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Optimizing the performance of services and industrial systems is a real lever for
creating value for companies and society. However, this target requires significant research
efforts. This optimization phase is one of the major steps that make it possible to guarantee
optimized productivity while respecting numerous constraints, such as quality standards,
safety of manufacturing processes, environmental impact and other economic constraints.
These constraints are linked to the type of products, the type of manufacturing systems
and their environment.

In most industries, the main objective is to guarantee an optimized use of workshops,
plants and other logistics resources in order to be reactive to market changes and distur-
bances. From this perspective, industrial systems must be as flexible as possible in order
to be able to adapt in terms of resources allocation, workshop reorganization, capacities
allocation, etc.

This special issue is devoted to recent research and current developments on complex
systems’ planning and scheduling. This includes the principles and practice of the design,
implementation and analysis of exact and approximate optimization methods to tackle the
challenges of modern manufacturing, engineering and healthcare systems. The topics of
interest of this issue include:

• Heuristic and metaheuristic algorithms for planning and scheduling problems in
manufacturing, engineering and healthcare systems;

• Exact algorithms (brand and bounds, dynamic programming, etc.) for planning and
scheduling problems;

• Planning and scheduling applications (timetabling, network routing, crew scheduling,
production scheduling, resource-constrained project scheduling, etc.);

• Energy-efficient planning and scheduling problems;
• Intelligent optimization approaches for intelligent manufacturing systems;
• Artificial Intelligence and data analytics (manufacturing, services, healthcare, services

and industries of the future, etc.).

In response to the call for papers, thirty-nine papers were submitted to this special issue
among which sixteen were accepted for publication. One of the accepted works presents a
systematic review and future directions for smart manufacturing scheduling approaches [1].
In this review, several papers published recently are analyzed to understand the require-
ments considered when developing scheduling solutions for manufacturing systems.

Considering healthcare problems, Huvent et al. [2] addresses the generation and
development of a benchmark properly fitting different constraints of the Home Health
Care (HHC) problem. Consequently, a generator is proposed dealing with all kinds
of constraints, such as time window constraints, workload constraints, synchronization
and precedence constraints. This generator allows researchers to validate and compare
solving methods on a common dataset, regardless of confidentiality issues. The author
validate their generator, firstly, by creating a common benchmark available for researchers
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and, secondly, by proposing a set of instances and a solving method based on an HHC
problem found in the literature. In another work, Abderrabi et al. [3] study a real case of
an optimization problem derived from a hospital supply chain. Their work focuses on
developing operational decision support models and algorithms for the production process
scheduling in a hospital catering. The addressed production system is represented as a
flexible job shop system. A mathematical model and two metaheuristics for the production
scheduling of multi-product and multi-stage food processes are developed to minimize the
total flow time. These methods are tested, based on real data, for scheduling the operations
of the food production at the hospital center of Troyes in France.

Some of the addressed papers are especially interested on the development of new
theoretical properties regarding different contexts. In paper [4], the authors consider the
problem of assigning non-preemptive jobs on identical parallel machines to optimize
workload balancing criteria. Since workload balancing is an important practical issue
for services and production systems to ensure an efficient use of resources, different
measures of performance have been considered in the scheduling literature to characterize
this problem. This study proposes a theoretical and computational analysis of these
criteria. Based on these theoretical developments, the authors propose new mathematical
formulations to provide optimal solutions to some unsolved instances in order to enhance
the latest benchmark presented in the literature. In [5], a genetic crow search algorithm
(GCSA) approach is proposed to deal with the operation sequencing problem in computer-
aided process planning. The traditional CSA is improved by employing genetic strategies,
such as tournament selection, three-string crossover, shift and resource mutation. Moreover,
adaptive crossover and mutation probability coefficients are introduced to improve local
and global search abilities of the GCSA. An operation precedence graph is adopted to
represent precedence relationships among features. In [6], Oudani is interested in analyzing
and solving the Intermodal Terminal Location Problem on incomplete networks. The
problem is modelled as a mixed integer linear program. Then, a simulated annealing
algorithm is introduced to tackle medium and large instances. The computational results
show that the obtained solutions using simulated annealing are competitive and close
to the exact solutions found by CPLEX solver for small and medium instances. The
same developed algorithm outperforms the best-found solutions from the literature using
heuristics for larger instances.

The study addressed by Wisittipanich et al. [7] focuses on a postman delivery routing
problem of the Chiang Rai post office, located in the Chiang Rai province of Thailand. In
this study, two metaheuristic methods—Particle Swarm Optimization (PSO) and Differen-
tial Evolution (DE)—are applied with particular solution representation to find delivery
routings with minimum travel distances. The performances of PSO and DE are compared
with those from current practice. The results show that PSO and DE clearly outperform
the actual routing of the current practice in all the operational days examined. Moreover,
DE performances are notably superior to those of PSO. Červeňanská et al. [8] present
the results of the wider investigation of common priority rules combined with a discrete-
event simulation model applied in a partially flexible job shop system in terms of several
conflicting production performance indicators evaluated simultaneously. The results of
the optimization experiments also indicate that the evaluation via applying multi-criteria
optimization is relevant for identifying effective solutions in the design space when a
specific priority rule is applied in the scheduling operations. In the same multiple-criteria
optimization context, Lin and Chang [9] present an extended version of the Hadi-Vencheh
model for multiple-criteria ABC inventory classification. The proposed model is based
on the nonlinear weighted product method (WPM), which determines a common set of
weights for all items. The proposed nonlinear WPM incorporates multiple criteria with
different measured units without converting the performance of each inventory item, in
terms of converting each criterion into a normalized attribute value, thereby providing
an improvement over the model proposed by Hadi-Vencheh. This study mainly includes
various criteria for an ABC classification and demonstrates an efficient algorithm for solv-
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ing nonlinear programming problems, in which the feasible solution set does not have to
be convex. The algorithm presented in this study substantially improves the solution effi-
ciency of the canonical coordinates method (CCM) algorithm when applied to large-scale
nonlinear programming problems.

The research work proposed by Klimek [10] presents the resource-constrained project
scheduling problem with the discounted cash flow maximization criterion from the per-
spective of a contractor. Cash flows are considered as the contractor’s expenses related to
the execution of activities and client’s payments after the completion of contractual stages.
To solve the problem, the author develops dedicated techniques to generate solutions
and a simulated annealing algorithm. Finally, the proposed procedures are examined
using the Project Scheduling Library (PSPLIB). An experimental analysis identifies the
efficient moves and techniques for creating solutions, that is backward scheduling with
optimization of completion times of project stages and triple justification.

Viveros et al. [11] address the multi-level storage locations assignment problem for
Stock-Keeping Units pallets, considering divisible locations in the first level to improve the
picking operation and reduce the travel times associated with the routes of the cranes. A
mathematical programming model is developed considering the objective of minimizing
the total travel distance and, in the background, maximizing the use of storage capacity. To
solve this complex problem, the authors consider its decomposition into four subproblems,
which are solved sequentially. To evaluate the performance of the model, two analysis
scenarios based on different storage strategies are proposed to evaluate both the entry and
exit distance of pallets, as well as the cost associated with the movements.

In the book storage problem, the randomized storage strategy is known as a best
practice for storing books of an online bookstore, it simplifies the order picking strategy as
to retrieve books in purchase orders from closest locations of the warehouse. However, to
be more responsive to customers, many distribution centers have adopted a just-in-time
strategy leading to various value-added activities, such as kitting, labelling, product or
order assembly, customized packaging, or palletization, all of which must be scheduled
and integrated in the order-picking process; this is known as wave planning. Shiau and
Huang [12] propose a wave-planning mathematical model by considering, simultaneously,
(1) time window from master of schedule (MOS), (2) random storage stock-keeping units
(SKUs) and (3) picker-to-order. A conceptual simulation, along with a simplified example
for the proposed wave-planning algorithm, is examined to demonstrate the merits of the
idea. The result shows that the wave-planning procedure can significantly reduce the
waiting time for truck loading of packages and the time that packages are heaping in
buffer areas.

The last four papers present different original real case studies in different sectors
and different region in the world. In [13], the integration of simulation modeling and the
response surface methodology (RSM) is presented to solve an order planning problem
in the construction supply chain. The interactions of various factors are examined to
observe their effects on key system measurements and a combination of factor levels is
determined to achieve the optimal performance. RSM is applied to find the possible values
of the optimal setting for system responses, which consists of three main steps: central
composite design (CCD), Box–Behnken design (BBD) and a comparison of both designs.
The model is tested with a realistic case study of a building material distributor in Vietnam
to demonstrate its effectiveness. The developed framework could be applied as a useful
reference for decision-makers, purchasing managers and warehouse managers to obtain the
most suitable order policy for a robust order planning process. Mejía et al. [14] investigate
the problem of sustainable rural supply and urban distribution of fresh food products in
central Colombia. Paradoxically, while farmers in the countryside suffer from poverty due
to the low profitability of the agricultural activity, inhabitants at urban centers pay high
prices for fresh and nutritious foods. In this work, the authors propose a supply chain
system and a business model based on food hubs located on existing (and often abandoned)
public facilities in the central region of Colombia. They study a business strategy through a
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mathematical model which considers both the sustainable and efficient operation of the
food hubs and better trading conditions for farmers. The authors also propose a variant of
the competitive hub location problem adapted to this case study. They test the model under
different scenarios, such as changes in the attractiveness parameters, operation costs and
profit margins. The results suggest that, if hubs are able to attract farmers, the model can be
both sustainable for the hub concessionaires and for the farmers. As claimed by Klement
et al. [15], the management of industrial systems is conducted through different levels,
ranging from the strategic (designing the system), to the tactical (planning the activities
and assigning the resources) and the operational level (scheduling the activities). In their
paper, the authors focus on the latter by considering a real-world scheduling problem from
a plastic injection company, where the production process combines parallel machines
and a set of resources. Two metaheuristics are tested and compared when used in the
proposed scheduling approach: the stochastic descent and the simulated annealing. The
method’s performances are analyzed through an experimental study and the obtained
results show that its outcomes outperform those of the scheduling policy conducted in a
case-study company. Moreover, besides being able to solve large real-world problems in a
reasonable amount of time, the proposed approach has a structure that makes it flexible
and easily adaptable to several different planning and scheduling problems. The aim of the
study presented by Ghaithan [16] is to develop an integrated mathematical model for the
operation and maintenance planning for both the oil and gas supply chain. The utility of
the proposed model is demonstrated using the Saudi Arabian hydrocarbon supply chain.
In fact, the Hydrocarbon Supply Chain (HCSC) is a complex network that extends from oil
and gas fields to demand nodes. Integrating operation and maintenance activities along
this complex network are crucial since the hydrocarbon industry is the most influential
sector in the world economy and any disruptions or variations in hydrocarbon product
supply affect the whole world economy.

Author Contributions: The authors contributed equally to the different steps of this research. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the support from the Industrial Chair
Connected-Innovation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alemão, D.; Rocha, A.D.; Barata, J. Smart Manufacturing Scheduling Approaches—Systematic Review and Future Directions.
Appl. Sci. 2021, 11, 2186. [CrossRef]

2. Huvent, C.; Gagné, C.; Sioud, A. Randomized and Generated Instances Fitting with the Home Health Care Problem Subjected to
Certain Constraints. Appl. Sci. 2021, 11, 3346. [CrossRef]

3. Abderrabi, F.; Godichaud, M.; Yalaoui, A.; Yalaoui, F.; Amodeo, L.; Qerimi, A.; Thivet, E. Flexible Job Shop Scheduling Problem
with Sequence Dependent Setup Time and Job Splitting: Hospital Catering Case Study. Appl. Sci. 2021, 11, 1504. [CrossRef]

4. Ouazene, Y.; Nguyen, N.-Q.; Yalaoui, F. Workload Balancing on Identical Parallel Machines: Theoretical and Computational
Analysis. Appl. Sci. 2021, 11, 3677. [CrossRef]

5. Djurdjev, M.; Cep, R.; Lukic, D.; Antic, A.; Popovic, B.; Milosevic, M. A Genetic Crow Search Algorithm for Optimization of
Operation Sequencing in Process Planning. Appl. Sci. 2021, 11, 1981. [CrossRef]

6. Oudani, M. A Simulated Annealing Algorithm for Intermodal Transportation on Incomplete Networks. Appl. Sci. 2021, 11, 4467.
[CrossRef]

7. Wisittipanich, W.; Phoungthong, K.; Srisuwannapa, C.; Baisukhan, A.; Wisittipanit, N. Performance Comparison between Particle
Swarm Optimization and Differential Evolution Algorithms for Postman Delivery Routing Problem. Appl. Sci. 2021, 11, 2703.
[CrossRef]

4



Appl. Sci. 2021, 11, 8980
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Abstract: The recent advances in technology and the demand for highly customized products have
been forcing manufacturing companies to adapt and develop new solutions in order to become more
dynamic and flexible to face the changing markets. Manufacturing scheduling plays a core role in
this adaptation since it is crucial to ensure that all operations and processes are running on time in
the factory. However, to develop robust scheduling solutions it is necessary to consider different
requirements from the shopfloor, but it is not clear which constraints should be analyzed and most
research studies end up considering very few of them. In this review article, several papers published
in recent years were analyzed to understand how many and which requirements they consider when
developing scheduling solutions for manufacturing systems. It is possible to understand that the
majority of them are not able to be adapted to real systems since some core constraints are not even
considered. Consequently, it is important to consider how manufacturing scheduling solutions can
be structured to be adapted effortlessly for different manufacturing scenarios.

Keywords: manufacturing scheduling; smart manufacturing; intelligent manufacturing systems;
scheduling requirements; cyber-physical production systems

1. Introduction

Manufacturing has suffered deep changes over the past decades, mainly driven
by the market trends that forced companies to move from traditional mass production
lines to more dynamic and flexible manufacturing systems. The increasing demand for
highly customized products with several variants led to smaller lot sizes, which requires
companies to quickly adapt and adjust to new market opportunities in order to thrive in
a very competitive world. Therefore, it is crucial that manufacturers develop approaches
that allow for more dynamism, flexibility, and reconfigurability at the factory level.

The life cycles of product are becoming smaller and smaller, which leads to companies
not adapting their production lines in time for new market opportunities, which takes time
and is costly.

One of the biggest challenges of humankind has always been to maximize productive
work in an efficient and effective way. To do so, it is of huge importance to plan a well-
structured schedule with a detailed description of the tasks to execute, where they should be
executed and when a task should be performed. This applies to areas such as transportation
services, staff distribution, and, unquestionably, production systems.

Manufacturing scheduling has been studied for several decades and has been applied
in industry in many different forms in an attempt to optimize the production processes
and allocate resources as efficiently as possible. However, most of the scheduling has been
carried out manually or using simple and limited programs that can barely improve the
performance of the system. Until a few decades ago, mass production lines, producing
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huge lots of the same products always following the same method, were dominant; today
that is not the case, and a better planning approach needs to be considered.

In recent years, new production paradigms have been proposed to support companies
tackling this problem. These paradigms, such as lean production, agile manufacturing,
or smart manufacturing, have been pushed and pulled by industry and academia, which
contributes to huge advances in manufacturing. However, the gap between academia
and industry is still huge and the link between both of them needs to be reinforced in
order to achieve consistent and acceptable results. For instance, both parts should have a
closer interaction which will provide more prosperous advances, since academia is often
not aware of some manufacturing requirements, such as relevant production technical
features, business environment, clients preferences, or societal requirements. On the other
hand, companies that do not have a solid research department may not be aware of new
technologies and processes being developed, which need to be strongly maturated, mainly
by the contribution of industrial partners.

Now, more than ever, there is an opportunity to implement robust and efficient
schedule solutions, not only on the shopfloor but even along the value chain, since there
is more information available than ever before. However, there is a big challenge to
implement scheduling solutions in real manufacturing systems. Despite the required
complexity of such implementation in the real world, there is not a reference guide in the
context of smart manufacturing to assist in the implementation of these solutions.

Consequently, the authors see the importance of establishing a baseline that can serve
as a starting point when developing manufacturing scheduling systems, with the objective
of developing reliable solutions that can be applied to real manufacturing scenarios.

Thus, this work aims to identify, analyze, and point out the main trends regarding
the adoption of industrial requirements or constraints which academia should focus more
on in order to help developing scheduling solutions in smart manufacturing systems.
These requirements were identified by analyzing some relevant studies in this area to
understand which requirements are being considered when implementing manufacturing
scheduling solutions. Furthermore, not only the requirements were analyzed but also
the objective functions, i.e., the objective the solution is trying to optimize, which can be
related to production efficiency, delivery time, energetic efficiency, and so on. Consequently,
further research studies may focus on how to develop scheduling solutions based on some
fundamental requirements identified in this study.

The rest of this document is composed of a brief overview of manufacturing scheduling
and a description of the methodology adopted in this survey. Then, the main findings are
introduced, highlighting the most common scheduling requirements and which research
studies are considering them. After this, a discussion about the future of scheduling in
smart manufacturing environment is presented. The document ends with a brief conclusion
of the article.

2. Manufacturing Scheduling

The recent development and advances in technology as well as the market demand for
highly customized and personalized products have been pushing manufacturing compa-
nies to develop new solutions to become more dynamic and flexible to face these emergent
trends and the quickly changing markets.

Most of the existing production systems are based on automated systems built to
achieve high performances and high delivery rates, coming from the second and third
industrial revolutions, but have no capability regarding autonomy, adaptation, and flexibil-
ity. Consequently, a group of expert technicians is needed to solve a problem each time a
disturbance occurs in the production line. In addition to these restrictions, the emergence
of new manufacturing paradigms, the appearance of new technologies and processes, the
cheaper development of IT infrastructures, and the emerging possibility of digitization,
among other factors, led to a disruption in the industrial scene.
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The fourth industrial revolution—under the abbreviation of I4.0 in Europe, industrial
internet or smart manufacturing in the USA, smart factory in South Korea, and made in
China 2025 in China [1–3]—is happening now but started with first steps several years ago.
It makes use of different emerging technologies and paradigms such as AI, cyber-physical
systems, Internet of Things (IoT), cloud computing, digital twin, agent-based systems,
among others, and allows the development of more dynamic and agile approaches to
improve the efficiency of manufacturing systems [4,5]. The capability to collect, store,
and analyze data was hugely improved, which makes it possible for manufacturers to
better understand their equipment, their products, their manufacturing processes, their cus-
tomers, their workers, and even their competitors, which increases the smartness degree in
manufacturing systems, and leads to a better interconnection between the different systems.

Smart manufacturing comprises both horizontal and vertical integrations. Horizon-
tal integration connects the different players of the value chain along the entire product
lifecycle, which allows the optimization of the production process from suppliers to man-
ufacturers and end users. The digitization of data and processes allow the system to be
shared, analyzed, and to dynamically adapt in real-time during the manufacturing pro-
cess [6]. Vertical integration combines different hierarchical levels in the production process
within the factory, from working stations and human workers on the shopfloor to software
technology, such as manufacturing execution systems and marketing activities [1].

However, with all the recent developments in technology, one of the main challenges
in production systems continues to be the development of scheduling solutions to deal
with all the planning information as well as unpredictable events on distributed produc-
tion processes [7]. These challenges occur not only in the development phase, due to the
implementation complexity of the systems, but also in the design phase. Nevertheless, sev-
eral research articles have discussed and proposed manufacturing scheduling approaches
under the smart manufacturing umbrella, such as [5,8–14].

Scheduling has been largely applied in many different areas such as energy consump-
tion [15,16], transportation [17], staff distribution [18], and manufacturing [19,20], among
other areas, to help the industries to plan their activities. For each scheduling solution
for different areas of application, specific algorithms and mathematical models should be
developed, since it is not achievable to develop a one-fit-all solution [18].

In manufacturing, scheduling can be considered as a process of arranging, controlling,
and optimizing work on the shopfloor [21]. Sometimes, parts need to wait too long on
the shopfloor due to limited resources to manage them or due to weak planning of the
system. Production scheduling aims to efficiently allocate the available resources and reach
a predefined goal since scheduling is a process of optimizing work and time. A scheduling
problem may be described as an environment composed of one or more machines, with
specific characteristics, and a set of jobs (products with one or more operations that will be
processed by the machines). The goal is to optimize an objective or group of objectives by
assigning each job to a specific machine in a specific time in order to be processed, while
conflicts between operations are avoided [22]. Succinctly, scheduling determines what is
going to be carried out and where this will happen and with what resources.

Manufacturing processes can be very dynamic. Even in environments where the
processes happening on the shopfloor are always the same and known in advance, they can
be affected by one or another disturbance that forces all production to stop until the problem
is solved. Although some years ago manufacturing systems were not ready for this change
and were not efficient enough to deal with these disturbances, nowadays, manufacturing
is becoming more adaptive, dynamic, and highly flexible to meet market requirements and
adjusts to every change that may improve the process. This is even more important in the
era of the emergence of mass individualization, where the disturbances in the production
line can be even more significant. In order to minimize the unexpected events and improve
the overall production performance, one of the key challenges is to develop reliable and
robust scheduling solutions. I4.0 scheduling approaches should be designed to deal with
these smart and dynamic manufacturing systems and their new technologies.
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Although this has been studied for decades, complex and robust scheduling solutions
are frequently disregarded in real manufacturing scenarios, where they are sometimes
carried out manually, on data sheets, or on simple or limited software programs. These solu-
tions frequently lead to significant errors since they do not consider the current status of the
shopfloor and are not adaptive to different scenarios. Though, more robust solutions are not
implemented mainly due to the complexity of implementing them in large-scale systems
with real-time constraints, since it is considered to be a non-deterministic polynomial-
time hard combinatorial optimization problem which is quite difficult to reach an optimal
solution for with traditional optimization techniques [23]. However, scheduling optimiza-
tion has direct impacts on the production efficiency, sustainability, and also on costs of
manufacturing systems and must be developed to its full capabilities [5,24].

Most researchers assume some constraints, such as that resources are always available
or that the processing time of a job is known in advance and remains constant during the
entire process, but in real systems this is not always true.

Disturbances may occur during the production process, which lead to a rescheduling
that should be performed as fast as possible. These disturbances can be the arrival of new
orders, canceled orders, or machine breakdowns which lead to the machine’s unavailability,
or some emergency event [5,25]. Additionally, job processing times may increase over
time, which is a situation knowing as deterioration of resources in scheduling problems [26],
or even decrease when there is a learning factor or the workload can be reinforced [27].
Consequently, to adapt to the manufacturing system, it is vital that the scheduling process
is dynamic and quick to avoid unnecessary system downtimes and costs.

In flexible and agile manufacturing environments, products can have several different
feasible processing plans and most of the time it is very hard to find a good one for all the
products. Production scheduling is a very important decision making in a factory and it
can be a difficult problem depending on the number of calculations necessary to obtain a
schedule that gives an optimal or near-optimal solution for the given objectives [19].

The production scheduling optimization problem may be decomposed into several
categories, according to the factory type. There are several environments depending on
the machine’s layout and the flow of the products, which can mainly be divided into:
flow shop, which is composed of a set of machines arranged in series, one after another,
where the products follow the same execution order through all the machines [28]; job
shop, which can be described as a set of machines that should process a set of different
jobs, where each job is composed of a group of operations to be processed in a given order,
so each product may have a different route [29]; open shop, composed of machines that
can perform all operations and thus there are no fixed routes for each job, which consist of
unordered operations that do not have precedence constraints [30]. Usually, the essence
of these is that several jobs (products with one or more operations to be processed) are
assigned to a set of machines at specific times, satisfying some constraints, while trying
to minimize the makespan, i.e., the time between the moment that the first job started
until the moment that the last job is finished, or optimize some other objective, such as the
production due dates, or the number of finished products, or the load balancing, which
refers to assigning the task among different resources equally to provide better quality
service, in the case of human workers, and reduce idle times and work-in-process in the
case of machines [23,26,31–33].

Moreover, to produce an optimized solution, restrictions regarding product parts,
material availability, machines or work capacity, start and due dates, costs, distribution
requirements, or setup efficiency conditions must be known [34].

3. Survey Approach

To identify and characterize tendencies on the application of scheduling concepts and
approaches to the manufacturing area, this study was conducted following a systematic
literature review (SLR) method to reach a systematic process that synthesizes research
results [35]. The procedure is synthesized in Figure 1.
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Figure 1. Procedure of the review.

An extended literature review was performed and the following research questions
were formulated.

3.1. Research Questions

The research questions addressed by this work are:
RQ1 What are the constraints and targets of the manufacturing scheduling solutions

found in the studied articles?
RQ2 How can scheduling systems be designed and developed so that they address

different targets and requirements in the context of smart manufacturing?

3.2. Search Sources and Process

The first approach for finding publications related to the topic was a search on Google
Scholar where it was possible to find a large number of articles related to manufacturing
scheduling.

Then, for the search and selection of appropriate articles, three relevant indexed
databases in manufacturing were used: Web of Science, Scopus, and IEEE Xplore. By
restricting the search to these sources, some articles were automatically excluded; however,
the papers indexed in these databases are expected to have more relevance, since these
databases are broadly used by manufacturing and scheduling peers. Different terms were
used individually or combined with others to come out with the current literature review.
The most relevant terms are composed of “scheduling”, “manufacturing scheduling”, “pro-
duction scheduling”, “scheduling systems”, “job shop scheduling”, “dynamic scheduling”,
“industry 4.0”, “industrie 4.0”, “smart manufacturing”, and “cyber-physical systems”.

3.3. Inclusion and Exclusion Criteria

The main findings, i.e., the scheduling solutions pointed in Table 1, of this research are
mainly focused on documents published during the 2013–2020 period to ensure that most
information is up to date. Since the term “scheduling” is used in different applications
(such as production, transportation, or staff allocation), it was necessary to exclude some
papers that were not related to manufacturing. As a result, a total of 65 papers were kept
as the foundation for this study.

4. Main Findings

In this section are presented numerous articles found in the literature that focus
on different aspects of manufacturing scheduling. Contrary to traditional approaches
that mostly use centralized manufacturing systems, underneath the smart manufacturing
environment, most of the components are smart, autonomous, and dynamic, leading to
a more intelligent and decentralized manufacturing system [36]. Consequently, a lot of
data and different information need to be available in order to model and develop robust
scheduling solutions.

One of the main findings is related to the innumerous different requirements that are
considered among different solutions. A preliminary analysis of the selected literature
allowed us to identify some requirements that may be crucial in real scenarios but are not
always considered in the literature. The list of those requirements is presented next, and
from here it was possible to build Table 1 and evaluate which studies consider each of
these requirements.
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4.1. Manufacturing Scheduling Requirements

Among these data, there are a lot of constraints and requirements that need to be
considered before developing a production scheduling solution. Even though these re-
quirements may be different for each particular case, some of them can be transversal to
several real manufacturing scenarios. Although it is not possible to consider all of them,
next are presented some relevant constraints and requirements.

4.1.1. Dynamic Environments

In most real-world manufacturing environments disturbances may occur over time,
known as dynamic environments, and so it is important to be prepared to deal with them.
This may mean that the optimal solution for the problem may also change. These distur-
bances may include the arrival of new jobs that need to be executed urgently, cancellation
of jobs, changing of processing times, or machine availability, since machinery may be
subject to maintenance operations or incur in breakdowns. Although the simplest way
to cope with this problem may be to reschedule all the remaining jobs, as done by Tran
and colleagues [37], it may be impractical from a temporal point of view. So, a possible
solution is to the previous search space to improve the search after a change, by incor-
porating or removing the jobs in the previous schedule without affecting the other tasks.
However, in extreme cases, reschedule could be the better option. However, in most
real-world problems, changes are quite smooth, and so can be profitable to collect previous
knowledge [38].

4.1.2. Flexibility

A flexible manufacturing system is able to produce different products by sharing tools.
More factories are adopting flexible machines, which are able to perform more than one
unique task; thus, a flexible scheduling solution should be adopted to those manufacturing
systems. In flexible scheduling, an operation can be executed in more than one machine
(routing flexibility) or each machine can be able to perform more than one operation by
sharing resources (machine flexibility) [39,40].

4.1.3. Processing Times Variation

Most of the time, in the literature, task processing times are considered to be static,
i.e., they are known in advance and do not change along the way. However, in real
manufacturing systems, due to the most diverse situations, they may vary, mostly to
increase over time. This situation can happen due to resource deterioration, a fault in
the setup, or because of the surrounding conditions [26,41]. However, processing times
may also be reduced, for example, by assigning more workforce to a task, which means
that those time variations can sometimes be controlled [27]. This means that neglecting
processing times may reflect in the actual production process.

4.1.4. Setup Times

Setup times encompass all the operations that are performed on the machines but
are not related to the production process directly. It includes, for example, adding or
removing product parts, calibration, machine cleaning, tests, etc. These operations can
occur both before and/or after the processing of the task, and, depending on the industry,
it may occur each time a new product needs to be processed. In a way to reduce setup
costs, parts that need the same machine configuration may be scheduled one after the
other, known as sequence-dependent setup problems [42]. However, most of the time
these processes are not considered or are considered as part of the processing times of the
product [27]. However, in real manufacturing systems, setup times can be a substantial part
of the production time, and so should be managed wisely to generate correct information
about the process. Otherwise, it can lead to incorrect information that can directly affect
the production process.
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4.1.5. Maintenance

Although often ignored in scheduling studies, maintenance activities play a crucial
role in manufacturing systems, since they are a constant in real environments, either to
prevent/avoid or to correct/recover failures. Even more, in the current globalized market
where manufacturers focus more in reinforce the delivery reliability, sometimes at the cost
of a good production and maintenance strategy [43]. Thus, maintenance activities are an
important element to be considered when developing scheduling approaches, in order
to have a more robust solution and achieve a better performance of the system [44,45].
Furthermore, by arranging maintenance operations strategically, companies may be able
to pursue long-term competitiveness and sustainability, by providing better resources
conditions, conservation, and functional life extension [46].

4.1.6. Precedence Activities

Even though precedence constraints have been studied for a few decades, it is still
a very explored topic inside the research community. Even though it is usually assumed
that every job or task to be processed is independent of any other, this is not always the
case, since some jobs may be intermediates to other jobs. Thus, in the cases where there
are precedence constraints, the first task of a certain job cannot start before all the tasks of
its predecessors are finalized, as in the case of the assembly of two or more parts [47]. So,
these constraints need to be known in advance to optimize the scheduling process.

4.1.7. Pre-Emption

In some cases, it may be necessary or desired that operations in jobs can be continued
after a pause. This is known as pre-emption. On the other hand, when jobs cannot be
interrupted, pre-emption is not allowed. Although pre-emption is rarely considered in
the literature, in several scenarios, it may be needed, such as the arrival of new jobs with
more importance than the ones being processed, which requires the machine to stop the
operations. It can be beneficial to continue an operation in another machine or another
time; unexpected cancellations by the clients might also require the stopping of production
or even breakdowns in the machines as mentioned previously [27].

4.1.8. Release and Due Dates

Release dates (the time from when the job is available to be processed) and due dates
(the time when the job must be completed) are other types of requirements or constraints
present when developing scheduling solutions, although they can also be considered as
part of the objectives of the scheduling. Sometimes, however, it may not be possible to
complete all the jobs in the time interval between the release and due dates, but these times
should not be disregarded [27]. It is important to respect the dates since the products need
to be ready for delivery at some time [42] and it could be crucial to not overcome these
dates. On the other hand, it could be important to not finish the products too soon as well,
since this can lead to some wear in the parts or involve storage costs. Thus, when these
dates are not respected, it may be necessary to apply penalties, both for early and late
finishes [48,49].

4.1.9. Transportation

Product parts need to be moved inside the factory from one machine to another, or
to the storage zone. This process can involve transportations through conveyors, robotic
arms, automated guided vehicles, and many other solutions [27]. This means that first
the product will not be immediately available in the next machine and a certain time is
required to transport it, and second, the number of transporters is limited. So, they must be
synchronized with the scheduling process along the chain or the parts need to wait for an
available one, which may require to allocate each job to a transport vehicle and sequence
the transport tasks to be executed by each vehicle [50]. However, transportation times are
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not often considered in the scheduling problems found in the literature, which can severely
affect the scheduling performance.

4.1.10. Storage

Another constraint that is often ignored or considered to be infinite in the literature
is the storage buffer. Products may need to be placed in storage, both during and/or at
the end of the production process. Obviously, this space is not infinite, and full or poorly
managed storage zones may imply additional problems in the production. Thus, storage
buffers may be considered when developing scheduling approaches to have more realistic
solutions and reduce unexpected problems [27].

4.1.11. Distributed Factories

Although scheduling systems are mostly associated with the scheduling process
within the factory, the scheduling process of supply chains has evolved. This increased
the complexity of the problem even more, since the products may be assigned to different
factories, which may be distant from each other, and the transportation across these facilities
needs to be considered [40,51].

4.1.12. Environmental Issues

During recent years, there has been an increase in concern about the negative envi-
ronmental impact caused by the manufacturing environments. Since the population is
increasing, it is quite natural that the energy consumption increases as well to respond
to the demand for any type of goods. Nevertheless, to achieve sustainable development
in order to reduce gas emissions or acidification, it is crucial to reduce the energy de-
mand [24,52]. This can be done, for example, by creating energy-efficient machine tools
and selecting appropriate tools when acquiring them, and assess a set of key performance
indicators to support the design and selection of tools [53].

As stated by [24] in their research, “none of the IPCC (Intergovernmental Panel for
Climate Change) reports identifying scheduling as either a method or an instrument to
improve energy efficiency [ . . . ] scheduling is rarely considered as a suitable instrument
to improve sustainability either in general or concerning energy efficiency in particular”.
However, scheduling can be an important tool to reduce the environmental impact and
achieve sustainability, since it can inform what the best steps to improve and reduce the
energetic consumption and costs during the manufacturing process are, such as machines’
consumption or utilization of materials [54,55].

Based on the identified requirements, the next subsection will analyze the literature
considering some important requirements and restrictions that are important to consider
when designing scheduling approaches to be applied in manufacturing systems.

4.2. Existing Approaches

In this subsection are presented some studies found in the literature covering different
characteristics of manufacturing scheduling. In Table 1, some requirements the authors
consider to be important in manufacturing scenarios and that contribute to improving the
development of scheduling solutions are presented, which can be found in the literature.

The following abbreviations were used:
ATCT—adjustment of total completion times; MW—material wastage;
CJ—completed jobs; Obj—objective function;
CW—cost of workers; P—productivity;
DD—due date; Pd—precedence;
DE—dynamic events; PDC—total production and
DF—distributed factories; distribution costs;
E—earliness; PM—parallel machine;
EC—energy consumption; Pr – pre-emption;

14



Appl. Sci. 2021, 11, 2186

F—flexible shopfloor; PT—processing time;
FS—flow shop; RD—release date;
I—industry-oriented; RM—resources management;
JS—job shop; S—storage;
LB—load balance; Set—setup times;
M—makespan; SCT—sum of completion times;
MAPE—mean absolute percentage error; SM—single machine;
MC—manufacturing cost; ST—shop type;
MDO—maximize delivery of orders; Stab – stability;
MeanET—Mean earliness and tardiness; T—tardiness;
MEP—maximize early production; TDR—tardiness delivery rate;
MET—sum of maximum earliness and tardiness; TET—total earliness and tardiness;
MFT—mean flow time; TFT—total flow time;
MOO—minimize overdue orders; TT—transportation time;
MSA—maximize system availability; TV—processing times variation;
Mt – maintenance; TWM—total weighted makespan;
MtC—maintenance cost; TWT—total weight tardiness.

Table 1. Aggregation of solutions based on scheduling type (column 2), requirements (columns 3–17), and objectives
(last column).

Ref. ST I DE F DF TT E T TV Set Mt Pd Pr RD DD S Obj

[56] PM � TWM

[57] JS � � M/EC

[40] JS � � � M

[58] JS � � � � � M/TWT/E/T/S

[59] JS � � M

[60] JS � � M

[49] JS � � � MET

[48] FS � � TWT

[51] JS � � � M

[44] SM � � � � � M

[13] FS � � � � � MC/RM/
EC/TDR

[45] SM � � � � MC/T

[61] FS/PM � � � M/EC/MW

[62] FS � M/ATCT/PT

[63] JS � � � � � T/EC

[64] JS � � M/Stab

[65] JS � � � � TWT

[25] PM � � M/SCT/T

[66] SM � � MtC

[41] PM � � � � � E/T/MtC

[67] JS � � � � � � M

[68] JS � � � MFT

[69] FS � � � � � � P/MDO/
MOO/CW

[70] JS � � � � � � E/T/PT

[9] FS � � � � T/CJ/LB

[47] JS � � � � T

[71] JS � � � � � M/MFT/T

[72] JS � � M/MSA/EC

[73] PM � � � � � T

[74] JS � � � � M/TWT/MAPE
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Table 1. Cont.

Ref. ST I DE F DF TT E T TV Set Mt Pd Pr RD DD S Obj

[75] PM � M

[76] JS M

[77] FS � � � MET

[78] JS � � � M

[79] FS � � � EC/T

[80] FS � � � � MEP

[81] JS � � � � M/MeanET

[82] JS � M

[83] JS � � M/Stab

[84] JS � � � Stab/M/TFT/LB

[85] JS � M

[86] SM � � � TET

[87] FS � � M/EC

[88] JS � � M/LB

[89] JS � � � � M/TET

[90] PM M

[91] JS � � � M/LB/MFT

[26] SM � M

[31] JS � � M

[92] JS � � M

[55] JS � M/EC

[93] FS � � M

[94] JS � � � M/LB

[95] JS � M

[96] JS � M

[97] FS � � � � M

[8] FS � � � M

[98] JS � � EC/MC

[99] JS � � � � M/MeanET

[100] JS � � � � � MET/PDC

[101] FS � � � � � T

[37] JS � � � M/T

[102] FS � M

[42] PM � � � � T

[32] PM � LB

As [23] noticed in their research survey on AI strategies for resolving job shop schedul-
ing problems, only a small percentage (8.06%) of the studied researchers published articles
focused on solving real-life industrial problems, between 1997 and 2012. Additionally, [103]
stated in their research survey study (focused on articles between 1990 and 2014) that most
work was focused on testing the developed algorithms on benchmark instances, and just
a fraction of the research has been applied to practical problem solutions as compared to
pure research.

The data presented in Table 1 were processed using Microsoft Excel, taking advantage
of the calculation and graphic tools features available.

From the 65 articles analyzed during this work (Table 1), it was possible to observe
that only nearly 10% tried to solve the scheduling problem in real industrial scenarios.
The focus on algorithm development is of huge importance and can contribute greatly
to solve real problems. However, real scenarios have an entire set of conditions and
circumstances that are not considered when algorithms are developed in the laboratory.
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The current problem in obtaining feasible solutions for smart manufacturing scenarios
is not related to technology by itself [104], as technology has evolved a lot during recent
decades, it is related to managing all the actors and the connections between them, and
the use of them to improve the industry. Thus, more effort should be dedicated to solving
industry-oriented problems.

In addition to this, regarding the objectives, most researchers considered, i.e., tried
to solve, single-objective problems, while some of them tried to optimize at least two or
three objectives, as shown in Figure 2. In the case of Figure 2 a counting was performed
for each number of objectives used in each article divided by the total number of articles.
For example, when analyzing which articles considered two objectives, it is only necessary
to count the number of articles with two objectives (16) and divide by the total number
of articles (65), which is approximately 25%. For Figures 3 and 4 a similar approach
was adopted.

Figure 2. Number of objectives considered per study.

Figure 3. Percentage of articles considering each objective.
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Figure 4. Number of requirements considered per study.

Within these objectives, most researchers, around 65%, focused on trying to optimize
makespan, while more than a third try to deal with problems related to the tardiness of
finished products, as it is possible to observe in Figure 3. The Other category is composed of
features with weights of less than 2% each and so they were joined together. One outstand-
ing point is that in the third position, 15% of the articles considered energy consumption
issues, which makes clear that is a concern in the research community regarding envi-
ronmental issues and sustainability. Nevertheless, although some authors use reference
benchmarks for testing and comparison, it is not clear which techniques are superior to
others for a specific problem, although they can be better than others in specific points.
This leads to solutions that are good at beating benchmarks but are not able to be deployed
in real manufacturing systems [103].

In addition to this, some problems arise when unrealistic assumptions are made since
manufacturing environments are very dynamic and do not rely on static features. These
assumptions can rapidly lead to unfeasible scheduling solutions which can be costly to the
companies [27]. The most common assumptions are: all jobs and machines are available
at starting time and release times are not considered; each machine can only execute one
specific operation, which is not always true since some machines may have the flexibility
to perform more than one operation, by changing tools, for example; the processing time of
an operation is unchangeable, but processing times may change according to the conditions
in a specific moment; machines never break and they are always available; setup times of
any operation are sequence-independent and are included in the processing time, which
is not always true and may compromise the entire schedule; pre-emption is not allowed;
storage buffers are unlimited.

Aligned with this problem, the authors of [27] state that “ . . . the intersection among
three or more sets of constraints for any shop layout would return an empty set of references
most of the time”. This means that only a few studies contemplate more than three
constraints. From Table 1, it is possible to observe that only about a third of the research
studies considered more than three of the identified requirements in the same approach, as
demonstrated in Figure 4.
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It is also possible to observe that the most adopted requirements are flexibility, related
to the ability of the shopfloor to adapt and adopt different features, and due dates, related
with the date when each job shall be completed. After this comes the consideration
of dynamic environments, where the arrival of new jobs, job cancellations or machine
breakdowns during the execution process are considered and a reschedule may be necessary.
Finally, the last consideration is tardiness, which evaluates the extent to which jobs are
delayed from the initial deadline. All the other requirements are less expressive, being
adopted in less than 20% of the articles.

This is a substantially small number considering all the requirements and constraints
that can be found in manufacturing systems. Additionally, almost half of the studies
considered two or three constraints. On the other side, two of the studied articles did
not consider even one of the requirements mentioned in this study, as they only tried to
optimize the objectives without any kind of limitation.

5. Scheduling in the Context of Smart Manufacturing and Next Steps

5.1. Gaps and Challenges

Sometimes it can look as researchers are facilitating when trying to narrow the bridge
between academic studies and industry, as the published studies are often too simple,
vague, and even have convenient restrictions and simplifications that do not reflect real
industrial systems. This may be true. However, on the other hand, both computational
and real-world complexity can difficult the problems solving. Additionally, most of the
time companies are not willing to provide sensitive information that can be valuable for
developing better manufacturing systems. These days, where data are becoming the core of
industrial systems, it is crucial that data are provided to academia, so better solutions, not
only for the shopfloor but for all value chains, may emerge. Nonetheless, academia should
also make an effort to meet the industry’s needs. Although there are plenty of scheduling
studies in the literature, the research dealing with real-world problems is very uncommon.
Likewise, most approaches do not allow solutions to be scalable and to be reused in some
different scenarios.

Thus, the main challenges, and similarly the main gaps, in manufacturing scheduling
research for smart manufacturing comes from the fact that most studies found in the
literature, as mentioned before, are based on assumptions, related to the manufacturing
environment, that are, commonly, not true and even naïve in real manufacturing systems.
Furthermore, to cope with more realistic scenarios, more constraints and requirements need
to be considered simultaneously to replicate as well as possible real manufacturing systems.

5.2. Human Factor

Based on the study presented, it is possible to identify that the objectives and re-
quirements related to humans and the operators are not usually taken into account by
manufacturing scheduling solutions. However, it is getting more and more usual for
companies and society to explore how these new smart manufacturing solutions must
deal with humans and how they can or cannot help humans within the industry. Hence,
the authors believe that in the near future, it is necessary to explore new manufacturing
scheduling approaches where these systems could use human-related aspects such as the
available human resources or tiredness of the operators could be used to optimize the
systems not only from the production or energy efficiency point of view but also taking
into account these aspects to improve the integration of these systems and the operators,
developing more harmonized workplaces.

The necessity to develop systems, including the human aspects, is critical for future
research activities from the sustainability point of view. This aspect is one of the three pillars
of sustainability. However, the addition of the human factors for manufacturing scheduling
studies highly increases the studies’ complexity since all humans are different and have
different behaviors for the same situations. So, the authors believe that it is crucial to create
interdisciplinary teams to explore this aspect because such systems’ development will
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require analysis and understanding of elements that usually are far from the manufacturing
scheduling experts’ expertise. Simultaneously, this topic constitutes a relevant topic to be
explored in the future due to the necessity for these new smart manufacturing-oriented
solutions to be aware of the operators and their behaviors, taking that into account during
the optimization process.

5.3. Opportunities Future Work

Nowadays, manufacturing systems are becoming enormous living robotic environ-
ments, and, in some cases, there is limited human presence. There are smart products,
which constantly give feedback about their own status to the system, and smart resources,
which can do the same and inform the system in real-time if some problem occurs in the
production line. This intelligence within the system allows the different components to
communicate and interact in order to reach common objectives. Nevertheless, on the other
side, it also allows the extraction of more data and information from the system than ever
before and transforms that information into useful knowledge. Knowledge can be used
to improve multiple strands of the system, not only within the factory but also across the
entire supply chain. This fact can immensely improve production scheduling systems,
which are able to extract dynamically and in real-time more and more data from a vast va-
riety of smart components, which can help to provide more robust and efficient scheduling
solutions. However, in recent years there has been more and more interoperability between
tools on shopfloors and existing legacy solutions are not able to account for this.

Although there is a huge complexity involved in developing smart manufacturing
systems and there may be some restrictions regarding the process and memory power,
nowadays the main limitations are not related to the hardware nor to the connection
between entities since the emergence of cyber-physical systems has allowed all kind of
entities on the shopfloor to be virtualized and connected together, thus permitting the easy
execution of monitoring and controlling activities in the production line. One of the main
problems is related to the linking between different types of data sources and how they
need to cooperate to achieve better and more efficient performances. Consequently, it is
necessary to go one step further and direct more efforts towards modeling, optimization,
and standardization of manufacturing systems [105].

Therefore, to harmonize the designing and development of manufacturing systems,
some reference architectures have emerged over recent years, such as ISA-95 [106], 5C
architecture [107], Smart Grid Architecture Model—SGAM [108], Industrial Internet Ref-
erence Architecture—IIRA [109], or Reference Architectural Model for Industrie 4.0—
RAMI4.0 [110]. These architectures aim to ensure a common comprehension, achieve
standardization, enable semantic interoperability, and provide consistent operation models
for the system. By adopting a reference architecture in manufacturing scheduling it will be
possible to manage all the information coming from different sources in a consistent and
homogeneous way and apply a core scheduling solution to different scenarios.

One of the possible ways to achieve this is to create an Asset Administration Shell
(AAS) for scheduling and consequently for all other entities related to scheduling, under
the RAMI4.0 architecture. An AAS consists of transforming physical components such as
robots, machines, or devices and, similarly, intangible assets such as functions, plans, or
an entire network into Industrie 4.0 components, which will then allow standardization
as much as possible for solutions in engineering, operation, and management, and imple-
mentation of a heterogeneous communication structure in a smart manufacturing-oriented
system. The AAS is the virtual representation of the asset that encompasses all the infor-
mation and technical functionalities of the asset and manages communications with other
Industrie 4.0 Components [110]. Through describing and modeling the asset components
in smart manufacturing environments aligned with RAMI4.0 architecture, it will be pos-
sible to standardize and optimize the scheduling development process. In sequence, by
clarifying which components should interact in the scheduling process and which data
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need to be available and flow within the system, scheduling designers and developers may
be better prepared, and companies may benefit from the scheduling solutions created.

6. Conclusions

This work provides a literature review on smart manufacturing and, more specifically,
on manufacturing scheduling. This is a very explored and discussed topic, which can
hugely contribute to develop better manufacturing systems and improve the overall perfor-
mance of those systems, regarding time, throughput, resources, or energetic optimization,
among others. However, scheduling designing and development is not structured and
harmonized between different entities, since it usually developed specifically for each case.

Consequently, the objective of this study is twofold. On one hand, the aim was to
investigate which requirements and constraints are fundamental considerations when
developing scheduling solutions for industrial scenarios. This was explored in subchapter
4.1 by analyzing some reference articles and books on the topic where requirements were
used more commonly and their role in the scheduling process. On the other hand, this
study analyzed several articles to identify the previous requirements they considered and
which objectives they tried to optimize, which can render them robust approaches to be
deployed in real manufacturing situations. The result of the last point came up as table
containing all the 65 analyzed articles, pointing out which requirements they considered
and the most common optimization objectives.

The results show that the vast majority of the articles only consider one or two
objectives, mainly the makespan, which was found in around 65% of the articles, and
tardiness related objectives, which were found in 37% of cases. It is also important to note
that around 15% of the articles focused on solving energy consumption related issues,
which shall be a major focus during these times of environmental awareness. Actually,
environmental issues have been playing an increasingly important role in manufacturing
scheduling, where studies are mainly making energy consumption assessment. However,
in real manufacturing systems, depending on the case, it may be necessary to consider
multiple optimization objectives. Furthermore, regarding the number of requirements
considered in each study, it is possible to observe that most of the articles considered two
or three requirements per case, while around 17% considered five or more constraints.
It is important to understand that the more requirements considered, the more robust a
scheduling solution can become, and then the more applicable it will be in real scenarios.
As far as the authors know, this kind of study is not to be found in the literature.

In the analyzed literature, no study was found describing the components of manu-
facturing scheduling for reference architectures. Different approaches consider different
constraints, and there is not a common and uniform way of developing scheduling solu-
tions, even though there are common points in industrial systems that may be harmonized.
Having a reference for scheduling designing and development can speed up the creation
of scheduling solutions and make it easier to adapt these solutions to different scenarios.
Knowing that scheduling can have a direct impact on production efficiency, sustainability,
and costs of manufacturing systems, it is of huge interest to conduct in-depth research on
how to model smart components to optimize scheduling approaches in smart manufactur-
ing systems. Providing a structured model that includes relevant information about the
inputs of the scheduling process and the desired outputs has great relevance for the design
of scheduling solutions to cope with the smart manufacturing paradigm.
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Abstract: Home Health Care (HHC) is a worldwide issue. It focuses on how medical and social
organizations of different countries handle providing patients with health support at home. In most
developed countries, reducing hospital cost constitutes a main objective. It is important to research
the improvement of HHC logistics. This paper addressed the generation and development of a
benchmark properly fitting different constraints of the HCC problem. Consequently, a generator
was proposed dealing with all kinds of constraints such as time window constraints, workload
constraints, synchronization, and precedence constraints. This generator allows researchers to
validate and compare solving methods on a common dataset regardless of confidentiality issues.
We validated our generator by firstly creating a common benchmark available for researchers and
secondly by proposing a set of instances and a solving method based on an HHC problem found in
the literature.

Keywords: smart health care systems; planning; scheduling; logistic systems; benchmark

1. Introduction

In most countries, the population of older adults is increasing. As people age, their
health needs become more chronic and complex [1], which results in a rising demand for
health care [2]. According to the Organisation for Economic Co-operation and Development
(OECD), between 2010 and 2018, all developed countries registered an increase of 3% in
their older population [3]. Furthermore, for most of those countries, a decrease in formal
care leads to a substantial increase in demand for Home Health Care (HHC) services.
In recent years, the Health Care (HC) industry has become one of the largest sectors of the
economy in developed countries. In Europe, between 1% and 5% of the total public health
budget is spent on HHC services [4].

In 2018, one-point-four million Canadians needed home care services [5] (4.1% of the
total population). HHC services have emerged as a viable solution to meet the challenges
of the aging population problem. HHC’s aim is to improve patients’ living conditions by
providing them with medical, paramedical, and social services in their home. From an
economic point of view, HHC decreases hospital congestion by avoiding or reducing
hospitalizations, leading to both significant increases in quality of life for patients and
relevant cost savings in the HC system [6,7].

Building a proper HHC plan is a complex task regarding the different constraints.
Currently, operational planning is mostly done manually and often by an experienced
senior caregiver [5,8–10]. According to the surveys of the HHC companies, each day,
an HHC company carries out various logistics activities including the delivery of drugs
or medical services from caregivers to patients and medical samples to the laboratory.
Generally speaking, those activities can be considered as a Vehicle Routing Problem (VRP)
or as a scheduling problem [11]. In both views, multiple constraints must be considered
like workload constraints, interdependencies among services, etc. Interdependent services
can be defined as having temporal dependencies between two services, or as synchronized
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services [12] (also called shared services), or as services with priority constraints. Thus, it is
possible for a single patient to need a pair of services that must be separated from a given
time interval.

The HHC problem can be described regarding a short-, medium-, or long-term hori-
zon, ranging from one day to a couple of months. Daily problems have received the most
attention in the literature [13,14]. Usually, medium-term problems consider a planning hori-
zon of a week. Another observation is that all constraints mentioned above are rarely met
in the same problem. A set of constraints is chosen to reflect the scope of how the problem
is treated. According to the review of Fikar and Hirsch [13], short-term problems usually
consider time windows and qualification requirements, whereas medium-term problems
deal with working time regulations and continuity of care considerations. However, inter-
dependent and synchronized services are weakly discussed in the HHC literature. Finally,
to establish an exhaustive HHC problem, many other constraints and aspects should be
taken into account such as geographical constraints or legal working considerations.

The problem holds many constraints and parameters depending on the way it is
handled. Due to medical confidentiality, researchers lack public benchmarks to validate
and compare their models. Indeed, in the current literature, many studies cannot publish
their datasets due to medical confidentiality. Some studies offer homemade datasets, but
they are often developed to fit into the scope of the HHCRSP. These homemade datasets
can rarely be used by other researchers. This article proposes a generator able to establish
HHC models fitting most of the constraints and features linked to the HHC literature.
The goal of this generator is to produce a large benchmark of the HHCRSP with different
ways to tackle the HHCRSP by choosing a set of constraints regarding how researchers
want to test and solve their HHCRSP. The organization of this article is as follows. Section 2
reviews related literature. Section 3 presents the HHC problem by defining the key aspects.
The generator and its engine are detailed in Section 4. Section 5 shows an application of
the generator by showing a solving method based on a skip descent algorithm. Finally,
conclusions and some perspectives are provided in Section 6.

2. Literature Review

HHC-related models started with Begur et al. [15] in 1997. Currently, HHC problems
are an extension of the VRP augmented by many side constraints that are specific to the
HHC context linked to a scheduling problem. This new problem’s formulation is called the
Home Health Care Routing and Scheduling Problem (HHCRSP). To establish an HHCRSP,
an extended definition of HHC is used, which includes various health-related parameters.

According to Lanzarone et al. [16], HHC deals with various challenges such as parti-
tioning a territory, dimensioning human resources, and assigning and scheduling caregivers
to patients or tasks. Mostly, the objective of a scheduling problem is to find an ideal pairing
of caregivers and patients, whereas the routing problem aims to design caregivers’ tours
while minimizing the total travel time. The HHCRSP is an NP-hard problem [17], and
due to this, it has received the most attention. The proposed models are evaluated on
homemade datasets or derived from protected data [13]. Knowing that different sets of
constraints and objectives can be considered, it is impossible to make a comparison between
different solving methods. Indeed, in HHC, there is no commonly accepted benchmark
due to medical confidentiality.

Bertels et al. [17] proposed an HHCRSP model formulated by taking into account
workload balance for caregivers and introducing time windows. A time window represents
a time interval in which something has to be started or can describe the working time or
availability of someone. In 2013, Lui et al. [18] formulated an HHCRP with time window
constraints. They also proposed a model with simultaneous delivery and pickup of drugs
and biological samples. Mankowska et al. [12] proposed an HHCRSP as being multi-period
and multi-service. The model takes into account the personal qualifications of the staff,
possible interdependencies among services, and the individual requirements of the patients.
Hiermann et al. [9] proposed a multimodal HHCRSP from an Austrian HHC provider

28



Appl. Sci. 2021, 11, 3346

based on multiple modes of transportation. Its aim was to determine efficient multimodal
tours while considering staff and patient satisfaction. Liu et al. [19] studied scheduling
and routing problems related to HHC with the consideration of lunch break requirements
and working legal requirements. Frifita et al. [20] presented a model based on preferred
time windows for patient and synchronization constraints. Among all these models, no
comparison has so far been presented in the literature.

Each HHCRSP is distinguished regarding the planning horizon [14] and its composi-
tion in terms of strength (number of caregivers, patients) [21]. Some HC providers pursue
continuity of care. Patients are assigned to only one caregiver named the reference care-
giver, who follows the entire patient care pathway. A reference caregiver provides all the
visits that are pertinent [22]. On another note, some HHCRSP definitions include patients’
and caregivers’ preferences [23,24], a minimal and maximal amount of working time for a
caregiver, and time windows for patients. In the HHCRSP, some implicit parameters are
not mentioned in the model such as the share of time when a caregiver is on the road or
the capacity of the HC provider. The current literature suggests a rate between 15% and
20% for the share of traveling time [13]. The capacity of an HC provider is related to some
constraints such as working legal requirements or the option for lunch breaks [10,13].

3. Home Health Care Problem Definition

HHC services, both at the international level and in Quebec, need tools to automati-
cally and efficiently schedule all types of care. Finding a perfect schedule is a tough task
due to the complexity and the repeating aspect of an HHC problem. HHC planning on
a daily or a weekly horizon aims to assign and schedule all jobs or services required by
patients to the proper caregivers.

In an HHC problem, caregivers are deeply involved. Indeed, identifying which
caregiver may look after a new patient involves some considerations: the current workload
of the caregiver, his/her qualifications, and geographic closeness. Interactions between the
patient and the caregivers and temporal constraints such as care that needs to be performed
at a specific time have to be taken into account.

An HHC problem can also be described as a problem in which patients have to be
visited once or several times a week by caregivers. Cares services are delivered in a defined
time during a visit. A large set of constraints has to be considered and satisfied as qualifica-
tions for each caregiver, working hours, geographical consistency, time windows, resting
time and lunch breaks, working hours, workload, and precedence or synchronization
constraints. Furthermore, compatibility constraints can be introduced. Compatibility takes
wanted days, continuity of care, languages, and personal experience between a patient and
a caregiver into account.

3.1. Jobs

Within this model, a patient has a list of needed jobs. The jobs JP = {1, . . . , J} are care
services that must be performed at patients’ homes and have different natures: providing
medication, performing an injection, changing a bandage, etc. A single patient may relate
to one or more jobs. However, job j ∈ JP belongs to a unique patient. According to
Mosquera et al. [21], a patient is mostly related to three jobs per day. A caregiver usually
performs six jobs per day.

Each job has a priority and arduousness score [25,26]. The lowest score means that the
job j ∈ JP has a low priority/arduousness. Sometimes, jobs have to be postponed until
another day because no caregiver can perform the job on the current day or because of a
lack of time. The priority scale is used to range jobs from basic to extremely important.
Some jobs are more arduous than others (palliative care), and the caregiver can be affected
by this job. These situations must be taken into account when building and scheduling
the planning. The arduousness score is used to rate how much a job can affect a caregiver
from low impact to deep impact. As an example and as illustrated in Figure 1, the first
caregiver has three jobs scheduled. The first one has a low priority and a low arduousness
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level. The second job scheduled has a low priority and a high arduousness level. The third
job scheduled has a medium priority and a high arduousness level. Taking care of how
jobs are scheduled is important because as described in Figure 1, the first caregiver has to
perform two jobs with the highest arduousness score, whereas the fourth caregiver only
has jobs with a medium or low arduousness score.

Figure 1. An example of priority and arduousness in an HCC scheduling problem.

Let Q be the set of qualifications required by a job. To perform a job j, a caregiver
must have the required qualification Qi ∈ Q, as illustrated in Figure 2. A job may need
one or several qualifications, while a caregiver must have all qualifications required to
perform the job. In Figure 2, Caregiver 2 is able to perform the second and third job because
he/she has the required skills. As mentioned by Fikar [13], an HHC instance has about
six different qualifications on average, which means that card(Q) ≈ 6. Moreover, as stated
by Castillo-Salazar [27] in his review, on average, eighty percent of caregivers are able to
perform any kind of job.

Figure 2. A qualification matrix (C) regarding job qualifications (A) and caregivers’ qualifications (B).

Each job related to a patient has a given time window [sj, ej] and a processing time
durj. A patient can be an elderly person living at home and who has an agreement with an
HHC center for his/her medical and social care (bathing, nursing, etc.). Depending on the
care service, a time window has to be set up. The time window indicates when a job must
start. For example, for a patient p ∈ P and a job j ∈ J , a time window is set up to start
at 2.30 P.M. and finish at 3.30 P.M. This means that a caregiver c ∈ C has to begin the job
between 2.30 P.M. and 3.30 P.M.

Normally, each caregiver follows his/her own route. However, some patients require
two caregivers to be present simultaneously (synchronization constraint) or in a given order
(precedence constraint) to proceed to their jobs. If a job is synchronized, two caregivers are
needed simultaneously to perform the job at the patient’s home. Synchronized jobs are often
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met in the case of overweight patients or palliative care. The precedence constraint is met
when, for example, medication has to be given by a caregiver before or after another task
performed by another caregiver. Typically, ten to twenty percent of jobs in an HHC center
follow such constraints. Moreover, other types of temporal and geographical constraints
are considered in the literature; collecting biological samples is one of them. Indeed, in
some jobs, a caregiver might need to collect a biological sample and bring it to a laboratory
for testing. Thus, the location of an HHC center or medical laboratories involved in the
care provided are among the parameters to be considered in the HHCRSP models.

Figure 3 sums up and exemplifies the characteristics of a job. First of all, a job is
related to a patient. It has a priority and arduousness score indicating how the job must
be scheduled. Then, a job requires skills to be performed. Each job has a fixed duration
and must be started within a certain time frame on a specific day. Lastly, if a job may need
another caregiver or produce a biological sample, synchronization or collection constraints
are raised. Precedence constraints can also be raised if a job has to be performed before the
current job.

Figure 3. Description and summary of a job.

3.2. Caregivers

Let C = {1, . . . , C} be a set of caregivers. As a reminder, the word caregiver is applied
to anyone who provides personal care in his/her work, such as nurses or social workers.
For each patient, there is at least one set of caregivers Pc ⊂ C able to perform all jobs
required by the patient at his/her home. All caregivers’ tours can start at their own homes
or at the HHC office and must finish at the HHC office. Traveled distances between patients’
homes and caregivers’ homes are calculated and stored in a specific matrix. For an HHC
center, designing the optimal shifts for caregivers can be a difficult task. A shift can be
consistent or mixed. In a consistent shift, there is only one type of caregiver (nurses only
for example). However, a mixed shift has different types of caregivers (nurses and social
workers work together with the patient). In both cases, caregivers are distinguished by
their own qualifications and their labor agreement. Each caregiver C can accomplish a
set of jobs regarding his/her set of qualifications QC ∈ Q. The labor agreement defines
legal working hours. A caregiver can deliver a job only within his/her working hours.
The lower and upper bound of availability [sCi , eCi ] represent the time frame in which a
caregiver C is available during the day Di. As described in Figure 4, each caregiver has a
different set of skills, and for each day of the planning, each caregiver has a different time
frame for his/her legal working hours.
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Figure 4. Caregiver qualifications’ table (A); starting and ending working hours for each caregiver
on a two-day basis (B).

The compatibility between a patient and a caregiver can be found in the literature as
a constraint. They are many ways to tackle these compatibilities: caregivers can have a
preference for some jobs, time windows, and patient relationship. A caregiver can choose
simple jobs rather than difficult jobs such as palliative care. Caregivers might refuse to
perform any of the patients’ jobs for compatibility reasons. Two compatibility tables are
stored to show how much a caregiver is compatible with a patient. The first compatibility
table (A) in Figure 5 combines all hard constraints of a caregiver’s/patient’s compatibilities
(e.g., if the caregiver has a dog allergy or spoken languages). The second compatibility
table (B) in Figure 5 shows low constraints in a caregiver/patient relationship. A score of
zero is the lowest feasible compatibility, and three is the highest. In the hard compatibility
table, a score of four is only reachable if the caregiver is a reference caregiver of the current
patient. As illustrated in Figure 5, each patient and caregiver has his/her own compatibility.
For example, the first caregiver has a reference caregiver compatibility regarding the first
patient, bu a medium compatibility for the same patient regarding the low compatibility
table. Compatibilities are not mutual, which means that a caregiver can have a good
compatibility with a patient, while this patient does not.

Figure 5. Illustration of the hard (A) and low (B) compatibility table.

Beyond daily planning, legal working requirements and the labor agreement are
important to consider [28]. The caregiver can be full-time or part-time employee of the
HHC provider. To do so, each caregiver has a contractual number of hours HC per
day. The number of daily hours that a caregiver is required to work must not exceed
a threshold [hmin, hmax]. For example, HC corresponds to 7.5h in the U.K. according to
Akjiratikarl et al. [29] or 8h in Finland according to Bräysy and Gendreau [30]. This limit
can also be set as a weekly availability [31] in which case, each caregiver is allowed to work
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a maximum amount of hours per week depending on his/her labor agreement. This is in
addition to a daily working time regulation. This limit can be exceeded up to a maximum
overtime per period. A break B of a duration durB can be planned for a caregiver c ∈ C for
each day. This break can be taken at any time during the day. It is planned before or after
a job.

Figure 6 describes the characteristics of a caregiver. Firstly, a caregiver possesses
many skills due to his/her academic training. Secondly, a caregiver has the geographical
coordinates of his/her current position and initial position. Compatibility tables are set up
to reflect the caregiver/patient relationship. Legally, a caregiver has a working contract
with the HHC center and may work each day during a fixed time frame for a minimum
and maximum amount of hours.

Figure 6. Description and summary of a caregiver.

3.3. Patients

Patients are key players in HHC or an HHCRSP. Let P be a set of patients scattered in
a geographic area who need care services. For each Pi ∈ P , there is a subset JPi ⊆ J such
that these jobs involve patient Pi. Obviously, at least one job has to be scheduled in the
given planning for each patient.

Compatibilities are often considered (language, patient/caregiver relationship, etc.).
Patient compatibility is treated the same way as caregiver compatibility. Most studies
assign a time interval to each patient in which he/she is available at home to receive care.
This time interval, also called a time window, can be fixed or flexible. Fixed time windows
force the caregiver to visit the patient in the time frame and to proceed with care, while
flexible time windows allow the caregiver to delay care. Fixed time windows are met when
the patient needs drug intake or medical care that cannot be delayed. As a result, for each
patient Pi ∈ P , a time windows is defined as [αi, βi], where αi ≥ 0 and βi ≥ αi specify the
earliest, respectively latest, start time for a visit.

The assignment constraints of an HHC service organization are largely related to
continuity of care. According to the quality standards adopted by HHC providers, care
services for patients can be provided under full, partial, or no continuity of care. Under full
continuity of care, a patient is assigned to one and only one caregiver, who is responsible
for the patient’s care during his/her stay in the HHC service. On another note, partial
continuity of care is usually observed in situations in which a patient needs more than one
type of care. Then, for the most frequent type of care, a reference caregiver can be assigned
(as a full continuity of care case). Usually, studies tend to deal with full continuity, but it is
often more a criterion to maximize than a parameter of the HHCRSP model [23,29,30,32].
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Figure 7 describes the characteristics of a patient. Firstly, a patient possesses a list
of care services (jobs). The patient has the geographical coordinates (latitude/longitude)
of his/her position. The distance between patients and the HHC center or laboratories
is calculated and stored in a matrix. The compatibility table is set up to reflect the care-
giver/patient relationship. Time windows are set up to show to the center when a patient
is available to receive his/her care services.

Figure 7. Description and summary of a patient.

3.4. Performance Measures: Common Objective Functions

In operational research, performance measures are represented by objective functions.
Operational problems are often set up with many constraints and an objective function.
As presented before, an HHCRSP can be tackled in different ways depending on the set of
constraints. The objective function can also be elaborated differently depending on how
the solution must be optimized. In the HHCRSP literature, different kinds of objective
functions are introduced:

1. Minimizing the travel cost by optimizing the traveled distance [19,24,26].
2. Minimizing working hours for caregivers [10,29,33].
3. Minimizing overtime [16,25].
4. Continuity of care [24,34].
5. Preferences [35].

4. Overview and Functioning of the Generator

An HHC aims to increase the quality of life for patients and to improve the health
system’s efficiency. An HHC center deals with a wide range of patients suffering from
various diseases. As described in the previous section, HHC problems are based on
scheduling jobs linked to a routing problem. Generating a good reading of an HHCRSP is
not an easy task. Listing and categorizing all different constraints and angles of an HHC
problem are essential. Section 4.1 briefly illustrates the assumptions and constraints raised
in the literature. In Section 4.2, a listing and description of different parameters found in
the literature are proposed to fully describe the HHCRSP. The source code of the project is
available at this address: https://drive.google.com/drive/folders/1NnZ8JwAtOOp4mm2
du1WjzKF0Dkoctekw?usp=sharing (accedessed date on 12 April 2021). This project was
coded in C++ in Microsoft Visual Studio 2019. A readme file was implemented to explain
how the generator works and describes the data provided by the generator. This file has an
English version, as well as a French version.
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4.1. Background Description of an HHCRSP

A typical HHCRSP consists of a set of caregivers starting and ending their work
at an HC center. The goal is to find a valid plan for an n-day period for each caregiver.
The resulting planning indicates which job should be carried out by which caregiver and
when the job should start. Each caregiver has available time for carrying out patients’
jobs with the possibility of working just a part of the day or the whole day. Consequently,
jobs are assigned according to the feasible time of each caregiver. Depending on how
geographical constraints are dealt with, caregivers use the same or various modes of
transportation. Each job has specific qualifications or skills, and they are always considered
as hard constraints. The preference relationship can be defined between patients and
caregivers as a ratio or score between them. An HHC center can decide that patients
should be visited by their preferred caregivers in order to ensure patients’ satisfaction.
Besides, when job schedules are made, legal constraints have to be respected as well.
Usually, caregivers possess a full-time or part-time agreement. Then, for each caregiver,
a maximum and a minimum working duration are set up by his/her own agreement.
The working time of each caregiver starts from the beginning of the first scheduled job and
ends at the completion of the last job. Other legal regulations can be considered such as
breaks, especially lunch breaks. Breaks are flexible in the caregiver’ schedule. Furthermore,
the HHC company aims to improve the planning of caregivers’ routes by balancing the
working time among caregivers, in order to obtain a fair plan [11,35,36].

As a result, the HHC company seeks to optimize a multi-objective function. Usually,
it aims at minimizing the total travel cost and the fixed cost of caregivers by minimizing
the total overtime work (in hours) of caregivers and by limiting unscheduled visits [14,27].
Depending on how the HHCRSP is treated, different constraints can be raised, but some of
them are always present, such as [13,27,35]:

• Only one HHC caregiver can visit a patient.
• Each patient must receive his/her requested HHC service provided by the appropriate

caregiver.
• Each caregiver starts and ends at the HHC center.
• Each caregiver must leave the patient’ home once he/she serves it.
• An unqualified caregiver cannot perform a qualified job.

However, some constraints are deeply linked to how the HHCRSP is tackled:

• The planning horizon is assumed to be n-days.
• Routing part: delivery and pick-up.
• Total working hours and route length limits for caregivers.
• Consistency of the working time with the possibility of a break between two succes-

sive jobs.
• The service time of a caregiver at a patient location.
• Patient time windows in the schedules of caregivers’ routes.
• The feasibility of each job according to its time window.
• Patient/caregiver preference requirement.
• Continuity of care for all patients.
• Synchronization between two caregivers for a specific job.
• Biological sample production
• Precedence requirement.

4.2. Listing and Range of All Parameters

Each instance is described by a list of parameters. Some parameters are set up in the
generator and can be only changed by modifying them in the source code. The configura-
tion file stores a list of parameters. As presented in Figure 8, the generator creates a list of
instances regarding a configuration. Every piece of information is reachable and editable.
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Figure 8. UML description of the generator. [1 . . .∗]: one occurrence to multiple occurrences.

4.2.1. Non-Editable Parameters

Some parameters are not editable in the configuration file. Firstly, as mentioned before,
a caregiver is allowed to work a certain amount of time per day regarding his/her labor
agreement. As noticed in the following Tables 1 and 2, the generator sets up the beginning
of the day at 8 A.M. and the ending at 8 P.M. A caregiver with a full-time contract is allowed
to work between 8 to 10 h a day, and a caregiver with a part-time contract can only work 4
to 6 h a day according to the literature [10,13,14,35,37,38]. Compatibilities between patients
and caregivers are represented by a score as explained in the previous section. A low score
means that the caregiver should not be assigned to this patient due to a low compatibility.
The generator ranges compatibility between zero (lowest compatibility) and four (highest
compatibility). A score of four is a special feature that allows the generator to set up a
reference caregiver to a patient if the configuration file allows it.

Table 1. Range of non-editable parameters for caregivers.

Parameters Range References

Minimum and maximum working hours per day (full-time) 8–10 h [10,13,14]
Minimum and maximum working hours per day (part-time) 4–6 h [35,37,38]
Beginning and ending of the day 8 A.M.–8 P.M. [23,39]
Compatibility score (lowest to highest) 0–4 [13,17,24,33]

Table 2. Range of non-editable parameters for patients.

Parameters Range References

Beginning and ending of the day 8 A.M.–8 P.M. [23,39]
Range of the time windows 1–4 h [6,13,25]
Compatibility score (lowest to highest) 0–3 [17,22,24,33]

The patient time frame availability on each day starts at 8 A.M. and finishes at 8 P.M.
Furthermore, the compatibility scores are set up in the same way. However, as specified in
Table 2, a patient has a time window. During this time window, our patient is available
to receive his/her care. During the scheduling process, time windows for the patient can
be considered as soft or hard constraints depending on how the HHC problem is tackled.
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The generator sets up a range of 1 to 4 h, which means that a patient ks at least available
for 1 h and at most 4 h to receive his/her care services.

Lastly, Table 3 sums up the different non-editable parameters for a job. A job has
a processing time called duration in the generator. Duration can range from 30 min to
an hour and a half. Some jobs in the instance need to be done, and some of them can be
postponed to another day. A priority score is set up on all jobs to show how important
the job is. Moreover, some jobs must be performed in a certain time frame. Usually, this
time frame may not exceed one hour to two hours. Precedence constraints can be found in
some particular jobs. The literature shows that the duration between two jobs related by a
precedence constraint may not exceed two hours.

Table 3. Range of non-editable parameters for jobs.

Parameters Range References

Range of duration 30–90 min [13,15,29]
Range of the time frame to proceed with the job 1–2 h [9,13]
Range of the time frame between one job and another job
(precedence) 2 h [12,13,40]

Range of arduousness/priority score 0–3 [13,22]

4.2.2. Editable Parameters

Firstly, to setup up a benchmark correctly, the first parameter allows the generator to
produce more than a unique instance following the current configuration. Some data are
generated randomly such as the distance between patients or compatibilities. However,
some can be similar between two instances such as the number of caregivers/patients or
several proportions. The second parameter of an instance is the geographical boundary
of the instance. Those coordinates enable the generator to set up different coordinates
in the designated area for caregivers, patients, and depots. As explained earlier, dis-
tances are calculated by following a straight line between two patients/depots. Usually,
studies [13,31,34] have been based on a daily planning horizon, but the third parameter
allows the generator to set a different number of days in the planning horizon. Depending
on how the HHCRSP is treated, the number of days can be one day for a short-term plan or
two to seven days for a mid-term plan. Long-term planning is not taken into account due
to its marked difference with short- and mid-term planning. The number of patients and
caregivers has a huge impact on how jobs are generated. Indeed, several studies [6,23,25,39]
concluded that a patient may have on average three to four jobs (cares) per day.

A caregiver is also able to deal with six to seven jobs per day depending on how
much time a job needs to be performed properly [5,11,21,30]. Qualifications and skills are
important to define different types of jobs in an instance [9,13,34,41]. The HHC literature
has concluded the fact that all feasible jobs met in an HHC center can be categorized
into six major qualifications on average. The HHC literature also presents two distinct
ways to tackle the qualification constraint [9,16,22]. The first approach considers all skills
as mutually independent. This approach is often met when the HHC center deals with
a wide array of jobs (palliative care to daily care). The second approach is based on a
pyramidal scheme. For example, a caregiver who possesses a specific qualification Qi
automatically possesses all qualifications at a lower level. The second approach is usually
used in HHC problems with a huge VRP component [9,12,40]. The generator implements
the first approach and uses independent qualifications.

To ensure continuity of care, studies in the literature implement a reference care-
giver [42]. During the scheduling process, a reference caregiver is more likely to be
assigned to his/her reference patient if it is possible to ensure a partial continuity of care.
As explained in the previous section, caregivers can have different labor agreements (full-
time or part-time), so the next parameter allows the generator to set up different pro-
portions of part-time caregivers. This ratio can vary from a small portion to half of the
number of caregivers. The traveled time parameter is an optional parameter. It measures
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how much time caregivers are on the road. On average, this time may be around 18%
to 25% of their working time [13,33]. This parameter has a huge influence on how jobs
are generated because the generator takes into account this percentage to create jobs in
order to not overload the HHC center. The time traveled parameter is heavily linked to the
next parameter: the occupation or saturation rate of instance. This parameter is the ratio
between the number of working hours generated by all jobs and the number of working
hours available in the HHC center. Finally, the generator can produce synchronized jobs,
jobs with biological sample production, and jobs with precedence constraints. According
to the HHC literature [13,32,38], currently, fifteen to twenty percent of care services are
synchronized or have precedence constraints. As summed up in Table 4, those parameters
design the configuration file and allow the generator to create different types of instances
depending on those parameters.

Table 4. Range of all editable parameters.

Parameters Range References

#1 Number of depots 1–3 [9,35]
#2 Number of days 1–7 [13,31,34]
#3 Number of patients 10–250 [11,21,28,39]
#4 Number of caregivers 2–25 [5,11,21,30,43]
#5 Number of different qualifications 5–7 [9,13,34,41]
#6 Reference caregiver false-true [42]
#7 Part-time/full-time proportion 5–50% [16,34]
#8 Traveled time between patients (ratio) 15–25% [13,33]
#9 Occupation/capacity of the instance (ratio) 50–100% [33,35,43]
#10 Synchronization ratio (ratio) 10–25% [13,32,38]
#11 Biological samples (ratio) 10% [13,24,38]
#12 Precedence between jobs (ratio) 10–25% [12,24,44]

5. A Descent Local Search Algorithm for an HHC Problem

In this section, we adopt a descent local search algorithm based on the work of
Xio et al. [36], and we fix, as they did, the planning horizon to a daily one. The set of jobs
demanded by patients is denoted J . Each job j ∈ J is associated with a certain duration
durj and a time frame [αj, β j]. To reach another patient, a distance dj (beeline) is set up, and
a travel time tj is calculated. Let C denote the set of caregivers. C includes both full-time
and part-time caregivers. For each caregiver c ∈ C, a time window corresponding to their
available time is set up. Variables tbegin

c and tend
c represent respectively the time when the

caregiver c starts and ends his/her journey. The working time of a caregiver c is defined by
twork
c . It must not exceed the maximal working time planned by his/her labor agreement.

We set pi as a penalty that occurs when a job is not assigned. The objective function
minimizes unassigned jobs and the daily operating cost of the HHC such as salaries and
traveling cost by refunding the fuel cost.

The solving method was based on a descent algorithm. Firstly, the algorithm tries
to reduce the bag of non-allocated jobs by switching jobs between caregiver and the bag
until the job can insert itself into a caregiver schedule, as described in Figure 9. During this
process, the qualification constraint must be respected, as well as the working balance, as
much as possible. Compatibility constraints can be raised if necessary. Indeed, for example,
a patient can have a low compatibility score with all caregivers. In Figure 9, for example,
the algorithm tries neighborhood moves by inserting the first job of the bag in front of the
second job of the second caregiver. At the same, it also tries to insert the second job of the
second caregiver in front of the first job of the first caregiver. Lastly, the algorithm inserts
the last job of the first caregiver at the end of the job list of the second caregiver to produce
a correct solution. For more details about the algorithm, please refer to the main article
written by Xio et al. [36]. Algorithm 1 presents a pseudo-code version of how the descent
local search algorithm works regarding the different inputs.
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Figure 9. Bag of neighborhood moves.

Algorithm 1: Description of a descent local search algorithm.
Result: Optimal shifts for caregivers
Given a set of patients P , a set of caregivers C, and a set of jobs J :
Create a feasible solution for all caregivers with a bag of jobs for unassigned jobs;
for job in J do

if job can be affected then
Assign it randomly to a caregiver with the right qualifications;

else
Store it in the bag of jobs;

end

end
while the solution can be improved do

if not an empty bag of jobs then
Try to insert a job in a caregiver shift;
Fix the solution if the solution violates the constraints;
if job cannot be inserted then

Do not try again to insert jobs from the bag of jobs.
else

end

else
Try to switch a job for one caregiver to another from a different caregiver to

improve both shifts;
Switch jobs in a caregiver shift to see if the shift can be improved;

end

end

Then, the algorithm tries to balance working hours for all caregivers by minimizing
their working hours per day and switching jobs between caregivers to see if a configuration
results in a better solution than the current one. As described in Figure 10, two jobs can
be switched between two caregivers depending on their qualifications and the patient-
caregiver compatibility.

Figure 10. Caregiver neighborhood moves.

Finally, the solving method tends to improve each caregiver scheduled by trying to
switch some jobs during the day. Some jobs are firstly scheduled because of priority or
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their large time windows, but sometimes, better configurations are found by switching
them with other jobs, as described in Figure 11.

Figure 11. Patient neighborhood moves.

All empirical data were generated by our generator coded in C++ with Microsoft
Visual Studio. This simulation was run on a computer with an i7-10700KF CPU 3.80 GHz.
Ten instances were generated, and tests were carried out on a properly developed solving
method explained before. For all tests, the objective function combined three parts of
the costs: the salary of each caregiver calculated by hour. The payment was 20 CAD
per hour; the fuel cost 1.50 CAD per kilometer, and each job postponed cost 100 CAD.
To dispatch appropriate caregivers and to satisfy all patients, caregivers were not assigned
to a patient if their compatibility scores were lower than one. If a patient did not have a
compatibility score higher than one for all caregivers, he/she was assigned to the more
available caregiver regarding his/her qualifications. The simulation was run several times
before putting the results together. The postponed jobs and operating cost in Table 5 are
the average results of the simulation. As mentioned before, ten instances were generated
by the generator. The instances were designed to tackle the HHCRSP in the same way as
Xio et al. [36] did. The configuration file was setup up with data from the article and can be
found in the archive.

Table 5. Computational results.

Instance
Operational Results

Postponed Jobs-Operating Cost

HCC-p5_c2 0-501.05
HCC-p10_c2 0-702.35
HCC-p15_c2 1-1125.05
HCC-p15_c3 0-1025.35
HCC-p20_c3 0-1500.45
HCC-p25_c3 2-2020.45
HCC-p25_c4 0-2040.95
HCC-p30_c4 0-2545.45
HCC-p35_c5 2-3005.75
HCC-p40_c5 7-5025.45

Table 5 shows the different sizes of the instances. The first column names the instance.
Index p presents the number of patients and index c the number of caregivers that can
be assigned for the different jobs. For example, p5_c2 represents five patients and two
caregivers. Then, we illustrate the results: Sub-column 1 represents the number of jobs
postponed. The next sub-column presents the operating cost. Tables 6 and 7 show the result
of two instances HHCp10_c2: the first column is the caregiver ID and the second column
the number of jobs assigned to this caregiver. The next two columns present respectively
the available time (when the caregiver starts and ends his/her journey) and the working
time. The last column shows the schedule planning for each caregiver.

Table 6. Results of instance HHCp10_c2_1.

Caregiver No. of Jobs
Available Time

Working Time Planning
From–To

1 12 8 h 30 min–16 h 30 min 432 min 3-1-2-5-7
2 14 9 h 30 min–17 h 30 min 454 min 4-9-8-0-6
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Table 7. Results of instance HHCp10_c2_2.

Caregiver No. of Jobs
Available Time

Working Time Planning
From–To

1 13 7 h 20 min–15 h 45 min 502 min 2-8-5-6-3
2 11 9 h 15 min–19 h 05 min 515 min 1-4-9-0-7

6. Conclusions

In this study, we introduced a common benchmark involving a multi-parameter
generator for the HHC scheduling problem fitting a certain list of constraints found in
the literature. First, we proposed a common definition of the HHCRSP dealing with an
exhaustive list of constraints. These constraints can be attached to caregivers, patients,
caregivers’ actions, and the HHCRSP itself. Then, we described the different generator
parameters with their ranges. We also introduced a short application of our generator based
on a descent local search algorithm, which embedded adapted neighborhood moves for the
HHCRSP. The main purpose of this contribution was to standardize testing and checking
solving methods to allow researchers to compare their methods on a common benchmark
with a robust and configurable generator. Our work will be directed toward the adaptation
of some resolution methods in the future and especially for metaheuristics algorithms.
As mentioned previously, this configurable generator allows researchers to work on a
common benchmark to compare their solving methods without being affected by medical
confidentiality. With these multiple parameters, the generator was able to reproduce a large
type of HHCRSP with different constraints. A common benchmark was generated and
stored in the archive and can be used be researchers to compare their methods or extract
data to make their own dataset to verify their solving method.
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Abstract: This paper aims to study a real case of an optimization problem derived from a hospital
supply chain. The present work focuses on developing operational decision support models and
algorithms for production process scheduling in hospital catering. The addressed production system
is considered as a flexible job shop system. The objective is to minimize the total flow time. A novel
mathematical model and two metaheuristics for the production scheduling of multi-product and
multi-stage food processes are developed. These methods have proven their effectiveness for the
scheduling of operations of the food production processes and allowed significant improvements in
the performance of the studied production system.
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1. Introduction

Nowadays, hospital logistics has become an essential component of healthcare institu-
tions. It allows the synchronization of all the flows inside a hospital to ensure the efficiency
of the healthcare system. For many years, the management was commonly focused on
improving the quality of medical care, while less attention was usually devoted to opera-
tion management. In recent years, the need for containing the costs while increasing the
competitiveness along with the new national health service policies for hospital financing
forced hospitals to necessarily improve their operational efficiency. It is in this context that
the efficient use of resources and the research on optimal service stimulate logistical think-
ing in hospitals. The difficulties of optimizing flows have led managers to discover new
avenues for rationalizing expenses and seeking refined solutions to these difficulties. In this
context, optimized logistics solutions allow hospitals to improve inventory management,
limit waste, and provide better inventory tracking and traceability of service products. On
the other hand, the supply chain is a major source of costs, and its reorganization would
make it possible to achieve crucial savings on all hospital expenses.

A hospital’s logistics is part of its global performance, where the activities are orga-
nized and structured with the aim of patients’ satisfaction in terms of quality, quantity,
delay, safety, and low cost. The main purpose of this logistics is to control and optimize
physical flows from suppliers to patients at the best cost that respects technical, economic,
and regulatory conditions for optimal dispensing to patients. Hospital logistics is a complex
process characterized by a diversity of needs, users, products, and distribution channels.
The coordination of these activities requires logistical expertise that few institutions will
be able to develop on their own. This has led researchers to focus for some years on the
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management and optimization of the supply chain in hospitals. In this context and in order
to improve the working conditions of the employees and their well-being, the hospital
center of Troyes implements means to improve its daily efficiency. The hospital is carrying
out a revision of its supply chain, which must notably consider the management of food
flows within the hospital. In the present work, we focused particularly on the scheduling
of the food manufacturing process in hospital catering, which is considered as a flexible
job shop scheduling problem with a sequence-dependent setup time and job splitting by
integrating specific industrial constraints.

The remainder of this paper is organized as follows: Section 2 presents the state
of the art regarding the problem of food production process scheduling. The problem
statement is defined in Section 3. In Section 4, the mathematical model developed for the
studied problem is presented. Sections 5 and 6 present the genetic and the iterated local
search algorithms specifically developed for the problem, the different elements of these
metaheuristics, and the computational results. Finally, in the last section, an application to
a real industrial case and the results obtained are presented.

2. Literature Review

The production scheduling problem in food industries belongs to a famous class
of problems referred to as scheduling with sequence-dependent setups, which are well
known to be NP-hard (Sun et al. [1]). In recent years, there has been great interest in the
development of intelligent solutions for this problem in various fields of application. The
promising results of scheduling methods, such as reduction of production costs, increased
throughput and smoother operation of the production equipment, and improvement
of working conditions and the well-being of employees, have stimulated considerable
research efforts. The existing works in the literature are classified according to the number
of products (single products or multiple products), the type of production system, and the
expiration dates of products, which may be known or unknown.

Regarding works dealing with a single product, Entrup et al. [2] proposed three dif-
ferent mixed-integer linear programming for scheduling problems in the packing stage of
stirred yogurt production in the fresh food industry. They accounted for shelf life issues
and fermentation capacity limitations. Doganis and Sarimveis [3] proposed a model that
aims to obtain the optimal production scheduling in a single yogurt production line. The
model takes into account all the standard constraints encountered in production scheduling
(material balances, inventory limitations, machinery capacity). It also considers special fea-
tures that characterize yogurt production and that are limitations in production sequencing,
mainly due to different fat contents and flavors of various products, as well as sequence-
dependent setup times and costs. However, the model is limited to a single production line.
In another study, Doganis and Sarimveis [4] presented a methodology for optimum schedul-
ing of yogurt packaging lines that consist of multiple parallel machines. The methodology
incorporates features that allow one to tackle industry-specific problems, such as multiple
intermediate due dates, job mixing and splitting, product-specific machine speed, minimum
and maximum lot size, and sequence-dependent changeover times and costs. However, the
proposed mathematical model does not incorporate multi-stage production decisions and
ignores some industry-specific characteristics, such as shelf life. Stefansdottir et al. [5] devel-
oped a generic optimization model for lot sizing and scheduling in the typical processing
industry setting of flow shops. Sargut and Isık [6] presented a mathematical model for a
dynamic economic lot sizing problem with a single machine for a single perishable item
under production capacities. They also gave a dynamic programming-based heuristic for
the solution of the overall problem.

Many studies have been carried out in the literature on the production scheduling of
multi-product food processing industries. Akkerman and van Donk [7] developed a method-
ology for the analysis of the scheduling problems in food processing. This helps one to
understand, describe, and structure scheduling problems in food processing and to evaluate
the organizational structures and information flows related to scheduling. Smith, Daniels,
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and Larry [8] developed a general lot-sizing model for processing industries and applied
their method to a representative situation of a food processing facility. Kopanos et al. [9]
offered an efficient mathematical framework for detailed production scheduling in the food
processing industry. Wauters et al. [10] introduced an integrated approach for production
scheduling and demonstrated its applicability to the food processing industry. In this work,
the scheduling had to deal with a combination of discrete, continuous, and batch processes,
and it was complicated by particular characteristics. Acevedo-Ojeda et al. [11] presented a
lot-sizing problem with a single machine that incorporated raw material perishability and
analyzed how these considerations enforced specific constraints on a set of fundamental
decisions, particularly for multi-level structures. Three variants of the two-level lot-sizing
problem incorporating different types of raw-material perishability—fixed shelf life, func-
tionality deterioration, and functionality–volume deterioration—were studied; the authors
proposed mixed-integer programming formulations for each variant and performed com-
putational experiments with sensitivity analyses. Copil et al. [12] considered a capacitated
dynamic lot-sizing problem with parallel machines for the food industry, in which a given
product produced during a specified time period is used to satisfy the related demand.
Niaki et al. [13] addressed the integrated lot-sizing and scheduling problem of food produc-
tion in batch manufacturing systems with multiple shared common resources and proposed
a new mixed-integer linear programming formulation with multiple objective functions.
Wei et al. [14] proposed a classical multi-level lot-sizing and flow-shop scheduling problem
formulation to incorporate perishability issues.

Regarding the shelf life of products, Ahumada and Villalobos [15] reviewed models for
the agri-food business, where products may be perishable or not, but their focus was on
procurement and harvesting planning. The only goods they were interested in were crops.
Sel et al. [16] introduced the planning and scheduling of decisions considering the shelf-
life restrictions, product-dependent machine speeds, demand due dates, and regular and
overtime working hours in the perishable supply chain. Arbib et al. [17] considered a three-
dimensional matching model for perishable production scheduling, which was studied
under two independent aspects: the relative perishability of products and the feasibility
of launching/completion time. Basnet et al. [18] described an exact algorithm to solve a
scheduling and sequencing problem in the same industry. Chen et al. [19] provided a review
of literature on the integration of scheduling and lot sizing for perishable food products,
and they categorized the papers by the characteristics of the lot sizing and scheduling that
were included in their models, as well as the strategies used to model perishability.

In the present work, the studied production system is considered as a flexible job shop
system. Since 1990, the flexible job shop scheduling problem (FJSP) has been extensively
investigated by researchers. Liu and MacCarthy [20] discussed the problem in a flexible
manufacturing system with transportation times and limited buffers. They developed
a mixed-integer linear programming model and heuristics to minimize the makespan,
the mean completion time, and the maximum tardiness. Guimaraes and Fernandes [21]
proposed a genetic algorithm for the FJSP, where the objective function is used to minimize
the makespan and the mean tardiness. Saidi-Mehrabad and Fattahi [22] took into account
a special case of FJSP, where each operation could be assigned to one of two parallel
machines. A tabu search algorithm for solving the sequencing and assignment problems
was developed. The algorithm was compared to a branch and bound algorithm on several
random test instances. Defersha and Chen [23] studied the FJSP with attached and detached
setup times, machine release dates, and technological time lag constraints. For this problem,
a mixed-integer linear programming model was proposed, and a parallel genetic algorithm
using multiple threads was introduced. Mati et al. [24] proposed a genetic algorithm for an
FJSP in which blocking constraints were taken into consideration. Bagheri and Zandieh [25]
developed a variable neighborhood search algorithm. Mousakhani [26] presented a mixed-
integer linear programming model and an iterated local search algorithm that minimize
the total tardiness. Chaudhry and Khan [27] published a literature review on the methods
used to solve the FJSP and the studied objective functions (Figure 1). In this bibliographic
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study, it was found that almost 59% of the papers used hybrid methods (Rajabinasab and
Mansour [28], Geyik and Dosdogru [29], Zhou and Zeng [30]) or evolutionary algorithms.
The minimization of the makespan turned out to be the most widely studied criterion. In
88 research papers (44.67%), the makespan was used as the sole objective function, while
in another 78 papers (39.59%), makespan was used in combination with another objective
function. However, the minimization of the total flow time, which is the target criterion in
this work, has been studied very little in the literature. Table 1 represents some research
works on flexible job shop problems with minimization of flow time. These works are
classified according to the fields of its application in research or an industrial case, the
resolution methods used, some workshop details, and the studied objective functions.

Table 1. Some research works on flexible job shop problems with flow time minimization.

Author Year Application Algorithm and Workshop Details Objective Function

The problem
considered in
this paper

2021 Research and
industry

Mathematical model and metaheuristics for a
flexible job shop problem with
sequence-dependent setup time and job splitting

Minimum of total flow time

Gao et al. 2018 Research Mathematical model and discrete Jaya algorithm
Minimum of makespan, total flow
time, machine workload, and total
machine workload

Gao et al. 2017 Research
Resolution approaches for uncertain resource
assignment and job sequence in an automated
flexible job shop

Minimum of makespan, number
of late jobs, total flow time, and
total weighted flow time

Nie et al. 2013 Research Gene expression programming, dynamic flexible
job shop problem with job release dates

Minimum of makespan, mean
flow time, and mean tardiness

Doh et al. 2013 Research Heuristic with priority rules
Minimum of makespan, total flow
time, mean tardiness, number of
tardy jobs, and max tardiness

Lee et al. 2012 Research Heuristic Minimum of makespan and mean
flow time

Liu et al. 2009 Research Multi-swarm particle swarm optimization Minimum makespan of total flow
time

Tanev et al. 2004 Industry Genetic algorithm and prioritydispatching rules

Minimum ratio of tardy jobs,
variance of the flow time, amount
of mold changes, and maximum
efficiency of machines

Finally, it is worth mentioning that, to the best of our knowledge, there are almost
no studies addressing the problem of scheduling food production processes in hospital or
collective catering. Most existing works in the literature on scheduling food production
processes are from the food and dairy industries, where the production systems are parallel
machine, flow shop, and single machine, in most cases. Moreover, in the majority of these
works, the expiration date of products is unknown, while in this study, it is known. The
works found in the literature cannot be adapted to the problem addressed in this study,
since the production systems are different. In addition, several constraints specific to the
considered problem have not been taken into account in the existing works, and they do
not have the same objective of optimization.
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Figure 1. Bibliographical summary of the resolution methods used for flexible job shop problems
and the objective functions studied in the literature: 191 papers between 1990 and 2014 (Chaudhry
and Khan [27]).

3. Problem Description

The problem of food production process scheduling considered in this study aims to
schedule the operations from the pre-treatment of raw materials to the stock of finished
products of a meal manufacturing process in hospital catering or, more generally, in collec-
tive catering. Figure 2 represents the typical production areas and the different material
resources available for realizing the operations of the meal-making process. This problem
is considered as a flexible job shop problem with sequence-dependent setup time and job
splitting by integrating specific industrial constraints, such as the days of pre-treatment
and production of products, the product delivery times, and the amounts of human and
material resources available, in addition to the different constraints described below.

The addressed problem is considered as a flexible job shop scheduling problem with
sequence-dependent setup time, since each job has its own order of operations and each
operation has to be assigned to one among a set of possible machines. This problem can
be described by a set of N jobs, where each job i corresponds to the preparation of a dish
characterized by a number of portions Qi (quantity) and a set of operations Ji for the
preparation of the dish (from raw material to finished product). It is worth highlighting that
the dishes to be prepared do not have the same order of operating ranges (set of operations
necessary for the preparation of the dish). For each job, there is a due date Di to respect.

For each operation of an operating range, there is a set of material resources that are
used to realize it, such as ovens, cooking pots, cookers, induction hobs, packaging machines,
cooling cells (Figure 2). These material resources can be classified into three categories: M1,
M2, and M3. M1 ⊂ M is composed of material resources with a capacity of one portion
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and that can not process several jobs at the same time (material resources that can perform
preprocessing and cold production operations). The set M2 ⊂ M represents the material
resources with a capacity greater than one portion and that cannot process several jobs at the
same time (ovens, etc.). M3 ⊂ M correspond to the set of material resources with a capacity
greater than one portion and that can process several jobs at the same time (cooling cells).

Figure 2. Representative scheme of the meal production process.

For each material resource, there is a setup time to take into account, which corre-
sponds to the preparation time of the machine before carrying out an operation and the
cleaning time of the machine between two consecutive operations. A time window of
availability is known for each material resource.

Note that the corresponding machines may not be identical, involving different pro-
cessing times according to the chosen machine. The setup times of machines are sequence
dependent because they depends on the preceding operation on the same machine. The
food production process scheduling involves two steps: (i) assignment of operations to
machines and (ii) sequencing of operations on machines.

As mentioned previously, in order to respect the production capacities of material
resources, a job can be split into smaller sub-lots in such a way that the operations of
sub-lots of a job can be performed simultaneously on different machines. This strategy,
which is useful when machine capacity does not allow the treatment of the whole job, also
enables a more efficient processing scheme.

The criterion to minimize in the present study is the total flow time of jobs in the
production system. The choice of this criterion is based on the fact that the respect of the
cold chain at each stage of the product life cycle must be ensured. The aim is to constantly
maintain a low temperature (positive or negative, depending on the product) to ensure the
maintenance of all the food qualities (hygienic, nutritional, and gustatory).

4. Mathematical Model

In this section, a mixed-integer linear programming model is presented. This model
formalizes and solves small-sized instances of the studied problem by using the Cplex
solver. The solutions of the small-sized instances can be used to validate the efficiency of
the developed metaheuristic methods.
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4.1. Assumptions

The mathematical model for the scheduling of the food production process inherits its
main assumptions from the standard flexible job shop scheduling problem with sequence-
dependent setup times and additional features due to the job splitting:

• Jobs are independent of each other,
• A job can be split into sub-lots,
• The sub-lots of a job can be grouped on the machines to be treated at the same time,
• Each sub-lot of a job consists of a set of operations that must be processed consecutively

(precedence constraints between operations of sub-lots of jobs),
• Each operation of a sub-lot has a given processing time,
• The preemption of operations of sub-lots of jobs is not allowed, i.e., operation process-

ing on a machine cannot be interrupted,
• Each job has a given due date (finish date of production at latest),
• Sub-lot sizes (number of portions) are discrete,
• Sub-lots creation is consistent throughout the processing sequence, meaning that job

splitting and sub-lot sizes remain constant for all operations,
• Machines are independent,
• A machine can process, at most, one operation of a job at the same time,
• The setup times of machines are dependent on the sequence of operations of sub-lots

of jobs,
• Material resources have given availability time windows that must be taken into ac-

count.

Taking these assumptions into account, the objective is to find a schedule involving
sub-lot assignments to machines and sub-lot sequencing for each machine in such a way
that each job’s demand is fulfilled, different constraints of the problem are respected, and
the total flow time of jobs in the production system is minimized.

4.2. Notations

The definition of the developed mathematical model’s parameters relies on the follow-
ing sets and indexes:

• M: set of all material resources, where m = |M|.
• N: set of jobs (dishes to prepare), where n = |N| and {0, n + 1} are two dummy jobs.
• Ji: set of operations of job i ∈ N, such that the operation j ∈ Ji is done before the

operation j + 1 ∈ Ji and |J0| = |Jn+1| = 1.
• Qi: number of portions (quantity) of job i ∈ N.
• qi: number of portions in each sub-lot of job i ∈ N.
• Li: set of sub-lots of job i ∈ N, with |L0| = |Ln+1| = 1 and li = |Li| such that

li = �Qi
qi

	.

• di: due date of job i ∈ N.
• Mij ⊂ M: set of material resources that can perform the operation j ∈ Ji of job i ∈ N.
• Rk: maximum capacity in number of portions of the material resource k ∈ M.
• P

′
ijk: unit processing time of operation j ∈ Ji of job i ∈ N on the material resource

k ∈ M1.
• Pijk: processing time of operation j ∈ Ji of job i ∈ N on the material resource

k ∈ M2 ∪ M3.
• sijhgk: setup time of material resource k ∈ Mij ∩ Mhg if the operation j ∈ Ji of job

i ∈ N directly precedes the operation g ∈ Jh of job h ∈ N on the material resource
k ∈ Mij ∩ Mhg.

• Tk: preparation time of the material resource k at the beginning of scheduling.
• Ek: cleaning time of the material resource k at the end of scheduling.
• [Ak, Yk]: time window of availability of the material resource k ∈ M.
• B: big integer.
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4.3. Decision Variables

• Xiljk: binary variable that equal to 1 if operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N is
assigned to the material resource k ∈ Mij, and 0 otherwise.

• Filjhl′gk: binary variable that is equal to 1 if operation j ∈ Ji of sub-lot l ∈ Li of job
i ∈ N directly precedes operation g ∈ Jh of sub-lot l′ ∈ Lh of job h ∈ N on the material
resource k ∈ Mij ∩ Mhg, and 0 otherwise.

• Zill′ jk: binary variable that is equal to 1 if operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N
starts and finishes at the same time as the operation j ∈ Ji of sub-lot l′ ∈ Li of job
i ∈ N on the material resource k ∈ Mij, and 0 otherwise.

• Siljk: starting time of operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N on the material
resource k ∈ Mij.

• Ciljk: completion time of operation j ∈ Ji of sub-lot l ∈ Li of job i ∈ N on the material
resource k ∈ Mij.

• Ci: completion time of job i ∈ N.

4.4. Mathematical Model

In the literature, there exist different mathematical model formulations for the standard
flexible job shop scheduling problem. The mathematical model proposed by Buddala and
Mahapatra [31] takes into account constraints on processing times, precedence between
operations, and machine capacity in number of operations processed at the same time,
which corresponds with the studied problem. However, this model does not take into
consideration the constraints on machine capacity in the number of portions, machine
availability time windows, sequence-dependent setup time, due dates of jobs, splitting of
jobs, and batching of sub-lots.

The developed mathematical model that integrates all these constraints is formulated
as indicated through Equations (1) to (22):

Min ∑
i∈N

Ci (1)

Ci ≥ ∑
k∈Mij

Ciljk, ∀ i ∈ N, l ∈ Li, j ∈ Ji (2)

Siljk + Ciljk ≤ B ∗ Xiljk, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (3)

Ciljk − Siljk ≥ Pijk − B ∗ (1 − Xiljk), ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ M2 ∪ M3 (4)

Ciljk − Siljk ≥ P′
ijk ∗ Qi − B ∗ (1 − Xiljk), ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ M1 (5)

Shl′gk ≥ Ciljk + sijhgk − B ∗ (1 − Filjhl′gk), ∀ i ∈ N, l ∈ Li, j ∈ Ji, h ∈ N, l′ ∈ Lh, g ∈ Jh,

k ∈ Mij ∩ Mhg\M3
(6)

Sil′ jk ≥ Ciljk + sijijk − B ∗ (1 − Filjil′ jk)− B ∗ Zill′ jk, ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ Mij ∩ Mhg (7)

Siljk − Sil′ jk ≤ B ∗ (1 − Zill′ jk), ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ M2 ∪ M3 (8)
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Ciljk − Cil′ jk ≤ B ∗ (1 − Zill′ jk), ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ M2 ∪ M3 (9)

∑
h∈N\{0}

∑
l′∈Lh

∑
g∈Jh

Filjhl′gk = 1, ∀ i ∈ N\{n + 1}, l ∈ Li, j ∈ Ji, k ∈ Mij ∩ Mhg (10)

∑
i∈N\{n+1}

∑
l∈Li

∑
j∈Ji

Filjhl′gk = 1, ∀ h ∈ N\{0}, l′ ∈ Lh, g ∈ Jh, k ∈ Mij ∩ Mhg (11)

∑
k∈Mij

Siljk − ∑
k∈Mij−1

Cilj−1k ≥ 0, ∀ i ∈ N, l ∈ Li, j ∈ Ji (12)

∑
k∈Mij

Xiljk = 1, ∀ i ∈ N, l ∈ Li, j ∈ Ji (13)

Ci ≤ di, ∀ i ∈ N (14)

∑
l,l′∈Li

qi ∗ Zill′ jk ≤ Rk, ∀ i ∈ N, j ∈ Ji, k ∈ M2 ∪ M3 (15)

Siljk ≥ Ak, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (16)

Ciljk ≤ Yk, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (17)

Zill′ jk = 0, ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ M1 (18)

Xiljk ∈ {0, 1}, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (19)

Zill′ jk ∈ {0, 1}, ∀ i ∈ N, l, l′ ∈ Li, j ∈ Ji, k ∈ Mij (20)

Siljk ≥ 0, Ciljk ≥ 0, Ci ≥ 0, ∀ i ∈ N, l ∈ Li, j ∈ Ji, k ∈ Mij (21)

Filjhl′gk ∈ {0, 1}, ∀ i ∈ N, l ∈ Li, j ∈ Ji, h ∈ N, l′ ∈ Lh, g ∈ Jh, k ∈ Mij ∩ Mhg. (22)

In the mathematical model presented previously, Equation (1) represents the objective
function, which consists in minimizing the total flow time of jobs in the production system.
It is defined as the sum of the completion times of all jobs since the release dates are equal to
zero. The completion times of jobs are computed as the completion time of the last sub-lot
derived from the considered job, as indicated in Equation (2). Note that, due to Equation (3),
for given i ∈ N, l ∈ Li, and j ∈ Ji, variables Siljk and Ciljk are equal to zero if the machine
k ∈ Mij is not chosen to realize the operation of the considered sub-lot. On the other hand,
when Xiljk is equal to 1, Equations (4) and (5) activate the relationship between the starting
time and completion time of an operation of a sub-lot. In this case, the processing time does
not depend on the quantity of jobs for the material resources M2 ∪ M3 (Equation 4), but it
depends on the quantity of jobs for the material resources M1 Equations (5) and (6) consider
sequence-dependent setup times between the completion time and starting time of two
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operations of sub-lots that are processed on a machine one after another. Equation (7)
disable Equation (6) if two different sub-lots of the same job are performed at the same
time by the same material resource. Equations (8) and (9) require that if two operations
of two different sub-lots of the same job are assigned at the same time to a material
resource M2 or M3, they must have the same respective starting time and completion time.
Equation (10) ensure that only one operation immediately follows the jth operation of
sub-lot l ∈ Li of job i ∈ N on machine k ∈ Mij ∩ Mhg, and Equation (11) guarantee that
only one operation immediately precedes the gth operation of sub-lot l′ ∈ Lh of job h ∈ N
on machine k ∈ Mij ∩ Mhg. Equation (12) establishes the precedence constraints between
two consecutive operations of the same sub-lot. Equation (13) enforce that each operation
of each sub-lot should be assigned to exactly one machine among the possible ones. The
respect for the due dates of jobs is modeled by Equation (14). Equation (15) ensure that the
capacities of material resources in the number of portions are respected. The respect for
time windows of availability of material resources is modeled by Equations (16) and (17).
Finally, Equations (19)–(22) define the domain of the decision variables.

4.5. Computational Results of the Mathematical Model

The mathematical model presented previously was implemented in the Java program-
ming language using the Cplex library. This mathematical model was tested on 150 instances
of different types: real instances of the hospital center of Troyes (HCT), randomly generated
instances of the HCT type, randomly generated instances, and instances adapted from the
literature (Sriboonchandr et al. [32], Nouri et al. [33], Azzouz et al. [34], Mousakhani [26],
Lee et al. [35], Bagheri and Zandieh [25], Pezzella et al. [36]). The details of the results of
these different types of instances are presented in Section 6. The mathematical model was
able to find solutions in less than three hours of execution for the small instances with less
than eight jobs, 10 sub-lots, 39 operations, and 29 machines. The execution times of the
mathematical model for these instances varied according to the number of jobs, sub-lots,
and operations. The computational results of the proposed mathematical model for different
types of instances and, specifically, for real instances of HCT show the limits of an exact
resolution for the problem of scheduling of the food production process.

5. Resolution Methods

5.1. Genetic Algorithm

Solving the flexible job shop problem is known to be strongly NP-hard (Xia and
Wu [37], Fattahi et al. [38]). The introduction of sequence-dependent setup time and job
splitting complicates the already difficult flexible job shop problem. In order to solve this
problem efficiently, we developed a hybrid method that combines a genetic algorithm and
three local research methods. The elements of this hybrid method are presented in the
following subsections.

5.1.1. Solution Representation

By solving a flexible job shop scheduling problem using a genetic algorithm, Kacem [39]
used a solution representation by coding both the assignment and the sequencing of oper-
ations on different machines. A similar representation is used in this paper to solve the
flexible job shop scheduling problem with job splitting by considering each sub-lot as a job.
To illustrate this representation, let us consider a small example with three jobs and four
machines. The numbers of operations of sub-lots for each job and all the machines eligible
for each operation are given in Figure 3. A representation of the assignment of operations
to machines and their sequencing is coded in a chromosome, as shown in Figure 3. In this
chromosome, each gene is represented by a quadruple (i, l, j, k), designating the assignment
of operation j of sub-lot l of job i to machine k. The sequence of genes in the chromosome
represents the sequence of operations on machines. The chromosome decoding procedure
is carried out by reading it from left to right. For example, the assignment and sequencing
of operations on machine 1 can be decoded as follows: (1, 1, 1, 1) → (1, 2, 1, 1) → (3, 1, 3, 1)
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→ (3, 2, 3, 1) → (3, 3, 3, 1). This information is obtained from genes 3, 8, 10, 16, and 17 in
the chromosome, where k = 1. In this chromosome, for a given i and l, the gene (i, l, j, k) is
always located on the right of all the other genes (i, l, j, k′) with j′ < j. This ensures that the
precedence requirements of the operations of a particular sub-lot are not violated.

Figure 3. Representation of the assignment of operations to machines and their sequencing.

5.1.2. Initial Population

The initial population plays an important role in the performance of genetic algorithms.
An initial population with great diversity between solutions can avoid falling into a
premature convergence or a local minimum. Different assignment and sequencing rules
were used to achieve the diversity of solutions:

• Random assignment (RA): The operations are randomly assigned to machines.
• SPT assignment (SPTA): For each operation, the machine with a smaller processing

time is selected to perform this operation.
• LPT assignment (LPTA): For each operation, the machine with a longer processing

time is selected to perform this operation.
• Minimum machine workload assignment (MMWA): The operations are iteratively

assigned to machines based on their processing times and machine workloads. The
workload of a machine depends on its type. For the set of machines M1, the workload
is the sum of processing times of operations assigned to the machine. For the set of ma-
chines M2 and M3, the workload is the total machine occupation time. The procedure
consists in finding the machine with the minimum workload for each operation.

• Random sequence (RS): This heuristic randomly orders the operations on each machine.
• SPT sequence (SPTS): Operations with the shortest processing time will be pro-

cessed first.
• Most number of operations Remaining (MNOR): This heuristic consists of processing

the operations of the sub-lot of the job that has the most operations remaining as
a priority.

• Most work remaining (MWR): The operations that have the most remaining processing
time will be prioritized for processed.

For the construction of the initial population using the heuristics described above, the
procedure consists of randomly choosing an assignment and a sequencing heuristic and
building solutions, such as the constraints of precedence between the operations of sub-lots
of jobs, the due dates of jobs, the time windows of availability of material resources, and
the respect for the production capacities of machines.
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5.1.3. Fitness Evaluation

Algorithm 1 decodes the chromosomes to obtain the objective function value and a
workable representation of the solutions.

Algorithm 1: Evaluation steps of the fitness function of a chromosome

• Step 01: Set p = 1.
• Step 02: Set i, l, j, k, the index values of the gene located at the P position of the chromosome.
• Step 03: Calculate the completion time Ciljk.

• If operation j of sub-lot l of job i is the first operation assigned to the machine k and j = 1,

Siljk = Ak + Tk; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• If operation j of sub-lot l of job i is the first operation assigned to the machine k, j > 1, and the operation
j − 1 is assigned to the machine k′,

Siljk = Max{Ak + Tk, Cilj−1k′ }; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• If operation j′ of sub-lot l′ of job i′ is the operation to be processed immediately before the operation j of
sub-lot l of job i on the machine k and j = 1,

Siljk = si′ j′ijk + Ci′ l′ j′k; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• If operation j of sub-lot l of job i and the operation j of sub-lot l′ of job i are assigned to the machine k
and j = 1,

• If (k ∈ M2 ∪ M3 and 2 ∗ qi <= Rk)

Siljk = Sil′ jk; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• If (k ∈ M2 ∪ M3 et 2 ∗ qi > Rk) ou (k ∈ M1)

Siljk = Fil′ jk; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• If operation j′ of sub-lot l′ of job i′ is the operation to be processed immediately before the operation
j of sub-lot l of job i on the machine k, j > 1, and the operation j − 1 is assigned to the machine k′,

Siljk = Max{si′ j′ijk + Ci′ l′ j′k, Cilj−1k′ }; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• If operation j of sub-lot l of job i and the operation j of sub-lot l′ of job i are assigned to the machine
k, j > 1, and the operation j − 1 is assigned to the machine k′,

• If (k ∈ M2 ∪ M3 and 2 ∗ qi <= Rk)

Siljk = Sil′ jk; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• If (k ∈ M2 ∪ M3 and 2 ∗ qi > Rk) or (k ∈ M1)

Siljk = Max{Cil′ jk, Cilj−1k′ }; Ciljk = Siljk + Pijk; Ci = Max{Ci, Ciljk}

• Step 04: If p is less than the total number of operations of sub-lots of jobs, increment its value by 1
and go to Step 2; otherwise, go to Step 05.

• Step 05: Calculate the fitness function of the solution by using the equation ∑i Ci.

It is worth noting that for a given i and l, the gene (i, l, j, k) is always located on
the right of all the other genes (i, l, j′, k′) with j′ < j. Based on this property, when the
completion time of operation (i, l, j, k) on machine k is to be calculated, the completion time
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of operation (i, l, j − 1, k′) is already calculated and available, regardless of the machine to
which this preceding operation is assigned. Moreover, the completion time of the operation
(i′, l′, j′, k) to be processed on machine k immediately before operation (i, l, j, k) is also
calculated and available.

Genetic operators evolve the population to promising regions of the research space.
The convergence behavior of the algorithm depends largely on them. These operators are
generally categorized as selection, crossover, and mutation operators.

5.1.4. Selection Operator

The process of selecting two parents from the population for reproduction is called
selection. The aim of the selection operator is to highlight individuals with the best fitness
in hopes that their resulting offspring are more fit individuals. In the proposed genetic
algorithm, we used the two-way tournament selection operator introduced in [40]. The
selection operator is involved in holding competitions among randomly selected individuals
and choosing the one with the best fitness (smallest total flow time). This individual is added
to a mating population, which is used to form the next generation. Then, the individuals in
the tournament are placed back in the current population, and the process is repeated until
the number of individuals added to the mating population is equal to the population size.

5.1.5. Crossover Operator

After the selection of chromosomes for reproduction, a crossover operator is applied
to combine the features of the parent chromosomes in order to produce a new child. The
individuals in the mating population are randomly paired to create child individuals.
For two parents, the algorithm arbitrarily selects one of the available crossover operators
and applies it with a certain probability to create two child individuals by exchanging
information contained in the parent chromosomes.

Different crossover operators are proposed and can be categorized as assignment or
sequence crossover operators. The assignment crossover operators consist of generating
offsprings by exchanging the assignment of operations to machines in the parent chro-
mosomes. The role of sequence crossover operators is to produce two new offspring by
exchanging partial information of the sequences of operations on machines in the par-
ent chromosomes. The assignment and sequence crossover operators developed in the
proposed genetic algorithm are: OMAC (operation to machine assignment crossover),
JLOSC (job-level operation sequence crossover), and SLOSC (sub-lot-level operation se-
quence crossover).

From a given pair of parent chromosomes, OMAC creates two child chromosomes,
preserving the sequence of operations in each parent chromosome and modifying the
machines’ affectation. The creation of a child chromosome using an OMAC crossover
operator is illustrated in Figure 4. We assume that in the first step, the operations located
in genes 1, 3, 4, 7, 12, 13, 14, and 15 are selected from parent 1 to change their assignments.
Then, the second step is to copy all the genetic information of parent 1 to the offspring,
except for the assignment information of the selected operations. The final step is to obtain
the assignment information of the selected operations from parent 2 and then copy them
to the corresponding genes in the offspring to produce a new child chromosome. The
same process is repeated to create child 2 by starting to select the operations from the
chromosome parent 2. Three versions of OMAC were developed to correspond to different
ways of selecting the operations for which the assignment will be modified:

• OMAC 1: A set of operations of a sub-lot of jobs is chosen randomly.
• OMAC 2: A set of operations of sub-lots assigned to the loaded machines is selected.
• OMAC 3: A set of operations of sub-lots of jobs with larger completion times is chosen.

The objective of the crossover operator OMAC 2 is to balance the workload between
the machines, whereas the goal of the crossover operator OMAC 3 is to reduce the ending
dates of jobs with longer completion times.
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Figure 4. OMAC (operation to machine assignment crossover) operator.

The crossover sequencing operators JLOSC and SLOSC produce two new offspring
by exchanging the sequencing information of parent chromosomes while keeping the
assignment of machines in a gene unmodified. They are applied with given probabilities.
The creation of the child chromosome by JLOSC and SLOSC with the preservation of the
assignment information of parent chromosomes is illustrated in Figures 5 and 6. In the
JLOSC crossover operator, the first step is to select a set of operations from parent 1. The
next step is to copy all of the genetic information of the genes that are associated with the
chosen operations to the offspring. The final step is to fill the empty genes in the offspring
chromosome, while the machine assignment information of the empty genes is preserved
from parent 1. This is done by copying the remaining operations from parent 2 to the
empty genes, while the operations retain their appearance order from the second parent.
The same procedure is repeated to create child 2 by starting to select the operations from
parent 2. SLOSC is identical to JLOSC, with a difference in the second step of SLOSC: Only
the genetic information of the chosen genes with the same sub-lot and job indexes is copied
to the offspring. Two operators of each kind were developed (JLOSC1, JLOSC2, SLOSC1,
and SLOSC2):

• JLOSC1 and SLOSC1: The operations are chosen randomly.
• JLOSC2 and SLOSC2: The operations are chosen according to specific rules that consist

of choosing the operations of jobs with smaller completion times.

The SLOSC1 operator is similar to the JLOSC1 operator, but instead of keeping the
unmodified operations of all the sub-lots, only the information from the sub-lot of the
selected operation is kept and copied to the child chromosome.

The SLOSC2 crossover operator is similar to the JLOSC2 crossover operator except
that in the first step, a set of sub-lots of jobs with smaller completion times is chosen.
The goal of the JLOSC2 and SLOSC2 crossover operators is to keep the sequencing of
operations of jobs and the sequencing of operations of sub-lots of jobs, respectively, with
smaller completion times.
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Figure 5. JLOSC2 (job-level operation sequence crossover 2) operator.

Figure 6. SLOSC2 (sub-lot-level operation sequence crossover 2) operator.

It is important to note that, after the application of any crossover operator, in the
child chromosome, for a given i and l, the gene (i, l, j, k) is located after any gene (i, l, j′, k′),
where j′ < j. This ensures that precedence constraints between operations of a particular
sub-lot are not violated in the new created child chromosome.
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5.1.6. Mutation Operator

The role of mutation operators is to prevent the algorithm from being trapped in a
local optimum and to maintain genetic diversity in the population. The mutation operators
are usually applied on chromosomes with given probabilities. Assignment and sequence
operators also exist amongst the mutation operators. Assignment mutation operators
change the assignment of operations to machines without changing the sequencing of
these operations, and sequence operators only change the sequencing property of the
chromosome undergoing the mutation, while the assignment property is preserved. The
mutation operators used in the developed genetic algorithm are:

• ROAM (random operation assignment mutation): This operator is applied with a given
probability on a set of operations of a given individual chromosome and randomly
changes the assignment property of these operations to another machine.

• OSSM (operation sequence shift mutation): Whenever OSSM is applied on an individ-
ual, a set of operations is selected. Then, these operations are moved to other positions
on the chromosome in such a way that no precedence constraint is violated.

5.1.7. Local Search Methods
Local Search through Gene Movement

This local search method improves the quality of any solution built after the application
of the crossover and mutation operators. It is repeated as long as the quality of solutions
obtained is not improved. The procedure for this method is illustrated through an example
in Figure 7. The first step is to choose a set of operations of jobs with longer completion times;
the goal is to reduce these completion times. In the second step, the procedure performs a
search in the neighborhood of a solution by changing the positions of the operations chosen
on the machines in order to improve the quality of this solution. This process is repeated
until the iteration criteria are met. The steps of this local search method are as follows:

• Step 01: Choose a set of operations of jobs with larger completion times in the current
chromosome.

• Step 02: Each operation chosen in Step 01 is positioned just before the previous
operation assigned to the same machine (left movement) or just after (right movement)
the following operation assigned to the same machine, while respecting the constraints
of precedence between operations of sub-lots of jobs. This process allows one to lead
research in the neighborhood of a solution by changing the sequencing of operations
on the machines.

• Step 03: This process is repeated until the maximum number of iterations is not reached.

Figure 7. Local search procedure through gene movement.
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Local Search by Grouping Sub-Lots

This local search method consists of grouping the operations of sub-lots of jobs on
machines if the capacities of the machines allow the processing of several operations at the
same time. This method can only be applied for machines such as ovens and cooling cells.
The procedure for this local search method is illustrated through an example in Figure 8.
For each gene, the sub-lot grouping procedure consists of browsing the chromosome from
left to right. If the sub-lots of the same job as the considered gene are assigned to the same
machine and the latter can process several sub-lots at the same time, all the genes of these
sub-lots are repositioned one next to the other in the chromosome, which means that these
sub-lots are treated at the same time by the same machine. The grouping of operations of
sub-lots of jobs on machines must take into account the precedence between operations of
these sub-lots.

Figure 8. Local search procedure by grouping sub-lots.

Local Search through Intelligent Assignment of Operations

In this local search approach, a set of operations assigned to the most loaded machines
is reassigned to the least loaded compatible ones.

Table 2 gives the common and different elements between the two developed algo-
rithms. In this table, the heuristics for the generation of the initial population, crossover,
and mutation operators of the two genetic algorithms are given. The two algorithms differ
in the generation methods of the initial population and in the crossover operators. In both
algorithms, several affectation and sequence heuristics were tested for the generation of
the initial population. In Table 2, the heuristics allowing one to obtain the best solutions
are given. The crossover operators of the first genetic algorithm are based on random
choices of operations, while in the second algorithm, different operators that are specific
and more adapted to the studied problem have been developed. Regarding the mutation
operators, they are common between the two algorithms. The pseudocode of the generic
genetic algorithm is given in Algorithm 2.

Table 2. Common and different elements between the two genetic algorithms.

Initial Population Crossover Operators Mutation Operators

GA1 MMWA, SPT OMAC1, JLOSC1, SLOSC1 ROAM, IOAM, OSSM

GA2 MMWA, MNOR OMAC2, OMAC3, JLOSC2, SLOSC2 ROAM, IOAM, OSSM
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Algorithm 2: Genetic algorithm

1. Initialization: The initial solutions are chosen using the heuristics described above ;
2. Evaluation: Evaluation of the initial solutions using the procedure of fitness function computation; ;
1. nbIterations ← 0; nbIndividuals ← 0 ;
3. Application of the selection operator to choose the parent chromosomes to cross and mutate;
4. Randomly choose one of the crossover operators;
5. Application of the crossover operator chosen in 4;
6. Randomly choose one of the mutation operators ;
7. Application of the mutation operator chosen in 6;
8. Application of the local search by grouping sub-lots on child chromosomes obtained after crossover and
mutation;

9. nbIndividuals ← nbIndividuals + 1 ;
10. If the population size is reached, then go to 11, else go to 3 ;
11. Sorting solutions of the current population in ascending order of fitness functions ;
12. Construction of the new population with solutions of the previous population;
13. Application of the local search methods through gene movement and intelligent assignment of operations on

the α best solutions of the new population;
14. nbIterations ← nbIterations + 1 ;
15. If the maximum number of iterations is not reached, then go to 3, else go to 16 ;
16. End of algorithm

5.2. Iterated Local Search Algorithm

This section describes an iterated local search (ILS) algorithm for solving the studied
problem. ILS is a simple, robust, and highly effective local search procedure that explores
local optima in a given neighborhood (Lourenço et al. [41]).

The iterated local search algorithm starts from an initial solution and obtains a local
optimum in its neighborhood through a local search procedure. To improve upon the
current local optimum, ILS applies perturbation operators to this solution in order to move
away from the current local optimum. An acceptance criterion is employed to determine
which local optimum will become the current local optimum in the next iteration. The
above process is repeated until a termination criterion is satisfied.

To generate the initial solutions of the iterative local search algorithms, the affectation
and sequence heuristics for the generation of the initial population of the genetic algorithm
are used, except that in the ILS algorithm, only one solution is generated.

The local search procedure is based on two operators: the affectation operator (AO)
and sequence operator (SO). The affectation operator changes the assignment of a set of
operations to the machines without changing their sequencing on the machines, while the
sequence operator changes the sequencing of operations without changing their affectation
to to machines.

Three affectation operators, AO1, AO2, and AO3, and three sequence operators, SO1,
SO2, and SO3, were developed:

• AO1 and SO1: The operations are chosen randomly.
• AO2, AO3, SO2, and SO3: The operations are chosen according to rules developed to

be specific to the studied problem.

The goal of the AO2 operator is to balance the workload between the machines, while
AO3, SO2, and SO3 operators allow the reduction of the ending dates of jobs with larger
completion times. The difference between these operators is in the choice of operations to
change their assignments and sequences.

The first step of the SO operator consists of randomly choosing one of the sequence
operators. Then, a set of operations in the current solution to be improved is chosen. The
second step is to shift the selected operations to the left until the permutation of these
operations with the previous operations assigned to the same machines is effective. If the
left shift is blocked (precedence constraints are violated), then, from the solution obtained
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in the second step, the selected operations are shifted to the right until the permutation of
these operations with the next operations assigned to the same machines is effective. This
process is repeated until the maximum number of iterations is not reached.

In the AO operator, the first step is to choose one of the assignment operators. Then, a
set of operations in the current solution to be improved is chosen. In the second step, the
selected operations are assigned to another machine among a set of alternative machines.
If the solution obtained after the reassignment of operations is not better than the current
solution, then an SO sequence operator is applied on the selected operations with the new
machine assignments obtained in the second step. This process is repeated for a given
number of iterations.

The local search method can get stuck in a local optimum if the solution space is
reduced. To fix this problem, a number of insertion moves to the current local optimum
to obtain a perturbation solution are carried out. To determine the appropriate number
of perturbations, different strategies have been tested. The best strategy, and that which
is used in the algorithm, consists of performing a perturbation if the degree of similarity
between the solutions is lower than a given threshold defined beforehand, which ensures a
sufficient distance between solutions. The evaluation of the degree of similarity is based on
the gaps between solutions. The similarity measures between solutions are evaluated to
ensure the stability in the proposed solutions for the production scheduling.

The different steps of the iterative local search method in one iteration are illustrated
through an example in Figure 9. The algorithm begins by generating an initial solution using
one of the assignments and sequencing heuristics. Then, one of the SO sequence operators
is applied. If no improvement of the solution is obtained after the application of the SO
operator, the next step consists of applying an AO assignment operator on the operation
chosen beforehand. If the application of the AO operator does not improve the initially
generated solution, an SO operator with the new affectation obtained after the application of
the AO operator is applied. If the solution is still not improved, a perturbation operator is
applied on this solution, and the algorithm moves on to the next loop iteration. This operator
consists of applying one of the randomly chosen sequencing or assignment operators. This
process is repeated until the maximum number of perturbations is not reached.

Figure 9. Steps of the iterative local search algorithm for one iteration.
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Table 3 gives the common and different elements between the two developed algo-
rithms. In this table, the heuristics for the generation of initial population, affectation, and
sequence operators of the two iterated local search algorithms are given. The difference
between the two algorithms lies in the heuristics used for the generation of initial solutions.
In Table 3, the heuristics allowing one to find the best solutions are given. The affectation
and sequence operators of the first iterated local search algorithm are based on random
choices of operations, while in the second algorithm, the choice of these operations is based
on specific rules more suited to the considered problem. The pseudocode of the generic
iterated local search algorithm is given in Algorithm 3.

Algorithm 3: Iterative local search algorithm
1. Initialization: The initial solution is generated by using the previously described assignment and sequencing

heuristics ;
1. current solution ← initial solution ;
2. Evaluation: Evaluation of the initial solution ;
1. SimilarDegree ← 0 ;
3. Application of the SO sequence operator;
4. If the solution is improved in 3, then ;
1. current solution ← solution obtained in 3, else go to 5;
5. Application of the AO affectation operator ;
6. If the solution is improved in 5, then;
1. current solution ← solution obtained in 5, else go to 7;
7. Application of the PO operator on the current solution ;
8. Update SimilarDegree by calculating the distance between the current solution and the improved one;
9. If the degree of similarity between the solutions obtained in 8 is less than a predefined threshold,;
then go to 3, else go to 10 ;
10. End of algorithm

Table 3. Common and different elements between the two iterated local search algorithms.

Initial Solution Sequence Operators Affectation Operators

ILS1 SPT, MNOR SO1 AO1

ILS2 MMWA, MNOR SO2, SO3 AO2, AO3

6. Computational Results of the Developed Algorithms

6.1. Data Generation

The genetic algorithms presented above were implemented using the Java program-
ming language and were tested on 150 instances of different types: real instances of the
HCT, randomly generated instances of the HCT type, randomly generated instances, and
instances adapted from the literature (Sriboonchandr et al. [32], Nouri et al. [33], Azzouz
et al. [34], Mousakhani [26], Lee et al. [35], Bagheri and Zandieh [25], Pezzella et al. [36]).

The real instances were built after collecting data for some examples of production
days. The randomly generated instances of the HCT type were built using data (such as the
number of machines, due dates of jobs, and time window of availability of machines) from
the real instances of HCT. The other parameters were generated from uniform distributions,
such as the parameters of the randomly generated instances. To adapt the instances from
the literature to the studied problem, the missing data, such as the quantities of dishes,
due dates of jobs, machine capacities, and time windows of availability of machines, were
randomly generated according to uniform distributions and by taking into account the
data on the processing times of operations and the setup times of machines given in these
instances. The results of the developed resolution methods for these different categories of
instances are presented below.
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6.2. Optimization of the Metaheuristics’ Parameters

To optimize the parameter values of the developed metaheuristics, the Taguchi method
was used. The choice of these parameters has a significant effect on the efficiency of the
metaheuristic algorithms. The parameter values that are needed for optimization act like
controllable factors in the design of experiments. The aim is to find an optimal combination
of the parameters such that the total flow time is minimized. To employ the Taguchi
method, Minitab 19 was used; under the menu options, Stat-DOE-Taguchi Design Create
Design was selected. For five levels of six factors, an L25 orthogonal array is used. This
orthogonal array lists the different combinations of factors at different levels at which the
response values of experiments have to be determined.

The parameters of the genetic algorithm are: population size (PS), maximum number
of generations (MNG), crossover probability (Pc), mutation probability (Pm), number of
elite individuals (NEI), and the number of individuals on which local research is applied
(NILS). The parameters of the iterated local search algorithm are: maximum number of
iterations of the sequence operator (MISO), maximum number of iterations of the affectation
operator (MIAO), maximum number of perturbations of the perturbation operator (MPPO),
and threshold distance between solutions to reiterate the steps of the iterative local search
algorithm (DOS). The optimum values of the genetic algorithm and the iterated local search
algorithm parameters are given in Table 4.

Table 4. Optimal parameters of the genetic and iterated local search algorithms.

PSG MNG NEIi NILS Pc G Pm G

GA 1 500 1000 50 50 0.8 0.2

GA 2 800 1200 80 80 0.8 0.2

DOSG MISOG MIAOG MPPOG

ILS 1 0.05 100 100 50

ILS 2 0.07 200 200 100

6.3. Discussion of the Experimental Results

The optimization criteria of the developed metaheuristics are based on the quality of
the solutions and rapidity. The quality and efficiency of the metaheuristics were proven
by comparing the solutions obtained with these algorithms and the optimal solutions of
the mathematical model. Regarding the rapidity, the computation times of the algorithms
were compared with those of the mathematical model. From the results presented above
(Tables 5–9), we remark that the two genetic algorithms are efficient in terms of quality and
rapidity. The performance of the developed resolution methods depends on the types of
instances and their sizes, and it also depends on the choice of heuristics for the generation
of initial solutions. The first genetic algorithm is more efficient in terms of quality with
the MMWA assignment heuristic and the SPT sequence heuristic, while the second genetic
algorithm is more efficient with the MMWA and MNOR heuristics. For the iterated local
search algorithms, the first algorithm gives better solutions with the SPT assignment heuristic
and the MNOR sequence heuristic, while the second algorithm finds good solutions with
the MMWA and MNOR heuristics. Regarding the rapidity, the four metaheuristics are more
faster with the RA assignment heuristic and the RS sequence heuristic.

The results of the genetic algorithms for different types of instances (Tables 5–9) show
that the developed metaheuristics are efficient relative to the quality of solutions. Table 5
represents the results of the different methods developed on a real instance with 82 jobs,
92 sub-lots, 370 operations, and 29 machines. From these instances, several sub-instances
were built by increasing the number of jobs, sub-lots, and operations each time to see
from what number of jobs, sub-lots, and operations the model is not able to find solutions.
From Table 5, we observe that for the real instances of the HCT, the mathematical model
quickly found solutions for the small instances with less than five dishes, five sub-lots,
24 operations, and 29 machines. It took a little longer for the instances with more than
six dishes, six sub-lots, 29 operations, and 29 machines. However, for the instances with
more than nine jobs, 44 operations, and 29 machines, after more than 3 h of execution, the
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mathematical model did not find solutions. For these instances, the two genetic algorithms
succeeded in finding feasible solutions in very short computation times. For example,
for the large instance with 82 jobs, 92 sub-lots, 370 operations, and 29 machines, the first
genetic algorithm found a feasible solution that respected all the constraints after 5 min
of execution.

Table 5. Computational results of the developed resolution methods for real instances of the hospital center of Troyes (HCT).

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

2 2 10 29 15.3 2 15.3 0.1 15.3 0.3 15.3 0.01 15.3 0.08
3 3 15 29 24.4 4 24.4 0.2 24.4 0.5 24.4 0.04 24.4 0.14
4 4 20 29 32.8 120 32.8 0.3 32.8 0.8 32.8 0.06 32.8 0.18
5 5 24 29 39.9 240 39.9 0.4 39.9 1 39.9 0.1 39.9 0.28
6 6 29 29 49.2 1200 49.2 0.6 49.2 1.4 49.2 0.16 49.2 0.40
7 7 34 29 57.6 2700 57.6 0.8 57.6 1.8 57.6 0.26 57.6 0.54
8 10 39 29 69.4 9000 69.4 1 69.4 2 69.4 0.46 69.4 0.3
9 11 44 29 - >10,800 77.7 1.5 77.7 3 77.7 0.71 77.7 1.2

10 12 48 29 - >10,800 85.0 2 85.0 4 86.4 0.96 85.9 1.4
20 22 93 29 - >10,800 162.4 30 162.4 60 166.5 5 165.8 11
30 32 138 29 - >10,800 252.9 60 252.9 120 262.3 15 260.6 31
40 42 179 29 - >10,800 339.7 90 339.7 180 354.9 23 352.3 49
50 58 227 29 - >10,800 471.6 138 478.6 276 490.6 30 485.6 60
60 68 271 29 - >10,800 590.4 180 593.9 360 624.4 43 616.7 87
70 78 315 29 - >10,800 682.8 228 677.6 468 720.7 51 715.2 103
82 92 370 29 - >10,800 798.3 300 788.6 600 846.5 70 840.8 141

J: number of jobs, SL: number of sub-lots, O: number of operations, M: number of machines, F0: total flow time of the mathematical
model, T0: computational time of the mathematical model, F1: total flow time of GA 1, T1: computational time of GA 1, F2: total flow
time of GA 2, T2: computational time of GA 2, F3: total flow time of ILS 1, T3: computational time of ILS 1, F4: total flow time of ILS
2, T4: computational time of ILS 2.

Tables 6–8 present the performances of the resolution methods in terms of quality
and rapidity for randomly generated instances and a comparison between the solutions
obtained by these different methods. From the results presented in these tables, we remark
that the genetic algorithms found feasible solutions for the large-size instances in reasonable
resolution times.

In Table 9, we observe that for the instances adapted from the literature, the genetic
algorithms make it possible to improve the solutions of the instances adapted from the
literature. For example, for the instance from Lee et al. [35], the genetic algorithms brought
about an improvement of 3.92% over the solutions obtained with the methods proposed by
Lee et al. [35].

Table 6. Computational results of the developed resolution methods for randomly generated instances of the HCT type.

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

110 110 402 29 - >10,800 986.7 480 986.2 720 1030.5 115 1018.4 225
100 100 342 29 - >10,800 696.5 270 696.5 480 732.3 65 723.5 126
90 90 324 29 - >10,800 704.7 240 705.1 360 740.2 58 732.5 112
80 80 286 29 - >10,800 525.6 205 525.5 356 556.7 48 548.7 94
60 60 200 29 - >10,800 248.8 140 248.5 210 262.4 34 258.6 65
50 50 173 29 - >10,800 318.9 110 318.3 198 336.9 28 331.5 54
20 20 74 29 - >10,800 158.6 60 158.2 108 165.3 15 163.9 28
15 15 59 29 - > 10,800 421.5 52 421.1 92 432.1 12 428.8 22
10 10 31 29 - >10,800 215.4 20 215.1 34 219.8 4 217.9 7
9 9 34 29 - >10,800 368.8 15 368.1 25 376.5 3 374.1 5
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Table 7. Computational results of the developed resolution methods for small randomly generated instances.

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

3 12 11 6 117 16 117 3 117 6 123 0.1 122 0.4
3 8 13 6 85 24 85 5 85 10 89 0.2 88 0.8
3 10 8 6 45 10 45 1.5 45 3 47 0.06 47 0.1
3 11 11 6 55 20 55 4 55 8 58 0.2 57 1.0
3 12 12 6 117 104 117 24 117 48 120 1.6 119 3.8
3 11 13 6 78 30 78 6 78 12 81 0.4 80 1.2
3 10 12 6 88 172 88 42 88 82 92 3.6 91 8.8
3 10 13 6 103 240 103 56 103 112 106 7.6 105 13.6
3 10 10 6 76 28 76 6 76 12 80 0.5 79 1.7
3 8 9 6 44 24 44 5 44 10 45 0.3 45 1.4

Table 8. Computational results of the developed resolution methods for large randomly generated instances.

J SL O M F0 (h) T0 (s) F1 (h) T1 (s) F2 (h) T2 (s) F3 (h) T3 (s) F4 (h) T4 (s)

10 10 132 6 - >10,800 285.8 20 285.2 30 298.2 5 294.1 8
15 15 168 7 - >10,800 302.4 24 302.0 35 312.5 7 308.7 12
20 20 146 8 - >10,800 320.5 30 320.1 45 332.8 9 328.5 16
25 25 154 9 - >10,800 332.6 35 332.0 52 345.0 11 340.2 20
30 30 151 10 - >10,800 338.2 42 337.8 60 350.8 13 346.6 24
35 35 149 11 - >10,800 354.3 50 353.8 75 368.4 15 363.1 28
40 40 179 12 - >10,800 365.1 58 364.6 86 378.9 18 375.2 34
45 45 221 13 - >10,800 381.8 70 381.0 102 396.3 22 392.7 42
50 50 191 14 - >10,800 395.0 85 398.5 124 410.1 28 406.4 54
55 55 205 15 - >10,800 412.7 108 418.2 158 428.6 34 424.5 65
60 60 195 16 - >10,800 434.2 120 439.0 178 448.0 40 446.3 76
65 65 201 17 - >10,800 454.3 138 448.5 202 472.1 46 468.9 88
70 70 256 18 - >10,800 468.5 160 460.8 235 486.8 52 482.7 95
75 75 258 19 - >10,800 485.6 184 492.1 272 504.6 60 501.4 116
80 80 300 20 - >10,800 498.0 215 510.3 318 516.5 68 512.1 128

Table 9. Computational results of the developed resolution methods for instances adapted from the literature.

J SL O M F0 T0 F1 T1 F2 T2 F3 T3 F4 T4
(h) (s) (h) (s) (h) (s) (h) (s) (h) (s)

Azzouz et al. 3 3 11 3 74 8 74 2 74 4.2 78 0.5 76 1.05
Bagheri et al. 3 3 11 3 68 6 68 1.5 68 3.1 72 0.38 70 0.78
Pezzella et al. 3 3 10 4 33 7 33 1.8 33 3.8 35 0.46 34 0.95
Nouri et al. 3 3 9 5 31 10 31 2.8 31 5.6 33 0.82 32 1.42

Lee et al. 3 3 22 5 102 92 102 0.2 102 0.6 104 0.04 103 0.13
Mousakhani 4 4 12 3 101 9 101 2.5 101 5.2 106 0.64 104 1.35

Sriboonchandr et al. 4 4 14 5 53 12 53 3.2 53 6.5 56 1.2 55 1.48

By comparing the different resolution methods for all the tested instances, we observe
that for some instances, the two genetic algorithms found the optimal solutions in a
very short computation time compared to the mathematical model. For the instances for
which the optimality was not reached, the gaps between the solutions obtained with the
algorithms and the optimal solutions were very small. For the large instances for which
the mathematical model failed to find solutions after more than three hours of execution,
the genetic algorithms found feasible solutions within reasonable computation times.
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Comparing the two genetic algorithms in terms of rapidity, the first algorithm is faster
than the second algorithm, while comparing them in terms of stability both algorithms
are stable for the real instances of HCT and randomly generated instances, while for the
randomly generated instances of the HCT type, the second algorithm is more stable than
the first algorithm. Comparing the two algorithms in terms of quality of solutions, the
performance of the algorithms depends on the types of instances. For some instances, the
first algorithm is better than the second algorithm, while for other instances, the second
algorithm is more efficient than the first algorithm.

By comparing the results obtained with the genetic algorithms and the iterated local
search methods for all the tested instances, we find that the ILSs are worse than the GAs in
terms of the quality of solutions obtained. However, in terms of rapidity, the ILS methods
are faster compared to the GAs.

7. Application to an Industrial Case

This work was carried out in collaboration with the hospital center of Troyes (HCT). To
effectively meet the needs of patients and to improve working conditions and employees’
well-being, the hospital center of Troyes implements important measures to improve its
daily efficiency. It is in this context that this study of hospital catering activity optimization
takes place.

The HCT is carrying out a project to revise its supply chain, which must, in partic-
ular, consider the management of food flows. The contribution of the present work is
to determine the best plan for meeting customers’ demands in terms of food flows and
to propose ways to improve the well-being and working conditions of employees of the
catering service of the hospital center of Troyes. The aim is to provide methods and tools
for scheduling meal-making processes throughout the day.

The hospital center of Troyes is the main member of the South Champagne Hospitals
group. Its logistic network (Figure 10) is composed of a set of customers whose meal
needs are met from a warehouse, which is the central kitchen and a set of suppliers. These
customers are hospitals, nursing homes, and psychiatric clinics. The central food production
kitchen of the HCT produces, on average, 4800 meals per day. Its maximum daily production
capacity is 5000 meals per day. The HCT catering service includes a production unit divided
into several sectors, from the reception of raw materials to the dispatch of finished products
and a coordination unit for menu management. In this study, we are particularly interested
in the sectors from the pre-treatment of raw materials to the stock of finished products
(Figure 11). This figure represents the production areas of the studied system and the
different machines available for carrying out the operations of the meal-production process.

Figure 10. Logistics network of the hospital center of Troyes.
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Figure 11. Representation of the studied production system.

Table 10 represents the results of the genetic algorithm for some examples of real
production days with a comparison between the real solutions, as these production days
were organized and the solutions were proposed by the genetic algorithm. In this table, for
each instance, the number of dishes, the number of sub-lots of dishes, the total number of
operations, the number of machines available, and the average number of meals produced
per day are given. The performance indicators between solutions are based on the total
flow time and the gaps between them. From these results, we remark that the gaps between
the real solutions and those of the genetic algorithm are very important and significant. The
performance of the genetic algorithm for these instances depends on their types and sizes.
For example, for the instance with 62 dishes, 68 sub-lots, 218 operations, and 29 machines,
we brought about a considerable improvement of 18.72% over the real solution, which
shows the quality and performance of the developed algorithms.

Table 10. Comparison between the real and genetic algorithm solutions for some examples of production days.

Instance 1 Instance 2 Instance 3 Instance 4

- Number of dishes 82 110 62 72
- Number of sub-lots of dishes 92 115 68 80
- Number of operations 370 392 218 328
- Number of material resources 29 29 29 29
- Average number of meals produced 4800 4800 4800 4800

- Real solutions 901.97 h 1062.66 h 278.23 h 784.84 h
- Genetic algorithm solutions 788.64 h 952.48 h 226.12 h 705.96 h
- Gaps between real and genetic algorithm solutions −12.56% −10.36% −18.72% −11.18%

8. Conclusions

The present article deals with the study of a new industrial problem. Different res-
olution methods for the scheduling of production processes in hospital catering were
developed. A mathematical model integrating all the constraints of the studied problem
was proposed. This model is an improvement of the standard flexible job shop scheduling
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problem with sequence-dependent setup times by integrating specific industrial constraints.
An extensive study confirming the effectiveness of the developed model is presented. The
computational results of the mathematical model for different types of instances show the
limits of an exact resolution for the problem of scheduling production processes. To solve
the large instances of the addressed problem, different metaheuristics were developed and
tested on several types of instances. The computational results of these metaheuristics
have proven their effectiveness and reliability for the scheduling of operations of the food
production process and allowed significant improvements in the real current organization
and system performance. As regards future research, this work is limited by the number of
human resources available and does not take into account the possible hazards, such as the
absence of staff, machinery breakdowns, and the unavailability of raw materials. Further
research can be extended by considering these constraints. The present work also opens
the way to other perspectives, such as the study of the production planning problem over
several days, and our future work will focus on the development of resolution methods for
this problem.
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Abstract: This paper considers the problem of assigning nonpreemptive jobs on identical parallel
machines to optimize workload balancing criteria. Since workload balancing is an important practical
issue for services and production systems to ensure an efficient use of resources, different measures
of performance have been considered in the scheduling literature to characterize this problem:
maximum completion time, difference between maximum and minimum completion times and the
Normalized Sum of Square for Workload Deviations. In this study, we propose a theoretical and
computational analysis of these criteria. First, we prove that these criteria are equivalent in the case
of identical jobs and in some particular cases. Then, we study the general version of the problem
using jobs requiring different processing times and establish the theoretical relationship between the
aforementioned criteria. Based on these theoretical developments, we propose new mathematical
formulations to provide optimal solutions to some unsolved instances in order to enhance the latest
benchmark presented in the literature.

Keywords: workload balancing; identical parallel machines; normalized sum of square for workload
deviations; maximum completion time; minimum completion time; mathematical programming

1. Introduction

Balancing workload among a set of resources or operators is an important issue in
many services and production environments. For instance, in the manufacturing industry,
balancing the workload among machines can reduce idle time. It also helps to manage
bottlenecks in many production systems. This problem can be formally defined as the
assignment of a set of jobs to identical parallel machines (or other types of resources) with
the objective of balancing the total workload among those machines as equally as possible.
Recently, this scheduling problem has found application in the Fog Computing empowered
Internet of Things (IoT) [1]. This study proposes that a workload balancing scheme may
reduce the latency of data flow, which is a key performance metric for IoT applications.
In addition, workload balancing criteria have gained a lot of attention in key concepts
of scheduling in Industry 4.0, such as of Flexible Manufacturing System [2] and Smart
Manufacturing System [3]. Balancing the workload among a set of machines or human
workers is also an important issue in many practical cases. For instance, assigning human
resources is an important concern for many industries and organizations like hospitals,
manufacturing firms, transportation companies, etc. Cuesta et al. [4] addressed a human
resources assignment problem with the objectives of maximizing employee satisfaction and
production rate on a real world case of a large production firm. Azmat et al. [5] presented
different MIP models to solve workforce scheduling problems for a single-shift, taking into
consideration constraints relative to labor regulations. Khouja and Conrad [6] addressed
on a balancing problem encountered by a mail order firm. To handle order taking and
billing, and to ease order tracking, customer groups should be assigned almost equally to
the employees.
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Many researchers, especially in the scheduling community, are interested in the work-
load balancing problem. They have addressed this problem in different ways: as a series of
constraints or as an objective function. For example, Schwerdfeger and Walter [7] proposed
an approached optimization method based on heuristics and a genetic algorithm in order
to deal with semirelated parallel machines under sequence-dependent setups and load
balancing constraints. Ouazene et al. [8] introduced a mixed integer-programming model
and a genetic algorithm to minimize total tardiness and workload imbalance in a parallel
machine-scheduling environment. In 2012, Keskinturk et al. [9] attempted to minimize the
relative workload imbalance on parallel machines via two metaheuristic methods.

Cossari et al. [10] noted that there is no established performance measure in the
literature to characterize the workload balancing problem. However, different criteria have
been proposed in the literature. The first is the relative percentage of imbalances (RPI)
introduced by Rajakumar et al. [11,12]. However, Walter and Lawrinenko [13] showed
that this criterion is equivalent to maximum completion time minimization and does not
provide perfectly balanced schedule.

Ho et al. [14] introduced a new workload balancing criterion, the so-called Normalized
Sum of Squared Workload Deviations (NSSWD). They also analyzed some properties of the
problem and introduced a heuristic algorithm to solve it. Later, Ouazene et al. [15] showed
that the NSSWD criterion is equivalent to ∑M

m=1 C2
m. In other words, NSSWD represents a

normalized variant of the problem of minimizing ∑M
m=1 C2

m. This problem was first treated
by Chandra and Wong [16] in 1975, who analyzed the worst-case performance of Longest
Processing Times rule, and derived its worst-case performance ratio, i.e., 25

24 .
Ho et al. [14] also stated that, in the case of identical parallel machines, a NSSWD-

optimal schedule is necessarily a Cmax-optimal schedule as well. However, [13] provided
a counter-example for the case with more than two machines to prove that this result
was wrong. They also carried out a computational study to give an overview on Cmax as
well as NSSWD optimal schedules and empirically analyzed the correlation between both
criteria. The numerical results revealed that the Cmax criterion may be a good approxi-
mation for NSSWD when the ratio n

m is rather small. However, for some other instances,
especially the largest ones, the Cmax -optimal solution is not a good candidate solution for
workload balancing.

Ouazene et al. [15] also recommended the minimization of the difference between the
most and least loaded machine (CΔ = Cmax − Cmin) as a measure for workload balancing
on identical parallel machines. They performed a computational study to show that, in
general, a makespan optimal schedule is not optimal for CΔ criterion.

One of the recent works dealing with this problem is that of Schwerdfeger and Wal-
ter [17]. The authors investigated the workload balancing problem on a parallel machines
environment where the objective was to minimize the normalized sum of square for
workload deviations. They proposed an exact subset sum-based algorithm to solve a
three-machine case. In a follow-up paper, Schwerdfeger and R. Walter [18] provided a
dynamic programming approach to solve the same problem. They also suggested two
local search procedures to solve large instances and provided a complete and dedicated
benchmark to the workload balancing problem.

This paper consists of a theoretical and computational analysis of the different criteria
addressed in the literature to deal the workload balancing problem. More specifically, it
aims to investigate the theoretical relationships between P||Cmax, P||NSSWD and P||CΔ
problems. As mentioned by Cossari et al. [10], while workload balancing is an impor-
tant practical criterion given the need of production systems to efficiently use all of their
resources, there is no established measure of performance in the scheduling literature
that characterizes total workload balance. Different criteria have been addressed in the
literature and some of them are trivial. That is why we present in this work a rigorous
theoretical analysis of the most important criteria that have been considered for this prob-
lem. The main theoretical contribution of this paper is to establish the exact mathematical
relationship between NSSWD and (CΔ) as a measure for the workload balancing on identi-
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cal parallel machines. Then, based on this theoretical analysis, new mathematical bounds
are developed and incorporated into mathematical programming models to provide a
number of optimal solutions to some unsolved instances in the benchmark proposed by
Schwerdfeger and R. Walter [18].

The remainder of this paper is organized as follows. The next section introduces
the problem considered in this study with the different notations. Section 3 presents the
workload balancing problem using two cases: the case of identical jobs and the general
case with jobs having different processing times. Section 4 introduces three mathematical
formulations to the problem. Numerical tests are presented in Section 5. Finally, Section 6
summarizes the contribution of this paper.

2. Problem Description

2.1. Preliminary Notations and Assumptions

The problem considered in this paper is described as follows: a set of N independent
jobs J1, J2, . . . , JN are to be scheduled on M parallel machines. All machines or resources
are identical, i.e., job j requires the same processing time on any machine. Each machine
can process at most one job at a time, and each job must be processed without interruption
by one of the M machines. All the jobs are assumed to be available at time zero and each
job Jj has a deterministic integer processing time pj. The setup times, if any, are included in
the processing time.

To avoid trivialities, it is assumed that: N > M ≥ 2.
A schedule is represented by an M-partition S = S1, S2, . . . , SM of the set jobs J, where

each Sm, represents the subset of jobs assigned to the machine m. The objective is to
minimize the workload imbalance between the different machines.

Since the machines are identical, we can assume, without loss of generality, that the
indexes of the machine are rearranged in nondecreasing order according to the completion
times (or workloads) C1 = Cmin ≤ C2 ≤ . . . ≤ CM−1 ≤ CM = Cmax as illustrated
by Figure 1.

Figure 1. Illustration of the workload imbalance on identical parallel machines.

The different notations used in this paper are described below in Table 1.
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Table 1. Nomenclature.

N Total number of jobs

M Total number of machine

m Machine index

j Job index

pj Processing time of job j

Sm Set of jobs scheduled on the machine m

Cm = ∑
j∈Sm

pj Completion time or workload of machine m

Cmax Maximum of workloads

Cmin Minimum of workloads

CΔ = Cmax − Cmin
Difference between maximum and minimum

workloads

μ = 1
M ×

(M)

∑
m=1

Cm = 1
M × N

∑
j=1

pj
Average workload

NSSWD = 1
μ ×

√
M
∑

m=1
(Cm − μ)2

Normalized Sum of Square for Workload
Deviations

2.2. Performance Criteria for Workload Balancing

In the case of identical parallel machines, a well-established criterion is the normal-
ized sum of squared workload deviations (NSSWD). This criterion was introduced by
Ho et al. [14]; it is based on the sum of squares principle known in measuring variability in
statistics and serves as a precise measurement criterion. NSSWD is defined as follows.

NSSWD =
1
μ
×

[
M

∑
m=1

(Cm − μ)2

] 1
2

(1)

where: μ = 1
M × ∑M

m=1 Cm = 1
M × ∑N

j=1 pj

The authors discussed some properties of the NSSWD criterion and tackled the
complexity of the problem. They also showed that a non makespan-optimal schedule can
be improved in terms of NSSWD by reducing its maximum machine completion time.

Cossari et al. [19] showed that: NSSWD = M
1
2 ×

√
1
M × ∑M

m = 1(Cm − μ)2

μ , where√
1
M × ∑M

m=1(Cm − μ)2 is the standard deviation and

√
1
M × ∑M

m = 1(Cm − μ)2

μ is the coefficient
of variation.

Hence, the authors concluded that the NSSWD criterion is equivalent to the coefficient
of variation and both two criteria may be used as performance measures.

In the particular case of identical parallel machines, P||NSSWD is equivalent to
P
∣∣∣∣∣∣∑M

m=1 C2
m (cf. [15,17]). It makes no difference whether we minimize NSSWD or ∑M

m=1 C2
m.

3. Theoretical Analysis of Different Criteria

3.1. Case with Identical Jobs

This section introduces some of the properties of the different workload balanc-
ing performance measures and establishes equivalence between the following problems:
P
∣∣pj = p

∣∣Cmax, P
∣∣pj = p

∣∣CΔ and P
∣∣pj = p

∣∣NSSWD.

Proposition 1. If any schedule of a parallel machines problem with N identical jobs and M
machines, the problems P

∣∣pj = p
∣∣Cmax, P

∣∣pj = p
∣∣CΔ and P

∣∣pj = p
∣∣NSSWD are equivalent

and trivial.
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Proof of Proposition 1. In any schedule of a parallel machines problem with N identical
jobs and M machines, there is a set of l machines (1 ≤ l ≤ M) which have the same
workload load Cmax =

(⌊
N
M

⌋
+ 1

)
× p and (M − l) other machines which must have the

same workload Cmax =
⌊

N
M

⌋
× p, where l = N − M × �N/M�.

We consider that all jobs have the same processing time: ∀j = 1 . . . N, pj = p, then we
obtain the following cases.

Case 1: N
M ≡ 0 (modM)

Then, the different workload measures can be expressed as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cmax = N

M × p

Cmin = N
M × p

CΔ = 0
NSSWD = 0

(2)

Case 2: N
M ≡ l(ModM)

Then, the different workload measures can be expressed as follows.⎧⎪⎪⎨⎪⎪⎩
Cmax =

⌊
N
M

⌋
× p + p

Cmin =
⌊

N
M

⌋
× p

CΔ = p

(3)

Concerning the NSSWD calculation, let us consider:
⌊

N
M

⌋
× p = x. Then, the average

workload can be written as follows: μ = (M×x)+(l×p)
M = x + l

M × p. The average workload
can be also expressed as: μ = 1

M × ∑M
m=1 Cm = N×p

M .
So, based on the NSSWD-criterion definition, we have:

NSSWD = 1
μ ×

[
M
∑

m=1
(Cm − μ)2

] 1
2

= 1
μ ×

[
l

∑
m=1

(Cm − μ)2 +
M
∑

m=l+1
(Cm − μ)2

] 1
2

= 1
μ ×

[
l

∑
m=1

(x + pK − μ)2 +
M
∑

m=l+1
(x − μ)2

] 1
2

= 1
μ ×

[
l × (x + pK − μ)2 + (M − l)× (x − μ)2

] 1
2

= 1
μ ×

[
l ×

(
x + pK − x − l

M × pK

)2
+ (M − l)×

(
x − x − l

M × pK

)2
] 1

2

= 1
μ ×

[
l ×

(
pK − l

M × pK

)2
+ (M − l)×

(
− l

M × pK

)2
] 1

2

= 1
μ ×

[
l ×

(
M−l

M

)2 × p2
K + (M − l)×

(
l

M

)2 × p2
K

] 1
2

= 1
μ ×

[
l×(M−l)2+(M−l)l2

M2 × p2
K

] 1
2

= 1
μ ×

[
l×(M−l)×(M−l+l)

M2 × p2
K

] 1
2

= 1
μ ×

[
l×(M−l)

M × p2
K

] 1
2
= 1

μ ×
[

l×(M−l)
M

] 1
2 × pK

= M
∑K

k=1|Sk |×pk
×

[
l×(M−l)

M

] 1
2 × pK

= pK

∑K
k=1|Sk |×pk

× [M × (M − l)× l]
1
2

(4)
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Considering that l = N − M ×
⌊

N
M

⌋
, the Normalized Sum of Square for Workload

Deviations can be expressed as follows:

NSSWD = [M×(M−l)×l]
1
2

N =
[M×(M−N+M×� N

M �)×(N−M×� N
M �)] 1

2

N

=
[M×(M×(1+� N

M �)−N)×(N−M×� N
M �)] 1

2

N

(5)

Based on the demonstration detailed above, we can also conclude that in any parallel
machine scheduling problem with N identical jobs and M machines, the Normalized
Sum of Square for Workload Deviations (NSSWD)-criterion is constant and completely
independent of the job processing times (rather, it depends only on the number of jobs and
the number of machines). �

3.2. Case with Different Blocks of Identical Jobs

We assume the particular case in which the N jobs can be partitioned into K sets (Sk)
such as the jobs owned the same set have the same processing time: {1 . . . , n} = ∪K

k=1Sk
and ∀j ∈ Sk, pj = pk.

Lemma 1. Considering the assumptions mentioned above and if we have |Sk| ≡ 0(mod M),
∀k = 1 . . . K, then the Normalized Sum of Square for Workload Deviations (NSSWD) is equal
to zero.

Proof of Lemma 1. This proof is based on the preliminary results established in Proposition 1.

|Sk| ≡ 0(modM), ∀k = 1 . . . K =⇒ K
∑

k=1
|Sk| ≡ 0(modM) =⇒ N ≡ 0(modM)

=⇒ Cm =
K
∑

k=1

|Sk |
M × pk, ∀m = 1 . . . M

(6)

Finally, since all the machines have the same workload value, then the Normalized
Sum of Square for Workload Deviations (NSSWD) is equal to zero. �

Proposition 2 Under the assumptions assumed above and if we have |Sk| ≡ 0 (mod M),
/ ∀k = 1 . . . K − 1 and |SK| ≡ l(mod M), then the Normalized Sum of Square for Workload
Deviations (NSSWD) is constant.

Proof of Proposition 2. In the optimal schedule, there is a set of l machines (1 ≤ l ≤ M)

which have the same workload load Cmax = ∑K−1
k=1

|Sk |
M × pk + pK and (M − l) other ma-

chines which must have the same workload Cmin = ∑K−1
k=1

|Sk |
M × pk.

Let us consider: ∑K−1
k=1

|Sk |
M × pk = x. Then, the average workload can be written as fol-

lows: μ = (M×x)+(l×pK)
M = x + l

M × p. It can be also expressed as:

μ = 1
M × ∑M

m=1 Cm = ∑K
k=1|Sk |×pk

M .

So, based on the NSSWD-criterion definition, we have:
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NSSWD = 1
μ ×

[
M
∑

m=1
(Cm − μ)2

] 1
2

= 1
μ ×

[
l

∑
m=1

(Cm − μ)2 +
M
∑

m=l+1
(Cm − μ)2

] 1
2

= 1
μ ×

[
l

∑
m=1

(x + pK − μ)2 +
M
∑

m=l+1
(x − μ)2

] 1
2

= 1
μ ×

[
l × (x + pK − μ)2 + (M − l)× (x − μ)2

] 1
2

= 1
μ ×

[
l ×

(
x + pK − x − l

M × pK

)2
+ (M − l)×

(
x − x − l

M × pK

)2
] 1

2

= 1
μ ×

[
l ×

(
pK − l

M × pK

)2
+ (M − l)×

(
− l

M × pK

)2
] 1

2

= 1
μ ×

[
l ×

(
M−l

M

)2 × p2
K + (M − l)×

(
l

M

)2 × p2
K

] 1
2

= 1
μ ×

[
l×(M−l)2+(M−l)l2

M2 × p2
K

] 1
2

= 1
μ ×

[
l×(M−l)×(M−l+l)

M2 × p2
K

] 1
2
= 1

μ ×
[

l×(M−l)
M × p2

K

] 1
2

= 1
μ ×

[
l×(M−l)

M

] 1
2 × pK = M

∑K
k=1[Sk ]×pk

×
[

l×(M−l)
M

] 1
2 × pK

= pK

∑K
k=1|Sk |×pk

× [M × (M − l)× l]
1
2

(7)
Considering that l = |SK| − M ×

⌊ |SK |
M

⌋
, the Normalized Sum of Square for Workload

Deviations can be expressed as follows:

NSSWD = pK

∑K
k=1|Sk |×pk

× [M × (M − l)× l]
1
2

= pK

∑K
k=1|Sk |×pk

×
[

M ×
(

M − |SK|+ M ×
⌊ �SK�

M

⌋)
×

(
|SK| − M ×

⌊ �SK�
M

⌋)] 1
2

= pK

∑K
k=1|Sk |×pk

×
[

M ×
(

M
(

1 +
⌊ |SK |

M

⌋)
− |SK|

)
×

(
|SK| − M ×

⌊ |SK |
M

⌋)] 1
2

(8)

�

3.3. General Case with Different Jobs

In this section, we consider the workload balancing problem in its general version.
The N jobs may have different processing times.

A strong correlation between the two criteria CΔ and NSSWD was suspected by dif-
ferent authors in the literature [13,14,19]. However, their different analyses were based on
empirical study. As a major contribution of our paper, we establish the exact mathematical
correlation between these two criteria.

3.4. Case with Two Machines

Proposition 3. In the case of two parallel machines, the problems P2||Cmax , P2||CΔ and
P2||NSSWD are equivalent.

Proof of Proposition 3. First, we establish that a Cmax-optimal solution is also CΔ-optimal
one. As a preliminary result, we assume the well-established relationship:
max{a, b} = 1

2 × (a + b + |b − a|).

Considering this relationship and the definition of the maximum completion time, we
can write:

79



Appl. Sci. 2021, 11, 3677

Cmax = max{C1, C2} =
C1 + C2

2
+

1
2
× (|C2 − C1|) = μ +

1
2
× CΔ (9)

Since μ = C1+C2
2 is constant and CΔ = C2 −C1, it is clear that minimizing Cmax implies

the minimization of the difference CΔ.
Then, we establish that a CΔ-optimal solution is also (NSSWD)-optimal. Based on the

Normalized Sum of Square for Workload Deviations definition, we can write:

NSSWD = 1
μ ×

[
2
∑

m=1
(Cm − μ)2

] 1
2

= 1
μ ×

[
(C1 − μ)2 + (C2 − μ)2

] 1
2

= 1
μ ×

[(
C1 − C1+C2

2

)2
+

(
C2 − C1+C2

2

)2
] 1

2
= 1

μ ×
[(

C1−C2
2

)2
+

(
C2−C1

2

)2
] 1

2

= 1
μ ×

[
1
2 (C2 − C1)

2
] 1

2
= 1√

2×μ
× (Cmax − Cmin) =

1√
2×μ

× CΔ

(10)

Since μ is constant, minimizing (CΔ) implies the minimization of NSSWD. �

3.5. Case with More Than Two Machines

Proposition 4. The normalized sum of the square for Workload Deviations criterion NSSWD can

be bounded as follows: M√
2×∑N

j=1 pj
× CΔ ≤ NSSWD ≤ M

3
2

2×∑N
j=1 pj

× CΔ.

Proof of Proposition 4. As first step, we deal with the upper bound.

Before dealing with the demonstration, we remind the reader of the following result
(see [20] for details) concerning the maximum value of the standard deviation measure. It
is shown that if a ≤ cm ≤ b, ∀m, then the maximum possible value of standard deviation
occurs when half of the values are equal ta a and half of them are equal to b. That means:

Cmax = max{C1, C2} =
C1 + C2

2
+

1
2
× (|C2 − C1|) = μ +

1
2
× CΔ (11)

max
a≤cm≤b

{
1
M

×
[

M

∑
m=1

(Cm − μ)2

]}
=

(b − a)2

4
(12)

Based on the proposition cited above, we can establish that:

NSSWD = 1
μ ×

[
M
∑

m=1
(Cm − μ)2

] 1
2

= M
1
2

μ ×
[

1
M

M
∑

m=1
(Cm − μ)2

] 1
2

=⇒ maxNSSWD = max M
1
2

μ ×
[

1
M

M
∑

m=1
(Cm − μ)2

] 1
2

= M
1
2

μ ×
[

max 1
M

M
∑

m=1
(Cm − μ)2

] 1
2

=⇒ maxNSSWD = M
1
2

μ ×
[
(Cmax−Cmin)

2

4

] 1
2
= M

1
2

μ × [ (Cmax−Cmin)
2

=⇒ maxNSSWD = M
3
2

2×∑N
j=1 pj

× (Cmax − Cmin)

=⇒ NSSWD ≤ M
3
2

2×∑N
j=1 pj

× CΔ

(13)

The second step of demonstration deals with the lower bound.

NSSWD = 1
μ ×

[
M
∑

m=1
(Cm − μ)2

] 1
2

= 1
μ ×

[
(C1 − μ)2 + (CM − μ)2 +

M−1
∑

m=2
(Cm − μ)2

] 1
2

NSSWD ≥ 1
μ ×

[
(C1 − μ)2 + (CM − μ)2

] 1
2

(14)
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Or by considering the relationship: a2 + b2 = 1
2 (a + b)2 + 1

2 (a − b)2, we can conclude that:

NSSWD ≥ 1
μ ×

[
(C1 − μ)2 + (CM − μ)2

] 1
2

≥ 1
μ ×

[
1
2 × (C1 + CM − 2 × μ)2 + 1

2 × (CM − C1)
2
] 1

2 ≥ 1
μ ×

[
1
2 × (CM − C1)

2
] 1

2

≥ 1√
2×μ

× (Cmax − Cmin)

NSSWD ≥ M√
2×∑N

j=1 pj
× CΔ

(15)

�

Remark 1. In the case of M = 2, NSSWD and CΔ criteria are linearly dependent. This confirms
the equivalence between the P2||NSSWD and P2||CΔ problems established in the previous section.
This relationship is given below.

2√
2×∑N

j=1 pj
× CΔ ≤ NSSWD ≤ 2

3
2

2×∑N
j=1 pj

× CΔ

=⇒
√

2
∑N

j=1 pj
× CΔ ≤ NSSWD ≤

√
2

∑N
j=1 pj

× CΔ

=⇒ NSSWD =
√

2
∑N

j=1 pj
× CΔ

(16)

Remark 2. Based on Proposition 3, we can introduce NSSWD
CΔ

as a new criterion to deal with the
workload imbalance minimization in an identical parallel machine problem. This criterion presents
the advantage of being bounded, and these bounds depend on the configuration of the instance
(number of machines and sum of processing times).

M√
2×∑N

j=1 pj
× CΔ ≤ NSSWD ≤ M

3
2

2×∑N
j=1 pj

× CΔ

=⇒ NSSWD
CΔ

∈
[

M√
2×∑N

j=1 pj
, M

3
2

2×∑N
j=1 pj

]
=⇒ NSSWD

CΔ
∈
[ √

2
2×μ ,

√
M

2×μ

] (17)

We can also notice an important asymptotic behavior of this criterion. In fact, for
a fixed number of machines M, the criterion NSSWD

CΔ
decreases according to the sum of

processing times and we have a perfect balanced solution when ∑N
j=1 pj �→ +∞ .

lim
μ �→+∞

NSSWD
CΔ

= 0 (18)

4. Mathematical Formulations

In this section, we introduce three formulation of the problem, namely mixed-integer
quadratic programming (MIQ1), mixed-integer quadratic programming with linear cuts
(MIQ2) and mixed-integer linear programming (MILP).

4.1. Mixed-Integer Quadratic Programming (MIQ1)

This formulation was first introduced by [17] to deal with the problem P|| NSSWD.
This formulation considers binary variables xjm, which take the value 1 if job j is assigned
to machine m and 0 otherwise. Equation (19) describes the objective function expressed
as a quadratic function. Constraints (20) ensure that each job is assigned to exactly one

81



Appl. Sci. 2021, 11, 3677

machine. The machine completion times are determined by Equation (21). Finally, the
domains of the binary variables are defined by Equation (22).

Minimize
1
μ
×

[
M

∑
m=1

(Cm − μ)2

] 1
2

(19)

Subject to
M

∑
m=1

xjm = 1, ∀j = 1, .., N (20)

Cm =
N

∑
i=1

xim pi∀m = 1, .., M (21)

xjm ∈ {0, 1}∀j = 1, .., N ∀m = 1, .., M (22)

The following two formulation represent a new contribution based on the theoretical
analysis developed in Section 3. First, we incorporate the new bounds, established by
Proposition 4, as new cats in the mixed-integer quadratic programming (MIQ1) proposed
by [17] in order to reduce the solution space. Then, based on the same development we
introduce a new mixed-integer linear programming (MILP) to solve the problem.

4.2. Mixed-Integer Quadratic Programming with Cuts (MIQ2)

This second formulation considers the same binary variables xjm, which take the
value 1 if job j is assigned to machine m and 0 otherwise. Equation (23) describes the
objective function. Constraints (25) ensure that each job is assigned to exactly one machine.
The machine completion times are determined by Equation (25). Constraints (26) and (27)
define respectively the workload of the least and most loaded machine. Constraints (28)
and (29) introduce the theoretical bounds established by Proposition 4 as new cats in the
original model. Finally, the domains of the binary variables are defined by Equation (31).

Minimize z +
1
μ
×

[
∑M

m=1(Cm − μ)2
] 1

2 (23)

Subject to
M

∑
m=1

xjm = 1, ∀j = 1, .., N (24)

Cm =
N

∑
i=1

xim pi, ∀m = 1, .., M (25)

Cm ≥ Cmin, ∀m = 1 . . . M (26)

Cm ≤ Cmax, ∀m = 1 . . . M (27)

z ≤ M
3
2

2 × ∑N
j=1 pj

× CΔ (28)

z ≥ M√
2 × ∑N

j=1 pj
× CΔ (29)

xim ∈ {0, 1}∀j = 1, .., N ∀m = 1, .., M (30)

Cmax, Cmin, z ≥ 0 (31)
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4.3. Mixed-Integer Linear Programming (MILP)

This third formulation addressed a linear version of the mixed integer programming
model. It also considers the same binary assignment variables xjm, which take a value of
1 if job j is assigned to machine m and 0 otherwise. Equation (32) describes the objective
function represented by the variable z. Constraints (33) and (34) define respectively the
workload of the least and most loaded machine. Constraints (35) and (36) introduce
the theoretical bounds established by Proposition 4 as new cats in the original model.
Constraints (37) ensure that each job is assigned to exactly one machine. Finally, the
domains of the binary variables are defined by Equations (38) and (39).

Minimize z (32)

Subject to
N

∑
j=1

xjm × pj ≥ Cmin, ∀m = 1 . . . M (33)

N

∑
j=1

xjm × pj ≤ Cmax, ∀m = 1 . . . M (34)

z ≤ M
3
2

2 × ∑N
j=1 pj

× CΔ (35)

z ≥ M√
2 × ∑N

j=1 pj
× CΔ (36)

M

∑
m=1

xjm = 1, ∀j = 1 . . . N (37)

xim ∈ {0, 1}∀j = 1, .., N ∀m = 1, .., M (38)

Cmax, Cmin, z ≥ 0 (39)

5. Computational Analysis

The objective of this computational study is to analyze the performance of three for-
mulations, namely MILP, MIQ1 and MIQ2 under the same datasets used by Schwerdfeger
and Walter [18]. Concretely, we would like to gauge the impact of the linearization to the
solving of linear model. In addition, the numerical analysis would track the differences
made by introducing the linear cuts onto the quadratic formulation.

5.1. Benchmarks

To conduct numerical tests, we used two datasets introduced by Schwerdfeger and
Walter [18], namely HGJ and DM. The HGJ dataset was generated by [21], and includes
560 instances with the number of jobs varying from 10 to 200 and the number of machines
from 3 to 80. For each couple (number of jobs, number of machines), Haouari et al. [21]
generated 20 instances. The DM dataset was generated by Dell’Amico and Martello [22]
with 1900 instances. The number of jobs was generated from 10 to 10000 and the number
of machines from 3 to 15. Fifty instances are generated for each couple. The reader may
refer to [18] for details regarding the generation of the datasets.

We use the solver ILOG IBM CPLEX 12.5, executed on an Intel(R) Xeon(R) Gold 5120
CPU @ 2.20 GHz, with 92 GB of RAM. The solving time limit was fixed to 300 s. For each
problem size, we recorded the number of instances that had been solved to optimality and
the average/maximum/minimum solving time.
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5.2. Results

Performance criteria: The performance of each model is based on computational perfor-
mance of the solver to reach optimal solutions. The indicators are, amongst the instances
with the same size (M, N):

• max time: maximal solving time.
• min time: minimal solving time.
• avg time: average solving time.
• opt: number of instances which are solved to optimality within the solving time limit

fixed to 300 s.

5.2.1. Dataset DM

Table 2 lists the numerical results from solving the DM dataset by using three models
(MIL, MIQ1 and MIQ2). With the linear model MIL, CPLEX solved 500 out of 1900 to
optimality, i.e., 26%. The quadratic model MIQ1 yields 1269 instances solved 67% to
optimality. With linear cuts, the number of opt for MIQ2 is 717, which is 38% of the total
instances. The best average solving times of CPLEX was given by MIQ1, followed by MIQ2
and lastly MILP. While combining the solutions found by all the models, we increased the
number of instances solved optimally to 1370, which is 72% out of 1900 instances. For this
dataset, [18] found 945 optimal solutions by solving the quadratic model by Solver Gurobi.

Table 2. Numerical results from DM Dataset.

M N
Max Time Min Time Avg Time Opt

MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 All

3 10 0.3 0.3 0.2 0.0 0.1 0.1 0.2 0.1 0.1 50 50 50 50
3 25 300.3 300.2 0.5 0.1 0.0 0.1 63.2 6.2 0.3 46 49 50 50
3 50 321.5 0.4 300.1 0.1 0.1 0.1 182.4 0.2 12.4 20 50 48 50
3 100 317.8 0.5 307.9 0.1 0.1 0.1 188.3 0.2 18.9 19 50 47 50
3 250 309.3 0.3 305.3 0.2 0.0 0.1 170.7 0.2 31.0 22 50 45 50
3 500 307.6 0.3 303.9 0.1 0.1 0.1 194.9 0.2 31.2 18 50 45 50
3 1000 305.3 0.4 304.7 0.3 0.1 0.3 182.3 0.3 7.6 20 50 49 50
3 2500 304.5 0.9 304.7 0.3 0.3 0.6 163.9 0.4 33.1 23 50 45 50
3 5000 304.4 1.2 303.1 0.8 0.9 1.5 230.3 1.0 108.2 12 50 33 50
3 10,000 304.3 4.6 302.3 1.4 2.6 4.7 212.5 3.3 136.3 15 50 29 50

5 10 0.2 0.9 1.8 0.1 0.1 0.1 0.1 0.2 0.4 50 50 50 50
5 25 300.3 300.2 300.1 0.2 0.1 0.1 169.1 144.2 66.6 26 26 39 44
5 50 321.6 302.3 308.2 0.2 0.2 0.2 216.3 132.4 115.1 15 28 31 33
5 100 321.5 304.6 308.7 0.3 0.2 0.4 248.9 20.1 171.1 10 47 22 47
5 250 309.3 8.6 307.2 0.2 0.3 0.5 221.0 1.5 177.2 14 50 21 50
5 500 305.9 7.3 306.3 0.4 0.3 0.4 255.3 1.1 188.9 8 50 19 50
5 1000 304.2 1.1 305.9 0.4 0.3 0.6 255.0 0.5 189.4 8 50 19 50
5 2500 307.7 1.7 304.6 0.7 0.7 2.5 244.5 1.1 204.2 10 50 17 50
5 5000 305.0 4.2 302.9 1.3 1.7 4.0 263.5 2.4 213.2 8 50 16 50
5 10,000 307.2 8.4 300.4 2.6 5.4 10.4 249.2 7.0 208.9 10 50 18 50

10 25 300.4 305.0 304.8 0.4 300.0 300.0 66.0 300.2 300.1 44 0 0 44
10 50 327.0 300.2 300.1 72.6 3.5 9.1 294.7 282.5 282.8 3 3 3 3
10 100 319.0 304.2 304.3 1.2 0.7 3.7 283.5 220.0 283.0 4 14 5 14
10 250 307.2 304.0 305.0 8.2 3.4 129.1 292.6 184.0 298.8 2 22 1 22
10 500 309.8 303.9 304.4 11.4 14.4 12.1 293.2 174.0 291.2 2 23 2 23
10 1000 312.2 303.6 306.0 62.8 7.5 301.3 300.3 149.1 302.8 1 32 0 32
10 2500 308.8 227.3 300.3 302.2 3.1 32.4 304.2 59.6 294.9 0 50 1 50
10 5000 308.5 191.5 300.6 24.6 7.0 69.2 297.9 27.2 291.3 1 50 2 50
10 10,000 312.2 117.1 301.1 151.6 17.9 170.1 296.7 32.8 297.0 2 50 2 50

15 25 308.7 320.3 313.0 0.2 300.0 300.0 115.1 307.1 303.8 32 0 0 32
15 50 307.9 304.1 305.1 300.0 300.0 300.0 300.6 300.1 300.7 0 0 0 0
15 100 316.9 302.5 304.6 14.6 5.7 8.6 293.4 267.2 274.7 3 6 7 7
15 250 315.5 303.2 304.1 22.1 64.3 300.1 302.9 294.4 301.8 1 3 0 3

84



Appl. Sci. 2021, 11, 3677

Table 2. Cont.

M N
Max Time Min Time Avg Time Opt

MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 All

15 500 313.1 304.9 306.0 43.3 24.4 80.6 303.2 270.3 297.6 1 7 1 7
15 1000 323.9 304.1 303.0 305.5 108.0 300.1 313.0 229.6 300.6 0 22 0 22
15 2500 313.6 300.3 300.6 303.3 283.1 300.2 306.8 299.9 300.3 0 1 0 1
15 5000 315.5 300.6 301.0 300.4 72.8 300.5 305.5 285.5 300.6 0 6 0 6
15 10,000 301.6 301.1 302.0 300.5 28.6 300.7 300.9 193.0 301.1 0 30 0 30

Avg/
Total

- - - - - - 228.5 110.5 190.4 500 1269 717 1370

26% 67% 38% 72%

Solving difficult instances of DM dataset (10, 25), (15, 25) and (15, 50): While the MIQ1
had the best performance overall, it encountered difficulties when dealing with the difficult-
to-solve instances: (10, 25), (15, 25) and (15, 50). The same phenomenon was also frequently
observed in the literature, especially in the most recent work of [18]. Schwerdfeger and
Walter [18] did not find an optimal solution for all of the mentioned combinations. Interest-
ingly, the linear formulation performed very well in those combinations: 44 (88%) instances
solved to optimality for the problem size of (10, 25), and 32 (64%) instances solved to
optimality for the problem size of (15, 25). The configuration (15, 50) remains problematic
for our three models.

5.2.2. Dataset HGJ

Table 3 lists the numerical results from solving the HGJ dataset using three models
(MILP, MIQ1 and MIQ2). For this dataset, the gap of the performance between the three
models is slightly smaller than that of the DM dataset. Accordingly, out of 560 instances,
the percentage of instances solved optimally was 52% for MILP, 55% for MIQ1 and 51%
for MIQ2. Altogether, 389 out of 560 instances were solved optimally, which is equivalent
to 61%. Again, in the configuration whereby one model has some difficulties in finding
a solution, the others can solve those instances more easily. For this dataset, the authors
of [18] found 37 optimal solutions by solving the quadratic model by Gurobi and 45 optimal
solutions using a local search.

Table 3. Numerical results from the HGJ Dataset.

M N
Max Time Min Time Avg Time Opt

MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 All

3 10 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 20 20 20 20
3 12 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 20 20 20 20
3 15 0.8 0.5 0.4 0.1 0.1 0.1 0.3 0.3 0.2 20 20 20 20
3 20 6.7 0.4 300.1 0.1 0.1 0.2 3.1 0.3 28.8 20 20 19 20
3 50 300.5 0.2 304.1 0.1 0.1 42.0 225.2 0.1 276.3 5 20 3 20
3 100 300.7 0.4 305.5 0.1 0.1 0.9 225.3 0.2 243.9 5 20 4 20
4 10 0.2 0.4 0.7 0.1 0.1 0.2 0.1 0.2 0.2 20 20 20 20
4 12 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.2 0.2 20 20 20 20
4 15 1.1 0.9 38.9 0.2 0.1 0.2 0.6 0.5 7.9 20 20 20 20
5 10 0.2 0.9 0.5 0.1 0.2 0.2 0.1 0.2 0.2 20 20 20 20
5 12 0.3 25.3 12.2 0.1 0.4 0.7 0.2 2.0 3.3 20 20 20 20
5 15 0.9 2.0 5.2 0.2 0.2 0.4 0.5 0.8 1.8 20 20 20 20
5 20 110.9 143.0 300.1 0.4 0.2 0.5 11.8 28.8 105.5 20 20 13 20
5 50 313.5 300.1 304.2 0.5 0.4 300.0 260.5 210.2 301.1 3 6 0 6
5 100 316.9 306.1 302.0 0.5 0.8 300.1 279.3 33.0 300.2 2 20 0 20
8 20 1.6 300.1 314.6 0.2 0.3 300.0 0.7 96.2 304.0 20 15 0 20

15 20 2.3 325.0 0.5 0.4 309.4 0.1 0.9 314.9 0.4 20 0 20 20
15 50 300.2 300.3 300.1 300.0 25.4 0.1 300.1 272.9 15.4 0 3 19 19
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Table 3. Cont.

M N
Max Time Min Time Avg Time Opt

MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 MILP MIQ1 MIQ2 All

15 100 315.8 300.1 309.4 168.9 281.4 0.1 303.0 299.1 46.5 1 1 17 18
16 40 300.2 306.5 304.2 7.0 7.8 300.0 181.8 273.6 300.7 10 2 0 10
20 50 312.0 305.9 300.1 29.4 300.0 0.5 245.7 302.8 150.4 5 0 10 12
24 60 309.5 305.2 305.0 172.8 28.2 300.0 297.8 288.8 301.8 1 1 0 2
28 70 308.4 305.0 303.0 300.0 300.1 300.1 302.9 302.1 301.3 0 0 0 0
32 80 306.9 304.9 304.4 300.1 53.6 300.1 302.8 288.9 301.3 0 1 0 1
36 90 307.7 304.0 303.3 300.1 300.1 300.1 302.9 301.1 300.5 0 0 0 0
40 100 306.3 304.1 304.2 300.1 300.1 144.4 304.0 300.5 293.5 0 0 1 1
60 150 305.6 303.4 300.2 300.1 300.1 300.2 303.6 301.0 300.2 0 0 0 0
80 200 306.1 300.3 300.2 300.1 300.2 300.1 303.5 300.3 300.2 0 0 0 0

Avg/
Total

- - - - - - 148.5 140.0 149.5 292 309 286 389

52% 55% 51% 69%

Solving difficult instance of HGJ dataset (15, 20): we observed the same phenomenon
in the DM dataset. In configuration (15, 20), the authors of [18] did not find an optimal
solution; the quadratic model MIQ1 does not yield any optimal solution either. However,
with a linear cut, MILP and MIQ2 found 20 optimal solutions out of 20 instances.

6. Conclusions and Perspectives

Workload balancing problems among a set of identical machines or resources is a
challenge in many organizations and production systems. Different criteria have been ad-
dressed in the literature as performance measures to tackle this problem. The minimization
of the difference between the most and least loaded machine (CΔ) and the Normalized Sum
of Square for Workload Deviations (NSSWD) are the most important and well-established
ones. To the best of our knowledge, the most important works addressed in the literature
have considered empirical approaches to analyze this problem.

In this paper, we proposed a rigorous theoretical analysis of the workload balanc-
ing problem on identical parallel machines and established the mathematical correlation
between the two problems: P||CΔ and P||NSSWD .

Based on these new theoretical proprieties, three mathematical formulations were
tested using the latest benchmark described in the literature. The combination of these
three models allowed us to provide optimal solutions for some unsolved instances in
this benchmark.

Recently, Asadollahi-Yazdi et al. [23] discussed the concept of Industry 4.0 and its
effect on the industrial world and global society. This study provided a comprehensive
overview of industrial revolutions, manufacturing production plans over time, as well as a
detailed analysis of Industry 4.0 and its features. One of the important concerns addressed
in this paper was the necessity of integrating human factors into existing scheduling
techniques and information systems in the production control of real factories. Workload
balancing was identified as one of these criteria with which to assess and measure the
balance or “equity” of workload assignments. We see an interesting direction for future
research, which consists of generalizing the obtained results to establish a performance
measure of workload equity in different, real cases, taking into account the perspective of
the industry of the future.
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Abstract: Computer-aided process planning represents the main link between computer-aided
design and computer-aided manufacturing. One of the crucial tasks in computer-aided process
planning is an operation sequencing problem. In order to find the optimal process plan, operation
sequencing problem is formulated as an NP hard combinatorial problem. To solve this problem,
a novel genetic crow search approach (GCSA) is proposed in this paper. The traditional CSA is
improved by employing genetic strategies such as tournament selection, three-string crossover, shift
and resource mutation. Moreover, adaptive crossover and mutation probability coefficients were
introduced to improve local and global search abilities of the GCSA. Operation precedence graph
is adopted to represent precedence relationships among features and vector representation is used
to manipulate the data in the Matlab environment. A new nearest mechanism strategy is added to
ensure that elements of machines, tools and tool approach direction (TAD) vectors are integer values.
Repair strategy to handle precedence constraints is adopted after initialization and shift mutation
steps. Minimization of total production cost is used as the optimization criterion to evaluate process
plans. To verify the performance of the GCSA, two case studies with different dimensions are carried
out and comparisons with traditional and some modern algorithms from the literature are discussed.
The results show that the GCSA performs well for operation sequencing problem in computer-aided
process planning.

Keywords: crow search; genetic algorithm; process planning; operation sequencing; precedence con-
straints

1. Introduction

According to the Society of Manufacturing Engineers, process planning is considered
as a systematic definition of methods for economical and productive manufacturing. In
Xu et al. [1] it is considered that computer-aided process planning (CAPP), as a crucial
component of todays advanced manufacturing systems, can be imagined as the “bridge”
between the product design (CAD) and product manufacturing (CAM). CAPP system
development has shown to be a very complex task, assuming today’s high diversity of
products and complexity of planning numerous activities within a process plan in different
manufacturing conditions. The consequence reflects the fact that CAPP systems are at the
lower level of implementation in industry and therefore represent a bottleneck in integrated
production environment, as stated by Lukić et al. [2].
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As reported in Denkena et al. [3], the main activities of process planning, whether
computer-aided or manual, are the following: receiving order and design details, selecting
raw material and shape, selecting process technology, determining process order, prepar-
ing a process plan (including activities such as the selection of machining operations,
sequencing of machining operations, selection of cutting tools, determination of setup
requirements, calculations of cutting parameters, selection and design of jigs and fixtures,
planning tool paths, estimating processing setup costs and times) and generating planning
output (CNC programs, routing sheets, operation sheets etc.). The aim of these stages of
process planning is to transform the part design (drawing of a part or a product) into a
finished physical part or product in a cost-effective and competitive way.

Among the mentioned activities, the sequencing of machining operations, i.e., the
operation sequencing, has been considered as one of the most complex optimization tasks
in scientific community. Two main steps of the operation sequencing task are taken into
account: (1) selecting the most suitable machining resources such as machines, tools and
tool approach directions based on the specific machining features that have to be machined
and (2) finding the sequence of all machining operations for a considered part with respect
to precedence relationships among operations and features. Such tasks, when handled
simultaneously, form a process plan which is evaluated using certain optimization criteria,
such as the minimization of production time or minimization of production cost.

According to many authors such as Duo et al. [4], Falih and Shammari [5], Gao
et al. [6], Petrović et al. [7] and Huang et al. [8], the operation sequencing is classified as an
NP hard optimization problem due to computational ineffectiveness when dealing with
these problems using conventional non-heuristic techniques. Milošević et al. [9] reported
that metaheuristic algorithms have proven to be robust and efficient methods for these
challenges and are therefore employed to find near-optimal solutions in an acceptable
time period. Many intelligent metaheuristics have been applied in operation sequencing
and process planning optimization in the last few decades. Among them, we can primar-
ily mention traditional optimization approaches, such as genetic algorithms, ant colony
optimization, particle swarm optimization or simulated annealing. Nowadays, novel
modifications in terms of constraint handling mechanisms, representation of individual
solutions and different techniques for improving local and/or global search abilities are
still being proposed. In the next section, we will highlight the most recent advances in this
area of research.

2. Related Work

Wang et al. [10] proposed a hybrid particle swarm-based method to solve the process
planning problem. A novel representation scheme besides two local search algorithms were
introduced to improve solutions in each generation. In work by Huang et al. [11], a hybrid
approach based on operation precedence graph and genetic algorithm was developed.
Topologic sorting algorithm was used to ensure feasibility of solutions and a modified
crossover operator with two mutation strategies were adopted. A socio-politically inspired
metaheuristic called imperialist competitive algorithm for process planning optimization
was proposed by Lian et al. [12]. Various flexibilities were taken into account and the steps
such as assimilation, position exchange, imperialist competition and elimination were pro-
ceeded to solve the NP hard problem. Liu et al. [13] developed an ant colony optimization
algorithm reinforced with the constraint matrix and the state matrix to check the state of
the operations and range of operation candidates. A honey bees mating algorithm was
implemented by Wen et al. [14]. The solution encoding, crossover operator and local search
strategies have been employed to verify the performance of this metaheuristic. Wang
et al. [15] presented a two-stage ant colony optimization algorithm to minimize the total
production cost. In this approach, a directed graph is used to represent the process planning
problem. In the first stage, the operation nodes are selected and the graph is reduced to a
simple graph. Later, in the second stage, the selected operations are used to create the se-
quence and generate process plans. Petrovic et al. [7] utilized particle swarm optimization
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and chaos theory to solve the flexible process planning problem. Various flexibilities were
represented using AND/OR networks and the total production time and cost were used to
develop the mathematical model for the minimization of objective function. Hu et al. [16]
proposed an ant colony optimization algorithm-based approach to solve the operation
sequencing problem in CAPP. Precedence and clustering constraint relationships are taken
into account to ensure the feasibility of process plans. Global search ability is enhanced
using adaptive updating method and local search mechanism. A hybrid genetic algorithm
and simulated annealing approach to optimize the production cost of a complicated part
in a dynamic workshop environment was proposed by Huang et al. [8]. The directed
graph was used to model precedence relationships among machining operations and the
graph search algorithms were embedded into framework of the optimization system. Su
et al. [17] presented precedence constrained operation sequencing problem as a mixed
integer programming model and incorporated an edge selection based strategy in the
genetic algorithm to solve the problem. The novel encoding strategy assures the feasibility
of solutions in the initialization stage with acceptable probability, and therefore improves
the GA’s convergence efficiency. Dou et al. [4] developed a feasible sequence-oriented
discrete particle swarm optimization algorithm that is also directed toward generating
feasible operation sequences in the initial stage of the algorithm. A crossover-based mech-
anism is adopted to evolve the particles in discrete feasible solution space. On the other
hand, fragment mutation, as well as greedy and uniform mutations, are used to alter the
feasible sequence and machining resources respectively. The adaptive mutation probability
is used to improve the exploration ability of the approach. A new mixed-integer linear
programming mathematical model is developed and represented on OR-node network
graph in the recent study proposed by Liu et al. [18]. A new hybrid evolutionary algorithm
is designed on the basis of this MILP model, which combines a genetic algorithm with
a simulated annealing algorithm. Moreover, the tournament selection with the varying
tournament size was included to prevent the algorithm from premature convergence and
increased randomness. Gao et al. [6] proposed the intelligent water drop algorithm in
process planning optimization. A priority constraint matrix was used to generate feasible
process plans. Falih and Shammari [5] proposed a hybrid constrained permutation algo-
rithm and genetic algorithm approach. A constrained permutation algorithm is employed
to generate feasible operation sequences and a genetic algorithm is then used to search
for an optimal solution within the feasible search space. A mixed crossover operator
in the GA is used to avoid premature convergence to local optima. In a study by Jiang
et al. [19], authors proposed the novel fairness-based transaction packing algorithm for
permissioned blockchain empowered industrial IoT systems. A heuristic algorithm and a
min-heap-based optimal algorithm were employed to solve the fairness problem. Since the
fairness problem is related to the sum of weighting time of the selected transaction, it is
transformed into the subset sum problem and the extensive experiments were conducted
to verify the performance of the fairness-based transaction packing algorithm.

In this paper, a novel improved metaheuristic approach called a genetic crow search
algorithm (GCSA) is introduced for optimization of operation sequencing problem. The
approach combines the classical CSA with the main components of the GA algorithm
and through the joint action from local and global perspective of a population (flock)
the evolution of crow individuals is achieved. The operation precedence graph (OPG)
is utilized to represent the operation candidates, i.e., crow individuals with regard to
corresponding precedence relationships among operations. Then, the initial population
(flock) of crow individuals is constructed using vector-based representation to generate a
group of feasible individuals. After the main steps of the CSA, a newly proposed nearest
resource mechanism is applied to ensure the vectors of each crow individual are set to the
nearest integer values. The evolution of the flock of crow individuals starts in the next
stage, which consists of five strategies. Firstly, the tournament selection ensures that the
most fit crow individuals from the flock are selected and the 3SX crossover operator is
applied to generate new crow individuals. The shift mutation strategy is then used to
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exchange random genes from crow individuals. The feasibility of these crow individuals
is questioned, and in that sense, the constraint repair mechanism is used to ensure that
infeasible solutions are converted to the feasible domain. The evolution of crow individuals
ends with resource mutation, which performs minor changes in genes of machine, tool
and TAD vectors, respectively. Using adaptive crossover and mutation probabilities, the
exploration ability of the GCSA is improved. The input parameters of the algorithm
are optimized using the Taguchi design of experiments, in order to obtain the optimized
parameter settings. In each iteration of the GCSA approach, the position of crow individuals
is evaluated using the fitness function and the memory of crow individuals is updated.
To verify the performance of the proposed algorithm, two case studies with different
level of dimensionality are considered. The computational results show that the proposed
GCSA performs well and can be considered an efficient method for solving the operation
sequencing problem.

The rest of the paper is organized as follows. Section 2 describes the operation sequenc-
ing model by focusing on vector-based representation, data types and precedence con-
straints.

3. Operation Sequencing: Problem Formulation

Operation sequence in process planning consists of a number of selected operations
required for feature machining, a sequence of these operations, machining resources such
as machines, tools and tool approach directions (TADs), as well as setup plans. Since
the capability and the availability of machining resources has an important role when
generating operation sequences, several principles have to be considered according to Su
et al. [17]:

(1) Setup plan includes a group operations that can be performed with the same TADs.
(2) These operations have to be machined using the same machine.
(3) Reduction of machine, tool and TAD changes is an objective.
(4) Only one operation can be performed on a single machine.
(5) Only one operation can be performed using a single cutting tool.
(6) Only one TAD can be used in a given time.

In this study, an operation sequence is represented using vectors with n bits of data.
Those bits are integer values where each value contains relevant manufacturing information.
Seeing that the optimization task considers the simultaneous sequencing of operations and
selection of machining resources, four vectors are used to illustrate a single process plan.
Figure 1 shows a simple example of a represented process plan with a total of 5 machining
operations indexed from 1 to 5 (the first row). An operation sequence vector is marked with
darker color and consists of bit numbers named Operation[n]. For example, Operation[3]
considers the operation number 5. Under the same index, there are machine m3, tool t3 and
TAD –z. These candidates are elements of the machine vector Machines[n], the tool vector
Tools[n] and the TADs vector TADs[n] respectively and are visualized in a light grey color.

Figure 1. Representation of an operation sequence.
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Since the MATLAB programming environment was selected for the implementation
of the proposed GCSA approach, therefore, we will place emphasis on the types of data
considered when dealing with the operation sequencing problem. All variables with their
data types are shown in Table 1.

Table 1. Data types of the operation sequencing variables.

Data Types Variables Description

double Operation[n] The ID of the operation as a part of an operation sequence

double Machines[n] The ID of the machine as a part of a machine vector of n
machines for performing n operations

double Tools[n] The ID of the tool as a part of a tool vector of n tools for
performing n operations

double TADs[n] The ID of the cutting tool as a part of a TAD vector of n
TADs for performing n operations

cell Machines{n} Array of machine candidates list for n cells with each cell
containing alternative machines for the n-th operation

cell TADs{n} Array of tool candidates list for n cells where each cell
contains alternative tools for the n-th operation

cell Tools{n} Array of TAD candidates list for n cells where each cell
contains alternative TADs for the n-th operation

Precedence Constraints

The precedence constraints within operation sequencing are formulated according
to relevant geometrical and manufacturing considerations. They indicate the precedence
relationships between operations required to generate a feasible machining sequence.
Hu et al. [16] classified constraint relationships into the precedence and the clustering
constraints. The precedence constraints are obligatory conditions that must be met, while on
the other side, the clustering constraints do not need to be met but have effect on machining
efficiency and quality. The precedence constraints can be classified into eight types: datum
relationships, primary and secondary relationships, face and hole relationships, processing
stage relationships, feature priority relationships, thin-wall relationships, fixed order of
operations relationships and material-removal relationships. Li et al. [20] made similar
classification on hard and soft constraints, where hard constraints represent obligatory
conditions, while soft constraints can be violated if necessary.

To visualize precedence relationships between operations, we adopted an operation
precedence graph model (OPG). The OPG is a directed graph consisting of vertices and
edges, OPG = (V, E), where vertices V represent the set of operations, while edges E
denote the set of links between operation vertices. Each operation element within the
operation vector is mapped to the corresponding vertex of the OPG. On the other hand,
each precedence relationship is visualized using edges. Vertices that are not linked with
edges have no precedence relationships between them. For easier manipulation of the data
concerning precedence relationships, adjacency or precedence matrix has been adopted.
Figure 2 shows the main elements of OPGs and their mapping to a matrix form. Using a
simple example with five operations and four precedence constraints a precedence matrix
PM is designed. The value pc[i,j] is a binary value which represents whether operation
i precedes operation j or not. As shown, number 1 denotes that there is a precedence
relationship between observed operations while 0 shows the lack of any precedences, i.e.,
no edge between operation i and operation j. By following the edges of an OPG, all the
vertices should be traversed in order to obtain a feasible operation sequence.
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Figure 2. Operation precedence graph and precedence matrix.

4. A Genetic Crow Search Algorithm (GCSA) for Optimization of
Operation Sequencing

4.1. Crow Search Algorithm

Crow search algorithm (CSA) was introduced in 2016 by Askarzadeh [21]. Its inspira-
tion is derived from the crows’ intelligent behavior exhibited in their ability to hide food
and use memory to recall and restore the food when necessary.

Generally, crows are considered as one of the most intelligent living organisms on the
planet, with many distinctive attributes such as self-awareness, sophisticated communi-
cation, face remembrance, food hiding, memorization, thievery, thievery avoidance and
so on.

Their well-known greediness and cleverness is particularly demonstrated in situations
when they observe other crow’s movement with the purpose of finding better source of
food and steal it once they are gone. Afterwards, crow thieves make sure they hide the
stolen food and therefore avoid being victims of thievery as the previous owners. Another
important element of cleverness is reflected in the fact that a crow can find out when the
other crow is following it. Then, the crow that is being followed can fool the other crow by
changing the direction of their flight.

From a computational point of view, the CSA algorithm is a population-based opti-
mization algorithm which utilizes some of the exhibited crow’s intelligence. A flock of
crows may consider a population of search agents N where each crow i has its position xit

i
at iteration it. Every crow in a flock can memorize its hiding place whose position can be
denoted as mit

i . Similar to the personal best position (local best) of each particle in the PSO
algorithm, the CSA considers the memory Mit

i the best food source (hiding place) the crow
i found so far. Flying around the search space and moving towards another crow’s hiding
place helps crows to update their position and memory and possibly find a better food
source. Two important states are possible when crow i tries to steal hidden food of crow j:

State 1: Crow j is not aware that is followed by crow i, resulting in the situation when
crow i successfully commits thievery by moving towards the hiding place of crow j using
the following expression:

Xit+1
i = Xit

i + randi × fl ×
(

Mit
j − Mit

i

)
(1)

where Xit
i . and Xit+1

i are positions of the crow i in iterations it and it + 1 respectively, randi

stands for a random number between 0 and 1, f l is flight length of crow and Mit
i and Mij

i
are memorized positions of crow i and crow j respectively.
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State 2: Crow j realizes that it is followed by crow i and fools crow i by choosing a new
position randomly in order to save its food:

Xit+1
i =

{
Xit+1

i = Xit
i + randi × fl ×

(
Mit

j − Mit
i

)
if randj ≥ AP

a random position otherwise
(2)

where randj denotes a random number in range [0,1] and AP is awareness probability.
Two most important parameters of the flight length and the awareness probability.

The role of the flight length parameter f l is to achieve equilibrium between local and the
global search. Small values direct the search towards the local optimum (close to Xit

i ) and
large values prone towards the global optimum (away from Xit

i ). Awareness probability
AP also has the similar role in balancing intensification and diversification. Just as for the
flight length, small values of AP increase local search capacity, and evidently, larger values
emphasize global search capacity.

4.2. GCSA Methodology

The traditional CSA has been implemented mostly on continuous optimization prob-
lems with a small number of research studies done on their application in combinatorial
optimization. Huang et al. [22] proposed a hybrid HCSA approach to solve the NP hard
permutation flow shop scheduling problem (PFSP). They used several techniques to mini-
mize the makespan of the PFSP, such as the smallest position value (SVP) rules to convert
continuous to discrete values or job numbers, Nawaz-Enscore-Ham technique to generate
a population of quality individuals and simulated annealing and variable neighborhood
search algorithms to maintain the diversity of solution throughout the search process.
Laabadi et al. [23] used the binary CSA to solve the two-dimensional bin packaging prob-
lem, which is also an NP-hard combinatorial problem. This approach utilizes a sigmoid
function for mapping real-valued solution into binary ones and specific knowledge repair
operator to improve diversity and restore feasibility of infeasible solutions.

The issues of the CSA are mostly expressed by low convergence rate and entrapment in
the local optima, as reported in Shirke and Udayakumar [24]. Fine tuning of the algorithm
and modifications performed by various authors significantly boosted the performances
of the CSA. In our study, we attempt to improve the traditional CSA in order to solve the
NP hard process planning optimization problem. Therefore, we introduce a hybridized
approach based on the CSA and the main components of the GA. Moreover, adaptive
probability coefficients for scaling crossover and mutation operators are included to achieve
the trade-off between exploration and exploitation, Dou et al. [4]. The steps of the GCSA
approach are depicted on the flowchart in Figure 3.

After initializing the starting parameters of both CSA and GA, the next step is to
generate population of feasible individuals using vector-based representation that presents
operation sequence, machine, tool and TAD vectors as components of a single process plan.
Vectors representing positions of crows in a search space are then evaluated using fitness
function described in Section 4.3. They are memorized as the best local solutions found so
far by each crow, after which the best solution in the flock is stored. The main loop of the
GCSA starts with the standard CSA steps described by Equations (1) and (2). After these
steps, the nearest resource mechanism is employed to round the resulting vector elements
to the nearest integers, according to the available machine, tool and TAD candidates. The
process continues with the genetic strategies which are utilized to improve diversification
of search process. Here, we adopted tournament selection, 3SX crossover operator and two
mutation operators, shift and resource mutation. Repair mechanism is required after the
initialization stage and shift mutation to ensure feasibility of crow individuals. Then, the
GCSA steps continue with the evaluation of objective function and the update of crow’s
memory and the best solution (global). The search finishes after a predefined number of
iterations. In the following sections, some steps are expressed in a more detailed manner.
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Figure 3. Flowchart of the genetic crow search algorithm (GCSA) for optimization of operation se-
quencing.

4.3. Evaluation Criterion of the Operation Sequencing Problem

Numerous studies conducted to this day have taken into account two most common
evaluation criteria for operation sequencing, manufacturing (production) time and cost.
According to [6,8], detailed information about tool paths and machining parameters is
not available and therefore it is not possible to accurately determine the machining cost
and machining time. Hence, the total cost of production is adopted as the optimization
criterion in this research. The total production cost with weight coefficients consists of the
five cost factors:

(1) Total machine cost (TMC) — the total sum of costs of used machines where machine
cost indices denote the constant cost values for each machine.

(2) Total tool cost (TTC) — the total sum of costs of used cutting tools, where tool cost
indices denote the constant cost values for each tool.

(3) Total machine change cost (TMCC)—the product of the number of machine changes
and machine change cost indices, which denote the cost values of machine replace-
ment.

(4) Total tool change cost (TTCC)—the product of the number of tool changes and tool
change cost indices, which denote the constant cost values of tool replacement.

(5) Total setup cost (TSC)—the product of the number of setup changes and setup change
cost indices which denote the constant cost values of a single machine setup.

The full description of all cost factors can be found in [4–8,11,14]. The total weighted
production cost (TWPC) finally represents the sum of these five cost factors:

TWPC = w1·TMC + w2·TTC + w3·TMCC + w4·TTCC + w5· TSC (3)

where w1–w5 are the corresponding weight coefficients of cost factors.

4.4. Nearest Resource Mechanism

After the main CSA steps in the GCSA approach, the values in position vectors of
crow individuals are not positive integers and the next step is to convert the real values
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obtained by the CSA to the closest number that matches an appropriate machine, tool or
TAD candidate from the set. Here, we present the nearest resource mechanism to perform
the round-off procedure and assure the newly generated positions are ready for the next
stage. Besides the machine and the tool vectors, the TAD position vector is represented
using integer values that match the appropriate directions which are denoted as letters
with negative or positive signs. In Algorithm 1 below, we show the pseudocode of the
most important steps of the nearest resource mechanism. The mechanism in this example
is applied to machine vector, although the principle is the same for tool and TAD vectors.

Algorithm 1. The nearest machine mechanism

Machines{} – set of all machine candidates for each operation
currentMachine – current machine candidate
currentOperation – current operation in a process plan
diff = |Machines{currentOperation} – currentMachine|
for i = 1: number of operations
if currentMachine > Machines{ currentOperation }
for j = 1: diff
check if the set Machines{currentOperation} contains
|currentMachine – diff (j)|
Use |currentMachine – diff (j)| as a machine candidate;
else

continue loop;
end if

end for

elseif currentMachine < Machines{ currentOperation }
for j = 1: diff
check if the set Machines{currentOperation} contains
|currentMachine + diff (j)|
Use |currentMachine + diff (j)| as a machine candidate;
else

continue loop;
end if

end for

else

for j = 1: diff
check if the set Machines{currentOperation} contains
|currentMachine - diff (j)|
Use |currentMachine - diff (j)| as a machine candidate;
elseif the set Machines{currentOperation} contains
|currentMachine + diff (j)|
Use |currentMachine + diff (j)| as a machine candidate;
end if

end for

end if

end for

4.5. Genetic Components of the GCSA Approach

When producing a new generation of individuals, selection, crossover and mutation
represent the crucial components of genetic algorithms. By mimicking the process of
natural selection, they enable a population of solutions to evolve during a certain number
of generations.

The first step in this process is a selection. A tournament selection operator has been
adopted in this study. A few crow individuals from the flock are randomly selected to
participate in the “tournament” and the crow individual with the highest fitness value
wins the “tournament” and becomes a part of a new flock that consists of the best crow
individuals that had previously won the competition.
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The selection step is followed by the crossover operator whose purpose is to provide
information exchange between two crow individuals from a flock. In this case, the three-
string crossover (3SX) proposed by Falih and Shammari [5] was adopted. The 3SX operator
affects only resource vectors, e.g., machine, tool and TAD vector respectively, leaving the
operation sequence vector untouched and thereby assuring the feasibility of a process plan.
The following steps characterize the 3SX crossover operator:

(1) Two crows from a new flock are randomly selected as parent crows;
(2) From random cutting point, two parent crows are divided into sections to produce

two child crows;
(3) Resources (machines, tools and TADs) from the right section of child crow 1 are

replaced by resources of the same operations from parent crow 2;
(4) Following the same pattern, resources in the right section of child crow 2 are replaced

by resources of the same operations from parent crow 1.

Figure 4 illustrates the 3SX crossover operator applied on the 7-gene length crow
individual, with a random cutting point between the 4th and 5th operation index.

Figure 4. 3SX crossover operator.

Mutation strategies bring a finishing touch to the genetic process of producing new
and fitter individuals. They aim to make further improvements in diversification and
avoid premature convergence of the algorithm. The first mutation operator used within
the GCSA approach is the shift mutation illustrated in Figure 5. A single crow individual is
randomly selected from a newly formed flock of crows and two genes (operations with
its resources) are randomly selected for exchange. After exchanging the two, some of the
precedence constraints may be violated, which affects the operation sequence and therefore
the feasibility of a process plan. In that case, the repair mechanism has to be employed
to ensure all the crows represent feasible individuals. The same mechanism is applied
after the initialization stage of the GCSA. We adopted an approach similar to the constraint
handling heuristic proposed by Huang et al. [11].

The second mutation operator is the resource mutation which, similarly to the 3SX
crossover operator, operates on resource vectors, machine, tool and TAD vector respectively.
The feasibility of operation sequence is therefore not questioned. The following are the
steps of the resource mutation operator illustrated in Figure 6:

(1) Randomly select a crow individual;
(2) Randomly select the mutation point, i.e., operation with its index;
(3) Check available machines in the Machines{} for selected operation;
(4) Randomly select a machine from the Machines{} as the current machine;
(5) Identify other operations that have the same machine alternative in the Machines{}.
(6) Assign the same machine alternative as the current machine for other operations.
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(7) Repeat the same steps for tool and TAD vectors using the Tool{} and the TADs{} sets.

Figure 5. Shift mutation operator.

Figure 6. Resource mutation operator.

As reported by Dou et al. [4], fixed operators have shown to be less effective comparing
to the adaptable operators, whose values vary in response to the fitness of individuals. To
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additionally improve search abilities of the GCSA, we included adaptive crossover and
mutation probabilities:

pc = kc1· fmax − fi

·( fmax − favg
) + kc2 (4)

pm = km1· fmax − fi

·( fmax − favg
) + km2 (5)

where fmax and favg are the maximal and the average fitness value among all crow indi-
viduals in the flock, fi is the fitness of the current crow individual and kc1, kc2, km1, km2 are
specific probability scale factors for crossover and mutation operators, respectively.

5. Case Studies

In this paper, two experimental models are used to verify the feasibility and efficiency
of the proposed GCSA optimization approach, which was coded using MATLAB environ-
ment and executed on a 1.99 GHz Intel i7 processor and 8 GB RAM computer. The first
case study, which represents a common test example in process planning optimization,
considers the prismatic part that was initially proposed by Guo et al. [25]. It contains 14
recognized machining features and 20 selected operations. The significant manufacturing
information concerning features, operations, resources as well as precedence constraints is
given in Table 2. The 3D solid model with the corresponding operation precedence graph
(OPG) are shown in Figure 7.

Table 2. Features, operations, resource alternatives and predecessors of Part 1.

Feature Definition Operations Machines{} Tools{} TADs{} Predecessors

F1—A planar surface Milling (o1) m2,m3 t6,t7,t8 +z

F2—A planar surface Milling (o2) m2,m3 t6,t7,t8 -z o1

F3—Two pockets arranged
as a replicated feature Milling (o3) m2,m3 t6,t7,t8 +x o1

F4—Four holes arranged
as a replicated feature Drilling (o4) m1,m2,m3 t2 +z,-z o1,o5,o18

F5—A step Milling (o5) m2,m3 t6,t7 +x,-z o1

F6—A rib Milling (o6) m2,m3 t7,t8 +y,-z o1

F7—A boss Milling (o7) m2,m3 t7,t8 -a o1, o5

F8—A compound hole
Drilling (o8) m1,m2,m3 t2,t3,t4

-a
o1, o7

Reaming (o9) m1,m2,m3 t9 o1, o7, o8
Boring (o10) m2,m3 t10 o1, o7, o8, o9

F9—A rib Milling (o11) m2,m3 t7,t8 -y,-z o1

F10—A compound hole
Drilling (o12) m1,m2,m3 t2,t3,t4

-z
o1, o2, o6, o11

Reaming (o13) m1,m2,m3 t9 o1, o2, o6, o11, o12

Boring (o14) m3,m4 t10 o1, o2, o6, o11,
o12, o13

F11—Nine holes arranged
as a replicated feature

Drilling
(o15)Tapping (o16)

m1,m2,m3 t1 -z o1, o2, o12, o13, o14

m1,m2,m3 t5 o1, o2, o12, o13,
o14, o15

F12—A pocket Milling (o17) m2,m3 t7,t8 -x o1, o18

F13—A step Milling (o18) m2,m3 t6, t7 -x,-z o1

F14—A compound hole Reaming (o19) m1,m2,m3 t9
+z

o1, o12
Boring (o20) m3,m4 t10 o1, o12, o19
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Figure 7. (a) Solid model and (b) the OPG of Part 1 with 20 operations.

The second case study considers a complex part taken from Huang et al. [8] that
consists of 28 machining features and a total of 46 machining operations. Its main manufac-
turing information is given in details in Table 3. The solid model of this complex part with
the corresponding OPG are represented in Figure 8. The cost indices for both Part 1 and
Part 2 are given in Table 4.

Table 3. Features, operations, resource alternatives and predecessors of Part 2.

Feature Definition Operations Machines{} Tools{} TADs{} Predecessors

F1—Flat surface
Rough turning (o1) m1,m2 t1,t2,t3 +z

Half-finished
turning (o2) m2 t1,t2,t3 +z o1,o22

Finished turning (o3) m2 t1,t2,t3 +z o1,o22,o2

F2—Bearing hole
Rough boring (o4) m7, m8 t4 -y,+y o1,o22,o2,o3,o27

Half-finished
boring (o5) m6,m7,m8 t5 -y,+y o1,o22,o2,o3,o27, o4

Finished boring (o6) m6,m7,m8 t5 -y,+y o1,o22,o2,o3,o27, o4,o5

F3—Angular surface Rough milling (o7) m5,m7,m8 t7,t8,t9 -a o1,o22,o2,o3,o27, o4

Finished milling (o8) m3,m4,m6 t7,t8,t9 -a o1,o22,o2,o3,o28,
o31,o32,o33

F4—Four bosses Rough milling (o9) m3,m4,m5 t8,t9 +z o1,o22

F5—Plane 1 Rough milling (o10) m3,m4,m5 t8,t9 -z o1

F6—Top boss Rough milling (o11) m3,m4,m5 t8,t9 -z o1
Finished milling (o12) m4,m5 t8,t9 -z o1,o22,o2,o3,o11

F7—Six bosses Rough milling (o13) m3,m4,m5 t8,t9 -z o1

F8—Plane 2 Rough milling (o14) m3,m4,m5 t8,t9 -z o1

F9—Top
window surface

Rough milling (o15) m3,m4,m5 t7,t8 -z o1,o22,o2,o3
Finished milling (o16) m3,m4,m5 t7,t8 -z o1,o22,o2,o3,o15

F10—Inclined
plane 1

Rough milling (o17) m3,m4,m6,m7 t7,t8 -b o1,o22,o2,o3
Finished milling (o18) m3,m4,m6,m7 t7,t8 -b o1,o22,o2,o3,o17

F11—Inclined
plane 2

Rough milling (o19) m3,m4,m6,m7 t7,t8 -b o1,o22,o2,o3
Finished milling (o20) m3,m4,m6,m7 t7,t8 -b o1,o22,o2,o3,o19
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Table 3. Cont.

Feature Definition Operations Machines{} Tools{} TADs{} Predecessors

F12—The top holes Drilling (o21) m9,m10 t10 -z,+z o1,o22,o2,o3,o12, o9

F13—Top plane Rough milling (o22) m4,m5 t7,t8,t9 -z o1

F14—Counterbore
hole Spot facing (o23) m9,m10 t20 -z o1,o22,o2,o3,o27

F15—∅18H7 hole
Drilling (o24) m9,m10 t11 +z o1,o22,o2,o3
Reaming (o25) m9,m10 t22 +z o1,o22,o2,o3,o34

F16—2-∅12.5 hole Drilling (o26) m9,m10 t12 +z o1,o22,o2,o3

F17—12-∅21 hole Drilling (o27) m9,m10 t13 +z o1,o22,o2,o3

F18—18-∅17 hole Drilling (o28) m9,m10 t14 +z o1,o22,o2,o3

F19—Side hole
Rough boring (o29) m7,m8 t6 -y o1,o22,o2,o3
Finish boring (o30) m6,m7,m8 t6 -y o1,o22,o2,o3,o29

F20—5-∅20 hole Drilling (o31) m7,m8, m9,m10 t15 -a o1,o22,o2,o3,o7, o28

F21—24-∅8 hole
Drilling (o32) m7,m8,m9,m10 t16 -a o1,o22,o2,o3,o7,o28
Tapping (o33) m7,m8,m9,m10 t23 -a o1,o22,o2,o3,o7, o28,o32

F22—Oil passage
hole 1

Reaming (o34) m6,m7,m8 t28 -c o1,o22
Tapping (o35) m6,m7,m8 t24 -c o1,o22,o34

F23—Oil passage
hole 2

Drilling (o36) m6,m7,m8 t17 -c o1,o22
Tapping (o37) m6,m7,m8 t25 -c o1,o22,o36

F24—∅23
Counterbore hole Spot facing (o38) m3,m4,m9,m10 t21 -z o1,o22,o2,o3,o24,o25

F25—Holes in
inclined plane 1

Drilling (o39) m9,m10 t18 -b o1,o22,o2,o3,o17,
o18,o27,o4

Tapping (o40) m9,m10 t26 -b o1,o22,o2,o3,o17,
o18,o27,o4,o39

F26—Holes in
inclined plane 2

Drilling (o41) m9,m10 t18 -b o1,o22,o2,o3,o29,
o19,o20

Tapping (o42) m9,m10 t26 -b o1,o22,o2,o3,o29,
o19,o20,o41

F27—Top holes Drilling (o43) m3,m4,m9,m10 t18 -z o1,o22,o2,o3,o15, o16
Tapping (o44) m3,m4,m9,m10 t26 -z o1,o22,o2,o3,o15,o16,o43

F28—Oil passage
hole 3

Drilling (o45) m6,m7,m8 t19 -x o1,o22,o2,o3,o28
Tapping (o46) m6,m7,m8 t27 -x o1,o22,o2,o3,o28, o45

5.1. Parameter Settings

In order to achieve the best possible parameter settings for the GCSA approach, we
applied the Taguchi design of experiments to optimize the input parameters. The Taguchi
design of experiments uses orthogonal arrays to obtain a certain number of experiments
that can provide information of all factors that affect the performance of some process as
expressed by Dou et al. [4]. Based on the input parameters of the GCSA and appropriate
levels of variations, an experimental design matrix was formed using the standard L32
Taguchi orthogonal array with 32 experimental trials. In the mentioned case studies at the
input of the experimental design, the following GCSA parameters are varied: maximal
number of iterations, flock size, awareness probability, flight length, tournament size and
scale factors kc1, kc2, km1 and km2. Accuracy is increased by repeating every experiment
20 times. Therefore, the average result, the minimal result and the maximal result are used
as the output parameters.
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Figure 8. (a) Solid model and (b) the OPG of Part 1 with 46 operations.

Since the two cases significantly differ in dimensions, we formed two different experi-
mental designs in terms of levels of variation to optimize the GCSA parameters for both.
In that sense, the adopted levels of variation of Part 1 are: maximal number of iterations
[400,1000], flock size [60,120], tournament size [2,5], kc1 [0.6, 0.9], kc2 [0.3, 0.6], km1 [0.3,
0.6] and km2 [0.1, 0.3]. In order to reduce the number of experiments, we applied L32 (29)
orthogonal array, where 32 experiments are sufficient to make a conclusion. Full factorial
design would require 8192 experiments to identify the effectiveness of parameters.

The adopted levels of variation of Part 2 are these: maximal number of iterations
[1000,2000], flock size [80,100], awareness probability [0.2, 0.8], flight length [0.5, 2.5],
tournament size [3, 5], kc1 [0.6, 0.9], km1 [0.3, 0.7] and km2 [0.1, 0.3]. In this design, the same
L32 (29) orthogonal array with 32 experiments is used. Table 5 shows the optimal GCSA
parameter settings for two case studies after the response optimization using Taguchi
experimental design and Minitab statistical tool.
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Table 4. The cost indices of Part 1 and Part 2.

Part 1 Part 2

Cost per use

M MC T TC M MC T TC T TC
m1 10 t1 7 m1 25 t1 5 t15 4
m2 40 t2 5 m2 45 t2 6 t16 3
m3 100 t3 3 m3 50 t3 7 t17 4
m4 60 t4 8 m4 55 t4 12 t18 2

t5 7 m5 20 t5 13 t19 2
t6 10 m6 80 t6 9 t20 4
t7 15 m7 45 t7 8 t21 3
t8 30 m8 48 t8 9 t22 5
t9 15 m9 16 t9 10 t23 3

t10 20 m10 18 t10 4 t24 4
t11 4 t25 4
t12 3 t26 3
t13 4 t27 4
t14 3 t28 3

Cost per change

MCCI = 160
SCCI = 100
TCCI = 20

MCCI = 120
SCCI = 90
TCCI = 15

Table 5. The optimal parameter settings of the GCSA approach.

Case
Study

MaxIter FlockSize AP fl TourSize kc1 kc2 km1 km2

Part 1 1000 100 0.8 0.7 5 0.8 0.6 0.3 0.3
Part 2 2000 80 0.8 0.5 5 0.86 0.2 0.3 0.3

5.2. Computational Results and Analysis

To verify the flexibility and feasibility of the GCSA approach, we proposed two case
studies with several conditions. The obtained results for each condition are discussed and
the feasibility of this algorithm is verified by performing comparisons with traditional and
modern algorithms.

For Part 1 proposed by Guo et al. [25], the optimized parameter settings shown
in Table 5 is adopted. Using these parameter settings, Part 1 was considered for three
different conditions:

(1) All manufacturing resources are available.
(2) Tool costs and tool cost changes are excluded.
(3) Same as the second with machine 2 and tool 8 not available.

The calculation results were obtained for each of the defined conditions and the best
process schemes with minimized production cost are shown in Table 6. To present the
experimental results more clearly, the comparison with results obtained by traditional and
modern approaches from the literature is shown in Table 7 and includes the following
comparative algorithms: IWD by Gao et al. [6], CPAGA by Falih and Shammari [5], HBMO
by Wen et al. [14] and GA, SA and TS results also adopted from Wen et al. [14]. The GCSA
was run 20 times to verify the consistency of the obtained results. For the first condition,
the minimal production cost achieved by the GCSA is 2502, which appeared 9 times. The
next minimal cost is 2507 which appeared in 7 runs of the GCSA. In terms of the minimal
and the average TWPC (2507 and 2516,9), according to comparative results in Table 7, it
can be concluded that the GCSA outperforms other approaches, traditional and modern
ones. The worst result obtained by the GCSA slightly deviates from several algorithms
in this comparison. As far as the second and third conditions are concerned, the GCSA
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showed similar performances. For the second condition, the minimal, the maximal and the
average values of the TWPC are 2020, 2080 and 2047, respectively. In comparison with other
approaches, the GCSA proved its superiority regarding all three statistical parameters. For
the third condition, the TWPC of 2500 appeared 20 times in 20 runs, making it the most
consistent result in this study. Apart from the CPAGA, other approaches did not show
similar performances. All the results from Table 7 are graphically depicted in column charts
presented in Figure 9. The x-axis shows the minimal, the maximal and the average result
obtained by each algorithm in the comparative study, while the y-axis shows the values of
the TWPC.

Table 6. The best process plans for Part 1 under three different conditions.

Condition 1

Operation 1 5 3 18 2 11 6 17 4 12 13 19 7 8 9 10 20 14 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1
Tool 6 6 6 6 6 7 7 7 2 2 9 9 7 4 9 10 10 10 1 5
TAD +z +x +x -z -z -z -z -z -z -z -z +z -a -a -a -a +z -z -z -z

TMC = 800, TMCC = 320, NMC = 2, TTC = 247, TTCC = 180, NTC = 9, TSC = 900, NSC = 9, TWPC = 2447

TMCC—Total machine change cost; NMC—Number of machine changes; TTCC—Total tool change cost; NTC—Number of tool
changes; NSC—Number of setup changes

Condition 2

Operation 1 6 18 17 5 2 11 12 4 13 7 8 9 3 19 20 10 14 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1
Tool 7 7 7 7 6 8 8 4 2 9 8 4 9 6 9 10 10 10 1 5
TAD +z -z -z -z -z -z -z -z -z -z -a -a -a +x +z +z -a -z -z -z

TMC = 800, TMCC = 320, NMC = 2, TSC = 900, NSC = 9, TWPC = 2020

Condition 3

Operation 1 3 5 7 8 9 10 2 6 11 18 12 17 13 14 15 16 4 19 20
Machine 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Tool 6 6 6 7 4 9 10 6 7 7 6 4 7 9 10 1 5 2 9 10
TAD +z +x +x -a -a -a -a -z -z -z -z -z -z -z -z -z -z -z +z +z

TMC = 2000, TMCC = 0, NMC = 0, TCTC = 250, TCTCC = 3200, NCTC = 16, TSC = 500, NSC = 5, TWPC = 2500

Table 7. The results of the GCSA compared to other algorithms for two case studies.

Part 1
Condition 1 Condition 2 Condition 3

Min Max Avg Min Max Avg Min Max Avg

GCSA* 2502 2700 2516,9 2020 2080 2047 2500 2500 2500
IWD, Gao et al. [6] 2527 2554 2553,5 2090 2380 2123 2590 2740 2615,3
CPAGA, Falih and Shammari [5] 2530 2535 2530,5 2090 2090 2090 2500 2500 2500
HBMO, Wen et al. [14] 2525 2557 2543,5 2090 2120 2098 2590 2600 2592,4
GA, Wen et al. [14] 2667 2885 2796 2220 2580 2370 2600 2840 2705
SA, Wen et al. [14] 2535 2829 2668,5 2120 2380 2287 2590 2740 2630
TS, Wen et al. [14] 2527 2690 2609,6 2120 2390 2208 2580 2740 2630

Part 2
Condition 1 Condition 2

Min Max Avg Min Max Avg

GCSA* 4135 4496 4306,5 4338 4924 4544,7
CPAGA, Falih and Shammari [5] 4299 4315 4302 4503 4503 4503
GA-SA, Huang et al. [8] 4368 - - 4450 - -
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Figure 9. Comparison of the results under (a) condition 1, (b) condition 2 and (c) condition 3 for Part 1.

In the second study for Part 2 reported by Huang et al. [8], the optimized parameter
settings also given in Table 5 are used. Since this part model has been recently proposed in
scientific community, only two relevant approaches tested on this model can be adopted.
The comparative results between the GCA with the CPAGA by Falih and Shammari [5] and
GA-SA by Huang et al. [8] are shown in Table 7. Part 2 was carried out using two conditions:

(1) All manufacturing resources are available.
(2) Machines 3 and 7 and tool 8 are down.

For both conditions, the results are obtained after 20 runs. Under the first condition, the
minimal TWPC is 4135, along with 4136 and 4137 which were the closest to the minimum.
The average result is 4306.5, while the worst result is 4496. Only twice was the obtained
TWPC above 4400, while all the other results were close to the average with four process
plans reaching the TWPC below 4200. The GCSA achieved more superior result in terms of
the minimal TWPC compared to the CPAGA and the GA-SA, while it showed slightly lower
maximal and approximately the same average result compared to the CPAGA approach.
The best solution for this condition is presented in Table 8.
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Table 8. The best process plans for Part 2 (Condition 1).

Indices 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Operation 1 22 2 3 10 11 15 16 12 14 13 17 18 19 20 9
Machine 1 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5
Tool 1 7 1 1 8 8 8 8 8 8 8 8 8 8 8 8
TAD +z -z +z +z -z -z -z -z -z -z -z -b -b -b -b +z

Indices 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Operation 27 24 28 26 25 45 46 36 37 34 35 7 32 33 31 4
Machine 9 9 9 9 9 7 7 7 7 7 7 7 7 7 7 7
Tool 13 11 14 12 22 19 27 17 25 28 24 8 16 23 15 4
TAD +z +z +z +z +z -x -x -c -c -c -c -a -a -a -a -y

Indices 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Operation 5 6 29 30 8 41 39 40 42 23 38 43 44 21
Machine 7 7 7 7 3 9 9 9 9 9 9 9 9 9
Tool 5 5 6 6 8 18 18 26 26 20 21 18 26 10
TAD -y -y -y -y -a -b -b -b -b -z -z -z -z -z

TMC = 1319, TMCC = 840, NMC = 7, TTC = 281, TTCC = 435, NTC = 29, TSC = 1260, NSC = 14, TWPC = 4135

Under the second condition, the best, the worst and the average TWPC using the
GCSA are 4338, 4924 and 4544.7, respectively. The minimal result appeared three times in
20 runs, with more than half of the obtained TWPC being less than 4600. The best process
plan for this condition is given in Table 9. Based on the comparative results in Table 7,
a similar conclusion can be made as for the first condition. The GCSA overcome the results
of the CPAGA and GA-SA in terms of the minimal TWPC. A smaller and larger deviation
was shown in terms of the average and the maximal value, respectively. The graphical
representation of the comparison with the two observed approaches is given in Figure 10.

Table 9. The best process plans for Part 2 (Condition 2).

Indices 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Operation 1 22 2 3 15 16 11 14 13 10 12 9 24 28 27 25
Machine 1 5 2 2 5 5 5 5 5 5 5 5 9 9 9 9
Tool 1 7 1 1 7 7 9 9 9 9 9 9 11 14 13 22
TAD +z -z +z +z -z -z -z -z -z -z -z +z +z +z +z +z

Indices 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Operation 26 7 31 32 33 4 5 6 29 30 45 46 34 35 36 37
Machine 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Tool 12 7 15 16 23 4 5 5 6 6 19 27 28 24 17 25
TAD +z -a -a -a -a -y -y -y -y -y -x -x -c -c -c -c

Indices 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Operation 17 18 19 20 8 41 39 42 40 43 23 21 44 38
Machine 4 4 4 4 4 9 9 9 9 9 9 9 9 9
Tool 7 7 7 7 7 18 18 26 26 18 20 10 26 21
TAD -b -b -b -b -a -b -b -b -b -z -z -z -z -z

TMC = 1509, TMCC = 840, NMC = 7, TTC = 279, TTCC = 450, NTC = 30, TSC = 1260, NSC = 14, TWPC = 4338
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Figure 10. Comparison of the results under (a) condition 1 and (b) condition 2 for Part 2.

6. Conclusions

This paper proposed a genetic crow search algorithm (GCSA) approach to deal with
the operation sequencing problem in computer-aided process planning. The traditional
CSA algorithm was improved using genetic components of the GA, such as tournament
selection, three-string crossover, shift mutation and resource mutation strategies which
were employed to balance exploration and exploitation capabilities of the GCSA. Adaptive
crossover and mutation probability coefficients were also added for that purpose. The OPG
graphs were introduced to represent precedence relationships among operations within
a sequence, and the vector representation was adopted to manipulate the data in Matlab
programming environment. The nearest resource mechanism was proposed to apply the
round-off procedure after the main CSA steps. In order to assure the feasibility of crow
individuals, the repair mechanism was employed after the initialization stage and after
the shift mutation. In the experimental stage, two dimensionally different case studies
were adopted to test the performances and flexibility of the GCSA. The adopted evaluation
criterion of the operation sequencing problem was the total production cost. For several
conditions, the GCSA was tested and compared with the performances of other algorithms
from the literature. The comparative results are presented in tables and graphs and the
GCSA showed good performances for two case studies.

As far as future work is concerned, additional modifications of the proposed GCSA
approach can be made to further increase global ability of the GCSA and improve the
consistency of the obtained results. Moreover, ways of including relevant information about
machining parameters into operation sequencing optimization should be considered. In
addition, the focus can also be on further enriching the comparative analysis by taking into
consideration various other metaheuristics, hybrid algorithms and optimization methods.
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Finally, directions toward incorporating CSA with different heuristic mechanisms and
metaheuristics other than genetic algorithms will be taken into account.
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Abstract: Growing competition in the world enforces the need for an efficient design of transportation
networks. Furthermore, a competitive transportation network should also be eco-friendly. As road
transportation is responsible for the largest quantities of CO2 emissions, Intermodal Transportation
(IT) might be a potential alternative. From this perspective, intermodal terminals location is a
cornerstone for building a sustainable transportation network. The purpose of this paper is to study
and efficiently solve the Intermodal Terminal Location Problem on incomplete networks. We model
this problem as a mixed integer linear program and develop a simulated annealing algorithm to
tackle medium and large instances. The computational results show that the obtained solutions using
simulated annealing are competitive and close to the exact solutions found by CPLEX solver for
small and medium instances. The same developed algorithm outperforms the best found solutions
from the literature using heuristics for larger instances.

Keywords: terminal location; intermodal transportation; simulated annealing; mixed integer pro-
gram; incomplete networks

1. Introduction

The growth in container-related activities over the last decades is having a remarkable
impact on transportation demand. In fact, producers need more and more transportation
services to move raw materials and manufactured products to final customers. Furthermore,
worldwide economic growth has led to an increasing growth of domestic and international
streams of goods and services. Accordingly, handling these flows of goods from produc-
tion to transportation and storage induce major environmental concerns. Henceforth, in
many countries, government, companies and Non-Government Organizations (NGO) are
more and more inclined to purchase green products. They are also increasingly urged to
incorporate green policy throughout their decision-making process. Therefore, service
providers are motivated to provide solutions involving the integration of environmental
aspects. It is well known that Intermodal Transportation (IT) is a cornerstone for achieving
sustainable development through modal shift from road to eco-friendly modes. However,
the IT competitiveness depends on several factors. Among the key elements for building a
successful IT system, we cite: (i) optimal use of the most attribute of each transportation
mode included in the system; (ii) overall network design; and (iii) optimal location of
intermodal terminals. The European Conference of Ministers of Transport (ECMT) defined
IT “as the carriage of goods by at least two different modes of transport in the same load-
ing unit (an Intermodal Transport Unit or ITU) without stuffing or stripping operations
when changing modes”. This type of transport is the door-to-door chain from the initial
shipper to the final client. A typical component of IT is the container-based system. In fact,
container flows are strongly intermodal. Overall, an intermodal transportation chain is
composed by three segments: (i) the first mile segment, which is, in most cases, a short
segment (less than 50 km) that uses using road mode (or river); (ii) the main transportation
segment, which represents the main segment and uses a consolidation mode such as rail,
river, or maritime mode; and (iii) the last mile segment, which is similar to the first mile.
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IT is a competitive alternative for door- to-door road transport when the unit cost of the
consolidation mode (the second segment) is smaller than in road mode and compensates
the additional fees of transshipment operations. IT is very successful and even crucial
when we have the two following situations: (i) when the transport is not time critical;
and (ii) when there is a large volume of goods. In fact, despite the great speed of the
carriage (e.g., rail mode), the overall journey of an intermodal transport chain takes more
than door-to-door road. Accordingly, intermodal transportation is not suitable for urgent
deliveries. In addition, having a large amount of goods is necessary to benefit from the scale
economy generated by the consolidation mode. Intermodal terminals are equipped centers
for the transshipment of goods between different modes of transportation. The location of
such terminals is a strategic decision that may have a strong and direct influence on the
overall operational costs. This problem is addressed in the scientific literature by analogy
to well-known Facility Location Problems (FLP) and to Hub Location Problems (HLP).
The pioneering paper of [1] is the starting point of Intermodal Terminal Location Problem.
The majority of later studies were based on this paper. The authors either proposed a
modified version of the models or proposed solving approaches. The proposed works
commonly assume that all located terminals are fully connected in a generated solution.

The main contributions of the current paper are the following:

• We propose a generalization of a well-known problem in the literature, namely the
Intermodal Terminal Location Problem (ITLP) by introducing the incomplete version
of the problem relaxing the completeness of the inter-terminal network.

• We build a mathematical MIP (Mixed Integer Program) model to formulate the prob-
lem and we discuss the meaning of each components.

• We solve small and medium instances to optimality using CPLEX solver.
• We develop an efficient simulated annealing is adopted to solve real life size instances.
• We present extensive numerical experiments and analyze the obtained results.

The remainder of the paper is structured as follows. We review related works in
Section 2. The problem description and formulation are detailed in Section 3. We develop
the simulated annealing method in Section 4. Numerical results are reported in Section 5.
We provide results analysis and comments in Section 6. We give concluding remarks and
perspectives in the last section.

2. Related Works

Although the research in the ITLP is a very young field, the number of papers related
to this subject is steadily increasing. This reveals the importance of the Intermodal Terminal
Location for both academics and industry. A review synthesis of works done in the field
of IT can be found in the paper of [2]. Specifically, the Network Design Problem (NDP)
is a well-studied problem in the framework of intermodal transportation. A stochastic
approach for robust intermodal transportation plans in a real-world network was proposed
by [3]. The relationship between IT and supply chain was discussed by [4]. They developed
a scenario-based estimation to quantify the demand for the Italian IT Network. Owing
to its safety, IT is increasingly considered for hazardous materials (Hazmat) distribution.
For instance, Ref. [5] suggested using scheduled direct and faster trains to reduce the
transport risk of hazmats. The proposed solution is as a bi-objective model solved by a
tabu-search heuristic. Ref. [6] studied optimization challenges regarding rail processes at
maritime terminals. They provided a survey of the related works in this important node
of IT. Ref. [7] proposed a fuzzy version of the Intermodal terminal Location Problem. He
studied the case in which the decision-maker may suggest locating a number of rail termi-
nals around a fixed number “p”. This scenario is modeled by adding a fuzzy constraint to
the developed model. In [8], a compromise programming technique combined with fuzzy
modeling is proposed to tackle the location problem of real-road terminals. The developed
Multi-Criteria Decision Making Method (MCDM) is considered to model the conflicting
objectives of different stakeholders involved in the intermodal transportation chain. Ref. [9]
modeled the intermodal container terminal location problem in urban areas as a non-linear
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Mixed Integer Program (NLMIP). They considered an entropy maximization approach
and a Lagrangian relaxation technique to solve the problem in real-life case. A combined
Delphi and Analytical Network Process (ANP) is proposed in [10] to solve the Intermodal
Terminal location problem in accordance with sustainable requirements. Ref. [11] proposed
a modeling approach for Intermodal Terminal Hub Location Problem with transfer modes
and considering two-types of hubs. They proved that the problem is NP-hard and reported
numerical results on real-world container distribution networks. In addition, multi-agent
simulation tools are used in [12] to simulate the seaport-dry port system as intermodal
terminal. The developed model is validated on the Ningbo-Zhouhan port. A combined
SWOT analysis and Analytic hierarchy process (AHP) and Preference Ranking Organiza-
tion Method for Enrichment of Evaluations (PROMETHEE) is proposed in [13] to study
the location of intermodal terminals. Ref. [14] studied user-specified reliability levels using
a model that provide the optimal route through road links, rail links and via intermodal
terminals. A Markov Chain Monte Carlo method is proposed in [15] to solve the intermodal
terminal location problem. The proposed approach is a two-layer approach that efficiently
solve the problem with routing decisions. Computational results are reported. Ref. [16]
proposed a Best-Worst Method (BWM) with a consensus model from the perspective of
shipping line companies. The objective is to select the inland terminal locations from
potential sites. A sensitivity analysis was performed by authors to assess the impact of the
increasing volume of containers on the desirable locations. In [17], a quantitative method
is proposed to locate inland rail terminals based on cost savings. The model was validated
in real-world railway network from Croatia.

Table 1 summarizes the main research works related to the intermodal transportation.
In addition to review papers that survey research works in this field, terminal location
problems, route selection, network design, transport policy, and integrated location and
routing problems are the main topics of related works. Terminal location problems are the
strategic planning problem aiming to open a fixed number of rail terminals among a set of
potential sites given by a decision-maker. The route selection problem is a tactical decision
problem where the objective is to assign the best combination of transportation modes for
each commodity. The network design is another example of strategic planning that aims
to determine the initial network to use for the transshipment of demands. Some papers
deal with transport policy issues where the general management rules of transport are
addressed. Moreover, few research papers considered the integrated location and routing
problem in the frame of the intermodal transportation. The particularity of the last problem
lies in the fact that the two decisions of terminal location and the routing of demands are
tackled simultaneously.

Table 1. Intermodal freight transportation: main themes.

Research Content References

Review [2,18–24]
Terminal location [1,5,7–13,15–17,25–31]
Route selection [14,32–37]
Network design [33,38–41]
Transport policy [42–45]
Integrated Location and Routing [46,47]

We can clearly remark that terminal location problems are steadily attracting re-
searchers attention. This proves the importance of locating rail terminal in the design of the
intermodal transportation networks. In fact, while we can find different types of research
papers in the field of intermodal transportation, various aspects of terminal location prob-
lem are studied. We can cite the strategic choice of potential sites, the study of uncertainty,
the use of multi criteria decision making, etc.
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Furthermore, we provide in Table 2 an overall classification of the models used for
ITLP and a summary of works using either exact or heuristics methods. The first papers
dealing with the studied problem use deterministic models to formulate the problem and
exact methods to solve it. The use of such formulations enables applying the rich analytical
deterministic tools to solve the problem. More recent papers use either stochastic or fuzzy
modeling to capture the uncertainty, vagueness, and complexity of the problem. In such case,
heuristics are often used as no exact method is able to solve non-linear or large size problems.

Table 2. Intermodal Terminal Location Problem: models and solving methods.

Research Type References

Deterministic models [1,5,9–11,13,14,17,25–27,32]
Stochastic/fuzzy models [3,7,8,12,15,16,34,42,48,49]
Exact methods [1,7,8,11,25]
heuristic methods [10,12,15,27,32,50]

To our knowledge, we are the first to build a model for an intermodal transportation
network considering the general case when the induced graph by the located rail terminals
is an incomplete graph. The proposed model is a mixed linear program that provides
optimal solutions to achieve a balanced intermodal network.

3. Problem Description and Formulation

3.1. The Complete and Incomplete Version of the ITLP

The ITLP aims to determine which of a set of potential sites locations to open as
terminals and how to route the supply and demand of a set of customers (representing
zones of supply and demand) through the network. The transportation of these demands
may be done using a unimodal link (road mode) or a combination of two modes (rail-road).
The objective is to minimize the total cost of the transportation as well as the installation
cost of terminals. Up to now, the studied version of the ITLP introduced by [1,25], studied
by [27,29], etc. assumes that the inter-terminals network is a complete graph. Figure 1
shows a small complete intermodal terminal network with three terminals T1–T3 and
5 customers (1–5).

Figure 1. Small complete network.

As in hub problems, the assumption that the induced graph by the located terminals
must be a fully-connected graph (complete graph) is a restrictive constraint that may
increase the total investment cost. Moreover, this restriction is non-realistic since, in real
life cases, a rail–road network is usually incomplete due to the heavy cost incurred for the
construction of its infrastructure. The current work relax this assumption and proposes a
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general model in which the located rail-road terminals are partially connected. Figure 2
shows a small incomplete intermodal terminal network. The induced graph by terminals
is not incomplete. For instance, there is no rail link between rail terminals T1 and T2.

Figure 2. Small incomplete network.

3.2. Mathematical Model

Let us introduce the following parameters:

I : Set of senders/receivers.

K : Set of candidates sites for intermodal terminals.

l : Fixed number of links to be established.

qij : The amount of goods to be shipped from the customer i to customer j.

ckm
ij : The intermodal unit cost for transportation from sender i to receiver j using the two

rail terminals k and m.

cij : The unimodal unit cost for transporting goods by truck from sender i to receiver j.

fk : The investment cost for location of a terminal on site k.

Ck : Fixed capacity of a located rail terminal k.

Let us consider the following decision variables:

lkm : A binary variable equal 1 if the rail link between k and m is established, 0 otherwise.
Accordingly, lkk equal 1 if the node k is a terminal, 0 otherwise.

rij : The amount of goods routed from the sender i to receiver j.

skm
ij : The amount of goods routed from the sender i to receiver j through the two rail

terminals k and m.

The incomplete location problem of intermodal terminals may be formulated as follows:

Min C1 = ∑
i,j∈I

∑
k,m∈K

ckm
ij skm

ij + ∑
i,j∈I

cijrij + ∑
k∈K

fklkk (1)

The linear objective function (1) minimizes the total cost for routing goods and the
total cost for locating rail terminals. The first term expresses the cost for routing goods
through the intermodal chain: from the initial sender i to the first rail terminal k using
trucks, then from the terminal k to the second terminal m by rail mode, and later from the
terminal m to the final customer j using road mode. The second term is the cost for routing
goods directly using trucks from i to j while the third term is the overall investment cost
for locating rail terminals.

∑
k,m∈K

skm
ij + rij = qij, ∀i, j ∈ I (2)
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The constraint (2) states that the sum of goods transported via the intermodal chain
through the terminals k and m and that routed directly from i to j equal exactly the total
goods to be transported from i to j.

∑
i,j∈I

∑
m∈K

skm
ij + ∑

i,j∈I
∑

m∈K
smk

ij ≤ Cklkk, ∀k ∈ K (3)

The constraint (3) imposes to respect the terminals capacities.

lkm ≤ lkk, ∀k, m ∈ K (4)

lkm ≤ lmm, ∀k, m ∈ K (5)

The two inequalities (4) and (5) guarantee that a rail link is established if the two
adjacent terminals are located. In fact, we have the following implications:

if lkk = 0 or lmm = 0 =⇒ lkm = 0

lkm = lmk, ∀k, m ∈ K (6)

Equation (6) guarantees that a rail link is opened in the two directions.

∑
k,m∈K

lkm = l (7)

Equation (7) guarantees the establishment of exactly the given number of rail links.
The decision variable lkm controls the rail links to be opened. Thus, if due to economic, geo-
graphic or environmental constraints a railway link is impossible between two terminals,
such scenario is forbidden by lkl = 0.

skm
ij ≤ lkm, ∀k, m ∈ K, ∀i, j ∈ I (8)

Equation (8) forbids the rail flows between terminals if they are not located. The
developed model is a Mixed binary Integer Program (MIP). If we denote by p the number
of potential sites (the cardinal of K) and by n the numbers of senders/receivers (the cardinal
of I), then the program has n2 p2 + 3p2 + n2 + p+ 1 constraints and n2 p2 + n2 + p2 variables.

Proposition 1. If the triangular inequality holds for the transportation unit cost (assumed in the
literature and holds for dataset used in the numerical experiments), then skk

ij = 0, ∀i, j ∈ I, ∀k ∈ K.

This proves that the constraint skk
ij = 0, ∀i, j ∈ I, ∀k ∈ K, used in several mathematical

models in recent papers in the literature, is an unnecessary constraint [27].

Proof. To express the fact that rail mode generate a scale economy (consolidation mode),
the intermodal unit cost may be written as follows: ckm

ij = cik + αckm + cmj where cik is
the cost between i and k, ckm the cost between the two rail terminals, and cmj is the cost
between the rail terminal m and the final receiver j with α < 1. We denote by α the discount
coefficient expressing the scale economy generated by the rail mode. This parameter is
supposed to be equal to 0.5 in [27]. Since ckk

ij = cik + αckk + ckj = cik + 0 + ckj = cik + ckj ≥
cij (the last inequality is the triangular inequality), and as we aim to minimize the total
cost expressed by Equation (1), given the conservation flow constraint of Equation (2),
it follows that all goods from i and destined to j will be routed directly using trucks, and
then rij = qij, which implies that ∀i, j ∈ I, skk

ij = 0

Proposition 2. Let l be the number of rail links to be located and |K| = p the cardinal of the
candidates sites set. The Incomplete ITLP modeled by the aforementioned MIP is unfeasible when
l > p(p−1)

2 .
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Proof. It is an immediate result of the handshaking lemma (a classical lemma in graph
theory: an incomplete graph with p vertices has at most p(p−1)

2 edges).

3.3. Model Variants

The basic model introduced in the previous subsection may be enriched by adding
other constraints to match other realistic situations.

For instance, one may model the situation where both the number of rail links l and
the number of rail terminals t are given by the decision-maker by adding the constraint:

∑
k∈I

lkk = t (9)

In such case, as the number of rail terminals is known, the objective function becomes:

Min C2 = ∑
i,j∈I

∑
k,m∈K

ckm
ij skm

ij + ∑
i,j∈I

cijrij (10)

Furthermore, the basic formulation may be extended to consider potential handling
operations in the located rail terminals. In fact, let us denote by hkm the handling cost of a
unit of goods transhipped from the rail terminal m to the rail terminal k (symmetry may
be considered by assuming that hkm = hmk). Therefore, the objective function considering
asymmetric handling costs becomes:

Min C3 = ∑
i,j∈I

∑
k,m∈K

ckm
ij skm

ij + ∑
i,j∈I

cijrij + ∑
k,m∈K

(hkm + hmk)lkm (11)

4. Simulated Annealing Algorithm

4.1. General Scheme

The Simulated Annealing (SA) algorithm is a local search metaheuristic used for
finding an approximate global optimum. The SA is based on the Metropolis–Hastings
criterion enabling to escape from being trapped in local minima. We used this single
solution metaheuristic for the two reasons: (1) to solve the intractable instances for the
CPLEX solver; and (2) because this method was successfully applied to similar location
problems as in [51,52]. We adopted the classical general scheme of the SA, as shown in
Algorithm 1.

Algorithm 1: Simulated annealing general scheme.

Data: ε = 10−4, T0 = 106

Result: Best solution
initialization;
Generate initial solution S0 ;
T ← T0 ;
Sc ← S0 Sb ← Sc ;
while (T > ε) do

Generate neighbor solution S′ ∈ N(Sc);
Generate r ∈ random(0,1) ;
ΔE = f (S′)− f (S) ;

if r < e
−ΔE

T then

S ← S′;
if f (S) < f (Sb) then

Sb ← S
else

else

T ← T/2
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4.2. Initial Solution and Neighbors Generation

To generate the initial solutions, we use Algorithm 2.

Algorithm 2: Generation of initial solutions

Randomly generate rail links ;
if lkk = 1 and lmm = 1 then

Cmin ← min(Ck, Cm) ;
skm

ij ← qij
Cmin

;

rij ← qij − skm
ij

else
rij ← qij

To generate neighbors of a solution, we define three types of moves:

• Permutation of rail links: We modify a given initial solution by interchanging two
non-connected rail terminals with two connected ones. This move has the particularity
to generate new feasible solution since the number of rail links remains the same.

• Permutation of terminal locations: This move interchanges a terminal node with a
non-terminal one. As the generated solution may be infeasible, a correction phase is
conducted to guarantee the respect of the model constraints. In fact, if the capacity of
the new terminal is less than the old one, a new rail link is added. Otherwise, the flows
are routed trough the new terminal.

• Changing the number of terminals: From a given solution with t number of terminals,
we generate neighbor solutions by adding or deleting one or several rail terminals.
The correction phase is made to respect links and capacities of terminals.

All this moves are used in a sequential way in the implemented algorithm. The best
solution from the initial iteration to the last one is saved in a specific variable called BestSol
and reported in the end of the SA execution.

4.3. Parameters Tuning of the SA Method

Since the simulated annealing algorithm is a parametric approach, the setting of values
of these parameters has a significant effect on the objective function. For this, we ran a set of
experiments to determine the most suitable values to reach good solutions. The controller
parameters of the developed simulated annealing are the initial temperature T0, the cooling
rate δ, the neighbor moves rate γ and the minimal temperature Tmin. The correspondent
intervals of these parameters are presented in Table 3.

Table 3. SA parameters.

Parameter Symbol Interval

Initial temperature T0 [100, 106]
Cooling rate δ [0.03, 0.9]

Neighbor rate γ [0.05, 0.9]
Minimum temperature Tmin [0.1, 10]

The Tagushi design of MINITAB software [53] was used for parameters tuning of
the simulated annealing. Equation (12) defines the signal-to-noise ratio (S/N) of Tagushi
method. This ratio expresses the effect of parameters on the objective function. A maximum
value of this ratio minimizes the effect of uncontrollable factors. This ratio is given by:

S/N = −10 log(
1
z

z

∑
i=1

y2
i ) (12)
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The constant z represents the total number of experiments and yi is the result of the
experiment i. The results of parameters tuning using Tagushi design for a typical set of
training instances are illustrated by charts of Figures 3 and 4.

Figure 3. Main effects of parameters for SN ratios.

Figure 4. Main effects of parameters for Means.

5. Numerical Results

All experiments were done on a notebook Intel core i5, 2.53 GHz with 8 GB RAM
memory under Windows 10. The SA algorithm is coded using Python 3.

5.1. SA Solutions vs. Optimal and Best Found Solutions

To assess the efficiency of the developed Simulated Annealing (SA) algorithm, we used
the dataset introduced in [27]. In this dataset, customers and potentials sites coordinates
are randomly generated between (0, 0) and (104, 104). The goods demands are generated
from the interval [0, 500]. The investment cost fk in the interval [0, 5.105] and potentials
sites capacities are drawn from [0, 104]. After that, the direct cost cij is equal the Euclidean
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distance between the customers i and j, while the intermodal cost is computed using the
following formula ckm

ij = cik +
1
2 ckm + cmj. The objective function values of the studied

model are detailed in [31]. For this, we lunched the SA method for 10 runs and we choose
the best solutions. As shown in Figure 5, saving best solutions in an archive set enables to
get a decreasing values of the objective function. Accordingly, the developed SA method is
a descent strategy.

Table 4 reports the gaps of the SA solutions to CPLEX solutions. The second column
gives the gap of the best obtained solution from the CPLEX solution, while the third column
gives the average gap of the conducted 10 runs.

Note that we used the following formula to compute the gap:

gap =
Simulated Annealing Best solution − Optimal solution

Simulated Annealing Best solution

The obtained results show that our method is efficient and may even reach the optimal
solutions for the small size instances and reaches best solutions for medium instances in
short times.

To further evaluate the performance of the developed SA, we compare our results
with those of [27]. Note that, for a meaningful comparison, since our problem and that
studied in [27] are not the same, we made a transformation of our problem to get the same
structure of [27]. In fact, since our problem is a generalization of [27], we added the two
following constraints to our formulation:

p = ∑
k∈K

lkk

∑
k,l∈K

lkm =
p(p − 1)

2

These two equations transform our incomplete (general case) to complete problem.
The gaps of the last column in Table 5 show that our solutions by SA approach outperform
best found solutions by [27] in 11 out of 15 instances.

Figure 5. The best archived solution over the iterations for the instance 10C10L2TL.
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Table 4. Simulated Annealing results.

Instance Best Gap % Average Gap % Time (s) # Terminals

10C10L2TL 0 0 0.32 6
10C10L4TL 0 0.03 0.89 6
10C10L6TL 0 0 1.00 7
10C10L8TL 0 0.1 0.56 8

10C10L10TL 0 0 1.6 6
10C10L12TL 0 0 1.23 9
20C10L2TL 0 0.4 3.45 3
20C10L4TL 0 0.23 3.65 5
20C10L6TL 0 0 4.6 5
20C10L8TL 0 0.3 4.6 5

20C10L10TL 1.3 1.8 3.87 5
20C10L12TL 2.8 3.8 2.7 6
40C10L2TL 1.6 1.9 6.7 7
40C10L4TL 1.2 2.1 5.4 8
40C10L6TL 2.5 3.8 4.3 8
40C10L8TL 1.6 4.1 5.7 8

40C10L10TL 3 3.5 5.7 8
40C10L12TL 1 2,1 7.8 8
80C10L2TL 1.1 1.9 8.7 3
80C10L4TL 3.6 5.8 10 4

Table 5. SA results versus Best found solutions.

Instance Solution by [27] (×106) Our Solution (×106) Gap

20C40L 47.76 45.1 6%
20C50L 42.87 41.36 4%
20C60L 48.57 43.12 13%
20C70L 39.31 39.19 0%
20C80L 43.58 41.84 4%
20C90L 38.74 40.88 −5%

20C100L 48.54 46.54 4%
30C10L 117.72 105.84 11%
30C20L 113.5 116.51 −3%
30C30L 117.03 119.74 −2%
30C40L 91.31 88.14 4%
30C50L 105.48 102.94 2%
30C60L 103.24 114.64 −10%
30C70L 113.53 90.57 25%
30C80L 188.55 105.55 2%

5.2. Completeness Effect

To study the completeness effect on the solution cost, let

t = ∑
k∈K

lkk

which denotes the number of terminals in a solution. Then, we define the “Completeness
rate” of inter-terminals induced graph as follows:

r =
∑

k,m∈K
lkm

t(t−1)
2

(13)
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We modify the linear program introduced in the Section 3 by changing Equation (7)
to become:

∑
k,m∈K

lkm ≤ l (14)

As shown in Figure 6, the completeness rate of the SA solutions is overall between
50% and 100%. This means two important things: (1) a sufficient number of rail links is
necessary to reduce the total transportation cost as the rail mode enables to achieve scale
economy by transporting huge volumes of flows; (2) a fully connected terminal network is
unnecessary and increases the total transportation cost.

To further study the completeness rate effect on the generated solutions, we plot in
Figure 7 the completeness rate over iterations of the archived best solutions for an instance
with 40 nodes. This figure highlights that, while a sufficient number of rail links is necessary
to reduce the total transportation cost (more than 50%), a fully connected rail network may
not achieve an efficient transportation plan.

Figure 6. The completeness rate of the SA solutions.

Figure 7. The completeness rate over iterations for the instance 40C10L2TL.
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6. Concluding Remarks and Perspectives

Research in the freight terminal location problems is still in its beginning. However,
this domain is attracting the attention of scholars and policy makers. The current paper
contributes to this knowledge area by optimizing the location of intermodal terminals.
Such terminals are the cornerstone in each intermodal freight system. Considering the
incomplete inter-terminal network is relatively ignored in the literature, a mixed integer
model for the intermodal terminal location problem is proposed in the current work. Due
to its NP-hardiness, we develop an efficient Simulated Annealing Algorithm to tackle
medium and large instances. Our solving approach allows us to retrieve the optimal
solutions for small instances considering CPLEX 12.10. solver. In addition, our best found
solutions are competitive in the medium and larger sized instances as the worst CPU
time required appears to be less than 10 s. Specifically, on larger instances, our algorithm
outperforms the best integer solutions returned by CPLEX, in both the objective cost and
CPU time.

The numerical results show that considering the general case where all located ter-
minals are not necessarily fully connected may substantially reduce the overall costs of
location and transportation. Accordingly, this leads to the reduction of committed invest-
ments costs.

While we provide an efficient modeling and solving of the incomplete intermodal
terminal location problem, an important extension of the current work is to integrate
the routing decision in the mathematical formulation. In fact, the proposed formulation
assumes that routing is efficiently managed once locations of terminals are fixed. However,
routing and location are interdependent. Therefore, the current paper may be a first step to
integrate routing decisions for the incomplete version of the ITL.

From methodological perspective, using other solving methods may be explored in a
future study. Especially, exact methods such branch and bound or cutting planes methods
may be adapted to the studied problem.

Another potential opportunity for future research may be the integration of the hub
location formulation in the framework of the intermodal location considering the hubs as
intermediate warehouse for the shipped commodities. Furthermore, it may be interesting
to deal with a case study in the framework of intermodal transportation to consider more
realistic situations.
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Abstract: Generally, transportation costs account for approximately half of the total operation
expenses of a logistics firm. Therefore, any effort to optimize the planning of vehicle routing would
be substantially beneficial to the company. This study focuses on a postman delivery routing problem
of the Chiang Rai post office, located in the Chiang Rai province of Thailand. In this study, two
metaheuristic methods—particle swarm optimization (PSO) and differential evolution (DE)—were
applied with particular solution representation to find delivery routings with minimum travel
distances. The performances of PSO and DE were compared along with those from current practices.
The results showed that PSO and DE clearly outperformed the actual routing of the current practices
in all the operational days examined. Moreover, DE performances were notably superior to those
of PSO.

Keywords: postman delivery; vehicle routing problem; particle swarm optimization algorithm;
differential evolution algorithm

1. Introduction

The topic of global warming has been heavily addressed in recent decades due to
increasing greenhouse gases [1]. Unsurprisingly, the transportation industry globally ac-
counts for a large portion (mainly CO2 emission), amounting to approximately 20% [2].
Since our economics and life wellness deeply depend on the industry, decent mitigation
efforts are needed to enhance its operation efficiency. For logistics organizations, with
transportation costs being their largest expenditure, an improved operation not only reduce
the environmentally harmful gas, but also reduces the operational costs such as fuel, man-
power and vehicle depreciation, significantly augmenting profits in the process [3]. As a
result, a large logistics firm that handles thousands of transport vehicles per operational day
should absolutely adopt an effective transportation management and scheduling system.
The post office is one of the logistics establishments that has to deal with such management,
involving area assignments for delivery vehicles and the type and number of vehicles, as
well as delivery time windows. Some even engage in detailed routing of each vehicle,
trying to determine the most optimized ways to deliver parcels to customers [4]. Such
a challenge is essentially called the vehicle routing problem (VRP). However, most post
offices do not feel the need to find solutions to the VRP and simply rely on the experience
of their delivery drivers, which might be because of the high costs and complications
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involved in deploying such systems. Nevertheless, relying on skills and experience alone
might not be suitable for a problem with exceptionally high complexities.

The VRP is one of the optimization problems that seeks optimized routing for vehicles
that traverse either to deliver or pickup goods. An approach to finding a solution to the
VRP might be to determine a set of routes having a minimized total distance traveled by
all the vehicles involved [5]. Other VRP variations include enforcing the total delivery
time to be within a certain time window [6], limiting vehicle capacity [7], having stochastic
customer demands [8] or allowing customers to select their delivery options [9]. Generally,
the problem sizes (such as number of vehicles and customer nodes) of the VRP that can
be solved for exact optimized solutions by mathematical methods are limited [10], due
to the inherent complexity of the VRP. However, actual VRP applications usually have
large problem sizes, containing approximately hundreds or thousands of vehicles and
customers (e.g., a beverage firm that has to deliver millions of bottles per day to a large
number of depots and small businesses). Therefore, solving for optimized solutions by
mathematical procedures alone is impractical for most applications. As a result, heuristic
and metaheuristic optimization algorithms are usually selected as a pragmatic method
to solve the VRP, since they can obtain feasible solutions relatively fast and the quality of
those solutions is decent enough for real uses [11].

This study investigated the postman operations of the Chiang Rai post office, which
is a logistics establishment that does not apply any VRP optimization techniques, and
its delivery drivers have to rely on their own expertise and plans in order to traverse
between customer locations. The routing of two delivery vehicles was tracked, in which
they dispatched parcels to customers in their responsible areas for 50 operational days.
The routing information consisted of traveled paths, distance covered and the actual
geographic coordinates of customer locations which the vehicles visited each day. Then,
we performed the routing optimization procedures based on those customer coordinates,
using the metaheuristics algorithms for all the operational days of those delivery vehicles.

Since the delivery routes depended on the skills and experience in the area of their
drivers, those routes might not be well optimized. Moreover, if new drivers were to replace
the previous ones, they would have to learn anew and gain enough experience to better
traverse the area. Thus, the efficiency of the delivery process was not consistent. As such,
this research paper was focused on providing a smart routing decision, solving for VRP
solutions such that the delivery performance could improve remarkably and be more
consistent. Two metaheuristic algorithms were applied—particle swarm optimization
(PSO) and differential evolution (DE)—and integrated with local search techniques. The
algorithms sought to discover the most optimized routing those two delivery vehicles
could take so that the total travel distance could be minimized. The solutions from the two
algorithms, including those from current practices, had their performances compared in
terms of the total distance covered.

The rest of the article is organized as follows. Section 2 provides literature reviews
related to the VRP and the algorithms used in the study. The detailed dataset, mathematical
model, algorithm frameworks and solution representation are given in Section 3. Finally,
the experimental results and conclusion are provided in Sections 4 and 5, respectively.

2. Literature Review

The VRP, a nondeterministic polynomial time hardness (NP-hardness) problem [12],
refers to an optimization problem related to routing management, first devised by Dantzig
and Ramser [5] in 1959. It started as a simple problem of determining the optimal routes
for a fleet of vehicles dispatching from a single terminal to multiple variants, including
ones that limit vehicle capacity and delivery time, have multiple terminals or allow the
customer to select a delivery option. Obtaining the exact optimal solution for the VRP
is possible if the customer nodes are not too large for a mathematical solver. However,
real VRP applications tend to have a substantial number of customer nodes. Therefore,
heuristic methods are often chosen to solve the VRP [13].
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There are several studies that focused on the VRP of post office deliveries with different
strategies, objectives and constraints. Meira et al. [14] conducted an experiment to solve the
multi-objective VRP with only one constraint—the route distance—using a large number of
geographical delivery locations (~30,000 points) in Autur Nogueira, Brazil. Dumez et al. [9]
tried to solve the VRP for a post office in which each customer could select a choice of
vehicle routing problem delivery options (VRPDOs) with varying places and times, such
as receiving parcels at home in the evening or at work during office hours. In addition,
the VRP with a time window (VRPTW) was investigated by Niroomand et al. [15], who
developed an optimization model for a network of post offices with aims to minimize the
total operational cost within time constraints (i.e., office working hours).

Various algorithms were employed to solve the VRP and its variants. Most are meta-
heuristic, including differential evolution (DE) and particle swarm optimization (PSO).
Other metaheuristic algorithms such as the large neighborhood search (LNS) [16] and
hybrid intelligent algorithms [17] were also adopted for the VRP. DE is a population-based
optimization method that is similar to other evolutionary algorithms in terms of conven-
tional approaches (e.g., mutation and cross-over operations). However, it utilizes a less
stochastic and greedier solving strategy [18]. DE has been successfully applied to many
VRP studies. Kromer et al. [19] employed DE to find solutions to the stochastic VRP with
simultaneous pickup and delivery by using actual bus service data in Anbessa, Ethiopia.
Their objective was to minimize both the total travel distance and number of vehicles, and
the algorithm yielded superior performance compared with that of a traditional savings
algorithm. Sethanan [20] utilized DE (hybridized with a genetic operator) for a multi-trip
VRP with backhauls and a heterogeneous fleet (MTVRPB). They devised an optimization
method specifically for a company that needed to retrieve glass bottles (soft drinks) back
from clients after delivery with a single objective (i.e., minimizing the total distance trav-
eled). Erbao et al. [18] used both DE and genetic algorithms to find an optimal solution to
the VRP with simultaneous delivery and pick-up and time windows (VRP-SDPTW). They
built a mathematical model using mixed integer programming for their proposed VRP
variant and yielded satisfying optimized results. Xing et al. [21] applied a hybrid discrete
differential evolution (HDDE) to the split delivery VRP (SDVRP). The authors focused
on vehicle routing management to deliver large supplies of hospital items split between
multiple unmanned transport vehicles—a suitable solution in the pandemic era—with the
objective of minimizing the total distance traveled, and the proposed HDDE algorithm
produced superior performance compared with the forest-based tabu search (FBTS) and
genetic algorithm (GA) in many problem instances. There are also studies that applied DE
and local search to solve the VRP. For instance, Song and Don [22] proposed a DE algorithm
integrated with local search to solve the capacitated VRP. They employed two strategies
for the local search—two-random swap and two-opt testing of the combined method
with the benchmark instances—and demonstrated that such a hybrid method performed
better than other existing DE algorithms. Jun and Jian [23] modified DE further by using
greedy subtour crossover in the mutation operation and modified ordered crossover in the
crossover operation. In addition, local search with only the two-opt strategy was used in
the decoding process.

In addition to DE, PSO was also used frequently in the VRP field. Moghaddam et al. [24]
developed an advanced PSO to solve a VRP variant where the demands of customers
were uncertain and demand distribution was undetermined, a special form of capacitated
VRP (CVRP). They devised a new decoding method for the PSO and were able to obtain
superior solutions compared with those from well-known studies using the same test
instances. Another variant of the capacitated VRP, called the capacitated location-routing
problem (CLRP), was also studied by Peng et al. [25], in which PSO was combined with
clustering and local search techniques to solve the problem. Marinakis et al. [26] proposed
the use of multi-adaptive PSO (MAPSO) with three different strategies to solve the VRPTW,
where each strategy had a certain role in achieving optimal solutions faster, yielding
promising results compared with those of other PSO variants. Chen and Shi [27] used
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hybrid PSO (HPSO) combined with simulated annealing (SA) to determine solutions for the
multi-compartment VRP with a time window (MCVRPTW), where each vehicle possessed
multiple compartments, each one containing goods with the same characteristics. They
tested the algorithm with benchmark instances, and the results showed that HPSO had
better performance than normal PSO (PSO without SA). Chen et al. [28] performed two
types of PSO, namely discrete PSO (DPSO) and neural-like DPSO (NDPSO), on the periodic
vehicle routing problem (PVRP). The PVRP deals with the tasks of finding an ideal customer
service mode and determining optimal vehicle routing in accordance with the found mode.
Sedighizadeh and Mazaheripour [29] combined PSO and the artificial bee colony (ABC)
algorithm to solve the VRP, which converged faster than individual algorithms (PSO and
ABC) and also yielded better solutions. Lastly, Yanwei et al. [30] employed PSO with self-
adaptive inertia weight to solve the open VRP with time-dependent travel time (OVRPTD),
a special VRP variant where vehicles do not have to return to the depot after finishing a
delivery job and travel time is time-dependent, producing better solutions compared to
those of PSO and the nearest-neighboring search (NNS) algorithm.

3. Materials and Methods

Details on the post office operation and how to obtain the necessary dataset and pre-
pare the inputs for the study are presented in this section. Additionally, the mathematical
model, algorithmic procedures of PSO and DE and process workflow for the postman
delivery problem are included here.

3.1. Dataset

The dataset used in this study was obtained from the delivery operations belonging to
the Chiang Rai post office in the Chiang Rai province of Thailand. The operations mainly
involved postal delivery service to residential and commercial locations. The Chiang Rai
post office holds delivery duties for customers in the area of the Viang and Rob-Viang
districts, which are clustered into six delivery zones. Detailed data of the delivery operation
were collected for 50 days, tracking two delivery vehicles equipped with Global Positioning
System (GPS)-enabled android devices with location-tracking applications installed. The
average number of customer locations to be delivered to per day by both vehicles was
97.22. Those two vehicles were motorcycles, each with large parcel pouches strapped on
both sides, and both had duties to deliver parcels to customers in specific areas under the
Chiang Rai post office’s responsibility.

The GPS devices recorded routing data, including all customer locations and where the
vehicles visited, in geographic coordinate form. Then, for each day of delivery operations,
the total travel distance of both vehicles was extracted. Moreover, the stored latitude and
longitude coordinates, which corresponded to the post office and customer locations, were
used to construct a distance matrix of n × n dimensions, where n was the number of all
location coordinates. Each cell of the distance matrix represented the smallest distance
between a pair of location coordinates, and this distance value was determined by a python
script using the googlemaps module from the Google Maps Application Programming
Interface (API) [31]. The obtained matrix might not have been the symmetric type, since
the shortest route from one coordinate to another may not have been the same the other
way around, taking into account that one-way traffic could be enforced in some routes. In
total, 50 matrices were constructed, each one representing one day of delivery operations.
These matrices were essential inputs to the optimization algorithms, acting as a lookup
distance table.

3.2. Mathematical Model

As mentioned earlier, this study addresses the delivery routing problem of the Chiang
Rai post office. The problem is classified as a single-depot VRP, in which all vehicles that
depart from the post office must return to the post office. For each operational day, a vehicle
must decide on the delivery route for a set of different customers. All customers must be
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visited within an operational day with no specific time window. The traffic conditions were
not considered in this case, due to the fact that there was little traffic in the investigated
area. Thus, the delivery time and cost were primarily based on the total travel distance,
and the objective of this problem was to find optimal routes with the lowest total travel
distance. In addition, the capacity of the parcel pouches was assumed to be infinite, since
the postman used two large pouches that could always contain all parcels, and there has
been no case where the capacity was insufficient.

In this study, the postman delivery routing problem is represented as an integer
programing (IP) model. The parameters and decision variables used in formulating the
model are defined as follows:

Indices

i, j: Post office and customer locations (i, j = 1 for the post office location; i, j = 2, 3, . . . , n
for customer locations).

k: Vehicle (k = 1, 2, . . . , m).

Parameters

di, j: Distance from i to j
Ui, Uj: Constant number used to avoid a subtour.
N: Number of locations.
M: Number of vehicles.

Decision Variable

xi,j,k: If vehicle k travels from i to j or 0 otherwise.

The minimization of the total travel distance is expressed as

Min Z =
n

∑
i=1

n

∑
j=1

m

∑
k=1

dij ∗ xijk (1)

The constraints are as follows:= 1 ∀  ;  = {2,3, … , } (2) 

= 1 ∀  ;  = {2,3, … , } (3) 

− = 0 ∀ ∀  ;  = {1,2, … , } , = {1,2, … , } (4) 

≤ 1 ∀  ;  = {1,2, … , } (5) 

≤ 1 ∀  ;  = {1,2, … , } (6) 

−  + ≤ − 1 ∀  ∀  ;  , = {2,3, … , }  ≠  (7) ∈ {0,1}   ∀ ∀ ∀  ;  , = {1,2, … , } ,  = {1,2, … , } (8) 

The objective of the model was to minimize the total travel distance as shown in
Equation (1). Equations (2) and (3) ensured that each customer was visited once and by
only one vehicle. The constraint in Equation (4) guaranteed the route continuity of all
vehicles. Equations (5) and (6) ensured that each vehicle could take only one route, and it
needed to depart from and return to the post office. Equation (7) was used to eliminate
subtours. Equation (8) states that a decision variable is a binary number.
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3.3. Application of PSO and DE to the Postman Delivery Routing Problem

As mentioned earlier, the postman delivery routing problem is NP-hard. Thus, solu-
tion methods based on metaheuristic approaches are more preferable than the traditional
exact methods for finding solutions in real-world practices. This section presents the
application of two effective metaheuristic approaches—particle swarm optimization (PSO)
and differential evolution (DE)—to solve the postman delivery routing problem. A solu-
tion representation with an encoding and decoding scheme is proposed to transform a
metaheuristic solution into a practical solution. The procedures of these algorithms are
described below.

3.3.1. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO), proposed by Kennedy and Eberhart in 1995, is
a population-based random search technique that imitates the behavior of fish schooling
or birds flocking. In PSO, a solution is represented as a particle, and the population of
solutions is called a swarm of NP particles. Each particle consists of two main attributes:
The position and the velocity. The evolutionary concept of PSO is that each particle learns
from the cognitive knowledge of its experiences (personal best, or pbest) and the social
knowledge of the swarm (global best, or gbest) to guide itself to the better position. A
particle moves to a new position using the updated velocity, which is adjusted according
to the experiences of a particle. In particular, the updated velocity of a particle depends on
three main control parameters: The inertia weight, personal best coefficient (cp) and global
best coefficient (cg). Once a new position is obtained, the best position of each particle and
the best position of the swarm are then updated as needed. These processes are repeated
until a stopping criterion is met. Figure 1 shows the evolutionary procedure of the PSO.

 

Figure 1. Evolutionary procedure of the particle swarm optimization (PSO) algorithm.

3.3.2. Differential Evolution (DE)

Differential evolution (DE), proposed by Storn and Price in 1995, is one of the evo-
lutionary algorithms (EAs) used for global optimization over a continuous search space.
Similar to other population-based random search techniques, DE starts by randomly
generating an initial population of NV vectors. A solution in DE is represented by the
D-dimensional vector, and each value in the D-dimensional space is represented as a real
number. The crucial idea of DE is its mechanism for generating trial vectors by mutation
and crossover operations with the use of a couple control variables: The scale factor (F)
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and the crossover rate (Cr). In this study, the classic but efficient mutation operation of
DE/rand/1 was applied to generate a mutant vector by adding a weighted difference
(F) between two randomly selected vectors to the third randomly selected vector. DE is
able to generate better diverse solutions, since the best solution in the population does
not exert any influence on the other solutions in the population. In addition, the mutant
vector is always a solution that is not from the original population; therefore, the crossover
operation in DE is always between a solution from the population and a newly generated
one [32]. Then, the selection operation or replacement of an individual vector occurs only
if the trial vector outperforms its corresponding current vector. As shown in Figure 2, the
evolution procedure of a DE population continues through repeated cycles of three main
operations—mutation, crossover and selection—until a stopping criterion is met.

 

Figure 2. Evolutionary procedure of the differential evolution (DE) algorithm.

3.3.3. Solution Representation

In order to apply PSO and DE for solving a combinatorial problem like the postman
delivery routing problem, solution representation or solution mapping was required to
transform the real number of the D-dimensional space into practical solutions for vehicle
routing. Figure 3 presents the procedure of solution representation with the encoding and
decoding scheme.

The encoding process aimed to represent a solution as a string of dimensions. In this
study, the postman delivery routing problem with n − 1 customers (noting that n is the
number of locations, including the post office) and m vehicles was encoded as a string
of D dimensions. The number of dimensions (D) was set to be equal to the total number
of customers, and the dimension index stood for the customer index. Each value in a
dimension was initially filled with a uniform random number in the range [0, 1]. Next,
the process of decoding was divided into two stages: (1) the assignment of customers
to vehicles and (2) the sequencing or routing for each vehicle. In the assignment stage,
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the range (max–min) of the dimension value was split by the number of vehicles as in
Equation (9):

Split = (Max − Min)/m (9)

where m is the number of vehicles, Min is the minimum value in the dimensions and Max
is the maximum value in the dimensions.

Figure 3. Solution representation procedures.

According to Equation (9), the range of the dimension value was equally partitioned
into m subsections corresponding to m vehicles. The span of each subsection is determined
in Figure 4. It is noted that a subsection index denoted a vehicle index.

Figure 4. The span of m subsections.

Then, a customer was assigned to a vehicle, considering its customer dimension value
with the corresponding subsection. For example, if the dimension value of customer 1 fell
into Section 2, that customer was assigned to vehicle 2 correspondingly. This process
continued until all customers were considered. Once the assignment of customers to
vehicles was decided, a heuristic called the nearest-neighbor search (NNS) was applied
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to determine the delivery routing of each vehicle. Thus, for each vehicle, the next visited
customer was the one with the nearest distance to the current location. The completed route
of a vehicle was obtained when all customers assigned to that vehicle were considered. It
is noted that all vehicles needed to depart from and return to the post office.

To illustrate the process of solution representation, let us consider an example of the
postman delivery routing problem with six customers and two vehicles. A distance matrix
between the post office and customers is shown in Figure 5. The sample matrix in this
example is symmetric; however, a matrix constructed from the actual operation might be
asymmetric, depending on the locations where the delivery process takes place.

Figure 5. A distance matrix for an example of the postman delivery routing problem with six
customers and two vehicles.

In the encoding process, the number of dimensions was set to six, which was equal
to the number of customers. Each value in a dimension was initially generated with a
uniform random number between 0 and 1, as shown in Figure 6.

Figure 6. Encoding example of the postman delivery routing problem with six customers and
two vehicles.

Figure 7 illustrates the decoding procedure for obtaining the routing of a vehicle. First,
according to Equation (9), the range of the dimension value is divided by the number of
vehicles, which is (0.87 − 0.25)/2 = 0.31. In this example, two subsections are obtained
according to the number of vehicles. Then, the condition of the customer assignment
is set. The span of sections 1 and 2 are (0.25, 0.56) and (0.56, 0.87), respectively. When
the customer dimension value falls into the first subsection, that customer is assigned
to vehicle 1; otherwise, they are assigned to vehicle 2. Thus, customers 1, 2, 4 and 6 are
assigned to vehicle 1, and customers 3 and 5 are assigned to vehicle 2. After that, the
routing of each vehicle is determined using NNS method. According to the distance matrix
in Figure 5, vehicle 1 starts from the post office, then goes to customer 6, customer 4,
customer 2 and customer 1 before returning to the post office. Vehicle 2 starts from the post
office, then goes to customer 5 and customer 3 before returning to the post office. The total
distance of this particular example is 557 + 143 = 720 units.
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Figure 7. Decoding procedures to transform a D-dimensional solution into a vehicle routing solution.

4. Experimental Results

Information for the experiment, including the algorithm parameters for PSO and
DE and the computational results, are shown in this section. The results emphasize the
performance comparison among PSO, DE and current practices. In addition, box plots
comparing the results of DE and PSO in some instances are provided.

4.1. Parameter Setting of Metaheuristics

Typically, the performance of metaheuristics is influenced by the searching and solu-
tion mapping mechanisms, while the setting of parameters decides how well the solutions
converge. For a fair comparison between PSO and DE, the number of function evaluations
for both algorithms was equally set to 2500, with population sizes of 50 and 50 iterations.
Tables 1 and 2 show the parameter settings of PSO and DE, respectively. It is noted that
these settings were empirically determined from preliminary experiments.

Table 1. The setting of PSO parameters.

Parameter Parameter Value

Swarm Size 50
Iterations 50

Inertia Weight 0.9
Personal Best Coefficient (cp) 0.5
Global Best Coefficient (cg) 0.3
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Table 2. The setting of DE parameters.

Parameter Parameter Value

Population Size 50
Iterations 50

Scale Factor (F) Random between 1.5 and 2.5
Crossover rate (Cr) Linearly Increasing from 0.2 to 0.8

Crossover Type Binomial Crossover

4.2. Computational Results

In this study, the metaheuristics were implemented using the Python programming
language [33] under PyCharm IDE [34] version 2020.3.1 with Windows 10 as the operating
system. The programs ran on an Intel® CoreTM i5-4690 CPU 3.50 GHz platform with 32 GB
of RAM. The performances of the algorithms were evaluated using the dataset derived
from a real case study of postman delivery in association with the Chiang Rai post office
for a period of 50 days. Table 3 shows the VRP solutions (total travel distance) obtained
from the proposed metaheuristics, which include the best, average and standard deviation
of the total distance from 10 replicated runs for each instance. The average time duration
to run one optimization cycle for each instance is also reported.

Table 3. Experimental results of total distance.

Instance
Current
Practice

PSO Time
(s)

DE Time
(s)Best Average SD Best Average SD

1 33.64 21.38 22.09 0.49 190.56 17.64 17.98 0.34 185.12
2 29.08 18.85 19.52 0.44 125.89 15.61 16.39 0.35 135.13
3 30.07 18.97 20.83 0.72 170.04 15.06 15.81 0.42 175.41
4 36.91 20.95 22 0.56 228.81 16.19 16.44 0.2 237.17
5 34.26 19.59 20.23 0.44 177.36 14.93 15.56 0.53 175.24
6 33.77 19.17 20.3 0.65 200.5 15.26 16.16 0.5 209.27
7 37.93 21.25 22.7 0.54 232.88 17.24 18.79 0.64 250.97
8 32.72 20.48 21.57 0.59 182.46 16.71 17.63 0.41 208.32
9 27.65 16.74 17.68 0.6 159.66 12.72 13.33 0.39 164.96

10 32.37 20.97 21.69 0.33 192.24 17.34 17.88 0.46 198.62
11 37.29 21.24 22.33 0.48 226.31 16.21 16.99 0.51 234
12 38.23 21.43 22.14 0.42 214.3 17.24 17.83 0.4 221.5
13 30.50 19.99 20.57 0.3 181.79 16.19 16.75 0.34 187.85
14 32.79 18.98 19.98 0.52 187.21 14.93 15.28 0.35 193.23
15 34.78 21.11 21.94 0.56 236.78 16.37 17.3 0.56 244.41
16 32.83 20.41 21.02 0.41 182.01 16.68 16.98 0.42 184.99
17 31.49 20.99 21.63 0.38 202.57 16.39 16.79 0.47 218.21
18 32.70 20.84 21.44 0.4 217.46 16.04 16.96 0.46 214.46
19 35.23 19.26 20.16 0.5 202.23 15.32 15.78 0.25 216.41
20 36.13 23.08 23.81 0.32 229.84 18.17 18.84 0.39 240.47
21 27.44 17.89 19.05 0.56 147.86 15.11 16.04 0.42 142.17
22 30.19 18.21 19.38 0.54 160.94 15.45 16.33 0.59 155.08
23 28.68 18.26 19.85 0.82 133.99 16.37 16.97 0.34 149.74
24 33.77 20.07 20.86 0.43 210.24 15.6 16.26 0.42 218.33
25 34.83 20.93 21.52 0.3 224.59 16.56 17.06 0.36 232.34
26 35.37 19.93 21.02 0.67 217.01 15.91 16.23 0.25 224.51
27 33.39 20.88 21.4 0.33 177.07 15.17 15.91 0.57 183.18
28 38.75 20.96 21.55 0.44 199.51 16.32 16.88 0.41 206.43
29 35.04 20.46 21.64 0.59 211.91 16.47 17.16 0.53 219.39
30 30.44 18.84 19.48 0.43 170.01 14.26 15.21 0.4 176.16
31 33.03 18.04 19.39 0.48 143.94 15.94 16.45 0.4 148.96
32 30.78 19.44 20.07 0.5 158.49 14.74 15.38 0.43 150.77
33 37.21 20.29 21.64 0.59 173.11 18.3 18.61 0.2 196.03
34 31.78 19.03 20.38 0.64 171.02 16.03 16.77 0.37 186.87
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Table 3. Cont.

Instance
Current
Practice

PSO Time
(s)

DE Time
(s)Best Average SD Best Average SD

35 35.12 20.7 22.09 0.7 166.5 17.49 17.89 0.37 174.06
36 34.74 20.72 21.66 0.55 180.39 16.98 17.91 0.38 185.7
37 30.19 19.34 20.57 0.48 164.51 14.54 16.33 0.95 164.86
38 31.82 18.49 19.36 0.46 155.19 15.56 16.55 0.55 162.95
39 31.39 17.82 18.84 0.48 152.59 14.74 15.28 0.4 155.57
40 29.36 18.68 19.59 0.41 148.9 14.19 14.91 0.47 147.4
41 31.88 18.53 19.21 0.4 157.6 14.53 15.13 0.39 156.06
42 32.20 19.32 20.33 0.44 200.58 15.15 16.23 0.53 203.92
43 30.42 18.77 19.46 0.29 132.47 15.16 15.86 0.4 124.59
44 33.57 18.64 19.31 0.43 163.96 15.72 15.95 0.16 172.84
45 30.40 17.99 18.65 0.42 129.07 15.66 16 0.3 137.2
46 38.38 21.45 22.05 0.41 220.58 16.74 17.48 0.53 216.86
47 28.97 17.31 19.16 0.67 157.94 15.34 15.64 0.29 153.27
48 30.18 19.46 20.37 0.46 190.09 15.69 16.34 0.4 202.63
49 33.70 20.81 21.44 0.27 177.48 16.57 16.95 0.44 201.89
50 31.68 18.19 18.85 0.38 172.02 14.32 14.85 0.52 163.4

To further analyze the effectiveness of the metaheuristics for solving the postman
delivery routing problem, the percentage deviation (PD) between solutions obtained from
the metaheuristics and those from the current practices were calculated using Equation (10).
The results for the PD are shown in Table 4:

PD = ((Solcurrent_practice − Solheu)/Solcurrent_practice) × 100, (10)

where Solcurrent_practice is the solution obtained from the current practice and Solheu is the
solution obtained from a metaheuristic.

Table 4. Experimental results of the percentage deviation (PD).

Instance Current Practice
PSO DE

Best PD Best PD

1 33.64 21.38 36.44 17.64 47.56
2 29.08 18.85 35.18 15.61 46.32
3 30.07 18.97 36.91 15.06 49.92
4 36.91 20.95 43.24 16.19 56.14
5 34.26 19.59 42.82 14.93 56.42
6 33.77 19.17 43.23 15.26 54.81
7 37.93 21.25 43.98 17.24 54.55
8 32.72 20.48 37.41 16.71 48.93
9 27.65 16.74 39.46 12.72 54

10 32.37 20.97 35.22 17.34 46.43
11 37.29 21.24 43.04 16.21 56.53
12 38.23 21.43 43.94 17.24 54.9
13 30.5 19.99 34.46 16.19 46.92
14 32.79 18.98 42.12 14.93 54.47
15 34.78 21.11 39.3 16.37 52.93
16 32.83 20.41 37.83 16.68 49.19
17 31.49 20.99 33.34 16.39 47.95
18 32.70 20.84 36.27 16.04 50.95
19 35.23 19.26 45.33 15.32 56.51
20 36.13 23.08 36.12 18.17 49.71
21 27.44 17.89 34.8 15.11 44.93
22 30.19 18.21 39.68 15.45 48.82
23 28.68 18.26 36.33 16.37 42.92

138



Appl. Sci. 2021, 11, 2703

Table 4. Cont.

Instance Current Practice
PSO DE

Best PD Best PD

24 33.77 20.07 40.57 15.6 53.81
25 34.83 20.93 39.91 16.56 52.45
26 35.37 19.93 43.65 15.91 55.02
27 33.39 20.88 37.47 15.17 54.57
28 38.75 20.96 45.91 16.32 57.88
29 35.04 20.46 41.61 16.47 53
30 30.44 18.84 38.11 14.26 53.15
31 33.03 18.04 45.38 15.94 51.74
32 30.78 19.44 36.84 14.74 52.11
33 37.21 20.29 45.47 18.3 50.82
34 31.78 19.03 40.12 16.03 49.56
35 35.12 20.7 41.06 17.49 50.2
36 34.74 20.72 40.36 16.98 51.12
37 30.19 19.34 35.94 14.54 51.84
38 31.82 18.49 41.89 15.56 51.1
39 31.39 17.82 43.23 14.74 53.04
40 29.36 18.68 36.38 14.19 51.67
41 31.88 18.53 41.88 14.53 54.42
42 32.20 19.32 40 15.15 52.95
43 30.42 18.77 38.3 15.16 50.16
44 33.57 18.64 44.47 15.72 53.17
45 30.40 17.99 40.82 15.66 48.49
46 38.38 21.45 44.11 16.74 56.38
47 28.97 17.31 40.25 15.34 47.05
48 30.18 19.46 35.52 15.69 48.01
49 33.70 20.81 38.25 16.57 50.83
50 31.68 18.19 42.58 14.32 54.8

Average 39.93 51.62

According to the results in Table 3, it is obvious that both the PSO and DE algorithms
performed very well in generating solutions with less distance, compared with those
obtained from the current practices for all instances, with fast computing times. Both
algorithms were able to provide robust solutions with small standard deviations. However,
it was observed that DE clearly outperformed PSO, since DE was able to generate the
better solution quality for the best and average travel distances in all instances. In Table 4,
DE shows its superiority to PSO for all instances by providing higher PD values from the
current practice solutions. The percentage deviation (PD) of the distance ranged from 33.34
to 45.91 with an average of 39.93 for the PSO algorithm and from 42.92 to 57.88 with an
average of 51.62 for the DE algorithm.

Moreover, the performance differences between PSO and DE are visually demon-
strated in Figure 8, showing box plots of the total travel distance from 10 replicated runs of
the PSO and DE algorithms, which used solutions from instances 1, 20, 40 and 50. Accord-
ing to the results in Figure 8, it is clearly seen that the solutions obtained from DE were
significantly better than those obtained by PSO.

Lastly, the behavior of the algorithms was investigated in terms of time and space
complexity (i.e., how the algorithm runtime and space requirements scaled when the inputs
grew). Specifically, the plots of the algorithm runtimes and memory usages versus the
number of visited locations (customers plus the post office) were constructed as shown in
Figures 9 and 10. The number of locations ranged from 10 to 100, with the distance matrix
randomly generated specifically for the complexity examination of those algorithms.
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Figure 8. Box plot comparison of the total travel distance (km) from 10 replicated runs between the
PSO and DE algorithms (instances 1, 20, 40 and 50).

Figure 9. Plot between the algorithm runtimes (DE and PSO) and the visited locations. The quadratic
regression fits and their functions are included.

Figure 10. Plot between the algorithm memory usage (DE and PSO) and the visited locations. The
quadratic regression fits and their functions are included.
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According to Figures 9 and 10, the quadratic regression was used to fit both the
time and space complexity plots for DE and PSO. The coefficients of determination (R2)
of the selected regression model in the time complexity plot were 99.43% for DE and
99.62% for PSO, and those in the space complexity plot were 99.96% for DE and 99.97% for
PSO. Therefore, the plots clearly demonstrate that the time and space complexity of both
algorithms were classified as having an order of n2 complexity, or O

(
n2), since both the

runtime and space requirements had quadratic relationships with the input sizes.

5. Discussion and Conclusions

This research employed metaheuristic algorithms, namely the PSO and DE algorithms,
to solve the single-objective VRP for optimized routing solutions. The objective was to
determine a solution with the lowest travel distance. The study used actual operational data
from two delivery vehicles of the Chiang Rai post office over a period of 50 days. The data
included geographic coordinates of the customer locations where those vehicles delivered
parcels, which were then transformed into distance matrices for use by the optimization
algorithms. For each delivery day, the algorithms tried to search and assign new routes
to those two vehicles such that the total travel distance was minimized. The routing
performances from the PSO and DE algorithms, as well as those from actual operations,
were compared. The experimental results showed that both metaheuristic algorithms were
far superior to the real delivery operations of the post office in all 50 days of the experiment.
However, DE clearly outperformed PSO by providing outstanding solution quality for all
instances. This result was mainly due to the different evolution mechanisms of DE and
PSO. A PSO swarm has a high tendency to cluster rapidly and becomes stagnant, since
the movement of a swarm is highly influenced by the global best solution. In addition,
the diversification of DE is better than PSO, because the best solution in the population
does not exert any influence on other solutions in the population. A new solution in DE
would be selected only if it had better fitness, and thus the average fitness of the population
would be equal or better from iteration to iteration. It is important to note that the results
obtained from this study were based on the delivery constraints of the Chiang Rai post
office. However, for the operations of other post offices, other constraints such as vehicle
capacity, a customer’s time window and the delivery time horizon could be taken into
consideration. In such cases, the problem must be remodeled, and new solutions will be
obtained under those circumstances.

Another essential factor was the duration for running one optimization cycle in order
to obtain the optimized solution. For both the DE and PSO algorithms, the average duration
was approximately six minutes. Combining the decent results and acceptable runtime
duration, the methods used in this study have the potential to be employed in real post
office operations. Additionally, even though there were two vehicles in this study, the
proposed algorithms can also be applied to large cities in which the post office operates
several delivery vehicles. In essence, the methods proposed in this study could drastically
help reduce the delivery cost and time for postman delivery operations. Additionally,
the vehicle routing optimization process (with about 100 customer locations) only takes
minutes rather than hours, which is practical in the actual post office work environment
where all parcels have to be processed and dispatched quickly.

There are some challenges to be considered if these methods are to be used in actual
delivery operations. First, the post office operators need to determine a quick approach to
convert customer addresses into geographic coordinates, which should be done systemati-
cally and automatically. Second, the duration to run an optimization cycle is proportional
to the number of addresses and delivery vehicles. Therefore, the optimization parameters
such as the population sizes and iterations should be well adjusted according to those
numbers. Thus, the operators could utilize machine learning, artificial intelligence and
image processing methods to quickly transform those customer addresses into definite GPS
locations. They should also give enough lead time to account for the unexpected increase
in processing time before all deliveries can start. In addition, the proposed PSO and DE use
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deterministic data, in which the customers and distance matrices are known in advance,
and the routing is determined using these data. When some data are changed during
delivery, the only way to adapt to such change is to rerun the algorithms. Thus, another
important challenge is to develop an adaptive algorithm to respond to changes effectively.

In future studies, other metaheuristic algorithms, such as the adaptive large neigh-
borhood search and genetic programming algorithms, are planned to be tested for their
performance with datasets obtained from larger delivery operations, including not only
postman delivery problems but also problems from other industries.
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Abstract: The utilization of a specific priority rule in scheduling operations in flexible job shop
systems strongly influences production goals. In a context of production control in real practice, pro-
duction performance indicators are evaluated always en bloc. This paper addresses the multi-criteria
evaluating five selected conflicting production objectives via scalar simulation-based optimization
related to applied priority rule. It is connected to the discrete-event simulation model of a flexible
job shop system with partially interchangeable workplaces, and it investigates the impact of three
selected priority rules—FIFO (First In First Out), EDD (Earliest Due Date), and STR (Slack Time
Remaining). In the definition of the multi-criteria objective function, two scalarization methods—
Weighted Sum Method and Weighted Product Method—are employed in the optimization model.
According to the observations, EDD and STR priority rules outperformed the FIFO rule regardless of
the type of applied multi-criteria method for the investigated flexible job shop system. The results of
the optimization experiments also indicate that the evaluation via applying multi-criteria optimiza-
tion is relevant for identifying effective solutions in the design space when the specific priority rule is
applied in the scheduling operations.

Keywords: multi-criteria optimization; simulation optimization; production control; multiple flexible
job shop scheduling; priority rules

1. Introduction

In a competitive environment of manufacturing, production control, including the
scheduling operations via modules associated with a variety of management tools, must
reflect both customer’s demands, and, on the other hand, the production capability, sustain-
ability, and profit. The effective scheduling in a sense of achievement of a high production
performance leads to generating benefits in the form of shortening processing time and
reduction of costs. To ensure the changing requirements effectively and to generate suitable
production schedules, implementation of heuristics, simulation, analytical models [1,2],
artificial intelligence techniques [3], or dispatching rules, especially in case of dynamic
scheduling [4,5], can be employed in this type of decision-making.

In the production sector, scheduling can be in a wider perspective defined as “a
process of arranging, controlling, and optimizing work or workloads” [1]. With regard to
finding the optimal schedule for a specific structure and production system conditions,
the scheduling is considered as a complex combinatorial optimization problem [4], mostly
proved of NP-hard type [1]. Exact optimization methods are mainly used only for the
systems which have a specific topology where very strong simplifying assumptions must be
used [6], so they are not too applicable in a real-world scenario for more complex systems.
In that case, approximate optimization methods and metaheuristics [7] based on stochastic
local search approach, machine learning techniques, especially artificial neural networks
(ANN), fuzzy logic methods, and expert systems, are at the center of research interest to find
optimal or near-optimal solutions [8,9] instead of exact mathematical optimization models.
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In contrast to other methods, dispatching rules (we also use the term priority rules
throughout the following text) represent the valuable practical and dominant approach of
the shop floor control in the complex industry environment [10,11], such as, e.g., in semicon-
ductor manufacturing for solving complex scheduling problems in real-time [12]. Priority
rules are popular because they are characterized by the simplicity of implementation,
satisfactory performance, and a substantially reduced computational requirement [2,11,13].
Nevertheless, the choice of appropriate dispatching rules is not a trivial task and depends
on the relevant key performance indicators [11].

When considering the application of specific priority rule in production control, a
question appears on how the selection of priority rule influences the production perfor-
mance objectives. Years of research on the field of priority rules have shown that in general,
no rule outperforms the others, whereas there are different system configurations, oper-
ating conditions, and production performance indicators [14,15]. This is understandable,
considering that the rules are developed for a specific category of system configurations
involving a specific set of performance objectives, therefore they generally do not work
well in an environment where they were not intended [15].

The impacts generated by the selected priority rule are mostly difficult to explain by
analytical methods [1], thus the simulation is used very often to evaluate the schedule
efficiency in the complex scheduling problem [10,16]. As an illustration, in the simulation
study, Vinod and Sridharan [13] evaluated the performance measures based on flow time
and tardiness of jobs for the different combinations of due-date assignment methods and
seven scheduling decision rules applied in a dynamic job shop system. Xanthopoulos
et al. [5] compared seventeen dispatching rules in the study focused on stochastic dynamic
scheduling problems with sequence-dependent setups. Performance measures were mean
work-in-progress (WIP), mean cycle time, mean tardiness, and a fraction of tardy jobs.

In opposition to the simulation, the optimization approach offers to find the opti-
mal or near-optimal scheduling concerning one or more desired objectives. Specifically,
simulation-based optimization uses metaheuristics to determine nearly optimal parameter
configurations for simulations, and it can solve even complex stochastic combinatorial op-
timization problems. Simulation-based optimization with genetic algorithm applyication
has been successfully applied in the work of Vieira et al. [17]. Freitag and Hildebrandt [18]
applied simulation-based optimization employing multi-objective genetic programming
to solve the complex problem of automated design of scheduling rules for short-term
scheduling in a semiconductor manufacturing environment. The authors investigated
seven standard rules: FIFO (First In First Out), ERD (Earliest Release Date), EDD (Earli-
est Due Date), ODD (Operation Due Date), MOD (Modified Operation Due Date), SPT
(Shortest Processing Time), and CR (Critical Ratio). Additionally, the ODD+ rule was used.
Kuck et al. [11] proposed an adaptive simulation-based optimization approach to select
suitable dispatching rules including FIFO, EDD, FASFS (First Arrival in the System First
Served), CR, ODD, SPT, and MOD rules for each machine in the production system with
different strategies to react to system changes. Solutions obtained via genetic algorithm
were evaluated by applying a discrete-event simulation model.

In the related literature, research performed to investigate the impact of priority rules
on production results in job shop systems has focused mostly on one or two optimization
objectives, such as tardiness, makespan (completion time), mean flowtime, or proportion
of tardy jobs, with one priority rule applied to all the machines on the shop floor. Zahmani
et al. [16] presented a simulation model for makespan minimization using different pri-
ority rules for each machine on the shop floor. Obtained experimental results served for
learning base construction, which was utilized for developing an inference model for the
selection of the most suitable priority rule. In the work of Demir and Erden [19], Genetic
Algorithm (GA) and Ant Colony Optimization (ACO) were used together to obtain the
best combination of dispatching rule, due date assignment rule, and route of all jobs to
minimize earliness, tardiness, and due dates of each job.
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We can find a lot of literature that mainly tackles single and bi-criteria job shop
scheduling problems [20], and more objectives are taken into account rather exceptionally.
The reason is that when reflecting many aspects of production evaluation concurrently,
multi-criteria optimization is needs to be considered to obtain satisfying results for pro-
duction parameters setting. An identification of optimal solution is not trivial in this case
because there is no single solution, but a set of possible optimal solutions, all equivalent in
a mathematical sense. The individual solutions in this set form the so-called Pareto front
(or Pareto frontier) in the objective space [21]. Methods for finding optimal solutions to
the multi-criteria problem are still in progress nowadays, concerning an improvement in
finding very accurate and highly diverse solutions for an approximation of true Pareto
front to offer design-makers a diverse range of design options [22].

In this study, based on preliminary experiments with single-objective optimization
performed for a flexible job shop production system with partially interchangeable work-
stations, we focused on solving the multi-objective problem to evaluate and compare
production results with respect to the priority rule applied for operations scheduling. The
simulation-based optimization of five contradictory production objectives: Average flow-
time, average machine utilization, average work in progress, average number of products,
and an average costs per part unit is connected to the discrete-event simulation model of
one-piece flow type when applying three specific well-known and often studied priority
rules [5]. The rules are FIFO, which considers the order of incoming parts, EDD, which
selects an operation of a part with the closest due date, and STR (Slack Time Remaining),
where an operation of a part with the lowest time reserve is favored. We choose the FIFO
priority rule as the most common one and simplest to implement. The reason for selection
of another standard and very known EDD and STR scheduling principles was that they
outperform other rules in a shortening flow time. It is important for the production of
the type of make-to-order typical for flexible job shops and a lean production concept.
Additionally, EDD and STR were involved in this investigation because they are widely
used in the literature as benchmarks for metrics related to due date [5,23]. Two types of
scalarization methods (Weighted Sum Method and Weighted Product Method) in a priori
arrangement are applied for the definition of multi-objective function in the optimization
model of the production system.

Compared with other related works, the main contribution of this study is considering
more interesting conflicting performance production indicators of various types to offer
the complex view to production results via multi-criteria evaluating many objectives
simultaneously when employing a selected priority rule in scheduling operations. In
addition, based on results of scalar multi-criteria simulation optimization, the global
effective solutions can be recommended as support for decision-making in production
control. Additionally, when solving a multi-criteria optimization problem (MOP), we
have experimented with a modified approach in the transformation of individual objective
functions in a scalar multi-criteria objective function comparing to works in the related
literature. In this context, the most relevant publication to this work is the paper by
Marler and Arora [24] dealing with practical aspects of multi-criteria methods usage and
transformations for scalar multi-criteria objective function that inspired us to employ them
in this work.

The main structure of the paper is as follows. Firstly, we briefly describe the problem
of scheduling operations when priority rules are applied in the scheduling process. In
the next part, a concept of Pareto-optimality in multi-criteria optimization and applied
methods are mentioned. The part concerning the methodology of experiments introduces
the simulation and optimization model and the design of optimization experiments. Finally,
in the last section, we present and compare the obtained results focusing on the practical
aspect of production control.
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2. Scheduling Operations Based on Priority/Dispatching Rules

In job shop production systems, a shop floor control level makes decisions about
all production and material handling resources including order release strategies, batch
sizes, dispatching rules, and schemes related to preventive maintenance [4]. It ensures
the generating production schedule that specifies the decision, at what time, and on
what machine must start and end each job needed for manufacturing to optimize desired
production objective/s.

Scheduling can be defined as the planning process that “deals with the allocation of
resources to tasks over given periods” intending to optimize one or more performance
measures [1]. Scheduling accomplishes two succeeding phases—loading and sequencing.
The loading phase ensures an allocating of released jobs among workplaces. Sequencing
specifies an order for jobs in the queue for the individual machine respecting the assigning
in the loading phase. Grundstein et al. [25] differentiate sequencing into dispatching, which
means an assignment of an order to a station, and queue processing, i.e., the sequence in
which orders in a queue in front of a station are processed.

2.1. Scheduling in the Flexible Job Shop Systems

Flexible job shop (FJS) scheduling addresses problems of specific types of job shop
production systems and faced to more complexity and flexibility comparing to job shop
system scheduling. Generally, in job shop systems of each machine can perform only one
operation for each job which is processed on machines with a given operation time. Flexible
manufacturing job shop systems represent a specific more complex type of the job shop
systems [20]. In FJS, the operation can be performed on any machine selected from a set of
available identical machines with the flexible operation time depending on the processed
product and the selected machine. To define deterministic FJS more precisely, we demand
a set of N jobs to be processed on a set of M work centers. Within each job j, there is a set of
operations that need to be processed in a specific order. Each operation can be processed
by any identical machine of a given set. The processing time of the operation is explicitly
known, and it may vary, depending on the machine on which it is running. The machine
can only perform one operation at a time. The assignment of operation to the machine is
given to the occupancy of the machine and the relevance of the machine to carry out the
operation [7,26], so only some number of routings are possible for individual product.

Solving the flexible job shop scheduling problem means finding a schedule to en-
sure the utilization of sources optimally following production demands. Optimization
techniques for generating a schedule performed in several main modes of scheduling—
a forward scheduling mode, a backward scheduling mode, and a multi-pass mode [1].
The approach of the forward scheduling means that product processing starts in the first
possible time, and jobs are assigned to machines towards the future [27]. Namely, this
approach is built-in in algorithms of computer simulation methods that are employed to
schedule production tasks. In this context, heuristic procedures, nature-inspired methods,
neural networks, and utilizing priority dispatching rules are the most applied methods
to solve the optimization problem in scheduling [1]. The most common metaheuristic
procedures, such as Simulating Annealing [6], Tabu search [12], Random Search, or many
types of nature-inspired optimization methods, such as evolutionary [7,28,29] and genetic
algorithms [18], ant colony optimization [30], or particle swarm optimization [16,19,31],
can provide acceptable solutions near the optimum. Although metaheuristics are advanta-
geous in the sense of the solution quality and robustness, they do not guarantee solution
optimality [1,27], they depend on the choice of method’s parameters [11], and they are
often too complex to implement computationally in a real-time system [2]. To enhance the
efficiency of metaheuristic, a hybrid approach based on combining different methods has
been often proposed by several authors in their works [9,19,32,33].

Objectives related to the scheduling problems can be categorized into three groups—
objectives based on the completion time, due date, and on inventory and utilization
costs [34]. According to an extensive survey [34], flowtime and makespan were the most
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frequent and significant objectives considered in practice because of the minimization of
makespan increases the production system efficiency and minimization of flowtime ensures
a stable resources utilization and minimization of work-in-progress. The optimization of
these two objectives simultaneously reduces the production costs [34].

To include more production aspects, scheduling based on multi-criteria optimization
in job shop systems has been at the center of interest for a long time [9,14]. According to
related literature, the frequently studied performance objectives in this area were, e.g., mean
flow time, the maximum makespan (completion time), the mean weighted completion
time, the mean weighted tardiness, the maximum tardiness, the mean weighted earliness,
the maximum earliness, maximum lateness, the ratio of tardy jobs, or mean WIP (Work In
Progress) [20]. In real practice, the consideration of several performance goals is challenging
from the control aspect because it demands either an a priori decision about the hierarchy
of objectives or a responsive adjustment to varying conditions on the shop floor [23].

2.2. Priority/Dispatching Rules

In a flexible job shop scheduling area, dispatching rules are often applied as part of
the operational control of a manufacturing system. Whenever a machine becomes status
idle and some jobs are waiting and ready to process, the dispatching rule gives the priority
to each job and determines the job with the highest priority to be started [18]. Results of
optimization experiments in studies carried out in job shop systems have demonstrated
that the schedule generation based on priority dispatching rules is a practicable method of
finding good solutions, although without the optimality guarantee [27].

Pinedo [1] gives an overview of the most common and better-known elementary
dispatching rules, together with the type of needed data and an environment where rules
are suitable to apply. The main classification of the rules concerning their time dependence
to static and dynamic and according to the system information to local and global is stated,
too. Additionally, Baker and Trietsch [27] provide a comprehensive overview of dispatching
rules and a comparison of their performance according to different performance measures.
Similarly, for an excellent review of priority rules with an emphasis on the classification
and identification of dominant rules we refer to [23]. Three selected rules FIFO, EDD, and
STR which have been found very often in use [23], and they are relevant to this work are
described below.

FIFO or FCFS (First Come First Served) rule is a simple planning method that is fre-
quently favored because is easy to implement, and no specific information and calculation
are needed. It is a random priority rule [35], the first job arriving at a work center is manu-
factured first and the order of the jobs determined by the pass through the first machine
maintains throughout the system. After completion of the job at one machine, it leaves
the queue at the next machine. Typically, all queues in the system are supposed to operate
on the base rule, therefore, common is an issue with an occurrence of blocking, mainly in
some types of assembly lines due to limited buffers. Although the FIFO rule is considered
to not be very profitable for effective scheduling, it can reach slightly better results than
other rules under some circumstances. In the investigation, Savasci and Herrmann [36]
focused on automotive logistics in a real production environment of job shop production
with replacing stations. They compared fifteen priority rules for delivery reliability and
tardiness. They showed that seven of the rules provided no better solutions than the FIFO
rule already used, whereas others improve the performance.

The EDD rule also belongs to the group of static rules which generate a schedule
taking due date information into account. It can be applied in case, individual jobs have
different due dates, and it belongs to one of the most used rules in practice [23,35]. It
selects the operation associated with the job that has the earliest due date and uses the
target due date as a priority key. The operation with the earliest target completion time
receives the highest priority and is processed first. A list containing all available jobs
ordered to non-decreasing due dates determines the sequence assigned to the machines for
all available jobs [37]. Therefore, to use this rule, the information about the due dates of
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the jobs must be known in an ordinal sense, but we do not have to know job processing
times. This rule and other similar based on due dates information are important in the
customer-oriented complex job shop manufacturing environment. If production works
based on “make-to-order”, the due dates are agreed upon and must be kept. In this case,
the due date adherence is the most significant production objective [25]. The EDD rule
provides outstanding performance when there are sufficient production capacity, light load,
and smaller shop configurations [23]. This coordinate mechanism is mainly useful when
the goal is to reduce job lateness, minimize flow time and it also guarantees minimization
of maximum and variance tardiness [23].

STR, MST (Minimum Slack Time) in [27], or MS (Minimum Slack) in [1] is a static
rule concerning a specific operation, but a dynamic one with respect to a specific job [27],
since the same job has assigned the different relative priorities to its individual operations.
It chooses the waiting operation related to the job with minimum slack time. Slack time
sj of given job j with due date dj and processing time pj at time t is calculated by the
expression (1):

sj(t) = dj − pj − t (1)

that represents the difference between the due date and the earliest possible finish time of
the job [27]. The EDD rule or the STR rule ensures the optimal production performance
when all due dates are sufficiently loose and spread out [1,23].

3. Multi-Criteria Optimization in Scheduling

Multiple conflicting objectives are a natural feature of most production scheduling
environments. Therefore, at first, let us briefly introduce the multi-criteria optimization
problem (MOP) and a concept of identification of MOP solutions based on the notion of
Pareto-optimality and Pareto dominance.

3.1. Multi-Criteria Optimization Problem

In general, we consider a MOP (2) with n decision variables and k objectives (k > 1).
Solving MOP is a procedure of simultaneous optimization of a set of k individual objective
functions Fi (x) subjected to constraints given by the system of inequalities and equalities.
It can be represented in the form (2):

Minimize
x ∈ D F(x) = [F1(x), F2(x), . . . , Fk(x)]

T ; k > 1
subject to gs(x) ≤ 0, s = 1, 2, . . . , m; m ≥ 0,

hl(x) = 0, l = 1, 2, . . . , r; r ≥ 0.

(2)

Vector x is the decision vector in the feasible region D in n-dimensional design (deci-
sion) space, constrained by inequalities xL ≤ x ≤ xU. In case of a combinatorial problem,
the D region is discrete. Vector F(x) ∈ Ek consists of k objective functions Fi(x): En → E1
in the feasible objective (criterion) space Z, Z ⊂ Ek. As a result of solving MOP, if the
objectives Fi(x) are conflicting, one cannot be able to find one single solution as the best
one, rather a set of trade-offs, all with a compromising nature. Due to the absence of
an absolute ordering in the vector space, the way how to identify MOP solution is via
the preference relationship of partial preorder based on Pareto relation. It is built on the
following associated definitions:

Pareto dominance: A decision vector x (x ∈ D) (Pareto) dominates a decision vector y
(denoted x ≺ y) if and only if Fi(x) ≤ Fi(y) ∀ i ∈ {1, 2, . . . , k} ∧ Fi(x) < Fi(y) for at least
one i ∈ {1, 2, . . . , k}, k ≥ 2.

Pareto optimality: A solution x ∈ D is Pareto optimal if does not exists any other
x′ ∈ D that dominates x [34].

The set of Pareto optimal solutions is called the Pareto optimal set. Its image in the
objective space is referred to as the Pareto optimal front [38]. Pareto optima correspond
to “best trade-off’ solutions between different conflicting criteria” [39]. From a geometric

150



Appl. Sci. 2021, 11, 2783

perspective, the Pareto front represents a hypersurface in k-dimensional space of objective
functions, where all non-dominated solutions are located.

The optimal solution of MOP can be also characterized by terms of efficient solution
and non-dominated solution according to space where the MOP solutions are located.
Typically, efficiency refers to a vector of design variables in the design space, whereas
dominance refers to a vector of functions in objective space [24]. These basic terms are
explained by the following definitions, adopted from Marler and Arora [24]:

A feasible solution x* situated in design (decision) space D is efficient if and only if
there does not exist any other x ∈ D such that F(x) ≤ F(x∗) with at least one Fi(x) < Fi(x∗).
With relation to the objective space, a corresponding vector F(x∗) in the objective space
is non-dominated if and only if there does not exist another vector F(x) ∈ Z such that
F(x) ≤ F(x∗) with at least one Fi(x) < Fi(x∗). That means all non-dominated solutions
dominate the others, but do not dominate themselves.

Both introduced definitions represent a similar idea and “a recipe” for how to identify
Pareto-optimal solutions via a vector´s coordinates comparison. We will use the term
Pareto-optimal solution in the sense of non-dominated solution yielded by solving MOP
throughout the following text. For an excellent survey of multicriteria scheduling, we
refer to the book by T’Kindt and Billaut [39]. Additionally, Hoogeveen [40] provided a
comprehensive introduction and survey of research results in multicriteria scheduling.

In the context of scheduling problems with multiple objectives, the concept of Pareto-
optimality acts as commonly accepted. Pinedo [1] states that “a schedule is Pareto-optimal
if it is impossible to improve on one of the objectives without making at least one other
objective worse”. The idea of Pareto-optimality in MOP solving implies the existence of the
set of trade-off solutions instead of one single solution, therefore an expert in a position of
decision maker (DM) is needed to support the identification of the most preferred solution
of all available. If a priori method of MOP solving is used, DM expresses the preferences
at the start of a solving process. In the case of the a posteriori method, the selection of
MOP solution is generated after finding a set of optimal solutions. An interactive method
is employing DM preferences directly into the running process of solving.

Within the classification of the a priori methods, several approaches are developed
to deal with multi-objective scheduling problems in a priori arrangement. To mention
some of them, in a hierarchical approach, the objectives are ranked in priority order
and optimized in this order. In goal programming, all the objectives are considered as
constraints expressing satisficing levels, and the aim is to obtain a solution that offers
a value as close as possible to the desired goal for each objective. One objective can
also be selected as the main one and then an optimized subject to other objectives [14].
The utility approach is based on an aggregation of multiple optimization objectives into
one single utility or weighting function. The utility function very frequently employs a
weighted linear combination of the objectives, and it represents the composite objective
function in the most popular Weighted Sum Method (WSM). Marler and Arora [24] present
other methods from the utility approach category, such as the more general weighted
global criterion method, or weighted min-max method, weighted product method, and
exponential weighted criterion method.

3.2. Applied Multi-Criteria Optimization Methods

In this study, the utility approach was employed to compare production system
performance under different priority rules via WSM and Weighted Product Method (WPM).

WSM belongs to the most common scalarization procedure in the literature. It is a
special type of global criterion method, expressed by the weighted sum of k individual
objectives Fi (3):

U =
k

∑
i=1

wi.Fi ; wi > 0 ;
k

∑
i=1

wi = 1 (3)

where weights wi as method parameters are used to model preferences. Assuming the
vector w is fixed, then minimizing U function (3) is a necessary and sufficient condition
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for Pareto optimality under convex constraint conditions (Geoffrion’s theorem [39]). This
method suffers from a well-known disadvantage related to the geometric point of view.
Since the scalar MOO function is generated as a linear combination of individual objective
functions, the ability to yield the Pareto optimal solutions is restricted to the convex part of
Pareto front only. Despite it, this method is rather popular in the application in a job shop
scheduling area. To mention works that solved multicriteria problems applying WSM or
via sum approach, e.g., Loukil et al. [14] published an extensive study of model types of
production systems with seven objective functions studied alone or in different mutual
combinations, and compared to the results in the literature. To perform multicriteria
optimization, they used the multi-objective simulated annealing procedure for solving
a given combinatorial optimization problem. Adibi et al. [9] studied dynamic job shop
scheduling problems considering makespan and tardiness simultaneously when employing
a variable neighborhood search method and ANN for finding optimal rescheduling. The
work of Huang and Yu [41] addressed a multi-objective job-shop scheduling problem with
equal-size lot splitting. It was solved via hybrid ant colony optimization-based algorithms.
In the paper, the authors minimized scalar objective function generated in the form of the
weighted sum of makespan, tardiness, and lot-splitting cost with an accent to issue related
to lot-splitting of jobs and tradeoff between lot-splitting costs and makespan. To compare
the effect of the first employed multi-objective method, the Weighted Product Method
(WPM) was selected. The utility function U based on the multiplication of k objectives Fi
was expressed in the form (4).

U =
k

∏
i=1

Fi
wi ; wi > 0 ;

k

∑
i=1

wi = 1 (4)

Weights wi represent the relative importance of the individual objectives [24]. WPM
is known mostly as a component of decision making methods in the Multiple Criteria
Decision Making (MCDM) domain [42–44]. It supposed that the potential nonlinearities
in the utility function and resulting computational issues can be the reason for lack of
extensive application of this method [24]. According to Mateo [45], a major weakness
of the method is that it overestimates the extremes leading to undesirable results, as it
significantly favors/disfavors the final evaluation of any alternative that is far from the
average in relation to one criterion.

4. Experimental Study

The effect of linking priority rules and multi-criteria optimization methods on opti-
mization of production goals in the studied production system was explored via simulation-
based optimization experiments performed in two phases. At first, single objective experi-
ments were needed to find reference points for the transformation of production objectives.
Secondly, multi-objective optimization according to general formulation (2) was conducted
to determined MOP solutions for both WSM and WPM methods applied in definitions of
multi-criteria objective functions in an optimization model (Equations (3) and (4)) when
three different priority rules were consequently applied.

4.1. Simulation Model

The discrete-event simulation model in this study represents a hypothetical partially
flexible job-shop production system adopted from [46]. It can be categorized as such a class
of production systems that produce smaller numbers of different types of products accord-
ing to several routings in a one-piece flow way, especially following the lean production
concept. Regarding to its flexibility, some operations are only achievable on part of the
available machines.

The model system has been built to maintain the main characteristics of FJS, which are
mentioned in the Section 2.1. It meets the typical demands regarding the jobs and machines
assumed in the deterministic flexible job shop scheduling problem [5,20,27]:
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• All machines and all jobs are available at time t = 0.
• The number of jobs and machines are assumed to be finite;
• a job cannot be processed by two machines at the same time;
• each machine is always accessible for production, i.e., no machine breakdowns or

order cancelations are supposed;
• the machine can execute only one operation at a time on any job;
• an operation of a job cannot be performed until its preceding operations are completed;
• once started operation must not be interrupted;
• operation is processed by any machine from a given set;
• the model does not include any assembly operations.

The studied model system consisted of six partially interchangeable machines with
their input and output buffer [46]. A total of seven types of operations (A, B, C, D, E, F,
G) were performed in the production system. The system manufactured four types of
products, each with the specified determination of the sequence of four operations (that
cannot be interchanged) defined in Table 1.

Table 1. Definition of order operations for coming parts.

Product Type Operations Order

1 A, G, B, F
2 C, B, D, F
3 D, F, G, E
4 G, E, A, C

Transportation of parts between buffers was ensured by conveyors with sensors that
allow identifying every coming part. If the appropriate attribute of a part was detected,
then the part was accepted for the next processing. The interchangeability of workplaces
according to the operations possible to perform at individual machines in the system is
shown in Table 2.

Table 2. The interchangeability of workplaces.

Workplace Number Possible Operation Performance

1 A, C, D
2 A, F, G
3 B, C
4 D, E, G
5 B, F, C
6 E, G

In this study, we implemented consequently selected priority rules FIFO, EDD, and
STR to define the order in which the individual operations will be done. This order was
determined by the calculated priority with respect to the rule performing. When imple-
menting priority rule EDD into the simulation model, the priority key for the operation
associated with a given job was updated with respect to the earliest due date information.
In the case of the STR priority rule, Equation (1) was used for the calculation of the priority.
Based on the determined priority rule, the machine always selected the operation that had
the highest priority of all. If multiple operations had the same priority, these operations
were grouped randomly. If the next operation can be done on different machines, the
machine with minimal setup costs was selected to process it.

The simulation model was designed and built in such a way that it involved the
possibility of choice of priority rule at the start of simulation. After selecting the priority
rule by the user, the studied system was fully deterministic. Neither breakdowns due
to order cancellations nor machine failures were allowed. All internal parameters, such
like operation and setup times, and all costs items were keeping as constants during
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experiments, too. Most of operation times slightly differed due to the type of processing
operation and type of product. Every machine was set up when the type of operation was
changed. To simplify the investigated problem, the question of the impact of the different
range of operating times was not included in the design of simulation experiments. The
detailed information about operation times and costs for individual operation is given in
Table 3.

Table 3. Values of internal system parameters.

Product Type Routing Operation Time Costs for Operation

1

A 4 5
G 6 7
B 5 6
F 3 4

2

C 5 6
B 4 5
D 3 4
F 4 5

3

D 3 4
F 3 4
G 5 6
E 3 4

4

G 5 6
E 3 4
A 4 5
C 4 5

The model of the production system was created in simulation software Witness
Horizon ver. 22, developed by Lanner. Simulation environment of Witness Horizon is
designed for modelling, simulation, predictive analytics, and optimization of production
and logistic processes, or services with the aim to verify consequences of different scenarios
in the virtual world via simulation, or to find an effective set of system parameters. We used
it for simulation and optimization experiments in the presented study. The discrete-event
simulation model is depicted in Figure 1.

Figure 1. Simulation model of a flexible job-shop production system [46].
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4.2. Preliminary Simulation Experiments

Conditions of optimization experiments were proposed on the base of preliminary
simulation experiments performed on the presented simulation model for three priority
rules consequently in Witness simulator. The experiments served for understanding
the simulation model’s behavior under different loadings and its limits associated with
production results.

Different loadings were modelled by changing the time between arrivals (inter-arrival
time) for the entry of each of four parts in the range 1 min to 20 min. Each of the parts
entered in one piece lot size to the system.

Simulation runs lasted 1440 min, which represented standard period of 1 day covering
three shifts. The warm-up period of 90 min was found out as the period which is needed
to produce one product of each four types using simulation.

As system response, we observed values of five production indicators: Average
flowtime (min.), average machine utilization (%), average work in progress (pcs), average
number of products (pcs), and the average costs per part unit (€) as outputs from simulation
runs. These experiments showed production limits according to the design variables and
rules setting.

4.3. Optimization Model

When considering the avoidance of the extreme situations in production, which mean
too few processed products and, on the other hand, the system overload, the space of
design variables for optimization was determined as a four-dimensional domain defined
by time between arrivals for the entry of each of four products in a reasonable range of
8 min to 16 min, based on the simulation results for this system. In this case, the modelled
system showed acceptable values of production goals for all three priority rules.

Based on observed production results, the suitable values of constraints of produc-
tion goals for optimization model were also suggested. As for the machine utilization
constraints, from the practical point of view referring to [35], the decision was influenced
by the fact that the machine utilization more than 80% generally corresponds to moderate
and heavy shop load level in job shops. The constraints concerning production objectives
applied in all optimization experiments are specified in Table 4.

Table 4. Constraints for optimization experiments.

Production Goal Constraint

Average flow time (min) <180
Average machine utilization (%) >80

Average number of products (pcs) >400

The optimization objectives represented five selected aforementioned key performance
indicators: Average flowtime, average machine utilization, average work in progress,
average number of products, and the average costs per part unit. For MOP solving, they
were combined into two types of scalar multi-criteria objective functions. This scalarization
procedure generating multi-criteria objective function based on WSM and WPM methods
(Equations (3) and (4)) is described in detail in the following paragraphs.

4.3.1. Transformation (Normalization) of Production Objectives

When applying a weighted sum approach or other types of scalarization, it is reason-
able to normalize individual objectives Fi entering the scalar multi-objective function to
avoid the scaling effects and thus ensure their comparable impact in the objective function
expression. We utilized the transformation which represented a robust min-max type of
normalization. It can also be referred to as the upper-lower-bound transformation in the
literature [47]. This transformation and many other potential ones are provided in a survey
by Marler and Arora [24] in a comprehensive overview. The applied robust transformation
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was in this study implemented in a form (5) involving two so-called reference points as
maximal and minimal values of the individual objective functions Fi.

Ftrans f orm
i =

Fi − FW
i

FU
i − FW

i
(5)

Here, the transformation (5) includes a component of an ideal point [38] vector FU
i

(maybe replaced the point, referred also as a utopia point [23]) and a component of the
worst point vector FW

i . They represent the unreachable solution for individual production
objectives as the best (ideal), and as the worst one. The ideal point vector FU is determined
as the optimum of the single-criterion function according to the optimization goal regard-
less of other objectives. Vector FW is composed of the worst values of production goals,
obtained from single-optimization experiments. Value Fi in the expression (5) represents the
individual objective value, resulted from the simulation run. The transformation scheme
ensures the same range and magnitude for all objectives within the range between 0 and
1. Comparing to works [24,47] where the distance between solution Fi and utopia point
is minimized, we modified the transformation scheme to (5) and maximized the distance
between solution Fi and the worst point.

4.3.2. Single-Objective Optimizations

The presented approach demanded to find the minimum and maximum value for
each of five selected production goals with respect to constraints presented in Table 4. We
used a set of single-objective optimizations for this purpose instead of an estimation [24,38].
The objective functions for obtaining ideal and worst points were optimized according to
the type of production objective. The objective functions and target of optimization for
each of them are shown in Table 5.

Table 5. The target of the single-objective optimization.

Objective Function
Optimization Target When

Finding Ideal Point
Optimization Target When

Finding Worst Point

Flow time minimize maximize
Costs per part unit minimize maximize
Work in progress minimize maximize

Machine utilization maximize minimize
Number of products maximize minimize

Simulation environment Witness Horizon includes the optimization module Exper-
imenter with its Advanced Mode for the performance of simulation-based optimiza-
tion. Implemented optimization algorithms comprise Random solutions, Hill Climb,
Min/Mid/Max, and All Combinations algorithms, and metaheuristic, such as Adaptive
Thermostatistical Simulated Annealing (SA). The optimum of the individual objective
functions representing production goals was obtained via simulation-based optimization
in two steps. Firstly, employing a metaheuristic algorithm briefly explored the design
space with respect to the local optima at the beginning of optimization process. None of
the values reached by SA represented global optimum, only local ones, therefore we did
not present them. Secondly, we used the Brute Force algorithm All Combinations, which
runs all constrained combinations of design parameters. The optimization process via the
All Combinations algorithm was time consuming, but with the guarantee that the optimal
solution will be found. For all experiments, the length of the one simulation run was set
up to 1440 min and the warm-up period was 90 min. We used one replication for one
simulation run due to the deterministic nature of the model. The resulted values of the
ideal and worst points are listed in Table 6.
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Table 6. Results of single-objective optimization of production objectives. FIFO: First In First Out; EDD: Earliest Due Date;
STR: Slack Time Remaining.

Priority Rule Single-Objective Function
Coordinates of the Ideal Point

in the Objective Space
Coordinates of the Worst Point

in the Objective Space

FIFO

Flow time 47.534 179.884
Costs per part unit 31.645 37.507
Work in progress 3.189 21.229

Machine utilization 87.245 84.902
Number of products 467 421

EDD

Flow time 45.128 179.527
Costs per part unit 31.410 37.297
Work in progress 2.637 22.109

Machine utilization 89.283 82.096
Number of products 482 429

STR

Flow time 44.892 179.934
Costs per part unit 31.250 37.455
Work in progress 2.747 22.034

Machine utilization 89.449 83.508
Number of products 479 433

4.3.3. The Formation of Scalar Multi-Criteria Objective Functions and Conditions
of Optimization

After the determination of all reference ideal and worst points necessary for the trans-
formation of production goals, further experiments based on respecting all five production
goals simultaneously are carried out under the same conditions. The scalar multi-criteria ob-
jective functions for each of the three priority rules were built on WSM and WPM methods.

Multi-objective UWSM function (6) was formed on the base of the Weighted Sum
Method (defined by Equation (3)) as the linear combination of the normalized individual
objectives Ftrans f orm

i expressed by (5) using the weight vector w.

UWSM =
k

∑
i=1

wiF
trans f orm
i , wi > 0 ∀i,

k

∑
i=1

wi = 1 (6)

All components wi were equal to the value 0.2 to not give priority to any of five
production goals. Due to the normalization of objectives given by (5), the structure of the
proposed scalar objective function UWSM demands the maximization of (6) to lead to the
single preferred Pareto optimal solution finding.

When adopting the Weighted Product Method (defined by Equation (4)) with the
same settings of weights, UWPM function is defined by Equation (7), and, on the contrary,
the minimization of (7) yields the Pareto optimal solution.

UWPM =
k

∏
i=1

(
Ftrans f orm

i

)wi
, wi > 0 ∀i,

k

∑
i=1

wi = 1 (7)

The objectives that need to be maximized were transformed using a reciprocal of (5).
Box 1 and 2 contain an example of code which shows the transformation in WSM and

WPM-based multi-criteria objective functions for EDD priority rule, written in the versatile
WITNESS Action Language. (WITNESS also supports external code libraries written in
common languages such as C++, C#, and VB.net).
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Box 1. A code in a body of Weighted Sum Method (WSM)-based objective function using EDD
priority rule in simulator.

IF Number_of_products >= 400 AND Flow_Time <= 180 AND Machine_utilization >= 80
RETURN 0.2 * ((Number_of_products − 429)/(482 − 429)) + 0.2 * ((Work_in_progress −
22.109)/(2.637 − 22.109)) + 0.2 * ((Flow_Time − 179.527)/(45.128 − 179.527)) + 0.2 * ((Ma-
chine_utilization − 82.096)/(89.283 − 82.096)) + 0.2 * ((Costs_per_part_unit − 37.297)/(31.410
− 37.297))
ELSE
RETURN 0.2 * ((Number_of_products − 429)/(482 − 429)) + 0.2 * ((Work_in_progress −
22.109)/(2.637 − 22.109)) + 0.2 * ((Flow_Time − 179.527)/(45.128 − 179.527)) + 0.2 * ((Ma-
chine_utilization − 82.096)/(89.283 − 82.096)) + 0.2 * ((Costs_per_part_unit − 37.297)/(31.410
− 37.297)) – 10
ENDIF

Box 2. A code in a body of Weighted Product Method (WPM)-based objective function using EDD
priority rule in simulator.

IF Number_of_products >= 400 AND Flow_Time <= 180 AND Machine_utilization >= 80
RETURN ((482 − 429)/(Number_of_products − 429)) ** 0.2 * ((Work_in_progress − 22.109)/(2.637
− 22.109)) ** 0.2 * ((Flow_Time − 179.527)/(45.128 − 179.527)) ** 0.2 * ((89.283 − 82.096)/(Ma-
chine_utilization − 82.096)) ** 0.2 * ((Costs_per_part_unit − 37.297)/(31.41 − 37.297)) ** 0.2
ELSE
RETURN ((482 − 429)/(Number_of_products − 429)) ** 0.2 * ((Work_in_progress − 22.109)/(2.637
− 22.109)) ** 0.2 * ((Flow_Time − 179.527)/(45.128 − 179.527)) ** 0.2 * ((89.283 − 82.096)/(Ma-
chine_utilization − 82.096)) ** 0.2 * ((Costs_per_part_unit − 37.297)/(31.41 − 37.297)) ** 0.2 +
10
ENDIF

For other rules, the form of body function was created analogically, with corresponding
ideal and worst points shown in Table 6. In all cases, the same weights of 0.2 were used as
parameters expressed a priori articulated decision-maker´s preferences. Independently on
the type of objective function, the key optimization idea was to ensure the maximization
of a distance between the solution and the worst point. As can be seen in Box 1 and 2,
all objective functions were constrained by the values presented in Table 4. For these
optimization experiments, simulation-based optimization with All Combinations algorithm
was applied with one replication for one simulation run lasting 1440 min, with the warm-up
period 90 min to find global optimum.

5. Experimental Results

The performed optimization experiments were of two categories. Firstly, the single-
objective optimizations exploring 4096 scenarios for each of the three priority rules were
conducted to find the reference points involved in the robust transformation of production
objectives (with the aims given in Table 5). All results were obtained under the same
conditions, which are described in previous section with respect to design space, objective
functions, constraints, and conditions of simulation runs.

The column graph in Figure 2 shows a comparison of ideal point values when applying
different priority rules.
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Figure 2. The comparison of the ideal point values with respect to different priority rules.

Analogically, Figure 3 depicts a comparison of obtained values of the worst point. All
data were presented in Table 6 above.

Figure 3. The comparison of the worst point values with respect to different priority rules.

Secondly, the experiments focused on multi-criteria optimization carried out to acquire
the optimal daily production results according to given a priori preferences. When applying
the WPM method, the minimization of objective function regarding the best and worst
values of production performance, introduced in Box 2 and subjected to constraints, was
performed. On the contrary, the objective function built via WSM scalarization method
presented in Box 1 was maximized. In contrast to the approach in the works of Marler and
Arora [24] or Xiang et al. [47], where the distance of the solution to the ideal point was
minimized, we modified the structure of scalar objective function so that the maximization
of the distance between solution and the worst point was needed.
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The individual values of five production objectives for obtained optimal solutions
in objective space applying WSM and WPM methods linked to three selected scheduling
principles are shown in Table 7.

Table 7. Results of multi-criteria optimization based on scalarization for three priority rules.

Scalarization
Method

Priority Rule
Optimum of
the Objective

Function

Number of
Products

(pcs)

Flow Time
(min.)

Work in
Progress

(pcs)

Machine
Utilization

(%)

Costs Per Part
Unit
(€)

WSM
FIFO 0.826 460 69.173 5.544 86.569 31.940
EDD 0.879 472 60.377 4.453 87.923 31.577
STR 0.883 475 60.649 5.000 88.039 31.719

WPM
FIFO 1.042 447 47.946 3.826 82.756 31.766
EDD 1.050 452 45.360 3.004 83.590 32.043
STR 1.014 455 46.399 2.778 84.315 31.971

The graphical comparison of production goals obtained employing WSM and WPM
methods for three different priority rules is presented in Figure 4a–e.

 
(a) 

 
(b) 

Figure 4. Cont.
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(c) 

(d) 

(e) 

Figure 4. The comparison of production goals when applying two multi-criteria methods with
different priority rules. (a) Number of products; (b) machine utilization; (c) flow time; (d) work in
progress; (e) costs per part unit.161
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On the basis of obtained production goals as nondominated solutions in objective
space presented in Table 7, the four design variables—the times between arrivals for entry
of each of four parts P1, P2, P3, and P4 (the inter-arrival times (IATP1—IATP4)) were
identified as effective solutions in the design space. They are presented for both methods
and three priority rules in Table 8.

Table 8. Design input values of the inter-arrival times for parts P1—P4 in the design space corre-
sponding to optimal production outputs (shown in Table 7) in objective space.

Scalarization
Method

Priority Rule
IATP1
(min.)

IATP2
(min.)

IATP3
(min.)

IATP4
(min.)

WSM
FIFO 12 15 15 9
EDD 12 15 14 9
STR 14 13 13 9

WPM
FIFO 15 15 15 9
EDD 14 14 14 10
STR 15 12 15 10

In this work, we address not only solving multi-objective optimization problem in
scheduling itself, but also the way, how to evaluate the impact of the applied priority rule
to the production results via obtaining the trade-off solution, and comparing it to the best
values of many production goals determined by limits of the studied system. To compare
the obtained trade-off solutions, simple ordering based on obtained optimization results
presented in Table 7 from the best one (1.) to the worst (5.) according to the optimization
target for each of the production objectives was assigned. In addition, an average of the
order values was calculated to evaluation the less is better, as it is presented in Table 9.

Table 9. The individual ordering production goals values according to the results of multi-criteria optimization.

Scalarization
Method

Priority Rule
Number of

Products
Flow Time

Work in
Progress

Machine
Utilization

Costs Per
Part Unit

Average of
the Order

Values

WSM
FIFO 3. 6. 6. 3. 4. 4.4
EDD 2. 4. 4. 2. 1. 2.6
STR 1. 5. 5. 1. 2. 2.8

WPM
FIFO 6. 3. 3. 6. 3. 4.2
EDD 5. 1. 2. 5. 6. 3.8
STR 4. 2. 1. 4. 5. 3.2

On the base of average values relating to the ordering given in Table 9, we assigned
the final ranking to each of the applied methods in the conjunction with the evaluated
priority rule to determine the best performance result. A ranking “1” was given to the rule
with the method that provided the best performance, i.e., to the summarized evaluation
with the smallest average value. A ranking “2” to the next one, etc. The result of the final
evaluation is introduced in Figure 5.

Finally, we compared the obtained compromise solution for the best evaluated schedul-
ing to the coordinates of an unfeasible ideal point when the EDD priority rule was employed
in production control. The differences due to the compromise character of the solution are
presented in Figure 6.
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Figure 5. Ranking of applied methods of multi-criteria optimization in the conjunction with selected priority rule.

Figure 6. The comparison of coordinates of the ideal point for the EDD priority rule and the best evaluated compromise
solution yielded by WSM + EDD.

6. Discussion

The obtained experimental outcomes reflect the dynamical structure of the system
determined by applied priority rule. As the precise analytical expression of the trans-
formation of input parameters (time between arrivals for the entry of the parts) to the
outputs (production goals) is not known, all objective function values were determined by
simulation in a simulation-based optimization process.

The results of experiments related to single-objective optimization of production
objectives, which are presented in Table 6 and compared in Figures 2 and 3, show that
priority rules EDD and STR provided the comparable ideal and worst values for almost all
production objectives in the studied model system. That means the daily production limits
of the investigated production system according to both rules were similar, therefore the
reference points would have to influence the MOP solution only insignificantly. The ideal
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and the worst values were applied in the robust transformation involved in both employed
multi-criteria optimization methods in the next step.

The following optimization experiments were conducted with the focus on comparing
results of multi-criteria optimization with the relation to the evaluation of reached pro-
duction goals, respecting the implemented specific priority rule. The results presented
in Table 9 demonstrate that there does not exist a single dispatching rule that achieves
the highest ranking in the connection to applied multicriteria methods according to all
observed performance objectives. As can be seen in Figure 5, according to the type of scalar
objective function used in the multi-criteria optimization, the best ranking overall was
obtained for the WSM when the EDD priority rule was applying. Very similar although
slightly worse results were achieved by the WSM using the STR rule. Both scalarization
methods in the presence of the FIFO priority rule achieved the worst results with a rela-
tively large loss. The result has confirmed what, e.g., Kemppainen [23] states, that the FIFO
rule is not recommended for manufacturing operations since it is usually overcome by any
other priority rule.

The presented findings point to that employing the EDD and STR rule brought similar
production performance results in the context of the complex view to obtained compromise
solutions in the studied production system. The relatively long inter-arrival times for
EDD rule presented as effective solutions in design space in Table 8 are in consonance
with the fact that due date based dispatching rules are expected to work well at low
utilization levels [35], and outperformed other rules under light load and smaller job shop
configurations [23].

Based on the findings of this investigation, a practical suggestion for production how
to set up the input arrival time of each of four entering parts into the system under the
specific rule can be proposed. It is determined by design variables presented in Table 8.
When utilizing the EDD rule and WSM method, the effective solution is following the
values of the design vector (12; 15; 14; 9), determined in minutes. Comparing to the
unreachable best results determined by ideal point, the loss of production performance is
2.07% for an average number of manufactured products, 25.26% for an average flow time,
1.52% for average machine utilization, 40.78% for average work in progress, and 0.52% for
average cost per part unit, respectively.

As for the recommendation of input arrival times when utilizing the STR rule with
WSM, it is the design vector (14; 13; 13; 9), determined in minutes. The loss when comparing
the compromise solution to the best values in case of setting relating to the WSM+STR
rule, is 0.84% for an average number of manufactured products, 25.98% for an average
flow time, 1.58% for average machine utilization, 45.06% for average work in progress, and
1.48% for average cost per part unit.

For the setup of design variables going up from the WPM + STR rule, the suggested
design vector is (15; 12; 15; 10), determined in minutes. The corresponding loss is 5.01%
for an average number of manufactured products, 3.25% for average flow time, 5.74% for
average machine utilization, 1.12% for average work in progress, and 2.26% for average
cost per part unit, respectively, all in the relation to the values of ideal point.

Despite the weights in scalar objective function were the same, we can notice that in
contrast to WSM methods that prioritized some of the production objectives, the compro-
mise solution yielded by WPM is in a relative evaluation more balanced. In this context, the
results confirmed that the scalarization methods applying in a priori arrangement bring the
problem with the precise reflection of the weights to desired Pareto optimal solutions [24].
The coordinates of the weight vector serve as the model parameters in a multi-objective
function and influence the location of Pareto front points.

When exploring the compromise solutions found in the objective space from the
perspective of the production goals control, we can see a noticeable impact of the applied
scalarization method on the evaluation of production results. The comparison of the
reached results in Figure 4a–e shows that all production goals that we wish to maximize,
such as the number of products and machine utilization, were substantially higher in
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the case of the WSM method employed, regardless of the applied priority rule. On the
contrary, the WPM method provided better results for production goal values that need to
be minimized. As we can see in Figure 4, the production objectives, such as the average
flow time and the average work in progress, achieved smaller values in comparison to
results yielded by the WSM method. Finally, in the case of the average costs per part unit,
we can notice very similar and comparable results for all applied methods.

Working with many contradictory objectives assumes that they are not completely
independent, and a correlation can appear between some of them. As can be noticed in the
results introduced in Figure 4, there exist two pairs of objectives which are correlated. We
can observe the positive correlation between the number of products and machine utiliza-
tion (Figure 4a,b), as well as between flow time and work-in-progress (Figure 4c,d). We
supposed that correlations, applied transformation of production objectives, and different
expressions defining the structure of objective function themselves could explain the ob-
tained results significantly. To evaluate the direct influence of correlations on optimization
results will need further experiments with a reduced set of objectives.

The rankings of priority rules strongly depend on selected performance measures
involved in evaluation and the structure of the production system model itself. The
interesting different approach, how to optimize multiple objectives in flexible job shop
system, is introduced in a comparative study in the work of Sels et al. [48]. They conducted
single-objective optimizations for five individual objectives in the presence of 30 priority
rules consequently to evaluate the individual performance objective with respect to the
scheduling principle. The observed objectives were makespan, mean flow time, proportion
of tardy jobs, mean tardiness, and maximum tardiness. As for ranking of rules, each priority
rule’s performance was measured as the percentage deviation from the best performing
priority rule. Based on the best results via ranking, they constructed the hybrid scheduling
rule to ensure optimization of all five objectives simultaneously. EDD and Slack (called
STR in our study) rules were the part of the hybrid priority rules in the top 5 of the priority
rules that performed best on the five objective functions. Their experiments showed that
an integrated optimization approach outperforms the hierarchical approach when solving
the flexible job shop scheduling problem [48].

7. Conclusions

In this study, we presented the results of the wider investigation of common priority
rules FIFO, EDD, and STR applied in the partially flexible job shop system in terms
of several conflicting production performance indicators evaluated simultaneously. We
employed scalar multi-criteria simulation-based optimization in a priori arrangement to
identify the impact of applied priority rule to production results. From this perspective,
the evaluation of the influence of the applied priority rule and system loading to daily
production for five selected production objectives at the same time based on MOP solving
offers the possibility to find effective settings of external input parameters with respect to
the scheduling principle, and it can support decision-making in production control.

Combination of metaheuristic algorithm Simulated Annealing and full combinatorial
analysis in the final phase of the optimization process yielded a global solution of defined
MOPs for each of the selected priority rules. The experimental results demonstrated that
the found compromise solutions strongly depended on a selected scalar multi-criteria
method and applied priority rule. Although the weights in the scalar objective function
were the same, based on the performed experiments, we can conclude that results for
production goals which need to be minimized were better when the WPM method was
applied, in contrast to WSM, which developed the values of other production objectives,
regardless of the employed priority rule. EDD and STR priority rules were shown as more
suitable than the FIFO rule, both with comparable production performance.

Despite these facts, from the complex point of view, all effective solutions in the
design space resulted from scalar multi-criteria simulation-based optimization obtained
independently from the applied rule and applied optimization method, and were situated
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in the area connected to the lower production system load. For the modelled production
system, the recommended settings for inter-arrival time of entering part for four types of
manufactured products were presented to obtain acceptable values of production goals.

Future research will be focused on other multi-criteria method applications, and the
question of the effect of other priority rules is still open. The evaluation of stochastic system
performance will be in the center of interest, too.
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Abstract: The ABC classification problem is approached as a ranking problem by the most current
classification models; that is, a group of inventory items is expressed according to its overall weighted
score of criteria in descending order. In this paper, we present an extended version of the Hadi-Vencheh
model for multiple-criteria ABC inventory classification. The proposed model is one based on the
nonlinear weighted product method (WPM), which determines a common set of weights for all
items. Our proposed nonlinear WPM incorporates multiple criteria with different measured units
without converting the performance of each inventory item, in terms of converting each criterion
into a normalized attribute value, thereby providing an improvement over the model proposed by
Hadi-Vencheh. Our study mainly includes various criteria for ABC classification and demonstrates
an efficient algorithm for solving nonlinear programming problems, in which the feasible solution
set does not have to be convex. The algorithm presented in this study substantially improves the
solution efficiency of the canonical coordinates method (CCM) algorithm when applied to large-scale,
nonlinear programming problems. The modified algorithm was tested to compare our proposed
model results to the results derived using the Hadi-Vencheh model and demonstrate the algorithm’s
efficacy. The practical objectives of the study were to develop an efficient nonlinear optimization
solver by optimizing the quality of existing solutions, thus improving time and space efficiency.

Keywords: non-linear programming; Hadi-Vencheh model; multiple criteria ABC inventory classification;
nonlinear weighted product model

1. Introduction

To facilitate the successful management of a growing number of stock-keeping units (SKUs),
inventory managers have found that inventory classification systems provide essential context for
evaluating inventory management. ABC analysis is one of the most frequently used inventory
classification techniques. Raw materials, subassemblies, intermediate products, parts, and end
products can be divided into three classes: A (very important items), B (moderately important items),
and C (relatively unimportant items). The ABC classification problem is presented as a ranking problem
by the most current classification models [1–3]; that is, a group of inventory items is represented
according to its overall weighted score of criteria in descending order. The idea of ABC analysis was
applied to the inventory management at General Electric during the 1950s. This approach is based
on Pareto’s famous theory of inequality in the distribution of incomes. A conventional ABC study is
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conducted on the basis of one criterion: the annual dollar usage (value of an item times its annual
usage) of SKUs.

Under Pareto’s theory, all items are ranked based on a single criterion; within inventory management,
dollar usage is the only criterion for managers to classify items into the A, B, and C categories. However,
managers sometimes want to consider more attributes of an item when classifying goods. Many item
characteristics could influence inventory control policy and must be considered. Flores [2] noted
that other vital criteria can be adopted in addition to dollar usage, such as commonality, reparability,
substitutability, lead time, and commonality. For instance, an enterprise must pursue efficient operations
that can both minimize total costs and maximize satisfaction brought to their internal or external
customers. If SKUs are only classified based on the single criterion of dollar usage, an item with a
lower dollar usage, but a long lead time and high criticality, would be misclassified into the C category,
resulting in serious damage to the company if the item were to run out of stock.

Detailed literary research has been carried out on multi-choice programming (MCP) theories
and applications. MCP is a branch of multi-objective programming that stems from multiple-criteria
decision-making (MCDM). MCDM tests several overlapping criteria of decision-making in various
areas [4,5]. Multi-criteria inventory classification (MCIC) can be viewed as an application of multi-criteria
decision analysis [6,7]. To solve the MCIC problem, the joint criteria matrix [8] is a simple and
easy-to-understand tool, but it is not practical for more than two criteria and involves too much
subjectivity. The analytic hierarchy process (AHP) is a popular methodology, but it involves subjectivity
as well. Methods for solving the ABC inventory classification problem have been systematically and
thoroughly reviewed and discussed in the relevant literature [9–12]. A number of methods were
suggested in order to achieve multi-criteria classification of SKUs. These methods contribute much to
the classification of items and help improve the efficiency and performance of a firm through better
inventory management. However, these approaches contain some shortcomings, such as involving too
much subjectivity or being overly complicated.

To facilitate better allocation of the priorities of items and further classification, it is worth
developing a model that can accommodate multiple criteria to create guidelines for inventory control.
This study builds a proper model for categorizing SKUs and demonstrates an efficient algorithm for
solving the nonlinear programming model, in which the feasible solution set does not have to be
convex. The rest of this paper is structured as follows. Section 2 provides the details of the model’s
development. The solution algorithm and its improvement are presented in Section 3. Section 4 details
the results of the model constructed herein, with comparisons to previous studies using a benchmark
data set. Conclusions and recommendations for future research are offered in the final section.

2. Literature Review on the HV Model and the WPM

Hadi-Vencheh [13] proposed a multi-criteria weighted nonlinear model for ABC inventory
classification. The proposed model (hereafter the HV model) is an extension of the Ng model [1].
The Ng model transforms the inventory object to a scalar value. The grouping, according to the
measured values, is then applied according to the ABC theory. Hadi-Vencheh also extended the Ng
model to resolve the condition in which the score is independent of the weights from the model
for each item. Despite the improvement in maintaining the influences of weights in the final score,
one notable problem remains: the HV model calculates the scores assigned to each item using the
weighted sum method (WSM) for criteria with different measurement units, which therefore requires
converting the performance of individual inventory items into a normalized attribute value, expressed
in terms of every criterion. Triantaphyllou [14] contended that if the problem involved criteria with
different measurement units, the weighted product method (WPM) would be a more suitable tool to
calculate the scores given to each item. To avoid an erroneous extreme value leading to inventory
item misclassification, we propose the following nonlinear WPM to model the classification problem
involving criteria with different measurement units. This study presents a broader version of the HV
model, taking weight values into account in the ABC inventory classification for multiple criteria by
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using the WPM, which applies multiplication weights and forms a nonlinear optimization problem.
To solve the nonlinear optimization problem efficiently, the canonical coordinates method (CCM)
algorithm is used to calculate the weights of the criteria for each inventory item.

Suppose that I inventory items are present, and that the items must be graded as A, B, or C
based on their results, according to J criteria. In particular, let the output of the ith inventory item
be referred to as yi, j with respect to each criterion. For simplicity, all parameters are beneficial; in
other words, they are positively connected with the degree of value of an item. The goal is to combine
many performance scores in the subsequent ABC inventory classification, in regard to different
parameters, into a single score. In both the Ng and HV models, a nonnegative weight wi, j is the
weight of performance contribution of the ith item under the jth criteria to the score of the item. The
parameters are supposed to be listed in descending order such that wi,1 ≥ wi,2 ≥ · · · ≥ wi,J for all items i.
The proposed model by Hadi-Vencheh [13] is as follows:

max Si =
J∑

j=1
yi, jwi, j

s.t.
J∑

j=1
wi, j

2= 1

wi, j −wi, j+1 ≥ 0, j = 1, 2, . . . , J − 1
wi, j ≥ 0, j = 1, 2, . . . , J

(1)

In the HV model, the performance in each criterion of the ith inventory item yi, j is further
normalized to si, j, and the objective function of the nonlinear programming (NLP) model from Equation
(1) is found to be

max Si =
J∑

j=1
si, jwi, j

Ng [1] indicated that normalization scaling involves extreme measurement values and would
thus have an effect on all normalized measurements if the extremes changed. To avoid an invalid
extreme value leading to inventory item misclassification, we propose the following nonlinear WPM to
model the classification problem involving criteria with different measure units:

max Si =
J

Π
j=1

yi, j
wi, j

s.t.
J∑

j=1
wi, j

2= 1

wi, j −wi, j+1 ≥ 0, j = 1, 2, . . . , J − 1
wi, j ≥ 0, j = 1, 2, . . . , J

(2)

3. The Solution Algorithm

3.1. Nomenclature

3.1.1. Notation of the Weighted Product Method for ABC Classification

• I: set of inventory items;
• J: set of evaluation criteria;
• yi, j: the ith inventory item in terms of the jth criteria;
• wi, j: the weight of performance contribution of the ith item under the jth criteria;
• Si: score of the item i.

3.1.2. Notation of the CCM Algorithm

• �: the set of all real numbers;
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• ξ: decision variables;
• ξ0: feasible initial solution;
• φi(ξ): set of constraints, i = 1, . . . , m;
• f (ξ): the objective function;
• ξ∗: the optimal solution.

3.2. The CCM Algorithm

This section presents the canonical coordinates method (CCM) algorithm [15,16], which is applied
to solve nonlinear programming problems in which the feasible solution set does not have to be convex.
Convexity is a strong property that often replaces differentiability as a desirable property in most
constrained optimization problems. However, the CCM efficiently addresses continuous search spaces
and benefits from the low computational cost for solving constrained optimization. A set containing
nonlinear constraints may or may not be convex. This study mainly demonstrates an efficient algorithm
for solving nonlinear programming problems in which the feasible solution set does not have to be
convex. The main difference between linear and nonlinear programming is that linear programming
helps find the best solution from a set of parameters or requirements that have a linear relationship,
whereas nonlinear programming helps find the best solution from a set of parameters or requirements
that have a nonlinear relationship. The prerequisite for applying the CCM algorithm is that the implicit
function theorem can be used in any feasible set. That is, at any point in the feasible set, one can
find m variables, such as z = (z1, . . . , zm), in such a way that the Jacobian matrix of the constraint
functions φ = (φ1, . . . ,φm), with respect to z, are nonsingular. In the implicit function theorem, there
exist functions gj such that zj = gj(x1, . . . , xn), j = 1, . . . , m. We describe the Algorithm 1 below:

Algorithm 1. CCM Algorithm

Input: The nonlinear program:
max
{

f (ξ)
∣∣∣φi(ξ) = 0, i = 1, . . . , m

}
with given differentiable functions f , φi :�m+n →�, i = 1, . . . , m , and a feasible point ξ0 ∈ �m+n satisfying
φi
(
ξ0
)
= 0, i = 1, . . . , m.

Output: A critical point ξ∗ of f satisfying φ(ξ∗) = 0.
Steps:

1. ξ0 is partitioned into ξ0 =
(
x0, z0

)
, where x0 ∈ �n and z0 ∈ �m are such that det

(
J(φ, z)

∣∣∣(x0,z0)

)
� 0.

2. For i, j = 1, . . . , m and k = 1, . . . , n, we calculate the following partial derivatives at point ξ0 =
(
x0, z0

)
:

∂ f /∂xk, ∂ f /∂zj, ∂φi/∂xk, and ∂φi/∂zj.

3. We then calculate the m× n matrix for the implicit function g (i.e., (∂g/∂x) = −(∂φ/∂z)−1(∂φ/∂x)) and

then find the direction D0 := (∂ f /∂x) = (∂ f /∂x1, . . . , ∂ f /∂xn) and D0 = (∂ f /∂x)T + (∂ f /∂z)(∂g/∂x).
4. We perform a line search along the ray through x0 with the direction D0 = D

(
x0
)
; that is to say, we find a

one-dimensional local optimal t∗ of F̂(t) := f
(
x0 + tD0, z(t)

)
, t ≥ 0. To do so, we need to solve for z(t),

which is done by solving the following system of ordinary differential equations:

{
z(0) = z0

(∂φ/∂x)(∂F/∂x)T + (∂φ/∂z)(dz/dt)T = 0

where we set x∗ ← x0 + t∗D0 .
5. We compute z∗j = gj(x∗), j = 1, . . . , m using Taylor polynomial approximation and then apply Newton’s

method to solve the system of ordinary differential equations at t = t∗ above.
6. If ∇ f (x∗, z∗) ≈ 0, then we have found a local optimal point. Otherwise, we replace

(
x0, z0

)
with (x∗, z∗)

and repeat the procedure.
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The CCM algorithm helped us identify the local optimal points of NLP so that the feasible set
fulfilled the requirements of the implicit function theorem. The problem could then be turned into an
NLP problem on a subspace�n of the original space�m+n.

3.3. Improvement of the Algorithm Using Efficient Selection of Bases

Step 1 in the CCM algorithm is to find a subset of m variables among the (m + n) variables so
that a resulting Jacobian matrix is non-singular [8]. This is equivalent to finding a subset of column
vectors in the original m× (m + n) matrix that is linearly independent. Let φ1, · · · ,φm be differentiable
functions in (m + n) variables:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ1/∂x1 ∂φ1/∂x2 · · · ∂φ1/∂xm+n

∂φ2/∂x1 ∂φ2/∂x2 · · · ∂φ2/∂xm+n
...

...
...

...
∂φm/∂x1 ∂φm/∂x2 · · · ∂φm/∂xm+n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In order to find a subset of m columns of A that is linearly independent, the original method by

Chang and Prabhu [15] was to choose any m subset of the (m + n) columns to check if it qualified.
There are two drawbacks to doing this. First, there are Cm+n

m choices of such subsets, and second,
each choice will require a calculation of the determinant of an m ×m matrix, which has the same
complexity as a Gaussian elimination process. We will show that, by using Gaussian elimination
on A to reach its reduced row echelon form, we can find one subset of columns of A that is linearly
independent. The process of Gaussian elimination involves performing a sequence of row operations
to a given matrix to reach its reduced row echelon form. Each type of row operation corresponds to a
type of elementary matrix, all of which are nonsingular. Each time a row operation is performed, it is
equivalent to multiplying the original matrix by an elementary matrix on the left. We can also see that
in an m× (m + n) matrix with rank m, there is a subset of column vectors that is linearly independent.
Now, let us state the proposition that yields the discovery of the desired linearly independent subset of
columns of A.

Proposition 1. Let m and n be positive integers, A be an m× (m + n) matrix with rank m, and u1, . . . , um+n be
the column vectors of A. Suppose B is the reduced row echelon form of A, and that v1, . . . , vm+n are the columns
of B. Then, there exist integers 1 ≤ j1 < j2 < · · · < jm ≤ (m + n) such that

[
vj1 , · · · , vjm

]
= Im×m forms the

m×m identity matrix. Moreover, the corresponding subset of columns of A,
[
uj1 , · · · , ujm

]
, is non-singular.

Proof. Matrix B must also have a rank of m because it is the reduced row echelon form of A, whose rank
is m. Thus, there are m columns of B that form the m×m identity matrix. That is, there exist integers
1 ≤ j1 < j2 < · · · < jm ≤ (m + n) such that

[
vj1 , · · · , vjm

]
= Im×m. During the process of Gaussian

elimination, performed to obtain the reduced row echelon form of A, we can find elementary matrices
E1, E2, · · · , Ep such that

B = Ep · · ·E2E1A

Note that the kth column of B is also obtained from performing the same row operations on the
kth column of A. Thus, we can say

vjk = Ep · · ·E2E1ujk , k = 1, 2, · · · , m

Additionally, we can say

Ep · · ·E2E1
[
uj1 , · · · , ujm

]
=
[
vj1 , · · · , vjm

]
= I
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Since all the elementary matrices E1, E2, · · · , Ep and the identity matrix I are nonsingular,
then

[
uj1 , · · · , ujm

]
must also be nonsingular. Now, we can simply apply Gaussian elimination

to the matrix and find a linearly independent subset of column vectors that allows the implicit function
theorem and the CCM algorithm to be applied. �

3.4. Accuracy Improvement

A line search in the fourth step, whereby a system of nonlinear ordinary differential equations
with initial values is resolved [15], must be carried out in the implementation of the CCM algorithm.
The desired unidimensional direction can be approximated numerically from any line search, but its
explicit functional expression cannot be calculated. This drawback impedes the output of the points
found in any line search system. We present a modification of the CCM algorithm used by Chang and
Prabhu [15], which adopted the gradient method to determine the next point without any line searching.

Suppose the feasible set S =
{
u ∈ Rm+n

∣∣∣φi(u) = 0, i = 1, · · · , m
}

satisfies the condition of the
implicit function theorem. That is, φi(u) is a holomorphic function in the m + n variables, if one treats
the m+ n variables as complex variables such that one of its Jacobians is nonsingular. Therefore, one can
find an m subset of the m + n variables, such as z1, · · · , zm, so that the corresponding Jacobian matrix
(∂φ/∂z) is nonsingular. Furthermore, there exist implicit functions gj, j = 1, · · · , m in terms of the
remaining n variables, x1, · · · , xn for example, such that zj = gj(x1, . . . , xn), j = 1, · · · , m. The original
NLP can now be viewed as the following induced NLP:

Maximize F(x)
Subject to x ∈ U

where F(x) = f (x, g1(x), · · · , gm(x)) and U is a neighborhood of the point x0 ∈ Rn that the implicit
function theorem holds. Because U contains an open subset of Rn, the induced NLP can be viewed as a
locally non-constrained NLP model. One important benefit is that moving along the induced gradient
direction D = (∂F/∂x) will stay in U if the distance is small enough.

One common issue with solving an NLP model using the gradient method is that it is likely to
leave S by traveling along the gradient direction of a feasible point. This causes a big problem in
keeping the NLP model’s feasibility. Applying the CCM algorithm does not present such a problem,
as every iteration remains within the feasible region. This is because the gradient of the inducted
objective function F, with regard to the selected value x1, · · · , xn, will locally move inside the feasible
set U if selected carefully. When using the CCM algorithm in a small-scale NLP model, one can conduct
a line search along the gradient direction of the induced objective function. The relation between the
induced line search and the movement along the original feasible set is illustrated in Figure 1.

Because there is one-to-one mapping between U and a neighborhood of
(
x0, z0

)
in S, there is a

one-dimensional curve C in S, corresponding to the line L =
{
x(t)|t ≥ 0

}
in U such that

C =
{
x(t), z(t)

∣∣∣x(t) ∈ L, z(t) = g(x(t))
}

The problem can be viewed as lifting a straight line in Rn to a curve in Rm+n. In performing a line
search, one has to find a one-dimensional, local, optimal point on such a curve with only the knowledge
of the projection of the curve, while the other coordinates are unknown. Fortunately, we also know
the explicit objective and constraint functions, so we can approximate the change of the unknown
coordinates Δz with the derivatives dz/dt. That is, we can approximate Δz by

Δz ∼
(

dz
dt

)
Δt
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Let D0 = D
(
x0
)
= (d1, · · · , dn), in which case

dzj

dt
=
∂gj

∂x1

dx1

dt
+ · · ·+ ∂gj

∂xn

dxn

dt

In addition,
(

dz
dt

)
=

(
∂g
∂x

)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
d1
...

dn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −
(
∂φ

∂z

)−1(∂φ
∂x

)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
d1
...

dn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We can now move the previous point along its gradient direction (Δx, Δz) where Δx = D0Δt,

in which D0 is the exact induced gradient of the induced objective function in the projection space
and Δz is the change in z by the above approximation. We can choose Δt carefully to avoid any line
searching. There are two reasons to avoid a line search.

x z

x z
x t z t

S

U

f

F
x

x x t

xΔ

g

L

C

Figure 1. The relationship between induced line search and movement along the original feasible set.

First, it requires the knowledge of the lifted curve for any z > 0. When an NLP model is a
small-scale problem and the corresponding system of ordinary differential equations is possible to
solve, the CCM algorithm can locate or approximate the exact lifted curve C at any t > 0. To do so,
we may need to apply some Ordinary Differential Equation methods, such as the Euler and Runge–Kutta
methods. As t gets larger, the feasibility of the point (x(t), z(t)) is likely disappearing.

Second, we use numerical data to approximate the partial derivatives at all the points involved.
The ODE problem in the fourth step is a point-by-point case without an explicit global expression
for the coefficients (∂φ/∂x)(∂F/∂x)T and ∂φ/∂z in it. Thus, it might be impossible to solve for it in
practice. We have chosen to avoid any line searching. Instead, as mentioned above, we move a point to
the next one in its gradient direction (Δx, Δz) with a chosen Δt. This way, we have control over staying
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as close to the feasible set as we need. Not only is the feasibility better kept, but the calculation is also
reduced, since we are not solving for the system of ordinary differential equations globally.

4. Illustrative Example

We applied the WPM to the same problem of the multi-criteria inventory classification problem
as reported in the referenced literature [1,6,7,13,17]. Following Ng [1] and Hadi-Vencheh [13],
we considered three criteria for inventory classification: annual dollar usage (ADU), average unit cost
(AUC), and lead time (LT). We also assumed the importance of the criteria to be ADU, AUC, and LT,
in descending order. All of the criteria held positive inventory item scores.

4.1. Quality of Solutions

The 47 inventory items’ optimal scores and weights are shown in Table 1. As demonstrated,
the optimal scores derived by using the CCM algorithm to solve the WPM of multicriteria ABC
classification were as good as those derived using LINGO [18], the off-the-shelf optimization software.
If we look carefully at the weights derived using LINGO, it is obvious that most item weights for ADU
and AUC were identical, and that some item weights (4, 25, 27, and 30) for LT were zero. This is because
the primary underlying technique used by LINGO’s nonlinear solver is to reach a feasible solution for
nonlinear models quickly. The weight values derived by using the CCM better fit the assumption that
the criteria were graded in descending order, such that wi,1 ≥ wi,2 ≥ · · · ≥ wi,J for all items i. Therefore,
the CCM is superior to LINGO in terms of solution quality in this illustrative example.

Next, the maximal overall scores were sorted in descending order, and inventory classification was
conducted based on the WPM (shown in Table 2). For comparison purposes, we maintained the same
distribution of items in the A, B, and C classes as in studies within the cited literature [1,13,17]; that is,
there were 10 class A items, 14 class B items, and 23 class C items. The ABC analysis using the Ng [1],
Hadi-Vencheh [13], and Zhou and Fan (ZF) models [17] are also shown in Table 2. There were ten items
(8, 29, 15, 16, 27, 33, 39, 40, 34, and 45) that did not have the same classifications in the WPM model
as in the Ng, HV, and ZF models. The difference in classification was due to the difference in score
computation schemes. Of the 10 class A items identified in the WPM, only item 8 was recognized as a
class B item in the Ng, ZF, and HV models. Moreover, in these models, item 29 was classified as a class
A item, while the WPM reclassified it as a class B item. A comparison of items 8 and 29 revealed that
item 8 was superior to item 29 in terms of ADU value (y8,1 = 2640 > y29,1 = 268.68). Although item 29
outperformed item 8 in AUC (y8,2 = 55 < y29,2 = 134.34) and LT (y8,3 = 4 < y29,3 = 7), the differences
were not significant. Therefore, based on the most important consideration, the value of the annual
consumption of inventory items (ADU) in a year, the WPM provided a more reasonable classification.

Regarding the 14 class B items in the HV model, eight items (6, 7, 23, 18, 19, 28, 12, and 31) were
retained in class B when the WPM was adopted, five of the class B items (33, 39, 40, 34, and 45) were
reclassified as C, and the remaining one (item 8) was moved up to class A. Out of the 23 class C
items, 18 items were retained as such, whereas the remaining five (15, 16, 22, 20, and 27) were moved
up to class B. Items 33, 39, 40, 34, and 45, classified as class B items in the Ng, HV, and ZF models,
were reclassified as class C items when using the WPM (see Table 3) and had relatively higher LT
measurements (more than 4), but lower performance in terms of AUC and ADU, which were the two
more important criteria. However, the maximum ADU value (197.92) of these five items was much
less than the minimum ADU value (336.12) of items 15, 16 and 27, which were reclassified as class C
items by the WPM, while their AUC values were about even. Therefore, the WPM provided a more
reasonable ranking of items.
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Table 3. The 10 items reclassified using the WPM.

Item ADU AUC LT WPM HV Model Ng Model ZF Model

8 2640 55 4 A B B B

29 268.68 134.34 7 B A A A

15 854.4 71.2 3 B C C C

16 810 45 3 B C C C

27 336.12 84.03 1 B C C C

33 197.92 49.48 5 C B B B

39 119.2 59.6 5 C B B B

40 103.36 51.68 6 C B B B

34 190.89 7.07 7 C B B B

45 34.4 34.4 7 C B B B

4.2. Elapsed Runtime and Iterations

The efficiency of solving a problem is also an important criterion for algorithm comparisons;
a good algorithm should solve problems within an acceptable time. This section compares the number
of iterations of implementations of the CCM and LINGO to solve the WPM of multi-criteria ABC
classification. The main difference between implementing the CCM algorithm and the LINGO solver
was that we did not need to specify a starting point or moving step size. When the solution region is a
polyhedron, determining the first basic solution (the starting point) would be vital, as the local optimal
solution is usually located near the basic feasible solution (BFS); the quality of the solution is highly
related to the location of the BFS. An unsuitable starting point could lead to a worse local optimal
solution. The search region of an algorithm is related to the step size of the line search, and the search
region decides whether a feasible solution can be found. The step size also determines the quality of
the final solution. A large step size within a line search could jump over the optimal solution, whereas
smaller search distances could trap in and require a significant amount of time to reach the local
optimal solution. A good starting point and step size for a search can help researchers find acceptable
solutions in less time. Table 4 illustrates the process of tuning the step size in order to reach a feasible
solution. The CCM algorithm provides more flexibility than other solvers from commercial package
software, which presents a higher probability of finding better solutions. In this study, using CCM to
solve the problem required more time to achieve the local optimal solution than using LINGO because
the step size of the line search determined whether the CCM could find feasible solutions. In this
study, LINGO took mere seconds to find a feasible solution, whereas CCM took more time—sometimes
nearly a minute—to find a solution.

Table 4. Tuning the step size to reach a feasible solution.

Item 4

Step size
J∑

j=1
w2

j

Item 5

Step size
J∑

j=1
w2

j

0.0003 1.000009 0.00045 1.000062

0.000295 0.999993 0.000448 1.000059

0.000298 1.000003 0.00044 1.000046

0.000297 1 0.00041 0.999997

0.000413 1.000002

0.000412 1
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When looking at the number of iterations each algorithm needs, CCM requires more iterations
to solve the problem, even with a larger step size. As presented in Table 5, LINGO can solve most
problems in only 60 iterations, whereas CCM might need approximately one thousand iterations.
In conclusion, LINGO is more efficient than CCM in this study, which contradicts the results of the
previous study, which stated that CCM can solve nonlinear problems more quickly than other software
packages. The result of the current study might stem from the fact that the problem in this study is too
simple to demonstrate the power of CCM.

Table 5. The number of iteration for LINGO and the canonical coordinates method (CCM) to find the
local optimal solution.

Item LINGO CCM Item LINGO CCM Item LINGO CCM Item LINGO CCM

1 60 1720 13 60 1505 25 35 2482 37 60 1367

2 60 1866 14 55 1852 26 60 1646 38 50 2369

3 60 1207 15 60 1911 27 35 3213 39 50 1888

4 35 1867 16 59 1673 28 55 1741 40 50 1657

5 60 1627 17 60 1090 29 50 2024 41 58 1903

6 60 1419 18 59 1377 30 35 3045 42 50 2452

7 60 1388 19 57 1456 31 55 1900 43 55 1496

8 60 1495 20 60 1729 32 55 2397 44 75 555

9 58 1428 21 60 1287 33 55 1645 45 55 215

10 57 1995 22 55 1802 34 60 1158 46 75 492

11 60 1086 23 55 2009 35 50 2223 47 60 2712

12 60 1105 24 60 1612 36 55 1932

5. Conclusions

In this paper, we presented an extended version of the HV model to improve multi-criteria ABC
inventory classification. Our proposed nonlinear weighted product model (WPM) incorporates multiple
criteria with different measurement units without converting the performance of each inventory item
in terms of each criterion into a normalized attribute value. This represents an improvement over the
model proposed by Hadi-Vencheh. The WPM could also be viewed as providing a more reasonable
classification for inventory items from the illustrated example, presented and used to compare our
model with the HV model. In this paper, we also presented the improved CCM algorithm for solving the
WPM, in which nonconvex nonlinearity was present in both the objective function and the constraints.
The strategy presented here involved greatly reducing the steps in choosing m variables among (m+ n)
variables, such that the corresponding m×m Jacobian matrix was nonsingular. Using the improved
algorithm, we applied Gaussian elimination to the original matrix to determine which m variables to
choose. Our second improvement was to remove solving the nonlinear differential equations system,
which occurs in the line search method of the CCM algorithm. This paper demonstrates an efficient
algorithm for solving nonlinear programming problems, in which the feasible solution set does not
have to be convex. The practical implication of this study is to further improve the efficient nonlinear
optimization solver based on the CCM by optimizing the quality of existing solutions, thus improving
time and space efficiency.

Future research should continue to investigate the feasibility of implementing this proposed CCM
algorithm in discrete domain issues for engineering applications in order to decide if the algorithm
could be superior to off-the-shelf software. Future studies could apply the CCM to other nonlinear
programs that arise in practice. For instance, autonomous vehicles represent one of many developments
that will influence future mobility needs and planning needs. Traffic assignment models seek the same
objective as route guidance strategies and provide turning points with information for implementing
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route guidance control strategies. Faster algorithms developed specifically for traffic assignment can
be adapted and used in vehicle route guidance systems. The minimization of total travel time is a
common goal, both globally and from a traffic administration perspective. The current road network
manages more traffic by achieving system optimization. Some researchers have focused their efforts
on dynamic traffic assignment because of the unrealistic assumptions of static traffic assignment.
Difficulties encountered by the dynamic model result from route calculation being related to travel time
on an arc, which is also dependent on the traffic along the route. It is difficult to solve such relationships
analytically under a dynamic circumstance. In response to the difficulties of dynamic traffic modeling,
Jahn et al. [19] therefore developed a model in which flow represents the traffic patterns in a steady state,
and the results are the boundary for the total travel time. However, the algorithm by Jahn et al. [19]
only solves problems with convex, nonlinear objective functions and linear constraints. To avoid this
restriction, future studies could adopt the CCM to solve nonlinear optimization models and provide
strategies for route guidance.
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Featured Application: The proposed model of stage settlements with milestones payments may

be useful in practical projects and be beneficial both for the client and for the contractor. Its ap-

plication may reduce delays in the completion of project stages, which is a significant problem

in information technology (IT) or industry projects.

Abstract: This article presents the resource-constrained project scheduling problem with the discounted
cash flow maximization criterion from the perspective of a contractor. Cash flows are considered as
the contractor’s expenses related to the execution of activities and client’s payments (revenue to the
contractor) after the completion of contractual stages. To solve the problem, dedicated techniques to
generate solutions and a simulated annealing algorithm are proposed. Finally, the proposed procedures
are examined using the test library, Project Scheduling Library (PSPLIB). An experimental analysis
identified the efficient moves and techniques for creating solutions, that is backward scheduling with
optimization of completion times of project stages and triple justification.

Keywords: resource-constrained project scheduling problem; discounted cash flow maximization;
milestones payments; simulated annealing algorithm

1. Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the most
frequently undertaken issues within operational research. For RCPSP, optimizing mod-
els are often analyzed which only include time criteria, that is makespan minimization
etc. [1]. In practice, however, an analysis of the financial effects of planned projects, in par-
ticular large-scale projects executed over a long period of time, plays an important role.
For long-term projects it is recommended to take into account the change in the value of
money over time, which occurs in Max-NPV (net present value maximization) models [2].
The optimization criterion of NPV maximization is the most common criterion that takes
into account the financial aspects of project planning [3]. When calculating NPV, the sum
of all discounted cash flows associated with the project is calculated. RCPSP models with
discounted cash flows (RCPSP-DC) are considered. An overview of NPV maximization
research can be found in the literature [4,5].

Research works analyze payment project scheduling (PPS) models from the perspec-
tive of the contractor and/or the client. Payment schedules determine the frequency,
amounts and delivery dates of client payments to the contractor. There are different meth-
ods for making financial settlements by compromise between the client and the contractor,
whose interests in respect of the amount, timing and location of progress payments are
divergent. The contractor aims to obtain the highest possible client payments as soon
as possible. The client prefers to make a one-off payment after work. According to
Szmerekovsky [6] both parties (client and contractor) are willing to maximize their profit
instead of looking for a plan that satisfies them both. PPS problems are analyzed, where the
solution from the perspective of client [7], the contractor [4,8,9] or both is sought [10–13].
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This work discusses the problem of financial optimization from the contractor’s
perspective. Contractor expenditures (cash outflows) are generally known or may be
estimated by them prior to the project, while client payments are determined by negotiation.
Different approaches are considered in which total costs for executing activities may be
incurred at their beginning [6,9] or completion [14], or may be proportionally allocated
to the beginning and end of their execution [15,16], or distributed depending on their
progress [11]. Fixed costs related to the activities are most often incurred at the start time
and other costs, such as resource consumption, may arise during their execution.

As contractors are forced to spend money on project activities, it is advisable for
them to acquire as much money as possible from the client prior to completing the project,
such as, funds corresponding to the progress of the project. An improperly designed
project settlement plan between the contractor and the client can cause financial problems
for the contractor. Payments can be made in many ways [6,9,14,17]. One-off lump-sum
payments after completion of a lump sum payment (LSP) project are one of the forms
of settlement between client and contractor, most preferred by the client. For long-term
projects, the LSP model may be unacceptable to a contractor who has to spend a long time
financing the activities. In practice, progress payments are often determined throughout
the duration of the project. Earlier client payments are typically associated with certain
events and with milestones (completion of specific activities, stages). In general, payments
can be made according to a fixed schedule, such as once a month (Equal Time Intervals—
ETI model, Progress Payments–PP model) or associated with specific events (Payments
at Event Occurrences–PEO model), i.e., completion of activity (Payments at Activities’
Completion times–PAC model) etc. [9,17,18].

PPS models serve as a decision support tool for negotiations between the client and
the contractor and can be used when planning the contractor’s budget. Elmaghraby [19]
suggests that the contractor can use information about the project and its costs to con-
struct an appropriate client-contractor payment model where the delivery dates for these
payments are assigned to the various milestones and the amounts are estimated based
on the cost of performance of activities. All progress payments are arranged during the
scheduling at milestones specified while planning or payment models are created that
allow contractors to identify milestones and related cash flows.

For the project settlement between the client and the contractor, the bonus-penalty
system [8,20,21] can be used to encourage the contractor to execute project (stages) as soon
as possible. Penalties are determined for exceeding the contractual completion time of the
project (stage), bonuses are given for early completion of the project (stage), etc. Contractual
deadlines are specified for the project (stage) or time windows are defined where project
(stage) completion is not awarded or penalized.

For the RCPSP also the capital constrained project scheduling (CCPSP) models are
analyzed [22,23], where capital is one of the limited, non-renewable resources that is
considered in the scheduling. At any time during the project, cash inflows and outflows
must balance. Activities can be executed only if funds are available, such as those obtained
by completing previous activities or stages of the project.

In this work we propose the RCPSP model with the criterion of maximizing the discounted
cash flows associated with the project from the contractor’s perspective, with stage settlements
in which client agrees with the contractor the work stages (milestones) with deadlines and
the amounts of payment for completion of stage work. In the event of late completion of
the contractual stages, penalties reducing stage client payments are applied. The proposed
optimization model can be useful in practice where milestones are an important part of work
planning, for example, to be used to determine the progress of a project. In the RCPSP studies,
the stage settlement of project work, apart from the author’s work, was not considered in
this form. Milestone payments are considered in studies but optimization models differ from
those discussed in this work [16,24]. Milestone events are often assigned to events such as
completion of individual activity [4,19]. In this work, payments are made after the completion
of the activity group as a stage of the project [8,21,25,26].
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For the proposed financial model used to optimize a multi-stage project, it is recom-
mended to schedule the work so that activities are started as late as possible at the earliest
possible completion of contractual stages. The aim of this work is to check the efficiency of
the simulated annealing algorithm using the techniques of generating solutions, taking into
account the specific stage settlements, that is: backward scheduling with optimization of
project completion times, justification and right-shifting of activities for schedule with fixed
resource allocation.

The remainder of this paper is organized as follows. Section 2 contains a formulation
of the problem. Section 3 presents the definition of an exemplary project illustrating the
analyzed problem. Section 4 provides a simulated annealing algorithm and techniques
for generating solutions that are presented for the example project. Section 5 describes
the experimental analysis performed for the Project Scheduling Library (PSPLIB) test in-
stances [27] with defined additional project financial settlements. At the end of the work,
a summary is presented and directions for further study are provided.

2. Problem Formulation

A project is a unique set of activities executed using available resources (employees,
machines, materials). This work discusses the classic non-preemptive single-mode RCPSP.
The project is shown as a directed graph G(V, E), in representation of activity-on-node
(AON), where V is a set of nodes corresponding to the activities and E is a set of arcs
describing the order relations between the activities of finish-start zero-lag precedence.
Activities are executed using the limited, renewable resources whose number is constant
over time. The schedule (start times for all activities) is determined with the optimization
criterion (makespan minimization, DCF maximization etc.) when the order constraints (1)
and resource constraints (2) are fulfilled.

STi + di ≤ STj, ∀(i, j) ∈ E (1)

∑
i∈J(t)

rik ≤ ak, ∀t : t = 1, STNA+1, ∀k : k = 1, . . . , K (2)

where:

• i is the activity index, i = 1, . . . , NA,
• NA is the number of activities in a project,
• STi is the start time of the activity i,
• di is the duration of activity i,
• J(t) is the set of activities executed in time interval [t − 1, t],
• ak is the number of available resources of type k; at any time t, the number of resources

used must not exceed the number of available resources ak for k = 1, . . . , K,
• rik is the demand of activity i for the resource of type k,
• K is the number of types of renewable resources.

This work offers an optimization model from the perspective of the contractor, which ap-
plies stage and financial settlements between the client and the contractor. Arrangements
regarding joint settlements may be conducted for the adopted baseline schedule, which is the
basis for defining inter alia, the number of contractual stages of the project, the dates of their
completion, the activities to be taken at these stages and the method of payment determination.
The proposed optimization model maximizing the discounted cash flow from the contractor’s
perspective with the costs incurred for the completion of the activities and the revenue obtained
for the completed stages is described by the Equations (3)–(5):

F =
NA

∑
i=1

(CFAi · e−α·STi ) +
NM

∑
m=1

(CFMm · e−α·MTm) (3)

MTm = max
i∈MAm

(FTi), ∀m : m = 1, . . . , NM (4)
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CFMm = MPm − MCm · max(MTm − MDm, 0), ∀m : m = 1, . . . , NM (5)

where:

• F is the sum of discounted cash flows, objective function,
• CFAi is the contractor’s expenses related to the execution of activity i,
• m is the index of project stage (milestone), m = 1, . . . , NM (NM-number of stages),
• FTi is the finish time of activity i (FTi = STi + di),
• CFMm is the client payment for completion of m—project stage established for the

current schedule;
• α is the discount rate;
• MTm is the completion time of m—project stage established for the current schedule;
• MAm is the set of activities to be executed in m—project stage;
• MPm is the agreed client payment to the contractor for completion of m—project stage;
• MDm is the contractual deadline for m—project stage;
• MCm is the contractual unit cost for exceeding MDm deadline.

Client payments CFMm (cash inflows from contractor’s perspective) are made right
after completion of contractual stages within MTm completion time within defined amount
MPm reduced by any contractual penalties that include the delays unit cost of MCm. It is
assumed that all contractor’s expenditures (cash outflows from contractor’s perspective)
are related to the execution of the activities and are incurred for each activity exactly as
scheduled (in start time). The problem of possible delays in cash transfers is omitted in this
model—for delayed payments, a system of non-periodic compensation may be used.

For contractors, the client payments for the project stages are financial means that
can be used for the current business such as the purchase of materials necessary for the
execution of subsequent activities, the salaries of the employees, etc. For the client, the need
to incur earlier expenses is compensated for by the contractual penalties for failure to meet
deadlines of the project stages and the possibility of controlling the course of work while
the project is being executed.

3. Illustrative Example

To illustrate the analyzed optimization model we consider the sample project shown
in Figure 1. The project consists of 8 activities and dummy activities 0 and 9 representing
the starting and ending node in the graph G (V, E) respectively. Activities are executed
using one type of limited, renewable resources of availability of 10. Discount rate used in
calculations is α = 0.01.

 
Figure 1. Example of project in activity-on-node (AON) representation.

Assume that the baseline schedule, which is the basis for determining the stage
settlement of the project between the client and the contractor, is shown in Figure 2. It can
be generated, for example, using the schedule generation scheme (SGS) serial, for the
activity list {1, 5, 2, 3, 6, 4, 7, 8}.
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Figure 2. Baseline schedule.

Assume that based on the baseline schedule of Figure 2 three contractual stages of
work that are distinguished that have the following completion times: MD1 = 4, MD2 = 8,
MD3 = 12. Activity sets to be completed in further stages are as follows MA1 = {1, 2},
MA2 = {3, 4, 5}, MA3 = {6, 7, 8}. The cash flow related to CFAi activities and the data for
stage project settlements such as: contractual completion times MDm, client contractual
payment amounts MPm and delay costs MCm, are shown in the AON representation in
Figure 3. Milestone data is denoted by the “square” symbol. The same colours show the
nodes representing activities from the same stage of the project. The stage settlements
should be arranged to encourage the contractor to execute the project as quickly as possible
and not to exceed MDm completion times.

 

Figure 3. Project in AON representation with defined stages.

Once the stage settlement has been completed, the contractor will prepare a schedule
which maximizes the sum of the discounted cash flows function F. It is advisable to delay
the expenditure (negative cash flow) incurred at the start of activities (lower discounted
value) and accelerate client payments for project stages (positive cash flows) acquired at
the time of their completion (higher discounted value). The baseline schedule shown in
Figure 2 can be improved, for example, by the deferred start of activities 6 and 8, which will
not delay the completion of stage 3. It is also possible to complete the work stages earlier.
The proposed techniques of generating solutions taking into account the specificity of the
discussed problem, are described further in this work.

4. Simulated Annealing Algorithm

The resource-constrained project scheduling problem as a job shop generalization is
a strongly NP-hard problem [28]. Due to the complexity of the problem for RCPSP, it is
reasonable to use heuristic algorithms with polynomial computational complexity that find
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solutions within acceptable time also for larger projects. A wide overview and comparison
of the efficiency of algorithms for the problem of project scheduling can be found in [5,29].

In this work, when searching for schedules, a simulated annealing (SA) algorithm is used,
which is effective and has repeatedly been used to solve the RCPSP problem [29]. The SA is
flexible and has the ability (when it is fine-tuned) to approach global optimality; it explores
the solutions space and prefers better neighbours but also accepts worse neighbours in order
to avoid becoming stuck in local optima. The SA improves a single candidate’s solutions.
Population-based metaheuristic algorithms (scatter search—SS, genetic algorithm—GA [30],
particle swarm optimization–PSO [31,32]) can be better for global searches due to global
exploration and local exploitation ability and will be examined for proposed problems in
future work.

The SA algorithm developed in this work is similar to the basic variant of this meta-
heuristics [33]. The solutions are represented as a list of activities–permutation of activity
numbers taking into account the precedence relations. The activity list is converted to an
executable schedule using the SGS [34]. In this work, the serial SGS is used, which in the
forward (backward) scheduling strategy, determines the starting time for the first (last)
unscheduled activity from the activity list at the earliest (latest) time, taking into account
the precedence and resource constraints.

The SA algorithm starts the search from the random list of activities for which the
serial SGS generates a schedule. Then iterations of the algorithm are repeated until the stop
condition is satisfied: viewing the specified maximum number of schedules. Each iteration
of the SA algorithm performs a move generating a new activity list from the neighborhood
of the current solution. Moves that will be used are:

• Insert—an activity is randomly selected, which is then moved to a random position
between the last predecessor in the activity list and the first successor;

• Swap—an activity is randomly selected, which is then exchanged with a randomly
selected activity taking into account precedence relations;

• Adjacent swap—a random activity is selected, which is then exchanged with the next
activity in the activity list, unless it violates the precedence restrictions;

• Insert all—an activity is randomly selected, which is then moved to the position
between the last predecessor in the activity list and the first successor; all possible
insert positions are checked and the position for which the schedule with the highest
value of objective function F is generated;

• Swap all—an activity is randomly selected, which is then exchanged with every
activity occupying the last position between the last predecessor in the list and the
first successor; this exchange operation is performed for which the schedule with the
highest value of objective function F is generated.

For the problem of maximizing discounted negative and positive cash flows in the
PAC model, the schedule established by the SGS procedures can be improved by starting
activities (stages) related to the positive cash flow(s) as early as possible and by starting
activities (stages) related to negative cash flow as late as possible. For this problem, what is
analyzed are, among other things, bi-directional SGS [29,30], shift operation algorithms that
move activities with negative cash flows to the right and/or activities with positive cash
flows to the left [4], and recursive forward/backward improvement procedures [35,36].

For a schedule that is appropriate for the problem analyzed in the article, with objective
function F, the positive cash flow, that is the client payment for completing the contractual
stages of work, should be obtained as soon as possible and the negative cash flow, that is
the contractor’s expenses related to the activities started, incurred according to the as
late as possible (ALAP) principle. When planning activities, it is advisable to carry out
a “balance sheet” of losses from subsequent payments for the completed project stages
and the benefits of deferred expenses for starting activities. Increase in NPV always defers
these activities in time, the delayed start of which does not change the completion time of
the project stages.
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The development of effective procedures for generating schedules dedicated to the
problem of financial multi-stage optimization is the subject of previous research [8,26,37].
The following subsections describe and illustrate the scheduling techniques used by the
analyzed SA algorithm:

• backward scheduling with optimization of completion times of contractual project stages;
• forward scheduling with activity right-shift procedure;
• justification.

4.1. Backward Scheduling with Optimization of Completion Times of Stages

A baseline schedule is created for the processed activity list assuming scheduled
completion times of MTm equal to the contractual MDm deadlines. In the baseline schedule,
the MTm stage completion times can be larger than the contractual MDm, if it is not possible
to generate the executable schedule for the processed activity list from MTm = MDm for
each m = 1, . . . , NM. In the backward scheduling procedure with optimization of the
completion times of the contractual stages of the project, the iterative, unit left-shift of
planned MTm are performed. Shifting operations are performed for the following stages,
starting from the first and ending with the last. Unit shifts of a given stage are executed as
long as this operation increases the value of the objective function F.

For an example project, the baseline schedule in Figure 2 is generated using the
forward serial SGS. For backward serial SGS it is recommended to use a different activity
list than for forward scheduling. It is suggested to set up a list of activities based on the
baseline schedule—activities are sorted in the order of increasing activity finish times FTi
(similarly to the experimental studies for the initial solution). The activity list determined
in this way is as follows: {1, 2, 5, 3, 4, 8, 6, 7}.

The backward schedule with the value of the objective function F = 58.50, determined
for the activity list {1, 2, 5, 3, 4, 8, 6, 7} for completion times of stages such as: MT1 = MD1 = 4,
MT2 = MD2 = 8, MT3 = MD3 = 12, is shown in Figure 4a. The procedure of left shifts of
project stages starts from shifting the completion time of the first stage:

• for MT1 = 3 a schedule with higher objective function is generated F = 58.77,
• for MT1 = 2 a schedule with higher objective function is generated F = 58.96,
• for MT1 = 1 it is not possible to create a feasible schedule and the procedure moves to

the optimization of second stage and MT2 completion time.

  
(a) (b) 

Figure 4. (a) Backward schedule for completion times of project stages MT1 = 4, MT2 = 8, MT3 = 12,
(b) schedule determined as a result of optimization of the completion time of first stage with MT1 = 2,
MT2 = 8, MT3 = 12.

The schedule established as a result of optimizing the completion time of the first
stage with completion times of stages MT1 = 2, MT2 = 8, MT3 = 12 is shown in Figure 4b.
The optimization of the completion time of the second stage is as follows:

• for MT2 = 7 the schedule with higher objective function F = 58.98 is generated;
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• for MT2 = 6 it is not possible to create a feasible schedule and the procedure moves to
optimizing the completion time of the third stage MT3.

The schedule determined by optimizing the completion time of the first and second
stage with MT1 = 2, MT2 = 7, MT3 = 12 is shown in Figure 5a. The optimization of the
completion time of the third stage is as follows:

• for MT3 = 11 the schedule with higher objective function F = 59.36 is generated;
• for MT3 = 10 the schedule with higher objective function F = 59.59 is generated;
• for MT3 = 9 it is not possible to create a feasible schedule and the procedure ends the

first step of the procedure for optimizing the completion times of project stages.

  
(a) (b) 

Figure 5. (a) Schedule determined as a result of optimization of the completion time of 2nd stage
with MT1 = 2, MT2 = 7, MT3 = 12, (b) schedule as a result of optimization of completion times of all
stages: MT1 = 2, MT2 = 7, MT3 = 10.

In the second step of the procedure, no changes are made (in optimizing of completion
times of MT1, MT2, MT3) to the schedule and the algorithm ends.

The final schedule generated during optimizing the completion times of all project
stages with objective function F = 59.59 is shown in Figure 5b.

4.2. Forward Scheduling with Activity Right-Shift Procedure

Shifts of activities are performed taking into account the resource and order constraints.
Shifting an activity to the right (or left) can cause various changes to the schedule. This prob-
lem does not occur if resource allocation is found for the schedule. Multiple resource
allocations can be generated for a given schedule, characterized by various properties that
affect the operations of right shifts and the quality of the resulting solutions. Assignment
of resources to activities is analyzed during a proactive, robust scheduling [26,38–40].
An overview of resource allocation procedures is presented by Deblaere et al. [41]. For the
analyzed problem, the resource allocation with as few additional order relations (additional
arcs in G(V,E)) as possible are preferred as in robust scheduling. The new precedence restric-
tions resulting from the resource allocation reduce the possibility of shifting activities to the
right to increase the cumulative cash flow F. To minimize the number of extra arcs, resource
allocation algorithms allocate activities between which are order or unavoidable dependen-
cies to be performed by the same resources, and maximize the sum of flows between the
activities etc. [41]. For a schedule with a fixed resource allocation, it is easy to carry out
the right-shift operations (resource constraints are taken into account)—unambiguously
and with short calculation time which changes in the schedule will lead to starting activity
shifted to the right can be determined.

In this work the resource allocation is generated using the ISH-UA (iterative sample
heuristic with unavoidable arcs) procedure [7] whose effect on the schedule in Figure 2 is
presented in Figure 6a.
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(a) (b) 

Figure 6. (a) Schedule with resource allocation set by the ISH-UA (iterative sample heuristic with
unavoidable arcs) procedure, (b) schedule set using the activity right-shift procedure.

The right-shift procedure is iterative. In subsequent iterations, right-shifting of ac-
tivities considered in the sequence of decreasing time of their completion in the schedule
for which the allocation of resources is determined is analyzed. For the analyzed activity,
unit shifts are performed until the operation does not increase the value of F. For the
resource allocation in Figure 6a, the right-shift of the subsequent activities is analyzed:

• activity 7 shift will not increase F,
• one unit shift of activity 6 will increase F from 57.55 to 57.72,
• activity 8 shifts by two time units will increase F from 57.72 to 57.83,
• activity 4 and 3 shifts will not increase F,
• one unit shift of activity 5 will increase F from 57.83 to 58.03,
• activity 2 and 1 shifts will not increase F.
• Schedule with right shifts with F = 58.03 is shown in Figure 6b.

The activity right-shift procedure does not make any changes to the completion of
the project stages. It can be effective in improving schedules with the best possible MTm.
For the analyzed example, the optimal solution with F = 59.59 (Figure 7b) is found using
the SGS serial for the activity list {1, 2, 3, 4, 5, 6, 7, 8} with the resource allocation found
using the ISH-UA procedure (Figure 7a).

  
(a) (b) 

Figure 7. (a) Schedule generated for the activity list {1, 2, 3, 4, 5, 6, 7, 8} with the allocation of resources
determined by the ISH-UA procedure. (b) Schedule improved by the right-shift procedure.

4.3. Justification

The right justification (RJ) and left justification (LJ) techniques transform the schedule
generated by SGS procedures. Their use improves the quality of generated schedules [42].
They are used, among others. for RCPSP with a makespan minimization criterion or for
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RCPSP with due dates. The justification of an activity to the right (to the left) consists in
setting the latest (earliest) start time if possible taking into account the order and resource
constraints. When generating solutions, RJ and LJ are combined: double justification is
used, RJ + LJ or LJ + RJ respectively. Activities for RJ (LJ) can be selected:

• by any means from available activities whose all successors (predecessors) have
already been subjected to justification when analyzing all activities from the beginning
(end) of the schedule subjected to the justification (justification by eligible);

• in the order of decreasing finish times (increasing start times) in the schedule subjected
to the justification (justification by extremes).

Most of the work, like this one, uses the effective justification by extremes technique,
which is a special case of justification by eligibles.

Research conducted for the analyzed problem indicated that the triple justification
technique (RJ + LJ + RJ) and the use of the modified RJ technique is effective for the forward
schedule, and that the RJ technique is used to move an activity to the right (delaying its
start), taking into account the current completion times of the project stages.

We will now show the RJ + LJ + RJ technique for the baseline schedule of Figure 2.
First, RJ is used for activities with maximum finish time (justification by extremes)-activities
in order 7, 6, 8, 4, 3, 5, 2, 1 (at the equal finish time, the activity with the higher number is
analyzed earlier). For each activity, the latest start time is determined taking into account
the precedence and resource relations and the actual completion time of the project stage
to which this activity is assigned (MT1 = MD1 = 4, MT2 = MD2 = 8, MT3 = MD3 = 12). As a
result of RJ, a schedule is presented in Figure 8a with the objective function F = 58.50.

 
(a) 

 
(b) 

 
(c) 

Figure 8. (a) Baseline schedule after right justification (RJ), (b) baseline schedule after RJ + left justification (LJ), (c) baseline
schedule after RJ + LJ + RJ.

Technique LJ is performed after RJ. The activities with the minimum start time for the
schedule in Figure 8a (justification by extremes) are selected for LJ. Activities in the order 1, 2,
3, 5, 4, 6, 7, 8 are justified (at equal start time, the activity with lower number is analyzed first).
For each activity, the earliest start time is determined, taking into account the precedence and
resource relations. As a result of LJ, the schedule shown in Figure 8b with the higher value
of the objective function F = 59.53 than the schedule of Figure 8a is generated, thanks to the
earlier completion of stages 1, 2 and 3 (MT1 = 2, MT2 = 7, MT3 = 10).

The schedule in Figure 8b can be improved by delaying the start of the activity while
meeting the completion times of the contractual stages of the project. The activities are
shifted by re-applying the modified RJ technique. For RJ, the activities are chosen with the
maximum time of completion in the schedule from Figure 8b-activities in the order 7, 6, 8, 5,
4, 3, 2, 1. During the activity justification, current end times of project stages are considered
(MT1 = 2, MT2 = 7, MT3 = 10). As a result of RJ, the schedule presented in Figure 8c with a
higher value of the objective function F = 59.59 than the schedule of Figure 8b is generated
by the delayed start of activity 8.
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5. Experimental Analysis

The experiments were conducted for 480 test instances from a J30 (30-activity projects)
set and 480 test instances from J90 set (90-activity projects) from the PSPLIB [27]. For each
PSPLIB project, three contractual stages are defined based on the baseline schedule S created
using the SGS serial for the activity list {1, 2, . . . , 30} or {1, 2, . . . , 90}. The contractual
deadlines of stages are determined as MD1 = T/3, MD2= 2T/3, MD3 = T, where T is the
makespan of the project in the baseline schedule S. The sets of activities to be executed in
each stage are created as follows:

• MA1 contains all activities whose end time in schedule S is less than or equal to MD1,
• MA2 contains all activities whose end time in schedule S is less than or equal to MD2

and greater than MD1,
• MA3 includes other activities that are not included in MA1 or MA2.

The data for determining cash flows for each test instance: contractual client payment
amounts are MP1 = 60, MP2 = 60, MP3 = 120, contractual penalties are MC1 = 1.5, MC2 = 1.5,
MC3 = 3, while the costs of executing CFAi activity are calculated proportionally to the
total demand for resources and time for a given activity, while the sum of CFAi for all the
activities is equal to 100. Discount rate used in experiments is α = 0.01.

The experiments were conducted on an Intel Core i7-4770, 3.4 GHz CPU, 8 GB RAM
using C# application implemented in Visual Studio 2017. The main goal was to evaluate
the simulated annealing algorithm performance, moves (Swap, Insert, Swap all, Insert all,
Adjacent swap), and techniques of generating schedules (backward scheduling, activity right-
shift procedure, justification). Parameters for the SA algorithm such as: the geometric cooling
scheme and the initial temperature of 0.1 were established in preliminary experiments.

In all analyzed configurations of the SA algorithm, 5000 activity lists are analyzed.
Because of the stochastic nature of the calculations, experiments are conducted twice.
The results of the computational experiments are presented in Tables 1 and 2. In these
tables: FS—forward scheduling using serial SGS without improvement, BS—backward
scheduling procedure with optimization of completion times of project stages, SH—forward
scheduling with improvement using activity right-shift procedure, RJ—forward schedul-
ing with improvement using right justification technique, TJ—forward scheduling with
improvement using triple justification technique (RJ + LJ + RJ).

Table 1. Results of the experiments—J30 projects.

Average Value of the Function F Number of the Best Solutions CPU

Swap Ins. Swap All Ins. All Adj. Swap Swap Ins. Swap All Ins. All Adj. Swap Time [s]

FS, 1st run 76.19 76.13 76.17 76.02 75.91 0 0 0 0 0 0.05
FS, 2nd run 76.18 76.11 76.18 76.01 75.98 0 0 0 0 0 0.05

BS, 1st run 77.38 77.33 77.38 77.32 77.17 328 319 324 302 275 0.80
BS, 2nd run 77.38 77.32 77.37 77.30 77.16 329 306 322 299 270 0.81

SH, 1st run 77.25 77.16 77.21 77.08 76.99 55 48 51 46 39 4.46
SH, 2nd run 77.23 77.15 77.22 77.07 77.01 50 49 53 44 40 4.45

RJ, 1st run 77.50 77.43 77.49 77.36 77.29 275 255 271 234 223 0.17
RJ, 2nd run 77.48 77.44 77.46 77.37 77.29 266 255 263 243 218 0.17

TJ, 1st run 77.58 77.55 77.58 77.52 77.46 315 299 301 277 258 0.45
TJ, 2nd run 77.57 77.55 77.58 77.49 77.48 309 293 305 273 259 0.45

The average values of the objective function F for the baseline schedules are 74.04
for projects from J30 and 48.09 for projects from J90. The average values of the objective
function F for the best found schedules are 80.63 for projects from J30 and 57.22 for projects
from J90. The use of developed scheduling techniques improves the quality of generated
solutions. The highest average value of the objective function F for both J30 and J90 project
sets is reached for RS that uses the triple justification technique (RJ + LJ + RJ). An effective
technique for generating solutions is also the backward scheduling procedure with the
optimization of completion times of the project stages. It constructs solutions with a lower
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mean value of F, but often generates schedules with the highest value of F. The least
efficient and most costly in terms of calculation is the activity right-shift procedure.

Table 2. Results of the experiments—J90 projects.

Average Value of the Function F Number of the Best Solutions CPU

Swap Ins. Swap All Ins. All Adj. Swap Swap Ins. Swap All Ins. All Adj. Swap Time [s]

FS, 1st run 50.23 50.44 49.99 49.79 49.54 0 0 0 0 0 0.23
FS, 2nd run 50.23 50.44 50.03 49.82 49.57 0 0 0 0 0 0.23

BS, 1st run 52.88 52.96 52.85 52.67 52.53 133 209 89 65 21 4.44
BS, 2nd run 52.87 52.97 52.83 52.66 52.54 111 208 85 79 36 4.45

SH, 1st run 51.49 51.67 51.24 51.07 50.81 0 0 0 0 0 44.00
SH, 2nd run 51.46 51.67 51.27 51.07 50.85 0 0 0 0 0 44.01

RJ, 1st run 52.60 52.71 52.36 52.17 52.04 20 38 15 11 10 1.18
RJ, 2nd run 52.59 52.70 52.38 52.21 52.06 18 23 13 13 10 1.18

TJ, 1st run 52.94 53.03 52.82 52.78 52.63 54 82 27 25 10 3.21
TJ, 2nd run 52.95 53.00 52.86 52.81 52.65 59 75 37 32 13 3.22

For projects from J30 set, the best solutions are generated using Swap or Swap all
moves, while for J90, the most effective is Insert move. The worst results are achieved for
the Adjacent swap move.

6. Summary

This work examines the problem of maximizing the discounted cash flow for a multi-
stage project from the perspective of its contractor with client payments made after the
contractual stages of work, penalties for late completion and expenses incurred by the
contractor when performing the activities. The problem is illustrated and techniques
for generating appropriate solutions are described. A simulated algorithm based on
dedicated scheduling methods is provided. An experimental analysis was performed,
which identified the efficient moves (Swap, Swap all for J30, Insert for J90), and techniques
for creating solutions, that is backward scheduling with optimization of completion times
of project stages and triple justification.

The problem discussed is actual. The proposed model of project stage settlements can
be useful in practice and beneficial for both the client and the contractor. It may lead to the
reduced untimely execution of practical projects. The data used for financial settlements,
such as deadlines, contractual payments and penalties can be negotiated between the client
and the contractor to determine a solution that satisfies both parties.

Further works focus on comparing the effectiveness of various metaheuristics for the
proposed model, especially population-based algorithms such as genetic algorithms and
particle swarm optimization. Another direction of the work will be the development of the
capital-constrained model (CCPSP) with staged project settlement for which the use of the
described techniques of generating solutions will be tested.
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Abstract: Efficiency in supply chains is critically affected by the performance of operations within
warehouses. For this reason, the activities related to the disposition and management of inventories
are crucial. This work addresses the multi-level storage locations assignment problem for SKU pallets,
considering divisible locations in the first level to improve the picking operation and reduce the travel
times associated with the routes of the cranes. A mathematical programming model is developed
considering the objective of minimizing the total travel distance, and in the background, maximizing
the use of storage capacity. To solve this complex problem, we consider its decomposition into
four subproblems, which are solved sequentially. To evaluate the performance of the model, two
analysis scenarios based on different storage strategies are proposed to evaluate both the entry and
exit distance of pallets, as well as the cost associated with the movements.

Keywords: slotting; order picking; storage strategies; stackability; SKU; product family

1. Introduction

Nowadays, companies pay more attention to the management of their warehouses,
seeking to optimize the location of their products in the facilities based on the remaining
time before being dispatched. Their supply chains tend to be dynamic, responding to the
high response times demanded by customers. This requires agile warehouse management
given a higher product turnover. However, there are no two businesses that work in the
same way due to the multiple factors that can affect the dynamics of a supply chain, where
the operations of a warehouse play a fundamental role in determining operating costs and
customer time response throughout the distribution chain [1].

In this sense, the order picking process figure as one of the fundamental processes
within warehouse management. This can be defined as the process by which items in
storage are handled to fulfill a specific customer order. This operation has been evaluated
as the most critical in the supply chain: ref. [2] establish that this process involves approxi-
mately 55% of the total operating costs related to the warehouse activities. This process
normally considers tasks such as searching, handling, and product transferring, tasks that
represent, respectively, 20%, 50%, and 30% of the total time of order preparation. Travelling
is considered an unproductive activity, which does not add value to the operation, and
considering that this item represents the largest component of order times, it reveals an op-
portunity to improve the performance of storage centers. In recent years, companies have
sought to reduce travel times through the use of technologies, such as advanced storage
management software, flow racks, voice picking, radio frequency identification, among
others, spending around 10% to 30% more per year for this purpose. This is consistent with
the information found in the literature, from which it is estimated that less than 15% of
the SKUs (Stock-Keeping Units) are correctly located [3]. Better solutions can result from
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a deeper analysis of the correct positioning of products within a warehouse based on the
demand for each product.

In order to address the problems described in the order picking process, the concept
of slotting has recently been studied and analyzed in industry and specialized literature. In
this sense, the slotting process seeks to address order picking by searching for an intelligent
arrangement of products within the warehouse. Specifically, it is the correct assignment of
SKUs to available storage locations, establishing the storage mode, the volume of space
to be assigned, and the exact location for product storage [4]. Slotting aims to improve
efficiency in order preparation and reduce operating costs [5]. For the Slotting process, it is
necessary to answer two basic questions: (1) How to classify SKUs? and (2) How to assign
classified SKUs to locations? [6].

According to [7], it is possible to use a variety of strategies to optimize the operational
process when carrying out the location assignment. However, it is possible to distinguish
three main strategies, which are classified as dedicated, class-based, and random storage.
Dedicated storage consists of assigning a fixed slot for a certain item within the ware-
house [4]; this strategy is aimed at quick access in manual systems, thus reducing search
time and improving the handling and transfer of products by operators. In class-based
storage, items are classified, grouped, and stored in certain slots according to their turnover
rate, which enables higher handling or sorting throughput as a result of the connection
between products, i.e., locations are assigned adjacently for those items that are usually
ordered together. Random storage, in turn, results in higher utilization of warehouse capac-
ity due to location assigning characteristics, resulting in a uniformly distributed allocation.
However, the latter strategy can be cumbersome and sometimes expensive, which is why it
is commonly used under the closest position rule [4]. As mentioned by [8], if the storage
process is random or inappropriate, this will affect the cost of movement, waiting time,
and transfer. The study also concludes that the efficiency of the storage strategy depends
on a wide variety of factors, but as a general rule, ABC analysis yields better results.

The present work is divided into two stages. The first stage addresses a storage
location assignment problem focused on divisible horizontal locations, generating more
storage positions of lower height (see Figure 1). This problem will be called Storage
Location Assignment Problem with Variable Height or SLAP-VH.

 

Figure 1. Representation of a divisible location of the first level of variable height accommodation. Where Hmax, Hhal f and
Hmin correspond to the maximum, half the maximum height, and minimum height respectively.

In this way, SLAP-VH considers selecting locations to store products based on their
demands, positioning customer’s most requested items near the exit, maintaining the
priority of stackability (a factor that determines ergonomic efficiency), and arrange them in
a way that minimizes cranes travel during operations.

In this work, SLAP-VH has been approached through mathematical programming
and solved from its decomposition into four subproblems, which are solved sequentially.
The subproblems correspond to assignment models based on an estimate of the collection
route, i.e., the result determines the best position for each SKU considering the minimum
travel distance in a linear way for the accommodation route, starting from the main route
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with side trips within aisles, and considering serpentine selection performed by an operator
to assemble an order.

The second stage of the work consists of the economic evaluation of the crane path,
based on the solution found by the proposed model, for two different analysis scenarios:
one based on a random class-based storage strategy, and the other scenario is based on a
storage strategy purely by class, where two decision criteria are defined to select the best
storage route.

The rest of this article is organized as follows: a literature review is presented in
Section 2; Section 3 describes the study warehouse and the approach to the problem that
motivated the proposed methodology; Section 4 presents the global model of SLAP-VH;
Section 5 presents the decomposition of the SLAP-VH problem and the models for each
subproblem; Section 6 defines the proposed solution methodology; the assessment of the
scenarios is described in Section 7; Sections 8 and 9 presents the results obtained and
the comparison of scenarios; Section 10 presents the discussion of the results; Section 11
provides final comments and conclusions.

2. Previous Literature

Slotting optimization research can be divided into two areas. The first is the modeling
of the slotting process to improve efficiency in order preparation, load movement, handling
of heavy over lightweight items, among others. And the second area is related to model
resolution, using for example, exact, heuristic, and/or metaheuristic algorithms, among
others [9]. Several researchers have developed both mathematical and heuristic models to
address Slotting related to the Storage Location Assignment Problem (SLAP). Some of these
studies can be consulted in Table 1, where the models developed tend to be very complex
due to the SLAP NP-Hard complexity. In this sense, ref. [10] affirm that most of the storage
and recovery problems fall into this category, which motivates the use of heuristics for
their resolution. Besides, certain investigations propose decompositions of the problem,
where initially the number of locations is addressed and the assignment is considered
afterward. Using this strategy, ref. [11] addressed the SLAP for outbound containers
in a maritime terminal, which was divided into two stages. They first determined the
number of locations from a mixed-integer linear programming model and then defined the
exact storage location based on a hybrid sequence stacking algorithm. This experimental
study demonstrated effectiveness in comparing and analyzing performance in total travel
distance between the yard and the bunk, the imbalance of the workload between different
blocks of containers, and the percentage of repetitions in loading operations. In this way,
the hybrid sequence stacking algorithm reduces the unnecessary movement of containers
in cargo operations to 18%, compared to 30% of the average rehandle percentage in the
case study analyzed.

It is interesting to note that the vast majority of the studies carried out consider as
an objective function the minimization of time, cost, or distance. However, authors such
as [12] developed a mathematical model that minimizes storage time by incorporating a
two-objective optimization approach: maximization of space availability and minimization
of production due date measurements. Ref. [1] developed a mathematical model that
considers two simultaneous goals: minimize travel distance and maximize average storage
usage. The SLAP-VH also incorporates this feature, considering the minimization of
cranes route as the main objective function, and the maximization of storage use as a
secondary function.

One of the main parameters of the SLAP modeling is the planning horizon. Research
in the field reveals that evaluation periods adjusted to the problem achieve greater effec-
tiveness in the correct arrangement of SKUs. For example, in [13] was defined the time
horizon in periods of discrete units (days) to consider the real situation of the research,
where the storage warehouse releases outgoing objects and stores incoming objects in each
unit period. For the case of SLAP-VH, the period (t) is based on the normal distribution
of the demand for each SKU (see Figure 2), this allows the Slotting to be defined as active
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since the correct accommodation adapts to the temporality of the products according to the
defined periods.

 

Figure 2. Definition of periods for SLAP-VH based on the monthly demand of each SKU grouped
by families.

The models proposed by the researchers are commonly solved by heuristics or meta-
heuristics, considering the complexity of the SLAP. However, these heuristic and meta-
heuristic algorithms are not able to guarantee the optimality of the solutions, although, in
some cases, they offer nearly optimal solutions depending on the execution times and the
parameter setting. Researchers have evaluated the effectiveness of different algorithms
for the SLAP. For example, ref. [14] made a comparison between an optimization method,
a Tabu Search metaheuristic, and an empirical rule. The authors concluded that the size
of the accommodate list has a significant effect on its structure and the optimality of the
results. Additionally, the optimization method reduced labor costs compared to the so-
lutions provided by metaheuristics. Reducing costs has a strong impact on the entire
order picking process since all activities are connected. Ref. [15] state that the optimization
of positioning not only reduces costs and energy in the operation but also improves the
efficiency of the storage of goods. Therefore, optimizing the Slotting process helps to
complete orders at a faster pace, benefiting the consolidation work (i.e., a process that
groups the demand for orders from different areas, into complete orders), and the service
level delivered to end consumers. Managers want to reduce the time spent on movements
within the warehouse, not only to decrease labor cost and production downtime but also
to shorten customer response time. Ref. [16] developed a study of the time of the activities
carried out in the preparation of orders in Maines Paper and Food Services (Inc in Conklin,
NY), concluding that 40% of the time is spent on travel. Therefore, reducing this percentage
could significantly save a warehouse operating expense. Reducing travel time implies
reducing the distance of cargo transfer and therefore the number of operators required
to place an order. Ref. [17] state that the distance largely depends on the design of the
warehouse. It is logical, in the case of slotted storage, to place the merchandise that has a
high turnover in privileged locations close to the dispatch point. In contrast, when placing
an order where items need to be selected in a single tour, it makes more sense to assign
SKUs to locations that minimize travel time for routes.
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Table 1. Main characteristics of the presented storage location assignment models.

Reference Characteristic of the Model Storage Strategy Function to Optimize Solution Method

[16]
Warehouse with Crossover-
Aisles with one direction of

movement.
Weight order. Minimize total distance

traveled.

Mathematical model
programming language C.

Simulation Microsoft Visual
Basic 6.0.

[13] Linear movement of objects. Single storage. Minimize the number
of obstructive objects.

Mathematical programming
model.Genetic algorithm (GA).

[15]
Based on the principle of

lower energy and
shorter time.

Random.
Minimize total energy

consumption.
Minimize storage time.

Discrete particle swarm
optimization (PSO).

[11] Storage of containers in a
maritime terminal. Category of containers.

Minimize travel
distance and time

required load transfer.

Mixed-integer
programming model.

Hybrid stacking algorithm
sequence procedure.

[18] Travel distance considering
three axes. Symmetric storage. Minimize total travel

distance.
Mathematical model evaluated

in LINGO Software.

[19] Stored cycle travel times and
double-depth retrieval.

Random.
Always positioned first

to the second lane.
Minimize travel time. Analytical model.

Simulation.

[20]

Warehouse symmetrical
storage locations for a

single product.
Considers two horizontal

axes and one vertical.

Symmetric storage. Minimize total travel
distance.

Mixed-integer
programming model.

Metaheuristics: Differential
evolution (DE), Global

optimization of the local and
near neighbor particle swarm

(GLNPSO).

[21]
Placing of accommodation

lots with a fleet of k
homogeneous teams.

Priority rule FCFS (First
Come First Served).

Minimize the total time
of lot formation.

Statistical design of
divided parcels.

Metaheuristic of intelligent
neighborhood search (INS).

[1]

Bi-objective.
Storage of blocks of pallets
with storage locations for a

single product.

Random.

Minimization of the
total travel distance.
Maximization of the

average use of storage.

Mathematical model and a
constructive heuristic

algorithm.

[12]
Storage and recovery.
Storage location for a

single product.
Random.

Minimize travel time.
Secondary function:

maximize storage use.

Decomposition of
3 subproblems.

Metaheuristic methods:
Random, priority rule, and

Genetic Algorithm.

[14]
Storage of homogeneous
characteristics and WMS

integration.

FIFO rule (First In First
Out). Minimize total costs.

Optimization model.
Taboo search metaheuristic.

Empirical rule.

[22] Application of new storage
strategy.

The selection area is
divided into two

sections called free
seats and start

locations.

Minimize the time
required for order

preparation.

Simulation (FlexSim).
Matlab.

[23]

The model is based on
correlated data products

parameters, clients’ orders
and warehouse layout.

Correlated data from
the analysis of the ABC,

XYZ, EIQ, AHP and
COI indices.

Ensure the shortest
time to access products

of the highest
frequency from the

gates

software Pickup Simulo
codified in PHP language and
MySQL relational databases.

Application of artificial neural
networks
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Table 1. Cont.

Reference Characteristic of the Model Storage Strategy Function to Optimize Solution Method

[24]
Machine Learning

techniques for Product
Allocation Problem

Product classification
strategy comparing

with reference
picking data

Minimization of
statistical dispersion

indicators and
maximization of

clustering quality using
Calinski-Harabasz

criterion

Simulation using feed-forward
artificial neural network and

automatic clustering

On the other hand, travel time depends entirely on the location of the SKUs in the
warehouse and, in turn, on the storage strategy. The latter is an important factor in ware-
house performance, since optimizing the slotting process consists of optimizing storage
locations based on the characteristics of the racks and also the requirements of the processes
within the warehouse.

Given the above, this work proposes an optimization model for the Slotting process
(SLAP-VH), where its distinctive feature is the consideration of a warehouse whose lo-
cations corresponding to the first accommodation level are divisible. To the best of our
knowledge, this feature has not been previously considered within SLAP literature. This
work is divided into two stages: determining the optimal location for each SKU in a plan-
ning horizon with four defined periods, and determine the best of two allocation scenarios
to reduce travel distance and costs. SLAP-VH is solved through a mixed-integer linear
programming model (MILP), considering a representative sale day belonging to the most
critical period (highest number of orders). The choice of the solution method addressed
for SLAP-VH was determined from a comparative table between three metaheuristics and
an optimization method (namely: PSO, GA, Tabu Search, and optimization), where the
high execution times of the metaheuristics motivated the construction of these evaluation
scenarios, solving them from a MILP optimization model with the Gurobi solver through
an exact procedure. On the other hand, the combination of storage locations (racks and
floor locations) is a unique feature compared to the optimization models investigated, in
addition to the incorporation of four outputs from the warehouse under study. The main
characteristics of the study problem compared to the research carried out are presented
in Table 2.

Table 2. Attributes of SLAP-VH.

Model Characteristics Storage Strategy Function to Optimize Solution Method

Warehouse with four outputs.
Storage in Racks and storage

a floor.
Locations in first

accommodation level with
multi-level.

Two storage scenarios:

• Storing by random
classes

• Storage purely by classes

Minimize travel cranes.
Maximize storage use.

Mathematical programming
model MILP.

Python programming language,
Pyomo Gurobi solver.

The literature reviewed in this research shows how the storage location assignment
problem has been addressed in different warehouses. None of the models proposed by
the reviewed authors solves the problem with different types of storage locations and
divisible locations developed in this paper; however, they provide relevant factors to
consider in storage strategies and problem modeling for locations storage both in-floor
locations (“Perchas”), described by [1], and also in racks, developed by [12]. Besides, this
latter considers the subdivision of the assignment problem, influencing the development of
this research. On the other hand, the objective proposed in this work is equivalent to most
of the models addressed in the state-of-the-art literature, that is, to reduce the travel time
of cranes or to minimize the operating cost of the warehouse picking operation, functions
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that are strongly related. Therefore, combining and adapting the models presented in the
literature to the proposed problem allows to obtain nearly optimal solutions, minimizing
time, cost, and also increasing the warehouse space utilization.

3. Warehouse Description and Methodology

The mathematical model is built and evaluated based on real data from a distribution
center (DC) of a beverage company that supplies Chile and neighboring countries, provided
with around 1200 SKUs on inventory in its dependencies. The DC picking area is modeled
to develop the SLAP-VH, where the SKUs are represented as loaded pallets of homogeneous
dimensions. As can be seen in Figure 3, the warehouse is composed of columns of racks
with equal height and the same number of slots. The width and depth of the storage
positions of racks are the same for the entire warehouse with dimensions 1 × 1.2 m2. The
height varies between 0.7 m to 1.2 m according to the division of the location and SKU
format dimensions. Thus, there are three operations (o) where only one of them can be
applied for each location, that is: the location cannot be divided, can be divided into two
parts, or can be divided into three parts.

 

Figure 3. Layout of the study distribution center. The lighter slots represent Perchas, while the darker slots are racks.

Warehouse aisles correspond to the space between each rack, which are listed from
left to right. The design of the warehouse is represented as a rectangular section, where the
entrance of the cranes to the locations are on both sides of the aisle, except for the first and
last side. Additionally, the warehouse has four exits to the consolidation and dispatch area.

Into the warehouse, only trilateral cranes are considered with one operator onboard
and an average speed of 5 km/h, where minimizing the distance of crane movements allows
determining the number of trips during an 8-h shift, concluding in this way the number of
operators needed to satisfy the requirements. This fact, however, can be addressed with
greater depth in future researches.

In the warehouse under study, there are three storage considerations: (a) locations
should be assigned to the pallets according to affinity; (b) The pallets with the highest
demand should ideally be assigned in locations without division, and; (c) two columns
of locations, which do not include racks, cannot be divided. These columns are called
“Perchas”. These are worked separately, treating as a fourth subproblem for SLAP-VH.

Perchas are locations stacking pallets that are stored on the floor at the top, arranged
in stacks. This area is managed according to the dedicated storage strategy, since, as shown
in Figure 4, each location has capacity for twelve pallets, that is, five pallets can be assigned
in base and depth, and then start to be stacked while maintaining ergonomics and operator
protection. It is important to store only one type of SKU for each Percha location, since a
great storage depth generates inconveniences such as, for example, not finding a pallet of
SKU “A” since it is under a stack of SKU pallets “B”. In other cases, this situation can cause
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the operator may forget that they stored a pallet under other SKUs, passing the expiration
date. Regarding time, stacking pallets of different SKU types demands the operator to
spend more time searching and moving the necessary pallets until reaching the desired one.

 

Figure 4. Representation of Perchas locations with a two-sided view, where each rectangle represents
an SKU pallet. Bold arrows indicate pallet entry.

The decision to divide locations is based on the demand for the products: for example,
if an SKU is less requested in a period, this will be assigned to locations of smaller capacity
and further from the warehouse. The opposite happens with a highly demanded SKU,
which will be assigned to a high capacity location and close to the exit. Finally, the Perchas
are locations defined by the company for a certain type of SKU where the decision consists
of positioning the pallet according to its proximity to the exit point since these locations are
not divisible.

SLAP-VH only considers the first-level stacking locations, that is, the first location
from the floor of each rack. Storage is governed by order priority rules, specifically by
EDD (Earliest Due Date), except for the picking slots, corresponding to the first level
of accommodation. For this reason, this research focuses exclusively on the assignment
of these locations, which can be divided into three positions, in two, or they can be
maintained without performing any division. In this sense, three, two, or one pallet can be
stored respectively. Each first-level storage slot has capacity for two pallets of maximum
height (Figure 5(a.1,a.2)), while a divided slot (Figure 5(b.1,b.2)) has capacity for four
medium height pallets, or six pallets of minimum height (Figure 5(c.1,c.2)). Therefore, the
term “location” will be used to denote the storage space of a rack with a capacity of one
pallet of maximum height, while the storage space of a divided slot of less height will be
called “position”.

Within the warehouse, SKUs are classified based on the Pareto principle according to
the class or product family to which they belong, where 80% of the total quantity demanded
corresponds to type “A” SKUs, 15% to the “B” and 5% to the “C”. The ABC classification is
essential to know the need for accommodation of each SKU based on its demand. Each
of the families has a different number of SKUs and each family has a regrouping called
a subfamily, which is based on the weight of the products. In this way, the grouping by
families only allows determining the product category, while the regrouping by subfamilies
allows classifying with more information about each SKU based on the size of the product.
This creates a greater connection between stackability priority and affinity between the
products. In this sense, it is necessary to clarify that grouping by product families and sub-
families is a strategy defined by the company, which is enhanced by the ABC classification
by periods. Initially, there were 12 families, however, in order to group those with a smaller
quantity without affecting stackability, 7 families were finally obtained.

As [3] indicates, the general assignment problem is classified as an NP-hard complexity
problem. From this statement, SLAP-VH can also be considered as an NP-hard problem,
since it applies a stricter constraint set for the general storage assignment problem. The
case study considered 726 SKUs that must be distributed in 1170 locations, a value that
may increase considering the division of locations. Therefore, evaluating all the possible
combinations becomes an impractical strategy given the order compilation time O(n!)
for exact algorithms. However, based on the assumptions used and presented in Table 3,
the underlying complexity tends to decrease, reducing the number of decisions and the
combination of cases that arise when trying to model reality. In this way, the presented
model results in a mixed-integer linear programming problem (MILP).
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Figure 5. Representation of the first accommodation level locations with simple, double, and triple division, where (a.1),
(b.1), and (c.1) correspond to the front view of a storage location in a rack, while (a.2), (b.2), and (c.2) correspond to the side
view. Bold arrows indicate pallet entry.

Table 3. Main assumptions considered in SLAP-VH.

• The Warehouse Starts Empty to Accommodate SKUs Packing

• All accommodation operations are performed by homogeneous cranes

• Stored pallets are homogeneous and loaded by a single SKU

• All SKUs must be stored in at least one location or position

• All locations used in the problem corresponds to the first accommodation level

• All locations can be divided, except for Perchas

• The distance is measured with respect to the warehouse exits and the end of the aisle in a
linear way

• The distance is equal for both divided and without division locations

• A not divided location is assigned when an SKU demands at least one pallet bin

• A two-position location is assigned when an SKU demands between 0.5 and 1 pallet bin

• A three-position location is assigned when an SKU demands less than half of a pallet bin
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It is important to consider that for modeling purposes, only the use of full storage
pallets will be considered. This assumption applies since the cranes are loaded with
either a full pallet or with a load conformed for different clients until creating a complete
pallet, given the volume of demand of the company. It should be noted that the full
pallet denomination refers to a pallet loaded in its full storage capacity. In this sense, the
operators move full pallets to a location or position and then return without cargo to repeat
the packing operation, before the order picking process. In order picking, there are three
different activities to move SKU pallets:

1. Transfer of a complete pallet: the operator only transfers a pallet loaded with a
single SKU to the nearest exit. This activity is normally done when an SKU is highly
demanded.

2. Transfer of a replenishment pallet: the operator moves a complete pallet to a location
or position when it has become empty during the picking operation.

3. Transfer of a conformed pallet: the operator makes collection trips until a complete
pallet is formed and goes to the closest exit.

These activities are considered in the evaluation of scenarios through the picking
operation once the product layout has been obtained.

Appendix A lists the notations, abbreviations, and symbols used in the document.

4. Global Solution Model

In this section, the global model of SLAP-VH is presented, which will be denominated
P1, as can be seen in Figure 6. The problem begins by solving the first subproblem, which
determines the number of locations through the demand for the SKUs, to continue with
the second subproblem, and start the construction of the two different Slotting scenarios.
Once the results obtained are known, we proceed to the third subproblem, defining which
locations should be divided. In parallel, the fourth subproblem is solved to later introduce
the results obtained in the global model of P1. The specifications of each subproblem are
defined in the next section. It is necessary to clarify that the sequentiality in the develop-
ment of the problem is determined from the key decisions considered in Section 5, since
the simultaneous resolution of the analyzed subproblems does not allow obtaining feasible
scenarios. Finally, the SLAP-VH solution is reflected in two slotting layout scenarios, which
are evaluated to determine the optimal solution in terms of distance and costs. These
scenarios show the three types of storage strategies that have been applied in the ware-
house under study. Since locations without racks already have a defined strategy, the two
scenarios defined in Section 7 are generated.

 

Figure 6. Solution framework for the study problem.
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The mathematical model proposed for P1 aims to determine which is the best position
for each SKU within the warehouse that minimizes the travel distance of cranes, considering
the ABC classification and the stackability priority. The relevant parameters and decision
variables are presented in Appendix A.

The formulation of the model P1 is presented below:

Min ∑
I

∑
J

∑
K

(
Yji·Djk·value_skui

)
(1)

Subject to

∑
S

∑
I

(
Yji·sku_sub f amiliysi·position_sub f amilyjs

)
= 1, ∀ j ∈ J (2)

∑
J
(Yji·typejo) ≥ sku_typeio, ∀ i ∈ I, o ∈ O (3)

The objective of the proposed problem is to secure to each SKU at least one location,
considering the minimum distance from the warehouse exit. Constraint set (2) establishes
that each location/position must have a single SKU, and in set (3) it is determined that
an SKU can have more than one location/position. Both restrictions consider the type of
operation that position has, and the family to which it corresponds.

5. Decomposition of the Problem

The problem P1 with its corresponding objective function F1 is divided into four
subproblems, called P1.1, P1.2, P1.3, and P1.4, where their corresponding objective functions
are called F1.1, F1.2, F1.3, and F1.4 respectively. These are solved sequentially, where the result
of each one is used as input to the immediately following subproblem. Each subproblem
determines the following key decisions: (1) Number of locations to divide, (2) assign
product family per aisle, (3) sort according to stackability priority within the aisle and define
the location to be divided, and (4) define the number of locations for each family that go to
Perchas sorting by subfamily. As stated above, it is common to solve these subproblems
separately considering their complexity, although they are strongly interconnected [25].
Table 4 presents a list of the problems studied in this research.

Table 4. List of addressed problems, and objective functions considered in each problem.

Abbreviation Description

SLAP-VH or P1 Storage location assignment problem with variable height
P1.1 Subproblem of P1 that determines how many locations to divide
P1.2 Subproblem of P1 that assigns families to aisles
P1.3 Subproblem of P1 that determines which locations to divide

P1.4
Subproblem of P1 that determines how many locations correspond to

each family that goes to Perchas

Abbreviation Description Related Problem

F1
Minimize the distance from an SKU

to the warehouse exit P1

F1.1
Minimum number of divided

locations P1.1, P1.2

F1.2 Affinity analysis P1.2, P1.3

F1.3
Minimize the distance, from a

location to warehouse exit P1.3, P1

F1.4
Minimize the number of locations

for “B” classification SKUs P1.4, P1

In P1, locations are assigned to each SKU from the results obtained from F1.1, F1.2, F1.3,
and F1.4, where each subproblem considers different search spaces to determine key deci-
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sions. Appendix A shows the main parameters and decision variables used in the models
for each subproblem.

5.1. Subproblem P1.1: Locations to Divide

The model for P1.1 is presented below, in which the decision variables define the
quantity of simple, double, and triple locations that each SKU must occupy.

Min ∑
I

(
uB2i

2
+

uB3i
3

+
uC2i

2
+

uC3i
3

)
(4)

Subject to:
total_UA ≥ ∑

I
uAi (5)

total_UB ≥ ∑
I

uBi (6)

total_UB2 ≥ ∑
I

uB2i
2

(7)

total_UB3 ≥ ∑
I

uB3i
3

(8)

total_UC ≥ ∑
I

uCi (9)

total_UC2 ≥ ∑
I

uC2i
2

(10)

total_UC3 ≥ ∑
I

uC3i
3

(11)

total_locations ≥ total_UA + total_UB + total_UB2 + total_UB3 + total_UC
+totaL_UC2 + total_UC3

(12)

uAi ≥ α ∗ dda_locationsi
∀ i ∈ I

(13)

uAi = 1
∀ i ∈ I: dda_locationsi = 0 ∧ SKU_Ai = 1

(14)

uBi ≥ β ∗ dda_locationsi
∀ i ∈ I: SKU_Bi = 1

(15)

u2Bi ≥ dda_decimali
∀ i ∈ I : dda_decimali ≥ γ ∧ SKU_Bi = 1

(16)

u3Bi ≥ dda_decimali
∀ i ∈ I : dda_decimali ≤ γ ∧ SKU_Bi = 1

(17)

uCi ≥ β ∗ dda_locationsi
∀ i ∈ I : SKU_Ci = 1

(18)

u2Ci ≥ dda_decimali
∀ i ∈ I : dda_decimali ≥ γ ∧ SKU_Ci = 1

(19)

u3Ci ≥ dda_decimali
∀ i ∈ I :: dda_decimali ≤ γ ∧ SKU_Ci = 1

(20)

total_locations ≤ loc_total (21)

total_sum2s ≥ ∑I(uB2i+uC2i)·sku_sub f amilysi
4

∀ s ∈ S
(22)
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∑
I
(uB2i + uC2i)·sku_sub f amilysi − total_sum2s·4 = 0

∀ s ∈ S
(23)

total_sum3s ≥ ∑I(uB3i+uC3i)·sku_sub f amiliysi
6

∀ s ∈ S
(24)

∑
I
(uB3i + uC3i)·sku_sub f amiliysi − total_sum3s ∗ 6 = 0

∀ s ∈ S
(25)

The objective is to minimize the number of total double and triple divisions in the
warehouse. Constraints sets (5) to (11) indicate the total number of simple, double, and
triple locations. In (12), the total amount of locations obtained is grouped, which are limited
by equation (21). Constraints sets (13) to (20) guarantee the coverage of locations according
to the ABC classification of the SKUs, reflected in the parameters α, β, γ. Expressions
(22) and (23) consider that the number of double locations for each subfamily is divisible
by 4. The previous condition is also considered in (24) and (25), where the number of triple
locations for each subfamily is divisible by 6.

5.2. Subproblem P1.2: Allocation of Families to Aisles

This subproblem has been approached from the experience with the affinity between
the studied families, which aims to define those families that should be assigned close
to one another. It is possible to highlight three main classifications to determine affinity:
(1) SKUs that belong to different families and are commonly requested together by the
customers; (2) SKUs that are not frequently requested, and therefore have no affinity with
other SKUs of other families, and; (3) given that Perchas have greater storage capacity per
location, those SKUs that are less demanded by customers and belong to the families in
Perchas are considered to be positioned near these locations. Table 5 describes the analysis
carried out from the families under study.

Table 5. Affinity or compatibility between families.

Compatibility Closeness to Perchas Without Compatibility

Family 1 Family 6 Family 2 Family 3

Family 2 Family 4 Family 4 Family 1

Family 7 Family 5 Family 6

The affinity between families allows determining the physical storage arrangement
within the aisles. Assigning families to aisles, that is, constructing accommodation lines,
facilitates the work of operators when traveling along the aisle selecting only what is
necessary, without going back or travel long distances when making the collection route.

5.3. Subproblem P1.3: Determine Which Location to Divide

To determine which locations should be divided, the following linear programming
problem is proposed:

Min ∑
S

∑
J

∑
K

X0jsDjk

(
1

weights

)
(26)

Subject to
∑
J

X0js ≤ ub0s

∀s ∈ S
(27)

∑
J

X2js ≤ ub2s

∀s ∈ S
(28)
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∑
J

X3js ≤ ub3s

∀s ∈ S
(29)

∑
S

(
X0js + X2js + X3js

)
= 1

∀j ∈ J
(30)

The objective function of the subproblem P1.3 is to minimize the distance from simple
locations to the exit, for each family according to the priority order. Constraints sets (27),
(28), and (29) determine the number of locations that will not be divided, or otherwise
divided into two and three, respectively. Constraint set (30) establishes that each location
can only perform one operation.

5.4. Subproblem P1.4: Perchas

The mathematical model for P1.4, has the objective to determine the necessary number
of locations (see Figure 7) for each SKU of families that must be positioned on Perchas.

Min ∑
I

uisku_bi (31)

 

Figure 7. Representation of Percha location, ordered with five base pallets and three levels.

Subject to
total_per ≥ ∑

I
ui (32)

ui ≥ 1
∀ i ∈ I with dda_locations ≤ θ

(33)

1 ≤ ui ≤ μ ∗ dda_locationsi
∀ i ∈ I con dda_locations > θ

(34)

The objective function in (31) corresponds to the minimization of the number of
locations for those SKUs that are rated as “B”. Constraint (32) establishes that the total
number of locations must not exceed the number of available locations. Constraints sets
(33) and (34) determine the number of locations according to the ABC classification of the
SKUs, reflected in the parameters θ and μ.

5.5. General Algorithm

A flow diagram is built to solve the global model, which establishes the inputs required
for each subproblem graphed in Figure 8, where (A), (B), (C), and (D) correspond to key
decisions that solve the subproblems P1.1, P1.2, P1.3 , and P1.4 respectively, ending with the
assignment of locations in P1. The details of each step are described in the next section.
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Figure 8. General flow diagram for resolution model of the SLAP-VH study problem.

6. Proposed Methodology

This section defines the proposed solution models to address each subproblem.

6.1. Solution Approach Proposed for P1.1

The problem P1.1 can be considered a variant of the integer linear programming
demand satisfaction problem. The mathematical model presented defines demand as the
number of locations that each SKU needs, which is satisfied with simple, double, or triple
locations. The total demand for locations corresponds to a non-integer value, therefore, to
obtain the best combination of possible operations, the maximum coverage is determined
for SKUs, where those articles that demand more or equal capacity than a location can offer,
requires the assignment of simple positions. If demand is less than one location, double
locations must be assigned if it is between one or half pallet, and triple if it is less than half
of a pallet.

The structure of the rack in storage space symbolizes two locations, therefore, it is not
possible to divide a simple location, since if one of these is divided, the paired location must
do so. Therefore, the number of double locations assigned by subfamilies must consider a
multiple of four, and a multiple of six for triple locations.

The problem model P1.1 is implemented using Python programming language and
the Pyomo library. This mixed-integer linear optimization model (MILP) is solved using
Gurobi optimizer. The problem involves 4, 574 variables, 4, 573 of an integer nature, and
one continuous variable, in addition to 3, 454 constraints and one objective minimiza-
tion function.
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6.2. Solution Approach Proposed for P1.2

Family affinity and stackability priority require full attention from managers and
operators. On the one hand, the incoming and outgoing products must be considered to
accommodate them correctly and, on the other hand, the ergonomics of the pallet must be
studied securing stability in its dimensions and weight, avoiding unsafe actions for the
operators. In this way, the distribution of families and subfamilies is carried out based on
affinity and stackability, merging the analyzed classification to the study warehouse, and
finally generating the assignment order of subfamilies.

From Figure 9, a logical order emerges that addresses the priorities of assigning
families to aisles. It is important to emphasize that the warehouse is inflexible, therefore,
there is only one possible arrangement to meet the priorities considering the solution
obtained in P1.1, this is represented in Figure 10. It should be considered that the assignment
of families to aisles must maintain the continuity of the family, i.e., not to position an “X”
family in the first aisle and continue its assignment in the last. This helps operators to find
products in aisles in a faster way. In this sense, it can be observed that those families that
must go near the “Perchas” location are the closest, without interrupting the continuity
of the following families. The same observation applies to those who have compatibility.
Finally, the one that does not have compatibility, being the most numerous, is positioned in
the aisles furthest from “Perchas” avoiding losing continuity.

Figure 9. Classification diagram by affinity.

  
Figure 10. The fusion between the affinity classification diagram and the store. The numbers indicate the families positioned
by racks in each aisle.

6.3. Solution Approach Proposed for P1.3

Once the families are assigned to each aisle and the division for locations are known,
the objective of P1.3 is to define which locations will be divided according to the number of
locations assigned to each family. The assignment operation is done for those families with
a large volume of SKUs since those with less than 10% of the total SKUs can be assigned
manually, and the optimal result is predictable with respect to the priorities.
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The model of this subproblem is coded, like the subproblem P1.1, in Python language
from the Pyomo software packages. The model is implemented with the mixed-integer
linear optimization solver Gurobi, considering 13, 717 variables used, being 13, 698 of them
of binary nature, 13, 716 integer (including binary), and one continuous variable. Besides,
798 constraints and one objective minimization function were considered. These values
decrease as the number of SKUs per family decreases.

Once each position by families is defined, we proceed to sort by ABC classification,
since the model’s solution sends all double and triple locations at the end of the aisles.
Despite being the optimal global solution, it affects the grouping of subfamilies. On the
other hand, the stackability priority is defined by the model, which remains fixed. The
ABC classification allows defining the prioritization of each SKU based on its demand and
thus establishing its proximity to the point of departure, so that it takes less time for the
crane to execute the movements and supply the dispatch area.

6.4. Solution Approach Proposed for P1.4

In the case of “Perchas” locations, the number of SKUs that must be assigned to this
section of the warehouse is 170, a value that exceeds the capacity in 76 locations, since each
SKU must have at least a position or location based on its classification. To balance the
number of SKUs and locations, those SKUs of type “C” are positioned in racks.

Thus, the decision of how many locations assign to each SKU depends, as in P1.1, of
the demand and its classification. However, in P1.4, it is sought to assign the least amount
of locations to SKUs of type “B”, since the demand for each SKU of type “A” of these
families is very high compared to those assigned to the racks.

6.5. Global Proposed Solution Approach

Finally, each solution obtained from the defined subproblems is specified as param-
eters in P1, which turns out to be a one-to-one assignment problem. At this point, how
many locations each SKU needs, in which aisle it should go, and where it can be positioned
according to the type of location are known data, thus making it possible to know in which
position or location each SKU should go.

Figure 11 illustrates the entry of each SKU family to the bottleneck, which corresponds
to the solution of the model P1.1. Then the route that the SKU takes is decided according
to the subfamily to which it belongs, which is a solution of the model P1.2. Then, the next
decision is defined according to the SKU type, since this classification defines in what type
of position it can be located, and the final optimization defines the destination of the SKU
by the minimum distance to the exit of the warehouse.

 

Figure 11. Assignment problem diagram P1.

7. Evaluation Scenarios

In this section, the second stage of the research is presented. Two scenarios are carried
out once the solution of the subproblem P1.2 is known, which result from a combination of
storage strategies, where both have dedicated storage due to “Perchas”, but differ in the
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racks, being by random classes or purely by classes. These are based on the main strategies
used by the company.

As can be seen in Figure 12, the first scenario, called E1, is defined as a dedicated
assignment in “Perchas” locations and by randomized classes in racks. Said randomness is
determined by aisles, that is, a family that requires more than one aisle can randomly assign
subfamilies among these, without losing the priority of the lightest at the beginning of the
aisle and the heaviest at the end. In this way, the Subfamily Layout is built, which begins at
the end of each aisle, where every two locations are filled on one side and pass to the other
side of the aisle until all are completed. The second scenario, called E2, corresponds to a
dedicated allocation in “Perchas” locations and purely by classes in racks. The allocation by
product family determines sequentiality in the aisles, that is, for a family that requires more
than one aisle, it will not assign a subfamily S1 until the subfamily S2 has been assigned,
always considering the stackability priority. Thus, the Subfamily Layout is built from the
end of an aisle and the beginning of the next, where, as in E2, the corridors are filled every
2 locations on one side and pass to the other side of the aisle, until all are completed.

 
Figure 12. Representation of the filling sequence.

The evaluation of each scenario is carried out considering the following criteria, in the
Table 6, based on a high sales day, called Vhigh, corresponding to period 2. Vhigh has a set of
trucks where each of them dispatches between one to four loads.

Table 6. Slotting scenario evaluation rubric, where the minimum score corresponds to 1 and the maximum score is 4.

Criteria [%] 4 3 2 1

Total Distance

• Full pallet output distance
• Conformed pallet

output distance
• Replenishment

entry distance

70
Reduced over

10% versus the
base scenario.

Reduced
between 5–10%
versus the base

scenario.

Reduced
between 1–5%

versus the base
scenario

Does not reduce
the distance

versus the base
scenario

Movement costs

• Use of cranes for a
complete pallet

• Use of cranes for
conformed pallets

• Use of cranes for
replenishments

30
Reduced over

10% versus base
scenario

Reduced
between 5–10%
versus the base

scenario

Reduced
between 1–5%

versus the base
scenario

Does not reduce
the costs versus

base scenario
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The number of full pallets that are dispatched is calculated from the number of total
boxes requested in Vhigh over the number of boxes per pallet of each SKU, then the distance
traveled from the SKU location to the exit, multiplied by the number of movements,
corresponds to the exit distance of complete pallets. Thus, everything that does not leave
the warehouse as a complete pallet is collected per unit of boxes, which represents the exit
distance of the conformed pallet. Replenishment comes from movements that deplete the
availability of a pallet of SKUs in the warehouse. This calculation is determined by the
number of times a position is empty when removing full pallets and/or boxes. Therefore,
the route from entering the warehouse to a depleted position multiplied by the number of
times it needs to be filled corresponds to the input distance for replenishment. Finally, the
total distance arises from the aggregation of these three items. The above is summarized in
Equation (35):

Total Distance = ∑
c

∑
ca
[Pi(dS) + PPi(dS)] + Ri(dE) (35)

On the other hand, the cost criterion assesses the use of cranes based on the distances
traveled for each defined operation, namely: cranes for a complete pallet, collection cranes,
and replenishment cranes, as well as required operators. Average speed is defined in the
Picking operation for cranes, considering high congestion, of 5 km/h, where these have
6.5 h of average use per operator and work shift. Each crane consumes approximately
11.13 Kwh, which is equivalent to 0.11 USD/Kwh (the data used for the accounting of op-
erators and cranes are provided by the company). Besides, an average salary of 708.78 USD
per operator is considered [26]. Thus, the calculation of the number of operators necessary
for the picking process by salary, added to the number of cranes by the value of electricity
consumption and monthly rent, allows obtaining the total monthly cost, as indicated in
Equation (36):

Movement costs =
(
Wps + Wpc + Wpe

)·Salary +
(
Gps + Gpc + Gpe

)
Aω1ω2 (36)

8. Results

8.1. Computational Results

The algorithms were coded in Python, and the results were carried out on an Intel
Core i5-8250U CUP 1.60 GHz 1.80 GHz core with 4 GB RAM.

Table 7 shows the execution time and results for subproblems P1.1 and P1.4, while
Table 8 provides duration time and results for each scenario evaluated. Complementary,
the Execution Times with Gurobi’s Python Interface are presented in Appendix B.

Table 7. Computational results for the general subproblems of P1.

Model Solver Application [sg] Results Time [sg]

P1.1 28.43 0.29

P1.4 0.54 0.15

Table 8. Computational results of the P1 model for each scenario.

Model Scenario Solver Application [sg] Results Time [sg]

P1 E1 158.06 15.68

P1 E2 137.28 16.75

Table 9 shows the execution time and results for subproblems P1.3, considering scenar-
ios and family.
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Table 9. Computational results of the P1.3 model for each scenario according to the evaluation family.

Family Scenario Solver Application [sg] Results Time [sg]

Family 1 E1 0.05 0.19

Family 3 E1 0.53 1.47

Family 7 E1 0.09 1.80

Family 1 E2 0.05 0.15

Family 3 E2 2.59 0.60

Family 7 E2 0.78 0.25

8.2. Results by Subproblems

For subproblem P1.1, the minimum number of locations to be divided corresponds to
16.17% of the total locations, a value that includes 24.14% locations with double position
and 75.86% with a triple position.

Table 10 shows the number of locations for each family and subfamily, in which the
latter is described by the set S with index ε, where ε indicates the number of regrouping of
a family.

Table 10. Corresponding percentages of the total locations available in the defined warehouse by family and subfamily.

Family Total [%] Subfamily
Simple

Locations [%]
Double

Locations [%]
Triple Locations [%] Total [%]

Family 1 6.23

s1 0.00 0.19 0.56 0.74
s2 2.97 0.00 1.12 4.09
s3 0.00 0.00 0.19 0.19
s4 0.00 0.00 0.19 0.19
s5 0.28 0.00 0.19 0.46
s6 0.37 0.00 0.19 0.56

Family 2 2.79
s1 0.09 0.19 0.37 0.65
s2 0.46 0.37 0.56 1.39
s3 0.19 0.00. 0.56 0.74

Fily 3 70.72

s1 1.86 0.00 0.19 2.04
s2 30.67 0.56 1.12 32.34
s3 5.86 0.56 0.56 6.97
s4 0.74 0.00 0.74 1.49
s5 12.55 0.00 0.37 12.92
s6 13.29 0.74 0.93 14.96

Family 4 3.72

s1 0.00 0.19 0.19 0.37
s2 0.09 0.19 0.19 0.46
s3 0.56 0.00 0.00 0.56
s4 0.56 0.00 0.19 0.74
s5 1.21 0.19 0.19 1.58

Family 5 0.74 s1 0.37 0.19 0.19 0.74

Family 6 2.23 s1 1.30 0.19 0.74 2.23

Family 7 13.57
s1 0.37 0.19 0.19 0.74
s2 8.55 0.19 2.23 10.97
s3 1.49 0.00 0.37 1.86

From Figure 13, it is possible to notice that the largest number of locations belongs
to family 3, which has the highest percentage of simple locations. This fact reveals that
this family is the most requested during this period. On the contrary, family 2 represents
the highest percentage of triple locations, from which it can be concluded that this family
contains mostly SKUs of type “B” and “C”.
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(a) Number of locations for each family (b) Assignment of single double and triple location for each family 

Figure 13. Percentage representation for the results obtained in P1.1.

For the subproblem P1.2, the design of the distribution of families per aisle follows the
order described in Figures 14 and 15, where they are assigned into the warehouse from left
to right. Furthermore, the described configuration considers the results obtained in P1.1
and the relationship generated in Figure 9.

  
(a) Distribution of families (b) Distribution of subfamilies 

Figure 14. Representation of the family layout in the study warehouse for E1. The gray variation corresponds in (a) for each
family and in (b) for each subfamily.

  

(a) Distribution of families (b) Distribution of subfamilies 

Figure 15. Representation of the family layout in the study warehouse for E2. The gray variation corresponds in (a) for each
family and in (b) for each subfamily.

The difference between both scenarios is highly observable in the distribution by
subfamily, specifically in the right section of the warehouse, since it corresponds to the
assignment of the largest family in SKUs covering the largest number of aisles, as can be
seen in Figure 15. The gradient color (from light to dark) represents from lower to higher
weight by subfamilies.

On the other hand, the division of locations is represented in Figures 16a and 17a,
where the execution of the model P1.3, reveals that the divided locations should be applied
to the end of each aisle, while the simple ones should be considered at the beginning.
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However, the stackability priority motivates a reorder within each aisle, without changing
the family layout (see Figures 16b and 17b).

  
Figure 16. Layout of types of location in the warehouse, where (a) corresponds to the execution of P1.3 for E1 and (b) to the
reorder by stackability.

  
Figure 17. Layout of types of location in the warehouse, where (a) corresponds to the execution of P1.3 for E2 and (b) to the
reorder by stackability.

Simple locations correspond mainly to type “A” SKUs, representing 86.6% of the total
of these locations, while double and triple locations mainly represent type “C” with SKUs
76.19% and 76.52%, respectively. The rest are assigned for SKUs of type “B”.

Finally, the solution obtained in P1.4 is observed in Table 11, as in the subproblem
P1.1, the number of locations for each family and subfamily is shown, where the latter is
described by the set S with indices ε, where ε indicates the number of regroups in a family.

Table 11. Corresponding percentages of the total Perchas locations available in the warehouse defined
by family and subfamilies.

Family Total [%] Subfamily Total [%]

Family 2 45.74
S1 24.47
S2 21.28

Family 4 54.26

S1 5.32
S2 6.38
S3 9.57
S4 14.89
S5 18.09

From these results, the distribution of families can be seen in Figure 18 for each scenario.
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Figure 18. Families layout in Perchas location corresponding to sides with non-divisible locations.

Finally, each previous result allows obtaining the SLAP-VH solution, that is, assigning
at least one storage location to each SKU. According to this, the warehouse is increased
due to the divided locations by 18.17%.

9. Results by Scenarios

The number of SKUs under the case study corresponds to 56.55% of the SKUs Vhigh,
where the rest belongs to the values warehouse, storage of merchandise of high monetary
value that is normally sold for the minimum unit. Thus, based on the evaluation criteria
described, E1 scores 2, while E2 scores 1. As can be seen in the Table 12.

Table 12. Evaluation of Slotting scenarios based on the criteria defined in the rubric.

Criteria E1 E2

[km] [km]

Total distance 1792.38 1875.48

• Full pallet output distance 36.63 39.78

• Conformed pallet output distance 1706.41 1788.84

• Replenishment entry distance 49.34 46.86

Total 3535.42 3750.96

[$USD] [$USD]

Movement costs 73, 582.70 76, 559.99

• Use of cranes for complete pallets 12, 754.34 12, 760.00

• Use of cranes for conformed pallets 51, 998.44 54, 966.15

• Use of cranes for replenishments 8829.92 8833.85

Total 147, 168.4 153, 159.99

Regarding the minimum total distance for both scenarios, it is possible to observe,
from Table 9, that the number of complete pallets is closer to the exit than those pallets that
are conformed on the collection. However, the total exit distance is less in E1. The distance
to the entrance, represented by the replenishment pallet path, is closer for E2, this indicates
that those locations that run out of availability are closer to the reserve warehouse than in
E1. Thus, the total distance (input and output) is reduced by 4.64% in E1 with respect to E2,
as seen in Figure 19. Therefore, it can be stated that the most demanded SKUs are those
closest to the exit on stage E1. The preparation time is reduced in the same proportion,
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approximately 5%, since the time and the distance are directly proportional, but both are
inversely proportional to the order in the warehouse, that is, the higher the order obtained,
the lower is the distance traveled by the cranes and thus less time is spent on this item,
clarifying that the calculated time does not consider the specific time between the loading
or leaving a pallet at a location, this is purely the perspective of horizontal movement from
one point to another.

 

Figure 19. Variation between both scenarios regarding the total distance criterion.

Finally, E1 saves 4.05% compared to E2 in movement costs. Although the number of
operators and cranes for full pallet picking and replenishment turn out to be similar since
the distances traveled are similar, the greatest difference is observed in conformed pallets,
where the number of operators, and therefore cranes, increases for E2, since the travel time
for this scenario corresponds to 5.19% more than E1, considering only the outbound route
(pallet loading and unloading times are not included).

From the above it is possible to conclude that the dedicated and randomized storage
strategy by classes allows reducing the route for cranes in the Picking process, achieving a
cost reduction evaluated at 4% per month for this period of the study cycle as presented in
Figure 20. Although the preparation of the best scenario requires greater precision, just by
defining a better location for each SKU, this fact directly impacts the trip that the operator
makes during Picking. The quantity required for each scenario with respect to the exit of
the complete pallet and entry of the replenishment pallet turns out to be the same, given
the movements that must be carried out and the defined route. However, the quantity in
the unit collection varies significantly, being favorable for E1, where not only the distance
is reduced, but also the crane congestion is reduced since it requires a smaller number of
operators than in E2.

 

Figure 20. Variation between both scenarios with respect to the cost of movements criterion.

On the other hand, in both scenarios, the operation reports benefits due to the max-
imum use of the warehouse (considering the first level storage locations). However, the
first scenario generates more advantages, such as better handling, avoiding damage to
the products thanks to the priority of stackability. Most in-demand SKUs are closer to the
exit, which means faster dispatching, facilitating the delivery process. Finally, distributing
the products intelligently in the warehouse clears the aisles and facilitates the transfer of
pallets both for the cranes that leave and those that enter to restock.
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10. Discussion

Considering those authors who propose different ways of approaching the Slotting
optimization problem, the vast majority of these focus on solving it through metaheuristics
based on search and accommodation placement. However, this study is carried out under
a decomposition of the problem that determines each key decision. While decomposition
is one of the optimal methods for tackling problems with broad key decisions, separating
the problem allows greater handling of data manipulation and a dedicated focus on each
decision to be resolved. The computational results reveal the impact on the flow time of
the executions for each subproblem and at the same time for each scenario, where each
model provides the necessary data to address the problem in a sequential method and
additional information that allows generating an effective analysis of each subproblem
which helps to create a faster and better result in the SLAP-VH solution procedure. Ref. [1]
analyzed the efficiency between solving the assignment problem metaheuristically and
mathematically, where the latter does not turn out to be very fast in terms of the average
execution time (26, 640 s, while the heuristic algorithm took 155 s). However, it provides
a solution that is very close to optimal, where the mean gap of the solutions is 4.3% after
excluding an outlier.

This study groups each factor of the Slotting design to improve the Picking operation,
such as distance, cost of operation, crane movements, use of human resources, and storage
strategies based on implementation alternatives. Although the studies carried out by
other authors evaluate the application of the methodology, the results obtained before the
application are similar when using both decomposition and a metaheuristic. Comparing
the result obtained by [14] which obtains a 4% reduction in the cost of human resources
considering the departure of a specific batch of accommodation, the same percentage was
obtained in the reduction of costs for accommodation in first level locations corresponding
to the SLAP-VH problem. In addition, Slotting has been applied in the same way as in each
of the compared investigations, where the methodology used is the same, but the impact
depends completely on the storage space since it is not the same case to apply a Slotting
optimization in a maritime terminal [11] versus a beverage distribution center. As for the
infrastructure, the handling of the type of material, and, most importantly, the specific
objective of performing the Slotting. For example, the results obtained by [12] are related
to the objective of programming and assigning cranes, according to their specifications, to
carry out operations in the locations where they can work. While for this study, the results
obtained are related to improving the picking process and reducing the distance of cranes.

Finally, the solution to the problem will depend on four major factors: the storage
location type, the storage strategy, the number of SKUs to be stored, and the warehouse’s
size. All these factors are strongly related when it comes to minimizing travel time,
operational cost, and storage usage. The model used in this research connects these factors
considering divisible locations in racks and “Percha” locations, the two storage strategies
evaluated in the different scenarios, families, subfamilies and SKUs, and the warehouse
entry/exit distance. Comparing the different scenarios, E1 exceeded E2 in terms of the
quality of the solution and the computational time optimally, significantly improving the
distance traveled by the cranes and, simultaneously, the warehouse space usage as well as
the operating cost.

11. Conclusions and Summary

The proposed research developed the SLAP-VH problem, which was decomposed into
four subproblems of mathematical modeling solved sequentially in a storage environment
of variable height and floor locations, where each one covered a key decision to achieve
the proposed general objective. The results of the evaluation of the Slotting scenarios
are alternatives that seek to approach the main problem in the Picking operation: the
unproductive travel time during the pallet transfers by the cranes in order preparation.
The application of this model allows defining the best location for each SKU, considering
that the appropriate allocation strategy for the size of the study warehouse corresponds
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to E1. According to the results of the case study, there is a decrease in the distance traveled
of 5% of E1 with respect to E2.

On the other hand, the benefits granted by the best scenario are reflected in the
maximum utilization of the warehouse, since the products are assigned efficiently, avoiding
their deterioration due to the priority of stackability. In addition, this strategy improves
the use of human resources and vehicles in the operation, the workload distribution, and
also reduces the operating costs. The results obtained from the research provide valuable
information for managers, where they can define, according to their warehouse capacity
and the ABC classification of their SKUs, the intelligent allocation of each product within
the warehouse. In parallel, minimizing the number of trips made in order to reduce the
distance of travel of cranes by optimizing Slotting, is equivalent to reducing the number of
operators, a favorable strategy for operating costs.

The solution design can be adapted and applied to other similar storage systems, mod-
ifying four main input parameters: warehouse capacity, demand for SKUs, incorporation
of families, and the proper distances to evaluate, where the objective function used could
be further enriched by including the picking routes, creating a combination of studies
between the best Picking route and the slotting optimization.
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Appendix A. Notations, Abbreviations, and Symbols

Abbreviations and Concepts

SKU Stock Keeping Unit Position
Divided storage area of a
capacity rack for half or a third
of the height of a pallet

Family
Set of SKUs that are part of the
same classification

Simple
A location that is not divided,
only stores a pallet of SKU

Subfamily
Set of SKUs that are part of the
same classification within
a family

Double

A location that is divided into
two sections, allowing to
position two pallets of
medium-height SKUs

Perchas
Location of the warehouse
where the pallets are stacked
on the floor

Triple

A location that is divided into
three sections, allowing the
positioning of three SKU
pallets of a third of the height

Location
Storage area of a rack with a
capacity for a single pallet

Rack
A metal frame that, according
to its characteristics, allows
storage goods.
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Parameters

i SKU index
j Warehouse locations racks index
k Warehouse exit index
s Subfamilies index
o Operations index

Djk Distance from location j to exit k
position_sub f amilyjs 1, if position j belongs to subfamily s; 0, if not

sku_sub f amiliysi 1, if SKU i belongs to subfamily s; 0 if not

sku_typeio
Amount of positions of an SKU i with
operation o

typejo 1, if position j has operation o; 0 if not
value_skui Value of the i SKU

dda_locations
The integer part of the number of locations
demanded by the SKU i

dda_decimali
Difference between the quantity of locations
demanded and its Entire Part of the SKU i

loc_total
Total number of simple locations (without
considering Perchas)

SKU_Ai 1, if SKU i is of type “A”; 0, if not
SKU_Bi 1, if SKU i is of type “B”; 0, if not
SKU_Ci 1, if SKU i is of type “C”; 0, if not

α
Minimum percentage of demand for SKUs
locations of type “A”

β
Minimum percentage of demand for SKUs
locations of type “B” and “C”

value_skui Value of the i SKU

γ
Cut-off value to define locations with double or
triple position

ub0s Amount of locations without division
ub2s Amount of locations with double position
ub3s Amount of locations with triple position
Djk Distance from location j to exit k

weights
Standard liters value for the SKUs of a
subfamily s

per_total Perchas location available in the warehouse

θ
Cut-off value to consider a number of locations
greater than zero

μ
Minimum percentage of demand for locations
of SKUs
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Decision Variables

Yji 1, if SKU i is located at j; 0, if not
uAi Number of Simple Type “A” SKU i locations
uBi Number of Simple Type “B” SKU i locations

uB2i Number of Double Type “B” SKU i locations
uB3i Number of Triple Type “B” SKU i locations
uCi Number of Simple Type “C” SKU i locations

uC2i Number of Double Type “C” SKU i locations
uC3i Number of Triple Type “C” SKU i locations

total_UA Total number of Simple Type “A” locations
total_UB Total number of Simple Type “B” locations
total_UB2 Total number of Double Type “B” locations
total_UB3 Total number of Triple Type “B” locations
total_UC Total number of Simple Type “C” locations

total_UC2 Total number of Double Type “C” locations
total_UC3 Total number of Triple Type “C” locations

total_locations Total number of locations
total_sum2s Number of double locations in subfamily s
total_sum3s Number of triple locations in subfamily s

X0js
1, if subfamily s does not divide location j; 0, if
not

X2js
1, if subfamily s divides location j in two; 0, if
not

X3js
1, if subfamily s divides location j in three; 0, if
not

ui Number of locations “perchas” of the SKU i
total_per Total number of Perchas locations

Parameters of Evaluation

Pi Number of complete pallets of SKU i
dS Distance to the Warehouse exit from a position

to a port
PPi Number of SKU pickups i
R SKU replenishment quantity i
dE Distance to the Warehouse entrance from the

end of an aisle to the position
c Porting Trucks Set

Wps Number of operators for full pallet output
Wpc Number of operators for the output of

conformed picking pallets
Wpe Number of operators for replenishment pallet

input
Salary Monthly salary of an operator

Gps Number of cranes for the output of complete
pallets

Gpc Number of cranes for the output of conformed
picking pallets

Gpe Number of or cranes for the entry of
replenishment pallet

A Rent price of a monthly crane
ω1 Hours of monthly use of a crane
ω2 Monthly consumption price of a crane
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Appendix B. Execution Times with Gurobi’s Python Interface

Model
Variable

Constraint
Objective

Function

Time Solver

Application [sg]
Integers Continuous

P1.1 4.573 1 3.454 1 28.43

P1.3 13.716 1 798 1 3.613

P1.4 82 1 84 1 0.54

P1 E1 891.390 1 3.318 1 158.06

P1 E2 891.390 1 3.318 1 137.28
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Abstract: Randomized storage strategy is known as a best practice for storing books of an online
bookstore, it simplifies the order picking strategy as to retrieve books in purchase orders from closest
locations of the warehouse. However, to be more responsive to customers, many distribution centers
have adopted a just-in-time strategy leading to various value-added activities such as kitting, labelling,
product or order assembly, customized packaging, or palletization, all of which must be scheduled
and integrated in the order-picking process, and this is known as wave planning. In this study,
we present a wave planning mathematical model by simultaneously consider: (1) time window from
master of schedule (MOS), (2) random storage stock-keeping units (SKUs), and (3) picker-to-order.
A conceptual simulation, along with a simplified example for the proposed wave planning algorithm,
has been examined to demonstrate the merits of the idea. The result shows the wave planning module
can improve the waiting time for truck loading of packages significantly and can reduce the time that
packages are heaping in buffer area. The main contribution of this research is to develop a mixed
integer programming model that helps the bookseller to generate optimal wave picking lists for a
given time window.

Keywords: order picking; wave planning; warehouses; distribution centers; mixed integer
programming

1. Introduction

1.1. The Purpose of Randomized Storage Warehouse

Randomized storage is a storage assignment strategy which determines how an item can be
stored in any empty location in a warehouse. One stock keeping unit (SKU) could therefore be
stored in several different locations, and the advantage of this strategy is to exploit spaces more
efficiently. Randomized storage strategy is especially suitable for storing books of an online bookstore.
Customers like to make multiple purchases in a single order to eliminate shipping cost. By using a
randomized storage warehouse for an online bookstore, the order picking strategy can be simplified as
to retrieve books in purchase orders from closest locations of the warehouse.

1.2. The Importance of Order Picking for a Warehouse and the Type of Order Picking

Warehouse order picking is a simple concept, but in practice, the picking process can be complicated.
Warehouse order picking refers to the necessary labor and parts involved in pulling items out of
inventory to fulfill customer orders [1]. This process may sound like the simplest aspect of a business,
but when one deals with numbers and realizes that in any given distribution center, order picking counts
as the most time-consuming operation and an average of 55% of operating costs. A well-thought-out
warehouse will soon find out these ineffective systems may prevent them from further innovation.
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For a business to develop a warehouse order picking strategy to meet the demand shifts of the future,
the emphasizes on speediness, accuracy, and organization should always be bear in mind.

There are many types of order picking. Some of the order pickings are classified by the customer
order handling policies, some are classified by equipment used by pickers, some are classified by
warehousing areas, and the others are classified by materials handling equipment. For example,
discrete order picking and batch picking are those classified by the customer order handling policies;
cart picking, radio frequency (RF) picking, voice picking, tote picking, and put to store are those
classified by equipment used by pickers; pick and pass or zone order picking are classified by
warehousing areas; and full pallet picking and materials handling equipment assisted picking are
those classified by materials handling equipment used. Discrete picking is when a picker goes through
one order at a time, grabbing an item line by line before moving onto the next order. It is the simplest
of all order picking methods and can also be one of the most accurate. Discrete order picking with a RF
scanner or voice assistant device helps to streamline the process and increase accuracy. Cases where
discrete order picking can be ideal include (1) when a warehouse has a small staff, (2) when orders
are for multiple items, and (3) when the items ordered are very large. Batch picking is the process
of collecting inventory for identical orders at once, rather than picking items one order at a time or
picking orders with different SKUs and quantities consecutively. Batch picking focused on less walking
and faster order processing. It is particularly good for warehouses that stock small items. In pick and
pack operations, instead of batching the items into an order tote, you can pick orders directly into a
shipping tote. Put-to-store is often used with picking carts to facilitate batch picking of multiple orders
in one pass. It is ideal for retail store replenishment. It also optimizes cross-docking operations where
a percentage of full case quantities are broken down to store level cartons. Zone order picking is a
picking technique in which warehouses have been sectioned into several zones, and pickers have been
assigned to each zone. Pickers pick all of the items from a customer order that are located in their
zone and then passing the order on to the next zone, so that zone order picking is also called pick
and pass order picking. Zone picking is particularly useful in large warehouses that deal with a high
number of SKUs. Because each picker is assigned to a designated area, it allows pickers to gain deep
familiarity with their assigned zones and the SKUs stored there, which can increase picking speed and
reduce errors.

In this paper, we suggest looking at an order picking problem from forms and workflow of a
warehouse management system (WMS) perspective. This would help one to tackle (i.e., finding out
the considering factors/attributes) an order picking planning problem.

From information technology perspective (i.e., data and workflow), the inputs of a WMS are
customer orders and pre-packaged stock keeping units [2]. For control and management purposes,
the most important attributes in customer orders are what SKU (or item), how many quantities,
and where (location) to deliver for each customer order (illustrated as (I Q L) in Figure 1), and in
pre-packaged SKUs what are the SKUs and how many quantities are for pre-packaging (illustrated as
(I Q) in Figure 1). A master order schedule (MOS) is another form recording what SKU and how many
quantities are going to process for delivering. MOS is more like a filter that filters what customer orders
and/or pre-packaged SKU are going to process based on similarity of delivery routing [3] or similarity
of in-coming customer orders’ time windows [3,4]. The important attributes in MOS are what SKU,
how many quantities, and when to load into what routing trucks (illustrated as (I Q R) in Figure 1).

By considering SKU storage locations, customer orders in MOS are further batched or split [5,6]
based on similarity of their SKUs’ storage locations. The major concerns of batching or splitting are
what SKU, how many quantities, and where storage (illustrated as (I Q S) in Figure 1). Batched or split
order picking calls for managers to assess current orders for popularity and place them into batches by
their SKU. From there, pickers are in the best location of the warehouse to get orders fulfilled as quickly
as possible. Batch picking works especially well for e-commerce businesses with somewhat predictable
ordering trends, like those specializing in food and apparel. There are lots of order picking policies
proposed at this research field, discrete picking, zone picking, and wave picking [5,7]. Discrete picking
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policy is when a picker picks items of multiple orders by batching during a single trip. Zone picking
policy divides the picking area into a few subzones and the dedicated picker will pick items by splitting
in that subzone only. The main research topic is the number of subzones and pickers. Wave picking is
used if orders by splitting and/or batching for a common destination or common truck loading time
are released simultaneously for picking in multiple warehouse areas.

Figure 1. Forms and workflow of a warehouse management system (WMS).

We summarized advantages, disadvantages, and applications of those different types of order
picking policies or strategies as Table 1 below.

Table 1. Summaries of types of order picking policies or strategies.

Types Advantages Disadvantages Applications

Discrete picking [5,8]

• Simplest
for implement

• One of the
most accurate

• Minimizes the
number of touches
to ship an order

• May take more time
in the pick area

• Warehouse has a
small staff

• Orders are for
multiple items

• Items ordered are large

Batch picking
[1,2,4–7][9–13]

• Less walking
• Faster

order processing
• Reduce walk times

for
individual pickers

• Having
additional sorts

• The risk of
congestion is high

• Necessity of
preparation area

• Lots of errors
can occurred

• Necessity of
accumulating some
of customer orders
till creating batches

• Retail
store replenishment

• E-commerce businesses
with predictable
ordering trends
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Table 1. Cont.

Types Advantages Disadvantages Applications

Zone picking (Pick and
pass) [2,5,7,14,15]

• Pickers gain deep
familiarity with
their assigned zones

•
Decreases congestion

• Multi-part orders
• Less interaction
• Inconsistent

demand per zone

• Warehouses that deal
with a high number
of SKUs

Wave picking [5,7,16,17]

• Maximize shipping
and
picking operations

• Orders are
prioritized by time
and importance

• More complicate
planning and
computing
are required

• Difficult to process
more than one
wave simultaneously

• Idle time while
some workers wait
for others

• Not easy to add
similar work or
additional tasks to a
wave that is already
in progress

• E-commerce businesses

Put to store [4,5,8,18,19]
• Eliminating a

formal
packing operation

• Select the shipping
carton prior to the
order
picking process

• Difficult to get this
type of logic to
work effectively

• Bulk pick and/or
case pick

• Distribution-to-store
order carton

• Convey complete
cartons to shipping and
start a new carton

Cart picking [5,6,8,18–20]
• Easy to deal with

many customer
order lines

• Leave a lot of room
for human error

• Slower
picking speeds

• E-commerce companies

Radio frequency (RF)
picking [5,8,21]

• Increasing
accuracy level

• Slightly more
expensive than a
magnetic strip

• Tags must be placed
in hangtags at
the source

• Labor must be
expended to
tag items

• Tags sometimes
cannot be read

• Case pick
• Pallet load
• Put away
• Order

checking operation
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Table 1. Cont.

Types Advantages Disadvantages Applications

Voice picking [16,18]
• Very effective in

both productivity
and accuracy

• Slower than
RF picking

• Too much noise in
the warehouse will
make it difficult for
pickers to hear
the commands

• Case pick
• Pallet load
• Put away

Tote picking [14,15]
• Easy to deal with

many customer
order lines

• Need piece-picking
technology
and equipment

• Chain drug stores
• Mail order

catalog companies
• Repair

parts distributors
• Pharmacies
• Office products
• Tobacco retail outlets

Full pallet picking
[5,14,20]

• Much simpler than
either tote pick or
case pick

• Need storage
equipment and
lift trucks

• Paper towels company

Upon order picking equipment, picking orders (also called picking lists) are finally generated.
Normally, order picking equipment (or systems) are classified as part-to-picker, picker-to-part, or put
systems [14]. The important attributes in picking orders are what SKU, how many quantities, and where
stored (illustrated as (I Q S) in Figure 1). Picker-to-parts systems are commonly the order picker walks
or drives along the aisles to pick items [8]. In parts-to-picker system, an automatic device brings unit
loads from the storage area to the picking stations (sometimes also called picking bays), where the
pickers select the required amount of each item. Cart picking systems are particularly popular in case
for e-commerce companies, which deal with many customer order lines, must be picked in a short
time window. For small items, a well-managed cart picking system can result in around 500 picks
on average per order picker hour. Wave picking is used if orders by splitting and/or batching for a
common destination or common truck loading time are released simultaneously for picking in multiple
warehouse areas. It is a picking system that considers customer orders handling, storage locations,
and/or picking equipment concurrently.

Algorithms for generating picking orders are: Rim and Park [22] proposed a linear programming
approach to assign the inventory to the orders to maximize the order fill rate, Lu et al. [20] developed
an algorithm for dynamic order picking that allows for changes to pick-lists during a pick cycle,
Füßle and Boysen [18] aimed at a synchronization between the batches of picking orders concurrently
assembled and the sequence of SKUs moved along the line, such that the number of lines passing to
be accomplished by the picker is minimized, Giannikas et al. [9] introduced an interventionist order
picking strategy that aims to improve the responsiveness of order picking systems, Ho and Lin [15]
improved order-picking performance by converting a sequential zone-picking line into a zone-picking
network, Schwerdfeger and Boysen [19] proposed a multi-objective approach to solve order picking
along a crane-supplied pick face, etc. With all these algorithms, none of them considered truck loading
due date into their models.
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1.3. The Operational Definition of Wave Planning

From WMS perspective, wave picking is one of the most complex functions of the system, because it
includes the following planning functions:

• Batching or slitting the customer orders into appropriate picking lists (also called picking orders)
• Locating SKUs in the warehouse
• Creating sequences of picking tasks by considering routing distances
• Release picking tasks to the pickers/equipment to be fulfilled

1.4. The Objective of This Paper

The objective of this research is to develop a mixed integer programming model for wave planning.
The model is inspired by a real-world case study of an online bookseller. The model aims to help
the bookseller to generate optimal wave picking lists in a given time window. It also can serve as a
simulation with the purpose to determine what is the best time window of a wave picking.

2. The Case Study

In Taiwan, 24-h express shipping domestically is one of the promises of an online bookstore.
When the promise comes to warehousing, the quality and trustworthiness of the supplier is important.
There is a 2-h express warehousing company, located in north of Taiwan, fully supporting the 24-h
express shipping for the online bookstore company. The online bookstore company transfers their
customer orders, which could be up to around 10,000 orders, to the warehousing company every
hour. Based on the customer orders, the warehousing company generates picking orders every 2 h.
Currently, picking orders are planned and separated into two categories. One is (type I) picking
orders for those customer orders, that only purchase one book. Type I picking orders are also called
discrete picking. The other is (type II) picking orders for those customer orders, that purchase two
or more books, and type II picking orders are also called batch picking. Carts are devices for those
type II picking orders and carts with trays are devices for those type I picking orders. For those type I
picking orders, packing processes are as follow placing a box onto a table scale, checking the contents,
inserting a pack slip, void filling, and taping. For those type II picking orders, additional sorting orders
and packing process are required. Sorting orders is another time-consuming process for warehousing
operators. Operators must pick up books from carts and dispatch them into customer-oriented trays as
shown in Figure 2. To live up to its reputation of being a 2-h express warehousing company, all the
picking and packing processes for around 20,000 customer orders must be done in a 2-h time window.

 

Figure 2. Order sortation process.
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There are six delivery routes per day in the 2-h express warehousing company. The first group
of the delivery routes is called to-door delivery. There is to-door delivery in the morning, to-door
delivery in the afternoon, and to-door delivery in the evening. The second group of the delivery routes
is called to-store delivery. There is to-store delivery in northern Taiwan, to-store delivery in central
Taiwan, and to-store delivery in southern Taiwan. The packed delivery boxes, which are completed
every 2 h, will be stacked in a large buffer space and wait for loading to delivery trucks six times per
day according to the six delivery routes.

3. Problem Description and Assumptions

3.1. Problem Description

Despite the fact that warehouses have been around for hundreds of years, they continue to
evolve because of dramatic changes in customer demands, along with the constant advancements in
technology. This is leading to a revolution in warehouse capabilities. According to [16], the global trends
of warehousing businesses include (1) higher workforce expectations, (2) continued focus on regulatory
compliance, (3) next-generation postponement strategies, (4) increased use of automation and robotics,
(5) geographic expansion, (6) increased presence in urban area, (7) compressed order processing times,
(8) grater internal and external collaboration, and (9) smart optimization. Basically, to conquer these
global trends of warehousing businesses, an enterprise can tackle them by developing new supply
chain collaboration strategies, by developing new logistics automation devices, or by developing
intelligent mathematic models or algorithms to optimize the warehousing/logistics resources. In this
study, we concentrate on tackling the challenge by smart optimization.

This trend of growing online shopping sales has significantly influenced the goods supply
chains throughout its international, regional, and last mile segments. Kang [23] pointed trade and
logistics businesses have restructured operational and system-wide aspects of their supply chain to
accommodate the ever-growing demand for just-in-time (JIT) production, online shopping, and instant
shipment/delivery.

To apply JIT concept to order picking process, a number of researches have been tackled
jointly in previous studies to provide a comprehensive solution to order picking [6,10–13,24,25],
fulfilling a specified objective function to reduce operational costs [11,12,26–29], and enhance customer
service [10,21,30,31]. We summarized previous studies, that provide integration solutions for order
picking processes, as shown in Table 2.

Table 2. The integrated studies in recent years.

Reference Integration Benefit/Goal

Kulak et al. [12] Order batching, Picker routing Improve order pickingHong and Kim [32]
Choy et al. [33] Order picking, Sequencing

Schubert et al. [34] Order picking, Vehicle routing Provide high-quality solutions.

Zhang et al. [4] Order batching, Delivery Deliver numerous orders within
the shortest time

Won and Olafsson* [6] Order batching, Order picking Optimize customer response time.

Chen et al. [10] Order batching, Sequencing,
Routing problem Minimum total tardiness of

customer orders.Henn [31] Order batching, Sequencing

Recall the case study, stocking packed delivery boxes generated every 2 h is not an efficient way
of managing a warehouse. It is not only increasing total travelling paths of all picking operators,
but also might waste warehouse buffering space. The idea to improve warehousing efficiency of this
case study is to apply JIT concept to order picking process in the 2-h express warehousing company.
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Try to think about this. Does it make sense to stack packed delivery boxes generated every 2 h
(i.e., 2-h based wave planning)? If we can plan order picking waves to as close to as their loading
due time as possible, the time with the packed delivery boxes stacking at the buffering space will be
reduced, the buffering space for stacking packed delivery boxes will be reduced, and the processing
time window from customer orders to picking orders can be expanded, too. With the expanding time
windows, more similar order list can then be scheduled into this time frame. The efficiency of the
picking operator can be improved.

In this study, we developed a wave planning model to integrate order batching, sequencing,
picker routing, packing, and delivery (as green blocks illustrated in Figure 3) for improving warehouse
capabilities in terms of reduce buffer spaces and deliver numerous orders within the shortest time.

Figure 3. Wave planning model that integrates those green blocks.

3.2. Basic Assumption

• The picking area is not zoning.
• The efficiency of pickers is the same.
• The truck loading time is fixed and known.
• Items are cuboid and the length, width and high are known.
• The items, quantity, and correlation of each order are known.
• The picking distance between the storage locations of items are known.
• Candidate containers are cuboid and the cost and the capacity are known.
• The number of pickers, the constrain of picking quantity and the volume capacity of order picker

truck are known.
• The distribution center is the kind that can deal with a great amount of orders that are small-volume

with large-variety.

4. The Wave Planning Algorithm

In this study, we present a wave planning mathematic model by integrating order picking with
packing planning and scheduling by simultaneously consider three major factors: (1) by time window
from MOS, (2) random storage SKUs, and (3) picker-to-box.

This model is proposed to the distribution center which focuses on 24-h delivery and the way
of picking is by manual picking. Nowadays, the order type of e-commerce is often low-volume and
high-mix, and this makes the processes more complicated in the distribution center. How they deal
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with the e-orders and send the packages to customers within 24 h by the most efficiency way has
become the most important goal.

This study extends from Shiau and Liao [17], and takes more factors into consideration (as shown
in Figure 4). First, taking the orders as the center, and establish relations with truck loading time,
items, batches, containers, and schedule. For example, according to the truck loading time of orders to
schedule the batches, and the batch orders to include items and containers for the particular package.

Figure 4. The relation of considered factors.

After the distribution center accumulates numerous customers’ orders for 24 h, it should confirm
the environment parameters whether should be adjusted. The next step is to consider the relation
between picking route, order batching, loading configuration, containers, departure time, and items.
The system will calculate the distance from one storage to another. Moreover, it will restrict the picking
quantity of each picking order, and compute the shortest picking route and waiting time of containers
in the buffer area.

Sets
O = {1,2,...,OR} set of customer orders
R = {1,2,...,NR} set of items
BS = {1,2,...,BM} set of batches
AP = {0,1,...,N} set of picking points included pickup and deposit (P/D) points
V = {1,2, . . . ,m} set of candidate containers
PS = {1 . . . ..PE} set of pickers
DR = {1 . . . ..ND} set of the truck loading time

Relationship matrix
RSoi = {RSoi, . . . , RSon}T : the relation between orders and items

Parameters
OR : Number of customer orders
NR : Number of items in customer orders
m : Number of candidate containers
B : Batches
BM : Number of batches
o : The customer orders
i : The items customer ordered
j : The candidate container
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Poi : The length of item i in customer order o
qoi : The width of item i in customer order o
roi : The height of item i in customer order o
Lj : The length of container j
Wj : The width of container j
Hj : The height of container j
Cj : The cost of container j
tik : The storage distance between item i and item k
sdb : The processing efficiency of batch
RSoi : 1 if item i is in order o; 0 otherwise
PCPb : The amount of picking items of each batch b
PCBp : The capacity of the assigned batches by picker p
ECPb : The volume capacity of the order picker cart for batch b
MAV : A very large number
MAC : The maximum cost of packing
MIC : The minimum cost of packing
MAD : The maximum travel distance between items
MID : The minimum travel distance between items
MAW : The maximum waiting time for truck loading
MIW : The minimum waiting time for truck loading

Input variables
TL : The limited of total operating time of all pickers
Tir : The truck loading time r of item i
dtbr : The truck loading time r of batch b

Output variables
ubi : The picking sequence of item i in batch b
xoi : x-axis position of the front-left bottom corner of item i in customer order o be assigned
yoi : y-axis position of the front-left bottom corner of item i in customer order o be assigned
zoi : z-axis position of the front-left bottom corner of item i in customer order o be assigned
spb : The number of total picking points of batch b
stpb : The start time of batch b by picker p
f tpb : The finish time of batch b by picker p
i f tbi : The finish time of item i in batch b
wtpb : The waiting time for departure of batch b by picker p
mtb : The operation time of batch b
ad : The total distance of all picking route
aw : The total wait time for truck loading of batches

Decision variables
Soij : 1 if item i is put into box j; 0 otherwise
noj : 1 if box j is used; 0 otherwise
vbi : 1 if item i is in batch b; 0 otherwise
qbij : 1 if item i of batch b is put into box j; 0 otherwise
lxoi : 1 if the length of item i is parallel to x-axis of the box; 0 otherwise
lyoi : 1 if the length of item i is parallel to y-axis of the box; 0 otherwise
lzoi :1 if the length of item i is parallel to z-axis of the box; 0 otherwise
wxoi : 1 if the width of item i is parallel to x-axis of the box; 0 otherwise
wyoi : 1 if the width of item i is parallel to y-axis of the box; 0 otherwise
wzoi : 1 if the width of item i is parallel to z-axis of the box; 0 otherwise
hxoi : 1 if the height of item i is parallel to x-axis of the box; 0 otherwise
hyoi : 1 if the height of item i is parallel to y-axis of the box; 0 otherwise
hzoi : 1 if the height of item i is parallel to z-axis of the box; 0 otherwise
aoik : 1 if item i is on the left side of item k in customer order o; 0 otherwise
boik : 1 if item i is on the right side of item k in customer order o; 0 otherwise
coik : 1 if item i is in front of item k in customer order o; 0 otherwise
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doik : 1 if item i is behind item k in customer order o; 0 otherwise
eoik : 1 if item i is under item k in customer order o; 0 otherwise
foik : 1 if item i is above item k in customer order o; 0 otherwise
goik : 1 if the picking sequence of item i is before item k in batch B; 0 otherwise
wpb : 1 if batch b is picking by picker p; 0 otherwise

Formulation

• Objective Function

The objective function (1) is to minimize the picking route, the cost of containers and waiting time
for truck loading of packaged containers heaping in the buffer area. Since the units of the three factors
are different, we have to normalize the three objects.

Min

⎛⎜⎜⎜⎜⎜⎜⎝ a d−M I D
M A D −M I D

+

∑O R
o=1
∑m

j=1 Cj·noj −M I C

M A C −M I C
+

a w −M I W
M A W −M I W

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

• Subject to

Constraints (2)–(4) ensure the relation between items and containers. The length, width, and height
of each items must be parallel with one axis of the container. For instance, the length of item i is only
parallel to x-axis, y-axis, or z-axis of the container (i.e., Equation (2)), where as lxoi, lyoi, and lzoi are
binary variables.

lxoi + lyoi + lzoi = 1 ∀o ∈ O, i ∈ R (2)

wxoi + wyoi + wzoi = 1 ∀o ∈ O, i ∈ R (3)

hxoi + hyoi + hzoi = 1 ∀o ∈ O, i ∈ R (4)

In other words, Constraints (5)–(7) ensure what parallel with some axis is one of the lengths,
width, or height of item i in order o.

lxoi + wxoi + hxoi = 1 ∀o ∈ O, i ∈ R (5)

lyoi + wyoi + hyoi = 1 ∀o ∈ O, i ∈ R (6)

lzoi + wzoi + hzoi = 1 ∀o ∈ O, i ∈ R (7)

Constraints (8)–(13) ensure the relative position how pickers put into the container between
item and item in order o. For instance, if item i is on the left side of item k, x-axis position of the
front-left bottom corner of item k (i.e., the right-hand side of Equation (8)) must be larger than x-axis
position of the front-left bottom corner of item i plus its size of item i is parallel to x-axis of the box
(i.e., the left-hand side of Equation (8)).

xoi + poi·lxoi + qoi·wxoi + roi·hxoi ≤ xok + (1− aoik)·MAV
∀o ∈ O, i ∈ R, k ∈ R; i � k

(8)

xoi + pok·lxok + qok·wxok + roi·hxok ≤ xoi + (1− boik)·MAV
∀o ∈ O, i ∈ R, j ∈ V

(9)

yoi + poi·lyoi + qoi·wyoi + roi·hyoi ≤ yok + (1− coik)·MAV
∀o ∈ O, i ∈ R, j ∈ V

(10)

yok + pok·lyok + qok·wyok + roi·hyok ≤ yoi + (1− doik)·MAV
∀o ∈ O, i ∈ R, j ∈ V

(11)
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zoi + poi·lzoi + qoi·wzoi + roi·hzoi ≤ zok + (1− eoik)·MAV
∀o ∈ O, i ∈ R, j ∈ V

(12)

zok + pok·lzok + qok·wzok + roi·hzok ≤ zoi + (1− foik)·MAV
∀o ∈ O, i ∈ R, j ∈ V

(13)

Constraints (14) ensures the items of the order o are put into the same container. For instance, if in
order o, item i (RSoi = 1) and item k (RSok = 1) are put into container j (soij = 1 and sokj = 1), then there
exists some correlation between item i and item k.

aoik + boik + coik + doik + eoik + foik ≥ soi j·RSoi + sokj·RSok − 1
∀o ∈ O, i ∈ R, k ∈ R, j ∈ V; i � k

(14)

Constraints (15)–(16) ensure items of order o only put into one container. Only one container j (soij)
could be equal to one in Equation (15), and in Equation (16) if container j is used (noj = 1), item can be
put in container j (soij >= 0).

m∑
j=1

soi j·RSoi = 1 ∀o ∈ O, i ∈ R (15)

N R∑
i=1

soi j·RSoi ≤MAV·noj ∀o ∈ O, j ∈ V (16)

Constraints (17)–(18) ensure one order can use several containers and the items of different order
cannot be put into the same container. In Equation (17), at least one container j must be used for order
o. In Equation (18), one container j can only be used in one customer order o.

m∑
j=1

noj ≥ 1 ∀o ∈ O (17)

OR∑
o=1

noj ≤ 1 ∀ j ∈ V (18)

Constraints (19)–(21) ensure the total size of items putting in the same container is not bigger
than the container. For instance, if item i is placed in container j, the size of item i is parallel to x-axis
of the box (i.e., the left-hand side of Equation (19)) must be smaller than the size of length of box j
(i.e., the right-hand side of Equation (19)).

xoi + poi·lxoi + qoi·wxoi + roi·hxoi ≤ Lj +
(
1− soi j·RSoi

)
·MAV

∀o ∈ O, i ∈ R, j ∈ V
(19)

yoi + poi·lyoi + qoi·wyoi + roi·hyoi ≤Wj +
(
1− soi j·RSoi

)
·MAV

∀o ∈ O, i ∈ R, j ∈ V
(20)

zoi + poi·lzoi + qoi·wzoi + roi·hzoi ≤ Hj +
(
1− soi j·RSoi

)
·MAV

∀o ∈ O, i ∈ R, j ∈ V
(21)

Constraints (22)–(24) ensure items putting in the same container must be in the same batch.
In Equation (22) only one batch b is used for a container j (i.e., only one qbij could be equal to 1).
In Equation (23) if item i and item k are in the same container j (soij = 1 and sokj = 1), they must be in the
same batch b (qbij = 1 and qbkj = 1). Equation (24) determines those container j for item i (qbij = 1) if item
i is assigned to batch b (vbi = 1).

240



Appl. Sci. 2020, 10, 8050

m∑
j=1

⎛⎜⎜⎜⎜⎜⎝
B M∑
b=1

qbij

⎞⎟⎟⎟⎟⎟⎠·soi j·RSoi = 1 ∀o ∈ O, i ∈ R (22)

qbij·soi j·RSoi − qbkj·sokj·RSok = 0 ∀b ∈ BS, o ∈ O, i ∈ R, j ∈ V; ik (23)

m∑
j=1

qbij = vbi ∀b ∈ BS, i ∈ R (24)

Constraints (25) ensures every picker starts with P/D point.

vb0 = 1 ∀b ∈ BS (25)

Constraints (26)–(27) ensure each order picker cart (ECPb) does not overload and the picking
quantities do not exceed the capability of each picking operator (PCPb).

N R∑
i=1

m∑
j=1

Lj·Wj·Hj·qbij·soi j·RSoi ≤ ECPb ∀b ∈ BS, o ∈ O (26)

N R∑
i=1

vbi ≤ PCPb ∀b ∈ BS (27)

Constraints (28)–(30) calculate the total distant (ad) and ensure pickers will not walk to the repeated
route. For instance, if item 1 is picked before item 2, and item 2 is picked before item 3, then it is not
possible for item 3 to be picked before item 1.

B M∑
b=1

m∑
j=1

N R∑
i=1

N R∑
k=0

tik·gbik·vbi·vbk = ad i � k (28)

N R∑
k=1

gb0k·vb0·vbk = 1 ∀b ∈ BS (29)

B M∑
b=1

N R∑
i=0

gbik·vbi·vbk = 1 ∀k ∈ AP; i � k (30)

Constraints (31)–(33) ensure pickers will walk from one picking point to another and finally back
to P/D point. In Equation (31) each batch b, only one item i can be picked after P/D point (i.e., only one
gbi0 could be equal to 1). In Equation (32), for each batch b, only one item k can be picked after item i
(i.e., only one gbi0 could be equal to 1). In Equation (33), the number of total picking points of batch b
is calculated.

N R∑
i=1

gbi0·vbi·vb0 = 1 ∀b ∈ BS (31)

B M∑
b=1

N R∑
k=0

gbik·vbi·vbk = 1 ∀i ∈ AP; i � k (32)

N R∑
i=1

vbi = spb ∀b ∈ B (33)

Constraints (34) determines picking sequence of each item i (ubi) and item k (ubk).
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ubi − ubk + (spb + 1)·gbik ≤ spb + (1− vbi·vbk)·MAV
∀b ∈ BS, i ∈ AP, k ∈ R; i � k

(34)

If items in the batches, the picking sequence of items (ubi) should be more than or equal to zero by
Constraints (35)–(36).

ubi ≤ spb + (1− vbi)·MAV ∀b ∈ BS, i ∈ AP (35)

ubi ≥ 0− (1− vbi)·MAV ∀b ∈ BS, i ∈ AP (36)

Constraints (37)–(38) ensure the items placing in the lower position of containers will be picked
first. If item i is placed in lower layer to item k (i.e., eoik = 1 and foik = 0), then Equations (37) and (38)
are held.

eoik(ubi − ubk) ≤ 0 + (1− vbi·vbk)·MAV
∀b ∈ BS, o ∈ O, i ∈ R, k ∈ R; i � k

(37)

foik(ubi − ubk) ≥ 0− (1− vbi·vbk)·MAV
∀b ∈ BS, o ∈ O, i ∈ R, k ∈ R; i � k

(38)

Constraints (39)–(40) determine how to assign the batch to pickers. In Equation (39), a picker
p can be only assigned to one batch b. Equation (40) calculates the capacity of the assigned batches
(PCBp) by picker p.

P E∑
p=1

Wpb = 1 ∀b ∈ BS (39)

B M∑
b=1

Wpb = PCBp ∀p ∈ PS (40)

Constraint (41) calculates the operation time of batch (mtb).

N R∑
i=1

N R∑
k=1

tik·gbik·vbi·vbk·sdb = mtb i � k (41)

Constraint (42) limits the total operation time.

B M∑
b=1

mtb·Wpb ≤ TL ∀b ∈ BS (42)

Constraint (43) calculates the start time of batch (stpb).

stpb + mtb ∗Wpb ≤ f tpb ∀p ∈ PS;∀b ∈ BS (43)

Constraint (44) ensures the sequence of batches (i.e., finish time of batch b must less than start
time of batch k).

f tpb ≤ stpk b � k;∀p ∈ PS;∀b ∈ BS;∀k ∈ BS (44)

Constraint (45) calculates the waiting time for truck loading (wtpb) of batches.

f tpb + wtpb = dtbr ∀p ∈ PS;∀b ∈ BS;∀r ∈ DR (45)

Constraint (46) is the finish time of batch b to be equal to the finish time of items in batch b.
In Constraint (47), all finish time of items in batch b (iftbi) must be earlier than the given due time (Tir).

i f tbi = f tpb·vbi ∀p ∈ PS;∀b ∈ BS;∀i ∈ AP (46)
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i f tbi ≤ Tir ∀b ∈ BS;∀i ∈ AP;∀r ∈ DR (47)

Constraint (48) calculates the total waiting time of batches (aw).

PE∑
p=1

BM∑
b=1

wtpb = aw (48)

xoi, yoi, zoi, f tpb, i f tbi, wtpb ≥ 0 (49)

Constraints (50)–(51) declare the 0/1 variables and nonnegative variables in this model.

lxoi, lyoi, lzoi, wxoi, wyoi, wzoi, hxoi, hyoi, hzoi = 0, 1 (50)

aoik, boik, coik, doik, eoik, foik, gbik, soi j, noj, qbij, vbi, Wpb = 0, 1 (51)

5. The Example Sets

This study takes the distribution center of the e-retailer of a bookstore for example. We suppose
the working time will be from 6:00 a.m. to 10:00 p.m. and they will fulfill customers’ orders within
24 h. If customers place the orders before 12:00 p.m., they will receive the items on the following day
before 12:00 p.m. However, if they place the orders after 12:00 p.m., they will receive the items until
the day after tomorrow before 12:00 p.m.

The e-commerce will send a batch of orders to the distribution center every two hours and the
distribution center will start to deal the orders rapidly before the next batch arrives. The problem
with this is that it will mean that many packages will be waiting for delivery in the buffer area.
Another problem is that the pickers may travel to the same locations every two hours.

By wave planning, the distribution center can accumulate the batches of orders which the
e-commerce sends every two hours. After 24 h, the distribution center will transfer the customer orders
to picking orders at 6:00 a.m. and 12:00 p.m. according to the truck loading time and items of the
orders. Before pickers start to pick, they need to set up the environment parameters. Then, use the
optimization modeling software to solve the problem.

First, the setup of WMS including the storage location of items, the type of containers, the capacity
of pickers, and the volume capacity of order picker trucks. There are 32 items, numbered from 1 to
32, and the storage locations are transferred as a distance matrix. Containers have three kinds of
sizes showed in Table 3. To assign the jobs to pickers equally, the capacity of pickers is the same
(let us say 4 units/each) and the volume capacity of order picker trucks are also the same (let us
say 149,903 cm3/unit). According to the difference delivery place, there are five truck loading times,
which are (1) 9 a.m. for south shop delivery, (2) 3 p.m. for central shop delivery, (3) 10 p.m. for north
shop delivery, (4) 12 p.m. for to-door delivery, and (5) 5 p.m. for another to-door delivery.

After inputting the environment parameters, it can start to check the information of customer
orders including item number, quantities, and item size (see Table 4). Then the system would generate
the relation between customer orders and items RSoi (see Table 5) and the item number i is the picking
point i. The start and finish place of pickers are P/D point, and the number of picking points is showed
in Table 6. Compared to the five truck loading schedules, an associated truck loading time is assigned
to each item which ensures the items will be picked before the truck loading time.

Table 7 is the distance between picking point. Table 8 is the performance of picking before using
the model. The calculation of operation time is the distance multiplied by the processing efficiency and
the waiting time starts from the final of that processing time window. For example, if the processing
time is 2–4 p.m., trucking loading time is 3 p.m. of the next day. The waiting time will start from 4 p.m.
to 3 p.m. of the next day. The total waiting time is 13,320 min and the total operation time is 207 min.
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Table 3. The sizes and price of three kinds of containers.

Container
Number (j) Container Graph

Container Size (cm)

Price
(C)

Length
(Lj)

Width
(Wj)

Height
(Hj)

Size 1
(j = 1~7) 23 14 13 55

Size 2
(j = 8~20) 23 18 19 70

Size 3
(j = 21~27) 39.5 27.5 23 100

Table 4. The customer orders.

Place
Order
Time

Customer
Order

(o)

Item
Number

(i)
Quantity

Item Size (cm)
Truck Loading

Time (r) (The Next Day)Length
(poi)

Width
(qoi)

Height
(roi)

12–14 1
3 1 13 5 6 3 p.m.

8 1 20 10 10 3 p.m.

14–16

2
9 1 15 13 10 9 a.m.

10 1 17 12 13 9 a.m.

3
11 1 14 13 5 9 a.m.

17 1 5 5 10 9 a.m.

4
12 1 7 14 7 9 a.m.

13 1 16 4 5 9 a.m.

16–18

5
1 1 5 3 6 9 a.m.

2 1 16 19 7 9 a.m.

6
4 1 8 4 7 3 p.m.

14 1 13 5 5 3 p.m.

7
6 1 14 8 5 5 p.m.

7 1 8 4 4 5 p.m.

8
15 1 5 5 10 5 p.m.

23 1 15 10 6 5 p.m.

9
5 1 13 5 6 12 p.m.

18 1 20 10 10 12 p.m.
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Table 4. Cont.

Place
Order
Time

Customer
Order

(o)

Item
Number

(i)
Quantity

Item Size (cm)
Truck Loading

Time (r) (The Next Day)Length
(poi)

Width
(qoi)

Height
(roi)

18–20 10
19 1 15 13 10 12 p.m.

20 1 17 12 13 12 p.m.

20–22 11
21 1 14 13 5 12 p.m.

24 1 5 5 10 12 p.m.

22–24 12
16 1 7 14 7 12 p.m.

22 1 16 4 5 12 p.m.

4–6 13
25 1 13 5 6 10 p.m.

26 1 20 10 10 10 p.m.

6–8 14
31 1 15 13 10 10 p.m.

32 1 17 12 13 10 p.m.

8–10 15
27 1 14 13 5 10 p.m.

29 1 5 5 10 10 p.m.

10–12 16
28 1 7 14 7 10 p.m.

30 1 16 4 5 10 p.m.

Table 5. The relation matrix of customer orders and items (RSoi).

Item (i)
Order (o)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
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Table 5. Cont.

Item (i)
Order (o)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

21 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

23 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

31 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 6. The item numbers and picking point numbers.

Item Number (i) - 1 2 3 4 5 6 7 8 9 10

Storage location P/D F9 G6 D14 I13 K7 J4 I9 E2 D7 E2

Picking
Point (i) 33 1 2 3 4 5 6 7 8 9 10

Item number (i) 11 12 13 14 15 16 17 18 19 20 21

Storage location F1 F5 G12 H8 I3 J6 F14 J11 K13 K14 H14

Picking
Point (i) 11 12 13 14 15 16 17 18 19 20 21

Item number (i) 22 23 24 25 26 27 28 29 30 31 32

Storage location J15 K10 H3 J12 B14 B12 E12 D11 B10 C13 I11

Picking
Point (i) 22 23 24 25 26 27 28 29 30 31 32

246



Appl. Sci. 2020, 10, 8050

T
a

b
le

7
.

Th
e

di
st

an
ce

be
tw

ee
n

pi
ck

in
g

po
in

t.

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3

1
0

3
12

13
22

19
17

18
19

15
8

3
3

18
14

21
5

18
16

15
12

14
19

15
17

15
17

14
15

19
16

15
7

2
3

0
15

16
19

16
18

15
16

12
5

1
6

17
11

18
8

21
19

18
15

17
22

12
20

18
20

17
18

22
19

18
10

3
12

15
0

11
20

23
15

18
7

11
18

16
9

12
22

21
7

16
14

13
10

12
17

21
15

7
9

2
3

11
8

13
5

4
13

16
11

0
15

18
4

25
18

22
17

17
10

5
11

16
8

11
9

8
1

7
12

10
10

14
16

13
14

18
15

2
6

5
22

19
20

15
0

3
19

22
23

19
14

18
19

20
12

1
17

4
5

7
14

8
3

13
5

23
25

22
23

27
24

17
15

6
19

16
23

18
3

0
16

19
20

16
11

15
22

15
9

2
20

7
9

10
17

11
6

10
8

26
28

25
24

26
27

18
18

7
17

18
15

4
19

16
0

21
22

18
13

17
14

1
7

18
12

15
13

12
5

11
16

6
14

18
20

17
18

22
19

2
10

8
18

15
18

25
22

19
21

0
13

9
10

14
22

20
14

21
21

30
28

27
25

26
24

26
27

12
10

17
16

8
11

22
19

9
19

16
7

18
23

20
22

13
0

5
11

15
16

23
15

22
14

23
21

20
17

19
24

16
22

14
16

5
4

18
15

20
12

1
0

15
12

11
22

19
16

18
9

5
0

7
11

18
17

11
18

18
23

25
24

22
24

21
11

24
19

17
10

9
15

20
19

16

1
1

8
5

18
17

14
11

13
10

11
7

0
4

11
12

6
13

13
18

20
21

18
22

17
7

19
21

19
16

15
17

20
15

15

1
2

3
1

16
17

18
15

17
14

15
11

4
0

7
16

10
17

9
22

20
19

16
18

21
11

21
19

21
18

19
21

20
19

11

1
3

3
6

9
10

19
22

14
22

16
18

11
7

0
15

21
20

2
15

13
12

9
11

16
18

14
12

14
11

12
16

13
12

4

1
4

18
17

16
5

20
15

1
20

23
17

12
16

15
0

6
17

13
16

14
13

6
12

17
5

15
19

21
18

19
23

20
3

11

1
5

14
11

22
11

12
9

7
14

15
11

6
10

21
6

0
11

19
16

20
19

12
18

15
1

17
25

23
20

19
21

24
9

17

1
6

21
18

21
16

1
2

18
21

22
18

13
17

20
17

11
0

18
5

7
8

15
9

4
12

6
24

26
23

24
28

25
18

16

1
7

5
8

7
8

17
20

12
21

14
18

13
9

2
13

19
18

0
13

11
10

7
9

14
18

12
10

12
9

10
14

11
10

2

1
8

18
21

16
11

4
7

15
30

23
23

18
22

15
16

16
5

13
0

2
3

10
4

1
17

1
19

21
18

19
23

20
13

11

1
9

16
19

14
9

6
9

13
28

21
25

20
20

13
14

20
7

11
2

0
1

8
2

3
19

1
17

19
16

17
21

18
11

9

2
0

15
18

13
8

7
10

12
27

20
24

21
19

12
13

19
8

10
3

1
0

7
1

4
18

2
16

18
15

16
20

17
10

8

2
1

12
15

10
1

14
17

5
25

17
22

18
16

9
6

12
15

7
10

8
7

0
6

11
11

9
13

15
12

13
17

14
3

5

2
2

14
17

12
7

8
11

11
26

19
24

22
18

11
12

18
9

9
4

2
1

6
0

5
17

3
15

17
14

15
19

18
9

7

2
3

19
22

17
12

3
6

16
24

24
21

17
21

16
17

15
4

14
1

3
4

11
5

0
16

2
20

22
19

20
24

23
14

12

2
4

15
12

21
10

13
10

6
14

16
11

7
11

18
5

1
12

18
17

19
18

11
17

16
0

18
24

24
23

24
22

25
18

16

247



Appl. Sci. 2020, 10, 8050

T
a

b
le

7
.

C
on

t.

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3

2
5

17
20

15
10

5
8

14
27

22
24

19
21

14
15

17
6

12
1

1
2

9
3

2
18

0
18

20
17

18
22

19
12

10

2
6

15
18

7
14

23
26

18
12

14
19

21
19

12
19

25
24

10
19

17
16

13
15

20
24

18
0

2
9

10
4

1
16

8

2
7

17
20

9
16

25
28

20
10

16
17

19
21

14
21

23
26

12
21

19
18

15
17

22
24

20
2

0
11

12
2

1
18

10

2
8

14
17

2
13

22
25

17
17

5
10

16
18

11
18

20
23

9
18

16
15

12
14

19
23

17
9

11
0

1
13

10
15

7

2
9

15
18

3
14

23
24

18
16

4
9

15
19

12
19

19
24

10
19

17
16

13
15

20
24

18
10

12
1

0
14

11
16

8

3
0

19
22

11
18

27
26

22
8

18
15

17
21

16
23

21
28

14
23

21
20

17
19

24
22

22
4

2
13

14
0

3
20

12

3
1

16
19

8
15

24
27

19
11

15
20

20
20

13
20

24
25

11
20

18
17

14
18

23
25

19
1

1
10

11
3

0
17

9

3
2

15
18

13
2

17
18

2
22

20
19

15
19

12
3

9
18

10
13

11
10

3
9

14
8

12
16

18
15

16
20

17
0

8

3
3

7
10

5
6

15
18

10
19

12
16

15
11

4
11

17
16

2
11

9
8

5
7

12
16

10
8

10
7

8
12

9
8

0

248



Appl. Sci. 2020, 10, 8050

Table 8. The performance of picking before using the module.

Placing
Order Time

Processing
Time

Batch
(b)

Customer
Order (o)

Operation
Time

Waiting
Time
(wtpb)

Truck
Loading
Time (r)

12–14 14–16 1 1 21 1380 min. 3 p.m. of the
next day

14–16 16–18

2

2

20

900 min. 9 a.m. of the
next day

3 900 min. 9 a.m. of the
next day

3 4 11 900 min. 9 a.m. of the
next day

16–18 18–20

4

5

19

780 min. 9 a.m. of the
next day

6 1140 min. 3 p.m. of the
next day

5

7

22

1200 min. 5 p.m. of the
next day

8 1200 min. 5 p.m. of the
next day

6 9 15 960 min. 12 p.m. of
the next day

18–20 20–22 7 10 9 840 min. 12 p.m. of
the next day

20–22

The next day
6–8

8

11

22

240 min. 12 p.m. of
the next day

22–24 12 240 min. 12 p.m. of
the next day

4–6 of the
next day 9 13 18 840 min. 10 p.m. of

the next day

6–8 of the
next day

The next day
8–10 10 14 17 720 min. 10 p.m. of

the next day

8–10 of the
next day

The next day
10–12 11 15 15 600 min. 10 p.m. of

the next day

10–12 of the
next day

The next day
12–14 12 16 18 480 min. 10 p.m. of

the next day

6. The Computational Results

This study accumulates the customer orders for 24 h from 12:00 p.m. to 12:00 p.m. of the next day.
If the customer orders were placed within the period of 12:00 p.m. to 6 a.m. of the next day, and to be
delivered to the south and home before 12:00 p.m., the wave planning module would generate the
picking schedule at 6:00 a.m. on the next day. If orders were placed within the period of 12:00 p.m.
to 12:00 p.m. of the next day and to be delivered to the north shop, central shop, and home before
17:00 p.m., the wave planning module would generate the picking schedule at 12:00 p.m. of the
next day.

There are 16 orders assign to two pickers and dividing into eight batches (Table 9). In this case,
the result is a feasible solution (Figure 5). The planned waves are showed in Figure 6. The total waiting
time is 65 min and operation time is 173 min. The total picking route is 346 m and the total cost of
container price is 1030 dollars (Table 10).
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Table 9. The improvement results.

Batch
(b)/Picker

(p)

Placing
Order
Time

Customer
Order (o)

Start
Time
(stpb)

Operation
Time (min.)

(mtb)

Finish
Time
(ftpb)

Waiting
Time
(wtpb)

Truck
Loading Time

(r)

1/1 14–16 2
8:23 a.m. 26 8:49 a.m.

11 min. 12:00 p.m.

14–16 3 11 min. 12:00 p.m.

2/1 14–16 4
8:49 a.m. 11 9:00 a.m. 0

12:00 p.m.

16–18 5 12:00 p.m.

3/1 16–18 9
11:22 a.m. 16 11:38 a.m.

22 min. 12:00 p.m.

22–24 12 22 min. 12:00 p.m.

4/2 18–20 10
11:38 a.m. 22 12:00 p.m. 0

12:00 p.m.

20–22 11 12:00 p.m.

5/1 12–14 1 2:33 p.m. 27 3:00 p.m. 0
5:00 p.m.

16–18 6 5:00 p.m.

6/2 16–18 7 4:34 p.m. 22 5:00 p.m. 0
5:00 p.m.

16–18 8 5:00 p.m.

7/2 8–10 15 9:11 p.m. 17 9:28 p.m. 32 min. 10:00 p.m.

10–12 16 32 min. 10:00 p.m.

8/2 4–6 13 9:28 p.m. 32 10:00 p.m. 0
10:00 p.m.

6–8 14 10:00 p.m.

 
Figure 5. The Screenshot of Lingo solver status.
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Figure 6. The schedule of batches.

Table 10. The packaged container of customer orders.

Batch
(b)

Customer
Orders (o)

Container
(j)

Container
size

Container
Price ( Cj)

1
2 14 2 70

3 2 1 55

2
4 13 2 70

5 8 2 70

3
9 15 2 70

12 11 2 70

4
10 10 2 70

11 7 1 55

5
1 9 2 70

6 5 1 55

6
7 6 1 55

8 20 2 70

7
15 3 1 55

16 1 1 55

8
13 16 2 70

14 19 2 70

The system will compute the most suitable container and the sequence of putting the items into
the containers is done according to the picking sequence (Table 11). The loading configuration is
also generated.

Before Lingo 13.0 was used to find the model solution, the limit was increased to 50,000 through
the general memory limit under options to facilitate a smooth solution-finding process.

(1) Model output: The model solution was found using the Lingo 13.0 optimization program. Figure 5
presents the Lingo solution-finding result screen.

(2) Numbers of decision variables and constraint equations:

Number of decision variables: 32,098;
Number of constraint equations: 18,722;
Model efficiency:
Number of solution-finding cycles: 3,257,849;
Number of solution-finding steps: 3837;
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Time used to solve the model: 5 h 57 min and 42 s.

Table 11. The picking sequence of items in batch b.

Picking

Sequence

of Items (ubi)

Batch (b)

1 2 3 4 5 6 7 8

1 0 2 0 0 0 0 0 0

2 0 4 0 0 0 0 0 0

3 0 0 0 0 1 0 0 0

4 0 0 0 0 4 0 0 0

5 0 0 4 0 0 0 0 0

6 0 0 0 0 0 3 0 0

7 0 0 0 0 0 1 0 0

8 0 0 0 0 2 0 0 0

9 2 0 0 0 0 0 0 0

10 3 0 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0

12 0 3 0 0 0 0 0 0

13 0 1 0 0 0 0 0 0

14 0 0 0 0 3 0 0 0

15 0 0 0 0 0 2 0 0

16 0 0 3 0 0 0 0 0

17 4 0 0 0 0 0 0 0

18 0 0 2 0 0 0 0 0

19 0 0 0 2 0 0 0 0

20 0 0 0 1 0 0 0 0

21 0 0 0 3 0 0 0 0

22 0 0 1 0 0 0 0 0

23 0 0 0 0 0 4 0 0

24 0 0 0 4 0 0 0 0

25 0 0 0 0 0 0 0 2

26 0 0 0 0 0 0 0 1

27 0 0 0 0 0 0 4 0

28 0 0 0 0 0 0 1 0

29 0 0 0 0 0 0 2 0

30 0 0 0 0 0 0 3 0

31 0 0 0 0 0 0 0 4

32 0 0 0 0 0 0 0 3

After calculating the performance, waiting time of the original picking planning is 13,320 min,
operation time of the original picking planning is 207 min, and the total distance traveled for the
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original picking planning is 414 m. The calculated waiting time of the wave planning is 130 min,
operation time of the wave planning is 173 min, and the total distance traveled for the wave planning
logic is 346 m.

Figure 6 illustrates the Gantt chart of the eight batches for the two pickers. For example, the picking
route of batch one is showed in Figure 7. Picker 1 will start to pick from P/D point at 8:23 a.m., and the
picking sequence is 11→9→10→17. After picking the four items, Picker 1 would go back to P/D point
at 8:49 a.m. The load configuration of order 2 and order 3 are showed in Figure 8. The container size of
order 2 is size two and order 3 is size one.

Figure 7. The picking route of batch 1.

 

Figure 8. The load configuration of order 2 and order 3.

After fulfilling the batch one, Picker 1 will start to deal batch two continually. Picker 1 will start
to pick from P/D point at 8:49 am, and the picking sequence is 13→1→12→2. After picking the four
items, Picker 1 would back to P/D point at 9:00 am. The container size of order 4 and 5 is size two.

Picker 1 will start to pick from P/D point at 11:22 am, and the picking sequence is 22→18→16→5.
After picking the four items, Picker 1 would back to P/D point at 11:38 am. The container size of order
9 and 12 is size two.

At 2:33 pm, the Picker 1 will start to deal with batch five. Picker 1 will start to pick from P/D point
at 2:33 pm, and the picking sequence is 3→8→14→4. After picking the four items, Picker 1 would back
to P/D point at 3:00 pm. The container size of order 1 is size two and order 6 is size one.
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Comparing the waiting times, operation times, total travelling distances between original picking
planning, and proposed wave planning, the results shown that the wave planning model can reduce
the waiting time for truck loading of packages significantly, and also can reduce the time packages
heaping in buffer area. The operation time and total distance of picking route also have better results
when tested with wave planning.

The characteristics of the SKUs being handled, total number of transactions, total number of
orders, picks per order, quantity per pick, total number of SKUs, value-added processing activities
such as kitting or private labeling, and handling of piece pick, case pick, or full-pallet loads are
all factors that affect the method for order picking. Comparing with previous studies as shown in
Table 2, our model demonstrated a successful integration of batching and splitting customer orders,
sequencing picking orders, planning picker routes, scheduling picking waves, assigning packing
configurations, and eliminating packing operations. Moreover, it also can increase capacity utilization
rate and reduce the packaging cost.

7. Conclusions

Order picking policy is a case-oriented design and planning task. In this paper, we reviewed an
order picking problem from forms and workflow of a WMS perspectives. By using them to observe
an order picking problem of a 24-h express shipping online bookstore, the considering parameters of
wave planning for designing the optimization programming model were identified.

To the best of our knowledge, there was no wave order picking planning algorithm been revealed
so far. The wave planning model we developed was a mixed integer nonlinear programming
model. It takes multiple customer orders, SKUs’ sizes, volumes of mailing boxes, locations of SKUs,
and planned delivering truck loading times as input parameters, then calculates the configuration of
containers (i.e., bin packing problem), the groups of picking SKUs (i.e., order batch problem), and the
groups of pickers (i.e., batch assignment problem), and, finally, outputs a set of order picking lists with
their associated schedules.

The past studies showed that picking orders in a short time window is a better picking policy in
the random storage warehouse [5]. However, having our proposed model, distribution centers can
adjust the frequency of order batching. In other words, the distribution center can accumulate orders
for a longer time window which may collect more similar SKUs. The combined picking of several
orders can bring about a reduction of approximately 60% in walking time [2]. Moreover, this can avoid
order pickers to travel to the same storage locations in the short time. To sum up, the object of the
model is that distribution centers can not only achieve the goal of fast delivering but also increase the
capacity utilization rate which can make distributions fulfill more orders within the same time period
and can completed orders before departure time.

The proposed model is a nonlinear mixed integer programming model. The limitation to this kind
of model is that the derivation of an optimal solution is not always guaranteed. Therefore, we could
only use an example to prove the capability of the conceptual design of such an order picking system.
The calculating time of the example is around 6 h, which also makes the practical use of this model
limited. This brings the need of developing a heuristic algorithm for finding the near optimal solution of
our model in a relative short computing time as our future work. Our current model could be used as a
benchmark reference model for comparing solution results while developing such heuristic algorithms.
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Abstract: For building material distributors, order planning is a key process as a result of the increase
in construction projects’ scale and complexity. In this paper, the integration of simulation modeling
and the response surface methodology (RSM) is presented to solve an order planning problem in
the construction supply chain. The interactions of various factors are examined to observe their
effects on key system measurements, and a combination of factor levels is determined to achieve the
optimal performance. RSM is applied to find the possible values of the optimal setting for system
responses, which consists of three main steps: central composite design (CCD), Box–Behnken design
(BBD), and a comparison of both designs. The model is tested with a realistic case study of a building
material distributor in Vietnam to demonstrate its effectiveness. Controllable factors (independent
variables), which are the review period (T), order quantity (Q), and safety stock (SS), are found to
significantly affect system responses, which are the total cost (TC) and customer service level (CSL).
The results provide the best settings of factor levels that produce the possible minimum TC and
maximum CSL. The developed framework could be applied as a useful reference for decision-makers,
purchasing managers, and warehouse managers to obtain the most suitable order policy for a robust
order planning process.

Keywords: building material distributors; central composite design (CCD); Box–Behnken design
(BBD); optimal cost; customer service level; forecasting; order planning; inventory management

1. Introduction

Buildings are becoming increasingly complex because of the ongoing rise in the size and scope
of construction projects. Following that, the rising segmentation of the construction industry goes
hand-in-hand with the growth of specialist suppliers or contractors, and the diversity of products,
designs, and control activities [1]. Relationships in the construction industry are short-term and
normally informal/ad-hoc, which focus on the projects, not the business. Construction demand is
inherently unstable as the industry is project-based with defined start and endpoints, and a conventional
separation between design and construction. Demand is viewed by temporary coalitions as a series
of competitively tendered prototypes. Competencies between construction projects vary from time
to time and are distinguished from each other. In the supply chain of the construction industry,
order planning is the key process, especially for building material distributors. Adequate order
planning is quintessential to a more comprehensive integrated supply chain solution, by which
businesses can achieve real-time capabilities to act as an intermediary between manufacturing, sales,
and customer service concerns, in order to guarantee on-time, effective and reliable processes of
order fulfillment and delivery [2]. For building material distributors, the most common problems
are inaccurate forecasts of annual projects received and the overloading in stock due to the delayed
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construction work progress. Therefore, demand forecasting and inventory management are crucial
tasks in the order planning process, as the progress of construction projects is often not always as
smooth as scheduled. Accurately forecasting spikes in demand and appropriate levels of safety stock
can give a competitive advantage in the industry.

In the context of demand variability, sufficient order planning policies are crucial [3]. Some common
challenges of order planning problems in all different types of industries are accurate monitoring of all
stock-keeping units (SKUs) and stock levels, availability of historic sales forecasting data, calculating
correct supplier lead-times, new product introductions, and centralizing stock control [4]. In this
context, building material distributors often deal with serious stock-outs (unknown/unaware projects)
or extreme overstock (delayed projects). Consequently, additional costs are incurred due to extra
shipments, transportation and transferring activities, inventory holding, and handling costs, to name
a few. In addition, the expectation of customers for timely and reliable products and service is
ever-increasing, so that a more efficient ordering operation is indispensable and is a key measure for
customer service. Incomplete and delayed orders are the most common causes of worsening customer
satisfaction. Hence, strategies in ordering planning problems, namely which order to fulfill and in
what sequence that strongly affects customer satisfaction and businesses’ profits, as it decides how to
divide the inventory between orders and how to attend to orders to provide an efficient process [5].

Some strategies are used to mitigate risk in the ordering process: classifying stock [6],
drop-shipping [3], prepurchasing stocks [7], using hybrid strategies [8,9], and setting stock minimization
policies [10]. Many studies developed stock control policies to solve the problem of managing inventory.
They applied lot sizing, stockpiling, and period length instead of controlling on-hand inventory, at
the same time examining certain stochastic variables in the ability to respond with high demand
fluctuations and shortages in the multistage supply chain [11,12]. In practice, demands vary from time
to time, they are more of fuzzy numbers than deterministic ones. Problems concerning production
and inventory decisions are regarded as a joint economic lot-sizing problem (JELP), of which a
vendor and a buyer with stochastic demand and variable lead time are considered [13]. Jauhari and
Laksono [14] solved the JELP with the demand changing over time, imperfect production emission
cost, and defective production rate. By considering the fuzzy annual demand, their mathematical
model contributed to the existing inventory literature. Chiang Kao and Wen-Kai Hsu [15] provided
a framework for the development of the fuzzy total inventory cost with uncertain demand and the
used Yager’s ranking method to minimize the total cost and to prevent lost-sales. Kim et al. [16]
introduced a multiperiod newsvendor problem, which formulated integer recourse decisions as a
multistage stochastic programming model. The proposed method offered novel knowledge to optimize
the trade-off between delivery, transshipment, shortage, and holding costs, which is the gap to other
studies that suggested stochastic inventory models. Additionally, most studies suggested different
considerations for customer service’s perception, assumed that quality products, sales price, corporate
social responsibility, and recycling commitment are key factors to the customer service level [17–22].

In this paper, simulation modeling is developed to explain the ordering process for building
materials in a distributor. For this case study, key system performance measures are the total cost
(TC) and the customer service level (CSL). The total cost includes transportation cost, holding cost,
over-storage cost, and shortage cost. On the other hand, CSL simplifies by the accumulation of total
demand satisfied. Parameters of products include unit weight, unit holding cost, unit shortage cost,
and unit over-storage cost. Controllable factors of the ordering process are the monthly demand,
review period (T), order quantity (Q), and safety stock (SS), which are treated as independent variables.
Using RSM, the best settings, which are appropriate combinations of T, Q, and SS are determined as
an indicator to measure the performance of each possible setting, in which TC and CSL are response
variables. The solution is to place the right order quantities at the right time, with the appropriate
safety stock to achieve customer satisfaction levels between 90 and 95 percent at minimum costs.

The contributions of our paper are three-fold. First, the paper proposed a computational framework
to solve the order planning problem by a heuristics approach using RSM, which includes the central

258



Appl. Sci. 2020, 10, 8959

composite design (CCD), Box–Behnken design (BBD), and variance dispersion graph (VDG), in order
to offer the best possible time-efficient and resource-saving solution in terms of key performances.
Most exact methods cannot solve the problem within a satisfactory amount of time, especially for
large-scale problems. In contrast, most heuristics allows decision-makers to obtain a feasible and
timelier solution. For order planning problems in the construction industry, managing the demand,
duration, and progress between projects that are supposed to be implemented simultaneously by
a distributor is a complicated task. Thus, to facilitate the practical process and available resources,
heuristics can provide decision-makers feasible short-term solutions within a reasonable amount of
time. Second, the proposed heuristic model is validated by a realistic case study of a distributor in
Vietnam to illustrate the effectiveness of the model’s result. Third, the managerial implications of the
paper could be a beneficial guide for decision-makers, purchasing managers, and warehouse managers
to obtain the most suitable order policy for a robust order planning process. In addition, the practical
contribution of this study is the comprehensive insight into order planning problems contributed by
the case study of the building material distributor in Vietnam.

The paper is divided into five sections. The introduction and relevant studies are discussed
in the first section. In the second section, the research procedure and related methodology are
included. This paper proposed a computational framework to solve the order planning problem.
Additionally, the case study of a distributor is presented in the third section. In the fourth section, the
empirical results are shown, including the results of excel spreadsheet simulation, and experimental
design of central composite design, and Box–Behnken design. Moreover, discussions, conclusions,
and recommendations are given in the last section.

2. Literature Review

This paper combined simulation modeling and the response surface methodology (RSM) to solve
an order planning problem. A simulation and/or computational experiment are used to model a
comprehensive supply chain network that corresponds with a number of supply chain operational
elements and management levels [23]. Some studies that proposed simulation-based optimization
models to explain supply chain systems are discussed in [24,25]. Supply chain dynamics (response) are
typically quantified in terms of order and inventory variance ratios. To experiment with the stochastic
supply chain model, a simulation modeling approach was adopted. As a result of modifying the
controllable variables, the simulation model was run to generate the various supply chain responses,
and thus the functional relationship could be fitted and its response surface defined. RSM is a feasible
alternative to modeling, on the other hand, which optimizes stochastic, dynamic, and complex systems
such as supply chains. This approach is used to find a functional link between the complex responses
of the supply chain and significant controllable variables that influence them [26]. Giddings et al. [27]
used RSM for optimality analysis of the cost coefficients in mixed integer linear programming in
facility location problems. The study implemented the design of experiments and applied least squares
regression to determine cost coefficients that significantly affect the optimal total cost surface within
setup coefficient ranges. In a problem of finding the suitable capacity for a factory, Shang et al. [28]
aimed at integrating simulation, Taguchi techniques, and RSM. Findings of this hybrid approach is
a useful reference for businesses to analyze the dynamic relations among various factors, so as to
determine the best combination of their levels that optimizes the impact of demand uncertainty on the
performance of the supply chain. Buchholz et al. [29] developed a hybrid model of a process-based
simulation ProC/B toolset and RSM for the optimization of the process chain models. In this paper,
the experiment of the central composite design was applied to find the optimal values of response
variables. The “bullwhip” effect, known also as order variance amplification, is a major cause of supply
chain deficiencies. Hassanzadeh et al. [30] studied a three-stage simulation with a single retailer,
a single wholesaler, and a singer-producer under both centralized and decentralized chains, in order
to analyze the causes of the bullwhip effect from two dimensions of order and inventory variance
using RSM. As an extension, a multiobjective minimization problem in which the order and inventory
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variance ratios are separated into two objective functions was developed by Devika et al. [31]. RSM was
used in a hybrid evolutionary approach to analyze interactions between the variance ratios and their
corresponding effects, in order to optimize supply chain systems. For measuring design parameters
on the bullwhip effect and dynamic responses, Tang et al. [32] analyzed its influences on the supply
chain’s performance using a hybrid Taguchi and dual RSM. This paper offered practical solutions to the
supply chain managers and designers in the trade-off between customer service level and inventory
holding cost under an uncertain environment.

To provide an overview of recent contributions, several studies that presented relevant problem
characteristics are shown in Table 1. Concerning order planning problems, many studies approached
exact methods such as NLP [33], MOLP [34,35], and mathematical models [36–39]. The widely used
method is applying inventory policies such as the economic order quantity (EOQ), economic production
quantity (EPQ), (S, T), or (R, Q) model [36,39,40]. The order planning problem is actually the flow
shop (FS) problem, which is an NP-hard problem [41]. Most exact methods cannot solve large-scale
problems within an acceptable amount of time. Therefore, heuristics [33,42] have widely been applied
currently, which produce good feasible solutions timely and effectively. In this paper, to optimize an
order planning problem, namely to minimize total relevant costs and maximize customer satisfaction
level, RSM was used to determine the best combination of the system parameters. Independent
variables, which are the review period (T), order quantity (Q), and safety stock (SS), were treated as
factors for response variables, which are the total cost (TC) and customer service level (CSL). Analytical
approaches have many limitations to simultaneously solve two or three factors [23]. It is difficult to
observe the factor interactions and predict their effects on the overall objective when multiple factors
are considered at a time. By using RSM, our research aims to determine the best parameter settings
of considered factors to find the possible optimum values of the responses. Findings are expected
to offer purchasing managers or decision-makers to obtain the optimal combination of the levels of
independent factors, which strongly affect the key system performance measures, i.e., total relevant
costs and customer satisfaction level.

Table 1. List of common problem characteristics for several previous studies.

Authors Independent Variables Response Variables Methods/Techniques

Zhang et al. [33], 2015
Number of orders
Planning horizon

Production capacity

Penalty for delivery
Penalty for order

Inventory cost
Production cost

NLP
PSO algorithm

Guo et al. [34], 2015
Due date of order

Production workload
Capacity efficiency

Completion time
Production capacity

Processing time

MOLP
DOE

Lim et al. [35], 2017 Demand variability
Lead time

Holding cost
Supply cost
Safety stock

Simulation modeling
MOLP

Singha et al. [36], 2017
Reorder point
Order quantity

Inventory policies

Ordering cost
Shortage cost
Holding cost

Over-ordering cost

EOQ
(R, Q) model

Mathematical model

Jansen et al. [37], 2019 Planned lead time
Production plan

Holding cost
Penalty cost Mathematical model

Thinakaran et al. [40], 2019
Time-varying
Stock demand

Lot size

Backorder
Lost sales

EOQ
EPQ
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Table 1. Cont.

Authors Independent Variables Response Variables Methods/Techniques

Wang et al. [42], 2020

Ordering quantity
Reorder point
Target stock

Inventory policies

Holding cost
Penalty cost

Simulation modeling
DOE

Kokuryo et al. [38], 2020
Order quantity

Production schedule
Order period

Delivery time
Profit Mathematical model

Tai et al. [39], 2020
Order quantity

Lead time
Inventory policies

Over-storage amount
Inventory cost

EOQ
(S, T) model

Mathematical model

This paper, 2020
Review period
Order quantity

Safety stock

Holding cost
Shortage cost

Over-storage cost
Transportation cost

Simulation modeling
RSM

Note: NLP: nonlinear programming, PSO: particle swarm optimization, MOLP: multi-objective linear programming,
DOE: design of experiment, EOQ: economic order quantity, EPQ: economic production quantity, RSM: response
surface methodology.

3. Materials and Methods

3.1. Response Surface Methodology (RSM)

Response surface methodology (RSM) was used to design and perform an experimental design
via statistical and mathematical approaches. RSM was applied to determine the possible optimal
values of factors (i.e., independent variables) to minimize and/or maximize the outputs (response
variables). RSM was assumed that there is no correlation among independent variables. There are
many stages to perform the process of optimization using RSM. The following parts present the simple
and polynomial regression model [43–46].

The simple regression model is presented in Equation (1) as follows.

Y = βo + β1X1 + β2X2 + . . .+ βkXk + ε (1)

where Y denotes response variables, X1, X2, . . .Xk denotes independent variables, k is the total of
independent variables, βo is the intercept, β1, β2, . . . βk is the slope, and ε is the random error.

Equation (2) shows the quadratic polynomial regression model.

Y = βo +
∑
β1X1 +

∑
β2X2

2 +
∑
β3X1X2 + . . .+ ε (2)

where Y denotes response variables, X denotes independent variables, βo is the intercept, β1 is the
coefficient for the linear terms, β2 is the coefficient for the square terms, β3 is the coefficient for the
interaction among terms, and ε is the random error.

In the polynomial regression model, CCD and BBD are two types of experimental designs often
referred to by the researchers. CCD is an experimental design with two-level. Minitab provides the
rotatability value (α) to ensure the design displays the desirable properties. Meanwhile, BBD is the
experiment with a three-level design. BBD does not have the rotatability value (α) and embedded
factorial design. Points on the diagrams represent the experimental runs of CCD and BBD are shown
in Figure 1 as follows [47].
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(a) CCD experiment (b) BBD experiment 

Figure 1. The experimental runs of the central composite design (CCD) and Box–Behnken design (BBD).

3.2. A Computational Framework

In this paper, a computational framework was built (Figure 2), which consists of two parts,
described as follows: (1) an Excel spreadsheet was used to develop the order planning model,
and calculate the response variables, i.e., total cost and customer service level. Then, (2) Minitab was
used to find the feasible values of the optimal setting for those responses using RSM, CCD, and BBD.
Besides, a VDG was applied to validate these experimental designs. Three independent variables were
being considered to have effects on the response variables in this experiment, consisting of the review
period (T, month), order quantity (Q, unit), and safety stock (SS, unit). The combination in the total
cost (TC, USD) that includes the holding cost, shortage cost, over-storage cost, transportation cost,
and customer service level (CSL, %) were chosen as response variables of the order planning model.

 
Figure 2. A computational framework.

4. A Case Study

4.1. Problem Description

The description of the primary building materials of a distributor in Vietnam is shown in
Figure 3. There are four main material products for coating in construction works: Spectite CW100 (a),
Spectite WS (b), Spectite HP600 (c), and Speccoat PE145 (d). The statistical summary of historical sale
data (2017–2019), and the component costs of materials are demonstrated in Tables 2 and 3, respectively.

    
(a) Spectite CW100 (b) Spectite WS (c) Spectite HP600 (d) Speccoat PE145 

Figure 3. List of the main materials group of the distributor.
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Table 2. Statistical summary of historical sale data added up to 36 months (2017–2019).

2017 Spectite CW100 Spectite WS Spectite HP600 Speccoat PE145

Max 1663 131 224 40
Min 215 0 0 1
Avg 1044.58 45 36.33 5.83
SD 470.18 47.13 63.58 11.81

2018 Spectite CW100 Spectite WS Spectite HP600 Speccoat PE145

Max 2140 965 100 114
Min 411 0 0 2
Avg 1093.50 198.17 21.42 31.83
SD 538.73 265.93 35.64 34.91

2019 Spectite CW100 Spectite WS Spectite HP600 Speccoat PE145

Max 2290 359 75 83
Min 219 0 0 0
Avg 1387.75 142.42 32.67 30.17
SD 649.19 124.85 30.79 24.88

Note: calculated by the researchers.

Table 3. Component costs of materials.

Materials
Spectite
CW100

Spectite
WS

Spectite
HP600

Speccoat
PE145

Unit

Packing size 22 kg/set 25 kg/bag 20 L/pail 15 L/pail -
Wholesale price 11 20 78 49.5 USD/unit

Receipt cost 12.93 22.12 84.73 54.70 USD/unit
Selling price 18.42 32.89 116.22 87.72 USD/unit
Holding cost 0.075 0.129 0.494 0.319 USD/unit/month
Shortage cost 0.553 0.987 3.487 2.632 USD/unit

Over-storage cost 0.162 0.277 1.059 0.684 USD/unit/month

Note: calculated by the researchers.

Currently, the company places orders from a supplier every three or four months. Afterward,
the transportation freight charge for 20 ft and 40 ft containers that are used for shipments directly
to a warehouse. For inventory management, each unit of products (set, pail, or bag) is charged for
holding cost per unit per month. Over-storage cost per unit is charged when ending inventory excesses
the warehouse capacity. Shortage cost per unit is charged if satisfied demand is less than the actual
demand. Key performances are measure periodically, which are the total cost, calculated by the sum of
holding inventory, shortage cost, over-storage cost, and transportation cost, as presented in Equation
(3); and the customer service level, which is determined by the accumulation of the total demand
satisfied, as shown in Equation (4). Subsequently, the company is facing a problem in which should
setup different factors (i.e., referred to independent variables in this paper) that affect the performance
of the inventory system. Therefore, designing a computational framework to find the feasible values of
the optimal setting of levels for independent variables that strongly affect the minimum total cost of
holding cost, shortage cost, over-storage cost, transportation cost, and customer service level is needed.

Total cost (TC) can be calculated from the following Equation (3):

TC = Ch + Cs + Co + Ct (3)

where Ch is holding cost, Cs is shortage cost, Co is over-storage cost, and Ct is transportation costs.
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The customer service level (CSL) in this model simplifies by the accumulation of the total demand
satisfied, and it can be calculated from the following Equation (4):

CSL =
Demand− Shortage Amount

Total Demand
× 100% (4)

4.2. Numerical Example

In order to demonstrate the model’s effectiveness, the authors chose “Spectite CW100”, the key
product of the company. Compared to other products, Spectite CW100 is always indispensable for
construction projects, yet often running out of stock. Additionally, this product was selected based on
ABC analysis (i.e., highest sale volume and high order frequency) [48,49]. The ABC classification divides
inventory stock-keeping units (SKUs) into three groups based on their annual monetary purchases.
These SKUs are high-value items, i.e., the 15–20% of the total inventory that accounts for 75–80% of the
total annual inventory value. The product is distributed to customers and given inventory carrying
cost, shortage cost, and over-storage cost of each unit. Based on product behaviors and the current
order planning process, the interval ranges of the variables were set by the decision-makers as shown
in Table 4 and were chosen as potential values in the factorial design for this problem.

Table 4. The interval ranges of the variables.

No. Variables Notation Interval Range Unit

1 Review period (categorical factor) T (3, 4) Month
2 Order quantity (continuous factor) Q (3500, 4000) Unit
3 Safety stock (continuous factor) SS (1000, 1300) Unit
4 Total cost (response) TC TC (Ch, Cs, Co, Ct) USD
5 Customer service level (response) CSL CSL (90% and 95%) %

Note: calculated by the researchers.

5. Empirical Results

5.1. Excel Spreadsheet Simulation

First, the authors pivoted the quantity of historical sale data to count monthly order frequency to
generate the probability of demand. Next, the authors used the random function in excel to simulate
customer demand and get the values response variables (TC and CSL). The experimental design was
created using a central composite design and Box–Behnken design to find the possible independent
variables settings for solving the order planning problem. The excel spreadsheet simulation template
for the experimental design is described in Figure 4.

In this paper, a case study of a distributor is presented to demonstrate the effectiveness of the
developed computational framework to solve the current order planning problem in the company.

The model’s parameters setup is described as follows.

• Unit holding cost, Ch = 0.075 USD/unit/month;
• Unit shortage cost, Cs = 0.553 USD/unit;
• Unit over-storage cost, Co = 0.162 USD/unit/month;
• Warehouse capacity = 5000 units;
• Weight (CW100) = 22 kg/unit;
• Maximum capacity of container type 20 ft = 21,000 kg;
• Maximum capacity of container type 40 ft = 42,000 kg;
• Freight charge of container type 2 0ft = 1500 USD/trip;
• Freight charge of container type 40 ft = 2700 USD/trip.
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Figure 4. Excel spreadsheet simulation.

5.2. Statistical Analysis

In the initial step, the statistical analysis using the full factorial design was performed to test the
curvature of the response variables (TC and CSL) and independent variables (T, Q, and SS). Then,
the data was analyzed in Minitab using stepwise, and the result shows curvature. The analysis
of variance of factorial regression and the Pareto chart of the standardized effects are presented in
Figures 5 and 6, respectively.

 
Figure 5. Analysis of variance of factorial regression.
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 Worksheet: Worksheet 3

Figure 6. Pareto chart of the standardized effects.

In Figure 5, the analysis of variance of factorial regression, the results suggested that the model
had significant curvature because the p-value (p-value = 0.000) was less than the confidence level at
95%. The presence of curvature usually indicates that the factor settings were near a feasible response
value. Therefore, two response surface designs, central composite design, and Box–Behnken design
were considered afterward to find the possible parameter settings for this case. In the step of full
factorial design, for the starting center point, T = 3, Q = 3500, and SS = 1000, were considered. Figure 6
shows the Pareto chart of the standardized effects from the results and factors. It can be seen that their
interaction significantly affected the model’s results.

5.3. Central Composite Design (CCD)

In this section, a central composite design was performed to find the effects of independent
variables on the response variables. In this paper, the CCD experiment (one continuous factor and two
categorical factors) used the 20-run design with two blocks. Minitab provides the rotatability value (α)
to ensure the design displays the desirable properties. The rotatability value of the CCD experiment
was chosen based on factorial run and factorial point, α = 1.41 was applied in this experimental design.
The CCD experiment running setup and randomized design table are presented in Figure 7 and Table 5
below. Figure 7 shows all set-up parameters for the experimental CCD in the research. From the results
of Table 5, TC and CSL were calculated based on independent variables, which T, Q, and SS. Note:
StdOrder (standard order), RunOrder (run order), and PtType (center point type).

The initial experimental model was built for the response variables. Figure 8 shows the response
surface regression of total cost versus T, Q, and SS. In the first running, the results suggest that the
terms SS, the square terms SS*SS, and the interaction among Q*SS, Q*T, and SS*T were not significant
(p-value > 0.05), and the paper considered the confidence level of the experimental design at 95%.
In the next steps, these terms were eliminated from the CCD model.
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Figure 7. Central composite design running setup.

Table 5. Central composite design (one continuous factor and two categorical factors).

StdOrder RunOrder PtType Blocks T Q SS TC CSL

1 1 1 1 1 −1 −1 76,990.53 86
2 2 1 1 1 1 −1 78,115.85 93
3 3 1 1 1 −1 1 76,789.66 87
4 4 1 1 1 1 1 79,264.98 94
5 5 0 1 1 0 0 76,829.35 91
6 6 1 1 2 −1 −1 66,298.47 69
7 7 1 1 2 1 −1 64,918.34 78
8 8 1 1 2 −1 1 65,582.80 74
9 9 1 1 2 1 1 67,053.43 81
10 10 0 1 2 0 0 65,334.14 75
11 11 −1 2 1 −1.41 0 77,047.57 84
12 12 −1 2 1 1.41 0 96,797.76 94
13 13 −1 2 1 0 −1.41 76,971.17 90
14 14 −1 2 1 0 1.41 78,037.13 91
15 15 0 2 1 0 0 76,826.26 92
16 16 −1 2 2 −1.41 0 66,215.61 70
17 17 −1 2 2 1.41 0 74,732.52 81
18 18 −1 2 2 0 −1.41 65,732.97 73
19 19 −1 2 2 0 1.41 69,031.07 78
20 20 0 2 2 0 0 63,287.22 75

Note: calculated by the researchers.

 
Figure 8. CCD—response surface regression of total cost (TC) versus the period (T), order quantity (Q),
and safety stock (SS).

After excluded these terms, the experiment was run once more. The results are shown in Figure 9,
the reduced model. From the results, term T and the square term Q*Q were highly significant
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(p-value < 0.05), while term Q was barely significant. Thus, term Q was kept for the next analysis to
see the effects of these independent variables on the objective functions.

Figure 9. CCD—response surface regression of TC versus T, Q, and SS (reduced model).

For the second objective function, CSL (%), the CCD experiment was performed consequentially.
The response surface regression of the CSL versus T, Q, and SS is presented in Figure 10. In the first
running, the results display that the square terms SS*SS, and the interaction among Q*SS and Q*T was
not significant (p-value > 0.05). Then, these terms were eliminated from the CCD model.

 
Figure 10. CCD—response surface regression of the customer service level (CSL; %) versus T, Q, and SS.

After excluded these terms, the CCD model was run again, the reduced model is shown in
Figure 11. The results proposed that only the square term Q*Q was not significant because of the
p-value = 0.068 was out of the confidence level at 95%. Meanwhile, the terms Q, SS, T, and the
interaction of SS*T dramatically affected the CCD model (p-value < 0.05).

 
Figure 11. CCD—response surface regression of CSL (%) versus T, Q, and SS (reduced model).
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After reducing the CCD model into the final form, the residual plots for TC and CSL are displayed
in Figure 12, including normal probability plot, histogram, versus fits, and versus order. The results
show that the assumption of the model had no concern about the violation of the acceptable outliner.
In detail, the normal probability plot nearly followed a straight line, then the residuals could assume
from a normal distribution. The versus fits were used to verify that the residuals were scattered
randomly about zero. From the plots, the non-constant variance of the residuals was fit. The histogram
in the CCD model approximately followed a distribution. The versus order shows the residuals in the
order of data collection. As can be seen, the versus order did not show any pattern, hence, there was
no time correlation in the residuals.

  
(a) Residual plots for TC (b) Residual plots for CSL (%) 

Worksheet: Worksheet 3 Worksheet: Worksheet 3

Figure 12. CCD—residual plots for TC and CSL.

Figure 13 shown the response optimizer of the CCD experiment to find the feasible response
variables with CSL at 90% and 95%. From the result, the CSL set to target that was 90% with the
possible minimum total cost 76,330 of the possible settings were T = 3, Q = 3428, and SS = 1336.
Meanwhile, when the CSL was increased up to 95%, the possible minimum total cost was 77,090 of the
optimal settings that were T = 3, Q = 3520, and SS = 1354.

  
(a) Response optimizer for TC and CSL (90%) (b) Response optimizer for TC and CSL (95%) 

Figure 13. CCD—response optimizer for TC and CSL.

Besides, the surface and contour plots for CSL are displayed in Figure 14. According to the contour
plot, the CSL located in an area of dark green color was more satisfying. The trade-off existed in the
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objective function of the model. The more the customer service level is satisfied, the more of the total
cost will be paid by the distributor.

  
(a) Surface plot for CSL (%) (b) Contour plot for CSL (%) 

Figure 14. CCD—surface and contour plots for CSL (%).

5.4. Box–Behnken Design (BBD)

Following the results from the experiment of the central composite design, Box–Behnken design
was performed to compare the effects of independent variables on the response variables. In this
experiment, BBD with three continuous factors used the total 15-run design with one block. Compared
to the central composite design, the BBD experiment did not have an embedded factorial design and
extreme points, and the BBD experiment also did not have the rotatability value (α) in the experimental
design. The advantage of the BBD model was that the design usually had fewer design points, hence,
they were often less expensive to run than the CCD design with the same number of independent
variables. The BBD experiment running setup and randomized design table is presented in Figure 15
and Table 6 as follows. Figure 15 shows all set-up parameters for the experimental BBD. From the
results of Table 6, TC and CSL were calculated based on considered independent variables using an
excel spreadsheet.

The initial model was obtained for the response variables (TC and CSL). Figure 16 shows the
response surface regression of total cost versus T, Q, and SS. In the first running, the results suggest
that the square terms Q*Q, SS*SS (p-values were 0.976 and 0.915 respectively), and the interaction
among T*SS and Q*SS (p-values were 0.721 and 0.902, respectively) were not significant (all p-value
> 0.05), while the paper considered the confidence level of the BBD at 95%. Then, these terms were
eliminated from the BBD model to obtain the following final model.

After excluded insignificant terms, the experimental BBD was run again, the results of the reduced
model are shown in Figure 17. The results display that term SS was statistically significant while the
terms T, Q, square term T*T, and the interaction of T*Q significantly affected the model (p-value < 0.05).
The authors decided to keep the term SS for further analysis to see the effects of these independent
variables on the objective functions.

 
Figure 15. Box–Behnken design running setup.
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Table 6. Box–Behnken design (three continuous factors).

StdOrder RunOrder PtType Blocks T Q SS TC CSL

1 1 2 1 2 3250 1000 134,828.00 100
2 2 2 1 4 3250 1000 65,946.84 71
3 3 2 1 2 3750 1000 171,568.82 100
4 4 2 1 4 3750 1000 64,635.88 79
5 5 2 1 2 3500 750 151,097.12 100
6 6 2 1 4 3500 750 65,616.60 73
7 7 2 1 2 3500 1250 154,401.55 100
8 8 2 1 4 3500 1250 64,982.51 77
9 9 2 1 3 3250 750 76,990.53 86
10 10 2 1 3 3750 750 78,115.85 93
11 11 2 1 3 3250 1250 76,789.66 87
12 12 2 1 3 3750 1250 79,264.98 94
13 13 0 1 3 3500 1000 76,826.26 92
14 14 0 1 3 3500 1000 80,511.79 100
15 15 0 1 3 3500 1000 77,198.46 87

Note: calculated by the researchers.

 
Figure 16. BBD—response surface regression of TC versus T, Q, and SS.

 
Figure 17. BBD—response surface regression of TC versus T, Q, and SS (reduced model).

For the second objective function related to CSL (%), the BBD was performed consequentially.
The response surface regression of the CSL versus T, Q, and SS is presented in Figure 18. In the first
running, the results display that the term SS (p-value was 0.585) and the square terms Q*Q and SS*SS
(p-values were 0.461 for both) were not significant (p-value > 0.05). In this case, the square terms
Q*Q and SS*SS were eliminated from the BBD model in priority, the term SS was kept for further
analysis purposes.
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Figure 18. BBD—response surface regression of CSL (%) versus T, Q, and SS.

After excluded these terms, the BBD experiment was run again, the reduced model is shown in
Figure 19. The results show that only the term Q, SS, and the square term T*T (p-values were 0.054,
0.564, and 0.067, respectively) were slightly significant because the p-value was slightly out of the
confidence level at 95%. Otherwise, only the terms T was highly significant to the BBD experiment
(p-value < 0.05).

 
Figure 19. BBD—response surface regression of CSL (%) versus T, Q, and SS (reduced model).

After reducing the BBD model into the final form, the residual plots (normal probability plot,
histogram, versus fits, and versus order plot) for the response variables (TC and CSL) are displayed
in Figure 20. The results show that all residual plots satisfied the normality and constant variance
assumptions, which means the simulated data was random and followed normal distribution.

  
(a) Residual plots for TC (b) Residual plots for CSL (%) 

Worksheet: Worksheet 1 Worksheet: Worksheet 1

Figure 20. BBD—residual plots for TC and CSL.

Figure 21 shows the response optimizer of BBD to determine the feasible response variables,
i.e., TC and CSL (CSL, 90%, 95%). From the result, the CSL set to target was 90% with the possible
minimum total cost 70,870 of the possible settings were T = 3, Q = 3603, and SS = 1250. Otherwise,
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when the CSL was at 95%, the possible minimum total cost was 85,920 of the optimal settings were
T = 3, Q = 3690, and SS = 1250.

  
(a) Response optimizer for TC and CSL (90%) (b) Response optimizer for TC and CSL (95%) 

Figure 21. BBD—response optimizer for TC and CSL.

Moreover, the surface and contour plots for CSL are shown in Figure 22. The results suggest that
the possible minimum total cost was in an area of light green (<74,000), the area of SS less than 1000,
and the area of Q was less than 3500 according to the contour plot. The trade-off existed in the objective
function of the model, which means, the more the customer service level is satisfied, the more of the
total cost will be paid by the distributor.

  
(a) Surface plot for CSL (%) (b) Contour plot for CSL (%) 

Figure 22. BBD—surface and contour plots for the total cost.

5.5. The Comparision of the CCD and BBD Experiment

This section performs the comparisons of the CCD and BBD experiments. The summary of the
response optimizer results of CCD and BBD are displayed in Table 7 below. Next, the overlaid variance
dispersion graph for CCD and BBD are drawn as in Figure 23. RSM was applied to build the prediction
models, hence, prediction variance was significant. For more than two independent variables in the
model, the variance dispersion graph (VDG) was one of the useful tools to validate the surface’s results.
VDG shows the value of minimum, maximum, and average of the scaled prediction variance (SPV)
versus the distance of the design point from the center point [50].

273



Appl. Sci. 2020, 10, 8959

Table 7. The summary of the response optimizer results of CCD and BBD.

Central Composite Design (CCD) Box-Behnken Design (BBD)

CSL (90%) CSL (95%) CSL (90%) CSL (95%)

T 3 3 3 3
Q 3428 3520 3603 3690
SS 1336 1354 1250 1250
TC 76,330 77,090 70,870 85,920

Note: calculated by the researchers.

 Worksheet: Worksheet 1

Figure 23. Variance dispersion graph for the CCD and BBD experiment.

According to the terms of the variance in Figure 23, the blue lines show the BBD experiment while
the green lines display the CCD experiment. Both of these designs almost had significant differences in
the total cost results with 2000 difference, which means, the distance of design point from the center
point, and the scaled prediction variance (SPV) shows the CCD design had better SPV (smallest values)
than the BBD design, therefore, CCD experiment can be considered as the best model in this paper.
On the other hand, based on the results of the response optimizer, BBD design gave the smallest total
cost. In other words, this paper provided useful insights for reference decision-makers in the related
industry. Based on the objective of the industry, the managers or policymakers can consider the possible
experimental designs that give the best performance toward the strategy of sustainable development.

6. Discussions and Conclusions

This paper proposed a computational framework for the order planning problem in a distributor.
In the proposed model, values of response variables were simulated and calculated, and Minitab was
used to determine the possible optimal setting for those responses using the central composite design
and Box–Behnken design. In the case study, a combination of the review period (T), order quantity (Q),
and safety stock (SS) was selected as independent variables of the model. Additionally, the total cost
of the holding cost, shortage cost, over-storage cost, and transportation cost, and customer service
level was selected as response variables. The objective of the paper was to minimize the total cost by
planning on placing the right order quantities, in the right periods, with the possible safety stock in
order to reach customer satisfaction around 90–95 percent using RSM.

For solving an order planning problem of Spectite CW100, the statistical result from the factorial
design shows that the curvature had a significant effect on the responses, therefore, two response
surface designs, central composite design, and Box–Behnken design, were considered afterward to find
the possible parameter settings. Based on the results in the response optimizer, the following values
for the response surface design were as follows:
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1. Central composite design (CCD), customer service level CSL was at 90%, the minimum total
cost was 76,330 with the possible optimal settings were the time period (T) = 3, order quantity
(Q) = 3428, safety stock (SS) = 1336; (2) customer service level CSL was at 95%, the minimum
total cost was 77,090 with the possible optimal settings were T = 3, Q = 3520, and SS = 1354.

2. Box–Behnken design (BBD), customer service level CSL was at 90%, the minimum total cost was
70,870 with the possible optimal settings were the time period (T) = 3, order quantity (Q) = 3603,
and safety stock (SS) = 1250; (2) customer service level CSL was at 95%, the minimum total cost
was 85,920 with the possible optimal settings were T = 3, Q = 3690, and SS = 1250.

According to the scaled prediction variance (SPV), the CCD design had better SPV (smallest values)
than the BBD design, therefore, the CCD experiment could be considered as the best model in this
paper. On the other hand, based on the results of the response optimizer, BBD design gave the smallest
total cost. When the CSL increased from 90% to 95%, the total cost also increased in both designs.
The proposed computational framework can be applied to other products of the distributor (Spectite WS,
Spectite HP600, and Speccoat PE145), or any ordering process in businesses within the supply chain.
In summary, our contributions include (1) the paper proposed a computational framework to solve the
order planning problem by a heuristics approach using RSM, (2) the model was tested with a case
study of a distributor to show the model’s effectiveness, and (3) The insights implication of the model’s
results was to provide a useful reference for purchasing managers or decision-makers to obtain the
most suitable order policy for a robust order planning process, which includes responses that were
considered in monetary values. Besides, this could be used as a guideline for other related industries.
However, there were some limitations to this paper. To get more robust solutions, future studies
should consider considerable data on the products and address this problem under stochastic demand,
lead time uncertainty, and unstable markets.
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Featured Application: This work considers a real-life problem posed by public institutions of

Colombia responsible for the design and implementation of food supply master plans. As such,

the results presented in this paper will likely have a direct impact in public policies that consider

both ends of a fresh food supply chain: Farmers in the countryside and end consumers at the

major demand centers.

Abstract: This paper investigates the problem of sustainable rural supply and urban distribution of
fresh food products in central Colombia. Paradoxically, while farmers in the countryside suffer from
poverty due to the low profitability of the agricultural activity, inhabitants at urban centers pay high
prices for fresh and nutritious foods. In this work, we propose a supply chain system and a business
model based on food hubs located on existing (and often abandoned) public facilities in the central
region of Colombia. There are many examples in which the hub strategy has facilitated trade and
logistics in supply chains. However, few studies consider the particularities of the presented case. We
study a business strategy through a mathematical model which considers both the sustainable and
efficient operation of the food hubs and better trading conditions for farmers. We propose a variant of
the competitive hub location problem adapted to this case study. We tested the model under different
scenarios such as changes in the attractiveness parameters, operation costs, and profit margins. The
results suggest that if hubs are able to attract farmers, the model can be both sustainable for the hub
concessionaires and for the farmers.

Keywords: competitive hub location problem; network design; food systems; rural development;
mathematical programming

1. Introduction

Modern supply chains must not only be cost efficient and guarantee quick responses
to their customers, but must also guarantee the alignment of the interests of its stakeholders
and the equitable distribution in costs and margins. The location of facilities is a strategic
decision that has a significant influence in supply chain performance that can create a
competitive advantage in commercial supply chains and improve coverage in public supply
chains. A good facility location strategy can also significantly decrease the transportation
and emission costs, and mitigate its environmental impact.

This research addresses a real problem of a fresh food supply chain in rural areas of
Central Colombia. This problem is currently under study by RAP-E-(Administrative Office
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for Special Regional Planning—in Spanish), a region-wide public institution responsible
for designing and implementing public policies for its food supply master plan. As such,
this paper not only fed its models with real data, but also received valuable inputs from
the senior RAP-E-management.

The fresh food supply chain studied in this paper is typical in emerging economies.
In general, a large number of fragmented and disperse farmers supply fresh products
to urban areas. These farmers rely heavily on intermediation that increases the prices
paid by the final customers and create handling problems and food losses [1]. In central
Colombia, this issue of intermediation has been long discussed, and several actions have
been devised by local and central governments to reduce or eliminate its impact [2]. The
most prominent was the construction of urban food hubs in Bogotá, the country capital [2].
This strategy was designed to directly connect farmers and shop owners with the support
of an information system. The main idea was that shop owners placed orders directly
to farmers through an Internet platform and a third-party logistics (3-PL) company were
responsible for the hub operation and for the transportation of the agricultural products
from the countryside to the city hubs. Important efforts were made by the mayor office of
Bogotá to create networks of both shop owners and farmers and to educate them in the
best commercialization and technology practices. Unfortunately, this strategy failed due to
several reasons that included lack of Internet connectivity and poor logistics and business
considerations [1]. No major 3-PL company participated in the concession bid, and the
farmers’ and shop owners’ networks disbanded after a few attempts. A recent research [1]
showed that the best strategy in terms of profits was intermediation.

More recently, the COVID 19 pandemic has seen a number of apps supported by
Industry 4.0 technologies (e.g., [3,4]) which link farmers directly with both store owners
and final consumers. As of today, these efforts have been modest at best and the vast
majority of products is still traded through middlemen. There are several reasons, as
pointed out in [5]: Middlemen play a significant role in this type of supply chain by
matching supply and demand and shortening transaction times [6]. They also have a
close relationship with farmers, as they, farmers, and middlemen, often live in the same
region and share traditions and culture [5,7]. This fragmented farming system is also very
inefficient in logistics and environmental terms: For example, an estimate of 12,000 trucks
arrive daily to Bogotá with fresh food products. Most of these trucks are small and old
10-ton vehicles that travel half-loaded from locations within a 200 Km radius [1,8].

A common strategy to mitigate intermediation and to help small and mid- size farm-
ers access larger markets is the development of regional food hubs. This strategy has
been implemented in both first world [9,10] and in emerging countries [11,12]. The U.S.
Department of Agriculture (USDA) defines a food hub as “a centrally located facility with
a business management structure facilitating the aggregation, storage, processing, distri-
bution, and/or marketing of locally/regionally produced food products” [13]. Hubs act
both as supply consolidators and distributors. As such, hubs can also facilitate access to
healthy foods to vulnerable populations by redirecting food flows to underserved areas
that could hardly be reached out to with direct links [11]. In Colombia, the CONPES
3982—National Policy of Logistics of January 2020 document, establishes as one of its
strategic pillars, the adoption of specialized logistics infrastructures—(ILEs in Spanish),
which can play a prominent role as articulators between cargo and transport modes and
providing value-added logistics services.

Food hub location problems have attracted researchers from different disciplines such
as operations research [9], economics [14,15], and social sciences [16]. This paper focuses
on the hub location problem adapted to the food systems in the central region of Colombia.
Accordingly, we propose the following research questions:

• RQ1: “How rural food hubs in emerging economies can become a sustainable strategy
to improve farmer’s access to urban markets?”

• RQ2: “Where should a network of food hubs be located with the goal of both maxi-
mizing farmer coverage and minimize logistics costs?”
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• RQ3: “How the transportation and emissions costs are impacted by the hub strategy?”

This paper addresses the above three questions. The main contributions of this work
can be summarized as follows:

• A new mathematical model of competitive hub locations that incorporates constraints
specific of the situation of farmers in emerging countries with provisions for a sustain-
able operation.

• A combination of heuristics with the mathematical model aimed at solving realistic
size problems.

• An extensive analysis of scenarios with recommendations that can be used for
public policies.

2. Context

The central region of Colombia encompasses 5 administrative departments: Boyacá,
Cundinamarca, Meta, Tolima, and Huila, and the Bogotá Capital District as a special admin-
istrative unit. Table 1 shows the composition according to population (according to figures
from the most recent population census in 2018, Colombia has over 48 M habitants [17]):

Table 1. The central region in figures.

Department Population % Colombia % Region

Bogotá D.C 7,181,469 14.9 50.3
Boyacá 1,135,698 2.4 8.0

Cundinamarca 2,792,877 5.8 19.6
Meta 919,129 1.9 6.4

Tolima 1,228,763 2.5 8.6
Huila 1,009,548 2.1 7.1
Totals 14,267,484 29.6% 100%

Figure 1 illustrates the population distribution according to the areas of the region
and provides recent figures of the agricultural production. Bogotá is the most densely
populated municipality, with more than 200,000 habitants per square kilometer, followed
by Cundinamarca with between 100.1 to 200 inhabitants per square kilometer, and, Boyacá,
Meta, Tolima, and Huila with between 50.1 to 100 inhabitants per square kilometer.

The population of the Central Region of Colombia is estimated in approximately
2.1 million inhabitants (14% of the country), of which 75% are rural. The region concentrates
26% of the agricultural production of the country (agriculture, livestock, hunting, forestry,
and fishing).

The central region has a wide variety of climates. The Andes cordillera that runs
south-north splits the central region in three sub-regions: The hot and humid valleys in the
west, the mountainous area in the central part, and the semi-arid plains in the east. The
mountainous region itself presents a wide variety of ecosystems: Dense cloud forests, high
plains, and semi-deserts to name a few.

Table 2. Hectares cultivated and production of the main products of the Central Region.

Department Production (Ha) % Colombia

Rice 185,688 15.9%
Corn 167,086 22.0%

Potato 121,632 4.4%
Sugar cane 66,074 16.1%

Plantain 52,025 9.0%

These climates create an excellent environment for agricultural activities. The cen-
tral region of Colombia, in terms of the agricultural economic activity, contributes with
approximately 30% to the GDP of Colombia. This contribution has remained relatively
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constant in the last 15 years. The central region produces 26% of Colombia’s food. The
main agricultural food products are potato, plantain, rice, sugar cane, and corn. Table 2
shows the total hectares planted and the agricultural production in tons in the central
region. This information was compiled from [18].

  

(a) (b) 

Figure 1. Characterization of the Central Region in terms of (a) population size and (b) production quantities of all five
agricultural chains considered in this paper.

According to data from the latest available National Logistics Survey (2018) [19], the
operating and logistics costs of the agricultural industry in Colombia account for 12.8% of
the final price (below the national average which is 13.5%), where the main components
of such operation costs are storage (35.9%), transportation (33.3%), overhead (27.7%), and
customer service and other costs (3.1%).

A factor that contributes to the reduction of storage costs is to improve inventory
turnover (in days), according to the same survey [19]. The agricultural industry reports
11.8 days of inventory in raw materials and agricultural supplies and 24.4 days in finished
product, while supply days are 20.5, and in distribution, 16.7. Likewise, in terms of
transportation costs, reducing the traveled distance can clearly contribute to the reduction
of operating costs. In the Colombian agricultural industry, trucks and other cargo vehicles
average 2744 km/month on intercity journeys and 2066 km/month on urban journeys. In
relation to the quality of deliveries (deliveries on time, error-free documentation, and so
forth), for the agricultural industry the performance rate is around 79.8%, which can be
considered very low [19]. The main reported problems were damage to the goods (food
loss), transport delays and customer-related delivery problems [19].

The above figures show that a food hub strategy specialized in the supply, storage,
and distribution of agricultural products in the central region of Colombia, can be an
opportunity to reduce (i) the number of intervening actors, (ii) the days of inventory, and
(iii) the traveled distance.

3. Literature Review

In this section, we explore the mathematical foundations of hub location problems.
This is a particular case of the facility location problem (FLP) that consists of both es-
tablishing the location of one or more facilities and the assignment of customers to such
facilities [20]. Most problems studied in the literature derive from the classical p-medians,
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fixed charge and set covering problems [20]. The p-medians consist of establishing the
location of exactly p facilities among a set of n > p possible sites with the objective of
minimizing the total weighted distance. The fixed charge cost is a natural extension of
the p-medians in which the number of facilities is a decision variable itself. In this model,
in addition to transportation costs, there are fixed charge costs associated with the open-
ing/operation of the facilities. The set covering problem (SCP) differs from the above two
in the sense that the objective is minimizing the number of facilities subject to the constraint
that all customers must be served [21]. Facilities can only serve customers located within
a predefined radius of influence (i.e., customers are covered). A different approach to
coverage are the Huff’s gravity [22] and the logistics regression (logit) [23] models. These
models, instead of having the sharp coverage distinction of the SCP (i.e., covered or not),
establish the probability that a customer patronizes a facility. This probability is related
to some measure of attractiveness of the facility. The first papers considered only retail
stores [22]. Later models included other services [24].

There are many variants of the FLP and it is not the purpose of this paper to cover
them all. For a complete review, please see [25,26]. An extension of the FLP used in this
paper is the competitive facility location problem in which the decision maker does not
have control on the choices of the customers, but rather has estimations of their shopping
behavior [27–29]. In general, these choices are modeled through either the Huff or the logit
formulas. Most papers consider Mixed Integer Linear Programming (MILP) formulations
and use either standard MILP solvers [30] or decomposition algorithms [31,32]. Other
approaches use metaheuristics algorithms [33–35].

Facility location models are also common for fresh food and agriculture supply chain
design [36,37]: This topic of has attracted many researchers that have addressed multiple
problems [38,39]. Some examples related to emerging countries are: Villegas et al. [12]
proposed a bi-level algorithm for the location of purchasing centers in the coffee belt
region of Colombia. The two objectives considered were the cost minimization and the
coverage maximization. Amorim et al. [40] presented a MILP model for supply chain
design with JIT planning and scheduling with perishability constraints. Orjuela-Castro [8]
proposed a MILP model for the location of fruit processing centers in the central region
of Colombia. This model included humidity and temperature related constraints of the
potential sites. Suraraksa and Shin [41] introduced a MILP model for the network design of
urban distribution centers of fruits and vegetables in Bankok (Thailand). They investigated
not only location, but also vehicle routing extensions. Later, Granillo [42] presented a
real-life application model for the location of a catering distribution problem in urban
schools in Mexico considering waiting times. In most of these papers, the objective function
was the cost minimization including fixed, transportation, and other costs related to quality,
and/or delivery. Several extensions in food supply chain combine facility location with
combinatorial another problem: Examples are the location and routing [43,44] and the
inventory location [45] problems.

A special case is the hub location problem: In this problem, entities travel between
predefined origin and destination (OD) nodes. These entities can either travel directly
between OD nodes or through a hub. These hubs may facilitate the flow of entities, and
reduce transportation costs due to economies of scale [9]. Clearly, the hub location is not
restricted to supply chains. Many applications exist in the telecommunication, airline,
and urban transportation sectors [46,47]. The hub location involves several decisions: (1)
Selecting a subset of hubs among a set of candidate locations, (2) determining inflows
and outflows at the selected hubs, and (3) determine the transportation modes. A variant,
closely related to this research, is the competitive hub location problem [24,46,48]. In
the competitive hub location problem, a company intends to establish new hubs where
there are already other competitors including the company’s own hubs. The objective is
generally to maximize profit, which involves two terms: (1) The company’s revenue, which
is proportional to the attracted demand, and (2) fixed and variable costs [46].
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The mathematical problem of perishable food hubs has been little studied: Among
the few works, Etemadnia et al. [9] proposed a MILP formulation for regional food hubs
in the United States, which is solved in two phases with a linear relaxation in the first
phase to filter our non-promising nodes and a second phase that included integer and
binary variables. Later, Musavi et al. [49] presented a multi-objective perishable food hub
location and scheduling problem for sustainable supply chains. Finally, Gharehyakheh
et al. [50] presented a multi-objective formulation for the case of distribution of perishable
foods considering emissions and shelf life. The last two references use Multi Objective
Evolutionary Algorithms (MOEAs).

Most works on food hub and food supply chains consider decisions based on cen-
tralized control of all links: Suppliers, hubs, and retailers [44,49–51]. This is not realistic
in the studied case: First, farmers in central Colombia have choices to sell and distribute
their products. Second, in the literature of supply chains, the demand must be fully or
partially satisfied [49,52]. In this paper, we assume that the hub management makes de-
cisions as to where to deliver the products based on some parameter of attractiveness of
the trading point (i.e., the city wholesaler) as in [26,27,46] Normally, this decision has to
do with several factors such as familiarity with the trading point, or with the probability
of finding customers. We make the reasonable assumption that the demand of each city
is far larger than the quantities that the hubs can deliver. After all, these regional hubs in
the central region of Colombia are facilities located in small-to-medium size towns with
limited capacity (the largest with around 600 tons) and for instance, the total demand of
the country capital Bogotá alone is over 40,000 tons per day.

In the problem studied in this paper, we have a combination of centralized and
decentralized decisions. The purchasing center has control on the operation of the facilities
and of the distribution to the cities (i.e., outbound logistics); however, since farmers are
not contractually bound by the food hubs, one goal is to attract farmers and therefore the
agricultural production in the most profitable and sustainable way. As such, farmers are
customers of the food supply chain system and therefore a portion of their yield is expected
to be captured by the food hubs.

Our work has both obvious similarities and important differences with the competitive
hub location problem: On the similarities side, farmers may choose to travel to the food
hubs or sell their products directly to middlemen, wholesalers, or to final customers as
in [1,6]. The decision will be made based again on some measure of attractiveness [7]. The
objective function (maximizing profit) presented in this paper is consistent with those of
the hub facility location literature (e.g., [27,46,53]). In terms of differences, the proposed
food hub model is more than a consolidation and storage facility where the product arrives
and then it is re-distributed. In our proposal, the hub company would also purchase the
product directly to the farmers (as suggested in [2]). Many successful cases in emerging
countries use this business model (e.g., [11,12] to name a few) because of culture and
traditions of the social network. Second, there is not a predefined destination for the fresh
food products as this is a management decision as explained above. Finally, in our model,
farmers do not bear the cost of traveling from the hub to the cities. This cost is borne by the
hub concessionaire.

4. Materials and Methods

The problem studied in this paper can be summarized as follows: Given a set of
famers, a set of candidate hub locations, and a set of customers (represented as cities or
towns), locate the best subset of hubs in order to maximize profits. On one hand, the hubs’
location must be attractive to farmers (i.e., close to them) and on the other hand, these
hubs should also be located close to the demand points to reduce transportation costs.
Attracting farmers also has the benefit of economies of scale on transportation and on fixed
operation costs.
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4.1. Data Preparation

In this section we provide the details of the proposed mathematical model. We study
the five largest agricultural chains defined by RAP-E-. In this context, an agricultural chain
is defined as a set of agricultural food products which share some special characteristics
such as temperature requirements during handling/transportation and packing. As a
result, products of the same agricultural chain can be transported in the same vehicle.
Appendix A shows the description of the agricultural chains.

Table 3 shows the data used in the models and their sources. A description fol-
lows next:

Figure 2 shows the location of the 30 selected potential hub locations in the central region.

Table 3. Data collection for modeling the problem.

Entity Data Source

Farmers

Annual yield of 54 agricultural products grouped
in 5 agricultural chains

Approximate geographical location 1

Distances to logistics hubs

RAP-E-

Demand points
Annual intake of fresh foods per person-day

Geographical location
Population

RAP-E-, DANE [17]

Logistics operators

Capacity in tons
Monthly cost of operation/opening

Geographical location
Distances to farmers/demand points

Cost of transportation (fixed & variable)
Emissions

RAP-E-
Ministry of Transportation [54]
Ministry of Environment [55]

Corabastos (bulletin of prices) [56]

1 Georeferenced location and area of the production zones.

 

Figure 2. Location of 30 potential hubs within the central region’s area of Colombia.
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4.2. Model Formulation

We developed a model based on the Hub Location Competitive model formulated
in [46]. Our model considers that farmers can choose a buyer not only among available
hubs’ potential locations, but among the demand points to sell their products. In this paper,
the probability of a farmer choosing the products’ destination is given by the Huffs gravity
model that involves population size and distance as the main factors. The original Huff’s
formula establishes the probability that a customer selects a market. In this context, we
made the reasonable assumptions that the main criteria for market selection are size (i.e.,
the probability of finding buyers is greater) and distance (i.e., the greater the distance, the
more costly and the less familiarity with the market).

As such, and according to the Huff’s formula, the probability yij′ that a seller i select a
market j′ is given by Equation (1):

yij′ =

wδ
j′

dγ

ij′

∑j∈J
wδ

j

dγ
ij

∀h ∈ H; j ∈ J (1)

where dij′ is the distance between seller i and market j′, wj′ is the size of market j′ and γ
and δ are exponents greater or equal to 0 to be determined.

In addition, we used this choice model to determine the quantities to be delivered by
a hub to its potential customers. The same rationale can be applied to the hub management
when choosing markets to sell their products. It means we use a double selection, one
in each echelon of the supply chain. We regarded a set of production points (farmers’
locations) i ∈ I that have to choose between sending directly to a demand point j ∈ J or
use an available intermediary (set of hubs) h ∈ H. The selection is made with a probability
yih that depends on the distance between the farmer and the hub d′ih or the demand point
d̂ij and the population size of hub municipality ŵh or demand point city w′

j. Both factors,
distance and population, define corresponding sensitivity exponents γ and δ, respectively.
With the probability variable yih, we defined the quantities of each product k ∈ K to send to
each available open hub. The other important aspect that we considered in this model is the
selection of transportation vehicles. In the central Colombian case, agricultural products
are transported in mainly three types of trucks: Trailer trucks (32 ton), 2-axle (16 ton) trucks,
and “turbo” trucks (smaller 4.5 ton) trucks. According to the information of the Ministry
of Transportation [57], most trucks travel around 50% loaded. For this reason, we set a
minimum occupancy of 50% for the larger trucks in our model. Tables 4 and 5 show the
definition of sets, parameters, and variables.

The objective function is to maximize the hubs’ net profit considering a gross profit
margink for each product, fixed costs of operating a hub ch, fixed ĉv and variable cv costs of
transportation, and emission costs of carbon dioxide c′v. The costs of transportation and
emissions are associated with each type of vehicle v ∈ V. Equation (2) corresponds to the
objective function formulation.

Max ∑
k∈K

∑
h∈H

∑
j∈J

∑
v∈V

marginks′khjv − ( ∑
h∈H

chxh + ∑
l∈L

∑
h∈H

∑
j∈J

∑
v∈V

ĉvtruckvhjl+ ∑
k∈K

∑
h∈H

∑
j∈J

∑
v∈V

cvdhjs′khjv

+ ∑
l∈L

∑
h∈H

∑
j∈J

∑
v∈V

c′vevdhjtruckvhjl)
(2)

The constraints are defined as follows. Constraint set Equation (3) determines a
farmer’s probability to select a hub or a demand point according to the Huff’s gravity
model. Constraint set Equation (4) establishes the quantities of product k delivered by
farmer i to hub h. Constraint set Equation (5) corresponds to the balance of quantities of
product k traded by farmer i. Constraints set Equation (6) is the hub capacity constraint.
Constraint set Equation (7) guarantees that the quantities delivered from hubs to the
demand point are not greater than the quantities received by the hub. Constraint sets
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Equations (8) and (9) ensure the minimum and maximum occupancy levels per vehicle type.
Constraint set Equation (10) determines the quantities sent from hub h to each demand
point j according to the gravity model’s probability. Constraint sets Equations (11) and (12)
refer to the non-negativity and binary constraints of the decision variables.

Table 4. Definition of indices and parameters.

Sets

I Farmers’ locations.
H Potential location of hubs.
J Demand points’ locations.
K Products.
L Agricultural chains’ classification.
V Type of vehicle.

Parameters

ch Operation fixed cost of hub h.
qh Capacity of hub h.
margink Unit profit margin of product k.
ĉv Operation fixed cost for each vehicle type v.
cv Variable cost per kilometer and ton of each vehicle type v.
ev Average carbon dioxide emission in tons per kilometer for vehicle v.
c′

v Unit cost of carbon dioxide emission per kilometer by vehicle v.
q′

v Capacity of vehicle v.
minv Minimum occupancy of vehicle v (%).
ŵh Population of hubs’ location h.
w′

j Population of demand point j.
d′ih Distance between farmer i and hub h.
d̂ij Distance between farmer i and demand point j.
dhj Distance between hub h and demand point j.
oki Weekly quantities of product k by sold by farmer i.
akl Binary parameter that establishes if product k belongs to agricultural chain l.
γ Sensitivity exponent for the distance between farmers and hubs.
γ̂ Sensitivity exponent for the distance between hubs and cities.
δ Sensitivity exponent for population factor.
phj Probability of hub h of selecting demand point j.

Table 5. Definition of decision variables.

Decision Variables

xh Binary variable if hub location h is open
ŝki Weekly quantities (tons) of product k sent from farmer i to demand points
yih Probability of farmer i of choosing to go to hub h
skih Weekly quantities (tons) of product k sent from farmer i to hub h
s′khjv Weekly quantities (tons) of product k sent from hub h to demand point j in vehicle v
truckvhjl Number of vehicles v with products of agricultural chain l sent from hub h to demand point j

yih =

ŵδ
h

d′γih
xh

∑h′∈H
ŵδ

h′
d′γ

ih′
xh′ + ∑j∈J

w′δ
j

d̂γ
ij

∀i ∈ I; h ∈ H (3)

okiyih = skih ∀k ∈ K; i ∈ I; h ∈ H (4)

∑
h∈H

skih + ŝki = oki ∀i ∈ I; k ∈ K (5)

∑
k∈K

∑
i∈I

skih ≤ qhxh ∀h ∈ H (6)

∑
i∈I

skih ≥ ∑
j∈J

∑
v∈V

s′khjv ∀k ∈ K; h ∈ H (7)
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∑
k∈K

akls
′
khjv ≤ q′

vtruckvhjl ∀v ∈ V; h ∈ H; l ∈ L; j ∈ J (8)

∑
k∈K

akls
′
khjv ≥ q′

v

(
truckvhjl − (1 + minv)

)
∀v ∈ V; h ∈ H; l ∈ L; j ∈ J (9)

∑
v∈V

s′khjv ≤ phj ∑
i∈I

skih ∀k ∈ K; h ∈ H; j ∈ J (10)

xh ∈ {0, 1} ∀h ∈ H (11)

truckvhjl , ŝki, yih, skih, s′khjv ≥ 0 ∀v ∈ V; h ∈ H; l ∈ L; j ∈ J; k ∈ K (12)

As Equation (3) is not linear, we adapted the linear reformulation proposed in [23]
for multinomial logit choice probabilities to the gravity model. In this work, we set the
parameter ϕih shown in Equation (13).

ϕih =

ŵδ
h

d′γih

∑j∈J
w′δ

j

d̂γ
ij

∀i ∈ I; h ∈ H (13)

The above linear reformulation introduces a non-negative variable yi, which is the
accumulative choice probability of farmer i ∈ I. This reformulation adds the constraints
sets defined in Equations (14)–(16) to our model, and replaces Equation (3).

yi + ∑
h∈H

yih ≤ 1 ∀i ∈ I (14)

yih − ϕihxh
1 + ϕih

≤ 0 ∀i ∈ I; h ∈ H (15)

yih − ϕihyi ≤ 0 ∀i ∈ I; h ∈ H (16)

Notice that the value of the parameter p̂hj for a given hub is independent of the other
open hubs since hubs are not competing among each other to supply cities.

5. Results

5.1. Description of Computer Tests

This section presents the experimental results of our tests. We coded our model in
GAMS™ and ran the experiments using the CPLEX ™ solver on a computer with an Intel®

Core ™ i7-6500U chipset, 8 Mb RAM memory, and 2.5 GHz microprocessor. Due to the
huge size of the model (98 hub locations, 54 products, 342 farming locations, 5 chains, and
3 truck types), the model could not run in a reasonable time (after 5 h, no feasible solution
was provided). Therefore, we implemented the classical “add” and “drop” heuristics for
facility location [25], and according to the results, we short-listed the number of potential
candidate hubs to 30 locations. First, we dropped those facilities that were not suitable
for fresh food trading (e.g., slaughtering houses, or very small facilities). Next, we ran
24 instances with combinations of values of δ, γ and fixed costs and filtered out those
locations that were never open or that handled minimum quantities. We also kept those
facilities that were always present in the solution open. The selected market cities were
(i) those with over 500,000 inhabitants for cities outside the central region, and (ii) the
provincial capitals of the central region regardless of their population. A similar approach
to handle real-life models was proposed in [9]. Figure 3 shows the location of the selected
market cities. Still, the number of possible combinations was large, but could be handled
in a reasonable time. We set a time limit of 3600 s for each run.
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Figure 3. Selected demand cities for distributing the agricultural supply of the three agricultural chains.

The parameter calibration consisted of determining the values of the exponents of the
gravity model. The RAP-E-officers estimated that 65% of the total fresh agricultural food
supply is commercialized outside the central region. With this in mind, we ran the model
in the situation of no open hubs, with all production traded through middlemen located
at the production sites. As a result, we set the values of δ (population exponent) and γ̂
(exponent of distance from hubs to cities) to 1.25 and 0.1, respectively.

Preliminary tests showed that the factor that affected most of the decisions and, hence
the profitability of the model, was the ability to capture “market share” from farmers. Since,
at the present pandemic time, it was not possible to conduct surveys to farmers to have
accurate information about their choices, we varied the exponent γ in the Huff formula
of Equation (3). We did some preliminary validations with officers of RAP-E- in which
essentially, they told us that the majority of farmers would not travel long distances to
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sell their products, and most likely they would only trade at the nearest town. We also
corroborated the exponent values with those proposed in [58]. In the experiments, we
varied this exponent and observed its effects on the objective function. The other uncertain
parameter is the fixed operation hub costs. As said above, we established this value based
on estimates made for the Food Security and Supply Master Plan of Bogotá (PMASAB
in Spanish). However, as these estimates may change, we varied the original estimates
in ±20%.

We carried out a sensitivity analysis in which we varied the hub capacities and the
gross profit margins. Although, the RAP-E- officers said that there were no plans for new
infrastructure, the increase in capacity can be seen as adding days of operation. In this
case, the fixed operation costs were adjusted in the same proportion. We did not vary the
transportation costs for the following reasons: First, the sources we used were reliable,
and second, the major components of such costs are unlikely to vary: Salaries, taxes, and
insurance in the term of fixed transportation cost and gas and tolls in the term of variable
transportation cost. Last, we varied the gross margins, and the original figures were
reduced in 10%, 25%, and 50%. The idea is that reduced margins for hubs may eventually
result in better prices paid to the farmers. Table 6 shows the parameter values used in
the experiments.

Table 6. Combination of parameter values. The letter x is referred to the initial value of the parameter to vary.

Parameter Values

γ (distance exponent (farmers to hubs) 0.1, 0.5, 1.0, 2.0, 3.0
f ixed_cost_ f actor Changes in fixed operation costs: 0.8×, 1.0×, 1.2×

hub_capacity_ f actor Increase in hub capacity: 1.5×, 2×, 3× *

* denotes 3 times the current capacity of all hubs.

In this paper, we assume that farmers are paid the same at both hubs and demand
points, and therefore, the attractiveness of a hub/demand point does not depend on prices.
This assumption may not be true in most cases, but that will create a different decision
problem that will (i) add too much complexity to our model, and (ii) be very difficult to
calibrate due to reliable information. In the experiments in which we varied gross margin
values, the purpose was to investigate how the profitability of the hub can be transferred to
the farmers. The topic of price related attractiveness will be the subject of future research.

5.2. Baseline Scenario

We performed several preliminary tests, we set all the exponents of the Huff formula
with values close to 0.0. In this case, no hubs were open in the optimal solution. This
implies that hubs would not be able to attract farmers and that the business would not be
profitable. We propose a baseline scenario which, based on our validations with the RAP-E-
officers, is the most likely to occur. In this scenario, we considered a distance exponent γ of
2.0 and 0% of variation in hubs’ costs.

Figure 4 shows the hub locations and their links with the farmers in this baseline. The
solid lines are links that account for more than two (2) weekly tons of delivered products.

Figure 5a shows the geographical location of the 23 open hubs and the total tons
supplied in the baseline scenario. We can observe that the larger supplied quantities are
concentrated to the west of the central region where more and larger hubs are open. In this
part of the central region, most hubs operate at full capacity. This area concentrates the
larger portion of total agricultural production (see Figure 1b). Additionally, the population
of the cities in this area, indicated in Figure 1a, and of its neighbors make the area attractive
for the food hub business. The largest open hubs are located in the provincial capital cities
of Villavicencio (east in the Meta department) and Ibagué (west in the Tolima department)
and in the mid-size city of Duitama (Boyacá, north). The first two hubs would be supplied
by the rich agricultural regions of the neighbor lowlands whereas the Duitama hub would
be supplied by many small farmers of the Andean northern region. The other larger open
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hubs would be located around the high plain areas of Cundinamarca, the valleys of Huila
in the south, and the fertile valleys of the Magdalena river in Tolima.

 

Figure 4. Supply-to-hubs main links.

The participation of the agricultural chains at each hub is shown in Figure 5b. We
observe that these results are consistent with the agricultural vocation of each area of the
region: Hot and humid flat areas of the western and eastern part of the central region are
ideal for rice and other grains, whereas potato, some fruits, and vegetables are mostly
cultivated in the mountainous areas of the central region.

We also analyze the quantities delivered to the main cities. Figure 6a shows the
quantities from hub-to-demand. As expected, the city that receives the largest quantities is
Bogotá, the country capital (about 2800 weekly tons). Considering the hubs in the western
part of the central region, we can observe that the proximity to Bogotá clearly facilitates
the business activity. Bogotá is by far the largest urban center of the country that also
hosts the largest wholesaler (Corabastos) in which, as of today, over 12,000 tons of food
are traded daily [1]. Following Bogotá, the other two larger demand points are Medellín
(northwest of the region in the Antioquia department) and Cali (west of the region in the
Valle del Cauca department). These two cities receive around 400 weekly tons. These cities
are out of the Central Region, but their size, population, and proximity with several hubs
near the borders of the central region, are a reason for their business. The other smaller
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cities (Ibagué, Neiva, Villavicencio, Tunja, Cartagena, and Barranquilla) commercialize
between 5 and 65 weekly tons. Although, the area around Ibagué in Tolima (west) is a
large producer of foods, a large portion of them is delivered to other big cities. In general,
Figure 6b indicates that the most traded products are grains, fruits and vegetables (F&V),
and “other products”. Potato and plantain chains are smaller chains because they only
contain two or three products. Notice that production quantities of these two chains are
virtually not delivered to the northern cities of Cartagena and Barranquilla (circles in the
upper part of Figure 6b). The cost and profits analysis follows next.

  
(a) (b) 

Figure 5. (a) Total tons of food supplied to the food hubs. (b) Participation of the agricultural chains in the baseline scenario.

  
(a) (b) 

Figure 6. (a) Total tons delivered to each point of demand. (b) Distribution of delivered products by supply chains.
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We also compare the baseline in relation of the current situation of no hubs in which
products are delivered directly to the cities. We can observe that all transportation and
emission costs decrease with the hubs’ network. This is achieved mainly due to reductions
in the vehicles’ operation fixed costs and emissions’ costs (up to 95% reduction). This
cost savings can be explained as fewer vehicles are required when cargo is consolidated
at the hubs. In the scenario of no hubs, the number of vehicles used is approximately
8000 per week, considering that each farmer (or middlemen) travels to the cities in small
trucks. With the hubs’ network, the number of vehicles required to transport food is
around 800, which represents a 90% reduction. The additional benefit is that fewer vehicles
also reduce the total emissions of CO2, improving the carbon print. Figure 7 presents
this comparison.
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Figure 7. Transportation costs’ variation in the baseline scenario with and without hubs.

5.3. Variation in the Exponent γ and in Hubs’ Costs

Table 7 shows the results of scenarios presented in Table 6. Analyzing the results,
we can observe that with low values of the sensitivity distance exponent γ, fewer hubs
are open as smaller quantities are delivered from farmers to hubs; the opposite is true for
larger values of γ. The differences are important: For γ = 0.1 (low distance attractiveness),
the number of open hubs ranged between 12 and 16, whereas for γ = 3.0, the number of
hubs ranged between 24 and 25.

Figure 8 illustrates the effects on the gross profit and the total cost of these parameter
combinations. We can notice that the variation in hubs’ costs represents a less significant
change in the number of open hubs and on the traded quantities in comparison with
changes in the exponent γ. This behavior corroborates the results shown in Table 7. With
values of γ less between 0.0 and 1.0, the variations are small; however, if the exponent γ
is greater than 1.0, the gross profits rise steeply. On the other hand, Figure 8 also shows
that net profit in all cases is greater than 0. This means that the hubs’ network might be a
cost-effective business for concessionaires.
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Table 7. Summary of the results in 14 scenarios with variation on the baseline scenario.

Scenario γ
Hub Fixed Costs

Variation

Average Quantities
Handled by Hubs

(Tons)

Total Quantities
(Weekly Tons)

Number of Hubs Net Profit

Baseline 2.0 0% 77 8866 23 951
1 0.1 −20% 58 4601 16 413
2 0.1 0% 60 4486 15 413
3 0.1 +20% 69 4157 12 372
4 0.5 −20% 54 4866 18 440
5 0.5 0% 58 4661 16 435
6 0.5 +20% 67 4328 13 389
7 1 −20% 54 5446 20 512
8 1 0% 58 5237 18 506
9 1 +20% 65 4519 14 379
10 2 −20% 77 8866 23 982
11 2 +20% 79 8695 22 895
12 3 −20% 84 10,100 24 1293
13 3 0% 81 10,089 25 1201
14 3 +20% 81 10,089 24 1204

Figure 8. Gross profits and total costs with changes on the exponent γ and hubs’ costs ±20% (the number at the right in the
conventions represents this last variation).

For the purpose of comparison, we selected a scenario with low sensitivity to distance
(γ) = 0.5 and 0% fixed cost variation. This is scenario 5 of Table 7. The results are illustrated
in Figure 9a. The solution shows that 16 hubs are open, and that the pattern of hub locations
is similar to the baseline scenario. However, in most cases, the traded quantities are smaller,
as fewer farmers are attracted in this scenario. Only in the case of the Duitama hub (the
large circle in the Boyacá department), the quantities handled are similar in comparison
with the baseline. The explanation is that the strategic location and the lack of competitors
of this hub make it the only trading option in this region for the small and medium size
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farmers of northern Boyacá. In the department of Huila in this scenario, only two (as
opposed to five in the baseline) hubs are open, and the corresponding trading quantities
are smaller.

  

(a) (b) 

Figure 9. Representation of supply-to-hub quantities in scenario 5 shown in Table 7. Figure (a) shows the total sent tons,
and (b) shows the classification of those delivered tons in the five food supply chains.

5.4. Results of Capacity Variations

This section shows the results of the experiments with the variation in hubs’ capacity
in comparison with the baseline scenario. Table 8 shows these results.

Table 8. Summary of results of hubs’ capacity variations. The weekly gross profit, total costs, and net profit are presented in
thousands of USD. The letter × represents the capacity’s initial value.

Increase in
Hubs’ Capacity Gross Profit

Transportation
Costs

Emission
Costs

Fixed Hubs’
Operation

Costs
Net Profit No Hubs

Total Handled
Quantities (tons)

Baseline 1× 1310 198 16 146 950 23 8866
1.5× 1617 232 17 206 1162 21 11,095
2× 1884 265 19 274 1326 21 13,255
3× 2244 313 21 412 1498 21 16,488

As expected, the greater the capacity, the greater the quantities are traded, and the
greater the net profits are. In the three new scenarios, the number of open hubs is 21.
The trend, however, is of diminishing returns. Doubling the capacity in relation to the
baseline produces a net profit of USD 1,162,000 (39% increase) whereas tripling the capacity
produces a net profit of USD 1,498,000 (57% increase). In terms of quantities, the relation
with the capacity increments is approximately linear: An addition of one percentage point
in capacity represents an increase of approximately 37 handled tons. The fixed operation
costs also increase in a linear fashion in relation to the baseline. An increment of one
percentage point in capacity represents on average an increase of around USD 1360 in
fixed costs.

We can also observe that the transportation costs also increase compared to the baseline
as hubs handle larger quantities of products, which in turn require more trucks. However,
the transportation costs do not increase that steeply: For example, tripling the hubs’ capacity
results in an increase of 58% in the transportation cost. This implies that the greater the
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hubs’ capacity, the better use the vehicles’ capacity. In terms of emission costs, there is a
moderate increase. For example, tripling the hub’s capacity increases the emission costs
in 23%.

5.5. Results of Margin Variations

The last proposed experiment is the variations in the gross profit margin. As said
above, this business is meant not only to be profitable, but also to help farmers to obtain
better prices. Thus, a reduction in the hubs’ margin can be translated to the farmers as
in [11]. Table 9 illustrates these results.

Table 9. Summary of margin variations’ results. The gross profit, total costs, and net profit are presented in thousands of
USD per week. The letter × represents the margin’s initial value.

Variation in Margin
of Gross Profit

Gross
Profit

Transport
Costs

Emission
Costs

Fixed Operation
Costs

Net Profit No Hubs
Total Handled

Quantities (Tons)

Baseline 1× 1310 198 16 146 950 23 8866
0.9× 1147 187 15 134 812 21 8405
0.75× 941 174 13 134 621 21 8405
0.5× 593 138 9 131 315 20 8345

We observe that with the reduction in the gross margins, the number of hubs reduces as
well. Likewise, the delivered quantities are smaller. The net profit also reduces accordingly.
However, analyzing the net profit, even with a 50% gross margin reduction, the profits can
be still attractive for concessionaires.

The model shows that a reduction in margins has a moderate impact on the overall
logistics operation: Although fewer hubs are open, the reduction in the number of hubs is
not significant (23 in the baseline vs. 20 in the 0.5× scenario and a reduction of approxi-
mately 500 tons per week or 166 tons/hub-week). A similar analysis can be performed for
the transport costs, emissions, and fixed operation costs of the hubs. The greatest impact
is on profits: Reducing the margins in 50%, the profits would decrease in around 66%
(950,000 vs. 315,000). This situation may be extreme, but shows the potential savings that
can be achieved at both ends of the supply chain (farmers and end costumers).

6. Conclusions

The results illustrate many interesting things: First and most noteworthy is that
the hub strategy can be a profitable activity if the hubs are put into operation. In the
experiments, we varied everything that could reasonably be changed, and even in scenarios
with low attractiveness (low quantities handled by the hubs) and low margins, the business
was still profitable. For example, in the baseline, the estimate weekly net profit is USD
951,000 which corresponds to an average weekly net profit of around USD 40,000 per hub.
The total costs in this baseline scenario, calculated from Figure 5, are USD 360,000. In this
case, the weekly net profits are almost three times the total costs. In the extreme case of
the lowest value of sensitivity to distance (γ) and the highest fixed costs, the weekly net
profit is USD 372,000 and an average weekly net profit of around USD 31,000 per hub.
In terms of factors that affect the profitability, the sensitivity exponent appears to be the
most important as illustrated in Figure 8. For instance, keeping the fixed costs variation
constant at 0%, we can observe that the weekly net profits ranged from USD 413,000 to
USD 1,201,000 (almost three times). It can also be noticed, in the same figure, that varying
the fixed costs produced nearly no variations in the gross profits.

Second, as said above, there were scenarios in which the optimal solution resulted in
zero (0) open hubs. These were scenarios in which hubs failed to attract farmers (low values
of γ and δ). This implies that the private (hub concessionaires) and the public institutions
(e.g., RAP-E-) have the challenging task of promoting the usage of the hubs (i.e., increase
the values of γ). This can be done through education and better trading conditions for
farmers. This is not easy for people who have been isolated for years and are reluctant to
change their culture and traditions. In our point of view, major attractors would be offering
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(i) better margins in comparison with those of the middlemen, (ii) technical assistance
and farm inputs, and (iii) on-the-spot cash payments. The E-choupal initiative [11] is an
example of success in the transformation of rural India with these three ideas.

Third, increasing the capacity of the hubs does increase the net profits, but there can
be limitations. Although the fixed costs and transportation costs also increase, the larger
quantities that these hubs can handle result in greater profits as presented in Section 5.
The question is if the hubs’ concessionaires can increase their operation capability. As
said above, increasing the capacity can be seen as adding days of operation, which seems
plausible. A potential limitation for the extended operation is the availability of trucks. For
example, a given truck cannot be used on a daily basis and will only be available at the
hub in three to five days, depending on the route.

Lastly, there are difficulties to overcome before the successful implementation of a
model like this: First, middlemen would not easily give up their business. Intermediation
in Colombia is a big business, and a big hub competitor would not be welcome. A potential
strategy is creating middlemen memberships to the hub concessionaires and therefore
they would participate of the profits. Second, if the hubs are too distant from the farmers,
hubs would be of no use. In this sense, hubs would only be useful for farmers located
in relatively well-connected areas, and those farmers in remote areas would still rely on
middlemen. Finally, the investment to refurbish the hubs can be significant, and at the
present pandemic time, the central government has other priorities and limited budget to
execute projects like this.

7. Final Thoughts and Further Research

This paper has presented a mathematical model for food hub locations in the central
region of Colombia. The model considers the special characteristics of the supply and
distribution of the fresh food supply chain in the region, namely dispersed farmers in the
countryside that make choices as to where they sell their products and food hubs that
distribute such products to urban centers. To the best of our knowledge, this problem
has not been studied in the literature. This problem is of special relevance because public
institutions in Colombia, responsible for the design and implementation of the master
plans for food supply and food security, are closely following the results of this model.

This research uses extensions and adaptations of several competitive hub and facility
location formulations to create a realistic model that can be used as a first input for policy
making. The results show that the model can be viable and sustainable in the long term
under several conditions, as described throughout the paper. This proposed model, of
realistic size, was tested with real data. Extensive experiments suggest that the ability of
the food concessionaires to attract farmers is the main success factor for the business model.

Based on the results presented throughout this paper, managers and decision makers
of the central region can devise an articulated set of tax and legal incentives to attract private
investment for the creation and/or strengthening of logistics strategies with technical and
operational capacities to efficiently deal with the operation of the hubs. At the same time,
education and sensibilization campaigns must be carried out with all stakeholders in order
to guarantee a smooth operation of the hub network.

Future research will be carried out with extensions such as logistic regression models
that capture additional decision factors such as prices and social network, to name a few.
Multi-objective extensions considering environmental factors are also foreseen.
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Appendix A

This appendix shows the products that belong to each of the analyzed agricul-
tural chains.

Table A1. the products and each of the analyzed agricultural chains.

Agricultural Chain Product

F&V

Collard greens, avocado, crookneck pumpkin, green peas, banana, pumpkin and field pumpkin, big
headed onion, green onion, plum, cauliflower, curuba (Andean passion fruit), peach, spinach,

strawberry, sweet granadilla, soursop, guava, bean, lettuce, lemon, lulo (passion fruit), tangerine,
mango, apple, passion fruit, blackberry, orange, papaya, cucumber, pear, pineapple, beet, cabbage,

tomato, tree tomato, carrot

Grains Dried rice, dried bean, chickpea

Other products Oil—palm oil, oatmeal, sugar—sugarcane, cacao—chocolate, coffee, crackers, dried grain corn—corn
flour, bread, panela, pasta, salt, dry grain wheat—wheat flour

Plantain Plantain

Potato Potato, yellow small potato
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31. Cordeau, J.-F.; Furini, F.; Ljubić, I. Benders decomposition for very large scale partial set covering and maximal covering location

problems. Eur. J. Oper. Res. 2019, 275, 882–896. [CrossRef]
32. Miranda, P.A.; Garrido, R.A. Incorporating inventory control decisions into a strategic distribution network design model with

stochastic demand. Transp. Res. Part E Logist. Transp. Rev. 2004, 40, 183–207. [CrossRef]
33. Sarker, B.R.; Wu, B.; Paudel, K.P. Optimal number and location of storage hubs and biogas production reactors in farmlands with

allocation of multiple feedstocks. Appl. Math. Model. 2018, 55, 447–465. [CrossRef]
34. Vafaeinejad, A.; Bolouri, S.; Alesheikh, A.A.; Panahi, M.; Lee, C.-W. The Capacitated Location-Allocation Problem Using the

VAOMP (Vector Assignment Ordered Median Problem) Unified Approach in GIS (Geospatial Information Systam). Appl. Sci.
2020, 10, 8505. [CrossRef]

35. Casisi, M.; Buoro, D.; Pinamonti, P.; Reini, M. A Comparison of Different District Integration for a Distributed Generation System
for Heating and Cooling in an Urban Area. Appl. Sci. 2019, 9, 3521. [CrossRef]

36. Luo, J.; Ji, C.; Qiu, C.; Jia, F. Agri-Food Supply Chain Management: Bibliometric and Content Analyses. Sustainability 2018,
10, 1573. [CrossRef]

37. Paciarotti, C.; Torregiani, F. The logistics of the short food supply chain: A literature review. Sustain. Prod. Consum. 2021, 26,
428–442. [CrossRef]

38. Ahumada, O.; Villalobos, J.R. Application of planning models in the agri-food supply chain: A review. Eur. J. Oper. Res. 2009, 196,
1–20. [CrossRef]

39. Soto-Silva, W.E.; Nadal-Roig, E.; González-Araya, M.C.; Plà-Aragonès, L.M. Operational research models applied to the fresh
fruit supply chain. Eur. J. Oper. Res. 2016, 251, 345–355. [CrossRef]

40. Amorim, P.; Günther, H.O.; Almada-Lobo, B. Multi-objective integrated production and distribution planning of perishable
products. Int. J. Prod. Econ. 2012, 138, 89–101. [CrossRef]

41. Suraraksa, J.; Shin, K.S. Shin Urban Transportation Network Design for Fresh Fruit and Vegetables Using GIS–The Case of
Bangkok. Appl. Sci. 2019, 9, 5048. [CrossRef]

299



Appl. Sci. 2021, 11, 1792

42. Granillo-Macías, R. Socio-Economic Planning Sciences Logistics optimization through a social approach for food distribution.
Socioecon. Plann. Sci. 2020, 100972, in press. [CrossRef]

43. Govindan, K.; Jafarian, A.; Khodaverdi, R.; Devika, K. Two-echelon multiple-vehicle location—Routing problem with time
windows for optimization of sustainable supply chain network of perishable food. Int. J. Prod. Econ. 2014, 152, 9–28. [CrossRef]

44. Patidar, R.; Venkatesh, B.; Pratap, S.; Daultani, Y. A Sustainable Vehicle Routing Problem for Indian Agri-Food Supply Chain
Network Design. In Proceedings of the 2018 International Conference on Production and Operations Management Society
(POMS) 2018, Peradeniya, Sri Lanka, 14–16 December 2018; pp. 1–5. [CrossRef]

45. Gholami-Zanjani, S.M.; Jabalameli, M.S.; Klibi, W.; Pishvaee, M.S. A robust location-inventory model for food supply chains
operating under disruptions with ripple effects. Int. J. Prod. Res. 2021, 59, 301–324. [CrossRef]

46. Lüer-Villagra, A.; Marianov, V. A competitive hub location and pricing problem. Eur. J. Oper. Res. 2013, 231, 734–744. [CrossRef]
47. Mahmoodjanloo, M.; Tavakkoli-Moghaddam, R.; Baboli, A.; Jamiri, A. A multi-modal competitive hub location pricing problem

with customer loyalty and elastic demand. Comput. Oper. Res. 2020, 123, 105048. [CrossRef]
48. Mahmutogullari, A.I.; Kara, B.Y. Hub location under competition. Eur. J. Oper. Res. 2016, 250, 214–225. [CrossRef]
49. Musavi, M.; Bozorgi-Amiri, A. A multi-objective sustainable hub location-scheduling problem for perishable food supply chain.

Comput. Ind. Eng. 2017, 113, 766–778. [CrossRef]
50. Gharehyakheh, A.; Krejci, C.; Cantu, J.; Rogers, K.J. A Multi-Objective Model for Sustainable Perishable Food Distribution

Considering the Impact of Temperature on Vehicle Emissions and Product Shelf Life. Sustainability 2020, 12, 6668. [CrossRef]
51. Meneghetti, A.; Monti, L. Greening the food supply chain: An optimisation model for sustainable design of refrigerated automated

warehouses. Int. J. Prod. Res. 2015, 53, 6567–6587. [CrossRef]
52. Mogale, D.G.; Cheikhrouhou, N.; Tiwari, M.K. Modelling of sustainable food grain supply chain distribution system: A

bi-objective approach. Int. J. Prod. Res. 2019, 58, 5521–5544. [CrossRef]
53. Tammy, D.; Zvi, D.K.P.J.; Kalczynski, P.J. The multiple markets competitive location problem. Kybernetes 2016, 45, 854–865.
54. Ministerio de Transporte. Sistema de Información de Costos Eficientes para el Transporte Automotor de Carga SICE-TAC. 2021.

Available online: https://www.mintransporte.gov.co/publicaciones/4462/sice-tac/ (accessed on 25 January 2021).
55. Ministerio de Medio Ambiente. Impuesto Nacional al Carbono; Ministerio de Medio Ambiente y Sostenibilidad: Bogotá,

Colombia, 2017.
56. Corabastos, “Boletín de precios”. 2021. Available online: https://precios.corabastosonline.co/#/tendencia/grupos (accessed on

25 January 2021).
57. Ministerio de Transporte. “Transporte en Cifras”, Transporte en Cifras. Estadísticas 2019; 2019. Available online: https:

//plc.mintransporte.gov.co/Estadísticas/Transporte-en-Cifras (accessed on 25 January 2021).
58. Drezner, T.; Drezner, Z.; Zerom, D. Competitive facility location with random attractiveness. Oper. Res. Lett. 2018, 46, 312–317.

[CrossRef]

300



applied  
sciences

Article

Lot-Sizing and Scheduling for the Plastic Injection Molding
Industry—A Hybrid Optimization Approach

Nathalie Klement 1, Mohamed Amine Abdeljaouad 2,*, Leonardo Porto 3 and Cristóvão Silva 3

��������	
�������

Citation: Klement, N.; Abdeljaouad,

M.A.; Porto, L.; Silva, C. Lot-Sizing

and Scheduling for the Plastic

Injection Molding Industry—A

Hybrid Optimization Approach.

Appl. Sci. 2021, 11, 1202. https://

doi.org/10.3390/app11031202

Academic Editor: Farouk Yalaoui

Received: 29 December 2020

Accepted: 23 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Arts et Métiers Institute of Technology, LISPEN, HESAM Université, 59000 Lille, France;
nathalie.klement@ensam.eu

2 CEA Tech Hauts-de-France, 59000 Lille, France
3 CEMMPRE, Department of Mechanical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal;

leonardo-rocha-porto@hotmail.com (L.P.); cristovao.silva@dem.uc.pt (C.S.)
* Correspondence: mohamed-amine.abdeljaouad@cea.fr

Abstract: The management of industrial systems is done through different levels, ranging from
strategic (designing the system), to tactical (planning the activities and assigning the resources) and
operational (scheduling the activities). In this paper, we focus on the latter level by considering
a real-world scheduling problem from a plastic injection company, where the production process
combines parallel machines and a set of resources. We present a scheduling algorithm that combines
a metaheuristic and a list algorithm. Two metaheuristics are tested and compared when used in the
proposed scheduling approach: the stochastic descent and the simulated annealing. The method’s
performances are analyzed through an experimental study and the obtained results show that its
outcomes outperform those of the scheduling policy conducted in a case-study company. Moreover,
besides being able to solve large real-world problems in a reasonable amount of time, the proposed
approach has a structure that makes it flexible and easily adaptable to several different planning and
scheduling problems. Indeed, since it is composed by a reusable generic part, the metaheuristic, it is
only required to develop a list algorithm adapted to the objective function and constraints of the new
problem to be solved.

Keywords: heuristic; metaheuristics; scheduling; injection molding

1. Introduction

Industry is changing rapidly and is facing the fourth industrial revolution. In this
new context, industrial systems need to be more flexible and intelligent to deal with an
ever-growing data availability, real time decisions and increasing customization. With In-
ternet of Things, which allows various objects in the company or on the shop-floor to
communicate with each other, industrial systems will become more intelligent and able
to anticipate shortage of materials, the need for maintenance operations or to respond
to urgent commands. This will imply the use of more efficient tools for planning and
re-planning shop-floor operations.

Such decision support tools will be important at all decision levels: For example, at a
strategic level, they can be used to decide which activities must be performed during a
given planning horizon and to estimate the resources needed. At this level they can also
be useful to model and test new shop-floor configurations and anticipate the impact of
these changes on the system performance. Considering the tactical level, decision tools will
allow to allocate resources to each activity planned to occur during a given time horizon.
Finally, at the operational level they can be used to schedule the activities, determining
the time allocation of each resource and to re-schedule them to respond to emergencies
(new activities that have to be done as soon as possible). Table 1 summarizes the problems
encountered at the different levels.
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Table 1. Levels of decision.

Decision Level Strategic Tactical Operational

Planning Horizon Years Months Weeks/Days

Typical Problems
Determine the

number of resources
Plan activities

Assign resources
Schedule activities

Consider emergencies

In this paper, we present a hybrid optimization method to solve a lot sizing and
scheduling problem encountered in a plastic injection facility that produces components
for electronic products. The proposed method was first introduced in [1] and concisely
used to solve optimization problems from different areas: healthcare systems, as well as
textile and plastic injection industries, with promising preliminary results. In the current
work, the method’s application to plastic injection molding is further developed and its
performance analyzed with a comparison to optimal and heuristic solutions.

Injection molding can be considered as a single-stage manufacturing process where
parts are produced by injecting a molten material, typically a thermoplastic polymer, like in
our case study company, into a custom-made mold. In the injection machine, the material
is molten, mixed and injected into the mold, acquiring, after cooling, the shape imposed by
the configuration of the cavity and being then ejected. The obtained part usually have the
finished shape, not requiring further operations. In general, the shop-floor is composed by
several injection machines which are shared by different products necessitating different
molds. A setup time occurs each time a new product has to be manufactured. This setup
time consists in the time required to dismount the mold used for the previous part and to
mount the new mold on the machine. Obtaining a good schedule for such a constrained
problem can be a real challenge.

The above described problem can be stated as follows: n jobs have to be processed on
parallel machines, using their needed mold. These jobs have to be scheduled, considering
their given processing time and due date before they have to be completed. When two jobs
consecutively processed on one machine need two different molds, a sequence dependent
setup time is recorded. Jobs have to be processed at once (non-preemptive constraint).
To save setup costs, jobs using the same mold may be scheduled one after another. There are
compatibility constraints between the molds and the machines: Each mold can only be
assigned to some specific machines. Each mold exists in a single copy, thus the same mold
cannot be used by more than one machine during the same time period. The objective is to
find the suitable allocation of the jobs to the machines as well as the schedule of jobs on
each machine so that minimizing the total tardiness.

This paper is structured as follows—Section 2 provides a literature review on the
problems that present some analogies with the scheduling issue considered in this paper,
such as batching and lot-sizing. A mathematical formulation modelling the problem and its
constraints is detailed in Section 3. Then, in Section 4, we present an optimization method
to solve the problem, consisting in a list algorithm and a metaheuristic. The different
results of the experimental study are then presented in Section 5. The article ends with a
Conclusion and some proposals for further work.

2. Literature Review

Several papers from the literature addressed the injection molding planning and
scheduling problems. Dastidar and Nagi [2] studied a parallel machine scheduling problem
in an injection molding facility, where different products require different types of resources.
The authors provide a mathematical formulation and a decomposition based approach
to minimize the setup and the inventory holding costs. A decomposition strategy is also
used in [3,4] where the compatibility constraints between injection molds and machines
are taken into account. In both articles, the problem is decomposed into sub-problems by
grouping the machines by sets according to their compatible molds. Each sub-problem
is then dealt with as a Capacitated Lot-Sizing Problem (CLSP). Van Wassenhove and De
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Bodt [3] used two heuristic procedures while [4] provides a goal programming formulation
and a heuristic to minimize the production’s costs. The obtained results are shown to
outperform the planning and scheduling procedures currently used in their case-study
injection plants.

The problem we study in this paper also shares some features with the CLSP. Indeed,
the lot-sizing issue reflects the fact that companies usually have to manufacture several
types of products with limited production capacity. It is a very popular subject in the
field of combinatorial optimization and has been defined since the early 1900s with the
EOQ Economic Order Quantity [5]. Lot-sizing problems have been widely studied since
then; a recent literature review can be found in [6]. Different lot-sizing models have been
developed, depending on the characteristics of the production process. Although most of
the lot-sizing studies focus on “product lots” (i.e., determining the right period and the
quantity to produce for each type of product), some of them can also be related to “process
lots”; in other words, to the decision of how many times or how long each process should
be used and how the processes should be scheduled, given that each process can lead to
a set of products. Such a feature appears in several industrial problems [7–9], including
injection molding [10], for which a mixed integer programming model is proposed and
tested on real data from a Brazilian molded pulp plant.

CLSP has many extensions, including the consideration of parallel production ma-
chines per period and setup times between products of different types. However, the sche-
duling is not part of this issue and is traditionally made as a second step. Therefore there
is a significant difference between CLSP and the problem we study. Indeed, separating
assignment and scheduling or decomposing a problem can immediately eliminate several
good solutions from the searching space. In this work, we take the problem as a whole and
this issue may thus be referred to as a batching problem. Batching is indeed the decision
of whether or not to schedule similar jobs contiguously, to avoid setup times or setup
costs [11].

Drexl and Kimms [12] draw an analogy between the batching and lot-sizing problems.
In the continuous time lot sizing and scheduling problem, each demand is characterized by
its deadline and its size. Demands are interpreted as jobs and the demand size determines
the processing time of a job. An important assumption is that the capacity (e.g., the speed
of the machine) is constant over time and thus the processing time of a job does not depend
on the schedule. Another fundamental assumption is that jobs are not allowed to be split,
which means that a certain demand must always be processed from the beginning to the
end. Of course, several demands for the same item may be grouped together and processed
by lots to save setup costs. Problems with these assumptions can thus be referred to as a
batching and scheduling problem (BSP) rather than a lot sizing and scheduling problem.
The relationship between batching and lot-sizing is also analyzed in [13], where the studied
lot sizing problem is solved as a batch sequencing problem.

Potts and Kovalyov [14] review the literature on scheduling with batching, in the
particular case of parallel machines. In this paper, parallel machines are classified as:
identical, when the processing times depend only of the jobs, regardless of the machine
on which they are processed; uniform, if the processing times depend on the jobs and
the machines’ speed; or unrelated, when the processing time is a function of both the job
and the machine where it is allocated. One of the specificities of our problem is that the
processing time of the jobs depends only on the jobs. But because of the incompatibility
between some molds and some machines, not all the machines can process all the jobs.
To the best of our knowledge, this aspect has not been considered in batching problems
but [15,16] solved some scheduling problems with eligibility restrictions using constructive
heuristics. The eligibility aspect can also be found in [17] but in the flowshop case. Never-
theless, our problem can be seen as a problem with parallel unrelated machines, where the
processing time will be: (1) the time required to process the job if the mold is compatible
with the selected machine or (2) infinite if the mold is not compatible with the selected
machine. A batch-scheduling problem with parallel unrelated machines is dealt with
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in [18], where the authors compare the performances of four heuristics to minimize the to-
tal weighted tardiness. Their study showed the superiority of a two-level batching heuristic
and a simulated annealing approach over heuristics that use priority rules such as earliest
weighted due date or shortest weighted processing time. Reference [19] also addressed a
parallel unrelated batch scheduling problem with sequence dependent setup times and
developed a GRASP metaheuristic to minimize the makespan. Reference [20] provide a
constructive algorithm and a simulated annealing to portion and schedule batches in a
multi-stages semi-conductor manufacturing plant where the parallel machines per stage
are non-identical.

Because the weighted tardiness minimization in an unrelated parallel machine schedul-
ing problem, m

∣∣∣∣∣∣∑n
j=1 wjTj , is already NP-hard [21], our problem is also NP-hard. Indeed,

the Rm
∣∣∣∣∣∣∑n

j=1 wjTj is a particular case of our problem when the jobs have equal weights,
the setup-times are null and each mold is required by only one job. As seen in this literature
review, whether for solving the lot-sizing or batching problems, the developed methods
are quite sophisticated constructive approaches or optimization approaches. Our aim in
this paper is to provide a high performing optimization method which is easy to develop
and use. Although in this article the proposed method will only be tested in a case study
company, injection molding is a common industrial activity and several plants may share
the same features. Our solving method will thus not be limited to a single use-case and
this work may be considered as a first step toward a final objective which is to generalize
the optimization tool to other scheduling problems with new characteristics.

In the following section, we provide a mathematical model that will be useful to spot
the limit of the exact resolution for this NP-hard problem in terms of solving times and to
ensure the quality of our method for the small-sized instances. The method itself is described
and implemented in Section 4 and then experimented in a real plastic injection case.

3. Mathematical Model

The mathematical model of the problem we intend to solve, described in this section,
was inspired by a model proposed by [22], although there are some significant differences
between them. In the original model both earliness and tardiness were to be minimized.
In our case study company, earliness is not considered as an issue, thus only tardiness is
considered leading to a difference in the objective function. Furthermore, in the original
model changeover occur whenever two jobs from different families are sequenced one after
the other but this time is constant. In our case, when a setup time occur, this time depends
of the sequence of jobs i and j, considering the time required to dismount the mold to
produce i plus the time necessary to mount the mold to process j. Thus, unlike the original
model we consider a sequence dependent setup time, which lead to a difference in the way
the setups are considered in the model, specifically in the equations used to determine the
completion time of a given job. Finally and this is probably the main difference between
the models, in [22] the model is developed for identical parallel machines, which means
that any job can be processed in any machine. In our case study company, a job can only be
processed in a subset of the available machines. This has led to the introduction of a new
constraint (3) to ensure that a job is always allocated to a compatible machine.

Below, we provide the inputs of our model:

• m : Number of molds
• n : Number of jobs
• r : Number of machines
• f j : Mold for job j
• dj : Due date of job j
• pj : Processing time of job j
• Aj : Time to mount the mold of job j on the machine
• Dj : Time to dismount the mold of job j
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• Mjk: The setup time when job k follows job j on a machine. This setup time is equal to
the time to dismount the mold used by j (Dj) plus the time to mount the mold used by
k (Ak), if j and k require different molds. Thus: Mjk = Ak + Dj if f j �= fk 0 otherwise

• CFjb: Binary variable denoting if job j is compatible with machine b:

• CFjb =

{
1 if job j is compatible with machine b

0 otherwise
• G: “Big M,” sufficiently large number to make the problem solvable by linear pro-

gramming. In our case, G should be much higher than the ending time of any job.

The decision variables of our model are the following:

• Cj : Completion time of job j
• Tj : Tardiness of job j
• αjb: Binary variable denoting if j is the first job to be processed on machine b:

αjb =

{
1 if job j is the first to be processed on machine b

0 otherwise
• θjk: Binary variable denoting if job k is scheduled right after job j:

θjk =

{
1 if job k is immediately processed after job j

0 otherwise
• β jb: Binary variable denoting if job j is processed on machine b but not in the first place:

β jb =

{
1 if job j is processed on machine b but not on the first place

0 otherwise

The mathematical model can be stated as follows:
Minimize:

n

∑
j=1

Tj. (1)

Restricted to:
r

∑
b=1

(
αjb + β jb

)
= 1, ∀j = 1, 2, . . . n (2)

r

∑
b=1

CFjb

(
αjb + β jb

)
= 1, ∀j = 1, 2, . . . n (3)

αjb + β jb ≤ βkb + 1 − θjk, ∀j = 1, 2, . . . n; k = 1, 2, . . . n; b = 1, 2, . . . r (4)

n

∑
j=1

αjb ≤ 1, ∀b = 1, 2, . . . r (5)

r

∑
b=1

αjb +
n

∑
k=1

θkj = 1, ∀j = 1, 2, . . . n (6)

n

∑
k=1

θjk ≤ 1, ∀j = 1, 2, . . . n (7)

Ck ≥ Cj + Mjk +
r

∑
b=1

pkβkb + G
(

θjk − 1
)

, ∀j = 1, 2, . . . n; k = 1, 2, . . . n (8)

Cj ≥ pj + Aj

r

∑
b=1

αjb, ∀j = 1, 2, . . . n; (9)

Cj ≤ dj + Tj, ∀j = 1, 2, . . . n; (10)

Cj, Tj ≥ 0, ∀j = 1, 2, . . . n; (11)

Equation (1) represents the objective function, which is to minimize the sum of all
tardiness. A job is considered tardy if its completion time is higher than its due date; and in
that case, the difference between its completion time and its due date is added to the sum.
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Equation (2) ensures that each job must be assigned to one machine. Equation (3) checks
compatibility, which means that a job can only be scheduled on a compatible machine.
Equation (4) enforces a job and its direct successor in the processing sequence to both be
produced on the same machine. Equation (5) ensures that, for each machine, there can only
be one job scheduled first. Equation (6) states that if a job is not the first to be scheduled
on any machines, then it must have a predecessor. Equation (7) says that for each job,
there can only be one other scheduled immediately before it or none in case it is the first job.
Equation (8) forces the completion time of a certain task to be bigger than its processing
time plus the setup and the completion time of its predecessor.

Equation (9) computes the completion time of the first job processed by each machine
as its processing time plus the setup time. Equation (10) provides the completion time of
a job smaller or equal to the sum of its due date and the tardiness. Equation (11) is the
non-negativity constraint.

4. Proposed Solution Approach

Since the studied problem is NP-hard, solving our model with a mathematical solver is
not expected to be efficient for the large-sized industrial problems. Therefore, we provided a
solving algorithm that can quite rapidly reach good solutions. We propose a hybrid method,
which combines a constructive heuristic (a list algorithm) with a metaheuristic. The problem
characteristics are specified in the list algorithm while the metaheuristic is more generic
and can be adapted to other scheduling problems without changes. The principle of the
method is given in Figure 1. It can be seen as a master/slave resolution scheme, where the
metaheuristic handles the searching process and the list-algorithm performs the quality
assessment of the solutions [23,24].

Figure 1. Hybridization metaheuristic—List algorithm.

The encoding scheme of the proposed metaheuristic is a list Y of jobs, which is the
order in which they will be selected by the algorithm to be assigned to the machines.
The move between neighbor solutions is performed by jobs’ permutation. The jobs are
selected one by one by list algorithm L, following their order as given in List Y and
assigned to the requested resources, building a scheduling that takes into account the
problem constraints. From this scheduling emerges Solution X, which will be evaluated
by objective function H. On the basis of this assessment, the metaheuristic decides if the
solution should be selected or not. At the end of its run, the proposed method gives the
scheduling sequence that gives the best value of objective function.

The general encoding scheme can be represented by Equation (12). Ω is the set of all
lists Y; S the set of all admissible assignments X of the jobs to the machines. An assignment
is considered admissible if all constraints are respected. More details about the encoding
are given in [25].

Y ∈ Ω
He

→
uristic L

L(Y) = X ∈ S
Cri

→
terion H

H(X). (12)

306



Appl. Sci. 2021, 11, 1202

4.1. List Algorithm

List algorithms are greedy heuristics that are widely used to solve scheduling prob-
lems. The standard list algorithm iteratively constructs a schedule by considering the jobs
in a listed order and assigning each one of them to the first machine that becomes idle [26].
Examples of list algorithms applied to and activity planning and resource allocation in a
hospital are presented in [27].

In the injection molding problem described in this paper, we propose a list scheduling
algorithm to schedule jobs and assign them to the machines and dates considering tool
compatibility. One of the advantages of using a list algorithm is to provide a simple
neighborhood structure for metaheuristics, which can browse the set of solutions by
permutations between two items in a list, as we will see in the next subsection. The details
of the list algorithm is described by Algorithm 1. The algorithm takes as input the number
of machines, the number of molds, as well as a sorted list of N jobs (σi)i∈N which states
the order in which they will be selected to be assigned to the machines. Of course, the jobs’
durations and their associated molds are part of the input. The algorithm gives as output
the assignation of the jobs to the machines.

Algorithm 1 List algorithm for the injection problem

Data: List of jobs (σi)i∈N
forall Job σi do

Order the machines according to their release date: R[i]
j: = 0
while Job σi not assigned ANDj < Nbmachines do

if Job σi and machineR[j] compatible with the mold then

if Needed mold available then

Release date machine R[j]: = Release date machine R[j] + processing time of
Job σi + setup time

Release date needed mold: = Release date machine R[j]
Assign Job σi to machine R[j]

else

Find on which machine the needed mold is used: MachineUsing
If the mold currently used in MachineUsing is the one needed by Job σi then

Release date MachineUsing: = Release date MachineUsing + processing
time of Job σi

else

Release date MachineUsing: = Release date MachineUsing + processing
time of Job σi + setup time

Release date needed mold: = Release date machine MachineUsing
Assign Job σi to machine MachineUsing

else

Next machine: j(j + 1)%Nbmachines

Figure 2 shows an example of the algorithm’s assignment rule for a 3-machines
instance. At iteration u, the mold required by the next job i on the list Y is not being used
on any machine. i is thus assigned to the less loaded machine with a setup time. Next,
job j needs a mold that is currently used on machine M3 that has the lowest release time.
j will therefore be assigned to M3 without setup. For job k however, the required mold is
currently used on the most-loaded machine M1 and therefore the job has to wait for its
release time before being processed. k is assigned to M1 without setup time.
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Figure 2. Illustration of the List Algorithm’s assignment rule.

4.2. Metaheuristic

The proposed list algorithm is combined with a metaheuristic. We chose to use two
single solution-based metaheuristics: stochastic descent and simulated annealing.

4.2.1. Tuning

The metaheuristic performs in the set Ω of all jobs’ permutations. Given that n is the
number of jobs, cardinal of Ω is n!. One solution Y ∈ Ω is a list of jobs.

Solutions are compared according to an objective function which characterizes their
quality. In our case, the objective function is the total tardiness: the sum of the tardiness
of all jobs. After having assigned the jobs to the molds and to the machines using the list
algorithm described in the previous section, the value of the objective function is computed
as follows: for each job, it is the difference between the completion time and the due date.
All positive values are added.

The neighborhood system V is the exchange of two jobs’ positions in List Y: job at
position i permutes with the one at position j. V checks accessibility and reversibility
properties. An initial solution is randomly computed, based on a randomly sorted list of jobs.

4.2.2. Stochastic Descent

Stochastic descent is one of the oldest metaheuristics. Its principle is to compute a
solution Y′ which is a neighbor of the current solution Y, according to the neighborhood
system V. After applying the list algorithm L, a solution X′ = L(Y′) is obtained. If the value
of the objective function H(X′) is lower or equal to the current one H(X), then the solution
X′ of the list Y′ is accepted. Stochastic descent converges to a local minimum. This method
is easy to implement but the quality of the results may be insufficient. Algorithm 2 describes
stochastic descent.
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Algorithm 2 Principle algorithm of stochastic descent

Data: Initial solution Y
XL(Y)
while necessary do

choose uniformly and randomly Y′ ∈ V(Y)
X′L(Y′)

if H(X′) ≤ H(X) then

YY′

4.2.3. Simulated Annealing

This metaheuristic comes from process used in metallurgy. That process alternates cy-
cles of slow cooling and heating [28] used inhomogeneous simulated annealing to emulate
this process. Applied to the optimization field, the algorithm consists of executing a local
search with a computed probability to choose a worse solution than the current one, allow-
ing thus to escape local optimum. This probability progressively decreases throughout the
running process of the algorithm. If neighborhood system V satisfies the accessibility and
reversibility properties, simulated annealing converges in probability to the set of optimal
solutions [29]. Algorithm 3 describes the principle algorithm of simulated annealing.

Algorithm 3 Principle algorithm of simulated annealing

Data: Initial solution Y, Temperature T0, Decreasing factor α

TT0
XL(Y)
while necessary do

choose uniformly and randomly Y′ ∈ V(Y)
X′L(Y′)

if H(X′) ≤ H(X) then

YY′
else

if rand[0, 1]≤ e−
H(Y′ )−H(Y)

T then YY′
Compute the new temperature T α ∗ T

Two parameters have to be chosen:

• The initial temperature T0 is chosen to be big enough so that most of the transitions

are accepted at the beginning: e−
H(Y′)−H(Y)

T0 ≈ 1 ∀(Y, Y′).
• The decreasing factor α is chosen in such a way that the final temperature would be

close to zero.

5. Experiments

In this section, we carry out an experimental study to assess the performance of the
proposed method. The outcomes are compared with an exact resolution performed by a
mathematical solver for small-sized instances and with the results obtained with a heuristic
presented in [30] for bigger ones. This benchmark heuristic is the scheduling method
currently used in the molding company and it consists of a two-phase algorithm: first it
assigns molds to machines and then it schedules jobs on each machine. Each mold is thus
assigned to only one machine throughout the scheduling, with no possibility to move
to another one. This method has thus he advantage to ensure a small number of setups
throughout the production process.

5.1. Instances Generation

The case study company can produce more than 500 different parts, each one requiring
its own mold. 25 injection machines are available in the shop-floor. An average of 200
production orders are received each week. The production planner needs to generate a
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weekly plan for the received orders, considering the items to be produced, their required
quantities and the due date negotiated with the costumer. To execute this plan, the produc-
tion planner must decide which job will be processed in each machine and the sequence by
which they will be produced.

To test the proposed approach, 11 instances were randomly generated. The charac-
teristics of these instances (number of machines available, number of molds required and
number of jobs to be planned) are presented in Table 2. To correctly replicate the case study
company problem, real data (jobs processing times and setup times) were collected on the
shop-floor. The following statistical distributions fitting the collected data were used to
generate the instances:

(1) Jobs’ processing times: Exponential with an average of 10.75 h.
(2) Due dates: Uniform with a minimum of 24 and a maximum of 312 h.
(3) Setup times:

� Time required to dismount a mold: Uniform with a minimum of 15 and a
maximum of 45 min

� Time required to mount a mold: Uniform with a minimum of 20 and a maxi-
mum of 60 min.

Table 2. Generated instances.

Instance number 1 2 3 4 5 6 7 8 9 10 11

Machines 2 3 5 10

Molds 3 6 12 16 18 20 26 26 25 59 63

Jobs 10 15 32 47 53 57 79 80 81 177 191

The big M value of our mathematical model (i.e., variable G) has been chosen as equal
to 10.000. Let us note that this value has no impact on the model’s solving times, since there
is no loop or sum that depends on it.

5.2. Results

The computer that was used in the experiments is powered by an i7 CPU running
at 2.6 GHz. First, to validate the quality of our method, we compared its results to those
of the mathematical model. The solver used to solve the mathematical model is CPLEX
12.6.3. Table 3 summarizes results obtained by both methods. Results represent tardiness.
Computational times are also given. In case the solver does not find any solution in a
reasonable computational time, the upper and lower bounds are reported.

Table 3. Comparison of results between the solver and the hybrid method.

Solver Our Method

Instance Number of Jobs Time Tardiness Time Tardiness

1 10 19 s 38.00 19 s 38.00
2 15 12 min 18.21 7 s 18.21
3 32 30 h [37.65, 80.76] 96 s 80.76

As we can see in Table 3, for the 10 and 15 jobs instances, our method finds an optimal
solution in less time than the solver. For larger instances, the solver does not reach any
optimal solution for hours while our method finds a good solution (actually the upper
bound found by the solver) in a few seconds. Since the CPLEX solver ran for more than
30 h without finding a solution for the 32 jobs instance, we decided not to continue the
exact resolution for larger instances, for which we propose a comparison between our
method and the scheduling heuristic currently used by the company.
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Table 4 presents the results obtained for the big-sized instances with this benchmark
heuristic and with our method. The comparison considers the tardiness and the number
of setups. Over several replication, the shortest time needed to find one best solution is
reported in the last column of the table.

Table 4. Comparison of results between the benchmark method and the proposed approach.

Current Approach
Proposed Approach

Stochastic Descent Simulated Annealing
Time

Instance Jobs Tardiness Setup Tardiness Setup Tardiness Setup

4 47 8.32 16 0 33 0 31 4 min
5 53 37.76 26 24.37 40 17.98 42 37 min
6 57 159.6 23 136.29 33 66.16 27 3 min
7 79 395 37 241.26 49 148.63 44 6 min
8 80 77.8 33 0.98 49 0 41 1 h
9 81 165.9 28 52.56 39 46.17 43 1 h
10 177 1020.4 82 963.95 114 343.82 101 5 h
11 191 580.2 83 786.18 122 579.5 124 4 h

The results show that besides being easy to develop, the proposed method is effective,
giving good results in reasonable computational time. In comparison with the benchmark
method proposed by [30], an average reduction of 35% is achieved in tardiness. For some
instances, the reduction of tardiness is as high as 65%. This can be explained by the fact that
the proposed method is less constraining, as the molds are not fixed and can switch from a
machine to another throughout the scheduling. Nevertheless, the proposed method leads
to an increase in the number of setups. It is important to note that, since the main objective
of the company was to reduce the tardiness, the number of setups was not considered in
the objective function of the proposed method but for other problems or future studies,
an objective function considering tardiness and number of setups, with different weights,
can be considered.

From the experimental study conducted in this section, we can thus conclude that
our proposed approach brings a significant improvement in terms of tardiness when
compared to the company current approach. Therefore, it is expected that the proposed
approach will be implemented by the company as part of their production planning and
scheduling system.

6. Conclusions and Perspectives

In this paper, a real world scheduling problem from a plastic injection company
has been studied and solved. This problem considers sequence dependent setup time,
parallel machines and compatibility constraints between machines and resources (molds).
The considered objective is to minimize the jobs’ tardiness (i.e., the difference between the
completion time of the jobs and their due date). First, a mathematical formulation of the
problem has been provided. Then, an optimization method aiming to solve the big-sized
instances has been developed. The proposed tool consists of a hybridization of a list-
algorithm and a metaheuristic and can be seen as a master/slave approach. The obtained
results show that the method provides high quality results for the proposed problem,
outperforming a two-stage heuristic previously developed for the same problem [30] and
currently used by the case-study injection plant.

This hybridization has been proposed instead of a classical metaheuristic because it is
easier to develop. Indeed, using a classical metaheuristic needs to define a neighborhood
system to browse the solution space. This neighborhood system can be complex: the neigh-
bor solution needs to respects all constraints of the specific problem. In our approach,
the neighbor is a swap between two jobs in the list of jobs and then the application of
the list algorithm ensure the constraints respect. This has two interests. Our tool aims
to solve industrial applications, so an easy, friendly tool may have more chance to be
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used by a company. Plus, we intend to solve others industrial applications, using the
same tool, only adapting the list algorithm and the objective function (see [1] for other
implementation of this tool). Ultimately, a generic tool that could be used to solve several
different operational management problems could be developed. A strong point of the
proposed method is that the metaheuristic can be used without any change for a large
portfolio of problems. The intended tool would thus have a generic part composed of this
metaheuristic and a library of list algorithms, which will allow rapid implementation by
different companies, facing different planning, scheduling and assignment issues.

Several ways of improvement are considered to go deeper in the development of our
tool. Within the hybridization, new metaheuristics could be used for the proposed method,
including other single solution-based methods as iterated local search or population-
based metaheuristics, such as particle swarm optimization using parallel computation
with GPU. This will make it possible to assess the effectiveness of the proposed tool
under different metaheuristic approaches. New list algorithms are currently proposed
for different industrial problems. We are currently collecting data in companies with
lot-sizing, scheduling and assignment problems. These problems take into account new
constraints, as precedencies between jobs. Moreover, new objective function are considered:
for instance improving the ergonomic and not only the economic aspect. Thus, our tool
could face more realistic industrial problems from Industry 4.0, which deals with new
markets and new technologies.
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Abstract: Hydrocarbon supply chain (HCSC) is a complex network that extends from oil and gas
fields to demand nodes. Integrating operation and maintenance activities along this complex network
is crucial since the hydrocarbon industry is the most influential sector in the world economy, and any
disruptions or variations in hydrocarbon product supply will affect the whole world economy.
Therefore, effective and thoughtful maintenance extends the life of an asset and enhances its reliability.
To prevent huge losses in production and ultimately satisfy customer needs, the maintenance jobs are
preferred to be performed during times of low demand. Thus, operation planning and maintenance
scheduling decisions are dependent and should be optimized simultaneously. Therefore, the aim
of this study is to develop an integrated mathematical model for the operation and maintenance
planning of the oil and gas supply chain. The utility of the proposed model has been demonstrated
using the Saudi Arabian HCSC. The proposed model effectively produces optimal operation and
maintenance schedule decisions. A sensitivity analysis was conducted to study the effect of critical
parameters on the obtained results.

Keywords: supply chain optimization; oil and gas supply chain; maintenance scheduling; operation
planning; energy

1. Introduction

The hydrocarbon supply chain (HCSC) comprises oil and gas networks. The oil network involves
oil fields, oil and gas separation plants (GOSPs), primary storage facilities, oil processing plants,
refinery plants, secondary storage facilities, and demand nodes. In comparison, the gas network
consists of gas fields, storages facilities, gas plants, fractionation plants, secondary storage facilities,
and demand nodes. The two networks overlap in some entities and share some products.

Few researchers have studied the optimization of operational planning under the assumption of
plant availability with full capacity, yet this assumption is practical. It is crucial to consider interruptions
or plants’ sudden shutdown when planning for operation. In the real world, plants might be totally
or partially unavailable due to periodic maintenance, shutdown, etc. Thus, production capacities
will be reduced or reach zero. To restore the plants to their full capacities and keep them in good
condition, plants should be maintained regularly and routinely to prevent unplanned failures and
increase production rates. Maintenance activities reduce the sudden breakdown and prolong the unit’s
life. Thus, operation planning models need to be more realistic and should consider the maintenance
schedule. To prevent huge losses in production and eventually satisfy customer needs, maintenance
jobs should be performed during times of low demands. Besides, connections between upstream and
downstream plants need to be considered before deciding to perform maintenance activities, especially
in complex networks such as HCSC.
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Thus, operation planning models must be more realistic and take into account maintenance tasks.
Several studies have addressed the integration of operation and maintenance planning activities within
the scope of a single machine in different areas and applications, such as the inventory control area.
According to the author’s knowledge, no work has been done to integrate operation planning and
maintenance scheduling in the supply chain.

The study aimed to develop a mixed integer programming (MIP) model to coordinate the
operation and maintenance activities of the oil supply chain plants, taking into account the best
use of available human resources and maintenance resources, while satisfying the maintenance and
operational constraints. The expected outputs of the proposed model are the production volumes,
flow quantity, exportation volume, inventory level, as well as maintenance schedules for influential
HCSC plants while maximizing profit. Maximizing profit is necessary for any organization to meet
financial obligations and support the country’s budget.

The utility of the model is demonstrated using a real case (Saudi Arabia’s oil and gas supply
chain). The model is expected to have a positive impact on the future management of this important
component of the energy sector. A valuable and practical sensitivity analysis was conducted to study
the effect of the key parameters on the obtained results. Some managerial insights will be derived and
are expected to help and guide decision-makers as they build their decisions.

The integration of operation and maintenance activities have not been studied adequately,
specifically in the supply chain context. In the area of the hydrocarbon supply chain, no work has
tackled production planning and maintenance scheduling simultaneously. Therefore, the maintenance
scheduling models of petroleum plants and integrated models in the area of inventory control will
be reviewed in this section. In the HSCS, operation and maintenance schedules have been treated
independently. For example, [1] developed a multi-objective model for the operational planning of the
Hydrocarbon supply chain under the assumption of the entities available during the planning horizon.
Few studies have studied the maintenance scheduling of single entities of a petroleum network such
as the refinery plant. For instance, [2] developed a Mixed Integer Linear Programming (MILP) model
for scheduling the preventive maintenance of units of a refinery plant. The proposed model aims to
maximize the utilization level of units while satisfying maintenance constraints.

Mendez et al. [3] developed an MILP model for the optimization of the short term blending and
scheduling problem in applications of an oil refinery. The model aims to optimize the profit and
satisfy the quality requirements. The authors developed a novel method to solve the proposed model.
Göthe-Lundgren et al. [4] proposed an MILP model for the production scheduling of the oil-refinery
problem. In the proposed model, the production process consisted of two hydro-treatment units and
one unit of distillation. The aim of the scheduling was to decide which model of operation to use in each
processing unit at each point in time in order to satisfy the demand while minimizing the production
cost and considering storage capacities. Antomarioni et al. [5] developed a data-driven model for
determining the type of maintenance that should be performed to a refinery plant. Bertolini et al. [6]
addressed an approach based on risk inspection and maintenance for maintaining activities in an
oil refinery to minimize the risk. A heuristic algorithm was utilized to solve the proposed model,
considering the time, human resources, and budget constraints.

Aissani et al. [7] presented a multi-agent approach for the scheduling of dynamic maintenance
activities for the petroleum industry using a reinforcement approach. Amaran et al. [8] proposed an
MILP model for planning the turnaround activities of interconnected plants in a chemical site. The aim
of the proposed model was to maximize the net present value. Awad and Ertem [9] developed a
stochastic model to schedule preventive maintenance for an oil refinery plant taking into consideration
the uncertainty in maintenance time. The model aimed to minimize the total adjusted tardiness times
while satisfying the amount of multiple-skill-level maintenance crew and budget limits. Xu et al. [10]
developed a proactive scheduling model for maintaining refinery plants under the uncertainty of crude
shipping delays. A mixed-integer nonlinear programming model was developed to optimize crude
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unloading, transferring, and processing at the refinery plant. Recently, [11] extended the [10] work by
integrating proactive and reactive scheduling.

Several studies have tackled the issue of coordinating production and maintenance activities,
especially in the inventory control area. The first pioneering work in this field was performed by
Rosenblatt and Lee [12], who formulated a model to optimize economic production quantity and at the
same time, generate a maintenance plan for a production system. Joshi and Gupta [13] employed the
production plans along with a history of machine failure to optimize maintenance activities. In his
dissertation, Pintelon [14] proposed an integrated model for production and maintenance planning
simultaneously. The aim of the developed model was to find out the period between two consecutive
preventive maintenance tasks. Ashayeri et al. [15] proposed an MILP model for scheduling production
jobs and the preventive maintenance of a multi-line production system. The aim of the model is to
examine the possibility of performing preventive maintenance before a new job or run the job without
performing preventive maintenance until a breakdown happened then repair the production system.
Rahim and Ben-Daya [16] reviewed inventory models that integrated production planning, quality,
and maintenance activities. Iravani and Duenyas [17] developed a policy for a production inventory
system operated by a single machine subjected to deterioration. The maintenance and production
decisions were optimized by solving the model using the Markov decision process.

Cassady and Kutanoglu [18] developed an integrated preventive maintenance and production
scheduling model. The aim of the model was to decrease the overall weighted job slowness. Cassady
and Kutanoglu [19] investigated an integrated model for maintenance and production scheduling with
the aim to minimize the overall anticipated weighted job completion time. Darwish and Ben-Daya [20]
introduced an inventory model combining preventive maintenance and production and taking into
account an inspection error. Aghezzaf et al. [21] developed a hybrid production planning and
maintenance model for a deteriorating production system. To renew and restore the system, preventive
maintenance was carried out on a regular basis, and minimal repair was carried out. Production
and maintenance plans have been developed to reduce overall production and maintenance costs.
Aghezzaf and Najid [22] extended the [21] work for a system consisting of more than one production
line which operates in parallel.

Zied et al. [23] formulated a model for a manufacturing system that was subjected to random failure
and assuming the demand was stochastic. The failure rate was assumed to be a function of machine
working time and production rate. The output of the model was an optimal production plan combined
with a preventive maintenance policy, which minimized the total cost subject to a target service level.
Berrichi et al. [24] focused on the problem of maintenance and production planning in a parallel
machine case by developing a bi-objective integrated model which enabled the manager to decide
the production assignment to machine and plan the maintenance for each machine at the same time.
Thus, machines not in duty can be taken for maintenance as per a pre-identified plan. Ayed et al. [25]
developed a model for optimizing a manufacturing system that faces random failures. Due to failure,
a random shortage demand was substituted by subcontracting from a different production system.
It was assumed that the manufacturing system failure rates are both functions of time and production
rate. A preventive maintenance schedule was determined to minimize manufacturing system decay.

Fitouhi and Nourelfath [26] formulated an integrated production and maintenance planning
model for a single machine that was subjected to random failure. Preventive maintenance is
applied periodically, and minimal repair was performed to renew the machine to its normal state.
Yalaoui et al. [27] developed a model similar to [22] work for multi-machines. Assid et al. [28] developed
a simulation model that integrated production, setup, and maintenance activities simultaneously.

Khosrojerdi et al. [29] developed a robust mathematical model for designing a power supply chain.
The model considers planning the power generation and scheduling of preventive and corrective
maintenance due to possible failures in the electricity transmission system. Cheng et al. [30] proposed
a model for a machining system in which the production rate affects both the cutting tool age and the
reliability of the machine. The developed model takes into consideration the addition to production
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scheduling, a preventive maintenance of the machine, and the tool replacement. Ettaye et al. [31]
explored the aspect of integrated production operations and maintenance planning activities at the
tactical level of multi-line systems. The policy of maintenance provides preventive substitutions at the
start of every cycle as well as minimal repairs in the event random failures occur. The aim of the model
was to minimize the total costs and concurrently determine the maximum production plan alongside
the replacement time.

Géhan et al. [32] presented a joint optimization model for integrating master production schedule
and maintenance strategy for a manufacturing system. The proposed policy allows minimizing the
impacts of potential random failures. A heuristic algorithm was invented for solving the proposed
model. Liu and Lv [33] discussed a maintenance optimization strategy for a multi-component system
with the use of the degradation information of the system. They argued that combining the maintenance
activities was cheaper than having each component of a system planned separately. Zhao et al. [34]
proposed a model for the integration of maintenance and production planning considering the
production losses due to preventive maintenance, corrective maintenance and operation dependent
failures. Hnaien et al. [35] discussed the problem of integrating production planning and preventative
maintenance for a single machine in order to maximize its production capacity. A mixed-integer linear
programming model was proposed to tackle the problem.

Askri et al. [36] proposed a preventive maintenance and production policy for a manufacturing
system consisting of parallel machines considering the lease contract. The aim of the proposed
model was to determine the economical production quantity and the preventive maintenance interval
for the machines while minimizing the total cost of production and maintenance. Amiri and
Honarvar [37] investigated a bi-objective mathematical model which integrated both tasks; preventive
maintenance planning and energy hub components repair under the assumption of stochastic demand.
Khatab et al. [38] discussed the integration of production quality and the condition-based maintenance
of a single-machine production system. The problem tackled assumes that a machine will have some
product defects after a certain level of degradation. The model considers the inspection time and
preventive maintenance to reduce off-specification products.

The oil and gas supply chain includes many petrochemical plants such as sweetening plants,
refinery plants, gas plants, and fractionation plants which constitute connected and advanced equipment
to help maximize the value of the petroleum product. To reduce the sudden breakdown, prolong
their lives, and minimize the lifetime cost of energy, both operations and maintenance costs need
to be optimized simultaneously. Similarly, renewable energy plants such as onshore/offshore wind
energy plants involve many connected units that need to be maintained regularly. Wind power is often
considered as an expensive source of energy. Therefore, coordinating operations and maintenance
decisions will reduce the costs for operations and maintenance which indicates that there is large
potential in cost-savings. Several studies have optimized operation and maintenance scheduling for
renewable energy power plants applications. For example, Rinaldi et al. [39] developed an optimization
model to coordinate the operation and maintenance activities for offshore renewable energy farm.
Martin et al. [40] studied the integration of operation and maintenance scheduling of an offshore wind
farm by conducting a sensitivity analysis to identify the most significant factors affecting availability
and operation and maintenance costs.

Rinaldi et al. [41] optimized the operation and maintenance activities of an offshore wind farm
using genetic algorithms in order to minimize operation and maintenance costs of the offshore farm
while maximizing both the availability and reliability. Helsen et al. [42] studied the optimization
of the operation and maintenance strategy of a wind farm using a big data approach with the aim
to understand the failure mechanisms of wind turbines. Nielsen and Sørensen [43] developed a
mathematical model for operation planning and maintenance scheduling of a single wind turbine.
Both condition-based and corrective maintenance are compared taking into consideration constraints
of design and inspection. Dinwoodie [44] developed a mathematical model for coordinating the
operation and maintenance decisions for an offshore wind farm. This model minimizes the lifetime

318



Appl. Sci. 2020, 10, 7531

cost of energy by optimizing both the operations and maintenance costs of offshore wind farm. Seyr
and Muskulus [45] conducted a comprehensive review on the area of operation and maintenance of
offshore wind farms.

The above literature review revealed that the integration of operation and maintenance activities
in the oil and gas supply chain area has not been tackled; however, several studies have addressed the
integration of operation and maintenance activities in the scope of a single entity in different areas
and applications such as inventory control. To the author’s knowledge, no work has appeared in the
literature to integrate operation planning and maintenance scheduling for HCSC. Therefore, this paper
fills the aforementioned gaps.

2. Materials and Methods

The focus of this research is on developing an optimization model for integrating operation
planning and the turnaround maintenance of oil and gas supply. To achieve the research objectives and
answer the research question, a systematic approach is followed as: first, the problem is formulated,
and an optimization model is developed. Second, the actual case study employed to study the utility of
the proposed model is presented. Finally, the output findings are discussed, and a sensitivity analysis
is conducted to study the impact of changes in input parameters on the optimal findings.

2.1. Problem Statement

Hydrocarbon supply chain (HCSC) is a complex and long network extending from the production
of crude oil and natural gas to marketing the oil and gas products. The entities along the HCSC
constitute oil and gas fields, oil and gas separation plants (GOSPs), primary storage facilities, oil and
gas processing plants, refinery plants, fractionation plants, secondary storage facilities, and demand
nodes. The crude oil from oil fields and/or GOSPs is pumped to oil processing plants for removing
sulfur. After removing the sulfur, the oil is shipped to international and local terminals. Locally,
the crude oil is further transformed in refinery plants into its oil by-products (i.e., diesel, naphtha,
gasoline, Liquefied Petroleum Gas (LPG), fuel oil, asphalt, and kerosene). The oil by-products are
then used to satisfy international and local demands. The associated natural gas produced at gas–oil
separation plants (GOSPs) and the non-associated natural gas produced directly from pure gas fields
are streamed to gas plants in which they are processed into natural gas liquid (NGL), methane and
hydrogen sulfide. The methane is used as a raw material by industry, and the NGL is fractionated in
fractionation plants into its gas products (i.e., ethane, propane, butane, and natural gasoline) used to
satisfy the local and international demand. A general representation of the entities of the HCSC are
shown in Figure 1.

 
Figure 1. Schematic representation of downstream oil and gas supply chain.

In the real-world, HCSC plants might be totally or partially unavailable due to periodic maintenance
and sudden shutdown. Thus, their production capacities will be reduced or reach zero. To restore
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these plants to their full capacities and keep them in good condition, plants should be maintained
regularly and routinely to prevent unplanned failures, increase plant production rates, and prolong
their life. Thus, operation planning models need to be more realistic and should consider maintenance
scheduling. The maintenance cycle and duration of petroleum plants such as oil processing plants,
refinery plants, gas plants, and fractionation plants must be identified before model formulation.

The aim of the proposed MIP model is to coordinate the operation and maintenance activities of
the HCSC plant network, taking into account the best use of available manpower and maintenance
resources, while satisfying maintenance and operational constraints. The objective of the proposed
model is to maximize the HCSC profit. The model will help to determine the optimal production,
inventory and transport volumes and at the same time, generate an optimal maintenance schedule.
Each HCSC plant is assumed to have its own storage facility to satisfy the needs during planned
and/or unexpected failures, as well as a plant shutdown. In the hydrocarbon industry, inventory is an
important and expensive asset; therefore, it is important to manage the inventory level and specify
their capacities precisely.

2.2. Mathematical Model

In this section, an integrated operation and maintenance scheduling model was developed.
The sets, indices, variables, and parameters used in the proposed model are summarized in Table 1.

After defining the notations required for model development, the constraints and objective
functions will be formulated below:

The following constraint limits the number of times a plant i has to be maintained during the
planning horizon: ∑

t∈T
Stit = ui ∀ i ∈ {N1, N2} (1)

The efficiency of the maintenance at time-period intervals is implemented by equating the
corresponding binary variables using the following equation where fi represents the length of time
between each maintenance activity for a plant i. For instance, if a particular plant i has been maintained
at time t, the second maintenance task will be performed at time t + f :

Stit = Sti t+ fi ∀ i ∈ {N1, N2}, t ∈ T (2)

The size of the crew needed to perform maintenance jobs in plant i should not exceed the available
manpower. The following constraint is added to ensure that there should be no maintenance task for
the same crew while they are maintaining other plants. In addition, no more than a fixed number of
plants can be served at the same time due to the limited number of crew available. This constraint can
be represented mathematically as follows:

∑t

τ=t−ni+1
Stiτ Rit ≤Wit ∀ i ∈ {N1, N2}, t ∈ T (3)

The material balance of the plants belong to the first level of HCSC (oil processing plant and gas
plants) are represented by Equation (4) where the material flow from the upstream is equal to the the
production volumes at each plant i. The processed quantities are then sent to the next level of the
HCSC (refinery plants; N2, fractionation plant; N2 and demand node; N3) to satisfy the local and
international demands:

∑
r

wp
it Yr

it =
∑

j∈N2
Xp

ijt +
∑

j∈N3
Xp

ijt ∀ t ∈ T, p ∈ P, i ∈ N1 (4)
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Table 1. Sets, subsets, variable and parameters notations.

Sets

i, j ∈ I : All nodes;
N1 ⊆ I : Set of petroleum plants belong to the first level of the supply chain;
N2 ⊆ I : Set of petroleum plants belong to the second level of the supply chain;
N3 ⊆ I : Set of demand nodes;
S1 ⊆ I : Set of storage tanks belong to the first level of the supply chain;
S2 ⊆ I : Set of storage tanks belong to the second level of the supply chain;

R : Set of raw material imported from upstream of the supply chain to the first level;
P : Set of products processed at level 1;
B : Set of products processed at level 2;
T : Time horizon.

Indices

t : Time periods in weeks, t = {1, 2, . . . , T};
r : Raw material imported from upstream, r = {1, 2, . . . , R};
p : Product produced at level 1, p = {1, 2, . . . , P};
b : Product produced at level 2, b = {1, 2, . . . , B}.

Decision Variables

Yr
it : Supply of raw material r from upstream to plants belong to first level i ∈ N1 at time t;

Xp
ijt : Flow of product p from plant i to customer/plant j at time t;

Xb
ijt : Flow of by-product b from plant i to customer/plant j at time t;

Ip
it : Inventory level of product p at time t at plants of level 1;

Ib
it : Inventory level of product p at time t at plants of level 2;

xp+
it , xp−

it
: Amount of product p ∈ P produced above, below the demand of demand node i ∈ N3

during time t ∈ T;

xb+
it , xb−

it
: Amount of product b ∈ B produced above, below the demand of demand node i ∈ N3 during

time t ∈ T;

Stit :
{

1 if plant i starts its maintenance at period t,
0 otherwise .

Parameters

Dti : The duration of maintenance for the plant i.
Rit : The manpower required for maintaining plant i during time t.
Wit : The total manpower available for plant i during time t.
Cai : Capacity of plant i.
CSi : Capacity of storage tank i.
Crij : Capacity of route connecting plant with plant/customer j.
Dp

jt : Demand quantities of product p at demand node j ∈ N3 at time t.

Db
jt : Demand quantities of by-product b at demand node j ∈ N3 at time t.

Lsp
jt : Lost sales of products p at demand node j ∈ N3 at time t;

Lsb
jt : Lost sales of by-products b at demand node j ∈ N3 at time t;

Cmit : Cost of maintaining plant i at time t;
Cpr

it : Cost of processing raw material r at plant i at time t;
Cpp

ijt : Cost of processing product stream Xp
ijt coming from plant i and processed at plant j at time t;

Ctp
ijt : Cost of shipping product p from plant i to customer/plant j at time t;

Ctb
ijt : Cost of shipping by-product b from plant i to customer/plant j at time t;

wp+
it , wp−

it
: Cost incurred due to producing product p ∈ P more than, less than the demand of node

i ∈ N3 at time t ∈ T;

wb+
it , wb−

it
: Cost incurred due to producing product b ∈ B more than, less than the demand of node

i ∈ N3 at time t ∈ T;
Hcp

it : Inventory holding cost of product p per period t at plants i of level 1;
Hcb

it : Inventory holding cost of product b per period t at plants i of level 2;
Spp

jt : Selling price of product p at demand node j ∈ N3 at time t;

Spb
jt : Selling price of by-product b at demand node j ∈ N3 at time t;

wp
it : Composition of product p obtained from raw materials streaming from upstream to the

plant i at time t;

wb
ijt : Composition of by-product b obtained from product p streaming from plant i to plant j at

time t;
OPECt : Market share of crude oil specified to an oil production country at time t.
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The inlet to the second level of the HCSC (refinery plants and fractionation plant) is then processed
and fractionated to its by-products based on the inlet compositions. The by-product flow is then forced
to the third level of the HCSC to satisfy the local and international demands N3, Equation (5):

∑
p

∑
i∈N1

wb
ijtX

p
ijt =

∑
k∈N3

Xb
jkt ∀ t ∈ T, b ∈ B, j ∈ N2, k > i (5)

The material balance for the storage tanks belongs to the first and the second levels of the HCSC
which are denoted by the two constraints:

∑
i∈N1

Xp
ijt + Ip

it−1 =
∑

j∈N2
Xp

jkt +
∑

j∈N3
Xp

jkt + Ip
it ∀ t ∈ T, p ∈ P, j ∈ S1, k > i (6)

The inlet flows from the upstream plants to each store tanks plus inventory left from the previous
period (t − 1) equal to the outlet from the store tank plus inventory level at time period t:

∑
i∈N2

Xb
ijt + Ib

it−1 = +
∑

j∈N3
Xb

jkt + Ib
it ∀ t ∈ T, b ∈ B, j ∈ S2, k > i (7)

The inlet flows from plants located at the second level to each store tanks plus inventory left from
the previous period (t − 1) equal to the outlet from store tank plus inventory level at time period t.

The inlet to any petroleum plant is limited to the plant’s capacity. If a plant is in maintenance,
the capacity is dropped to zero. Equations (8) and (9) represent the capacity constraints for the plants
belong to the first and the second levels of HCSC, respectively:

∑
r∈R

Yr
it ≤
(
1−
∑t

τ=t−ni+1
Stiτ

)
Cait ∀ i ∈ N1, t ∈ T (8)

∑
i∈N1

∑
p∈P

Xp
ijt ≤
(
1−
∑t

τ=t−nj+1
Stjτ

)
Cajt ∀ j ∈ N2, t ∈ T (9)

The storage tanks’ capacities are restricted by the following two constraints:

CSmin
j ≤ Ip

jt ≤ CSmax
j ∀ j ∈ S1, p ∈ P, t ∈ T (10)

CSmin
j ≤ Ib

jt ≤ CSmax
j ∀ j ∈ S2, b ∈ B, t ∈ T (11)

Exportation volumes from each crude oil type should not exceed the quota specified by OPEC to
each member in the Organization of the Petroleum Exporting Countries, Equation (12). In this study,
maintenance was carried out on a weekly basis, while demand is on a monthly basis. Therefore, Dpt

represents the set of time periods included in the demand period starting at time t, and dt denotes the
duration of the demand period:

∑
i∈N1

∑
j∈N3

∑
p∈P

∑
t∈Dpt

Xp
ijt ≤ OPECt ∀ Dpt = {t, . . . , t + dt} (12)

Equations (13) and (14) denote that the amount of sales plus shortages minus excess equals
demand at any time period t:

∑
i∈N1

∑
t∈Dpt

Xp
ijt + Xp+

it −Xp−
it = Dp

jt ∀ j ∈ N3, p ∈ P, Dpt = {t, . . . , t + dt} (13)

∑
i∈N2

∑
t∈Dpt

Xb
ijt + Xb+

it −Xb−
it = Db

jt ∀ j ∈ N3, b ∈ B, Dpt = {t, . . . , t + dt} (14)
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The profit Equation (15) involves two main parts: the revenue obtained minus expenses, which
includes maintenance costs, processing costs, transportation costs, holding costs, and the penalty costs
of producing over and under the specified demand.

Max f =
[ ∑

i∈N1

∑
j∈N3

∑
p∈P

∑
t∈T

Spp
jt Xp

ijt +
∑

i∈N2

∑
j∈N3

∑
b∈B

∑
t∈T

Spb
jt Xb

ijt

⎤⎥⎥⎥⎥⎦
−
[ ∑

i∈N1,N2

∑
t∈T

Stit Rit

t+ni−1∑
τ

Cmiτ +
∑

i∈N1

∑
r∈R

∑
t∈T

Cpr
itY

r
it

+
∑

i∈N1

∑
j∈N2

∑
p∈P

∑
t∈T

Cpp
ijt Xp

ijt +
∑

i∈N1

∑
j∈N2

∑
p∈P

∑
t∈T

Ctp
ijtX

p
ijt

+
∑

i∈N2

∑
j∈N3

∑
b∈B

∑
t∈T

Ctb
ijtX

b
ijt +

∑
i∈S1

∑
p∈P

∑
t

Hcp
it Ip

it +
∑

i∈S2

∑
b∈B

∑
t∈T

Hcb
it Ib

it

+
∑

i∈N3

∑
p∈P

∑
t

Wp+
it Xp+

it +
∑

i∈N3

∑
p∈P

∑
t

Wp−
it Xp−

it +
∑

i∈N3

∑
b∈B

∑
t

Wb+
it Xb+

it

+
∑

i∈N3

∑
b∈B

∑
t

wb−
it Xb−

it

]

(15)

2.3. Case Study

The Saudi Arabian oil and gas network was used to validate the proposed model. The entities
of the oil and gas supply chain with the corresponding units and relevant data are reported below.
The planning horizon was four years and discretized over 192 weeks. To simplify the development of
a complex HCSC network, the supply chain was divided into two subnetworks shown in Figures 2
and 3. The HCSC network is a representation of Figure from [46].

 
Figure 2. The oil network.
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Figure 3. The natural gas network.

The flow and operation of the HCSC is as follows: wellhead oil of different grades; Arabian light,
Arabian extra light, Arabian medium, and Arabian heavy produced in upstream units of the HCSC
are transported through pipelines to eight (8) oil processing plants for the processing and removal
of sulfur. The crude oil is then transported to three (3) major international terminals and (9) local
refineries where crude oil is transformed into seven (7) by-products (LPG, naphtha, gasoline, diesel,
kerosene, fuel oil, and asphalt) based on their yield. Oil by-products are then distributed to meet the
needs of local customers in the main five (5) regions of the Kingdom and three (3) major industrial
cities. Parts of LPG, naphtha, and fuel oil are used to meet international demand through terminals.

On the other side, the associated and non-associated natural gas streams produced at gas–oil
separation plants (GOSPs) and gas fields, respectively, are transported to nine (9) gas plants for the
impurity removal and recovery of hydrogen sulfide. The output gases are NGL and methane. The NGL
is supplied to five (5) fractionation plants for the further separation and fractionation into gas products
(ethane, butane, propane, and natural gasoline). Part of NGL is exported through international
terminals to meet international demand, while methane and ethane are used to meet local demand.
At the same time, propane, butane, and natural gasoline meet the demands of international and
local customers.

Entities such as oil processing plants, refinery plants, gas plants, etc. will be totally or partially
unavailable due to failures or planned maintenance. Thus, their production capacity may be reduced
or reached zero. Maintenance is used to restore these entities to their full capacity and keep them
in good condition. Each HCSC plant is assumed to have its own storage facility to satisfy needs
during planned and/or unexpected failures. In HCSC, inventory is an expensive asset that needs to
be considered. Therefore, it is essential to manage inventory levels and capacities. Therefore, when
optimizing the HCSC, there is a need to consider operation and maintenance activities in an integrated
manner. In this study, a proposed MILP model will be developed and solved. The model will jointly
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produce a maintenance schedule for each HCSC plant and operational plans such as production
volumes, transported volumes, inventory levels, shortages, and excess volumes, etc.

To develop a proposed model, the maintenance cycle and duration for oil processing plants,
refinery plants, gas plants, and fractionation plants must be specified, and logical relationships
between plants need to be considered. For example, dependent plants are preferred to be stopped for
maintenance simultaneously. In addition, similar operating units cannot be taken for maintenance at
the same time in order to prevent a huge loss in production. As per consultation with people working
in the oil industry, the average maintenance duration for the HCSC plant is between 3–4 weeks. It is
assumed that every HCSC plant needs to be maintained twice over the four-year planning horizon.
The maintenance crew required to perform maintenance activity in each HCSC plant is ten workers,
and the total number of crews available is 20. Every worker earns, on average $120 a week.

Real data were collected from [1,47,48] and were used as input to the proposed model to evaluate
its utility. To represent the above stated problem, the MIP model has been developed and solved using
the CPLEX 13.3 commercial solver [49]. All computations were done on a PC type intel (R) Core (TM)2
Quad CPU processor with 2.67 GHz and 4 GB RAM using the GAMS (General Algebraic Modeling
System) [50]. The model output will be discussed and analyzed in the following sections.

3. Results

To investigate the utility of the proposed model, the Saudi Arabian oil and gas supply chain
was employed. The entities of the HCSC with their associated units and relevant data are reported
in Section 4. The planning horizon is four years with a one week planning period. In this study,
maintenance tasks are carried out on a weekly basis, while demand is on a monthly basis.

The maintenance schedule for all HCSC entities over the planning horizon is displayed in Figure 4.
The Gantt chart shows a schedule displaying which each unit will be taken for maintenance and in
which weeks. The width of the bar indicates the duration of maintenance in weeks.

Figure 4. Maintenance schedule for all hydrocarbon supply chain (HCSC) plants (operations and
maintenance model); Color code: Orange: oil processing plants; Purple: Refinery plants; Red: Gas
plants; Light Blue: Fractionator plants.

The following conclusions can be derived to describe the Gantt chart:

• It was observed that the proposed model distributes maintenance activities uniformly and perfectly
among the HCSC plants along the time horizon of four years.
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• In addition, it is shown that the model minimizes the amount of lost sales by forcing most of
HCSC units to be maintained during the months of low demand. Almost all HCSC units are taken
for maintenance during the quarters of low demand (quarters 1, 2, and 4). The third quarter is the
summer period, which represents the months of high demand.

• The HCSC is a complex network that involves multi-connections where each plant belongs
to the upstream is connected to more than one downstream plant and even to more than one
demand node. Similarly, each plant has tanks with enough capacity to feed the associated
downstream plants during the maintenance period. This situation provides flexibility for choosing
maintenance timing. Therefore, the majority of HCSC plants were taken for maintenance randomly
at different times.

• Few connected plants have been taken for maintenance at the same time. For instance, Abqaiq oil
processing plant and RasTunura refinery plant are maintained simultaneously. Similarly, both the
Tanajib oil processing plants and PetroRabigh refinery plant are maintained at the same time.

• For natural gas plants, maintenance tasks are decoupled; almost all connected upstream and
downstream plants are maintained randomly because each downstream plant has connections
with more than one upstream unit, and the storage capacity is enough during the maintenance
time. In the sensitivity analysis section, the impact of upstream storage capacities on maintenance
schedule and arrangement will be investigated.

For the deep investigation, a sample of output for some selected plants will be displayed.
For instance, the maintenance schedule, utilization, and production for gas plants during the first year
are shown in Figure 5. The third quarter represents the months of the highest demand. Therefore,
almost all gas plants have been taken for maintenance during the months of the demand (Quarters 1, 2
and 4).
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Figure 5. Gas plants maintenance scheduling, production plans, and utilization (year 1).
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Similarly, Figure 6 shows the oil processing plants’ maintenance schedule, production,
and utilization for the first year.

Figure 6. Oil processing plants maintenance scheduling, production, and utilization (year 1).

Figure 7 indicates the fractionation plant storage capacities and inventory levels fluctuations
across the planning horizon. Production and maintenance are carried out on a weekly basis, while
demand is on a monthly basis. As a result, the inventory level accumulated over the first four weeks of
a month, then decreased as demand occurred at the end of the last week of a month.
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Figure 7. Fractionation plants inventory level and storage capacity.

Sensitivity Analysis

A valuable sensitivity analysis was conducted to show how the model was sensitive to the changes
in the key parameters. In this study, the impact of changes in selling prices, demand, and store capacity
on model output will be evaluated. Figure 8 shows the variation in profit with changes in selling price.
It is noted that as the selling price increases, the total profit linearly increases.
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Figure 8. Profatibility changes with variation in demand.

Figure 9 shows the fluctuations in profit with variability in demand. As demand increases, profit
decreases because plant and storage capacities are kept constant; therefore, lost sales increase, which
leads to customer dissatisfaction and ultimately lower profitability.
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Figure 9. Profitability changes with the variation in demand.

The impact of storage capacity variability on profitability is demonstrated in Figure 10. It is
revealed that as storage capacity increases, profit increases due to a decline in lost sales and the
satisfaction of most customer needs. Reducing store capacities by more than 55% will generate
non-profitable plans.
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Figure 10. Profitability changes with variation in store capacity.

The impact of upstream storage capacities on the maintenance schedule and arrangement is
investigated in Figure 11.
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Figure 11. Maintenance schedule for all HCSC plants (reducing the storage capacity of upstream
petroleum plants by 50%); Color code: Orange: oil processing plants; Purple: Refinery plants; Red: Gas
plants; Light Blue: Fractionator plants.

The subsequent investigations can be derived from the above Gantt chart after reducing the
storage capacity of upstream petroleum plants by 50%:

• The maintenance activities were distributed uniformly and perfectly among HCSC plants and
over the study period.

• The majority of petroleum plants are taken for maintenance during the quarters of low demands.
• Due to the reducing storage capacities of upstream plants, most of the connected plants have been

taken for maintenance at the same time because the storage capacity of the upstream units is not
sufficient to feed downstream units. For instance, the Jiddah refinery plant and Khurasaniya oil
processing plant have been maintained in the same period. Similarly, both Riyadh and PetroRabigh
refinery plants are maintained with Khurais oil processing plant.

• Likewise, RasTunura and Yanbu refinery plants were maintained exchangeably; Rastunura is
maintained during the first two weeks of the Abqaiq oil processing plant’s maintenance time,
and then Yanbu is maintained during the last two weeks of the Abqaiq oil processing plant’s
maintenance period because during the first two weeks of maintaining the Abqaiq plant, inventory
capacity is sufficient to feed only RasTunura refinery plant and vice versa for Yanbu refinery plant.

• For natural gas petroleum plants, Jaymah fractionation plant is recommended to be maintained
with Uthmaniya and Berri gas plants. Similarly, the Yanbu fractionation plant and Yanbu gas
plants are maintained at the same time.

To determine the significance of integration between operations and scheduling activities during
modelling, the model was resolved without integration (only maintenance model). The obtained
maintenance schedule is depicted in Figure 12.

330



Appl. Sci. 2020, 10, 7531

Figure 12. Maintenance schedule for all HCSC plants (maintenance model only); Color code: Orange:
oil processing plants; Purple: Refinery plants; Red: Gas plants; Light Blue: Fractionator plants.

It appeared that the HCSC units were taken for maintenance on a random basis during the
planning period without taking into account the seasons of high or low demand, which would
inevitably result in a huge loss of production and ultimately does not satisfy most customer needs.

4. Discussion

In this study, an integrated operation and maintenance model for both the oil and gas supply
chain was developed. The model integrated and generated operation plans and maintenance schedules
for the HCSC plants jointly. The integration between the operation and maintenance activities was
studied and compared to a model without integration. The obtained results justified the importance of
the proposed model. The results of the model were promising in which the model forced all the HCSC
plants to be maintained during the months of low demand to prevent huge losses in the production
and satisfy most of the demand and minimize lost sales as much as possible. The output of the model
shows the role of storage in satisfying needs during plant maintenance, as well as the impact of storage
capacities on coupling or decoupling maintenance tasks for connected plants. The model can be
extended by addressing the uncertainty of input parameters such as the demand, price, etc.
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