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A Novel Artificial Pancreas: Energy Efficient Valveless Piezoelectric Actuated Closed-Loop 
Insulin Pump for T1DM
Reprinted from: Appl. Sci. 2020, 10, 5294, doi:10.3390/app10155294 . . . . . . . . . . . . . . . . . 125

v



Amy Trappey, Charles V. Trappey, Chia-Ming Chang, Routine R.T. Kuo, Aislyn P.C. Lin 
and C.H. Nieh

System DesignVirtual Reality Exposure Therapy for Driving Phobia Disorder: 
and Development
Reprinted from: Appl. Sci. 2020, 10, 4860, doi:10.3390/app10144860 . . . . . . . . . . . . . . . . . 143
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1. Referees for the Special Issue

A total of 23 manuscripts were received for our Special Issue (SI), of which 3 manuscripts
were directly rejected without peer review. The remaining 20 articles were all strictly reviewed
by no less than two reviewers in related fields. Finally, 12 of the manuscripts were recom-
mended for acceptance and published in Applied Sciences-Basel. Referees from 16 different
countries provided valuable suggestions for the manuscripts in our SI, the top five being
the USA, Italy, UK, DE, and Spain. The names of these distinguished reviewers are listed in
Table A1. We would like to thank all of these reviewers for their time and effort in reviewing
the papers in our SI.

2. Main Content of the Special Issue

As explained by Aerts [1], we are standing on the shoulders of giants when looking
to the development of the research field of Human Health Engineering, i.e., technol-
ogy for monitoring the physical and/or mental health status of individuals in a variety
of applications, as it evolved from seminal work of, among others, Walter Cannon [2],
Norbert Wiener [3], and Ludwig von Bertalanffy [4]. For more detailed information on the
background and history of the field of Human Health Engineering, the reader is referred
to the editorial of Aerts [1] written for the first volume of the special issue on Human
Health Engineering.

The 12 presented papers in this second volume are grouped according to their con-
tributions to the main parts of the monitoring and control engineering scheme applied to
human health applications, namely papers focusing on measuring/sensing of physiolog-
ical variables [5–8], papers describing health monitoring applications [9–12], and finally,
examples of control applications for human health [13–16]. As indicated by Aerts [1], it is
envisioned that the field of human health engineering is complementary to the field of
biomedical engineering as it not only contributes to developing technology for curing pa-
tients or supporting chronically ill people, but also covers applications on healthy humans
(e.g., sports, sleep, and stress) and thus also focuses on disease prevention and optimizing
human well-being more generally.

The first series of articles in this SI describes methods for (improved) measuring and/or
sensing of health-related physiological signals. The work of Arciniega-Montiel et al. [5] con-
tributes to developing methods for improving the measuring reliability of fetal monitors, used
in the case of high-risk pregnancies, on the basis of probabilistic models. Al-Halhouli et al. [6]
demonstrated the feasibility of using a wearable and stretchable inkjet-printed strain gauge
sensor for estimating respiratory rate, which is a key vital sign variable in many medical
and health applications. In their study, Alsayed et al. [7] developed an automated data ac-
quisition system for measuring pinch and pulling forces in patients recovering from stroke.
Nishio et al. [8] investigated a method for quantifying the functional decline in proprioceptors
in patients with low back pain using vibrations with sweep frequencies covering the entire
range of response frequencies of proprioceptors.

The second series of articles describes applications of human health monitoring.
In their paper, Cheng et al. [9] described a method combining an electroencephalography

Appl. Sci. 2021, 11, 7844. https://doi.org/10.3390/app11177844 https://www.mdpi.com/journal/applsci
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image-based method with a convolutional neural network to predict drowsiness in drivers,
which is a major cause of vehicle accidents. Yang et al. [10] developed a biometrics monitor
allowing to verify individuals on the basis of an interval-based linear discriminant analysis
algorithm applied to electrocardiogram signals. Visnovcova et al. [11] used linear and
non-linear analyses of electrodermal activity signals for quantifying sympathetic dysreg-
ulation as a non-invasive potential biomarker for monitoring anorexia nervosa-linked
cardiovascular risks. In the paper of Jin et al. [12], a system is described for monitoring gait
in (elderly) people using toe-area activity as a predictor for stumbling risk.

Finally, the third series of articles in this SI discusses examples of control applications
for human health management. Kaçar et al. [13] developed a prototype of a closed-loop
controlled valveless piezoelectric insulin pump for keeping the blood glucose level of
Type 1 diabetes mellitus patients within desired ranges. In their paper, Trappey et al. [14]
developed a system for virtual reality-based exposure therapy for treating people suffering
from driving phobia disorder using bioresponse measurements to optimise fear-based
driving scenarios. Guttiérez et al. [15] reported about a serious game platform with haptic
feedback and EMG monitoring developed for upper limb rehabilitation of spinal cord
injury patients. Aprile et al. [16] demonstrated the feasibility of optimising the efficiency
of a robot-assisted rehabilitation area for restoring upper limb function, allowing one
physiotherapist to supervise four patients.

3. Conclusions

This SI presents recent contributions in the growing field of human health engineering.
The contributions highlight research focusing on different aspects of the monitoring and
control engineering scheme (sensors, sensing systems, monitoring approaches, and control
algorithms) as applied to human health. Applications cover both healthy and (chronically)
ill people and this is in relation to physical as well as mental processes.

The combination of ever growing possibilities in sensors and (wearable) sensing tech-
nology and powerful artificial intelligence tools is expected to further boost the field of
human health engineering, which will become increasingly ubiquitous in our society and will
increasingly assist people of all ages in living healthy, high quality, and productive lives.

Funding: This special issue frames within research funded by the European Union’s Horizon 2020
Research and Innovation programme under the Marie Skłodowska-Curie grant number 645770.

Acknowledgments: We would like to sincerely thank our Section Managing Editor, Marin Ma
(marin.ma@mdpi.com), for all the efforts she has made for this special issue in the past year.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The perinatal mortality rate is very high throughout the world. A fetal monitor may be
used remotely, and this would tackle the problem of continuous monitoring of high-risk pregnancies.
There is evidence that current technology is of low reliability, and, therefore, of low precision to
identify fetal health. In medical technological implementation, a safe, efficient, and reliable operation
must be guaranteed, and the main problem is that remote fetal monitor gathers just a few samples,
so the hypothesis of classical theory is not met. We are proposing an approach that improves the
data’s lack of reliability that accompanies the use of a remote fetal monitor. The method refers to how,
by using the existing technologies and the initial experimental data, it is possible to apply probabilistic
models that are truly representative of each application. This leads to the characterization of properties
of the statistics used to generate a representative probabilistic model without the need to consider the
hard suppositions. Results show that, for every case study, it was possible to improve estimations of
measurement uncertainty. The proposed method is a useful tool to increase the reliability of medical
technology, especially for pieces of equipment where a health care professional is not available.

Keywords: remote fetal monitor; measurement uncertainty; standard deviation; Monte-Carlo method
(MMC); efficient estimator

1. Introduction

The perinatal mortality rate is very high throughout the world. According to the World Health
Organization (WHO), it is estimated that 800 women die every day due to pregnancy or birth-related
causes. From all pregnancies, four out of ten women are at high risk. There is no hospital infrastructure
for the timely diagnosis of fetal distress due to overpopulation.

Continuous remote monitoring technology would provide a solution to solve some problems in
high-risk pregnancies. Patients would no longer need to be at the hospital, and, from the comfort
of their homes, would directly carry out and forward the studies prescribed by their physicians.
The monitoring equipment could be configured for providing the corresponding studies directly by
the patient without the need of a specialist. Patients may feel calm and reassured, knowing that their
studies, once transmitted by the monitor, will be checked and assessed by a specialist.

Fetal monitoring technology faces reliability issues. When compared against intermittent
auscultation, the use of technology reduces perinatal mortality [1–3]. However, some other studies
from the 1970s and 1980s did not show similar results [4], and the contribution of technology to reduce
perinatal mortality, as observed in the last decades, is still under discussion. On the other hand, the
increase in rates of births via Caesarian section has become a matter of public interest in many countries,
and there is a general belief that continuous monitoring during childbirth (CTG) has contributed to this.

Appl. Sci. 2020, 10, 3274; doi:10.3390/app10093274 www.mdpi.com/journal/applsci5
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CTG is subject to a poor observer interpretation, particularly while assessing variability and
de-acceleration, in addition to the classification of tracing [5–7]. Diagnosis depends on the criteria used
for tracing analysis [8], so objective guidelines are required to provide a practical approach.

It is necessary to have an approach that improves the data reliability produced by the remote
fetal monitor to increase the diagnosis precision [9,10]. Fetal monitoring systems should yield reliable
data, regardless of the conditions of use, such as location, installation, number of samples, etc., for the
revision of fetal health and the prompt response of healthcare professionals.

In medical technology implementation, a safe and efficient operation must be guaranteed [11].
Attention is focused on the practical implementation of technology within a sanitary environment.
The simple fact of having the necessary technology is not a whole solution. The processes of planning,
evaluation, selection, and implementation of new technologies, all in concept and context, must
be considered. This may imply a direct solution to specific assessments of sanitary technology.
When developing new technology, guaranteeing precision and reliability for the chosen environment
contributes to achieving safer results and sound medical attention.

Under these conditions, the main problem is to reassure the reliability of the data obtained by the
remote fetal monitor, since health-care professionals would not be present, and there would be only
a few samples of variables (heart rate (HR), uterine activity) that lead to the detection of anomalies.
Therefore, the analysis of measurement uncertainty becomes necessary.

For reliable estimation of measurement uncertainty, it is necessary to guarantee some properties
(distribution independence, a large sample size, and a normal distribution). Health-care professionals
are not familiar with the measurement process carried out by remote fetal monitoring, and, in general,
only have a few samples. This means it is not possible to verify the hypotheses required so that the
evaluator may have the properties required by a good estimator. By means of a statistical approach,
several works related to uncertainty estimation have been conducted, for cases where the hypothesis
of classical theory is not verified.

A fetal monitor is a stochastic process that has few samples available. Therefore, it is very difficult
to model by using conventional methods. Different approaches have been used when the hypothesis
of the classical theory is not verified, including the Monte-Carlo method (MCM) [12], parametric and
non-parametric theory formulation [13], adaptive estimators [14], spectrum-based estimation [15],
stochastic gradient [16], and mean square error [17] estimators with Cramer–Rao type restriction and
reliability estimation under measures degradation [18].

The MCM is a widely used tool for modeling stochastic systems since with a large enough sample,
the probability that an estimator will deviate from the expected value can be as small as required.
The MCM is used to get information related to estimator properties. The parameters of softening
and form of estimating function are adjusted to modify the performance of maximum probability
estimators. The MCM can be used for modeling unknown distribution functions. The parametric and
non-parametric models are wide probability function estimation methods; theory formulation has been
developed considering local asymptotic length and restrictions in sample size. Adaptive estimators
that guarantee the consistency in finite samples for any distribution function are helpful in the fetal
monitor application. The term adaptive integrates the concept that such estimators adapt to the sample
using data to estimate a non-parametric density function. Adaptive estimators have been applied
using the least-squares method with finite samples, reaching substantial increases in efficiency, but
with hypotheses that are difficult to verify for applications with a few samples. The spectrum-based
method is useful when the relationship between observations and parameter model is noisy, potentially
non-linear, and not invertible. The stochastic gradient estimation is a numeric method that is stable
and robust for fitting parameters and predicting standard errors well. Even though only the typical
case, with some modifications, was considered, the hypothesis that let the Cramer–Rao type limit such
estimators have been changed. The mean square error can be improved by implementing estimators
with parametric restrictions that do not satisfy certain conditions. With a new definition of bias in
restricted surroundings, a Cramer-Rao restriction type was determined for the pondered mean square
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error estimators, for normal distribution only. Correlated perturbations were not considered. The
reliability estimation for a system whose degradation measures are monotonous, can obtain the fault
time distribution, and, therefore, system reliability.

The remote fetal monitor has a context application. The aim of this work is to obtain an integral
maternal-fetal watch program, integrated by a technological platform that allows the timely detection of
perturbations in baby heart rate, that enable us to remotely send information to an obstetric monitoring
center for timely and reliable diagnosis of the patient.

When modeling a process, the most complicated component of the model is represented in
probabilistic terms, and the hypotheses taken as valid in many situations are not met, and the
results are not valid. This work presents a proposal of how, using the existing theory, with a
deterministic model and the Monte-Carlo method [12], it is possible to apply probabilistic models that
are genuinely representative of the application, and that characterize the statistics’ properties used. In a
specific application, the statistical properties of interest are generally mean, variance, extreme values,
dependence on sample size, bias, etc. [13–17]. In general, only the mean and variance parameters
are considered to obtain a probabilistic model because they characterize the uniform distributions
that represent the worst-case scenario (total ignorance of the model) and the Gaussian distributions
considered as typical or normal. However, to estimate these parameters, it is necessary to carry out
a sampling to obtain more information about the system model. This additional information is not
used in practice. This work proposes a new approach to include experimental data and to generate a
representative probabilistic model without considering difficult suppositions. The suggested procedure
is applied to a fetal monitor to correct the standard deviation estimation considering the noise type
that occurs during the regular operation of the device.

2. Uncertainty Estimation Model

One of the main problems in metrology is the estimation of measurement uncertainty. According
to [19], “estimated standard deviation associated to output, or measurement estimation is called
combined standard deviation, and it is determined from the estimated standard deviation associated
for each estimation of output, called standard uncertainty”. In general, the process to be measured is
ignored, and regularly, there are only just a few samples available. Measurements have defects that
lead to an error in the result of such measurements. Although it is not possible to compensate for the
random error in a measurement result, its effect can generally be reduced by increasing the number of
observations until the expectations or expected value becomes zero.

Modeling of stochastic systems has been thoroughly studied, considering the hypothesis of the
great numbers law. However, a measurement system is a stochastic system, with a limited or finite
number of samples. The remote fetal monitor is a stochastic measurement system with a limited
number of samples. Below an uncertainty estimation model for a measurement system with limited
samples is presented.

A probability space (Ω,F0, P) for a random variable X : Ω→ R
n where the conditional expectation

E
{
(·),F0

}
concerning to sigma-algebra F0 =

{
φ, Ω

}
[20] may be expressed as

E{X|F0} = E{X} (1)

This means that the best estimation for the random variable, when there is no a priori knowledge
of the process, is the mathematical expectation, and the associated standard uncertainty (uc) may be
obtained from the probability density function (PDF) of the random variable [21]. Therefore, the mean
is proposed to estimate the following sample, and standard uncertainty is obtained from the standard
deviation estimator.

Let A be the event where a device does not fail, the reliability is by definition P(A) if the indicator
function is considered χA,

χA(ω) =

{
1, ω ∈ A
0, ω � A

(2)
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This means that the problem of calculating reliability is changed for the problem of estimating the
expected value, for which the use of the Monte-Carlo method in this work is necessary.

In the estimation of the mathematical expectation, the equation regularly used is

Xn =
1
n

n∑
k=1

Xk, (3)

being n the sample number.
In the normal case with independent samples, the mean estimator is optimal in the sense of the

mean square error. In addition, the large number theorem is consistent for large samples, and its
distribution is known by the central limit theorem [20], and is efficient [22].

In the general case, the estimator Xn is a random variable that depends on:

1. Sample size, n
2. Distribution, FX

3. The degree of probabilistic dependence between samples, in addition to the fact that only linear
or correlation dependence is considered ρXiXj

.

To measure the quality of this, estimate the standard deviation is used (called uncertainty in the
metrology area). This standard deviation is also estimated; this is done with Sn defined as

Sn :=
√

S2
n, (4)

S2
n :=

1
n− 1

n∑
k=1

(xk − xn)
2, (5)

for independent samples with the same distribution we get,

E
{
S2

Xn

}
=

E
{
S2

X

}
n

=
σ2

X
n

. (6)

So, the problem of determining the quality of the estimate focuses on determining σX. However,
we must identify the restrictions in the estimation.

A widespread practice is to consider that if{
S2

n

}
= σ2, (7)

then,
E{Sn} = σ. (8)

Nonetheless, defining by z a random variable,

z(ω) = 1, ∀ ω ∈ Ω, (9)

and applying Cauchy–Bunyakowskii–Schwartz inequality [20],

E{Sn} = E{Snz} ≤
√

E
{
S2

n

}
E
{
z2} = √

E
{
S2

n

}
, (10)

that is
E{Sn} ≤ σ, (11)

this inequality depends on all these three: sample size n, distribution function FX, and correlation
dependence ρXiXj .

8



Appl. Sci. 2020, 10, 3274

For a sample, X = (X1, · · · , XN) corresponds a density function fX(X,θ) for which the score V(θ)

is defined
V(θ) ≡ VX(θ)log fX(X;θ), (12)

and the Fisher information matrix

I(θ)E

⎧⎪⎪⎨⎪⎪⎩
[
∂V(θ)

∂θ

]2
⎫⎪⎪⎬⎪⎪⎭. (13)

The Cramer–Rao theorem is fulfilled [20] where if θ̂n = θ̂(X1, . . . , Xn) is an unbiased estimator of
θ∞ then

Eθ
{
‖ θ̂n − θ ‖2

}
≥ 1

nI(θ)
(14)

and also depend on sample size n, distribution FX, and correlation dependence ρXiXj .
This means that in the case of the fetal monitor where there are few samples, it is

possible to determine the boundaries for the reliability estimation and its uncertainty using the
Monte-Carlo method.

3. Uncertainty Estimation Approach

This section describes a proposed approach to obtain a reliability estimator for heart
rate measurement.

Reliability R, the probability that the measurement is correct, is a function of the measurement
device, the perturbations represented by its distribution function and its correlation, in addition to the
number of data used in the estimation.

To estimate the reliability and the uncertainty in the measurement, the following procedure
is proposed:

1. System model: device model and perturbation model.
2. Distribution function estimation of the perturbations and correlation function.
3. Estimators properties analysis using the Monte-Carlo method.
4. Correction factors calculation to compensate estimators.
5. Confidence intervals for the R estimation.

3.1. System Model

In the block diagram of Figure 1, a system of single input uk and single output yk (SISO) is shown
in simplified form. Noise ξk presence is assumed a priori, and, in this case, white noise properties are
attributed, which is presented as additive noise rk in the system output.

 

(a) 

 

(b) 

Figure 1. Single-input and single-output (SISO) system: (a) With white noise to the input; (b) With
additive noise to the output.

It is considered that an input–output data set of the system is available (yk, uk; k = 1, 2, · · · , n)
where n is the measurement number taken from the input and output for modeling.

9
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3.1.1. Device Model

To describe the dynamic behavior from a set of input and output measurements, an auto-regressive
and exogenous (ARX) [23] (p. 81) linear model structure is assumed. A scheme for system modeling is
shown in Figure 2.

 
Figure 2. Scheme for linear system modeling based on auto-regressive and exogenous (ARX) structure.

The ARX structure model is
yk = φ

T
k θ+ ξk, (15)

φk = [yk−1, · · · , yk−l, uk, · · · , uk−l]
T is the regression vector, θ = [a1, · · · , al, b0, · · · , bl]

T is the
parameter vector, while l is the system degree. Based on Equation (15), the relationship between the
input and the output in a compact way can be written in the following vector form.

Y = Φθ+ Ξ, (16)

where Y = [y1, y2, · · · , yn]
T, Φ =

[
ΦT

1 , ΦT
2 , · · · , ΦT

n

]T
, and Ξ = [ξ1, ξ2, · · · , ξn]

T.
With this information and applying the least-squares method [24] (pp. 17–27), a deterministic

model is obtained which represents the fetal monitor dynamic, the solution is

θ̂ =
[
ΦTΦ

]−1
ΦTY. (17)

Finally, the relationship between white noise ξk in the system input and additive noise rk in the
system output for the ARX model structure is

R(z) =
1

1−A(z)
Ξ(z), (18)

where A(z) = â1z−1 + · · ·+ âlz−l.

3.1.2. Perturbation Model

The probabilistic part is modeled by a stochastic process {ξk}, which must be strongly stationary,
uncorrelated, with a cumulative distribution function (CDF) FΞk . These hypotheses are experimentally
validated. The probabilistic model is used to determine the properties of the estimators used to
determine the heart rate; considering that the noise ξk is naturally present and that it is transformed
into rk by the system during the route that the signal travels from the fetus heart through amniotic
fluid, body fat, etc., to the fetal monitor output. Figure 3 shows a block diagram of the process for
estimating the error distribution function FΞk .

10
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Figure 3. Estimation process of the error distribution function FΞk .

3.2. Distribution Function Estimation of the Perturbations and Correlation Function

For each patient, a stochastic model is determined, which describes the perturbation present in
the fetal heart rate signal, which exists due to the individual anatomical characteristics of the patients,
amniotic fluid, body fat, etc.

The stochastic model is obtained from data acquired by clinical studies using the patient’s fetal
heart rate monitor. Each clinical study (sample) is a set of measurements (yk, k = 1, 2, · · · , n).

Using the data-normalized histogram, the probability density function (PDF) is estimated for n
samples fΞn , numerically integrating and using some interpolator an estimator is obtained for the
probability distribution function FΞn of the perturbations, which is used to build a ξ simulator required
in the Monte-Carlo method. Each sample that is added improves the probability distribution function
estimation, so that, the more samples available, the better the estimator.

To guarantee that the bias of the expectation estimate is zero, the correlation between the
perturbation and the regression vector used in the least-squares model must be verified as zero. For this,
a correlation degree estimate is made [20,22] that exists between the perturbations and the measured
signal. The correlation is defined as follows

ρXY(k) :=
E
{
Xj+kYj

}
√

E
{
X2

j+k

}
E
{
Y2

j

} , (19)

where ρXY represents the correlation function between the random variables X and Y. This magnitude
is estimated using

ρ̂XY(k) =
1
n
∑n

j=1 Xj+kYj√
1
n
∑n

j=1 X2
j+k

1
n
∑n

j=1 Y2
j

. (20)

If there is a substantial correlation, a filter must be designed so that the perturbation behaves with
white noise features.

3.3. Estimators Properties Analysis Using the Monte-Carlo Method

After obtaining the models of the system and the perturbations, it is necessary to estimate the
value of the fetal heart rate. Simulated samples from the inverse distribution function F−1

Ξn
F_ (Ξ_n)

were used for this estimation. To carry out this task, the sample mean Yn and the sample deviation Sn

were used. The mean is useful for determining the fetal heart rate value and the standard deviation for
quantifying the quality of the estimate, known as uncertainty in the metrological area.

However, it should be noted that for these estimators to be used properly, it is necessary to
determine their properties specifically for each patient. The most important property to determine is
how the length of sample K impacts the distribution function.

On the other hand, the sample mean Yn and the standard deviation Sn are in turn random
variables that are characterized by their probability distribution function FYn

and FSn , respectively.
These functions in classical theory can be approximated with large samples and hypotheses of
probabilistic independence, which turned out to be difficult to verify in this application. To solve this
mathematical problem, the Monte-Carlo method is proposed as a tool to determine these distribution
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functions without the use of these hypotheses. The procedure is presented in Figure 4, where N is the
number of samples used to simulate Ξk and K the number of samples to determine FYn

and FSn .

 

Figure 4. Simulation procedure with the Monte-Carlo method (MMC) to determine the variance s2
k .

This procedure allows us to estimate the variance σ2 because if K is large, the following is fulfilled

E{Y} = E
{
YK

}
, (21)

S2
K =

1
K − 1

K∑
i=1

[Yi − E{Y}]2, (22)

σ2 = E
{
S2

K

}
. (23)

3.4. Correction Factors Calculation to Compensate Estimators

This procedure removes the constraints that exist to achieve an adequate estimate of reliability
and provides the factors that must be included to eliminate the estimators’ bias. These factors are

1. Additive factor for Yk

([
ΦTΦ

]−1
ΦTΞ

)
2. Multiplicative factor for Sk (Ck)

In our case, the Φ and Ξ turned out to be uncorrelated, so this additive term is close to zero and
was not considered in this study.

The multiplicative factor for Sk is obtained from the Cauchy–Bunyakowskii–Schwartz inequality
described in Equation (10). In many cases where E{Sk} < σ, the question is how far is E{Sk} from σ, so
we will introduce a factor ck that eliminates this bias, that is to say

E{ckSk} = σ (24)

12
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The new standard deviation estimator σwill be ckSk, this factor is estimated using the Monte-Carlo
method and the relation

ck =

√
E{(Y − E{Y})2}√

1
k−1

∑k
i=1

(
Yi −Yk

)2
=
σ
Sk

. (25)

3.5. Confidence Intervals for the R Estimation

When clinical studies are performed on patients, new data are obtained, which must be analyzed
to determine if they are correct. For carrying out this, confidence intervals are constructed on-line to
ensure that the test is correct with a confidence level α.

The last sample’s variations are analyzed. These variations are measured by standard deviation
(s), which is calculated by means of the sn estimator, considering the process defined by Y and the set
of samples.

In a process defined by Y with N clinical studies set Yn, (n = 1, 2, · · · , N), each clinical study has
M samples [Yn]m, (m = 1, 2, · · · , M). The variations are measured by the standard deviation sY, which
is estimated through the corrected sn.

From a statistical point of view, a measurement is considered incorrect if it is an atypical value.
The criteria to decide is built by considering the probability that the current measurement will fall
outside a range defined by a standard deviation estimator, considering the necessary compensations
for the used estimators.

Now, we will determine a criterion to eliminate measurements that, with a high probability, may
be wrong, since values will be far from most of the measurements, known as atypical data.

To do so, the Chebyshev approximation [25] is used

P

⎛⎜⎜⎜⎜⎝
∣∣∣Y − μY

∣∣∣
σY

≥ k

⎞⎟⎟⎟⎟⎠ ≤ 1
k2 , (26)

P

⎛⎜⎜⎜⎜⎝
∣∣∣Y − μY

∣∣∣
σY

< k

⎞⎟⎟⎟⎟⎠ ≥ 1− 1
k2 , (27)

where μY and σY are the mean and the standard deviation of the process, respectively.
If no further information is available but considering that new information is arriving every time

a measurement is taken, the following statistics are considered

P

⎛⎜⎜⎜⎜⎝
∣∣∣Y − μY

∣∣∣
c sY

< k

⎞⎟⎟⎟⎟⎠ ≥ 1− 1
k2 . (28)

where c is a correction factor due to the finite number of samples, and to the law of standard
deviation spread?

Since μY, sY, and c are typically unknown, these parameters are replaced by their estimators yn,
sn, and cn, respectively. Finally, the selection criterion is obtained

P

⎛⎜⎜⎜⎜⎝
∣∣∣Yn − yn

∣∣∣
cnsn

< k

⎞⎟⎟⎟⎟⎠ ≥ 1− 1
k2 , (29)

which is equivalent to (
Yn − yn

)2
< βs2

n, (30)

where β = k2c2
n, and cn is the correction factor that corresponds to the nth clinical study.

Figure 5 shows the flowchart of the reliability estimation algorithm based on Chebyshev’s
inequality.
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Figure 5. Reliability estimation algorithm.

3.6. Remote Fetal Monitoring Equipment

A fetal monitor was developed to provide a reliable remote monitoring of both mother and fetus
during the pregnancy process. The fetal monitor has the capacity of recording fetal heart rate, uterine
activity, and fetal movement. Its compact design allows the mother to use it herself. In addition,
the fetal monitor allows the recording of studies, and features the capacity to send them directly to the
obstetric monitoring center (OMC) to be evaluated by a specialist.

The purpose of this medical device is to provide monitoring of high-risk pregnancies, especially
those in marginal areas, who cannot go to a clinical specialist periodically to reduce fetal distress, and,
therefore, perinatal mortality in Mexico.

The fetal monitor is an embedded system, which includes a digital signal processor that allows
for an adequate calculation to achieve higher precision in fetal heart rate reliability and signs of uterine
activity. The algorithm developed included the proposed methodology of this work to guarantee
the reliability of distance measurement. This instrument has enough hardware resources, such as
remote connectivity by means of a mobile phone, through the general package radio service (GPRS),
geo-referenced transmission, an alarm indicator for the patient, a speaker to listen to baby heartbeats,
a flash memory to store studies and two Doppler ultrasound sensors, of 1.2 MHz in frequency, and
350 mW for output power, for the acquisition and processing of fetal monitoring variables. A block
diagram with these functions is presented in Figure 6.
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Patient alarm indicator 
Internal battery 

Intuitive Display 
for easy use 

Speaker to play the 
baby’s heartbeat 

sound 

Digital signal processing 
system for data 

acquisition and records 
storage 

Modern GPRS for 
remote connectivity 

Figure 6. Scheme of the fetal monitor used for testing.

3.7. Experimental Clinical Studies

During experimental tests, several fetal monitoring instruments, in remote sites, were connected
to patients and sent data signals to the OMC based at the Central Hospital. The patients were informed
about their data usage and consented to publish their data for research purposes.

Data collected at OMC were primary signals without processing, that is, directly from the
analog–digital converter of the instrument. For each test, a set of data with fetal heart rate and signs of
uterine activity was stored. Table 1 shows the clinic studies in detail, to validate the proposed approach.

Table 1. Clinical Studies for approach validation.

Patient Name Age (Year) Studies Number Place Distance from OMC

Subject 1 37 42 Toliman 81.7 Km
Subject 2 41 45 Jalpan de Serra 187 Km
Subject 3 35 40 Querétaro 9.1 Km
Subject 4 26 43 Amealco de Bonfil 71.1 Km
Subject 5 43 32 Querétaro 9.4 Km
Subject 6 18 34 San Luis Potosí 215 Km
Subject 7 28 36 Querétaro 10.7 km
Subject 8 31 38 Querétaro 18.3 Km
Subject 9 19 43 Colima 576 Km

Subject 10 21 47 Querétaro 13.5 Km
Subject 11 39 51 Querétaro 30.4 Km
Subject 12 42 53 Querétaro 13.1 Km
Subject 13 29 54 El Marqués 7.1 Km
Subject 14 33 57 El Marqués 6.8 Km
Subject 15 36 58 Salamanca 89.7 Km
Subject 16 25 58 Puebla 329 Km
Subject 17 42 58 Guadalajara 378 Km
Subject 18 45 61 Querétaro 2.1 Km
Subject 19 38 75 Querétaro 17.4 Km
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Experimental tests were conducted in the State of Querétaro. In the first stage, health care
professionals of a Women and Child hospital in the city of Querétaro assessed patients. Patients were
trained to handle the equipment at home, to step by step visualize data on the fetal monitor screen, and
even to place two sensors on the abdominal region of the patient. One sensor measures the fetal heart
rate, and the other measures the uterine activity of the patient. In the second stage, experimental tests
for the fetal monitor were conducted with patients from remote sites. Data generated by each patient
were sent to an OMC in the city of Querétaro. The locations of patients transmitting their records were
in many different areas of the State of Queretaro, or in places nearby the State.

Distances from these sites to the OMC were 180 Km on average. Nineteen patients were evaluated,
with around 40 studies for each patient. The number of measurements for each clinical study was 900,
on average, to prove the approach proposed in this work, providing measurement reliability for fetal
heart rate and uterine activity. Figure 7 shows some images of the sites where tests were conducted.

 

Figure 7. Map showing the location of the first four patients from Table 1.

Samples for each medical device were received and stored at OMC. The objective at this stage was
to generate a database of unprocessed signals, containing bioelectrical perturbations, to implement
and to validate the proposed methodology. Only fetal heart rate signals were processed.

4. Results and Discussion

Data from clinical studies carried out on 19 patients were used for system modeling and validating
the proposed approach. The clinical study data was divided into two subsets, the first to model the
system (data for modeling) and the second to validate the proposed approach (data for validation).
The proposed approach was implemented in MATLAB® for building the model, calculating the
compensated uncertainty, and evaluating the reliability.
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4.1. Fetal Monitor Model

To obtain the dynamic model of the fetal monitor, a calibrated signal generator was used
to generate an input signal uk for obtaining an output yk from the fetal monitor device used in
this study. With these data and applying the least-squares method described in Section 3.1.1,
a second-order linear deterministic model l = 2 was estimated, the ARX model parameters were
θ̂ = [1.1381,−0.2829, 0.0985,−0447, 0.0907]. The dynamic model response of the fetal monitor is shown
in Figure 8.

 

Figure 8. Fetal monitor model simulation results.

4.2. Stochastic Model

A probabilistic model for each patient was calculated from the experimental data set (data for
modeling) acquired from clinical studies carried out on the 19 patients under study. From the fetal
heart rate measurements, the perturbations ξk was obtained, using the dynamic model of the fetal
monitor applying Equation (18), for each patient. Data for ten clinical studies per patient were used
to obtain the probabilistic model. From perturbations histogram, estimations of probability density
functions fΞn and distribution functions FΞn were obtained, finally a nonparametric model of the
inverse function F−1

Ξn
was available for each patient. The direct and inverse distribution functions were

estimated by using a linear interpolation by parts [26]. Using the Monte-Carlo method with a large
data number of the amount of N = 105 and K = 103, the probabilistic models F−1

Ξn
were simulated

applying the procedure described in Figure 4 and s2
K was estimated to calculate the variance using

σ2 = E
{
s2

K

}
. The probability distribution function models of the patients used in the simulation are

shown in Figure 9, and Table 2 shows the estimated standard deviations and data number n used in
the FΞn modeling.
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Figure 9. Modeled distribution functions of the patients.

Table 2. Estimated variance and data number used in stochastic modeling.

Patient Name σ n

Subject 1 7.75 12731
Subject 2 10.98 13821
Subject 3 12.77 9882
Subject 4 13.97 12062
Subject 5 9.19 13472
Subject 6 8.54 12778
Subject 7 10.52 13417
Subject 8 9.44 13125
Subject 9 11.13 12156
Subject 10 12.75 10243
Subject 11 8.64 13454
Subject 12 8.68 13357
Subject 13 9.61 13399
Subject 14 12.97 12410
Subject 15 6.88 13316
Subject 16 7.70 11677
Subject 17 7.49 13481
Subject 18 11.93 12010
Subject 19 8.07 14070

Finally, 100 variance correction coefficients were calculated for each patient, using the relationship
defined in Equation (25).

4.3. Stochastic Model Validation

From the experimental data set (data for validation), the correction coefficients cn(calculated
during the modeling process) and the algorithm proposed in Figure 5, the corrected standard deviation
and the expected fetal heart rate were estimated. For the validation process, N = 5 clinical studies
with M = 900 samples per clinical study and β defined with k = 1 were considered to determine the
minimum percentage of samples that fall within one standard deviation. Table 3 presents the results of
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the modeled standard deviation σ, estimated sn, and corrected cnsn, and the expected value and yn
with samples from five clinical studies for all patients.

Table 3. Expected Value and Standard Deviation Estimation of Fetal Heart Rate.

Patient Name σ ¯
y5

s2 c2s2 s3 c3s3 s4 c4s4 s5 c5s5

Subject 1 7.75 148.6 3.70 7.29 4.51 7.65 4.85 7.54 5.15 7.52
Subject 2 10.98 142.9 5.10 10.23 6.44 10.98 7.23 11.27 7.75 11.37
Subject 3 12.77 157.9 6.23 12.45 7.75 13.24 8.67 13.49 9.14 13.36
Subject 4 13.97 140.7 6.77 13.37 8.31 14.12 9.41 14.61 9.89 14.48
Subject 5 9.19 139.4 4.36 8.68 5.48 9.32 6.02 9.38 6.35 9.32
Subject 6 8.54 140.6 3.99 7.95 4.99 8.51 5.50 8.57 6.05 8.86
Subject 7 10.52 131.6 5.08 10.17 6.31 10.77 7.02 10.93 7.38 10.82
Subject 8 9.44 138.3 4.48 8.92 5.57 9.49 6.31 9.83 6.68 9.80
Subject 9 11.13 139.5 5.25 10.37 6.65 11.27 7.29 11.26 7.89 11.43
Subject 10 12.75 132.9 6.26 12.67 7.78 13.32 8.68 13.56 9.30 13.63
Subject 11 8.64 123.7 4.05 8.03 5.17 8.77 5.68 8.84 6.17 9.02
Subject 12 8.68 135.7 3.96 7.92 5.12 8.70 5.70 8.87 6.07 8.87
Subject 13 9.61 148.0 4.51 9.03 5.67 9.65 6.40 9.93 6.82 9.95
Subject 14 12.97 141.3 6.39 12.72 8.10 13.83 8.96 13.95 9.50 13.92
Subject 15 6.88 129.7 3.14 6.22 3.92 6.68 4.36 6.80 4.58 6.70
Subject 16 7.70 134.2 3.52 7.07 4.42 7.55 4.99 7.76 5.38 7.86
Subject 17 7.49 141.5 3.40 6.82 4.27 7.30 4.72 7.34 5.03 7.35
Subject 18 11.93 132.8 6.04 11.84 7.37 12.49 8.11 12.58 8.59 12.51
Subject 19 8.07 150.6 3.66 7.29 4.67 7.96 5.29 8.26 5.62 8.25

The algorithm in Figure 5, additionally, allows the evaluation of the reliability improvement using
the corrected and uncorrected standard deviation (uncertainty). To verify the reliability behavior,
the proposed algorithm was executed using two bands level: β = k2cn to obtain the corrected reliability
value and β = k2 to obtain the reliability value without correction. Figure 10 shows the results of
the corrected and uncorrected reliability for two clinical studies n =

√
2, Figure 10a, and for five

clinical studies n = 5, Figure 10b. The reliability increases when considering the corrected standard
deviation (uncertainty).

In the case of total ignorance of the system, the Chebyshev inequality indicates that at least 1− 1
k2

of the sample, data must be within k standard deviations of the mean, for k =
√

2 for at least 50% of
the data, see Figure 10. However, having the distribution function models allow us, in addition to
estimating the compensated uncertainty, to know the number of measurements that were within

√
2

standard deviations, which was close to 90%.
The parameter estimator behavior in traditional models [12–14], was performed considering some

theoretical distributions [3], and their behavior was evaluated considering finite samples. The problems
that arose were that the distributions used were not representative of the applications considered in
this work, and the estimator properties within finite time windows depended on the distributions.
The method proposed in this work allows defining distributions in practical applications with few
samples; that solve the problems presented in classical models.

Reliability determination with few samples could be useful due to the visual analysis of fetal heart
rate tracings being subjective and inconsistent [5]. There is disagreement in the clinical decision in
fetal heart rate (FHR) classification [7]. A simpler and more objective set of guidelines could provide
better reliability [10]. Given the inherent limitations of electronic fetal monitoring technology and of
the ability of human beings to characterize fetal heart rate parameters and patterns, the low-reliability
degree may represent the best-case scenario of the visual fetal heart rate interpretation reliability [6].

In the international federation of gynecology and obstetrics (FIGO), national institute for health
and care (NICE), and American college of obstetrics and gynecology (ACOG) guidelines [8], there are
two fundamental parameters to determine normal, suspicious, and pathological patterns. The first is
the heart rate baseline, and the other is variability. The method proposed in this work can be applied

19



Appl. Sci. 2020, 10, 3274

directly to a correct estimate of the variability because it includes the specific distribution function of
each patient. In the tests analyzed, differences of 10% were found in the estimate (n = 5). According to
results, the baseline is not affected by the distribution.

(a) 

(b) 

Figure 10. Corrected and uncorrected reliability (R) calculations; (a) with two clinical studies; (b) with
five clinical studies.
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5. Conclusions

Reliability has reached an important level for consideration at the beginning of product design,
specifically for medical applications, which have been favored by including, as a quality criterion, the
reliability level of the device.

Effect analysis of the distribution function and sample lengths in the typical estimators’ calculation,
mean, and standard deviation were presented. Specific distribution estimates of each patient were
used; this procedure suggests a natural way to integrate the additional information obtained in each
study. Several studies carried out on patients verified that the real distributions were far from the
theoretical distributions that are usually used to determine the estimators’ properties. Furthermore,
these distributions were used to determine the factors necessary to obtain an unbiased estimator of
uncertainty. This information was used to implement a simple algorithm that improves reliability
estimation. With the available calculation tool, it is possible to obtain specific information that allows
improving the estimators’ behavior used in decision making without assuming hypotheses that are
difficult to verify in daily applications. Applying classical theory without verifying that hypotheses
are met may lead to incorrect results. However, it was demonstrated that these might be corrected by
using compensation factors.

Considering how fast available electronic systems for the integration of medical devices change,
the way reliability is assessed, restrictions imposed by classical estimation theory, and computer
resources, the developed methodology attempts to be the spearhead of a series of works that would
lead to a more accurate estimation of reliability.
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Abstract: Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement
which is difficult and still under investigation. The present study investigates and evaluates a
stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously
by detecting the respiratory volume change in the chest area. As the volume change could cause
different strain changes at different body postures, this study aims to investigate the accuracy of the
IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects
(mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute
(BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the
five body postures namely standing, sitting at 90◦, Flower’s position at 45◦, supine, and right lateral
recumbent. There was no significant difference in measured RR between IJP and reference sensors,
between two trials, or between different body postures (all p > 0.05). Body posture did not have
any significant effect on the difference of RR measurements between IJP and the reference sensors
(difference <0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure
the RR at different body postures, which makes it a promising, simple, and user-friendly option for
clinical and daily uses.

Keywords: inkjet printing; respiratory rate; strain gauge; stretchable and wearable sensors; silver
nanoparticles; clinical evaluation; body posture

1. Introduction

Clinically, respiratory rate (RR), defined as the times of breath per minute (BPM), is a vital sign
whose abnormality could indicate various pathological conditions in cardiorespiratory system [1,2].
Compared with other vital signs such as heart rate and blood pressure, RR is more accurate in screening
unstable patients [1,3,4]. Therefore, RR monitoring has been used in detecting sleep apnea, cardiac
arrest, and sudden infant death syndrome [3,5]. Especially, compared with discrete RR measurement,
continuous RR monitoring could detect RR abnormalities with more than 10 times of accuracy [2].
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However, despite the clinical significance of RR, continuous, convenient, and accurate RR
monitoring is still difficult. It was reported in [2] that the RR was the least documented vital sign even
when the patients suffered from respiratory issues. Manual RR counting is widely used in clinical
examination [3] but is not accurate [2]. Other traditional techniques of clinical RR monitoring include
spirometry, pneumotachograph, and capnography [1,4,6]. These techniques could accurately measure
RR, but are cumbersome, difficult to manipulate, or mask-based [4].

To achieve continuous and convenient RR monitoring, some new techniques have been
developed [7–10]. Some researchers extract RR from other physiological signals such as
photoplethysmogram and electrocardiogram [11]. Other studies derived respiration signals using
non-contact techniques such as C-band sensing [12] and dual smartphone cameras [4]. Some researchers
tried distant (less than 10 m) RR detecting based on Wi-Fi, radar, or thermal imaging [11]. Compared
with these techniques, wearable and stretchable sensors could independently measure RR without
limiting the daily activities of the users. Additionally, the stretchable and wearable sensors could
achieve highly accurate RR measurement at a low cost [13].

For a wearable RR sensor, the high accuracy at different body postures could enable its application
in various clinical and daily situations. Several studies [3,12,14] have investigated the accuracy of RR
monitoring devices at different body postures (sitting, standing and supine and side). For instance,
Huang et al. [3] embedded arrays of load sensors in an e-textile bed sheet to measure RR from the full
body pressure distribution on the sheet. The sensor was tested on 14 human subjects in prone, side and
supine postures during sleep. The results showed that RR measurement was more accurate in prone
and supine postures compared with side posture. The authors deduced that this difference was due to
the amplitude of respiratory movement which is more prominent in thoracic and abdominal areas than
on both sides. Zhu et al. [14] developed a fiber bragg grating (FBG) sensor mat with three FBG arrays
under the pillow, below upper chest, and below lower chest. The sensor was tested on 12 human
subjects while lying in prone and side postures. For each of the three sensors, the mean error of RR
measurement was lower than one BPM with standard deviation (STD) within ±0.25 BPM, compared
with the reference RR measured by a polysomnography belt sensor. Guan et al. [12] developed a
wireless system to measure RR based on C-band sensing. In prone, sitting, and standing postures, the
error of RR detection was within 7%, 6.2% and 5.5% compared with a reference RR sensor. The author
suggested that standing posture have the largest influence on the quality of C-band RR detection. Nam
et al. [4] used dual cameras on a smartphone to measured RR by reflectance imaging on the chest and
the abdomen, with average median error of 1.43% and 1.62%.

The majority of existing studies on the effect of body posture on RR detection accuracy were
based on non-stretchable [15–17] or non-wearable RR sensors [3,12,14], with a lack of related study
based on stretchable RR sensors. Compared with traditional RR sensors, stretchable RR sensors are
in direct contact with body surface, and are therefore, more likely to be influenced by body posture.
Considering the increasing amount of stretchable RR sensors and the possibility of application in
different scenarios, there is an urgent need to investigate the effect of body posture on the accuracy of
stretchable RR sensors.

The aim of this paper is to investigate the effect of different body postures (standing, sitting at 90◦,
Flower’s position at 45◦, supine and right lateral recumbent) on the accuracy of a new stretchable and
wearable inkjet-printed RR sensor.

2. Methods

2.1. Physiological Measurements

2.1.1. Subjects

Fifteen healthy male subjects (mean± SD of age: 24± 1.22 years) without any known cardiovascular
or respiratory diseases participated in this study with written informed consent. The protocol adhered
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to the tenets of the Declaration of Helsinki. Before the experiment, the procedure was explained in
detail to each subject.

2.1.2. Sensors

Inkjet printing (IJP) is a promising technology in the fabrication of stretchable and wearable
sensors. Compared with other fabrication techniques, IJP has less sophisticated process and lower
cost [18–21]. The IJP RR sensor was fabricated on polydimethylsiloxane (PDMS) substrate using
conductive silver nanoparticle ink, as shown in Figure 1a which was presented in [22]. During
respiration, the sensor acted as a variable resistance whose value increased during inhalation and
decreased during exhalation, due to the volume change in the ribcage or the abdomen. The change in
resistance was obtained by a Wheatstone bridge circuit with three fixed resistances, amplified by an
instrumentational amplifier, and finally fed into an Arduino microcontroller to derive RR.

 
(a) 

 

(b) (c) 

Figure 1. (a) The Inkjet printing (IJP) respiration rate (RR) sensor. (b) The reference e-Health RR sensor.
(c) The derived respiratory signals in 30s.

The reference RR value was measured by a thermal nasal e-Health sensor (e-Health AirFlow sensor,
Cooking Hacks), shown in Figure 1b, which has been validated previously in the literature [23,24].
The e-Health sensor detects the thermal changes in airflow during inhalation and exhalation. Due to
the difference in working principle between IJP and reference RR sensors, their respiratory signals
fluctuated in opposite directions with a phase shift, as shown in Figure 1c.
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2.1.3. Measurement Procedure

During the measurement, the IJP sensor was mounted at the xiphoid process using adjustable
fabric belt with e-Health sensor mounted at the nostril as shown in Figure 2. The IJP sensor was tested
at five different body postures in randomized order: sitting at 90◦, 45◦ Fowler’s position, standing,
supine, and right lateral recumbent, as shown in Figure 3. In the lateral recumbent, Flower’s position
and supine, the test subjects had their heads resting on a pillow. Only the right lateral recumbent was
included without the left one, because the bilateral respiratory movements have been proved to be
similar [25]. At each posture, the test was repeated twice in order to investigate the repeatability. The
RR recording lasted for one minute in each trial, with a 60 s break between the two trials. The test
subjects were asked not to move during the test and to breathe normally.

e-Health Sensor 

IJP Sensor 

Figure 2. Mounting the IJP sensor at the xiphoid process using adjustable belt and the e-Health sensor at nostril.

   
Sitting at 90  Standing Lateral Recumbent 

Figure 3. Cont.

26



Appl. Sci. 2020, 10, 480

 
45  Fowler’s Supine 

Figure 3. The RR measurement at different body postures.

2.2. Respiratory Rate Derivation

An algorithm was developed on MATLAB (R2018b, MathWorks Inc., Natick, MA, USA) to extract
the RR values from the respiratory signals. Firstly, raw data were input into the bridge circuit at
a sampling frequency of 100 Hz. The signal was then filtered to remove the direct current (DC)
component and some extremely high and low frequencies using a band-pass filter with lower and
higher cut-off frequencies of 0.05 Hz and 1.5 Hz. Finally, fast Fourier transform (FFT) was used to
determine the respiration frequency, which is the frequency with the highest amplitude. RR was
derived as: RR = 60 × respiratory frequency. Figure 4 shows the derivation procedure of the RR
from the IJP sensor. Note in Figure 4 that the sharp peak is considered as noise since it exceeds the
amplitudes of adjacent respiratory cycles with time period of less than 0.1 s, which is impossible for a
respiratory cycle even for maximum inhalation or exhalation [11].

Raw Data 

Filtered Data 

Frequency Spectrum 

Band-Pass Filter (0.05 Hz–1.5 Hz) 

Apply FFT 

Noise 

RR=0.33 Hz 

Figure 4. RR derivation flow chart from the IJP sensor. The raw data was input into band-pass filter
to filter out the high frequencies and the noise. The RR was then extracted by Simulink (R2018b,
MathWorks Inc., Natick, MA, USA). The arrow in the first subfigure shows the spike caused by noise.
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2.3. Statistical Analysis

The statistical analysis was performed on SPSS (Version 20, SPSS Inc., Chicago, IL, USA). Firstly,
to investigate if the RR measurement was significantly influenced by body postures, repeated trials,
and different sensors, analysis of variance (ANOVA) was performed with Levene’s test to validate the
homogeneity of variance. Significance was defined as p-value less than 0.05. To further investigate the
effect of body posture on the measurement accuracy, the difference between RR values derived by IJP
sensor and reference sensor was calculated for each measurement in different postures. Moreover, post
hoc test based on Tukey’s test was used to evaluate the statistical significance of the RR between any
two postures to figure out the effect of the posture on the RR.

3. Results

As shown in Figure 5, in each trial and posture, IJP and reference RR sensors derived nearly
identical distributions of RR. The details are listed in Table A1, Appendix A. The Levene’s test showed
that the dataset satisfied the homogeneity of variance (p > 0.05). Hence, ANOVA was performed on
RR values. The results showed no significant differences in measured RR between IJP and reference
sensors, between two measurement trials, and among different body postures (all p > 0.05). Moreover,
post hoc test showed no significant difference in the RR between any two posture (all p > 0.05).

Trial 1 Trial 2 

Figure 5. Box and whisker plots of the RR measured by the IJP sensor and the e-Health sensor for each
trial at different body postures. The means are represented by the horizontal lines within the boxes
while the first and third quartiles are represented by the boxes boundaries whereas the maximum and
minimum values are represented by the whiskers.

4. Discussion

4.1. IJP Sensor Accuracy: Comparison with Other Sensors

The ANOVA results showed that IJP sensor had high accuracy, good repeatability, and stability at
different body postures. With no observable deviation from the reference sensor at all body postures,
the accuracy of the IJP sensor was better than many sensors reported in the literature where the RR
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measured by stretchable sensor deviated from the reference value from 1.7% to more than 6% in
different postures [4,12,26–30].

4.2. RR Measurements at Different Body Postures

The body posture could significantly influence the lung volume [12,31–33] and the consequent RR
detection. The lung has the largest volume capacity at the sitting posture [31]. In lateral recumbent
posture, lung and chest wall compliances decrease, which limits the amplitude of thoracic respiration
movement [25]. Small respiratory movement amplitude could result in miscounting of RR. In
stretchable RR sensors, due to the difference in strain between different postures, the accuracy of RR
could be different.

However, in this study, IJP sensor showed high accuracy at different postures. Firstly, the skin-like
characteristics of the PDMS surface allow the IJP sensor to closely attach to the body surface and
follow the topographical changes [34,35]. Secondly, the polymer-based strain gauge sensors are very
sensitive (gauge factor > 100) compared with typical strain gauge (2 ≤ gauge factor ≤ 5). Thirdly, silver
nanoparticles are highly sensitive which increased the accuracy of the IJP sensor [36]. Finally, during
the measurement, test subjects did not move, talk or laugh, which largely reduced the movement
artefact in respiratory signals.

4.3. Application of the IJP Sensor

In addition to its accuracy, the IJP sensor is a low-cost sensor with skin-like characteristics that
enhances the wearability of the sensor without limiting the daily activities of the patients. All the
aforementioned characteristics of the IJP sensor makes it suitable for remote and continuous RR
monitoring in low-resources settings and refugee camps, decreasing the pressure on the healthcare
facilities in these settings which suffer from limited healthcare resources [37]. Continuous RR
measurement in different postures is clinically significant especially for the monitoring of hospitalized
patients. Currently, the RR monitoring relies on inaccurate manual counting in a short period (often 30
s or 1 min) or is neglected [38]. The mask-based or contact RR sensors, such as the e-Health sensor in
this study, could cause uncomfortableness which makes them inappropriate for long-term continuous
RR monitoring. The IJP sensor could accurately and continuously measure RR without any skin allergy
or other clinical events, which makes it possible for clinical use. RR measurement at different body
postures is important for patients with different physiological conditions. For example, some patients
under physiotherapy or with plastic cast need to keep in mainly supine or lateral recumbent postures.
Therefore, the IJP sensor provides the possibility of continuous RR monitoring in different patients.

The IJP RR sensor is also applicable for RR monitoring at home without disturbing the users’
daily activities. Wearable sensors could provide RR monitoring during the night at the supine and
lateral position to inspect the sleep quality and contribute in early diagnostic of several sleep-related
issues such as sleep apnea and insomnia [39]. Moreover, such wearable sensors could be used to
reduce sudden infant death syndrome by providing comfortable and continuous RR monitoring [40].
Additionally, wearable sensors can be integrated into safety belts in automobiles which eases the
monitoring of the RR during driving [11,41]. The IJP sensor accurately measured the RR at all the
inspected postures which paved the way for its further application in daily life.

4.4. Limitations and Future Work

The evaluation of the sensor was performed on 15 healthy male subjects only. Firstly, scale-up
validation was needed. Secondly, to eliminate the error caused by movement artefact, the IJP sensor
was firmly fixed on the xiphoid process. In different body positions, the sensitivity to posture change
might be different, which needs further investigation. Thirdly, the evaluation of wider age groups
and genders could be performed to investigate if the IJP sensor is suitable for people with different
physiological conditions. Furthermore, the study was performed on healthy subjects. The performance
of the sensor on subjects with pathological conditions needs further investigation. The IJP sensor is a
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low-cost and wearable sensor that provides the possibility of daily RR monitoring. However, motion
artefact is a major concern regarding the accuracy of RR monitoring during daily activities [11]. For
the further application especially in daily healthcare monitoring, full validation on different levels
of motion artefact is needed. Finally, more comfortable mounting mechanism such as the use of
biocompatible and skin-friendly adhesive should be investigated.

5. Conclusions

The IJP sensor was able to measure the RR accurately at the five postures (standing, sitting at 90◦,
Flower’s position at 45◦, supine and right lateral recumbent), with good repeatability which makes it
user-friendly, and very convenient for clinical practices with minimal user efforts and training needs.
This IJP sensor is promising for continuous RR monitoring in different clinical and daily situations.
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Appendix A

Table A1. Average RR (breaths per minute, BPM) measured by the IJP and e-Health sensors at five
different body postures.

Gender Age
Standing Sitting 45 Deg. Supine Lateral

Our Ref Our Ref Our Ref Our Ref Our Ref

M 24 11.7 11.7 13.65 13.65 11.7 11.7 15.6 15.6 11.7 11.7
M 23 21.51 21.51 21.51 21.51 17.58 17.58 19.56 19.56 23.46 23.46
M 25 21.48 21.48 21.51 21.51 23.46 23.46 21.51 21.51 19.56 19.56
M 25 19.56 19.56 19.56 19.56 17.58 17.58 15.63 15.63 15.6 15.6
M 23 17.58 17.58 21.51 21.51 13.65 13.65 21.51 21.51 17.58 17.58
M 24 15.6 15.6 13.65 13.65 11.7 11.7 13.65 13.65 11.7 11.7
M 24 13.65 13.65 13.65 13.65 9.75 9.75 9.75 9.75 11.7 11.7
M 23 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4
M 26 15.6 15.6 17.58 17.58 15.6 15.6 15.6 15.6 17.58 17.58
M 21 19.56 19.35 19.56 19.56 21.51 21.51 19.56 19.56 19.56 19.56
M 25 17.58 17.58 19.56 19.56 19.53 19.53 17.58 17.58 15.6 15.6
M 24 23.46 23.46 29.31 29.31 23.46 23.46 23.46 23.46 19.53 19.53
M 24 7.8 7.8 9.75 9.75 9.75 9.75 11.7 11.7 11.7 11.7
M 22 15.6 15.6 15.6 15.6 11.7 11.7 9.75 9.75 11.7 11.7
M 24 17.58 17.58 17.58 17.58 15.6 15.6 15.6 15.6 13.65 13.65
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Featured Application: This work was conducted to develop an automated data acquisition system

to monitor the pinch grip in rehabilitation and assessment applications after a stroke.

Abstract: The Upper Extremity Fugl Meyer Assessment (UE-FMA) is the most comprehensive
assessment for pinch impairment after stroke. The pinch test of UE-FMA is manually performed
by pulling a pincer object away from the patient’s fingers while providing a visual observation that
results in a subjective assessment. In this study, an automated data acquisition system that consists
of a linear electric actuator applying automatic pulling to the customized pincer object held by the
volunteer was developed. The pinch force was measured such that a strain gauge was placed on the
pincer object while pulling force was measured using pulling force load cell connected in between
the linear electric actuator and customized pincer object. The pincer object’s slip onset was detected
using a displacement slip sensor. The mean pinch and pulling force values at the slip onset were
12.17 and 6.25 N for right hands, while mean pinch and pulling force values were 11.67 and 5.92 N for
left hands of 50 healthy volunteers, respectively. Based on the paired t-test, there is no significant
difference between right and left hands. The automated data acquisition system can objectively apply
a pulling force, detect the slip onset, and measure the pinch and pulling forces.

Keywords: automated assessment; UE-FMA; pinch force; pulling force; slip onset; strain gauge; stroke

1. Introduction

Globally, stroke is the first leading cause of long-term disability [1]. Many daily activities,
for example, pinching an object, require dynamic manipulation of the thumb and index finger.
Pinch impairment is defined as the inability of the thumb and index finger to produce strength
with sufficient magnitude and directional control, leading to object slipping [2]. Several studies
showed that the recovery of pinch grip takes a longer time than handgrip, and it requires long-term
rehabilitation after stroke [3]. Besides, a recent study conducted by Katab et al. [4] showed that pinch
strength can be used as an alternative assessment to hand strength for assessing muscle strength in
patients. Thus, an effective evaluation of pinch grip is needed to determine the pinch deficits accurately
and objectively [5]. Accurate and objective pinch assessment can be achieved via automation of
traditional standard assessment systems based on available technology. Current technology involves
pinch gauge and dynamometers to measure the maximum static pinch force which is not related to
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object manipulation involved in daily activities [6]. Therapists are still using the standard manual
assessments to evaluate the pinch grip, which is subjective due to the different human interpretations of
the procedures as well as the use of qualitative ordinal scoring. There is no single gold standard pinch
assessment used in clinical and research practices [7]. Pinch evaluation is usually listed as part of upper
limb standard assessments [8–11]. The UE-FMA is arguably the most comprehensive clinical tool for
measuring pinch impairment after stroke [12,13]. The UE-FMA provides step-by-step procedures and
protocols, which are performed by a UE-FMA therapist. The therapist tests the patient’s ability to pinch
a pincer object (in which a pencil or pen is customarily used) and exert enough force to stabilize the
pincer object against gentle pull generated manually by the therapist, as in Figure 1 [14]. A score of 0,
1, or 2 is assigned, which represents severe impairment, partial impairment, and no impairment rating,
respectively. Score 0 is given when the patient cannot execute the pinching at all. Score 1 indicates that
the pincer object is not held firmly against the gentle pull such that slippage occurs, while score 2 is
given when the pincer object is held firmly without slippage against a gentle pull.

 

Figure 1. Pinch test as in the UE-FMA protocol.

The motivation of carrying out this study stemmed from the lack of studies related to a complete
automated assessment of pinch impairment. In addition, the pinch assessment using UE-FMA
is subjective due to the different interpretations of using the original guideline of UE-FMA [15].
These difference in interpretations may result in the following variations in clinical practice:

1. The orientation of the pincer object is not standardized. Some therapists pull the object horizontally,
while others pull it vertically.

2. The posture of the patients’ shoulder, elbow, forearm, and hand may differ between each clinic
resulting in different pinch force exerted at different postures.

3. The amount of pulling force actuated by the therapist is subjective [16]. This opens the possibility
for low intra-rater and inter-rater reliability of pinch evaluation.

4. The occurrence of slippage, which results in score of either 1 or 2 is visually observed and sensitive
to the therapist experience, skills, and appreciation [17–23].

Due to the previous drawbacks of using the original protocol of UE-FMA assessment, several
studies have been conducted to improve the original UE-FMA protocol. In addressing the orientation
of the pincer object, Page et al. [24] suggested that the therapist should horizontally pull the pincer
object outwards away from the patient’s pinch grasp. Horizontal orientation choice is supported
by other studies [25–27], which report that the brain response leading to pinch has higher latency
responding to the pulling being applied vertically compared to horizontally. Page et al. [24] also
proposed the upper limb posture and concurred with an independent study by Sullivan et al. [28].
Both studies recommend that the patient should be sitting on a chair in a 90◦. Then, the patient should
maintain shoulder at 0◦, elbow at 90◦, and forearm in resting position. The therapist, if necessary,
may support the patient’s elbow at 90◦. Sullivan has suggested that the therapist can use a bedside
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table to support the patient’s arm and elbow. The use of bedside table is supported by other studies,
which reported that the arm weight leads to abnormal coupling between shoulder abduction and
elbow flexion due to abnormal muscle co-activation required to compensate the weight of the arm [29].
Therefore, Ellis and colleagues used arm weight support to reduce the activation of those muscles
(e.g., biceps), which otherwise would be involved in pinching [30,31].

Recently, the research community [21,32–39] have been working on automating UE-FMA, but few
of them involved the pinch grip. Otten and his colleagues [40,41] implemented a glove with built-in
Force Sensing Resistor (FSR) sensors as the data acquisition system to measure the patient’s pinch
force during the evaluation process. Nevertheless, some post-stroke patients with severe to moderate
impairment have muscle contracture and spasticity that lead to difficulties in wearing the glove.
In later studies [42,43], the FSR sensor was attached to the pincer object such that the patient is no
longer required to wear a glove. The pinch force threshold values that distinguish between slip (score 1)
and non-slip (score 2) onsets are useful in determining the baseline measurements to evaluate the
effectiveness of pinch rehabilitation for both right and left hands. In both studies, the discrimination
between scores 1 and 2 was based on the ability of the subject to exert pinch force up to a threshold value.
However, this threshold pinch force value was selected by the therapist which may open the possibility
for uncertainty. Moreover, these studies still have not addressed the issues related to subjectivity of the
manual pull and the limitations of the FSR sensors used in the data acquisition system.

Generally, FSR sensors (also known as a thin-film sensor) have been used for many applications [44]
but they suffer from performance variation as well as low performance [45,46]. The variation in
performance is attributed to the conductive material on the sensor layers being sensitive to temperature
and deformation on the surface [47]. In addition, the variation in performance can be attributed to
the inability to follow the standard calibration procedures resulting in different calibration results
compared to those in the manufacturer’s datasheet. On the other hand, low performance can be
attributed to variation in voltage gain, high hysteresis, nonlinearity, and inaccurate measurements in
real-time pinching [48]. Likitlersuang et al. [49] investigated the performance of the thin-film sensor
when attached directly to human skin. The results show a large measurement error of 23% using the
standard calibration techniques. In addition, the pressure distribution on the sensing area may not be
uniform during slippage due to different pinching contact location.

The main objective was to develop an automated data acquisition system for pinch assessment
based on the standard UE-FMA protocol. In this study, the following research questions were addressed:
(1) Does the slip onset occur at the maximum pinch force? (2) Is there any significant difference
between right and left hands in pinch and pulling forces at the slip onset? In this study, the authors
hypothesized that the maximum pinch force exerted by the volunteer against the automatic pulling
would be located at the slip onset. The authors also hypothesized that the pinch and pulling force
measurements of the right hands are significantly higher than pinch and pulling force measurements
of left hands at the slip onset for right-handed volunteers.

To address the first question, an automated data acquisition system was developed. The automated
system must be able to measure and acquire pinch and pulling forces as well as slip displacement
accurately and automatically. The automated system uses linear electric actuator applying automatic
pull, customized pinch force load cell measuring the pinch force, pulling force load cell measuring
the pulling force, and Linear Variable Differential Transformer (LVDT) displacement sensor detecting
the slip onset. The sensors and actuator were calibrated and then integrated together with Arduino®

Due board. Subsequently, the data from 50 right-handed male volunteers within the age of 18–24 years
were collected according to the UE-FMA protocol to establish the relationship between pulling and
pinch forces in order to observe the slip onset. The paired t-test was performed on collected data to
address the second question.
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2. Materials and Methods

2.1. Pinch Data Acquisition System

The experimental setup of the data acquisition system is described in Figure 2. It consists of:

1. Displacement sensor: LVDT sensor (1) with Low Pass Filter (9).
2. Linear actuator system: including linear electric actuator (2) and servo motor driver (8).
3. Customized Pinch force load cell: pincer object (4), Wheatstone bridge (5), and an amplifier (6).
4. Pulling force load cell: load cell (3) and an amplifier (11).
5. Data acquisition card: Arduino® Due board (Arduino LLC, Torino, Italy) (11) and Arduino® IDE

1.8.5 software (arduino.cc) [50].
6. DC power supply (7).

In our previous work [51], a customized pinch force load cell based on strain gauge was designed,
fabricated, and calibrated. The customized pinch force load cell is composed of three parts: pincer
object, strain gauge, and signal conditioning circuit. The pincer object was fabricated to mimic a pencil,
as used in UE-FMA, which represents a cylindrical object with a diameter of 12 mm and 150 mm
length. In order for a strain gauge to measure the bending at the pinching location near the free
edge of the pincer object, a 4 mm slot cut was created, as shown in Figure 3. The slot cut starts from
the free end to the middle of the pincer object, similar to the shape of a tuning fork. The pinching
location is within 20 mm from the free edge and is adequate to cover the fingertip length. A 350-ohm
strain gauge (SGK-L1-D-K350P-PC11-E) was placed at the maximum stress point. The maximum
stress point was determined based on the stress analysis performed using ANSYS® finite element
software (Version 15.0, ANSYS Inc, Canonsburg, PA, USA) as shown in Figure 4. The conditioning
circuit consists of a quarter Wheatstone bridge and an amplifier. The quarter Wheatstone bridge was
implemented to convert the strain gauge resistance change to voltage change when pinching occurs.
However, the voltage change was too small. Thus, a commercial amplifier (Wachendorff Strain Gauge
Converter®, SENECA s.r.l., Padova, Italy) with a gain of 1000 was used.

 

Figure 2. Experimental Setup of data acquisition system for pinch assessment.
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Figure 3. Pinch force load cell.

Figure 4. Stress analysis of the pincer object where an external force is applied at the free end.

The standard strain gauge calibration of force–voltage is usually performed for one contact
location only. However, in the pinch test of UE-FMA, the contact location may vary due to the different
initial pinching location of each volunteer. Furthermore, the contact location may also vary during the
automatic pull, which causes slipping. Therefore, a continuous relationship of force–voltage for all
possible contact points along the pinching length is required. This can be achieved by performing a
multipoint calibration at five contact points away from the free edge (4.1, 5.8, 11.5, 16.5, and 20.2 mm).
The multipoint calibration was performed using a mechanical testing system (INSTRON® 3366, Illinois
Tool Works Inc, Norwood, MA, USA) by applying dynamic loading (0–50 N), as shown in Figure 5.
The pincer object was held stationary on the INSTRON® 3366 base during calibration by applying
glue on both sides of the pincer object to prevent any movement, as shown in Figure 5. As a result,
five force–voltage curves were generated, as depicted in Figure 6a. The voltage and force data were
recorded from the customized pinch force load cell and the INSTRON® 3366 machine. Subsequently,
the continuous relationship of force as a function of voltage and position was modeled using linear
regression function, as depicted in Figure 6b. The linear correlation coefficient R2 of 0.9896 indicates
high linearity. Using the linear plane model equation (Equation (1)), the force measurements can be
estimated at any contact point within pinching length given the measurements of voltage and position,
which were collected from the pinch force load cell and the LVDT sensor, respectively.

Force = −0.9447 + 0.02371 × Voltage + 0.3632 × Position, (1)

In performing the hysteresis test to the customized pinch force load cell, dynamic loading (0–50 N)
and unloading (from 50 to 0 N) were applied at the contact point 11.5 mm, which is approximately
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at the midpoint of the pinching length. Figure A1 (Appendix A) shows the loading and unloading
curves of voltage and force measurements recorded from the pinch force load cell and INSTRON® 3366
machine, respectively. The solid line is the force–voltage relationship for dynamic loading, while the
dotted line is the force–voltage relationship for dynamic unloading. The hysteresis is defined as the
difference in voltage offset between loading and unloading lines at the midpoint on the force axis.
The following formula gives the percentage of hysteresis:

Hysteresis = 100% × (Vmu − Vml)/(Vmax − Vmin) = 0.287%. (2)

where Vmu (892.46 mV) is the voltage value on the unloading line in Figure A1 at midpoint force
Fm (23.86 N), Vml (898.1 mV) is the voltage value on the loading line at Fm, Vmax (1960.86 mV) is
the maximum voltage value on the loading line, and Vmin (0 mV) is the minimum voltage value on
the unloading line. The hysteresis of 0.287% can be considered negligible [52]. Furthermore, it is
much lower than the hysteresis of thin-film pressure sensors (5%) [53]. Similar hysteresis tests were
performed at the other contact points resulting in similarly negligible hysteresis.

 

Figure 5. Calibration setup of the pinch force load cell.

(a) 

Figure 6. Cont.
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(b) 

Figure 6. (a) Force–voltage curves at five contact points; and (b) estimated plane of force as a function
of voltage and position.

In performing the repeatability test, a dynamic loading (0–50 N) was applied three times at the
contact point 11.5 mm. The Coefficient of Variation (CV) was used to calculate the repeatability. CV is
given by the ratio between standard deviation and mean values of three repeated voltage measurements
at each force point ranging from Fmin (2.28 N) to Fmax (50 N). Then, all CVs are averaged to provide a
single CV [49,54]. The “Cfvar” function in SPSS Statistics® V21 was used to calculate the CV. The CV
value of 1.43 ± 0.447% was obtained which indicates high repeatability [55]. In addition, it is smaller
than the CV value of thin-film pressure sensors (2.1 ± 2.3%) [49].

In replacing the manual gentle pull by the therapist, a linear electric system was used. The linear
actuator system consists of a linear electric actuator, AC servo motor, AC servo driver, and Arduino®

Due. To run the linear electric actuator, an AC servo motor (SM0602—400 Watt) was coupled in-line to
the drive cap of the linear electric actuator. The output analog signal of Arduino® Due controls the
AC servo motor through the AC servo driver (M2DV-3D02R). The linear actuator system can exert
automatic pulling force ranging from 0 to 63.25 N with a resolution of 0.5 N.

A pulling force is produced when the volunteer pinches the pincer object and then resists
the automatic pull generated by the linear actuator system. An off-the-shelf pulling force load cell
(STA-1-50 Aluminium S Type Tension) is located between the pincer object and the linear electric
actuator to measure the pulling force. The voltage–force relationship of the pulling force load cell was
established by the manufacturer, as shown in Figure 7. The pulling force load cell has 0.03% accuracy,
0.01% repeatability, 0.05 N resolution, and R2 = 1 linearity.

Figure 7. Voltage–force relationship for pulling force load cell.
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In detecting the slip onset, the LVDT displacement sensor was used. The LVDT sensor and
linear electric actuator were clamped together such that they move in parallel. The output signal
of the LVDT sensor was filtered with an analog Low Pass Filter (LPF) of 20 Hz cut off frequency to
remove the high-frequency noise. Since the pinching length is only 20 mm, the LVDT sensor was
calibrated at 0-, 5-, 10-, 15-, and 20-mm displacement points using a standard digital caliper with
0.05 mm resolution. The calibration process was repeated three times to perform the repeatability test,
as mentioned previously for the pinch force load cell. The three voltage–displacement relationships
show high linearity of R2 = 0.9999, as shown in Figure 8. The repeatability of the LVDT sensor is
9.57 × 10−5%, which indicates high repeatability. The analog signals of the customized pinch force load
cell, pulling force load cell, and LVDT sensors were converted to digital inside the Arduino® Due and
then recorded in a PC installed with Arduino® IDE software. The diagram that illustrates the data
acquisition process is shown in Figure 9.

Figure 8. Displacement–voltage relationships of three times calibration.

Figure 9. Block diagram of the data acquisition process.

2.2. Volunteers Recruitment and Experimental Protocol

Fifty right-handed healthy male students participated. All volunteers had no prior history of
upper limb injury and passed the health status questionnaire (SF-36). To avoid bias in the force
measurements, the study was conducted on a single-gender because males and females have different
pinch strength [56]. Furthermore, the study excluded construction workers and professional sportsmen
as they have stronger pinch force than the average male population [57]. The mean age, height,
and weight for volunteers were 21.86 ± 1.41 years, 170.41 ± 7.03 cm, and 69.49 ± 17.9 kg, respectively.
Ethical approval (Reference number: JKEUPM-2017-248) for this study was obtained from The Ethics
Committee for Research Involving Human Subjects of Universiti Putra Malaysia.

In this study, the improved wrist/hand UE-FMA protocol by Page et al. [24] was adopted.
The volunteers were instructed to sit at 90◦ on a chair, shoulder in the neutral position, elbow at 90◦,
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and forearm in resting position. A bedside table was positioned to support the volunteer’s arm and
elbow, as shown in Figure 10a. The volunteers were also instructed to clean and dry their hands
before commencing the experiment to avoid any influence of moisture through sweat. Then, they were
instructed to hold the pincer object comfortably using their thumb and index fingertips, as in Figure 10b.
Once the linear actuator started to pull the pincer object, the volunteers attempted to resist this pulling
as much as possible. Since no visual feedback was provided, the volunteer had to react and adjust
accordingly to the perceived amount of pulling force. To achieve pinch stability, the pinch force
had to be adjusted in proportion to the changes in the pulling force. The linear actuator stopped
exerting pulling force the moment the pincer object had totally slipped away from the volunteer’s
fingers, and this was indicated by a 20-mm displacement slip. Figure A2 (Appendix A) demonstrates
the flowchart to execute the experiment. The data collection involved both right and left hands.
The duration of one trial began when the linear actuator received the control signal from the Arduino®

Due, and ended the instant the pincer object slipped totally away. The analysis of the recorded data
showed the pinch and pulling force values at the slip onset. The slip onset was defined as the moment
when the pincer object started to shift with respect to the starting position, indicating that the object
slipped away from the volunteer’s fingers. During the trial, one set of measurements, which included
the pinch force, pulling force, and displacement, were recorded, resulting in 300 datasets (50 volunteers
× 2 hands × 3 trials per hand). To reduce the effect of the physical and mental fatigue, an adequate
resting period of 3 min was given between each trial. Cronbach’s alpha (α) was used to measure the
reliability among the three trials of the hand, which as computed using the following formula [58]:

α =
N.c

v + (N − 1).c
(3)

where N is the number of trials, c is the average inter-item covariance among the trials, and v is the
average variance.

  
(a) (b) 

Figure 10. (a) Body and upper limb positioning during the experiment; and (b) thumb and index finger
opposed onto the pincer object. Note that the volunteer should resist the automatic pull applied by the
linear actuator system.

3. Results

Figure 11a shows data recorded from one trial of one volunteer. The pinch force, pulling force,
and displacement signals were recorded from the customized pinch force load cell, pulling force
load cell, and the LVDT sensor, respectively. The linear electric actuator started to pull the pincer
object, as indicated by a sudden increase in the pinch and pulling force signals at 3 s. The volunteer
exerted pinch force increased as the pulling force increased gradually. From this point, the pincer
object totally slipped away from volunteer’s fingers, as indicated by a sudden increase in displacement
measurements at 20 s. For each trial, it was important to extract the pinch and pulling force values at
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the slip onset. The slip onset is the point that differentiates between slip and non-slip where the pincer
object begins to slip and is the first instance where the displacement started to increase from a relatively
flat level. In Figure 11a, it is difficult to determine the slip onset visually due to the small magnitude
of the increase in the displacement absolute scale (mm). In addition, the increase in displacement is
nonlinear, thus a nonlinear scaling is required. Subsequently, the nonlinear decibel scale (dB) was used
such that the logarithm base 10 of the displacement absolute value was multiplied by 20 to provide the
necessary scaling. Upon that, the slip onset was precisely determined at 12 s, as shown in Figure 11b.
The pinch and pulling force values at the slip onset (12 s) were 15.39 and 7.05 N, respectively.

Figure 11. (a) One trial recorded from one volunteer; and (b) displacement in decibel scale.

Since the static coefficient of friction of copper alloy is constant, it is expected that the relationship
between pinch and pulling force prior to slip onset is linear. Figure 12 shows the pinch–pulling force
relationship before and after the slip onset. It was observed that the volunteer initially exerted excessive
resistance (indicated by a sudden increase in pulling force), because he had to react and adjust the
pinch force according to the perceived automatic pull generated by the linear actuator. There was also
some nonlinearity observed at 12 and 14.5 N pinch forces that were probably due to the absence of
visual feedback as well as the continuous increase in the amount of automatic pull. Prior to the slip
onset, the pinch–force relationship had high linearity of R2 = 0.8971, while the linearity decreased to
R2 = 0.5845 after the slip onset. This decrease in linearity as due to the inability of the volunteer to
exert pinch force according to the continuous increasing of pulling force, which was indicated by the
continuous slipping. The COF was computed as the ratio of pulling force to the pinch force at the slip
onset, which was equal to 0.45 (7.05/15.39).

Figure 12. Pinch–pulling force relationship.

For each hand, three trials were recorded, and then the pinch and pulling force values were
extracted at the slip onsets using the same criteria involved in the above trial. Figure A3a (Appendix A)
shows the three trials collected from the right hand of a volunteer. It can be observed that the pinch force
signals were close to each other during the three trials, and they had excellent reliability (Cronbach’s
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alpha = 0.989). This was also observed for pulling force signals (Cronbach’s alpha = 0.969). Based on
the displacement measurements after being converted to decibels, the slip onsets were at 17, 14, and 12 s
for Trials 1–3, respectively, as shown in Figure A3b. The pinch and pulling force values at the slip onsets
as well as the static COFs are summarized in Table 1. The interpretation is that this volunteer could
exert an average pinch force of 15.93 N against the maximum automatic pull of 7.65 N without slipping.

Table 1. Measurements recorded from the right hand of a volunteer.

Variables Trial 1 Trial 2 Trial 3 Average

Pinch force (N) 14.61 17.81 15.39 15.93
Pulling force (N) 7.29 8.61 7.05 7.65

Static COF 0.498 0.483 0.458 0.48

For each hand of the 50 volunteers, the pinch and pulling force values as well as the static COFs
of the three trials were averaged, resulting in three averaged values (as demonstrated in Table 1).
Figure 13 shows the distribution of averaged values collected from the right and left hands of the
50 volunteers. It is clear that the distribution has an approximately normal bell-shape and no skewness
exists. The mean, standard deviation, and range of pinch and pulling force values as well as static COF
of right and left hands are summarized in Table 2. It was found that the mean pinch and pulling force
values of right hands were slightly higher than those of lefts hands by 4.1% and 5.28%, respectively.
However, there were no significant differences between right and left hands based on the paired t-test
at the confidence level of p = 0.05. The paired t-test shows a p-value of 0.298 and 0.275 for pinch
and pulling force, respectively. The average time duration for each hand was around 7 min, which
included three trials (around 20 s for each trial depending on the amount of time for the pincer object
to slip away from the fingers) with two resting periods in between (3 min for each resting period).
Considering each volunteer performed the same experiment with both hands, a total time duration of
around 14 min was involved.

 
 

(a) (b) (c) 

Figure 13. Distribution of: (a) pinch force; (b) pulling force; and (c) static COF for 50 volunteers.

Table 2. Summary of pinch force, pulling force, and static COF values at slip onset for 50 volunteers.

Variable Mean Standard Deviation Range

Pinch force (N) Right hand 12.17 3.02 5.36–18.48
Left hand 11.67 2.82 6.79–17.67

Pulling force (N) Right hand 6.25 2.19 2.37–10.77
Left hand 5.92 1.86 1.88–10.67

Static COF
Right hand 0.518 0.146 0.27–0.85
Left hand 0.517 0.145 0.23–0.81

4. Discussion

In 274 trials (91.3% of total trials), the volunteers could adjust the pinch force in proportion to
the changes in pulling force. However, the remaining trials were excluded prior to analysis due to
improper adjustment of pinch force to the pulling force. This is considered as human errors such that
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the volunteers might not follow the experiment’s procedures and instructions probably due to delay in
reaction, missing the instructions, or absence of visual feedback. According to the UE-FMA protocol,
the subject should resist a gentle pull to avoid slip. This means that the pincer object slips when
the subject is no longer able to exert enough pinch force. In this study, it was initially hypothesized
that the slip onset was expected at the maximum pinch force just before the point where the pincer
object totally slipped. Interestingly, it was found that the slip onset occurred much earlier and was
subjected to a sub-maximal pinch force. This result opens up the possibility of using the slip onset as a
measurement of pinch improvement such that the patient would develop a stronger pinch force over
rehabilitation time at the slip onset. Furthermore, the continuous changes of slip onset would improve
the responsiveness of the pinch assessment such that the scoring is not subjected only to score 1 and 2
as in the current UE-FMA scoring criteria.

The pinch–force relationship was found to be linear prior to the slip onset as the static COF
between human skin and copper alloy was constant. However, there was some variability in pinch
and pulling force, as indicated by peaks approximately at 7.5, 12, and 14.5 N, as depicted in Figure 12.
The highest variability was observed at 7.5 N pinch force at the loading phase in which the linear electric
actuator started to pull. This is consistent with previous studies stated that the subjects generally
show stronger pinch forces at the loading phase [59]. Besides, the pinch force rate (N/s) reached the
highest at the loading phase when the volunteer was subjected to unpredictable loading [27]. The study
conducted by Takamuku et al. [60] showed that pinch force variability is lower when visual feedback is
provided to the subject. In addition, the pinch force control is greatly influenced by the safety margin
factor during the unpredictable loading [61]. The safety margin is an additional amount of pinch force
applied to guard against slip, which is different from volunteer to volunteer [62]. The other two peaks
at 12 and 14.5 N can be interpreted such that the volunteer should adapt his pinch force against the
continuous automatic pull without visual feedback; hence, the safety margin is continuously changed
to adapt the continuous increase in pulling force. Therefore, it is possible that the volunteer may
unconsciously fail to adapt his pinch force to the increase in pulling force at some events. The safety
margin is also influenced by the static COF [63], such that it will be high in the case of slippery object
as in copper alloy used in our experiment. The pinch–pulling force relationship can be used as an
assessment for pinch force control against unpredictable loading for stroke patients.

The CV value (represented by standard deviation divided by the mean) indicates how well the
mean values of pinch and pulling forces summarizes the whole dataset. Interpretation of CV may
vary; the rule of thumb can be used, which states the CV value of under 1 shows a small variance [64].
In this study, the CV values were 0.248 and 0.35 for pinch and pulling forces of the right hands,
respectively. The CV values were 0.241 and 0.31 for pinch and pulling forces of left hands, respectively.
Hence, the mean pinch and pulling force values are a reasonable representation of healthy adults in
Malaysia. The results also indicate that the pinch and pulling force vary among the volunteers at the
slip onset, which is expected as each volunteer has a different body size, hand size, and amount of
safety margin. For instance, a bigger fingertip size leads to a larger contact area between the fingertip
and the object’s surface. Consequently, larger contact area would lead to larger pinch force, as reported
in a related study by Derler et al. [65], who showed that there is a positive association between contact
area and force exerted by the index finger. In addition, each volunteer has different skin characteristics
such as oiliness, moisture, roughness, and age that may affect the friction between fingertip skin and
pincer object’s surface. In this study, the mean static COFs for right and left hands were computed as
0.518 ± 0.146 and 0.517 ± 0.145, respectively. This is relatively consistent with previous findings related
to measuring COF between human skin and copper material, reported by Sivamani et al. [66] (mean
COF = 0.55) and Li et al. [67] (mean COF = 0.58).

In the literature, many studies have reported a significant difference in maximum pinch force
between right and left hands [68]. Although our results show a slight increase in the means of pinch
and pulling force for right hand compared to the left hand, there was no significant difference (p > 0.05).
Thus, it is not required to distinguish between right and left hands when a single-gender group is
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recruited for further research. Furthermore, the unaffected hand can be used as a reference for the
affected hand during the rehabilitation of post-stroke patients. The explanation of this result can be
that the volunteers did not exert their maximum pinch force at the slip onset. This is consistent with a
study conducted by Li and Yu [69], who reported that there is no significant difference between left
and right hands when the grip force is at 25%, 50%, and 75% of the maximum force. The results of
their study indicate that there is a significant difference only at maximum grip force.

Recently, three main components of the assessment system are required for an assessment system
to be fully automated: administration, data acquisition, and rating [19]. Administration involves the
instructions and procedures to evaluate the patient, while the data acquisition involves obtaining the
outcome measurements from patients. Rating is the criteria to evaluate the outcome measurements
of the patients, which are usually designed as an ordinal scale. In this study, only the pinch data
acquisition system is automated based on UE-FMA protocol. The limitation of this study is that
the administration and rating components are not yet automated. In the future, this limitation will
be addressed, such that stroke patients with pinch deficits at different levels of impairment (severe,
moderate, and mild) will be recruited to determine the threshold values for each level so that an
automated rating process can be performed. In addition, the administration of the pinch test will be
automated by including a graphical user interface to visualize the instructions and procedures.

To use the automated data acquisition system in clinical practice based on UE-FMA protocol,
the design can be improved to be more compact, less wires, and portable by: (1) replacing the DC power
supply with a portable DC battery to power the two amplifiers and LVDT sensor; (2) using a customized
small size linear electric actuator as the with pulling force of smaller than 15 N; and (3) using a wireless
connection (e.g., ZigBee module) to transmit/receive digitalized signals to/from the PC instead of signal
wires. This improvement will be addressed in the future work.

5. Conclusions

In this paper, an automated data acquisition system for pinch assessment based on UE-FMA
protocol is presented. The automated system is able to provide objective measurements of pinch and
pulling forces and detect slip onset rather than the subjective manual gentle pull and visual observation
of slipping occurrence. In addition, the therapist’s gentle pull has been replaced with a linear actuator
sub-system exerting a consistent amount of pulling force. Right and lefts hands of 50 volunteers
were recruited to investigate the pinch and pulling force measurements at the slip onset using the
developed system. The pinch–pulling force relationship is linear, which is indicated by a proportional
increase of pinch force against the continuous increase of pulling force prior to slip onset. In addition,
the volunteers were subjected to submaximal pinch force at the slip onset. The mean pinch force
values at the slip onset were 12.17 and 11.67 N for right and left hands, respectively. The mean pulling
force values at the slip onset were 6.25 and 5.92 N for right and left hands, respectively. It was found
that there is no significant difference in force measurements between right and left hands. A further
study can be conducted to investigate the hypothesis of considering slip onset and pinch–pulling force
relationship as a pinch assessment for stroke patients.
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Appendix A

Figure A1. Force–voltage relationship during loading and unloading.

Figure A2. Flowchart of experiment execution.

 

Figure A3. (a) Three trials recorded from one volunteer; and (b) displacement in decibel scale.

46



Appl. Sci. 2020, 10, 3436

References

1. Miyasaka, H.; Takeda, K.; Ohnishi, H.; Orand, A.; Sonoda, S. Effect of Sensory Loss on Improvements of
Upper-Limb Paralysis Through Robot-Assisted Training: A Preliminary Case Series Study. Appl. Sci. 2019,
9, 3925. [CrossRef]

2. Li, K.; Nataraj, R.; Marquardt, T.L.; Li, Z.-M. Directional coordination of thumb and finger forces during
precision pinch. PLoS ONE 2013, 8, e79400. [CrossRef] [PubMed]

3. Pessina, M.A.; Bowley, B.G.; Rosene, D.L.; Moore, T.L. A method for assessing recovery of fine motor
function of the hand in a rhesus monkey model of cortical injury: An adaptation of the Fugl-Meyer Scale and
Eshkol-Wachman Movement Notation. Somatosens. Mot. Res. 2019, 36, 69–77. [CrossRef]

4. El-Katab, S.; Omichi, Y.; Srivareerat, M.; Davenport, A. Pinch grip strength as an alternative assessment
to hand grip strength for assessing muscle strength in patients with chronic kidney disease treated by
haemodialysis: A prospective audit. J. Hum. Nutr. Diet. 2016, 29, 48–51. [CrossRef] [PubMed]

5. Murphy, M.A.; Resteghini, C.; Feys, P.; Lamers, I. An overview of systematic reviews on upper extremity
outcome measures after stroke. BMC Neurol. 2015, 15, 29. [CrossRef]

6. Valero-Cuevas, F.J.; Smaby, N.; Venkadesan, M.; Peterson, M.; Wright, T. The strength-dexterity test as a
measure of dynamic pinch performance. J. Biomech. 2003, 36, 265–270. [CrossRef]

7. Harrison, J.K.; McArthur, K.S.; Quinn, T.J. Assessment scales in stroke: Clinimetric and clinical considerations.
Clin. Interv. Aging 2013, 8, 201.

8. Yozbatiran, N.; Der-Yeghiaian, L.; Cramer, S.C. A standardized approach to performing the action research
arm test. Neurorehabilit. Neural Repair 2008, 22, 78–90. [CrossRef]

9. Johansson, G.M.; Häger, C.K. A modified standardized nine hole peg test for valid and reliable kinematic
assessment of dexterity post-stroke. J. Neuroeng. Rehabil. 2019, 16, 8. [CrossRef]

10. Sears, E.D.; Chung, K.C. Validity and responsiveness of the jebsen–taylor hand function test. J. Hand Surg.
2010, 35, 30–37. [CrossRef]

11. Wolf, S.L.; Catlin, P.A.; Ellis, M.; Archer, A.L.; Morgan, B.; Piacentino, A. Assessing Wolf motor function test
as outcome measure for research in patients after stroke. Stroke 2001, 32, 1635–1639. [CrossRef] [PubMed]

12. Raghavan, P. Upper limb motor impairment after stroke. Phys. Med. Rehabil. Clin. 2015, 26, 599–610.
[CrossRef] [PubMed]

13. Page, S.J.; Fulk, G.D.; Boyne, P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in
people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 2012, 92, 791–798. [CrossRef]
[PubMed]

14. Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient.
1. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [PubMed]

15. Deakin, A.; Hill, H.; Pomeroy, V.M. Rough guide to the Fugl-Meyer Assessment: Upper limb section.
Physiotherapy 2003, 89, 751–763. [CrossRef]

16. Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.;
Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale
for testing muscle strength in patients with radial palsy. J. Rehabil. Med. 2008, 40, 665–671. [CrossRef]

17. Van Beers, R.J.; Haggard, P.; Wolpert, D.M. The role of execution noise in movement variability. J. Neurophysiol.
2004, 91, 1050–1063. [CrossRef]

18. Tanaka, K.; Yano, H. Errors of visual judgement in precision measurements. Ergonomics 1984, 27, 767–780.
[CrossRef]

19. Simbaña, E.D.O.; Baeza, P.S.-H.; Jardón, A.; Balaguer, C. Review of Automated Systems for Upper Limbs
Functional Assessment in Neurorehabilitation. IEEE Access 2019, 7, 32352–32367. [CrossRef]

20. de los Reyes-Guzmán, A.; Dimbwadyo-Terrer, I.; Trincado-Alonso, F.; Monasterio-Huelin, F.; Torricelli, D.;
Gil-Agudo, A. Quantitative assessment based on kinematic measures of functional impairments during
upper extremity movements: A review. Clin. Biomech. 2014, 29, 719–727. [CrossRef]

21. Yu, L.; Xiong, D.; Guo, L.; Wang, J. A remote quantitative Fugl-Meyer assessment framework for stroke
patients based on wearable sensor networks. Comput. Methods Programs Biomed. 2016, 128, 100–110.
[CrossRef] [PubMed]

47



Appl. Sci. 2020, 10, 3436

22. Woytowicz, E.J.; Rietschel, J.C.; Goodman, R.N.; Conroy, S.S.; Sorkin, J.D.; Whitall, J.; Waller, S.M. Determining
levels of upper extremity movement impairment by applying a cluster analysis to the Fugl-Meyer assessment
of the upper extremity in chronic stroke. Arch. Phys. Med. Rehabil. 2017, 98, 456–462. [CrossRef] [PubMed]

23. Yu, L.; Wang, J.; Guo, L.; Zhang, Q.; Li, P.; Li, Y.; Yu, X.; Huang, Y.; Wu, Z. Transfer learning based
quantitative assessment model of upper limb movement ability for stroke survivors. In Proceedings of
the 2017 2nd International Conference on Information Technology (INCIT), Nakhon Pathom, Thailand,
2–3 November 2017; pp. 1–4.

24. Page, S.J.; Levine, P.; Hade, E. Psychometric properties and administration of the wrist/hand subscales of
the Fugl-Meyer Assessment in minimally impaired upper extremity hemiparesis in stroke. Arch. Phys.
Med. Rehabil. 2012, 93, 2373–2376. [CrossRef] [PubMed]

25. Westling, G.; Johansson, R. Factors influencing the force control during precision grip. Exp. Brain Res. 1984,
53, 277–284. [CrossRef]

26. Hu, W.; Wei, N.; Li, Z.-M.; Li, K. Effects of muscle fatigue on directional coordination of fingertip forces
during precision grip. PLoS ONE 2018, 13, e0208740. [CrossRef]

27. Häger-Ross, C.; Cole, K.J.; Johansson, R.S. Grip-force responses to unanticipated object loading: Load
direction reveals body-and gravity-referenced intrinsic task variables. Exp. Brain Res. 1996, 110, 142–150.
[CrossRef]

28. Sullivan, K.J.; Tilson, J.K.; Cen, S.Y.; Rose, D.K.; Hershberg, J.; Correa, A.; Gallichio, J.; McLeod, M.; Moore, C.;
Wu, S.S. Fugl-Meyer assessment of sensorimotor function after stroke: Standardized training procedure for
clinical practice and clinical trials. Stroke 2011, 42, 427–432. [CrossRef]

29. Frisoli, A.; Procopio, C.; Chisari, C.; Creatini, I.; Bonfiglio, L.; Bergamasco, M.; Rossi, B.; Carboncini, M.C.
Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke.
J. Neuroeng. Rehabil. 2012, 9, 36. [CrossRef]

30. Ellis, M.D.; Schut, I.; Dewald, J.P. Flexion synergy overshadows flexor spasticity during reaching in chronic
moderate to severe hemiparetic stroke. Clin. Neurophysiol. 2017, 128, 1308–1314. [CrossRef]

31. Straathof, P.T.; Lobo-Prat, J.; Schilder, F.; Kooren, P.N.; Paalman, M.I.; Stienen, A.H.; Koopman, B.F.
Design and control of the A-Arm: An active planar arm support for adults with Duchenne muscular
dystrophy. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and
Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 1242–1247.

32. Heyer, P.; Orihuela-Espina, F.; Castrejón, L.R.; Hernández-Franco, J.; Sucar, L.E. Sensor Abstracted Extremity
Representation for Automatic Fugl-Meyer Assessment. In Applications for Future Internet; Springer: Cham,
Switzerland, 2017; pp. 152–163.

33. Wang, J.; Yu, L.; Wang, J.; Guo, L.; Gu, X.; Fang, Q. Automated Fugl-Meyer assessment using SVR model.
In Proceedings of the 2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB
2014), Chung Li, Taiwan, 11–14 April 2014; pp. 1–4.

34. Villán-Villán, M.A.; Pérez-Rodríguez, R.; Gómez, C.; Opisso, E.; Tormos, J.M.; Medina, J.; Gómez, E.J. A First
Step for the Automation of Fugl-Meyer Assessment Scale for Stroke Subjects in Upper Limb Physical
Neurorehabilitation. In Proceedings of the International Conference on Informatics, Management and
Technology in Healthcare, Athens, Greece, 9–11 July 2015; pp. 45–48.

35. Oña, E.D.; Jardón, A.; Monge, E.; Molina, F.; Cano, R.; Balaguer, C. Towards Automated Assessment of
Upper Limbs Motor Function Based on Fugl-Meyer Test and Virtual Environment. In Proceedings of the
International Conference on NeuroRehabilitation, Pisa, Italy, 16–20 October 2018; pp. 297–301.

36. Eichler, N.; Hel-Or, H.; Shimshoni, I.; Itah, D.; Gross, B.; Raz, S. 3D motion capture system for assessing patient
motion during Fugl-Meyer stroke rehabilitation testing. IET Comput. Vis. 2018, 12, 963–975. [CrossRef]

37. Kim, W.-S.; Cho, S.; Baek, D.; Bang, H.; Paik, N.-J. Upper extremity functional evaluation by Fugl-Meyer
assessment scoring using depth-sensing camera in hemiplegic stroke patients. PLoS ONE 2016, 11, e0158640.
[CrossRef] [PubMed]

38. Lee, W.W.; Yen, S.-C.; Tay, E.B.A.; Zhao, Z.; Xu, T.M.; Ling, K.K.M.; Ng, Y.-S.; Chew, E.; Cheong, A.L.K.;
Huat, G.K.C. A smartphone-centric system for the range of motion assessment in stroke patients. IEEE J.
Biomed. Health Inform. 2014, 18, 1839–1847. [CrossRef] [PubMed]

39. Olesh, E.V.; Yakovenko, S.; Gritsenko, V. Automated assessment of upper extremity movement impairment
due to stroke. PLoS ONE 2014, 9, e104487. [CrossRef] [PubMed]

48



Appl. Sci. 2020, 10, 3436

40. Otten, P.; Kim, J.; Son, S. A framework to automate assessment of upper-limb motor function impairment:
A feasibility study. Sensors 2015, 15, 20097–20114. [CrossRef]

41. Otten, P.; Son, S.H.; Kim, J. Automating stroke patient evaluation using sensor data and SVM. In Proceedings
of the 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, Matsue,
Japan, 17–19 November 2014; pp. 223–229.

42. Lee, S.; Lee, Y.-S.; Kim, J. Automated evaluation of upper-limb motor function impairment using Fugl-Meyer
assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 26, 125–134. [CrossRef]

43. Lee, S.-H.; Song, M.; Kim, J. Towards clinically relevant automatic assessment of upper-limb motor function
impairment. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health
Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; pp. 148–151.

44. Kim, Y.M.; Son, Y.; Kim, W.; Jin, B.; Yun, M.H. Classification of children’s sitting postures using machine
learning algorithms. Appl. Sci. 2018, 8, 1280. [CrossRef]

45. Paredes-Madrid, L.; Emmi, L.; Garcia, E.; De Santos, P.G. Detailed study of amplitude nonlinearity in
piezoresistive force sensors. Sensors 2011, 11, 8836–8854. [CrossRef]

46. Parmar, S.; Khodasevych, I.; Troynikov, O. Evaluation of flexible force sensors for pressure monitoring in
treatment of chronic venous disorders. Sensors 2017, 17, 1923. [CrossRef]

47. Rivera, J.; Carrillo, M.; Chacón, M.; Herrera, G.; Bojorquez, G. Self-calibration and optimal response in
intelligent sensors design based on artificial neural networks. Sensors 2007, 7, 1509–1529. [CrossRef]

48. Almassri, A.; Wan Hasan, W.; Ahmad, S.; Shafie, S.; Wada, C.; Horio, K. Self-calibration algorithm for a
pressure sensor with a real-time approach based on an artificial neural network. Sensors 2018, 18, 2561.
[CrossRef]

49. Likitlersuang, J.; Leineweber, M.J.; Andrysek, J. Evaluating and improving the performance of thin film force
sensors within body and device interfaces. Med. Eng. Phys. 2017, 48, 206–211. [CrossRef] [PubMed]

50. Ide, D.T.A. Available online: https://www.arduino.cc/en/Main/Software (accessed on 1 January 2019).
51. Alsayed, A.; Kamil, R.; Ramli, H.R.; As’arry, A. Design and Calibration of Pinch Force Measurement Using

Strain Gauge for Post-Stroke Patients. Int. J. Integr. Eng. 2019, 11. [CrossRef]
52. Oh, J.; Kim, J.O.; Kim, Y.; Choi, H.B.; Yang, J.C.; Lee, S.; Pyatykh, M.; Kim, J.; Sim, J.Y.; Park, S. Highly Uniform

and Low Hysteresis Piezoresistive Pressure Sensors Based on Chemical Grafting of Polypyrrole on Elastomer
Template with Uniform Pore Size. Small 2019, 15, 1901744. [CrossRef] [PubMed]

53. Matute, A.; Paredes-Madrid, L.; Gutierrez, E.; Vargas, C.A.P. Characterization of drift and hysteresis errors in
force sensing resistors considering their piezocapacitive effect. In Proceedings of the 2017 IEEE SENSORS,
Glasgow, UK, 29 October–1 November 2017; pp. 1–3.

54. Reed, G.F.; Lynn, F.; Meade, B.D. Use of coefficient of variation in assessing variability of quantitative assays.
Clin. Diagn. Lab. Immunol. 2002, 9, 1235–1239. [CrossRef]

55. Zheng, Y.; Zhao, M.; Jiang, J.; Song, L. Dynamic Force Transducer Calibration Based on Electrostatic Force.
IEEE Access 2019, 7, 48998–49003. [CrossRef]

56. Maleki-Ghahfarokhi, A.; Dianat, I.; Feizi, H.; Asghari-Jafarabadi, M. Influences of gender, hand dominance,
and anthropometric characteristics on different types of pinch strength: A partial least squares (PLS) approach.
Appl. Ergon. 2019, 79, 9–16. [CrossRef]

57. Angst, F.; Drerup, S.; Werle, S.; Herren, D.B.; Simmen, B.R.; Goldhahn, J. Prediction of grip and key pinch
strength in 978 healthy subjects. BMC Musculoskelet. Disord. 2010, 11, 94. [CrossRef]

58. Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [CrossRef]
59. Blennerhassett, J.M.; Carey, L.M.; Matyas, T.A. Grip force regulation during pinch grip lifts under

somatosensory guidance: Comparison between people with stroke and healthy controls. Arch. Phys.
Med. Rehabil. 2006, 87, 418–429. [CrossRef] [PubMed]

60. Takamuku, S.; Gomi, H. Better grip force control by attending to the controlled object: Evidence for direct
force estimation from visual motion. Sci. Rep. 2019, 9, 13114. [CrossRef]

61. Roberge, J.-P.; Ruotolo, W.; Duchaine, V.; Cutkosky, M. Improving industrial grippers with adhesion-controlled
friction. IEEE Robot. Autom. Lett. 2018, 3, 1041–1048. [CrossRef]

62. Miall, R.C.; Rosenthal, O.; Ørstavik, K.; Cole, J.D.; Sarlegna, F.R. Loss of haptic feedback impairs control of
hand posture. Exp. Brain Res. 2019, 237. [CrossRef] [PubMed]

63. Barrea, A.; Bulens, D.C.; Lefèvre, P.; Thonnard, J.-L. Simple and reliable method to estimate the fingertip
static coefficient of friction in precision grip. IEEE Trans. Haptics 2016, 9, 492–498. [CrossRef] [PubMed]

49



Appl. Sci. 2020, 10, 3436

64. Hall, D. (e) in Normandy: The sociolinguistics, phonology and phonetics of the Loi de Position. J. Fr.
Lang. Stud. 2019, 29, 1–33. [CrossRef]

65. Derler, S.; Gerhardt, L.-C.; Lenz, A.; Bertaux, E.; Hadad, M. Friction of human skin against smooth and rough
glass as a function of the contact pressure. Tribol. Int. 2009, 42, 1565–1574. [CrossRef]

66. Sivamani, R.K.; Wu, G.C.; Gitis, N.V.; Maibach, H.I. Tribological testing of skin products: Gender, age, and
ethnicity on the volar forearm. Ski. Res. Technol. 2003, 9, 299–305. [CrossRef] [PubMed]

67. Li, W.; Qu, S.; Zhou, Z. Reciprocating sliding behaviour of human skin in vivo at lower number of cycles.
Tribol. Lett. 2006, 23, 165. [CrossRef]

68. Petersen, P.; Petrick, M.; Connor, H.; Conklin, D. Grip strength and hand dominance: Challenging the 10%
rule. Am. J. Occup. Ther. 1989, 43, 444–447. [CrossRef]

69. Li, K.W.; Yu, R. Assessment of grip force and subjective hand force exertion under handedness and postural
conditions. Appl. Ergon. 2011, 42, 929–933. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

50



applied  
sciences

Article

Investigation of the Functional Decline
in Proprioceptors for Low Back Pain Using the Sweep
Frequency Method

Reiya Nishio 1,*, Yohei Ito 1, Yoshifumi Morita 1, Tadashi Ito 2, Kazunori Yamazaki 3

and Yoshihito Sakai 4

1 Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of
Technology, Nagoya 466-8555, Japan; y.ito.359@nitech.jp (Y.I.); morita@nitech.ac.jp (Y.M.)

2 Three-Dimensional Motion Analysis Room, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation
Center for Developmental Disabilities, Okazaki 444-0002, Japan; sanjigen@mikawa-aoitori.jp

3 Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University,
Toyoake 470-1192, Japan; ymzkk@fujita-hu.ac.jp

4 Department of Orthopedic Surgery, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan;
jsakai@ncgg.go.jp

* Correspondence: r.nishio.115@nitech.jp; Tel.: +81-52-735-5412

Received: 24 October 2019; Accepted: 18 November 2019; Published: 20 November 2019

Abstract: The purpose of this study was to investigate the functional decline in proprioceptors
in patients with low back pain (LBP) by evaluating the entire range of response frequencies of
proprioceptors. In previous studies, the function of proprioceptors was only evaluated by single
frequency vibrations. However, because it is assumed that individual differences exist in response
frequencies of proprioceptors, we developed a method using vibration with sweep frequency covering
the entire range of response frequencies of proprioceptors. The center of pressure was determined in
35 elderly patients with non-specific LBP (NSLBP) and 28 elderly individuals with non-LBP (NLBP)
during upright stances on a balance board without vision. Local vibratory stimulations to lower
leg or trunk muscles were continuously varied between 27 and 272 Hz over 60 s to evaluate the
proprioceptive predominance of a body location using the relative proprioceptive weighting ratio
(RPW). Compared with the NLBP group, the NSLBP group exhibited a lower RPW value for the
Vater-Pacini corpuscles. Thus, the NSLBP group relied more on the input of Vater-Pacini corpuscles
in the trunk. A reduction in lower leg sensitivity at the Vater-Pacini corpuscles in the NSLBP group
was observed.

Keywords: vibratory stimulation device; local muscle vibration; proprioceptors; low back pain;
response frequency; postural control; Vater-Pacini corpuscles

1. Introduction

Worldwide, low back pain (LBP) has become the main cause of disability [1]. However, its causes
are unidentifiable in 85% of the cases [2]. Postural control impairment is considered one of the main
causes of LBP [3]. Postural control is affected by sensory inputs from visual and vestibular senses and
somatosensory receptors which provide superficial and proprioception. A previous study indicated
that the feedback control on the trunk posture is mainly influenced by the visual and proprioception [4].
Also, another previous study suggested that the ability to select and reweigh sensory inputs to adapt
to situations is a critical factor for postural control [5]. In addition, non-specific LBP (NSLBP) may alter
postural control by refocusing proprioception from the trunk to the ankles [6]. Furthermore, reduced
precision of trunk movement in NSLBP might be explained by proprioceptive deficits [7]. Therefore,
NSLBP could be caused by a decline in proprioception leading to problems in postural control and LBP.
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Proprioception in the lower leg and trunk muscle plays an important role in maintaining postural
stability [8]. Each proprioceptor has a response frequency of vibration. Meissner corpuscles are
sensitive to lower vibration frequencies (peaks around 30 Hz), whereas the Vater-Pacini corpuscles are
sensitive to higher frequencies (peaks around 240 Hz) [9]. Muscle spindles have a response frequency
range of 40–100 Hz [10]. Mechanical vibration is commonly used to test externally induced balance
control. This method has been widely used to investigate the role of muscle spindle in research focusing
on postural control [11–14]. However, the role of other proprioceptors in NSLBP has not been evaluated.
Thus, comparing postural sway of NSLBP during various local frequency vibrations with that of
non-LBP (NLBP) will allow determination of the cause of LBP and frequencies of proprioception deficit.

Postural sway of NSLBP during local frequency vibrations of 30, 60 and 240 Hz has been compared
with that of NLBP in our previous study. From the result, we found that not only does NSLBP involve
the functional impairment of muscle spindles that other groups reported [11–13] but also Vater-Pacini
corpuscles were functionally declined because of LBP [15,16]. However, in previous studies, only
one frequency of vibration stimulation was applied within the range of response frequencies for
each proprioceptor [11–13,15,16]. In addition, other studies investigating muscle spindle response
to multiple vibration frequencies reported different results. A previous study using 90 Hz vibration
frequency suggested that the weighting of proprioceptive feedback from lumbar muscle spindles did
not differ between NSLBP and NLBP [17]. On the other hand, another previous study using 60 Hz
vibration frequency suggested that LBP patients rely less on proprioceptive feedback from lumbar
muscle spindles [18]. From these results, it is implied that the postural response induced by mechanical
vibration varies with the applied vibration frequency even in one proprioceptor. Also, it is assumed
that there are individual differences in response frequencies of proprioceptors. To the best of our
knowledge, a protocol for measuring postural control while applying local vibration stimulation in
the entire response frequency band has not been developed. Thus, we considered that the inspection
device and a protocol for evaluating postural response in the range of the entire response frequencies
of the proprioceptors are necessary.

Therefore, we developed a new experimental protocol to measure the center of pressure (CoP)
of an individual on a gravicorder during local mechanical vibration with sweep frequencies, using
our developed variable frequency vibratory stimulation device. This method can be analyzed by
applying a vibration stimulus once in the entire frequency range covering the response frequencies of
each proprioceptor. For this reason, there is a possibility that this method can identify proprioceptors
related to NSLBP and the functionally declined frequency bands of proprioceptors. In addition,
the method might be capable of more detailed analyses because the vibration is stimulated with
the entire frequency range covering the response frequencies of each proprioceptor. Furthermore,
this method is considered to be the shortest for measuring all the response frequency bands of the three
proprioceptors. The physical burden on subjects during measurement can also be reduced because
the measurement time can be shortened by about 4 min and 30 s compared with the time required
for the conventional method with a constant frequency. Our final goal is to develop an inspection
device for evaluating the functional decline in proprioceptors. In this study, we aimed to investigate
the relationship between proprioception and LBP. Thus, postural sway response in NSLBP and NLBP
was measured with our new sweep frequency method and compared with the responses obtained
from past studies using the method of constant frequency.

2. Materials and Methods

2.1. Subjects

This study was carried out during a period of 30 months (August 2016–July 2019) in tandem
with general clinical practice. Written informed consent was obtained from all participants before
inclusion in the study. All investigations were conducted according to the principles expressed in the
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Declaration of Helsinki. The Ethics Committee of the National Center for Geriatrics and Gerontology
approved the study (IRB approval number: 586).

Sixty-three elderly individuals (age � 65 years: age range 65–90; sex ratio: 36 women/27 men)
were recruited, including 35 patients (22 women, 13 men) with NSLBP which lasted over 3 months
who visited the National Center for Geriatric and Gerontology for orthopedic treatment. Among the
recruited individuals, 28 individuals with NLBP (14 women and 14 men) acted as controls with no
history of disabling NSLBP which is defined as LBP when the pathoanatomical cause of the pain cannot
be determined [19]. Patients with the following characteristics were excluded—paralysis, astasia,
spinal cord tumor, spinal infection and history of spinal surgery. Demographics of all individuals are
presented in Table 1.

Table 1. Demographic characteristics and functional outcome of the patients.

Variables NLBP (n = 28) NSLBP (n = 35) p

Age, years 75.9 ± 5.4 75.1 ± 5.2 0.552
Height, cm 154.8 ± 7.7 153.2 ± 7.3 0.410
Weight, kg 59.8 ± 11.4 57.7 ± 10.5 0.609
BMI, kg/m2 24.8 ± 3.3 24.5 ± 3.7 0.774

VAS, cm 2.4 ± 2.5 6.2 ± 2.4 <0.001
RDQ (score) 9.1 ± 5.8 11.8 ± 4.0 <0.05

BMI: body mass index; NLBP: non-low back pain; NSLBP: non-specific low back pain; VAS: visual analog scale; RDQ:
Roland-Morris disability questionnaire; SD: standard deviation. Data are presented as the mean ± SD. All p values
were generated using the independent t-test, Mann-Whitney u test.

2.2. Device

Figure 1a,b shows an inspection system for evaluating the functional decline in proprioceptors.
The system consists of a PC, an amplifier, four vibrators (NSW1-205-8A, Aurasound, Inc., CA, USA),
three hook-and-loop fasteners and a Wii Balance Board (Nintendo Co., Ltd., Kyoto, Japan). Two
hook-and-loop fasteners with one vibrator were used for the left and right lower legs and one
hook-and-loop fastener with two vibrators was used for the left and right parts of the trunk.

 
(a) 

   
(b) 

Figure 1. Inspection system for proprioceptive function: (a) Variable frequency vibratory stimulation
device; and (b) experimental setup for a participant.

Vibration signals were generated using the PC. Then, vibrations were output from the vibrators
as a mechanical vibration stimulus through the amplifier. In other previous studies, the mechanical
vibration stimulus with an amplitude of 0.4 to 1.0 mm was used as the proprioceptive input [10,11,13].
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Also, the maximum amplitude of our developed device which can be output without distortion of
mechanical vibration at each frequency from 20 to 300 Hz is 0.8 mm. Thus, the amplitude of the
vibration was selected at 0.8 mm of a sinusoidal wave. Vibrators were attached to the hook-and-loop
fasteners using holders and fixed to the muscle belly of the gastrocnemius (GS) and the lumbar
multifidus (LM) muscles. The contact pressure to the body locations of the vibrators was regulated
by changing the length of the hook-and-loop fasteners according to the circumference of the fixed
body locations. A Wii Balance Board was used as a gravicorder. The CoP was measured instead of
the center of gravity. A Wii Balance Board has been reported as a reliable and valid tool for assessing
standing balance [20]. It can acquire the time series data of CoP coordinates with a sampling frequency
of 100 Hz. Moreover, it is possible to save the CoP as CSV data by running the self-made CoP data
collection software on a PC connected with the Wii Balance Board via Bluetooth.

2.3. Experimental Method

The CoP in postural sway while the participant stood barefoot on the Wii Balance Board with
his/her eyes closed and feet together was measured. Participants were instructed to remain still and
relaxed in the standing position with their arms hanging loosely at their sides. In order to prevent
injuries due to falls during measurements, two researchers stood on both sides of a subject with eyes
closed. They paid attention to whether or not the subject was likely to fall and gave support if the
subject was falling. As the vibration frequency, a sweep frequency (Figure 2) was used. The vibration
was continuously changed from 27 Hz to 272 Hz (frequency ascend mode) or 272 Hz to 27 Hz (frequency
descend mode) for 60 s, thus covering the response frequency ranges of the three proprioceptors.
The relationships of sweep frequency between frequency f (t) and measurement time t are shown in
Equations (1) and (2). The coefficient a was determined so that the frequencies at t = 15 s and 75 s were
set to 27 Hz and 272 Hz in the frequency ascend mode, respectively. Thus, the coefficient a was found
to be 0.03851. Furthermore, the frequency descend mode had the same frequencies at t = 15 s and 75 s
(272 Hz and 27 Hz, respectively).

f (t) =
{

0 (0 ≤ t ≤ 15)
27ea(t−15)(15 ≤ t ≤ 75)

(frequency ascend mode) (1)

f (t) =
{

0 (0 ≤ t ≤ 15)
27ea(75−t)(15 ≤ t ≤ 75)

(frequency descend mode) (2)

Figure 2. Sweep frequency of vibratory stimulation.
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The measurement procedure consisted of two conditions that provided vibration stimulus—GS
and LM. The time needed for one condition was 75 s and was divided into two sections. The first
15 s and last 60 s sections are referred to as Pre- and Dur-sections, respectively. In the Pre-section,
a participant closed his/her eyes. Then, in the Dur-section, the vibratory stimulation was applied to the
GS or LM of the participant with his/her eyes closed. The ascend or descend sweep frequency mode
was randomly determined for each subject. A rest interval of 60 s was kept between the conditions.
During this time, each participant sat in a chair and remained at rest.

2.4. Data Analysis Method

The postural control performance was evaluated from the CoP data while vibration stimulation
was applied. Furthermore, the CoP data divided the Dur-section into three evaluation sections (ESi,
i = 1, 2, 3) determined according to the frequency of vibration stimulation and the response frequencies
of the proprioceptors. Table 2 lists the names of each ES, the frequency of the vibration stimulus and
the corresponding proprioceptors.

Table 2. Lists of names of each ES, frequency of vibration stimulus and corresponding proprioceptors.

ESi Frequency [Hz] Corresponding Proprioceptors

ES1 30–43 Meissner corpuscle
ES2 49–71 Muscle spindles
ES3 168–247 Vater-Pacini corpuscle

ES: Evaluation section.

Because the previous studies showed that a relationship existed between CoP displacement
in an anteroposterior direction and the response of proprioceptors by vibration stimulus, the CoP
displacement in the anteroposterior direction was only considered [10]. Previous studies used the
relative proprioceptive weighting ratio (RPW) and the root mean square (RMS) of GS and LM as
evaluation indexes to evaluate the proprioceptive predominance of body location and the magnitude
of CoP in an anteroposterior direction [11,15,18]. The evaluation indexes applicable to the sweep
frequency method were introduced as follows.

To obtain information regarding the proprioceptive predominance of body locations, modified
RPW was calculated using the following equation.

RPWi =
RMSi

GS

RMSi
GS + RMSi

LM

× 100 [%] (i = 1, 2, 3) (3)

where the subscript i is used to distinguish the ESs. The higher is the value of RPWi from 50% to 100%,
the higher is the reliability of GS input. On the other hand, the lower is the value of RPWi from 50% to
0%, the higher is the reliability of LM input [11,15]. RMSi∗ means the effective value of the magnitude
of CoP in an anteroposterior direction. In each ES in the Dur-section, the larger the RMS, the higher
the amount of transition of postural sway in the anteroposterior direction compared to those in the
Pre-section. RMSi∗ was calculated using the following equations.

RMS1∗ =

√√√
1
N

n2∑
n=n1

{
YDur(∗)(n) −Ypre(∗)

}2
(4)

RMS2∗ =

√√√
1
N

n4∑
n=n3

{
YDur(∗)(n) −Ypre(∗)

}2
(5)
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RMS3∗ =

√√√
1
N

n6∑
n=n5

{
YDur(∗)(n) −Ypre(∗)

}2
(6)

where N is the total sampling number of each ES; n is the number of data series; YDur(∗)(n) is the CoP in

the anteroposterior direction in the Dur-section; Ypre(∗) is the mean value of CoP in the anteroposterior
direction in the Pre-section; the superscript “∗” is used to distinguish stimulation body locations,
namely, the GS or LM; and subscript numbers are used to distinguish the ESs. In this case, N was equal
to 1000 because all ESs were analyzed in 10 s and the sampling frequency was 100 Hz. Table 3 shows
the numbers of data series corresponding to the start frequency and the end frequency of ESi in the case
of frequency ascend mode and descend mode. In each of the ascend and descend modes, the numbers
of sampling series n corresponding to measurement time t were calculated by Equations (1) and (2) in
order to obtain the start and end frequencies of each ES, respectively, as shown in Table 2. To correct the
CoP in the Dur-section based on the CoP in the Pre-section, the CoP in the Dur-section was subtracted
from the mean value of the CoP in the Pre-section. These values were calculated using MATLAB
(MathWorks, Inc., Natick, MA, USA).

Table 3. Numbers of data series corresponding to the start and end frequencies of ESi.

ESi
Number of
Data Series

Frequency
Ascend Mode

Frequency
Descend Mode

Corresponding
Frequency [Hz]

ES1
n1 1750 7250 30
n2 2750 6250 43

ES2
n3 3000 6000 49
n4 4000 5000 71

ES3
n5 6250 2750 168
n6 7250 1750 247

ES: evaluation section; n: the number of data series; The subscript numbers of ES are indicated as follows:
“1: Meissner corpuscle; from 30 to 43 Hz; 2: muscle spindles; from 49 to 71 Hz, 3: Vater-Pacini corpuscle; from 168
to 247 Hz.”

2.5. Statistical Analysis

All analyses were performed using IBM SPSS statistical software (Version 25.0; IBM Corp., Armonk,
NY, USA). The frequency ascend and descend modes groups were combined into a population of
RPWi and RMSi∗ for statistical analysis to eliminate the order effects due to vibration application. Data
were expressed as mean values and standard deviations for the NLBP and NSLBP. First, these data
were analyzed to investigate whether they were normally distributed using the Shapiro-Wilk test.
Variable data of RPWi were compared between NLBP and NSLBP using the independent t-test if
both the compared data were normally distributed. In statistical analysis, p < 0.05(*) were considered
statistically significant. In addition, a two-way mixed analysis of variance (ANOVA) was performed
with RMS as the dependent variable. The independent variables were group (NSLBP group or NLBP
group) and the stimulated body locations (GS or LM). Where significant interaction effects were
identified, paired t-tests and univariate analysis with Bonferroni correction were conducted.

3. Results

3.1. Proprioceptive Postural Control

Table 4 shows the results of RPWi. For each evaluation index, the mean values and SDs analyzed in
the 3 sections are shown. The RPW values of NSLBP were smaller than 50%. NSLBP had a significantly
smaller RPW compared with NLBP in Vater-Pacini corpuscles (p < 0.05). Meanwhile, there were no
significant differences in the RPW values of Meissner corpuscles and muscle spindle between NSLBP
and NLBP groups (Table 4).
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Table 4. Mean values of RPWi with standard deviations.

Variable NLBP NSLBP p

RPW1 [%] 52.2 ± 13.2 48.2 ± 9.3 0.184
RPW2 [%] 53.8 ± 11.8 49.1 ± 10.2 0.092
RPW3 [%] 53.3 ± 12.5 46.4 ± 9.8 <0.05

NLBP: non-low back pain; NSLBP: non-specific low back pain; RPW: relative proprioceptive weighting ratio. Data
are presented as the mean ± standard deviation or n [%]. All p values were generated using an independent t-test.
The superscript numbers indicated the following: “1: Meissner corpuscle; from 30 to 43 Hz; 2: muscle spindles;
from 49 to 71 Hz, 3: Vater-Pacini corpuscle; from 168 to 247 Hz.”

3.2. Postural Stability

Table 5 shows a result of a two-way mixed ANOVA in RMSi∗. There was no significant interaction
between the NLBP and NSLPB group and the stimulated body locations in the Meissner corpuscle and
muscle spindle. In contrast, the interaction between the NLBP and NSLPB groups and the stimulated
body locations in Vater-Pacini corpuscles were significantly observed (p < 0.05).

Figure 3 depicts the results of RMS in Vater-Pacini corpuscle. Compared with NLBP group,
univariate analysis with Bonferroni correction showed that the NSLBP group exhibited significantly
higher RMS values at LM in the Vater-Pacini corpuscle (F(1,61) = 4.817, p < 0.05), whereas there was no
significant difference in the RMS values at GS in the Vater-Pacini corpuscle (F(1,61) = 0.115, p = 0.735).
In addition, the paired t-test showed that there was a tendency of significantly higher RMS values at
LM than at GS in the NSLBP group (p = 0.055). There was no significant difference between GS and
LM in the NLBP group (p = 0.189).

Table 5. Results of RMSi∗ and two-way mixed analysis of variance.

Variable NLBP NSLBP F(1, 61) p

RMS1
GS [mm] 10.7 ± 7.8 8.9 ± 4.3

2.874 0.095
RMS1

LM [mm] 8.7 ± 4.0 9.5 ± 4.3

RMS2
GS [mm] 10.9 ± 7.4 9.6 ± 4.6

2.624 0.110
RMS2

LM [mm] 8.8 ± 4.3 9.7 ± 4.5

RMS3
GS [mm] 9.6 ± 4.0 9.2 ± 3.9

5.255 <0.05
RMS3

LM [mm] 8.4 ± 3.6 10.8 ± 4.9

NLBP: non-low back pain; NSLBP: non-specific low back pain; RMS: root mean square of the center of pressure
data. Data are presented as the mean ± standard deviation or n [%]. All F value and p values were generated using
the two-way mixed analysis of variance. Independent variables: the NLBP and NSLPB group and the stimulated
body locations. The subscripts and superscript numbers indicated the following: “GS: gastrocnemius; LM: lumbar
multifidus; 1: Meissner corpuscle; from 30 to 43 Hz; 2: muscle spindles; from 49 to 71 Hz, 3: Vater-Pacini corpuscle;
from 168 to 247 Hz.”

Figure 3. Result of RMS in Vater-Pacini corpuscle. RMS indicates root mean square of the center of
pressure data; GS: gastrocnemius; LM: lumbar multifidus.
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4. Discussion

To our knowledge, this is the first study to evaluate the postural response when vibration was
applied in the entire response frequency range of proprioceptors using sweep frequency. Our main
finding was that NSLBP relied more on LM input in the Vater-Pacini corpuscles during vibratory
stimulus with a sweep frequency of 168–247 Hz to the lower leg in the standing position.

Past studies have already demonstrated that elderly patients with LBP relied on trunk strategies
(Vater-Pacini corpuscles) for postural control during vibratory stimulation [15,16]. Compared with
NLBP, lower RPW values in NSLBP during vibratory stimulations of 168 to 247 Hz indicate that NSLBP
relies on trunk-muscle proprioceptive inputs. Moreover, the reduction in lower leg sensitivity at the
Vater-Pacini corpuscles in the NSLBP group agrees well with the result of previous studies which
reported that the NSLBP group decreased its reliance on proprioceptive signals from the lower leg
during standing at 240 Hz of constant vibratory stimulus [15,16]. However, statistically significant
differences were not observed between the NLBP and NSLBP groups in the Meissner corpuscles and
muscle spindle. The decreased reliability on LM inputs in the Meissner corpuscles and muscle spindle
may not have been recognized in the NSLBP group because this study was performed under different
conditions from measurement methods and subjects in the previous studies [10–12,21–24]. In addition,
the differences in age and LBP degree may have affected even the same cases of disease [15,16].
Therefore, the NSLBP group may depend more on the Vater-Pacini corpuscles of their trunk than on
the Meissner corpuscles and muscle spindle.

Second, the resulting RMS values were considered. A significant interaction between the NLBP
and NSLPB groups and the stimulated body location in Vater-Pacini corpuscles was confirmed. From
Figure 3, the NSLBP group exhibited higher RMS values when vibration in the frequency band of
the Vater-Pacini corpuscles was applied to LM. This result supports that the NSLBP group relied
more on LM input in the Vater-Pacini corpuscles for postural control. These results agree well with
those of previous studies where significant differences in postural sways were found between elderly
individuals and healthy young adults during quiet standing conditions [25]. Moreover, a decreasing
trend in the proprioceptive function in lower leg was observed in the NSLBP group. These findings
clearly show the differences in postural control strategies of proprioceptive inputs with respect to
NSLBP, suggesting that LBP may influence the postural control strategy of proprioceptive inputs
derived from the Vater-Pacini corpuscles of the LM.

For the above reasons, we confirmed that the function of the Vater-Pacini corpuscles was decreased
in relation to LBP using the sweep frequency method. Ito et al. reported that patients with NSLBP may
have even greater postural instability because the sensitivity of GS at 240 Hz continues to decline [15].
Thus, the reduction possibly causes postural instability because the NSLBP group cannot switch to a
more appropriate proprioceptive postural strategy. In addition, the effect of RPW on postural control
under proprioceptive stimulation with the response frequency of Vater-Pacini corpuscles may be a good
indicator of evaluating the degree of LBP under the sweep frequency method, same as the constant
frequency method used in our previous study [15]. These findings could be used to diagnose NSLBP
due to the reduced function of proprioceptors. The advantages of using the sweep frequency are as
follows. Firstly, the sweep frequency method may eliminate individual differences in the response
frequency of proprioceptors. Secondly, the resolution is high because the vibration is applied to the
entire frequency band of the response frequency of each proprioceptor. In the future, it may be possible
to conduct more detailed proprioceptive examination by analyzing finer frequency bands. Additionally,
there is a possibility that the inspection using this method can identify the detailed frequency band of
proprioceptors related to NSLBP. Thirdly, the examination time could be shortened. The measurement
time of the sweep frequency method can be shortened by 4 min and 30 s compared with the time
required for the constant frequency method used in our previous study. Thus, this method can reduce
the burden on patients. Therefore, the method using sweep frequency could replace the conventional
constant frequency method because it can measure the entire frequency band of proprioceptors in a
short time.
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Nevertheless, this study has a limitation in that only elderly persons with lumbar spondylosis
were surveyed. Therefore, additional studies with healthy older persons and those with more severe
disability must be conducted. Finally, the evaluation of the entire range of response frequencies of
proprioceptors using sweep frequency could benefit from future studies investigating more optimal
stimulation of response frequencies.

5. Conclusions

In this study, we aimed to investigate the functional decline in proprioceptors related to LBP by
evaluating the entire range of response frequencies of proprioceptors using sweep frequency. Thus,
we developed a variable frequency vibratory stimulation device and measured the CoP of NSLBP and
NLBP on a Wii Balance Board during local vibration with sweep frequencies. As a result, compared
with the NLBP group, the NSLBP group showed a reduction in lower leg sensitivity at Vater-Pacini
corpuscles. Moreover, we believe that the sweep frequency method can replace the conventional
constant frequency method because it can measure the entire frequency band of proprioceptors in
a short time. Our future work will include investigating the treatment effect of vibration with the
frequency evaluated by this device.
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Abstract: As a major cause of vehicle accidents, the prevention of drowsy driving has received
increasing public attention. Precisely identifying the drowsy state of drivers is difficult since it
is an ambiguous event that does not occur at a single point in time. In this paper, we use an
electroencephalography (EEG) image-based method to estimate the drowsiness state of drivers.
The driver’s EEG measurement is transformed into an RGB image that contains the spatial knowledge
of the EEG. Moreover, for considering the temporal behavior of the data, we generate these images
using the EEG data over a sequence of time points. The generated EEG images are passed into a
convolutional neural network (CNN) to perform the prediction task. In the experiment, the proposed
method is compared with an EEG image generated from a single data time point, and the results
indicate that the approach of combining EEG images in multiple time points is able to improve the
performance for drowsiness prediction.

Keywords: electroencephalography; deep learning; driving fatigue; feature extraction;
convolutional neural network

1. Introduction

The prevention of drowsy driving has become a major challenge in safety driving
issues. Many drivers experience driving in drowsy conditions, especially in long-term driving.
Continuous, unexciting driving reduces the vigilance of drivers and increases the risk of traffic
accidents. To address this problem, the development of brain-computer interfaces (BCIs) to investigate
the human’s cognitive state is an urgent necessity. Electroencephalography (EEG) is one of the most
direct and effective physiological measures for the estimation of brain dynamics. Recent EEG studies
have demonstrated that changes in alertness during driving are related to changes in global brain
dynamics [1,2]. It has also been shown that EEG is a robust measurement for the estimation of a driver’s
cognitive state [3–6]. In addition, EEG provides abilities of convenient measurement in real timeand is
therefore widely used in real applications [3,7–9].

Although EEG has many advantages for the analysis of brain dynamics, the use of EEG-based BCIs
in real applications remains challenging. The raw EEG signals acquired from the electrodes are often
obscured by physiological artifacts such as eye movement and muscle movement, which is undesirable
in the BCI system [10]. Therefore, removing these unwanted artifactsto capture brain activity has
become a crucial issue in EEG-based BCI applications. Many studies have shown that independent
component analysis (ICA) can effectively separate the artifacts from raw EEG data [11–14]. The mixture
signal is decomposed into many statistically independent components by ICA. A non-artifact signal is
obtained by excluding the components that are associated with artifacts. Although ICA is a powerful
tool for extracting brain activity from raw EEGsignal, it cannot support real-time applications because
the separated artifacts need to be removed manually. This drawback limits the utility of ICA for
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real-world BCI applications. An automatic processing BCI is strongly required for drowsy driving
prediction since traffic accidents always occur in a very short time. Therefore, this study does not apply
any artifact removal process to the raw EEG data during the experiment, ensuring that the proposed
method does not use manual processes for the drowsy driving prediction task.

For EEG signals without artifact removal, how to correctly extract the informative features of EEG
signals becomes a major challenge in BCI applications. A popular approach for feature extraction is
transforming the EEG signals into a frequency domain [15,16]. Fast Fourier transform (FFT) is applied
to compute the power spectra of the multi-channel time-series EEG signals into the frequency domain;
then, the average of the power spectra value for each frequency is collected to obtain a feature vector for
classification [3,17]. The main disadvantage of such an approach is that it only considers the frequency
information. EEG is measured over the scalp in a three-dimensional space. It is obvious that the spatial
information of EEG cannot be well described by a feature vector. Instead of the 1D feature vector,
there is an increasing trend to use 2D feature maps for the analysis of EEG, which have achieved good
performance in their application areas [18,19].

As the most popular machine learning technique in recent years, deep learning has achieved
significant success in a variety of research fields, such as speech [20], images [21–23] and video [24].
The ability of deep learning techniques to learn unknown features from incoming data has gained
considerable attention in EEG studies [25–27]. There is an increasing trend to use convolutional neural
networks (CNNs) to analyze EEGs due to their state-of-the-art performance in the computer vision
field. A popular approach is transforming the EEG measurement into a 2D feature map and then
passing it into a CNN model for classification [28–31].

For drowsy driving prediction, it is difficult to identify the drowsy state using the single time
point of EEG data because drowsiness is an ambiguous event. The driving performance may not
immediately decrease with increasing drowsiness levels, which means that drivers maintain normal
driving performance even though their vigilance level has started to decrease. To overcome these
difficulties, this study proposes a new EEG image method that combines multiple frames of EEG
images to examine the temporal activity of EEG data. Such approach not only focus on the current
EEG data, but also considers the brain activity of the previous time period. The evaluation results
show that the proposed method can improve the performance of EEG image-based BCI systems in
drowsiness prediction.

2. Experimental Setup

2.1. Virtual Reality (VR)-Based Driving Environment

In our previous studies, to observe the subject’s drowsy state during the driving task, a virtual
reality (VR)-based realistic driving environment was developed to simulate a long-term driving
situation [2,13,32–35]. As shown in Figure 1, the surrounding scenes were projected from six projectors
to constitute a surrounding vision. A night-time driving scene at a fixed velocity of 100 km/h on a
four-lane highway is set up in the VR experiment. Before the experiment was started, participants were
directed to enter the real car mounted on a motion platform and then steer the vehicle according to
the instructions. All participants were required to take a 5-min pre-test session to ensure that they
clearly understood the instruction and did not suffer from simulator sickness. The highway scene was
connected to a physiological measuring system, where the EEG and participants’ performance were
continuously and simultaneously measured and recorded.
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(a) (b) 

(c) (d) 

Figure 1. The virtual reality (VR)-based driving environment. (a) Vehicle used for the driving task.
(b) Projector platform. (c) The surrounding scene. (d) Front view of the VR scene.

2.2. Driving Fatigue Paradigm

The event-related lane-keeping driving task was adopted in this study for the evaluation of the
brain dynamics occurring during the driving task, as illustrated in Figure 2. The participants were
instructed to perform a 90-min driving task without breaking or resting in the VR driving environment.
The driving experiment began in the early afternoon (13:00–14:00) after lunch because people often feel
sleepy during this time [36]. During the sustained attention driving task, the VR paradigm randomly
simulated a lane-departure event that caused the car to drift away from the center of the cruising lane.
The participants were required to quickly steer the car back whenever the car started to deviate from
the original cruising lane. There was no feedback to wake the participants even if they did not respond
to the lane-departure event. The car continued to move along the curb until the participants steered it
to return to the center of the cruising lane. Figure 2 describes a complete trial in the driving paradigm
that includes the one-second baseline recording, deviation onset, response onset, and response offset.
The time interval between the random lane-departure event was set to 5–10 s.

2.3. Participants

Thirty-eight right-handed, healthy young adults aged 20–30 years participated in the driving
experiment. All subjects were required to have a driving license and sufficient sleep in the two
preceding weeks. According to self-reporting, no subject had a history of psychological disorders.
Before the experiment, the subjects were asked to answer a questionnaire about their sleep patterns to
ensure that they had a normal cognitive state during the driving task, and they needed to complete a
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consent form explaining the experimental protocol that was approved by the Institutional Review Board
of the Taipei Veterans General Hospital, Taiwan. The EEG signals of the subjects were captured from a
Quik-Cap (CompumedicalNeuroScan) with 32 Ag/AgCl electrodes, including 30 EEG electrodes and
two reference electrodes. The EEG electrodes were placed in accordance with a modified international
10–20 system. The impedance of all electrodes was kept under 5 kΩ during the experiments.

Figure 2. The event-related lane departure paradigm [2]. A complete trial consists of three steps:
(1) deviation onset—the lane-departure event occurs, (2) response onset—the driver starts to steer the
wheel back, and (3) the response offset—the car returns to the original cruising lane. Response time
(RT) is defined as the time period between the deviation onset and the response onset. This study uses
the 1 s baseline signal before the lane-departure event for predicting drowsiness according to the value
of RT.

2.4. Drowsiness Measurement

The driving performance was defined based on the response time (RT), which represented the
time between the deviation onset and the response onset. As the lane-departure event occurred, it was
expected that the participant would take a long time to steer the car back to the center of the cruising
lane if he/she was in a drowsy state; then, the response time (RT) in the trial could be very long.
By contrast, when the participant was alert, he/she could respond to the lane-departure event in a short
time. Previous studies have shown that baseline EEG activity is strongly correlated with changes in
RT [34]. In this study, the 1s baseline signal (red region shown in Figure 2) was used to perform the
drowsy prediction based on the trial’s RT.

3. Approach

The general flowchart of our method is presented in Figure 3. Before data analysis, the acquired
EEG records were processed using a 1-Hz high-pass and 50-Hz low-pass infinite impulse response
filter to remove the noise and then down-sampled to 250-Hz to reduce the dimensions of the data.
The power spectral activities of EEG signals were computed using FFT. To transform the EEG signal to
a 2D image, we needed to address the following issues: (1) transforming the power spectrum of EEG
signals to image values and (2) interpolating the points of the image data to a color image. The detailed
approach is explained in the following sections.
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Figure 3. Flowchart of the proposed drowsiness prediction system.

3.1. Feature Extraction

To extract the physiological features, the 30-channel time-series EEG signal was transformed
into a frequency domain via a 256-point FFT. Based on the findings in previous studies [14,37,38],
the frequency band in the, theta (4–8 Hz), alpha (8–13 Hz), and beta (13–20 Hz) was suitable for
estimating the driver’s vigilance level. Our past studies also observed that the increasing power of
theta band and alpha band had positive correlation with RT, and beta band had high correlation to
kinesthetic stimuli which can affect the prediction performance [13,17]. The mean power of these
frequency bands of interest was combined to form a feature vector. As depicted in Figure 4, this feature
vector was considered a pixel value of the RGB image. Each channel of the colour image corresponds
to a frequency band of interest.
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Figure 4. Schematic illustration used to transform the time domain electroencephalography (EEG)
signals into a pixels in a color image.

3.2. Interpolation of the EEG Measurement to Image Pixels

As described in the previous section, we obtained 30 data points corresponding to the location of
the EEG electrodes. First, we converted the magnitude of the power spectrum of the EEG signals into
an image pixel value. Equation (1) shows the sigmoid function utilized to normalize the value of the
EEG power spectrum to [0,1]:

Pt =
1

1 + e−0.5t , (1)

where Pt is the normalized image pixel value, and t is the magnitude of the frequency response in the
dB. Next, we needed to interpolate the scattered image data points to a color image. Figure 5 illustrates
the interpolation scheme of the EEG image. The finite element method, a numerical technique that
is usually applied for the approximate solution of engineering problems that are difficult to solve
analytically, was adopted to perform the interpolation task. The Clough–Tocher scheme was used
to interpolate a 32 × 32 mesh from the 30 image data points [39]. In this study, the EEG electrodes
were placed in accordance with a modified international 10–20 system, which means that the location
corresponding to each image point is known. Three topographical maps corresponding to the three
frequency bands of interest were acquired by the Clough–Tocher scheme. The three spatial maps were
then merged to create a 32 × 32 color image. Figure 6 demonstrates several samples of the EEG image.

3.3. Temporal EEG Image

One of the challenges in drowsy driving prediction is that some drowsy trials may have similar
patterns of the alert trials. The driving performance might not degrade immediately, even if the alertness
level of the drivers begins falling, which means that drivers can respond well to lane-departure events
before they fall asleep (but the drowsy pattern of the EEG has appeared). In that case, the generated
EEG images between the drowsy trial and its previous alert trials can be very similar. As the drivers
wake up by themselves, their vigilance level dramatically recovers, and the RT returns to the alert state;
then, the EEG pattern becomes completely different from the drowsy trials. Based on these findings,
the drowsy state should be estimated not only using the current trial but also by examining the previous
trials. This study proposes a temporal EEG image that is generated by a linear combination of a
sequence of EEG images, as shown in Equation (2):
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I′t =
N∑

t=1
ctIt

N∑
t=1

ct = 1
(2)

where I′t is the generated temporal EEG image, It is the array of the EEG image data, c is a scalar
coefficient and ci < cj when i < j. N in this study is set to five. Figure 7 illustrates the schematic
diagram of the temporal EEG image. Instead of asingle frame EEG image IN, this approach estimates
the drowsiness state using I′N, which includes the information of the brain activity from multiple
time points.

 
Figure 5. Interpolation scheme of the EEG image. The transformed image data points described in
Figure 4 are arranged corresponding to the location of the EEG electrodes. These image pixels are
interpolated over a 32 × 32 color image via Clough–Tocher scheme.

 
(a) 

 
(b) 

Figure 6. Examples of the generated EEG images. (a) The alert trials. (b) The drowsy trials.

Figure 7. The schematic diagram of the temporal EEG image. IN is the single frame EEG image
generated from the current trial. Temporal EEG image I′N is acquired by linearly combining IN and its
previous trials.
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3.4. Classification Using the CNN Model

This study applies a CNN including six convolution layers, three max-pooling layers, and a
layer to the classification of the input EEG image, as shown in Figure 8. A popular open source deep
learning framework named Caffe is employed for implementing the CNN model [40]. The parameter
setting of the overall CNN architecture is presented in Table 1. A set of filters is used to convolve
the input EEG images for feature extraction. The convolved images are then subsampled by the
max-pooling layer to derive compacted features. The convolution and pooling progress are repeated
several times through CNN layers. The lower-level features of the input data are extracted via the
early layers, and those features are collected in the later layers to hierarchically learn the higher-level
features. Finally, the acquired high-level features are concatenated and passed into the fully-connected
layer for the classification. The final prediction result is determined according to the output of the
fully-connected layer. We only use the alert and drowsy classes in this study, so the output size of the
fully-connected layer is 2 × 1.

Figure 8. The convolutional neural network (CNN) architecture used in the experiment.

Table 1. Parameter setting of the CNN model.

Layer Name Kernel Size Stride Num of Filters

Conv1a 3 × 3 1 16
Conv1b 3 × 3 1 16
Pool1 2 × 2 1 -

Conv2a 3 × 3 1 32
Conv2b 3 × 3 1 32
Pool2 2 × 2 2 -

Conv3a 3 × 3 1 32
Conv3b 3 × 3 1 32
Pool3 2 × 2 2 -
FC1 500 - -
FC2 2 - -

4. Experiment

The EEG dataset used in this study includes 10,395 alert trials and 3080 drowsy trials collected
from 38 subjects. According to the suggestion of the previous research, if the drivers are fully aware of
the driving situation, the average time for them to respond to the lane-departure event is approximately
0.7 s [41]. According to the previous studies [42–44], drivers provide poor performance when they
don’t respond the lane-departure event in three times the mean alert RT. Therefore, this study adopts
three times the average response time as the classification boundary of the drowsy prediction task.
The EEG trials are considered as alert trials as long as their RT are less than 2.1 s. In addition, the EEG
trials with an RT larger than 2.5 s are labelled as drowsy trials, and the EEG trials with an RT between
2.1 s and 2.5 s are not used in this experiment. The evaluation of our approach is performed using
leave-one-subject-out cross-validation. We select the data from one subject for testing and the data from
the remaining subjects for training. This process is repeated for each of the 38 subjects. To evaluate
the predictive performance of the proposed method, the temporal EEG image method is compared
with the single frame EEG image method—directly using the current trial of the EEG image for
drowsiness prediction.
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Table 2 shows the comparison result of the temporal EEG image method and the single frame
EEG image method. The average accuracy is an average of the accuracy of individual categories. It is
apparent that the temporal EEG image method outperforms the single frame EEG image methods.
In both methods, a similar accuracy of the alert class is given, but our approach achieves significant
improvement in the accuracy of the drowsy class. Based on the aim of drowsiness prediction,
the prediction rate of the drowsy class is more important than the alert class. Furthermore, the results
also demonstrate that our approach has better prediction performance than the single frame EEG
image method in most subjects, which proves that the improvement of our approach has universality
in general users. Table 3 shows the evaluation result of EEGnet and hierarchical convolutional neural
network (HCNN), which are CNN-based approach for EEG analysis and achieve good performance in
their applications [45]. The results demonstrate that the proposed method yields superior prediction
performance than EEGnet and HCNN.

Table 2. The prediction result of the single frame EEG image and temporal EEG image.

Subject
Single Frame EEG Image Temporal EEG Image

Alert (%) Drowsy (%) Total Accuracy (%) Alert (%) Drowsy (%) Total Accuracy (%)

S1 97.30 23.06 79.12 97.94 19.17 78.11
S2 88.21 20.13 52.25 82.72 29.78 53.95
S3 93.50 27.60 72.47 97.85 21.47 73.07
S4 96.76 9.30 71.85 97.79 14.19 73.33
S5 96.61 80.69 92.22 97.13 86.67 94.20
S6 96.72 84.03 93.22 98.21 96.25 97.66
S7 95.14 50.26 87.21 95.46 60.54 89.33
S8 98.30 27.69 87.31 96.42 66.15 91.60
S9 96.67 32.55 81.06 95.15 58.91 86.17
S10 96.50 12.10 80.25 96.21 8.39 79.09
S11 95.31 14.67 68.21 96.27 14.21 68.44
S12 95.60 15.80 66.30 94.50 25.71 68.90
S13 95.76 9.66 74.94 98.02 7.82 76.02
S14 92.04 17.44 80.25 96.24 16.46 83.53
S15 91.04 19.47 83.18 93.56 18.07 85.20
S16 94.10 18.25 80.62 95.06 20.00 81.62
S17 93.87 16.77 81.96 95.27 18.60 84.12
S18 92.30 16.13 85.02 92.79 16.45 85.46
S19 85.97 33.50 65.05 87.51 42.92 69.49
S20 92.40 21.44 76.24 95.15 20.17 77.94
S21 94.30 34.61 79.34 94.19 54.41 84.12
S22 92.98 21.86 76.20 94.49 21.86 77.07
S23 87.12 32.38 67.30 90.21 28.57 67.72
S24 95.68 20.28 76.46 94.83 30.35 78.27
S25 95.08 40.58 83.78 94.53 55.34 86.35
S26 92.02 37.11 85.08 91.68 48.67 86.22
S27 91.65 52.52 82.21 91.89 62.82 84.24
S28 97.60 26.50 85.55 97.29 30.25 85.73
S29 96.24 16.12 80.08 97.63 12.65 80.21
S30 94.79 12.10 74.83 95.24 13.45 75.34
S31 93.38 18.96 82.42 94.32 17.76 82.95
S32 87.57 23.57 73.37 87.92 29.76 74.78
S33 89.67 19.24 65.37 92.60 15.19 65.42
S34 89.21 25.00 84.49 90.36 22.00 85.26
S35 90.14 15.85 78.29 91.04 18.54 79.29
S36 88.33 23.57 52.43 79.65 35.63 54.75
S37 95.76 12.37 80.15 94.91 16.67 80.75
S38 69.29 40.23 53.27 52.73 53.60 53.22

Average 92.76 26.93 76.83 92.76 32.35 78.39
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Table 3. The prediction result of EEGnet and HCNN.

Subject
EEGnet [45] HCNN [28]

Alert (%) Drowsy (%) Total Accuracy (%) Alert (%) Drowsy (%) Total Accuracy (%)

S1 94.39 13.33 73.99 99.07 11.11 76.92
S2 84.92 24.53 52.1 90.48 17.33 50.72
S3 93.84 16.4 68.7 95.51 21.33 71.43
S4 92.79 14.19 69.8 94.23 13.95 70.75
S5 90.81 18.89 70.66 99.45 86.11 95.72
S6 88.65 20.28 69.49 98.37 93.55 96.89
S7 91.26 23.24 79.29 94.82 32.43 83.88
S8 93.21 17.69 81.17 97.08 15.38 84.05
S9 92.46 16.73 73.69 98.2 12.73 77.03
S10 89.77 20.16 76.19 92.97 16.13 77.98
S11 91.8 12.12 64.8 92.54 12.72 65.5
S12 91.75 14.91 63.16 93.12 12.5 63.12
S13 96.4 9.08 75.1 94.31 11.76 74.18
S14 90.62 15.12 78.6 96.77 14.63 83.69
S15 91.18 16.67 82.93 89.96 21.05 82.33
S16 93.46 13.81 79.21 89.44 27.84 78.41
S17 91.69 15.91 80.66 84.43 17.2 74.65
S18 92.65 17.26 81.56 88.52 11.29 81.14
S19 91.41 14.75 60.44 94.92 17.5 63.63
S20 91.52 15.25 74.01 92.42 16.95 75.1
S21 94.09 19.31 75.16 97.34 20.59 77.92
S22 86.52 19.15 70.37 89.3 18.64 72.36
S23 85.65 19.63 61.56 96.35 7.94 64.09
S24 90.76 15.25 71.37 92.16 16.31 72.68
S25 87.33 20.58 73.38 97.69 22.33 81.95
S26 87.91 17.23 78.93 90.18 36.14 83.31
S27 89.78 15.95 71.84 96.08 28.24 79.59
S28 92.19 16.5 79.14 95.83 20 82.76
S29 92.37 13.27 76.15 95.79 12.24 78.66
S30 91.32 14.03 72.52 92.7 15.13 73.82
S31 91.95 16.27 80.71 92.19 17.91 81.15
S32 91.32 21.9 75.65 90.28 16.67 73.66
S33 100 0 64.89 90.41 11.39 62.67
S34 58.14 35 56.42 86.29 20 81.34
S35 83.3 29.76 74.62 88.68 17.07 77.08
S36 100 0 43.43 88.37 22.32 51.001
S37 83.62 17.22 71.61 92.02 22.22 79.4
S38 80 20.12 46.12 87.88 13.95 46.05

Average 90.02184 16.88132 71.03737 93.05658 21.64684 74.91082

5. Discussion and Conclusions

It is challenging to classify EEG data without an artifact removal process because drivers’ brain
activity can change over time due to many factors, such as their mental state and body movement,
which result in the temporal fluctuations of the EEG signals. However, there still contains important
information associated with the drowsiness level of drivers, and thus, the temporal analysis of the EEG
signals becomes a crucial issue. This study proposes a temporal EEG image algorithm that combines a
sequence of EEG images to form a new EEG image that contains brain dynamics from multiple time
points. Our experimental results show that the proposed method achieves good performance in the
drowsiness prediction.

Support vector machines (SVMs) are also employed for comparison with our approach because
they are popular classifiers for EEG analysis. In our experiment, the computational cost is expensive
and a bad prediction result is obtained if we use the EEG image as the input of SVM. Thus, the power
spectrum of EEG is selected as the input of the SVM. Similar to the experiment described in the previous
sections, the input data do not apply any artifact removal process. The experimental results indicate
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that SVM provides a biased prediction result towards the alert class. That is, it always predicts an alert
regardless of the input and results in a perfect detection of alert trials but no detection of drowsy trials.
We found that SVM only provides meaningful prediction results in a balanced training dataset that has
a similar number of alert trials and drowsy trials. In real-world applications, BCI systems usually have
to perform drowsiness prediction under imbalanced-datasets, which means that SVM cannot provide
reasonable reliability in real-world BCI applications.

To find a suitable CNN model for the drowsiness prediction task, this study introduces two CNN
architectures for further evaluation: (1) AlexNet—a very popular CNN architecture that is larger
than the CNN architecture used in this study [18], (2) 3D CNN—by performing 3D convolutions,
which is capable of learning features from both spatial and temporal dimensions. For AlexNet, the EEG
measurement is transformed into 227 × 227 to fit the input size of AlexNet. For 3D CNN, different from
our approach using a linear combination of a sequence of EEG images, these EEG images are directly
fed into the 3D CNN model since they are 3D input data. Our results show that both AlexNet and 3D
CNN cannot achieve better performance than the proposed CNN architecture in the present study.
That is, high-complexity CNN is not required for the drowsiness prediction task.

The detection of drowsy trials remains a challenge because different subjects have different
drowsy EEG patterns. A further investigation of brain dynamics is the key to improving the prediction
performance of the BCI system.
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Abstract: This paper presents an interval-based LDA (Linear Discriminant Analysis) algorithm
for individual verification using ECG (Electrocardiogram). In this algorithm, at first, unwanted
noise and power-line interference are removed from the ECG signal. Then, the autocorrelation
profile (ACP) of the ECG signal, which is a mathematical representation of the degree of similarity
between a given time series and a lagged version of itself over successive time intervals, is calculated.
Finally, the interval-based LDA algorithm is applied to extract unique individual feature vectors
that represent distance and angle characteristics on short ACP segments. These feature vectors are
used during the processes of enrollment and verification of individual identification. To validate our
algorithm, we conducted experiments using the MIT-BIH ECG and achieved EERs (Equal Error Rate)
of 0.143%, showing that the proposed algorithm is practically effective and robust in verifying the
individual’s identity.

Keywords: Individual verification; Electrocardiogram (ECG); Interval based LDA; biometrics

1. Introduction

Since the invention of electrocardiogram (ECG) recording in 1903 [1], a considerable number of
studies using the electrocardiogram have been performed in the fields of diagnosing cardiac-related
diseases [2–5], detecting sleep apnea [6], monitoring driver drowsiness [7], and measuring blood
pressure [8], because of its advantage of noninvasive convenience. Recently, researchers started to
use the ECG biometrics to verify individual identity [9]. The ECG is a suitable tool because the signal
itself constantly changes depending on the sympathetic/parasympathetic activities and it is resistant to
attacks and duplication [10–12].

According to the latest US Federal Trade Commission report published in March 2019 [13], identity
theft and cybercrime ranked third among the issues most complained about. Such kinds of identity
fraud and hacking are becoming seriously dangerous. Unfortunately, they are unavoidable as long as
we use password-based identity authentication systems. Therefore, new types of biometrics such as
facial characteristics [14], gait [15], fingerprints and iris scans [16], vein pattern [17], etc., have been
developed. Nevertheless, References [18,19] show that they are still vulnerable to a replay/falsification
attack even though they perform better with very low identification errors. To avoid problems related
to such attacks, the biometrics should be a variable, so that they cannot be stolen, duplicated, or
shared. Thus, many studies are showing a great interest in the ECG signal as a promising alternative
biometric [20–23].

The ECG signal is non-stationary and thus continuously changes over time. The two limbs of
the autonomic nervous system (i.e., sympathetic and parasympathetic nerves) are the most important
factors determining the changes in the heart rate. This type of variability is called intra-subject
variability [24–26], that is, the changes occur for the same individual over time. There is also
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inter-subject variability found in the ECG’s waveform that depends on the position, size, and anatomy
of the heart, age, gender, relative body weight, chest configuration, and various other factors [27,28].
Therefore, the ECG signal varies from person to person, implying that we can use it as a biometric for
the verification of an individual’s identity.

There have been numerous attempts at applying ECG inter-subject variation for individual
verification/identification [20–23,29–32], which can be classified into two categories: the fiducial
dependent approach [20–23] and the fiducial independent approach [29–32]. The fiducial dependent
approach relies on local features, such as time duration and amplitude differences between specific
points of interest in an ECG, so it is less affected by heart rate variations. However, it has the possibility
of missing the overall morphological information that might be useful in identifying individuals. Many
studies have focused on fiducial dependent features such as time intervals, angles, and amplitudes
between specific fiducial points on the QRS complex [20,33–35].

On the contrary, the fiducial independent approach is to find the feature of the ECG signal in the
frequency domain rather than the time domain, or to extract the whole morphological features that
appear to offer excellent discrimination information among individuals. Many algorithms based on
frequency transformation have been proposed for extracting fiducial independent features from ECG
signals, in which they use wavelet transform or DCT (Discrete Cosine Transform) to convert ECG signals
in the time domain to the frequency domain [36–40]. The autocorrelation method also has been gaining
considerable attention because of its excellent performances reported in many studies. It eliminates the
need for fiducial point localization in the ECG signal by using an autocorrelation (AC) of the segmented
ECG signal followed by DCT or LDA [41–43]. More recently, Safie [44] introduced a new feature
extraction method, known as Pulse Active Ratio (PAR), that is implemented on electrocardiogram
signals for biometric authentication. The Pulse Active Ratio uses pulse width modulation (PWM) to
generate new ECG feature vectors and thereby can adapt to changes in heart rate. However, such
fiducial independent approaches require tremendous computational effort because the parameters
should be generated and compared for every person listed in the database during the verification stage.
Furthermore, the database is often updated with intra-subject variability, in which the computational
cost increases exponentially as the size of the database increases. This computational cost problem can
be mitigated significantly by combining the above-mentioned two approaches.

In this paper, we propose an interval-based Linear Discriminant Analysis (LDA) algorithm, a
type of hybrid algorithm that combines the complementary strengths of both fiducial dependent
and fiducial independent features, and thereby is able to achieve higher accuracy of identification.
The main characteristics of the proposed algorithm are as follows: (i) the use of an autocorrelation
profile (ACP) of ECG signal; (ii) the use of short segments of the ACP to extract the interval-based
feature vectors, which can be updated every 5 s, showing higher adaptability to intra-subject variation;
(iii) the enrollment and verification of the individual’s interval-based feature vectors; and (iv) the
update of interval-based feature vectors when the user’s identity claim is accepted.

The remainder of the paper is organized as follows. The proposed LDA algorithm based on
the short ACP segments to determine the feature vectors on an interval basis as enrollment process,
the verification process, and the algorithm to update the feature vectors are described in Section 2.
In Section 3, the experimental results are compared with the existing ECG identification algorithms
based on the same public database. Finally, the conclusion is drawn in Section 4.

2. Materials and Methods

The ECG signal reflects the electrical activity of the heart. A basic ECG signal cycle is shown in
Figure 1 with a single lead ECG sensor. The signal cycle consists of the P wave, followed by the QRS
complex, and the T wave [1,33].
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Figure 1. Basic ECG signal cycle.

Figure 2 shows a simplified block diagram of the proposed interval-based LDA algorithm. This
algorithm mainly consists of signal preprocessing, enrollment, and verification.

Figure 2. Simplified block diagram of the proposed interval-based LDA algorithm.

In the preprocessing stage, the raw ECG signal’s noise is removed or suppressed. For biometric
authentication, every user can use his/her ECG sensor in one of the two operation modes, that is,
enrollment or verification mode.

In the enrollment mode/stage, a distinctive feature set is extracted from the ACP (autocorrelation
profile) of the ECG on an interval basis to create an association between the user and his/her biometric
characteristics. Subsequently, the extracted feature set is stored in a template. This process is called
training in the enrollment mode. The template is updated over time, mainly to handle the intra-subject
variation of cardiac signals. Longer training of the ECG signal leads to lower chances of false rejection
(FR). In this study, the enrollment is performed for 2 min to provide a stable signature.

Similarly, during the verification mode/stage, the newly acquired unknown input is compared
with the template stored in the database to verify a claimed identity. The verification decision is made
through a matching process based on a feature vector threshold. The obtained matching score is finally
compared with the threshold to either accept or reject the target user’s identity claim.

2.1. Preprocessing

We used the ECG data from the MIT-BIH public database to test the proposed algorithm.
The MIT-BIH database (MITDB) [34] is the standard ECG database universally used for ECG analyses
that contains 48 records of heartbeats collected from 47 subjects; each record was sampled at 360 Hz
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and is approximately 30 min long. The subjects were 25 men with ages ranging from 32 to 89 years
and 22 women with ages ranging from 23 to 89 years. The data were obtained with a two-channel
ambulatory Holter monitor at the Bath Israel Deaconess Medical Center from 1975 to 1979. In most
database records, the upper signal is a modified limb lead II(MLII) obtained by placing the electrode
on the chest, and the lower signal is usually a V1(occasionally V2 or V5 or V4). Normal QRS complexes
are usually prominent in the upper signal, thus, we only used the single lead data (the upper signal,
MLII) in the experiment.

To minimize the negative effect of random noises, we applied the scheme proposed by Sornmo [35]
in our study, in which noisy ECG signals are passed through the bandpass filters (BPF) spanning from
0.5 to 200 Hz to reject the DC components and high-frequency noise. Subsequently, we implemented a
notch filter and a short-time Fourier transform (STFT) to eliminate the power line interference and its
harmonics. Figure 3 shows the preprocessing procedures.

Figure 3. ECG signal preprocessing. (a): The simplified block diagram of signal preprocessing, where
the BPF and notch filter are applied to remove the noise and power line interference related harmonics
on ECG signals. (b): An example of an ECG signal before and after the preprocessing.

2.2. Feature Extraction

Let the noise-filtered ECG signals be x(n), with the time index n. The proposed method strongly
relies on the small pieces of x(n), called classes, and calculates the ACP (autocorrelation profile) of
each class. Then, each calculated ACP is sliced into short-time ACP segments; each segment is called
ACPlet. By dividing each ACP into multiple ACPlets, we may easily capture the temporal pattern of
the ACP in detail. The features we used are mainly based on the amplitude and angle patterns of the
ACPlets to identify the similarities between an unknown ACP input and the reference profile.
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2.2.1. Calculating the Reference Profile, Φ(m)

As mentioned in the previous section, during the enrollment mode, 2 min long ECG signals
received from the ECG sensor are considered to be the training set x(n). The training set x(n) is then
divided into several classes with a length of N. Each class of x(n) is labeled xc(n) with the class “c”,
as follows

xc(n) = x(n)·RN(n−N·c) for a given class c = 0, 1, · · · , C− 1 (1a)

where

RN(n) =
{

1 , 0 ≤ n ≤ N − 1
0 , otherwise

(1b)

Subsequently, the ACP Φc(m) of xc(n) can be computed by the following Equation (2a).

Φc(m) =
N−1∑
n=0

xc(n)·xc(n + m) for 0 ≤ m ≤ Q− 1 and a given class c (2a)

where x(n + m) is the time-shifted version of ECG with a time lag m and Q is the length of the QRS
complex. Figure 4 shows how the signals xc(n) and xc(n + m) are defined to obtain the ACP, that is,
Φc(m).

Figure 4. The two-minute-long training set x(n) and its time-shifted version x(n + m). The training set
x(n) is divided into C classes, each of which is N samples long. For example, x1(n) and x1(n + m) are
the 1st class of x(n) and x(n + m), respectively.

Based on the previous research, the QRS complex is considered to be the most prominent waveform
of ECG for individual verification [41,45,46]. Hence, the time shift parameter m of Φc(m) was chosen
between 0 to Q − 1. In this paper, the length Q, which depends on the individual, was calculated
using the QRS detection method based on the Pan-Tompkins algorithm [47]. Depending on the
individual, the different length of Q helps in achieving a high identification accuracy and robustness of
the proposed algorithm.
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Based on the assumption that the training set x(n) includes C classes, we define a set of ACPs for
C classes as follows:

Φ0(m), Φ1(m), · · · , Φc(m), · · · , ΦC−1(m) (2b)

Subsequently, the reference profile Φ(m) is defined as the average of all ACPs contained in the
training set x(n), given by:

Φ(m) =
1
C

C−1∑
c=0

Φc(m) (3)

where C is the total number of classes in the training set x(n) for 2 min.

2.2.2. Interval-Based Feature Extraction

Figure 5 shows an example of ACPs for two different subjects (subject A and subject B). We
assumed that each subject has C classes and those C classes are displayed together within the same
time period Q.

Figure 5. An example of a set of ACPs, displayed together within the same time period of Q, for two
different subjects (subject A and subject B) when C = 5. (a–d) illustrate the differences in amplitude and
angle patterns of ACPlet generated when the ACPs are segmented into six ACPlets, even though the
two subjects have a very similar ACP shape.

From Figure 5, the intervals (a) and (c) are when the two subjects are difficult to distinguish by
using only the amplitude patterns of Φc(m), but these two subjects are more easily distinguished using
the angle patterns of Φc(m). It is obvious from the two profiles of (a) and (c) that their angle patterns
are significantly different, in which the angle pattern is defined as the angles between the horizontal
x-axis and the ACPlet. On the other hand, (b) and (d) are the intervals when the two subjects can be
easily distinguished using the amplitude patterns of Φc(m).

These results lead to the idea of an interval-based feature vector. Accordingly, to facilitate the
identification between different subjects, each class needs to be sliced into short-time ACP segments,
i.e., the ACPlets. Therefore, in this work, the two features of amplitude and angle patterns of ACP
produced for every ACPlet are used to distinguish the ECG signals.
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2.2.3. Deciding the Optimal Interval Size for Interval-Based Feature Vector

In Section 2.2.2, we realized that dividing ACPs with a short interval and applying different
feature vectors to each ACPlet yields a better identification; however, the interval size should be
decided appropriately. The optimal interval size is determined based on the maximum interval that
satisfies a mean square error (MSE) criterion between the ACPlets and their linearly fitted lines, such
that each ACPlet provides clear angle information.

Based on the assumption of the optimal interval size L, the reference profile Φ(m) can be equally
divided into Q/L profiles fi(v), defined as follows:

Φ(m) =
{

f1(v), f2(v), · · · , fi(v), · · · , fNI(v)
}

for a given L (4)

where i
(
= Q

L

)
is the number of intervals and 0 ≤ ν ≤ L − 1.

Here, let define Φ̂(m) as the set of gi(v) that is the fi(v) linearly fitted, as follows:

Φ̂(m) =
{

g1(v), g2(v), · · · , gi(v), · · · , gNI(v)
}

(5)

where 0 ≤ ν ≤ L − 1.
Thus, the optimal interval L is the maximum length that satisfies the following MSE (ζ) criterion

between the two profiles Φ(m) and Φ̂(m).

L = max
l

⎡⎢⎢⎢⎢⎢⎣
NI∑
i=1

l−1∑
v=0

( fi(v) − gi(v) )
2 ≤ ε

⎤⎥⎥⎥⎥⎥⎦ for 2 ≤ l ≤ Q
2

(6)

where ε is the minimum tolerance of the MSE and NI (=Q/L) is the number of intervals. The symbol
represented in the above process is illustrated in Figure 6.

Figure 6. Symbol descriptions: (a) N is the update cycle of the verification process; (b) Q is the
time-shifting size of the ACP process; (c) L is the size of an interval and the maximum length that
satisfies the MSE (ζ) criterion.

Figure 7 shows typical examples of the MSE ζ and identification accuracy η as a function of NI
(Number of Interval). In Figure 7, MSE ζ represents the ratio based on the assumption that MSE ζ is
100% when NI is set to 2, where (a) represents the minimum tolerance ε, which is experimentally set to
20%; (b) is the NI value satisfying (a), which corresponds to Q/L; and (c) is the identification accuracy
when the NI value corresponds to (b).

The Figure 7 shows that the MSE ζ decreases as NI increases, where a higher NI is proportional to
identification accuracy η but requires more computations for the verification process. Accordingly,
there is a trade-off between the NI and computational cost. We also observed that the IDA improves
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with increasing NI; however, the improvement is not significant. For instance, as the NI increases from
Q/L to 50, only an improvement of less than 0.2% is obtained. In conclusion, the performance of the
proposed algorithm is not highly sensitive to the NI as long as it is greater than Q/L. Finally, the NI is
set to Q/L when MSE ζ corresponds to ε, since there is no big difference in the final performance as
long as the NI is greater than Q/L.

Figure 7. The relationship between the MSE (Mean Squared Error) ζ and the IDA (Identification
Accuracy) η according to NI (Number of Interval) values to show the decision of the optimal NI. In this
experiment, the optimal NI is set as the value when η = 99.646% and ζ = ε

2.3. Threshold Values for Classification

Our algorithm requires two types of interval-based thresholds for the robust verification of
intra-subject variation. One threshold is for the amplitude feature vector and another is for the angle
feature vector, denoted THφ(i, v) and THθ(i), respectively, where the variable i indicates the interval
index. These thresholds are used to check the similarity between the amplitude and angle feature
vectors of the newly incoming ACPlets to those stored in the template.

2.3.1. Threshold of Amplitude Similarity: THφ(i, v)

Step 1: Consider a subject A for the training set and let define the ACP as φA
c (m) that consists of

the ACPlets φA
c (i, v) for c ∈ {0, . . . , C− 1}:

φA
c (m) =

{
φA

c (1, v),φA
c (2, v), · · · ,φA

c (i, v), · · · ,φA
c (NI, v)

}
(7)

In matrix form,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φA
0 (m)

φA
1 (m)

...
φA

c (m)
...

φA
C−1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φA
0 (1, v) φA

0 (2, v) · · · φA
0 (i, v) · · · φA

0 (NI, v)
φA

1 (1, v) φA
1 (2, v) · · · φA

1 (i, v) · · · φA
1 (NI, v)

...
...

...
...

φA
c (1, v) φA

c (2, v)
... φA

c (i, v)
... φA

c (NI, v)
...

... · · · ... · · · ...
φA

C−1(1, v) φA
C−1(2, v) · · · φA

C−1(i, v) · · · φA
C−1(NI, v)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)
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Step 2: Calculate the average in a vertical way to obtain the reference profile, φ
A
(m) :

φ
A
(m) =

[
φ

A
(1, v) φ

A
(2, v) · · ·φA

(i, v) · · ·φA
(NI, v)

]
(9)

where

φ
A
(i, v) =

1
C

C−1∑
c=0

φA
c (i, v) for a given i and v (10)

Step 3: Define ΔφA
c (i, v) as the amplitude distance between φ

A
(i, v) and φA

c (i, v) :

ΔφA
c (i, v) =

∣∣∣∣φA
(i, v) −φA

c (i, v)
∣∣∣∣ (11)

where the distance ΔφA
c (i, v) is large if the descriptors are further apart in the descriptor space and

small if they are closer together.
We obtain:

THφmax(i, v) = max
{
Δ∅A

c (i, v)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

}
,

and THφ(i, v) = μA
φ
(i, v) + σA

φ
(i, v) for a given i and v

(12)

where
μA
φ
(i, v) = mean

{
ΔφA

c (i, v)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1}

}
σA
φ
(i, v) = std

{
ΔφA

c (i, v)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

} (13)

Note that the amplitude distance ΔφA
c (i, v) is small and thus THφ(i, v) is most likely smaller than

THφmax(i, v), since this parameter reflects the distance between intra-subjects.

2.3.2. Threshold of Angle Similarity: THθ(i)

We calculated the scatter within class representing the degree of dispersion in a class which is
called intra-subject variability, and the scatter between classes representing the degree of dispersion
between different classes, which is called inter-subject variability, to obtain THθ(i) [43].

Step 1: Consider a data set of (x, y) and (x, r) for a given io ∈ i , where

x = {∀v},
y =

{
φA

c (io, v)
∣∣∣ io ∈ i, ∀v

}
for a given class c

r =
{
φ

A
(io, v)

∣∣∣∣ io ∈ i,∀v
} (14)

Step 2: Calculate the scatter within class and scatter between classes of the dataset (x, y) and (x, r).

SW = S(x,y) + S(x,r)

S(x,y) =
∑ (

y− uy
)(

y− uy
)T

S(x,r) =
∑

(r− ur)(r− ur)
T

SB =
(
uy − ur

)(
uy − ur

)T

(15)

where uy and ur indicates the mean of y and r, respectively.
Step 3: Calculate the weight vector matrix in terms of SW and SB. Subsequently, use the eigenvector

with the highest eigenvalue as the most discriminant projection vector.

W = SB
SW

WV = λV
(16)
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where V is the eigenvector when λ corresponds to the highest eigenvalue.
Let’s define θA

c (io) as the angle θ of the x-axis to the most discriminant projection vector V of the
dataset, (x, y) and (x, r).

θA
c (io) = tan−1(V) (17)

Step 4: Define θA
c (io) as the angle distance per interval between dataset (x, y) and (x, r) for a given

c and io.
We obtain:

THθmax(io) = max
{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

}
THθmin(io) = min

{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

} (18)

and
THθ1(io) = μ

A
θ (io) + σ

A
θ (io), THθ2(io) = μ

A
θ (io) − σA

θ (io) (19)

where
μA
θ
(io) = mean

{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

}
σA
θ
(io) = std

{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

} (20)

Similar to the amplitude distance ΔφA
c (i, v), the angle distance θA

c (io) is mostly between
THθ1(io) and THθ2(io) and almost always between THθmin(i) and THθmax(i) . Based on this process and
the subsequent updating process, the range of the intra-subject variation can be determined and the
advantage of the constantly changing ECG signal can be reaped, which is beneficial for the verification
using ECG.

2.4. Verification

In addition to the biometric data for subject A, the template database includes information
about the identifier related to the subject A. The term “biometric data” is referred to as the{
φ

A
(i, v)

∣∣∣∣∀i ∈ training set
}

stored along with the THφ(i, v) and THθ(i) in the template database.

During the verification stage, the system validates the identity claimed by an unknown person by
checking the similarity of the person’s biometric data to the enrolled data retrieved by the identifier
input by subject A.

Consider an unknown subject B to be verified. If an unknown person B is detected by the biometric
system during the verification, first, a biometric input is extracted from the person by calculating the
feature vector,

{
φB

c (i, v)
∣∣∣∀i, c ∈ verification mode

}
. Subsequently, the system calculates the difference

between the unknown input and templates, resulting in the amplitude and angle distances in the same
manner as during enrollment.

Next, the system calculates the similarity to determine how close the subjects A and B are.
The computation is carried out by applying a similarity threshold to the distances and normalizing
the resulting value to the range [0,1], where 0 means “no match at all” and 1 means “perfect match”.
In this paper, two similarity measures are considered, and those are the similarities of the amplitude
and angle distances, denoted as Sφ and Sθ , respectively.

Subsequently, we define a matching score S to quantify the match between the unknown and
template subject by concatenating the two similarities into S = 0.5Sφ + 0.5Sθ, where both similarities
are equally weighted. Given a matching score S, the system checks whether the score S is above a
certain threshold STH for the signature classification. A detailed explanation of the verification is
given below.

Step 1: First, consider an unknown subject B to be verified and let its ACP be ΦB
c (m), which

belongs to class c. It can be represented by the set of the ACPlets of

ΦB
c (m) : ΦB

c (m) =
{
φB

c (1, v),φB
c (2, v), · · · ,φB

c (i, v), · · · , φB
c (NI, v)

}
(21)
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Step 2: Compute the amplitude distance Δ∅B
c (i, v) between

φ
A
(i, v) and φB

c (i, v), given by : ΔφB
c (i, v) =

∣∣∣∣φA
(i, v) −φB

c (i, v)
∣∣∣∣ (22)

where this distance shows how close the amplitudes of φ
A
(i, v) and φB

c (i, v) are. Smaller Δ∅B
c (i, v)

leads to a higher possibility that the unknown subject B is to be subject A.
Step 3: Calculate the similarity of the amplitude distance: Sφ
The similarity of the amplitude distance (Sφ) can be obtained by applying the threshold of the

amplitude similarity to Δ∅B
c (i, v) as follows:

f or i = 1 : NI
f or v = 0 : L− 1

Ω(i, v) =
THφ(i,v)

Δ∅B
c (i,v)

for a given class

Ω(i, v) = 0 if Δ∅B
c (i, v) > THφmax(i, v)

Ω(i, v) = 1 if Δ∅B
c (i, v) ≤ THφ(i, v)

end
end

S∅ = 1
( NI · L )

NI∑
i=1

L−1∑
v=0

Ω(i, v) for a given class

(23)

Given Δ∅B
c (i, v), if Δ∅B

c (i, v) ≤ THφ(i, v), the corresponding ACP pixel is counted as “accepted”,
i.e., the similarity Ω(i, v) = 1. Else if Δ∅B

c (i, v) > THφmax(i, v), the corresponding ACP pixel is counted
as “declined”, that is, the similarity score Ω(i, v) = 0. If THφ(i, v) < Δ∅B

c (i, v) ≤ THφmax(i, v), the
corresponding ACP pixel is counted as “partially accepted” and the similarity score is given by

Ω(i, v) =
THφ(i,v)
Δ∅B

c (i,v)
, which ranges from 0 to 1. Finally, the similarity of the amplitude distance (Sφ) is

determined as the average of the similarity score calculated on a pixel-by-pixel basis.
Step 4: Compute the angle distance θB

c (i)
Define θB

c (io) as the angle θ of the x-axis to the most discriminant projection vector of the datasets,
(x, z) and (x, r) where

x = {∀v},
z =

{
∅

B
c (io, v)

∣∣∣io ∈ i,∀v
}

for a given class c

r =
{
∅

A
(io, v)

∣∣∣∣io ∈ i,∀v
} (24)

The method of finding the most discriminant projection vector is the same as the method used
to calculate the most discriminant vector in the enrollment mode. Subsequently, define θB

c (io) as the
angle distance per interval between datasets (x, z) and (x, r) for a given c and io.

Step 5: Calculate the similarity of angle distance: Sθ
The similarity of angle distance (Sθ) can be obtained by applying the threshold of the angle

similarity to θB
c (i) as follows:

for i = 1 : NI

i f θB
c (i) ≤ THθ1(i), Λ(i) =

THθ1
(i)

θB
c (i)

i f θB
c (i) ≥ THθ2(i), Λ(i) =

THθ2 (i)

θB
c (i)

Λ(i) = 0 if
(
θB

c (i)< THθmin(i) or θB
c (i) >THθmax(i)

)
Λ(i) = 1 if THθ1(i) ≤ θB

c (i) ≤ THθ2(i) for a given class
end

Sθ = 1
NI

NI∑
i=1

Λ(i) for a given class

(25)
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Given θB
c (i), if THθmin(i) ≤ θB

c (i) < THθ1(i) or THθ2(i) < θ
B
c (i) ≤ THθmax(i), the corresponding

ACP interval is counted as “partially accepted”, that is, the similarity score is Λ(i) = THθ(i)
θB

c (i)
, which

has the range [0,1], or else if θB
c (i)< THθmin(i) or θB

c (i) >THθmax(i), the corresponding ACP interval is
counted as “declined”, that is, the similarity score Λ(i) = 0, or else if THθ1(i) ≤ θB

c (i) ≤ THθ2(i), the
corresponding ACP interval is counted as “accepted” and the similarity score is given by Λ(i) = 1.
The similarity of the angle (Sθ) is determined as the average of the similarity scores calculated on an
interval-by-interval basis.

Step 6: Calculate the matching score
For every incoming class, we define a matching score S = 0.5Sφ + 0.5Sθ with a range from 0 to 1,

where 1 means a perfect match. Given a matching score S, the system finally determines whether the
score S is above a certain threshold STH, called as the matching threshold, for signature identification.

2.5. Updating Template

As mentioned in Section 1, an individual ECG signal changes over time due to intra-subject
variability. Therefore, if a subject uses a fixed template for a long time, the subject may be falsely
rejected during the verification. To solve this problem, we applied an updating process by continuously
performing the training process for every class. For instance, for a new Cth class incoming shortly
after the training process of class c ∈ {0, 1, . . .C− 1}, if the matching score S is larger than the threshold
STH, the new Cth class is accepted as a new member for the template update. Subsequently, the newly
accepted class is appended to the training set, and thus the latest accepted C classes c ∈ {1, 2, . . .C− 1}
are considered to be the new training set for the update. The template update for subject A is
described below.

2.5.1. Calculating the Amplitude and Angle Distances

The latest accepted C classes are re-indexed using c ∈ {0, 1, . . .C− 1}.
(i) Use the C classes as the new training set for subject A and find the ACP as ΦA

c (m) which
consists of the ACPlets ∅A

c (i, v):

ΦA
c (m) =

{
φA

c (1, v),φA
c (2, v), · · · ,φA

c (i, v), · · · ,φA
c (NI, v)

}
(26)

(ii) Next, find the profile Φ
A
(m):

Φ
A
(m) =

[
φ

A
(1, v) φ

A
(2, v) · · ·φA

(i, v) · · ·φA
(NI, v)

]
(27)

where

φ
A
(i, v) =

1
C

C−1∑
c=0

φA
c (i, v) for a given i and v (28)

(iii) Finally, compute the amplitude distance Δ∅A
c (i, v) and angle distance θA

c (i):

ΔφA
c (i, v) =

∣∣∣∣φA
(i, v) −φA

c (i, v)
∣∣∣∣ and

θA
c (i) = tan−1(V)

(29)

where V is the most discriminant projection vector between φ
A
(i, v) and φA

c (i, v).
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2.5.2. Updating the Threshold of Amplitude Similarity

μφ(i, v) = mean
{

Δ∅A
c (i, v)| ∀c ∈ {0, 1, · · ·C− 1 }

}
σφ(i, v) = std

{
Δ∅A

c (i, v)| ∀c ∈ {0, 1, · · ·C− 1 }
}

THφmax(i, v) = max
{

Δ∅A
c (i, v)| ∀c ∈ {0, 1, · · ·C− 1 }

}
THφ(i, v) = μφ(i, v) + σφ(i, v)

(30)

2.5.3. Updating the Threshold of Angle Similarity

μθ(i) = mean{ θA
c (i)| ∀c ∈ {0, 1, · · ·C− 1 }

}
σθ(i) = std{ θA

c (i)| ∀c ∈ {0, 1, · · ·C− 1 }
}

THθmax(i) = max{ θA
c (i)| ∀c ∈ {0, 1, · · ·C− 1 }

}
THθmin(i) = min{ θA

c (i)| ∀c ∈ {0, 1, · · ·C− 1 }
}

THθ1(i) = μθ(i) + σθ(i) THθ2(i) = μθ(i) − σθ(i)

(31)

By updating the threshold of the amplitude/angle similarity using the above process, the ECG
changes due to intra-subject variation can be continuously reflected in the template. In this study, the
verification/updating template is repeatedly performed for every class and each class is specified to be
5 s long, which is fast enough for real-life applications.

3. Experiment and Results

An experiment was carried out using a public open database, available on the PhysioNet
website [34], to evaluate the proposed algorithm.

The MIT-BIT arrhythmia database (MITDB) contains 48 records of heartbeats collected from
47 subjects (records 201 and 202 are from the same male subject). Each record is approximately 30
min long and was sampled at 360Hz. The subjects are 25 men with ages between 32 and 89 years old
and 22 women with ages between 23 to 89 years old. The data were obtained using a two-channel
ambulatory Holter monitor at the Beth Israel Deaconess Medical Center from 1975 until 1979. This
database is the most referred database related to arrhythmic studies. In this study, this database was
used to evaluate the efficiency of the proposed algorithm. Two 2-min intervals were randomly selected
for each data. The first 2-min interval of each data was used for training and the second data was used
for verification. Only single lead data was used in the experiment.

The error rate can be calculated for each subject, as shown in Figure 8. The FR (False Rejection)
means that the subject was rejected despite being himself. The FA (False Acceptance) means that
the subject was accepted despite being someone else. The distance threshold was chosen to be the
intersection of FR (False Rejection) and FA (False Acceptance), depending on the subject. The threshold
and EER for each subject are calculated based on the intersection of FR and FA. If there is only one
intersection point, the threshold and EER are determined based on the intersection point, whereas if
there are more than two points, the threshold is determined by the average value of the largest and
smallest value, and certainly, EER is calculated as 0, as shown in Figure 8.
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Figure 8. Examples of false rejection and acceptance rates for Subject no. 1, no. 2, and no. 3.

Figure 9a shows an example of obtaining the EER for each individual. A histogram of the EER
(Equal Error Rates) is shown in Figure 9b. The average EER is 0.143%, which indicates the efficiency of
the overall algorithm, as shown in Equation (32). Only a single user was enrolled at any point in time.
In other words, at any point in time, we had one client and 46 imposters.

Total efficiency of verification =
1

No. of subject

No. of subject∑
Sub=1

EERSub (32)

where Sub indicates the subject number.
To demonstrate the efficiency of our proposed algorithm, we compared it with related works

that used the same database (MIT-BIH), as shown in Table 1. Table 1 shows that the EER (Equal
Error Rate) in Reference [48] is higher than the proposed algorithm despite using ECG data from two
leads. Recently, most ECG wearable devices, such as smart watches, only use one lead; thus, the
proposed algorithm is more suitable for real-life applications. In Reference [48], a fixed shifting size
was used for the autocorrelation, while in the proposed algorithm, we used a flexible shifting size
for the autocorrelation as the QRS width for the individual, which requires less computational effort.
Although fused information from two ECG leads was used in Reference [49], their IDA (Identification
Accuracy) is lower than the proposed algorithm; however, the enroll time is 5 min, which is longer
than our algorithm. A fiducial point dependent method was used in References [28,50–52] which is
vulnerable to noise. Only 10–20 s data were used for enrollment and verification in References [52,53].
However, we used two 2-min data for enrollment and verification to verify the stability of the proposed
algorithm. Only a direct contact sensor was used in References [28,48–53] to verify the algorithms.
In contrast, we used a non-contact single lead senor for real-life applications. In this paper, in the case
of a fiducial dependent approach, although it has the advantage of being able to identify a subject in a
relatively short time with less computational effort, it is easily affected by external noise. On the other
hand, a fiducial independent approach has the advantage of being less affected by external noise, but it
takes higher computational effort and longer authentication time. To compensate for the advantages
and disadvantages of the above two methods, the amount of calculation was reduced through the
amplitude feature using ACP and the identification accuracy was improved through the interval-based
angle feature.

However, in this study, the matching score was calculated using the same weight for the two
features, resulting in a disadvantage in terms of the weakness in various environmental variables.
Therefore, we intend to explore the application of variable weights for future research to design a
robust algorithm for environment variables.
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4. Conclusions

In this paper, a novel interval-based LDA algorithm is proposed. The implementation experiments
of the proposed algorithm show higher identification accuracy compared to the existing ECG-based
identification algorithm using the fiducial point dependent method or fiducial independent method.
Based on this algorithm, we can complement each method’s disadvantages by using both a fiducial
point dependent method (amplitude distance by pixel) and fiducial point independent method (angle
distance by feature vector). In addition, our proposed algorithm is able to maintain identification
accuracy by tracking the ECG that changes in real-time using a template updating process.

This algorithm was tested with a public ECG database (MIT-BIH) and we compared its performance
with related studies using the same database. The results show that the proposed algorithm is more
reliable than other algorithms in terms of EER (Equal Error Rate). However, this algorithm has the
disadvantage that it requires 5 s for each identification. Therefore, as future research, we intend to
reduce the identification time and proceed to commercialize this as a product through multimodal
identification combined with other biometrics.

Author Contributions: Conceptualization, C.Y. and G.W.K.; methodology, C.Y., J.-G.L. and G.W.K.; software,
G.W.K.; validation, C.Y., J.-G.L. and S.-H.L.; formal analysis, C.Y. and S.-H.L.; investigation, C.Y. and G.W.K.;
resources, C.Y. and G.W.K.; data curation, G.W.K.; writing-original draft preparation, C.Y.; writing-review and
editing, S.-H.L.; visualization, C.Y. and G.W.K.; supervision, S.-H.L.; project administration, C.Y. and S.-H.L. All
authors have read and all agree upon the published version of the manuscript.

Funding: This research was funded by the Technological Innovation R&D Program (S2827786) funded by the
Ministry of SMEs and Startups (MSS, Korea).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Geddes, L.A.; Roeder, R.A. The first electronic electrocardiograph. Cardiovasc. Eng. Int. J. 2002, 2, 73–79.
[CrossRef]

2. Myers, G.B.; Klein, H.A.; Stofer, B.E. The electrocardiographic diagnosis of right ventricular hypertrophy.
Am. Heart J. 1948, 35, 1–40. [CrossRef]

3. Casale, P.N.; Devereux, R.B.; Alonso, D.R.; Campo, E.; Kligfield, P. Improved sex-specific criteria of left
ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: Validation with
autopsy findings. Circulation 1987, 75, 565–572. [CrossRef] [PubMed]

4. Addison, P.S.; Watson, J.N.; Clegg, G.R.; Holzer, M.; Sterz, F.; Robertson, C.E. Evaluating arrhythmias in ECG
signals using wavelet transforms. IEEE Eng. Med. Biol. Mag. 2000, 19, 104–109. [CrossRef] [PubMed]

5. Acharya, R.; Kannathal, N.; Krishnan, S.M. Comprehensive analysis of cardiac health using heart rate signals.
Physiol. Meas. 2004, 25, 1139.

6. Bsoul, M.; Minn, H.; Tamil, L. Apnea MedAssist: Real-time Sleep Apnea Monitor Using Single-Lead ECG.
IEEE Trans. Inf. Technol. Biomed. 2011, 15, 416–427. [CrossRef] [PubMed]

7. Karthikeyan, P.; Murugappan, M.; Yaacob, S. Detection of human stress using short-term ECG and HRV
signals. J. Mech. Med. Biol. 2013, 13, 1350038. [CrossRef]

8. Kaniusas, E.; Pfutzner, H.; Mehnen, L.; Kosel, J.; Tellez-Blanco, C.; Varoneckas, G.; Alonderis, A.; Meydan, T.;
Vazquez, M.; Rohn, M.; et al. Method for continuous nondisturbing monitoring of blood pressure by
magnetoelastic skin curvature sensor and ECG. IEEE Sens. J. 2006, 6, 819–828. [CrossRef]

9. Saul, J.P.; Rea, R.F.; Eckberg, D.L.; Berger, R.D.; Cohen, R.J. Heart rate and muscle sympathetic nerve
variability during reflex changes of autonomic activity. Am. J. Physiol. Circ. Physiol. 1990, 258, H713–H721.
[CrossRef]

10. Pomeranz, B.; Macaulay, R.J.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.; Kilborn, K.M.; Barger, A.C.;
Shannon, D.C.; Cohen, R.J.; et al. Assessment of autonomic function in humans by heart rate spectral analysis.
Am. J. Physiol. Circ. Physiol. 1985, 248, H151–H153. [CrossRef]

11. Agrafioti, F.; Gao, J.; Hatzinakos, D.; Yang, J. Heart biometrics: Theory, methods and applications. In Biometrics;
InTech: Shanghai, China, 2011; pp. 199–216.

91



Appl. Sci. 2020, 10, 6025

12. Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG analysis: A new approach in human identification.
In Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, Venice, Italy,
24–26 May 1999.

13. US Federal Trade Commission. Consumer Sentinel Network Data Book for January–December 2018.
Available online: https://www.ftc.gov/system/files/documents/reports/consumer-sentinel-network-data-
book-2018/consumer_sentinel_network_data_book_2018_0.pdf (accessed on 26 August 2020).

14. Burge, M.; Burger, W. Ear Biometrics. In Biometrics; Springer US: Boston, MA, USA, 1996; pp. 273–285.
15. Hossain, S.M.E.; Chetty, G. Next generation identity verification based on face-gait Biometrics. In Proceedings

of the International Conference on Biomedical Engineering and Technology, Kuala Lumpur, Malaysia, 4–5 June
2011.

16. Prabhakar, S.; Pankanti, S.; Jain, A.K. Biometric recognition: Security and privacy concerns. IEEE Secur. Priv.
2003, 1, 33–42. [CrossRef]

17. Sanchit; Ramalho, M.; Correia, P.L.; Soares, L.D. Biometric identification through palm and dorsal hand vein
patterns. In Proceedings of the 2011 IEEE EUROCON—International Conference on Computer as a Tool,
Lisbon, Portugal, 27–29 April 2011; pp. 1–4.

18. Boulgouris, N.V.; Plataniotis, K.N.; Micheli-Tzanakou, E. (Eds.) Biometrics: Theory, Methods, and Applications;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 9, ISBN 9780470522356.

19. Jain, A.K.; Arun, R.; Salil, P. An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol.
2004, 14, 4–20. [CrossRef]

20. Israel, S.A.; Irvine, J.M.; Cheng, A.; Wiederhold, M.D.; Wiederhold, B.K. ECG to identify individuals. Pattern
Recognit. 2005, 38, 133–142. [CrossRef]

21. Irvine, J.; Israel, S.; Wiederhold, M.; Wiederhold, B. A new biometric: Human identification from circulatory
function. In Proceedings of the Joint Statistical Meetings of the American Statistical Association, San
Francisco, CA, USA, 3–7 August 2003.

22. Zhang, Z.; Wei, D. A New ECG Identification Method Using Bayes’ Teorem. In Proceedings of the Tencon
2006 IEEE Region 10 Conference, Hong Kong, China, 14–17 November 2006.

23. Singh, Y.N.; Gupta, P. ECG to Individual Identification. In Proceedings of the 2008 IEEE Second
International Conference on Biometrics: Theory, Applications and Systems, Arlington, VA, USA,
29 September–1 October 2008.

24. Simon, B.P.; Eswaran, C. An ECG Classifier Designed Using Modified Decision Based Neural Networks.
Comput. Biomed. Res. 1997, 30, 257–272. [CrossRef] [PubMed]

25. Hoekema, R.; Uijen, G.J.H.; van Oosterom, A. Geometrical aspects of the interindividual variability of
multilead ECG recordings. IEEE Trans. Biomed. Eng. 2001, 48, 551–559. [CrossRef] [PubMed]

26. Tan, R.; Perkowski, M. ECG Biometric Identification Using Wavelet Analysis Coupled with Probabilistic
Random Forest. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016.

27. Agrafioti, F.; Hatzinakos, D.; Bui, F.M. Cardiac biometric security in welfare monitoring. In Proceedings of
the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan,
25–30 March 2012.

28. Singh, Y.N.; Gupta, P. Correlation-based classification of heartbeats for individual identification. Soft Comput.
2011, 15, 449–460. [CrossRef]

29. Fratini, A.; Sansone, M.; Bifulco, P.; Cesarelli, M. Individual identification via electrocardiogram analysis.
Biomed. Eng. Online 2015, 14, 78. [CrossRef]

30. Singh, Y.N.; Singh, S.K. Evaluation of Electrocardiogram for Biometric Authentication. J. Inf. Secur. 2011, 03,
39–48. [CrossRef]

31. Guennoun, M.; Abbad, N.; Talom, J.; Rahman, S.M.M.; El-Khatib, K. Continuous authentication by
electrocardiogram data. In Proceedings of the 2009 IEEE Toronto International Conference Science and
Technology for Humanity (TIC-STH), Toronto, ON, Canada, 26–27 September 2009.

32. Kyoso, M.; Uchiyama, A. Development of an ECG identification system. In Proceedings of the 2001
Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Istanbul, Turkey, 25–28 October 2001.

33. Kass, R.E.; Colleen, E.C. (Eds.) Basis and Treatment of Cardiac Arrhythmias; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2005; Volume 171.

92



Appl. Sci. 2020, 10, 6025

34. Physionet, Physiobank Archives, Massachusetts Institute of Technology Cambridge, January 2011. Available
online: https://www.physionet.org/physiobank/database/#ecg (accessed on 26 August 2020).

35. Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Applications; Academic Press:
New York, NY, USA, 2005; Volume 8.

36. Chan, A.D.C.; Hamdy, M.M.; Badre, A.; Badee, V. Wavelet Distance Measure for Person Identification Using
Electrocardiograms. IEEE Trans. Instrum. Meas. 2008, 57, 248–253. [CrossRef]

37. Ye, C.; Coimbra, M.T.; Vijaya Kumar, B.V.K. Arrhythmia detection and classification using morphological
and dynamic features of ECG signals. In Proceedings of the 2010 Annual International Conference of the
IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010.

38. Belgacem, N. ECG Based Human Authentication using Wavelets and Random Forests. Int. J. Cryptogr. Inf.
Secur. 2012, 2, 1–11. [CrossRef]

39. Choudhary, T.; Manikandan, M.S. A novel unified framework for noise-robust ECG-based biometric
authentication. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated
Networks (SPIN), Noida, India, 19–20 February 2015.

40. Gutta, S. Biomedical Signal Processing and Inference in Wearable Sensing Applications. Ph.D. Thesis,
Oklahoma State University, Stillwater, OK, USA, 1 December 2016.

41. Plataniotis, K.N.; Hatzinakos, D.; Lee, J.K.M. ECG Biometric Recognition Without Fiducial Detection.
In Proceedings of the 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium
Conference, Baltimore, MD, USA, 19–21 September 2006.

42. Matta, R.; Lau, J.K.H.; Agrafioti, F.; Hatzinakos, D. Real-Time Continuous Identification System Using ECG
Signals. In Proceedings of the 2011 Canadian Conference on Electrical and Computer Engineering, Niagara
Falls, ON, Canada, 8–11 May 2011; pp. 1313–1316.

43. Wang, Y.; Agrafioti, F.; Hatzinakos, D.; Plataniotis, K.N. Analysis of Human Electrocardiogram for Biometric
Recognition. EURASIP J. Adv. Signal Process. 2007, 2008, 148658. [CrossRef]

44. Safie, S.I.; Soraghan, J.J.; Petropoulakis, L. Pulse Active Ratio (PAR): A new feature extraction technique
for ECG biometric authentication. In Proceedings of the 2011 IEEE International Conference on Signal and
Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 16–18 November 2011.

45. Mücke, D. Elektrokardiographie Systematisch; UNI-MED-Verlag: Bremen, Germany, 1996.
46. Khalil, I.; Sufi, F. Legendre Polynomials based biometric authentication using QRS complex of ECG.

In Proceedings of the 2008 International Conference on Intelligent Sensors, Sensor Networks and Information
Processing, Sydney, Australia, 15–18 December 2008.

47. Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32,
230–236. [CrossRef] [PubMed]

48. Agrafioti, F.; Hatzinakos, D. ECG biometric analysis in cardiac irregularity conditions. Signal, Image Video
Process. 2009, 3, 329–343. [CrossRef]

49. Ye, C.; Coimbra, M.T.; Kumar, B.V.K.V. Investigation of human identification using two-lead Electrocardiogram
(ECG) signals. In Proceedings of the 2010 Fourth IEEE International Conference on Biometrics: Theory,
Applications and Systems (BTAS), Washington, DC, USA, 27–29 September 2010.

50. Singh, Y.N.; Singh, S.K. Identifying Individuals Using Eigenbeat Features of Electrocardiogram. J. Eng. 2013,
2013, 539284. [CrossRef]

51. Sarkar, A.; Abbott, A.L.; Doerzaph, Z. ECG biometric authentication using a dynamical model. In Proceedings
of the 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS),
Arlington, VA, USA, 8–11 September 2015.

52. Arteaga-Falconi, J.S.; Al Osman, H.; El Saddik, A. ECG Authentication for Mobile Devices. IEEE Trans.
Instrum. Meas. 2016, 65, 591–600. [CrossRef]

53. Dar, M.N.; Akram, M.U.; Usman, A.; Khan, S.A. ECG biometric identification for general population using
multiresolution analysis of DWT based features. In Proceedings of the 2015 Second International Conference
on Information Security and Cyber Forensics (InfoSec), Cape Town, South Africa, 15–17 November 2015.

54. Heart Monitor AC-002 User Manual; AliveCor, Inc.: San Francisco, CA, USA, 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

93





applied  
sciences

Article

Spectral and Nonlinear Analysis of Electrodermal
Activity in Adolescent Anorexia Nervosa

Zuzana Visnovcova 1,2, Lucia Bona Olexova 1,2, Nikola Sekaninova 1,2, Igor Ondrejka 3,

Igor Hrtanek 3, Dana Cesnekova 3, Simona Kelcikova 4, Ivan Farsky 5 and

Ingrid Tonhajzerova 1,2,*

1 Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava,
03601 Martin, Slovakia; zuzana.visnovcova@uniba.sk (Z.V.); olexova10@uniba.sk (L.B.O.);
sekaninova1@uniba.sk (N.S.)

2 Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava,
03601 Martin, Slovakia

3 Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava,
University Hospital Martin, Kollarova 2, 03659 Martin, Slovakia; igor.ondrejka@uniba.sk (I.O.);
igor.hrtanek@uniba.sk (I.H.); cesnekova.danka@gmail.com (D.C.)

4 Department of Midwifery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava,
03601 Martin, Slovakia; simona.kelcikova@uniba.sk

5 Department of Nursing, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava,
03601 Martin, Slovakia; ivan.farsky@uniba.sk

* Correspondence: ingrid.tonhajzerova@uniba.sk; Tel.: +421-2633425

Received: 8 June 2020; Accepted: 25 June 2020; Published: 29 June 2020

Abstract: Anorexia nervosa (AN) is an eating disorder with increasing prevalence in childhood and
adolescence. Sympathetic dysregulation is supposed to be the underlying mechanism of increased
cardiovascular risk in AN. Thus, we assess the electrodermal activity (EDA) as a non-invasive index
of sympathetic cholinergic activity using linear and nonlinear analysis in adolescent AN with the aim
of detecting potential biomarkers for AN-linked cardiovascular risk. We examined 25 adolescent girls
with AN and 25 age-matched controls. EDA was continuously recorded during a 5-min resting phase.
Evaluated parameters were: time-domain (skin conductance level, non-specific skin conductance
responses), frequency-domain (EDA in very low, low, sympathetic, high and very high frequency
bands) and nonlinear (approximate, sample, symbolic information entropies, detrended fluctuation
analysis (DFA)) parameters of EDA and peripheral skin temperature. Our findings revealed lower
EDA values indicating a decrease in the sympathetic nervous activity in female adolescents with
the acute phase of AN. Further, we found higher nonlinear index DFA in AN vs. controls. We
assumed that nonlinear index DFA could provide novel and independent information on the complex
sympathetic regulatory network. We conclude that the parameters of complex EDA analysis could be
used as sensitive biomarkers for the assessment of sympathetic cholinergic dysregulation as a risk
factor for AN-linked cardiovascular morbidity.

Keywords: anorexia nervosa; electrodermal activity; time-domain analysis; frequency-domain
analysis; nonlinear analysis

1. Introduction

Anorexia nervosa (AN) is one of the most frequent eating disorders with the highest morbidity
and mortality among intake malfunctions [1,2]. Patients with AN are characterised by low weight as
a result of the restriction of food intake, fear of weight gain, and distortion of self-image, including
fear of being or becoming fat [3,4]. Rates of lifetime prevalence of AN range from 1.4% to 3.3% in
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women [5]. AN mainly presents in mid- to late adolescence, although its occurrence in childhood and
early adolescence is increasing [6].

In general, the autonomic nervous system (ANS) plays a crucial role in the maintenance of the
homeostasis, flexibility and adaptability of the human body. It is assumed that disturbances of the
ANS may participate in underlying mechanisms of cardiovascular disorders associated with AN [7].
For example, several studies revealed lower heart rate associated with higher heart rate variability
indicating cardiovagal dominance, and sympathetic vascular underactivity indexed by lower blood
pressure variability [7–11]. However, studies regarding other biosignals in AN are scarce.

Electrodermal activity (EDA) represents a non-invasive index of sympathetic cholinergic activity.
Specifically, changes in sympathetic activity lead to altered activity of eccrine sweat glands, which
is related to skin´s ability to conduct electricity and thus to EDA variations [12,13]. Moreover, the
eccrine sweat glands are involved in thermoregulation of organisms, and cover the majority of the
organism, but are the densest on palms and soles. Indeed, these localizations are mainly used in
psychophysiological research, because it is assumed that they are associated with emotion-evoked
sweating [13].

From the physiological aspect, the skin is relatively non-conductive, due to its most upper layer
of derma—the stratum corneum. A variable amount of sweat is released from the ducts of the eccrine
sweat glands, which open onto the skin surface. The degree of sympathetic activation affects the
amount of filled sweat ducts, and the amount of produced sweat; in turn, this activation influences the
degree of skin conduction. Variations of the amount of sweat in the ducts relates to the conductivity of
the skin and its measurable changes in EDA [14]. Additionally, Posada-Quintero et al. (2016) revealed
that variation in the dynamics of the sympathetic activity evaluated by EDA represent one of the
important prognostic and diagnostic tools in diseases associated with autonomic dysfunction [15].

With respect to methodology, Lanata et al. (2012) evaluated changes of EDA by standard time
and frequency indices and nonlinear parameters, such as deterministic chaos, recurrence plot, and
detrended fluctuation analysis in the healthy group during exposure of sets of images from the
International Affective Picture System (IAPS) [16]. This study revealed that nonlinear indices of
EDA contribute to better extraction of EDA features, such as characteristics of sympathetic activity
without significant differences in two types of used measuring devices (special textile gloves vs.
bipolar electrodes) [16]. Our previous study evaluated the difference between standard and nonlinear
parameters of EDA (approximate and symbolic information entropy) after cognitive stressors (recovery
phase) in healthy young adults. Specifically, whereas skin conductance amplitude remained increased
in the recovery phase compared to the baseline period, nonlinear indices decreased under the baseline
value. It is assumed that this could be caused by complex mechanisms consisting of feedback loops
forming a chaotic system on the central level [17].

Recently, evaluation of EDA in AN has been attracting more attention from scientists. Several
studies found a lower amplitude of skin conductance response (SCR) in adult females suffering from
AN versus age-matched healthy control (HC) in resting conditions [18–20]. Similarly, Crifaci et al.
(2013) revealed a decrease of SCR, but a higher level of frequency of SCR in AN group with respect to
healthy volunteers during baseline [10]. Additionally, Soussignan et al. (2011) observed significantly
larger SCR during exposure to pictures of food and odorous foods in HC versus AN women [21].
Finally, AN women had lower SCR during rest and the Iowa Gambling Task compared to the HC
group [22]. According to these results, Tchanturia et al. (2007) assumed that SCR represents a sensitive
indicator of response to stimuli in AN patients [22]. While the variations of SCR in adult AN patients
are relatively obvious [18,20], the changes of spectral components and nonlinear features of EDA in
adolescent females suffering from AN remain unclear. Moreover, studies evaluating variables of EDA
by time, spectral and nonlinear indices in AN adolescents are rare. There exist only a few studies
concerning changes of these parameters, and only in healthy adults [15–17,23,24]. For example, time
and spectral indices of EDA for frequency bands (range from 0.0 Hz to 0.5 Hz) increased during
applications of various stressors (changes of position, cold pressor, and Stroop test) assuming that the
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EDA evaluation by different parameters could provide an important quantitative tool for evaluating
sudomotor activity regulated by the sympathetic nervous system [15].

Based on these studies, we hypothesized that complex EDA analysis (time-domain, spectral
and non-linear) could provide important information related to sympathetic nervous activity in
adolescent anorexic patients. Thus, we aimed to evaluate EDA by different parameters of the spectral
and nonlinear analysis indicating complex sympathetic cholinergic regulatory network in adolescent
anorexia nervosa. To the best of our knowledge, this is the first study to use complex EDA analysis
with the aim of detecting potential biomarkers for complex sympathetic cholinergic dysregulation as a
risk factor for AN-linked cardiovascular morbidity already present in adolescent age.

2. Materials and Methods

The study was approved by the Ethics Committee of Jessenius Faculty of Medicine in Martin,
Comenius University in Bratislava in accordance with the 1964 Helsinki declaration and its later
amendments. All participants and their parents/legal representatives were carefully instructed about
the study protocol and gave written informed consent to participate in the study before the examination.

2.1. Study Population

The studied group consisted of 25 girls suffering from newly diagnosed AN recruited from
inpatients admitted to the Psychiatric Clinic of Jessenius Faculty of Medicine and University Hospital
in Martin (mean age: 14.8 ± 0.4 years), and control group of 25 healthy age-matched controls (mean age:
15.1 ± 0.3 years). Exclusion criteria were the following for both groups: history of recent acute illness
or chronic cardiovascular, respiratory, endocrine, neurological, metabolic, and infectious diseases,
smoking, medication/psychoactive substances, or dietary supplementation potentially affecting the
ANS. Moreover, mental disorders and weight abnormalities (underweight/overweight/obesity) were
considered as exclusion criteria in control group. The weight was defined according to extended
International Obesity Task Force body mass index (BMI) cut-offs for thinness, overweight, and obesity
using age- and sex- specific BMI cut-offs, which correspond to the adult BMI range between 18.5 and
25 kg/m2 for normal weight, and the threshold of 30 kg/m2 for obesity [25].

2.2. Diagnosis of Anorexia Nervosa

The diagnosis of anorexia nervosa without other comorbid mental disorders (e.g., depressive
disorder) was assessed by a thorough clinical investigation based on a unstructured diagnostic interview
by a staff child/adolescent psychiatrist according to the Diagnostic and Statistical Manual of Mental
Disorders, DSM-5 (American Psychiatric Association, 2013). The AN patients were examined before
pharmacotherapy and starting of nonpharmacological regimen interventions, including re-feeding,
during the first days of hospitalization.

2.3. The Study Protocol and Evaluated Parameters

The examinations were performed in the Psychophysiological laboratory (Biomedical Center
Martin, Jessenius Faculty of Medicine in Martin) under standard conditions with the minimalization of
stimuli: a quiet room, 22 ◦C, in the morning between 8:00 and 11:30 a.m., after a normal breakfast.

Firstly, anthropometric parameters were assessed by body composition analyser InBody 120
(Biospace Co. Ltd, Seoul, Korea). Then, participants were instructed to sit comfortably and rest in a
special armchair for 10 min to avoid potential effects of stress (laboratory environment and examining
person). After the introductory 10 min, EDA was recorded using FlexComp Infinity Biofeedback
(Thought Technology, Canada) with a sampling frequency of 256 Hz. The EDA signal was monitored
by two bipolar electrodes composed of 10-mm diameter Ag-AgCl placed on the middle phalanges
of two fingers on the non-dominant hand. In accordance with some other studies [26,27], the special
EDA conductive gel was not used. Special FlexComp biofeedback electrodes containing a metallic
disk set were used without conductive gel as recommended by Thought Technology, Ltd. [28]. These
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special electrodes were carefully cleaned with an alcohol wipe after each examination of the subject.
In addition, peripheral skin temperature was recorded using FlexComp Infinity Biofeedback (Thought
Technology, Canada). The temperature of the periphery was monitored by a sensor attached to the
second phalange of one finger on the non-dominant hand. The baseline phase of the study lasted for
5 min.

2.4. Anthropometric Measures

Body composition was analysed using InBody 120 (Biospace Co. Ltd, Seoul, Korea) with
multi-segmental multi-frequency (20/100 kHz) bioimpedance analysis, using eight tactile electrodes
(thumbs and fingers of the hands, balls of the feet and heels) in a standing position. Thereafter,
software Lookin’Body120 (Biospace Co. Ltd, Korea) processed the obtained data. The following body
composition parameters were evaluated: weight (kg) and body mass index (BMI, kg/m2) calculated as
the weight (kg) divided by the square of height (m), waist circumference (WC, cm). Body surface area
(BSA, m2) was calculated using the Mosteller equation as:

BSA =
√

h × w/3600, (1)

where h is height (cm) and w is weight (kg) [29].

3. Data Analysis

3.1. Time-Domain Parameters of EDA

The tonic EDA, needed for analysis, was extracted by 10th order low-pass finite impulse response
filter (cut off 0.0004 Hz) [15]. Next, the skin conductance level (SCL) was evaluated as a mean amplitude
of tonic EDA. SCL informs about quantitative changes in the cholinergic sympathetic nervous system.
The physiological values of SCL depend on the size of the sensors used. For 10 mm sensors, the range
is from 0 to 30 micro Siemens [14,30].

Non-specific skin conductance responses (NS.SCRs) were obtained as the rate of spontaneous skin
conductance responses that occur without external stimuli during examination [31]. Typical values
ranged from 1 to 3 per min during baseline. The higher values of NS.SCRs indicate intensified arousal
conditions [14]. Thus, the time-domain parameters provide information about changes associated with
the sympathetic nervous system [15].

3.2. Power Spectral Analysis of EDA

At first, the data was filtered with an 8th-order Chebyshev Type I low-pass filter. Consequently,
the signals were down-sampled to 2 Hz. Then, to eliminate any trend the data was high-pass filtered
with an 8th-order Butterworth filter. The power spectra of signals were evaluated using Welch´s
periodogram method with a 50% overlap. The mean power spectrum of the analysed unit was
computed by fast Fourier transform (using a Blackman window length of 128 samples), and spectral
powers [μS2] in the appropriate frequency bands (VLF: 0.000–0.045 Hz; EDA-Symp: 0.045–0.25 Hz (sum
of low (0.045–0.15 Hz) and high 1 (0.15–0.25 Hz) frequencies); HF: 0.25–0.40 Hz and VHF: 0.40–0.50 Hz)
were obtained according to Posada-Quintero et al. [15].

From a physiological perspective, the frequency-domain parameters express the spectral
distribution of sympathetic arousal in the skin surface [15].

3.3. Nonlinear Indices of EDA

3.3.1. Entropy

Entropy describes the unpredictability, randomness and uncertainty of a system. Entropy
represents random and asymmetrical fluctuations in a given time series, and thus the complexity of
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the sympathetic cholinergic regulatory system [32]. The fundament of entropy indices calculation is
the evaluation of probabilities distribution of the expected value in the time series [32,33].

3.3.2. Approximate and Sample Entropy of EDA

Approximate (ApEn) and Sample (SampEn) entropies describe the probability that the vectors of
length m chosen from a time-series of length N that are related within a given tolerance range r, remain
similar for the vector of length m + 1.

ApEn (m, r, N) = Φm(r) – Φm+1(r), (2)

SampEn (m, r, N) = log (Φm(r) / Φm+1(r) ), (3)

where N—number of points, m—length of sequence (for N= 300 length of sequence m= 2), r—tolerance
of similarity (r є< 0.1 SD; 0.25 SD>). Minimum values of ApEn and SampEn (around zero) indicate
regular system. In contrast, the increasing ApEn and SampEn refer to a random and more complex
system [32,34].

3.3.3. Symbolic Information Entropy

The analysis of symbolic information entropy (SIE) has been demonstrated to be sufficient for
the investigation of complex systems and is able to describe nonlinear aspects within a time series.
The concept of SIE is based on coarse-graining of the time series into symbolic sequences with a certainly
given alphabet. This data was transformed by four numbers (0, 1, 2, 3) to classify the dynamic changes
of the time series, then these symbols were used to generate SIE [17,24]. The numbers characterize
changes of the time series, i.e., 0 and 1 indicate slow and fast increasing of the data, respectively; 2 and
3 specify fast and slowly decreasing signal, respectively. The patterns are divided into vectors of length
L = 2 and they are paired into the class according to letters of the vector. For instance, vector 13 means
the change of SCL from fast elevation to a slow decrease in the waveform. Index SIE characterizes the
randomness and messiness of the system. Symbolic information entropy can be defined as

SIE(m) = −Σ M
i=1 (pi * Pi), (4)

where if pi > 0, then Pi = log2(pi), else Pi = 0. The higher values of SIE represent more irregular, messy
and unpredictable signals, whereas the values around zero characterize higher regularity [17,24].

3.3.4. Detrended Fluctuation Analysis of EDA

Detrended fluctuation analysis (DFA) is a scaling analysis method for evaluating the statistical
self-similarity properties of the time series. DFA is used to confirm the existence of persistent long-term
range associations in EDA data. Exponent α represents the slope of the trend line relating log F(n)
to log (n) in the range of time-scales. It is estimated by linear regression. Generally, two scaling
exponents—α1 and α2 are evaluated, which represent relationships over short (≤30 s) and long (>30 s)
timescales, respectively [35]. At first, the analyzed data (length of N) was integrated and divided into
boxes of equal length n. In individual boxes of n, a least square line fits the signals. The y coordinate of
the straight stretches is marked by yn(k). Subsequently, we subtracted the local trend yn(k) from y(k)
in each box, i.e., we detrended them. Finally, the root-mean-square fluctuation of this combined and
detrended signals was computed according to Lanata et al. (2012) [16]:

F (n) =

√
1
N

∑N

k=1
[y(k) − yn(k)]

2, (5)

Figure 1 summarizes the EDA evaluated parameters using linear and nonlinear analysis.
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Figure 1. Evaluation of electrodermal activity (EDA) parameters. SCL—skin conductance level;
NS.SCRs—nonspecific skin conductance responses; PSD—power spectral density; EDA-VLF—
electrodermal activity in very low frequency band; EDA-Symp—EDA in the sum of low and high 1
frequency bands; EDA-HF—EDA in high 2 frequency band; EDA-VHF—EDA in very high frequency
band; ApEn—approximate entropy; SampEn—sample entropy; SIE—symbolic information entropy;
RMS—root mean square; DFA—detrended fluctuation analysis; α1,α2—indices of detrended fluctuation
analysis short-term and long-term correlations, respectively.

4. Statistical Analysis

Statistical analysis was performed by SYSTAT (SSI, Richmond, CA, USA). The Lilliefors´ normality
statistical test was used for evaluation data distributions (Gaussian/non-Gaussian). The Mann–Whitney
test was used for between-group comparison of EDA indices and the peripheral temperature (PT)
because data were not normally distributed. Anthropometric parameters were normally distributed
and analyzed by unpaired Student´s t-test. The associations between the parameters of EDA and
the peripheral temperature, and correlations between anthropometric characteristics (BMI, BSA) and
EDA parameters were analyzed using Spearman´s rank-order correlation test. A value of p < 0.05
(two-tailed) was considered statistically significant. Anthropometric parameters were expressed
as a mean ± standard error of the mean (SEM). Values of EDA and PT were expressed as median
(interquartile range).

5. Results

Anthropometric characteristics of both groups (AN and controls) are summarized in Table 1.

Table 1. Anthropometric characteristics of groups.

Anorexia Nervosa (N = 25) Controls (N = 25) p Value

Age (years) 14.76 ± 0.38 15.12 ± 0.32 0.580
Weight (kg) 46.04 ± 1.56 57.76 ± 2.58 0.0001
Height (m) 1.65 ± 1.28 1.66 ± 1.90 0.816

BMI (kg/m2) 16.88 ± 0.48 20.88 ± 0.66 0.0001
BSA (m2) 1.45 ± 0.03 1.62 ± 0.04 0.001
WC (cm) 64.79 ± 1.41 75.80 ± 1.99 0.0001

Values are expressed as mean ± SEM. BMI—body mass index; BSA—body surface area; WC—waist circumference.
p values express the comparison between groups. Probabilities p < 0.05 were considered as significant.

5.1. Comparison between Groups of Time-Domain EDA Parameters

Index SCL was significantly lower in the AN group compared to controls (p= 0.041). No significant
differences were found in index NS.SCRs (Table 2).
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Table 2. Parameters of electrodermal activity and peripheral temperature.

Parameter Anorexia Nervosa (n = 25) Controls (n = 25) p Value

Time-domain indices of EDA
SCL (μS) 0.67 (0.32–2.21) 2.10 (0.97–3.23) 0.041
NS.SCRs 0.50 (0.00–1.00) 1.00 (0.00–2.00) 0.257

Frequency-domain indices of EDA

EDA-VLF (μS2) 18.85 (0.28–56.66) 238.84 (41.39–798.81) 0.001
EDA-Symp (μS2) 16.33 (3.09–103.79) 815.60 (125.69–1427.03) 0.0001
EDA-HF2 (μS2)
EDA-VHF (μS2)

1.45 (0.37–5.94)
1.45 (0.37–5.94)

1.73 (0.44–5.07)
0.21 (0.03–1.07)

0.684
0.765

Nonlinear indices of EDA
ApEn 0.59 (0.41–0.82) 0.67 (0.45–0.82) 0.674

SampEn 0.48 (0.28–1.18) 0.48 (0.27–0.81) 0.562
SIE 2.14 (2.06–2.65) 2.35 (1.51–2.76) 0.734
α1 1.01 (0.65–1.20) 0.94 (0.77–1.17) 0.779
α2 0.49 (0.07–0.73) 0.11 (0.05–0.31) 0.032

Index of peripheral temperature
PT (◦C) 30.53 (25.93–33.46) 31.43 (28.94–32.54) 0.487

5.2. Comparison between Groups of Spectral-Domain EDA Parameters

Index EDA in the very low frequency band was significantly lower for AN group compared to HC
(p = 0.001). EDA-Symp was significantly lower during baseline for AN vs. HC groups (p = 0.0001). No
significant differences were found in indices EDA in the high and very high frequency bands (Table 2).

5.3. Comparison between Groups of Nonlinear EDA Parameters

Only nonlinear index α2 was significantly higher for AN group compared to HC (p = 0.032). No
significant differences were found in remaining nonlinear parameters—ApEn, SampEn, SIE and α1
between groups (Table 2).

5.4. Comparison between Groups of Peripheral Temperature

Peripheral temperature was without significant differences between groups (Table 2).
Values are expressed as median (interquartile range). SCL—skin conductance level; NS.SCRs—

nonspecific skin conductance responses; EDA-VLF—electrodermal activity in very low frequency band;
EDA-Symp—EDA in the sum of low and high 1 frequency bands; EDA-HF—EDA in high 2 frequency
band; EDA-VHF—EDA in very high frequency band; ApEn—approximate entropy; SampEn—sample
entropy; SIE—symbolic information entropy; α1, α2—indices of detrended fluctuation analysis
short-term and long-term correlations, respectively; PT—peripheral temperature. The p value expresses
the comparison between groups. Probabilities p < 0.05 were considered to be significant.

5.5. Correlation Analysis

Correlation analysis in the total group revealed significant positive correlations between BMI
and SCL, and between BMI and PT (r = 0.292, p = 0.042; r = 0.302, p = 0.041, respectively). Index
SCL was significantly positively correlated with indices of spectral-domain EDA-VLF and EDA-Symp
(r = 0.556, p = 0.0001; r = 0.277, p = 0.050, respectively). No significant correlations were found in the
remaining parameters.

6. Discussion

To the best of our knowledge, this study was the first to describe features of the sympathetic
cholinergic regulatory system using spectral and nonlinear characteristics of EDA in AN adolescents
before starting a treatment. The results can be summarized as follows: (1) several indices of time (SCL)
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and frequency (EDA-VLF and EDA-Symp) analysis were significantly lower, indicating insufficient
sympathetic cholinergic activity already in adolescent anorexia nervosa; (2) in contrast, the index of
DFA–α2 showed a different pattern compared to the time and spectral EDA characteristics—it was
increased in anorectic patients thus providing independent and novel information related to altered
complexity in sympathetic cholinergic regulatory network in anorexia; (3) correlation analysis revealed
that BMI is positively associated with SCL and PT indicating possible alteration of sympathetically
mediated and thermoregulatory mechanisms in AN, which could be induced by extensive reduction in
body weight. Several mechanisms are proposed.

First, reduced SCL is in accordance with other studies that revealed a lower mean of tonic EDA
in AN adults [18,20] and extend these findings into the adolescent age group. Additionally, our
study revealed statistically important decrease of EDA in spectral-domain (EDA-VLF, EDA-LF and
EDA-Symp) in AN compared to controls. Moreover, we found a positive correlation between SCL
and EDA-VLF, and between SCL and EDA-Symp. Thus, we assume that EDA evaluation by SCL,
EDA-VLF and EDA-Symp indices represents a sufficient non-invasive tool for assessment of sympathetic
cholinergic underactivity linked to AN. Our previous study revealed reduced sympathetic activity based
on blood pressure variability analysis in newly diagnosed AN girls, indicating nutritional trajectory as
an adaptation process associated with bodyweight control from “normal weight to underweight” [8].
Thus, we assume that acute phase of adolescent AN is characterized by sympathetically mediated
autonomic hypoactivation which could only partially be ascribed to the reduced body weight measured
by BMI associated with reduced basal metabolism. Specifically, neurobiological features such as
hormonal deficiencies (e.g., decreased level of leptin and increased level of ghrelin), neurotransmitters
(e.g., serotonin and dopamine) [36–38] and electrolyte dysfunctions (e.g., mainly potassium) [39]
could play an important role in AN-linked sympathetic underactivity. Notably, leptin as an important
molecular signal of energy abundance is closely linked to sympathetic regulation [40,41], and reduced
leptin concentrations associated with sympathetic hypoactivity were found in anorexia nervosa [42].

Further, psychopathological features linked to AN could also importantly contribute to sympathetic
hypoactivity in AN. A recent study found an inverse correlation between the negative beliefs concerning
the consequences of not controlling thoughts and SCL, suggesting that metacognitive variables (i.e.,
the inescapability of negative thoughts and the need for thought control) could have a key role
in modulating patients’ sympathetic hypoactivation. Moreover, this worry could be considered a
cognitive strategy to avoid intense emotions. From this perspective the dysfunctional metacognitions
about worry might yield also a reduced sympathetic activity in anorexia nervosa [20]. Therefore, it is
questionable whether AN-linked sympathetic hypoactivity is predominantly a result of neurobiological
changes or is more a reflection of psychopathological features associated with AN.

Due to the fact that biological signals are very difficult to interpret and with various timing
and diverse structure, we used nonlinear methods of analysis, which better characterize complex
qualitative features of the system. Contrary to time and frequency domain indices, we revealed that
the index α2 was significantly higher in AN group compared to controls. Thus, we assume that the α2
index could provide independent information about the complexity of the sympathetic cholinergic
regulatory network compared to other time and frequency parameters of EDA. With respect to another
biosignal (heart rate), Ishizawa et al. (2008) revealed increased complexity of heart rate variability
based on DFA in AN group [9]. Additionally, Jelinek et al. (2017) found an increase of α2-HRV during
orthostasis in AN compared to controls [43]. It seems that this important issue remains for further
research to elucidate pathways linking sympathetic complexity and anorexia nervosa.

In light of these findings, we could speculate about the complex mechanisms. The excitatory
and inhibitory influences of the sympathetic regulation derive from different structures of the central
nervous system. We assume that the control mechanisms and neural pathways’ influence on the
central regulation of EDA are complex. Boucsein et al. (1992) define two potential independent
paths affecting sweat production and thus skin conductance: A) cortical level—central control of
EDA applies to inclination of cortical centers and basal ganglia as brain structures encompassed in
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motor control [44]. Notably, cortical pathways encompass excitatory control via pyramidal pathways
and the premotor cortex [26,44,45]; B) subcortical level—EDA control encompasses effects from the
hypothalamus and the limbic system related to thermoregulatory sweating. Additionally, the inhibitory
effects of EDA are mediated by the hippocampus, whereas the excitatory effects are mediated by the
amygdala [26,44,45]. Furthermore, the EDA is changed by control effects of reticular formation in the
brainstem [26]. Therefore, we assume that the complexity of the brain regulatory regions (prefrontal
cortex, hypothalamus) and the existence of feedback loops create a chaotic system influencing EDA.

Conversely, decreased prefrontal cortex (PFC) activity has often been observed among AN patients
compared to healthy controls using functional neuroimaging techniques [46–49]. The PFC is a key
area for executive functioning, which includes inhibitory control, working memory, and planning.
Behavioural studies have revealed that AN patients often have complications with tasks requiring
inhibitory control, including response inhibition and task switching [50]. Thus, inhibitory control might
be a key element influencing the salient characteristics of AN. Functional imbalance between reward and
inhibitory control in the cerebral cortex, especially the PFC, might be related to AN susceptibility and
pathology. However, regional structural relevance regarding functional abnormalities in AN remains
largely unknown [51–53]. Moreover, the PFC is one of the last brain regions to fully develop relative to
subcortical areas [53]. PFC organization undergoes dynamic variations in terms of synaptic density
throughout prepubescence and adolescence [54]. This might represent one of key pathomechanisms
leading to both AN onset in adolescence and abnormalities in complex feedback regulatory loops
resulting in AN-linked sympathetic disruption.

Taken together, the conventional and nonlinear EDA parameters reveal different features of the
complex sympathetic cholinergic system consisting of multiple feedback regulatory loops in adolescent
AN. While time and spectral parameters of EDA characterize quantitative features of sympathetic
cholinergic regulation indicating sympathetic hypoarousal in adolescent AN, the parameter of DFA–α2
could provide novel and distinct information about the qualitative feature complexity of the sympathetic
regulatory network, as well.

7. Conclusions

Our study revealed decreased time and spectral indices of EDA indicating sympathetic
underactivity in never-treated AN presenting at adolescent age. However, the nonlinear parameter α2
showed a different pattern, indicating abnormal complexity of the sympathetic cholinergic regulatory
network in adolescent AN. We suggest that the complex EDA analysis seems to be a sensitive tool
for evaluating the activity of the sympathetic cholinergic modulation in AN adolescents. Further, the
discrete alteration of the complex sympathetic regulatory network indexed by EDA might represent a
risk factor for greater cardiovascular complications already present in adolescent AN.

Future studies should be directed to clarify pathomechanisms linking AN and increased
cardiovascular risk, and reveal a complex profile of the sympathetic nervous activity in anorexic
patients, particularly in adolescent age. Further clinical research is necessary to identify biomarkers for
the assessment of sympathetic complex dysfunction, which could be used for early prevention and
personalized treatment of cardiovascular diseases in AN patients.

8. Limitations of the Study

In present study, the cohort consisted of a relatively small homogenous sample of female
adolescents with newly diagnosed AN; therefore, it is needs to be validated in a larger cohort with
respect to gender. Further, EDA represents a noninvasive index of the sympathetic cholinergic system;
therefore, it is not possible to apply these results in terms of general sympathetic dysregulation
associated with anorexia nervosa. In this aspect, future research based on continual analysis of
additional parameters evaluating the sympathetic control and exploring complex relations between
EDA signal and other sympathetically-mediated biosignals (e.g., pre-ejection period, blood pressure
variability) under physiological and pathological conditions is needed.
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Abbreviations

AN anorexia nervosa
EDA electrodermal activity
DFA detrended fluctuation analysis
ANS autonomic nervous system
IAPS International Affective Picture System
SCR skin conductance response
HC healthy controls
BMI body mass index
DSM-5 Diagnostic and Statistical Manual of Mental Disorders
Ag-AgCl silver-silver chloride
WC waist circumference
BSA body surface area
h height
w weight
SCL skin conductance level
NS.SCRs non-specific skin conductance responses
PSD power spectral density
EDA-VLF electrodermal activity in very low frequency band
EDA-Symp electrodermal activity in the sum of low and high 1 frequency bands
EDA-HF electrodermal activity in high 2 frequency band
EDA-VHF electrodermal activity in very high frequency band
ApEn approximate entropy
SampEn sample entropy
SIE symbolic information entropy
RMS root mean square
α1 indices of detrended fluctuation analysis short-term correlation
α2 indices of detrended fluctuation analysis long-term correlation
VLF very low frequency band
HF high frequency band
VHF very high frequency band
N number of points
r tolerance range
m length of sequence
L length of vector
p probability
y coordinate of the strait stretches
F fluctuation of combined and detrended signal
SEM standard mean error
PT peripheral temperature
PFC prefrontal cortex
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Abstract: In this study, we investigated the relationship between toe-area activity and stumbling
experiences utilizing our developed sensing system, in order to assess toe-area activity in elderly
people with stumbling experiences. The sensing system enables the visualization of the plantar aspect
while walking on any surface and under any condition. An image of the plantar aspect is received at
a reflecting surface and captured by a camera attached to a clog. The toe-area activity was evaluated
by comparing the difference between the toe contact areas at heel-strike and push-off. Thirteen young
individuals (nine men and four women, age 22.4 ± 2 years) and nine elderly individuals (five men
and four women, age 65.3 ± 2 years) participated in the experiment by walking along a straight
line wearing the plantar sensing system on their feet. The analysis found that a low value of the
mean toe activity for multiple walking cycles was associated with high stumbling risk, irrespective
of age, whereas large variations in toe activity was associated with aging. These results indicate
that toe activity can predict stumbling risk irrespective of age. We also found that a large value of
the maximum toe activity during multiple walking cycles indicates aging, whereas a low value is
associated with high stumbling risk.

Keywords: wearable sensors; gait analysis; stumbling; plantar visualization

1. Introduction

The Cabinet Office of the Government of Japan [1] has reported falls as the fourth leading reason for
elderly individuals above 65 years requiring support from caregivers. The demand for risk assessment
to prevent falls increases with age. Fall risk assessment considers different types of factors [2]. This
study focused on the motion of the plantar region, especially the toe area. Examination of the sole of
the foot, or the plantar aspect, which is often conducted as a self-health check in Oriental medicine,
is expected to reveal significant health-related information, such as irregularity in toe-area shape
corresponding to stumbling risks. However, the number of observational methods used to obtain
quantitative data is limited. Measurement systems for observing parts of the foot involved in walking
are classified into two types.

The first type comprises pressure-sensor-based systems. Pressure profiles during walking can
be obtained by embedding pressure sensors into the insoles found in every shoe. There are several
commercially available pressure sensors for investigating the relationship between plantar pressure
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and walking speed [3,4], age [5], and foot type [6]. Majumder et al. [7] predicted falls using sensory
data from a smartphone and four pressure sensors on a shoe. Ayena et al. [8] assessed the risk of falls
at home using a system similar to that of Majumder et al. [7]. Yu et al. [9] developed a shoe system that
monitored walking with shoe-integrated force sensors. Crea et al. [10] developed a pressure-sensitive
insole based on optoelectronic technology.

The second type of measurement system comprises the inertial measurement unit
(IMU)-sensor-based systems [11]. Hung and Suh [12] reduced the position error of shoes estimated
by IMU sensors by utilizing additional camera information. Do and Suh [13] developed a walking
measurement system that employed inertial sensors and a camera with floor markers to estimate
step length and foot angle. An optical sensor was utilized in this case, although the targets did not
correspond to plantar observation. Foxlin [14] tracked pedestrians with shoe-mounted IMU sensors.
Ojeda and Borenstein proposed a personal dead-reckoning navigation system with a shoe-mounted
IMU sensor. Sim et al. [15] proposed an algorithm to detect falls with acceleration sensors on a shoe.
Rampp et al. [16] estimated a stride parameter that utilized IMU sensors on a shoe. Mariani et al. [17]
used IMU sensors on a shoe to assess 3D spatial parameters of gait.

There are also systems that have both pressure and IMU sensors. Scheoers et al. [18] proposed a
shoe fitted with force and IMU sensors. Bamberg et al. [19] proposed a wireless wearable sensor system
with an accelerometer, a gyroscope, and a ground force reaction sensor embedded in a shoe. Bebek et
al. [20] developed a personal navigation system with pressure and IMU sensors, while Chen et al. [21]
detected an abnormality in shoes with four force and IMU sensors. Hegde et al. [22] developed the
SmartStep shoe with embedded pressure and acceleration sensors. Kawsar et al. [23] presented an
activity detection system that utilized pressure data from a shoe and accelerometers and gyroscope
data from a smartphone.

Several studies have focused on toe plantar flexor strength, which is closely related to toe activity.
Tsuyuguchi et al. [24] and Kim et al. [25] showed that toe grip strength is an independent risk factor
for falling. Mickle et al. [26] showed that the reduction of toe flexor strength and the presence of
toe deformities increased the risk of falling among older people. Hiura et al. [27] investigated the
relationship between walking ability and falls in elderly Japanese people. Their results showed that
lower toe-gap force was significantly associated with falling. Uritani et al. [28] presented a study
showing that timed up-and-go test (a measure of functional ability) results were significantly correlated
with toe grip strength. Branthwaite et al. [29] assessed the effect of toe flexor exercises on apical plantar
pressure, and showed that such exercises can improve forefoot stability and gait efficiency. Takatori et
al. [30] showed that the toe elevation angle of participants who had experienced a fall was significantly
smaller compared with that of participants who did not fall.

Plantar pressure is another important indicator in walking evaluation, such as for the diagnosis
and determination of the course of a disease. Bus et al. [31] showed that the claw/hammer toe deformity
is associated with a distal-to-proximal transfer of load in the forefoot, and elevated the plantar pressure
at the sub-metatarsal heads in neuropathic diabetic patients. Morag et al. [32] developed predictive
models to identify the potential etiological factors associated with elevated plantar pressure. Payne et
al. [33] investigated the factors associated with increased plantar pressure on the diabetic foot. Buldt
et al. [34] compared plantar pressure among healthy individuals with normal, planus, or cavus feet.
Mickle et al. showed that high plantar pressure may increase the risk of falls.

However, the above observation methods can provide only specific data, including pressure or
IMU data; thus, they yield a limited amount of information. Examples of unobservable information
obtained by conventional measurements include accurate contact area, skin deformation, and skin
color. It is difficult for pressure sensors to detect or identify the exact contact area when the load
is low (for example, during the swing phase). Thus, we propose a novel wearable sensing system
for direct observation of the plantar aspect while walking on any surface and condition [35]. The
plantar image is reflected by a reflective film and captured by a camera embedded in a clog (shoe).
Passive joints are embedded in the camera holder and around the tarsometatarsal joints to facilitate
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walking while wearing the system. However, the main contribution of this sensing system is the
investigation of fall or stumbling risks, which were not considered previously. As a first step, we focus
on toe activity, which is closely related to walking issues such as stumbling, which in turn is directly
connected to falling [36,37]. We did not find research that collected and analyzed visual data on toe
movements in the above literature, because of the difficulty in directly obtaining visual data from
the sensor. The utilization of the developed system is expected to provide clearer information on toe
movements, especially in the swing phase. The movements in the swing phase are difficult to observe
by conventional IMU or pressure sheet sensors.

In this study, we investigated the relationship between toe-area activity and stumbling utilizing
the developed sensing system. Specifically, we identify the features of toe-area activity while walking in
elderly people with a history of stumbling. The main difference of this study from the previous one [35]
is the utilization of the sensing system. The previous study provided only primary results among
young male participants, whereas this study investigated the effects of aging to identify new features
of walking in elderly people with a stumbling history. We also improved the sensing system. The
difference between the actual sensing system and previous system [35] is the data processing method:
the partially manual data processing used in the previous study was changed to fully automatic data
processing to determine the contact area in the toe and the corresponding criterion for evaluation.
The remainder of this paper is organized as follows. Section 2 presents the developed clog-integrated
plantar visualization system. The experimental investigation and data analysis method for evaluating
toe activity are presented in Section 3. The results are provided in Section 4 and discussed in Section 5.
A summary of the study is presented in Section 6.

2. Clog-Integrated Plantar Visualization System

Overview of the System

Figure 1a shows an overview of the sensing system. The system was constructed by covering
the sensing area, shown in Figure 1b, with the upper part of the clog (Crocs, Niwot, CO, USA). A
schematic view of the lower part (sensing area) of the system, which consists of a reflecting surface and
camera, is shown in Figure 1b. The image of the plantar aspect was reflected by the reflecting surface
and captured by the camera fixed at the holder. Transparent silicone and acrylic plates were utilized
as the foot sole to enable visualization of the planta. The sensing area was surrounded by a frame
manufactured by a 3D printer (Raise 3D N2) to support the weight of the wearer (exerted through the
acrylic plates) and minimize the total weight of the clog.

  
(a) (b) 

Figure 1. Overview of the system: (a) photo of the clog-integrated plantar visualization system and
(b) dimensions of the underpart of the plantar observation system.

A schematic illustration of the sensing system is shown in Figure 2. The embedding of the camera
to capture the visual information from the plantar aspect was a crucial step. Positioning the camera at
the bottom of the clog for direct visualization of the planta is difficult because the space under the
insole is very narrow. If the area under the plantar aspect is too thick, it becomes difficult to walk,
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which makes the observation of walking difficult. Multiple cameras or a camera with an extremely
wide field of view and short focal length could be utilized in this setting. However, the use of multiple
cameras is unsuitable because they should be sufficiently small to be embedded into or attached to the
bottom space of the clog; the processing costs would also increase. Thus, the use of only one camera is
ideal to reduce costs and simplify the system. The reflecting surface was placed at the insole of the clog
while the camera was set outside the clog to capture the reflected plantar image (Figure 2). The camera
was positioned in such a way that the main target areas could be clearly observed. Usually, the heel
area of the foot is utilized only during heel-strike, and not during push-off or other swing-phase parts
(see Figure 3 for the definition of phases and their components). Therefore, the primary observation
target is the toe area, particularly the big toe used during push-offmotion.

  
(a) (b) 

Figure 2. Schematic illustration of the plantar observation system: (a) side view and (b) bottom view.

 

Figure 3. Phases and phase components of a walking cycle and representative images captured by the
developed plantar observation system.

An endoscopic camera (GIWOX; resolution: 640 × 480 pixels, focal length: 6 cm to infinity, angle
of view: 60◦) with a short focal length was utilized to obtain a wide field of view. A 0.6 mm thick
reflecting film was utilized to ensure that the thickness of the clog sole was close to its original thickness.
Sequential images showing a single walking cycle are presented in Figure 3. The toe area is visible in
all phases, while the heel area (dark area in the figure) is visible at heel-strike.

Two passive joints were embedded into the clog (Figure 4). One was installed in the clog near the
tarsometatarsal joints to minimize the effect of the 3D-printed solid part on walking and enable the
foot to bend naturally. The maximum allowable joint angle was set to 40◦. The heel area cannot be
observed during push-off because of the passive joints. The other passive joint was installed where
the holder is attached to the clog to minimize the disturbance on walking by the camera holder. The
camera holder rotates during push-off and the heel area is not observable.
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Figure 4. Passive joints to allow the foot to bend at the tarsometatarsal joints and toward the camera.

The system currently costs less than $70, and the sensor for one foot weighs 448 g (the weight of
the original clog is 190 g). The camera cable was connected to a Wi-Fi transmitter (F99 WIFI; weight:
27.5 g, size: 63 × 35 × 18 mm3) with a built-in battery, which was attached to the shank of the wearer to
wirelessly transmit the captured images. The electric power reserve of the sensor was sufficient to
complete a test lasting approximately 1 h. Hence, the proposed system has the potential for use in a
wide variety of experimental environments.

3. Methods

3.1. Participants

The participants were 13 young and healthy individuals (nine men and four women, age
22.4 ± 2 years, weight = 58.3 ± 10.6 kg, height = 165.6 ± 8.9 cm, and foot size = 24–27 cm), and 9
elderly individuals (five men and four women, age 65.3 ± 2 years, weight = 61.4 ± 10.9 kg, height =
163.6 ± 10.8 cm, and foot size = 24–27 cm) without any diseases, impediments, or history of walking
problems. The procedure and purpose of the experiments were approved by the Medical Ethics
Committee of Kanazawa University (No. 33). Information on the stumbling experiences of participants
were obtained via a questionnaire; individuals who had stumbled within a period of three months
were designated as individuals with stumbling experience. The participants were separated into two
groups according to their responses: those without stumbling experiences (eight young and five elderly
individuals) and those with stumbling experiences (five young and four elderly individuals). The
toe-area activities of the two groups were compared. The information on participants is summarized
in Table 1.

Table 1. Information of participants.

Young Elderly

Number of participants 13 (M:9 F:4) 9 (M:5 F:4)
Without stumbling experience 8 (M:5 F:3) 5 (M:3 F:2)
With stumbling experience 5 (M:4 F:1) 4 (M:2 F:2)
Information of participants
Age 22.4 ± 2 years 65.3 ± 2 years
Weight 58.3 ± 10.6 kg 61.4 ± 10.9 kg
Height 165.6 ± 8.9 cm 163.6 ± 10.8 cm
Foot Size 24–27 cm 24–27 cm

M: Male; F: Female.
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3.2. Procedure

The participants walked a straight line along a 6.5 m long flat road wearing the developed plantar
sensing system on their right foot and a normal shoe on their left foot. The thickness of the sole of the
left shoe was the same as that of the sensing system so that there was no impact on walking. There was
initially a start and stop zone, measuring 1 m each; and the walking data obtained in the remaining
4.5 m, which corresponds to three walking cycles, were analyzed. The camera cable was attached to
the leg of participants to avoid disturbing the walking motion. Before the experiment, we conducted
a practice session enabling participants to adapt to the plantar sensing system. This minimized the
effects of differences between the left and right footwear on the results. The participants practiced
walking while wearing the experimental system until they could walk normally without the feeling of
strangeness, and the motion of the left foot (wearing a normal shoe) was close to that of the right foot
(wearing the developed sensing system). The practice session was also aimed at minimizing the effect
of the camera holder on walking. We determined the position and angle of the camera based on the
principle of specular reflection and the horizontal angle of view of the camera. Before each experiment,
we controlled the camera position and angle so that the image captured includes all the areas of the
forepart of the foot and was focused. We also checked whether the average image intensity was in
the range of the desired reference values: 0.53± 0.02, which were determined through trial and error
based on the results of preliminary experiments. If not, we adjusted the camera’s auxiliary brightness
so that the average image intensity was within the desired range. With these methods, we obtained
the plantar images for all the participants under almost the same illumination conditions and foot
positions. The participants were instructed to walk while facing forward as much as possible to avoid
looking at their feet during the experiment. Each participant performed the experiment three times;
thus, we analyzed nine walking cycles for each participant.

3.3. Data Analysis: Toe-Area Activity

First, each frame containing the toe area was extracted from the captured video streams. Second,
the toe area was extracted from the image frame and evaluated. Third, the contact area in the toe area
was derived. The information about the contact area was obtained using the skin color of the bare foot.
The skin turns white when in contact with something because the blood flow inside capillary vessels
is blocked. Thus, the white area in the image corresponds to the contact area. The RGB (red, green,
blue) image was transformed into the hue, saturation, value (HSV) image, and the extracted area that
satisfied 0.055 < H < 0.167, 0.05 < S < 0.75, 0.4 < V corresponded to the white area. It should be
noted that the contact area can be detected by the naked eye. Therefore, the range of H, S, V values for
detecting the contact area was manually determined through trial and error, utilizing sample images
obtained at preliminary experiments. The same range of HSV values was applied to all the data for all
participants. Fourth, using binarization, the extracted area was assigned a value of one, whereas the
other areas were assigned a value of zero. Finally, the small noise area was removed. Figure 5 outlines
the overall procedure. Figure 6 shows the time series for the contact area in the toe area for the two
young study groups over one walking cycle in a single trial. The first peak resulted from pushing-off
before taking-off, while the second peak indicates the heel-strike. The difference in the values of the
contact areas at the two peaks was large for the group with no stumbling experiences and small for the
group with stumbling experiences. We assumed that the former group moved or rotated their toes
while pushing off, thus increasing the contact area, whereas the latter group did not. We examined the
difference in the two peaks corresponding to toe-area activity, called the difference of two peak-contact
areas (DPCA). The DPCA was normalized for variations in the width of the contact area (Figure 5) to
compare the value for each group considering individual differences. The normalized DPCA (NDPCA)
is defined as follows:

NDPCA =
Apeak1 −Apeak2

Apeak1 −Amin
(1)
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where Apeak1 denotes the contact area at the first peak, Apeak2 denotes the contact area at the second
peak, and Amin denotes the minimum contact area. In short, we used the DPCA as an indicator of toe
movement, and the min–max normalization of the DPCA was performed using the maximum and
minimum difference between the contact area in each cycle. This eliminated data from individual
differences, and finally, the NDPCA was obtained. The NDPCA was automatically derived by the
method presented in the Appendix A.

H S V

Figure 5. Procedure to derive the toe contact area.

 

(a) 

 

(b) 

Figure 6. Time series of the toe contact area for (a) the group without stumbling experiences and (b) the
group with stumbling experiences. Both subfigures display one example obtained from a single trial
for a single young individual. NDPCA: normalized difference of two peak-contact areas.

4. Results

The mean, maximum, minimum, and standard deviation values of NDPCAs for nine walking
cycles were used as evaluation values for each participant. There were no significant differences
between the groups with regard to gender proportion, as shown in Table 2; thus, we evaluated the
results according to stumbling experiences and aging effect.

Table 2. Effect of gender on NDPCA.

NDPCA (Mean ± Std.) Male Female p-Value *

Young 0.318± 0.073 0.300± 0.024 0.536
Elderly 0.317± 0.047 0.301± 0.059 0.690

* p is probability value.
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Figure 7 and Table 3 show the calculated NDPCAs. Assessment of the mean NDPCAs showed
statistically significant differences between the groups with and without stumbling experiences,
regardless of the difference in age between groups. Note that the bars shown in Figure 7 represent not
standard error but standard deviation, and thus there could be an overlap in the bars for the groups
even if there was a statistically significant difference between them. Toe-area activity (NDPCA) was
high for the group with no stumbling history, and low for the group with a stumbling history. The
results also showed no significant difference in the NDPCA between the elderly and young people in
both groups. We evaluated the maximum and minimum NDPCAs to observe extreme cases in toe
activity. The order of the mean value of the maximum NDPCA was highest for elderly individuals
without stumbling experience, followed by elderly individuals with stumbling experience, and then
young individuals without and with stumbling experience. A statistically significant difference was
observed between young and elderly groups (p < 0.01), between young and elderly groups with
stumbling experiences, and between groups with and without stumbling experiences irrespective
of age. A difference was also observed between the young and elderly groups with no stumbling
experiences, although it was not statistically significant. No statistically significant difference was
observed for any pairs in the minimum NDPCAs. The variations in toe activity were evaluated via the
standard deviation of NDPCA. A difference between the young and elderly groups without stumbling
experiences was observed, although it was not statistically significant.

 

(a) (b) 

  

(c) (d) 

p
p

(p
p

p
(p

Figure 7. Main results of NDPCA: (a) Mean NDPCA; (b) Maximum NDPCA; (c) Minimum NDPCA;
(d) Standard deviation of NDPCA.
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Table 3. Mean, maximum, minimum, and standard deviation of the NDPCA for groups with and
without stumbling histories.

Young Elderly p-Value

Mean NDPCA
Without stumbling experience 0.339± 0.064 0.335± 0.054 0.451
With stumbling experience 0.269± 0.041 0.278± 0.019 0.348

p-value 0.020 * 0.039 * /
Maximum NDPCA

Without stumbling experience 0.454± 0.065 0.564± 0.053 0.012 *
With stumbling experience 0.385± 0.041 0.471± 0.043 0.038 *

p-value 0.089 0.017 * /
Minimum NDPCA

Without stumbling experience 0.207± 0.112 0.123± 0.104 0.101
With stumbling experience 0.171± 0.087 0.113± 0.023 0.110

p-value 0.268 0.572 /
NDPCA Standard Deviation

Without stumbling experience 0.098 0.128 0.067
With stumbling experience 0.063 0.109 0.048 *

p-value 0.096 0.151 /

* Significant at p < 0.05.

5. Discussion

Toe-activity analysis: Using videos, various toe movements were observed during walking.
Some participants without stumbling history showed noticeable toe movements in the swing phase.
Preservation of posture in the swing phase by participants with stumbling experiences was observed.
These factors monitored by our proposed system are difficult to measure with conventional pressure
sheet sensors. These factors also explain why we focused on the first and second peaks (contact areas
at the start and end of the swing phase) and the difference between them to evaluate toe activity.

Effects of toe activity on stumbling: All the evaluation values shown in Figure 7 and Table 3
exhibit the same tendency—that is, higher toe activity decreased the stumbling risk. This tendency
was particularly clear at the mean and maximum NDPCAs, as the statistically significant differences
were evident. Zhang et al. [38] assessed the effects of restricting the flexion–extension motion of the
first metatarsophalangeal (MTP) joint on the walking gait of humans, and found a high risk of slipping
and falling when the MTP joint is constrained. They also found that the flexion–extension motion
of the MTP joint is important for normal walking. This supports our finding that low toe activity
was associated with high stumbling risk. Tsuyuguchi et al. [24] and Kim et al. [25] investigated the
relationship between the risk of falling and toe flexor strength of middle-aged and elderly individuals.
Their results showed that toe flexor strength is related to the incidence of falls. Given that high toe
activity corresponds to high flexion–extension ability, it was assumed that the risk of stumbling and
falling could be estimated by the NDPCA. Kurihara et al. [39] reported a strong correlation between
maximum isometric toe flexor strength and the cross-sectional area of intrinsic and extrinsic plantar
muscles. Guillén-Rogel et al. [40] reported a moderate correlation between toe flexor strength and
ankle dorsiflexion range of motion (DF ROM). Mecagni et al. [41] reported correlations between
ankle ROM and balance among community-dwelling elderly women. The aforementioned studies
show that toe flexor strength is closely related to balance in walking because the ankle DF ROM can
reflect toe flexor strength. We believe that high NDPCA corresponds to high ankle mobility, which
means that individuals with high NDPCA have better walking dynamics than those with low NDPCA.
Furthermore, low NDPCA indicates that the flexion–extension motion of the MTP joint is not working
properly, and that the DF ROM is low, which increases the risk of falling and stumbling. A well-known
criterion for evaluating stumbling is the minimum toe clearance (MTC), which is the minimum distance
between the toe and the floor. Moosabhoy et al. [42] investigated the sensitivity of MTC to the hip,
knee, and ankle joint angles of the swing leg, and found that MTC was most sensitive to the ankle joint
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angle. Therefore, we speculate that toe activity may be related to MTC. The relationship between toe
activity and MTC needs to be clarified in future studies.

Aging effect: The mean NDPCA evaluates the toe activity for nine walking cycles. The difference
in mean NDPCAs between healthy elderly and young individuals was very small when the groups
with and without stumbling histories were compared. This indicates that the mean NDPCA is a valid
parameter for evaluating stumbling risk, irrespective of age. With regard to the maximum NDPCA,
a high value is associated with aging (whereas a low value indicates high stumbling risk). We speculate
that the high value of the maximum NDPCA resulted from a temporary action that compensated for
the decline in muscle strength—in other words, a temporary increase in kicking force to raise the foot
high and prevent stumbling. A low value of the minimum NDPCA was also associated with aging,
although statistically significant differences were not observed. We speculate that the low value of the
minimum NDPCA indicates low toe activity, which is caused by aging and leads to high stumbling risk.
A large value obtained by subtracting the minimum NDPCA from the maximum NDPCA indicates
considerable fluctuations in toe activity, which indicates aging. In the same context, we also evaluated
the standard deviation of NDPCA. For elderly individuals with stumbling experience, the standard
deviation of NDPCA was higher than that of young people. This highlights the fact that their toe
activities were more volatile and may increase their risk of stumbling. The considerable variations in
NDPCA could be attributed to the decline in muscle strength due to aging.

Limitations and further applications: The developed sensing system has many potential
applications in future research. These include the analysis of the plantar surface during walking by
participants with conditions such as toe deformity and weakness [43] or plantar calluses [44], and
the exploration of the plantar region to investigate plantar flexion [26] or diabetes [45]. However, the
developed sensing system still has some deficiencies that need to be addressed. We provided only
one size of sensor. For a few participants in certain testing environments, foot motion around the
MTP joints was affected by the rigidity of the clog. Given that this study is based on image analysis,
the sensor was sensitive to the illumination of the experimental environment. Illumination may
affect the validity of the image data. Color-based image extraction was also affected by the camera
settings. This issue can be resolved by locking the white balance of the camera and adjusting the
average brightness. The effect of ambient lighting can be reduced by using the auxiliary lighting
provided by the endoscope. Further improvements and application of the sensing system to other
studies will be part of our future research. The experimental setup for the left and right footwear was
different, but the disparity between results was minimized by conducting a practice walking session
with participants. The practice session also minimized the difference in weight and toe length (due
to the camera holder) between normal shoes and the developed system. However, the influence of
these disparities cannot be completely eliminated. In the future, the investigation could be performed
using the same experimental setup for the right and left feet, optimizing materials and topology for
reducing the weight, and shortening of the length of the camera holder. Consolidating the validity of
the obtained results by increasing the number of participants and its application to the assessment of
stumbling or fall risk might also be part of our future work. In this study, we investigated only the case
in which participants walked straight ahead. The investigation of the plantar aspects of several types of
walking, including turning and speed change [46], will be considered in future works. The developed
plantar visualization system has potential applications in different types of clinical measurements of
fall risk, including the single-leg-stance test and postural sway test. Further investigation of other
measurements will be part of future work.

6. Conclusions

This study investigated the relationship between toe activity during walking and stumbling
experiences using a clog-integrated plantar visualization system [35]. The system can accurately
observe features such as the contact area, skin deformation, and skin color. We focused on the
contact area in the toe area and evaluated toe-area activity as participants walked in a straight line.
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The participants were separated into four groups: young individuals with and without stumbling
experiences and elderly individuals with and without stumbling experiences. The difference between
the two peaks at the toe contact area was normalized and calculated to evaluate the toe-area activity.
The two peaks correspond to heel-strike and push-off. We evaluated the mean, maximum, minimum,
and standard deviation of the toe-area activity for multiple walking cycles. We found that the mean
toe-area activity was high for the group with no stumbling experiences, and low for the group with
stumbling experiences, irrespective of age. In contrast, the deviations in toe-area activity were high in
the elderly group and low in the young group, irrespective of stumbling histories. Therefore, the mean
toe-area activity is useful for evaluating stumbling risk, irrespective of age. We also found that a large
value of the maximum toe-activity indicates aging, whereas a low value indicates stumbling risk.
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Appendix A

Automatic Deviation of NDPCA

To automatically determine the NDPCA, we developed a method to separate the continuous
time-series data of the contact area in the toe area into wave data for one walking cycle; detect the
extreme points; and identify the first and second peaks as well as the troughs.

Figure A1. Extreme points extracted by determining the change in the toe contact area.

As shown in Figure A1, the calculation of the DPCA requires the two peaks (Apeak1, Apeak2) and
the minimum point (Amin) of each walking cycle from the time-series data. We derived these extreme
points by determining where the time derivative of the pixel time-series data was zero. The local peak
or maximum is where the time derivative changes from positive to negative. Conversely, the point
where the time derivative changes from negative to positive is the local trough or minimum. Figure A1
shows the extreme points (in green) derived from three walking cycles. Some of the extreme points
were unnecessary for the calculation of the NDPCA (e.g., EP2 and EP3, where EPi denotes the ith
extreme point) and were deleted before calculation. The unnecessary extreme points are characterized
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by a small difference between contact areas of adjacent points, as seen in the red circle in Figure A1.
Thus, we checked the distance between two adjacent extreme points, Di f fi, defined by

Di f fi =
∣∣∣EPi − EPi+1

∣∣∣ for i = 1, 2, 3 . . . (A1)

We then removed the unnecessary extreme points. If Di f fi was less than the threshold θ, then
EPi was removed. The threshold was determined through trial and error, based on the preliminary
experiments. Here, the difference between Di f fmax and Di f fmin was used as the reference for
considering the individual difference and normalizing the range of time-series data. In addition, if
both EPi and EPi+2 were the same type of extreme points (i.e., peak or trough), then EPi was removed.
The condition for removing EPi was defined as

Di f fi < θ(i = 1, 2, 3 . . .) (A2)

where
θ = 0.25(Di f fmax −Di f fmin)

Di f fmax = Max(Di f fi) (i = 1, 2, 3 . . .)
Di f fmin = Min(Di f fi) (i = 1, 2, 3 . . .)

(A3)

Figure A2 shows time-series data after removing the unnecessary extreme points in Figure A2.
Each walking cycle has three extreme points associated with two peaks (Apeak1 and Apeak2) and one
trough between the two peaks. The trough between Apeak1 and Apeak2 is the minimum point (Amin).
Apeak1 and Apeak2 correspond to the values of the contact areas at push-off and heel-strike, respectively,
and Amin corresponds to the moment when the contact area during the swing phase is the smallest. The
swing phase is detected upon detection of Amin. Given that the order of appearance of Apeak1, Amin, and
Apeak2 is known, the peaks corresponding to Apeak1 and Apeak2 are recognized by the location of Amin.
One walking cycle ends at the trough that occurs after Apeak2. The NDPCA is calculated using Apeak1,
Apeak2, and Amin in Equation (A2). The overall automatic gait recognition procedure is summarized in
Figure A3.

Figure A2. First and second peaks and troughs extracted from the calculation for three cycles.
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Figure A3. Procedure for deriving the NDPCA automatically.
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Abstract: The objective of this work is to develop a closed-loop controlled insulin pump to keep the
blood glucose level of Type 1 diabetes mellitus (T1DM) patients in the desired range. In contrast to the
existing artificial pancreas systems with syringe pumps, an energy-efficient, valveless piezoelectric
pump is designed and simulated with different types of controllers and glucose-insulin models.
COMSOL Multiphysics is used for piezoelectric-fluid-structural coupled 3D finite element simulations
of the pump. Then, a reduced-order model (ROM) is simulated in MATLAB/Simulink together
with optimal and proportional-integral-derivative (PID) controllers and glucose–insulin models of
Ackerman, Bergman, and Sorensen. Divergence angle, nozzle/diffuser diameters, lengths, chamber
height, excitation voltage, and frequency are optimized with dimensional constraints to achieve a
high net flow rate and low power consumption. A prototype is manufactured and experimented
with different excitation frequencies. It is shown that the proposed system successfully controls the
delivered insulin for all three glucose–insulin models.

Keywords: piezo-fluid-structural coupled simulation; APS; valveless micropump; closed-loop
insulin pump

1. Introduction

Piezoelectric pumps are a compact and lightweight alternative in microfluidic flow control.
However, artificial pancreas systems (APSs) typically use syringe pumps for insulin delivery. In this
paper, we propose a closed-loop controlled valveless insulin pump to keep the blood glucose level of
Type 1 diabetes mellitus (T1DM) patients in the desired range. Our objective is to develop a piezoelectric
pump that delivers the right amount of insulin while maintaining energy efficiency. Design and
optimization of the pump are accomplished by using multi-physics finite element simulations, and the
resulting performance is evaluated by numerical tests on mathematical glucose–insulin models and
also by laboratory experiments with a preliminary prototype. The rest of this section reviews the
related work in the subject matter. Section 2 presents a mathematical model of the pump and three
glucose–insulin models with different complexity. Section 3 explains piezoelectric-fluid-structural
coupled finite element implementation and simulation-based design optimization in COMSOL to
achieve a high flow rate and low power consumption. The designed closed-loop controllers are
outlined in Section 4. Sections 5 and 6 present model-based simulations in MATLAB/Simulink and the
experiments, respectively. Finally, in Section 7, we discuss current and future work.
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1.1. Diabetes Mellitus

Insufficient insulin production in islet cells in the pancreas or tissue resistance against secreted
insulin leads to excessive glucose concentration in the blood, which is called diabetes mellitus [1].
Insulin and glucagon, the two necessary secretions of the pancreas, regulate the glucose level in the
body. Insulin is secreted to stimulate the cells to absorb the extra glucose for the energy needed,
and glucagon is secreted to increase the blood glucose level up to its desired level required for the
regulation of the system [2].

According to the findings of the IDF (International Diabetes Federation) in 2017, approximately
425 million adult people (20–79 years) were living with diabetes, and this will rise to 629 million
by 2045 [3]. Furthermore, diabetes caused 4 million deaths and at least 727 billion dollars in health
expenditure in 2017 and 12% of total spending on adults [3]. Furthermore, statistics of the WHO
(World Health Organization) predict a dramatic increase of the adult diabetes population from 4%
(in 2000, 171 million people) to 5.4% (366 million worldwide) by the year 2030 [4].

1.2. Closed-Loop Insulin Pumps

Manual injection with an insulin pen or pump causes patients to appear twice in a discrete
control loop: as the glucose metabolic system which must be controlled and as the controller itself
(cognitive system). Since it is difficult to take all external disturbances and internal systems into
consideration, the discrete control method is generally followed by hypoglycemic or hyperglycemic
events. Thus, to avoid patients having to determine each insulin dose manually, and to limit the
variation in blood glucose concentration, an artificial pancreas needs to be developed as an essential
scientific research aim. The required insulin dose is calculated using a control algorithm based on
continuous glucose measurements obtained via a sensor without human input, and the precise insulin
dose is automatically administered via a pump that continuously delivers insulin [5]. Improvement
in glycemic control, in terms of glycated HbA1c (hemoglobin A1c) concentration and a reduction in
hypoglycemia, and automatic changes in the basal insulin infusion rate at the time of exercise without
any extra high-carbohydrate intake are essential advantages of APSs [6].

A T1DM patient needs to calculate his/her meal intake and required exercise interval in order
to inject insulin, and glucose level also needs to be measured several times during a loop [4]. In this
manual loop, the whole responsibility is on the patient, and if the patient cannot balance the glucose
level correctly, it may cause many different diseases. Consequently, using a closed-loop system
controlled by an artificial pancreas is quite beneficial for T1DM patients [6]. Artificial pancreases
should be convenient to use, accessible, long-lasting, secure, safe, and affordable. Furthermore, they
should also consume low energy. In this study, being low-cost and disposable, and consuming low
energy are the primary focused features of an artificial pancreas.

Most of the APSs in the market includes a syringe pump such as Medtronic’s MiniMed 670G [7],
Beta Bionics’ iLet [8], and Tandem’s t:slim X2 [9]. However, the clinical use of syringe pumps is
associated with several risk factors, including overdose or underdose due to lack of control of the
infusion speed, bleeding from backflow, and introduction of air. Overdose is the most problematic
and significant one among all. It can lead to severe complications such as hypersecretion, respiratory
depression, and hypoxia [10]. Additionally, the use of syringe pumps may not be ideal due to
their large size and high-power demands for APS applications, where portability and mobility are
important requirements. The novel artificial pancreas, which we propose in this study, functions with
a piezoelectric actuated pump and can eliminate the accuracy, portability, and power efficiency issues
of the old methods and serve as a solution.

1.3. Piezoelectric Actuated Pumps

A piezoelectric material is a smart mechanical material that can deform when the voltage is
applied to it [11]. Piezoelectric actuation is advantageous from many aspects such as high actuation
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force, fast mechanical response, ease of integration, compact design, and low power consumption
compared to the power required for the actuation of syringe pumps. Piezoelectric actuators can be
used in different configurations such as in cylinder shape encircling a tube and moving the fluid in the
tube under compressions and expansions along the radial direction [12] or a disc shape piezoelectric
actuator moving the fluid with a dome deflected shape [13–17]. Moreover, even valveless designs
of the disc configuration are possible for improved reliability due to the elimination of valves [13].
To manipulate, transport, and control the exact amount of fluid in the order of microliters and milliliters,
micropumps are of great importance in the microfluidic systems [14]. In order to predict the flow rate
and working of the micropump, analytical and numerical results are compared to each other [15].

Furthermore, Laser and Santiago [16] have categorized the micropumps in terms of valves,
chamber, thickness, voltage, frequency, pressure, and flow values. Optimization of diffuser dimensions
such as diffuser length, diffuser neck width, and diffuser angle is necessary in order to enhance the
performance of the micropump on the net flow [17]. Finally, in order to design and manufacture a
low-cost micropump that is useful in a variety of applications, the overall micropump design should
enable the use of mass fabrication methods [14].

1.4. Insulin/Glucose Models

Modeling of glucose–insulin control systems has gained significant importance in the last
50 years [18], and various glucose–insulin kinetic models have been found in order to capture
the glucose–insulin mechanism [19]. Even though there is a wide range of models from simple
expressions to complex mathematical models, there are three general groups for mathematical
models including linear models (Ackerman [18], Ceresa [20]), nonlinear models (Bergman [21,22],
Furler [23]), and comprehensive models (Sorensen [24], Cobelli [25], and Hovorka [26]) [19]. In this
work, the Ackerman model is used for optimal controller design, the Bergman model is used for PID
controller parameters, and finally, the Sorensen model is used for validation and reliability of models.

2. Mathematical Modeling

2.1. The Piezoelectric Pump Analytical Modeling

The insulin rate that needs to be pumped for an adult is defined as a minimum of 1.67 μL/min [27].
To pump this amount with piezoelectric disk deflection, the valve selection of the pump is one of
the most sensitive parts. Neither active nor passive valves were used in this study because the
opening-closing speed and back-pressure constraints of the active valves were inadequate for the
designed pump, and passive valves are not only difficult to manufacture but also inapplicable in
terms of numerical implementation. Instead, a valveless design was desired to be used. In this
valveless design, literature reviews of 3D conical, 2D cone-shaped, or planar cone projected options
were examined [16]. When the voltage sent to piezoelectric disk is positive, and it does an upward
displacement, insulin is pumped from both inlet and outlet, but more from the outlet. When the
voltage is negative, the piezoelectric disk will be in downward displacement, and it will pump insulin
from the reservoir from both the inlet and outlet, but more from the inlet. According to the difference
in pumping frequency, the speed difference between inlet and outlet can be defined. This is illustrated
in Figure 1 below. Nozzle and diffuser cone angle, in other words, divergence angle (2θ◦), differs
from 5◦ to 70◦. Optimum angle needs to be calculated for each system, but studies have searched for
angle-length variances as well [28].

The deformation of the piezoelectric pump dz was calculated using Timoshenko’s theory of thin
circular plates with small deflection [29].

dz(r, t) = A0(t)
[
1−

( r
R

)2
]2

(1)
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where r is the radial coordinate, R is the radius of the piezoelectric disk, and A0 is the time-dependent
deflection of the piezoelectric disc. Maximum of dz is used to calculate the volume. The elliptic
conical form is used to calculate the approximate delivered insulin volume analytically. This volume is
considered a quarter of one period.

V =
π4R2h

6
, (2)

where h is the maximum deflection (dz) of the piezoelectric disk. The total flow rate from both inlet
and outlet can be calculated as follows:

Qtotal =
V

tquarter
, where Qtotal = Qinlet + Qoutlet, (3)

and tquarter represents time (e.g., 1/400 s for 100 Hz). In order to validate numerical results easily,
Qtotal equation is used to compare total flow rates in a quarter of one period. Therefore, Equation (3)
does not calculate the net flow. The net flow occurs from the difference of Qinlet and Qoutlet instead.
The following net flow rate equation is calculated in Section 3 using summation of inlet and outlet flow
rate difference [30].

Qnet =
1
2

1/FR∑
0

Qinlet −Qoutlet, (4)

 
 

(a) 
 

(b) 

Figure 1. Working principle of valveless piezoelectric pump illustration: (a) pumping mode;
(b) suctioning mode.

2.2. Insulin/Glucose Plant Modeling

Plant models were developed to see T1DM patients’ blood glucose levels in the simulation
environment and to calculate the controller parameters. These models differ in terms of complexity
and accuracy. One linear, one nonlinear, and one comprehensive model were chosen among a great
many models in the literature. The Ackerman model was used in the design of an optimum controller
as a linear model; the Bergman model was selected as the nonlinear model with medium-level detail
applied on all of the controllers. Finally, the Sorensen model was used as the model which shows the
insulin glucose level in each part of the body in a detailed way [6].

Ackerman [18,31,32], developed a model utilizing four first-order rate constants for the
glucose–insulin interactions. The model is described on two poles; the first one is G = blood
glucose level; another one is H = hormone level. g and h parameters in the linear model are defined by
considering the differences in fasting values for g ≡ G − G0 and h ≡ H − H0.

dg
dt

= m1g−m2h + J(t), (5)

dh
dt

= −m3h + m4g + K(t); (6)
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m1 represents glucose activity, m2 is a parameter for the removal of glucose due to blood hormone
concentration, m3 is defined for the duration of insulin action, and m4 is for the removal of hormone
for high glucose concentration (typically 0 for T1DM). J(t) and K(t) are rates of exogenous glucose and
hormone, respectively.

Although the model of insulin and glucose dynamics adapted from Bergman et al. [21] define
a similar model with Ackerman [18] for glucose–insulin interactions, it has three compartments
for plasma insulin I(t), remote insulin X(t), and plasma glucose G(t). p1 is a parameter at which
glucose is removed from the plasma space independent of the influence of insulin, and the rate
of insulin appearance and remote insulin disappearance are governed by p3 and p2, respectively.
The time constant for insulin disappearance is defined with n. Subscript B is defined for basal plasma
concentrations, and (0) is the level of the parameter at t = 0, and external insulin infusion is defined as
u(t), and meal intake is defined with p(t) [23,24].

dG(t)
dt

= −(p1 + X(t)) G(t) + p1GB + p(t), where G(0) = Gb, (7)

dX(t)
dt

= −p2X(t) + p3[I(t) − IB], where X(0) = 0, (8)

dI(t)
dt

= −n[I(t) − IB] + u(t), where I(0) = Ib, (9)

Finally, the Sorensen model is used for advanced glucose–insulin metabolism modeling.
Sorensen [24] used the compartment modeling technique. Six compartments are used: brain,
heart/lungs, gut (stomach–intestine), liver, kidney, and periphery (muscle–adipose). Mass balance for
glucose of brain is dGBV

dt and dGBI
dt , heart and lungs: dGH

dt , gut: dGG
dt , liver: dGL

dt , kidney: dGK
dt . The periphery

is defined, and periphery equations are given below. First subscripts are defined as follows: B is the
brain, G is the gut, H is the heart, L is the liver, K is the kidney, and P is the periphery. Second subscripts
are as follows: I is interstitial fluid space, and V is vascular blood space; also B is defined as basal value,
and N is defined as normalized value by using basal values [33].

dGPI

dt
=

VPI

TG
P VPI

. (GPV −GPI) − ΓPGU
VPI

, (10)

On the other hand, mass balance for insulin of the brain is dIB
dt , and for heart and lungs dIH

dt . In terms

of insulin intake, i(t), gut dIG
dt , liver dIL

dt , and kidney dIK
dt . The periphery is represented as follows:

dIPI

dt
=

VPI

TI
PVI

PI

. (IPV − IPI) − ΓPIC
VPI

, (11)

Another part of the model is metabolic sources and sinks for glucose compartment such as
peripheral glucose uptake, hepatic glucose production and uptake, and kidney glucose excretion.
Additionally, for insulin compartment, liver insulin clearance, peripheral insulin clearance, and kidney
insulin clearance variables are used while defining the glucagon model [19]. Sorensen model parameters
are defined with delivered insulin i(t), blood glucose concentration G, blood insulin concentration I,
vascular blood flow rate Q, metabolic secreting rate Γ, volume V, and trans-capillary diffusion rate T [24].
All glucose–insulin mathematical models were designed with T1DM parameters in MATLAB-Simulink,
and minute-based open-loop simulations and step responses were identified. The model parameters
of Ackerman can be found in Section 4, the Bergman Model was taken from [22], and the Sorensen
model was taken from [19] Appendix B5.
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3. Numerical Implementation

3.1. Piezoelectric Pump Finite Element Implementation

Solid mechanics and electrostatics equations were used to calculate piezoelectric dynamics
numerically in the stress-charge form.

{T} =
[
cE

]
{S} − [e]t{E}, (12)

{D} = [e]{S}+
[
εS

]
{E}, (13)

where T is stress vector, S is elastic strain vector, [cE] is elastic stiffness under constant electric field,
[e] is a coupling matrix, and superscript t on [e] means transpose of the matrix [e]. D is electric flux
density of piezoelectric material, E is electric field intensity, and

[
εS

]
is dielectric permittivity under

constant strain [34]. The values of these parameters are presented in Table 1 with other material
properties. The dimensions of the pump are illustrated in the same table as well. Some of dimensions
are optimized in Section 3.2, so initial values are given.

Table 1. Material properties [34,35].

Material/Dimensions Parameter Value Unit

PZT-5J Density 7800 kg/m3

Diameter (Dp): 25 mm
Thickness (tp): 0.4 mm Elasticity matrix

[
cE

] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.2 3.4 3.0
3.4 8.2 3.0
3.0 3.0 5.9

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2.1 0 0
0 2.1 0
0 0 2.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1010

N/m2

Chamber Dimensions:
Inlet/Outlet Diameter (Dout): 3 mm

Nozzle Small Radius (rd):
50 μm

Piezoelectric Coupling Matrix [e]t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

0
0
0

−10.48
−10.48
16.58

0
0

14.25

0
14.25

0

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C/m2

Nozzle Big Radius (Rd): 0.25 mm
(Initial)

Chamber Height (mu):
0.5 mm (Initial)

Permittivity
[
εS

]
/ε0, where

ε0 = 8.85 ∗ 10−12 F/m

⎡⎢⎢⎢⎢⎢⎢⎣
1641 0 0

0 1641 0
0 0 1143

⎤⎥⎥⎥⎥⎥⎥⎦ 1

Nozzle Length (L): 0.5 mm (Initial) Damping (Isotropic Loss
Factor) ηs

0.02 1

Divergence Angle (θ): 11◦ (Initial)
Dielectric Loss (Isotropic Loss

Factor) for Electrical Permittivity
εS

0.02 1

Brass Density 8500 kg/m3

Diameter (Dc): 27 mm Young modulus 90,000 MPa
Thickness(tb): 0.2 mm Poisson’s ratio 0.32 1

Insulin Density 997 kg/m3

Kinematic viscosity 0.0014 kg/m.s

For numerical simulation of the piezoelectric actuator, solid mechanics and two-way electrostatic
coupling were used, and appropriate dimensions were determined through iterative design and
simulations. Piezoelectric material used in the simulations were decided to be the 27 × 0.5 mm
piezoelectric disk of the STEMinc (Davenport, FL, USA) [35] company. Last but not least, the optimum
design was found by conducting a three-way analysis (e.g., electrostatics, structural mechanics, and
laminar flow) to the system. The requirements for a valveless design are as follows: the flow velocity
needs to reach to 1 m/s but should be less than 8 m/s, the piezoelectric disk diameter should be
27 mm, the maximum piezoelectric disk displacement should be 50 μm and minimum displacement
should be 2.5 μm, net flows should be at least 2.5 mL/h (~0.1 μL/s), the size of the pump should fit
the palm of a hand, the maximum voltage supply should be 100 Vp-p, and, finally, 0.1 A continuous,
the instantaneous current (transient) value of one ampere, should be the maximum value needed
for current.
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Planar/horizontal design was implemented, as shown in Figure 2, and when this design was
finished and after defining a starting point, parameter ranges such as diffuser/nozzle angle, nozzle’s
wide diameter, nozzle length, and length of the chamber were decided accordingly. Between the
range of minimum 1 degree and maximum 30 degrees, 10-degree nozzle angle; between the range
of minimum 0.1 mm and maximum 1 mm, 1 mm nozzle length; and, finally, between the range of
minimum 0.5 mm and maximum 2 mm, 0.5 mm nozzle diameter were used for simulation iterations.

 
Figure 2. Geometry and dimensions.

The input signal to the piezoelectric pump is defined as follows, where V is voltage, FR is the
frequency (in Hz) of applied voltage and t is time:

V(t) = V sin(2π·FR·t), (14)

By using COMSOL Multiphysics 5.4 [34], analyses were made in different domains both in a single
and a coupled way, and with different time steps, mesh sizes, and discretization values. Different
relative tolerance values were tried as well. According to the results of Eigenfrequency study analysis,
the piezoelectric actuator’s first natural frequency was calculated as 6373 Hz without fluid. Then the
transient analysis setup was started. Damping was defined to the linear elastic material, dielectric
loss was defined to the piezoelectric disk, a fixed constraint was defined to the outer surface of the
brass located under the piezo, and lastly, the ground was defined to the one surface of the piezoelectric
material and terminal to the other surface. Force, displacement, and voltage were assigned as 0 for
initial conditions. In the piezoelectric actuator’s first mode shape, it was seen that it had displacements
as shown in Figure 3. According to the piezoelectric actuator data [35], expected displacement could
reach up to 50 μm at 155 Vp-p; hence, arrangements that provide this displacement were determined.
The applied voltage was 100 Vp-p, and the frequency was 100 Hz. How voltage and frequency affected
the net flow in the optimization part can also be seen in Section 3.2.
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Figure 3. (a) Displacement of the piezoelectric actuator at pumping mode, (b) suction mode, (c) inlet
velocity illustration, (d) outlet velocity illustration at the same time, (e) velocity field streamlines, (f) cell
Reynold’s number.

Insulin flow is defined as an incompressible flow, at 293.15 K temperature, under 1 atm reference
pressure, and without a turbulence model. Cell Reynold’s numbers shown in Figure 3f verified that
there was no need for a turbulence model. As an initial condition, velocity and pressure were given
as 0 (zero). As a boundary condition, after defining the stable wall, the wall condition was given as
no-slip, and it was defined with inlet and outlet, as seen in Figure 3. For inlet and outlet, 0 Pa pressure
condition was given, and no constraint was defined for flow direction. Absolute tolerance was given
as 0.001, and the PARDISO solver was used in a coupled analysis study. The results of displacement of
the piezoelectric actuator under insulin pressure, the pressure inside the pump chamber, the current
passing through the terminal in the electrical circuit, and velocity values in inlet and outlet were
calculated and presented in different plots of this study.

3.2. Piezoelectric Pump Optimization

Analyses were done between 100 K to 500 K mesh elements for coupled analysis to prove mesh
independency. After mesh convergence analyses, <1% for structure-based error and ~8% flow-based
error were calculated for 200 K. The analysis time measured a minimum 2.5 h to 262 h for 100 K to 500 K
grid analysis with 1% relative tolerance and 1/40 step size (40 time steps per cycle); as a result, the 200 K
grid had an acceptable error, so it was used. There were many analyses done, as well, for different
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time-steps from 20 steps per cycle to 1600 steps per cycle. These analyses took a minimum of 1.5 h to
48 h for 100 K grid size and 1% relative tolerance. Error was calculated with respect to 1600 steps per
cycle. The error was, respectively, >41% for 20 step, 8.5% for 40 step, 7.5% for 100 step, and <1.5% for
400 step per one cycle. i7-7700-32GB hardware was used for this analysis and time optimization.

Nozzle/diffuser divergence angle, nozzle/diffuser wide radius, nozzle/diffuser length, and chamber
height were optimized. According to [13] and [30], when the chamber diameter increases, the efficiency
of nozzle/diffuser and the net flow increases. When diameter of the piezoelectric disk increases,
the expected deformation of the piezoelectric disk increases as well. These parameters were optimized
for best efficiency, maximum deflection, maximum velocity, and net flow, as well as manufacturability
considerations. Analyses were performed to achieve the most efficient nozzle and diffuser design.
Since chamber diameter was fixed by piezoelectric actuator selection, only chamber height (mu) was
optimized in a range of 0.2 mm to 2.5 mm, and the one with the highest net flow rate using Equation (4)
was 1 mm, shown in Figure 4a.

 
(a) 

 
(b) 

 
(c) 

Figure 4. Numerical simulation results for net flow rate versus (a) chamber height; (b) length of
nozzle/diffuser, (c) divergence angle.
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As seen in Figure 4b, nozzle/diffuser length affects the net flow rate, so more than 10 different
lengths were analyzed. The net flow rate significantly changed around 1 mm. There are many
published pieces of research about nozzle and diffuser design [13,30,36,37] that are typically above
4 degrees half angle. When the nozzle and diffuser angle increases, the net flow rate increases too.
However, there are some velocity values and venturi effects that may constrict the flow, so analyses
were done to have the most efficient planar nozzle/diffuser. As seen in Figure 4c above, the most
efficient nozzle and diffuser selected half-angle value θwas in between 12 and 14 degrees.

In addition to that, voltage and frequency parameters sweep was done. The piezoelectric actuator
terminal was connected to an electrical circuit, and there was a voltage source in the circuit. Different
voltages and frequencies were applied to the voltage source (see Figure 5). When the voltage increased,
displacement and net flow increased explicitly. It was observed that the flow rate peaked at 100 Hz for
the frequency range between 20 Hz and 200 Hz. (see Figure 5).

Figure 5. Numerical simulations of net flow rate versus voltage and frequency.

Another case considered was the calculation of the current drawn by the piezoelectric disk.
There is an electrical circuit defined in COMSOL workspace, and the cable connected between the
electrical source and the piezoelectric actuator was used as a resistor; the current through the cable was
calculated. As expected, it increased when the voltage increased. Using the voltage and the current
values, power consumption was calculated for different voltage and frequencies applied to the system.
It is shown in Figure 6 below.

 
Figure 6. Power consumption of the pump with time for 100 Vp-p, 100 Hz, 150 Hz, and 200 Hz.

Last but not least, outlet and inlet flow rates were recorded, as illustrated in Figure 7 for 3 μm
displacement amplitude of the piezoelectric disc. The net flow was calculated with Equation (4) as
220 μL/min in average.
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Figure 7. Numerical simulation results of inlet, outlet, and net flow rate of the piezoelectric pump.

4. Controller Design

First, Ackerman [18], Sorensen [24], and Bergman [21] glucose–insulin models were implemented
in MATLAB-Simulink. Additionally, for each of these three models, a PID controller was designed.
Additionally, the optimum controller gains, calculated by using Ackerman model, were implemented
on all these models. It is known that daily insulin delivery and human glucose levels should be in the
desired range [3] of 70–130 mg/dl. The three models used in this study have parameters for different
patients. It is easy to observe that Ackerman’s model can be used as a state-feedback controller design.
Bergman’s minimal model is easier to adopt, and using this simpler non-linear model can be less
time-consuming than a more complicated non-linear model. The Sorensen model is comprehensive
and detailed, so insulin and glucose levels all-around the body can be simulated with it. It is also very
complex and contains several parameters.

After the glucose–insulin models are established, control of glucose level is the next step. For those
controllers, there are two types of control reference methods: target tracking (e.g., 90 mg/dl) and
reference tracking (e.g., 80–110mg/dl) [19]. For this article, PID with bang–bang coupling, and optimal
controllers were selected from control algorithms, and the target tracking method was used [6].

To design the optimal controller, state–space forms had to be established. Since Sorensen and
Bergman’s models are nonlinear, the optimal controller was designed regarding Ackerman’s linear
model. Ackerman equations are formed in the state–space form as shown using Equations (5) and (6).

[ .
x1
.

x2

]
=

[ −m1 −m2

m4 −m3

][
x1

x2

]
+

[
0
1

]
u. (15)

After the state–space model is defined, a performance criterion is defined considering the deviation
from the target of blood glucose level and delivered insulin; also, δ is taken as the balance between
them. δ defines the coefficiency of the effect of input, which typically describes the delivered insulin.

P.I. =
∫ ∞
◦

(
x1 − xre f

)2
+ δ u2 , (16)

While Q is defined as 1, and P is as δ, Ricatti’s equation is applied for A and B from (15) as follows:

AT R + RA−RBP−1 BTR + Q = 0 where R =

[
r11 r12

r12 r22

]
. (17)

For calculated R, m1 = 0.005, m2 = 0.001, m3 = 0.002, m4 = 0, for δ = 0.25, 0.5, 0.75, 1 parameters
applied, and from the gain equation, K is observed and u0 input is derived from following equation.
On the other hand, u is defined as pump working time, which represents the power consumption of
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the pump as well, so δ = 0.25 represents a less power efficient pump, and δ = 1 represents a more
power-efficient pump.

u0 = −KTx where K = RBP−1, (18)

Finally, the PID algorithm is established, and the reference glucose and actual glucose measurement
information is transmitted to the PID controller and delivered to the bang–bang controller and ROM of
the piezoelectric actuated pump at the input of the plant model. The flowing insulin is transmitted to
the insulin/glucose model. PID controller parameters Kp, Ki, Kd, is optimized for the best performance
for overshoot Me = 40% rising time tr = 5 mins and settling time ts = 15 mins for all glucose–insulin
models [38].

5. Model-Based Simulation and Results

Based on the results of COMSOL simulations, a reduced-order model (ROM) of the pump was
generated in the form of a look-up table. This model output time-dependent net flow and electrical
current from excitation voltage and frequency inputs. Figure 8 shows an overview of the closed-loop
control simulations in MATLAB/Simulink, where the pump supplied insulin to Ackerman, Bergman,
and Sorensen glucose–insulin models with T1DM parameters. The R2019b version of MATLAB was
used, and the solver settings were configured as 6 × 10−7 minutes minimum step size, auto solver
selection, 1 × 10−4 relative tolerance, adaptive zero-crossing, 1440 min. (i.e., one day) stop time.

Figure 8. Overview of the closed-loop control simulations.

The glucose intake model supplied glucose input to the glucose–insulin models. On top of the
100 mg/dL basal glucose, a 150 mg/dL increase lasted for 18 min after each meal. This increase was
supplied via a 1/(2s + 1) delay transfer function. Voltage and frequency of the pump excitation signal
were constant, and the controllers switched the pump on/off based on the difference between the
reference and measured glucose. Pump displacement and the electrical current were monitored as
well as the inlet and outlet flow rates. The amount of delivered insulin was calculated from the net
flow rate and the volume integral of the outlet.

As explained in Section 1.4, the simpler models, Ackerman and Bergman, are used for controller
design, whereas the comprehensive Sorensen model is used for validation. Figure 9 shows the results
of model-based simulations with three meal disturbances at 400, 750, and 1150 minutes. The PID
controller successfully maintained the blood glucose level of the Sorensen model at around 90 mg/dL
(Figure 9) and kept the insulin level at 18 mU/dL (Figure 10a). On the other hand, the δ value of the
optimal controller had a negligible effect on the insulin level. This was shown with the Bergman model,
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as seen in Figure 10b, where the insulin level decreased minimally with increasing δ. The corresponding
difference between the glucose levels was smaller than 0.05 mg/dL.

Figure 9. Model-based simulation results: Blood glucose level versus time with PID controlled
Sorensen model.

 
(a) 

 
(b) 

Figure 10. Model-based simulation results: (a) insulin level versus time with PID controlled Sorensen
model; (b) insulin level versus time with optimal controlled Bergman model.

6. Experimental Verification and Results

The prototype pump consisted of two 3D printed closures (Figure 11a) and the piezoelectric
actuator (STEMinc SMBA27T05PP), as seen in Figure 11b. Wires of the actuator were soldered and
then it was glued at the brass substrate and sealed between the closures. The sealing was tested with
compressed air at 100 kPa. Plastic hoses with a 3 mm inner diameter were attached to the inlet and
outlet of the pump, as shown in Figure 11c.
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(a)  

 
(b) 

 
(c) 

Figure 11. Pump prototype: (a) 3D printed bottom closure, (b) the piezoelectric actuator, (c) assembled
and sealed pump.

The test stand is shown in Figure 12. The signal generator could provide a 2 Vp-p sinus signal
with an adjustable frequency between 1 Hz and 3 kHz. The amplitude could be increased up to
100 Vp-p at the Falco Systems WMA-300 amplifier. An amperemeter (Keithley 2000 Series Digital
Multimeter) was connected in series between the amplifier and the pump to measure the electrical
current. A Polytec CLV-2534 laser vibrometer measured the velocity of the piezoelectric actuator and
displays on the oscilloscope.

 
Figure 12. Experiment setup and architecture.

Water was used to simulate insulin in the experiments. The hoses were attached side-by-side
to a vertical ruler to ensure equal water level at the initial condition (i.e., 0 Pa boundary condition).
A 100 Vp-p sinusoidal voltage with different frequencies was applied to the pump until the head
difference reached 1 mm. The change in boundary conditions was ignored in this interval when
calculating net flow rates.

Figure 13 shows the measured maximum displacement of the actuator at different frequencies
alongside the corresponding numerical results, since the differences between numerical simulation
results and experiments were less than 10%.

Measured RMS electrical current versus excitation frequency is plotted in Figure 14 with the
corresponding numerical results. On average, the experiments showed 22% higher current draw
than the simulations. At 100 Hz with 100 Vp-p 0.7 mA RMS current corresponded to 18 mW RMS
power consumption.
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Figure 13. The experimental and simulated maximum displacement of the piezoelectric actuator at
different excitation frequencies.

 
Figure 14. Experimental and simulated electrical current (RMS) at different excitation frequencies.

7. Discussion and Future Work

In this paper, we demonstrated a novel artificial pancreas system with a valveless piezoelectric
pump. Although the pump is mechanically simple, its design requires detailed analysis to ensure
efficient operation. We optimized our design, based on high net flow rate and low power consumption
objectives, by using numerical multi-physics simulations in COMSOL. Once satisfied, we derived a
reduced-order mathematical model of the pump in MATLAB/Simulink for model-based closed-loop
control of blood glucose level in T1DM. In these simulations, the pump supplies insulin to three
commonly used insulin–glucose models, namely, Ackerman, Bergman, and Sorensen. It must be
noted that these models have parameters of different T1DM patients. The input to the controllers
is the difference between the target glucose level and measured blood glucose level of the patient.
The reference value is given and the instantaneous value is the output of the insulin–glucose model.
A standalone APS gets the instantaneous value from a sensor known as a continuous glucose monitor.
Integrating a continuous glucose monitor model in our simulations is a part of future work.

The produced prototype includes two closures and a piezoelectric actuator. A multi-jet fusion 3D
printer successfully printed the closures with embedded inlet and outlet nozzles, which require high
precision. The piezoelectric actuator is selected due to availability and it consists of a PZT disk attached
to a thin brass substrate. Although the PZT is lead-based, and potentially toxic, it is not exposed to
insulin in our design since the brass side faces the chamber. Lead-free piezoelectric materials, such
as alkaline niobates or bismuth titanate [39], are interesting alternatives for future work. Another
option is to use a separating layer, like a non-toxic coating or diaphragm, between the actuator and
the chamber.
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The prototype pump does not include embedded electronics at this stage because it is experimented
in a laboratory test setup. This enables us to test the pump with a range of inputs and to observe a
multitude of outputs during development phase. A fully coupled simulation model of the APS is one
of the major contributions of this work. Hence, the experiments serve as a basis and validation for
the development of the simulation model as well as the pump. The main drawback of the existing
test setup is the lack of an accurate flow sensor. Because of this, instead of measuring the net flow
rate we measured the maximum displacement of the actuator and compared with the simulations to
find that the values are within 10% of each other at the experimented frequencies. This discrepancy
can be extended to net flow rate, but supporting this with experimental proof is our first priority in
future work.

In the literature, there are several studies [13,30] that investigate the dynamics of valveless
piezoelectric pumps. Our contribution here is that we coupled the piezoelectric pump dynamics
with three types of well-known glucose–insulin models. Furthermore, we applied PID and optimal
controllers on the blood glucose level control problem. For blood glucose level control with an APS, it is
crucial to show that the proposed pump can deliver insulin with the flow rates required by the blood
glucose controller. The Ackerman’s and Bergman’s glucose–insulin models are relatively simple so that
they are used for the design of optimal and PID controllers, respectively. The comprehensive Sorensen
model is used for performance assessment in model-based simulations. Because of its complexity, the
Sorensen model requires more computational power and time. This issue must be considered when
electing an embedded controller for a standalone APS.

We showed with analysis and experiment that a valveless piezoelectric pump is significantly
more energy-efficient compared to a syringe pump, which is typically used in APS applications.
Both the numerical and experimental studies of the proposed pump predicted a power requirement of
nearly 20 mW for a flow rate in the range of 200–300 μL/min. A commercial syringe pump’s technical
specification document states that almost 5 W is required for pumping (additional power requirement
on top of the standby condition of the pump) [40]. Such orders of magnitude decreases in the
power requirement are essential for APS applications where portability and battery life considerations
are crucial.
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Abstract: Driving phobia is an anxiety disorder. People are greatly impaired in their daily lives when
suffering from driving phobia disorders. The anxieties can be triggered under various conditions,
such as driving over bridges, driving at high speeds, or driving in close proximity to large trucks.
Traditional cognitive behavioral therapy (CBT) and exposure therapy are the most common approaches
used in the treatment of psychological disorders, such as anxiety disorder (AD) and panic disorder
(PD). This research focuses on virtual reality (VR)-based exposure therapy, called VRET, and describes
the design and development of a system which uses alternating levels of fear-based driving scenarios
that can be recorded and automatically adjusted to maximize exposure effectiveness without causing
the subjects to panic. The proposed VRET integrates an advanced feedback database module for
tracing and analyzing the system, along with the user’s bio-data to show the valid data collection
of the system and its effectiveness for future use in clinical trials. The research conducts a system’s
pre-test analysis using 31 subjects to demonstrate the effectiveness of the system. This research
demonstrates the systematic development of the VRET for driving phobia disorder by depicting the
system framework, key system modules, system integration, bio-database management, and pre-test
data analysis to support our next research efforts in hospital-based clinical trials and for additional
VRET development applications for clinical psychology.

Keywords: virtual reality exposure therapy; driving phobia; post-traumatic stress disorder;
physiological signal

1. Introduction

Post-traumatic stress disorder (PTSD) is a general term for any mental health issue that is triggered
by a traumatic event experienced or witnessed by the patient. Many types of assaults can result in PTSD,
such as physical or mental abuse, sexual assault, and serious physical accidents. People that suffer
from PTSD have problems with daily, societal, and work-related activities. The condition interferes
with one’s ability to deal with normal life tasks. In 1980, PTSD was officially recognized as a mental
illness by the American Psychiatric Association after the analysis of soldiers injured and exposed to
traumatic experiences during the Vietnam war [1].

Cognitive behavioral therapy (CBT) and exposure therapy (ET) are the most common approaches
for treating PTSD, anxiety disorder (AD), and panic disorder (PD) [2]. The goal of therapies is to change
patterns of thinking or behavior that cause mental disorders. CBT works by changing people’s attitudes
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and their behaviors by focusing on the thoughts, images, beliefs and attitudes. Because there is no
invasive treatment or psychoactive drugs used while conducting CBT, it is generally recommended
by medical institutions [3]. The challenges of CBT are that it requires patient cooperation, is time
consuming, and is difficult to execute as a standard procedure.

An emerging treatment approach for PTSD takes advantage of immersive-based information
technology to advance exposure therapy using virtual reality (VR) and more sophisticated physical
measuring devices (called VR-based exposure therapy (VRET)). VRET allows patients to slowly
expose themselves to different levels of traumatic stimuli using immersions of vision, sound and
tactile feedback, which matches the principle of systematic desensitization (SD). SD is evaluated by
researchers to be as effective as CBT [2,4]. Using VRET, patients interact and are exposed to a simulation
of the phobic surroundings, but do not physically encounter the feared situations and the immersive
condition can be immediately adjusted to reduce additional harm that can be caused by stress and
panic attacks resulting from overexposure. The curative effects of VRET are more significant (and more
realistic) then CBT [5]. There are some issues to be considered when designing VRET as a therapeutic
treatment [6]. First, VRET is an evolving technology, psychiatrists and psychotherapists have to
experiment with designs and configurations of therapy, develop base scenes, changing scenarios,
and integrate complex monitoring equipment while demonstrating that the treatment is effective,
reliable, and valid. The development costs and design thresholds of VRET are considerably more
challenging than traditional CBTs. Further, researchers must consider the realism of the immersive
environments. If the immersive environment is not realistic, the patients will lack exposure and the
curative effect (or an effective meta-analytic effect size for clinical trials) will be compromised. If the
immersive environment is too realistic, it could trigger severe phobic reactions during the experiments
and endanger the subject’s safety. Finally, some patients may not be familiar with VR hardware and
software settings. Thus, severe dizziness during the experiment may hinder the VRET results. Thus,
patients’ physical conditions and their suitability for VRET need to be carefully investigated to ensure
the effectiveness of VRET implementations and applications [6].

Section 2 presents a literature review of immersive applications in PTSD, including traditional
ET, CBT, and VRET. Section 3 introduces the methodology framework and the approaches used
in this research. Section 4 demonstrates the system architecture and the hardware and software
components that are adopted and integrated to build the immersive environment. Section 5 performs
statistical analysis to the pre-test data, using the correlation coefficients between system and bio-data,
nonparametric testing for gender difference and anxiety group difference, and an ANOVA test for ET
level effects. A Shewhart control chart was applied to monitor the subjects’ emotional arousal. Section 6
summarizes the VRET systematic research, describes the research contributions, and highlights the
next phase VRET research for controlled clinical trials.

In principle, this research focuses on VRET design and development using seven increasingly
frightening driving scenario levels. The proposed VRET integrates with an advanced system and
bio-database module for tracing and analyzing the system and user’s bio-data. The research conducts
the system’s pre-test analysis to demonstrate the effectiveness of the system. The main objectives
of this research are to present the systematic development of the VRET for driving phobia disorder,
including the VRET system framework, key system modules, system design theory, bio-feedback
database management, and pre-test data analysis. The research outcomes will support our next efforts
in using VRET for hospital based clinical trials for driving phobia disorders, and potentially extending
VRET development to other applications in clinical psychology.

2. Literature Review

In this section, the literature review focuses on the latest state of immersive technologies
and applications in PTSD-related psychotherapies. Publications from the American Psychological
Association (APA), the Institute of Electrical and Electronics Engineers (IEEE) Xplore, and the Web of
Science (WoS) digital library are searched using keywords Cognitive Behavior Therapy, Post Traumatic
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Stress Disorder, and Exposure Therapy. The results were further refined to include Virtual Reality
Exposure Therapy and Driving Phobia. The two groups of literature are simply divided into VRET
and traditional treatments. The traditional treatment types are further divided into CBT and ET.

CBT and ET are commonly used to treat PTSD, depression, anxiety, and panic disorders.
CBT reduces cognitive anxiety by letting patients understand the causes of their reactions and
how to manage and change reactions that may exasperate their mental condition. The efficacy of CBT
on anxiety-related mental disorders, especially PTSD, has been confirmed by many studies [7–10].

Exposure therapy exposes patients to various levels of stimulating situations and continuously
increases the intensity of the exposure to gradually induce a tolerance toward the exposure. Subjects
are taught to self-analyze their reactions and change their behavioral response to better adapt to the
changing conditions of exposure. Exposure therapy includes both imaginary and in vivo exposure.
For imagined exposure, the therapist may ask the patient to imagine what they are afraid of. On the
other hand, in vivo exposure allows patients to face the phobia directly. Some clinical trials have
confirmed the effectiveness of exposure for treating PTSD. For example, Bryant et al. [11] divided 45
patients with PTSD into three groups—waiting list, exposure or counseling. The results showed that
only 14% and 20% of the group members that received prolonged exposure and prolonged exposure
plus anxiety management still suffered from symptoms of PTSD after treatment. Fifty-six percent of
the supportive counseling group members were not affected by the PTSD treatment. The findings
indicated that prolonged exposure may be a critical approach in the treatment of PTSD [11].

Aside from treating phobias, one of the successful applications of virtual reality technology is in
the field of education. In one study, researchers have conducted a bibliometric study of the last twenty
years from the Scopus database, and conclude that the use of virtual reality in education can improve
the quality of the teaching and learning processes [12]. In Jesús López Belmonte’s research, he asserted
that digital technology has become a part most of people’s lives and entered various fields of society.
For example, he applies VR to education and reports that VR yields many benefits such as optimizing
teaching and learning processes, timely access to new information, greater mobility, ubiquitous access,
and adaptable to the uniqueness of each student [13].

At present, there are many studies on the applications of VRET for various kinds of phobias such
as acrophobia, arachnophobia, and aviophobia [14]. In one study, a 50-year-old officer who suffered
from PTSD caused by the Vietnam War underwent VRET. After 14 treatments of up to 90 min over
seven weeks, his PTSD symptoms fell 34% under standard clinical measures. Self-assessment decreased
by more than 45% [15]. Another study of flying phobia ET confirmed that VRET and traditional
ET have no difference in statistical effect size. Seventy-five patients with fear of flying (FOF) were
divided into three groups (25 people in each group): VRET, traditional ET and the waitlist (do nothing).
After treatment, the results of VRET and traditional ET were almost equivalent while both groups were
superior to those on the waitlist [16]. Another study used meta-analysis to integrate effects from 21
clinical studies with a total of 300 subjects. The analysis results (effect size) demonstrated that VRET
effectively reduces anxiety [17]. Finally, our research studied the application of VRET in arachnophobia
treatment, incorporating Arduino bio-sensors to collect real-time bio-data from subjects. Bio-data are
integrated with the VRET system data and stored in SQL database for data mining and real-time VRET
level adjustment is used to minimize over-exposer to the treatment [18].

Driving is an essential skill that facilitates independence and mobility of individuals in modern
society and is often a requirement of employment. Being diagnosed with a driving phobia limits an
individual’s work options and creates issues associated with social interaction when mass transportation
or transportation for hire is not available or unaffordable. According to emotional processing
theory, successful exposure therapy leads to new and more neutral memory structures that overrule
old memories that provoke and heighten anxiety [19]. In a VRET for driving phobia pilot study,
14 subjects with serious driving phobia were placed into a series of experimental conditions, including
psychotherapeutic, medical examination, psychotherapy sessions, VRET sessions, and a final behavioral
avoidance test (BAT) when driving in traffic. The therapy session for each subject required 10 days
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to complete the experiment. After 6 to 12 weeks, follow-up tracking of the subjects was performed
to access the subjects’ driving performance and evaluate the effectiveness of the treatment for each
subject. The follow-up tracking indicated that 13 out of the 14 patients maintained successful treatment
results [20]. Another VRET experiment for driving phobia used eight females who were willing to try
VRET but unwilling participants used in vivo exposure. The VRET exposure environment consisted
of eight sessions which gradually exposed participants to increasingly uncomfortable exposure over
50-minute intervals. Factors, such as mean mood, anxiety, cognitive evaluation, quality of life, sense of
presence, subjective discomfort, and heart rate were recorded during the experiment. The result
showed that the sense of presence decreased as the session progressed while subjects’ subjective
discomfort scores and heart rate increased. After the experiment, subjects were determined to be more
confident with their driving ability. Six out of eight subjects were willing to conduct in vivo exposure
after VRET [21]. A VRET experiment for driving phobia related to fear of driving in tunnels was
conducted. In the virtual reality environment, the car passes through a tunnel with lighting adjusted
to resemble natural daylight on entry and exit, with increasing darkness and increasing lightness upon
exit. The sound of traffic was also included to enhance the realism of the simulations [22]. The above
driving phobia VRET studies provide a solid basis for continued research. The numbers of subjects in
these studies are generally too small to draw a decisive conclusion or provide suggestions for future
VRET refinement. Moreover, most of the literature evaluated their VRET system based on subjects’
driving performance, and few focused on the subjects’ biological senses and system recorded data
analysis. Therefore, this pre-test experiment will examine the feasibility of using biological sensors and
system-data collection and analyses to measure subjects’ driving performance to ensure the safety and
effectiveness of VRET toward phobia treatment. Further, to ensure the VRET is scientifically conducted,
collecting real-time bio-data of patients is vital during the ET sessions. Matured bio-sensor solutions,
such as the Arduino micro-controller, can transmit bio-data to a remote computer or cloud database
using an XBee wireless network [23].

3. Methodology Applied in This Research

Figure 1 presents the research flow of this study for the driving phobia VRET design and
development. The project formulation made at the beginning was to decide how to implement the
research, perform risk assessment, and hypothesize expected results. Literature related to VRET,
driving phobia, CBT, and PTSD were reviewed and referenced before designing the exposure treatment
scenario. The virtual reality immersive environments were constructed to model different fear levels
of scenarios. The constructed VRET prototype has been examined by psychologists and an iterative
modification process was executed until the psychologists were confident that the system matched the
needs of ethical and medically acceptable driving phobia treatments.

Figure 1. The research flow of the virtual reality-based exposure therapy (VRET) system design
and development.
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The VRET system is constructed using a seven-level exposure therapy design as shown in Figure 2.
Since some patients are extremely afraid of car crashes, pedestrians and other driving vehicles do not
appear in the immersive environment for the initial test runs. All of the simulation scenes follow a
single route map. Subjects drive a specified distance to reach a destination before advancing to a higher
level. Each level has its unique simulation environment, time, and treatment objectives. The details of
each level are highlighted as follows.

Figure 2. Scenario design level chart.

Level 1 Driving in the suburbs during the daytime, the speed limit is 40 km/h.
Level 2 Driving in the suburbs at night, the speed limit is 40 km/h.
Level 3 Driving on the highway during the daytime, the speed limit is 110 km/h, and the system will

ask subjects to drive faster if the driving speed is less than 90 km/h.
Level 4 Driving on the highway at night, the speed limit is 110 km/h, and the system will ask subjects

to drive faster if the driving speed is less than 90 km/h.
Level 5 Driving on the highway at night, the speed limit is 110 km/h, and the system will ask subjects

to drive faster if the driving speed is less than 90 km/h. Subjects will be expected to traverse
a tunnel.

Level 6 Driving on a mountain road during the daytime, the speed limit is 50 km/h.
Level 7 Driving on the mountain road at night, the speed limit is 50 km/h.

The VRET experiment flow is illustrated in Figure 3. The treatment begins with a detailed
introduction about the experimental objective, method, procedure, expected risk, and relevant
disclaimer information. A pre-test questionnaire is completed by the subject before the experiment
to measure the subject’s mental state. The questionnaire asks about the subject’s behavior, thoughts,
and emotions in regard to previous driving experiences. During the experiment, bio-data including
heart rate, skin conductance, body temperature, respiration, and head movement are recorded in the
computer database for statistical analysis. If virtual reality vertigo or other motion sickness symptoms
occur to the subject during the VRET session, an emergency stop is triggered and the experiment
is terminated. After the immersive treatment is finished, subjects are asked to complete a post-test
feedback form.
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Figure 3. The driving phobia VRET experiment flow.

A total of thirty-one subjects including 14 males and 17 females at the university participated
in the pre-test of the VRET prototype. The inclusion criteria are aged between 20 and 25 years old,
possession of a valid driving license, and described a fear of at least one type of driving phobias such
as driving on highways, mountain roads, or congested traffic.

4. System Architecture

The overview system architecture of this VRET research is presented in Figure 4. The VRET system
(software) consists of four modules: the exposure therapy (ET) scenario module (7 scenario levels),
the VR environment module, the data collection module, and the data analysis module. The VR–User
interface (hardware) includes a VR headset, steering wheel, and bio-sensors. A database management
system is developed to collect and integrate system and bio-data from the VRET system and the
VR-User interface. The system’s hardware, software, and database designs are described in the
following paragraphs. For more technical details, please refer to [16].
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Figure 4. The system architecture for the driving phobia VRET prototype (refer to Figure 2 for Module
1 details).

4.1. Hardware

The hardware components used by the system include the VR headset (HTC, VIVE Pro, Taipei,
Taiwan), the steering wheel (Guillemot Co., Thrustmeter T300 RS GT, Carentoir, France), and bio-sensors
(Thought Technology Ltd., ProComp Infiniti, Montreal, Canada). The HTC VIVE Pro is a popular
virtual reality immersive headset. The kit headset includes VR HMD, two base stations for movement
tracking, and two motion controllers for virtual world interaction. The two base stations are able to
connect the immersive environment with the subject’s reactions to scene objects via motion controllers.
The Thrustmeter T300 RS GT Edition is a high-end racing steering wheel equipped with a feedback
mechanism, a specialized T3PA acceleration pedal that is integrated with steering wheel motion to
provide realistic driving feedback to the subjects. The ProComp Infiniti is an eight-channel biofeedback
system for real-time data acquisition that can be used with combinations of sensors including EEG,
EKG, RMS EMG, skin conductance, heart rate, blood volume, pulse, respiration, temperature, force,
and voltage.

4.2. Software

The software components adopted into the system include the development engine (Unity
Technologies, Unity, San Francisco (HQ), CA, USA) and the distribution platform (Valve Corp., Steam,
Bellevue, Washington, USA). Unity is a well-known real-time 3D development platform which enables
users to develop both 2D and 3D games and models in Windows, iOS, Android, and over twenty
types of systems. Microsoft C# is used as the programming language; users are allowed to control
actions of virtual objects using specific C# scripts. Unity is compatible with other design software and
gaming platforms that have external operating devices also compatible with Unity. Steam is one of
the largest video game digital distribution service platforms in the world and also provides a virtual
reality service called SteamVR to support the HTC VIVE virtual reality headset. Data collection and
data management use SQLite (SQLite.org) as the database engine and BioGraph Infinite software to
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record bio-data. The VRET database management system (DBMS)’s entity-relation diagram is shown
in Figure 5.

Figure 5. The entity-relation (ER) diagram for the VRET database.

4.3. Database

SQLite is a relational database management system (DBMS) contained in the C library. The reason
for choosing SQLite over MySQL is because SQLite is a popular choice as an DBMS for client storage.
SQLite is used to collect head motion, steering wheel rotation angle, and driving speed data in real
time. These data are accessed from the database using the Python programming script. Th database
storage model is shown in Figure 6. BioGraph Infinite is a software platform that is specifically used for
ProComp Infiniti data access, allowing high end users to create their own screens, scripts and channel
sets. The purpose of BioGraph Infinite is to collect heart rate, skin conductance, body temperature,
and respiration rate data during ET experiments. The biological and system data are integrated
for analysis.

 

Figure 6. Example of VRET’s system database storage.
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5. Pre-Test and Pre-Test Data Analysis

In order to examine the effectiveness of the VRET system and to improve the VRET system
to facilitate future clinical trials, this study recruited 31 subjects for pre-testing. Before the pre-test
experiment, subjects were asked to fill out the “Self-rating fear of driving scale,” for the purpose
of measuring their degree of fear of driving. The rating scale was designed according to emerging
measures offered by American Psychiatric Association [24]. During the pre-test experiment, the system
data, bio-data, and subjects’ suggestions for refinement of the VRET system were recorded. This study
was approved by the Chang Gung Medical Foundation Institution Review Board (IRB), the institution’s
ethical commission, approval number 201901262B0.

5.1. Pre-Test Subjects’ Demographic Data

This study recruited 14 males and 17 females at the university participated in the pre-test of
the VRET prototype. Pre-testing subjects’ demographic data including gender, height, weight, age,
and the years of driving experience are presented in Table 1. 14 males with a mean height of 172.5 cm
(SD = 5.21 cm) and a mean weight of 64.29 kg (SD = 7.61 kg), 17 males with a mean height of 160.43 cm
(SD = 4.75 cm) and a mean weight of 52.71 kg (SD = 5.44 kg). All the subjects with a mean age of 22.39
years (SD = 0.95 year) and the mean duration of driving experience is 2.10 years (SD = 1.13 years).

Table 1. Pre-test subjects’ demographic data.

Subject No. Gender Height (cm) Weight (kg) Age Driving Experience (Years)

1 Female 164 52 23 4
2 Female 164 62 21 2
3 Male 173 57 24 3
4 Male 178 74 24 2
5 Male 160 48 22 1
6 Female 156 48 22 1
7 Male 174 75 22 2
8 Female 153 52 23 1
9 Female 152 47 22 1

10 Female 162 52 23 3
11 Male 167 69 22 3
12 Male 172 58 22 2
13 Female 164 49 22 1
14 Female 161 55 23 4
15 Female 167 49 22 2
16 Female 166 62 22 2
17 Female 158 50 22 1
18 Male 175 65 22 1
19 Male 170 65 22 2
20 Female 165 50 22 1
21 Male 171 60 22 3
22 Male 170 65 22 1
23 Female 162 53 22 3
24 Female 160 65 21 2
25 Female 164 52 22 1
26 Male 174 71 24 1
27 Male 177 71 24 2
28 Female 162 46 22 2
29 Male 172 65 22 3
30 Male 182 57 25 6
31 Female 162 52 21 2

5.2. Pre-Test Procedures

1. Explain the purpose and precautions of the experiment and ask subjects to sign the consent form.
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2. Subjects filled out the “Self-rating fear of driving scale.”
3. Subjects were equipped with bio-sensors for the purpose of detecting the real-time bio-data.

Bio-sensors including heart rate, temperature, respiration, and skin conductance.
4. Conducting the pre-test VRET experiment and collect subjects’ real-time bio- and system data.
5. After the pre-test experiment, subjects were asked to fill out the feedback form and provide some

suggestions to the refinement of VRET system.

5.3. Pre-Test Data Analysis

The real-time VRET system data, shown in Figures 7 and 8, and the pre-test subject’s bio-data,
are shown in Figures 9 and 10. For the current prototype of VRET for driving phobia, the bio-data of
each subject are monitored and analyzed for trends and correlations between bio-data and system
data. The data spike abnormalities are monitored during the pre-testing experiment sessions. The goal
is to improve the effectiveness of the therapy design of the VRET immersive system based on data
analytic outcomes to avoid levels of driving conditions showing insignificant bio-effects or causing
overly dramatic effects (i.e., lacking the feature of gradual systematic desensitization). The following
discussion describes the statistical analysis results of the system’s pre-test experiments with 31 subjects.

Figure 7. System data—Steering wheel rotation data tracking.

Figure 8. System data—Tracking driving speeds over time.

 

Figure 9. Bio-data—Tracking subject’s heart rate during experiment session.
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Figure 10. Bio-data—Subject’s skin conductance during the experiment session.

The Pearson correlation coefficient has been applied to measure the strength of linear association
between the VRET system data and the subject’s bio-data. The result indicates that the correlations are
relatively small with most coefficients falling between −0.3 and 0.3. Nonparametric test for gender
differences compared the 14 males and 17 female subjects that participated in the pre-test experiment.
The Mann–Whitney U test was used to test if there was a statistically significant difference between
the overall satisfaction medians of the male and female groups. The null hypothesis is ηmale = η f emale,
using a significance level of α = 0.05, the p-values related to four kinds of bio-data are all higher than
alpha value (0.05), so there is insufficient evidence to conclude a statistically significant difference
between the overall satisfaction medians of the male and female groups.

The Mann–Whitney U test was also used to test if there is a statistically significant difference
between the overall satisfaction medians of the high anxiety and low anxiety groups. Subjects were
divided into two groups, high anxiety groups and low anxiety groups, according to the rating of
“Self-rating fear of driving scale” filled out before the pre-test experiment. Eleven subjects were in the
high anxiety group and 20 subjects were in the low anxiety group. The null hypothesis is ηhigh = ηlow,
using a significance level of α = 0.05, three out of the four p-values related to bio-data (heart rate,
respiration, and skin conductance) are lower than alpha value (0.05), so there is statistical evidence
that there is a difference between the overall satisfaction medians of the two anxiety types. The VRET
system does affect the subject’s bio-data according to their degree of fear of driving.

One-way ANOVA tests comparing means of bio-data in seven scenarios are used to estimate the
95% confidence interval and determine whether the associated population means in different scenarios
are significantly different. The results are presented in Figure 11a,c,e,g. Fisher’s least significant
difference method for multiple comparisons was applied to examine which means at different levels
are different, as presented in Figure 11b,d,f,h.

The bio-feedback data of the one-way ANOVA interval plots, presented in Figure 11, indicate that
pre-test subjects become increasingly anxious as the fear level of the scenarios increases (shown by
heart rate, temperature, and skin conductivity trends). For detailed information from the ANOVA
results, multiple comparisons analysis between different levels was also conducted, as higher fear
levels tend to be assigned to the same groups and lower fear levels tend to be assigned to the same
groups, a significant difference in the sample means between higher levels and lower levels was
demonstrated. This trend supports the hypothesis that increases in the severity of pre-existing phobias
increase the subject’s bio-feedback responses.

An interesting observation is that the bio-feedback data in level 1 seems to be significantly higher
than level 2 data as shown in heart rate and temperature plots and the Fisher’s LSD method supports
the same result. A possible cause of this phenomenon may be related to the experimental design
where subjects never exposed to a VR environment may become more anxious during the initial ET
session. As the experiment progresses, the subjects become acclimated to the VR environment so there
is less tension and greater ease of use of the system. In order to prevent this problem from happening,
a ten-minute static VR experience can be added to the experiment flow between pre-test questionnaire
and VRET interface to stabilize the subject’s bio-response before the experiment begins.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 11. (a) One-way ANOVA interval plot of heart rate vs. level; (b) Fisher’s least significant
difference (LSD) method for multiple comparisons of heart rate vs. level; (c) One-way ANOVA interval
plot of temperature vs. level; (d) Fisher’s LSD method for multiple comparisons of temperature vs.
level; (e) One-way ANOVA interval plot of respiration vs. level; (f) Fisher’s LSD method for multiple
comparisons of respiration vs. level; (g) One-way ANOVA interval plot of skin conductance vs. level;
(h) Fisher’s LSD method for multiple comparisons of skin conductance vs. level.
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According to Dawson’s research, if the amplitude of skin conductance is larger than 0.1 μs, then the
skin conductance indicates a larger emotional response [25]. In this research, skin conductance data are
converted into the form of amplitude data. A Shewhart control chart of amplitude data is presented in
Figure 12. If four out of five data points exceed 0.1μs, it is marked in red, which means the subject has
a larger emotional response at this point of time. Sixteen of the thirty-one subjects meet the above
conditions and have data points marked in red. These data points frequently appeared for the 6th,
21st, 25th, and 32nd subjects.

 

Figure 12. Shewhart control chart of skin conductance amplitude data.

The heart rate data are standardized according to individual data distribution and a Shewhart
control chart of the standardized data is presented in Figure 13. If four out of five points exceed two
standard deviations, the data points are marked in red indicating the subject has experienced a larger
emotional response at this point of time. Twenty-one of the thirty-one subjects met the above condition
with their heart rate data points marked in red.

 

Figure 13. Shewhart control chart of standardized heart rate data.

5.4. Discussion of Pre-Test

The proposed VRET system has integrated system and bio-data collection for real-time data
analytics compared to previous VRET research. In the Kaussner et al. VRET pilot study, anxiety and
habituation during the VRET sessions were assessed using ratings on subjective units of a distress
scale as well as the heart rate [20]. Costa et al. used subjective discomfort scores and heart rate to
measure subjects’ physiological response and sense of presence [21]. Additionally, in Claudio et al.’s
fear of driving in tunnels research, questionnaires measured the outcome of the experiment and no
real-time data was collected [22]. Most pervious VRET literature uses heart rate for real-time data
tracking. Temperature, respiration, and skin conductance are for real-time data tracking in our VRET
system. These preliminary design and development efforts are for the construction of a self-adaptive
VRET system that will automatically adjust the levels of exposure according to real-time data tracking.
The proposed future system will be tested for improvements to the immersive experience and to better
ensure subjects’ safety.
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Compared to previous VRET research which only demonstrates the development of VRET without
verification, this research has uniquely combined VRET design and development with the verification
of its efficacy through pre-test. According to the results of Mann–Whitney U test, there is a significant
difference between the overall satisfaction medians of high anxiety groups and low anxiety groups.
Moreover, the results of ANOVA analysis show that bio-data and level are positively correlated except
for Level 1. Therefore, through pre-test data analysis, VR is demonstrated to provide the subject with a
sense of authenticity and can indeed cause anxiety similar to actual driving.

The problem of high level 1 bio-data is also emerging within pre-test data analysis. For this
problem, follow-up studies may consider adding a ten minutes of VR experience before the experiment
starts to assist the subjects to adapt to the VR environment and to improve the VRET system for official
clinical trials.

6. Conclusions

The immersive technologies, most typically referred to as virtual reality (VR) and lately also to
include augmented reality (AR) enabling technologies, are popularly researched and developed to
improve healthcare and treatments for physical, psychological and social wellbeing with respect to
different populations and their health issues (e.g., elderly, autism spectrum disorder, PTSD, phobia,
etc.) [26,27]. For example, Lee et al. [24] have comprehensively reviewed VR and AR technologies
developed for physical, psychological and social wellbeing of an elderly population. The review article
discovers that plenty of R&D has been deployed for improving physical healthcare and treatments.
Nonetheless, considering the rising psychological (mental and social) health issues, there are great needs
to pursue immersive technologies and design immersive solutions for psychological therapies and
treatments. The research presents the systematic design and development of virtual reality exposure
therapy applied to fear of driving. Therapeutic treatments for this phobia remain as a major clinical
challenge for psychiatrists, psychotherapists, and their patients. A VR headset, a high specification
steering wheel, bio-sensors, and software are integrated to develop a realistic driving experience in
an immersive environment for effective exposure therapy. The subjects are exposed to varying levels
of fear inducing driving levels for treatment. Thirty subjects provided pre-test data for the system.
The bio-feedback data and suggestions for improvement were derived from the experiments. Through
pre-test data analysis, VR convincingly causes anxiety like actual driving. Furthermore, some systemic
problems are discovered, so the follow-up research can improve the VRET system and improve the
system design. Carefully crafted experimental design is required for collecting valid and reliable data
for the VRET analytical models and system modification. The clinical psychiatrists’ feedback is critical
to improve the design before the VRET can be used for clinical trials.

In summary, this research has presented the VRET technical components, the system framework,
key modules for implementation, and the experiment database design and development for the
research. Specifically, the bio- and system-data analysis demonstrates the efficacy of the VRET for
use in initial hospital-based clinical trials with continued improvement as the trails are analyzed.
In the future, the research team hopes to extend the VRET treatments to other phobias, such as
acrophobia, arachnophobia, and claustrophobia. The future research direction also includes the
intelligent development of self-adaptive VRET systems incorporating progressive brain neurology
and brain computer interface (BCI) technologies. When the degree of a subject’s fears are detected
through advanced BCI sensors, the self-adaptive VRET system will have sufficient knowledge and
intelligence to automatically adjust the levels of exposure to ensure safe and effective gradual
systematic desensitization.
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for the system; C.V.T.: CBT and ET literature overview for anxiety disorders and panic disorders, interpretation
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Abstract: Cervical Spinal Cord injury (SCI) is a neurological disease that produces, as a consequence,
impairments of the upper limb function. This paper illustrates a virtual reality platform based on
three serious games for upper limb rehabilitation with electromyography monitoring, providing force
feedback to the patient. In the rehabilitation process proposed, haptic feedback was provided to
the patients to strength the arm muscles by means of the Novint Falcon device. This end-effector
device was used to manipulate the serious games. During the therapy performance, the system
recorded electromyography signals from the patient’s arm muscles, which may be used to monitor
muscle contraction. The work presented a virtual reality system developed for spinal cord-injured
patients. Each virtual reality environment could be modified in strength and duration according to the
patients’ needs and was implemented for recording quantitative data about the motor performance.
The platform was validated as a proof of concept in cervical spinal cord-injured patients. Results
showed that this rehabilitation platform could be used for obtaining objective information in relation
to motor control characteristics.

Keywords: upper limb rehabilitation; serious games; haptic feedback; electromyography sensors;
virtual reality; smoothness

1. Introduction

Spinal Cord Injury (SCI) is one of the most important neurological diseases that produce deficiencies
in the field of physical disability [1]. It is often a catastrophic condition requiring chronic care. Despite
an enormous amount of research in SCI, the neurological prognosis for a patient with severe SCI
remains dismal. Life expectancy after such an injury is markedly reduced due to complications
proportional to the severity of injury or remaining neurological functions. Therefore, SCI is associated
with a risk of developing secondary conditions that can be debilitating and even life-threatening,
such as deep vein thrombosis, urinary tract infections, muscle spasms, osteoporosis, pressure ulcers,
chronic pain, and respiratory complications [2]. Acute care, rehabilitation services and ongoing health
maintenance are essential for the prevention and management of these conditions [3].

The worldwide incidence of SCI lies between 10 and 83 per million inhabitants per year [4].
In Spain, approximately 1000 new cases of SCI per year occur due to trauma, which is the main
cause; half due to traffic accidents, the rest due to falls, blows, sport accidents or other injuries [5].
Most of these people have permanent damages. It is observed that people with SCI have difficulties
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and limitations in mobility (96.9% of cases), in self-care (81.1% of cases) and in carrying out tasks of
domestic life (84.3% of cases) [6]. This situation means that the majority of the population with SCI
requires personal and technical support to carry out these activities. The treatment for SCI is often
expensive: it can reach up to 55,000€ the first 60 days for a patient in acute phase, with an additional
10,000€ for the intensive care stay. Hence, the economic and societal impact is enormous, both to the
immediate family and the society at large [7]. The inclusion of lower cost technologies is a key aspect
for reducing the therapy cost. Therefore, there is a great need for new systems that improve the quality
of life for SCI injured patients [8–10].

The impairment of the Upper Limb (UL) is one of the most common sequelae following neurological
injuries [11]. The loss of arm and hand function is one of the most devastating consequences in
tetraplegia [12]. One important aspect of this lost function is smoothness. Smoothness is a characteristic
of a skilled and well-coordinated human movement [13] and it is an independent measure with respect
to speed and distance [14]. When moving the hand between pairs of targets, people tend to generate
roughly straight hand trajectories with a single-peaked, bell-shaped speed profile [15]. However, in
presence of neurological pathologies, the UL movement is characterized by the lack of smoothness [16],
the performance of more curved trajectories with directional changes and a higher peaks number in
the speed profile. Smoothness has been used as a measure of motor performance in healthy people
and neurological pathologies, mainly stroke patients [11,14,17,18], being the neurological injury with
the highest incidence and prevalence in the population. This control motor characteristic has been
quantified by means of different variables, extracted of the movement analysis as the peaks number in
the speed profile, the ratio between the maximal and mean velocity and the jerk metric computed as
the time derivative of acceleration [13,19]. As our expertise in this field, after the developmental work
of kinematic indices applied to spinal cord injured patients, smoothness metric computed from the
peaks number in the speed profile is discriminative between healthy and neurological patients [20,21].

Small progresses in arm and hand function may lead to increase autonomy in activities of
daily living [22], improving independence and quality of life. For this reason, rehabilitation for the
improvement in UL function after cervical SCI is a top priority in individuals with tetraplegia [23].
In rehabilitation, considerable amounts of practice are required to induce neuroplastic changes and
functional recovery of neurological motor deficits [24]. SCI rehabilitation works through mechanisms
of experience-dependent plasticity [25]. The process of plasticity consists of changes in the activation
pattern, either of structure or function of neural connections. These changes involve the modification
of the strength of existing connections or the creation of new neural connections. Although it is likely
that some of the reorganization after central nervous system injuries take place in the cortex, plasticity
changes may also occur in subcortical structures, such as the spinal cord [26]. Therefore, neuroplasticity
is essential in the SCI rehabilitation process.

Nowadays, technology is typically involved in rehabilitation. It makes use of high cost devices,
such as exoskeletons or robotic devices [27], or low cost devices, such as the Leap Motion, Kinect,
or Novint Falcon, among others [28]. In this paper, we make use of the Novint Falcon device, a desktop
haptic robot with 3 degrees of freedom (see Section 2). Several studies found in the literature have
investigated the use of the Novint Falcon in healthy subjects: Scalona et al. analyzed the motor
performance during six reaching movement sessions varying the force levels [29]. The subjects had
to reach eight different objectives placed on a circumference (vertical and horizontal line and in each
diagonal). Cappa et al. analyzed the response to different force feedback in healthy population with an
educational purpose [28]. Palsbo et al. used the Novint Falcon to train fine movements in a group of
healthy developing children and noted significant improvements in handwriting performance [30].
However, there is no evidence of research studies with the Novint Falcon in spinal cord injured
patients. Nonetheless, some studies have been performed with the Novint Falcon to analyze the
UL function in patients who have suffered stroke [31,32]. These studies have been conducted with
a rehabilitation purpose. Chortis et al. evaluated the effects of repetitive arm movements with
a group of eight post-stroke subjects by using the commercial virtual games included in Novint
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Falcon [33]. These games were oriented to reach UL functional tasks, following the rehabilitative
principles. The patient performance was compared between pre and post condition by using only
clinical tests. Unfortunately, in those studies, smoothness was not analyzed.

Additionally, the use of technology in rehabilitation in combination with virtual reality (VR)
environments has increased in the last years [34–37], mainly because the quantity of therapy that patients
receive increases. VR has many advantages for intervention, such as enabling the grading of activities,
obtaining precise performance measures, providing a safe and ecologically valid environment, and
being enjoyable and motivating [24,38]. There is evidence about the acceleration in the rehabilitation
process by the combination of these VR treatments with conventional rehabilitation [39]. Moreover,
the use of VR environments can increase the intensity of the therapy through the adequate repetitions
number [27]. VR reality games increase motivation in patients both in occupational and physical
therapy [40]. Therefore, the health care sector is showing steadily increasing interest in serious
games [41].

The work presented in this paper is centered in reaching the patient’s assessment in an objective
way by means of the smoothness movement characteristic. Therefore, the aim of the present paper,
an extension of [42], is to develop three serious games based on UL functional tasks, manipulated by
the Novint Falcon device, and to collect quantitative data about SCI patients for analyzing movement
smoothness. Moreover, this research involves the novelty of applying force feedback to SCI patients
while analyzing the movement smoothness. In addition, electromyographic signals are obtained,
integrating a Myo Gesture armband into the platform, which could be useful in the future for analyzing
impairments in the muscles activation pattern.

The rest of the paper is organized as follows: Section 2 describes the methodology in relation to
the integration of a commercial haptic device (Novint Falcon) and a commercial electromyography
(EMG) sensor (Myo Gesture armband) into a virtual reality platform; the development of the serious
games and the validation proof. Section 3 presents the results of the implemented proof of concept.
Section 4 includes the discussion and Section 5 concludes the paper.

2. Materials and Methods

2.1. UL Rehabilitation Platform

The platform was composed of a PC, including the serious games developed in Unity3D, and two
hardware devices: Novint Falcon for providing force feedback and manipulating the serious games;
and Myo Gesture Arm Band for providing information about muscle contraction (see Figure 1).

Figure 1. Scheduled illustration of the upper limb rehabilitation platform: Myo Gesture armband (left
object in image) and Novint Falcon device (right object in image).

2.1.1. Novint Falcon

The Novint Falcon (see Figure 1, right) is a desktop haptic robot device with 3 degrees of
freedom (DOF). It provides haptic feedback where the users feel virtual objects as they virtually touch
them [43]. The device consists of three motorized arms attached to an interchangeable end-effector
providing kinesthetic feedback. It uses a USB 2.0 port, has a capacity of 9 N of force, and provides a
10 × 10 × 10 cm3 working space. The device has a refresh rate up to 1000 times per second [44].

In this paper, the Novint Falcon was selected because of its low cost, at least one order of magnitude,
compared to similar devices, such as the Delta.3 [45] or Omega-3 [46], and because it can generate
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more force feedback than other low cost haptic devices [28]. It was used as an end-effector robotic
device for upper limb rehabilitation. However, the Novint Falcon comes with a standard ball grip
which is difficult to use by patients with SCI, as a fine pinch is necessary to perform the grasp [47].
The grip selected for SCI patients was of a cylinder shape for a better hand-grasp. This was a novelty
in comparison to previous studies and it was designed and printed on a 3D printer.

In previous studies, tests were performed with an EMG recording system located in the main
arm muscles [48]. The tests showed that using the Novint Falcon to give force feedback activates the
Anterior Deltoid muscle, which flexes and medially rotates the arm, and the Extensor Carpi Ulnaris
muscle, which extends and adducts the hand at the wrist joint. This was demonstrated by applying
different degrees of haptic feedback in an exercise where participants would press down on a vibrating
cube [48]. Therefore, the tests concluded that, by using the Novint Falcon, the shoulder and the forearm
are activated.

2.1.2. Myo Gesture Arm Band

The Myo Gesture armband (see Figure 1, left) is a wearable gesture and motion control device
working with EMG sensors to measure electrical pulses in the arm [49]. While muscles expand and
contract, the armband sends signals wirelessly to other devices. It uses a Bluetooth 4.0 low energy
connection, it has a proprietary muscle activity EMG sensor, a 9-axis inertial measurement unit (IMU),
a rechargeable lithium-ion battery with one full day use out of single charge and haptic feedback which
provides short, medium or long vibrations.

Deeping into the sensors, the device has 8 EMG sensors and an IMU, containing a three-axis
gyroscope, a three-axis accelerometer and a three-axis magnetometer. Thanks to this 9-axis IMU,
Myo Gesture armband senses the motion, orientation and rotation of the forearm, used to recognize
hand and wrist movements.

In this paper, the device was used for obtaining a correct EMG monitoring during the performance
of the rehabilitation games. By using this armband, the muscle contraction and the arm kinematics
were stored for a posterior data analysis. Because of the Myo Gesture armband design, the 8 EMG
sensors are located equally distributed in the perimeter of the forearm. The EMG data was streamed at
200 Hz by Bluetooth communication to the PC.

Moreover, the rehabilitation platform implemented provided the opportunity to visualize in real
time the data obtained from the EMG sensors. This functionality allowed to measure the muscle
strength that the patient performs during each game.

2.1.3. Communication Protocol

The communication between the virtual environment and the devices were implemented via
sockets. The communication frequency between these devices was very important. Because the user
needed to perceive continuity in the images, the frequency of 30 Hz was selected for the graphics.
However, for haptic stability without oscillations a sampling rate greater than 500 Hz was mandatory.
In this paper, the frequency selected was around 650 Hz.

2.2. Serious Games Development

The first step to create the rehabilitation platform was to implement the virtual end-effector.
A software created the socket between the Unity 3D platform and the Novint Falcon device, enabling
the bidirectional transmission and reception of information.

To study the movement of the virtual object, it was necessary to establish a relationship between
the Cartesian coordinates of the end of the haptic device and the coordinates of the virtual object.
This module updated every frame in the scene with the position of the end-effector. The axes reference
of the Novint Falcon and the games are shown in Figure 2, where the x and y axes are horizontal and
vertical movements on the screen respectively, and the z axis comes out of the screen.
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(a) (b) 

Figure 2. (a) Novint Falcon and (b) serious games reference axes.

Then, the serious games have been implemented with a therapeutic sense. To create a complete
platform, different menus focused on the patients were developed. The configuration of the games
attributes was essential to fit the games according to the needs of each patient in relation to the functional
capabilities. Within each serious game proposed, patients had to reach the number of objectives
selected by the therapist. To achieve this goal, the time of execution was restricted. If the patient did
not achieve the objectives in the available time, the game would finish. To help patients in developing
this task, the movement made with the end-effector was visualized in the virtual environment.

A summary of the main characteristics analyzed in each game is shown in Table 1. The behavior
and characteristics of each serious game are explained in subsequent sections. These features were
measured in terms of movement smoothness. Moreover, each serious game included elements of
visual feedback, recommended to boost the rehabilitation. Therefore, each serious game sought to
check if it was able to positively modify neural mechanisms and improve motor performance by
tuning the control structure of a patient. This effect should be analyzed in a future work, where a
clinical validation should be carried on. This effect has been mostly analyzed in stroke patients [50]
but these feedback sources can be extended to patients who have suffered other neurological diseases.
Nevertheless, more studies focused exclusively on SCI upper limb impairments and their recovery are
needed to elucidate if there are any difference in the residual motor control after an SCI compared to
post-stroke patients.

Table 1. Summary with the main characteristics of each game.

Game Exercise Type Force Type Therapeutic Objective

Following the path
Picking bananas
Collecting stars

Path guidance
Resistive Resistive

Hooke’s law
Viscosity Hooke’s

law

Accuracy
Accuracy, Strength
Accuracy, Strength

2.2.1. Following the Path

The end-effector in the scene was represented by a pencil which emulates a path drawn by the
patient. In this game, there was not a selection of the number of the objectives. The path was the same
in all configurations. Users had to travel inside the path without going out of the edges and when they
got out of it, an opposed force was exerted. When the user completed a segment, it changed its color to
a darker one (see Figure 3a) until the user completed all segments or the time was exhausted.

This game was implemented in 2D (x and y axes) because the depth of the scene could cause
trajectory disturbance in patients. The range of motion was of 5 cm in x axis and of 7.5 cm in y axis.
The path of the trajectory had a width of 0.5 cm.

Therapeutic Objective

This rehabilitation game was based on a path guidance exercise. The therapeutic objective was to
improve the precision and smoothness in the UL movement made by the patient and to recover fine
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motor control. This training modality using robot-mediated therapy was a combination of assistive
and active exercise. When the patient was moving the end-effector inside the path, the active mode
was working and the patient felt no force. However, when the patient went out the path, the assistive
modality started to push the patient’s hand inside. Therefore, the haptic robot assisted by providing
force feedback opposing to the movement of the patient.

In this training, the trajectory performed by the patient acquires relevant importance. For this
reason, the trajectory made by the patient was collected, so the movement smoothness could be analyzed.

The force feedback (FV) was implemented by using Hooke’s law (see Equation (1)).

FV (kT) = −kV ΔX(kT), (1)

where T was the sampling time, kT a specific instant in the discrete domain (k ∈ [0,1,2, . . . ]), ΔX(kT)
the distance to the edge of the path, and kV the stiffness or elasticity simulated in the edge of the path.
The force was implemented in the edges of the path, so patients felt these edges like walls that they
should not cross.

 
(a) 

 
(b) 

Figure 3. (a) Serious game “Following the path”; (b) Serious game “Picking bananas”.

2.2.2. Picking Bananas

The end-effector was a basket which must collect different bananas that were located in different
trees (see Figure 3b). The patient moved into the environment with the basket and when a banana fell
from the tree, he had to get it with the basket before it touched the floor.

The therapist selected the number of bananas in the scene and the time for the duration of the
task. Then, the game selected the frequency of falling and it randomized the falls for every session.
The game notified the user when one banana was going to fall by changing its color and producing
a sound. If the banana fell into the basket, the score increased. If it did not fall into it, it simply
disappeared. When all the bananas fell, the game ended and the final result screen was visualized.

The force feedback provided by the haptic device was proportional to the number of bananas
inside the basket, as a concept of weight and friction. Depending on the user, a high number of bananas
could be tiring. Therefore, users could empty the basket in the left corner of the screen when they
passed by.

The trees were disposed in the floor using a distance of 6 cm. With this distribution, users had
enough space to move the end-effector in the total range of motion offered by the haptic device.

Therapeutic Objective

The rehabilitation exercise implemented in this serious game was resistive, so the robot opposed
to the movement that the patient performed. In this kind of exercises, the number of repetitions should
be small to avoid fatigue. A rest between exercises should be sufficient for recovery, and the resistance
should be modulated to increase it as the patient ability grows.
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The force feedback implemented was a viscosity resistance. This force was proportional to the
velocity and opposed to the end-effector movement (see Equation (2)). This force (FV) should increase
according to the number of objectives collected.

FV(kT) = −bV
.

X(kT), (2)

where T was the sampling time, kT a specific instant in the discrete domain (k ∈ [0,1,2, . . . ]),
.

X (kT)
the velocity of the end-effector and bV a constant referred to the viscosity. In this exercise, an isotonic
muscle contraction was produced. This muscle contraction implied the shortening and lengthening of
muscle fibers. Depending on the amount of force working against an individual’s body, one of two
kinds of isotonic contractions took place: concentric and eccentric contractions. Concentric contractions
occur when muscles shorten while its tension is greater than the force opposing it. On the other hand,
eccentric contractions occur when muscles extends in length [51].

2.2.3. Collecting Stars

The virtual visualization of the end-effector was a rocket and the objectives were stars which must
be eliminated (see Figure 4). To destroy the stars, the patient moved the rocket to the star position.
The game finished when the total number of objectives were achieved or the time was up. The stars
had different sizes: the bigger ones were easier to catch than the others.

 
Figure 4. Collecting stars interface; one star has been collected.

A star was eliminated when the rocket collided with it. Once the collision was done, the star
disappeared from the scene, the score was incremented and a sound was produced. After collecting
a star, the user had to come back to the center of the screen before performing other destruction.
To achieve this behavior, the collision detection module was disabled during this period.

This game was designed in 2D, because it focused on following a straight trajectory, rejecting the
depth of the scene. Therefore, the allowed movements were in the y and x axes, but not in z axis.

The center of the stars was disposed in a circumference with a radius of 4.5 cm, centered in x and
y equal to zero. Consequently, the range of motion of the haptic device was fully covered, allowing a
range of motion of −5 cm to 5 cm in both axes.

Therapeutic Objective

The exercise implemented in this game was resistive. The robot provided force opposing the
movement. Thus, its goal was to obtain the strengthening of the UL muscles. In addition, with
this game the linearity of the movement could be checked. Patients with UL lesion usually tried to
compensate movements performing curved trajectories when they tried to catch an objective which
was in a straight direction.

165



Appl. Sci. 2020, 10, 963

In this case, there was a zone without force in the middle of the game circle, but when the patient
was close to the targets, the force applied increased. The force began to act only in a radius of 2.5 cm
from the objective. The force applied followed the Hooke’s law (see Equation (1)). Therefore, the force
scaled linearly with respect to the distance when the end-effector was entering into the force area.

As in the picking bananas game, the muscle contraction was isotonic, because the force depended
on the movement and the position. A shortening and lengthening of the muscle fibers occurred during
the game performance.

2.3. Participants

A total of 8 people participated in the study divided into two groups: a group of healthy people
(n = 4) and a group of cervical SCI patients (n = 4). All patients fulfilled the following inclusion criteria:
age 16 to 65 years, at least 6 months from the injury onset, and cervical injury of the metameric levels
between C1 (first cervical vertebra) and C7 (7th cervical vertebra), neurologically classified according
to the American Spinal Injury Association (ASIA) scale into grades C or D [52]. Patients who presented
any vertebral deformity, joint constraint, surgery on any of the UL, balance disorders, dysmetria due to
associated neurologic disorders, visual acuity defects, cognitive deficit, or head injury associated with
the SCI were excluded. Background data of patients are provided in Table 2. The healthy subjects were
chosen according to reach two groups of similar demographic characteristics (3 males of 19, 21 and
23 years old and a female of 44). The guidelines of the declaration of Helsinki were followed in every
case. Informed consent was obtained from all individual participants included in the study, which was
approved by the Local Ethics Committee, Toledo, Spain.

Table 2. Spinal Cord Injury (SCI) patients’ characteristics.

Patient Age Sex Injury Level ASIA

1 19 M C4 C
2 18 M C4 C
3 45 F C5 D
4 20 M C6 C

2.4. Experimental Setup

The study was performed during two days, with two sessions per day. Therefore, the study was
formed by data obtained from four different sessions. In all sessions, participants performed the test
before starting with the serious games. This methodology was used to obtain clear results. In this
way, participants had a previous knowledge of the games and the results obtained did not show the
variability of the learning process.

The three games were performed in all sessions, always in the same order and with the same
characteristics to avoid including variability into the study. First, the “Picking bananas” game was
performed for 2 min and 15 objectives were selected. Second, the “Collecting stars” game was
performed for a maximum of 2 min and 16 objectives were selected. Finally, the “Following the path”
game was also performed for a maximum of 2 min. The maximum force selected in all games was at a
value of 4.5 N, half of the maximum available force at the Novint Falcon. This parameter selection was
chosen because in all tests participants showed skills to perform the task with this configuration.

All participants were right handed. The end-effector of the Novint Falcon was held with the right
hand and the Myo Gesture armband placed in the same arm, specifically in the forearm, with the
electrodes located on the flexor and extensor wrist muscles. The tasks were performed in the frontal
plane of the patients (see Figure 5).
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Figure 5. Example of a healthy trial with the Novint Falcon held on the right hand and the Myo Gesture
armband on the right forearm.

2.5. Data Processing

In this study, the UL motor performance of each participant was measured in terms of movement
smoothness, computing the peaks number from the velocity profile during the task execution proposed
by the serious games.

A processing script was developed by using the software MATLAB (MathWorks®). The speed
profile was obtained from the position data obtained by the haptic robot. These data were stored into
text files during the performance of each serious game. The trajectories were analyzed in 2D.

The statistical non-parametric U Mann-Whitney test was applied to analyze the possible differences
between both populations (healthy and patients groups) with a significance level of 5%. The results
were expressed as mean and standard deviation for the following variables: mean and peak speed
(m/s), number of peaks on the trajectory, and duration of the task.

3. Results

The results in relation to the motor performance in each variable within the serious games are
shown in Tables 3 and 4.

Table 3. Results about duration, as well as peak and mean velocity in each serious game for both
experimental groups (a, statistical differences p < 0.05).

Following the Path Healthy Group (n = 4) SCI Patients (n = 4)

Duration (s) 28.55 (7.91) a 49.52 (13.33) a

Peak velocity x (m/s) 0.255 (0.121) 0.406 (0.133)
Peak velocity y (m/s) 0.556 (0.203) 0.270 (0.125)
Mean velocity x (m/s) 0.063 (0.008) 0.058 (0.015)
Mean velocity y (m/s) 0.070 (0.018) 0.058 (0.020)
Picking bananas

Duration (s) 120.00 (0) 120.00 (0)
Peak velocity x (m/s) 1.600 (0.441) 1.752 (0.591)
Peak velocity y (m/s) 0.799 (0.813) 0.818 (0.902)
Mean velocity x (m/s) 0.060 (0.013) a 0.141 (0.065) a

Mean velocity y (m/s) 0.047 (0.013) a 0.091 (0.022) a

Collecting stars
Duration (s) 34.66 (7.91) 41.78 (15.83)
Peak velocity x (m/s) 1.232 (0.223) 0.878 (0.231)
Peak velocity y (m/s) 1.317 (0.387) 0.898 (0.145)
Mean velocity x (m/s) 0.160 (0.082) 0.140 (0.056)
Mean velocity y (m/s) 0.158 (0.054) 0.137 (0.054)

167



Appl. Sci. 2020, 10, 963

Table 4. Peaks number in each serious game for both experimental groups (a, statistical differences
p < 0.05).

Peaks Number Healthy Group (n = 4) SCI Patients (n = 4)

Following the path 51.12 (11.53) a 81.32 (22.93) a

Picking bananas 154.75 (12.63) 164.72 (17.22)
Collecting stars 54.48 (10.25) 67.42 (24.58)

3.1. Following the Path

The time spent in the performance of the task was significantly different: healthy people spent on
average 28.55 s and SCI patients 49.52 s. This indicates that patients needed to perform the movement
slowly for avoiding going out of the edges. During the task execution, a counter quantified the number
of times that a participant went out of the path. The analysis shows that healthy subjects went out
of the path an average of 2.75 times and SCI patients 13.75 times. This fact increases the corrections
number of the hand due to the force feedback applied. So, the number of peaks in the speed profile is
statistically different between both groups.

3.2. Picking Bananas

In this serious game, all the participants spent 2 min. The average of the speed profile is slightly
higher in SCI patients than in healthy subjects. This is because SCI patients made quick movements
trying to catch the objectives.

The number of peaks obtained in the analysis shows that SCI patients perform more accelerations
and decelerations in the speed profile. However, the number of peaks was very high in both groups,
not showing statistical differences. Nonetheless, by observing the speed profile we observe that the
speed profile of SCI group is more abrupt than the healthy participants. An example of average
speed profile on axis x during the execution of the Picking bananas game for one healthy and one SCI
participant is shown in Figure 6. This profile shows a maximum speed peak of 1.3 m/s for the healthy
participant and 1.9 m/s for the SCI one. Two peaks higher than 0.5 m/s can be observed in the healthy
subject, while this number rises up to fourteen for the SCI participant within the same time frame.
Similar results are observed in all axes for all games and participants. However, a larger clinical study
should be carried on to better analyze those differences and obtain statistical differences.

 
Figure 6. Example of a Healthy (blue) and SCI (red) participant speed profile of x axis measured from
the end-effector of Novint Falcon device in the Picking bananas game.

3.3. Collecting Stars

During the execution of this serious game, SCI patients spent more time for reaching the 16
objectives (41.78 s) than healthy subjects (34.66 s). The duration of the exercise could affect the
smoothness of the movement. This was because carrying out the task more slowly produced
segmentation of the movement and more peaks appeared in the speed profile. In addition, SCI patients
performed longer trajectories with a higher number of peaks than the healthy subjects (see Figure 7 for
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an example). This longer trajectories were due to the difficulty of accurately reaching the objectives,
both the starts and the center position. For the examples shown in Figure 7, it can be observed how
the healthy performed more accurately trajectories both on the center and the start positions. It can
also be observed that just one approximation, or two at maximum in some points, was performed to
reach every star. On the contrary, the SCI participant performed multiple passes through the same
point. Some stars, especially shown at the left-bottom part of the image, needed more than five
approximations to be reached. Moreover, the lines accumulation on the center of the image is clearly
stronger in the SCI patient plot.

Figure 7. Example of a Healthy (blue) and SCI (red) participant range of motion (ROM) measured from
the end-effector of Novint Falcon device in the Collecting stars game.

3.4. Electromyography Recording

An example of the activation pattern in flexors and extensors muscles measured from the Myo
Gesture armband placed on the forearm of a healthy subject and an SCI patient during the execution of
the serious games is shown in Figure 8. These data were analyzed taking into account the potential
values obtained from the Myo Gesture armband. The EMG data provided by the Myo Gesture armband
was unitless, 8 bit value. Hence, it provided a potential range between 0 and 255. To represent the
muscle contraction, the value of the data collected from the sensor placed in the muscles of interest had
been calculated. In all trials, SCI patients showed a stronger activation than healthy people. However,
for all users, the muscle contraction was low, obtaining an average of 38.13 in “Following the path”
game, 39.64 in “Picking bananas” games, and, finally, 53.35 in “Collecting stars”.
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(a) 

(b) 

Figure 8. Activation pattern in the flexors and extensors muscles from Novint Falcon device placed on
the forearm for the three serious games for (a) a healthy subject and (b) an SCI patient. The information
provided by the Myo Gesture armband is unitless, with a potential value in the range of [0,255].
EMG = electromyography.

4. Discussion

In the present study, all virtual environments developed focus on reaching UL functional tasks. For
the performance, they require a combination of analytical movements in each involved joint. The force
feedback delivered by means of Novint Falcon provides sensitive information to the patient that
modifies the kinematic patterns performed and, as a consequence, the kinematic variables measured.
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An important contribution in this research with respect to previous studies is the integration
of the Novint Falcon device and the Myo Gesture armband into a unique platform, obtaining EMG
signals from flexors and extensors muscles of the wrist joint. The monitoring of EMG signals could be
useful in the future for analyzing impairments in the muscles activation pattern during the serious
games performance. The EMG values obtained are low, far from the maximum value provided by the
Myo Gesture armband. This effect occurs because the load of the therapy proposed is also moderate.
Therefore, the muscle activity that patients need to overcome the force feedback is moderate. It can be
appreciated that, in the “Collecting star” game, where the force feedback applied is higher, the muscle
contraction is also higher. To represent the muscle contraction, the value of the data collected has been
calculated. For that reason, it is necessary to validate this EMG signal with those activation patterns
measured from a clinical EMG system. In previous studies, differences in EMG patterns between
healthy subjects and patients with cervical SCI have been reported to match with the differences in
kinematic results [53]. Therefore, the EMG signal is essential for monitoring the muscle contraction
during the games performance. In a posterior analysis, these data could be used to check the changes
in the patterns of motor activity during the rehabilitation process. The data provided by the EMG
could also be useful for controlling the appearance of peripheral fatigue [54]. Moreover, its supervision
is important to avoid damaging the patient’s muscle with an overload of work.

In relation to the content of the games, the “Collecting stars” game has been developed similar to
those proposed by Scalona et al., where they provide 8 objectives to reach with different levels of force
feedback [29]. In our proposal, the game involves 16 objectives around the circumference: four in the
vertical and horizontal line, and the other 12 in the diagonal lines. The other two serious games were
oriented to complete functional tasks, like the commercial games included in Novint Falcon and used
by Chortis et al. [33]: one of them, the “Picking bananas” game, to pick up and carry objects; and the
other one, the “Following the path” game, to follow a hand trajectory.

Nonetheless, the lack of movement smoothness has already been demonstrated in presence
of neurological pathologies [16]. It is measured at the distal segment and shows as a consequence
longer hand trajectories with a higher number of directional changes. This characteristic provides
objective quantitative information of UL motor function and control. The ideal condition when
moving the hand between pairs of targets is to generate roughly straight hand trajectories with a
single-peaked, bell-shaped speed profile [15]. This behavior was proved to be independent of the
part of the work-space in which the movement was performed. Moreover, the results obtained were
strong indicators that movement planning takes place in terms of UL distal segment, by means of
hand trajectories rather than joint rotations [55,56]. Nevertheless, smoothness metric has shown to be
discriminative between healthy and neurological patients when smoothness is computed from the
peaks number in the speed profile [20,21]. Therefore, in this paper, smoothness has been measured
by computing the peaks number within the speed profile. Results from the proof of concept show
that this behavior was maintained, and a higher peaks number was obtained in SCI patients than in
healthy people for the three serious games. However, statistical differences were only obtained in the
“Following the path” game.

5. Conclusions

The use of new technologies in the rehabilitation field has increased in the last years. Robot
aided and VR rehabilitation provide higher motivational environments to the patient, facilitate the
performance of the necessary movement repetitions for inducing the UL motor learning and increase
the amount of therapy that patients receive. However, these technologies are expensive, and a need for
low-cost devices exists. This work takes advantage of low-cost VR systems and robotic haptic devices
to enhance involvement and engagement of patients to provide a congruent multisensory afferent
feedback during motor exercises and benefit from the flexibility of virtual scenarios.

The low cost platform developed in the present work enables the UL rehabilitation with haptic
feedback and EMG monitoring for SCI patients. First of all, three serious games have been designed
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and implemented to compute within them the smoothness movement. The design and implementation
of each serious game required the definition of a unique interface and physical models related to
haptic feedback. In all of them, the movement smoothness has been reported lower in patients than in
healthy people, showing an inverse relation with the peaks number obtained. As a conclusion, the
three serious games proposed are suitable for measuring movement smoothness, but the most suitable
game for discriminating between healthy and SCI patients is the “Following the path” game. This is
because, in this game, the order to reach the different nodes has been imposed, being always the same
and allowing an identical comparison between participants. Nonetheless, these assumptions should
be confirmed with a large clinical validation.

A proof of concept to check the functionality of the platform with SCI patients was made. Results
obtained in terms of movement smoothness show differences in the movement patterns. Some benefits
drawn from this research are exposed as follows:

• All the devices of the platform are low-cost and easily adaptable for different people, with a short
time spent in preparation for the serious games performance.

• The configuration options used in this research allow to create different virtual scenarios, in order
to personalize each patient rehabilitation.

• The final design generates a good haptic response and reliable monitoring of the muscle contractions.
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Featured Application: By using new organizational models, robotic rehabilitation can be

sustainable; therefore, it is possible to provide high technological upper limb treatment to a

high number of patients.

Abstract: Robotic rehabilitation is a promising way to restore upper limb function, but new
organizational models are crucial in order to improve its sustainability. We aimed to analyze
the feasibility of a robot-Assisted REhabilitation Area (robotAREA) equipped with four devices, using
a new organizational model in which one physiotherapist supervises up to four patients. In 33 days,
60 patients were treated in the robotAREA. Two hundred fifty-five rehabilitation sessions were
analyzed, each including two, three, or four patients supervised by one physiotherapist (the R2, R3,
and R4 group, respectively). For each session, the duration of (a) setup, (b) training, (c) supervision,
(d) session closure, and participant satisfaction were measured. For each patient, upper limb
impairment, disability, mobility, and comorbidity were recorded. The time of training in the R4
group was lower by only 2 and 3 min compared to the R2 and R3 groups, respectively, while the
supervision significantly changed between the R2, R3, and R4 groups. No differences were observed
in satisfaction. Moreover, according to the logistic regression analysis, when the mean disability of
the group is moderate, four patients can be supervised by one physiotherapist. These results suggest
that the proposed model is feasible, and the mean disability of the group could influence the proper
physiotherapist/patient ratio.

Keywords: rehabilitation; robotics; technological devices; upper limb impairment; organizational
model

1. Introduction

Upper limb impairment is defined by the International Classification of Functioning, Disability
and Health model [1] as (1) impairments of body function, such as a significant deviation or loss in
neuromusculoskeletal and movement-related function related to joint mobility, muscle power, muscle
tone, and/or involuntary movements, or (2) impairment of body structures, such as a significant
deviation in structure of the nervous system or structures related to movement.
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Robot-mediated therapy after upper limb impairment, because of neurological or orthopedic
diseases, is emerging in the rehabilitation field. A recent Cochrane review highlighted a potential benefit
of the electromechanical and robot-assisted upper limb training in stroke patients [2]. In addition,
robotic therapy can increase the efficiency of therapy, and therefore the accessibility to treatment [3].
In fact, in an era of increasing focus on healthcare resource utilization, a considerable interest is
devoted toward reducing costs while preserving a high-quality level. From this perspective, economic
evaluations of rehabilitation interventions using cost-effectiveness and/or cost-utility analysis are
needed [4]. However, few studies have been conducted on the real costs of robotic and technological
rehabilitation when compared to traditional rehabilitation. Wagner et al. [5] found that the costs of an
additional upper limb treatment (robotic or conventional) in stroke patients can be recuperated because
of lower general healthcare costs. Moreover, a recent systematic review, including five studies, found
that robotic therapy produces a better economic outcome when compared to conventional therapy [6].

In addition, Masiero et al. [7] suggested that the availability of a room equipped with more
than one device can further increase the sustainability of the treatment, addressing an essential need
of under-resourced healthcare systems [8]. In fact, although robotic devices are expensive, new
organizational models where one physiotherapist supervises more than one patient could optimize the
human resources. Some authors [9–11] suggested that this approach can be as effective as traditional
therapy for stroke patients, presenting a more cost- and labor-efficient option. However, to the
best of our knowledge, there have been no previous studies that analyzed either the rehabilitation
dose provided to the patients or patient’s satisfaction when different physiotherapist/patient ratios
have been used. Moreover, the clinical characteristics of patients that could influence the proper
physiotherapist/patient ratio remain uninvestigated.

In April 2016, to implement the robotic rehabilitation in a sustainable way, a set of four technological
and robotic devices for the upper limb was identified, and a robotic rehabilitation area was built and
equipped with the set [12]. This allowed experimenting with a new organizational model where
more than one patient is supervised by one physiotherapist, in order to increase the efficiency of the
robotic treatment.

Then, to critically evaluate the feasibility of this model, a study based on data related to the use of
these devices in clinical practice was carried out.

Specifically, the aim of this study was twofold: (1) to verify the feasibility, in terms of rehabilitation
dose (as measured by the time of training) and patient satisfaction (as measured by the Visual Analogue
Scale for Satisfaction), of a new organizational model in which one physiotherapist supervises up
to four patients using a set of four robotic-technological devices; and (2) to identify the optimal
number of patients that can be supervised by one physiotherapist, in accordance to the patients’
upper limb impairment (measured by the Motricity Index), disability (measured by the Barthel Index),
mobility (measured by the Deambulation Index), and comorbidity (measured by the Cumulative
Illness Rating Scale).

2. Materials and Methods

2.1. Study Design

An observational feasibility study examining the daily activity of the robot-Assisted REhabilitation
Area (robotAREA) of a rehabilitation center in Italy.

2.2. Ethics

The study was carried out in compliance with the Helsinki Declaration. All the patients (both
inpatients and outpatients) provided signed written informed consent to use collected data for
clinical research purposes at the admission in the rehabilitation center. This study was approved by
the Ethics and Experimental Research Committee of the “IRCCS Fondazione Don Carlo Gnocchi”
(Prot. N.8/2016CE_FDG/FC/SA) on 6 April 2016.
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2.3. Setting

The study was conducted over a period of 33 days (from February to March 2017). The RobotAREA
is equipped with a set of four devices, three robots (MOTORE, Humanware, Italy, and Amadeo
and Diego, Tyromotion, Austria), and one sensor-based device (Pablo, Tyromotion, Austria) [12].
MOTORE is a robotic device that allows passive, active, and active-assistive planar movements of the
shoulder and elbow joints; Amadeo is a robotic device that allows passive, active, and active-assistive
flexion and extension finger movements (also separately for each finger); Diego is a robotic device that
allows three-dimensional, unimanual, and bimanual movements of the shoulder joint, both in sitting
and in standing, with gravity compensation; Pablo is a sensor-based device that requires patients
to perform unassisted three-dimensional movements of the shoulder, elbow, and wrist joints, both
unimanual and bimanual, both when sitting and standing. All physiotherapists who worked in the
RobotAREA had an expertise in robotic rehabilitation and used these devices for more than one year.
Figure 1 shows the distribution of the device stations inside the robotic-technological area.

Figure 1. Distribution of the devices in the robot-Assisted REhabilitation Area (robotAREA).
Beginning by the door, clockwise: Diego; Amadeo; Pablo; MOTORE.

2.4. Participants

Inclusion criteria: both inpatients and outpatients admitted to our rehabilitation facility with
an upper limb impairment due to neurologic or orthopedic disorders. We excluded patients with
a contraindication to robotic therapy, which was identified as: (1) inability to understand the
physiotherapist’s instructions and device exercises; (2) fixed contraction deformity/excessive spasticity;
(3) any psychiatric disorder or severe cognitive disturbance that could reduce treatment compliance;
and/or (4) severe visual impairment.

2.5. Robotic Rehabilitation Treatment

Each RS lasted 45 min, and the training frequency was 3 or 5 times/week, depending on the
rehabilitation setting (outpatients or inpatients, respectively). During the treatment, both the distal
and the proximal segments of the patients’ upper arm were treated by means of the robotic and
sensor-based devices. Motor and cognitive tasks were performed during the treatment, while visual
and auditory feedback was provided to help the patients. During each session, the physical therapist
uses one system for each patient to minimize the time required to move the patients from one system
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to another. The rehabilitation program starts with the robotic device for the shoulder and elbow joints,
followed by the robotic device for the hand, the sensor-based device for the shoulder, elbow, and wrist
and, finally, the robotic system for the shoulder. The adopted protocol followed the general indications,
which were laid out in a flow chart, in order to ensure the homogeneity of treatment; however, for each
patient, the physiotherapist selected the device and adapted the exercises to his/her residual abilities.
More details on the rehabilitation protocol were previously reported [13]. During the rehabilitation
session (RS), one physiotherapist supervised more patients at once with a physiotherapist/patient ratio
of 1/2 (R2), 1/3 (R3), or 1/4 (R4). The number of patients treated in each RS was chosen by the physician
depending on the upper limb impairment, disability, mobility, and comorbidity of the entire group,
based on the experience done with a wide multicenter study [13].

2.6. Data Collection

A trained researcher monitored the patients during each robotic-technological rehabilitation
session (RS). The data collected during each session for each patient was called “observation”.
During the study, for each patient, several observations were performed, according to the individual
rehabilitation program. In order to limit bias due to researcher’s presence, neither physiotherapists nor
patients knew when data collection would take place.

To investigate whether and in which patients this new organizational model was applicable,
we compared the different rehabilitation settings (R2, R3, and R4) in terms of the rehabilitation dose
and clinical characteristics of the patients. For each session, the number of patients supervised by
one physiotherapist was recorded, together with the clinical status of the patients, using validated
clinical scales administered by trained operators. Specifically, we evaluated disability (according
to the Barthel Index, BI [14]), upper limb impairment (using the Motricity Index, MI [15]), mobility
(according to the Deambulation Index, DI [16]), comorbidities and severity (described according to
the Cumulative Illness Rating Scale-Comorbidity Index, CIRS-CI, and the Cumulative Illness Rating
Scale-Severity Index, CIRS-SI [17–19]). Complete demographic and clinical details were collected at
the first observation for each patient.

Moreover, to evaluate the feasibility of the model, the following measures were recorded: (a) tSetup
(minutes): time spent for the correct patient placement and for planning of the session exercises;
(b) tTraining (minutes): time spent by patient to perform the training; (c) tSupervision (minutes): time
spent by the physiotherapist in the individual interaction with the patient; and (d) tClosure (minutes):
time spent by the physiotherapist to close the exercise session and remove the patient from the device.
These measures were obtained in a subsample of observations. In addition, the Visual Analogue Scale
for Satisfaction [20], a self-assessment scale ranging from 0 (no satisfaction) to 10 (extreme satisfaction),
was used to measure patients’ satisfaction. The exact question was “Are you satisfied with your
rehabilitation session?”

2.7. Statistical Analysis

To evaluate the feasibility of the model, data obtained from the three groups were compared
by using one-way ANOVA tests, followed by post-hoc analysis with Bonferroni correction, or
Kruskal–Wallis tests, followed by post-hoc analysis, using Dunn’s procedure with a Bonferroni
correction, as appropriated.

To evaluate the impact of disability, upper limb impairment, mobility, and comorbidity
on the number of patients in each group, for each session, the mean data of the group were
computed and compared between groups (univariate analysis) using Kruskal–Wallis tests, followed by
post-hoc analysis, using Dunn’s procedure with a Bonferroni correction. Then, to identify the best
physiotherapist/patient ratio, a multivariate logistic analysis was performed, considering the variables
identified in the univariate analysis as covariates. Finally, a receiver operating characteristics ROC
analysis was used to identify a possible cutoff.
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For all statistical tests, the significance level was set to 0.05. Statistical analysis was performed
using SPSS (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY,
USA: IBM Corp.).

3. Results

In a period of 33 days, 60 patients were observed in our rehabilitation department. Table 1 shows
the demographic and clinical characteristics of the analyzed sample. Spinal disorders included spinal
cord injury after trauma or surgery on the column for neoplasia/lumbar spinal stenosis or spinal disc
herniation; orthopedic disease included patients with shoulder prosthesis, upper limb fractures/surgery,
and polytrauma. Upper limb impairment, disability, mobility, and comorbidities are reported in Table 2.
During the study, each patient performed a variable number of rehabilitation sessions depending
on the hospitalization stay and frequency of treatment per week. No serious adverse events were
observed, and the robotic therapy was well accepted by all patients, without changes in the initial
plan. None of the patients declined to participate in the study, since it did not interfere with their
rehabilitation plan.

Table 1. Demographic and clinical characteristics of the observed sample.

Age (Years) 64 ± 16 (Range: 19–91)

Sex
Male 27 (45.0%)

Female 33 (55.0%)

Setting Outpatient 11 (18.3%)
Inpatient 49 (81.7%)

Diagnosis

Stroke 41 (68.3%)
Multiple sclerosis 3 (5.0%)

Charcot Marie Tooth 1 (1.7%)
Guillain Barrè syndrome 1 (1.7%)

Motoneuron disease 1 (1.7%)
Parkinson disease 1 (1.7%)

Spinal disorder 7 (11.7%)
Orthopedic disease/trauma 5 (8.3%)

Table 2. Disability, upper limb impairment, mobility, and comorbidities of the sample.

Variable Mean ± SD Range

Barthel Index 57.7 ± 23.1 (14–97)
Motricity Index 57.5 ± 23.2 (1–93)
Deambulation Index 2.9 ± 2.2 (0–7)
CIRS-SI 1.0 ± 0.4 (0.3–2)
CIRS-CI 1.9 ± 1.0 (0–6)

SD: standard deviation; CIRS-CI: Cumulative Illness Rating Scale-Comorbidity Index; CIRS-SI: Cumulative Illness
Rating Scale-Severity Index.

The total observations (data collected at each session for each patient) were 782, with a mean of
24 observations/day (range: 17–31) and a mean of 13 observations/patient (range: 1–50) (see also the
supporting document: Supplementary Table S1). Two hundred fifty-five rehabilitation sessions were
recorded with a ratio of physiotherapist/patient as follows: 45 sessions (17.7%) with a ratio of 1/2 (R2);
148 sessions (58.0%) with a ratio of 1/3 (R3), and 62 sessions (24.3%) with a ratio of 1/4 (R4). The mean
value of the physiotherapist/patient ratio was 1/3.1.

3.1. Feasibility of the Model

Data related to the rehabilitation dose, supervision, and patients’ satisfaction were recorded in
a subsample of 329 observations (supporting document: Supplementary Table S1) and reported in
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Table 3. As expected, the tTraining was significantly different between groups (p = 0.007); post-hoc
analysis showed that it was significantly lower in the R4 group, when compared with both R2 (mean
difference: 3.2 min) and R3 groups (mean difference: 2.3 min). Instead, no differences in tTraining were
found between R2 and R3 groups. The tSupervision was significantly different between all groups
(p < 0.001), as confirmed also by post-hoc analysis. With respect to patient satisfaction, no significant
differences were observed between groups (p = 0.39).

Table 3. Feasibility measurements: rehabilitation dose (tTraining) and supervision time (tSupervision)
during a 45-min rehabilitation session, and patients’ satisfaction in the whole sample and the three
groups, separately, together with the statistical analysis. Data were obtained from 329 observations.

Whole Group R2 R3 R4 p Post-Hoc Analysis

Mean ± SD Mean ± SD Mean ± SD Mean ± SD R2 vs. R3 R2 vs. R4 R3 vs. R4

tTraining (min) 31.3 ± 6.4 32.8 ± 5.0 31.9 ± 6.0 29.6 ± 7.2 0.007 >0.99 0.04 0.01
tSupervision
(min) 9.7 ± 2.3 11.0 ± 3.2 9.7 ± 2.0 8.9 ± 2.1 <0.001 0.005 <0.001 0.007

VAS for
satisfaction 8 ± 1 8 ± 2 8 ± 1 8 ± 1 0.39 − − −

R2, R3 and R4 indicate groups with 2, 3 or 4 patients supervised by one physiotherapist, respectively. Values in bold
indicate statistical significance (p < 0.05). SD: standard deviation; VAS: Visual analogue scale.

In addition, we found that the mean time needed for the setup (tSetup) was 3.3 ± 1.3 min, while
the mean time needed for the session closure (tClosure) was 1.4 ± 0.5 min.

3.2. Impact of Disability, Upper Limb Impairment, Mobility, and Comorbidity on the Model

A comparison of upper limb impairment, disability, mobility, and comorbidity mean score between
the three groups was made and reported in Table 4. The results showed significant differences only
in BI, DI, and CIRS-SI between the groups R2 versus R4, and R3 versus R4. Considering the lack of
statistical significance between the R2 and R3 groups, a further analysis was made combining the R2
and R3 groups (R2 + R3 group). The logistic regression model was carried out on the three statistically
significant variables obtained from the univariate analysis. We found that the model was statistically
significant, χ2(3) = 36.096, p < 0.001. As shown in Table 5, among the three predictor variables, only
the BI was statistically significant. To obtain a reference value for the only significant variable (BI) in
the logistic regression model, an ROC analysis was carried out. According to the Youden index, the
obtained cut-off value was equal to 57.

Table 4. Disability, mobility, and comorbidity variables for the three groups, separately. Data were
obtained from 782 observations.

R2 R3 R4 p Post-Hoc Analysis

Mean ± SD Mean ± SD Mean ± SD R2 vs. R3 R2 vs. R4 R3 vs. R4

BI 49.0 ± 10 53.0 ± 12.6 63.0 ± 14.3 <0.001 0.24 <0.001 <0.001
MI 59.5 ± 14.7 57.2 ± 11.8 57.9 ± 8.8 0.42 - - -
DI 2.1 ± 1.2 2.4 ± 1.4 3.3 ± 1.4 <0.001 0.98 <0.001 <0.001
CIRS-SI 1.1 ± 0.3 1.0 ± 0.2 0.9 ± 0.2 <0.001 0.26 <0.001 <0.001
CIRS-CI 2.1 ± 0.8 2.0 ± 0.6 1.8 ± 0.4 0.06 - - -

Values in bold indicate statistical significance (p < 0.05). R2, R3 and R4 indicate groups with two, three, or four
patients supervised by one physiotherapist, respectively. SD: standard deviation; BI: Barthel Index; MI: Motricity
Index; DI: Deambulation Index; CIRS-CI: Cumulative Illness Rating Scale-Comorbidity Index; CIRS-SI: Cumulative
Illness Rating Scale-Severity Index.
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Table 5. Logistic regression model for the identification of the best physiotherapist/patient ratio (R2/R3
versus R4), considering the mean disability, mobility, and comorbidity of the group (identified in the
univariate analysis). Data were obtained from 255 rehabilitation sessions (782 observations).

β Standard
Error

p Exp (β) 95% Confidence Interval for Exp (β)

Relative Risk Lower Bound Upper Bound

BI 0.099259 0.039318 0.01 1.1044 1.0224 1.1928
DI −0.52213 0.37 0.16 0.5933 0.2873 1.2252
CIRS-SI −1.41553 0.75418 0.06 0.2428 0.0554 1.0647

Values in bold indicate statistical significance (p < 0.05). BI: Barthel Index; DI: Deambulation Index; CIRS-SI:
Cumulative Illness Rating Scale-Severity Index.

4. Discussion

Robotic tools are emerging in the rehabilitation field, showing promising expectations for an
intensive and personalized treatment. Nonetheless, these devices are expensive. Therefore, it is
necessary to find the best organizational models to increase the number of patients who may have
access to the technological rehabilitation, optimizing human resources. In this perspective, it is crucial
to know if and how patient’s disability, mobility, or comorbidity can influence an organizational model
where a new, non-traditional ratio of physiotherapist/patient would be adopted.

This study shows the feasibility, in terms of rehabilitation dose and patient’s satisfaction, of an
organizational model with one physiotherapist supervising more than one patient, using a set of four
devices for a comprehensive upper limb rehabilitation. In a 45-min rehabilitation session, regardless of
the physiotherapist/patient ratio, each patient performed about 30 min of training with an individual
physiotherapist supervision of about 10 min. As expected, the time of training was significantly lower
in the R4 group but with a gap of only 2 and 3 min compared to the R2 and R3 groups, respectively.
Regarding the difference in the training time recorded between the R2/R3 and R4 groups, an increase
of about 3 min of the rehabilitation session of the R4 group can be used to overcome this small gap.

Therefore, our results showed that the physiotherapists in this study were able to supervise up
to four patients, without a reduction of the treatment dose provided to the patient. This is a crucial
point: in fact, several studies report an intensity–effect relation between the amount of therapy that
individuals receive and the motor recovery [21,22]; additionally, no ceiling effect for the intensity of
the therapy has been observed [23–25]. Note that patient satisfaction was very high (8/10) without
significant differences between groups, so patients were very satisfied even if treated together with
one, two, or three other patients at the same time. Regarding the clinical characteristics of the patients,
our data did not show differences when two or three patients were supervised by one physiotherapist.
On the contrary, though as expected, the group in which four patients were supervised by one
physiotherapist (R4) had a lower disability and comorbidity and higher mobility than the R2 and R3
groups. A remarkable result is that upper limb impairment did not influence the organizational model
proposed, since the MI not significantly different between the groups (R2, R3, and R4). The multivariate
analysis showed that only the BI can predict significantly the treatment group, meaning that the
maximum number of patients supervised by one physiotherapist can be dependent on their level
of autonomy. Therefore, the BI seems to be the most important variable that could influence the
physiotherapist/patient ratio. Based on our results, a ratio of 1/4 could be used if the mean value
BI of the group of patients is higher than 57. Note that patients with BI values lower than 60 are
considered patients with a severe disability [14]. Our results showed a similar cut-off of disability, even
if calculated as the mean of the group (BI mean score of group <57).

The analysis of both clinical data and feasibility measures suggests that patients with a severe
disability (BI mean score of the group <57) can be equally treated in groups of two or three patients,
providing that they had the same dose. Instead, when a moderate disability is present, up to four
patients can be supervised by one physiotherapist. This study also confirms the possibility of optimizing
resources allocation. In fact, in our rehabilitation planning, a mean of 24 patients were treated each
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day with a mean value of physiotherapist/patient ratio of 1/3.1, which means eight rehabilitation
sessions/day. In a traditional rehabilitation model (with a physiotherapist/patient ratio of 1/1) to treat
24 patients/day, obviously 24 rehabilitation sessions/day are needed. As highlighted in the proposed
organizational model, it is possible to reduce the number of rehabilitation sessions/day (needed to treat
the same number of patients) by about 1/3, with better human resources allocation.

Moreover, it is worthy to note that we have specifically chosen a set of devices with a limited time
required to start the rehabilitation session, as highlighted by the reported tSetup, and therefore, these
have a limited impact on the provided rehabilitation dose. On the contrary, more complex devices, as
exoskeletons, require a longer time to fit the robot for individual patients, and it is one of the main
barriers to efficient use [26]. As in our approach, two studies on the same topic [8,9] used both robotic
and non-robotic devices, supporting the idea that this approach can be effective and sustainable.

Anyway, robotic rehabilitation is not merely a matter of increasing the amount and intensity of
therapy [27]. It provides extrinsic biofeedback that makes the patient aware of his movements and
consequently allows him to modify his movement patterns, thus fostering his participation in the
rehabilitation exercise [28–30]. Furthermore, it seems that the impact of technological rehabilitation on
functional outcome could be optimized by offering more chances to the nervous system to experience
“real” activity-related sensorimotor input during the training of upper limb movement [31].

From this knowledge and from our experience, it is very important to underline that
physiotherapists have to perform an adequate training to acquire expertise with regard to these
devices. With a correct use of them, the workload of the physiotherapists can be alleviated, their work
time can be optimized, and they can focused toward personalizing rehabilitation treatments, according
to each patient’s residual abilities and progress in order to optimize functional recovery [27].

The organizational model herein discussed shows the feasibility of providing a comprehensive
and a high technological level upper limb treatment that would be accessible to a high number of
patients at once, while preserving an adequate training time and physiotherapist supervision. Finally,
thanks to the sustainability in terms of optimizing human resources, this model can be applied to the
usual care of the clinical practice considering the advantages that the robotic devices can provide (for
example, to objectively measure the improvement during the therapy) [32,33].

Limitations of the Study

This study was conducted in a highly specialized rehabilitation center where all physiotherapists
had an expertise in robotic rehabilitation and used these devices for more than one year. Therefore, this
could limit the extension of our results to different rehabilitation units with lower levels of expertise.
However, we believe that this limitation does not severely impact on the application of the results,
since a high level of expertise is required to efficiently use these devices. Moreover, this study was not
aimed to evaluate the validity and the reliability of the used outcome measures. Finally, this study did
not compare the effect of different physiotherapist/patient ratios on the outcome of the rehabilitation
process. These aspects should be addressed in future studies.

5. Conclusions

In conclusion, this study showed the feasibility, in terms of rehabilitation dose and patients’
satisfaction, of a new organizational model, where a group of patients supervised by one physiotherapist
is treated with a set of robotic and sensor-based devices. Moreover, it highlighted that the mean disability
of the group, as measured by the Barthel Index, could influence the proper physiotherapist/patient
ratio. Future studies should be addressed to analyze the impact of this new model on the
rehabilitation outcomes.
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