Allen et al. [24]). The actual annual ET (Equation (16)) was
calculated using daily ET data (Equation (15)) as follows:

ETperiodi =
ETai

EToi

I∑
J=k

EToj , (15)

ETannual =
∑

ETperiodi . (16)

Here, ETai is the actual ET obtained from the images on the same day of the image being taken
(ith day of the year) (mm), EToi is the reference ET from the FAO-Penman–Monteith equation (also for
the ith day of the year) (mm), EToj, is the ET related to the number of days in the period of image i
that varies from the kth to the lth day of the year, and j represents the number of days. The last term,
ETannual, is the actual annual ET obtained from the sum of the ETperiodi (mm).

To calculate the annual ET, Landsat 8 satellite images were used during cropping and harvesting
times and in clear sky conditions. Wheat is planted in autumn (late November) in the Ein Khosh Plain.
The crop harvest occurs at the end of June. Images for this time range were obtained and ENVI-4.2
software was used to process and prepare those images for the SEBAL algorithm. In addition, REF-ET
was used to calculate the reference ET. The dates of the images are presented in Table 2.

Table 2. Dates of the images used in the present study.

Satellite Date of Pictures (AD)

Landsat 8 11-12-2014
Landsat 8 10-1-2015
Landsat 8 29-2-2015
Landsat 8 27-3-2015
Landsat 8 20-4-2015
Landsat 8 17-5-2015
Landsat 8 04-6-2015

The statistical criteria of the Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), and correlation coefficient (R2) were used to evaluate the model.
These metrics were calculated as follows:

MBE =
1
N

N∑
i=1

(Oi − Pi) (17)

RMSE =

√√√√√ N∑
i=1

(Oi − Pi)
2

N
(18)

MAPE =

⎡⎢⎢⎢⎢⎢⎣ 1
N

N∑
i=1

∣∣∣∣∣Oi − Pi
Oi

∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎦× 100 (19)

Here, Oi represents the observed values of the FAO-Penman–Monteith equation as the standard
model; Pi represents the estimated values from the SEBAL algorithm; and Oi and Pi are the mean
values from the FAO Penman–Monteith model and SEBAL, respectively.

3. Results and Discussions

3.1. The Net Radiation (Rn), Soil Heat (G), and Sensible Heat (H) Fluxes

Figure 3 shows the net radiation (Rn), soil heat (G), and sensible heat (H) fluxes for the Ein Khosh
Plain. According to the map and the Rn values, the maximum radiation occurs in areas of vegetation
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growth and minimum values occur in areas without vegetation. Additionally, it was observed that the
values of G in vegetated areas were in the range of 0.05 to 0.15, which is the rate of conduction heat
transfer within the soil. The sensible heat results are also plotted in Figure 3.

Figure 3. Net radiation (Rn), soil heat (G), and sensible heat (H) fluxes for the Ein Khosh Plain.

3.2. Evaluation of SEBAL’s Performance in Actual ET Validation Estimation

After estimating Rn, G, and H, it was possible to determine the daily ET rates and the results could
be compared with calculations using the FAO-Penman–Monteith equation as the reference method.
The nearest station with daily and hourly data is located at 32◦ 15′ north and 48◦ 24′ east. Using 3-h
station data, the daily ET was calculated and the water requirements were obtained during the growth
period. The ET rates obtained from the FAO-Penman–Monteith and SEBAL methods are presented in
Table 3. Furthermore, Figure 4 shows a comparison of the actual ET values calculated by SEBAL with
the FAO-Penman–Monteith model values.

Table 3. Evaluation of evapotranspiration (ET) of FAO-Penman–Monteith and SEBAL methods.

Date of Pictures (AD)
FAO-Penman-Monteith SEBAL

ET0 (mm/day) ET0 (mm/day)

11-12-2014 3.87 3.51
10-01-2015 4.21 4.53
29-02-2015 4.89 5.01
27-03-2015 5.73 5.16
20-04-2015 8.22 8.44
17-05-2015 9.54 8.98
04-06-2015 9.51 8.74

 

Figure 4. Comparison of the actual ET values calculated using SEBAL with the FAO-Penman–
Monteith method.
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As is shown in Table 3 and Figure 4, the values of RMSE, MAPE, and MBE were 0.466, 2.9%, and
0.222 mm/day, respectively, with a correlation coefficient of 0.97, indicating that SEBAL’s accuracy is
sufficient for estimating the actual ET. It can be seen that remote sensing is an efficient and effective
way to estimate ET on large scales, especially in areas where meteorological data is not available.
The actual daily ET rates in the Ein Khosh Plain for different months are shown in Figure 5.

 

 

Figure 5. Actual daily ET rate in the Ein Khosh Plain during different months.

Figure 6 shows the actual annual ET in the Ein Khosh Plain. It can be observed that the maximum
annual ET occurs in areas with a high density of vegetation.
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Figure 6. Actual annual ET in the Ein Khosh Plain (mm/year).

3.3. Estimation of the Water Requirement for the Ein Khosh Plain

In order to estimate the water requirement of the Ein Khosh Plain, the study areas were classified
into three categories: cultivated, not cultivated/fallow, and rangeland/wasteland. Images were classified
using an object-oriented method and eCognation software was employed. Each image was classified
within the software based on a threshold value. Image segmentation was performed in order to
subdivide the overall image into multiple non-overlapping parts (Zoleikani et al. [25]). An example
outcome of this process is provided in Figure 7.

Figure 7. Classified image of the Ein Khosh Plain (28 May).

The area of each category of the Ein Khosh Plain is presented in Table 4.

Table 4. Area of use for the Ein Khosh Plain.

Plain Uses Area (km2) Average Actual Annual ET

Ein Khosh
Rangeland and wasteland 239.99 75

Cultivated 62.89 121
Not cultivated 60.23 113

The evaluation of ET in the Ein Khosh Plain shows that the 121 mm average ET is related to
agricultural lands. The total area of the plain is 363.11 km2. Taking into account the area of the Ein
Khosh Plain and the cultivated land, the cultivation density is 17.21%. The normalized difference
vegetation index (NDVI) was calculated according to Equation (7) and is shown in Figure 8.
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Figure 8. A normalized difference vegetation index (NDVI) map of the Ein Khosh Plain (28 May).

Figure 8 highlights that the NDVI values between 0.2 and 0.5 correspond to agricultural cover,
representing a small area of the Ein Khosh Plain. To study water management in these periods, first,
the amount of water consumed per hectare for each agricultural land was calculated. Next, the amount
of water needed for irrigation was estimated based on the amount of rainfall. Table 5 shows the amount
of water consumed per hectare for the Ein Khosh Plain agricultural lands.

Table 5. Calculation of the amount of water consumed per hectare of Ein Khosh Plain lands.

Image Date Study Period Uses Area (hr)
Amount of Water
Required (mm/hr)

11-12-2014 1st —18 November to 25 December agricultural lands 6318.5 127.11
10-01-2015 2nd—26 December to 15 February agricultural lands 6318.5 177.62
29-02-2015 3rd—16 February to 15 March agricultural lands 6318.5 19.47
27-03-2015 4th—16 March to 13 April agricultural lands 6318.5 231.23
20-04-2015 5th—14 April to 9 May agricultural lands 6318.5 227.22
17-05-2015 6th—10–25 May agricultural lands 6318.5 143.57
04-06-2015 7th—26 May to 10 June agricultural lands 6318.5 24.53

According to Table 5, it could be observed that the highest amount of water required was found
in the fourth period (March 16 to April 13), with a value of 231.23 mm/hr, and the lowest was found in
the third period (February 16 to March 15), with a value of 19.47 mm/hr, for agricultural land use.

3.4. Water Required for Irrigation of Ein Khosh Plain in Each Period

Figure 9 shows the monthly irrigation requirement of the Ein Khosh Plain for different months of
the year.

It could be observed that the rainfall in December is higher than the water requirements and as
a consequence, there is an excess of rainwater. The dark green areas correspond to surplus water
in agricultural land and the value is ~15 mm. Rainfall in January exceeds ET and there is no need
to irrigate the agricultural areas. Despite the low ET in February, rainfall is extremely low during
this month and little irrigation water is required. The yellow and green regions correspond to areas
with 0–5 and 5–20 mm water deficiencies. Additionally, March’s rainfall corresponds to ET losses
and consequently, does not require irrigation. By comparing the April irrigation requirement map
with the NDVI map, the denser parts of the vegetation appear to require about 50 mm of irrigation
water. Moreover, according to Figure 9 and the map of NDVI, the maximum water requirement in May
is 70 mm for dense vegetation. The yellow areas on the map correspond to water deficiencies of up
to 15 mm. Due to the lack of rainfall in June, the rainfall in the whole area is less than the amount
required. The maximum water deficit during this month is 70 mm, which must be supplied using other
water sources. Figure 10 shows the annual irrigation requirements for the Ein Khosh Plain. A careful
inspection of Figure 10 and comparison with Figure 6 reveals the irrigation requirement for the dark
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green parts of the map, which are deficient by up to 20 mm during the crop season. These spots are
very small and not noticeable. This indicates that the land does not require irrigation. Irrigation may
occur during the growing season due to a lack of rainfall, but this requirement is not seen throughout
the growing season. The rainfall in the region seems to be responsive to the amount of water required
in the Ein Khosh Plain.

Figure 9. Monthly irrigation requirement of the Ein Khosh Plain for different months of the year.
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Figure 10. Annual irrigation requirement of the Ein Khosh plain.

4. Conclusions

Proper estimations of the plant ET and water requirements of plants are very important for
improving water management and increasing the water consumption efficiency. In this regard, satellite
ET estimation models such as SEBAL can be useful. Of course, the efficiency of this model is different
in various climates and crops. Therefore, the purpose of this study was to evaluate the efficiency
of the SEBAL algorithm for wheat crops, which is one of the most important agricultural products
of Iran. Therefore, the ET rate was estimated by remote sensing and analyzed using the SEBAL
algorithm for the Ein Khosh Plain in the Ilam province in Iran. The net radiation (Rn), soil heat (G),
and sensible heat (H) fluxes and NDVI were plotted and analyzed. The evaluation of SEBAL with
the FAO-Penman–Monteith method as a reference showed that the values of RMSE, MAPE, and MBE
were 0.466, 2.9%, and 0.222 mm/day, respectively, with a correlation coefficient of 0.97. It was proven
that SEBAL has a sufficient accuracy for estimating the actual ET. The results of the SEBAL algorithm
are as follows:

• The rainfall rate in the Ein Khosh Plain, except for the last month of cultivation with very low
rainfall, meets water-use requirements, except for late May and early June. Despite the lower ET
rate for wheat in the last month, there is a need for irrigation during this month;

• An evaluation of irrigation requirements using monthly rainfall data showed that the Ein Khosh
Plain in March (the rainfall corresponds to the ET rate for wheat corps), which displays the
maximum ET, has no deficiency of rainfall. Some parts of the plain in several months, such as
April and May, expect a rainfall value of up to 50 and 70 mm, respectively;

• While the total area of the plain is equal to 363.11 km2, only 17.21% of the region is cultivated.
Given that the average ET rate is 121 mm in the agricultural lands, a maximum of 20 mm of
irrigation is required;

• During the wheat plant growth periods, the highest amount of water required was found in the
fourth period (March 16 to April 13), with a value of 231.23 mm/hr, and the lowest was found in
the third period (February 16 to March 15), with a value of 19.47 mm/hr, for agricultural land use.

In this study, the SEBAL model estimated the actual ET of the wheat crops with a sufficient
accuracy compared with the FAO-Penman–Monteith method by using the minimum meteorological
data. Overall, the results proved that the SEBAL algorithm can be an appropriate method for estimating
the wheat ET and can be used as an efficient tool for managing water resources in wheat farms, forestry
projects, etc.

Not only does the use of this technique help preserve water resources, but it also reduces water
use during times when water is not needed. This guidance is important because excess water will
increase the soil-water content and consequently the pore pressure. Excessive water can result in soils
becoming unstable, producing landslides or other unintended consequences.
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Abstract: Landslides have been and are prominent and devastating natural disasters in Bhutan due
to its orography and intense monsoonal rainfall. The damage caused by landslides is huge, causing
significant loss of lives, damage to infrastructure and loss of agricultural land. Several methods have
been developed to understand the relationship between rainfall and landslide incidences. The most
common method to understand the relationship is by defining thresholds using empirical methods
which are expressed in either intensity-duration or event rainfall-duration terms. However, such
thresholds determine the results in a binary form which may not be useful for landslide cases. Apart
from defining thresholds, it is significant to validate the results. The article attempts to address both
these issues by adopting a probabilistic approach and validating the results. The region of interest
is the Chukha region located along the Phuentsholing-Thimphu Highway, which is a significant
trade route between neighbouring countries and the national capital Thimphu. In the present study,
probabilities are determined by Bayes’ theorem considering rainfall and landslide data from 2004
to 2014. Singular (rainfall intensity, rainfall duration and event rainfall) along with a combination
(rainfall intensity and rainfall duration) of precipitation parameters were considered to determine
the probabilities for landslide events. A sensitivity analysis was performed to verify the determined
probabilities. The results depict that a combination of rainfall parameters is a better indicator to
forecast landslides as compared to single rainfall parameter. Finally, the probabilities are validated
using landslide records for 2015 using a threat score. The validation signifies that the probabilities
can be used as the first line of action for an operational landslide warning system.

Keywords: probabilistic method; Bhutan Himalayas; shallow landslides

1. Introduction

Landslides are the most common and one of the prominent natural hazards in steep terrain
affecting human lives and property, and often leading to loss of lives. In [1] the study of a global
database of landslide occurrences between 2004–2016 showed that 75% of landslides occurred in Asia,
with significant occurrences in the Himalayan arc. The study also showed that the majority of the
landslides are shallow landslides and are triggered by rainfall. The high or low intensity reinforced
with continuous occurrence of rainfall leads to an increase in pore water pressure due to the constant
saturation of soil mass, which leads to landslides [2]. The incidence of landslides is likely to increase in
the future due to a growing population, increased construction activities, and exploitation of natural
resources. To understand the phenomena of shallow landslides, several models were developed and
used in several parts of the world. These models can be broadly categorised as empirical or physical
models. Physical models require the use of several parameters involving slope-stability modelling and
acquiring the data required to carry out such an analysis are usually challenging [3]. Therefore, the most
used technique is the empirical model which uses the observed rainfall and landslide data which
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are analyzed statistically without considering the physical processes governing the landslide [4–6].
The key in utilising such a model is the availability and quality of data which reflects in the results [7].
The performance of the threshold-based models can decrease significantly with a small change in
landslide data [8]. References [9–11] highlighted that definition of rainfall event and information on
landslide data had a significant impact on threshold estimation which often leads to a high number of
false alarms for application in an early warning system. Recent developments have led to reproducible
conditions for landslide occurrences in the region of interest [7,12,13]. However, one major drawback
for using empirical models is the outcome of an absolute value either in terms of rainfall intensity
or cumulative event rainfall [14]. Such a result may not always help in setting up an early warning
system since a small variation in calculation can lead to catastrophes. To overcome the use of empirical
models, probabilistic model using Bayes’ theorem was developed by [14] is an efficient choice and the
same was applied to the Emilia-Romagna region in Italy. Thereafter, similar work was carried out in
several places (e.g., Ha Giang region, Vietnam [15], Sierra Norte De Puebla, Mexico [16], Kalimpong,
India [17,18], Chibo, India [19]. The use of probabilistic techniques has also been carried out for severe
precipitation conditions [20,21].

The key to understand the thresholds or any analysis is its validation, [6] reported that out
of 115 rainfall thresholds determined between 2008–2016, only 69 provided validation of their
work. For validation work, only 33% of the work was carried out using an independent dataset.
The most common technique for validation is skill score [8,19] or by comparing two different threshold
models [22].

The Bhutan Himalayas region has been adversely affected by landslides which are caused by heavy
monsoon precipitation. In the case of Bhutan, the literature available on rainfall-induced landslides is
very sparse, with only one work showing the determination of event rainfall-rainfall duration (ED)
thresholds [13]. The country also suffers from the absence of an operational early warning system
and therefore understanding the relation using different models is very critical in developing such
an early warning system [13]. This paper determines and validates the probabilities of landslide
incidents using the Bayes’ theorem by utilizing the available landslide and rainfall data for the Chukha
region. The validation of the thresholds has been determined using a threat score which analyses the
percentage of correctly predicted landslide events. The probabilities were calculated using the dataset
for 11 years (2004–2014) and validated using landslide data of 2015.

2. Study Area

Bhutan lies in the eastern part of Himalaya and is surrounded by India to the east, west and south
and by the Tibetan plateau to the north. The elevation of the country varies from 100 m to 7500 m [23]
with elevations in Chukha region ranging from 1000 m to 4200 m. Figure 1 shows the present study
area—the Chukha region. A part of the Phuentsholing-Thimphu highway (also called Asian Highway),
which connects Thimphu, the capital of Bhutan, with neighbouring countries, lies in the study region.
Said highway is a major trade route with neighbouring countries and is frequently blocked by landslide
debris, causing severe economic damage every year.

The landslides in the region are primarily caused due to heavy monsoons and are shallow in nature.
The increase in landslide events is frequently activated by toe cutting of the slope and blasting activities
for infrastructure development. The increase in anthropogenic activities has escalated deforestation
leading to slope instability. The slope failures along the roads usually block the road leading to huge
logistic issues and economic loss.
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The region comprises of active sedimentary and metasedimentary rocks, gneiss, schist, quartzite,
and limestone and is underlain mostly with schistose rocks. The soils in the area consist of weaker
phyllites which make the soil texture very fine and the slopes unstable. Geologically, the region is
surrounded by major tectonostratigraphic units and structures are Shivalik ranges, Main Boundary
Thrust (MBT), the Lesser Himalayan Sequence (LHS), MCT, HHC, and STD [24]. The major parts of
the area are underlain by Baxa formation group where the thrust fault, strike and dip of bedding and
foliation were more concentrated.

  

Figure 1. Location of (a) Bhutan (b) spatial distribution of landslides considered for analysis.

The slope of the region varies from 15◦–75◦ with a majority of the area (35%) lying in the moderate
steep slope (30◦–45◦). The presence of weak geology and weathered rocks makes the region highly
susceptible to landslides. Figure 2 shows typical damages caused by landslides in the area.
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(a) 

(b) 

Figure 2. Landslide damages (a) near Chukha Dzongkhag (b) along the Phuentsholing–Thimphu highway.

3. Methodology

The methodology involves the use of Bayes’ theorem which uses either single or multiple rainfall
characteristics to determine one-dimensional and two-dimensional probabilities respectively. The technique
can be applied for degrees of variables depending on the quality and quantity of rainfall and landslide
data. A detailed explanation of the method along with a solved example has been presented in [14].

3.1. One-Dimensional Bayesian Probability

This type of probability approach involves the use of a single rainfall parameter to determine the
landslide probability and is defined as:

P(X|Y) = P(Y|X)·P(X)
P(Y)

(1)

where P(Y|X) = precipitation probability of magnitude Y for landslide occurrence, P(X) = landslide
probability regardless of precipitation event of magnitude X, P(Y) = precipitation probability of
magnitude X, regardless of landslide occurrence and P(X|Y) = landslide probability for precipitation
event of magnitude Y.
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If the number of rainfall events is MR, number of landslide events being MA, number of precipitation
events of degree B be MB and the number of precipitation events leading to slide initiation be M(B|A),
then Equation (1) reduces to the computation of the following frequencies:

P(X) ≈MA/MR (2)

P(Y) ≈MB/MR (3)

P(Y|X) ≈M(B|A)/MA (4)

The parameters being used for the analysis would depend on the key reasons for slide initiation
for a region. The variables used in the present are cumulative event rainfall, rainfall duration, and
rainfall intensity.

3.2. Two-Dimensional Bayesian Probability

The two-dimensional Bayesian probability determines the conditional probability of landslide
event due to the common occurrence of two rainfall parameters:

P(X|Y, Z) =
P(Y, Z|X )·P(X)

P(Y
∣∣∣Z) (5)

where Y, Z denotes the combined probability of having a certain or range of value of any two variables.
If, Y equals rainfall intensity and Z is rainfall duration, the likelihood of landslide occurrence due to a
rainfall event of given duration and intensity is expressed using Equation (5). The model allows any set
of rainfall parameters to be used to calculate thresholds and its significance can be compared with prior
probability [14]. Also, it can also be used for n-variables by modifying the equation accordingly like
understanding the effect of a combination of rainfall intensity, duration, event rainfall and antecedent
rainfall on landslide incidence.

4. Data

For the present study, the daily rainfall data was collected from rain gauge installed at Chuka
and maintained by the National Center for Hydrology and Meteorology of the Royal Government of
Bhutan. The daily rainfall data were collected for 1 January 2004 to 31 December 2014. The variation
of the rainfall during the entire duration has been depicted in a box and whisker plot (Figure 3).
The average rainfall during 2004–2014 was 1663.4 mm with maximum rainfall of 2926.6 mm occurring
in 2012. The monsoonal rain (June–August) contributed about 80% of annual rainfall.

The landslide data for the study was provided by the Border Roads Organization, (Project DANTAK),
Government of India, which maintains the Phuentsholing-Thimphu highway. The temporal distribution of
landslides indicates that majority of the landslides initiate during the monsoonal period, and the spatial
distribution depicts that landslide events occur along the highway. The spatial distribution of landslides
is depicted in Figure 1b and involved materials are quartzite, phyllite, gneiss. Landslide event has been
identified as only those landslides mapped as single points which were triggered due to rainfall. Also,
if multiple events occurred on a day it was counted as a single event. The effect of the spatial distribution
of landslides was considered by drawing a buffer radius of 5 km around the rain gauge [7]. A large
search radius is usually required when the study area suffers from low rain gauge density [13]. A total of
123 landslide events occurred during 2004–2014. Considering the above mentioned factors, the number of
landslide events was reduced to 66.
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Figure 3. Box and whisker plots showing the annual variation of monthly rainfall measures in the
study area for the 11-year period 2004–2014.

5. Results

The key to determine any thresholds is to define rainfall and landslide event. In this study,
rainfall event is defined as the total number of consecutive days of rainfall. The rainfall intensity
(mm/day) is determined by dividing the corresponding total rainfall (mm) by the rainfall duration
(days). The landslide event was described as the single rainfall triggered slide activity. The landslide
event for analysis includes the spatiotemporal distribution, i.e., dates and coordinates of each landslide.
The total number of rainfall and landslide events determined was 480 and 66, respectively. The results
of one-dimensional Bayesian probability are depicted in Figure 4a–f.

The results show that probability reaches the highest value of 0.5 for cumulative event rainfall
of 300–350 mm and a probability of 0.33 for rainfall duration of 9 days. In case of rainfall intensity,
the likelihood is 0.5 for the intensity of 80–90 mm/day and 0.227 for the intensity of 30–40 mm/day.
This shows that heavy rainfall as well as slow and continuous rainfall can lead to landslide incidence
in the region.

 
(a)      (b) 

Figure 4. Cont.
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(c)       (d) 

 
(e)       (f) 

Figure 4. One-dimensional probability considering (a,b) Event Rainfall (c,d) Rainfall Duration
(e,f) Rainfall Intensity for Chukha region.

The probability values are also hugely affected by the number of landslide events in each bin.
There can be a huge difference in the values due to slight variation in the data points. For the present
study, the number of landslide events for rainfall intensity in the bin 10–20 mm/day is 26, however,
the number of points for 80–90 mm/day is only 5. This suggests that validation of the probabilities
needs to be carried out and the results need to be enhanced with the addition of more data.

The result for two-dimensional Bayesian probability for landslide occurrences in Chukha has
been depicted in Figure 5. The results indicate that maximum probability reaches 1 for the intensity of
30–40 mm/day with a duration of 7 days as well as the intensity of 40–50 mm/day with a duration of
6 days. However, the value of probability reaching an extreme amount can be attributed to low sample
size and a slight variation in sample size can immensely affect the data. [18] determined probabilities
for Kalimpong region which is roughly 100 km from the study area depicted that a precipitation event
with intensity higher than 30 mm/day for 3 days represents the highest probability of 0.67. A sensitivity
analysis of the calculated probabilities was performed to determine the variation of the results with
a change in rainfall event parameters [19]. The input values of the parameters were varied and the
changes in values of probabilities were ascertained. The variations include the definition of rainfall
event definition and the period of analysis. The rainfall event for the probability determination was
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defined as the number of consecutive days of rainfall. For sensitivity analysis, we varied the minimum
daily rainfall in intervals of 1mm and the corresponding probabilities were calculated which depicted
similar trend as shown in Figures 4 and 5. The probabilities were recalculated by decreasing the
analysis period and the changes in probabilities were in accordance to the number of events being
considered. The results showed the increase in probability values for certain bins due to few numbers
of landslide and rainfall events. The results show that the probabilities varied between 12%–22% for
various bins of different rainfall parameters, however the peak values of landslide probability were in
the same rainfall class. The analysis also suggested that one-dimensional results are more sensitive
compared to two-dimensional Bayesian analysis.

Figure 5. Two-dimensional probability considering rainfall intensity and rainfall duration parameters.

The validation of the probabilities was determined using the landslide record for 2015. During
this period, there were 38 rainfall events and five landslide events with cumulative rainfall being
2698.83 mm (Figure 6).
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Reference [13] defined regional based thresholds using an algorithm-based approach and
determined that 69.7 mm of total rainfall for 24 h can cause landslides. Considering this value,
the probability in terms of event rainfall is 0.14. To evaluate the performance of any model, threat score
is considered as a useful metric [21]. Threat score is defined as:

TS =
TP

TP + FN + FP
(6)

where TS is threat score, TP is true positive, FN and FP being false negatives and false positive
respectively [25]. For the present study the various values of the Equation (6), TP = 4, FP = 1, FN = 2,
which makes TS = 0.57. The result shows that the model has a good potential to be used for early
warning system and can be improved with the further addition of data.

6. Conclusions

Landslides can be considered as one of the most devastating natural disasters due to their
reoccurrence, economic damages and loss of human lives. Most landslides are shallow and caused due
to rainfall which can be torrential downpours or slow and continuous. Therefore, it is imperative to
understand the relation between rainfall and landslide incidences. Significant numbers of landslides
are occurring throughout the Himalaya and as a part of it, Bhutan is not left out. The studies on
understanding the relation of landslide incidences with rainfall have been rarely studied in this part of
the world, so the present paper calculates the results of a probabilistic approach using Bayes’ theorem
using data between 2004–2014 to understand the effect of rainfall parameters for landslide initiation.
The results were determined using a single along with a combination of rainfall parameters. The results
were further validated using the landslide data of 2015 for the event rainfall parameter. The conclusions
from the study are:

• The use of a probabilistic approach can be a better approach than empirical thresholds as the latter
provides a single value of a specific rainfall parameter for landslide incidences.

• The use of two-dimensional probability for determining probabilities for landslide events is better
as compared to one-dimensional as the latter depicts that a single rainfall parameter may not be a
significant factor to trigger landslides.

• The validation of the thresholds for event rainfall parameter depicts that the model has an
accuracy of 57%. However, with the addition of more landslide records and temporal rainfall data,
the accuracy will improve. The use of such technique would help in setting up an operational
early warning system and help in landslide mitigation.
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