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Preface to ”Numerical Linear Algebra and the

Applications”

This Special Issue named Numerical Linear Algebra with Applications is celebrating the 98th

birthday of the Greek mathematician Mr. Constantin M. Petridi, wishing him a long and happy life.

The aim of this issue in the journal Mathematics was to invite some colleagues to submit their new and

high-quality work related to numerical linear algebra and applications in different and modern fields

such as machine learning and others.

This Special Issue was edited by Professors Marilena Mitrouli from the National and

Kapodistrian University of Athens in Greece and Jbilou from the University of Littoral d’Opale in

France.

As this Special Issue was dedicated to Mr. Constantin M. Petridi, we also present, here, a short

CV written by Mr. Constantin M. Petridi himself.

CV of Mr. Constantin M. Petridi

Born 1923, Athens, Greece.

Father: Milton C. Petridi, heir to an internationally known tobacco company founded in 1848 in

Constantinople (now Istanbul).

Mother: Nina C. Petridi, born Fauqier, stemming from a British colony, Corfu, Greece.

1952 Married Lisa Skouze, daughter of Dimitri Skouzes and Athina Skouze. Have one son, Milton

C.Petridi. 1955–1972 I was consul for Sweden at Kavala, Greece, the location of my family’s tobacco

business. Languages: Fluent in English, French, German, and Swedish.

My Mathematical Life

After graduating from Athens College, Athens, Greece, I studied Mathematics at Stockholm

University, graduating with an M.Sc.

My professors were

• Fritz Carlson, also the Director of the Leffler Institute (Mathematics),

• Harald Cramer (Probability Theory and Theoretical Statistics),

• Oscar Klein (Theoretical Mechanics).

1947–1949: I was an Assistant to both chairs of Mathematics at the Royal Technical University of

Stockholm. My best friend, at that time, was fellow student Tord Ganelius.

1948: A Swedish business of my father, who knew the world renowned Hungarian Mathematician

Prof. Marcel Riesz, invited the latter to examine my mathematical background and research interests.

The result: Marcel Riesz invited me to become his student at Lund University, Sweden.

For better or for worse, I cannot say, I decided to remain in Stockholm.

End of 1948: I gave a manuscript to Prof. Carlson, titled Mathematical Structures defined by Identities.

Carlson sent it to Prof. Trygve Nagell, Oslo University, as a greater expert on such matters. In

reply, Nagell, in a long letter, said that my “Basic ideas undoubtedly opened new perspectives

ix



for Mathematics”. He suggested, for example, that I axiomatize trigonometry (Fourier coefficient

formulas).

Early 1949: I returned to Greece to take up the business of my father, who, in the meantime, had died.

A several-decades-long “Mathematical” interruption followed. I continued, however, my

mathematical research, whenever I had time, and read mathematical reviews for recent

developments.

1982: I left the tobacco business to devote myself, completely again, to mathematics.

1996: My old friend Tord Galenius, who, by then, was a permanent secretary of the Swedish Academy

of Sciences (Crafoord Prizes), introduced me to Prof. Torsten Ekedahl, University of Stockholm. I had

Q4 papers, on which I had written that the number In of irreducible identities (algebras) was equal to

In =

⎡
⎣n+ 1

2

⎤
⎦−1∑

k=1

(−1)k−1

(
n− k + 1

k

)
S2
n−k,

where Si := are the Catalan numbers
1

i+ 1

(
2i
i

)
.

Ekedahl praised my findings, telling me to send him the LaTeX manuscript, after my return to Greece.

Unfortunately, my hopes were dashed, as Ekedahl died some time later, aged 54. The Mathematical

Community acclaimed his achievements, including Jean-Pierre Serre.

2001: I started to publish my hitherto-discovered mathematical findings as ArXiv preprints. Peter

Krikelis, Assistant, Athens University, wrote them in LaTeX form. The number of downloads (reads)

was great.

My interest in mathematics started early in childhood, which I think is due to the unexpected results

it yields and its elegance. I remember, for example, how awe-stricken I was, when reading, as a child,

that the discriminant in a formula of the Fibonacci numbers is an integer.

Besides the above, I am, however, also interested in the work of other mathematicians, looking up in

Wikipedia, etc., their published results.

In conclusion, as many of my papers are on number theory, I quote one of the giants of the past: Carl

Fridrich Gauss: Mathematics is the Queen of Sciences and Number Theory is the Queen of Mathematics.

Khalide Jbilou, Marilena Mitrouli

Editors

x
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Abstract: In this work, we present numerical methods appropriate for parameter estimation in
high-dimensional statistical modelling. The solution of these problems is not unique and a crucial
question arises regarding the way that a solution can be found. A common choice is to keep the
corresponding solution with the minimum norm. There are cases in which this solution is not
adequate and regularisation techniques have to be considered. We classify specific cases for which
regularisation is required or not. We present a thorough comparison among existing methods for
both estimating the coefficients of the model which corresponds to design matrices with correlated
covariates and for variable selection for supersaturated designs. An extensive analysis for the
properties of design matrices with correlated covariates is given. Numerical results for simulated
and real data are presented.

Keywords: high-dimensional; minimum norm solution; regularisation; Tikhonov; �p-�q;
variable selection

1. Introduction

Many fields of science, and especially health studies, require the solution of problems
in which the number of characteristics is larger than the sample size. These problems
are referred to as high-dimensional problems. In the present paper, we focus on solving
high-dimensional problems in statistical modelling.

We consider the linear regression model

y = Xβ + ε, (1)

where X =
[

1 x1 · · · xd
]

is the design matrix of order n× (d+ 1), which is supposed
to be high-dimensional, i.e., n < d. The columns xi ∼ N(0n, σ2

i In), i = 1, 2, . . . , d, are the
correlated covariates of the model and all the elements of the first column of the design
matrix are equal to 1 in correspondence with the mean effect. The response vector y has
length n, ε = (ε1, ε2, . . . , εn)T is the n-vector of independent and identically distributed
(i.i.d.) random errors, where εi ∼ N(0, σ2) for all i = 1, 2, . . . , n.

In the present study we focus on the following two points.

1. Estimation of the regression parameter β ∈ Rd+1.
From numerical linear algebra point of view, the statistical model (1) can be con-
sidered as an underdetermined system. This kind of system has infinitely many
solutions. The first way to determine the desired vector β is to keep the solution
with the minimum norm. This solution is referred to as minimum norm solution
(MNS), [1] (p. 264). Another way of solving these problems is based on regularisation
techniques. Specifically, these methods allow us to solve a different problem which

Mathematics 2021, 9, 1806. https://doi.org/10.3390/math9151806 https://www.mdpi.com/journal/mathematics

1



Mathematics 2021, 9, 1806

has a unique solution and thus to estimate the desired vector β. One of the most pop-
ular regularisation methods is Tikhonov regularization, [2]. Another regularization
technique which is used is the �p-�q regularization, [3,4].
It is of major importance to decide whether problem (1) can be solved directly in the
least squares sense or regularisation is required. Therefore, we describe a way of
choosing the appropriate method for solving (1) for design matrices with correlated
covariates. For these matrices we study extensively their properties. We prove that as
the correlation of the covariates increases, the generalised condition number of the
design matrix increases as well and thus the design matrix becomes ill-conditioned.

2. To ascertain the most important factors of the statistical model.
Variable selection is a major issue in solving high-dimensional problems. By means
of variable selection we refer to the specification of the important variables (active
factors) in the linear regression model, i.e., the variables which play a crucial role in
the model. The rest of the variables (inactive factors) can be omitted.
We deal with the variable selection in supersaturated designs (SSDs) which are frac-
tional factorial designs in which the run size is less than the number of all the main
effects. In this class of designs, the columns of X, except the first column, have el-
ements ±1. The symbols 1 and −1 are usually utilised to denote the high and low
level of each factor, respectively. The correlation of SSDs is usually small, i.e., r ≤ 0.5.
The analysis of SSDs is a main issue in Statistics. Many methods for analysing these
designs have been proposed. In [5], a Dantzig selector was introduced. Recently,
a sure independence screening method has been applied in a model selection method
in SSDs [6], and a support vector machine recursive feature elimination method for
feature selection [7]. In our study, as we want to retain sparsity in variable selec-
tion, we adopt the �p-�q regularisation and the SVD principal regression method, [8],
in order to determine the most important factors of the statistical model.

In the regression model (1), there is no error setting in the design matrix X which
defines the model. It is always considered an unperturbed matrix X with covariates from
normal distribution with well determined rank. However, we assume i.i.d. random error
ε = (ε1, ε2, . . . , εn)T , εi ∼ N(0, σ2) for all i = 1, 2, . . . , n, incorporated in the model as given
from relation (1). Thus, we are having well-posed problems on the set of the data according
to the work in [9].

The paper is organised as follows. In Section 2, we briefly present some methods
for solving high-dimensional problems. We initially display the MNS and in the sequel
we present two regularisation methods. Specifically, Tikhonov regularisation and a gen-
eral regularisation technique, �p-�q regularisation method, are discussed. The described
methods are used in estimating the regression parameter β of (1) for design matrices with
correlated covariates and the results are given in Section 3. These methods can be applied
to ill-posed problems as well. Variable selection for SSDs can be found in Section 4. We end
up this work with several concluding remarks in Section 5.

2. Methods Overview

In this section, we present some methods for solving high-dimensional problems.

2.1. Minimum Norm Solution

The system (1), which is an underdetermined system, does not have a unique so-
lution. In fact, this underdetermined system has infinitely many solutions, and we are
seeking a solution such that its norm is minimised, i.e., the minimum norm solution (MNS)
argmin
β∈Rd+1

‖y− Xβ‖2
2, [1] (p. 264). A necessary and sufficient condition for the existence of

MNS is given in the following theorem.

2
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Theorem 1. Let X ∈ Rn×(d+1) be a high-dimensional matrix, i.e., n < d, with rank(X) = n,
and β∗ be a solution of the underdetermined system Xβ = y. Then, β∗ is a MNS if and only if
β∗ ∈ Range(XT).

Proof. As β∗ is a solution of the underdetermined system Xβ = y, we have

Xβ∗ = y ⇔ (β∗)TXT = yT . (2)

Let us consider the QR factorisation of XT , i.e.,

XT = QR = Q
[

R1
0d+1−n,n

]
,

where Q ∈ R(d+1)×(d+1) is orthogonal and R1 ∈ Rn×n is upper triangular. Therefore, (2)
can be rewritten as

(β∗)TQR = yT ⇔ (QT β∗)T R = yT . (3)

If we set
z = QT β∗, (4)

then

(3) ⇔ zT R = yT ⇔ RTz = y.

Moreover, we have

(4) ⇔ Q−1β∗ = z ⇔ β∗ = Qz ⇔ β∗ ∈ Range(Q) ⇔ β∗ ∈ Range(XT).

Taking into account the result of the above theorem, we obtain the formula for the
MNS β∗, which is given by

β∗ = XT(XXT)−1y. (5)

Formula (5) cannot be used directly for calculating the vector β, as it is not a stable
computation. Therefore, we state the Algorithm 1 for a stable way of calculating the MNS
through the singular value decomposition (SVD) of the design matrix X, [1] (p. 265). The
operation count for this algorithm is dominated by the computation of the SVD, which
requires a cost of O(nd2) flops.

Algorithm 1: Computation of MNS via SVD.

Inputs: Design matrix X ∈ Rn×(d+1), n < d, rank(X) = n
Response vector y ∈ Rn

Output: MNS solution β∗

− Compute the SVD of X, i.e., X = USVT =
n

∑
i=1

siuivT
i

− Compute the solution β∗ =
n

∑
i=1

uT
i y
si

vi

2.2. The Discrete Picard Condition

It is crucial to identify when problem (1) can be directly solved with a satisfactory MNS
solution or different ways of handling the solution must be employed. In [10], a criterion
for deciding whether a least squares problem can have a satisfactory direct solution or not
is proposed. This criterion employs the SVD of the design matrix X and the discrete Picard

condition as defined in [11,12]. Let X = USVT =
n

∑
i=1

siuivT
i be the SVD of X, where si are

the singular values of X with corresponding left singular vectors ui and right singular

3
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vectors vi, i = 1, 2, . . . , n. The discrete Picard condition ensures that the solution can be
approximated by a regularised solution [13].

Definition 1 (The discrete Picard condition). The discrete Picard condition (DPC) requires that

the ratio
|ci|
si

decreases to zero as i → n, i.e.,

|ci|
si
→ 0, as i → n,

where ci = uT
i y. The DPC implies that the constants |ci| tend to zero faster than the singular

values tend to zero.

Example 1. Let us now consider design matrices of order 50× 101, their columns have same
variance σ2 and same correlation structure r. In particular, we test two design matrices X with

(r, σ2) = (0.9, 0.25) and (r, σ2) = (0.999, 1). In Figure 1, we display the ratios
|ci|
si

and
|ĉi|
si

,

which correspond to the noise-free and the noisy problem, ci = uT
i y, ĉi = uT

i ŷ, i = 1, 2, . . . , n,
ŷ = y + ε. If the graphs are close enough the MNS is satisfactory; otherwise, regularisation
techniques are necessary for deriving a good approximation of the desired vector β. As we can see
in Figure 1, the values of the depicted ratios are very close in the design matrix with r = 0.9 case
whereas in the highly correlated matrix with r = 0.999 case the ratios differ. This implies that a
regularisation method is necessary for the second case.

Figure 1. The ratios |ci|/si and |ĉi|/si for the design matrices of order 50× 101 for (r, σ2) = (0.9, 0.25)
(left) and (r, σ2) = (0.999, 1) (right).

2.3. Regularisation Techniques

There are cases where the MNS β∗ cannot achieve a good approximation of the
desired unknown solution β. As in the linear regression model as described in (1) the
design matrix X is always unperturbed, and thus its rank can be a priori known, we can
adopt regularisation techniques. In the present section, we present two regularisation
methods. In particular, we present the popular Tikhonov regularisation [2] and the �p-�q
regularisation which has recently received considerable attention [3,4]. Both of these
techniques replace the initial problem with another one which is close to the original.

2.3.1. Tikhonov Regularisation

A regularisation method that is widely used is Tikhonov regularisation. The standard
form of Tikhonov regularization, which corresponds in linear regression model (1), is
given by

min
β∈Rd+1

{‖y− Xβ‖2
2 + λ2‖β‖2

2}, (6)

where λ is the regularisation parameter. The solution of the penalised least-squares problem
(6) is given by the formula

βλ = (XTX + λ2 Id+1)
−1XTy = XT(XXT + λ2 In)

−1y,

4
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as it holds the identity (XTX + λ2 Id+1)
−1XT = XT(XXT + λ2 In)−1. Indeed, we have

XT(XXT + λ2 In) = (XTX + λ2 Id+1)XT ⇒ (XTX + λ2 Id+1)
−1XT = XT(XXT + λ2 In)−1.

As we can see, Tikhonov regularisation depends on the regularization parameter λ.
An appropriate method for selecting λ leads to the derivation of a satisfactory approxi-
mation βλ of the desired regression parameter β. The error ε in the input data for the
statistical model that we study follows the standard norm distribution, i.e., ε ∼ N(0n, σ2 In).
Therefore, the norm of the error is known, and it is given by ‖ε‖2 =

√
n− 1σ. In the case of

known error norm, the appropriate method for the selection of the regularisation parameter
is the discrepancy principle, which is reported in Algorithm 2 [14] (p. 283). Following also
the analysis presented in [9], and due to the uniqueness of λ for most reasonable values of
ε (see, for example, in [15]), we adopt this method for our study.

Algorithm 2: Discrepancy principle.

Inputs: Design matrix X ∈ Rn×(d+1), n < d, rank(X) = n
Response vector y ∈ Rn

Error norm ‖ε‖2 =
√

n− 1σ
Output: Regularisation parameter λ
− Compute the SVD of X, i.e., X = USVT

− Set c = UTy
− Choose λ > 0 such that λ4cT(S + λ2 I)−2c = ‖e‖2, over a given grid of λ.

2.3.2. �p-�q Regularisation

A more general regularisation technique is the so-called �p-�q regularisation [3].
The main idea of this approach is based on the replacement of the minimisation prob-
lem ‖y− Xβ‖2 by an �p-�q minimisation problem of the form

min
β∈Rd+1

{ 1
p
‖y− Xβ‖p

p + μ
1
q
‖β‖q

q}, (7)

where μ > 0 is the regularisation parameter and 0 < p, q ≤ 2. The solution of the
minimisation problem (7) is given by

β̂μ = argmin
β∈Rd+1

{ 1
p
‖y− Xβ‖p

p + μ
1
q
‖β‖q

q}. (8)

Remark 1. In case of p = q = 2, the regularised minimisation problem (7) reduces to Tikhonov reg-
ularisation.

Concerning the selection of the regularisation parameter, we choose the optimal value
of μ, i.e., the value that minimises the error norm ‖β̂μ − β‖2 over a given grid of values
for μ. Concerning the computational cost, the implementation of the �p-�q regularisation
requires O(nd) flops.

3. Design Matrix with Correlated Covariates

In high-dimensional applications, the design matrix X =
[

1 x1 · · · xd
]

has
correlated covariates xi ∼ N(0n, σ2

i In), i = 1, . . . , d, where σ2
i is the variance of xi and the

correlation structure is given from the relation

rij = cor(xi, xj) =
xi

Txj

‖xi‖‖xj‖
, i, j = 1, . . . , d, i �= j,

with −1 ≤ rij ≤ 1.
Next, we present a thorough investigation of the properties that characterize these matrices.

5
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3.1. Correlated Covariates with Same Variance and Correlation

We initially consider design matrices with correlated covariates which have same
variance σ2 and same correlation r. In the following theorem, we formulate and prove
in detail the types for the singular values of the design matrix X. In [16], this case of
design matrix is considered and there exists a brief description of the eigenvalues of the
matrix XTX.

Theorem 2. Let X =
[

1 x1 · · · xd
]
∈ Rn×(d+1) be a high-dimensional design matrix

of full rank whose columns xi ∼ N(0n, σ2 In), i = 1, 2, . . . , d, with correlation structure r. The
singular values of the matrix X are

s1 =
√

n, s2 = · · · = sn−1 = σ
√
(n− 1)(1− r), sn = σ

√
(n− 1)[(d− 1)r + 1].

Proof. The n singular values of X are the square roots of the n non-zero eigenvalues of
XTX. Therefore, we compute the matrix XTX, i.e.,

XTX =

⎡⎢⎢⎢⎣
1 . . . 1

x11 . . . xn1
...

. . .
...

x1d . . . xnd

⎤⎥⎥⎥⎦
⎡⎢⎣ 1 x11 . . . x1d

...
...

. . .
...

1 xn1 . . . xnd

⎤⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n

∑
j=1

1
n

∑
j=1

xj1 . . .
n

∑
j=1

xjd

n

∑
j=1

xj1

... X̂TX̂
n

∑
j=1

xjd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
n 0 . . . 0
0
... X̂TX̂
0

⎤⎥⎥⎥⎦,

where X̂ =
[

x1 · · · xd
]

and
n

∑
j=1

xji = 0, ∀ i = 1, . . . , d, due to the construction of the

design matrix X according to the normal distribution. Therefore, the matrix XTX has one
eigenvalue equal to n.

Moreover, we can express the variance σ2 of each covariate xi =
[

x1i x2i · · · xni
]T

in terms of vector norms as follows:

σ2 =
1

n− 1

n

∑
j=1

(xji − x̄i)
2 =

1
n− 1

‖xi − x̄i‖2,

where x̄i denotes the mean value of each xi. As the mean value of each xi is zero, we have

σ2 =
1

n− 1
‖xi‖2 ⇒ ‖xi‖2 = (n− 1)σ2, ∀ i = 1, . . . , d. (9)

The submatrix X̂TX̂ of XTX can be written as

6
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X̂TX̂ =

⎡⎢⎢⎢⎣
‖x1‖2 r‖x1‖‖x2‖ . . . r‖x1‖‖xd‖

r‖x1‖‖x2‖ ‖x2‖2 . . . r‖x2‖‖xd‖
...

...
. . .

...
r‖xd‖‖x1‖ r‖xd‖‖x2‖ . . . ‖xd‖2

⎤⎥⎥⎥⎦

(9)
=

⎡⎢⎢⎢⎣
(n− 1)σ2 r(n− 1)σ2 . . . r(n− 1)σ2

r(n− 1)σ2 (n− 1)σ2 . . . r(n− 1)σ2

...
...

. . .
...

r(n− 1)σ2 r(n− 1)σ2 . . . (n− 1)σ2

⎤⎥⎥⎥⎦

= (n− 1)σ2

⎡⎢⎢⎢⎣
1 r . . . r
r 1 . . . r
...

...
. . .

...
r r . . . 1

⎤⎥⎥⎥⎦ = (n− 1)σ2[(1− r)I + rJ],

where J is the d× d matrix with all elements equal to 1. The non-zero eigenvalues of X̂TX̂
are λ1 = (n− 1)σ2(1− r) with algebraic multiplicity n− 2 and λ2 = (n− 1)σ2[(d− 1)r+ 1]
with algebraic multiplicity 1. Therefore, the singular values of X are s1 =

√
n, s2 = · · · =

sn−1 = σ
√
(n− 1)(1− r), sn = σ

√
(n− 1)[(d− 1)r + 1].

Let us denote by κ(X) the generalised condition number of X, i.e., κ(X) = ‖X‖2 ·
‖X†‖2, where X† = XT(XXT)−1 is the pseudoinverse of X, [1] (p. 246). It is known that
the generalised condition number can be expressed in terms of the maximum smax and the

minimum smin singular value of X as κ(X) =
smax

smin
, [1] (p. 216).

In Theorem 3, we express the generalised condition number of X in terms of the
correlation structure r.

Theorem 3. Let X =
[

1 x1 · · · xd
]
∈ Rn×(d+1) be a high-dimensional design matrix

of full rank whose columns xi ∼ N(0n, σ2 In), i = 1, 2, . . . , d, with correlation structure r. The
generalised condition number of X is given by

1. κ(X) =

√
n

(n− 1)σ2(1− r)
, if r ≤ 1

d− 1

(
n

(n− 1)σ2 − 1
)

,

2. κ(X) =

√
(d− 1)r + 1

1− r
, if

(
r >

1
d− 1

(
n

(n− 1)σ2 − 1
)

and σ2 <
n

n− 1

)
or(

r > 1− n
(n− 1)σ2 and σ2 >

n
n− 1

)
,

3. κ(X) =

√
(n− 1)σ2((d− 1)r + 1)

n
, if r < 1− n

(n− 1)σ2 .

Proof. It is obvious that sn = σ
√
(n− 1)[(d− 1)r + 1] > si, i = 2, . . . , n− 1 holds. There-

fore, we have to distinguish three cases. The first case is s1 ≥ sn, the second case is
si < s1 < sn and the last one is s1 < si.

First case: If s1 ≥ sn, then κ(X) =
s1

si
=

√
n

(n− 1)σ2(1− r)
. The restriction s1 ≥ sn

can be rewritten as follows:

7
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n ≥ (n− 1)σ2((d− 1)r + 1)

⇔ n
(n− 1)σ2 ≥ (d− 1)r + 1

⇔ n
(n− 1)σ2 − 1 ≥ (d− 1)r

⇔ r ≤ 1
d− 1

(
n

(n− 1)σ2 − 1
)

.

Second case: If si < s1 < sn, then κ(X) =
sn

si
=

√
(d− 1)r + 1

1− r
. The restriction

si < s1 < sn can be reformulated as follows:

(n− 1)σ2(1− r) < n < (n− 1)σ2(dr + 1− r)

⇔

⎧⎪⎨⎪⎩
1− r <

n
(n− 1)σ2

(d− 1)r >
n

(n− 1)σ2 − 1
⇔

⎧⎪⎨⎪⎩
r > 1− n

(n− 1)σ2

r >
1

d− 1

(
n

(n− 1)σ2 − 1
) .

Moreover, we make the check

1
d− 1

(
n

(n− 1)σ2 − 1
)
< 1− n

(n− 1)σ2

⇔ n− (n− 1)σ2 < (d− 1)(n− 1)σ2 − n(d− 1)

⇔ (n− 1)σ2(1 + d− 1) > n + nd− n

⇔ σ2 >
n

n− 1
.

Therefore, we conclude that the generalised condition number κ(X) is equal to

√
(d− 1)r + 1

1− r
if the following relation holds.

r >
1

d− 1

(
n

(n− 1)σ2 − 1
)

and σ2 <
n

n− 1
or

r > 1− n
(n− 1)σ2 and σ2 >

n
n− 1

Third case: If s1 ≤ si, then κ(X) =
sn

s1
=

√
(n− 1)σ2((d− 1)r + 1)

n
. This restriction is

equivalently written as

n < (n− 1)σ2(1− r)⇔ n
(n− 1)σ2 < 1− r ⇔ r < 1− n

(n− 1)σ2 .

Taking into consideration the derived formulae for the generalised condition number
of the design matrix X, we see that if r ≈ 1 the generalised condition number κ(X) becomes
large. A detailed example is presented next.

Example 2. In this example, we plot the generalised condition number of X as a function of the
correlation r. We consider n = 50, d = 100 and σ2 = 2. In Figure 2, we display κ(X) for
correlation r −→ 1. As we see in Figure 2, as correlation r tends to 1, the generalised condition
number κ(X) increases rapidly.

8
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Figure 2. The generalised condition number of X as a function of the correlation r.

3.2. Highly Correlated Covariates with Different Variance and Correlation

Next, we consider a general and more usual case in which the covariates xi ∼
N(0n, σ2

i In) of the design matrix X have different variance σ2
i and correlation rij, i, j =

1, . . . , d. Based on the results presented in [17] for the eigenvalues of the matrix XTX, we
record analytic formulae for the singular values of X in the following theorem.

Theorem 4. Let X =
[

1 x1 · · · xd
]
∈ Rn×(d+1) be a high-dimensional design matrix of

full rank whose columns xi ∼ N(0n, σ2
i In), i = 1, 2, . . . , d, with highly correlation structure rij.

The singular values of the matrix X are

s1 =
√

n, s2 =

√√√√(n− 1)
d

∑
j=1

σ2
i +O(δ), s3 = · · · = sn =

√
O(δ),

assuming that 1− rij = O(δ) as δ → 0.

As we record in Section 3.1, the generalised condition number is equal to the ratio
smax

smin
and in the present case smin = O(δ) considering that 1− rij = O(δ), i.e., highly

correlated covariates. Therefore, the value of κ(X) is large and this affects the solution of
the corresponding problem.

Remark 2. As the correlation r increases the generalised condition number κ(X) increases as well.
From Theorems 2 and 4 we deduce that the case of highly correlated covariates leads to possible
instability and thus regularisation is recommended. This result is confirmed from Table 1 which is
presented in Section 3.3.

3.3. Numerical Implementation

The implementation of the simulation study presented in this section and in Section 4
has been done by using the Julia Programming Language.

Given the high-dimensional design matrix X of order n× (d + 1), the response vector
y of order n and the n-vector ε = (ε1, ε2, . . . , εn)T of i.i.d. random errors, εj ∼ N(0, 1),
j = 1, 2, . . . , n, we estimate the vector β by using the methods which are described in
Section 2. We consider design matrices X with correlated covariates and we distinguish
the two aforementioned cases. The results for the first case, i.e., the covariates of the design
matrices having same correlation r and same variance σ2, are recorded in Tables 1 and 2.
The results for the second case are displayed in Table 3.

The implemented simulation scheme is the following. For each design matrix X,
a random vector β is generated and y = Xβ denotes the noise free response vector. Then,

9
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100 iterations are performed, in each one the response vector is perturbed by noise εi

resulting in a noisy response vector ŷ = y + εi, i = 1, 2, . . . , 100. Eventually, the regression
parameter β̂ is computed by using both the MNS given by Algorithm 1 and the regularisa-
tion techniques. The quality of the generated approximation solution β̂ is assessed by the
mean square error (MSE) between β and β̂ which is given by the formula

MSE(β̂) = E[‖β̂− β‖2
2].

In Algorithm 3, we summarise the simulation scheme.

Algorithm 3: Simulation scheme.

Input: Design matrix X ∈ Rn×(d+1)

Result: MSE(β̂)
β = randn(n);
y = Xβ ;
for i ← 1 to 100 do

ŷ = y + εi;
β∗ = MNS(ŷ);
βλ = Tikhonov(ŷ);
β̂μ = �p-�q(ŷ)

end

In Tables 1–3, we present the results of estimating the regression parameter β for
different orders of the design matrices X. In the two first columns of the tables, the
correlation r and the variance σ2 of the covariates are recorded, respectively. In Table 3,
we record the interval in which lies the correlation and the variance. In the third column,
the adopted methods are written. Specifically, we record MNS, Tikhonov regularisation
and �p-�q regularisation technique for different pairs of (p, q). The fourth column contains
the used grid of values for the regularisation parameter λ or μ for Tikhonov or �p-�q

regularisation, respectively. In the last column the MSE(β̂) of the derived approximation
solutions β̂ are recorded.

Table 1. Results for X5×21.

r σ2 Method λ/μ MSE (β̂)

0.5 0.25 MNS 1.3063× 10−1

Tikhonov [1, 10] 8.3874× 10−1

�1.8-�1.8 [10−7, 10−2] 1.1949× 10−1

0.5 1.0 MNS 1.3093× 10−1

Tikhonov [1, 10] 8.0127× 10−1

�1.8-�1.8 [10−7, 10−2] 1.2216× 10−1

0.9 0.25 MNS 5.5782× 10−1

Tikhonov [1, 10] 9.4101× 10−1

�1.8-�1.8 [0.1, 10] 1.2571× 10−1

0.9 1.0 MNS 6.2096× 10−1

Tikhonov [1, 10] 8.5836× 10−1

�1.8-�1.8 [0.1, 10] 6.0884× 10−1

0.999 0.25 MNS 4.4474
Tikhonov [1, 10] 1.774
�0.1-�2 [10−7, 10−2] 7.3793× 10−1

0.999 1.0 MNS 2.0129
Tikhonov [1, 10] 1.0456
�1.2-�1.2 [0.1, 10] 6.8626× 10−1

10
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Table 2. Results for X50×101.

r σ2 Method λ/μ MSE (β̂)

0.9 0.25 MNS 4.5894× 10−1

Tikhonov [1, 10] 7.0511× 10−1

�2-�0.1 [10−7, 10−2] 4.5093× 10−1

0.9 1.0 MNS 4.8802× 10−1

Tikhonov [1, 10] 6.0754× 10−1

�2-�0.1 [10−7, 10−2] 4.8614× 10−1

0.999 0.25 MNS 3.5306
Tikhonov [1, 10] 1.0022
�2-�0.1 [0.1, 10] 8.3247× 10−1

0.999 1.0 MNS 1.1970
Tikhonov [1, 10] 9.6625× 10−1

�1.8-�1.8 [0.1, 10] 7.4754× 10−1

Table 3. Results for X25×51.

r σ2 Method λ/μ MSE (β̂)

[0.27, 0.91] [0.19, 1.17] MNS 2.1252× 10−1

Tikhonov [1, 10] 6.2245× 10−1

�1.8-�1.8 [0.1, 10] 9.3163× 10−2

[−0.32, 0.85] [0.13, 2.32] MNS 1.6819× 10−1

Tikhonov [1, 10] 5.9699× 10−1

�1.8-�1.8 [0.1, 10] 1.2632× 10−1

[0.06, 0.91] [0.42, 1.93] MNS 1.1623× 10−1

Tikhonov [1, 10] 5.8305× 10−1

�1.8-�1.8 [0.1, 10] 1.0371× 10−1

As we can see in these tables, in the case of highly correlated design matrices, the reg-
ularisation is necessary for deriving a good approximation of the desired vector β. On
the other hand, if the correlation of the design matrix is not high, MNS can achieve a fair
estimation and a regularisation method does not improve the results, as it is verified by the
MSE(β̂). Therefore, according to the presented results, for matrices with moderate corre-
lated covariates, regularisation is redundant, as MNS yields adequate results. However,
as the correlation between the covariates rises, the regularisation is essential.

Note that in case of design matrices with same variance and correlation r = 0.999
(Tables 1 and 2) the regularisation techniques, Tikhonov and �p-�q, can achieve comparable
results. The choice of the pair of parameters (p, q) and the values of the required regulari-
sation parameter play an important role for the efficient implementation of both methods.

4. Variable Selection in SSDs

In this section, we are interested in selecting the active factors of SSDs by using
the methods which are described in Section 2. In our comparison, we also include SVD
principal regression method which is used in SSDs, and it was proposed in [8]. We briefly
refer to this method as SVD regression. The main computational cost of this approach is
the evaluation of the SVD.

We measure the effectiveness of these methods through the Type I and Type II error
rates. In particular, Type I error measures the cost of declaring an inactive factor to be
active and Type II measures the cost of declaring an active effect to be inactive. In our
numerical experiments, we consider 500 different realisations of the error ε and in the
presented tables we record the mean value of Type I, II error rates.

It is worth mentioning that both the MNS and Tikhonov regularisation give that all
the factors are active, i.e., Type I = 1, Type II = 0, for all the tested SSDs. Therefore, these
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methods are not suitable for variable selection and we do not include them in the following
presented tables.

Example 3 (An illustrative example). In this example, we shall exhibit in detail the performance
of each method for a particular problem. For this purpose, we adopt the illustrative example presented
in [8], with design matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎣

+ − − − − − − − − −
+ + + + + + + − − −
+ + + + − − − + + +
− + − − + + − + + −
− − + − + − + + − +
− − − + − + + − + +

⎤⎥⎥⎥⎥⎥⎥⎦ =
[

x1 x2 . . . x10
]
.

Then a first column x0 with all entries equal to 1 is added to the matrix, which corresponds to the
average mean. The simulated data are generated by the model

y = 5x0 + 4x2 + 3x5 + ε,

where ε ∼ N(06, I6). A response vector y obtained by using this model is

y =
[
−1.54 12.02 6.82 12.44 4.62 −1.21

]T .

The exact regression parameter β and the predicted coefficients by each method are demonstrated below.

β =
[

5 0 4 0 0 3 0 0 0 0 0
]T ,

β̂MNS =
[

5.525 0.1208 2.4508 1.1475 0.1758 2.0842 1.1125 −0.1908 1.2175 0.2458 −1.0575
]T ,

β̂Tik =
[

4.7237 0.1114 2.2592 1.0578 0.1621 1.9212 1.0255 −0.1759 1.1223 0.2266 −0.9748
]T ,

β̂�2�0.1
=
[

5.5214 0.0 3.9482 0.0 0.0 2.8458 0.0 0.0 0.0 0.0 0.0
]T ,

β̂SVD =
[

5.5245 0.0 3.901 0.0 0.0 2.801 0.0 0.0 0.0 0.0 0.0
]T .

As we can see from the generated approximation solutions β̂, the MNS and Tikhonov
regularised solution cannot specify the active factors of the model and completely spoil the
sparsity. On the other hand, the �p-�q regularisation method and the SVD regression can
determine appropriately the active factors of the model.

Example 4 (Williams’ data). We consider the well-known Williams’ dataset (rubber age data)
which is reported in Table 4. It is a classical dataset of SSDs and it is tested in several works, such as
in [8]. As it is written in [8], as the columns 13 and 16 in the original design matrix are identical,
the column 13 is removed for executing our numerical experiments. For this dataset we consider
two cases, the real case and 3 synthetic cases.

We initially deal with the real case where the design matrix X and the response vector
y are given, without the initial knowledge of the desired vector β. In literature, it is reported
that the active factor is x15. In this case, according to our numerical experiments, the SVD
regression and the �p-�q regularisation method for p = 0.8, q = 0.1 indicate that the factor
x15 is important. In particular, the proposed models, i.e., the coefficients βi are given in
Table 5.

The second case corresponds to 3 synthetic cases, see in [8] and references therein,
which are given below. For these simulated cases, we record the results in Table 6. In
particular, we compute Type I and II error rates for the described methods. We apply the
�p-�q regularisation method for μ = 5 and the SVD regression for the significance level
a = 0.05. As we notice in this table, both the �p-�q regularisation and the SVD regression
can select sufficiently the important factors, as we see from the corresponding Type I, II
error rates. The first model has the particularity that it includes the interaction of the factors
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x5, x9 which does not usually appear in SSDs analysis. The first model is a challenging case
for all the methods.

Model 1: y ∼ N(15x1 + 8x5 − 6x9 + 3x5x9, I14)
Model 2: y ∼ N(8x1 + 5x12, I14)
Model 3: y ∼ N(10x1 + 9x2 + 2x3, I14)

Table 4. The Williams’ data—rubber age data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 y

+ + + - - - + + + + + - - - + + - - + - - - + 133
+ - - - - - + + + - - - + + + - + - - + + - - 62
+ + - + + - - - - + - + + + + + - - - - + + - 45
+ + - + - + - - - + + - - + + - + + + - - - - 52
- - + + + + - + + - - - - + + + - - + - + + + 56
- - + + + + + - + + + - + + - + + + + + + - - 47
- - - - + - - + - + - + + - + + + + + + - - + 88
- + + - - + - + - + - - - - - - - + - + + + - 193
- - - - - + + - - - + + - + - + + - - - - + + 32
+ + + + - + + + - - - + + + - + - + - + - - + 53
- + - + + - - + + - + - + - - - + + - - - + + 276
+ - - - + + + - + + + + - - + - - + - + + + + 145
+ + + + + - + - + - - + - - - - + - + + - + - 130
- - + - - - - - - - + + + - - - - - + - + - - 127

Table 5. The selected model for William’s data (real case).

Method Intercept x15

�0.8-�0.1 6.11 −1.13
SVD Regression 102.7857 −36.0341

Table 6. Results for William’s Data (synthetic cases).

Model Method Type I Type II

Model 1 �1.8-�0.8 0.23 0.56
SVD Regression 0.15 0.74

Model 2 �2.0-�0.1 0.00 0.00
SVD Regression 0.05 0.00

Model 3 �2.0-�0.1 0.00 0.27
SVD Regression 0.07 0.33

Example 5 (A 3-circulant SSD). In this example, we consider one more SSD, which is also used
in [18], and it is recorded in Table 7. We test the behaviour of the methods for variable selection by
considering three models which can be found in [19] and are given below.

Model 1: y ∼ N(10x1, I8)
Model 2: y ∼ N(−15x1 + 8x5 − 2x9, I8)
Model 3: y ∼ N(−15x1 + 12x5 − 8x9 + 6x13 − 2x17, I8)

The results are presented in Table 8. For the three used models, we apply the �p-�q regularisation
method for μ = 5, 5.5, 0.5 respectively and the SVD regression for a = 0.25. According to the
presented numerical results, we see that both the �p-�q regularisation and the SVD regression
can achieve satisfactory Type I and II error rates for the Model 1. On the other hand, for the
Model 2 the SVD regression fails to specify the active factors whereas the �p-�q regularisation
method achieves better Type II error. However, neither of the methods produce fair results for the
Model 3. The coefficients of this model are not sufficiently close and this fact affects the behaviour of
the methods.
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Table 7. A 3-circulant SSD.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

- - - - - - - + + - - - + - + + + - + + +
+ + + - - - - - - - + + - - - + - + + + -
+ + - + + + - - - - - - - + + - - - + - +
+ - + + + - + + + - - - - - - - + + - - -
- - - + - + + + - + + + - - - - - - - + +
- + + - - - + - + + + - + + + - - - - - -
- - - - + + - - - + - + + + - + + + - - -
+ + + + + + + + + + + + + + + + + + + + +

Table 8. Results for 3-circulant SSD.

Model Method Type I Type II

Model 1 �2.0-�0.1 0.00 0.00
SVD Regression 0.08 0.00

Model 2 �0.6-�1.3 0.39 0.13
SVD Regression 0.08 0.67

Model 3 �1.8-�0.8 0.39 0.45
SVD Regression 0.17 0.80

Example 6. In this example we consider a real data set presented in [20] that deals with moss bags
of Rhynchostegium riparioides which were exposed to different water concentrations of 11 trace
elements under laboratory conditions. The design matrix X can be found in Table 1 in [20]. We
consider the main effects, the second- and third-order interactions of influent factors. Therefore, we
have a 67× 232 SSD and we can select the important factors applying the �p-�q regularisation for
μ = 0.75 and the SVD regression for significance level a = 0.05.

From Table 9, we see that both �2-�0.1 and SVD regression methods identify the main
effect Zn as active factor. The second order interactions Cd/Mn, As/Pb and Mn/Ni are
also identified as active. These results are in agreement with [20].

Table 9. Important elements and interactions.

Method Main Effects Second-Order Interactions Third-Order Interactions

�2-�0.1 Fe, Zn Al/Hg, As/Pb, Al/As/Mn, Al/Cr/Zn,
Cd/Mn, Mn/Ni As/Cd/Fe, As/Cd/Mn,

Cr/Mn/Zn, Cu/Hg/Mn
Fe/Hg/Ni, Fe/ Ni/Pb

SVD Regression Zn As/Pb, Cd/Mn,
Fe/Mn, Fe/Zn,
Mn/Ni, Pb/Zn

5. Conclusions

In the present work, we analysed the properties of design matrices with correlated
covariates. Specifically, we derived and proved formulae for the singular values of these
matrices and we studied the connection of the generalised condition number with the
correlation structure. Moreover, we described some available methods for solving high-
dimensional problems. We checked the behaviour of the MNS and the necessity of applying
regularisation techniques in estimating the regression parameter β in the linear regression
model. We concluded that in solving high-dimensional statistical problems the following
remarks must be taken into consideration.
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1. Regularisation should be applied only if the given data set satisfies the discrete Picard
condition. In this case, the choice of the regularisation parameter can be uniquely
chosen by applying the discrepancy principle method.

2. The regression parameter β ∈ Rd+1 can be satisfactory estimated by the MNS if the
design matrix is not highly correlated but in case of highly correlated data matrices
we have to adopt regularisation techniques. The quality of the derived estimation β̂
of β is assessed by the computation of MSE(β̂).

3. In variable selection, where sparse solutions are needed, SVD regression or �p-�q
regularisation can be used. When only few factors of the experiment are needed to be
specified (maybe only the most important), SVD regression may be preferable since it
avoids regularisation and the troublesome procedure of defining the regularisation
parameter. The quality of the variable selection which is proposed by the estimation
methods is assessed by the evaluation of Type I and II error rates.

In conclusion, the proposed scheme for the selection of the appropriate method
for the solution of high-dimensional statistical problems is summarised in the following
logical diagram, see Figure 3.

Design Matrix
with Correlated

Covariates

X

Highly
Correlated

correlation ≈ 1

Not Highly
Correlated

correlation ≤ 0.9

Regularization
Techniques

Tikhonov
�p-�q

Non Sparse
Solutions

MNS

Sparse Solu-
tions for SSDs

More Effective
Factors

�p-�q
Regularization

Few Effec-
tive Factors

SVD Regression

Figure 3. Logical diagram for choosing the appropriate method for the solution of high-dimensional statistical problems.
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Abstract: In this note, given a matrix A ∈ Cn×n (or a general matrix polynomial P(z), z ∈ C) and
an arbitrary scalar λ0 ∈ C, we show how to define a sequence {μk}k∈N which converges to some
element of its spectrum. The scalar λ0 serves as initial term (μ0 = λ0), while additional terms are
constructed through a recursive procedure, exploiting the fact that each term μk of this sequence
is in fact a point lying on the boundary curve of some pseudospectral set of A (or P(z)). Then, the
next term in the sequence is detected in the direction which is normal to this curve at the point
μk. Repeating the construction for additional initial points, it is possible to approximate peripheral
eigenvalues, localize the spectrum and even obtain spectral enclosures. Hence, as a by-product
of our method, a computationally cheap procedure for approximate pseudospectra computations
emerges. An advantage of the proposed approach is that it does not make any assumptions on the
location of the spectrum. The fact that all computations are performed on some dynamically chosen
locations on the complex plane which converge to the eigenvalues, rather than on a large number of
predefined points on a rigid grid, can be used to accelerate conventional grid algorithms. Parallel
implementation of the method or use in conjunction with randomization techniques can lead to
further computational savings when applied to large-scale matrices.

Keywords: pseudospectra; eigenvalues; matrix polynomial; perturbation; Perron root; large-scale
matrices; approximation algorithm

1. Introduction

The theory of pseudospectra originates in numerical analysis and can be traced back
to Landau [1], Varah [2], Wilkinson [3], Demmel [4], and Trefethen [5], motivated by the
need to obtain insights into systems evolving in ways that the eigenvalues alone could
not explain. This is especially true in problems where the underlying matrices or linear
operators are non-normal or exhibit in some sense large deviations from normality. A better
understanding of such systems can be gained through the concept of pseudospectrum,
which, for a matrix A ∈ Cn×n and a positive parameter ε > 0, was introduced as the subset
of the complex plane that is bounded by the ε−1–level set of the norm of the resolvent∥∥(μI − A)−1

∥∥. A second definition stated in terms of perturbations characterizes the
elements of this set as eigenvalues of some perturbation A + E with ‖E‖ ≤ ε. In this sense,
the notion of pseudospectrum provides information that goes beyond eigenvalues, while
retaining the advantage of being a natural extension of the spectral set. In fact, for different
values of magnitude ε, pseudospectrum provides a global perspective on the effects of
perturbations; this is in stark contrast to the concept of condition number, where only the
worst-case scenario is considered.

On one hand, pseudospectrum may be used as a visualization tool to reveal informa-
tion regarding the matrix itself and the sensitivity of its eigenvalues. Applications within
numerical analysis include convergence of nonsymmetric matrix iterations [6], backward
error analysis of eigenvalue algorithms [7], and stability of spectral methods [8]. On the

Mathematics 2021, 9, 1729. https://doi.org/10.3390/math9151729 https://www.mdpi.com/journal/mathematics
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other hand, it is a versatile tool that has been used to obtain quantitative bounds on the
transient behavior of differential equations in finite time, which may deviate from the
long-term asymptotic behavior [9]. Important results involving pseudospetra have been
also been obtained in the context of spectral theory and spectral properties of banded
Toeplitz matrices [10,11]. Although emphasis has been placed on the standard eigen-
problem, attention has also been drawn to matrix pencils [12] and more general matrix
polynomials [13,14] arising in vibrating systems, control theory, etc. For a comprehensive
overview of this research field and its applications, the interested reader may refer to [15].

In this note, we propose an application of pseudospectral sets as a mean to obtain
eigenvalue estimates in the vicinity of some complex scalar. In particular, given a matrix
(or a general matrix polynomial) and a scalar λ0 ∈ C, we construct a sequence {μk}k∈N that
converges to some element of its spectrum. The scalar λ0 serves as initial term (μ0 = λ0),
while additional terms are constructed through an iterative procedure, exploiting the fact
that each term μk of this sequence is in fact a point lying on the boundary curve of some
pseudospectral set. Then, the next term in the sequence is detected in the perpendicular
direction to the tangent line at the point μk. Repeating the construction for a tuple of
initial points encircling the spectrum, several peripheral eigenvalues are approximated.
Since the pseudospectrum may be disconnected, this procedure allows the identification
of individual connected components and, as a by-product, a convenient and numerically
efficient procedure for approximate pseudospectrum computation emerges. Moreover, this
approach is clearly amenable to parallelization or randomization and can lead to significant
computational savings when applied to probems involving large–scale matrices.

Our paper is organized as follows. In Section 2, we provide the necessary theoret-
ical background on the method and provide examples for the constant matrix case. As
confirmed by numerical experiments, the method can provide a sufficiently accurate pseu-
dospectrum computation at a much-reduced computational cost, especially in cases where
the spectrum is convexly independent (i.e., each eigenvalue does not lie in the convex
hull of the others) or exhibits large eigenvalue gaps. A second application of the method
on Perron-root approximation for non–negative matrices is presented. Then, Section 3
shows how the procedure may be modified to estimate the spectrum of more general
matrix polynomials. Numerical experiments showcasing the application of the method on
damped mass–spring and gyroscopic systems conclude the paper.

2. Eigenvalues via Pseudospectra

Let the matrix A ∈ Cn×n with spectrum σ(A) = {μ ∈ C : det(μI − A) = 0}, where
det(·) denotes the determinant of a matrix. With respect to the ‖·‖2–norm, the pseudospectrum
of A is defined by

σε(A) =

{
μ ∈ C :

1
‖(μI − A)−1‖2

≤ ε

}
=
{

μ ∈ C : μ ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ ≤ ε
}

= {μ ∈ C : smin(μI − A) ≤ ε},

where smin(·) denotes the smallest singular value of a matrix and ε > 0 is the maximum
norm of admissible perturbations.

For every choice of increasing positive parameters 0 < ε1 < ε2 < ε3 < . . . , the
corresponding closed, strictly nested sequence of pseudospectra

σε1(A) ⊂ σε2(A) ⊂ σε3(A) ⊂ . . .

18
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is obtained. In fact, the respective boundaries satisfy the inclusions

∂σε1(A) ⊆ {μ ∈ C : smin(μI − A) = ε1}
∂σε2(A) ⊆ {μ ∈ C : smin(μI − A) = ε2}
∂σε3(A) ⊆ {μ ∈ C : smin(μI − A) = ε3}

...
...

It is also clear that, for any λ ∈ σ(A), smin(λI − A) = 0.
Our objective now is to exploit the properties of these sets to detect an eigenvalue

of A in the vicinity of a given scalar λ0 ∈ C\σ(A). This given point of interest may
be considered to lie on the boundary of some pseudospectral set, i.e., there exists some
non–negative parameter ε̂1 > 0, such that

λ0 ∈ ∂σε̂1(A) ⊆ {μ ∈ C : smin(μI − A) = ε̂1}. (1)

Indeed, points satisfying the equality smin(μI − A) = ε for some ε > 0 and lying in the
interior of σε(A) are finite in number. Thus, in the generic case, we may think of the
inclusion (1) as an equality.

We consider the real–valued function gA : C→ R+ with gA(z) = smin(zI − A). In the
process of formulating a curve-tracing algorithm for pseudospectrum computation [16],
Brühl analyzed gA(z) and, identifying C ≡ R2, noted that its differentiability is explained
by the following Theorem in [17]:

Theorem 1. Let the matrix valued function P(χ) : Rd → Cn×n be real analytic in a neighborhood
of χ0 =

(
x1

0, . . . , xd
0

)
and let σ0 a simple nonzero singular value of P(χ0) with u0, v0 its associated

left and right singular vectors, respectively.
Then, there exists a neighborhood N of χ0 on which a simple nonzero singular value σ(χ)

of P(χ) is defined with corresponding left and right singular vectors u(χ) and v(χ), respectively,
such that σ(χ0) = σ0, u(χ0) = u0, v(χ0) = v0 and the functions σ, u, v are real analytic on N .
The partial derivatives of σ(χ) are given by

∂s(χ0)

∂χj = Re
(

u∗0
∂P(χ0)

∂χj v0

)
, j = 1, . . . , d.

Hence, recalling (1) and assuming ε̂1 is a simple singular value of the matrix P(λ0) =
λ0 I − A, then

∇smin(zI − A)
∣∣
z=λ0

= (Re(v∗minumin), Im(v∗minumin)) = v∗minumin,

where umin and vmin denote the left and right singular vectors of λ0 I − A associated to
ε̂1 = smin(λ0 I − A), respectively [16] (Corollary 2.2).

On the other hand, if λ is an eigenvalue of A near λ0, it holds |λ− λ0| ≤ ε̂1. The
latter observation follows from the fact that

σε(A) ⊇ σ(A) + D(0, ε)

= {z ∈ C : dist(z, σ(A)) ≤ ε},

where D(0, ε) = {z ∈ C : |z| ≤ ε} and equality holds for normal matrices. So, the scalar

μ1 = λ0 − ε̂1 ·
∇smin(zI − A)

|∇smin(zI − A)|

∣∣∣∣∣
z=λ0

= λ0 − smin(λ0 I − A) · vmin(λ0)
∗umin(λ0)

|vmin(λ0)∗umin(λ0)|
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can be considered to be an estimate of eigenvalue λ. In particular, λ0 ∈ ∂σε̂1(A) and μ1 lies
in the interior of σε̂1(A). Moreover, the sequence

μ0 = λ0

μ1 = μ0 − smin(μ0 I − A) · vmin(μ0)
∗umin(μ0)

|vmin(μ0)∗umin(μ0)|

μ2 = μ1 − smin(μ1 I − A) · vmin(μ1)
∗umin(μ1)

|vmin(μ1)∗umin(μ1)|
...

...

μk = μk−1 − smin(μk−1 I − A) · vmin(μk−1)
∗umin(μk−1)

|vmin(μk−1)∗umin(μk−1)|
(2)

converges to λ.
The above process requires the computation of the triplet

(smin(μk I − A), umin(μk), vmin(μk))

at every point μk; see [18].
Remark. To avoid the computational burden of computing the (left and right) singular

vectors, a cheaper alternative would be to consider at each iteration (k = 0, 1, 2, . . . ) the
canonical octagon with vertices

pk,j = μk + ei(j π
4 ) · smin(μk I − A), j = 0, 1, 2, . . . 7

instead and simply compute

θk,j = smin

(
pk,j I − A

)
, j = 0, 1, 2, . . . 7.

In this case, instead of (2), we can set

μk+1 = μk + ei(j0 π
4 ) · θk,j0

with j0 such that

θk,j0 = min
j=0,1,2,...,7

θk,j = min
j=0,1,2,...,7

(
smin

(
pk,j I − A

))
.

2.1. Numerical Experiments
2.1.1. Pseudospectrum Computation

The approximating sequences in (2) may be utilized to implement a computationally
cheap procedure to visualize matrix pseudospectra, at least in cases where the order of
the matrix is small or when its spectrum exhibits large eigenvalue gaps. Several related
techniques for pseudospectrum computation have appeared in the literature. These fall
largely into two categories: grid [14] and path-following algorithms [16,19–21]. Grid
algorithms begin by evaluating the function smin(zI − A) on a predefined grid on the
complex plane and lead to a graphical visualization of the boundary ∂σε(A) by plotting
the ε-contours of smin(zI − A). This approach faces two severe challenges; namely, the
requirement of a–priori information on the location of the spectrum to correctly identify
a suitable region to discretize, as well as the typically large number of grid points the
computations have to be performed upon. path-following algorithms, on the other hand,
require an initial step to detect a starting point on the curve ∂σε(A) and then proceed to
compute additional boundary points for each connected component of σε(A). The main
drawbacks of this latter approach lie in the difficulty in performing the initial step and
the need to correctly identify every connected component of σε(A) in order to repeat
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the procedure and properly trace its boundary. Moreover, cases where pseudospectrum
computation is required for a whole tuple of parameters ε drastically compromise the
efficiency of path-following algorithms.

Our approach is to use the approximating sequences (2) to decrease the number of
singular value evaluations and therefore speed up the computation of pseudospectra. The
basic steps are outlined as follows:

i. Select a tuple of initial points
{

μ
j
0

}s

j=1
∈ C encircling the spectrum; for instance, these

can be chosen on the circle {z ∈ C : |z| = ‖A‖}.

ii. Construct eigenvalue approximating sequences
{

μ
j
k

}nj

k=0
(j = 1, . . . , s), as in (2). If

ε
j
k > 0 (k = 1, . . . , nj) are such that μ

j
k ∈ ∂σ

ε
j
k
(A), the length nj of each sequence is

determined, so that smin(μ
j
nj I − A) ≤ ε0 for all j = 1, . . . , s, where ε0 is some prefixed

parameter value. In other words, ε0 indicates the tolerance with which the approached
by the constructed sequences eigenvalues should be approximated and corresponds
to the minimum parameter for which pseudospectra will be computed.

iii. Classify the sequences into distinct clusters, according to the proximity of their final
terms. This step may be performed using a k-means clustering algorithm, using a
suitable criterion to evaluate the optimal number of groups.

iv. Compute

u = min
j=1,...,s

max
j=1,...,nj

ε
j
k(> ε0) and � = max

j=1,...,s
min

j=1,...,nj
ε

j
k(< ε0).

v. If necessary, repeat the procedure for t additional points between the centroids of the
detected clusters, constructing additional sequences, so that

min
j=s+1,...,s+t

max
j=1,...,nj

ε
j
k > u and max

j=s+1,...,s+t
min

j=1,...,nj
ε

j
k < �.

vi. Detect boundary points of σε(A) for any choice of parameters ε ∈ [�, u] along the
polygonal chains formed by the total of s + t constructed sequences of points by
interpolation.

vii. Fit closed spline curves passing through the respective sets of boundary points in
∂σε(A) for the various choices of ε ∈ [�, u] to obtain sketches of the corresponding
pseudospectra σε(A).

The proposed method successfully localizes the spectrum, initiating the procedure
with a restricted number of points. Then, singular value computations are kept to a
minimum by considering points only on the constructed sequences. Pseudospectrum
components corresponding to peripheral eigenvalues λ /∈ co(σ(A)\{λ}) not in the convex
hull of the other eigenvalues, are thus extremely easy to identify. This approach is also
well–suited to cases, where the matrix has convexly independent spectrum; i.e., when λ /∈
co(σ(A)\{λ}), for every λ ∈ σ(A). Moreover, it is clearly amenable to parallelization,
which could lead to significant computational savings in cases of large matrices.

Application 1. We consider a random matrix A ∈ C6×6, the sole constraint being that its
eigenvalues are distant form each other; the real and imaginary parts of its entries follow the
standardized normal distribution scaled by 104. For the proposed procedure, we select initial points{

μ
j
0

}10

j=1
⊂ {z ∈ C : |z| = ‖A‖1} and exploit the fact that the corresponding sequences

{
μ

j
k

}nj

k=0
generated as in (2) converge to some element of σ(A). The number nj of terms in each sequence

(j = 1, . . . 10) is determined, so that all values
{

smin(μ
j
nj I − A)

}10

j=1
do not exceed ε0 = 0.5. The

sequences are organized into distinct clusters, grouping together those sequences which approximate
the same element of σ(A). This grouping is performed using a k-means clustering algorithm, where
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the optimal number of clusters is evaluated via the silhouette criterion and using a distance metric
based on the sum of absolute differences between points. Since six different groups are identified,
clearly all elements of σ(A) have been sufficiently approximated by at least one of the sequences.
For an illustration, refer to Figure 1a; different colors have been used to differentiate between
polygonal chains corresponding to distinct clusters. The construction so far required 914 singular
value computations. Having calculated all parameter values ε

j
k such that μ

j
k ∈ ∂σ

ε
j
k
(A) during the

previous procedure, it is possible to interpolate between these known points along the trajectories

formed by
{

μ
j
k

}nj

k=0
(j = 1, . . . 10) to approximate boundary points of ∂σε(A) for selected values

ε > ε0 = 0.5. Since all ten trajectories converge to eigenvalues from points encircling σ(A), to
obtain better pseudospectra approximations, it is necessary to repeat the procedure for additional
suitably selected points. Hence, for each cluster we consider three additional points; see Figure 1b. In
particular, denoting c1, . . . c6 the centroids of the clusters, for each j we consider the three centroids{

cj,k

}3

k=1
which lie closest to cj and take the convex combinations

pj
k =

1
6

(
5cj + cj,k

)
, k = 1, 2, 3.

Then, additional sequences corresponding to these extra points are constructed so that the desired
parameter values of ε for which pseudospectra should be computed (in this instance, the triple of
ε = 1, 5, 10 ∈ [�, u]) may be interpolated within these trajectories, as for the ten initial ones. This
imposes an extra cost of 1170 additional singular value computations (2084 in total). The resulting
approximations of the pseudospectra components identified by the upper left corner trajectories for
ε = 1, 5, 10 are depicted in greater detail in Figure 1c; the relevant eigenvalue is indicated by “*”.

An advantage of this procedure is that it does not require some a–priori knowledge
of the initial region Ω on the complex plane where the spectrum is located. In fact, the
very nature of this specific example, whose spectrum covers a wide area Ω, would render
computations on a suitable grid impractical. Another way in which this method diverges
from conventional grid algorithms is in that the computations are performed on a dynami-
cally chosen set of points, iteratively selected as the corresponding trajectories converge to
peripheral eigenvalues and identify the relevant pseudospectrum components, rather than
on a large number of predefined points on a rigid grid.

Application 2. To demonstrate how the procedure works in cases of larger matrices, in this
application we examine the matrix A = 10−7 · Pores2, where Pores2 is a 1024× 1024 matrix from
the Harwell-Boeing sparse matrix collection [22] related to a non–symmetric computational fluid
dynamics problem. Here, the factor 10−7 is used for scaling purposes and is related to the norm–‖·‖1
order of the matrix under consideration. Initiating the procedure with 30 equidistributed points on
the circle

{
z ∈ C : |z| = 1

2‖A‖1

}
, the method required a total of 810 singular value computations

for a minimum parameter value of ε0 = 0.005; the resulting pseudospectra visualizations for
ε = 10−1, 10−1.5, 10−2 are depicted in Figure 2. For this example, we have opted not to introduce
additional points.
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(a) Trajectories of 10 sequences converging to σ(A).

(b) Additional interior points (red circles) and relevant trajectories (solid black lines).

(c) Pseudospectrum component in the upper left side for ε = 1, 5, 10.

Figure 1. Pseudospectrum computation for random A ∈ C6×6 with spectral gaps, using 10 ini-
tial points.
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Figure 2. Pseudospectra computations for a non–symmetric sparse matrix of order 1024 from the
Harwell-Boeing collection and ε = 10−1, 10−1.5, 10−2.

Perron root computation. Applications of non–negative matrices, i.e., matrices with
exclusively non–negative real entries, abound in such diverse fields as probability theory,
dynamical systems, Internet search engines, tournament matrices etc. In this context,
the dominant eigenvalue of non–negative matrices, also referred to as Perron root, is of
central importance. Localization of the Perron root has been extensively studied in the
literature; relevant bounds can be found in [23–27]. Its computation is typically carried out
using the power method; the convergence rate of this approach depends on the relative
magnitudes of the two dominant eigenvalues. Relevant methods have appeared in [28–30],
among others. As a second application of the approximating sequences (2), the following
experiment reports an elegant way of approximating Perron roots.

Application 3. For this experiment, we considered a tuple of 50 non–negative matrices {A�}50
�=1 ⊂

R500×500
+ with uniformly distributed entries in (0, 50). The symmetry of σε(A�) with respect to

the real axis suggests that it suffices to restrict the computations exclusively to the closed upper
half–plane. Hence, for each of the matrices A�, we initiated the construction of the sequences (2)

from equidistributed initial terms
{

μ
�,j
0

}10

j=1
⊂

{
z ∈ C : |z| = 104 · ‖A�‖1, Im(z) ≥ 0

}
(� =

1, . . . 50). As expected, the rightmost of these points formed sequences converging to the Perron
root of A�, while each of the remaining ones approximated some other peripheral eigenvalue. In
the generic case, the magnitude of the second highest eigenvalue of A� was much smaller than
the Perron root. Figure 3 is illustrative of this separation; the blue curve traces the boundary of
the numerical range of such a matrix, red points indicate its eigenvalues, while the cyan lines

correspond to the trajectories of the constructed sequences. Denoting
{

μ
�,j
k

}n�,j

k=0
(j = 1, . . . , s�)

those sequences approximating the Perron root λ� ∈ σ(A�) (� = 1, . . . , 50), then the relative error

in each iteration

∣∣∣μ�,j
k −λ�

∣∣∣
|λ� | , k = 0, 1, . . . , min(n�,j), decreases rapidly, even though the initial points

μ
�,j
0 (j = 1, . . . , s�) were chosen to be extremely remote from σ(A�). Averages

1
�

50

∑
�=1

1
s�

s�

∑
j=1

∣∣∣μ�,j
k − λ�

∣∣∣
|λ�|

of these relative approximation errors over the tuple of matrices for the first k = 1, 2, . . . , 5 iter-
ations are demonstrated in the first column of Table 1, verifying that a reliable estimate for the
Perron root may in the generic case be obtained after the computation of as few as 3 terms in the
corresponding trajectories.
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The remaining (10− s�) sequences converge to some other peripheral eigenvalues λ�,1, . . . , λ�,s� ∈
σ(A�), reasonable approximations of which require a rather larger number of iterations, as can be seen
from the second column of Table 1 reporting.

1
�

50

∑
�=1

1
10− s�

10

∑
j=s�+1

∣∣∣μ�,j
k − λ�,j

∣∣∣∣∣∣λ�,j

∣∣∣ .

Figure 3. Indicative numerical range of 500× 500 non–negative matrix and 10 approximating trajectories.

Table 1. Relative approximation errors for Perron root and other peripheral eigenvalues of 500× 500
non–negative matrices.

# of Mean Rel. Error Mean Rel. Error
Iterations (Perron Root) (Other Eigenvalues)

1 0.0011 0.4205
2 7.0082×10−7 0.1783
3 4.4907× 10−10 0.1030
4 2.8798× 10−13 0.0680
5 9.2285× 10−16 0.0483

Application 3 suggests that any reasonable upper bound μ0 ∈ R suffices to yield reli-
able estimations for the Perron root after computation of only 2–3 terms in the sequence (2).

The previous experiment may seem excessively optimistic. Indeed, there can be
instances when the situation is much more demanding.

Application 4. The Frank matrix is well–known to have ill-conditioned eigenvalues. For this
application, we test the behavior of the proposed method on the Frank matrix of order 32, the
normalized matrix of eigenvectors of which has condition number 7.81× 1011. Figure 4 depicts the
resulting pseudospectra visualizations for ε = 0.001, 0.005, 0.01, 0.02, 0.03, initiating the procedure
from 30 points located on the upper semiellipse centered at (40, 0) with semi–major and semi–minor
axes lengths equal to 70 and 15, respectively. The depicted trajectories were constructed, so that
the final terms in each polygonal chain lie within σ0.001(A). Then, according to the distances of
the final terms of consecutive sequences, at most two additional points are introduced on the line
segment connecting these respective final terms. The necessary iterations for the construction of the
relevant sequences are reported in Table 2 for different numbers of initial points.

The approximating quality of the sequences is much compromised when compared to the
generic case, requiring many more iterations, especially for the eigenvalues with smallest real parts;
these are also the most ill-conditioned ones. In fact, the seven rightmost sequences converging to
the Perron root (refer to Figure 4) display the fastest convergence, the second group of thirteen
sequences leading to the intermediate eigenvalues being somewhat more compromised, while the
leftmost sequences naturally exhibit even more diminished approximation quality. Mean relative
approximation errors for these three groups are reported in Table 3.
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Figure 4. Pseudospectra computation for the Frank matrix of order 32 and ε = 0.001, 0.005, 0.01, 0.02,
0.03. Additional points selected between the endpoints of the initial sequences are denoted by red
circles, while eigenvalues are denoted by red stars.

Table 2. Number of iterations for different numbers of initial points (ε0 = 0.001).

# of Initial Points 10 15 30

Iterations (initial points) 11,206 18,455 35,159
Iterations (additional points) 16,116 14,872 11,883

Iterations (total) 27,322 33,327 47,042

Table 3. Relative approximation errors for Perron root and other eigenvalues of the Frank matrix of
order 32.

# of Mean Rel. Error
Mean Rel. Error Mean Rel. Error

Iterations (Perron Root)
(Intermediate
Eigenvalues)

(Leftmost
Eigenvalues)

1 0.0916 0.2795 11.0866
100 0.0373 0.1507 5.7968
200 0.0192 0.1206 5.3541
300 0.0103 0.1103 5.1174
400 0.0055 0.0956 4.9582
500 0.0029 0.0843 4.8652

For the numerical experiments in this section, we have restricted ourselves to initial
points encircling the spectrum. Another option would be to use our method in tandem
with randomization techniques for the initial points selection.

3. Matrix Polynomials

The derivation of eigenvalue approximating sequences may be readily extended to
account for the general matrix polynomial case

P(λ) = Amλm + Am−1λm−1 + · · ·+ A1λ + A0,

where λ ∈ C and Aj ∈ Cn×n (j = 0, 1, . . . , m), with Am �= 0. Recall that the spectrum
of P(λ) is the set of all its eigenvalues; i.e., σ(P) = {λ ∈ C : det P(λ) = 0}. For a scalar
λ0 ∈ σ(P), the nonzero solutions v0 ∈ Cn to the system P(λ0)v0 = 0 are the eigenvectors of
P(λ) corresponding to λ0.

The ε–pseudospectrum of P(λ) was introduced in [14] for a given parameter ε > 0 and
a set of nonnegative weights w ∈ Rm+1

+ as the set

σε,w(P) =
{

λ ∈ C : det PΔ(λ) = 0,
∥∥Δj

∥∥ ≤ εwj, j = 0, 1, . . . , m
}

(3)
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of eigenvalues of all admissible perturbations PΔ(λ) of P(λ) of the form

PΔ(λ) = (Am + Δm)λ
m + (Am−1 + Δm−1)λ

m−1 + · · ·+ (A1 + Δ1)λ + (A0 + Δ0),

where the norms of the matrices Δj ∈ Cn×n (j = 0, 1, . . . , m) satisfy the specified (ε, w)-
related constraints. In contrast to the constant matrix case, a whole tuple of perturbing
matrices Δj is involved, which explains the presence of the additional parameter vector
w in the definition of σε,w(P). However, considering for some A ∈ Cn×n the pencil
P(λ) = Inλ− A, note that (3) reduces to the usual ε–pseudospectrum of the matrix A ∈ Cn×n

for the choice of w = {w0, w1} = {1, 0}, since

σε,{1,0}(P) = {λ ∈ C : det(Inλ− (A + Δ0)) = 0, ‖Δ0‖ ≤ ε} = σε(A).

In the general case, the nonnegative weights
{

wj
}m

j=0 allow freedom in how perturbations
are measured; for example, in an absolute sense when w0 = w1 = · · · = wm = 1, or in a
relative sense when wj =

∥∥Aj
∥∥ (j = 0, 1, . . . , m). On the other hand, the choice ε = 0 leads

to σ0,w(P) = σ(P).
From a computational viewpoint, a more convenient characterization [14] (Lemma 2.1)

for this set is given by

σε,w(P) = {λ ∈ C : smin(P(λ)) ≤ εqw(|λ|)},

where smin(P(λ)) is the minimum singular value of the matrix P(λ) and the scalar polynomial

qw(λ) = wmλm + wm−1λm−1 + · · ·+ w1λ + w0,

is defined in terms of the weights
{

wj
}m

j=0 used in the definition (3) of σε,w(P). In fact,

since the eigenvalues of PΔ(λ) are continuous with respect to the entries of its coefficient
matrices, the boundary of σε,w(P) is expressed as

∂σε,w(P) ⊆ {λ ∈ C : smin(P(λ)) = εqw(|λ|)}; (4)

the equality smin(P(λ)) = εqw(|λ|) is satisfied for some ε > 0 only for a finite number of
points λ ∈ int(σε,w(P)).

Suppose now that we want to approximate an eigenvalue of a matrix polynomial
which lies in the neighborhood of some point of interest μ0 ∈ C\σ(P) on the complex
plane. Expression (4) suggests that the derivation of a convergent sequence in Section 2
may be readily adapted for our purposes. Indeed, for every scalar μ0 ∈ C, there exists some

ε̂1 > 0, such that μ0 ∈ ∂σε̂1,w and then (4) implies ε̂1 =
smin(P(μ0))

qw(|μ0|)
. Moreover, assuming

smin(P(μ0)) is a simple singular value of the matrix P(μ0), we may invoke Theorem 1
to conclude that the function gP : C → R+ with gP(z) = smin(P(z)) is real analytic in a
neighborhood of μ0 = x0 + iy0. In fact,

∇gP(x0 + iy0) =

(
Re
(

u∗min
∂P(x0 + iy0)

∂x
vmin

)
, Re

(
u∗min

∂P(x0 + iy0)

∂y
vmin

))
,

where umin and vmin denote the left and right singular vectors of P(μ0) associated to
smin(P(μ0)) = ε̂1qw(|μ0|), respectively [13] (Corollary 4.2).

As in the constant matrix case, moving from the initial point μ0 ∈ ∂σε̂1,w towards the
interior of σε̂1,w in the normal direction to the curve ∂σε̂1,w, the scalar

μ1 = μ0 − ε̂1 ·
∇[smin(P(z))− ε̂1qw(|z|)]
|∇[smin(P(z))− ε̂1qw(|z|)]|

∣∣∣∣∣
z=x0+iy0
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with ε̂1 =
smin(P(μ0))

qw(|μ0|)
can be considered to be an estimate of some eigenvalue λ ∈ σ(P).

In this way, a convergent sequence {μk}k∈N to the eigenvalue λ ∈ σ(P) is recursively
defined with initial point μ0 and general term

μk = μk−1 −
smin(P(μk−1))

qw(|μk−1|)
· ∇[smin(P(z))− ε̂k−1qw(|z|)]
|∇[smin(P(z))− ε̂k−1qw(|z|)]|

∣∣∣∣∣
z=μk−1=xk−1+iyk−1

. (5)

Numerical Experiments

The steps outlined in Section 2.1.1 are readily modified using the sequences in (5) to
yield spectral enclosures for matrix polynomials.

Application 5 ([31], Example 3). We consider the 50× 50 matrix polynomial P(λ) = A2λ2 +
A1λ + A0, where

A2 = I50, A1 = tridiag{−3, 9,−3}, A0 = tridiag{−5, 15,−5},

describing a damped mass-spring system [14,32] and set non-negative weights w = {1, 1, 1},
measuring perturbations of the coefficient matrices

{
Aj
}2

j=0 in an absolute sense. We initiate the

procedure with 15 equidistributed initial points
{

μ
j
0

}15

j=1
on the semicircle

{
z ∈ C : |z| = 15

(
= medianj=0,1,2

(∥∥Aj
∥∥

1

))
, Im(z) ≥ 0

}
and proceed to determine eigenvalue approximating sequences

{
μ

j
k

}nj

k=0
(j = 1, . . . 15) according

to (5), so that their final terms all lie in the interior of σ0.01,w(P). This computation requires
722 iterations. As in the constant matrix case, interpolation between the values of ε

j
k such that

μ
j
k ∈ ∂σ

ε
j
k ,w

(P) along the trajectories formed by
{

μ
j
k

}nj

k=0
(j = 1, . . . 15) results in approximations

of ∂σε,w(P) for ε = 0.1, 0.2, 0.3, 0.4, 0.5, as seen in Figure 5a. Note this yields a sufficiently
accurate sketch of σε,w(P) and is very competitive when compared to other methods. For instance,
Figure 5b is obtained via the procedure in [31] applied to a 400× 400 grid on the relevant region
Ω = [−20, 5]× [−15, 15]. This latter approach is far more computationally intensive, requiring
71,575 iterations to visualize σε,w(P) for the same tuple of parameters.

In case a more detailed spectral localization is desired, our method may be adapted,
as in Application 1, to identify individual pseudospectrum components. Our next ex-
periment also serves to illustrate the fact that the number of initial trajectories that are
attracted by the individual eigenvalues to form the related clusters is intimately connected
to eigenvalue sensitivity.

Application 6 ([13], Example 5.1). We consider the mass-spring system from ([13], Ex. 5.2)
defining the 3× 3 selfadjoint matrix polynomial

P(λ) = A2λ2 + A1λ + A0 =

⎡⎣1 0 0
0 2 0
0 0 5

⎤⎦λ2 +

⎡⎣0 0 0
0 3 −1
0 −1 6

⎤⎦λ +

⎡⎣ 2 −1 0
−1 3 0
0 0 10

⎤⎦
and set w = {1, 1, 1}. As in Application 5, computations are restricted exclusively to the closed
upper half-plane. However, the close proximity of the eigenvalues −0.08± i1.45,−0.75± i0.86,
−0.51± i1.25 (indicated by “*” in Figure 6), as well as the fact that the pair λ = −0.51± i1.25
is less sensitive than the other two, necessitates the use of many initial points. Indeed, as
demonstrated in Figure 6a, initiating the procedure with 40 equidistributed initial points on
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{
z ∈ C : |z| = min

∥∥Aj
∥∥

1, Im(z) ≥ 0
}

results in σ(P) being under-represented in the resulting
clusters. In order to correctly approximate all three elements of the spectrum on the upper half-plane
enforces the use of as many as 80 points on the selected semicircle. The length nj of each sequence{

μ
j
k

}nj

k=0
(j = 1, . . . 80) is determined, so that all values

{
smin(P(μj

nj))
}80

j=1
do not exceed the

prefixed parameter value of ε0 = 0.01; this construction involved 1162 singular value computations.
Using the squared Euclidean distance as the metric for computing the cluster evaluation criterion,
three distinct groups are correctly identified, each converging to a different eigenvalue in the closed
upper half-plane, as in Figure 6b. Note that the least sensitive eigenvalue λ = −0.51 + i1.25 ends
up attracting only one of these sequences; the corresponding group being a singleton. To correctly
sketch the boundaries of σε,w(P) for the triple of ε = 0.24, 0.48, 0.73 (>ε0 = 0.01), we introduce
six additional points for each cluster. Indeed, denoting c1, c2, c3 the centroids of the clusters, for

each cluster j = 1, 2, 3 we consider the vertices
{

pj
i

}6

i=1
of a canonical hexagon centered at cj with

maximal diameter equal to min
(∣∣cj − ci

∣∣)
i �=j. These vertices are indicated by circles in Figure 6b

and are used as starting points to construct the additional trajectories indicated by the black lines
in Figure 6c. Note that all three selected parameters ε = 0.24, 0.48, 0.73 should be possible to
interpolate along these additional lines as well, which explains why most of these trajectories have
been extended to the opposite directions as well, modifying the definition of the sequences in (5)
in each instance accordingly. The construction of the additional sequences requires 202 singular
value computations (leading to a total of 1364 iterations), while the resulting approximations of
pseudospectra boundaries for ε = 0.24, 0.48, 0.73 are depicted in Figure 6c.

(a) (b)

Figure 5. Pseudospectrum computation for a damped mass-spring system. (a) Approximate pseu-
dospectra visualization, interpolating along 15 trajectories of converging sequences. (b) Pseudospec-
tra visualization, using the modified grid algorithm in [31].
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(a) Partial spectral identification, due to close eigenvalue proximity.

(b) Complete spectral identification with increased number of initial points.

(c) Pseudospectra visualizations for ε = 0.24, 0.48, 0.73.

Figure 6. Pseudospectra computations for a vibrating system.

Application 7 ([13], Example 5.3). This experiment tests the behavior of the method on a damped
gyroscopic system described by the 100× 100 matrix polynomial

P(λ) = Mλ2 + (G + D)λ + K,
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with

M = I10 ⊗
4I10 + B + BT

6
+ 1.30

4I10 + B + BT

6
⊗ I10,

G = 1.35I10 ⊗ (B− BT) + 1.10(B− BT)⊗ I10,

D = tridiag{−0.1, 0.3,−0.1},

K = I10 ⊗ (B + BT − 2I10) + 1.20(B + BT − 2I10)⊗ I10

and B the 10× 10 nilpotent matrix having ones on its subdiagonal and zeros elsewhere. Note M, K
are positive and negative definite respectively, G is skew-symmetric, and the tridiagonal D is a
damping matrix.

Starting with 50 points on

{z ∈ C : |z| = 15(= median(‖K‖1, ‖G + D‖1, ‖M‖1)), Im(z) ≥ 0}

and then 5 additional points on the perpendicular bisector of the line segment defined by the two
centroids of the resulting clusters (indicated by the blue circles), the resulting pseudospectrum
approximation required 1212 iterations in total with ε0 = 0.002 and can be seen in the left part of
Figure 7a. The algorithm in [31] applied to a 300× 300 grid on the region Ω = [−4, 4]× [−3, 3]
required 29,110 iterations for pseudospectra visualization for the same triple ε = 0.004, 0.02, 0.1 to
obtain comparable results in Figure 7b.

(a)

(b)

Figure 7. Comparison of pseudospectra computation for a damped gyroscopic system and ε = 0.004,
0.02, 0.1. (a) Computation using 50 initial points. (b) Computation using algorithm in [31].

We conclude this section, examining the behavior of the method on a non-symmetric example.
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Application 8 ([31], Example 2). We consider the 20× 20 gyroscopic system

P(λ)= A2λ2 + A1λ + A0 = I20λ2 + i

[
I10 0
0 5I10

]
λ +

⎡⎢⎢⎢⎣
1 −1 −1 · · · −1
−1 1 −1 · · · −1

...
...

...
. . .

...
−1 −1 −1 · · · 1

⎤⎥⎥⎥⎦
and w = {1, 1, 1}. Starting with 21 points on

{z ∈ C : |z| = 25(= ‖A0‖1 + ‖A1‖1), Re(z) ≤ 0}

and ε0 = 0.001, five clusters are detected (Figure 8a) after 1140 iterations. Then, two additional
points are introduced on each of the line segments defined by the centroids of the detected clusters
(indicated by the blue circles in Figure 8b), causing the iterations to rise to the total number of
2662 in order to determine the 20 corresponding trajectories (indicated by grey lines in Figure 8c).
The corresponding visualizations in Figure 8d), obtained via [31] applied to a 400× 400 grid on the
region Ω = [−20, 20]× [−15, 10] required 88,462 iterations.

(a) (b)

(c) (d)

Figure 8. Comparison of pseudospectra computation for a gyroscopic system and ε = 0.1, 0.2, 0.4,
0.6, 0.8. (a) Cluster detection using 21 initial points. (b) Locations of additional points. (c) Pseu-
dospectra visualizations interpolating along the trajectories of 21 initial and 20 additional points.
(d) Pseudospectra visualization, using the modified grid algorithm in [31].

4. Concluding Remarks

In this note, we have shown how to define sequences which, beginning from arbitrary
complex scalars, converge to some element of the spectrum of a matrix. This approach
can be applied both to constant matrices and to more general matrix polynomials and can
be used as a means to obtain estimates for those eigenvalues that lie in the vicinity of the
initial term of the sequence. This construction is also useful when no information on the
location of the spectrum is a priori known. In such cases, repeating the construction from
arbitrary points, it is possible to detect peripheral eigenvalues, localize the spectrum and
even obtain spectral enclosures.

As an application, in this paper we used this construction to compute the pseu-
dospectrum of a matrix or a matrix polynomial. Thus, a useful technique for speeding up
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pseudospectra computations emerges, which is essential for applications. An advantage
of the proposed approach is that does not make any assumptions on the location of the
spectrum. The fact that all computations are performed on some dynamically chosen
locations on the complex plane which converge to the eigenvalues, rather than on a large
number of predefined points on a rigid grid, can be seen as improvement over conventional
grid algorithms.

Parallel implementation of the method can lead to further computational savings
when applied to large matrices. Another option would be to apply this method combined
with randomization techniques for the selection of the initial points of the sequences. In
the large-scale matrix case, this method may be helpful in obtaining a first impression of
the shape and size of pseudospectrum and even computing a rough approximation. Then,
if desired, this could be used in conjunction with local versions of the grid algorithm and
small local meshes about individual areas of interest.
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Abstract: The power method is commonly applied to compute the Perron vector of large adjacency
matrices. Blondel et al. [SIAM Rev. 46, 2004] investigated its performance when the adjacency matrix
has multiple eigenvalues of the same magnitude. It is well known that the Lanczos method typically
requires fewer iterations than the power method to determine eigenvectors with the desired accuracy.
However, the Lanczos method demands more computer storage, which may make it impractical to
apply to very large problems. The present paper adapts the analysis by Blondel et al. to the Lanczos
and restarted Lanczos methods. The restarted methods are found to yield fast convergence and to
require less computer storage than the Lanczos method. Computed examples illustrate the theory
presented. Applications of the Arnoldi method are also discussed.
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1. Introduction

Networks arise in many areas, such as social media, transportation, and chemistry;
see [1,2] for many examples. Networks can be represented by graphs G that are made
up of a set of vertices or nodes V = {vi}n

i=1 and a set of edges E = {ei}m
i=1, connecting the

nodes. Two distinct nodes, vi and vj, are said to be adjacent if there is an edge between them.
The analysis of graphs by mathematical and computational methods can provide valuable
information about the networks they model and is receiving considerable attention.

This paper considers networks that can be represented by simple unweighted graphs,
that is, no edge starts and ends at the same node, and there is at most one edge between
each pair of distinct nodes. Extension to weighted simple graphs, in which each edge
has a positive weight, is straightforward. A graph is said to be undirected if every edge
is a “two-way street”; a graph with at least one edge that is a “one-way street” is said
to be directed. A directed edge ek pointing from vertex vi to vertex vj can be identified
with the ordered pair (vi, vj); for an undirected edge, this pair is not ordered. A walk of
length k in a graph is a sequence of k + 1 vertices vi1 , vi2 , . . . , vik+1

and a sequence of k edges
ej1 , ej2 , . . . , ejk , not necessarily distinct, such that ejp points from vip to vip+1 in a directed
graph, or connects vip to vip+1 in an undirected graph, for p = 1, 2, . . . , k. A path is a walk
in which all the nodes are distinct.

An unweighted simple graph G with n nodes can be represented by its adjacency
matrix A = [aij]

n
i,j=1 ∈ Rn×n, where aij = 1 when there is an edge from vertex vi to vertex

vj; otherwise, aij = 0. In particular, aii = 0 for all i. Undirected graphs are associated
with symmetric adjacency matrices, while the adjacency matrix for a directed graph is
non-symmetric. Typically, the number of edges, m, is much smaller than n2. This makes
the adjacency matrix A sparse. An undirected graph is said to be connected if there is a path
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connecting each pair of nodes. A directed graph is referred to as strongly connected if there is
a directed path from vi to vj and vice versa for every pair of distinct nodes. The adjacency
matrix A associated with an undirected graph G is irreducible if and only if G is connected.
Similarly, the adjacency matrix A associated with a directed graph G is irreducible if and
only if G is strongly connected.

A problem of considerable interest in network analysis is the determination of the
most important vertices of a network. The notion of centrality can be used to identify these
vertices. There are many centrality measures available, including degree centrality [1,2],
betweenness centrality [3], hub-and-authority centrality [4], and eigenvector centrality [5].

We are interested in investigating the performance of iterative methods for determin-
ing the eigenvector centrality of vertices belonging to certain structured graphs G with
many nodes n. The eigenvector centrality was introduced by Bonacich for quantifying the
influence a node has in a network [5], beyond its nearest neighbors, in terms of spectral
properties of the associated adjacency matrix. According to the Perron–Frobenius theorem,
the largest eigenvalue, ρ, which is known as the Perron root, of a nonnegative irreducible
matrix A, is unique and has a unique eigenvector w = [w1, w2, . . . , wn]T ∈ Rn (up to
scaling) with positive components wi. This vector is commonly referred to as the Perron
vector of A; see, for example, Meyer ([6] Section 8.3). For notational simplicity, we may
assume that w is scaled so that ‖w‖ = 1. Here and throughout this paper, ‖ · ‖ denotes the
Euclidean vector norm. The eigenvector centrality of the vertex vi is given by the entry wi
of the Perron vector w of the adjacency matrix A. A vertex vi is considered a central, that
is, important, vertex of the graph G if wi is the largest entry of w. This centrality measure
also takes into account the centralities of those nodes to which vi is connected [7].

Blondel et al. [8] investigated the performance of the power method when applied to
determining the Perron vector of a matrix of the form

M =

[
0 A

AT 0

]
∈ R2n×2n, (1)

where A ∈ Rn×n is the adjacency matrix for a graph G with n nodes, and the superscript T
denotes transposition. M can be interpreted as the adjacency matrix of a bipartite graph
containing 2n vertices partitioned into two disjoint vertex subsets, whose connections are
described by A and occur only across, but not within, the two groups.

There are numerous methods for partitioning the vertex set of a bipartite graph G so
that its adjacency matrix is of the form (1); see [2,9,10] and references therein. The Perron
vector of the matrix (1) is used to determine the hub-and-authority centralities for the
vertices of G [2,4] and its components give similarity scores between graph nodes. These
scores were introduced by Blondel et al. [8]. There are several applications of similarity
scores. These applications lead to the construction of a self-similarity matrix associated
with a graph, which measures how vertices are similar to each other [8]; see [11] for an
application in archaeology of the similarity matrix associated with a bipartite graph and
for an algorithm for solving the seriation problem. The latter is a fundamental ordering
problem that aims at finding the best enumeration order of a set of units so that in the
resulting sequence, elements having higher similarity are placed close to each other.

Given an initial vector z0 ∈ R2n with positive entries, the power method applied to
the matrix M generates the sequence of vectors

zk =
Mzk−1
‖Mzk−1‖2

, k = 1, 2, . . . . (2)

When applied to a real square matrix with a single largest eigenvalue of maximal
magnitude, the power method is known to determine a sequence of vectors that converge
to the span of the eigenvector associated with this eigenvalue for almost all initial vectors;
see, for example, Saad ([12] Section 4.1). The following result, which highlights the property
of the adjacency matrix of a bipartite graph of having a spectrum symmetric with respect
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to the origin ([13] Theorem 3.14), shows why the application of the power method to the
matrix (1) is not straightforward.

Proposition 1. The matrix (1) has distinct eigenvalues of the largest magnitude.

Proof. Partition the Perron vector x = [xT
1 , xT

2 ]
T ∈ R2n of the matrix M defined by (1),

where xi ∈ Rn, i = 1, 2. Let λ denote the Perron root of M. Then, Mx = λx implies that

M
[

x1
−x2

]
= −λ

[
x1
−x2

]
.

Thus, the negative Perron root is also an eigenvalue of M.

The presence of more than one eigenvalue of the largest magnitude of M suggests
that the sequence of vectors, z1, z2, z3, . . ., might not converge to the Perron vector. Indeed,
Blondel et al. [8] show that both the limits

lim
k→∞

z2k and lim
k→∞

z2k−1 (3)

exist, but they might not be the same. The limits depend on the initial vector z0 for the
power iteration and none of the limits might be the Perron vector for M. Throughout
this paper, e = [1, 1, . . . , 1]T denotes the vector with all entries 1 of a suitable dimension.
Blondel at al. ([8] Theorem 2) show that when z0 = e/‖e‖, the limit on the left-hand side
of (3) is the Perron vector for M.

An advantage of the power method, when compared to other methods for computing
the Perron vector of a matrix with only nonnegative entries, is that only two vectors, zk
and Mzk, have to be stored simultaneously during the computations. The low storage
requirement may be important for very large matrices; however, convergence of the
power method can also be very slow when there is only one eigenvalue of the largest
magnitude. The rate of convergence decreases with the distance between the Perron root
and the magnitude of the second largest eigenvalue in modulus; see, for example, ([12]
Section 4.1). It is therefore interesting to investigate the convergence properties of methods
that converge faster, such as the Lanczos or restarted Lanczos methods, when applied to
matrices of the form (1) and generalizations thereof. It is the purpose of the present paper
to study the convergence of the Lanczos and restarted Lanczos methods when applied to
the computation of the Perron vector of matrices of the form (1) and some generalizations.
Our analysis is based on results by Blondel et al. [8]. We also discuss the computation
of the Perron vector of structured matrices, somewhat related to the matrix M, and by
application of the Arnoldi method to the submatrix A in (1). These particular matrices
represent graphs with a chained structure that refine the notion of bipartivity [14].

This paper is organized as follows: Section 2 introduces undirected chained graphs.
The adjacency matrix for this kind of graph has a staircase structure, which generalizes
the structure (1). Chained graphs have been shown to be bipartite in [14], which implies
that the eigenvalues of their associated adjacency matrices appear in ± pairs. Section 3
studies the performance of the Lanczos and restarted Lanczos methods when applied
to computing the Perron vector for these and other symmetric adjacency matrices. The
Arnoldi method and its application to estimating the Perron vector for a symmetric matrix
considered by Blondel et al. [8] are described in Section 4. A few computed examples are
presented in Section 5, and Section 6 contains concluding remarks.

2. Undirected Chained Graphs

This section describes �-chained undirected graphs and the structure of their adjacency
matrices. These graphs, which are particular bipartite graphs, were introduced in [14] and
are defined as follows.
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Definition 1. An undirected graph G = {V , E} is said to be �i-chained with initial vertex vi if
the set of vertices can be subdivided into �i disjoint non-empty subsets

V = V1 ∪ V2 ∪ · · · ∪ V�i
,

such that vi ∈ V1, and all vertices in the set Vj, are adjacent only to vertices in the sets Vj−1 or
Vj+1 for j = 2, 3, . . . , �i − 1, where the chain length �i is the largest number of vertex subsets Vj
with this property. Moreover, the vertices in V1 and V�i

are adjacent only to vertices in V2 and
V�i−1, respectively. Vertex sets Vj with consecutive indices are said to be adjacent.

Chained graphs arise in various applications; see [8,14,15] and Section 5.
Consider an undirected �-chained graph G = (V , E) with vertex set partitioning

V = V1 ∪ V2 ∪ · · · ∪ V�. Let ni be the cardinality of the vertex subset Vi for i = 1, 2, . . . , �.
Thus, the graph G has n = ∑�

i=1 ni nodes. Order the vertices vj of G so that the vertices
in Vi precede those in Vi+1 for i = 1, 2, . . . , � − 1, and define the matrix Ai ∈ Rni×ni+1

that describes the connections between the vertices in Vi and the vertices in Vi+1 for
i = 1, 2, . . . , � − 1. Then, the adjacency matrix M ∈ Rn×n, associated with G, has the
staircase structure

M =

⎡⎢⎢⎢⎢⎢⎢⎣

O A1
AT

1 O A2

AT
2

. . . . . .

. . . O A�−1
AT
�−1 O

⎤⎥⎥⎥⎥⎥⎥⎦. (4)

Theorem 1 ([14]). An �-chained graph is bipartite. Conversely, if a graph is bipartite, then the
graph is �-chained for some � ≥ 2.

From Theorem 1 it follows that, for a suitable permutation matrix P ∈ Rn×n, the
adjacency matrix (4) can be permuted to the form

PMPT =

[
O C

CT O

]
, (5)

with C ∈ Rno×ne , where

no =
�(�+1)/2�

∑
i=1

n2i−1, ne =
��/2�
∑
i=1

n2i.

Here, �α� denotes the integer part of α ≥ 0. The structure (5) is the same as (1). It
follows from Proposition 1 that the adjacency matrix for an �-chained undirected graph
has pairs of eigenvalues of the opposite sign, which include the Perron root.

Example 1. Consider the 3-chained graph with adjacency matrix

M =

⎡⎣ O A O
AT O A
O AT O

⎤⎦ ∈ R3n×3n, (6)

where A ∈ Rn×n. Then

M2 =

⎡⎣ AAT O AA
O AT A + AAT O

AT AT O AT A

⎤⎦. (7)
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Introduce the permutation matrix

P =

⎡⎣In O O
O O In
O In O

⎤⎦,

where In ∈ Rn×n is the identity matrix. Then, the matrix C ∈ R2n×n is defined by

PMPT =

⎡⎣ O O A
O O AT

AT A O

⎤⎦ =

[
O C

CT O

]
.

It follows that the± singular values of C are eigenvalues of M. This yields 2n of the eigenvalues
of M. The remaining n eigenvalues vanish. We will discuss the computation of the Perron vector of
matrices of the form (6), as well as of matrices of the form (4), in the following section.

3. The Lanczos and Restarted Lanczos Methods

This section discusses the application of the Lanczos and restarted Lanczos methods
to the computation of the Perron vector of an undirected connected graph. We first consider
the Lanczos method and subsequently turn to restarted variants.

The Lanczos method reduces a large symmetric matrix to a usually much smaller sym-
metric tridiagonal matrix by computing an orthogonal projection onto a Krylov subspace
of fairly low dimension. It is a commonly used method for determining approximations
of a few large eigenvalues and associated eigenvectors of a large symmetric matrix; see,
for example, [12] for a discussion of this method.

Consider an undirected connected graph G with associated adjacency matrix A ∈
Rn×n. Application of 1 ≤ k � n steps of the Lanczos method to A with initial vector
v ∈ Rn\{0} yields, generically, the Lanczos decomposition

AQk = QkTk + βkqk+1eT
k , (8)

where the columns of the matrix Qk = [q1, q2, . . . , qk] ∈ Rn×k form an orthonormal basis
for the Krylov subspace,

Kk(A, v) = span{v, Av, A2v, . . . , Ak−1v}, k = 1, 2, . . . ,

with q1 = v/‖v‖. Throughout this paper, ek = [0, . . . , 0, 1, 0, . . . , 0]T denotes the kth axis
vector of the suitable dimension. Moreover,

Tk =

⎡⎢⎢⎢⎢⎢⎣
α1 β1
β1 α2 β2

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk

⎤⎥⎥⎥⎥⎥⎦ ∈ Rk×k

is a symmetric tridiagonal matrix, the coefficient βk in (8) is positive, and the vector
qk+1 ∈ Rn satisfies QT

k qk+1 = 0 and ‖qk+1‖ = 1. We tacitly assume that the number of
steps k of the Lanczos method is small enough so that the decomposition (8) with the stated
properties exists. This is the generic situation.

Let ρk denote the largest eigenvalue of Tk, and let yk ∈ Rk be an associated unit
eigenvector. Then, ρk and Qkyk are commonly referred to as a Ritz value and a Ritz vector,
respectively, of A.

Theorem 2. Consider an undirected connected graph G with adjacency matrix M ∈ Rn×n. Then,
M is symmetric and nonnegative. Let ρ denote the Perron root of M and let w be the associated
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Perron vector. Apply k steps of the Lanczos method to M with initial vector e = [1, 1, . . . , 1]T ∈ Rn.
This produces the decompositions

MQk = QkTk + βkqk+1eT
k , k = 0, 1, . . . . (9)

Let ρk denote the largest eigenvalue of Tk with the associated Perron vector yk. Then, the Ritz
values ρk converge to the Perron root ρ of M and the Ritz vectors wk = Qkyk converge to w as k
increases. If the Lanczos method breaks down at iteration �, then w� is the Perron vector.

Proof. The eigenvectors of M are stationary points of the Rayleigh quotient

r(x) =
xT Mx

xTx
, x ∈ Rn\{0},

and the eigenvalues of M are the values of r(x) at these stationary points. The Perron root
ρ is the maximum value of r(x). The largest eigenvalue of Tk is the maximum value ρk of
r(x) over the k-dimensional Krylov subspace Kk(M, e). It follows that ρk ≤ ρ.

Blondel et al. ([8] Theorem 2) show that, using the initial vector e/‖e‖, the sequence
z2k in (2) generated by the power method converges to the Perron vector w of M. The unit
vector z2k lives in K2k(M, e). Clearly,

zT
2k Mz2k ≤ ρ2k ≤ ρ. (10)

Since the Krylov subspaces Kj(M, e), j = 1, 2, . . . are nested, it follows that

ρ2k−2 ≤ ρ2k−1 ≤ ρ2k. (11)

It is a consequence of the mentioned result by Blondel et al. [8] that the Lanczos
method does not break down until the Perron vector has been determined. Assume, to
the contrary, that the Lanczos method breaks down at step k. Then, the relation (9) is
replaced by

MQk = QkTk,

which shows that the range of Qk forms an invariant subspace of M. This implies that
the vector Mzk, determined by the power method in the next step, lives in the range of
Qk. This would imply that the Perron root of M is the Perron root of Tk, and therefore the
Lanczos method determines the Perron root and Perron vector.

It follows from (10) that ρ2k converges to ρ and, due to (11), the sequence ρj converges
monotonically to ρ (from below) as j increases. Let yj ∈ Rj be the Perron vector of Tj.
Since Tj is an irreducible symmetric tridiagonal matrix, the unit vector yj is uniquely
determined. Then, the associated Ritz vectors wj = Qjyj converge to the Perron vector of
M as j increases. We remark that the Ritz vectors wj so obtained, j ≥ 1, may have small
negative entries. This is of no importance, since we are interested in determining the largest
component(s) of these vectors.

The iterations of the Lanczos method applied to M are terminated as soon as two
consecutive approximations wk−1 and wk of the Perron vector are close enough, that is, as
soon as

‖wk −wk−1‖ ≤ ε, (12)

for some user-specified (small) value of ε > 0. Note that

‖wk −wk−1‖ = ‖Qkyk −Qk−1yk−1‖ =
∥∥∥∥yk −

[
yk−1

0

]∥∥∥∥.
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Thus, it suffices to choose a k large enough so that∥∥∥∥yk −
[

yk−1
0

]∥∥∥∥ ≤ ε.

The Lanczos iteration is described by Algorithm 1. The algorithm applies the Lanczos
method to a general real symmetric matrix M ∈ Rn×n. In Line 14 of the algorithm, the
symmetric tridiagonal matrix Tk−1 ∈ R(k−1)×(k−1) is augmented by appending a row and
a column to obtain the new symmetric tridiagonal matrix Tk ∈ Rk×k.

Algorithm 1 Determine the Perron vector of the matrix M by the Lanczos method.

Require: Adjacency matrix M ∈ Rn×n and initial vector e = 1.
Ensure: Approximation w of the Perron vector of M.

1: β0 = 0, q0 = 0, q1 = e
‖e‖ , w0 = 0, k = 1

2: α1 = qT
1 Mq1

3: r = Mq1 − α1q1
4: β1 = ‖r‖
5: q2 = r/β1
6: T1 = α1
7: Q1 = q1, w1 = q1
8: while ‖wk −wk−1‖ > ε do
9: k = k + 1

10: αk = qT
k Mqk

11: r = Mqk − αkqk − βk−1qk−1
12: βk = ‖r‖
13: qk+1 = r/βk

14: Tk =

[
Tk−1 βk−1ek−1

βk−1eT
k−1 αk

]
15: Qk = [Qk−1 qk]
16: Compute the Perron vector yk of Tk
17: wk = Qkyk
18: end while
19: w = wk

The following example compares the results of finding the most important vertices of
each vertex subset of an undirected 4-chained graph by the power method and the Lanczos
method with initial vector e. In this comparison, we terminate the iterations with the power
method as soon as two consecutive approximations z2k and z2(k−1) of the Perron vector are
sufficiently close, that is, as soon as

‖z2k − z2(k−1)‖ ≤ ε. (13)

Example 2. This example uses the Citeseer Index data set downloaded on June 2007 from the
CiteseerX website [16]. The data set consists of a list of papers with some information such as
authors, journals, and institutions. We extracted an undirected 4-chained network from this data
set. It shows relations between the vertex subsets institutions, authors, papers and journals. The
number of vertices that represent institutions, authors, papers and journals are 20, 58, 26 and 21,
respectively. The power method and the Lanczos method are applied with the stopping criteria (13)
and (12), respectively, with ε = 10−4.

Both the power and Lanczos methods identify vertex v1 as the most important university,
vertices v21 and v22 as the most important authors, vertex v81 as the most important paper, and
vertex v108 as the most important journal. The power method terminates the iterations after step
364, while the Lanczos method stops at step 26. Thus, the Lanczos method requires the evaluation of
significantly fewer matrix–vector products with the matrix M than the power method to determine
the most important vertices of each vertex subset.
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Typically, the Lanczos method yields much faster convergence to the Perron vector of
a symmetric nonnegative matrix M than the power method. However, it has the drawback
of requiring storage space for the matrix Qk in (9). The need to store the matrix Qk may
make it difficult to apply the Lanczos method to compute the Perron vector of very large
adjacency matrices. We describe two standard approaches for circumventing this difficulty.
They restart the Lanczos iterations in different ways.

(i) Carry out the Lanczos iterations twice: First generate the tridiagonal matrix Tk for a
suitably chosen k (see below) and discard the columns of the matrix Qk that are not
required by the Lanczos method for determining the next column. Indeed, to compute
column qj+1 for j ≥ 2 only the columns qj and qj−1 are needed. Thus, the storage
demand is modest and bounded independently of the number of Lanczos steps k.
Having computed the Perron vector yk for Tk, we have to evaluate the corresponding
Ritz vector wk = Qkyk. This can be done by regenerating the columns of Qk. Thus, we
determine these columns by applying the recursion formula of the Lanczos method
again and discard the columns qj as soon as their contribution to the Ritz vector wk
have been evaluated. The inner products that determine the nontrivial entries of
Tk do not have to be recomputed. This approach of reducing the storage amount is
straightforward, but it doubles the number of matrix–vector product evaluations with
M. This method is described by Algorithm 2. The iterations are terminated similarly
as in Algorithm 1.

(ii) Restart the Lanczos method, that is, compute an approximation of the Perron vector
every k iteration, and use this approximation as a new initial vector when restarting
the Lanczos iterations. The vector e is used to initialize the very first k Lanczos
steps. The method is restarted until the stopping criterion is satisfied. The storage
requirement of this restarted Lanczos method is limited to essentially the matrix Qk,
independently of the number of iterations that are carried out. However, the rate of
convergence of computed approximations of the Perron vector may be slower than
for the un-restarted Lanczos method. This method is discussed in Theorem 3 below.

Example 3. We applied Algorithm 2 to the adjacency matrix of the 4-chained network described
in Example 2, with ε = 10−4. The stopping criterion was satisfied at step 20. The algorithm
determined the same vertices as the standard Lanczos method in Example 2. The main differences
between Algorithm 1 and Algorithm 2 are that the latter requires less computer storage, but more
matrix–vector product evaluations with M (40 vs. 26). The difference in the number of steps required
by Algorithms 1 and 2 depends in part on the different stopping criteria used. In Algorithm 1, the
iterations are terminated when two consecutive Ritz vectors are close enough, while Algorithm 2 is
terminated when two consecutive Ritz values are sufficiently close.

We turn to computing the Perron vector of M by the restarted Lanczos method
described in (ii). This method applies k steps of the Lanczos method to the matrix M
with initial vector e to determine the decomposition (9), and computes the Perron vector
y(1) ∈ Rk of the symmetric tridiagonal matrix Tk in this decomposition. We denote the
Perron root of Tk by ρ(1). Then, Qky(1) is the Ritz vector of M that best approximates
the Perron vector, and ρ(1) is the corresponding Ritz value. The computed Ritz vector
may have negative entries, while the Perron vector of M is known to only have strictly
positive entries. We therefore set all entries of Qky(1) that are smaller than a small δ > 0,
say δ = 10−8, to δ, and refer to the vector so obtained as ẑ(1).
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Algorithm 2 Determine the Perron vector of the matrix M by applying twice the Lanczos
recursions.
Require: Adjacency matrix M ∈ Rn×n and initial vector e = 1.
Ensure: Approximation w of the Perron vector of M.

1: β0 = 0, q1 = e/‖e‖, ρ0 = 0, k = 1
2: α1 = qT

1 Mq1
3: r = Mq1 − α1q1
4: β1 = ‖r‖
5: q0 = q1
6: q1 = r/β1
7: T1 = α1, ρ1 = α1
8: while |ρk − ρk−1| > ε do
9: k = k + 1

10: αk = qT
1 Mq1

11: r = Mq1 − αkq1 − βk−1q0
12: βk = ‖r‖
13: q0 = q1
14: q1 = r/βk

15: Tk =

[
Tk−1 βk−1ek−1

βk−1eT
k−1 αk

]
16: Compute the largest eigenvalue ρk of Tk
17: end while
18: Compute the Perron vector yk = [y

(1)
k , y

(2)
k , · · · , y

(k)
k ] of matrix Tk

19: q0 = 0, q1 = e/‖e‖
20: w = y

(1)
k q1

21: for i = 1, . . . , k− 1 do
22: r = Mq1 − αiq1 − βi−1q0
23: q0 = q1
24: q1 = r/βi

25: w = w + y
(i+1)
k q1

26: end for

The vector ẑ(1) is used to determine an improved approximation of the Perron vector
of M. Thus, we apply k steps of the Lanczos method to M with initial vector ẑ(1). This
gives a decomposition analogous to (9). We compute the Perron vector y(2) ∈ Rk and the
Perron root ρ(2) of the symmetric tridiagonal matrix in this decomposition. Proceeding
similarly as described above, we obtain a new approximation of the Perron vector of M.
We denote this approximation by ẑ(2). The latter vector is used as an initial vector for k
steps of the Lanczos method applied to M, which yields a new approximation, ẑ(3), of the
Perron vector and a new approximation ρ(3) of the Perron root of M. This approximate
Perron vector is computed, similarly, as ẑ(2). We determine approximate Perron vectors ẑ(i)

and Perron roots ρ(i) for i = 2, 3, . . ., until two consecutive Perron vector approximations
are sufficiently close, that is, until

‖ẑ(i) − ẑ(i−1)‖ ≤ ε, (14)

for a user-supplied tolerance ε > 0.
The following result shows that the vectors ẑ(i) converge to the Perron vector of M

when the number of Lanczos steps, k, used to determine ẑ(i) from ẑ(i−1) for i = 2, 3, . . ., is
large enough and the stopping criterion (14) is not applied.

Theorem 3. Let M ∈ Rn×n be the adjacency matrix of an undirected connected graph G , and let ρ
and w denote the Perron root and Perron vector of M, respectively. Apply the restarted Lanczos
method described above with initial vector e and without the stopping criterion (14). If the number
of Lanczos steps between restarts, k, is large enough, then the computed sequence ẑ(i), i = 1, 2, . . .,
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of approximations of the Perron vector converges to w as i increases. Similarly, the computed
sequence ρ(i) for i = 1, 2, . . ., of approximations of the Perron root ρ, converges to ρ as i increases.

Proof. Blondel et al. ([8] Theorem 2) show that, given a strictly positive initial vector, the
sequence z2k, k = 1, 2, . . ., in Equation (2) generated by the power method, converges to
the Perron vector of M. It follows that Theorem 2 also holds when the initial vector e is
replaced by any vector with all entries being strictly positive. In particular, Theorem 2
holds for all the initial vectors ẑ(i), i = 0, 1, 2, . . ., used in the restarted Lanczos method. Let
us set ẑ(0) = e.

The Ritz value ρ(i), determined by the restarted Lanczos method, satisfies

ρ(i) = max
x∈Kk(M,ẑ(i−1))

xT Mx

xTx
.

It follows that, unless ẑ(i−1) is a stationary point of the Rayleigh quotient, ρ(i) > ρ(i−1).
According to Theorem 2, the vector ẑ(i−1) can be a stationary point only if it is the Perron
vector. Thus, we may assume that ρ(i) > ρ(i−1).

The vector ẑ(i) used in the next restart is not the Ritz vector of M that corresponds
to the Rayleigh quotient ρ(i), because all entries smaller than some tiny δ > 0 in this Ritz
vector are set to δ. This means that the Rayleigh quotient

ρ
(i)
mod =

(ẑ(i−1))T Mẑ(i−1)

(ẑ(i−1))T ẑ(i−1)

may be smaller than ρ(i). We have to choose the number of Lanczos steps between restarts,
k, large enough so that ρ

(i)
mod is significantly larger than ρ(i−1) for every i. This secures the

convergence of the vectors ẑ(i) to the Perron vector w of M as i increases.

Example 4. We apply the restarted Lanczos method to the same adjacency matrix M as in
Example 2 to compute its Perron vector and to identify the most important vertices of the as-
sociated graph. We let ε = 10−4 in (14) and carry out k = 10 steps of the Lanczos method between
restarts. All entries smaller than δ = 10−8 in the Ritz vectors of M associated with the Perron roots
of consecutively generated symmetric tridiagonal matrices are set to δ. For the present example, the
restarted Lanczos method requires seven restarts, thus, 70 matrix–vector product evaluations are
carried out. The computational load is larger than for Algorithm 1, but the storage requirement of
the restarted method is smaller and is independent of the number of restarts necessary.

4. The Arnoldi Method

The Arnoldi method can be applied to compute approximations of a few eigenvalues
and associated eigenvectors of a large non-symmetric matrix A ∈ Rn×n. We will describe a
novel application to the computation of the Perron vector of a large symmetric matrix. A
thorough discussion of the Arnoldi method and its properties is provided by Saad ([12]
Chapter 6). Here, we only provide a brief outline.

The application of 1 ≤ k � n steps of the Arnoldi method applied to a large matrix
A ∈ Rn×n with initial vector v ∈ Rn\{0} gives, generically, the Arnoldi decomposition

AQk = Qk Hk + hk+1,kqk+1eT
k , (15)

where

Hk =

⎡⎢⎢⎢⎢⎢⎣
h11 h12 h13 · · · h1k
h21 h22 h23 · · · h2k

h321 h33 · · · h3k
. . . . . .

...
hk,k−1 hkk

⎤⎥⎥⎥⎥⎥⎦ ∈ Rk×k
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is an upper Hessenberg matrix with positive subdiagonal entries, the matrix Qk ∈ Rn×k

has orthonormal columns, qk+1 ∈ Rn is a unit vector such that QT
k qk+1 = 0, and hk+1,k is a

nonnegative scalar. Each step of the Arnoldi method requires the evaluation of one matrix
vector product with A. The decomposition (15) exists, provided that the Arnoldi method,
outlined in Algorithm 3, does not break down because of a division by zero. This situation
is very rare; we therefore will not dwell on it further.

Let ρk denote the largest eigenvalue of Hk, and let yk ∈ Rk be an associated unit
eigenvector. Then, ρk and wk = Qkyk are the corresponding Ritz value and Ritz vector of A,
respectively. The iterations with the Arnoldi method are terminated when two consecutive
approximations of the Perron vector are sufficiently close, that is, when

‖wk −wk−1‖ ≤ ε

for some user-specified tolerance ε > 0. Algorithm 3 describes the Arnoldi method with
initial vector e.

Algorithm 3 Estimate the Perron vector of matrix A with the Arnoldi method with initial
vector e.
Require: Adjacency matrix A ∈ Rn×n and initial vector e = 1.
Ensure: Ritz vector wk of the adjacency matrix A.

1: q1 = e/‖e‖, w0 = 0, k = 1
2: h11 = qT

1 Aq1
3: r = Aq1 − h11q1
4: h21 = ‖r‖
5: q2 = r/h21
6: H1 = h11
7: Q1 = q1, w1 = q1
8: while ‖wk −wk−1‖ > ε do
9: k = k + 1

10: r = Aqk
11: for i = 1, 2, . . . , k do
12: hik = qT

i r
13: r = r− hikqi
14: end for
15: hk+1,k = ‖r‖
16: qk+1 = r/hk+1,k

17: Hk =

[
Hk−1 {hik}k−1

i=1
hk,k−1eT

k−1 hk,k

]
18: Qk = [Qk−1 qk]
19: Compute the Perron vector yk of Hk
20: wk = Qkyk
21: end while
22: w = wk

Blondel et al. consider the computation of the Perron vector of the central block

C = AT A + AAT (16)

of the matrix (7), where the matrix A ∈ Rn×n may be non-symmetric; see [8] Theorem 6.
One approach is to apply the Lanczos method to C. Then, each iteration requires the
evaluation of two matrix–vector products with A and two with AT . We will compare this
approach to the application of k steps of the Arnoldi method to A.

The Arnoldi decomposition suggests the approximation A ≈ Qk HkQT
k , from which

we obtain
AT A + AAT ≈ Qk(HT

k Hk + Hk HT
k )Q

T
k . (17)
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Let ρk be the largest eigenvalue of HT
k Hk + Hk HT

k and let yk be the associated Perron
vector. Then, the vector wk = Qkyk provides an approximation of the Perron vector of the
matrix AT A + AAT . The main advantage of using this approximation, when compared
to the application of the Lanczos method to the matrix (16), is that the computation of
the approximation (17) only requires the evaluation of k matrix–vector products with A,
while the computation of k steps of the Lanczos method to the matrix (16) demands the
evaluation of 4k matrix–vector products with A or AT . For many matrices A, the right-hand
side of (17) gives an accurate approximation of the Perron vector for a few Arnoldi steps.
We provide an illustration below. However, the use of (17) is not always beneficial as the
next example shows.

Example 5. Let A ∈ Rn×n be a Jordan block with the eigenvalue zero. Then, A is an adjacency
matrix associated with a simple directed graph. The graph and the matrix are displayed in Figure 1.

v1 v2 vn−1 vn A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

0 1
. . . . . .

0 1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 1. A directed graph G and its adjacency matrix A.

The Perron root of A is 0, with Perron vector e1 = [1, 0, . . . , 0]T. When applying the Arnoldi
method to A with initial vector e, the k-dimensional Krylov subspace Kk(A, e) is spanned by the
first k vectors of

Kn(A, e) = span{e, Ae, A2e, . . . , An−1e} = span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1
1

⎤⎥⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎢⎣
1
1
...
1
0

⎤⎥⎥⎥⎥⎥⎦, . . . ,

⎡⎢⎢⎢⎢⎢⎣
1
0
...
0
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

In particular, the Perron vector is not contained in the subspacesKk(A, e) for k = 1, 2, . . . , n− 1.
This implies that one has to carry out n steps with the Arnoldi algorithm to determine an accurate
approximation of the Perron vector of A. For the present matrix A, Formula (17) requires n steps of
the Arnoldi algorithm applied to A to give an accurate approximation of a Perron vector of (16).

We turn to the spectral factorization of the matrix (16). This matrix is diagonal with eigenvalue
2 of multiplicity n− 2. The corresponding eigenvectors form the eigenspace

span{e2, e3, . . . , en−1}.

Example 6. Let A ∈ Rn×n represent the adjacency matrix of a directed circular graph. The
adjacency matrix and the associated graph are displayed in Figure 2.

v1

v2 v3

· · ·

vn−1vn

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

0 1
. . . . . .

0 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 2. A directed circular graph G and its adjacency matrix A.
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In this example, the matrix (16) is diagonal, with Perron root 2 of multiplicity n. In particular,
the vector e is a Perron vector. Application of one step of the Arnoldi algorithm to the the circulant
matrix A with initial vector e yields the eigenvector e. Thus, the Arnoldi algorithm performs well.

Example 7. Consider the up-shift matrix on the right-hand side of Figure 1 of order 1000.
By adding the perturbation γ = 10−3 to the entry (1000, 1), we obtain an adjacency matrix A that
represents a weighted directed circular graph. Thus, the graph is strongly connected. The associated
matrix (16) is diagonal with Perron root 2 with eigenspace span{e2, e3, . . . , en−1}. When applying
the Arnoldi algorithm to A with initial vector e, 1000 steps are required to approximate the Perron
vector. In this case, the Arnoldi algorithm performs poorly.

We conclude that the Arnoldi method may not provide useful approximations of
the Perron vector of certain non-symmetric adjacency matrices A in a reasonable number
of steps. The application of the Arnoldi method to A to compute the Perron vector of
the matrix (16) can be competitive with the application of the Lanczos method to the
latter matrix, but this is not guaranteed. The closer the adjacency matrix A is to the set
of symmetric matrices, the better the Arnoldi method, applied to A, can be expected
to perform.

5. Application to Real World Networks

In this section, we apply the iterative methods discussed in this paper to the computa-
tion of the Perron vector of large real-world networks, and compare the results obtained.

We start by analyzing a particular 3-chained network and seek to determine the most
important vertices of each index subset according to the eigenvector centrality. Some
social bookmarking services, such as Delicious, allow their users to put tags on web pages.
The relationship between users, web pages and tags, can be represented by a 3-chained
network [15]. A data set of Delicious bookmarks, which contains 105,000 bookmarks and
1867 users, is available at the Grouplens web site [17]. We selected data from January
2010 to February 2010 and constructed a 3-chained graph G with the three vertex subsets:
456 users, 4253 web pages, and 5962 tags. The total numbers of vertices and edges are
10,671 and 23,550 respectively. The 3-chained network is undirected and represented by
the adjacency matrix M ∈ R10671×10671.

We used the power method, Lanczos iteration, and restarted the Lanczos iteration
to estimate the Perron vector of M and to find the most important vertices of each vertex
subset. Denote the computed approximations of the Perron vectors of M, obtained by
applying the methods mentioned, by sP, sL, and sRL, respectively. Let the initial vector be e

and the tolerance be 10−10 for all the methods. To estimate the accuracy of the methods, we
consider as exact the principal eigenvector sexact of M computed by the built-in function
eigs from MATLAB.

Before determining the most important vertices, we first check the accuracy of the
approximations of the Perron vector of M computed by the above mentioned methods.
We calculate the error, that is, the 2-norm of the difference between each computed ap-
proximation of the Perron vector and sexact. The errors of the estimated Perron vectors
are 0.3461 for the power method 3.22× 10−5 for Lanczos iteration, and 6.69× 10−8 for
restarted Lanczos iteration. From the errors, we observe that the Ritz vector obtained from
the restarted Lanczos method is the most accurate estimator. The Ritz vector from the
Lanczos algorithm is moderately accurate, while the vector found by the power method is
fairly different from the exact Perron vector sexact.

Let us now look at the performances of each method for finding the most important
vertices in the three subsets “users”, “web pages” and “tags”. The results determined
by the above methods and the number of iterations required are displayed in Table 1.
The most important vertices determined by sexact are displayed in the “Built-in” column.
All of the methods identify the vertices v142, v1368 and v4796 as the most important user,
web page and tag, respectively. The last row, “iterations”, shows that the standard Lanczos
method requires 17 matrix–vector product evaluations with A. For the restarted Lanczos,
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labeled ResLanc, 10 Lanczos steps are performed between each restart. Thus, it requires
in this case 30 matrix–vector products. The power method requires the largest number of
matrix–vector products. The rate of convergence of the approximation of the Perron vector
of M computed by the Lanczos method is faster than those of the other two methods. The
Ritz vector of the restarted Lanczos iteration converges more slowly but the computations
require less storage space.

Table 1. The most important vertices found by the methods discussed for each vertex set, and the
number of iterations required by each method.

Built-In Power Lanczos ResLanc10

“users” 142 142 142 142
“web pages” 1368 1368 1368 1368

“tags” 4796 4796 4796 4796
iterations 34 17 3

To better understand the numerical performance of the methods, we applied them to
six undirected networks of different sizes. They are listed, together with their number of
nodes, in the first column of Table 2:

autobahn describes the German highway system network; it is available at [18].
ndyeast models the protein interaction network for yeast. The data set was originally

included in the Notre Dame Networks Database and is available at [19].
power is a representation of the U.S.A. western states power grid; see [20]. It can be

found at [21].
geom is a weighted graph, extracted from the Computational Geometry Database

geombib by B. Jones (version 2002) and is available at [19]. The entry (i, j) of the
adjacency matrix is the number of papers coauthored by authors i and j.

internet is a snapshot of the structure of the Internet at the level of autonomous systems,
created by Mark Newman from data for 22 July 2006 [21].

facebook describes the friendship links of the New Orleans Facebook network resulting
from a particular snapshot. The dataset was studied in [22] and is available
at [23].

Table 2 displays the number of matrix–vector product evaluations carried out by the
methods considered to reach convergence. We also report the results obtained for the
delicious network for comparison. The label Lanczos2 denotes the results obtained by
Algorithm 2, that is, by applying the Lanczos recursion twice to save storage space. In
this case, the number of matrix–vector product evaluations is roughly twice the number
of iterations required by the standard algorithm (Algorithm 1) if the stopping criterion
is adjusted to produce the same accuracy in the approximation of the Perron vector. The
restarted Lanczos method (ResLanc) was executed with both ten and five iterations between
each restart, so the number of matrix–vector product evaluations is obtained by multiplying
the number of iterations by ten and five, respectively. For the other methods, the number of
matrix–vector product evaluations coincides with the number of iterations. Table 3 reports
the 2-norm errors for each method. The Perron vector returned by the function eigs of
MATLAB is considered the exact vector.

Table 2. Number of matrix–vector product evaluations required by the methods to reach convergence.

Network Size Power Lanczos Lanczos2 ResLanc10 ResLanc5

autobahn 1168 163 29 53 60 85
ndyeast 2114 1029 27 53 60 80
power 4941 49 18 35 30 35
geom 7343 19 11 23 20 20
delicious 10,671 35 17 33 30 30
internet 22,963 35 12 25 30 25
facebook 63,731 41 13 27 30 25
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Table 3. Errors produced by the methods with respect to the Perron vector computed by the eigs
function of MATLAB.

Network Size Power Lanczos Lanczos2 ResLanc10 ResLanc5

autobahn 1168 1.09× 10−3 7.62× 10−5 2.42× 10−4 9.60× 10−6 7.46× 10−5

ndyeast 2114 1.47× 10−2 7.96× 10−5 7.96× 10−5 2.37× 10−6 7.59× 10−5

power 4941 2.76× 10−4 3.66× 10−5 3.66× 10−5 9.77× 10−8 8.18× 10−6

geom 7343 1.66× 10−5 6.53× 10−6 1.28× 10−6 2.60× 10−10 5.10× 10−8

delicious 10,671 3.46× 10−1 3.22× 10−5 3.22× 10−5 6.73× 10−8 5.42× 10−6

internet 22,963 6.77× 10−5 3.15× 10−5 8.97× 10−6 1.51× 10−11 2.36× 10−7

facebook 63,731 9.74× 10−5 2.37× 10−5 6.86× 10−6 2.38× 10−10 1.05× 10−6

We see that the power method requires more iterations than the Lanczos algorithm
(Algorithm 1) and delivers approximations of the Perron vector of worse accuracy. Ap-
plying the Lanczos method twice by Algorithm 2 saves storage but results in a heavier
computational load in order to produce the same accuracy of the computed approxima-
tion of the Perron vector. The restarted Lanczos approach has the remarkable feature of
requiring the same number of matrix products when it is executed, performing ten and five
iterations between consecutive restarts. This means that just a few iterations are sufficient
to guarantee convergence. The computer storage requirement is much smaller than for the
Lanczos method. The errors in the computed approximations of the Perron vector achieved
by the restarted Lanczos method are smaller than the errors obtained with the Lanczos
methods (Algorithms 1 and 2). Table 2 indicates that the restarted Lanczos method can
be competitive.

6. Conclusions

This paper compares the computational effort and storage requirements of the power
method, Lanczos method, and the restarted Lanczos method to determine the Perron vector
for a large symmetric adjacency matrix. The application of the Arnoldi iteration is also
considered. The power method yields quite a slow convergence, much slower than that of
the Lanczos method. However, due to its large storage requirement for large adjacency
matrices, the latter method is not practical to use for large-scale networks. Different ways of
restarting the Lanczos iterations are considered and found to combine faster convergence
than the power method with less storage requirement than the Lanczos method.
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Abstract: In this paper, we study estimates for quadratic forms of the type xT A−mx, m ∈ N, for
symmetric matrices. We derive a general approach for estimating this type of quadratic form and
we present some upper bounds for the corresponding absolute error. Specifically, we consider three
different approaches for estimating the quadratic form xT A−mx. The first approach is based on
a projection method, the second is a minimization procedure, and the last approach is heuristic.
Numerical examples showing the effectiveness of the estimates are presented. Furthermore, we
compare the behavior of the proposed estimates with other methods that are derived in the literature.

Keywords: quadratic form; estimates; upper bounds

1. Introduction

Let A ∈ Rn×n be a given symmetric positive definite matrix and x ∈ Rn. We are
interested in estimating the quadratic forms of the type xT A−mx, m ∈ N. Our main goal
was to find an efficient and cheap approximate evaluation of the desired quadratic form
without the direct computation of the matrix A−m. As such, we revisited the approach for
estimating the quadratic form xT A−1x, developed in [1], and extended it to the case of an
arbitrary negative power of A.

The computation of quadratic forms is a mathematical problem with many applica-
tions. Indicatively, we refer to some usual applications.

• Statistics: The inverse of the covariance matrix, which is referred to as a precision
matrix, usually appears in statistics. The covariance matrix reveals marginal correla-
tions between the variables, whereas the precision matrix represents the conditional
correlations between two data variables of the other variables [2]. The diagonal of
the inverse of covariance matrices provides information about the quality of data in
uncertainty quantification [3].

• Network analysis: The determination of the importance of the nodes of a graph is
a major issue in network analysis. Information for these details can be extracted by
the evaluation of the diagonal elements of the matrix (In − aA)−1, where A is the

adjacency matrix of the network, 0 < a <
1

ρ(A)
, and ρ(A) is the spectral radius

of A. This matrix is referred to as a resolvent matrix, see, for example, [4] and the
references therein.

• Numerical analysis: Quadratic forms arise naturally in the context of the computation
of the regularization parameter in Tikhonov regularization for solving ill-posed prob-
lems. In this case, the matrix has the form AAT + λIn, λ > 0. In the literature, many
methods have been proposed for the selection of the regularization parameter λ, such
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as the discrepancy principle, cross-validation, generalized cross-validation (GCV),
L-curve, and so forth; see, for an example, [5] (Chapter 15) and references therein.
These methods involve quadratic forms of type xT(AAT + λIn)−mx, with m = 1, 2, 3.

In practice, exact computation of a quadratic form is often replaced using an estimate
that is faster to evaluate. Regarding its numerous applications, the estimation of quadratic
forms is an important practical problem that has been frequently studied in the literature.
Let us indicatively refer to some well-known methods. A widely used method is based
on Gaussian quadrature [5] (Chapter 7) and [6]. Moreover, extrapolation procedures have
been proposed. Specifically, in [7], families of estimates for the bilinear form xT A−1y for
any invertible matrix, and in [8], families of estimates for the bilinear form y∗ f (A)x for a
Hermitian matrix were developed.

In the present work, we consider alternative approaches to this problem. To begin,
notice that the value of the quadratic form (x, A−mx) is proportional to the second power
of the norm of x. Therefore, the task of estimating (x, A−mx) consists of two steps:

1. Finding an α such that
(x, A−mx) ≈ α‖x‖2. (1)

2. Assessing the absolute error of the above estimate, i.e., determining a bound for
the quantity ∣∣∣α‖x‖2 − (x, A−mx)

∣∣∣. (2)

In Section 2, we present the upper bounds for the absolute error (2) for any given
α. Section 3 is devoted to estimates of the value α in (1) using a projection method.
In Section 4, we use bounds from Section 2 as a stepping stone for estimating xT A−mx using
the minimization method. A heuristic approach is outlined in Section 5. In Section 6, we
briefly describe two methods that were used in previous studies, namely, an extrapolation
approach and another one based on Gaussian quadrature. Section 7 is focused on adapting
the proposed estimates to the case of the matrix of form AAT + λIn. Numerical examples
that illustrate the performance of the derived estimates are found in Section 8. We end this
work with several concluding remarks in Section 9.

2. Bounds on the Error

In Proposition 1 below, we derive an upper bound on the error (2) for a given estimate
α‖x‖2 of the quadratic form xT A−mx. The first three expressions for the bounds (UB1–UB3)
are a direct generalization of a result from [1].

Proposition 1. Let A ∈ Rn×n be a symmetric positive definite matrix and x ∈ Rn and est = α‖x‖2

be an estimate of the quadratic form xT A−mx. If we denote b = αAmx− x, the absolute error of
the estimate

∣∣α‖x‖2 − (x, A−mx)
∣∣ is bounded from above by the following expressions:

UB1.
‖x‖2‖b‖
2‖Amx‖

(
κm +

1
κm

)
UB2.

‖x‖ · ‖b‖2

2‖Amb‖

(
κm +

1
κm

)
UB3.

‖x‖2‖b‖2

4
√

xT Amx ·
√

bT Amb

(
κm/2 +

1
κm/2

)2

UB4.
‖x‖ · ‖b‖

λm
min

UB5. For estimates satisfying α‖x‖2 ≤ (x, A−mx), we have also the family of error bounds

‖x‖2

2‖Amx‖ · ‖Apx‖

(
κm +

1
κm

)√
‖Apx‖2‖b‖2 − (Apx, b)2 ,

where p ≥ 0 can be chosen as any integer such that (x,Apx)
(Amx,Apx) < α.
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Proof.

UB1.
The matrix A−m is symmetric because A is symmetric, and it holds that

|xT A−mb| = |(x, A−mb)| = |(A−mx, b)| ≤ ‖A−mx‖ · ‖b‖,

by the Cauchy–Schwarz inequality.
Moreover, we have

‖A−mx‖ =
√
(A−mx, A−mx) =

√
(x, A−2mx). (3)

Using the Kantorovich inequality for the matrix Am and considering that
λmin(A2m) = λ2m

min, λmax(A2m) = λ2m
max, we have

(xTx)2

(xT A2mx)(xT(A2m)−1x)
≥ 4λmin(A2m)λmax(A2m)

(λmin(A2m) + λmax(A2m))2

⇒ ‖x‖4

(xT A2mx)(xT A−2mx)
≥ 4λ2m

minλ2m
max

(λ2m
min + λ2m

max)
2

⇒ xT A−2mx ≤ ‖x‖4

(x, A2mx)
(λ2m

min + λ2m
max)

2

4λ2m
minλ2m

max

⇒ xT A−2mx ≤ ‖x‖4

4‖Amx‖2

(
λm

min
λm

max
+

λm
max

λm
min

)2
=

‖x‖4

4‖Amx‖2

(
1

κm + κm
)2

,

where κ =
λmax

λmin
is the condition number of A. Therefore, the norm ‖A−mx‖ given by (3)

can be bounded by

‖A−mx‖ ≤ ‖x‖2

2‖Amx‖

(
1

κm + κm
)

. (4)

Hence, we have

|xT A−mb| ≤ ‖A−mx‖ · ‖b‖ = ‖x‖2

2‖Amx‖

(
1

κm + κm
)
‖b‖.

UB2.
Due to the Cauchy–Schwarz inequality, it holds that

|xT A−mb| = |(x, A−mb)| ≤ ‖x‖ · ‖A−mb‖.

Following a similar approach as above based on the Kantorovich inequality, we obtain

‖A−mb‖ ≤ ‖b‖2

2‖Amb‖

(
1

κm + κm
)

.

So,

|xT A−mb| ≤ ‖x‖ · ‖b‖2

2‖Amb‖

(
1

κm + κm
)

.

UB3.
It holds that

|xT A−mb| = |(A−
m
2 x, A−

m
2 b)| ≤ ‖A−

m
2 x‖ · ‖A−

m
2 b‖

=

√
(A−

m
2 x, A−

m
2 x) ·

√
(A−

m
2 b, A−

m
2 b) =

√
(x, A−mx) ·

√
(b, A−mb).
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Applying the Kantorovich inequality to the matrix Am in a similar way as above, we
can immediately obtain the inequality

xT A−mx ≤ ‖x‖4

4xT Amx

(
1

κ
m
2
+ κ

m
2

)2
.

So, we have

|xT A−mb| ≤
√

‖x‖4

4xT Amx

(
1

κ
m
2
+ κ

m
2

)2 ‖b‖4

4bT Amb

(
1

κ
m
2
+ κ

m
2

)2

=
‖x‖2‖b‖2

4
√

xT Amx ·
√

bT Amb

(
1

κ
m
2
+ κ

m
2

)2
.

UB4.
Applying the Cauchy–Schwarz inequality, we obtain

|xT A−mb| = |(x, A−mb)| ≤ ‖x‖ · ‖A−mb‖ ≤ ‖x‖ ‖b‖
λmin(Am)

= ‖x‖ ‖b‖
λm

min
.

UB5.
Since A is positive definite, as is Aq for any integer q, the angle between vectors v and

Aqv does not exceed π/2 for any v, i.e., �(v; Aqv) ≤ π

2
.

Taking v = A−mx and q = p + m, we obtain

�(A−mx; Ap+m A−mx) ≤ π

2
⇒ �(A−mx; Apx) ≤ π

2
.

The assumption (x,Apx)
(Amx,Apx) < α implies that

(x, Apx)− α(Amx, Apx) < 0 ⇒ (x− αAmx, Apx) < 0

⇒ (−b, Apx) < 0 ⇒ �(Apx;−b) ∈
(π

2
, π
]
.

Hence, we obtain

�(A−mx;−b) ≥ �(Apx;−b)︸ ︷︷ ︸
∈( π

2 ,π]

−�(A−mx; Apx)︸ ︷︷ ︸
∈[0, π

2 ]

≥ �(Apx;−b)− π

2
> 0 .

At the same time, the assumption α‖x‖2 ≤ (x, A−mx) implies

(x, αx) ≤ (x, A−mx)⇒ (A−mx, αAmx) ≤ (A−mx, x)⇒ (A−mx, x− αAmx︸ ︷︷ ︸
−b

) ≥ 0;

so, �(A−mx;−b) ≤ π
2 . To summarize,

π

2
≥ �(A−mx;−b) ≥ �(Apx;−b)︸ ︷︷ ︸

∈( π
2 ,π]

−π

2
> 0 .

Consequently,

0 ≤ cos�(A−mx;−b) ≤ cos
(
�(Apx;−b)− π

2

)
= sin�(Apx;−b).

54



Mathematics 2021, 9, 1432

So, we have

|(A−mx,−b)| = ‖A−mx‖ · ‖ − b‖ ·
∣∣cos�(A−mx;−b)

∣∣ ≤ ‖A−mx‖ · ‖b‖ · |sin�(Apx,−b)|. (5)

The norm ‖A−mx‖ can be bounded using the Kantorovich inequality, as shown in
Relation (4). Regarding the factor |sin�(Apx,−b)|, we have

|sin(�(Apx;−b))| =
√

1− cos2 �(Apx;−b) =

√
1− (Apx,−b)2

‖Apx‖2‖b‖2

=

√
1− (Apx, b)2

‖Apx‖2‖b‖2 =

√
‖Apx‖2‖b‖2 − (Apx, b)2

‖Apx‖ · ‖b‖ .

Therefore, the relation (5) can be reformulated as

|(A−mx, b)| ≤ ‖x‖2

2‖Amx‖ · ‖Apx‖

(
1

κm + κm
)√

‖Apx‖2‖b‖2 − (Apx, b)2.

3. Estimate of xT A−mx by the Projection Method

Our goal is to find a number α such that xT A−mx ≈ α‖x‖2 (cf. (1)). To that end, let us
take a fixed k ∈ N0 = N∪ {0} and consider the following decomposition of x,

x = αAmx− b,

where b ⊥ Akx. (That is, αAmx is a projection of x onto Amx along the orthogonal comple-
ment of Akx.) Then, we have

(x, Akx) = (αAmx, Akx)− (b, Akx).

Using the assumption b ⊥ Akx, we obtain

(x, Akx) = α(Amx, Akx),

and so

α =
(x, Akx)

(x, Am+kx)
.

Hence, we obtain a family of estimates for xT A−mx as follows:

(x, A−mx) ≈ (x, Akx)
(x, Am+kx)

‖x‖2 (k ∈ N0). (6)

We denote these estimates by estproj(k), k ∈ N0. The computational implementation

requires
⌈

m + k
2

⌉
matrix-vector products (mvps).

Let us now explore the error corresponding to the above choice of α. We have

(x, A−mx) = (αAmx, A−mx)− (b, A−mx);

therefore,

(x, A−mx) = α‖x‖2 − (x, A−mb).
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Since α‖x‖2 is the estimate (see (1)), the error term is provided as (x, A−mb). Bounds
on its absolute value can be found using Proposition 1 with

b = αAmx− x =
(x, Akx)

(x, Am+kx)
Amx− x.

Remark 1. Let us comment on the choice of the parameter k.

• Observe that upper bounds UB1 and UB4 from Proposition 1 are minimal for k = m. In this
case, we have b ⊥ Amx; thus, b has the smallest possible norm. Therefore, from the point of
view of minimizing the upper bound on the error (more precisely, minimizing upper bounds
UB1 and UB4), a convenient choice is k = m.

• However, if the goal is fast estimation, we can take k = 0 for even m and k = 1 for odd m,

as these two choices provide estproj(0) =
‖x‖4

‖Am/2x‖2 and estproj(1) =
‖x‖2(x,Ax)
‖A(m+1)/2x‖2 , respectively,

which are both easy to evaluate.

In general, for any choice of k, the error of the estimate can be assessed using Proposition 1.

4. Estimate of xT A−mx Using the Minimization Method

The estimates that we present in this section stem from the upper bounds UB2 and
UB3 for the absolute error |(x, A−mb)|, which are derived in Proposition 1. Our goal is to
reduce the absolute error by finding the value α that minimizes these bounds.

Plugging b = αAmx − x in the explicit formulas for UB2 and UB3, we can easily
check that the two upper bounds in question attain their minimal values if and only if α
minimizes the function

f (α) =
α2‖Amx‖2 − 2α(x, Amx) + ‖x‖2√

α2(x, A3m+kx)− 2α(x, A2m+kx) + (x, Am+kx)
,

where k = m corresponds to UB2 and k = 0 corresponds to UB3. By differentiating this
expression with respect to α, we find that the upper bounds UB2 and UB3 are minimized
at α̂, being the root of the equation

‖Amx‖2(x, A3m+kx)α3 − 3‖Amx‖2(x, A2m+kx)α2+

+
(

2‖Amx‖2(x, Am+kx) + 2(x, Amx)(x, A2m+kx)− ‖x‖2(x, A3m+kx)
)

α+

+ ‖x‖2(x, A2m+kx)− 2(x, Amx)(x, Am+kx) = 0,

where, as before, the values k = m and k = 0 correspond to UB2 and UB3, respectively.
With this value α̂, we obtain the estimation of xT A−mx as

estmin = α̂‖x‖2.

For the sake of brevity, we adopt the notation estmin1 for k = 0 and estmin2 for k = m.

The computational implementation requires
⌈

3m + k
2

⌉
mvps.

5. The Heuristic Approach

Let us consider the quantity

Rm(x) =
‖x‖2‖Amx‖2

(x, Amx)2 . (7)

We refer to Rm(x) as the generalized index of proximity.
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Lemma 1. Assume that A ∈ Rn×n is a symmetric matrix. For any nonzero vector x ∈ Rn,
the value Rm(x) satisfies Rm(x) ≥ 1. The equality Rm(x) = 1 holds true if and only if x is an
eigenvector of A.

Proof. By the Cauchy–Schwarz inequality, we have (x, Amx)2 ≤ ‖x‖2‖Amx‖2; hence,
Rm(x) ≥ 1. The equality Rm(x) = 1 is equivalent to the equality in the Cauchy–Schwarz
inequality, which occurs if and only if the vector Amx is a scalar multiple of the vector x, in
other words, when Amx = αx for a certain α ∈ R. This is further equivalent to Ax = λx
(with λ satisfying λm = α) given the assumption that A is symmetric.

As a result of Lemma 1, the equality

Rm(A−m/2x)n1 Rm(Am/2x)n2 = Rm(x)n1+n2 ,

where n1, n2 ∈ Z, is identically true for any eigenvector of A (i.e., for any vector satisfying
Rm(x) = 1), and becomes approximately true for vectors x with the property Rm(x) ≈ 1.

Therefore, if Rm(x) ≈ 1, we have

‖A−m/2x‖2n1‖Am A−m/2x‖2n1

(A−m/2x, Am A−m/2x)2n1

‖Am/2x‖2n2‖Am Am/2x‖2n2

(Am/2x, Am Am/2x)2n2
≈ ‖x‖2(n1+n2)‖Amx‖2(n1+n2)

(x, Amx)2(n1+n2)

⇒ (x, A−mx)n1‖Am/2x‖2n1

‖x‖4n1

‖Am/2x‖2n2‖A3m/2x‖2n2

‖Amx‖4n2
≈ ‖x‖2(n1+n2)‖Amx‖2(n1+n2)

(x, Amx)2(n1+n2)

⇒ (x, A−mx)n1 ≈ ‖x‖6n1+2n2‖Amx‖2n1+6n2

(x, Amx)3(n1+n2)(x, A3mx)n2

⇒ (x, A−mx) ≈ n1

√
‖x‖6n1+2n2‖Amx‖2n1+6n2

(x, Amx)3(n1+n2)(x, A3mx)n2
.

We refer to this estimate as esth. If, in particular, n1 = 1 and n2 = 0, we denote the
estimate by esth1, and if n1 = n2 = 1, the corresponding estimate is denoted by esth2. The

computational implementation requires
⌈

3m
2

⌉
mvps.

6. A Comparison with Other Methods

In this section, we briefly describe two methods that were proposed in the literature
for estimating quadratic forms of the type xT f (A)x, where A ∈ Rn×n, x ∈ Rn, and f is
a smooth function defined on the spectrum of A. The first method is an extrapolation
procedure developed in [8] and the second one is based on Gaussian quadrature [5]
(Chapter 7) and [6].

6.1. The Extrapolation Method

We adjust the family of estimates for xT f (A)x given in [8] (Proposition 2) by setting
f (t) = t−m, m ∈ N. Hence, we directly obtain the estimating formula given in the
following lemma.

Lemma 2. Let A ∈ Rn×n be a symmetric matrix. An extrapolation estimate for the quadratic form
xT A−mx, m ∈ N, is given by

eν = ρ−mν ‖x‖2(m+1)

(x, Ax)m , ρ =
‖x‖2‖Ax‖2

(x, Ax)2 , ν ∈ R. (8)

We refer to this estimation as estextrap(ν). The computational implementation requires
just one mvp.
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Remark 2. In the special case of m = 1, some of the proposed estimates are identified to the
corresponding extrapolation estimates for specific choices of the family parameter ν. We have

• For ν = −1, estextrap(−1) ≡ esth1.
• For ν = 0, estextrap(0) ≡ estproj(0).
• For ν = 1, estextrap(1) ≡ estproj(1).

Notably, the extrapolation procedure proposes estimates for the quadratic form
xT A−mx and not bounds. The choice of the family parameter ν is arbitrary and no bounds
for the absolute error of the estimates are provided.

6.2. Gaussian Techniques

We consider the spectral factorization of A, which allows us to express the matrix A as
A = ∑n

k=1 λkvkvT
k , where λk ∈ R are the eigenvalues of A with corresponding eigenvectors

vk. Therefore, the quadratic form xT A−mx can be written as

xT A−mx =
n

∑
k=1

λ−m
k (x, vk)

2. (9)

The Summation (9) can be considered a Riemann–Stieltjes integral of the form∫ λmax

λmin

λ−mdμ(λ),

where the measure μ(λ) is a piecewise constant function defined by

μ(λ) =

⎧⎪⎨⎪⎩
0, if λ < λmin,

∑
j
i=1(x, vi)

2, if λj ≤ λ < λj+1,

∑
p
i=1(x, vi)

2, if λmax ≤ λ.

This Riemann–Stieltjes integral can be approximated using Gauss quadrature rules [5,6].
Hence, it is necessary to produce a sequence of orthogonal polynomials, which can be
achieved by the Lanczos algorithm. The operation count for this procedure is dominated
by the application of the Lanczos algorithm, which requires a cost of kn2 matrix-vector
products, where k is the number of Lanczos iterations. As the number of the iterations
increases, the estimates increase in accuracy but the complexity and the execution time
increase as well.

We refer to this estimation as to estGauss.

7. Application in Estimating xT(AAT + λIn)−mx

In several applications, the appearance matrix has the form B = AAT + λIn, λ > 0,
which is a symmetric positive definite matrix. For instance, this type of matrix appears in
specifying the regularization parameter in Tikhonov regularization. In this case, the esti-
mation of the quadratic forms of the type xT B−mx is required. The estimates derived in the
previous sections involve positive powers of B, i.e., Bk, k ∈ N. However, since the direct
computation of the matrix powers Bk is not stable for every λ, our next goal was to develop
an alternative approach to its evaluation. As we show below, the computation of Bk can
be obviated.

Since the matrices AAT and In commute, the binomial theorem applies,

Bm = (AAT + λIn)
m =

m

∑
j=0

(
m
j

)
λj(AAT)m−j, m ∈ N,

and hence
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Bmx =
m

∑
j=0

(
m
j

)
λj(AAT)m−jx, m ∈ N.

The above representation of the vector Bmx effectively allows us to avoid the com-
putation of the powers of the matrix B = AAT + λIn that appear in the estimates of the
quadratic form xT B−mx. The expressions of type (AAT)m−j can be evaluated successively
as follows:

ATx, AATx, AT AATx, AAT AATx, . . .

8. Numerical Examples

Here, we present several numerical examples that illustrate the performance of the
derived estimates. All computations were performed using MATLAB (R2018a). Through-
out the numerical examples, we denote by ei the ith column of the identity matrix of
appropriate order and 1n as the nth vector with all elements equal to one.

Example 1. Upper bounds for the absolute error.

In this example, we consider the symmetric positive define matrix A = BT B ∈
R1000×1000, where B is the Parter matrix selected from the MATLAB gallery. The condition
number of the matrix A is κ = 17.8983. We choose the vector x ∈ R1000 as the 100th column
of the identity matrix, i.e., x = e100. We estimate the quadratic form xT A−2x whose exact
value is 0.0127. In Table 1, we present the generated estimates following the proposed
approach and the upper bounds for the corresponding absolute error, which are given in
Proposition 1.

Table 1. Estimating xT A−2x = 0.0127, where A = BT B, B = Parter, x = e100.

Estimated Upper Bounds on Eabs

Value UB1 UB2 UB3 UB4 UB5

estproj(0) 0.0103 0.0541 0.1909 0.0690 0.1080 0.0540
estproj(2) 0.0103 0.0540 0.1926 0.0692 0.1079 0.0540
estmin1 0.0106 0.0731 0.1029 0.0499 0.1460 0.0538
estmin2 0.0105 0.0701 0.1032 0.0497 0.1401 0.0538
esth1 0.0103 0.0541 0.1872 0.0684 0.1082 0.0540
esth2 0.0103 0.0543 0.1828 0.0677 0.1084 0.0540

Example 2. Estimation of quadratic forms.

We consider the Kac–Murdock–Szegö (KMS) matrix A ∈ R1000×1000, which is sym-
metric positive-definite and Toeplitz. The elements Aij of this matrix are Aij = r|i−j|, i, j =
1, 2, . . . , 1000, 0 < r < 1. We tested this matrix for r = 0.2 and the condition number of A is
κ = 2.25. We estimated both the quadratic forms xT A−2x = 1.2072 and xT A−3x = 296.8727.
The chosen vectors were x = e1000 + 1/4e120 ∈ R1000 and x = 1n. The results are provided
in Tables 2 and 3. As we shown, the derived estimates are satisfactory in both cases.

Table 2. Estimating xT A−2x = 1.2072, where A = KMS, x = e1000 + 1/4e120.

estproj(0) estproj(2) estmin1 estmin2 esth1 esth2

1.0176 0.8636 1.0268 0.9910 1.1990 1.2335

59



Mathematics 2021, 9, 1432

Table 3. Estimating xT A−3x = 296.8727, where A = KMS, x = 1n.

estproj(0) estproj(3) estmin1 estmin2 esth1 esth2

296.6203 296.5306 299.8469 297.7640 296.7100 296.7562

Example 3. Estimation of the whole diagonal of the covariance matrices.

In this example, we consider thecovariance matrices of order n, whose elements Aij
are given by

Aij =

⎧⎨⎩ 1 + iα, i = j
1

|i− j|β , i �= j
, i = 1, 2, . . . , n,

where α, β ∈ R and β ≥ 1 [9]. We estimated the whole diagonal of the inverse of covariance
matrices through the derived estimates presented in this work. Moreover, we used the
two approaches presented in Section 6, which were used in previous studies. We applied
the Gauss quadrature using k = 3 Lanczos iterations. We chose the pair of values for
the parameters (α, β) = (3, 1). We validated the quality of the generated estimates by
computing the mean relative error (MRE) given by

MRE =
1
n

n

∑
i=1

|A−1
ii − est(i)|
|A−1

ii |
,

where est(i) is the corresponding estimate for the diagonal element A−1
ii . The results are

recorded in Table 4. Specifically, we analyzed the performance of the proposed estimates in
terms of the MRE and the execution time (in seconds).

Table 4. Mean relative errors and execution times for estimating the diagonal of the covariance
matrices of order n with (α, β) = (3, 1).

n Estimate MRE Time

1000

estproj(0) ≡ estextrap(0) 1.2688 × 10−4 5.3683 × 10−4

estproj(1) ≡ estextrap(1) 4.3539 × 10−4 5.4723 × 10−4

estmin1 2.9994 × 10−4 2.3557 × 10−1

estmin2 3.0020 × 10−4 2.1121 × 10−1

esth1 ≡ estextrap(−1) 3.5996 × 10−4 6.5678 × 10−4

esth2 3.8761 × 10−3 5.9529 × 10−2

estGauss 1.2687 × 10−4 1.7068

3000

estproj(0) ≡ estextrap(0) 4.2294 × 10−5 2.2339 × 10−3

estproj(1) ≡ estextrap(1) 1.4516 × 10−4 2.2521 × 10−3

estmin1 1.0508 × 10−4 1.2698
estmin2 1.0528 × 10−4 1.0726

esth1 ≡ estextrap(−1) 1.2004 × 10−4 2.5384 × 10−3

esth2 1.6973 × 10−3 5.1289 × 10−1

estGauss 4.2294 × 10−5 1.1647 × 101

5000

estproj(0) ≡ estextrap(0) 2.5377 × 10−5 1.4881 × 10−2

estproj(1) ≡ estextrap(1) 8.7099 × 10−5 1.4502 × 10−2

estmin1 6.6113 × 10−5 1.2790 × 101

estmin2 6.6256 × 10−5 8.3479
esth1 ≡ estextrap(−1) 7.2027 × 10−5 1.7101 × 10−2

esth2 1.1532 × 10−3 6.4850
estGauss 2.5377 × 10−5 2.0130 × 102
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Example 4. Network analysis.

In this example, we tested the behavior of the proposed estimates in network anal-
ysis. Specifically, we estimated the whole diagonal of the resolvent matrix (In − aA)−1,
where A is the adjacency matrix of the network. We chose the parameter a = 0.85/λmax.
We considered three adjacency matrices of order n = 4000, which were selected by the
CONTEST toolbox [10]. In Table 5, we provide the mean relative error for estimating the
whole diagonal of the resolvent matrix. We also provide the execution time in seconds in
the brackets in this table.

Table 5. Mean relative errors and execution times (seconds) for estimating the diagonal of the
resolvent matrix.

Network estproj(0) estproj(1) estmin1 estmin2 esth1 esth2

pref 8.770 × 10−3 1.646 × 10−2 3.008 × 10−3 1.240 × 10−2 9.218 × 10−4 6.500 × 10−4

[2.723 × 10−4] [3.447 × 10−4] [5.091] [4.105] [3.747 × 10−4] [9.471 × 10−2]
lock and key 3.590 × 10−2 6.700 × 10−2 1.540 × 10−2 4.313 × 10−2 3.620 × 10−3 3.170 × 10−4

[3.927 × 10−4] [4.429 × 10−4] [6.754] [4.884] [4.946 × 10−4] [8.387 × 10−1]
renga 7.173 × 10−2 1.014 × 10−1 2.875 × 10−2 5.516 × 10−2 4.110 × 10−2 2.936 × 10−2

[4.153 × 10−4] [4.724 × 10−4] [4.597] [4.059] [5.103 × 10−4] [6.477 × 10−2]

Example 5. Solution of ill-posed problems via the GCV method.

Let us consider the least-squares problem of the form minx∈Rd ‖Ax − b‖2, where
A ∈ Rn×d and b ∈ Rn. In ill-posed problems, the solution of the above minimization
problem is not satisfactory and it is necessary to replace this problem with another one that
is a penalized least-squares problem of the form

min
x∈Rd

{‖Ax− b‖2 + λ‖x‖2}, (10)

where λ > 0 is the regularization parameter. This is the popular Tikhonov regularization.
The solution of (10) is xλ = (AT A + λId)

−1 ATb. A major issue is the specification of
the regularization parameter λ. This can be achieved by minimizing the GCV function.
Following the expression of the GCV function V(λ) in terms of quadratic forms presented
in [11], we write

V(λ) =
bT B−2b

(Tr(B−1))2 ,

where B = AAT + λIn ∈ Rn×n.
In this example, we considered three test problems of order n, which were selected

from the Regularization Tools package [12]. In particular, we considered the Shaw, Tomo,
and Baart problems. Each of these test problems generates a matrix A and a solution x. We
computed the error-free vector b such that b = Ax. The perturbed data vector bper ∈ Rp

was computed by the formula bper = b + e ‖ b ‖ σ√
n

, where σ is a given noise level and

e ∈ Rn is a Gaussian noise with mean zero and variance one. We estimated the GCV
function using the estimate esth1 without computing the matrix B, but we used the relations
for Bx given in Section 7. We found the minimum of the corresponding estimation over
a grid of values for λ and we computed the solution xλ. Concerning the grid of λ, we
considered 100 equally spaced values in log-scale in the interval [10−12, 10].

In Figures 1–3, we plot the exact solution x of the problem and the estimated solution
xλ generated by Tikhonov regularization via the GCV function. Specifically, for each test
problem, we depict two graphs. The left-hand-side graph corresponds to the determination
of the regularization parameter via the estimated GCV using esth1, and the right-hand-
side graph concerns the exact computation of the GCV function. In Table 6, we list the
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characteristics of Figures 1–3. In particular, we provide the order n, the noise level σ, and
the error norm of the derived solution xλ of each test problem.

Table 6. Characteristics of Figures 1–3.

Test Problem (n, σ) Method ‖ x − xλ ‖
Shaw estimation 2.1885 × 10−1

(200, 10−7) exact GCV 1.9049 × 10−1

Tomo estimation 1.9188 × 10−2

(100, 10−5) exact GCV 7.0236 × 10−2

Baart estimation 5.9189 × 10−2

(100, 10−7) exact GCV 5.9958 × 10−2
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Figure 1. Solution of the Shaw test problem via an estimation of GCV (left) and the exact GCV (right).
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Figure 2. Solution of the Tomo test problem via an estimation of GCV (left) and the exact GCV (right).
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Figure 3. Solution of the Baart test problem via an estimation of GCV (left) and the exact GCV (right).
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9. Conclusions

In this work, we proposed three different approaches for estimating the quadratic
forms of the type xT A−mx, m ∈ N. Specifically, we considered a projection method,
a minimization approach, and a heuristic procedure. We also expressed upper bounds on
the absolute error of the derived estimates; they allowed us to assess the precision of the
results obtained by the aforementioned methods.

The proposed approaches provide efficient and fast estimates. Their efficiency was
illustrated by numerical examples. Comparing the proposed estimates with the corre-
sponding ones presented in the literature, we formed the following conclusions.

• The projection method improves the results of the extrapolation procedure by provid-
ing bounds on the absolute error.

• Although the estimates based on the Gauss quadrature are accurate, they require more
time and more mvps than the proposed approaches as the number of the Lanczos
iterations increases. The methods shown in the present paper are thus convenient
especially in situations when a fast estimation of moderate accuracy is sought.
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Abstract: Face recognition and identification are very important applications in machine learning.
Due to the increasing amount of available data, traditional approaches based on matricization and
matrix PCA methods can be difficult to implement. Moreover, the tensorial approaches are a natural
choice, due to the mere structure of the databases, for example in the case of color images. Never-
theless, even though various authors proposed factorization strategies for tensors, the size of the
considered tensors can pose some serious issues. Indeed, the most demanding part of the computa-
tional effort in recognition or identification problems resides in the training process. When only a few
features are needed to construct the projection space, there is no need to compute a SVD on the whole
data. Two versions of the tensor Golub–Kahan algorithm are considered in this manuscript, as an
alternative to the classical use of the tensor SVD which is based on truncated strategies. In this paper,
we consider the Tensor Tubal Golub–Kahan Principal Component Analysis method which purpose it
to extract the main features of images using the tensor singular value decomposition (SVD) based
on the tensor cosine product that uses the discrete cosine transform. This approach is applied for
classification and face recognition and numerical tests show its effectiveness.

Keywords: cosine product; Golub–Kahan algorithm; Krylov subspaces; PCA; SVD; tensors

1. Introduction

An important challenge in the last few years was the extraction of the main informa-
tion in large datasets, measurements, observations that appear in signal and hyperspectral
image processing, data mining, machine learning. Due to the increasing volume of data
required by these applications, approximative low-rank matrix and tensor factorizations
play a fundamental role in extracting latent components. The idea is to replace the initial
large and maybe noisy and ill conditioned large scale original data by a lower dimen-
sional approximate representation obtained via a matrix or multi-way array factorization or
decomposition. Principal Components Analysis is a widely used technique for image recog-
nition or identification. In the matrix case, it involves the computation of eigenvalues or
singular decompositions. In the tensor case, even though various factorization techniques
have been developed over the last decades (high-order SVD (HOSVD), Candecomp–Parafac
(CP) and Tucker decomposition), the recent tensor SVDs (t-SVD and c-SVD), based on the
use of the tensor t-product or c-products offer a matrix-like framework for third-order
tensors, see [1–15] for more details on recent work related to tensors and applications. In the

Mathematics 2021, 9, 1249. https://doi.org/10.3390/math9111249 https://www.mdpi.com/journal/mathematics
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present work, we consider third order tensors that could be defined as three dimensional
arrays of data. As our study is based on the cosine transform product, we limit this work
to three-order tensors.

For a given 3-mode tensor X ∈ Rn1×n2×n3 , we denote by xi1,i2,i3 the element (i1, i2, i3)
of the tensor X . A fiber is defined by fixing all the indexes except one. An element
c ∈ R1×1×n is called a tubal-scalar or simply tube of length n. For more details refer to [1,2].

2. Definitions and Notations

2.1. Discrete Cosine Transformation

In this subsection we recall some definitions and properties of the discrete cosine
transformation and the c-product of tensors. During recent years, many advances were
made in order to establish a rigorous framework enabling the treatment of problems for
which the data is stored in three-way tensors without having to resort to matricization [1,8].
One of the most important feature of such a framework is the definition of a tensor-tensor
product as the t-product, based on the Fast Fourier Transform . For applications as image
treatment, the tensor-tensor product based on the Discrete Cosine Transformation (DCT)
has shown to be an interesting alternative to FFT. We now give some basic facts on the DCT
and its associated tensor-tensor product. The DCT of a vector v ∈ Rn is defined by

ṽ = Cnvs. ∈ Rn, (1)

where Cn is the n× n discrete cosine transform matrix with entries

(Cn)ij =

√
2− δi1

n
cos

(
(i− 1)(2j− 1)π

2n

)
1 ≤ i, j ≤ n

with δij is the Kronecker delta; see p. 150 in [16] for more details. It is known that the
matrix Cn is orthogonal, i.e., CT

n Cn = CnCT
n = In; see [17]. Furthermore, for any vector

v ∈ Rn, the matrix vector multiplication Cnv can be computed in O(nlog(n)) operations.
Moreover, Reference [17] have shown that a certain class of Toeplitz-plus-Hankel matrices
can be diagonalized by Cn. More precisely, we have

Cn th(v)C−1
n = Diag(ṽ), (2)

where

th(v) =

⎛⎜⎜⎜⎝
v1 v2 . . . vn
v2 v1 . . . v3
...

... . . .
...

vn vn−1 . . . v1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Toeplitz

+

⎛⎜⎜⎜⎜⎝
v2 . . . vn 0
...

... ... vn

vn 0 . . .
...

0 vn . . . v2

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Hankel

and Diag(ṽ) is the diagonal matrix whose i-th diagonal element is (ṽ)i.

2.2. Definitions and Properties of the Cosine Product

In this subsection, we briefly review some concepts and notations, which play a cen-
tral role for the elaboration of the tensor global iterative methods based on the c-product;
see [18] for more details on the c-product.
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Let A ∈ Rn1×n2×n3 be a real valued third-order tensor, then the operations mat and its
inverse ten are defined by

mat(A) =

⎛⎜⎜⎜⎝
A1 A2 . . . An
A2 A1 . . . A3
...

... . . .
...

An An−1 . . . A1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Block Toeplitz

+

⎛⎜⎜⎜⎜⎝
A2 . . . An 0
...

... ... An

An 0 . . .
...

0 An . . . A2

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Block Hankel

∈ Rn1n3×n2n3

and the inverse operation denoted by ten is simply defined by

ten(mat(A)) = A.

Let us denote Ã the tensor obtained by applying the DCT on all the tubes of the tensor
A. This operation and its inverse are implemented in the Matlab by the commands dct
and idct as

Ã = dct(A, [ ], 3), and idct(Ã, [ ], 3) = A,

where idct denotes the Inverse Discrete Cosine Transform.

Remark 1. Notice that the tensor Ã can be computed by using the 3-mode product defined in [2]
as follows:

Ã = A×3 M

where M is the n3 × n3 invertible matrix given by

M = W−1Cn3(I + Z)

where Cn3 denote de n3 × n3 Discrete Cosine Transform DCT matrix, W = diag(Cn3(:, 1)) is the
diagonal matrix made of the first column of the DCT matrix, Z is n3 × n3 circulant upshift matrix
which can be computed in MATLAB using W = diag(ones(n3 − 1, 1), 1) and I the n3 × n3
identity matrix; see [18] for more details.

Let A be the matrix

A =

⎛⎜⎜⎜⎜⎝
A(1)

A(2)

. . .
A(n3)

⎞⎟⎟⎟⎟⎠ ∈ Rn3n1×n3n2 (3)

where the matrices A(i)’s are the frontal slices of the tensor Ã. The block matrix mat(A)
can also be block diagonalized by using the DCT matrix as follows

(Cn3 ⊗ In1) mat(A) (CT
n3
⊗ In2) = A (4)

Definition 1. The c-product of two tensorsA ∈ Rn1×n2×n3 and B ∈ Rn2×m×n3 is the n1 ×m× n3
tensor defined by:

A �c B = ten(mat(A)mat(B)).

Notice that from Equation (3), we can show that the product C = A �c B is equivalent
to C = A B. Algorithm 1 allows us to compute, in an efficient way, the c-product of the
tensors A and B, see [18].
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Algorithm 1 Computing the c-product.

Inputs: A ∈ Rn1×n2×n3 and B ∈ Rn2×m×n3

Output: C = A �c B ∈ Rn1×m×n3

1. Compute Ã = dct(A, [ ], 3) and B̃ = dct(B, [ ], 3).
2. Compute each frontal slices of C̃ by

C(i) = A(i)B(i)

3. Compute C = idct(C̃, [ ], 3) .

Next, give some definitions and remarks on the c-product and related topics.

Definition 2. The identity tensor In1n1n3 is the tensor such that each frontal slice of Ĩn1n1n3 is the
identity matrix In1n1 .

An n1× n1× n3 tensorA is said to be invertible if there exists a tensor B of order n1× n1× n3
such that

A �c B = In1n1n3 and B �c A = In1n1n3 .

In that case, we denote B = A−1. It is clear that A is invertible if and only if mat(A) is invertible.
The inner scalar product is defined by

〈A,B〉 =
n1

∑
i1=1

n2

∑
i2=1

n3

∑
i3=1

ai1i2i3 bi1i2i3

and its corresponding norm is given by ‖A‖F =
√
〈A,A〉.

An n1 × n1 × n3 tensor Q is said to be orthogonal if QT �c Q = Q �c QT = In1n1n3 .

Definition 3 ([1]). A tensor is called f-diagonal if its frontal slices are diagonal matrices. It is
called upper triangular if all its frontal slices are upper triangular.

Next we recall the Tensor Singular Value Decomposition of a tensor (Algorithm 2);
more details can be found in [19].

Theorem 1. Let A be an n1 × n2 × n3 real-valued tensor. Then A can be factored as follows

A = U �c S �c VT , (5)

where U and V are orthogonal tensors of order (n1, n1, n3) and (n2, n2, n3), respectively, and S is
an f-diagonal tensor of order (n1 × n2 × n3). This factorization is called Tensor Singular Value
Decomposition (c-SVD) of the tensor A.

Algorithm 2 The Tensor SVD (c-SVD).
Input: A ∈ Rn1×n2×n3 Output: U , V and S .

1. Compute Ã = dct(A, [], 3).
2. Compute each frontal slices of Ũ , Ṽ and S̃ from Ã as follows

(a) for i = 1, . . . , n3

[Ũ (i), S̃ (i), Ṽ (i)] = svd(Ã(i))

(b) End for

3. Compute U = idct(Ũ , [ ], 3), S = idct(S̃ , [ ], 3) and V = idct(Ṽ , [ ], 3).
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Remark 2. As for the t-product [19], we can show that if A = U �c S �c VT is a c-SVD of the
tensor A, then we have

n3

∑
k=1

Ak =

(
n3

∑
k=1

Uk

)(
n3

∑
k=1

Sk

)(
n3

∑
k=1

VT
k

)
, (6)

where Ak, Uk, Sk and Vk are the frontal slices of the tensors A, U , S and V , respectively, and

A =
min(n1,n2)

∑
i=1

U (:, i, :) �c S(i, i, :) �c V(:, i, :)T . (7)

Theorem 2. Let A = U �c S �c VT given by (5), and define for k ≤ min(n1, n2) the tensor

Ak =
k

∑
i=1
U (:, i, :) �c S(i, i, :) �c V(:, i, :)T . (8)

Then
Ak = arg min

X∈M
‖Ak −A‖F, (9)

whereM = {X �c Y ; X ∈ Rn1×k×n3 , Y ∈ Rk×n2×n3}.

Note that when n3 = 1 this theorem reduces to the well known Eckart–Young theorem
for matrices [20].

Definition 4 (The tensor tubal-rank). Let A be an n1 × n2 × n3 be a tensor and consider its
c-SVD A = U �c S �c VT. The tensor tubal rank of A, denoted as rankt(A) is defined to be the
number of non-zero tubes of the f-diagonal tensor S , i.e.,

rankt(A) = #{i,S(i, i, :) �= 0}.

Definition 5. The multi-rank of the tensor A is a vector p ∈ Rn3 with the i-th element equal to
the rank of the i-th frontal slice of Ã = fft(A, [], 3), i.e.,

p(i) = rank(A(i)), i = 1, . . . , n3.

The well known QR matrix decomposition can also be extended to the tensor case;
see [19].

Theorem 3. LetA be a real-valued tensor of order n1× n2× n3. ThenA can be factored as follows

A = Q �c R, (10)

where Q is an n1 × n1 × n3 orthogonal tensor andR is an n1 × n1 × n3 f-upper triangular tensor.

3. Tensor Principal Component Analysis for Face Recognition

Principle Component Analysis (PCA) is a widely used technique in image classification
and face recognition. Many approaches involve a conversion of color images to grayscale in
order to reduce the training cost. Nevertheless, for some applications, color an is important
feature and tensor based approaches offer the possibility to take it into account. Moreover,
especially in the case of facial recognition, it allows the treatment of enriched databases
including for instance additional biometric information. However, one has to bear in mind
that the computational cost is an important issue as the volume of data can be very large.
We first recall some background facts on the matrix based approach.
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3.1. The Matrix Case

One of the simplest and most effective PCA approaches used in face recognition
systems is the so-called eigenface approach. This approach transforms faces into a small
set of essential characteristics, eigenfaces, which are the main components of the initial
set of learning images (training set). Recognition is done by projecting a test image in
the eigenface subspace, after which the person is classified by comparing its position in
eigenface space with the position of known individuals. The advantage of this approach
over other face recognition strategies resides in its simplicity, speed and insensitivity to
small or gradual changes on the face.

The process is defined as follows: Consider a set of training faces I1, I2, . . ., Ip. All the
face images have the same size: n×m. Each face Ii is transformed into a vector xi using
the operation vec: xi = vec(Ii). These vectors are columns of the nm× p matrix

X = [x1, . . . , xp].

We compute the average image μ =
1
p

p

∑
i=1

xi. Set x̄i = xi− μ and consider the new matrices

X̄ = [x̄1, . . . , x̄p], and C = X̄X̄T .

Notice that the nm× nm covariance matrix C = X̄X̄T can be very large. Therefore, the
computation of the nm eigenvalues and the corresponding eigenvectors (eigenfaces) can
be very difficult. To circumvent this issue, we instead consider the smaller p× p matrix
L = X̄TX̄.

Let vi be an eigenvector of L then Lvi = X̄TX̄vi = λivi and

X̄Lvi = X̄X̄TX̄vi = λi X̄vi,

which shows that X̄vi is an eigenvector of the covariance matrix C = X̄X̄T .
The p eigenvectors of L = X̄TX̄ are then used to find the p eigenvectors ui = X̄vi of C

that form the eigenface space. We keep only k eigenvectors corresponding to the largest k
eigenvalues (eigenfaces corresponding to small eigenvalues can be omitted, as they explain
only a small part of characteristic features of the faces.)

The next step consists of projecting each image of the training sample onto the eigen-
face space spanned by the orthogonal vectors u1, . . . , uk:

Uk = span{u1, . . . , uk}, with Uk = [u1, . . . , uk]

The matrix UkUT
k is an orthogonal projector onto the subspace Uk. A face image can

be projected onto this face space as yi = UT
k (xi − μ).

We now give the steps of an image classification process based on this approach:
Let x = vec(I) be a test vector-image and project it onto the face space to get

y = UT
k (x− μ). Notice that the reconstructed image is given by

xr = Ũky + μ.

Compute the Euclidean distance

εi = ‖y− yi‖, i = 1, . . . , k.

A face is classified as belonging to the class l when the minimum l is below some
chosen threshold θ Set

θ =
1
2

max
i,j
‖yi − yj‖, i, j = 1, . . . , k,
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and let ε be the distance between the original test image x and its reconstructed image xr:
ε = ‖x− xr‖. Then

• If ε ≥ θ, then the input image is not even a face image and not recognized.
• If ε < θ and εi ≥ θ for all i then the input image is a face image but it is an unknown

image face.
• If ε < θ and εi < θ for all i then the input images are the individual face images

associated with the class vector xi.

We now give some basic facts on the relation between the singular value decomposi-
tion (SVD) and PCA in this context:

Consider the Singular Value Decomposition of the matrix A as

X̄ = UΣVT =
p

∑
i=1

σiuivT
i

where U and V are orthonormal matrices of sizes nm and p, respectively. The singular
values σi are the square roots of the eigenvalues of the matrix L = X̄TX̄, the ui’s are the left
vectors and the v′is are the right vectors. We have

L = X̄TX̄ = VΔVT ; Δ = diag(σ2
1 , . . . , σ2

p)

which is is the eigendecomposition of the matrix L and

C = X̄X̄T = UDUT ; D = diag(σ2
1 , . . . , σ2

p , 0, . . . , 0).

In the PCA method, the projected eigenface space is then generated by the first
u1, . . . , uk columns of the unitary matrix U derived from the SVD decomposition of the
matrix X̄.

As only a small number k of the largest singular values are needed in PCA, we can
use the well known Golub–Kahan algorithm to compute these wanted singular values and
the corresponding singular vectors to define the projected subspace.

In the next section, we explain how the SVD based PCA can be extended to tensors
and propose an algorithm for facial recognition in this context.

4. The Tensor Golub–Kahan Method

As explained in the previous section, it is important to take into account the potentially
large size of datasets, especially for the training process. The idea of extending the matrix
Golub–Kahan bidiagonalization algorithm to the tensor context has been explored in the
recent years for large and sparse tensors [21]. In [1], the authors established the foundations
of a remarkable theoretical framework for tensor decompositions in association with the
tensor-tensor t- or c-products, allowing to generalize the main notions of linear algebra
to tensors.

4.1. The Tensor C-Global Golub–Kahan Algorithm

Let A ∈ Rn1×n2×n3 be a tensor ans s ≥ 1 an integer. The Tensor c-global Golub–Kahan
bidiagonalization algorithm (associated to the c-product) is described in Algorithm 3.
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Algorithm 3 The Tensor Global Golub–Kahan algorithm (TGGKA).

1. Choose a tensor V1 ∈ Rn2×s×n3 such that‖V1‖F = 1 and set β0 = 0.
2. For i = 1, 2, . . . , k

(a) Ui = A �c Vi − βi−1Ui−1,
(b) αi = ‖Ui‖F,
(c) Ui = Ui/αi,
(d) Vi+1 = AT �c Ui − αiVi,
(e) βi = ‖Vi+1‖F.
(f) Vi+1 = Vi+1/βi.
End

Let Ck be the k× k upper bidiagonal matrix defined by

Ck =

⎡⎢⎢⎢⎢⎢⎣
α1 β1

α2 β2
. . . . . .

αk−1 βk−1
αk

⎤⎥⎥⎥⎥⎥⎦. (11)

Let Vk and A �c Vk be the (n2 × (sk)× p) and (n1 × (sk)× n3) tensors with frontal
slices V1, . . . ,Vk andA �c V1, . . . ,A �c Vk, respectively, and let Uk andAT �c Uk be the (n1×
(sk)× n3) and (n2× (sk)× n3) tensors with frontal slices U1, . . . ,Uk andAT �c U1, . . . ,AT �c
Uk, respectively. We set

Vk : = [V1, . . . ,Vk], and A �c Vk := [A �c V1, . . . ,A �c Vk], (12)

Uk : = [U1, . . . ,Uk], and AT �c Uk := [AT �c U1, . . . ,AT �c Uk], (13)

with

C̃T
k =

[
CT

k
βkeT

k

]
∈ R(k+1)×k, eT

k = (0, 0, . . . , 0, 1)T .

Then, we have the following results [13].

Proposition 1. The tensors produced by the tensor c-global Golub–Kahan algorithm satisfy the
following relations

A �c Vk = Uk � Ck, (14)

AT �c Uk = Vk+1 � C̃T
k (15)

= Vk � CT
k + βk

[
On×s×p, . . . ,On1×s×n3 ,Vk+1

]
, (16)

where the product � is defined by:

Uk � y =
k

∑
j=1

yjVj, y = (y1, . . . , ym)
T ∈ Rk.

We set the following notation:

Uk � Ck =
[
Uk � C1

k , . . . ,Uk � Ck
k

]
,

where Ci
k is the i-th column of the matrix Ck.

We note that since the matrix Ck is bidiagonal, Tk = CT
k Ck is symmetric and tridiagonal

and then Algorithm computes the same information as tensor global Lanczos algorithm
applied to the symmetric matrix A∗ �c A.

72



Mathematics 2021, 9, 1249

4.2. Tensor Tubal Golub–Kahan Bidiagonalisation Algorithm

First, we introduce some new products that will be useful in this section.

Definition 6 ([13]). Let a ∈ R1×1×n3 and B ∈ Rn1×n2×n3 , the tube fiber tensor product (a � B)
is an (n1 × n2 × n3) tensor defined by

a � B =

⎛⎜⎝ a �c b(1, 1, :) . . . a �c b(1, n2, :)
...

. . .
...

a �c b(n1, 1, :) . . . a �c b(n1, n2, :)

⎞⎟⎠
Definition 7 ([13]). LetA ∈ Rn1×m1×n3 , B ∈ Rn1×m2×n3 , C ∈ Rn2×m1×n3 andD ∈ Rn2×m2×n3

be tensors. The block tensor [ A B
C D

]
∈ R(n1+n2)×(m1+m2)×n3

is defined by compositing the frontal slices of the four tensors.

Definition 8. Let A = [A1, . . . ,An2 ] ∈ Rn1×n2×n3 where Ai ∈ Rn1×1×n3 , we denoted by
TVect( A ) the tensor vectorization operator: Rn1×n2×n3 �→ Rn1n2×1×n3 obtained by superpos-
ing the laterals slicesAi ofA, for i = 1, . . . , n2. In others words, for a tensorA = [A1, . . . ,An2 ] ∈
Rn1×n2×n3 where Ai ∈ Rn1×1×n3 , we have :

TVect(A) =

⎛⎜⎜⎜⎝
A1
A2

...
An2

⎞⎟⎟⎟⎠ ∈ Rn1n2×1×n3

Remark 3. The TVect operator transform a given tensor on lateral slice. Its easy to see that when
we take p = 1, the TVect operator coincides with the operation vec which transform the matrix
on vector.

Proposition 2. Let A be a tensor of size Rn1×n2×n3 , we have

‖A‖F = ‖TVec(A)‖F

Definition 9. Let A = [A1, . . . ,An2 ] ∈ Rn1×n2×n3 where Ai ∈ Rn1×1×n3 . We define the range
space of A denoted by Range(A) as the c-linear span of the lateral slices of A

Range(A) =
{
A1 �c a(1, 1, :) + · · ·+An2 �c a(n2, n2, :)|a(i, i, :) ∈ R1×1×n3

}
(17)

Definition 10 ([14]). Let A ∈ Rn1×n2×n3 and B ∈ Rm1×m2×n3 , the c-Kronecker product
A�B ofA and B is the n1m1× n2m2× n3 tensor in which the i-th frontal slice of their transformed

tensor ˜(A�B) is given by:

˜(A�B)i = (A(i) ⊗ B(i)), i = 1, ..., n3

where A(i) and B(i) are the i-th frontal slices of the tensors Ã = dct(A, [ ], 3) and B̃ = dct(B, [], 3),
respectively.

We introduce now a normalization algorithm allowing us to decompose the non-zero
tensor C ∈ Rn1×n2×n3 , such that:

C = a �Q, with 〈Q,Q〉 = e,
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where a is an invertible tube fiber of size a ∈ R1×1×n3 and Q ∈ Rn1×n2×n3 and e is the tube
fiber e ∈ R1×1×n3 defined by unfold(e) = (1, 0, 0 . . . , 0)T .

This procedure is described in Algorithm 4.

Algorithm 4 Normalization algorithm (Normalize).

1. Input. A ∈ Rn1×n2×n3 and a tolerance tol > 0.
2. Output. The tensor Q and the tube fiber a.
3. Set Q̃ = dct(A, [], 3)

(a) For j = 1, . . . , n3

i. aj = ||Q̃(j)||F
ii. if aj > tol, Q̃(j) =

Q̃(j)

aj

iii. else Q̃j = rand(n1, n2); aj = ||Q̃(j)||F
Q̃(j) =

Q̃(j)

aj
; aj = 0,

(b) End

4. Q = idct(Q̃, [], 3), a = idct(a, [], 3)
5. End

Next, we give the Tensor Tube Global Golub–Kahan (TTGGKA) algorithm, seeElIchi1.
Let A ∈ Rn1×n2×n3 be a tensor and let s ≥ 1 be an integer. The Tensor Tube Global
Golub–Kahan bidiagonalization process is described in Algorithm 5.

Algorithm 5 The Tensor Tube Global Golub–Kahan algorithm (TTGGKA).

1. Choose a tensor V1 ∈ Rn2×s×n3 such that 〈V1, V1〉 = e and set b0 = 0.
2. For i = 1, 2, . . . , k

(a) Ui = A �c Vi − bi−1 � Ui−1,
(b) [Ui, ai] = Normalize(Ui).
(c) Vi+1 = AT �c Ui − ai � Vi,
(d) [Vi+1, bi] = Normalize(Vi+1).
End

Let Ck be the k× k× n3 upper bidiagonal tensor (each frontal slice of Ck is a bidiagonal
matrix) and C̃k the k× (k + 1)× n3 defined by

Ck =

⎡⎢⎢⎢⎢⎢⎣
a1 b1

a2 b2
. . . . . .

ak−1 bk−1
ak

⎤⎥⎥⎥⎥⎥⎦, and C̃k =

⎡⎢⎢⎢⎢⎢⎣
a1 b1

a2 b2
. . . . . .

ak−1 bk−1
ak bk

⎤⎥⎥⎥⎥⎥⎦. (18)

Let Vk and A �c Vk be the (n2 × (sk)× n3) and (n1 × (sk)× n3) tensors with frontal
slices V1, . . . ,Vk andA �c V1, . . . ,A �c Vk, respectively, and let Uk andAT �c Uk be the (n1×
(sk)× n3) and (n2× (sk)× n3) tensors with frontal slices U1, . . . ,Uk andAT �c U1, . . . ,AT �c
Uk, respectively. We set

Vk : = [V1, . . . ,Vk], and A �c Vk := [A �c V1, . . . ,A �c Vk], (19)

Uk : = [U1, . . . ,Uk], and AT �c Uk := [AT �c U1, . . . ,AT �c Uk], (20)
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Then, we have the following results.

Proposition 3. The tensors produced by the tensor TTGGKA algorithm satisfy the following relations

A �c Vk = Uk �c (Ck � Issn3), (21)

AT �c Uk = Vk+1 �c (C̃T
k � Issn3) (22)

= Vk �c (CT
k � Issp) + Vk+1 �c ((bk �c e1,k,:)� Issn3), (23)

where e1,k,: ∈ R1×k×n3 with 1 in the (1, k, 1) position and zeros in the other positions, Issn3 ∈
Rs×s×n3 the identity tensor and bk is the fiber tube in the (k, k + 1, :) position of the tensor C̃k.

5. The Tensor Tubal PCA Method

In this section, we describe a tensor-SVD based PCA method for order 3 tensors which
naturally arise in problems involving images such as facial recognition. As for the matrix
case, we consider a set of N training images, each of one being encoded as n1 × n2 × n3
real tensors Ii, 1 ≤ i ≤ N. In the case of RGB images, each frontal slice would contain the
encoding for each color layer (n3 = 3) but in order to be able to store additional features,
the case n3 > 3 could be contemplated.

Let us consider one training image Ii0 . Each one of the n3 frontal slices I(j)
i0

of Ii0 is

resized into a column vector vec(I(j)
i0
) of length L = n1× n2 and we form a L× 1× n3 tensor

Xi0 defined by Xi0(:, :, j) = vec(I(j)
i0
). Applying this procedure to each training image, we

obtain N tensors Xi of size L× 1× n3. The average image tensor is defined as X̄ =
1
N

N

∑
i=1
Xi

and we define the L× N × n3 training tensor X = [X̄1, . . . , X̄N ], where X̄i = Xi − X̄ .
Let us now consider the c-SVD decomposition X = U ∗c S ∗c VT of X , where U and V

are orthogonal tensors of size L× L× n3 and N×N× n3, respectively, and S is a f-diagonal
tensor of size L× N × n3.

In the matrix context, it is known that just a few singular values suffice to capture
the main features of an image, therefore, applying this idea to each one of the three color
layers, an RGB image can be approximated by a low tubal rank tensor. Let us consider an
image tensor S ∈ Rn1×n2×n3 and its c-SVD decomposition S = U �c S �c VT . Choosing an
integer r such as r ≤ min(n1, n2), we can approximate S by the r tubal rank tensor

Sr ≈
r

∑
i=1
U (:, i, :) ∗c S(i, i, :) ∗c V(:, i, :)T .

In Figure 1, we represented a 512 × 512 RGB image and the images obtained for
various truncation indices. On the left part, we plotted the singular values of one color
layer of the RGB tensor (the exact same behaviour is observed on the two other layers).
The rapid decrease of the singular values explain the good quality of compressed images
even for small truncation indices.

Applying this idea to our problem, we want to be able to obtain truncated tensor SVDs
of the training tensor X , without needing to compute the whole c-SVD. After k iterations
of the TTGGKA algorithm (for the case s = 1), we obtain three tensors Uk ∈ Rn1×k×n3 ,
Vk+1 ∈ Rn2×(k+1)×n3 and C̃k ∈ R(k×(k+1)×n3 as defined in Equation (21) such as

AT �c Uk = Vk+1 �c C̃T
k .

Let C̃k = Φ �c Σ �c Ψ the c-SVD of C̃k, noticing that C̃k ∈ Rk×(k+1)×n3 is much smaller
than X̄ . Then first tubal singular values and the left tubal singular tensors of X̄ are given
by Σ(i, i, :) and Uk �c Φ(:, i, :), respectively, for i ≤ k, see [1] for more details.
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Figure 1. Image compression.

In order to illustrate the ability to approximate the first singular elements of a tensor
using the TTGGKA algorithm, we considered a 900× 900× 3 real tensor A which frontal
slices were matrices generated by a finite difference discretization method of differential
operators. On Figure 2, we displayed the error on the first diagonal coefficient of the first
frontal S(1, 1, 1) in function of the number of iteration of the Tensor Tube Golub–Kahan
algorithm, where A = U �c S �c VT is the c-SVD of A.
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Figure 2. ‖Σ(1, 1, 1)− S(1, 1, 1)‖ vs. number of TTGGKA iteration k.

In Table 1, we reported on the errors on the tensor Frobenius norms of the singular
tubes in function of the number k of the Tensor Tube Golub–Kahan algorithm.

Table 1. ‖S(i, i, :)− Σ(i, i, :)‖F vs k.

k = 10 k = 30 k = 50 k = 70

S(1, 1, :) 3.6× 10−4 1.3× 10−5 5.1× 10−11 4.8× 10−17

S(2, 2, :) 2.0× 10−3 1.6× 10−6 5.2× 10−7 3.1× 10−8

S(3, 3, :) 4.9× 10−3 5.9× 10−4 2.3× 10−4 5.6× 10−8

S(4, 4, :) 8.4× 10−3 8.8× 10−4 1.5× 10−4 1.0× 10−8

S(5, 5, :) 1.4× 10−2 1.3× 10−3 2.7× 10−4 1.1× 10−8

The same behaviour was observed on all the other frontal slices. This example
illustrate the ability of the TTGKA algorithm for approximating the largest singular tubes.
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The projection space is generated by the lateral slices of the tensor P = Uk�c
Φ(:, 1 : k, :) ∈ Rn1×i×n3 derived from the TTGGKA algorithm and the c-SVD decompo-
sition of the bidiagonal tensor C̃k, i.e., the c-linear span of first k lateral slices of P , see [1,19]
for more details.

The steps of the Tensor Tubal PCA algorithm for face recognition which finds the
closest image in the training database for a given image I0 are summarized in Algorithm 6:

Algorithm 6 The Tensor Tubal PCA algorithm (TTPCA).

1. Inputs Training Image tensor X (N images), mean image tensor X̄ ,Test image I0,
index of truncation r, k=number of iterations of the TTGGKA algorithm (k ≥ r).

2. Output Closest image in the Training database.
3. Run k iterations of the TTGGKA algorithm to obtain tensors Uk and Ĉk

4. Compute [Φ, Σ, Ψ] =c-SVD(C̃k)
5. Compute the projection tensor Pr = [Pr(:, 1, :), . . . , Pr(:, r, :)],

where Pr(:, i, :) = Uk �c Φ(:, i, :) ∈ Rn1×1×n3

6. Compute the projected Training tensor X̂r = PT
r �c X and projected centred test

image Îr = PT
r �c (I − X̄ )

7. Find i = arg mini=1,..,N ‖Îr − X̂r(:, i, :)|F

In the next section, we consider image identification problems on various databases.

6. Numerical Tests

In this section, we consider three examples of image identification. In the case of
grayscale images, the global version of Golub–Kahan was used to compute the dominant
singular values in order to perform a PCA on the data. For the two other situations, we
used the Tensor Tubal PCA (TTPCA) method based on the Tube Global Golub–Kahan
(TTGGKA) algorithm in order to perform facial recognition on RGB images. The tests
were performed with Matlab 2019a, on an Intel i5 laptop with 16 Go of memory. We
considered various truncation indices r for which the recognition rates were computed. We
also reported the CPU time for the training process.

6.1. Example 1

In this example, we considered the MNIST database of handwritten digits [22].
The database contains two subsets of 28× 28 grayscale images (60,000 training images and
10,000 test images). A sample is shown in Figure 3. Each image was vectorized as a vector
of length 28× 28 = 784 and, following the process described in Section 3.1, we formed the
training and the test matrices of sizes 784 × 60,000 and 784 × 10,000, respectively.

Figure 3. First 16 images of MNIST training subset.

Both matrices were centred by substracting the mean training image and the Golub–
Kahan algorithm was used to generate an approximation of r dominant singular values si
and left singular vectors ui, i = 1, . . . , r.

Let us denote Ur the subspace spanned by the columns of Ur = [u1, . . . , ur]. Let t be a
test image and t̂r = UT

r t its projection onto Ur. The closest image in the training dataset is
determined by computing

i = arg min
i=1,..,60,000

‖t̂r − X̂r(:, i)‖,
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where X̂r = UT
r X.

For various truncation indices r, we tested each image of the test subset and computed
the recognition rate (i.e., a test is successful if the digit is correctly identified). The results
are plotted on Figure 4 and show that a good level of accuracy is obtained with only a few
approximate singular values. Due to the large size of the training matrix, it validates the
interest of computing only a few singular values with the Golub–Kahan algorithm.
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Figure 4. Identification rates for different truncation indices r.

6.2. Example 2

In this example, we used the Georgia Tech database GTDB_ crop [23], which con-
tains 750 face images of 50 persons in different illumination conditions, facial expres-
sion and face orientation, as shown in Figure 5. The RGB JPEG images were resized to
100 × 100 × 3 tensors.

Figure 5. Fifteen pictures of one individual in the database.

Each image file is coded as a 100× 100× 3 tensor and transformed into a 10,000 ×
1 × 3 tensor as explained in the previous section. We built the training and test tensors
as follows: from 15 pictures of each person in the database, five pictures were randomly
chosen and stored in the test folder and the 10 remaining pictures were used for the train
tensor. Hence, the database was partitioned into two subsets containing 250 and 500 items,
respectively, at each iteration of the simulation.

We applied the TTGGKA based Algoritm 6 for various truncation indices. In Figure 6,
we represented a test image (top left position), the closest image in the database (top right),
the mean image of the training database (bottom left) and the eigenface associated to the
test image (bottom right).
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Figure 6. Test image, closest image, mean image and eigenface.

In order compute the rate of recognition, we ran 100 simulations, obtained the number
of successes (i.e., a test is successful if the person is correctly identified) and reported the
best identification rates, in function of the truncation index r in Figure 7.

2 3 4 5 6 7 8 9 10
68

70

72

74

76

78

80

82

84

86

88

Figure 7. Identification rates for different truncation indices r.

The results match the performances observed in the literature [24] for this database
and it confirms that the use of a Golub–Kahan strategy is interesting especially because, in
terms of training, the Tube Tensor PCA algorithm required only 5 s instead of 25 s when
using a c-SVD.

6.3. Example 3

In the second example, we used the larger AR face database (cropped version) (Face
crops) [9], which contains 2600 bitmap pictures of human faces (50 males and 50 females,
26 pictures per person), with different expressions, lightning conditions, facial expressions
and face orientation. The bitmap pictures were resized to 100 × 100 Jpeg images. The same
protocol as for Example 1 was followed: we partitioned the set of images in two subsets.
Out of 26 pictures, 6 pictures were randomly chosen as test images and the remaining 20
were put into the training folder. The training process took 24 s while it would have taken
81.5 s if using a c-SVD. An example of test image, the closest match in the dataset, the
mean image and its associated eigenface are shown in Figure 8.
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Figure 8. Test image, closest image, mean image and eigenface.

We applied our approach (TTPCA) to the 10,000 × 2000 × 3 training tensor X and
plotted the recognition rate as a function of the truncation index in Figure 9.
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Figure 9. Identification rates for different truncation indices r.

For all examples, it is worth noticing that, as expected in face identification problems,
only a few of the first largest singular elements suffice to capture the main features of an
image. Therefore, the Golub–Kahan based strategies such as the TTPCA method are an
interesting choice.

7. Conclusions

In this manuscript, we focused on two types of Golub–Kahan factorizations. We used
the recent advances in the field of tensor factorization and showed that this approach is
efficient for image identification. The main feature of this approach resides in the ability
of the Global Golub–Kahan algorithms to approximate the dominant singular elements
of a training matrix or tensor without needing to compute the SVD. This is particularly
important as the matrices and tensors involved in this type of application can be very large.
Moreover, in the case for which color has to be taken into account, this approach do not
involve a conversion to grayscale, which can be very important for some applications.
In a future work, we would like to study the feasability of implementing the promising
randomized PCA approaches in the Golub–Kahan tensor algorithm in order to improve
the training process computational cost in the case of very large datasets.
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Abstract: Nonsymmetric differential matrix Riccati equations arise in many problems related to
science and engineering. This work is focusing on the sensitivity of the solution to perturbations in
the matrix coefficients and the initial condition. Two approaches of nonlocal perturbation analysis of
the symmetric differential Riccati equation are extended to the nonsymmetric case. Applying the
techniques of Fréchet derivatives, Lyapunov majorants and fixed-point principle, two perturbation
bounds are derived: the first one is based on the integral form of the solution and the second one
considers the equivalent solution to the initial value problem of the associated differential system.
The first bound is derived for the nonsymmetric differential Riccati equation in its general form. The
perturbation bound based on the sensitivity analysis of the associated linear differential system is
formulated for the low-dimensional approximate solution to the large-scale nonsymmetric differential
Riccati equation. The two bounds exploit the existing sensitivity estimates for the matrix exponential
and are alternative.

Keywords: non-linear matrix equations; perturbation bounds; Lyapunov majorants; fixed-point
principle; nonsymmetric differential matrix Riccati equation

MSC: 15A24

1. Introduction and Notations

In the present paper, we consider the nonsymmetric differential matrix Riccati equa-
tion /NDRE/

Ẋ(t) = −AX(t)− X(t)D + X(t)SX(t) + Q, (1)

X(0) = X0.

where the solution X(t) is a n× p real matrix and A ∈ Rn×n, D ∈ Rp×p, Q ∈ Rn×p and
S ∈ Rp×n are the coefficient matrices and X0 ∈ Rn×p is a given initial value.

We assume that the matrix

H =

[
D −S

−Q A

]
∈ Rp+n×p+n

is a nonsingular M-matrix, or an irreducible singular M-matrix. (Recall that a real square
matrix A is said M-matrix if A = sI − B with B ≥ 0 and s ≥ r(B), where r(.) denotes
the spectral radius. If s > r(B), the M-matrix A is nonsingular.) As a consequence, [1],
A and D are both nonsingular M-matrices and can be decomposed as A = A1 − A2 and
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83



Mathematics 2021, 9, 855

D = D1 − D2, where A2, D2 are positive and A1, D1 are nonsingular M-matrices. The
NDRE (1) can then be formulated as

Ẋ(t) + X(t)D1 + A1X(t) = A2X(t) + X(t)D2 + X(t)SX(t) + Q

X(0) = X0.

The solution of NDRE (1) is given by the implicit formula [2]

X(t) = e−tA1 X0e−tD1 +
∫ t

0
e−(t−τ)A1 Qe−(t−τ)D1 dτ (2)

+
∫ t

0
e−(t−τ)A1(X(τ)SX(τ) + A2X(τ) + X(τ)D2)e−(t−τ)D1 dτ.

Let us now consider a nonsingular solution X∗ to the nonsymmetric algebraic Riccati equation

−AX− XD + XSX + Q = 0.

In [1], it is proved that ifH is assumed to be a nonsingular M-matrix, then the NDRE (1) has
a global solution X(t), provided that the initial value X0 satisfies the condition 0 ≤ X0 ≤ X∗,
where for every matrices A, B ∈ Rm×n, we write A ≤ B if aij ≤ bij for all i ∈ {1, . . . , m}
and j ∈ {1, . . . , n}.

Nonsymmetric differential Riccati equations are related to linear boundary value
problems arising in game and control theory, oscillation criterion problems for second
order differential systems, variational calculus and theory of transport processes [3]. NDRE
are an intermediate step in problems from singular perturbations and control theory when
linear transformations are applied to reduce high-order systems to lower order or to par-
tially decomposed systems. The properties of nonsymmetric differential Riccati equations
determine the existence of the optimal open-loop strategies in Nash and Stackelberg control
in game theory [4]. NDRE are induced via invariant embedding and interpretation formula
from an “angularly shifted” transport model in the slab geometry [2]. Of mathematical
interest, nonsymmetric differential Riccati equation describes the local coordinates of the
restriction to a subset of the Lagrangian Grassmannian manifold. The most important
results for NDRE are generalized in [5]. Fital and Guo, in [1], prove that for a suitable initial
value X0, the initial value problem (1) has a nonnegative solution X(t), which converges
to the stable equilibrium of (1). A closed formula, in terms of exponential of data matri-
ces, for the general solution of (1), when S is invertible, is proposed in [6]. An analytical
review of existing numerical methods to find the minimal nonnegative solution to low-
dimensional NDRE (1) is given in [7], where the approximate low-dimensional solution to
the large-scale case with low-dimensional right hand side is obtained after projecting (1) to
low-dimensional differential equation by applying the extended block Arnoldi process.

The numerically computed solution contains errors, as a result of truncation of infinite
series, round-off errors due to the finite precision machine arithmetic, error of stopping
iteration procedures, etc. The computed perturbed solution can be represented as the exact
solution of a slightly perturbed problem, simulating the effect of the errors mentioned
above by equivalent perturbations in the data matrices. To estimate the actual error in the
computed solution, it is important to find a bound of the error in the computed solution in
terms of the perturbations in the data. Perturbation analysis of the nonsymmetric algebraic
Riccati equation is given in [8], normwise, mixed and componentwise condition numbers,
as well as residual bounds are proposed in [9–11]. To the best of our knowledge, the
sensitivity and the conditioning of the NDRE are not yet analyzed.This work has two goals.
First, we study the sensitivity of the solution X(t) to (1) to perturbations in the matrix
coefficients A, D, Q, S, X0. It is done by adapting the bounds established for the symmetric
differential Riccati equation, obtained by [12,13] to the nonsymmetric Riccati equation,
which show good upper sensitivity. The perturbation bounds are very important for
interpreting a numerically computed solution. The second objective is to apply the derived
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nonlocal perturbation bound to estimate the error of approximation in the solution when
solving large-scale nonsymmetric differential Riccati equations by Krylov-type methods.

The paper is organized as follows: In Section 2, nonlocal sensitivity analysis of the non-
symmetric differential matrix Riccati Equation (1) is presented. An effective perturbation
bound is proposed. In Section 3, an alternative perturbation bound based on the sensitivity
analysis of the associated differential system is derived and then applied for estimating the
error of approximation of the low-dimensional approximate solution. The bounds exploit
existing sensitivity estimates of the matrix exponential. Numerical examples are presented
in Section 4 to illustrate the theoretical results established in this work.

Throughout the paper, the following notations are used: Rm×n denotes the space on
m× n real matrices, ‖.‖ is the spectral norm ‖M‖ = [λmax(M M)]1/2, where λmax(N) is
the maximum eigenvalue of the symmetric matrix N, ‖.‖F is the Frobenius norm, A is the
transpose of the matrix A ∈ Rm×n, In is the n× n unit matrix, and the symbol := stands
for “equal by definition”.

2. Nonlocal Perturbation Bound of NDRE

In this section, we will extend the approach proposed in [12] to the nonsymmetric
differential Riccati Equation (1).

Let us denote by Z := (A, D, Q, S, X0) the collection of matrix coefficients and by
ΔZ := (ΔZ, ΔD, ΔQ, ΔS, ΔX0) the collection of equivalent perturbations in the data. The
perturbation ΔZ ∈ ΔZ is continuous with ‖ΔZ‖ ≈ macheps φ(n)‖Z‖, where φ(n) is a
low-order polynomial in n and macheps is the round-off unit of the machine arithmetic. If
some of the matrix coefficients are not perturbed, then the corresponding perturbations
are assumed to be zero. The perturbed nonsymmetric differential matrix Riccati equation,
obtained from (1) by replacing the nominal values Z ∈ Z by Z + ΔZ, (ΔZ ∈ ΔZ) is
given by

(X(t) + ΔX(t))′ = −(A + ΔA)(X(t) + ΔX(t)) (3)

−(X(t) + ΔX(t))(D + ΔD)

+(X(t) + ΔX(t))(S + ΔS)(X(t) + ΔX(t)) + Q + ΔQ,

X(0) + ΔX(0) = X0 + ΔX0,

where X(t) + ΔX(t) is the solution to the perturbed nonsymmetric differential matrix
Riccati Equation (3). For sufficiently small perturbations ΔZ ∈ ΔZ in the data Z ∈ Z , the
solution X(t) + ΔX(t) to the perturbed Equation (3) exists and depends continuously on
the elements of the perturbations ΔZ in the data Z. Let δ := [δA; δD; δQ; δS; δX0 ] ∈ R5

+ be
the perturbation vector, where δZ := ‖ΔZ‖ for ΔZ ∈ ΔZ .

Our aims in this section, are to extend the results obtained in [12] for the symmetric
differential matrix Riccati equation to the nonsymmetric case (1) and to give a bound for the
perturbations in the solution ‖ΔX(t)‖ ≤ f (δ, t) as a function of the perturbation vector δ.

From (3), taking into account (1), we can write the perturbation of the solution as

ΔẊ(t) = −Ac(t)ΔX(t)− ΔX(t)Dc(t) +M(t, ΔX(t)), (4)

ΔX(0) = ΔX0,

where Ac(t) := A− X(t)S, Dc(t) := D− SX(t) are the closed-loop matrices andM(t, P)
is the operator

M(t, P) := M1(t, P) +M2(t, P), (5)

defined for some matrix P ∈ Rn×p, with

M1(t, P) := X(t)ΔSX(t)− ΔAX(t)− X(t)ΔD + ΔQ, (6)

M2(t, P) := −(ΔA− X(t)ΔS)P− P(ΔD− ΔSX(t)) + P(S + ΔS)P
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and spectral norm

‖M(t, P)‖ ≤ ‖X(t)‖2δS + ‖X(t)‖(δA + δD) + δQ (7)

+‖P‖(δA + 2‖X(t)‖δS + δD) + ‖P‖2(‖S‖+ δS).

From (4), we can state the following nonlocal perturbation bound:

Theorem 1. Let ΔX(t) be the perturbation in a solution X(t) to Equation (1), solved by a numeri-
cally stable algorithm in finite precision arithmetic according to the perturbation vector δ := (δA,
δD, δQ, δS, δX0). Let us define the set Ωt

Ωt :=
{

δ ≥ 0, a1(δ) + 2
√

a0(δ)a2(δ) ≤ 1
}
∈ R5

+, (8)

where

a0(δ) := ν(‖S‖+ δS),

a1(δ) := ν(δA + 2‖X(t)‖δS + δD), (9)

a2(δ) := νδQ + ν‖X(t)‖(δA + δD) + ν‖X(t)‖2δS + βδX0 ,

with

β = max{‖ΦAc(0, t)‖ ‖ΦDc(0, t)‖ : t ∈ T}, (10)

ν = max
{∫ t

0
‖ΦAc(τ, t)‖ ‖ΦDc(τ, t)‖ dτ : t ∈ T

}
, (11)

and ΦP(t, t0) = e(t−t0)P is the fundamental matrix of equation η̇(t) = Pη(t) for some real
matrix P.

If δ satisfies the inclusion

δ ∈ Ωt, (12)

for Ωt given in (8), then the norm of the perturbation ΔX(t) is bounded by the nonlocal perturba-
tion bound

‖ΔX(t)‖ ≤ f (δ, t) :=
2a2(δ)

1− a1(δ) +
√
(1− a1(δ))2 − 4a0(δ)a2(δ)

. (13)

Proof. Premultiplying and postmultiplying the differential Equation (4) by the factors
e−(t−τ)Ac(τ) and e−(t−τ)Dc(τ) respectively, and integrating with respect to τ from 0 to t, we
obtain the equivalent integral form of the initial value problem (4) [2]:

ΔX(t) = e−tAc(t)ΔX0e−tDc(t) (14)

+
∫ t

0
e−(t−τ)Ac(τ)M(τ, ΔX(τ))e−(t−τ)Dc(τ)δτ.

According to its definition, ΦP(t, t0) satisfies

Φ̇P(t) = ΦP(t)P(t), ΦP(t, t) = Φ(t− t) = Φ(0) = I, for t ∈ T. (15)

Equation (14) can be stated as

ΔX(t) = Π(ΔX)(t), (16)
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where the operator Π is defined as

Π(ΔX)(t) := ΦAc(0, t)ΔX0ΦDc(0, t) +
∫ t

0
ΦAc(τ, t)M(τ, ΔX(τ))ΦDc(τ, t)dτ.

The spectral norm of the operator Π(P)(t) in terms of (7), (9)–(11) is

‖Π(P)(t) ≤ βδX0 + ν‖M(t, P)‖, (17)

and the second order polynomial

h(‖ΔX(t)‖, δ) := a0(δ)‖ΔX(t)‖2 + a1(δ)‖ΔX(t)‖+ a2(δ), (18)

with ai(δ), i = 0, 1, 2, defined in (9) via (10), (11) is a Lyapunov majorant for the operator
Π(.) such that

‖Π(ΔX)(t)‖ ≤ h(‖ΔX(t)‖, δ). (19)

In a similar way, for two arbitrary matrices V(t), W(t) ∈ Rn×p with ‖V(t)‖, ‖W(t)‖ ≤
‖ΔX(t)‖, we get

‖Π(V)(t)−Π(W)(t)‖ ≤ ∂h(θ, δ)

∂θ
‖V(t)−W(t)‖ (20)

= (a1(δ) + 2a0(δ)θ)‖V(t)−W(t)‖,

where θ := max{‖V(t)‖, ‖W(t)‖}. If inequalities (17) and (20) hold and for any positive
number ρ such as

h(ρ, δ) ≤ ρ, h′(ρ, δ) =
∂h(ρ, δ)

∂ρ
< 1, (21)

then the operator Π(.) is a contraction on the ball Mρ := {‖V(t)‖ ∈ Rn×p : ‖V(t)‖ ≤ ρ}.
According to the fixed-point principle[14], the operator Equation (16) admits a solution
ΔX(t) ∈ Mρ such that for

δ ∈ Ωt :=
{

δ∈ R5
+, a1(δ) + 2

√
a0(δ)a2(δ) ≤ 1

}
∈ R5

+,

we have

‖ΔX(t)‖ ≤ 2a2(δ)

1− a1(δ) +
√
(1− a1(δ))2 − 4a0(δ)a2(δ)

,

which concludes the proof.

The perturbation bound formulated in Theorem 1 is a nonlocal sensitivity bound. The
inclusion (12), (8) guarantees that there exists a solution X(t) + ΔX(t) of the perturbed
Equation (3) for which the bound (13) holds.

Let α = max{δA, δD, δQ, δS, δX0}. Then (9) and (8) yield

a0(α) = ν(‖S‖+ α), a1(α) = 2ανσ, a2(α) = α(νσ2 + β),

and

Ωt =

{
α <

(
−κ +

√
κ2 + β/ν

)
/2β

}
,

with σ := 1 + ‖X(t)‖ and κ := σ + ‖S‖(β + νσ2). The estimate (13) becomes

87



Mathematics 2021, 9, 855

‖ΔX(t)‖ ≤ 1− 2ανσ−
√

1− 4αν(κ + αβ)

2ν(‖S‖+ α)
.

The assumption for H to be a nonsingular M-matrix implies that the closed loop-matrices
Ac(t) = A − X(t)S and Dc(t) = D − SX(t) are nonsingular M-matrices too [15]. This
allows us, to facilitate the computation of the terms ν and β, to derive computable bounds
for the spectral norm of the fundamental matrices ΦAc(0, t) and ΦDc(0, t)

‖ΦAc(0, t)‖ ≤ e−
∫ t

0 λ(τ)dτ ; (22)

‖ΦDc(0, t)‖ ≤ e−
∫ t

0 ξ(τ)dτ ,

based on the logarithmic norms

λ(t) = 0, 5 λmax(
[

Ac(t) + Ac(t) 
]
); ξ(t) = 0, 5 ξmax(

[
Dc(t) + Dc(t) 

]
)

of the closed-loop matrices Ac(t) = A− X(t)S and Dc(t) = D− SX(t), respectively.

3. Sensitivity of Low-Dimensional Approximate Solutions to Large-Scale NDRE

For large NDRE with low-rank matrix Q, decomposed as Q = FG with F ∈ Rn×s,
G ∈ Rp×s and s << n, we proposed in [7] to project the problem (1) onto extended Krylov
subspace Km(A, F) and Km(D, G) applying the Extended block Arnoldi algorithm and to
obtain the approximate solution

Xm(t) = VmYm(t)W 
m ∈ Rn×p, (23)

where Ym solves the projected low-dimensional NDRE

Ẏm(t) = −T A
m Ym(t)−Ym(t)T D

m + Ym(t)SmYm(t) + FmG m , (24)

Ym(0) = Y0 = V m X0Wm ∈ R2ms×2ms,

instead of the exact solution to (1). Here Sm =W 
m SVm ∈ R2ms×2ms, Fm = V m F ∈ R2ms×s,

Gm =W 
m G ∈ R2ms×s and the block Hessenberg matrices T A

m = V m AV m ∈ R2ms×2ms and
T D

m = W 
m DWm ∈ R2ms×2ms are obtained after transformation by the orthonormal ma-

trices Vm =
[

V1, . . . , Vm
]
∈ Rn×2ms and Wm =

[
W1, . . . , Wm

]
∈ Rp×2ms com-

posed of the orthonormal bases {V1, . . . , Vm}, (Vi ∈ Rn×2s, i = 1, . . . .m) and {W1, . . . , Wm},
(Wi ∈ Rp×2s, i = 1, . . . .m). The orthonormal bases are generated after applying the Ex-
tended block Arnoldi algorithm to the pairs (A, F) and (D, G); see [7] for more details.

The classical theory of Radon (see, e.g., [5]) states that any solution Ym(t) of the
low-dimensional NDRE (24) is locally equivalent to a solution of the initial value problem

Ψ̇(t) = Hm(t)Ψ(t), Ψ(0) :=
[

I
Y0

]
∈ R4ms×2ms, (25)

where Hm = U mHUm :=
[ T D

m −Sm
FmG m −T A

m

]
∈ R4ms×4ms, with H :=

[
D −S

FG −A

]
and

Um :=
[ Wm 0

0 Vm

]
, U m Um = I.

The solution of (25) is

Ψ(t) :=
[

Y1,m(t)
Y2,m(t)

]
= etHm Ψ(0) :=

[
Ψ11(t) Ψ12(t),
Ψ21(t) Ψ22(t)

]
Ψ(0), (26)

=

[
Ψ11(t) + Ψ12(t)Y0
Ψ21(t) + Ψ22(t)Y0

]
.
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If the matrix Y1,m(t) is nonsingular, the solution Ym(t) of the projected low-order nonsym-
metric differential Riccati Equation (24) is represented as [16]

Ym(t) = Y2,m(t)Y−1
1,m(t) = (Ψ21(t) + Ψ22(t)Y0)(Ψ11(t) + Ψ12(t)Y0)

−1. (27)

To estimate the sensitivity of the problem (24), we consider the strategies proposed
in [13]. We represent the calculated perturbed solution to (24) with collection of data
coefficients Zm =

(
T A

m , T D
m , Sm, Fm, Gm, Y0) as the exact solution to a slightly perturbed

problem with collection of data coefficients Zm + ΔZm. The data perturbation ΔZm ∈ ΔZm
:=

(
ΔT A

m , ΔT D
m , ΔSm, ΔFm, ΔGm, ΔY0) with ‖ΔZ‖ ≤ δZ, δZ ≈ macheps φ(n)‖Z‖, reflects

the effect of round-off errors and approximation errors in the computed solution to (24).
The perturbed projected low-dimensional NDRE is

(Ym(t) + ΔYm(t))′ = −(T A
m + ΔT A

m )(Ym(t) + ΔYm(t)) (28)

−(Ym(t) + ΔYm(t))(T D
m + ΔT D

m )

+(Ym(t) + ΔYm(t))(Sm + ΔSm)(Ym(t) + ΔYm(t))

+(Fm + ΔFm)(Gm + ΔGm)
 ,

Ym(0) + ΔYm(0) = Y0 + ΔY0.

The equivalent to (28) initial value problem is

(Ψ(t) + ΔΨ(t))′ := (Hm(t) + ΔHm(t))(Ψ(t) + ΔΨ(t)), (29)

Ψ(0) + ΔΨ(0) :=
[

Y1,m(0)
Y2,m(0)

]
+

[
ΔY1,m(0)
ΔY2,m(0)

]
,

where

ΔHm :=
[

ΔT D
m −ΔSm

ΔFmG m + FmΔG m + ΔFmΔG m −ΔT A
m

]
andΔΨ(t) =

[
ΔY1,m(t)
ΔY2,m(t)

]
:=

[
ΔΨ11(t) ΔΨ12(t)
ΔΨ21(t) ΔΨ22(t)

]
.

The perturbations ΔΨ11(t), ΔΨ12(t), ΔΨ21(t), ΔΨ22(t) are analytical functions of the data
perturbations ΔZm ∈ ΔZm and reflect the errors in the solution Ψ(t) + ΔΨ(t) to the
perturbed linear differential system

Ψ(t) + ΔΨ(t) = et(Hm+ΔHm)(Ψ(0) + ΔΨ(0)), (30)

=

[
Y1,m(t)
Y2,m(t)

]
+

[
ΔY1,m(t)
ΔY2,m(t)

]
,

:=
[

Ψ11(t) + ΔΨ11(t) Ψ12(t) + ΔΨ12(t),
Ψ21(t) + ΔΨ21(t) Ψ22(t) + ΔΨ22(t)

]
(Ψ(0) + ΔΨ(0)).

According to (26) and (30), the perturbation ΔΨ(t) is

ΔΨ(t) = et(Hm+ΔHm)(Ψ(0) + ΔΨ(0))− etHm Ψ(0) (31)

=

[
ΔY1,m(t)
ΔY2,m(t)

]
=

[
ΔΨ11(t) + ΔΨ12(t)Y0 + (Ψ12(t) + ΔΨ12(t))ΔY0,
ΔΨ21(t) + ΔΨ21(t)Y0 + (Ψ22(t) + ΔΨ22(t))ΔY0

]
.

If the matrix

Y1,m(t) + ΔY1,m(t) := Ψ11(t) + ΔΨ11(t) + (Ψ12(t) + ΔΨ12(t))(Y0 + ΔY0)

is invertible, then the solution

Ym(t) + ΔYm(t) = (Y2,m(t) + ΔY2,m(t))(Y1,m(t) + ΔY1,m(t))
−1, (32)
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with ΔY1,m(t) and ΔY2,m(t) given in (31) to the perturbed projected low-dimensional
Equation (28) exists.

The perturbation bound of the solution Ym(t) to the NDRE (24) consists of finding
an interval T : [0, t∗) such that for each t ∈ T, the matrix Y1,m(t) + ΔY1,m(t) is invert-
ible and then the perturbed solution Ym(t) + ΔYm(t) given by (32) exists, as well as to
derive a normwise bound in terms of spectral norm for the error ΔYm(t) in the solution
Ym(t) + ΔYm(t) (32) as a function of the equivalent perturbations ΔZm in the data coeffi-
cients Zm.

We formulate the following perturbation bound of the solution to the projected low-
dimensional NDRE (24).

Theorem 2. Let us denote

ω1(t, δm) := ‖Ψ12(t)‖δY0 +
√

rank(ΔΨ(t))(1 + ‖Y0‖+ δY0)‖ΔΨ(t)‖, (33)

ω2(t, δm) :=
√

rank(ΔΨ(t))(1 + ‖Y0‖+ δY0)‖ΔΨ(t)‖+ ‖Ψ22(t)‖δY0 ,

for Y0, Ψ1,i(t), i = 1, 2, Ψ22(t) and ΔΨ(t) as defined in (25), (26) and (29) respectively.
For t ∈ [0, t∗), where

t∗ = sup
{

t ∈ T : ω1(t, δm)‖Y1,m(t)−1‖ < 1
}

, (34)

Y1,m(t) as stated in (26) and δm :=
[

δT A
m

δT D
m

δFm δGm δSm δY0

] 
, the spectral norm

of the perturbation ΔYm(t) in the calculated solution Ym(t) to (24) satisfies the inequality

‖ΔYm(t)‖ ≤ fm(t, δm) :=
(ω2(t, δm) + ω1(t, δm)‖Ym(t)‖)‖Y−1

1,m(t)‖
1−ω1(t, δm)‖Y−1

1,m(t)‖
. (35)

Proof. The initial value of problem (25) is Ψ(0) =

[
I

Y0

]
. Then, according to (26)

Ψ11(0) = In, Ψ12(0) = 0. The matrix Y1,m(0) = Ψ11(0) + Ψ12(0)Y0 = In is invertible
and its inverse is Y1,m(0)−1 = (Ψ11(0) + Ψ12(0)Y0)

−1 = In. Denote by σ1(t) ≥ σ2(t) ≥
· · · ≥ σn(t) ≥ 0 the singular values of the matrix Ψ11(t). Then the interval T = [0, t∗) can
be chosen from

t∗ := sup{t : ‖ΔY1,m(t)‖+ ‖Ψ12(t)‖‖Y0‖ < σn(t)}. (36)

From (32) and taking into account (27), the perturbation ΔYm(t) in the solution to the
projected low-dimensional NDRE satisfies

ΔYm(t) = (Y2,m + ΔY2,m(t))(Y1,m(t) + ΔY1,m(t))
−1 −Y2,m(t)Y−1

1,m(t) (37)

= (ΔY2,m(t)−Ym(t)ΔY1,m(t))(Y1,m(t) + ΔY1,m(t))
−1.

Applying the property
∥∥∥(In + X−1Y

)−1
∥∥∥ ≤ 1

1−‖X−1‖‖Y‖ , which is valid for any matrices

X, Y ∈ Rn×n, with existing inverse X−1 and ‖X−1‖‖Y‖ ≤ 1 [17], from (37), we obtain

‖ΔYm(t)‖ ≤ (‖ΔY2,m(t)‖+ ‖Ym(t)‖‖ΔY1,m(t)‖)× (38)

×
‖Y−1

1,m(t)‖
1− ‖Y−1

1,m(t)‖‖ΔY1,m(t)‖

provided that
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‖Y−1
1,m(t)‖‖ΔY1,m(t)‖ < 1.

Using the fact that for any matrix M = [Mij] ∈ R2ms×2ms, we have

‖Mij‖F < ‖M‖F <
√

rank(M)‖M‖2,

the norms of the perturbations ΔY1,m(t) and ΔY2,m(t) can be estimated by

‖ΔY1,m(t)‖ ≤ ‖ΔΨ11(t)‖F + ‖Ψ12(t)‖δY0 + ‖ΔΨ12(t)‖F(‖Y0‖+ δY0 (39)

≤ ‖‖Ψ12(t)‖δY0 + (1 + ‖Y0‖+ δY0)‖ΔΨ(t)‖F

≤ ‖Ψ12(t)‖δY0 +
√

rank(ΔΨ(t))(1 + ‖Y0‖+ δY0)‖ΔΨ(t)‖
≤ ω1(t, δm),

and

‖ΔY2,m(t)‖ ≤
√

rank(ΔΨ(t))(1 + ‖Y0‖+ δY0)‖ΔΨ(t)‖+ ‖Ψ22(t)‖δY0 (40)

≤ ω2(t, δm).

Replacing ‖ΔY1,m(t)‖ and ‖ΔY2,m(t)‖ in (38) by ω1(t, δm) and ω2(t, δm) from (39), (40), we
prove the non-local bound ‖ΔYm(t)‖ ≤ fm(t, δm) as stated in (35).

Finally, the expression ‖ΔY1,m(t)‖+ ‖Ψ12(t)‖‖Y0‖ < σn(t) from (36) in view of (39),
becomes ω1(t, δm) < ‖Y1,m(t)‖. Then, since Y1,m(0) = In and ω1(t, 0) = 0, the interval

t∗ = sup
{

t ∈ T : ω1(t, δm)‖Y1,m(t)−1‖ < 1
}

from (34) is correctly defined, which achieves the proof.

In order to represent the norm ‖ΔΨ(t)‖ of the perturbation ΔΨ(t) in terms of ω1 and
ω2 by the norms of the perturbations in the data matrices T A

m , T D
m , Fm, Gm, Sm and Y0, we

consider the perturbed differential Equation (29). We have

ΔΨ(t) =
∫ t

0
eHm(t−τ)ΔHme(Hm+ΔHm)τdτ.

Then, taking the spectral norm, we have

‖ΔΨ(t)‖ ≤ δHm

∫ t

0
‖eHm(t−τ)‖‖e(Hm+ΔHm)τ‖dτ

≤ δHm

∫ t

0
g(t− τ)(‖ΔΨ(τ)‖+ g(τ))dτ,

where δHm := ‖ΔHm‖ < δm and g(t) is an upper bound for ‖eHm(t)‖, i.e., ‖eHm(t)‖ ≤ g(t).
Some bounds for the matrix exponential eHm(t) based on Jordan and Schur matrix decom-
positions, logarithmic norm and power series are summarized in [18]:

g(t) = c0e�t
p−1

∑
k=0

(�t)k/k!, (41)

with constants c0, �, � and p, listed in Table 1.
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Here μ(Hm(t)) = λmax
(
Hm(t) +Hm(t) )/2

)
; ς ≥ 1 is the dimension of the maxi-

mum block in the Jordan canonical form J = Y−1Hm(t)Y ofHm(t), where the matrix Y is
chosen so as the condition number cond(Y) = ‖Y‖‖Y−1‖ to be minimized; dς = cos

(
π

ς+1

)
;

α(Hm(t)) is the spectral abscissa ofHm(t), i.e., the maximum real part of the eigenvalues
of Hm(t); T = UHHm(t)U = Λ +N is the Schur decomposition of Hm(t) with unitary
matrix U, chosen so as � = ‖N‖ to be minimized, diagonal matrix Λ and N - strictly
upper triangular matrix with index of nilpotency l = min{s : N s = 0}.

Table 1. Values of the constants in the matrix exponential bounds.

Jordan (1) Jordan (2) Schur Log Norm Power Series

c0 cond(Y) cond(Y) 1 1 1
� α(Hm(t)) α(Hm(t)) + dς α(Hm(t)) μ(Hm(t)) ‖Hm(t)‖
� 1 0 � 0 0
p m - l - -

The results stated in Theorem 2 can be used to formulate a perturbation bound for the
solution X(t) to the large-scale NDRE (1).

Theorem 3. Let a large-scale NDRE (1) for which the constant matrix coefficient Q is low-rank
and can decomposed as Q = FG with F ∈ Rn×s, G ∈ Rp×s, (s << n) be projected onto a pair of
extended Krylov subspaces Km(A, F) and Km(D, G). Let Xm(t) = VmYm(t)W 

m ∈ Rn×p be its
approximate solution as stated in (23), obtained by applying the Extended block Arnoldi algorithm
to the projected low-dimensional NDRE

Ẏm(t) = −T A
m Ym(t)−Ym(t)T D

m + Ym(t)SmYm(t) + FmG m ,

Ym(0) = Y0 = V m X0Wm ∈ R2ms×2ms.

with solution Ym(t) and perturbation bound ‖ΔYm(t)‖ ≤ fm(t, δm) (35) as defined in Theorem 2.
A perturbation bound in terms of spectral norm for the approximate solution X(t) to (1) is given by

‖ΔX(t)‖ ≤ fm(t, δm) :=
(ω2(t, δm) + ω1(t, δm)‖Ym(t)‖)‖Y−1

1,m(t)‖
1−ω1(t, δm)‖Y−1

1,m(t)‖
, (42)

for t ∈ [0, t∗), with t∗ as defined in (34) and Y1,m(t) stated in (26), ω1(t, δm), ω(t, δm) stated in (33),

δm :=
[

δT A
m

δT D
m

δFm δGm δSm δY0

] 
.

Proof. The proof follows directly from the definition (23) of the approximate solution Ym(t)
and the preservation of the spectral norm by unitary matrices.

Next, we apply the preceding results to estimate the approximation error Em = X(t)−
Xm(t) of the approximate solution Xm(t) to the projected low-dimensional NDRE versus
the exact solution to (1) from Theorem (4), which was already established by the authors
in [19].

Theorem 4. [Theorem 4. form [19]] Let Xm be the approximate solution given by (23). Then
we have

Ẋm(t) = −(A− ΔA
m) Xm(t)− Xm(t) (D− ΔD

m) + Xm(t)S Xm(t) + FGT ,

Rm(t) = ΔA
mXm(t) + Xm(t)ΔD

m , and

Ėm(t) = −(A− Xm(t)S)Em(t)− Em(t)(D− SXm(t)) + Em(t)SEm(t)

−ΔA
mXm(t)− Xm(t)ΔD

m .
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where ΔA
m = Vm+1TA

m+1,mVT
m , ΔD

m = WmTD
m+1,mWT

m, Em(t) = X(t) − Xm(t) and X(t) is an
exact solution X(t) of (1).

Let us rewrite the NDRE associated with the error Em(t)

Ėm(t) = −(A− Xm(t)S)Em(t)− Em(t)(D− SXm(t)) + Em(t)SEm(t) (43)

−ΔA
mXm(t)− Xm(t)ΔD

m

in the equivalent form

Ėm(t) = −Ac,m(t)Em(t)− Em(t)Dc,m(t) +Mm(t, Em(t)), (44)

where Ac,m(t) = A − Xm(t)S, Dc,m(t) = D − SXm(t), M(t, Em) := M1,m(t, Em)+
M2,m(t, Em) with

M1,m(t, Em(t)) := −ΔA
mEm(t)− Em(t)ΔD

m ; M2,m(t, Em(t)) := Em(t)SEm(t). (45)

Here ΔA
m = Vm+1TA

m+1,nV , , ΔD
m = WmTD

m+1,nW 
m+1. As the unitary matrices Vm and Wm

have unit spectral norm, we have ‖ΔA
m‖ = ‖TA

m+1,n‖ and ‖ΔD
m‖ = ‖TD

m+1,n‖. We notice that
the fact that the term Tm+1,n tends normwisely to 0 as m increases implies that the spectral
norm of ΔA

m, ΔD
m decreases towards 0. This allows us to consider ΔA

m, ΔD
m as equivalent

data perturbations, and Equation (43) as an equation of the perturbation in the solution.
Equation (43) is equivalent to the NDRE (4) of the perturbation ΔX(t) in the perturbed
NDRE (2). This allows us to apply the technique of the nonlocal perturbation analysis of
the NDRE, based on the integral solution to the NDRE and the statements of Theorem 1 to
formulate a bound for the error Em(t).

Theorem 5. For ΔD
m, ΔD

m, satisfying δ :=
[
‖ΔA

m‖ ‖ΔD
m‖

] ∈ Ωt,m := {a0(δ)a2(δ) ≤ 0.25},
the spectral norm of the error Em(t), solution to the NDRE (43), is bounded by

‖Em(t)‖ ≤ f (δ, t) =
2a2(δ)

1 +
√

1− 4a0(δ)a2(δ)
, (46)

where

a0(δ) = ν‖S‖; a2 = ν‖Xm(t)‖
(
‖ΔA

m‖+ ‖ΔD
m‖

)
+ β‖Em(0)‖,

for ν = max
{∫ t

0 ‖ΦAc,m(τ, t)‖‖ΦDc,m(τ, t)‖ dτ, t ∈ T
}

, β = max
{
‖ΦAc,m(0, t)‖‖ΦDc,m(0, t)‖

}
and ΦZ(t, t0) = e(t−t0)Z being the fundamental matrix of equation η̇(t) = Zη(t).

Proof. Comparing M1,m(t, Em(t)), M2,m(t, Em(t)) (45) to M1(t, P), M2(t, P) (6), for the
coefficients ai(δ) (9) we obtain

a0(δ) = ν‖S‖; a1(δ) = 0; a2(δ) = ν‖Xm(t)‖(‖ΔA
m‖+ ‖ΔD

m‖) + β‖Em(0)‖.

Replacing the coefficients ai(δ), i = 0, 1, 2 in the inequality of the set Ωt,m (8) and the bound
f (δ, t) (13) we obtain

2
√

a0(δ)a2(δ) ≤ 1, or a1(δ)a2(δ) ≤ 0.25.
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Then the existence condition of the bound becomes

δ :=
[
‖ΔA

m‖ ‖ΔD
m‖

] ∈ Ωt,m := {a0(δ)a2(δ) ≤ 0.25},

and we obtain the bound

f (δ, t) =
2a2(δ)

1 +
√

1− 4a0(δ)a2(δ)
.

4. Numerical Examples

To illustrate the effectiveness of the bounds proposed in Theorems 1 and 2, we consider
nonsymmetric differential matrix Riccati equations of type (1) on a time interval T =
[0, 1], for different matrix coefficients and for several sizes. The experimental tests are
performed with Matlab R2020a on an Intel processor laptop equipped with 16GB of RAM.
The reference solutions X(t) to the NDRE (1) and X(t) + ΔX(t) to the perturbed NDRE (3)
are computed by the backward differential formula - BDF1-Newton method, see [19] for
more details.

Example 1. Consider the NDRE (1), constructed according to the rules given in [15]. This scheme
is used in [10] to analyze the effectiveness of mixed and componentwise condition numbers, and
in [11], to illustrate the validity of a condition number and backward errors of nonsymmetric
algebraic Riccati equation.

The matrix coefficients of the NDRE (1) are:

A = W(n + 1 : 2n, n + 1 : 2n) + αI; D = W(1 : n, 1 : n) + αI,

S = −W(1 : n, n + 1 : 2n); Q = −W(n + 1 : 2n, 1 : n),

where W is a singular M-matrix with nonzero elements: W = diag(Re)− R, with R− a2n× 2n
nonzero random matrix and e =

[
1, 1, . . . , 1

] ∈ R2n. The time interval T =
[

0, 1
]

is chosen. For α ≥ 0 the existence of a positive definite solution to (1) is guaranteed.

Experiment 1. In [10], an equation of size n = 3 is considered and the perturbations are chosen as:

ΔA =

⎡⎣ −0.3 0.2 0.1
0.1 −0.2 0.3
0.1 0.1 −0.3

⎤⎦ ∗ 10−j; ΔD =

⎡⎣ 0.1 −0.2 0.3
0 0.1 0.2

−0.2 0.3 0.1

⎤⎦ ∗ 10−j

ΔS =

⎡⎣ 0.2 −0.1 0.3
−0.1 0.2 0.3
−0.1 0.1 −0.3

⎤⎦ ∗ 10−j; ΔQ =

⎡⎣ −0.2 −0.3 0.1
0.1 −0.1 0.1

−0.1 0.1 0.2

⎤⎦ ∗ 10−j,

for j = 12, 11, 10, 9, 8, 7, . . . , 2.

The results, obtained for the estimated value - the relative perturbation ρ1(t) =
‖ΔX(t)‖
‖X(t)‖ and

the estimate—the relative bound ρ2(t) =
f (t)
‖X(t)‖ , with f (t) = f (δ, t) given by (8)–(13) for

j = 12, 10, 8, 6, 4, 2 and α = 0 are listed in Table 2.
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Table 2. Relative perturbation ρ1(t) =
‖ΔX(t)‖
‖X(t)‖ and bound ρ2(t) =

f (t)
‖X(t)‖ .

α = 0

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

j = 12

ρ1(t) 2.57× 10−13 2.46× 10−13 2.40× 10−13 2.37× 10−13 2.36× 10−13

ρ2(t) 2.97× 10−12 1.75× 10−12 1.36× 10−12 1.16× 10−12 1.05× 10−12

j = 10

ρ1(t) 2.58× 10−11 2.46× 10−11 2.40× 10−11 2.37× 10−11 2.36× 10−11

ρ2(t) 2.97× 10−10 1.75× 10−10 1.36× 10−10 1.16× 10−10 1.05× 10−10

j = 8

ρ1(t) 2.58× 10−09 2.46× 10−09 2.40× 10−09 2.37× 10−09 2.36× 10−09

ρ2(t) 2.97× 10−08 1.75× 10−08 1.36× 10−08 1.16× 10−08 1.05× 10−08

j = 6

ρ1(t) 2.58× 10−07 2.46× 10−07 2.40× 10−07 2.37× 10−07 2.36× 10−07

ρ2(t) 2.97× 10−06 1.75× 10−06 1.36× 10−06 1.16× 10−06 1.05× 10−06

j = 4

ρ1(t) 2.58× 10−05 2.46× 10−05 2.40× 10−05 2.37× 10−05 2.36× 10−05

ρ2(t) 2.97× 10−04 1.75× 10−04 1.36× 10−04 1.16× 10−04 1.05× 10−04

j = 2

ρ1(t) 2.58× 10−03 2.46× 10−03 2.40× 10−03 2.37× 10−03 2.36× 10−03

ρ2(t) 3.01× 10−02 1.77× 10−02 1.38× 10−02 1.18× 10−02 1.06× 10−02

Example 1: Experiment 1, bound f (t)= f (δ, t), (8)–(13), Theorem 1, α = 0, j = 12, 10, 8, 6, 4, 2, t = 0.2 to 1.

Table 3 reports on the obtained results for the bound (8)–(13) from Theorem (1) for the case
α = 5.

Table 3. Relative perturbation ρ1(t) =
‖ΔX(t)‖
‖X(t)‖ and bound ρ2(t) =

f (t)
‖X(t)‖ .

α = 5

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

j = 12

ρ1(t) 1.74× 10−13 1.60× 10−13 1.56× 10−13 1.58× 10−13 1.64× 10−13

ρ2(t) 2.37× 10−12 1.48× 10−12 1.19× 10−12 1.05× 10−12 9.63× 10−13

j = 10

ρ1(t) 1.72× 10−11 1.60× 10−11 1.56× 10−11 1.58× 10−11 1.63× 10−11

ρ2(t) 2.37× 10−10 1.48× 10−10 1.19× 10−10 1.05× 10−10 9.63× 10−11

j = 8

ρ1(t) 1.73× 10−09 1.60× 10−09 1.56× 10−09 1.58× 10−09 1.64× 10−09

ρ2(t) 2.37× 10−08 1.48× 10−08 1.19× 10−08 1.05× 10−08 9.65× 10−09

j = 6

ρ1(t) 1.73× 10−07 1.59× 10−07 1.56× 10−07 1.58× 10−07 1.64× 10−07

ρ2(t) 2.37× 10−06 1.48× 10−06 1.19× 10−06 1.05× 10−06 9.63× 10−07

j = 4

ρ1(t) 1.73× 10−05 1.59× 10−05 1.56× 10−05 2.1.58× 10−05 1.63× 10−05

ρ2(t) 2.37× 10−04 1.48× 10−04 1.19× 10−04 1.05× 10−04 9.63× 10−05

j = 2

ρ1(t) 1.74× 10−03 1.59× 10−03 1.56× 10−03 1.58× 10−03 1.64× 10−03

ρ2(t) 2.40× 10−02 1.50× 10−02 1.21× 10−02 1.06× 10−02 9.77× 10−03

Example 1: Experiment 1, bound f (t)= f (δ, t), (8)–(13), Theorem 1, α = 5, j = 12, 10, 8, 6, 4, 2, t = 0.2 to 1.

As it is seen, the estimate based on the perturbation bound f (δ, t) from (8)–(13) is quite sharp.
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The same experimental statement is used to test the accuracy of the estimate (34) and (35)
from Theorem 2. The results obtained for j = 12, 10, 8, 6, 4, 2 are listed in Table 4 for α = 0 and in
Table 5 for α = 5. Comparing the results for the bound (34) and (35) to these for the bound (8)–(13)
given in Tables 2 and 3, it is seen that the two bounds are of the same size of the domain of validity.
The bound (8)–(13) from Theorem 1 is superior to the bound (34) and (35) from Theorem 2 with
respect of closeness to the estimated quantity. However, the bound (34) and (35) from Theorem 2
has the advantage that it is not related with the solution of the NDRE and hence with problems of
divergence of the numerical procedure.

Table 4. Relative perturbation ρ1(t) =
‖ΔX(t)‖
‖X(t)‖ and bound ρ2(t) =

f (t)
‖X(t)‖ .

α = 0

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

j = 12

ρ1(t) 2.17× 10−13 2.11× 10−13 2.09× 10−13 2.11× 10−13 2.16× 10−13

ρ2(t) 1.01× 10−12 1.82× 10−12 3.23× 10−12 5.63× 10−12 9.80× 10−12

j = 10

ρ1(t) 2.17× 10−11 2.11× 10−11 2.10× 10−11 2.12× 10−11 2.17× 10−11

ρ2(t) 1.01× 10−10 1.82× 10−10 3.22× 10−10 5.63× 10−10 9.80× 10−10

j = 8

ρ1(t) 2.17× 10−09 2.11× 10−09 2.11× 10−09 2.12× 10−09 2.16× 10−09

ρ2(t) 1.01× 10−08 1.82× 10−08 3.22× 10−08 5.63× 10−08 9.80× 10−08

j = 6

ρ1(t) 2.17× 10−07 2.11× 10−07 2.11× 10−07 2.12× 10−07 2.16× 10−07

ρ2(t) 1.01× 10−06 1.82× 10−06 3.22× 10−06 5.63× 10−06 9.80× 10−06

j = 4

ρ1(t) 2.17−05 2.52× 10−05 2.42× 10−05 2.36× 10−05 2.31× 10−05

ρ2(t) 1.01× 10−04 1.82× 10−04 3.22× 10−04 5.64× 10−04 9.80× 10−04

j = 2

ρ1(t) 2.68× 10−03 2.52× 10−03 2.43× 10−03 2.36× 10−03 2.32× 10−03

ρ2(t) 1.01× 10−02 1.83× 10−02 3.26× 10−02 5.75× 10−02 1.02× 10−01

Example 1: Experiment 1, bound f (t)= fm(t, δm) from (34) and (35),Theorem 2, α = 0, j = 12, 10, 8, 6, 4, 2, t = 0.2
to 1.

Table 5. Relative perturbation ρ1(t) =
‖ΔX(t)‖
‖X(t)‖ and bound ρ2(t) =

f (t)
‖X(t)‖ .

α = 5

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

j = 12

ρ1(t) 2.68× 10−13 2.53× 10−13 2.43× 10−13 2.36× 10−13 2.31× 10−13

ρ2(t) 1.21× 10−12 2.07× 10−12 3.49× 10−12 5.84× 10−12 9.76× 10−12

j = 10

ρ1(t) 2.68× 10−11 2.52× 10−11 2.42× 10−11 2.36× 10−11 2.31× 10−11

ρ2(t) 1.21× 10−10 2.07× 10−10 3.49× 10−10 5.85× 10−10 9.74× 10−10

j = 8

ρ1(t) 2.68× 10−09 2.52× 10−09 2.42× 10−09 2.36× 10−09 2.31× 10−09

ρ2(t) 1.21× 10−08 2.07× 10−08 3.49× 10−08 5.85× 10−08 9.74× 10−08

j = 6

ρ1(t) 2.68× 10−07 2.52× 10−07 2.43× 10−07 2.36× 10−07 2.31× 10−07

ρ2(t) 1.21× 10−06 2.07× 10−06 3.49× 10−06 5.85× 10−06 9.74× 10−06

j = 4

ρ1(t) 2.68−05 2.52× 10−05 2.42× 10−05 2.36× 10−05 2.31× 10−05

ρ2(t) 1.21× 10−04 2.07× 10−04 3.49× 10−04 5.85× 10−04 9.75× 10−04

j = 2

ρ1(t) 2.68× 10−03 2.52× 10−03 2.43× 10−03 2.36× 10−03 2.32× 10−03

ρ2(t) 1.21× 10−02 2.08× 10−02 3.53× 10−02 5.96× 10−02 1.01× 10−01

Example 1: Experiment 1, bound f (t)= fm(t, δm), (34) and (35), Theorem 2, α = 5, j = 12, 10, 8, 6, 4, 2, t = 0.2 to 1.
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Experiment 2. The size n of the matrices A, D, S, Q ∈ Rn×n varies from 5 to 50. The pertur-
bations are randomly generated following the scheme ΔZ = (rand(size(Z))/‖Z‖) ∗ 10−j for
Z = A, D, S, Q and j = 12. The average values over 30 trials for the relative perturbation

ρ1(t) =
‖ΔX(t)‖
‖X(t)‖ and the bound ρ2(t) =

f (t)
‖X(t)‖ , f (t) = f (δ, t) from (8)–(13), for t = 0.2, 0.4,

0.6 and 0.8 are displayed in Figure 1 for α = 0.
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Figure 1. Example 2, experiment 2, bound f (t)= f (δ, t), (8)–(13) from Theorem 1, α = 0, j = 12,
t = 0.2 to 0.8 and n from 5 to 50.

It appears in Figure 1 that for α = 0 and j from 10 to 4, the bound ρ2(t) remains of the order
of the estimated value ρ1(t).

The average values over 30 trials for the relative perturbation ρ1(t) =
‖ΔX(t)‖
‖X(t‖ and the

bound ρ2(t) =
f (t)
‖X(t)‖ , f (t) = f (δ, t) from (8)–(13) for t = 0.2, 0.4, 0.6 and 0.8 are displayed in

Figure 2 for α = 5.
The results for the perturbation bound f (δ, t), (8)–(13) from Theorem 1, visualized on

Figures 1 and 2 demonstrate that the perturbation bound f (δ, t), (8)–(13) is an effective up-
per perturbation bound of X(t) in a large range of the size n of the NDRE (1) (n varies from 5 to
50). With the increasing of the dimension n of Equation (1), the accuracy of the estimate improves.
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Figure 2. Example 2, experiment 2, bound f (t)= f (δ, t), (8)–(13) from Theorem 1, α = 5, j = 12,
t = 0.2 to 0.8, n from 5 to 50.

Example 2. This example tests the effectiveness of the bound (9)–(13) in the case of large-scale
NDRE. We consider a NDRE of order n = 4000, arising in neutron transport theory

Ẋ(t) = −(Δ− eq )X(t)− X(t)(Γ− qe ) + X(t)qq X(t) + ee ,

on time interval T =
[

0, 2
]
, with matrices

Δ = diag(δ1, . . . , δn), δi =
1

cωi(1 + α)
, i = 1, . . . , n

Γ = diag(γ1, . . . , γn), γi =
1

cωi(1− α)
, i = 1, . . . , n,

c = 0.5, α = 0.5

e = (1, . . . , 1) , q = (q1, . . . , qn)
 , with qi =

ci
2ωi

, i = 1, . . . , n,

where the sequences (ci) and (ωi), i = 1, . . . , n are the nodes and weights of the Gaussian-Legendre
quadrature on

[
0, 1

]
, respectively:

ci > 0,
n

∑
i

ci = 1, and 0 < ω1 < · · · < ωn, i = 1, . . . , n.

The perturbation is chosen as:

δq = (rand(size(q))/‖q‖) ∗ 10−j for j = 12.
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The results, obtained for the relative perturbation ρ1(t) = ‖ΔX(t)‖
‖X(t)‖ and the nonlocal bound

ρ2(t) =
f (t)
‖X(t)‖ , f (t) = f (δ, t), (8)–(13) for t = 0.4, 0.8, 1.2, 1.6 and 2 are shown in Table 6.

Table 6. Relative perturbations ρ1 =
‖ΔX(t)‖
‖X(t)‖ and ρ2 =

f (t)
‖X(t)‖ .

t = 0.4 t = 0.8 t = 1.2 t = 1.6 t = 2

j = 10

ρ1(t) 3.25× 10−10 4.09× 10−10 4.26× 10−10 4.29× 10−10 4.29× 10−10

ρ2(t) 3.80× 10−09 4.09× 10−09 4.12× 10−09 4.13× 10−09 4.13× 10−09

Example 3. Results for size n = 4000, j = 12.

As is seen, over all the interval of integration T ∈
[

0, 2
]
, the perturbation bound f (δ, t)

from (8)–(13) is valid, i.e., the condition (8) for existence of the bound f (δ, t) is not deteriorated.
The bound f (δ, t) is a quite sharp upper bound—remains in the order of the estimated value. The
perturbation bound f (δ, t) formulated in Theorem 1 is effective and could be used to estimate the
sensitivity even of a large-scale NDRE.

5. Conclusions

In this paper, a nonlocal sensitivity analysis of the nonsymmetric differential matrix
Riccati equation is presented. Two computable perturbation bounds are derived using
the techniques of Fréchet derivatives, Lyapunov majorants and fixed-point principles,
developed in [14]. The first bound is based on the integral form of the solution. The
second one exploits the statement of the classical Radon’s theory of local equivalence of
the solution to the differential matrix Riccati equation to the solution of the initial value
problem of the associated differential system. It has the advantage of not being related
with the solution of the NDRE and hence with problems of divergence of the numerical
procedure. Numerical examples show that the estimates proposed are fairly sharp for both
low-dimensional and large-scale NDRE. The perturbation bound is a crucial issue of the
process of numerical solution of an equation as well as a tool to evaluate the stability of
the computation process. The tight perturbation bounds, proposed in the paper, allow
estimation of the accuracy of the solution to a numerically solved nonsymmetric differential
matrix Riccati equation.
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Abstract: An inverse scattering problem of time-harmonic chiral electromagnetic waves for a buried
partially coated object was studied. The buried object was embedded in a piecewise isotropic
homogeneous background chiral material. On the boundary of the scattering object, the total
electromagnetic field satisfied perfect conductor and impedance boundary conditions. A modified
linear sampling method, which originated from the chiral reciprocity gap functional, was employed
for reconstruction of the shape of the buried object without requiring any a priori knowledge of the
material properties of the scattering object. Furthermore, a characterization of the impedance of the
object’s surface was determined.
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1. Introduction

In this work, the inverse electromagnetic scattering problem of determining the surface
impedance and the shape of a buried partially coated scattering object in chiral media is
studied. In order to do this, we need information of the value of the electric and magnetic
fields on the surface of the earth.

A chiral material is one that displays optical activity such that, when the plane of vibra-
tion of a linearly polarized light passes through an opticaly active medium is rotated. Over
the last few years, chiral materials have been studied more intensely and there are more
studies on the subject, covering both their applications and their theoretical background.
Furthermore, various papers have been written on direct and inverse electromagnetic scat-
tering problems for chiral media. Indicatively, we refer to Reference [1–4]. These materials
are characterized by a set of two constitutive equations, in which electric and magnetic
fields are connected via a physical variable or constant, known as chirality.

In this work, Drude-Born-Fedorov constitutive equations are used, as they are symmet-
ric under time reversality and duality transformation [5]. In homogeneous and isotropic
chiral media, the electric and magnetic fields are a combination of Left Circularly Polarized
and Right Circularly Polarized components that have different phase speeds. So, in the
applications, we can use the Bohren decomposition [6] of electric and magnetic fields into
suitable Left and Right Circularly Beltrami fields. Such fields have been employed in
Reference [2] for the definition of the chiral Herglotz wave functions and in Reference [6]
for formulation of the electric dipole, which both play an important role in the present
work. In Reference [7], the measure of chirality for a certain class of chiral scatterers has
been calculated, while, in Reference [8], properties of chiral metamaterials are described.
In addition, we note that Ammari and Nédélec in Reference [1] have proved that the well-
known Silver-Müller radiation condition remains valid in chiral media. In Reference [4,9],
the direct and the inverse electromagnetic scattering problems by a mixed impedance
screen in a chiral environment are investigated, respectively. Beltrami fields have been
used for the uniqueness and a variational method for the existence of the direct problem.
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In the inverse problem, a modified linear sampling method, originated from a factorization
of the chiral far field operator, has been employed.

In this work, the inverse scattering problem of specifying the shape and the sur-
face impedance of a buried coated scattering object in a chiral environment is studied.
A qualitative method [10], which is based on the chiral reciprocity gap operator, is used
in Reference [11]. In fact, this procedure is a modified type of the linear sampling method
(LSM). The classical LSM, which was first established by Colton and Kirsch [12], is simple,
relatively quick and does not need any a priori information of the material parameters
of the scattering object. However, in the electromagnetic imaging of a buried object via
LSM, the computation of the Green’s function of the background material is necessary.
Sometimes, this computation is practically impossible. The reciprocity gap functional
method helps us to overcome this difficulty. The combination of the LSM and the reci-
procity gap functional method was established by Colton and Haddar in Reference [13] for
acoustic waves and by Cakoni, Fares, and Haddar in Reference [14] for electromagnetic
waves. In Reference [15], a reciprocity gap functional for elastic waves has been used for
solving an inverse mixed impedance scattering problem. In Reference [11], a reciprocity
gap functional for chiral media has been defined, in order for an inverse scattering problem
for a perfect conductor to be solved.

The present paper extends this method to study inverse scattering problems for buried
partially coated objects in a chiral environment. In Reference [16], the shape and the surface
impedance of a buried coated scattering object have been determined. In Reference [17], the
same method has been applied to solve an electromagnetic inverse scattering problem for a
partially coated anisotropic dielectric, which is in the inner of the earth. Using this method
in Reference [18], an inverse electromagnetic scattering problem for a perfectly conducting
cavity, using measurements from the interior, has been solved. In Reference [19], an interior
inverse acoustic scattering problem for a cavity with an inhomogeneous medium inside has
been studied. The same method has been employed in Reference [20] in order for a sound
field to be reconstructed in a spherical harmonic domain. In Reference [21], the reciprocity
gap functional method is applied to calculate the boundary and the permittivity of the
scattering object in radar imaging. Recently, the reciprocity gap functional method has been
employed in order to study an inverse scattering problem in electrical tomography [22], in
seismology [23] and in source identification [24]. For more details on the linear sampling
and reciprocity gap functional method, we refer to Reference [12], while, for general aspect
in scattering theory, we refer to Reference [25,26].

In Section 2 of this paper, the electromagnetic waves in chiral media are described
and the chiral mixed impedance scattering problem is formulated. In Section 3, the chiral
reciprocity gap operator is defined, proved that it is injective and it has a dense range.
In Section 4, the main result of the paper is proved. In Section 5, the surface impedance is
determined. Finally, a conclusion is given in Section 6.

2. Electromagnetic Waves in Chiral Media

We consider the scattering of a time-harmonic electromagnetic wave by an object em-
bedded in a chiral medium. The Drude-Born-Fedorov constitutive relations [6] are employed:

D = ε(E + β∇× E) , B = μ(H+ β∇×H) ,

where E , H are the electric and magnetic fields, D the electric displacement, B the mag-
netic induction, β is the chirality measure, ε the electric permittivity, and μ the magnetic
permeability. Then, applying the source-free Maxwell curl postulates:

∇× E − iωB = 0 , ∇×H+ iωD = 0 ,

where ω is the angular frequency, we get the following relations:
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∇× E = βγ2E + iωμ
(γ

k

)2
H , (1)

∇×H = βγ2H− iωε
(γ

k

)2
E , (2)

where k2 = ω2εμ and γ2 = k2(1− β2k2)−1. We point out that k is not a wave number and
does not have any particular physical significance. We assume that the physical parameters
β, ε, μ are positive constants and kβ < 1, (Reference [6] (p. 87)). The fields E andH satisfy:

∇ · E = ∇ · H = 0 .

We eliminate the magnetic fieldH in Equations (1) and (2) and obtain

∇×∇× E − 2βγ2∇× E − γ2E = 0 . (3)

In isotropic homogeneous chiral media, the electric and magnetic fields are composed
of Left Circularly Polarized (LCP) and Right Circularly Polarized (RCP) waves with differ-
ent phase speeds. So, for E andH, we make use of the Bohren decomposition into Beltrami
fields QL and QR [5], and we get

E = QL + QR , H = −i
√

ε

μ
(QL −QR)

and hence

QL =
1
2
(E + i

√
μ

ε
H) , QR =

1
2
(E − i

√
μ

ε
H) .

The Beltrami fields satisfy the differential equations:

∇×QL = γLQL , ∇×QR = −γRQR ,

which show that the homogeneous isotropic chiral media are circularly birefringent.
The wave numbers γL and γR for the LCP and RCP Beltrami fields, respectively, are
given by:

γL = k(1− kβ)−1 , γR = k(1 + kβ)−1

and satisfy:

γL + γR =
2γ2

k
, γL − γR = 2βγ2 , γLγR = γ2 .

For further information on the physical background for chiral media, we refer to Refer-
ence [5,6,27].

We assume that a scatterer D with C2-boundary, Γ = ∂D is embedded in a piecewise
isotropic homogeneous chiral material with R3\D to be connected. It is assumed that Γ
is divided into two open sets ΓD and ΓI , such that ΓD ∩ ΓI = ∅ and ΓD ∪ ΓI = Γ. On ΓD
(Dirichlet part), a perfectly conducting boundary condition is satisfied and ΓI (impedance
part) is covered from a very thin dielectric layer. We consider Ω to be a bounded domain,
which contains D, with C2- boundary ∂Ω. Let βb, εb and μb be the chirality, the electric
permittivity, and the magnetic permeability, respectively, that characterize the medium
Ω\D, which will be referred to as the background medium. In addition, let β0, ε0 and μ0
be the corresponding parameters in the exterior R3\Ω of Ω. We suppose that the physical
parameters are positive constants. Finally, ν denotes the outward normal unit vector on the
corresponding surface.
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The incident field is a chiral electric dipole with polarization p ∈ R3 located at x0 in a
chiral environment. We assume that x0 lies on an auxiliary close surface Λ contained in
R3\Ω. The electric incident field in a chiral medium is given by the formula [5,6]:

Ex0(x, p, γ0) =
k0

2γ2
0

p ·
{(

γ0L Ĩ +
1

γ0L
∇∇+∇× Ĩ

)
eiγ0L |x−x0|

4π|x− x0|

+

(
γ0R Ĩ +

1
γ0R

∇∇−∇× Ĩ
)

eiγ0R |x−x0|

4π|x− x0|

}
,

where Ĩ is the identity dyadic in R3, and γ0L, γ0R are the wave numbers for the LCP and
RCP Beltrami fields, respectively, in R3\Ω with

γ0L = k0(1− k0β0)
−1 , γ0R = k0(1 + k0β0)

−1 ,

where γ2
0 = γ0Lγ0R, k2

0 ≡ k2 = ω2ε0μ0.
The incident on the scatterer D electric wave Ei has the form:

Ei(x) ≡ Ei
x0
(x, p) = Ex0(x, p, γ0) + Es,b

x0
(x, p) , (4)

where Es,b
x0 (x, p) is the scattered field due to the background material. In addition, the wave

Ei in Ω\D is given by:
Ei(x) ≡ Ei

x0
(x, p) = p · B̃(x, x0) , (5)

where B̃(x, x0) is the dyadic Green’s function of the chiral background material.
If η(x) = ηb = (εbμb)(ε0μ0)

−1 for x ∈ Ω\D, η(x) = 1 for x ∈ R3\Ω, β(x) = βb for
x ∈ Ω\D and β(x) = β0 for x ∈ R3\Ω, then B̃(x, x0) satisfies the equation:(

k−2 − η(x)β2(x)
)
∇×∇× B̃(x, x0)− 2β(x)η(x)∇× B̃(x, x0)− η(x)B̃(x, x0) = Ĩδ(x− x0) ,

with respect to x. Let Ei be the incident on D electric field and Es ≡ Es,D
x0 (·, p) be the

corresponding scattered field. Then, the total electric field E is given by E = Ei + Es and is
the solution of the mixed impedance scattering problem:(

k−2 − η(x)β2(x)
)
∇×∇× E− 2β(x)η(x)∇× E− η(x)E = 0 in R3 \ (D ∪ {x0}) , (6)

ν× E = 0 on ΓD , (7)

ν×∇× E− i
γ2

bλ

kb
(ν× E)× ν− βbγ2

bν× E = 0 on ΓI , (8)

x̂×∇× Es − β0γ2
0 x̂× Es + i

γ2
0

k0
Es = o

(
1
|x|

)
, |x| → ∞ (9)

uniformly in all directions x̂ =
x
|x| ∈ S2 ,

where S2 is the unit sphere in R3, kb = ω
√

εbμb , γ2
b = γbL γbR , with γbL = kb(1− kbγb)

−1

and γbR = kb(1 + kbγb)
−1.

The direct scattering problem can be studied as in Reference [9]. The uniqueness of
solution has been proved via the Beltrami fields, while, for the existence of solution, the
variational method has been employed, using a Calderon type operator [28] for chiral
media. The corresponding inverse scattering problem is the determination of the unknown
boundary of D and the evaluation of surface impedance λ from the information of the
tangential components ν × E and ν × H on the boundary ∂Ω for all points x0 ∈ Λ. In
chiral media, a Stratton-Chu type exterior integral representation for a radiating solution
of Equation (3) is the following:
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Es(r) = −2βγ2
∫

S
B̃(r, r′) ·

[
ν× Es(r′)

]
ds(r′)

+
∫

S

{
B̃(r, r′) ·

[
ν×∇× Es(r′)

]
+
[
∇r × B̃(r, r′)

]
·
[
ν× Es(r′)

]}
ds(r′) . (10)

We define the function spaces:

H(curl, D) =
{

u ∈
(

L2(D)
)3 : ∇× u ∈

(
L2(D)

)3
}

,

H0(curl, BR) =
{

u ∈ H(curl, BR) : ν× u |∂BR= 0
}

,

where BR is a ball of radius R containing D, as well as

H(Ω) =
{

u ∈ H(curl, Ω) : ∇×∇× u− 2βbγ2
b∇× u− γ2

bu = 0
}

,

L2
t (∂D) =

{
u ∈

(
L2(∂D)

)3 : ν · u = 0 on ∂D
}

,

L2
t (ΓI) =

{
u |ΓI : u ∈ L2

t (∂D)
}

,

X(D, ΓI) =
{

u ∈ H(curl, D) : ν× u |ΓI ∈ L2
t (ΓI)

}
.

The space X(D, ΓI) is equipped with the norm

||u||2X(D,ΓI)
= ||u||2H(curl,D) + ||ν× u||2L2

t (ΓI)
.

For the trace ν× u of u ∈ H(curl, D), we have

H−
1
2

div (∂D) =

{
u ∈

(
H−

1
2 (∂D)

)3
: ν · u = 0 , div∂Du ∈ H−

1
2 (∂D)

}
,

and for (ν× u)× ν of u ∈ H(curl, D)

H−
1
2

curl(∂D) =

{
u ∈

(
H−

1
2 (∂D)

)3
: ν · u = 0 , curl∂Du ∈ H−

1
2 (∂D)

}
.

The trace space of X(D, ΓI) on ΓD is defined by:

Y(ΓD) =

{
h ∈

(
H−

1
2 (ΓD)

)3
: ∃u ∈ H0(curl, BR), ν× u |ΓI∈ L2

t (ΓI), h = ν× u |ΓD

}
.

Finally, for the exterior domain R3\D, we define the spaces Hloc(curl,R3\D) and
Hloc(R

3\D, ΓI) considering the domain (R3\D)
⋂

BR.
The exterior mixed impedance boundary value problem in chiral media is the follow-

ing problem: Let f ∈ Y(ΓD) and h ∈ L2
t (ΓI), find E ∈ X(D, ΓI) such that:(

k−2 − η(x)β2(x)
)
∇×∇× E− 2β(x)η(x)∇× E− η(x)E = 0 in R3 \ D , (11)

ν× E = f on ΓD , (12)

ν×∇× E− i
γ2

bλ

kb
(ν× E)× ν− βbγ2

bν× E = h on ΓI , (13)

x̂×∇× E− β0γ2
0 x̂× E + i

γ2
0

k0
E = o

(
1
|x|

)
, |x| → ∞ (14)

uniformly in all directions x̂ =
x
|x| ∈ S2 ,

If f = −ν × Ei and h = −ν × ∇ × Ei + i
γ2

bλ

kb
(ν × Ei) × ν + βbγ2

bν × Ei, then the

problem (11)–(14) is the mixed impedance scattering problem (6)–(9).
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Let z ∈ D and Ez ∈ H(curl, D). We consider the following chiral interior mixed
impedance boundary value problem corresponding to (6)–(9); given f ∈ Y(ΓD) and
h ∈ L2

t (ΓI), we find Ez ∈ X(D, ΓI) such that:

∇×∇× Ez − 2βbγ2
b∇× Ez − γ2

b Ez = 0 in D , (15)

ν× Ez = f on ΓD , (16)

ν×∇× Ez − i
γ2

bλ

kb
(ν× Ez)× ν + βbγ2

bν× Ez = h on ΓI . (17)

The values of parameter k for which the corresponding homogeneous interior mixed
impedance scattering problem admits a nontrivial solution will be referred to as chi-
ral Maxwell eigenvalues for D. This problem in the achiral case has been solved in
Reference [29]. A similar scattering problem for a mixed impedance screen has been stud-
ied in Reference [9]. In particular, a Calderon type operator for chiral media and a vari-
ational method have been employed to prove uniqueness and existence of solution. The
present scattering problem is to find the shape of D and the surface impedance λ from the
knowledge of electric and magnetic fields on ∂Ω. In what follows, a brief description of the
solvability of the interior mixed impedance problem (15)–(17) is given.

For the uniqueness of (15)–(17), we consider the corresponding homogeneous problem
( f = h = 0), and we multiply (15) with E (complex conjugate of E) and integrate over D.
Taking into account the boundary conditions we get

∫
D

[
|∇ × E|2 − γ2

b |E|
2 − 2βbγ2

b Re(E · ∇ × E)
]
dv + i

γ2
bλ

kb

∫
ΓI

|ET |2ds = 0, (18)

where ET = (ν× E)× ν is the tangential component of E. From (18), taking the imaginary
part and using the unique continuation principle as in Reference [12,29], we conclude that
E = 0 in D. For the existence, we consider the variational formulation for the problem
(15)–(17). For all test functions φ ∈ X̃ with

X̃ =
{

u ∈ H(curl, D) : ν× u|ΓD = 0, ν× u|ΓI ∈ L2
t (ΓI)

}
,

we have∫
D

[
∇× E · ∇ × φ− γ2E · φ− 2βγ2Re

(
φ · ∇ × E

)]
dv +

iγ2λ

k

∫
ΓI

ET · φT ds

= −
∫

ΓI

h · φT ds . (19)

We look for solution E of the form E = W +U, where U ∈ X(D, ΓI) with ν×U|ΓD = f ,
which there exists from the definition of Y(ΓD). Substituting in (19), we take:

a(W, φ) = 〈h, φ〉 − a(U, φ), (20)

where

a(u, ψ) = (∇× u,∇× ψ)− γ2(u, φ)− 2βγ2Re(∇× u, φ) +
iγ2λ

k
〈uT , ψT〉 . (21)

In (21), (·, ·) denotes the L2(D) scalar product and 〈·, ·〉 the L2
t (ΓI) product. Equation (20)

has been studied in Reference [28,29] for the achiral case. With a similar process for the chiral
case, the following theorem is proved.

Theorem 1. If ΓI �= ∅ then the chiral interior partially coated problem (15)–(17) has a unique solution.
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3. The Chiral Reciprocity Gap Operator

The reciprocity gap operator for electromagnetic scattering in chiral media has been
defined in Reference [11], in order to study an inverse scattering problem for a perfectly
conducting obstacle.

Let E = Ex0(·, p) be the solution of the scattering problem (6)–(9). The chiral reciprocity
gap functional is defined by

R(E, W) =
∫

∂Ω
[(ν× E) · ∇ ×W − (ν×W) · ∇ × E]ds− 2βbγ2

b

∫
∂Ω

[(ν× E) ·W]ds , (22)

where W ∈ H(curl, Ω) and the integrals are interpreted in the sense of the duality between

H−
1
2

div (∂D), H−
1
2

curl(∂D). In particular, if W ∈ H(Ω) ⊂ H(curl, Ω), then the chiral reciprocity
gap functional can be seen as an integral operator R : H(Ω)→ L2

t (Λ), given by:

R(W)(x0) = R(Ex0(·, p(x0)), W)p(x0) , x0 ∈ Λ . (23)

The reciprocity gap functional method is based on the solvability of an integral
equation for R, which contains an appropriate family of solutions in H(Ω). Usually,
we use a set of either single layer potentials or Hergotz wave functions. Here, for the
determination of the boundary of D, chiral Herglotz wave functions will be employed,
because these functions satisfy density properties which will be used later. In Reference [2],
the electric Eg and magneticHg chiral Herglotz wave functions have been defined and are
given by

Eg = EgL + EgR , Hg = −i
√

ε

μ

(
EgL − EgR

)
,

where

EgL(x) =
∫

S2
gL(d̂L)eiγLd̂L ·x ds(d̂L) , (24)

EgR(x) =
∫

S2
gR(d̂R)eiγRd̂R ·x ds(d̂R) , (25)

are the LCP and the RCP Beltrami Herglotz fields, with kernels gL and gR, respectively,
and d̂L, d̂R ∈ S2. In particular, for the kernels, we have gA : S2 → T2

A(S
2), A = L, R, where

T2
L(S

2) =
{

bL ∈
(

L2(S2)
)3 : ν · bL = 0 , ν× bL = −ibL

}
,

T2
R(S

2) =
{

bR ∈
(

L2(S2)
)3 : ν · bR = 0 , ν× bR = ibR

}
.

In addition, we define the following space:

T2
LR(S

2) =
{

b = bL + bR : bL ∈ T2
L(S

2) , bR ∈ T2
R(S

2)
}

,

with the inner product:

< b, h >T2
LR(S

2)= (bL, hL)T2
L(S

2) + (bR, hR)T2
R(S

2) ,

where bA, hA, A = L, R, are the Beltrami fields of b and h, respectively, and
(bA, hA)T2

A(S
2) =

∫
S2 bA · hAds [2]. Let

Ez(x, q, γb) =
kb

2γ2
b

q ·
{(

γbL Ĩ +
1

γbL
∇∇+∇× Ĩ

)
eiγbL |x−z|

4π|x− z|

+

(
γbR Ĩ +

1
γbR

∇∇−∇× Ĩ
)

eiγbR |x−z|

4π|x− z|

}
,
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be the electric dipole with polarization q ∈ R3 located at z in a chiral medium. We study
the solvability of the integral equation:

R(E, Eg) = R(E, Ez(·, q, γb)) , (26)

with respect to g in T2
LR(S

2).
We will prove that the operator R, under appropriate conditions, is injective and has

dense range.

Lemma 1. If ΓI is not empty then the operator R : H(Ω)→ L2
t (Λ), defined by (23) is injective.

Proof. We assume that RW = 0. Then, R(Ex0(·, p), W) = 0 for all x0 ∈ Λ and p ∈ R3.
On (22), we apply the second vector Green’s theorem for the first integral, Gauss’ theorem
for the second integral for E, W in Ω\D, which are both solutions of (15), we use the
boundary conditions on ∂D to take

0 =
∫

∂D
[(ν× E) · ∇ ×W − (ν×W) · ∇ × E]ds− 2βbγ2

b

∫
∂D

(ν× E) ·Wds

= −
∫

ΓD

(ν×W) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇×W − i
γ2

bλ

kb
(ν×W)× ν− βbγ2

b(ν×W)

]
ds . (27)

Let Ĕ be the unique solution of the boundary value problem:(
k−2 − β(x)2η(x)

)
∇×∇× Ĕ− 2β(x)η(x)∇× Ĕ− η(x)Ĕ = 0 in R3 \ D , (28)

ν×
(
Ĕ−W

)
= 0 on ΓD , (29)

ν×∇×
(
Ĕ−W

)
= i

γ2
bλ

kb

[
ν×

(
Ĕ−W

)]
× ν + βbγ2

bν×
(
Ĕ−W

)
on ΓI , (30)

x
|x| × ∇× Ĕ− β0γ2

0
x
|x| × Ĕ +

iγ2
0

k0
Ĕ = o

(
1
|x|

)
, |x| → ∞ , (31)

uniformly in all directions of
x
|x| ∈ S2 .

Substituting ν×W and ν×∇×W, from (29) and (30) into (27), we take

0 = −
∫

ΓD

(ν× Ĕ) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇× Ĕ− i
γ2

bλ

kb
(ν× Ĕ)× ν− βbγ2

b(ν× Ĕ)

]
ds . (32)

The total electric field E is given by:

E = p · B̃(·, x0) + Es .

Hence, using (32) and the boundary conditions (7) and (8), we get

0 =
∫

∂D

[(
ν×

(
p · B̃(·, x0) + Es

))
· ∇ × Ĕ−

(
ν× Ĕ

)
· ∇ ×

(
p · B̃(·, x0) + Es

)]
ds

− 2βbγ2
b

∫
∂D

[(
ν×

(
p · B̃(·, x0) + Es

))
· Ĕ
]
ds
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and taking into account that the fields Ĕ and Es are both radiating solutions of (28), we have:

−p ·
{∫

∂D

[
B̃(·, x0) · (ν×∇× Ĕ) + (∇× B̃(·, x0)) · (ν× Ĕ)

]
ds

−2βbγ2
b

∫
∂D

B̃(·, x0) · (ν× Ĕ)ds
}

= 0 .

From the Stratton-Chu type formula (10) for chiral media, we take

p · Ĕ(x0) = 0 ,

for arbitrary polarization p, and therefore ν× Ĕ(x0) = 0 for x0 ∈ Λ. Then, by the unique-
ness of the electromagnetic scattering in a chiral environment for a perfect conductor [1,3],
we conclude that Ĕ = 0 outside the surface Λ. Applying unique continuation, we have
Ĕ = 0 in the domain between the boundary ∂D and the surface Λ. Therefore,

ν×W = 0 on ΓD ,

ν×∇×W − i
γ2

bλ

kb
(ν×W)× ν− βbγ2

bν×W = 0 on ΓI

and using the uniqueness of the interior partially coated chiral electromagnetic problem
for W, implying W = 0.

Lemma 2. If ΓI is not empty then the operator R : H(Ω) → L2
t (Λ) defined by (23) has

dense range.

Proof. Let q ∈ L2
t (Λ), such that (RW, q)L2

t (Λ) = 0 for all W ∈ H(Ω). We will prove that
q = 0. In view of the bilinearity of functionalR and the definition of operator R, we get

(RW, q)L2
t (Λ) =

∫
Λ
R(Ex0(·, α(x0)), W)ds ,

where α = (p · q)p. If we define

E(x) =
∫

Λ
Ex0(x, α(x0))ds(x0) ,

then, from (22) and the assumption for q, we have that

R(E , W) = 0 .

Using Green’s and Gauss’ theorems for W, E in Ω\D as in Lemma 1 and taking into
account the boundary conditions on ∂D, we conclude that

R(E , W) = −
∫

ΓD
(ν×W) · ∇ × Eds

−
∫

ΓI

E ·
[

ν×∇×W − i
γ2

bλ

kb
(ν×W)× ν− βbγ2

b(ν×W)

]
ds = 0 ,

for all W ∈ H(Ω). The density of the chiral Herglotz wave functions has been used in order

to prove that the set {ν ×W|ΓD , ν × ∇ ×W − i
γ2

bλ

kb
(ν ×W) × ν − βbγ2

b(ν ×W) |ΓI} is

dense in Y(ΓD)× L2
t (ΓI). This follows from the fact that H(Ω) contains the chiral Herglotz

wave functions, given by (24) and (25) (see [2,29]), which satisfy the Equation (3) and
∇×∇× QA − γ2

AQA = 0, A = L, R. In addition, we have taken into account that the
interior mixed impedance boundary value problem (15)–(17) is well-posed. Therefore,
ν×∇× E = 0 and ν× E = 0 on ∂D. Hence, E has zero Cauchy data on ∂D and therefore
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E = 0 in the domain between Λ and ∂D. Finally, taking into account the jump relations [3]
of ∇× E across Λ, we arrive at α = 0 on Λ. Therefore, (p · q)p = 0 for all p ∈ L2

t (Λ),
hence q = 0.

4. The Reconstruction of the Shape

These properties of the chiral reciprocity gap operator are used for the determination
of the boundary of the scatterer D. The main result of this paper is the following theorem.

Theorem 2. Assume that ΓI is not empty.
(i) Let z ∈ D. Then, for a given ε > 0 there exists a gε

z ∈ T2
LR(S

2) such that

||R(E, Egε
z )−R(E, Ez(·, q, γb))||L2(Λ) < ε

and the chiral Herglotz wave function Egε
z converges to the solution of interior boundary value

problem in X(D, ΓI) as ε → 0.
(ii) For a fixed ε > 0, we get

lim
dist(z,∂D)→0

||Egε
z ||X(D,ΓI)

= ∞ , lim
dist(z,∂D)→0

||gε
z ||T2

LR(S
2) = ∞ .

(iii) For z ∈ R3\D and ε > 0, if gε
z ∈ T2

LR(S
2) satisfies

||R(E, Egε
z )−R(E, Ez(·, q, γb))||L2(Λ) < ε ,

then we have that
lim
ε→0

||Egε
z ||X(D,ΓI)

= ∞ , lim
ε→0

||gε
z ||T2

LR(S
2) = ∞ .

Proof. (i) Suppose z ∈ D. Taking into account that E is the total field and W and Ez(·, q, γb)
are solutions to Equation (11) in Ω\D and using the mixed boundary conditions on D,
we have that

R(E, W)−R(E, Ez(·, q, γb)) = −
∫

∂D
[ν×W − ν× Ez(·, q, γb)] · ∇ × E ds .

Taking into account that the set of chiral Herglotz functions is dense in H(Ω) with
respect to the H(curl, D) norm and using the trace theorem it follows that for every
ε > 0 there exists a chiral electric Herglotz function Egε

z such that: ν× Egε
z approximates

ν× Ez(·, q, γb) with respect to Y(ΓD) norm, and ν×∇×Egε
z − i γ2

b λ

kb
(ν×Egε

z )× ν− βbγ2
b(ν×

Egε
z ) approximates ν×∇× Ez(·, q, γb)− i γ2

b λ

kb
(ν× Ez(·, q, γb))× ν− βbγ2

b(ν× Ez(·, q, γb))

with respect to L2
t (ΓI) norm. In addition, gε

z solves by approximation the Equation (26) and
Egε

z converges to the solution of the mixed chiral interior boundary value problem (15)–(17).
(ii) Taking into account that Ez(·, q, γb) blows up as z approaches the boundary ∂D from
inside, with respect to the X(D, ΓI) norm, we conclude: limdist(z,∂D)→0 ||Egε

z ||X(D,ΓI)
= ∞

and limdist(z,∂D)→0 ||gε
z ||T2

LR(S
2) = ∞, with fixed ε > 0 .

(iii) Let z ∈ Ω\D. The total electric field E(x) ≡ Ex0(x, p), due to the incident point-source
Ei

x0
(x, p), is given by:

E(x) ≡ Ex0(x, p) = p · B̃(x, x0) + Es
x0
(x, p) , (33)

where Es
x0
(x, p) is the corresponding scattered field. From (33) and the definition (22)

we obtain
R(E, Ez(·, q, γb)) = I1 + I2 ,
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where

I1 =
∫

∂Ω

[(
ν×

(
p · B̃(x, x0)

))
· ∇ × Ez(x, q, γb)− (ν× Ez(x, q, γb)) · ∇ ×

(
p · B̃(x, x0)

)]
ds(x)

− 2βbγ2
b

∫
∂Ω

(
ν×

(
p · B̃(x, x0)

))
· Ez(x, q, γb) ds(x) ,

I2 =
∫

∂Ω

[(
ν× Es

x0
(x, p)

)
· ∇ × Ez(x, q, γb)− (ν× Ez(x, q, γb)) · ∇ × Es

x0
(x, p)

]
ds(x)

− 2βbγ2
b

∫
∂Ω

(
ν× Es

x0
(x, p)

)
· Ez(x, q, γb) ds(x) ,

For z ∈ Ω\D, the function Ez(x, q, γb) is the fundamental solution of

∇×∇× E− 2βbγ2
b∇× E− γ2

b E = 0 (34)

and p · B̃(x, x0), x ∈ Ω\D, is a a solution of (34). Hence, I1 is an integral representation
Stratton-Chu type in chiral media (10) for −p · B̃(z, x0), z ∈ Ω\D. By making use of the
reciprocity properties [6]

B̃(x, x0) =
[

B̃(x0, x)
] 

, ∇x × B̃(x, x0) =
[
∇x0 × B̃(x0, x)

] 
,

where  denotes transposition, we conclude that the background dyadic Green’s function
solves (34) with respect to x0. Hence, Es

x0
(x, p) satisfies the same equation with respect

to x0. Therefore, the integral I2 gives a solution W(x0) of (34). Let Egε
z be a chiral electric

Herglotz functions such that

||R(E, Egε
z )−R(E, Ez(·, q, γb))||L2(Λ) < ε .

From the definition (22) and the boundary conditions (7) and (8), we obtain

R(E, Egε
z ) = −

∫
ΓD

(ν× Egε
z ) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇× Egε
z − i

γ2
bλ

kb
(ν× Egε

z )× ν− βbγ2
b(ν× Egε

z )

]
ds .

Therefore

R(E, Egε
z )−R(E, Ez(·, q, γb)) = −

∫
ΓD

(ν× Egε
z ) · ∇ × E ds

−
∫

ΓI

E ·
[

ν×∇× Egε
z − i

γ2
bλ

kb
(ν× Egε

z )× ν− βbγ2
b(ν× Egε

z )

]
ds−W(x0) + p · B̃(x, x0) . (35)

We assume that ||Egε
z ||X(D,ΓI)

< c, with c constant, positive and independent of ε.
Applying the trace theorem, we take the trace of Egε

z also bounded, with respect to the
corresponding norms. Therefore, there exists a weakly convergent subfamily converging
to a function V ∈ X(D, ΓI) as ε → 0. For x0 ∈ Λ, we set:

U(x0) = −
∫

ΓD

(ν×V) · ∇ × Ex0(·, p) ds

−
∫

ΓI

E ·
[

ν×∇×V − i
γ2

bλ

kb
(ν×V)× ν− βγ2

b(ν×V)

]
ds . (36)

From (35) and (36), we obtain:

U(x0) = W(x0) + p · B̃(z, x0), x0 ∈ Λ . (37)
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Taking into account that the functions U(x0) and W(x0) are radiating solutions
of (34) and using the unique continuation principle, we conclude that (37) holds true
in R3\

(
D ∪ {z}

)
. If we now let x0 → z, then we arrive at a contradiction.

Remark 1. The determination of the boundary ∂D of the scatterer is based on the integral Equation (26),
which contains chiral Herglotz functions in H(Ω). In particular, if Egε

z is a solution of (26), then the
boundary ∂D of the scatterer is reconstructed from points z, with limε→0 ||gε

z ||T2
LR(S

2) = ∞. It is obvi-
ous that the boundary ∂D cannot be found from the limε→0 ||Egε

z ||X(D,ΓI)
= ∞ since the corresponding

norm is defined on the unknown scatterer D. Alternatively, one can use instead of the chiral Herglotz
functions appropriate potentials [3,10].

5. The Determination of the Surface Impedance

Finally, after determining D, we will establish an expression for the surface impedance
λ. In particular, we prove the following theorem.

Theorem 3. Let Ez be the solution of (15)–(17) for a fix point z ∈ D. Then, the surface impedance
λ is given by

λ =
kb

2γ2
b

Im(q · Ez(z)) + Iz(Ω, q, γb)∫
∂D |ν× (Ez − Ez(·, q, γb))|2ds

, (38)

where the integral

Iz(Ω, q, γb) = −i
∫

∂Ω

[
(ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)

]
ds

+ 2iβbγ2
b

∫
∂Ω

(ν× Ez(·, q, γb)) · Ez(·, q, γb) ds

is depended on z, Ω and q.

Proof. For a fix point z ∈ D, we consider the unique solution Ez of the interior mixed
boundary value problem (15)–(17). We define the function:

Uz(x) = Ez(x)− Ez(x, q, γb), x ∈ D

and we evaluate the integral:

I =
∫

∂D

[
(ν×Uz) · ∇ ×Uz − (ν×Uz) · ∇ ×Uz]ds− 2βbγ2

b

∫
∂D

(ν×Uz) ·Uzds .

Taking into account the boundary conditions

ν×Uz = 0 on ΓD ,

ν×∇×Uz = i
γ2

b
kb

λ(ν×Uz)× ν + βbγ2
bν×Uz on ΓI ,

we have that

I = 2i
γ2

bλ

kb

∫
ΓI

|ν×Uz|2ds .

Furthermore, in view of the bilinearity of the integral I, we have

I = I1 + I2 + I3 + I4 , (39)
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where

I1 =
∫

∂D

[
(ν× Ez) · ∇ × Ez − (ν× Ez) · ∇ × Ez]ds

− 2βbγ2
b

∫
∂D

(ν× Ez) · Ez ds

I2 = −
∫

∂D

[
(ν× Ez) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez

]
ds

+ 2βbγ2
b

∫
∂D

(ν× Ez) · Ez(·, q, γb) ds

I3 = −
∫

∂D

[
(ν× Ez(·, q, γb)) · ∇ × Ez − (ν× Ez) · ∇ × Ez(·, q, γb)

]
ds

+ 2βbγ2
b

∫
∂D

(ν× Ez(·, q, γb)) · Ez ds

I4 =
∫

∂D

[
(ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)

]
ds

− 2βbγ2
b

∫
∂D

(ν× Ez(·, q, γb)) · Ez(·, q, γb) ds

For the evaluation of I1, we apply the second vector Green’s theorem for the first
integral and Gauss’ theorem for the second integral for the functions Ez and Ez in D and
taking into account that Ez, Ez are solutions of (15) we get I1 = 0. A similar application in
Ω\D for Ez(·, q, γb) and Ez(·, q, γb) gives

I4 =
∫

∂Ω

[
(ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)− (ν× Ez(·, q, γb)) · ∇ × Ez(·, q, γb)

]
ds

− 2βbγ2
b

∫
∂Ω

(ν× Ez(·, q, γb)) · Ez(·, q, γb) ds .

Finally, using the representation (10) with Ez = q · B̃(·, z) we have that I2 = −q · Ez

and I3 = q · Ez. Substituting the values of the integrals I1 to I4 in (39), we obtain (38).

6. Conclusions

In this paper, the reciprocity gap functional method has been employed to reconstruct
scatterers with mixed boundary conditions, embedded in a piecewise chiral medium.
The importance of this method lies in the fact that we avoid the need to compute Green’s
function of the background medium. In the basic integral Equation (26) of the method,
we have used the chiral Herglotz wave functions, which form a dense set of solutions of (3).
The solution g of this equation has been employed to determine the surface impedance.
If the chirality measures β0 and β1 become zero, then the chirality reciprocity gap functional
coincides with the corresponding functional in achiral media. In the future, the present
method should be extended to solve inverse transmission problems in chiral media.
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