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Preface to ”Monitoring and Assessment of

Environmental Quality in Coastal Ecosystems”

The environmental quality of coastal environments can be assessed and monitored using distinct

approaches. The focus can be set on biotic or abiotic compartments, or on both. In this Special Issue,

Cagnazzo et al. [1] present an application of ground-based infrared thermography technology in

coastal environmental monitoring, a rapid method that allowed identifying the presence of beach

litter at the Coastal Dunes Regional Natural Park of Ostuni–Fasano in Apulia (Southern Italy).

This research enabled the development and validation of an empirical equation to calculate the

sandy-soil surface temperature by knowing only the air temperature, providing an effective tool to

detect the presence of anthropogenic polluting material (plastic, glass and rubber) on the studied

sandy shore. Also focused on the abiotic compartment, Thomas et al. [2] assessed the ability of

the Takagi–Sugeno (TS) fuzzy modelling approach with fuzzy c-means (FCM) clustering to obtain

spatial predictions of lead concentrations in a marine sediment geochemical dataset. The main aim

of the study was to test if fuzzy modelling could still produce a suitable pollutant distribution

map using fewer sampling points, potentially reducing the cost associated with new remediation

projects. The results demonstrated that TS fuzzy modeling using FCM clustering and constant-width

Gaussian-shaped membership functions, did not outperform the inverse distance weighting (IDW)

and the ordinary kriging (OK) methods. Thus, this method appears to be unsuitable for use in

contaminants remediation projects with sparsely distributed geospatial sampling points.

When biotic compartments are included in the assessment and monitoring approaches to

evaluate the environmental quality of coastal environments, the tools used can range between

ecological levels of organization, from individuals to the ecosystem. Distinct types of biological

responses can also be assessed (e.g. bioecology, ecotoxicology, physiology and behavior).

From the ecotoxicological perspective, Cocci et al. [3] used a combined in silico and in vitro

approach to evaluate the impact of two aquatic emerging pollutants capable of acting as endocrine

disrupting chemicals (EDCs), perfluorononanoic acid (PFNA) and enalapril (ENA), on the grey mullet

(Mugil cephalus) hepatic estrogen signaling pathway. These EDCs tend to bioaccumulate in aquatic

organisms at concentrations that may cause reproductive toxicity. Their results showed that ENA has

a weak agonist activity on estrogen receptors α, whereas PFNA showed moderate-to-high agonist

binding to both tested estrogen receptors (α and β). Hepatocytes’ incubation for 48 h to PFNA caused

a concentration-dependent upregulation of the estrogen receptors and vitellogenin gene expression

profiles, whereas only a small increase was observed in estrogen receptors’ mRNA levels for the

highest ENA concentration, suggesting a structure–activity relationship between hepatic estrogen

receptors and these pollutants.

Focusing on a different type of marine pollutant, Biswas et al. [4] analyzed the radioactivity

and trace metal levels in six marine fish and four crustacean species, all edible, of the northern

coastal belt of the Bay of Bengal (Bangladesh). To assess the environmental quality of the region

concerning those pollutants and the health risks posed to humans from the consumption of those fish

and crustaceans, several radiological and health-hazard parameters were calculated. The research

findings demonstrate an increase in the pollution due to radioactivity and trace metals in this coastal

belt of the Bay of Bengal, caused by an increase in human activities in the region. It was also found

that consuming the studied species from the Bay of Bengal may have adverse health impacts if

consumption and/or the pollution sources are not controlled.
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Suitable assessment and monitoring programs of environmental quality at the ecosystem level

require a profound knowledge of the services rendered by the ecosystem under analysis, as well

as a recognition of its importance across multiple dimensions (e.g. ecological, socio-cultural and

economic). Determining ecosystem service values (ESVs) is extremely relevant, namely to better

communicate the importance of protecting ecologically functional ecosystems and biodiversity to

decision-makers. In this Special Issue, Magalhães Filho et al. [5] used the Ecosystem Service

Valuation Database (ESVD) to estimate meta-regression functions for provisioning, regulating and

maintenance, and cultural ecosystem services across 12 biomes at the global scale. The research

findings demonstrate that among the biomes with the highest ESVs are coral reefs, inland wetlands,

and coastal wetlands, which, amongst other characteristics, are transitional, aquatic-terrestrial biomes

that are scarce and provide a wide diversity of services. The authors concluded that when considering

the characteristics of the study area under analysis, the inclusion of explanatory variables such as

income, population density, and protection status, it is possible to determine the value of ecosystem

services with higher accuracy.

Sı́lvia C. Gonçalves

Editor
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Abstract: The progress of scientific research and technological innovation are contributing to an
increase in the use of rapid systems for monitoring and identifying geo-environmental processes
related to natural and/or anthropogenic activities. The aim of this study is identifying autumnal
beach litter using ground-based IR thermography. Starting from quarterly autumn monitoring
data of air temperature and sandy soil surface temperature, an empirical equation between the two
environmental matrices (air and sandy soil) is obtained. This will allow the calculation of the sandy
soil surface temperature knowing only the air temperature. Therefore, it will be possible to know in
advance the thermal response of the sandy soil, thus creating a thermal blank of the beach. Using
an IR thermal camera, it is possible for a quicker identification of thermal anomalies of the coastal
area potentially connected to the presence of pollution due to the anthropogenic origin (particularly
plastic material). The test area is located in the area of the Coastal Dunes Regional Natural Park of
Ostuni–Fasano in Apulia (southern Italy).

Keywords: beach litter; infrared thermography; UAV; UGV; environmental monitoring; coastal pol-
lution

1. Introduction

Among the atmospheric and non-atmospheric parameters that influence the proper-
ties of the climate system, temperature is a very relevant parameter in all the chemical,
physical and biological processes that affect the soil formation and its persistence in a
natural environment. Considering the same source of thermal radiation, each material is
heated differently according to its chemical-physical characteristics. Scientific research and
technological innovation have developed new methodologies (IR thermography) and new
investigation tools (thermal cameras) based on the use of temperature for the identifica-
tion of different materials, such as sandy soil. IR thermography allows for detecting and
quantifying the infrared energy emitted by any object above absolute zero temperature
(−273.14 ◦C).

Since every object characterized by a temperature above absolute zero emits thermal
energy, it can be identified through infrared thermography. Thermal cameras allow for
quick and remote collection of a large amount of data.

Over the last few years, the use of thermography has become widespread in various
fields such as: research and development, quality and process control, healthcare, con-
struction, industry and the mechanical field [1–4]. In the environmental monitoring field,
thermography had a remarkable development, especially in wildfire detection [5], while is
only a first approach for flora and vegetation habitat monitoring, and sometimes also for
wildfauna, which necessarily require observations and confirmations directly in the field.

Environments 2021, 8, 37. https://doi.org/10.3390/environments8050037 https://www.mdpi.com/journal/environments
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Moreover, the growing anthropogenic impact on the natural coastal environment
is causing a significant increase in coastal pollution [6] and spills of chemical products
in the marine environment [7]. The need to identify the areas affected by such events is
affirming the use of thermography as a new technique, complementary to other traditional
methodologies [8–10].

IR thermal cameras are also installed on aerial (UAV) and terrestrial (UGV) platforms,
resulting in effective equipment in terms of time efficiency and timeliness [11–16].

The aim of this study is identifying autumnal beach litter using ground-based IR
thermography. Starting from statistical analysis results of monitoring data collected by
two air temperature and sandy-soil temperature sensors, installed in the Coastal Dunes
Regional Natural Park (Ostuni–Fasano, Italy) (Figure 1), an empirical relation between the
environmental matrices (air and sandy soil) will be found. This will allow to estimate the
sandy-soil surface temperature knowing only the air temperature.

Figure 1. (a) Study area localization in the Coastal Dunes Regional Natural Park (Apulia, Italy);
(b) Polar plots of the wind speed distribution and wave height distribution.

By estimating the sandy-soil surface temperature it will be possible to rapidly detect
any thermal anomalies along the sandy coast, such as anomalies deriving from plastic
pollution, by using thermal cameras installed on aerial or terrestrial platforms. The results

2
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of this study will help with the optimization of infrared thermography applications in the
coastal environmental monitoring.

1.1. Ecological Setting

The Coastal Dunes Regional Natural Park extends from the coast towards inland
agricultural areas, occupied by centuries-old olive groves. It includes the Site of Community
Importance (SIC) “Litorale Brindisi”, included in the European network “Natura 2000”.
In the Park are many species of flora that are well preserved, such as the psammophilous
and Cakiletum maritimae [17–19]. The system erosion and the relative vegetation are not
caused by the wind but are mainly due to people leveling the sand in the summer season,
especially in the investigated site and in general on the whole psammophilous coastal area
that extends from the site study and far as Brindisi.

The Park was established with the aim of conserving and recovering the habitats and
animal and plant species indicated in Community Directives 79/409/EEC and 92/43/EEC.

1.2. Geological and Geomorphological Setting

The area covered by this study is located on the Apulian Adriatic coast, in the Coastal
Dunes Park, stretched for 6 km from Torre Canne to Torre San Leonardo. The area hosts a
coastal mobile system characterized by the presence of several lakes and ponds and by a
polyphasic dune belt parallel to the coast that reaches an altitude of about 17 m (Figure 2).

 

Figure 2. View of the study area (19 July 2018). The characteristics of the beach change quickly and
dramatically depending on the storm surge.

The deposits consist of medium sand characterized by carbonates, quartz and other
minerals in very small percentages (pyroxene and feldspar); there are also rare fragments
of siliciclastic rocks and material of anthropogenic origin [20–22].

1.3. Climatological Setting

The average annual temperature of the study area ranges between 15 and 16 ◦C
according to 1971–2000 monitoring data [23].

The whole coastal sector is exposed to a wind regime characterized by winds coming
from the north-western quadrants (Figure 1), therefore storm surges are very frequent
in winter and also cause the stranding of a large amount of natural and anthropogenic
material. The main direction of the longshore transport is NW-SE [24] (Figure 1).
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2. Materials and Methods

In order to create a thermal blank of the beach and consequently identify the thermal
polluting anomalies (attributable to the beach litter) with the thermal camera (FLIR C3),
two sensors (Elitech RC-4) equipped with a data logger were installed (Figures 3 and 4).
Sandy soil surface temperature data and air temperature data were collected. Soil moisture
affects soil temperature just as air humidity affects air temperature. Furthermore, the
humidity of the air could be influenced by other atmospheric parameters (rain, wind,
atmospheric pressure) and the humidity of the sandy soil by other parameters (vegetation,
storm surges, rain). Since the thermal imager acquires only the temperature data, the
experimental monitoring activity concerned only the temperature data (air and soil). This
was done to make the thermographic technique a methodology to support other new
methodologies (spectral sensors, artificial intelligence algorithms) in emergency coastal
pollution conditions where it is necessary to be quick in identification and mapping.

Figure 3. Sensor localization; and IR thermography survey area.

  
(a) (b) 

Figure 4. Air temperature sensor (a); sandy-soil surface temperature sensor (b). The pictures clearly show the presence of
vegetation typical of the dune environment (Cakiletum, Ammophiletum and Agropyretum).
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The first thermal sensor inserted in a meteorological screen (solar radiation protection),
was installed 2 m from the ground to measure air temperature (Figure 4a) as recommended
by WMO (World Meteorological Organization) guidelines. The sensor is able to measure
temperatures ranging from −40 ◦C to +80 ◦C with a 0.1 ◦C resolution and a 0.5 ◦C accuracy.
The Elitech RC-4 sensor with probe was used for the sandy soil surface temperature. It has
the same technical specs, and the data logger was positioned on the dune into a waterproof
box, protected from bad weather and anthropic interference, and the probe (connected to
the data logger) directly in contact with the sandy soil surface (Figure 4b).

Both sensors were set to a sampling rate of 5 min, the monitoring started on 7 October
2018 and ended on 15 December 2018. The monitoring period was chosen to avoid anthro-
pogenic disturbances related to tourism, which could compromise the sensors installed.
The collected data were downloaded and exported in .txt format, in a dataset gathering
about 20,000 thermal data for each sensor. The statistical analysis was carried out using
Microsoft Excel 2019 and R 4.0.3 software package. Daily average air and sandy-soil surface
temperature was calculated, as well as Pearson’s correlation coefficient. This coefficient is
the test that measures the statistical relationship between two continuous variables, giving
information about the correlation and the direction of the relationship, and it ranges be-
tween −1 (strong negative linear relationship) and +1 (strong positive linear relationship).
A null coefficient means there is no linear relationship between the variables.

Moreover, by analysing the scatter plot, the line of best fit and the empirical equa-
tion were obtained. The coefficient of determination R2 was calculated to understand
the accuracy of the regression model used to make predictions. The coefficient ranges
between 0 and 1 and it is a statistical measure of how close the data are to the fitted re-
gression line. Finally, the RMSE (Root Mean Squared Error) was calculated, and the daily
average temperature values observed were compared with the ones obtained from the
prediction model.

Six thermal images 80 × 60 (4800 pixels) on the ground were collected in the study
area, using an FLIR C3 thermal imaging camera (Figure 3). Its sensor can detect and
measure temperatures between −10 ◦C and +150 ◦C in a spectral band ranging from 7.5
to 14 μm, to a resolution of 0.1 ◦C and an accuracy of ±2 ◦C. The images were collected
on 30 October 2018, twice in the morning (8:00 AM UTC and 9:00 AM UTC) and twice in
the afternoon (12:00 PM UTC and 2:30 PM UTC); and on 31 October 31 in the morning
(5:30 AM UTC) and in the afternoon (01:00 PM UTC). The observed air temperature was:

• 16.5 ◦C ± 0.5 and 17.1 ◦C ± 0.5 (on 30 October 2018, respectively, at 08:00 AM UTC
and at 09:00 AM UTC);

• 24.8 ◦C ± 0.5 and 19.5 ◦C ± 0.5 (on 30 October 2018, respectively, at 12:00 PM UTC
and at 02:30 PM UTC);

• 14.4 ◦C ± 0.5 and 23.9 ◦C ± 0.5 (on 31 October 2018, respectively, at 05:30 AM UTC
and at 01:00 PM UTC).

The thermal images were processed with FLIR Tools software, setting the sand emis-
sivity (ε = 0.90). For each radiometric thermal acquisition, knowing the air temperature,
the empirical equation was applied in order to obtain a prediction of the sandy soil thermal
range, taking into account the instrumental error.

Finally, for each thermal image processed, the GIS software created 10 random points.
Later the same points were imported into the corresponding RGB images to understand
what they really identified. It was assessed that the degree of confidence of the results
through the calculation of the kappa coefficient [25,26] allowed for the assessment of the
degree of confidence of the results on a morning and afternoon scale. The kappa index
measures the agreement between different assessments for the classification of the same
object. Kappa index is defined as:

K = (po − pe)/(1 − pe) (1)

po = observed agreement; pe = hypothetical probability of agreement.

5
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The calculation of the index is carried out with the construction of a matrix called the
confusion matrix.

This index ranges from 0 to 1 and expresses the correlation between the homologues
points in the IRT and RGB image. K = 1 indicates perfect agreement while K = 0 indicates
absence of agreement. Generally, a value of the index k > 0.75 indicates a good agreement.

3. Results and Discussion

Daily average air temperature and sandy-soil surface temperature are shown in
Figure 5, while Table 1 shows the maximum and minimum values of the daily average
air temperature and sandy soil surface temperature. Figure 5 shows that the sandy-soil
surface temperature is always lower than the air temperature. This happens because in the
autumn the surface of the sandy soil, in this study area, is always wet.

 

Figure 5. Daily average air and sandy soil surface temperature during the monitoring period.

Table 1. Extreme values of average temperature.

Air Sandy-Soil Surface

Maximum daily average temperature (◦C) 23.5 22.2
Minimum daily average temperature (◦C) 7.8 5.5

The Pearson correlation coefficient shows a strong positive correlation (0.97) between
average daily air temperature and average daily sandy-soil surface temperature soil. The
best model for the study area, approximating the empirical data, was calculated from the
scatter plot (Figure 6) and it results in a non-linear regression, a power function. In fact, in
the interpolation curve, a slight upwards concavity can be observed.

6
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Figure 6. Scatter plot between average air temperature and sandy soil surface temperature.

The resulting model is represented by the equation:

Ts = 0.5572 × Ta1.1701 (2)

Ts = sandy-soil surface temperature; Ta = air temperature.
The coefficient of determination R2 = 0.94 has validated the statistical model. The

empirical equation obtained was used to predict the daily average sandy-soil surface
temperature knowing the air temperature. Therefore, the results were compared with the
temperature measured on site (Figure 7).

 

Figure 7. Comparison between measured and predicted sandy soil surface temperature during the same monitoring period.

RMSE has been obtained through statistical processing. It is a statistical indicator that
quantifies the deviation between the observed and simulated data. The value of RMSE
stood at 0.96. The very low value confirms the accuracy of the empirical equation obtained.
For statistical completeness, a linear regression of the data was also performed. Although
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the value of R2 = 0.94 was equal to the non-linear regression, the value of the RMSE (0.97)
was slightly higher than the non-linear regression. This statistical difference influenced the
choice of the regression typology to obtain the empirical equation.

Table 2 shows the air temperature values obtained from the morning and afternoon
thermal imaging survey. Sandy-soil surface temperature values was obtained by using
these values in the Equation (2). Moreover, taking into account the thermal camera accuracy,
the thermal range of the sandy soil surface is shown.

Table 2. Temperature data (30–31 October 2018).

Air Temp. (◦C) Observed
Sandy Soil Surface Temp. (◦C)

Predicted by Applying (2)

Potential Thermal Range of Sandy Soil
Surface (for Each IR Image) Considering

the Previous Column and the Instrumental
Accuracy (±2 ◦C)

08:00 AM UTC 16.5 14.8 12.8–16.8
09:00 AM UTC 17.1 15.5 13.5–17.5
12:00 PM UTC 24.8 20.5 18.5–22.5
02:30 PM UTC 19.5 18 16–20
05:30 AM UTC 14.4 12.6 10.6–14.6
01:00 PM UTC 23.9 22.8 20.8–24.8

Figure 8 shows the thermal images collected in the morning of 30 October 2018 and
31 October 2018, processed using FLIR Tools. Table 3 shows the correspondence of the
material detected in the thermal image (prediction) compared with the RGB image (truth)
in the randomly selected points.

 
(a) 

 
(b) 

Figure 8. Cont.
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(c) 

Figure 8. Morning acquisition: thermal image (on the left) and RGB image (on the right). Randomly selected points (in
red). The yellow pixels in the thermal image indicate the sandy soil surface identified by the application of the empirical
Equation (2). Plastic bottles can be seen in (a), rubber soles in (b), glass bottles and expanded polystyrene in (c).

Table 3. Correspondence between the material detected in the thermal image and the RGB image in the selected
points (morning).

Material in the RGB Image (Truth)

Sandy Soil
Natural and/or Anthropic

Anomaly
Total

Material detected in the
thermal image

(prediction)

Sandy soil 15 1 16
Natural and/or anthropic anomaly 0 14 14

Total 15 15 30

The kappa coefficient value was calculated and resulted to be equal to 0.93. Figure 9
shows the thermal images collected in the afternoon of 30 October 2018 and 31 October
2018 and processed. Table 4 shows the correspondence between of the material detected in
the thermal image (prediction) compared with the RGB image (truth) in 30 random points.

 
(a) 

Figure 9. Cont.
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(b) 

 
(c) 

Figure 9. Afternoon acquisition: thermal image (on the left) and RGB image (on the right). Randomly selected points (in
red). The yellow pixels in the thermal image represent the sandy soil surface identified by the application of the empirical
Equation (2). Plastic bottles and bags can be seen in (a,c) and rusty bottles in (b).

Table 4. Correspondence between the material detected in the thermal image and the RGB image in the selected
points (afternoon).

Material in the RGB Image (Truth)

Sandy Soil
Natural and/or Anthropic

Anomaly
Total

Material detected in the
thermal image

(prediction)

Sandy soil 13 1 14
Natural and/or anthropic anomaly 3 13 16

Total 16 14 30

The kappa coefficient value was calculated and resulted to be equal to 0.74. The results
obtained from empirical equation application in the thermal images, the comparison
between the material detected in the thermal images and the values of the kappa coefficient,
allowed for validation of the thermal methodology used, which was developed to identify
sandy soil on the coast using IR thermography, distinguishing it from thermal anomalies
which can be due to the presence of different materials and polluting objects and material
of anthropogenic origin such as plastic. The methodology described may have problems
with shaded areas, because they are significantly cooler than the predicted soil temperature
value. However, using UAV systems with larger scale acquisitions, the shaded areas would
have less weight in the acquired thermograms than the really radiated beach areas.

10
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4. Conclusions

This study represents an application of the IR thermography technology in the field of
coastal environmental monitoring. The 70-day monitoring of the air and sandy soil surface
temperature by means of two thermal sensors, carried out in the Coastal Dunes Regional
Natural Park (Ostuni–Fasano), and the statistical analysis of a considerable amount of
thermal data, allowed the development of an empirical equation used for calculating
the sandy-soil surface temperature by knowing only the air temperature. The existence
of a strong correlation between the two variables, the high value of the coefficient of
determination R2 of the model and a low value of the RMSE value, confirmed the good
quality of the empirical equation used.

Moreover, the tests carried out applying the equation to the IR thermal survey and the
value of the kappa coefficient calculated, validated this methodology, making it an effective
tool for anthropogenic polluting material detection (plastic, glass, rubber) on the sandy
coast in the study area.

The results obtained can be used to rapidly process thermal images deriving from
surveys carried out with sensors installed on UAV and UGV, quickly detecting the pres-
ence of anomalies due to potentially polluting objects (like plastic, glass, etc) or other
pollutant materials.

Further coastal environmental geology studies will be carried out in the future. In
particular, remote multispectral methodologies will be tested in this study area for a more
precise identification of pollutants.
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Abstract: Fuzzy set theory has shown potential for reducing uncertainty as a result of data sparsity
and also provides advantages for quantifying gradational changes like those of pollutant concentra-
tions through fuzzy clustering based approaches. The ability to lower the sampling frequency and
perform laboratory analyses on fewer samples, yet still produce an adequate pollutant distribution
map, would reduce the initial cost of new remediation projects. To assess the ability of fuzzy modeling
to make spatial predictions using fewer sample points, its predictive ability was compared with the
ordinary kriging (OK) and inverse distance weighting (IDW) methods under increasingly sparse data
conditions. This research used a Takagi–Sugeno (TS) fuzzy modelling approach with fuzzy c-means
(FCM) clustering to make spatial predictions of the lead concentrations in soil. The performance of
the TS model was very dependent on the number of outliers in the respective validation set. For
modeling under sparse data conditions, the TS fuzzy modeling approach using FCM clustering and
constant width Gaussian shaped membership functions did not show any advantages over IDW and
OK for the type of data tested. Therefore, it was not possible to speculate on a possible reduction in
sampling frequency for delineating the extent of contamination for new remediation projects.

Keywords: fuzzy modelling; marine sediment; Takagi–Sugeno; ordinary kriging (OK); inverse
distance weighting (IDW); spatial predictions

1. Introduction

The release of pollutants into the natural environment has been a problem of global
concern since the beginning of the industrial revolution. Highly toxic persistent envi-
ronmental pollutants often occur in marine harbour sediments as a result of industrial
practices around the world and pose a significant risk to human health [1]. The major
contributor to exposure of humans to contaminated sediment is through the ingestion
of contaminated food as a result of bioaccumulation through the food chain. Chronic
exposure to contamination can lead to infertility, birth defects, impaired child development,
diabetes, damage to the immune system, disruption of hormonal function, and cancer.
Seafood in the most common exposure pathway of sediment contamination to humans;
therefore, for the protection of human health, the remediation of these contaminants in
aquatic environments is of the upmost importance [2–5].

The first step required for remediation is an accurate assessment of the spatial distri-
bution of contamination in order to ensure the most effective and least costly remediation.
Spatially continuous data are required to delineate the boundaries of unsafe levels of
contamination and to determine the volume of contaminated material to be removed. How-
ever, in aquatic environments, point samples are generally collected on a predetermined
grid spacing, and the contaminant concentrations are spatially interpolated to provide
a continuous surface that may introduce uncertainty. Spatial interpolation methods are
traditionally grouped into deterministic and geostatistical methods. The most commonly
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used deterministic method is inverse distance weighting (IDW), which uses a function that
estimates values at un-sampled points through the linear combination of known sample
values weighted by the distance between them [6,7]. IDW is a simple method requiring
minimal modeler input [8]; however, because it is based solely on distance, it often per-
forms very poorly with sparsely distributed geospatial data. The most commonly used
geostatistical method for spatial interpolation is kriging, which employs a semi-variogram
that plots the semi-variance between points against the distance between them [6,9]. From
the semi-variogram, it is possible to determine the range of spatial dependence of sampled
points that can be used to determine a value at an unknown location [10]. However, the
accurate estimation of a semi-variogram is complicated, computationally expensive, and
can introduce modeler bias. Furthermore, kriging has been shown to have a significant
smoothing affect, where areas of high pollutant concentration could be missed. This is
not ideal as an underestimation of the pollutant concentrations could lead to an increased
risk to human health. Both deterministic and geostatistical methods have one major com-
monality, that is, the greater the sample density, the greater the accuracy of the spatial
interpolation [11–13]. However, the sampling cost of sediment in marine environments
and the analytical assessment cost for dioxins are extremely high. Therefore, obtaining an
adequate number of samples to achieve an acceptable resolution during interpolation may
not be possible, and this high cost may be prohibitive to remediation projects.

There is a separate family of data-driven predictive methods that utilize fuzzy set
theory [14], which have been proven to be a suitable method for the prediction of sparse non-
linear data and have been used for many applications of spatial estimation in
geoscience [11,15–17]. Fuzzy set theory [14] provides a convenient way of describing
the degree of belonging (membership μ) of an element to a set, between 0 (no belonging)
and 1 (complete belonging). For example, let U be an ordinary set with elements {x1, x2,
. . . , xn} and Ã be a fuzzy subset of U, in which the elements xi have degrees of membership
(belonging to Ã) given by a membership function μÃ (xi) = α, which dictates that an
element xi has a degree of membership α to fuzzy set Ã , where 0 ≤ α ≤ 1 (see Figure 1).

Figure 1. Example of a (left side) crisp and (right side) fuzzy set, and their respective membership
functions.

The Takagi-Sugeno Method

System modeling techniques that employ fuzzy set theory are commonly referred to as
fuzzy modeling [15,18,19]. One of the most commonly used fuzzy modeling techniques for
spatial estimation is the Takagi–Sugeno (TS) method [15,18,20]. TS fuzzy modeling breaks
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down the input data space into a number of fuzzy regions and creates a linear function
for each region. It is advantageous for spatial modeling because of its transparency and
interpretability [21]. The degree of belonging that an un-sampled point has to each region
in the data is used to predict a value at that location. The partitioning of the input space
into fuzzy regions is achieved though fuzzy clustering, which is the foundation for the
fuzzy spatial modeling using the TS method. Fuzzy clustering differs from traditional crisp
data clustering in that in fuzzy methods each element (sample point) can have a degree of
membership to multiple clusters within the data. Each cluster is defined by a cluster center,
which has a value calculated from the membership-weighted average of the members
of that cluster [22,23]. For spatial modeling, data are clustered in the three-dimensional
product space defined by the Cartesian map coordinates (x, y) and the magnitude of a
pollutant concentration (p) (see Figure 2).

Figure 2. Theoretical visualization of fuzzy clustering in the three-dimensional product space.

After clustering, each data point has membership to one or more cluster centers,
depending on the pollutant concentration. The clusters are then partitioned onto the x
and y Cartesian product space and a membership function is generated for the x and y
coordinate axis of each cluster. The membership functions from each cluster are then used
to determine the degree of membership an un-sampled location has to the different clusters
within the data (see Figure 3).

Ultimately, the combination of these degrees of membership is used in solving a
pollutant concentration at an unknown location. Once the data have been clustered, they
are subjected to a rule-based fuzzy inference system (FIS) that makes inferences about
un-sampled geographic locations based on their membership to the clusters within the
data. A single rule is introduced for each cluster using conditional “IF-THEN” statements.
FIS uses input variables referred to as antecedents for each rule; in the TS fuzzy model,
the antecedents are the fuzzy sets generated from the clustered data. The antecedents are
subjected to IF-THEN statements to produce a weighting for the prediction from each
rule based on membership to that rule (cluster). The output of each rule is referred to as
a rule consequent. When a rule in the FIS is executed, if the antecedent is unaffected by
the IF-THEN condition, that rule is skipped and the next rule is executed. If the IF-THEN
condition produces a consequent, then that rule is deemed to have fired or been executed.
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Figure 3. Example of partitioning membership to cluster centers to the map coordinate axes and applying a membership
function (represented by solid lines) for three fuzzy clusters to determine membership based on geographic location.

Each rule in the TS fuzzy model uses x and y Cartesian coordinates as inputs to solve
the consequent (output variable) for each rule in the form of a linear equation to produce a
crisp value [23]. The form of the general first order TS model is shown in Equation (1).

Ri = i f x1is Ai1 and x2 is Ain then pi = ai1x1 + ai2x2 + bi
i = 1, . . . , K

(1)

where Ri is the ith rule; x1 and x2 are the antecedent variables (Cartesian coordinates x,
y); Ai1 and Ai2 are fuzzy sets for the ith rule and the respective coordinate axes; pi is the
ith rule output; K is the number of rules (clusters); and ai1, ai2, and bi are the unknown
model parameters that must be solved. This is accomplished by least squares regression
using the data in each cluster. The model output for a given input is obtained through
the aggregation of all utilized rule consequents weighted by their membership to the
respective rules [15,19,20]. The TS method’s simplistic nature and interpretability make it
advantageous compared to other FIS [24].
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Applications using TS fuzzy modeling for spatial estimation have shown its predictive
capacity to outperform kriging [19,25]. The advantage of TS modeling is that it allows
a complex data surface to be broken down into more easily modeled individual fuzzy
surfaces. Clustering and rule-based methods are then used to estimate a value at unknown
locations by solving the intersection of the contributing surfaces based on the degree of
belonging an unknown location has to each surface.

Fuzzy set theory has been cited as a useful tool for modeling under sparse data
conditions [26]. Fuzzy modeling can take advantage of this additional information to
produce an adequate contaminant distribution map for remediation planning using fewer
point samples. Lowering the number of samples required would reduce the initial cost of
new remediation projects and may lead to more remediation projects being undertaken in
the future, eventually leading to a cleaner environment and to lower anthropogenic health
risks [27].

This research employs a spatially distributed marine, soil geochemical dataset to
compare the predictive abilities of the TS fuzzy model, IDW method, and ordinary kriging
method (OK) using a sparse dataset. The geochemical signatures present in the data
are the result of naturally occurring mineralization and are not related to anthropogenic
sources. The data are useful, because the indicator geochemical signatures associated with
the mineralization are analogous with several pollutants of concern (POC) in harbour
settings. The spatial distribution of the contaminates in the data are very similar to that
from anthropogenic sources, as both generally originate from point sources and spread out
into the surrounding environment.

2. Materials and Data

The dataset used in this research is comprised of 1535 spatially distributed sample
points (illustrated in Figure 4), each consisting of a 51 element spectral array with notable
POCs of arsenic, mercury, and lead. Although no two spatial datasets would have identical
statistical distributions, the challenges faced during spatial interpolation are similar regard-
less of the data type. Therefore, the use of this data still provides an adequate initial test of
the relative predicative ability of the TS fuzzy model under increasingly sparse spatial data
density.

 

Figure 4. Spatial expression of the data used for this research, Datum: NAD83, UTM Zone 8, Eastern
Yukon Territory.

The 1535 soil samples were collected on an approximately 50 m by 50 m grid spacing
at depths ranging from 0.1–1.2 m below the ground surface. The samples had compositions
ranging from well to poorly developed soils to glacial sediment. The sample area was
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approximately 5000 m × 4000 m in size and was in the Yukon Territory, Canada. The
samples were collected between 17 August 2015 to 22 August 2015, and between 16 June
2016 to 25 June 2016 by a sampling team from Archer, Cathro, and Associates Limited
under contract for ATAC Resources Limited. ALS Minerals in Vancouver BC analyzed the
samples using metallurgical assay with inductively coupled plasma and atomic emission
spectrometry. The spatial coordinates of each sample were recorded in the spatial datum
NAD83 UTM Zone 8. Each data point was characterized using an easting and northing
UTM coordinate in meters. Because of its relevance to human health, its high rank as a
POC in urban settings and its availability in the soil data, lead was selected to test the
efficacy of TS fuzzy modeling compared with OK and IDW in this work.

As OK and IDW are well-developed tools, this research employed the GIS platform
ArcMap 10.4.1 (ESRI, 2011) and used the Geostatistical Analyst Package to perform the
OK and IDW methods using optimized parameters. Using the spatial predictions from
ArcMap, model validation was performed using MATLAB R2017a (MathWorks, 2017). The
fuzzy model was also developed and validated, and its results were compared with OK
and IDW using MATLAB.

In order to assess the predictive ability of the TS fuzzy, kriging, and IDW methods,
the sample data were split into training and validation sets, where the training data were
used to predict the known pollutant concentrations at the locations in the validation set. To
assess the predictive ability of the models under increasingly sparse spatial data conditions
that simulated fewer samples, the amount of training data used were incrementally reduced
from 75%, to 66%, to 50%, to 33%, to 25%, to 12.5% and labelled as sets A–F, respectively.
At each increment, the data not used for training were utilized for validation.

To determine the optimal number of clusters, the fuzziness parameter (m) for the FCM
clustering and the membership function width (σ) for the FIS, a pseudo-optimization was
performed. This was accomplished by iteratively increasing the number of clusters and at
each iteration varying m through a reasonable range, and at each iteration of m varying σ

through a reasonable range. The model performance results from all combinations were
then assessed and the combination of m and σ that yielded the most accurate prediction for
the respective validation sets were retained as optimal.

The key things that determined the competency of a spatial interpolator were its pre-
dictive ability, its ability to handle data of different types and variance, and the smoothness
or abruptness of the surface generated [6]. The performance metrics used to assess the
model performance of TS fuzzy, OK, and IDW modeling were the coefficient of deter-
mination (R2), root mean squared error (RMSE), and the mean absolute error (MAE). R2

is commonly used and provides a metric by which to assess the variance of the model
prediction. A higher R2 value indicates that a higher proportion of the total variation of the
prediction is explained by the model [19]. An R2 value equal to 1 would indicate a perfect
prediction. Each model result for MAE, R2, and RMSE received a score between 1 and
10. The mean score then determined the overall performance of that model result, with
10 being the best and 1 being the worst. The ranges for the scoring system were chosen
arbitrarily based on the performance ranges observed from each metric. This approach
aimed to produce enough separation between scores to draw realistic inferences on the
differences in performance.

3. Results

When determining the optimal number of clusters, it was observed that the perfor-
mance of the of TS fuzzy model would reach an initial peak or plateau and subsequent
model runs using a higher number of clusters would not produce any further increase in
score. In the interests of maintaining minimal complexity within the model and reducing
the risk of over clustering, the lowest number of clusters that yielded the highest model
performance was retained as optimal. In cases where more than one TS fuzzy model
iteration with the optimal number of clusters but different parameters produced the same
mean score, the result with the lowest mean absolute error (MAE) was deemed optimal.
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The MAE was selected because of its prevalence in assessing the accuracy of spatial pre-
dictions [28]. Figure 5 displays the results from the selection of the optimal number of
clusters for data reduction increments A and B for subset 1. In each case, the highest mean
score from each number of clusters tested is displayed. Therefore, for each cluster, the
results displayed are the optimal performance with the optimal m and σ for that number
of clusters.

  
(a) (b) 

Figure 5. Example results from the determination of the optimal number of clusters for data reduction for (a) increment A
and (b) increment B, for subset 1.

In all cases, a clear initial peak was reached and dictated the optimal number of
clusters for that particular training set. After identifying the number of clusters that yielded
the highest model performance, the combination of fuzziness (m) and membership function
width (σ) that contributed to the highest mean score were identified. Figure 6 displays an
example of the results from determining the optimal m value. In each case, the highest
mean score for each m value tested with the optimal number of clusters is displayed.

  
(a) (b) 

Figure 6. Example results from the determination of m using the optimal number of clusters for data reduction for (a)
increment A and (b) increment B.

In all instances, a single m value produced the highest model performance for each in-
crement of the data reduction and the m value had a visibly large effect on the performance
of the TS fuzzy model. The optimal σ, which produced the highest model performance,
was determined to occur over a range and was not overly sensitive. In general, a range of
80 m to 150 m produced similar mean scores. Figure 7 displays a 2D visual representation
of the clustered data, the cluster centres, and the spatial distribution of membership to
the cluster centres. The concentration of lead at a validation point was solved using its
membership to each of the clusters in the data.

19



Environments 2021, 8, 50

  
(a) (b) 

Figure 7. (a) Visual representation of clustered data for training increment A and (b) training increment F.

Finally, using the optimal model parameters, the fuzzy model was trained using
each increment’s training data (A–F); then, the lead concentrations at the spatial locations
of each increment’s validation sets were solved using the model. The predictions were
then compared with the actual values and the performance metrics applied. This same
methodology was also applied to the OK and IDW methods, such that the performance of
the three models could be compared. Figure 8 displays the performance results for each
model at all of the data reduction increments.

  
(a) (b) 

Figure 8. Cont.
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(c) (d) 

Figure 8. Ordinary kriging (OK), inverse distance weighting (IDW), and the Takagi–Sugeno (TS) fuzzy model from each increment of
data reduction performance metrics (a) mean score, (b) mean absolute error (MAE), (c) coefficient of determination (R2), and (d) root
mean squared error (RMSE).

4. Discussion

In general, the three models tested here performed very similarly. For all three
methods, data reduction increment B produced the highest performance scores. This is
because this increment’s training set has a much higher range, variance, and kurtosis
than the respective validation set, making for simpler predictions closer to the mean. The
discrepancies identified between the training and validation sets appear to have a large
effect on the performance of the models—specifically, between increment A and B, where,
for increment A, the kurtosis and range are higher in the validation set and for increment
B, the kurtosis and range are higher in the training set. The effect of statistical differences
between the training and validation sets does appear to be significant. However, in a
real-world situation, if fewer samples are collected and analyzed, the results could have
a lower range and kurtosis; so, for the purposes of simulating spatial data sparsity, the
training and validation sets used here are useful because they illuminate weaknesses in the
models tested. This proves that if the samples collected fail to capture the overall variance
of a system, their spatial predictions will be poor, which Li and Heap (2011) found when
reviewing 18 studies using different spatial interpolators.

Throughout the data reduction increments, on average, all of the methods’ perfor-
mances decline, which is the desired result of the evaluation. For increments A–F, IDW
consistently outperformed the other methods, and the TS fuzzy model outperformed OK,
but only by a small margin. To further quantify these observations, the performance of
the individual metrics from the optimal TS fuzzy model results and for the OK and IDW
methods from increments A–F are also plotted against the amount of training data used
in each increment (shown in Figure 8). The differences between the three methods are
so subtle that it is difficult to draw any significant conclusions from the results. As is
consistent with the mean scores, based on these performance metrics, IDW appears to
produce the best results, with the TS fuzzy model outperforming OK by a small amount.
For the lead predictions made in this analysis, OK, IDW, and the TS fuzzy model all appear
to have a significant smoothing effect at all data reduction increments, which agrees with
previous research [12,29]. Previous research comparing IDW and OK found that in general,
the two methods perform very similarly, and that IDW often produces a lower error, and
this research agrees with that finding [29–31]. Furthermore, previous research has also
shown that TS fuzzy modeling has the ability to outperform kriging [25,32,33] as it has in
this study, albeit by a small amount. Although not clear in this research, the TS fuzzy model
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did produce a higher mean score than OK for data reduction increments C–F. Although the
three models are not using identical distributions in their predictions of unknown points, it
is possible that the similarity in the results is simply a function of the inherent similarities
within the models themselves. However, further research would be required in order to
quantify this.

As fuzzy clustering is at the core of the TS fuzzy modeling approach, it can be surmised
that the performance of the method may be limited by the quality of the fuzzy clusters or by
their spherical shape, which agrees with findings from the literature [15]. Therefore, further
investigation into other clustering methods is warranted. Additionally, the data used in
this research have a negatively skewed distribution. A factor that was not considered
was normalizing the distribution of the data prior to the analysis, which would impact
the performance of the models. However, for testing the relative performance of the TS
fuzzy model against IDW and OK for spatial prediction using incrementally less spatially
distributed data, the results do show that the TS fuzzy model in this research is not a
superior prediction method.

A useful confirmation from this research is that fuzzy set theory is highly flexible [14]
and thus, has many other applications including the prediction of time dependent vari-
ables [26]. Fuzzy-based methods lend a flexibility to environmental modelling and assess-
ment that crisp methods do not [34,35]. It can be incorporated into other types of modelling
schemes such as those that consider connectivity in earth system processes, for example.
Connectivity is a subject that describes the degree to which water flow and sediment are
related or connected [36,37], and can be used to acquire enough accurate data of past and
current conditions to assess the role of landscape processes. When contaminants are costly
to analyze, as is the case for many emerging contaminants of concern in coastal regions,
Keesstra et al. [36] showed that a connectivity modelling scheme can be used to help define
a more cost-effective monitoring and measurement plan.

5. Conclusions

A TS fuzzy model using the fuzzy c-means clustering algorithm was used to predict
lead in soil concentrations under increasingly sparse spatial data conditions. The results
from the TS fuzzy model were compared with that of OK and IDW using the same training
and validation datasets. The ability of the three methods to predict outlier points within
the respective validation sets appeared to be very similar. As with all other performance
metrics, the performance of the three methods was difficult to separate and the similarity in
model performance may be related to the models themselves. Both IDW and OK generate
weights for the surrounding points based on a similar model shape, while the TS fuzzy
model utilizes Gaussian shaped membership functions to determine the weighting for
each of the cluster’s predictions. This research showed that the TS fuzzy model used
here did not outperform OK and IDW for the spatial predictions of lead in soil under
increasingly sparse data conditions. Future research should consider different types of
data, normalizing data prior to fuzzy modeling, other clustering methods, and further
optimization of the model parameters.
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Abstract: There is growing concern about the environmentally relevant concentrations of new emerg-
ing persistent organic pollutants, such as perfluorinated compounds and pharmaceuticals, which
are found to bioaccumulate in aquatic organisms at concentrations suspected to cause reproductive
toxicity due to the activation of estrogen receptor (ER) α and β subtypes. Here, we use a combined in
silico and in vitro approach to evaluate the impact of perfluorononanoic acid (PFNA) and Enalapril
(ENA) on grey mullet (Mugil cephalus) hepatic estrogen signaling pathway. ENA had weak agonist
activity on ERα while PFNA showed moderate to high agonist binding to both ERs. According to
these effects, hepatocytes incubation for 48 h to PFNA resulted in a concentration-dependent upregu-
lation of ER and vitellogenin gene expression profiles, whereas only a small increase was observed
in ERα mRNA levels for the highest ENA concentration. These data suggest a structure–activity
relationship between hepatic ERs and these emerging pollutants.

Keywords: endocrine disruptors; Mugil cephalus; PFNA

1. Introduction

Chemicals interfering with the endocrine system known as endocrine disrupting
chemicals (EDCs) are pollutants that typically occur in aquatic environments as a result of
municipal wastewater discharge, landfill leachates, and agricultural and urban runoff [1].
EDCs are considered a major cause of aquatic wildlife decline and loss of biodiversity [2].
Aquatic organisms such as fish may experience life-long exposures to EDCs and may
bioaccumulate them developing a wide range of hormonal abnormalities [3]. Today, there
is growing concern about the environmentally relevant concentrations of new emerging
persistent pollutants, such as perfluorinated compounds (PFCs) and pharmaceuticals (e.g.,
contraceptives and anti-depressants), which are found to bioaccumulate in aquatic food
webs at concentrations suspected to perturb neuro-endocrine processes in living organisms
including humans [4,5].

PFCs are synthetic chemical compounds that due to high stabilities and low surface
tensions are increasingly used in various industrial applications and common consumer
products [6]. Among PFCs, the perfluoroalkylated substances (PFAS) have been discovered
as global pollutants remaining most persistently in each environmental compartment [7,8].
Although PFAS are considered moderately to highly toxic, some of these (e.g., perfluorooc-
tane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)) are suspected endocrine
disruptors and have been found to cause adverse health effects, especially reproductive
toxicity, in different vertebrate models [9,10]. Similarly, pharmaceuticals that include any
chemical product used by individuals or agribusiness for promoting personal and livestock
health, have aroused great interest as environmental pollutants for their ecotoxicological
potentials [11,12]. These compounds have been detected, unchanged or as metabolites, in
wastewater, surface and drinking waters throughout the world [13–15]. Calamari et al. [16]

Environments 2021, 8, 58. https://doi.org/10.3390/environments8060058 https://www.mdpi.com/journal/environments

25



Environments 2021, 8, 58

have defined pharmaceuticals as pseudo-persistent pollutants due to their continuous in-
troduction into the environment, the biotic and/or abiotic transformation and the ability to
exert subtle effects in non-target organisms. In this regard, the estrogenic potential of some
pharmaceuticals has attracted great concern especially in the aquatic environment [17,18].

Estrogen-like EDCs (xenoestrogens) have the capability to bind to the estrogen recep-
tors (ERs), mimicking the female steroid hormone, 17β-estradiol (E2), and thus activating
intracellular signaling pathways. Activation of the ER-mediated signaling pathway has
been extensively studied in several models, particularly fish in which feminization has
been considered a direct result of xenoestrogen contamination [19–23]. In this regard,
the ER-induced hepatic vitellogenin (Vtg) production is typically used to confirm expo-
sure to estrogenic compounds in male fish [24,25]. Of the different fish organ cells, liver
cells are widely used in in vitro primary culture models due to their ability to retain na-
tive liver properties including estrogen responsiveness [26–28]. For that reason, in vitro
methods using primary cultures of fish hepatocytes represent a fundamental and recom-
mendable alternative to in vivo studies for investigating several toxicologically relevant
mechanisms [29,30].

In the present work, we focused our attention on the ability of perfluorononanoic
acid (PFNA) and enalapril (ENA) to interfere with estrogen receptor signaling using
a combined in silico/in vitro approach. The selected compounds belong to the most
frequently detected classes of emerging EDCs in the aquatic environment such as PFAS
and pharmaceuticals [31–35]. The Endocrine Disruptome program package was used
to predict their potential interference with nuclear ERs in silico. A bioassay that uses
primary hepatocytes from the grey mullet (Mugil cephalus) was then employed for screening
estrogenic potential by assessing classical biomarker responses such as VTG protein and
ER isoform mRNA expression. In addition, cytotoxicity using Alamar Blue and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays was evaluated after
24 and 48 h exposure.

2. Materials and Methods

2.1. Endocrine Disruptome Screening Tool

A molecular docking approach for predicting interactions between PFNA/ENA and
estrogen receptor α (ERα) and β (ERβ) ligand binding domains has been performed
with Endocrine Disruptome Simulation (EDS) Tool. This web service has already been
successfully adopted as a software tool for predicting the endocrine disruption potential of
compounds, using well-validated crystal structures of 14 different human nuclear receptors
including ER subtypes [36]. The crystal structures of 1A52, 3OLS, 1SJ0, and 1QKN have
been chosen as templates on the basis of their sequence identity with fish receptors (higher
than 60%). The docking scores reported are a measure of how the contaminants fit within
the receptor-binding pocket, taking into account continuum and discreet parameters.
According to the threshold calculations sensitivity (SE), it is possible to obtain four broad
groups indicating predicted affinity for ER isoforms as follows: “red” (SE < 0.25), high
probability; “orange” (0.25 < SE < 0.50) and “yellow” (0.50 < SE < 0.75), medium probability;
and “green” (SE > 0.75), low probability of binding [36].

2.2. Hepatocyte Isolation and Primary Cell Culture

Flathead grey mullet (Mugil cephalus) males (95.5 ± 10.9 g initial weight) were pro-
vided by professional fishermen during fishing activities. Fish were acclimated for 2 weeks
in 2.00 m × 2.00 m × 0.60 m tanks with constant aeration and natural photoperiod at Unità
di Ricerca e Didattica of San Benedetto del Tronto (URDIS), University of Camerino in San
Benedetto del Tronto (AP, Italy). Water quality parameters were monitored daily showing
the following values: pH 8.4 ± 0.2, O2 = 10.3 ± 0.5 mg L−1, and temperature = 20–22 ◦C,
salinity 36 ± 2 psu; undetectable level of nitrites and ammonia. Following the acclima-
tion, fish were randomly euthanized using MS-222 within 5 min after capture. Animal
manipulation was executed following the procedures established by the Italian law (Leg-
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islative Decree 116/1992), the European Communities Council Directive (86/609/EEC
and 2010/63/EU) for animal welfare and under the supervision of the authorized inves-
tigators. The liver tissue was collected to obtain hepatocytes under a laminar flow hood,
according to Cocci et al. [37] and Palermo et al. [38]. Purified hepatocytes were suspended
in Leibovitz (L-15) phenol red-free medium, antibiotic-antimycotic solution (100 U/mL)
and 10 mM HEPES. The cell density was measured in a Burker Chamber and the viability
of hepatocytes was over 90%, as assessed with the Trypan blue exclusion assay. Cells
were seeded on 24-well Falcon Primaria culture plates (1 × 106 cells per well) in L-15
phenol red-free medium, antibiotic-antimycotic solution (100 U/mL) and 10 mM HEPES.
Cells were cultured for 24 h in an incubator at 23 ◦C before chemical exposure to allow
attachment. Then, 50% of the L-15 phenol red-free medium culture was removed, and
hepatocytes were exposed to medium containing the vehicle (ethanol, final concentration
0.01%) and 1.0, 0.01, or 0.0001 μM of E2, ENA or PFNA. Hepatocytes were incubated in an
incubator at 23 ◦C for 96 h. Media and cells were harvested separately at 0, 24, 48, 72 and
96 h with medium changes every 24 h. Doses of ENA and PFNA were chosen on the basis
of environmentally relevant concentrations [33,39–41] and six independent wells were
setup for both the control and each concentration of compound. The entire experiment was
repeated 3 times.

2.3. MTT Cytotoxicity Assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) activity was
measured according to Smeets et al. [42] with slight modifications, using the MTT Cell
Proliferation and Cytotoxicity Assay Kit assay (Boster Biological Technology, Pleasanton,
CA, USA, Catalog # AR1156). After 0, 24, 48, 72, 96 h of treatment described above,
incubation medium was removed and replaced with fresh culture medium containing MTT
reagent (5 mg/mL MTT diluted in phosphate buffered saline, PBS). After an incubation
of 40 min at 23 ◦C, the formazan crystals produced were solubilized by adding 200 μL
Formazan solubilization solution. After the complete solubilization, 200μL of medium was
transferred to a 96-well microplate and absorbance values were measured at 570 nm using
a microplate reader (BioChrom, Cambridge, UK).

2.4. Alamar Blue Assay

Cell viability was also quantified using the Alamar Blue™ assay reagent (Thermo Sci-
entific, Waltham, MA, USA) as described by Cocci et al. [23] and following manufacturer’s
specifications. The incubation medium was removed after 24, 48, 72, 96 h of treatment,
replaced with a fresh culture medium containing AB reagent at a final concentration of
10%, and incubated for an additional 1 h. The absorbance was monitored at 570/600 nm
using a microplate reader. The cell viability was normalized to that of hepatocytes cultured
in the regular media without any of the tested compounds.

2.5. Quantitative Realtime PCR (q-PCR)

After exposure, the medium was carefully removed, and cells were lysed by adding
the TRIzol reagent (Invitrogen Life Technologies, Milan, Italy). Total RNA was isolated
according to the manufacturer’s specifications. RNA quality and concentration were mea-
sured spectrophotometrically at 260/280 nm, and purity was confirmed by electrophoresis
through 1% agarose gels stained with SafeView Classic (abm). The cDNA was synthesized
from 1.5 μg of total RNA in 20 μL using the 5X All-In-One RT MasterMix (with AccuRT
Genomic DNA Removal Kit) according to manufacturer’s instructions (abm). SYBR green-
based real-time PCR was used to evaluate expression profiles of ERα, ERβ, VTG target
genes. 18s rRNA was selected as appropriate reference gene [28,43,44]. All the primer se-
quences are reported in Table 1 and were provided from Ribecco et al. [45], Vieira et al. [46],
Cabas et al. [47], and Perez-Sanchez et al. [48]. The reaction included 10 μL of 2X BlasTaqTM

qPCR MasterMix (abm), 0.5 μL each of forward and reverse primers (10 μM), 2 μL of cDNA
template, and nuclease-free H2O to a final volume of 20 μL. The expression of individual
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gene targets was analyzed using the ABI 7300 Real-Time PCR software. Thermo-cycling
for all reactions was for 3 min at 95 ◦C, followed by 40 cycle of 15 s at 95 ◦C, and 60 s at
60 ◦C. Dissociation curve analysis revealed that a single peak was generated during the
reaction demonstrating the production of a single product. Each amplified fragment was
then compared with that obtained from amplification of Sparus aurata cDNA and verified
with agarose gel electrophoresis (for details see Figure S1 in Supplementary Material). The
efficiency of qPCR primer sets was reported in Table 1. Results were calculated using the
2−ΔΔCt method and reported as fold change corrected for 18s rRNA and with respect to
vehicle levels. Values are the mean ± SD of three independent experiments.

Table 1. List of primers used in this study.

Gene Primer Sequence (5′–3′) Genbank Product Size Efficiency (%)

ERα CTGGTGCCTTCTCTTTTTGC
TGTCTGATGTGGGAGAGCAG AF136979 181 96.85

ERβ TGTCATCGGGCGGGAAGG
GCTCTTACGGCGGTTCTTGTCT AF136980 188 91.74

VTG CTGCTGAAGAGGGACCAGAC
TTGCCTGCAGGATGATGATA AF210428 158 96.31

18s rRNA GCATTTATCAGACCCAAAACC
AGTTGATAGGGCAGACATTCG AY993930 135 98.65

2.6. Enzyme-Linked Immunosorbent Assay (ELISA)

VTG concentrations in the culture medium of Mugil cephalus hepatocytes were de-
termined using an ELISA method previously published [25]. Cell culture media were
diluted 1:8 as reported for routinely diluted media samples by Navas and Segner [49]. All
samples were analyzed in triplicate. Absorbance was recorded at 492 nm using a microplate
reader (Biochrom).

2.7. Statistical Analysis

Data were assessed with Graphpad prism v6.01 software (GraphPad Software Inc.,
San Diego, CA, USA) and expressed as mean ± standard error of the mean (SEM). Sta-
tistical analysis was performed using ANOVA (one-way analysis of variance) followed
by Bonferroni’s multiple comparison test. Differences with p < 0.05 were considered
statistically significant.

3. Results and Discussion

The prediction results obtained with the EDS model for ENA and PFNA are given in
Table 2.

ENA is a drug of the class of angiotensin-converting enzyme inhibitors (ACEI) that is
mainly used in the treatment of arterial hypertension. Several studies indicate a beneficial
interaction between ACEI and estrogens which in turn are involved in reducing ACE
mRNA concentrations [50]. Zilberman et al. [51] showed that chronic exposure to ENA
significantly up-regulated ERα and β protein expression in rats. To date, however, there
is no experimental evidence that ACEI can bind directly to ERs. Thus, it is not surprising
that, according to EDS simulation, ENA presents moderate binding affinity against the
agonist-active conformation of the ERα and low affinity for both conformations of the
ERβ, respectively.

PFNA is one of the three main long chain PFCs, primarily used as an emulsifier for
producing fluoropolymers, that can be found at high concentrations in the environment [52].
PFNA has been detected in various waters and animal tissues worldwide suggesting high
bioaccumulation potential in the food chain [53,54]. In mammalian studies, an interference
with gonadal development in neonatal mice was observed after gestational exposure
to PFNA [55]. In addition, an increase in estrogenic activity was reported for exposure
to different PFCs, including PFNA, in in vivo studies using fish as models [56,57]. The
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results of in silico analysis obtained for PFNA allow us to support these effects because
the simulation tool predicts its agonist activity on the ERs, showing a high probability of
binding on ERβ and a slightly below probability on ERα. Only the agonist activity on the
ERα from different species was previously described in the literature [56]. This latter paper
reported that PFNA docked into the LBD region of ERα working as in vitro weak binders
and activators. In the present study, PFNA docking scores for ERβ were more favorable
than those for the ERα. In addition, an antagonist activity on the ERβ was also predicted
but any evidence of this potential activity has been found in the literature.

Table 2. Prediction affinities for 17β-Estradiol (E2), Enalapril (ENA) and perfluorononanoic acid (PFNA). +/− indicate the
crystal structures of estrogen receptors (ER) isoforms in complex with their respective agonist (+) or antagonist ligands (−).

CAS Name Structure
Receptor/Predictions Free Binding

Energies (kcal mol−1)

50-28-2 E2

ERα+ (−10.2)
ERα− (−10.0)
ERβ+ (−9.6)
ERβ− (−8.8)

75847-73-3 ENA

ERα+ (−8.3)
ERα− (−7.7)
ERβ+ (−6.8)
ERβ− (−7.8)

375-95-1 PFNA

ERα+ (−8.9)
ERα− (−9.1)
ERβ+ (−9.7)
ERβ− (−8.9)

In order to determine whether a structure–activity relationship between ERs and
tested compounds was evident, primary cultures of grey mullet hepatocytes were used
to investigate the impact of PFNA and ENA exposure on ERα/β and VTG expression. In
the first stage of our study, we examined whether the tested chemical compounds affected
cellular viability by using common in vitro cytotoxicity assays such as Alamar Blue and
MTT. The cell viability was expressed as metabolic activity, displaying 100% viability in
the media of both negative (EtOH) and positive control (E2) at each time point (Figure 1A).

In contrast, a significant inhibition of metabolic activity was obtained for both ENA
and PFNA. We found that cell viability decreased in hepatocytes after exposure to the
highest doses of ENA for 72 h (84.8% and 81.1% of solvent control at 0.01 and 1 μM ENA,
respectively) and 96 h (89.3% and 65.0% at 0.01 and 1 μM ENA, respectively) (Figure 1B).
Similarly, exposure of hepatocytes to 0.01–1 μM PFNA induced a significant change in
viability at both 72 h (cell viability 86.7% and 67.5%, respectively) and 96 h (cell viability
71.7% and 53.9%, respectively) after the start of treatment (Figure 1C). Complete cell death
was confirmed by microscopic examination of cells exposed to the tested chemicals. The
observed effects on cell viability were further investigated using the MTT assay (Figure 2).
ENA and PFNA performed similarly in both assays, showing the most significant decrease
in hepatocyte viability (from 71.7% to 53.9%) exposed to the highest concentrations (0.01
and 1 μM) for 96 h (Figure 2B,C). However, the MTT assay failed to detect cytotoxicity for
PFNA at 0.01 μM after 72 h exposure, thus proving to be slightly less sensitive than the
Alamar Blue assay.

To our knowledge, only one study has shown that ENA elicits specific cytotoxic effects
in primary cultures of hepatocytes through the involvement of a glutathione-dependent
detoxification pathway [58]. This effect was observed at concentrations ranging from 0.5
to 2 mM in an in vitro rat cell model. The potential cytotoxic and antiproliferative effects
of ENA were also found at concentration- and time-dependent manners in human HL60
acute promyelocytic leukaemia cells [59]. Interestingly, viability of ENA-treated HL60 cells
was observed to drop by about 20% after exposure to 3 μM for 48 h. On the other hand, the
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effect of PFNA on hepatocyte viability was previously demonstrated in humans, using the
WST-1 assay.

Figure 1. Alamar Blue cell viability of Mugil cephalus hepatocytes following exposure to E2 (A),
ENA (B), PFNA (C) for up to 96 h. The dot line represents cell viability measured in the solvent
control (assigned a survival of 100%). Values are given as mean ± SEM of three independent
experiments and expressed as % relative to the solvent control. “*” indicates significant differences
between control and treated groups (p < 0.05).

PFNA was found to be more cytotoxic than PFOA and PFOS, causing a larger decrease
in cell viability upon exposure for 6–72 h to a concentration range of 200– 400 μM [60].
According to the obtained results, treatment incubation for 24 or 48 h was applied in the
further studies. However, the exposure duration and sampling time of 24 h for all molecular
endpoints were found to be inappropriate to obtain a clear concentration response of the
model compounds (Figure 3A–C). As expected, 48 h exposure to positive control (E2)
produced a dose-dependent induced expression of ERs and VTG compared with control
hepatocytes (Figure 3D). In contrast, a partial concentration-response curve (0.01–1 μM) for
expression of all molecular endpoints was obtained for the model compound PFNA after
48 h of exposure (Figure 3E), whereas only a small increase was observed in ERα mRNA
levels for 1 μM ENA (Figure 3F).
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Figure 2. MTT assay of Mugil cephalus hepatocytes following exposure to E2 (A), ENA (B), PFNA (C)
for up to 96 h. The dot line represents cell viability measured in the solvent control (assigned a
survival of 100%). Values are given as mean ± SEM of three independent experiments in % relative to
the solvent control. “*” indicates significant differences between control and treated groups (p < 0.05).

We further discuss the mRNA expression of VTG at the level of protein concentrations
in the medium used for the primary cultures of grey mullet hepatocytes. At 48 h after
treatment, E2 caused a significant dose-dependent increase in VTG synthesis at any of
the tested concentrations relative to control cultures (Figure 4). Both PFNA and ENA also
increased the VTG synthesis, but to a lesser extent. Indeed, a significant increase in VTG
levels occurred following treatment with the highest doses (0.01 and 1 μM) of PFNA. In
contrast, VTG up-regulation was only induced in response to exposure at 1 μM ENA.
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Figure 3. ERα, ERβ and VTG mRNA expression profile (fold change from vehicle) in Mugil cephalus hepatocytes exposed to
different concentrations (0.0001–1 μM) of E2 (A,D), PFNA (B,E), ENA (C,F) for 24 and 48 h. Values are mean ± SEM of
three independent experiments. “*” indicates significant differences between control and treated groups (p < 0.05).

ER-mediated production of VTG is likewise by far the most used biomarker of xe-
noestrogen exposure in oviparous species [61–65]. VTG protein and gene expression
has been shown to be up-regulated by various environmental pollutants in a number of
in vitro–in vivo studies using fish models [66–68]. Interestingly, most of these works have
found that VTG induction is accompanied by a clear increase in hepatic ER expression,
mainly ERα. This latter is indeed considered the ER subtype with a major role in me-
diating VTG gene induction. However, there is evidence that ERβ subtype may have a
functional role in the up-regulation of ERα enhancing hepatic VTG induction in response
to E2 or xenoestrogen stimulation [69,70]. Our results on PFNA are in agreement with
those of Benninghoff et al. [56] who, in a recent study, found both in vitro and in vivo
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weak estrogenic activities of this PFC using a similar range of concentrations. Indeed,
according to the relative binding affinity (RBA) values obtained in vitro, dietary PFNA also
induced a consistent in vivo VTG induction in trout [56]. Collectively, our findings provide
clear confirmation of data reported so far regarding the ability of PFNA to act as weak
environmental xenoestrogen. PFNA has frequently been detected in surface waters at con-
centrations in the order of ng/L showing particularly high levels (up to a max of 100 ng/L)
in the recycling sites due to the recycling activities of electrical and electronic waste [40,71].
Thus, the prominence of PFNA in water from this typology of sites suggests the need of a
careful monitoring of this potential xenoestrogen in order to reduce its ecological impact in
aquatic ecosystems.

Figure 4. Changes in medium VTG levels in Mugil cephalus hepatocytes exposed to different con-
centrations (0.0001–1 μM) of E2, ENA, PFNA for 48 h. n.d.: not detectable. “*” indicates significant
differences between control and treated groups (p < 0.05).

Similarly, the occurrence of ENA in the environment can be related to incomplete
removal of this drug from wastewater treatment plants (WWTPs). ENA was detected
in wastewater influent at concentrations ranging from 35 to 1400 ng/L, while in the
wastewater effluent this range was reduced to 0.85–290 ng/L [39]. These data demonstrate
that total or high removal of this drug can be achieved in all WWTPs, thus suggesting a
substantially lower accumulation rate. Given also our results about the weak estrogenic
potential, one might predict that ENA has a mild impact on reproductive functions of
aquatic vertebrates.

4. Conclusions

In summary, an in vitro hepatocyte bioassay was used to characterize estrogenic
responses of gray mullet to PFNA and ENA as representative compounds of two classes of
emerging pollutants. According to the environmental occurrence of these chemicals, the
results would indicate potential adverse impacts especially on reproductive health. The
observed effects are likely to be mediated through direct actions of these compounds on
hepatic ERs suggesting a structure–activity relationship between ER and these emerging
pollutants. While the extent of PFNA estrogenic potential is substantially supported
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by literature data, further studies such as in vivo investigations need to obtain more
information on the estrogenic activity of ENA, especially to check its effectiveness following
long-term accumulation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Abstract: Marine environmental pollution is a longstanding global problem and has a particular
impact on the Bay of Bengal. Effluent from different sources directly enters rivers of the region and
eventually flows into the Bay of Bengal. This effluent may contain radioactive materials and trace
metals and pose a serious threat to the coastal environment, in addition to aquatic ecosystems. Using
gamma spectrometry and atomic absorption spectrometry, a comprehensive study was carried out
on the radioactivity (226Ra, 232Th, 40K, and 137Cs) and trace metal (Cd, Pb, Zn, Cu, Ni, Fe, Mn, and
Cr) concentrations, respectively, in fish and crustacean species collected from the coastal belt of the
Bay of Bengal (Chattogram, Bangladesh). The analysis showed a noticeable increment in the levels of
different radioactive pollutants in the marine samples, although the consumption of the studied fish
and crustacean species should be considered safe for human health. Anthropogenic radionuclide
(137Cs) was not detected in any sample. Furthermore, the metal concentrations of a small number of
trace elements (Pb, Cd, Cr) were found to be higher in most of the samples, which indicates aquatic
fauna are subject to pollution. The estimated daily intake (EDI), target hazard quotient (THQ), hazard
index (HI), and target cancer risk (TR) were calculated and compared with the permissible safety
limits. It was found that consuming the seafood from the Bay of Bengal may cause adverse health
impacts if consumption and/or means of pollution are not controlled.

Keywords: radioactive materials; trace metals; bioaccumulation; marine fish; crustaceans; marine
environmental pollution; Bay of Bengal

1. Introduction

The marine environment is one of the most important sources of life on Earth and
performs a number of key environmental functions for the lives and livelihood of humans
and other organisms. Marine environmental pollution is a longstanding global problem.
Marine pollution affects the Bay of Bengal because of the vulnerability of its aquatic habitats
to such pollution following the industrial revolution in the 19th century. Most aquatic
ecosystems can cope with a certain degree of pollution, but severe pollution is reflected in
changes in the fauna and flora of their communities [1]. Developing countries, including
Bangladesh, are most affected by this human-made problem. Bangladesh is considered
to be one of the most suitable countries for the Blue Economy following the recent estab-
lishment of a vast maritime boundary in the Bay of Bengal. The result of two verdicts on
maritime boundaries, also involving Myanmar and India, allows Bangladesh to exclusively
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exercise its sovereign rights over 118,813 sq km of water. The affected area extends up to
12 nautical miles into territorial sea and includes a further Exclusive Economic Zone (EEZ)
of 200 nautical miles [2]. However, agriculture runoff, untreated sewage, and industrial
pollution are reportedly being discharged directly into rivers, eventually flowing into the
Bay of Bengal. This effluent may contain radioactive materials and trace metals and pose a
particularly serious threat to the coastal environment and the aquatic ecosystems [3,4].

The main causes of radioactivity in the marine environment are seabed movement
originating from underwater volcanic activity and undersea earthquakes, natural processes
of weathering, and mineral recycling of terrestrial rocks [5]. Different types of geological
materials and minerals, such as ores and igneous rocks, which often contain large con-
centrations of natural radioactive elements, contribute to the transfer of radionuclides to
water through leaching action [3]. The level of naturally occurring radioactive elements in
the marine environment has gradually increased due to human activities, such as mining
and processing of ores, production of natural oil and gas, and combustion of fossil fuels in
coal-fired power plants. Moreover, anthropogenic contributions are made by underwater
nuclear device tests, post-nuclear disposal of industrial and radioactive waste, recycling of
spent nuclear fuel, and accidents, including leaks from nuclear power plants [4–7]. Among
the radionuclides, uranium, radium, and radon are soluble in seawater, whereas thorium
is almost completely insoluble. These can dissolve in seawater and then attach to sediment
on the seabed and suspended plankton in the seawater. These dissolved radionuclides and
plankton, in the long run, contaminate marine organisms, including fish, crustaceans, and
several types of shellfish [8].

In addition, trace metals are released into the environment from different sources,
such as transportation, industrial activities, fossil fuels, agriculture, urbanization, and
other human activities [6–9]. The release of large quantities of trace metals into nature has
resulted in several environmental problems due to their non-biodegradability and persis-
tence. Marine life can have a considerable aptitude for bioaccumulation and biosorption of
trace metals [10–12]. Under certain environmental conditions, such as consolidated effects
of biotic and abiotic factors, such as plants, animals, and microbes; the amount of sunlight
in the ecosystem; the amount of oxygen and nutrients dissolved in the water; proximity to
land; depth; and temperature; these trace metals may accumulate to a toxic concentration
and cause ecological damage by threatening the health of aquatic and terrestrial organ-
isms, including humans [1,13,14]. The principal pathway leading to human exposure to
radionuclides and trace metals is the consumption of seafood. A large variety of seafood is
eaten. Fish and crustacean species, because of their important dual role as both an integral
element of marine food webs and a commercial food product for humans, are frequently
selected as indicator organisms in studies related to pollution or the bioaccumulation
processes of various noxious substances [15]. The bioaccumulation of trace metals and
isotopic contaminants by the tissues and organs of marine organisms has been studied
globally and has led to the adoption of the bioindicator concept for environmental quality
assessments [5–8,16,17].

Research on the bioaccumulation of radionuclides and trace metals in the most com-
monly consumed fish and crustacean species in the Bay of Bengal region is limited. Given
the importance of such knowledge, this study was carried out to determine the radioac-
tivity and trace metal levels in six marine fish and four crustacean species of the northern
coastal belt of the Bay of Bengal, Bangladesh. The bioaccumulation levels of radioactive
materials (226Ra, 232Th, 40K, and 137Cs) and trace metals (Cd, Pb, Zn, Cu, Ni, Fe, Mn, and Cr)
were estimated by gamma spectrometry and atomic absorption spectrometry, respectively.
Different radiological and health-hazard parameters were also calculated to assess the
marine environmental quality in this region concerning these pollutants, in addition to the
health risks resulting from the consumption of the studied seafood.
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2. Materials and Methods

2.1. Sample Collection and Preparation

The studied field locations were openly accessible, and the organisms collected did
not belong to any protected species, so permissions were not required at the time of col-
lecting samples from the studied locations. The investigated fish and crustaceans were
obtained from four fish/seafood markets of the northern coastal belt of the Bay of Bengal,
Chattogram, Bangladesh (Figure 1), during the rainy (July) and autumn (September and
October) seasons of 2017. Bangladesh is a country of six seasons (summer, rainy, fall,
autumn, winter, and spring). The fish investigated in this study are mostly available in
rainy and autumn seasons. Hence, we obtained our samples in these two seasons. The
fish samples were obtained from fishing boats operating in the corresponding locations,
while the crustacean samples were obtained from a local sea food market in Chattogram
city. A total of 20 samples (10 samples from each season) were chosen for investigation.
The studied organisms were six fish and four crustacean species, locally available and
commercially important, i.e., Tenualosa ilisha (Ilish), Harpodon neherues (Lotia), Sillaginopsis
panijus (Sundora Baila), Sardinella longiceps (Colombo), Trichiurus lepturus (Churi), and
Konosirus punctatus (Shad) concerning the fish species, and Scylla serrata (mud crab), Por-
tunus sanguinolentus (three-spot swimming crab), Hemigrapsus takanoi (Asian shore crab)
and Penaeus semisulcatus (cat tiger shrimp) concerning the crustaceans.

Figure 1. Location of the study area on the (a) world map, (b) Bangladesh map, and (c) Bay of
Bengal map.

The details of the collected samples are given in Table 1. All the samples were labelled,
stored in ice, and, on the same day, transported to the laboratory and washed with clean
water and distilled water. Afterwards, the samples were dried in filter paper, packed in
polyethylene bags, and stored in a refrigerator of the Laboratory of Atomic Energy Centre,
Chattogram, to avoid degradation, spoiling, contamination, or any other decomposition
until further treatment and analysis were done. The collected fish and crustacean samples
were measured for the total wet weight (WW) and recorded beforehand. For the analysis
of radionuclides and trace metal concentrations, all the animals were used in their entirety,
since the analysis was intended to quantify the radioactivity and the metal concentrations
of each organism.
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Table 1. Marine organisms collected and analyzed during rainy and autumn seasons of 2017 at the Bay of Bengal (Bangladesh).

S
a
m

p
le

T
y

p
e

Name of the
Organism/Local

Name

Scientific
Name

Range of the
Weight in gm

Range of the
Length in cm

Average
Moisture

Total
Sample Weight

in Kg

Sampling
Location and

Season

6
Fi

sh
sa

m
pl

es

Hilsa fish/
Ilish fish

Tenualosa
ilisha

588–626 38.0–38.5 86.01% 1.214 (L-1) and R

274–306 29.0–30.0 1.204 (L-2) and A

Bombay duck/
Lotia fish

Harpodon
neherues

62–102 22.0–25.5 90.22% 0.844 (L-1) and R

22–88 18.0–27.0 0.890 (L-2) and A

Flathead sillago/
Sundara Baila

Sillaginopsis
panijus

82–150 25.0–29.0 83.01% 0.960 (L-1) and R

168–320 30.0–38.0 1.152 (L-1) and A

Indian oil sardine/
Colombo fish

Sardinella
longiceps

50–68 18.5–19.5 77.85% 1.014 (L-1) and R

42–62 18.5–20.5 1.176 (L-1) and A

Belt fish/
Churi Fish

Trichiurus
lepturus

84–106 44.0–51.0 80.88% 0.964 (L-1) and R

240–322 62.0–73.0 1.116 (L-1) and A

Dotted gizzard
shad/Shard fish

Konosirus
punctatus

270–292 22.0–25.0 73.41% 0.850 (L-1) and R

255–285 21.0–23.0 0.820 (L-1) and A

4
C

ru
st

ac
ea

n
sa

m
pl

es

Three-spot
swimming crab

Portunus san-
guinolentus

90–140 - 76.44% 1.452 (L-3) and R

93–145 - 1.485 (L-3) and A

Mud crab Scylla
serrata

60–120 - 82.82% 1.441 (L-4) and R

55–120 - 1.411 (L-4) and A

Asian Shore crab/
Chati Kakra

Hemigrapsus
takanoi

8–18 - 78.00% 1.438 (L-3) and R

8–20 - 1.410 (L-3) and A

Cat tiger shrimp/
Harina Chingri

Penaeus
semisulcatus

12–24 12.0–14.5 76.51% 0.880 (L-1) and R

10–26 12.0–16.0 0.850 (L-1) and A

Note: (L-1)—Fishery Ghat, Chattogram; (L-2)—Gohira Fishery Ghat, Anwara, Chattogram; (L-3)—Ganga Bari Fish Market, Chattogram;
(L-4)—Hazari Goli Seafood Market, Chattogram; R—rainy season and A—autumn season.

Each sample was sun-dried at least one week to remove the extra water and subse-
quently oven-dried at about 70 ◦C to obtain a constant weight. The samples were then
re-weighed to determine the dry/wet ratio. Finally, the dried samples were ground, sieved
for homogeneity, and stored in clean and dry uncontaminated empty cylindrical plastic
containers of uniform size (2.8 cm × 8.0 cm), sealed with wide vinyl adhesive tapes around
their screw necks to air tighten for succeeding uses.

For the trace metal determination, a part of the powdered samples was kept aside in
clean and dry sealable plastic bags and kept in an air-tight glass jar to save the samples from
any types of chemical reactions. Five grams of the homogenized powder were taken from
each specimen and placed in a 250 mL digestion beaker. A digestion mixture containing
6.0 mL of high purity nitric acid (70%) and 2.0 mL of hydrochloric acid (37%) were added
and heated at 60 ◦C for half an hour. After cooling down for 15 min, 4.0 mL of hydrogen
peroxide (30%) was added to each beaker and heated until a clear solution was obtained
and the volume decreased into half of its original volume following the standard operating
procedure described elsewhere [18]. The digested portions were filtered through Whatman
filter paper (No. 42) and diluted to a final volume of 50 mL using de-ionized water.

2.2. Methods for Determining Radioactivity and Trace Metals
2.2.1. Gamma Spectrometry Analysis

For the natural and artificial radioactivity measurement of each sample, about 100 g
of dried fish/crustacean samples were weighed and placed in individual plastic containers.
The samples were kept 4 weeks before the analysis in airtight conditions to allow secular
equilibrium between thorium and radium and their short-lived progenies [14].

The activity concentrations of 226Ra, 232Th, 40K, and 137Cs in the samples were de-
termined using an NATS GCD-40 190 p-type HPGe (Baltic Scientific Instruments, Riga,
Latvia), gamma-ray spectrometer (63.3 mm crystal diameter, 61.3 mm thickness, +2200 V
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operating bias voltage). The low background detector of relative efficiency of 43.1% and an
energy resolution of 1.74 keV full width at half maximum (FWHM) at the 1332 keV peak of
60Co was enclosed in a cylindrical lead shield. The counting system was connected to an 8 k
multi-channel analyzer (MCA 527, GBS Elektronik GmbH) with associated electronics for
data acquisition of photo-peak areas. A Spectral Line GP© was used to analyze the gamma-
ray counts received from the samples. Energy calibration and the absolute photo-peak
efficiency evaluation were performed using standard reference material (Code: 8501-EG-
SVE, Eckert and Ziegler Analytics), diluted with a multi-nuclide gamma-ray source (241Am,
109Cd, 57Co, 139Ce, 113Sn, 85Sr, 137Cs, 88Y, 60Co) having homogeneously distributed activity,
and maintaining the same geometry and density as the plastic containers containing the
samples. To minimize the statistical counting error, the samples were counted for a period
of 30,000 s. An empty container was also counted under the same conditions to determine
the background counts. To calculate the specific activities, the background counts for the
same counting condition were deducted from the counts of each sample to obtain the net
counts. For spectrum analyses, the single transition gamma-ray line 1460.822 keV was used
to determine the activity concentrations of 40K. The gamma-ray photo-peaks of 295.221 keV
and 351.922 keV from 214Pb, and 609.320 keV, 1120.310 keV and 1764.551 keV from 214Bi
were used to determine the activity concentrations of 226Ra. The activity concentrations of
232Th were determined using the net counts under the 238.630 keV and 300.087 keV photo-
peaks from 212Pb, 911.205 keV and 968.970 keV photo peaks from 228Ac, and 583.190 keV
and 2614.533 keV from 208Tl. For the evaluation of 226Ra and 232Th activity, a weighted
mean approach was applied using the aforementioned gamma lines [19,20]. Much care
was taken to prevent contamination during the investigation.

2.2.2. Determination of Trace Metals

The fish and crustacean samples were analyzed for eight trace elements, Cd, Pb,
Zn, Cu, Ni, Fe, Mn, and Cr, using an atomic absorption spectrophotometer (HITACHI
Z-2000) [21]. Four standard solutions of different known concentrations were prepared, and
the elemental concentrations in the unknown samples were determined by extrapolation
from the calibration curve. The digested samples were directly aspirated into the flame
(air–acetylene fuel mixture). The concentration corresponding to the absorption in the
digest was determined by using the absorption mode. The minimum detection limits of
the analyzer for the investigated trace metals in ppm are 0.002 (Cd), 0.010 (Cu), 0.005 (Zn),
0.050 (Pb), 0.010 (Mn), 0.020 (Fe), 0.020 (Ni), and 0.020 (Cr) [22]. The limits of detection
(LODs) for all the elements analyzed in the samples were calculated as the blank signal
plus three times its standard deviation, whereas the limit of quantification (LOQ) was
calculated as ten times the standard deviation of the blank signal, following [23,24]. The
recovery estimation was performed by the laboratory during method development and
validation processes using standard reference materials (SRMs) and certified reference
materials (CRMs). However, this time we used secondary reference material made from
commercial standard solutions of each element. At each step of the digestion processes,
acid blanks (laboratory blank) were prepared to ensure that the samples and chemicals used
were not contaminated. Each set of digestion had its acid blank and was corrected by using
its blank. The measurement of each sample was taken three times. All the experimental
values were reported as mean value ± standard deviation (SD). Throughout the analysis,
all the trace metal standards were prepared and run to check the precision of the instrument.
The quality control and quality assurance protocol set by the U.S. Environmental Protection
Agency for metal analysis were used. The quality assurance testing relied on the blank
controls, and the yield of the chemical procedure was used.
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2.3. Radiation Dose and Risk Assessment
2.3.1. Radiation Dose Assessment
Activity Concentration

The activity concentrations (Bq kg−1) of the natural and anthropogenic radionuclides
in the measured samples were evaluated by the following equation [25]:

A
(

Bq kg−1
)
=

CPS × 1000
εγIγM

(1)

where CPS = net count per second (i.e., CPS for sample—CPS for background), εγ = detector
efficiency of the specific γ-ray, Iγ = intensity of the gamma-ray, and, M = mass of the sample
in grams.

The errors of the measurements were expressed in terms of the standard deviation of
the ±1σ level.

Total Effective Dose

Annual effective dose is a useful concept that enables the radiation doses from different
radionuclides and from different types of sources of radioactivity to be added. Estimation
of the radiation-induced health effects associated with the intake of radionuclides in the
body is proportional to the total dose delivered by the radionuclides while resident in
the various organs. Radiation doses ingested are obtained by measuring radionuclide
activity in foodstuffs (Bqkg−1) and multiplying these by the masses of food consumed over
a certain period (kgd−1 or kgy−1). A dose conversion factor (SvBq−1) can then be applied
to give an estimate of the ingestion dose. Thus, the ingested dose is given by [26,27]:

annual effective dose
(

Svy−1
)

= concentration
(

Bq.kg−1
)

× annual intake
(

kgy−1
)

× DCF
(

SvBq−1
)

(2)

where DCF is the standard dose conversion factor, which is equal to 0.2800 μSvBq−1

for 226Ra, 0.2300 μSvBq−1 for 232Th, and 0.0062 μSvBq−1 for 40K [25].
Therefore, the total effective dose (Svy−1) via ingestion is calculated by the follow-

ing formula:

total annual effective dose =
{

CR(
226Ra)× IF × ED

}
+

{
CR(

232Th)× IF × ED

}
+
{

CR(
40K)× IF × ED

}
(3)

where CR is the concentration of radionuclides in ingested fish/crustaceans (Bqkg−1),
IF is the annual intake (kgy−1) of fish/crustaceans containing radionuclides, and ED
is the ingestion dose conversion factor for radionuclides (SvBq−1). The intake rates for
Bangladeshi consumers were taken from the “Year Book of Fisheries Statistics of Bangladesh
2018” [28].

2.3.2. Radiation Risk Assessment
Internal Hazard Index (Hin)

Radon and its short-lived descendants are hazardous to the respiratory organs. The
internal hazard index (Hin) is used to quantify the internal exposure to radon and its
progenies, which is given by the equation:

Hin =
CRa

185
+

CTh
259

+
CK

4810
(4)

where CRa, CTh, and CK are the concentration (Bqkg−1) of Ra, Th, and K, respectively.
The values of the internal hazard index (Hin) must be less than unity for the radiation

hazard to be negligible [29,30].
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Excess Lifetime Cancer Risk (ELCR)

Nowadays, cancer is called a life-threatening disease, and the percentage of this disease
increases all over the world, including in Bangladesh, due to various reasons. One of the
reasons is the effect of radiation on the biological cells, which contributes to a greater extent
to increasing cancer incidence. An effort was made to assess the excess lifetime cancer
risk due to the ingestion of marine fish and crustaceans by the procedure proposed by the
United States Environmental Protection Agency (USEPA) [31]. The following equation was
used to calculate the excess lifetime cancer risk [12,32]:

ELCR = Air × Als × Rc (5)

where ELCR, Air, Als, and Rc are the excess lifetime cancer risk, the annual intake of
radionuclide (Bq), the average lifespan 72 yr. (life expectancy of a male and a female
are 70.6 years and 73.5 years, respectively in Bangladesh [33]), and the mortality cancer
risk coefficient (Bq–1), respectively. The values of mortality cancer risk coefficients are
9.56 × 10−9 Bq–1 for 226Ra, 2.45 × 10−9 Bq–1 for 232Th, and 5.89 × 10−10 Bq–1 for 40K [12,31].
The acceptable ELCR limit is 10−3 for radiological risk in general [32,34].

2.4. Health Risk Assessment of Trace Metals
2.4.1. Estimated Daily Intake (EDI)

EDI is measured by the following equation in (mgkg−1 body weight per day) [35]:

EDI =
EF × ED × FIR × Cf × CM

WAB × ATn
× 10−3 (6)

where EF is the exposure frequency (365 days per year), ED=72 years is the exposure
duration, FIR is the ingestion rate, which is taken as 62.58 g per person per day [28], Cf is
the conversion factor (Cf = 0.208) to convert fresh weight to dry weight considering 79% of
moisture content of the fish fillet [35,36], CM is the metal concentration in fish fillet (mgkg−1

dry weight basis), WAB is the average body weight (60 kg) of Bangladeshi adult people [37],
and ATn (equal to EF × ED) is the average exposure time for non-carcinogens [35].

Several organizations such as WHO, FAO, etc., provided guidelines on the intake of
metals by a human. The maximum tolerable daily intake (MTDI), provisional tolerable
daily intake (PTDI), and the acceptable daily intake (ADI) are used to describe the safe
levels of intake for several toxins, including toxic metals. The EDI of trace metals measures
the amount of metal intake by an adult (60 kg) by ingestion of fish or crustaceans per day.

2.4.2. Target Hazard Quotient (THQ)

The THQ is non-carcinogenic risk and is dimensionless. In this study, the non-
carcinogenic health risks associated with the consumption of fish and crustacean species
were assessed based on the target hazard quotients (THQs), and their calculations were
done using the standard assumption for an integrated USEPA risk analysis as follows [38]:

THQ =
EF × ED × FIR × Cf × CM

WAB × ATn × RfD
× 10−3 (7)

EF, ED, FIR, Cf, CM, WAB, and ATn are explained in the earlier section. RfD is the
reference dose of individual metal (mg/kg/day) (Table 2). The RfD represents an estimate
of the daily exposure to which the human population may be continually exposed over
a lifetime without a significant risk of deleterious effects. If the THQ is less than 1, the
exposed population is unlikely to experience obvious adverse effects. If the THQ is equal
to or higher than 1, then there is a potential health risk [39], and related interventions and
protective measurements should be taken.

45



Environments 2021, 8, 13

Table 2. Reference dose (RfD) and carcinogenic slope factor (CSFo), oral.

Trace Elements RfD(Mg/Kg/Day)
CSFo(Mg/Kg
bw/Day)−1 Reference of CSFo

Pb 4 × 10−3 8.5 × 10−3 [37]

Cu 4 × 10−2 - [37]

Zn 3 × 10−1 - [40]

Mn 1.4 × 10−1 - [40]

Cd 1 × 10−3 1.5 × 101 [41]

Ni 2 × 10−2 1.7 × 100 [40]

Cr 3 × 10−3 5 × 10−1 [41]

Fe 7 × 10−1 - [40]

2.4.3. Hazard Index (HI)

To estimate the overall potential health risk related with more than one metal, THQ of
every metal is summed up and referred to as hazard index (HI). The HI can be calculated
by the sum of the target hazard quotients (THQs) of each metal:

HI = THQMn + THQFe + THQCu + THQZn + THQPb + THQCd + THQCr + THQNi (8)

2.4.4. Target Cancer Risk

For carcinogens, the target cancer risk (lifetime cancer risk) is estimated as the in-
cremental probability of an individual to develop cancer over a lifetime exposure to that
potential carcinogen (i.e., incremental or excess individual lifetime cancer risk) [38]. Accept-
able risk levels for carcinogens range from 10−4 (risk of developing cancer over a human
lifetime is 1 in 10,000) to 10−6 (risk of developing cancer over a human lifetime is 1 in
1,000,000). The equation used for estimating the target cancer risk, which is dimensionless,
is as follows [38]:

TR =
EF × ED × FIR × Cf × CM × CSFo

WAB × ATC
× 10−3 (9)

Here, CSFo is the oral carcinogenic slope factor (mg/kg BW/day)−1, and ATc (equal to
EF × ED) is the average exposure time for carcinogens. Since Mn, Fe, Cu, and Zn do
not cause any carcinogenic effects, their CSFo have yet not been established in USEPA
2012. Thus, TR values for the intake of Pb, Cd, Cr, and Ni were calculated to show the
carcinogenic risk using oral carcinogenic slope factors (CSFo) of these toxic elements given
in Table 2.

3. Results and Discussion

Chattogram is the second largest city in Bangladesh, where the main seaport of
Bangladesh is located on the bank of the Karnaphuli river. The Chattogram seaport handles
ninety per cent of Bangladesh’s export–import trade and has been used by India, Nepal,
and Bhutan to join for transshipment. There are thousands of industries including a textile
mill, cement factory, tannery, oil refinery, dichlorodiphenyltrichloroethane (DDT) plant,
chemical factory, fertilizer factory, paper mills, power plant, dry-dock, paint factory, rayon
mills, etc., situated near to the bank of the Karnaphuli river, among which about 200 are
identified as pollution causing units continuously discharging unlawfully a huge amount
of pollutants that finally enter into the Bay of Bengal [42]. The wastes coming from the
municipal sewage system through many canals of Chattogram city is another potential
factor of the pollution problem of this bay. Moreover, illegal and/or accidental discharges
of grease, fish oil, bilge, garbage, etc., from the merchant and fishing vessels are causing
pollution to the Bay of Bengal [43].
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3.1. Radiation Dose and Risk Assessment by Radioactivity Analysis

Marine fish and crustaceans are potential bio-indicators when they accumulate the
target radionuclides from surrounding waters [15,44]. Monitoring radionuclide levels in
fish and crustaceans is of great importance due to their significant contribution to the
natural radiation dose received by human beings consuming them [45].

Among all the fish and crustacean samples, 226Ra was detected only in Harpodon
neherues, and its value was 5 ± 2 Bqkg−1. There was no anthropogenic radionuclide (137Cs)
in any sample. In all the studied fish samples, mean activity concentrations of 232Th and
40K ranged from 7 ± 1 to 190 ± 10 and 210 ± 50 to 360 ± 40 Bqkg−1, respectively. Similarly,
in crustacean samples, the activity concentrations of 232Th and 40K ranged from 5.0 ± 2
to 53 ± 10 and 130 ± 40 to 240 ± 70 Bqkg−1, respectively. Further, note that the activity
concentrations of 40K were greater than those of the other radionuclides for all samples
(Table 3). Mean values of the activity concentrations of 226Ra, 232Th, and 40K in all the fish
and crustacean samples were 5 ± 2, 67 ± 9, and 250 ± 50 Bqkg−1

, respectively.

Table 3. Mean activity concentration (Bqkg−1) and excess lifetime cancer risk (ELCR) due to the consumption of natural
radionuclide from marine fish and crustacean samples collected at the Bay of Bengal.

Sl. No.

T
y

p
e
s

o
f

S
a
m

p
le

s

Name of
Organism/Local

Name

Scientific
Name

N
o

.
o

f
S

a
m

p
le

s

Mean
Activity

for 226Ra
(Bqkg−1)

Mean
Activity

for 232Th
(Bqkg−1)

Mean
Activity

for 40K
(Bqkg−1)

ELCR
for

226Ra

ELCR
for

232Th

ELCR
for
40K

1

Fi
sh

Hilsa fish/
Ilish fish

Tenualosa
ilisha 2 BDL 7 ± 1 310 ± 30 BDL 2.60 × 10−5 2.96× 10−4

2 Bombay duck/
Lotia fish

Harpodon
neherues 2 5 ± 2 170 ± 30 270 ± 60 7.07 × 10−5 6.87 × 10−4 2.62× 10−4

3 Flathead sillago/
Sundara Baila

Sillaginopsis
panijus 2 BDL 190 ± 10 300 ± 60 BDL 7.60 × 10−4 2.86 × 10−4

4
Indian oil
sardine/

Colombo fish
Sardinella
longiceps 2 BDL BDL 210 ± 50 BDL BDL 2.03 × 10−4

5 Belt fish/
Churi fish

Trichiurus
lepturus 2 BDL 11 ± 2 360 ± 40 BDL 4.23 × 10−5 3.44 × 10−4

6
Dotted gizzard

shad/
Shard fish

Konosirus
punctatus 2 BDL BDL 250 ± 70 BDL BDL 2.37 × 10−4

7

C
ru

st
ac

ea
n

Three-spot
swimming crab

Portunus
sanguino-

lentus
2 BDL BDL 190 ± 30 BDL BDL 1.79 × 10−6

8 Mud crab Scylla
serrata 2 BDL 53 ± 10 240 ± 70 BDL 2.12 × 10−4 2.32 × 10−4

9
Asian shore

crab/
Chati Kakra

Hemigrapsus
takanoi 2 BDL 37 ± 6 220 ± 50 BDL 1.47 × 10−4 2.08 × 10−4

10 Cat tiger shrimp/
Harina Chingri

Penaeus
semisulcatus 2 BDL 5 ± 2 130 ± 40 BDL 2.01 × 10−5 1.30 × 10−4

Note: BDL—below detection limit.

The comparative data of the present study with the previously reported studies of
different radioactive elements in fish and crustacean samples of the Bay of Bengal region are
reported in Table 4. It was reported in 2012 that the activity concentrations of 226Ra, 232Th,
and 40K in sea-fish samples of the Black Sea region of Turkey were 0.06 ± 0.01 to 0.96 ± 0.36,
0.12 ± 0.04 to 1.03 ± 0.15, and 35.04 ± 0.24 to 127.4 ± 2.3 Bqkg−1, respectively [14].

In all these cases, the results were very much lower than those of the present observations.
Conversely, the mean activity concentration of 226Ra, 232Th, and 40K in marine fish of the
Straits of Malacca was reported as 4.05 ± 0.48 to 7.83 ± 0.78, 1.93 ± 0.24 to 6.21 ± 0.53, and
288 ± 15 to 399 ± 20 Bqkg−1, respectively, in 2015 [12], being considerably comparable to the
present study except the concentration of 232Th. The obtained activity concentration of 232Th
and 40K in all the fish and crustacean samples were 67 ± 9 and 250 ± 50 Bqkg−1, respectively,
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which are almost similar to the activity concentration obtained in crab samples from river
Odeomi, Ogun State, at the Southwest of Nigeria [46]. It should be noted that if we liken
the present study to previous studies for fish [47,48] at the same region, there is a noticeable
increment in the levels of different radioactive elements in those marine organisms of the
Bay of Bengal region (shown in Table 4). This increment might be due to the wide variety
of activities (e.g., housing, tourism, power generation plants, petroleum, steel, shipbuilding,
chemical, pharmaceutical, textile, vegetable oil refineries, glass manufacturing industries,
etc.) around the Bay of Bengal region, which have been diversified over the years. Multi-
functionality and diversification of industries, fisheries, and agriculture are probably linked
with these changes in the marine environment. The absence of the anthropogenic radionuclide
(137Cs) indicates that there was not any effect on the marine organisms analyzed due to the
post-nuclear disposal of industrial and radioactive waste, underwater nuclear device tests,
accidents including leaks from nuclear power plants and from recycling of spent nuclear fuel,
etc. As Bangladesh is establishing its first nuclear power plant (NPP) at Rooppur, Pabna, this
baseline data can help to further monitor these activities.

Table 4. Comparative data of the radioactivity (Bqkg−1) in marine fish and crustacean samples of the Bay of Bengal, Bangladesh.

Sl.
No.

Study
Year

Number
of

Species

226Ra 232Th 40K 137Cs 238U 228Ra Reference

Fish

1 1995 15 -
0.31 ± 0.05

to
1.67 ± 0.48

8.5 ± 1.2
to

57.1 ± 5.3

BDL
to

1.98 ± 0.33

0.31 ± 0.05
to

1.19 ± 0.17
- M. N.

Alam [47]

2 2000 15
0.10 ± 0.03

to
1.66 ± 0.24

-
18.1 ± 3.4

to
86.4 ± 6.7

0.19 ± 0.04
to

1.47 ± 0.28
-

0.39 ± 0.07
to

1.35 ± 0.19
S. Ghose

[48]

3 2017 2 -
8.5 ± 9.6

to
13 ± 17

265 ± 417
to

460 ± 310
-

9 ± 19
to

13 ± 14
- M. H.

Kabir [49]

4 2020 6
BDL

to
5 ± 2

BDL
to

190 ± 10

210 ± 50
to

360 ± 40
BDL - - Present

Study

Crustacean

1 1995 5 -
0.36 ± 0.10

to
0.78 ± 0.23

7.32 ± 0.88
to

16.7 ± 1.8

BDL
to

0.47 ± 0.07

0.11 ± 0.01
to

0.49 ± 0.18
- M. N.

Alam [47]

2 2020 4 BDL
BDL

to
53 ± 10

130 ± 40
to

240 ± 70
BDL BDL - Present

Study

Note: BDL—below detection limit.

The ELCR values of 226Ra, 232Th, and 40K in all the fish and crustaceans are shown
in Table 3. It is to be mentioned here that ELCR for 226R was below detection level (BDL),
except for in Harpodon neherues. However, all of the obtained values (shown in Table 3) were
lower than the acceptable ELCR limit of 10−3 for radiological risk in general, indicating no
health hazard to the consumers [32,34].

The estimated annual effective doses due to intake of 226Ra, 232Th, and 40K from the
consumption of seafood (fish and crabs) from the Bay of Bengal are presented in Table 5,
and the comparison between the mean annual effective dose and its world average values
are shown in Figure 2. The average annual effective dose for 226Ra and 40K were found
to be within UNSCEAR acceptable limits. Though the average annual effective dose for
232Th was found to be three times greater than the UNSCEAR acceptable limits, the total
values of annual effective dose were within the acceptable limits, indicating no threat to
the consumers. Maximum and minimum values of the total internal hazard index were
0.79 ± 0.06 and 0.04 ± 0.01, respectively, and all the values were less than 1, showing that
there is no health hazard to the consumers.
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Table 5. Annual effective dose, total effective dose and total internal hazard index for different radionuclides in marine fish
and crustacean samples collected at the Bay of Bengal (Bangladesh) during rainy and autumn seasons of 2017.

Sl.
No.

T
y

p
e

s
o

f
S

a
m

p
le

s

Name of the
Organism/Local

Name

Scientific
Name

N
o

.
o

f
S

a
m

p
le

s

Annual
Effective

Dose
for

226Ra
(Svy−1)

Annual
Effective

Dose
for

232Th
(Svy−1)

Annual
Effective

Dose
for
40K

(Svy−1)

Total
Annual

Effective
Dose

(Svy−1)

Total
Internal
Hazard
Index
(Hin)

1

Fi
sh

Hilsa fish/
Ilish fish

Tenualosa
ilisha 2 BDL 3.39 × 10−5 4.33 × 10−5 7.72 × 10−5 0.09 ± 0.01

2 Bombay duck/
Lotia fish

Harpodon
neherues 2 2.88 × 10−5 8.96 × 10−4 3.82 × 10−5 9.63 × 10−4 0.74 ± 0.13

3 Flathead sillago/
Sundara Baila

Sillaginopsis
panijus 2 BDL 9.90 × 10−4 4.18 × 10−5 1.03 × 10−3 0.79 ± 0.06

4
Indian oil
sardine/

Colombo fish
Sardinella
longiceps 2 BDL BDL 2.97 × 10−5 2.97 × 10−5 0.04 ± 0.01

5 Belt fish/
Churi Fish

Trichiurus
lepturus 2 BDL 5.52 × 10−5 5.03 × 10−5 1.05 × 10−4 0.11 ± 0.02

6
Dotted gizzard

shad/
Shard fish

Konosirus
punctatus 2 BDL BDL 3.47 × 10−5 3.47 × 10−5 0.05 ± 0.02

7

C
ru

st
ac

ea
n

Three-spot
swimming crab

Portunus san-
guinolentus 2 BDL BDL 2.62 × 10−5 2.62 × 10−5 0.04 ± 0.01

8 Mud crab Scylla
serrata 2 BDL 2.76 × 10−4 3.40 × 10−5 3.10 × 10−4 0.25 ± 0.05

9 Asian shore crab/
Chati Kakra

Hemigrapsus
takanoi 2 BDL 1.92 × 10−4 3.04 × 10−5 2.22 × 10−4 0.19 ± 0.03

10 Cat tiger shrimp/
Harina Chingri

Penaeus
semisulcatus 2 BDL 2.63 × 10−5 1.90 × 10−5 4.52 × 10−5 0.05 ± 0.02

Figure 2. Comparison between the estimated annual effective doses obtained in the present study
with the world average values [32].

3.2. Pollution Level and Health Risk Assessment of Trace Metal Analysis
3.2.1. Trace Metal Concentration

The intake, bioassimilation, and subsequent bioaccumulation of trace metals in marine
organisms are significantly affected by the dissimilar aquatic geochemistry of the trace
metals as well as the diverse feeding habits and living methods of fish and crustaceans.
Among marine animals, fish are possibly one of the most mobile and capable of travelling
long distances. Compared to other types of organisms, fish are also on a high trophic level
in the food chain; hence, their diet is probably the most diverse of the species studied here.
Crustaceans are benthic organisms that usually live on or near the sea floor and are capable
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of travelling some distance. They often feed on organic debris but also on small crustaceans
and fish on or near the sea floor. Although the trace metal concentrations in the various
species of marine fish and crustaceans analyzed in the present study were in a wide range
of variations, these aquatic organisms also showed metal accumulation patterns that were
noteworthy (see Table 6).

Table 6. Mean metal concentration (mgkg–1 DW) in different marine fish and crustacean samples collected at the Bay of
Bengal (Bangladesh) during rainy and autumn seasons of 2017.

Name of
the Organ-
ism/Local

Name

Hilsa Fish/
Ilish Fish

Bombay
Duck/

Lotia Fish

Flathead
Sillago/
Sundara

Baila

Indian Oil
Sardine/
Colombo

Fish

Belt Fish/
Churi Fish

Dotted
Gizzard

Shad/
Shard Fish

Three-
Spot

Swimming
Crab

Mud
Crab

Asian
Shore
Crab/
Chati
Kakra

Cat Tiger
Shrimp/
Harina
Chingri

Scientific
name

Tenualosa
ilisha

Harpodon
neherues

Sillaginopsis
panijus

Sardinella
longiceps

Trichiurus
lepturus

Konosirus
punctatus

Portunus
sanguino-

lentus
Scylla
serrata

Hemigrapsus
takanoi

Penaeus
semisulca-

tus

Sample
Type

Fish Crustacean

No. of
samples

from
two

seasons

2 2 2 2 2 2 2 2 2 2

Mean Pb
conc. in
mgkg−1

DW

0.19 ± 0.04 0.25 ± 0.03 0.37 ± 0.03 4.6 ± 0.1 0.37 ± 0.00 0.12 ± 0.03 1.4 ± 0.0 1.6 ± 0.0 1.4 ± 0.0 0.12 ± 0.02

Mean Cu
conc. in
mgkg−1

DW

4.1 ± 0.1 1.7 ± 0.1 1.6 ± 0.0 2.6 ± 0.0 1.9 ± 0.0 3.4 ± 0.1 62 ± 20 100 ± 0 75 ± 6 44 ± 0

Mean Zn
conc. in
mgkg−1

DW

73 ± 0 58 ± 0 61 ± 0 170 ± 0 63 ± 0 74 ± 0 130 ± 1 140 ± 1 120 ± 1 83 ± 1

Mean Mn
conc. in
mgkg−1

DW

16 ± 0 5.8 ± 0.0 18 ± 0 20 ± 0 11 ± 0 10 ± 0 89 ± 1 610 ± 1 450 ± 3 17 ± 0

Mean Cd
conc. in
mgkg−1

DW

0.14 ± 0.00 0.16 ± 0.00 0.12 ± 0.00 0.39 ± 0.00 0.11 ± 0.00 2.0 ± 0.0 3.3 ± 0.0 0.52 ± 0.04 0.10 ± 0.00 1.8 ± 0.0

Mean Ni
conc. in
mgkg−1

DW

6.9 ± 0.1 BDL 0.14 ± 0.07 0.37 ± 0.04 1.1 ± 0.1 2.1 ± 0.0 1.6 ± 0.0 1.3 ± 0.1 BDL 0.16 ± 0.02

Mean Cr
conc. in
mgkg−1

DW

0.45 ± 0.00 1.2 ± 0.2 1.8 ± 0.1 0.58 ± 0.00 0.79 ± 0.00 0.79 ± 0.00 2.0 ± 0.2 2.8 ± 0.0 1.8 ± 0.1 0.70 ± 0.00

Mean Fe
conc. in
mgkg−1

DW

790 ± 10 5.5 ± 0.1 140 ± 1 370 ± 2 120 ± 1 130 ± 1 330 ± 1 400 ± 2 560 ± 3 55 ± 0

Note: BDL—below detection limit.

The trace metal concentrations found in individual fish muscles for both rainy and
autumn seasons varied for Pb, 7.5–0.12, Cu: 4.3–1.3; Zn, 170–45; Mn, 24–5.5; Cd, 2.1–0.10;
Ni, 13–0.28; Cr, 2.6–0.16; and Fe, 1300–11 mgkg−1 dry weight. In addition, in individ-
ual crustacean samples of both rainy and autumn seasons, these values varied for Pb,
1.9–0.25; Cu, 100–39; Zn, 150–79; Mn, 640–15; Cd, 3.4–0.09; Ni, 2.3–0.31; Cr, 3.3–0.63; and Fe,
600–9.4 mgkg−1 dry weight.

Most of the chemical elements present in fish and crustaceans are essential for biota
at low concentrations; however, high concentrations of these elements can become toxic
for them. Similarly, some metals (e.g., Fe, Mn, Ni, Cu, and Zn) are necessary for proper
metabolic reactions in the human body, and other elements (e.g., Cd, Cr, and Pb) are of
unknown benefits and may become toxic in the cases of chronic exposure to humans [50].
The obtained trace metal concentrations in the ten marine fish and crustacean samples
analyzed in the present study in the rainy season followed the order of Fe > Mn > Zn >
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Cu > Ni > Cr > Cd > Pb and in the autumn season followed the order of Fe > Mn > Zn >
Cu >Cr > Pb > Cd > Ni. However, in both seasons, the average concentration followed the
order of Fe > Zn > Mn > Cu > Ni > Pb > Cr > Cd in fish samples and of Fe > Mn > Zn > Cu
> Cr > Cd > Pb > Ni in crustacean samples. This demonstrated that marine organisms in
different groups had different accumulation mechanisms for trace metals. Additionally,
the different concentrations of chemical elements in the marine environment and the age of
the marine organisms analyzed may also be responsible for these trends.

The maximum allowed concentration of Pb in fish is 0.21 mgkg−1 DW set by JECFA [51],
whereas in our study we found that the fish Sillaginopsis panijus, Sardinella longiceps, Trichi-
urus lepturus, and all the crustacean species contained Pb concentrations exceeding the
limit. According to FAO/WHO, the acceptable limit of Cd for human consumption is
0.20 mgkg−1 [52]. Among the fish species, Sardinella longiceps, Konosirus punctatus, and
among the crustacean species Portunus sanguinolentus, Scylla serrata, and Penaeus semisulca-
tus exceeded this limit. In addition, the permissible limit for Cr is 0.20 mgkg−1 DW set by
the National Academic Press, Washington DC, 1989 [51], whereas all the studied samples
exceeded this limit. These three trace metals (Cd, Cr, and Pb) are considered to be toxic
and all of them were in an excessive content in some of the studied marine organisms,
demonstrating that the aquatic fauna was contaminated by these metals. Other essential
trace elements (e.g., Cu, Zn, Mn, Ni, and Fe) were also observed in excessive contents in
some of the studied samples. This indicates the overall pollution status of the studied area
due to industrial activities, fossil fuels, agricultural run-off, ship-breaking activities, and
other human activities around the coastline.

A comparison between available fish species metal concentration data and the present
study is shown in Table 7. It is evident that the range of concentration of metal elements in
other parts of the world are lower than that of the presently studied data [52–56]. On the other
hand, the obtained data is comparable to similar studies in the neighboring regions [57,58].
If we liken the present study with similar kinds of studies conducted in the Bay of Bengal
in the past, the range of metal element concentrations are also comparable [59–61], though
it indicates a gradual increment in metal accumulation by the fish of those regions. It
seems that day by day, the rate of environmental disturbances and the pollution levels
increase due to different reasons, such as the establishment of different industries beside the
rivers, which is gradually increasing and also affects the marine environment progressively,
contaminating the marine organisms in the long run. Presently, it is an issue of concern
for the local populations, but in the near future it might be the threat for the surrounding
environment of all organisms, including humans.

Table 7. Trace metal concentrations (mgkg−1 DW) in various species of fish from different areas of the world.

Sl.
No.

Area Species Pb Cd Ni Cr Cu Zn Mn Fe Ref.

1
Bay of
Bengal,

Bangladesh

Five species: P.
carcinus, W. attu,
S. sinensis, R. rita,
S. sihama, and B.

strogylurus

- - 2.70–15.20 - 0.65–66.00 26.00–
78.80 1.89–7.11 37.90–

182.00 [61]

2
Bay of
Bengal,

Bangladesh

Six species: C.
neglecta, C. reba, J.

argentus, H.
nehereus, S. fhasa,

and L. savala

1.67–2.58 0.009–0.17 6.44–7.58 - 3.33–4.69 18.86–
33.89 5.01–11.14 60.55–

451.10 [59]

3
Bay of
Bengal,

Bangladesh

Nine species: L.
calcarifer, P.
pangasius, P.

indicus, I.
megaloptera, R.
russelliana, L.
stylifetus, R.
kanagurta, S.
guttatum, P.

paradiseus, and O.
militaris

0.58–4.03 0.04–0.13 0.73–6.11 - 0.46–7.74 25.67–
119.36 1.46–9.02 37.70–

118.91 [60]
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Table 7. Cont.

Sl.
No.

Area Species Pb Cd Ni Cr Cu Zn Mn Fe Ref.

4

Northeast
Coast of the

Bay of
Bengal,
India

Five species: S.
phasa, P. argentus,
G. sparsipapillus,
L. parsia, and C.

sp.

12.40–
19.96 0.62–1.20 2.20–3.69 ND–3.89 16.22–

47.97
12.13–
44.74 - - [57]

5
Cuddalore

Coast, Tamil
Nadu, India

Three species: R.
kanagurta, K.

axillaris, and S.
longiceps

- 0.35–0.43 0.62–0.79 0.66–0.86 0.42–0.61 20.10–
26.20 - - [56]

6
Rio de
Janeiro,
Brazil

Eleven species: S.
salar, S.

brasiliensis, P.
saltatrix, M.
furnieri, C.
leiarchus, C.

crysos, P. arenatus,
M. cephalus, G.
brasiliensis, L.
villarii, and P.

numida

0.04–0.30 0.001–0.09 - - 1.20–2.90 2.70–9.30 0.30–1.70 1.60–7.50 [55]

7
Northeast
Coast of

India

Nine species: H.
nehereus, T.

trichiurus, S.
laticaudus, D.

albida, P.
argentius, A. sp.,
F. niger, H. ilisha,
and R. kanagurta

- 0.01–1.10 - - 0.50–28.20 3.00–99.10 0.50–12.00 10.40–
249.70 [58]

8 Mersing,
Malaysia

Two species: A.
thalassinus, and J.

belangeri
- 2.20–2.34 - - 8.80–12.91 120.91–

217.37 4.34–9.67 - [52]

9 Saudi
Arabia

Three species: L.
nebulosus, P.
major, and S.

cantharu

0.002–
0.003

0.001–
0.001 - - 0.026–

0.093
0.037–
0.376

0.008–
0.036

0.222–
1.016 [54]

10
Bay of
Bengal,

Bangladesh

Ten species: L.
calcarifer, P.
pangasius, P.

indicus, I.
megaloptera, A.

cruciger, P.
chinensis, S.

phasa, S.
guttatum, C. reba,

and A. arius

0.80–6.26 0.02–0.47 1.88–7.56 1.27–4.66 ≤ 8.54 13.22–
74.36 3.63–17.80 - [35]

11

Terengganu
Coastal
Area,

Malaysia

Ten species: S.
leptolepis, D.
maraudsi, E.

lanceolatus, P.
tayenus,

Rastrelliger, M.
cordyla, N.
soldado, P.

filamentosus,
Bramidae, and S.

canaliculatus

0.0002–
0.007

0.0008–
0.015 - - 0.0021–

0.012
0.0488–
0.151

0.0068–
0.041

0.3995–
0.667 [53]

12
Northwest

Mediter-
ranean

Sea

Six species: G.
melastomus, S.

canicula, H.
dactylopterus, L.

boscii, M.
poutassou, and P.

blennoides

0.00–0.90 0.00–0.03 0.02–7.00 - 0.10–10.60 12.10–
60.30 - - [7]

13
Northeast
Atlantic
Ocean

Six species: G.
melastomus, S.

canicula, H.
dactylopterus, L.

boscii, M.
poutassou, and P.

blennoides

0.01–0.26 0.00–0.04 0.00–0.53 - 0.40–5.80 9.90–40.00 - - [7]

14
Bay of
Bengal,

Bangladesh

Six species: T.
ilisha, H. neherues,

S. panijus, S.
longiceps, T.

lepturus, and K.
punctatus

0.12–4.6 0.11–2 BDL–6.9 0.45–1.8 1.6–4.1 58–170 5.8–20 5.5–790 PS

Note: BDL—below detection limit; ND—not detected; PS—present study.
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3.2.2. Estimated Daily Intake (EDI)

EDI and mean EDI values of respective trace elements (Cd, Pb, Zn, Cu, Ni, Fe, Mn,
and Cr) for the fish and crustacean samples of both seasons are shown in Table 8. The
corresponding Figure 3 shows the comparative results of estimated daily intake (EDI)
values with the recommended daily intake (RDI) values. As the values of EDI < RDI for
both fish and crustaceans, there is no risk from the consumption of the studied seafood.

Table 8. The values of estimated daily intake (EDI), target hazard quotients (THQ), and hazard index (HI) obtained for the
marine fish and crustacean samples collected at the Bay of Bengal (Bangladesh) during rainy and autumn seasons of 2017.

Sampling
Time

Rainy Season Autumn Season Mean
EDI

(mgkg−1

Body
Weight per

Day)

Mean THQ HI

Trace Metals

Average
Concentra-

tion
(mgkg−1)

DW

EDI
(mgkg−1

Body
Weight per

Day)

THQ

Average
Concentra-

tion
(mgkg−1)

DW

EDI
(mgkg−1

Body
Weight per

Day)

THQ

Pb 0.79 8.29 × 10−4 4.31 × 10−5 1.26 1.31 × 10−3 8.54 × 10−5 1.07 × 10−3 6.43 × 10−5

8.82 × 10−4

Cu 27.20 2.84 × 10−2 1.48 × 10−4 33.10 3.45 × 10−2 1.80 × 10−4 3.15 × 10−2 1.64 × 10−4

Zn 93.92 9.80 × 10−2 6.79 × 10−5 98.69 1.03 × 10−1 7.14 × 10−5 1.01 × 10−1 6.96 × 10−5

Mn 122.51 1.28 × 10−1 1.90 × 10−4 128.20 1.34 × 10−1 1.99 × 10−4 1.31 × 10−1 1.94 × 10−4

Cd 0.84 8.80 × 10−4 1.83 × 10−4 0.88 9.18 × 10−4 1.91 × 10−4 8.99 × 10−4 1.87 × 10−4

Ni 1.93 2.01 × 10−3 2.09 × 10−5 0.78 8.09 × 10−4 1.20 × 10−5 1.41 × 10−3 1.65 × 10−5

Cr 1.29 1.35 × 10−3 9.36 × 10−5 1.26 1.32 × 10−3 9.15 × 10−5 1.34 × 10−3 9.26 × 10−5

Fe 308.62 3.22 × 10−1 9.56 × 10−5 272.24 2.84 × 10−1 9.37 × 10−5 3.03 × 10−1 9.47 × 10−5

Figure 3. Comparison between estimated daily intake (EDI) values and recommended daily intake
(RDI) values obtained in the present study.

3.2.3. Target Hazard Quotients (THQ)

The dimensionless target hazard quotient (THQ) is the indicator of non-carcinogenic
health risks associated with the consumption of food (fish and crustaceans). The mean THQ
values for the trace metals Pb, Cu, Zn, Mn, Cd, Ni, Cr and Fe are given in Table 8. After
analysis of all the fish and crustacean samples, the obtained THQ values for different metals
were less than 1, which indicates that the exposed population is unlikely to experience
obvious adverse effects [39].

3.2.4. Hazard Index (HI)

The value of the hazard index, which is obtained by the summing of the target hazard
quotients of each metal, was used to assess the overall potential health risk posed by more
than one metal. The obtained hazard index value was 8.82 × 10−4, which is less than 1,
indicating that there are no health hazards to the local consumers (Table 8).
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3.2.5. Target Cancer Risk (TR)

The obtained values of target cancer risk for Pb, Cd, Ni, and Cr due to exposure from
the consumption of the targeted six fish and four crustacean species analyzed in the present
study are shown in Figure 4. Generally, the values of TR lower than 10−6 are considered as
negligible, while those above 10−4 are considered to be unacceptable, and those in between
10−6 and 10−4 are considered as an acceptable range [37]. The present study reveals that
only TR for Pb were below the benchmark and those for Cd, Ni, and Cr were above the
benchmark, indicating that the fish and the crustaceans were becoming polluted. This also
increased the risk of chronic cancer due to exposure of Cd, Ni, and Cr through fish and
crustacean consumption.

Figure 4. Targeted cancer risk (TR) values for associated toxic element consumption from the studied
seafood (fish and crustaceans) at the Bay of Bengal (Bangladesh) during rainy and autumn seasons
of 2017.

4. Conclusions

The radioactivity and the trace metal concentrations were studied in certain commer-
cially important marine biota (fish and crustaceans) from the Bay of Bengal, Bangladesh, in
two different seasons (rainy and autumn). Through the analysis of different radiological
parameters, the present study revealed an elevated activity concentration compared to
the acceptable limits in some of the samples. Comparing the present results with the
reported results of the different regions of the world, including similar studies at the Bay
of Bengal, it can be concluded that the studied region possesses more radioactive elements
than the other marine regions. It was also observed that the marine radioactivity of the
studied region is gradually increasing, day by day. The results reflect the contribution of
technologically enhanced naturally occurring radioactive material (TENORM) pollutants,
largely expected to be a result of power generation plants, petroleum, steel, shipbuilding,
chemical, pharmaceutical, textile, vegetable oil refineries, glass manufacturing industries,
etc. However, the present study indicates that radionuclide intake from the consumption
of Bay of Bengal fish and crustaceans still poses an insignificant threat to public health.

Conversely, the metal concentrations of a few trace elements are higher than the
acceptable limits in most of the samples, although the studied fish and crustaceans are still
safe for human consumption. However, the target cancer risk (TR> 10−4) due to exposure
to cadmium, nickel, and chromium indicates that consumer risk persists.

As a whole, the present study indicates an increase in the pollution by radioactivity
and trace metals in the marine environment of the Bay of Bengal, mostly derived from
an increase in human activities in the region. Therefore, consuming the seafood from the
studied region has the potential to cause adverse health impacts if not controlled, and at
the same time, all the stakeholders should take proper initiatives to prevent environmental
pollution of the Bay of Bengal. The results reported here can be used as baseline data,
though the sample size is not large enough. Similar studies should be planned and carried
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out periodically with higher sample sizes to monitor any changes in marine pollution of
the Bay of Bengal in the future. Statistical analyses should also be employed in future
studies for better understanding of the scenario.
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Abstract: The Meta-analysis has increasingly been used to synthesize the ecosystem services literature,
with some testing of the use of such analyses to transfer benefits. These are typically based on local
primary studies. However, meta-analyses associated with ecosystem services are a potentially
powerful tool for transferring benefits, especially for environmental assets for which no primary
studies are available. In this study we use the Ecosystem Service Valuation Database (ESVD), which
brings together 1350 value estimates from more than 320 studies around the world, to estimate
meta-regression functions for Provisioning, Regulating and maintenance, and Cultural ecosystem
services across 12 biomes. We tested the reliability of these meta-regression functions and found
that even using variables with high explanatory power, transfer errors could still be large. We show
that meta-analytic transfer performs better than simple value transfer and, in addition, that local
meta-analytical transfer (i.e., based on local explanatory variable values) provides more reliable
estimates than global meta-analytical transfer (i.e., based on mean global explanatory variable values).
Thus, we conclude that when taking into account the characteristics of the study area under analysis,
including explanatory variables such as income, population density, and protection status, we can
determine the value of ecosystem services with greater accuracy.

Keywords: ecosystem services; benefit transfer; meta-analysis; meta-regression function

1. Introduction

Jean-Baptiste Say poses the idea of nature’s services as costless, free gifts of nature
as follows: “the wind which turns our mills, and even the heat of the sun, work for us;
but happily no one has yet been able to say, the wind and the sun are mine, and the service
which they render must be paid for” [1]. However, currently, it is possible to observe that
the overuse or misuse of some natural resources poses direct impacts on society. In the face
of this problem came the concept of ecosystem services (ES), defined as the benefits that
humans obtain from the natural environment and from properly-functioning ecosystems.
Hence, several authors [2–8] argue that the sustainable management of natural resources
requires correct valuation of the ecosystem defining their services to the society.

Ecosystem services support human life every day and contribute to human well-being
in many ways, which are hard to define in a single notion. Hence, the Millennium Ecosys-
tem Assessment [9] and the Common International Classification of Ecosystem Services [10]
differentiate between the following ecosystem services: (a) Provisioning services (such
as the supply of food via fishery production, fuel, wood, energy resources, and natural
products); (b) Regulating and maintenance services (such as shoreline protection, nutrient
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regulation, carbon sequestration, detoxification of polluted waters, and waste disposal);
and (c) Cultural services (such as tourism and recreation).

Ecosystems have great importance across many dimensions (ecological, socio-cultural,
and economic) [5]. Thus, expressing the value of ecosystem services in monetary units
(i.e., ecosystem service values; ESV), can prove to be of utmost importance to help raise
consciousness and convey the (relative) importance of ecosystems and biodiversity to
decision-makers. Indeed, monetized valuation pushes for more efficient use of limited
resources and helps to select where protection and regeneration are economically more
important and can be delivered at least cost [11,12]. It can also assist in determining “a fair
compensation” to be paid for a loss of ES in liability regimes [5].

Historically, in the late 1990s and early 2000s, the concept of ES slowly found its way
into the policy arena, e.g., through the “Ecosystem Approach” and the Global Biodiversity
Assessment. In 2005, the concept of ES gained wider interest after the publication of the
Millennium Ecosystem Assessment by the United Nations for policymakers [4,9]. ES are
also entering the consciousness of mainstream media and business, namely through the
World Business Council for Sustainable Development that has actively supported and
developed this concept [13]. Many projects and groups are currently working toward better
understanding, modeling, valuing, and managing ES and natural capital [4].

An increasing number of papers seeking the valuation of ES have been published
over the last decades. Assessments have been conducted at local [14–16], national [17–19],
continental [20,21], and global [4–6] scales. In the same way, databases compiling data from
these primary valuation studies were created to aggregate information and facilitate public
debate and policy action. Some examples of such databases include the Economic Valuation
Reference Inventory [22], and the Ecosystem Service Valuation Database (ESVD; [23]).

Since the early 1990s, several researchers have investigated the applicability and
the precision of benefit transfer. However, these past studies were primarily concerned
with traditional methods of benefit transfer (in particular value transfer), replacing values
directly from the study site to the policy site without amendments [24]. However, in the
late 1990s meta-analysis started to be used, with multivariate regression being investigated
for use in benefit transfer [25].

The meta-analysis (MA) is a technique that uses statistical models (meta-regressions)
to summarize and evaluate previous research results. In benefit transfer, meta-regression
results may be used qualitatively, to corroborate new primary results, or to transfer es-
timated values [26]. Meta-regression in benefit transfer summarizes the weight of the
evidence and characterizes the degree of uncertainty about quality-adjusted ecosystem
values. In meta-regression, the value estimates from primary valuation studies are thereby
treated as individual observations [27]. Meta-regression also extends the range of pri-
mary valuation studies by allowing the estimation of values for services and functions
that are constant within each primary valuation study but vary across different valuation
studies [28].

Meta-analyses have been performed for specific ecosystem services, biomes,
and locations. For example, Van Houtven et al. [15] assessed the cultural value of surface
water quality in the United States, using 131 willingness-to-pay (WTP) estimates from
18 studies. Similarly, Hjerpe et al. [29] synthesized 127 WTP estimates from 22 differ-
ent studies that provided estimations for preservation, forest restoration, and freshwater
restoration also in the United States. Ghermandi et al. [30] performed a meta-analysis
to determine the values of goods and services provided by wetland ecosystems, using
418 value observations derived from 170 valuation studies and 186 wetland sites world-
wide. Finally, Hynes et al. [31] performed a marine recreational meta-analysis estimation,
using 311 distinct value observations from 96 primary valuation studies. Nevertheless,
there are no studies with a broader analysis, that estimate global meta-regression functions
for Provisioning, Regulating and maintenance and Cultural ecosystem services across
biomes and continents. In addition, testing the reliability of estimated meta-regression
functions is relatively rare, (e.g., [32,33]). One of the main challenges is developing equa-
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tions for ES that capture the local/regional characteristics of the biome and provide reliable
value estimates.

Hence, the objective of this study is to estimate meta-regression functions for 3 different
types of ecosystem services able to determine the ecosystem service value for 12 different
types of biomes, with the possibility of these estimates being applied at the global scale.
In this study, we provide the results of a meta-analysis based on the primary value estimates
from the Ecosystem Service Valuation Database [23] for 3 ecosystem services (Provisioning;
Regulating and maintenance; Cultural), provided by 12 main land covers (Coastal systems;
Coastal wetlands; Coral reefs; Cultivated areas; Desert; Fresh water; Grasslands; Inland
wetlands; Open Ocean; Temperate/Boreal forests; Tropical forests; Woodlands). In addition,
complementary explanatory variables from the World Bank Data [34] and FAOSTAT [35]
were gathered. Based on this review and meta-analysis, we aim to provide recommen-
dations for future research that may enhance the use of ecosystem service valuation for
policy analysis.

The remainder of this paper is structured as follows. The “Materials and Methods”
section details the MA application and use in ES studies, the theoretical specification and
validation method and, finally, the ESVD database and other variables used to build the
models. In turn, in the “Results” section, we expose and analyze the functional forms
of the models for the three ecosystem services, present the application of the models,
and discusses the results. Finally, in the “Conclusions and recommendations” section,
concluding remarks and observations are presented.

2. Materials and Methods

2.1. Literature on Meta-Analysis

Benefit transfer (BT) is an economic valuation tool, with the goal to adapt value
estimates from past research to assess the value of a similar, but separate, change in a
different resource [36]. Technically, BT uses valuation estimates from other areas (study
sites) and applies them to a similar location (policy site) [3]. It is a technique that relies on
primary studies and, therefore, allows for the reduction of field research constraints, both in
terms of time and infrastructure. However, it can lead to over/underestimated values
while the accuracy of an ESV estimate is determined by the quality of the reference studies
used. Thus, peer-reviewed empirical studies from similar biophysical and socioeconomic
contexts are preferred over any other type of data source [32].

BT is useful when the estimation of the economic service value cannot be obtained
due to time and/or budget constraints and to, therefore, make the best possible use of
the existing literature in order to evaluate the economic importance of a natural area [19].
This is possible by adopting and applying estimates from existing studies that best suit the
new context, using one or more of the following BT methods: (i) benefit estimate or value
transfer, which is the extrapolation of estimates from one site to another (i.e., values are
directly transposed from the study site to the policy site without amendments), (ii) benefit
function transfer, which is the transfer of economic functions between the sites (i.e., coeffi-
cients are used to determine the policy site values), (iii) meta-analysis, which combines the
findings of independent studies related to the research topic as to summarize the body of
evidence relating to a particular issue, and (iv) preference calibration, which uses existing
benefit estimates derived from different methodologies and combines them to develop a
theoretically consistent estimate for policy site values [37].

The meta-analysis (MA) technique can help reduce deviations in value estimates [26].
This technique was first put forward as a research synthesis method and has since been
developed and applied in many fields of research, other than the area of environmental
economics [38,39]. It is widely recognized that the large and increasing literature on
economic valuation of ES and environmental impacts has become difficult to interpret
and that there is a need for research synthesis, especially in statistical MA, to aggregate
information and insights [27,40,41].
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MA is by definition a quantitative analysis of statistical summary indicators reported
in a series of similar empirical studies. It is a commonly used method for compiling and
analyzing the data from studies towards the creation of a value function. The method
synthesizes the results of multiple studies that examine the same phenomenon, through
the identification of a common effect, which is then “explained” using regression tech-
niques in a meta-regression model [40]. In the realm of environmental resource valuation,
MA is commonly used in benefit transfer endeavors due to its usefulness in incorporating
a structural utility framework with less strictly economic information [27,42].

2.2. Specification of the Meta-Regression

Based on consumer rationality and reasonableness, the microeconomic consumer
theory is explained by two different approaches: the indifference curve approach and the
utility function approach [43]. Indifference curves represent all combinations of goods and
services that provide the same level of satisfaction to an individual (i.e., the same level of
global utility). Implicit in an indifference curve is the marginal rate of substitution, which
expresses the maximum amount of a good that one is willing to give up in exchange for
one additional unit of another good, at the same level of satisfaction [43]. Utility functions
represent the degree of profitability or satisfaction that we get from using goods and
services, related to a measure of satisfaction relative to an economic agent. The analysis
of its variation allows for explaining the behavior that results from the decisions taken by
each agent to increase his/her satisfaction.

Any meta-analytic benefit transfer (MA-BT) must be based on the ecosystem service
valuation theory and the utility functions theory (see Equation (1)), specific to microe-
conomics [42]. The general form of an MA-BT underlying the utility function is given
by [24]:

Ui = f (Pi, Yi, Qi, Qli, Subi, Hi, Ii) (1)

where Ui is the utility (satisfaction) obtained by individual i, Pi is the general price level
faced by individual i, Yi is the individual revenue, Qi is the quantity of ES available to
individual i, Qli is the global quality of ES available to individual i, Subi represents the
substitutes for Q available to individual i, Hi refers to other non-income attributes of
individual i, and Ii is the information available to individual i.

Resorting to this microeconomic theoretic, we organize the MA-BT utility theory into
three axes: the “strong structural utility theoretic (SSUT) approach”, the “weak struc-
tural utility theoretic (WSUT) approach” and the “non-structural utility theoretic (NSUT)
approach” (of which they only endorse the first two) [42].

Following the microeconomics reasoning, we assume that MA-BT is based on the
utility function (see Equation (2)) and opt for analyzing the WSUT. Under the WSUT,
each individual may choose between two alternative environmental options—ceteris
paribus, a damaged ecosystem (Q0) and a restored ecosystem (Q1), which will assure
an equilibrium situation (the maximum utility) [7,42], represented by:

Ui (Pi, Yi, Q0) = Ui (Pi, Yi,−ESV, Q1) (2)

where Ui is the utility obtained by individual i, Pi is general price level faced by individual
i, Yi is individual revenue, Q0 quality/quantity of ES available to individual i in the
absence of any payment, ESV is ecosystem service value paid by individual i, and Q1 is the
quality/quantity of ecosystem available to individual i after having paid for these ES.

Microeconomics utility theory will hold if both sides of this parity are equal. That is,
an individual will stay at the same indifference curve if he/she gets the same level of
satisfaction by consuming Q0 with no payment or by consuming Q1 and paying ESV in
exchange. That is, the ESV the individual is willing to give up must be counterbalanced by
an increase in Q. Thus, Q1 > Q0 after the amount has been spent.

In this study, we adopt the WSUT approach, where variables are added in the bid-
function (assumed to be derived from some unidentified utility function), but keeping the
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flexibility to incorporate other explanatory variables into the ESV model, such as study-
site characteristics, local price levels or local individual income [7]. This is the approach
used in most previous MA-BT studies [7,31,44]. Our general theoretical model will focus
on estimating the ESV (see Equation (3)), as a function of various explanatory variables
according to the general form of the underlying conditional indirect utility function:

ESV = f (Bl , SQl , C, QQr, Ir, Pr) (3)

where, Bl is the biome and SQl the quality status for the location under analysis (l), C is the
continent where the study area is located, and QQr is the quality/quantity of protected
areas, Ir is the income and Pr is the population density in the region (r) where the study
area is located.

The meta-modeling approach has several advantages for BT as compared to other
methods (such as value transfer or function transfer). Different from those, which are
based on single studies, MA resorts to information from a collection of studies and, thus,
provides more rigorous measures of central tendencies that are sensitive to the distributions
of underlying study values [24].

2.3. Validity and Reliability of a Meta-Analytic Benefit Transfer

The validity and reliability of the MA-BT can be assessed by applying the concept of
transfer error (TE), defined as [32]:

TE =
|ESVP − ESVB|

ESVB
(4)

where ESVP is the predicted value from the study site (s) and ESVB is the base value
(“benchmark”) at the policy site. The TE is often used as a validity measure of the ac-
ceptability of meta-models. Traditionally, validity requires that the values, or the value
functions generated from the study site, be statistically identical to those estimated at the
policy site [8]. The main objective is to find a target value of TE = 0, confirming that the
estimated values from the MA-BT values are similar to those arising from the database.

There is no agreement on maximum TE levels for BT being reliable for different
policy applications. The TE analysis is not supposed to judge which levels should be
considered acceptable, or even conduct traditional statistical tests of BT validity. Instead,
it remains a measure of reliability, especially if TE estimates are compared across meta-
model specifications and restrictions, and between alternative ways of conducting BT based
on the same data [7].

Therefore, we perform the following comparisons between the estimates from the
meta-model and the original observations from the database:

(a) “Value transfer” compares each ESV estimate in the database with the corresponding
global mean ESV;

(b) “Global meta function transfer” compares each ESV estimate in the database with the
estimates produced by the meta-model, using mean global values for the
explanatory variables;

(c) “Local meta function transfer” compares each ESV estimate in the database with the
estimates produced by the meta-model, using mean national values for the explana-
tory variables.

2.4. Background and Data

MA in environmental valuation is, generally, based on brief statistics and analytical
conclusions taking a group of studies as data. Therefore, MA estimates can reduce the
time spent to acquire data—both in the case of older studies and unpublished work (where
data may not be available) and current studies (where authors may be slow to disclose
data). However, even within the same methodology, combining primary data is not
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always possible due to conflicting data structures and different estimation procedures [42].
This might limit the MA studies’ representativeness.

A solution to this problem is the use of specialized ESV databases, which offer a wide
range of detailed information about the studies taken into account, beyond the results
found in the assessment. These databases give information on other factors crucial for the
delimitation of a MA model, such as: the year of the study, protection status, location, type
of environment, and method. In this analysis, we use the Ecosystem Service Valuation
Database (ESVD, [23]), one of the biggest databases containing real values for a range of ES
and biomes where the value estimates are systematized in monetary units (€/ha/year).

The ESVD was built to process and analyze the monetary estimates of ES values from
different biomes in a way that is easily used by various end-users, worldwide. Composed
by 267 studies and 1310 value estimates, the ESVD links various types of information from
different studies with the value estimates and case study sites. These value estimates are
organized by biome, ecosystem service, and country. The main biomes are “Coastal System”
(CSys), “Coastal Wetland” (CWet), “Coral Reef” (CoRf ), “Cultivated Area” (CuAr), “Desert”
(Dser), “Grasslands” (Gras), “Inland Wetland” (InWt), “Marine” (Mari), “Temperate or
Boreal forests” (TeFo), “Tropical forests” (TrFo), “Fresh water” (FrWa) and “Woodland”
(Wood). The ecosystem services are Provisioning; Regulating & maintenance and; Cultural
services, divided into 14 types of services (see in Figure 1). Finally, a total of 80 countries are
included, 217 values from Africa; 352 values from Asia, 208 values from Europe, 180 values
from Latin America and the Caribbean; 122 values from North America, 116 from Oceania,
and 114 from the whole world.

Figure 1. Ecosystem service values division [45].

Initial criteria for selecting studies from the general ESVD database were: (1) orig-
inal nature of the case study data (i.e., not based on value transfer or total ecosystem
value); (2) the provision of a complete set of information, including the study site loca-
tion, surface area and the scale of the study (i.e., not based on a “world” scale location);
(3) clear characterization of valuation methodologies used (i.e., not unknown valuation
methods); (4) clear mentioning of the surface area for which the ecosystem service valua-
tion study is applied (so that estimates of monetary values per hectare can be obtained);
and (5) ES or sub-service monetary value directly linked to a specific biome/ ecosystem
and unit (i.e., not per person or household). Besides information on the location of each
case study, the ESVD includes information on protection status and the size of the re-
search area, enabling for the verification of whether more estimates about the same case
study location are available from other sources or publications. Together with supplemen-
tary variables, coming from complementary socio-economic databases that are added to
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ESVD, these variables allow for further socio-economic interpretation of the monetary
output values.

In order to relate an estimate of an ecosystem service to the socio-economic context
of a case study site, two additional variables were included in the country table—namely
the Gross national income (GNI) per capita (based on purchasing power parity in current
international prices) and the average Population density (PDen; people per square kilo-
meter). This information was obtained from the World Bank Data, which provides world
development indicators by country [34]. Collected values were obtained for the years in
which the studies were carried out.

Regarding protection status, many of the data points in the ESVD pertain to case
studies in protected areas. This information allows the assessment of the influence of
the protection status on ES value, testing whether protection excludes the user’s access
to the site and consequently to the services generated or, alternatively, whether it allows
for ecosystem conservation and subsequent appreciation of the services. Protection sta-
tus is classified into 3 categories: Fully protected (FProt), Partially protected (PProt) or
Not protected (NProt). Other complementary variables collected from the World Bank
Data, used to verify the study-site protection status, were: Terrestrial Protected Areas
(TProt; the percentage of protected land by country) and Marine Protected Areas (MProt;
the percentage of protected territorial waters). From the Food and Agriculture Organization
(FAO) statistical database [35], information on the land use characteristics was collected.
Namely, the percentage of forest area (FPer) and the percentage of agricultural land (APer),
which helped to understand land use and occupation characteristics with emphasis on
agricultural activities and state of preservation/conservation of nature.

For each biome in the ESVD, 14 ecosystem services were identified and classified
into the 3 main classes: Provisioning, Regulating and maintenance, and Cultural services
(see Figure 1). This classification constitutes an important step in the linkage between
ES and human well-being and will be used as a basis to perform MA-BT for ecosystem
valuation. Provisioning services (ESVProv) are mainly composed of food provision, water
provision (including regulation of water flows and water purification), fuels and fibers
provision, and genetic resources provision [45]. This is an ES highly valued by humans,
because of the direct impact on our day-to-day life. Regulating and maintenance services
(ESVReg&Main) help maintaining air, climate, and water quality, moderating extreme events,
maintaining soil quality, and preventing erosion. Albeit usually invisible and taken for
granted, they are important for human well-being and the conservation of plants and
animals [45]. Finally, cultural services (ESVCult) entail non-material benefits that people
obtain from an ecosystem, such as aesthetic inspiration, recreation, and tourism as well as
spiritual experience related to a natural environment [45].

All monetary values in the ESVD values are converted into a common reference unit,
specifically 2015 ‘International’ €/ha/year, using the Purchasing Power Parity (PPP) units
expressed in Euros [34,45].

3. Results

3.1. Data Summary

Based on the above-mentioned criteria, the total number of monetary value estimates
included in our sample amount to 636 observations. In this study, ES value functions
are estimated for Provisioning, Regulating and maintenance, and Cultural services (see
Section 3.2). The estimation of each ES value function draws on a different number of
observations (see Table 1): Provisioning services (302; 47.5%), Regulating and maintenance
services (225; 35.4%), and Cultural services (109; 17.1%).

Table 2 lists and describes the main variables used in the MA. Table 3 provides
summary statistics for each of these variables for every service, with the exception of the
dummy variables.
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Table 1. Number of valuation studies, by service and biome, from the ESVD included.

Service 1/Biome 2 CSys CWet CoRf CuAr Dser FrWa Gras InWt Mari TeFo TrFo Wood Total

ESVProv 18 55 37 6 2 5 10 75 6 8 63 17 302
ESVReg&Main 6 58 26 7 - 1 9 36 4 16 51 11 225

ESVCult 7 14 42 - - 4 2 11 4 10 14 1 109

Note: 1 ESVProv = Provisioning Ecosystem Service Values; ESVReg&Main = Regulating and maintenance Ecosystem Service Val-
ues; ESVCult = Cultural Ecosystem Service Values; 2 CSys = Coastal systems; CWet = Coastal wetlands; CoRf = Coral reefs;
CuAr = Cultivated areas; Dser = Desert; FrWa = Fresh water; Gras = Grasslands; InWt = Inland wetlands; Mari = Marine; TeFo = Temp./Bor.
forests; TrFo = Tropical forests; Wood = Woodland.

The common variables in all models (Provisioning; Regulating and maintenance; Cul-
tural) are Population density (PDen) and Gross national income per capita (GNI see Table 3).
These variables show the largest mean, minimum, and maximum dispersion, representing
the large differences in population and wealth in countries around the world. Additional
variables were created to describe potentially influential study site characteristics. In the
case of Provisioning services, these were: the agricultural areas (APer) and the terrestrial
protected areas (TProt). The former represents the food, fuels, and fibers provisioned,
and the latter represents regulation of flows and purification provided. In the case of
Regulating and maintenance services, these were: the forest areas (FPer) and the terrestrial
(TProt) and marine (MProt) protected areas. These variables express the quality/quantity of
natural resources that directly influence their prevention, moderation, and support. In the
case of Cultural services, these were the marine protected areas (MProt), which represent
quality, namely related to the sea.

Table 2. Meta-analysis variables description.

Variables Description

APer Agricultural land refers to the share of land area that is arable, under permanent crops,
and under permanent pastures, by the percentage of land area.

FPer Forest area with natural or planted stands of trees of at least 5 m in situ, by the percentage of
land area.

MProt Percentage of marine protected areas, from territorial waters of a country.
TProt Percentage of terrestrial areas totally/partially protected, designated by national authorities.
GNI Gross National Income per capita, using purchasing power parity rates.
PDen Population density is midyear population divided by land area in square kilometers.

Dummies

CSys; CWet; CoRf; CuAr; Dser; FrWa;
Gras; InWt; Mari; TeFo; TrFo; Wood

Biomes: Coastal systems; Coastal wetlands; Coral reefs;
Cultivated areas; Desert; Fresh water;
Grasslands; Inland wetlands; Marine;

Temp./Bor. forests; Tropical forests; Woodland.

Euro; Asia; Ocea; LaAm; NoAm; Afric Continents: Europe; Asia; Oceania;
Latin America and Caribbean; North America; Africa.

FProt; PProt; NProt Protection Status: Fully protected; Partially protected; Not protected.

Table 3. Summary statistics for meta-regression variables in ecosystem services.

Variables 1 Mean Stand. Dev. Min Max

Provisioning Services

TProt 14.94 8.53 0.00 6.27
APer 42.78 18.99 6.27 80.89
PDen 124.60 143.77 1.70 1130.40
GNI 7481.06 10,021.30 430.00 44,740.00
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Table 3. Cont.

Regulating and Maintenance Services

FPer 35.20 20.57 0.24 91.34
MProt 12.54 17.12 0.00 74.70
TProt 14.73 7.56 0.00 36.84
PDen 115.70 127.07 2.40 502.30
GNI 14,471.44 14,036.35 430.00 48,420.00

Cultural Services

MProt 15.52 17.63 0.00 74.82
PDen 105.23 116.90 2.30 478.30
GNI 16,750.05 13,484.39 840.00 48,420.00

Note: 1 See Table 2 for variable descriptions.

3.2. Meta-Regression Model Specification

We adopt a semi-log functional form specification for the ES value functions, which
implies that the marginal effect of a change in ESV depends on income and population
density [15].

The Provisioning ES value function is determined by the type of biome (DBiome),
location of the continent (DContinent), terrestrial protected area (TProt) [46], percentage
of agricultural land (APer) [47], population density (PDen) [5] and income (GNI) [15],
and given by:

ln(ESVProv) = α0 + α1 ∗ DBiome + α2 ∗ DContinet + α3 ∗ TProt + α4 ∗ APer + α5 ∗ ln(PDen)+
α6 × ln(GNI)

(5)

where α0 is a constant, α1 and α2 are dummy regression estimates, and α3 to α6 are variable
regression estimates.

The Regulating and maintenance ES value function is determined by the type of biome
(Dbiome), location of the continent (DContinent), level of protection in study area (FProt) [15],
the terrestrial (TProt) and marine (MProt) protected area [46], percentage of forest land
(FPer) [47], population density (PDen) [5] and income (GNI) [15], and given by:

ln
(
ESVReg&Main

)
= β0 + β1 ∗ DBiome + β2 ∗ DContinet + β3 ∗ FProt + β4 ∗ FPer + β5 ∗ MProt + β6
∗ TProt + β7 ∗ ln(PDen) + β8 ∗ ln(GNI)

(6)

where β0 is a constant, β1 and β2 are dummy regression estimates, and β3 to β8 are variable
regression estimates.

Finally, the Cultural ES value function is determined by the type of biome (Dbiome),
location of the continent (DContinent), level of protection in study area (PProt) [15], ma-
rine protected area (MProt) [46], population density (PDen) [5] and income (GNI) [15],
and given by:

ln(ESVCult) = γ0 + γ1 ∗ DBiome + γ2 ∗ DContinet + γ3 ∗ PProt + γ4 ∗ MProt + γ5 ∗ ln(PDen) + γ6
∗ ln(GNI)

(7)

where γ0 is a constant, γ1 and γ2 are dummy regression estimates, and γ3 to γ6 are variable
regression estimates.

3.3. Meta-Regression Model Results

Table 4 reports regression results for two model specifications; the “Full” model in
which all variables are included and the “Restricted” model in which non-significant ex-
planatory variables were excluded in a stepwise procedure (applying a cut-off significance
level of 20% for the t-test). The following base values for the dummies are considered:
Grasslands (Gras) for biomes; Not protected (NProt) for protection status; and Europe (Euro)
for continents.
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The main explanatory variables presented in all “Restricted” models were Population
density (ln_PDen) and Gross national income (ln_GNI), with positive coefficient values
and high significance (t-test < 0.09), which implies that an increase in population or
income results in an increase ESV. As we adopt the logarithmic form for these variables,
the marginal increase in ESV is decreasing in population or income.

We adopted additional explanatory variables for environmental quality, being MProt
and TProt the percentage of, respectively, terrestrial and marine protected areas. Specifically,
for the Provisioning model the APer (percentage of agricultural land) and for the Regulating
& maintenance model the FPer (percentage of forest land) were used.

The Provisioning ES model provides a reasonable fit to the data, although it is the
model with the smallest R2 (0.19) and with the statistics of 0.01 in ANOVA for the restricted
model. The signs of the explanatory variables are, as expected, positive for Dbiome, LaAm,
ln_PDen, and ln_GNI, and negative for TProt. This confirms that the other land covers ana-
lyzed tend to have a higher value than Grasslands (used as a base for the dummy biomes)
and that areas located in Latin America generate larger provisioning ecosystem service
values, while the ecosystem service value decreases with an increase in the percentage of
protected terrestrial area. The variable APer is an exception (Coef = −0.04 and t-test < 0.01),
presenting a negative coefficient, for which a positive sign was expected—which could be
explained by the fact that countries with larger agricultural areas present a greater supply
of provisioning services, though lower productivity levels. Significant explanatory vari-
ables present t-test < 0.19, the remaining variables were dropped. Evaluating the dummy
variables for biomes, the one that presented the highest coefficient for the ESVProv was
CuAr (Coef = 3.69 and t-test < 0.01), indicating that Cultivated areas is the key variable
explaining provisioning service values.

The Regulating and maintenance ES model provides a good fit to the data, being
the model with the highest R2 (0.46) and with the statistics of 0.01 in ANOVA for the
restricted model. The sign of the explanatory variables is as expected positive for Dbiome,
ln_PDen, and ln_GNI, and negative for AFric. This confirms that, as mentioned before,
the other land covers analyzed tend to have a higher value than Grasslands and that areas lo-
cated in Africa tend to have a lower value for this type of service (due to the lower aggregate
income). The variables related to nature protection: FProt (Coef = −1.73 and t-test < 0.01),
FPer (Coef = −0.02 and t-test < 0.05), MProt (Coef = −0.02 and
t-test < 0.19) and TProt (Coef = −0.05 and t-test < 0.05), present negative coefficients, for
which a positive sign was expected, revealing the theory that protected areas, which gen-
erally have low population density or are even inaccessible to the population, represent
a low monetary value (i.e., people do not fully perceive the value of this service being
generated). Significant explanatory variables present t-test < 0.19, the remaining vari-
ables were dropped. In the ESVReg&Main the largest coefficient for biome was observed in
InWt (Coef = 4.77 and t-test < 0.01), although many others such as CoRf, CWet, and CSys,
(Coef = 4.68; 4.19; 3.98 and t-test < 0.01, respectively) also presented high values, these
biomes hold a series of important services, such as climate moderation, erosion prevention,
maintenance,
and support for different species.

The Cultural ES model also presents a good fit to the data, with an R2 (0.38) and with
the statistics of 0.01 in ANOVA for the restricted model. The sign of the explanatory vari-
ables is as expected positive for PProt, ln_PDen, and ln_GNI, LaAm and negative for MProt,
Asia, Ocea. This explains that partially protected areas make it possible for people to access
and benefit from the services generated. Moreover, Latin America is the area that presents
the largest Cultural ES (primary studies mainly from the Caribbean coast). The Dbiome
variables Mari (Coef = −2.47 and t-test < 0.12) and TeFo (Coef = −3.09 and t-test < 0.01),
present negative coefficients, for which a positive sign was expected, due to the small
number of studies related to cultural services involving these land covers in the ESVD.
In the ESVCult the largest coefficient was CoRf (Coef = 2.48 and t-test < 0.01), explaining the
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high value of services associated with the Coral reefs biome, which provides services such
as ecotourism, recreation, and aesthetics, receiving thousands of tourists annually.

Table 4. Meta-regression results for Provisioning (ESVProv), Regulating and maintenance (ESVReg&Main) and Cultural
(ESVCult) ecosystem service values.

Explanatory
Variables 1

Model Specification

Provisioning Serv. Model Regu. and Main. Serv. Model Cultural Serv. Model

Full Restricted Full Restricted Full Restricted

Coef t-Test
(sig) Coef t-Test

(sig) Coef t-Test
(sig) Coef t-Test

(sig) Coef t-Test
(sig) Coef t-Test

(sig)

CONSTANT −3.80 0.36 −6.41 0.01 −7.97 0.03 −3.46 0.19 −12.37 0.07 −7.37 0.03

CSy 1.93 0.19 2.68 0.01 5.10 0.01 3.98 0.01 2.09 0.40 - -

CWet 1.51 0.24 2.22 0.01 5.31 0.01 4.19 0.01 4.70 0.05 1.35 0.20

CoRf −0.85 0.53 - - 5.28 0.01 4.68 0.01 5.83 0.01 2.48 0.01

CuAr 3.07 0.11 3.69 0.01 4.28 0.01 3.07 0.01

Dser 1.24 0.66 - -

FrWa 1.41 0.49 2.17 0.19 2.79 0.28 - - 708 0.00 - -

Gras2 - - - - - - - - - - - -

InWt 1.29 0.31 2.03 0.01 5.53 0.01 4.77 0.01 5.04 0.04 1.48 0.20

Mari 1.08 0.57 2.18 0.15 2.07 0.17 - - 1.44 0.58 −2.47 0.12

TeFo −1.46 0.42 - - 4.80 0.01 3.35 0.01 0.81 0.75 −3.09 0.01

TrFo 1.37 0.29 2.06 0.01 3.47 0.01 2.40 0.01 4.80 0.04 1.20 0.20

Wood −0.33 0.83 - - 1.69 0.12 - - 6.28 0.08 - -

FProt −0.18 0.80 - - −1.83 0.01 −1.73 0.01 −0.42 0.75 - -

PProt −0.25 0.66 - - −0.24 0.63 - - 0.78 0.53 1.17 0.05

NProt 2 - - - - - - - - - - - -

Euro 2 - - - - - - - - - - - -

Asia −1.05 0.44 - - 0.43 0.59 - - −1.09 0.49 −1.75 0.06

Ocea −0.77 0.60 - - 1.53 0.13 - - −0.81 0.59 −1.33 0.16

LaAm 0.82 0.55 1.76 0.01 1.14 0.23 - - 2.55 0.17 1.33 0.18

NoAm −0.97 0.53 - - 0.66 0.41 - - 0.98 0.46 - -

Afric −1.20 0.45 - - −0.79 0.49 −2.12 0.01 0.66 0.74 - -

APer −0.04 0.02 −0.04 0.01 - - - - - - - -

FPer - - - - −0.01 0.24 −0.02 0.05 - - - -

Mprot −0.02 0.33 - - −0.02 0.25 −0.02 0.19 −0.06 0.01 −0.05 0.01

TProt −0.05 0.14 −0.05 0.10 −0.04 0.15 −0.05 0.06 −0.03 0.40 - -

ln_GNI 0.81 0.01 0.87 0.01 0.65 0.02 0.49 0.03 1.21 0.02 1.04 0.01

ln_PDen 0.54 0.03 0.59 0.01 0.91 0.01 0.66 0.01 0.53 0.12 0.48 0.09

N 302 225 109

R2 0.20 0.19 0.47 0.46 0.48 0.38

p-Value in
ANOVA 3 0.01 0.01 0.01 0.01 0.01 0.01

Notes: Dependent variable is ln_ESVi. 1 See Table 2 for variable descriptions; 2 Variable used as the basis for analysis of the dummies;
3 F-test of joint restriction that coefficients of excluded variables are equal to zero.

69



Environments 2021, 8, 76

The model with the least good fit was the Provisioning ES model (R2 = 0.19), followed
by the Cultural ES model with a reasonable fit (R2 = 0.38) and the Regulating and mainte-
nance ES model” with a reasonably good fit (R2 = 0.46) for the restricted models. Although
these values are low as compared to other ESV meta-analysis studies (see Table 5), a great
variability is observed in these studies, with R2 between 0.25 and 0.87. The explanation
for these values is related to the large number of observed studies that presented different
characteristics like the location, valuation method, and different years in which the study
was performed. For example, [24,30,31] presented large samples, with 682, 416, and 311 ob-
servations, respectively. In addition, these studies were applied in wide areas, covering
several countries.

Table 5. Studies applying the meta-analysis for ESV.

Authors Location Ecosystem Service Biome R2 Samp. Size
Cut-Off in

t-Test 1

Rosenberger &
Loomis [24]

United States and
Canada Outdoor activities - 0.26 682 0.20

Bateman & Jones
[41]

British
Forest—Great

Britain
Recreation Woodlands 0.71 77 0.38

Van Houtven
et al. [15] United States Water quality - 0.59–0.61 131 0.10

Lindhjem &
Navrud [7]

Norway, Sweden,
and Finland

Non-use values
related to

biodiversity
Forests 0.81–0.87 72 0.20

Ghermandi et al.
[30] World

Flood protection,
water quality,

and water storage
and supply

Wetlands 0.49–0.46 416 0.10

Hjerpe et al. [29] United States
Forest and
freshwater
restoration

Forests and
Fresh waters 0.58–0.60 127 0.18

Rao et al. [44] World coastal
area

Shoreline
protection Coastal Areas 0.44–0.45 90 0.10

Hynes et al. [31] World Recreation services Coastal Areas 0.25–0.65 311 0.10

Note: 1 Values presented for the final/best model presented.

As previously exposed, the cut-off for the significance level adopted in the t-student
test for the model variables was 20%, which eventually diminished the reliability of the
models (i.e., it is common to use “cut-off points” of 0.5%, 1%, 5% or even 10%). Nevertheless,
authors such as [7,24,29,41] used t-values similar to those adopted in our research. It will
be demonstrated, in the next section, that the transfer errors obtained using these value
functions are smaller than those obtained using other benefit transfer techniques.

3.4. Value Function Transfer Errors and Estimates

The validity of environmental benefit transfer has been the subject of a number of
studies [7,48,49]. In all of them, the validity has been tested by stating a null hypothesis of
no difference between the original study result and the benefit transfer estimate [50]. As in
those studies, in this study we seek to verify the differences between the estimated values
from MA-BT with the values from the ESVD database, using the Transfer Error technique
(see Section 2.3).
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3.4.1. Transfer Errors

To assess the accuracy of the estimated ES value meta-models, in order to justify
their adoption in future research covering different locations with varied characteristics,
we determined the transfer errors associated with Value transfer, Global meta function
transfer, and Local meta function transfer (see Section 2.3). This is done for the Provisioning,
Regulating and maintenance, and Cultural ES value functions (see Tables 6–8, respectively).

The ecosystem service values and transfer errors per biome related to the estimates for
the Provisioning ES are presented in Table 6. Overall, it can be concluded that the transfer
error is reduced when moving from Value transfer to Global meta function transfer and,
in turn, that the transfer error is further reduced when moving to Local meta function
transfer. Notable exception holds for Wood, which demonstrates the lowest transfer error
when using Value transfer. This is explained by the fact that this variable was dropped
from the restricted model (not significant according to the t-test). Also, in some cases,
the transfer error increases slightly when moving from Global meta function transfer to
Local meta function transfer (such as for FrWa, Mari, and TeFo), which is explained by
the large variation of values in the ESVD database that contained studies from different
countries, continents, and years, and in the case of those biomes, ranging from 1.5 to
3000.0 €/ha/year.

Table 6. Comparison of values and transfer errors (TE) per biome for Provisioning ES, based on Value transfer, Global meta
function transfer, and Local meta function transfer (in 2015 €/ha/yr).

Value Transfer Global Meta Function Transfer Local Meta Function Transfer

Biome 1 Value TE (ETE1) Value TE (ETE2) Value TE (ETE3)

CSys 1336.0 926.2 81.9 56.7 185.7 11.4
CWet 362.7 1228.2 30.7 103.9 66.0 10.1
CoRf 1463.7 7.0 × 106 10.3 5.0 × 104 23.1 1.6 × 104

CuAr 2795.2 4.2 × 105 141.7 2.2 × 104 741.8 1.4 × 104

Dser 82.5 106.2 1.5 2.0 1.5 2.0
FrWa 594.9 107.3 59.7 10.7 120.5 15.6
Gras 164.9 4.5 × 104 2.8 769.9 8.1 106.3
InWt 176.8 2013.6 6.2 71.0 15.8 54.7
Mari 50.8 2.76 27.6 1.4 48.0 4.0
TeFo 68.1 203.2 10.8 32.1 14.3 41.0
TrFo 277.3 297.8 31.2 33.3 58.3 19.6
Wood 110.6 1.1 × 106 4.6 2.7 × 106 15.4 6.5 × 106

Note: 1 CSys = Coastal systems; CWet = Coastal wetlands; CoRf = Coral reefs; CuAr = Cultivated areas; Dser = Desert; FrWa = Fresh water;
Gras = Grasslands; InWt = Inland wetlands; Mari = Marine; TeFo = Temp./Bor. forests; TrFo = Tropical forests; Wood = Woodland.

Table 7. Comparison of values and transfer errors (TE) per biome for Regulating and maintenance ES, based on Value
transfer, Global meta function transfer, and Local meta function transfer (in 2015 €/ha/yr).

Value Transfer Global Meta Function Transfer Local Meta Function Transfer

Biome 1 Value TE (ETE1) Value TE (ETE2) Value TE (ETE3)

CSys 941.9 7.6 258.3 1.8 1381.8 3.8
CWet 5088.3 267.3 430.6 22.5 943.2 12.3
CoRf 7074.0 3189.4 383.9 173.0 1236.6 18.6
CuAr 425.6 20.0 134.4 6.2 215.0 1.7
Dser - - - - - -
FrWa 115.5 0.0 29.8 0.7 29.8 0.7
Gras 111.9 1464.9 11.7 153.3 22.2 37.2
InWt 1660.2 1430.5 188.8 162.6 747.4 17.6
Mari 748.3 260.8 18.0 6.2 28.7 1.4
TeFo 641.8 44.9 94.7 6.4 197.2 5.4
TrFo 135.7 111.0 16.4 13.1 48.4 9.6
Wood 199.0 117.5 17.9 10.7 41.4 25.0

Note: 1 See Table 6 for variable descriptions.
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Table 7 presents the ecosystem service values and transfer errors per biome associated
with the estimates for the Regulating and maintenance ES. According to the analysis of the
previous table, the TE is reduced when moving from Value transfer to Global meta function
transfer and then moving to Local meta function transfer. In this case, the exceptions
hold for CSys and Wood, which demonstrate the lowest transfer error when using Global
meta function transfer. This is explained by the variation of the values presented in the
ESVD database for these biomes. No transfer error is observed for FrWa when using value
transfer, as only one observation for this biome is available in the ESVD. Finally, no value
estimate and transfer error were calculated for Dser because there are no primary value
estimates data for this biome in the ESVD.

Table 8. Comparison of values and transfer errors (TE) per biome for Cultural ES, based on Value transfer, Global meta
function transfer, and Local meta function transfer (in 2015 €/ha/yr).

Value Transfer Global Meta Function Transfer Local Meta Function Transfer

Biome 1 Value TE (ETE1) Value TE (ETE2) Value TE (ETE3)

CSys 156.9 156.3 90.6 90.0 186.9 33.7
CWet 3099.8 119.3 152.6 5.6 267.0 5.1
CoRf 5340.9 2 138.0 308.9 123.6 1695.3 17.1
CuAr - - - - - -
Dser - - - - - -
FrWa 651.4 0.5 16.1 1.0 36.2 0.9
Gras 1.4 0.2 48.6 35.3 58.2 46.4
InWt 681.5 15.3 142.4 3.0 234.0 3.3
Mari 311.8 316.9 7.4 7.2 20.6 1.6
TeFo 878.8 1.9 × 104 9.1 204.8 13.2 180.5
TrFo 275.4 38.3 38.0 5.1 85.6 6.2
Wood 3840.5 0.0 196.7 0.9 196.7 0.9

Note: 1 See Table 6 for variable descriptions.

Finally, Table 8 presents the ecosystem service values and transfer errors per biome
associated with the estimates for the Cultural ES. Again, it can be observed that the transfer
error is reduced when moving from Value transfer to Global meta function transfer and
next, to Local meta function transfer. Although there are exceptions, such as for FrWa,
InWt, and TrFo, which presented similar TE across Global and Local meta function transfer.
One prominent exception holds for Gras, which demonstrates the lowest transfer error
when using Value transfer. This is justified because it contained only two observations
for this biome in the database. No transfer error is observed for Wood when using value
transfer, as only one observation for this biome is available in the ESVD. Finally, no value
estimates and transfer errors were calculated for CuAr and Dser because there are no
primary value estimates for these biomes in the ESVD.

Hence, it can be concluded that transfer errors are reduced significantly when using
Global meta function transfer and, in particular, Local meta function transfer as compared
to Value transfer. This is justified because value function transfers allow the analyst greater
control over differences across sites, they can yield lower transfer errors than simple mean
value transfers [51]. In fact, by comparison, value functions offer a greater reflection of the
variability of a sample, because the study is dealing with a database with great variability.
For this reason, finding a model that, for the most part, has obtained a superior result
than other benefit transfers techniques, is an advance that justifies its application given the
heterogeneity of the data.

Value functions should thereby draw upon common drivers of preferences reflected
in economic theory, including only those variables applicable to all sites [52]. Economic
theory suggests that the benefits from environmental improvements should be determined
by [53]: (i) change in provision, (ii) distance to the site, (iii) distance to substitute sites,
and (iv) characteristics of the valuing individual (in particular income). That is why
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Local meta function transfer presents the lowest TE, for addressing these preferences and
reflecting the context of each country.

3.4.2. Local Value Function Transfer Estimates

Ecosystem service value estimates per biome for Provisioning (ESVProv), Regulat-
ing and maintenance (ESVReg&Main), and Cultural (ESVCult) ecosystem services, are pre-
sented in Table 9. Value estimates are thereby based on the restricted models presented in
Table 4, using local value function transfer and mean values for the explanatory variables
(from Table 3).

Table 9. Estimated ES values per biome for Provisioning (ESVProv), Regulating and maintenance (ESVReg&Main), and Cultural
(ESVCult) ecosystem services, using Local meta function transfer and mean national values for the explanatory variables (in
2015 €/ha/yr).

Ecosystem
Service 1 CSys CWet CoRf CuAr Dser FrWa Gras InWt Mari TeFo TrFo Wood

ESVProv 44.5 28.0 3.0 122.0 3.0 26.7 3.0 23.1 27.0 3.0 23.9 3.0
ESVReg&Main 193.2 238.1 389.9 78.1 - 3.6 3.6 425.8 3.6 103.3 39.9 3.6

ESVCult 127.1 491.6 1520.7 - - 127.1 127.1 555.3 10.8 5.8 420.8 127.1
ESVTotal 364.8 757.7 1913.6 200.1 3.0 157.4 133.7 1004.2 41.3 112.2 484.5 133.7

Note: 1 ESVProv = Provisioning Ecosystem Service Values; ESVReg&Main = Regulating and maintenance Ecosystem Service Values;
ESVCult = Cultural Ecosystem Service Values; ESVTotal = Total Ecosystem Service Values.

The values found in Table 9 show great variability, with values ranging from ESVTotal
= 3.0 €/ha/year for Desert areas to ESVTotal = 1913.5 €/ha/year for Coral reefs. The biomes
that provide largest total economic value are Coral reefs (CoRf = 1913.6 €/ha/year), Inland
wetlands (InWt = 1004.2 €/ha/year) and Coastal wetlands (CWet = 757.7 €/ha/year). These
biomes, in addition to standing out for providing a great diversity of ecosystem services,
are also the smallest biomes in terms of the area around the globe and, consequently,
the scarcest and, thus, most valuable. In fact, in studies that analyzed ES globally [4,5,54],
these biomes were also those with the highest value.

Provisioning services represent the lowest values and are related to the supplies
of products (such as food, materials, or water) with values close to their direct use
values [5]. The largest provisioning ES values are provided by Cultivated areas
(CuAr = 121.9 €/ha/year) and Coastal System (CSys = 44.5 €/ha/year). The lowest values
were found for Coral reefs, Desert, Grasslands, and Temp./Bor. forests (CoRf, Dser, Gras,
and TeFo, with a value of 3.0 €/ha/year each).

Regulating and maintenance services are linked to more indirect benefits, which
are related to quality, moderation, and prevention in environmental factors (Rao et al.,
2015). The largest Regulating & maintenance ES values are provided by Inland wetlands
(InWt = 425.8 €/ha/year), followed by Coral reefs (CoRf = 389.9 €/ha/year) and Coastal
wetlands (CWet = 238.1 €/ha/year), demonstrating a high added value for areas in transi-
tion, notably coastal areas. The lowest values were found for the Marine and Woodland
areas (Mari and Wood, with a value of 3.6 €/ha/year each).

Cultural services represent the largest values, because they involve complex
issues such as aesthetics, generated inspiration, and spirituality, which can be considered
incommensurable values as the perception about the environment varies from person to
person [5,31]. The largest cultural ES values are provided by Coral reefs
(CoRf = 1520.7 €/ha/year), Inland wetlands (InWt = 555.3 €/ha/year) and Coastal wet-
lands (CSys = 491.6 €/ha/year). The lowest values were found for the Marine areas
(Mari = 10.8 €/ha/year) and Temp./Bor. forests (TeFo = 5.8 €/ha/year).

It is necessary to be cautious when valuing ecosystem services since, although the aim
of pricing is to use values in monetary units, they serve as a tool to provide better insight
into the economic benefits of ecosystem goods and services. We do not try to find the
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shortcomings and limitations of monetary valuation, both in relation to ecosystem services
and man-made goods and services [5,55].

When ESV’s models are created and values for biomes are estimated, this does not
mean the biomes in question should be treated as private commodities that can be traded
in private markets. Most of those ecosystem services are public goods or the product of
common assets that cannot, or should not, be sold. Although the flowers, fruits, wood,
and leaves enter the market as private goods, the ecosystems that produce them, as for
example forests and woodlands, are common assets. Their values are an estimation of the
benefits to society expressed in a way that communicates with a broad audience. This can
help to raise awareness of the importance of ecosystem services to society and serve as
a powerful and essential communication tool to inform better, more balanced decisions
regarding trade-offs with policies that enhance the gross domestic product but damage
ecosystem services [4].

4. Conclusions and Recommendations

Ecosystem service value (ESV) meta-models were designed to provide access to values
in monetary units for ecosystem services (ES), taking into account the local context of the
country and area under analysis. Through their application, it is possible to estimate values
for 3 different types of ecosystem services (Provisioning; Regulating and maintenance;
Cultural) and 12 different types of land covers (Coastal systems; Coastal wetlands; Coral
reefs; Cultivated areas; Desert; Fresh water; Grasslands; Inland wetlands; Open ocean;
Temperate/Boreal forests; Tropical forests; Woodlands) in the world. To this end, we built
on the review and meta-analysis of the Ecosystem Service Valuation Database (ESVD).

The highest ES values were those associated with Cultural services, followed by
Regulating and maintenance and, finally, Provisioning services. Among the biomes with
greater associated ecosystem service values are Coral reefs, Inland wetlands, and Coastal
wetlands that, among other characteristics, are transitional, aquatic-terrestrial biomes that
are scarce and provide a great diversity of services.

It was observed that local independent variables, such as income, population, agricul-
tural and forest area, and those related to the level of environmental protection, are sig-
nificant explanatory variables and, thus, comprise the ESV meta-models. The application
of the meta-functions provides values with greater accuracy as compared to simple value
transfer and, as shown by the transfer error analysis, the application of local variables (local
meta function transfer) further increases this precision.

A meta-analysis, thus, reduces value transfer errors by taking into account local
specifications to determine ESV’s. There are several studies that have used meta-models for
the valuation of specific ecosystem services and biomes (e.g., [15,29–31]), however, we have
not found such a comprehensive study in the literature that has determined the value of 3
ecosystem services for 12 different biomes in the world. Even considering that there are
certain transfer errors with the application of meta-models, as compared to other benefit
transfer techniques (such as value transfer and value function transfer) the meta-analysis
technique has shown to be the best way to estimate the value of ecosystem services.

Some caveats to this study remain. First, there are improvements that can be made to
the results, such as updating the database, adopting other explanatory variables, or even
different functional forms. Second, the adoption of the ESVD, which although very broad,
has some limitations, such as the necessity for further studies for biomes such as Fresh
water, which presented only one study for Regulating and maintenance ES, and Woodland,
which presented only one study for Cultural ES. Moreover, biomes such as Cultivated
areas, Desert, and Marine presented few valuation studies, which could directly influence
their estimated ES values. Third, ecosystem services and values from marine biomes face
particular challenges as these are scarcely studied and poorly understood (e.g., [56,57]).
Finally, it was not possible to estimate values for urban areas, albeit they are important be-
cause they have a constant relationship with human well-being through services provided
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by areas such as parks, squares, and green spaces, as there were no studies analyzing this
land cover in the ESVD database.

We expect this study to be a step further in studies that involve valuing ecosystem
services and provide a basis for future research. Not in the least because ecosystem
services and values are increasingly considered in environmental planning and nature
conservation. Using reliable ecosystem service value estimates from local value functions
for 3 ecosystem service types across 12 biomes will facilitate this process—in particular in
data-poor circumstances.
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