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This Special Issue on novel approaches for structural health monitoring aims at reporting the
latest and more interesting improvements in the field of vibration-based and machine learning-based
structural health monitoring. It collects 15 published papers, each of them making a relevant
contribution on a specific related fundamental aspect. All the involved authors are gratefully
acknowledged for their original contributions. Special thanks go to Dr. Marco Civera and Mr. Davide
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1. Introduction

Crucial mechanical systems and civil structures or infrastructures, such as bridges,
railways, buildings, wind turbines, aeroplanes and more are subjected during their lifetime
to natural deterioration of their structural integrity. This is due to several concomitant
factors (i.e., environmental conditions, operating loads, etc.). Worsening of this degradation
or accidental events lead to an impairment of the functionality and a severe decrease of
the safety level, while extremely critical interruptions of service and catastrophic collapses
with possible loss of life may occur. Moreover, taking into consideration also the economic
relevance of these systems, sustainable management requires the implementation of specific
maintenance strategies to reduce the related repair costs.

Due to all these reasons, the last decades have seen a growing interest in the field of
structural health monitoring (SHM), involving multidisciplinary academics and practi-
tioners aimed to develop effective technologies, procedures and algorithms for damage
diagnosis. Continuous scientific advancement and technological evolution provide the
means to face old and new challenges. These are overcome by designing new approaches,
defining new damage-sensitive features, and enhancing the already-existing devices for this
scope. However, although in recent years numerous interesting findings and applications
have been made, further efforts are still needed.

In this context, the “Special Issue on Novel Approaches for Structural Health Mon-
itoring” in Applied Sciences collects 15 published papers, each of them a relevant contri-
bution on a specific related fundamental aspect. These are briefly reviewed here for the
reader’s convenience.

2. The Extreme Function Theory for Damage Detection: An Application to Civil and
Aerospace Structures

The research reported in [1] describes an approach, based on the extreme function
theory (EFT), for mode shape-based damage detection. Applications to both aerospace
and civil structures are proposed as (numerical and experimental) case studies. The EFT
can be considered as the extension of the classic extreme value theory (EVT) to whole
functions—in this specific case, to mode shapes, extracted from the target system and
benchmarked against the ones identified from the pristine baseline. More into detail, the
continuous mode shapes are defined by means of Gaussian process regression (GPR),
applied over a limited set of data points. These correspond to the output channels dis-
tributed over the structure under investigation. To compensate for the shortage of training
data, a data augmentation strategy is included as well. This is intended to deal with the
practical issue of data scarcity, which often hampers the applicability of machine learning
approaches for SHM. The performances of the procedure are addressed in terms of true
positives, true negatives, and type I and II errors. The rationale is to investigate not only
the damage detection capabilities of the algorithm but also its robustness to false alarms.
The robustness to artificially added measurement noise is tested as well on several finite
element models—a simple beam with several boundary conditions, the spar of a prototype
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high aspect ratio wing, and a shear-type 3-stories frame structure. Finally, a direct com-
parison between EFT-based damage detection and the EVT-based alternative is reported,
considering in the latter case the same algorithm applied pointwise only at the output
channels. This last study shows a statistically significant reduction of false alarms.

3. Full-Field Strain Reconstruction Using Uniaxial Strain Measurements: Application
to Damage Detection

The accurate full-field reconstruction of the strain and displacement fields of a struc-
ture using a set of uniaxial strain measurements is the prime focus of the work presented
in [2]. The use of uniaxial strain measurements, as obtained from a fibre-optic sensor, for
two-dimensional displacement field reconstruction leads to difficulties due to insufficient
strain information at a point and can potentially lead to a breakdown of the reconstruction
procedure. This work proposes a solution to the problem based on the inverse finite ele-
ment method (iFEM), combined with a pre-processing step for strain smoothing using the
smoothing element analysis (SEA) approach. The iFEM is a variationally-based approach,
where the structural domain is discretized using finite elements, and the displacement field
is reconstructed by minimizing an error functional representing the least-squares error
between analytic and experimental strain measures. The effect of sensor position and orien-
tation on reconstruction results is investigated and used to identify effective strain-sensor
patterns ensuring reconstruction accuracy. The iFEM performance is evaluated numerically
using the problem of a thin plate, subject to several internal damage scenarios. Damage
detection capability depends on an accurate reconstruction of the local internal strain
perturbations, and the iFEM reconstructed strain fields successfully revealed the damage
locations as regions of strain concentration containing information regarding damage size,
position, and orientation. Additionally, a sensitivity analysis demonstrates the proposed
methodology’s robustness to measurement noise, although it hinted at difficulties in detect-
ing small-sized damages. The main achievement of the paper is in showing the potential of
strain measurements based on fibre optic sensors for practical SHM applications.

4. Rail Diagnostics Based on Ultrasonic Guided Waves: An Overview

The diagnostic of rail tracks damage conditions is the topic investigated in [3]. The
authors give an extensive overview from the general context to the latest innovations,
focusing on different non-destructive testing (NDT) methodologies. The authors describe
the implementation and analysis of the performance of inspection strategies based on
ultrasonic guided waves (UGW). Firstly, a detailed introduction about various types of
rail track defects and different rail diagnostic techniques developed in the last decades is
reported. Then, with a proper distinction between the main classes of diagnostic systems
(on-board, land-based) and types of approaches (active, passive), the specific architecture
and data processing approaches related to UGW methodologies are presented. Next,
comprehensive sections are explicitly dedicated to the latest land-based systems, dealing
with core systems of ultrasonic broken rail detector, early rail defect detection capability,
mixed evolved techniques and other commercial projects. Finally, the performance analyses
of all the aforementioned rail diagnostics are shown, followed by a discussion about their
advantages and disadvantages. The authors additionally outline several potential future
developments based on the limits or open issues of current, state-of-the-art ultrasonic
systems. For its completeness and detailed considerations, the works presented represents
an effective baseline for new researches and further improvements.

5. Mooring-Failure Monitoring of Submerged Floating Tunnel Using Deep
Neural Network

A study of structural health monitoring of submerged floating tunnels (SFT) is pre-
sented in [4]. This kind of infrastructure presents many advantages in comparison with
suspended or floating bridges since these latter solutions are very responsive to environ-
mental solicitations (wave, seismic actions, etc...). Moreover, SFTs naturally allow sea
crossing without any physical impediment. Nevertheless, due to their submerged condi-
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tion, any failure occurrence of the balancing mooring can be catastrophic if not promptly
repaired. Therefore, the monitoring and maintenance of these infrastructures result chal-
lenging and expensive. Thus, the authors propose a deep learning-based algorithm, able
to overcome all the limitations of traditional maintenance strategies such as the need
for visual inspection, the requirement of numerous sensors, or the prior knowledge of
structural parameters. In particular, a deep neural network (DNN) has been implemented
to analyse lateral and vertical displacements measured through different accelerometers
settings under different wave conditions. Numerical simulations have been initially used
to select the best features of the neural network, as its architecture (i.e., the number of
hidden layers and neurons), the activation function, and the loss function. The different
investigations show that a very high rate of accuracy for correct detection can be reached
with a reasonably low number of sensors (from three to seven if opportunely located).
These results have been confirmed under different wave conditions and by comparing
them with experimental results. The work presented here, thus, enhances the feasibility
perspective in SFT spread, since it deploys an effective and attainable method for a valid
monitoring strategy.

6. Damping of Beam Vibrations Using Tuned Particles Impact Damper

The work presented in [5] introduces an innovative tuned particle impact damper
(TPID). The device is proposed as an improvement of the well-known particle impact
damper vibration adsorbers, with the main feature of rapid tuning its damping parameters.
The dissipation of the kinetic energy occurs through friction and viscous and inelastic
impacts of the particles among themselves and the container. The governing mechanism
of damping depends on several factors, such as geometry, material, mass and stiffness of
the grains, coefficient of restitution, the composition of the container, filling ratio, particles
degradation, and temperature increase. These are investigated by experimental verifi-
cations. The conclusions show that the most relevant parameters are the volume ratio
between the grains and the container. The authors propose a simple yet highly efficient
design: the grains are encapsulated into an inflatable balloon provided by an external
valve, allowing the easy and quick tuning of the available volume by varying the internal
pressure. Numerous tests and experiments assess the characteristics of the novel device.
Results show that damping performances increase when dealing with a higher mass of
grains and higher balloon volume. Regarding the composition of the grains, a plastic mate-
rial is found as the best solution among the options investigated by the authors. Indeed,
the selected material proved to be very responsive to volume variations while ensuring
high vibration attenuation. In conclusion, this study lays the basis for a truly innovative,
low-cost and ecologically sustainable device, enhancing the opportunities of semi-active
vibration attenuation strategy thanks to its tunable damping feature.

7. Health and Structural Integrity of Monitoring Systems: The Case Study of
Pressurized Pipelines

The authors of [6] present the physical principles of structural health monitoring
related to the specific topic of pressurised pipelines, giving a strong overview supported by
multiannual experience in the field and real results coming from operating systems. The
main issues causing damages in pressurised pipelines (which often result in catastrophic
failures) are traced back to unpredictable variations in operating conditions, such as
changes in internal pressures, landslides, subsidence of foundation ground soil, or steel
corrosion. Moreover, these root causes involve secondary effects like induced vibrations
and additional stresses, often interacting simultaneously. Since the unpredictability of these
phenomena implies the impossibility to provide adequate design solutions, the authors
individuate in long-term real-time monitoring systems the only feasible tool to overcome
these issues. In particular, stress and strain measurements are envisaged as fundamental
to determine high-risk conditions while taking into consideration some crucial guidance.
For instance, fatigue cycles should be analysed individually in order to properly assess the
anelasticity limit for fatigue crack. Sensing devices applied for long-term monitoring must
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appropriately compensate for the thermal effects to be reliable. In the case of additional
stress generated by soil movements, the sensors location setting should cover the whole
circumference for a complete observation of the stress field. Finally, corrosion insurgence
has to be rightly avoided with opportune protection and continuously monitored, since it
can cause wall weakening and sudden collapses. The possible choices for its monitoring
include analytical solutions of kinematic growth equations or prescriptions from current
normative. Ultimately, the guidelines provided by the authors in this paper give useful
considerations resulting from direct field experience.

8. Strain Response Characteristics of RC Beams Strengthened with CFRP Sheet
Using BOTDR

The research reported in [7] focuses on the crucial aspect of monitoring reinforced
concrete (RC) structures, in particular those strengthened with carbon-fibre-reinforced
polymer (CFRP) sheets. The rationale is that the performance of such structural elements
can be seriously affected by the de-bonding phenomenon. This is particularly relevant in
the initial cracking stage, with the significant risk of a relevant reduction of their bearing
capacity. In comparison with classical strain gauge sensors, the authors present numerically
and experimental results obtained by using a Brillouin optical time-domain reflectometer
(BOTDR) fibre sensor. The use of this type of sensor shows several advantages: although
it might be less accurate than standard strain gauges, the BOTDR is not affected by the
surface conditions, assuring, thus, steady measurements. Numerical finite elements simu-
lations conducted with the commercial software LS-DYNA take into account all the aspects
involved in the deflectional process, such as the mechanical properties of reinforced con-
crete and carbon fibres, the anisotropy of composite concrete, the orthotropic behaviour of
polymeric sheets, the interface interactions, and the failure tiebreak contact model. Results
coming from the four-point bending experiments conducted in displacement control over
several specimens in different sheets bonding conditions highlight the prominent influence
of de-bonding of CFRP in the initial cracking stage, while the ultimate failure state results
uncorrelated. Moreover, experimental measurements and numerical analysis show a satis-
factory match that grants the reliability of the latter as a predictive method. Thus, for all
the aforementioned aspects, the methodology proposed by the authors constitutes a valid
and robust technique for RC beams monitoring.

9. Bayesian Calibration of Hysteretic Parameters with Consideration of the Model
Discrepancy for Use in Seismic Structural Health Monitoring

In the study reported in [8], the authors investigate model-driven seismic structural
health monitoring procedures, based on a Bayesian uncertainty quantification framework.
The variety of schemes and uncertainties that are typical of civil structures make the
prediction of their actual mechanical behaviour and structural performance a difficult
task. In this regard, computer simulations are useful engineering tools to design complex
systems and assess their performance. These simulations aim at reproducing the underlying
physical phenomena under investigation, providing a solution for the governing equations.
However, accurate modelling of the structural systems requires the numerical models to be
calibrated and validated with direct observations and measured experimental data. For this
aim, the authors applied a Bayesian inference strategy to calibrate a nonlinear hysteretic
Bouc-Wen model, derived from real data acquired on a monitored masonry building, in
terms of both most probable values (MPV) and discrepancy posterior distribution. This
pointed to the importance of correlating the choice of the discrepancy model function
to the possible degradation amount and the characteristics of the external seismic input.
The findings of the study define a non-arbitrarily of the choice of the discrepancy model.
According to their findings, the selection of this model should be subordinated to the
statistical nature of the external force (e.g., amplitude and frequency) and the statistical
nature of the modal characteristics (e.g., natural frequencies) of a system, evaluated in
operational conditions. For instance, for external forces with frequency content close to
the natural frequencies of the system, there is a high chance of high degradation to occur,
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and thus a discrepancy model distribution close to a Gaussian distribution could bring
trivial results. In conclusion, the authors make relevant considerations for the use of
model-driven solutions for seismic structural health monitoring, especially for applications
to masonry structures.

10. Piezoelectric Electro-Mechanical Impedance (EMI) Based Structural
Crack Monitoring

In [9], the application of the piezoelectric electro-mechanical impedance (EMI) method
is proposed as an effective active sensing approach to localise small cracks in beam- and
plate-like structures. The integrity of the structure is investigated by analysing the imag-
inary peak frequency of the piezoelectric admittance spectrum. The rationale is that, in
accordance with the coupled behaviour of the electro-mechanical systems, the occurrence
of damage in the structure causes changes in both its piezoelectric and dynamic properties,
with a close correlation between the modal resonance frequencies and the piezoelectric
ones. This allows assuming the latter as a valid and sensitive indicator of the deviations
from the pristine mechanical state. The proposed method is validated through numerical
finite element (FE) and experimental simulations, where the crack size has fixed depth
and width and variable length. The numerical analysis shows off the feasibility of the
method and establishes it as a useful tool for the selection of the scanning bands in the
piezoelectric admittance frequency spectrum due to the relationship with the harmonic
response. The experimental results, conducted on aluminium specimens, are consistent
with the numerical model and confirm the theoretical expectations of effectiveness in crack
detection and growth monitoring. They also highlight a high accuracy level and stability
when dealing with real-life, noisy observations. The decrement of local stiffness due to
damage presence is related to lower admittance peak frequency, while the shift can be
assumed as a feature for evaluating the severity of the crack and modulated through an
increase in the detection frequency band. In conclusion, the proposed method has great
potential as a compelling crack detection and monitoring strategy.

11. Robust Structural Damage Detection Using Analysis of the CMSE Residual’s
Sensitivity to Damage

A consistent improvement in damage identification is presented in [10]. The well-
known vibration-based method of cross-modal strain energy (CMSE) presents several
intrinsic advantages in modal analysis with respect to traditional modal strain energy
(MSE). For instance, it does not strictly require the same number of intact and damaged
mode shapes. However, the resulting linear inverse problem is ill-conditioned, raising
issues related to excessive perturbations propagation and incorporating some ineffective,
otherwise counterproductive, redundant equations. To face this issue, the authors introduce
a sensitivity analysis to identify and remove those inessential equations and enhance the
effectiveness and the robustness of detection. Ancillary, two improvements of the iterative
Tikhonov regularisation method have been proposed in the selection of the regularisation
parameter of the adaptive strategy and in the formulation of the regularisation operator.
These two aspected aimed at increasing both the rate of convergence and the accuracy. The
effects of different damage levels and locations are investigated through noisy numerical
simulations and confirmed by experimental validation. In all the investigated cases, the
so-called robust cross-modal strain energy (RCMSE) method showed better performances
than conventional CMSE. In particular, RMCSE outputs a considerably reduced number
of false positives, which is an aspect of primary importance in the field of SHM. The
robustness of results has been also confirmed by investigating the influence of different
noise levels, with minor discrepancies at lower damage levels. Convincingly, the work
presented in this paper progresses the effectiveness of MSE-based techniques.
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12. A Novel Dense Full-Field Displacement Monitoring Method Based on Image
Sequences and Optical Flow Algorithm

An innovative methodology for deformation monitoring using image acquisition
techniques is proposed in [11]. Specifically, a deep learning algorithm is applied, conjunctly
to several vision technologies. This is intended to achieve a full-field displacement mea-
surement, globally for the whole large-scale structure. This mainly overcome the typical
issues of discrete target points observation, poor in the characterisation of the overall
structure, while maintaining the advantages of long-range accuracy and cost-effectiveness.
The proposed approach allows as well big data acquisition, which is essential for feeding
machine learning algorithms. The designed noncontact remote sensing (NSR) device is
able to acquire from multiple perspectives the time-space labelled static images sequences,
according to the overlapped camera fields of view. Afterwards, edge detection, pixel virtual
marker methods, and the scale-invariant feature transform (SIFT) algorithm are applied to
holographically reconstruct the dense full-field displacement. The proposed device and
method are applied to test a reduced-scale model of a self-anchored suspension bridge
under several load and damage conditions. The bridge was equipped with dial gauges
for displacement measurements and a numerical Finite Element model was developed for
additional comparison. The experimental results show a level of accuracy high enough for
engineering applications, reaching a maximum error of 12% with respect to the observation
coming from conventional measurement devices and numerical predictions. Although this
study represents only the first step towards a dense optical monitoring strategy and still
requires further studies, the proposed methodology has great potentiality for real-time and
long-term monitoring applications.

13. Railway Wheel Flat Recognition and Precise Positioning Method Based on
Multisensor Arrays

The study published in [12] concerns the major problem of wheel defects detection
and their long-term monitoring, to enhance a more sustainable maintenance planning of
trains and rails while ensuring high standards of serviceability and safety. In particular,
this work focuses on wheel flats, well-known defects responsible for anomalous impacts
on the track that accelerate the degradation of both the track and the wheel itself. The
proposed land-based measurement method consists of multisensor arrays, able to assess
the condition of the wheels by evaluating the dynamic vertical strain response of the track
during the train passage. A multibody dynamic system is numerically modelled using
the finite element method; the rail web compression method is chosen to measure the
wheel impact, due to its sensitivity to vertical strain, its stability to bending and torque
moments caused by interfering lateral forces, and the low number of sensors required.
The transverse, longitudinal and plane sensors layouts are also investigated to enhance
accurate and unbiased measurements. Finally, the designed algorithm exploits multiple
sensors data fusion to establish when the anomalous impacts occurred (by analysing the
outliers space-time distribution), where those impacts occurred (through the sensors spatial
correlation), and which wheel causes these abnormal fluctuations (by associating average
speed with time and position to individuate the impact processes). The subsequent offline
experimental validation confirmed the capability of the algorithm to effectively recognise
and locate the presence of wheel flats. The main contribution of this paper is the proposal
of a real-time monitoring solution that, for its effectiveness and its feasibility, is able to
easily detect wheel flat; this can concretely improve the maintenance operations for railroad
owners and operators.

14. Monitoring and Analysis of Dynamic Characteristics of Super High-Rise
Buildings Using GB-RAR: A Case Study of the WGC under Construction, China

The importance of monitoring the dynamic characteristics of skyscrapers and tall
buildings is well outlined in [13], as extreme displacements can cause severe damage to
the structures or compromise their operational safety, especially during the construction
phase. This research describes a field application of displacement measurements with the
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technique of interferometric ground-based real aperture radar (GB-RAR), able to overcome
the limitations of classical methodologies, such as the need to place sensors, resorting
to expensive devices. It also compares favourably, from a cost-efficient point of view,
with satellite-based imaging technologies, which are affected by low resolution, potential
misrepresentation due to atmospheric effects, and delay in delivery of the results. The main
application of this study consists of monitoring a high-rise building under construction
in mainland China. The proposed strategy reached a sub-millimetric level of accuracy
in measurements. In the paper, the influence of temperature is investigated through
a meteorological station. The procedure adopted by the authors include also several
correction methods to correct the intrinsic and extrinsic influence of the acquired signal
data. In particular, a windowing procedure is used to eliminate sidelobe effects. Gross
error due to external vibrations and environmental factors are detected and removed and
a wavelet denoising procedure is applied to the observations. Although working in a
construction site context, characterised by the presence of several interfering structures
(such as service platforms, cranes, etc...) and disturbing environmental elements like
wind, sunlight and temperature, the methodology proposed by the authors is effectively
capable to identify trajectories and displacements of the buildings, confirming to be a
highly accurate, low-cost and non-invasive valid solution, even in presence of construction
vibrations and unfavourable conditions.

15. State-of-the-Art Review on Determining Prestress Losses in Prestressed
Concrete Girders

The monitoring of prestress losses in prestressed concrete (PC) girders is fundamental
to preserve the structural integrity of bridges. Indeed, the deleterious effects of prestress
losses require the elapse of a long time to emerge and, thus, their identification and
predictive maintenance result to be very challenging. A state-of-art review on this topic is
presented in [14], with a particular focus on the existing non-destructive testing methods
and related strategies. The authors firstly review the context of the application for PC
elements. Here, they propose an overview of previous works aimed to measure the
prestressing force and to predict related losses, considering over 30 articles concerning
different experimental and numerical methodologies. The following sections extensively
collect more than 60 papers of experimental and numerical research works, ranging over
different metrics (i.e., mechanical parameters, vibrational features, etc.) and approaches
(considering destructive, semi-destructive, and non-destructive testing options). Finally,
the study focuses on static NDT methods, remarking the higher reliability and sensitiveness
to prestressing losses in comparison with dynamic techniques. The overview offered for
such an important topic will be essential to both academic researchers and practitioners.

16. Application of the Subspace-Based Methods in Health Monitoring of Civil
Structures: A Systematic Review and Meta-Analysis

Subspace system identification (SSI) methods have been widely studied and applied
in the last two decades, investigating both mechanical and civil structures with numerical
and experimental analyses. Since its large spread and abundance of academic research
papers, the need for a systematic literature review is faced in [15]. The authors follow the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach
to conduct rigorous selection, screening, classification and examination of reviewed works,
summarising at the end of the process a total of 69 articles from 31 international journals
published in the period 2008-2019. Criteria of classification include the typology of test
structures, nature of processing algorithms, a-priori knowledge of the input and/or the
output, and influence of operational and environmental conditions. Moreover, the authors
propose several comparisons and considerations on different methods, discussing the
advantages and disadvantages of the different techniques. Conclusively, the extensive
literature review presented by the authors poses the basis for further studies in the field of
subspace-based methods, comprehensively outlining research gaps and future perspectives
to enhance future developments.
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Featured Application: This paper presents an application of Extreme Function Theory (EFT) and
Gaussian Processes (GPs) to perform mode shape-based damage detection and Structural Health
Monitoring (SHM).

Abstract: Any damaged condition is a rare occurrence for mechanical systems, as it is very unlikely to
be observed. Thus, it represents an extreme deviation from the median of its probability distribution.
It is, therefore, necessary to apply proper statistical solutions, i.e., Rare Event Modelling (REM).
The classic tool for this aim is the Extreme Value Theory (EVT), which deals with uni- or multivariate
scalar values. The Extreme Function Theory (EFT), on the other hand, is defined by enlarging the
fundamental EVT concepts to whole functions. When combined with Gaussian Process Regression
(GPR), the EFT is perfectly suited for mode shape-based outlier detection. In fact, it is possible to
investigate the structure’s normal modes as a whole rather than focusing on their constituent data
points, with quantifiable advantages. This provides a useful tool for Structural Health Monitoring,
especially to reduce false alarms. This recently proposed methodology is here tested and validated
both numerically and experimentally for different examples coming from Civil and Aerospace
Engineering applications. One-dimensional beamlike elements with several boundary conditions are
considered, as well as a two-dimensional plate-like spar and a frame structure.

Keywords: Structural Health Monitoring; machine learning; damage detection; extreme function
theory; non-destructive testing; extreme value theory; generalised extreme distribution

1. Introduction

The identification and localisation of damage in one-, two-, or three-dimensional
structures through their mode shapes are widespread in the Structural Health Monitoring
(SHM) community. It is well known that by inserting a localised discontinuity, the mode
shapes diverge from their usual deflection path [1]. This principle has been extensively
applied to investigate damage-induced variations in the mode shapes slope or curvature
for both 1-dimensional beam-like [2] and 2-dimensional plate-like [3,4] structures. In this
regard, a review of classic approaches can be found in Reference [5]. These approaches
consider modal curvatures [6], mode shape rotations [7], and/or several other Damage-
Sensitive Features (DSFs) based on the structure’s eigenvectors. In particular, mode shapes-
based methods are preferred over other modal parameters for damage localisation, since
they inherently have the spatial resolution needed for this specific task [8,9]. However,
even having established that the mode shapes and derived quantities can be exploited as a
reliable and spatially dense DSFs, it remains to define how these features can be used for
anomaly detection.

The changes in the mode shapes can be detected, e.g., through a Machine Learning
(ML) process, trained exclusively on the mode shapes extracted from the current state of
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the structure. This can be applied both to a known pristine condition or to an already-
damaged structure, since the basis of outlier detection is to identify variations from the
configuration “as it is” [10]. Indeed, no method can actually detect “damage”, but rather its
effects on the structural properties [11]. That is to say, the damage detection algorithms are
inherently subject to false positives as they could mislabel noisy data for actual deviations.
This problem is very commonly encountered with measurements from real-life applications.

The economic, social, and safety concerns of structural false alarms must not be ne-
glected, as they are one of the major reasons which still hampers the perceived usefulness
of SHM and continuous monitoring, limiting their spreading. For example, for any fixed- or
rotary-wing aircraft, an onboard Health and Usage Monitoring System (HUMS) would be
useless, if not even dangerous, if constantly sending false alarms. These are all major prac-
tical issues; the latter one, for instance, can be arguably considered the main factor behind
the industry reluctance to apply SHM systems at large scale in the last two decades [12],
and the reduction of false alarms is still a matter of research as of 2020 [13].

The main concept of this work departs from the consideration that structural damages
are rare events. Therefore, assuming a normal distribution for damage occurrences is
both statistically unprincipled and potentially inaccurate with all the resulting risks. Thus,
Rare Event Modelling (REM) should be preferably applied. For scalar values, this can be
done following the well-known Extreme Value Theory (EVT), also known as Extreme Value
Statistics (EVS) [14]. As the name suggests, the EV framework—a part of the more general
theory of the order statistics—deals with the statistics of extremes. This represents an ideal
framework for data-driven thresholding [13], not only for damage assessment but generally
for several applications of novelty detection (as reviewed in Reference [15]). The EVT
framework for novelty detection has been firstly proposed by Roberts [16], especially
for applications with biomedical signals [17]. For SHM purposes, the EVT was firstly
introduced by Sohn et al. [18] and applied on time series. Park et al. [19] further deepened
these studies considering ARX models in the frequency domain. Sohn and colleagues
subsequently used the EVS framework for the analysis of delaminated composite panels,
with the use of wavelets [20] and time-reversal acoustics [21]. Sundaram et al. [22] used
multivariate EV Statistics and Gaussian Mixture Models on 8 performance and 4 vibrational
parameters extracted from data collected from aerospace gas-turbine engines.

However, the basic concepts of EVT can be easily extended to whole functions to
define the so-called Extreme Function Theory (EFT, [23]). The rationale is that the same sta-
tistical tools applied commonly on scalar values can be applied on 1- or multi-dimensional
functions (like the mode shapes), not differently from what, e.g., is done for Gaussian
Processes (GPs) in comparison to Gaussian distributions. This was, for instance, utilised by
Papatheou et al. [24] to perform damage detection in offshore wind turbines based on their
recorded power curves.

Another important aspect is that, according to the Fisher-Tippett-Gnedenko theo-
rem [25,26], any extreme distribution on the lower or upper tail converges to only three
possible extreme distributions—the Gumbel, Fréchet, and Weibull distribution families,
also known as type I, Il and III EV distributions—which can be unified in the Generalised
Extreme Value (GEV) formulation. This happens independently from the parent distribu-
tion; that is to say, the proposed approach is not limited by the assumption of a Gaussian
distribution, which—while being commonly used in structural mechanics and dynamics
on the basis of the well-known Central Limit Theorem (CLT) [27]—could be not always
consistent with the experimental data (e.g., in case of skewed distributions).

In this work, GP Regression and EFT are combined to define a “normality” data-driven
model, fitted over the mode shapes collected from the structure “as it is”, and then to check
for damage-related deviations from this model [28]. The use of a statistical framework
purposely crafted on rare events greatly reduced the number of false positives. The rest of
this paper is organised as follows: The theoretical framework of the procedure is described
in Section 2. The results of the investigations performed on the numerically simulated case
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studies are reported in Section 3. The experimental validation is described in Section 4.
Section 5 (Conclusions) ends this paper.

2. Gaussian Processes and Extreme Function Theory

In the specific case of interest, the problem can be stated as follows. Leti = 1,...,n be
the index of n examples taken from a population of functional data. Each i-th example is an
identified mode shape ¢;, i.e., a vector of j = 1,...,n; modal coordinates ¢; ; observed at a
finite number of corresponding spatial coordinates Xij- From a theoretical standpoint, there
is no requirement that the 7 mode shapes have the same number of coordinates nor the
same location. This is the first strong point of EFT in comparison to EVT, as the functions can
be collected from different sensor arrangements—even if, for practical concerns, it is more
reliable to consider a fixed number and position of the output channels. Importantly, x; ; can
be a scalar for a 1-dimensional beam element, or a pair x; ; = {gi,j, i, ]-} for a 2-dimensional
plate-like structure (and so on). For simplicity’s sake, all the rest of this discussion will
focus on the 1-dimensional case but the formulation for higher dimensionalities can be
straightly derived.

There are two subsequent aims. The first one is to build the “normality” model M
from the pairs of training data {x;,¢;}, collected from a given structure excited in the
current conditions (assumed as a baseline for outlier detection). Once the model is defined,
the second step is to discern if a test set {x;‘,(p’; } (in this case, i = 1, ..., n*) belongs or not to
the tails of the distribution M. The first part can be achieved with the classic GP Regression,
which is here briefly recalled for completeness, while the EFT comes in the second part.

2.1. The Gaussian Process (GP) Regression

Being the mode shapes ¢ a function of the space variable x, it is possible to define a
GP prior over this latent variable, in the general form

f(x) ~ GP(m(x),k(x,x")), (@)

not dissimilarly from how a normal distribution is uniquely defined by its mean and
variance, the GP of the general process f(x) can be defined uniquely by its mean function

m(x) = E[f(x)] @

and on the covariance matrix

k(x,x') = E[(f(x) — m(x)) (f () —m(x'))] ®)

where E[-] denotes the expectation. Throughout this whole discussion, a zero-mean and
squared-exponential (SE) covariance function will be applied (the exact formulation will
be discussed later; other less frequent options exist and a discussion on the topic can be
found in Reference [29]).

If f = f(x) indicates the set of the function values at the training points X (note that
the training vectors have been assembled into a matrix form) and f* a set of test outputs at
a new set of points X*, according to the zero-mean prior it is possible to define

F (o] 5% s |) @

where K(X*,X) € R" %" is a matrix with the terms defined by the covariances evaluated at
all pairs of test and training points (the same applies for K(X, X), K(X, X*), and K(X*, X*)).
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The posterior distribution is defined by conditioning the joint prior on the observations,
resulting (for an ideally noise-free scenario) in

p(F1X5 X, f) ~ N(K(X*,X)K(X,X)*lf,K(X*,X*)

,K(X",X)K(X,X)’IK(X,X*)). ©

2

By considering the measurement noise as i.i.d. Gaussian noise € with variance o3,

one can define

¢ =f(x)+e (6)
thus, Equation (5) becomes
p(fIX, X, @) ~ N (m(f),coo(f")) @)
with the predictive mean
m(f) = KX, X)KX,X) + 321 o ®)

and the predictive covariance matrix
cov(f') = K(X', X") = K(X', X)[K(X,X) + 21 'K(X,X")). )

At this point, it is evident that the only step remaining before obtaining the normality
model is to define its covariance and the added noise. It was already assumed that this
latter depends solely on 2. In the simpler (i.e., 1-dimensional) case, the aforementioned
SE covariance function can be formulated as

1
ko (xp,xq) = ‘7}% exp {_ﬁ (xp — xq)z} + Uﬁap,q (10)

where k, is the covariance of the noisy target set g, 02 is the variance of the function, [ is
the length-scale parameter, dp 4 is the Kronecker delta, and xp, x; are the locations of the
training data sets corresponding to the respective indices. 02, I, and o2 are the free param-
eters who need to be set from the data and are collectively known as the GP Regression
hyperparameters 6. Their setting requires an optimisation, which is generally performed
by maximising the log marginal likelihood with respect to the hyperparameters. However,
in general, the minimisation, rather than the maximisation, is performed; therefore, it is
more practically convenient (without any theoretical drawback) to define directly the
negative log marginal likelihood (NLML) as

logp(p|X,0 = 1,0¢,00) = %(pTK;lgoJr %log|K¢} - glogZT[ (11)
where K, indicates the covariance matrix of the noisy test set. The iterative minimisation
is performed through a Conjugated Gradient Optimisation (CGO) algorithm; the process
stops when the difference in NLML values are smaller than a set tolerance. At that point,
the hyperparameters can be considered as the best fitting for the SE covariance function on
the training data considered. The GP Regression over the training data can be therefore
easily achieved and the metamodel M defined.

2.2. The Extreme Function Theory and the Complete Procedure

Consider the posterior distribution as defined in Equation (7), set accordingly to the
hyperparameters optimised as described in the previous Section. By definition, a GP
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distribution over functions is a multivariate normal (Gaussian) distribution, thus the
probability distribution z = p(f*|X*, X, @) will follow the form

1 1 s\ T 7%—1 *
z \z/mexp 2()‘* m*) K7 (ff —m™) (12)
where m* = m(f"), K* = cov(f*), and D is the dimensionality of x* (here onwards it is
assumed that a single mode shape is tested at a time; even if it is theoretically possible
to test jointly a set of more mode shapes at once, this will have little practical sense).
Therefore, the whole test set {x}, ¢} is reduced to a single scalar value corresponding to
its likelihood. In turn, this can be used to fit an EV distribution over its left tail (i.e., for a
very low probability of occurrence, as expected for damaged conditions). The lower 10%
of the validation dataset was used to this aim. Specifically, the Cumulative Distribution
Function (CDF) is here fitted on low values of the Gaussian log probability In(z). For the
GEV minima distribution, the exact formulation of the CDF is

L(In(z),A,0,v) =1 —exp(— <1+7<A(1Sn(z)>>;> (13)

where A, 4, and vy represent, in the same order, the location, scale, and shape parameter of
the GEV distribution, which needs to be inferred from the data. Importantly, the shape
parameter <y controls the specific form of the limit minima distribution, which simplifies
in a Gumbel distribution for v — 0, in a Weibull distribution if v < 0, or in a Fréchet
distribution if ¢ > 0 [30].

The estimation of the GEV parameters has been achieved utilising a Differential
Evolution (DE) algorithm, as suggested in Reference [31]; specifically, the Self-Adaptive
Differential Evolution (described in Reference [32]) was applied, considering 10 runs,
100 generations, and population size equal to 30. The Normalised Mean Square Error
(NMSE) was set as the target cost function, minimised against the empirical CDF calculated
according to the Hazen plotting position; an example is depicted in Figure 1. Having
constructed the CDF it is then possible to define a threshold value In zj;;,, in correspondence
of an arbitrarily chosen quantile a. Here in this study, & = 1% was imposed. This completes
the description of the whole procedure.

. CDF Estimated via SADE - SADE Fitting Cost
——Minimum Cost
—Average Cost
[ 40
So08
o
5
1L 30
[ =
206
2 k7]
ﬁ 8 20
a
© 0.4
E 10
=]
g 0.2 \\_\—\L
o —Empirical CDF or
O Points used
N —Fitted CDF
0 -10
34.2 34.4 34.6 34.8 35 35.2 0 20 40 60 80 100
Order Statistics Generation Number
(a) (b)

Figure 1. Example of SADE optimisation. (a) Cumulative Distribution Function (CDF) fitting; (b) evolution of cost with
number of generations (costs reported in logarithmic scale).
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2.3. Test of the Performances of the Procedure

To quantitatively estimate the performances of the described approach, this was tested
on numerically simulated and experimental datasets with known damage conditions.
For this purpose, three datasets—training, validation, and test—are defined. The training
and the validation datasets, needed to preliminary set and validate the normality model
offline, are made up of functions drawn from the undamaged conditions, while the test
set includes both damaged and undamaged states. For clarity’s sake, the several steps
described in the previous Subsection are graphically depicted in Figure 2.

(" smamT

] I

| FE.NOISY | £ | mEASURED |
| moDE sHapes € %y > MODE SHAPES |
DATA AUGMENTATION ‘
| &
| NORMALISATION
[
2 2
K-FOLD CROSS VALIDATION TESToED
und. + dam.
mode shapes
Undamaged Mode Shapes Daia Peol
FOLD 1 C T T T T 1. Kl ] POSTERIOR TEST
FOLD 2 [ T T T T 3 i T 1 <@L LOG-PROBABILITY
H Prest
FOLDK L I T I I 1. K I ]
| v
k4 C.D.F. TEST and LIMIT
VALIDATION SET —  TRAINING SET ' > iy cdfim
v y
POSTERIOR CONIGAIE
YALDAHON OPTIMISATION
LOG-PROBABILITY . il s <cdfiim
SELF Yes| INo
ADAPTIVE MAXIMUM H
DIFFERENTIAL LIKELIHOOD CLASSIFIED AS| CLASSIFIED AS
EVOLUTION ESTIAMTION DAMAGED | | UNDAMAGED
GENETIC
ALGORITHM v v
L oetmiseD  CHECK
HYPERPARAMETERS, | CLASSIFICATION
MEAN SQUARE

OPTIMISED
C.D.F. PARAMETERS

Figure 2. The flow chart of the complete procedure.

In comparison to a preliminary version of the algorithm described in Reference [28]
and tested for simple cantilever beams, the following enhancements have been included.

Firstly, a data augmentation strategy was applied to overcome the limited amount
of available measured data (numerical data were generated with the same scarcity as for
the real data from the experimental case study). Dealing with the feature of transverse
displacements, the latent function f(x) of Equation (6) is the resulting mean of all the
original mode shapes and the resulting standard deviation indicates how data are spread
out from the average. Both the mean and the standard deviation were evaluated for
each channel, to consider the distribution for the specific measurement point and not
of the whole dataset. After generating the desired number of noise-free copies, white
Gaussian noise was added by iteratively reducing the Signal-to-Noise-Ratio (SNR) until the
artificially simulated data fell completely within the set limits. In this case, the range was
arbitrarily chosen to be 20 and not to cover the whole +30 range, since this restriction
strengthens the “normality” condition (i.e., undamaged conditions, not far from the median
value). It should be noted that data coming from the augmentation process are involved in
the training and validation steps, while only original data are tested to assess the efficiency
of the algorithm.
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As a second improvement, a step of k-fold cross-validation was added, to avoid
overfitting of model parameters estimations. In contrast to the usual validation procedure,
the k-th holdout fold subset was used to train the Gaussian Process and estimate its
hyperparameters, while keeping the remaining k — 1 folds for the CDF estimation and
model testing. This inversion in the common paradigm of using the larger part of data for
training step is due to the need to take into consideration only the lower 10% of the available
data to estimate the minima form of CDF as defined in Equation (13). Subsequently,
the training (TR), validation (VA), and test (TS) subsets were assembled from the given d
structural configurations considered as the “normality” model (generally d = 1, the integer
measurements data set) and d* structural configurations considered as damaged, each with
n actual observations and n* artificial copies. Table 1 describes the procedure settings,
as applied for all the numerical and the experimental case studies for consistency.

Table 1. The procedure settings of the damage detection.

50 for the Experimental Case Study

Number of Observations (n) 100 for the Numerical Case Studies

Data Augmentation (n*) 500
Range Augmentation +20
K-Fold (k) 5
Training Set (TR) % (5 +n*)
Validation Set (VA) (1 — D) (3 )
Test Set (TS) 2

As said, the test set contains both undamaged (¢,,,s) and damaged (¢4,,,) mode
shapes. When a ¢,,,,; is classified as damaged, it is recorded as a false positive; on the
other hand, misclassified ¢, are considered as false negatives. Otherwise, as pictorially
described in Figure 3, the results are labelled as true positives and true negatives.
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Figure 3. False positives and negatives in damage detection, according to the CDF limit quantile.
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3. Numerical Simulations

The procedure is firstly validated on a numerically-simulated beam with different
boundary conditions. Then, for more complex structures, the proposed approach is firstly
validated on two other numerical datasets.

The first case study comes from an aerospace application and involves the High
Aspect Ratio (HAR) aluminium spar of the XB-1 wing prototype [33]. The spar—portrayed
in Figure 4a—can be seen as a thin, plate-like structural element with a peculiar shape.
Due to its large flexibility, the spar may undergo large flap-wise oscillations [34,35] and it is
therefore highly subject to the insurgence of fatigue damage, especially close to its clamped
end and in its mid-length at the section where the width taper angle change. The simple
Finite Elements (FE) model utilised here was realised in Ansys® Mechanical APDL; 400
8-noded, 6-degrees-of-freedom-per-node quadratic shell elements were utilised. The main
mechanical and geometrical properties are reported in Table 2 (the values of the parameters
derive from preovius studies described in [36]). The model parameters were updated with
vibrational data coming from laser Doppler vibrometer (LDV) and video acquisitions [36],
extracted by means of the Fast Relaxed Vector Fitting (FRVF) approach [37,38]. Five output
channels (located at the positions of the 4 Inertial Measurement Units and of the LDV
target used during the experimental acquisitions, as represented in Figure 4a) were utilised
to define the mode shapes. Several levels of reduced Young’s modulus were applied to
the portions highlighted in Figure 4b to simulate 20 scenarios [10]. In particular, the first
two states (01 and 02) are intended to represent small perturbations from the undamaged
baseline, where the variations are not sufficiently marked to be defined certainly as actual
damage. This simulates the possible statistical variability of the identified mechanical
properties; therefore, these states should preferably be labelled as false positives by a
reliable (i.e., not hypersensitive) damage detection procedure. Indeed, it was found that,
when trained on noiseless mode shapes only, the procedure does not discern these small
perturbations from the normal (undamaged) model.

The second numerical case study comes from a civil engineering application and is
intended to model a simple multi-storey frame structure, which will serve as the experi-
mental benchmark in the next Section. The FE (Figure 5) model, developed utilising the
StaBil 2.0 MatLab Toolbox [39], was set as follows. 8 beam elements per column and per
beam were used, totalling 72. The Timoshenko model was applied for all elements.

To mimic the experimental setup which will be described in the next section, the Young’s
modulus of the beams Ey,,,, was set as two orders of magnitude larger than its counterpart
for the columns (E ;). This allows to approximate the structural system as a shear-type
frame structure; therefore, a single channel per floor is enough to capture its main vibra-
tional modes. Three output channels were considered as virtual sensors, located at nodes
#4, #12, and #20 (indicated by the purple dots in Figure 5). The main technical details are
reported in Table 3. The column tracts highlighted in green are the ones where the damage
was inserted (as a stiffness reduction equal to 25% or 50%).
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Figure 4. The High Aspect Ratio (HAR) wing spar. (a) The experimental prototype. (b) The damage scenarios considered in
the FE analysis.
Table 2. Mechanical and geometrical properties of the spar.
Density p 2893 kg/m?
Young’s modulus E 5.90 x 1010 Pa
Poisson’s ratio v 0.26 -
Damping ratio 0.8634 %
Free length (clamp to tip) lyp 706 mm
Thickness ¢ 2 mm
Max width at clamped section bmax 180.00 mm
Width at the taper angle change (I = 258 mm) bysg 56.10 mm
Min width at the tip section by, 17.04 mm
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FEM Model with Sensors
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Figure 5. The multi-storey FE Model. (a) with one column damaged at the 1st inter-storey (—25% or —50%); (b) with one
column damaged at the 2nd inter-storey; (c¢) with one column damaged at the 3rd inter-storey; (d) with both columns
damaged at the 1st inter-storey; (e) with two columns damaged, one at the 1st inter-storey and one at the 2nd inter-storey;
and (f) with two columns damaged, one at the 1st inter-storey and one at the 3rd inter-storey. The purple dots indicate the

position of the output channels.

Table 3. Details of the frame FE model.

Density p 2700 kg/m?
Young’s modulus (columns) Ejymn 6.90 x 1010 Pa
Young’s modulus (beams) Epeqp, 6.90 x 1012 Pa
Poisson’s ratio v 0.3 -

Column length (per storey) 177 mm

Beam length 305 mm

Width of the column/beam cross-section 6 mm

25 mm

Height of the column/beam cross-section

3.1. Results for the Beam (1-Dimensional) FE Model
Figure 6 shows the results for two examples, the symmetrical pinned-pinned structural
configuration and the asymmetrical clamped-pinned configuration. The method can
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be nevertheless applied to any statically determined or undetermined scenario. As it
will be shown in the next Section, the same is valid for frame structures as well as 2-
dimensional or more complex structures. Two levels of artificially added noise have been
considered—SNR = 60 dB and 40 dB, respectively. The first state depicted in Figure 6
corresponds to the undamaged structure. Consider that in this state, no damage was to
be detected, so the successful damage identifications and false alarms are both zeroed.
The remaining states are defined for nine crack locations, equally spaced of 10% I between
0 and /, and for a crack depth equal to 10% of the thickness (states 2 to 10) or 20% (states
11 to 19). It can be noticed how these states, being affected by larger damage, are more
easily detected by the algorithm as foreseeable. Only the first mode shape is reported for
conciseness, calculated at the nodes #10, #30, and #49 (numbered sequentially, left to right,
with the beam discretised in 50 elements).

_ Average Effectiveness - SS - SNR = 60 dB

j

-

FALSE POSITIVE 7 A2 STATES
SUCCESS DAMAGED

SUCCESS UNDAMAGED S
FALSE NEGATIVE

(a)

_ Average Effectiveness - SS - SNR = 40 dB

SUCCESS UNDAMAGED

FALSE POSITIVE A v 2 STATES
SUCCESS DAMAGED
FALSE NEGATIVE

~ Average Effectiveness - CH - SNR = 60 dB

SUCCESS UNDAMAGED == 7
FALSE POSITIVE X
SUCCESS DAMAGED

T STATES
FALSE NEGATIVE

(©)
Figure 6. Cont.
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(d)
Figure 6. The beam-like structures with different boundary conditions. (a) Simply supported (SS)
with SNR = 60 dB, (b) SS with SNR = 40 dB; (c) clamped-hinged (CH) with SNR = 60 dB; (d) CH with
SNR = 40 dB.

It can be appreciated that the rate of success strictly depends on the position of
the damage. This issue is well-known for any mode shape-based approach. In general,
this depends on the position of the mode shapes nodes and antinodes and can be solved
by considering, e.g., different mode shapes at once [40].

For a baseline-based approach as the one proposed here, the normalisation to a unit
maximum displacement also causes some regions of the damaged mode shape to be very
close to the ones of the undamaged scenario, reducing the detectability of the damage.
This arises from the eigenproblem being underdetermined and therefore the eigenvectors
being defined only up to scale.

This difference between the normalised damaged and baseline mode shapes is here
considered in terms of cumulative Euclidean distance (CED) and it is exemplified in
Figure 7 (for better interpretability, the complemental similarity 1-CED is shown). The nu-
merical example represents the 1st mode shape of a cantilevered aluminium box beam,
modelled from the experimental case study analysed in Reference [9] (the concept can be
extended to any structural configuration and set of boundary conditions and expanded to 2-
and 3-dimensional structures). To make the damage effects more visible, an unrealistically
large damage (a crack with deep equal to the 75% of the beam height) has been inserted
at 20 equally spaced locations. The mode shapes are defined at any centimetre over the
whole beam length (totalling 715 nodes). Figure 8 a,b represent the same concept adapted
for the two structural configurations discussed previously. For indicative purposes only,
damage equal to a 10% reduction in the beam stiffness was considered, roved between
0 and ! at steps of 1%. Only for this graphic, the mode shapes have been defined us-
ing all the available nodes as output channels and with noise-free data, i.e., considering
ideal conditions.
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Figure 7. The first mode shape of a cantilevered box beam, without damage and with roving damage. (a) Damaged and
undamaged mode shapes superimposed; (b) similarity between the damaged and undamaged mode shapes in terms of
1-CED (points with similarity equal or larger than 80% are highlighted in shades of red, above the dash-dotted line).
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Figure 8. The similarity between the damaged and undamaged mode shapes in terms of cumulative Euclidean distance
(a) simply supported beam (b) clamped-hinged beam. Points with similarity equal or larger than 80% are highlighted in
shades of red, above the dash-dotted line.

3.2. Results for the HAR Wing Spar (2-Dimensional) FE Model

The results for the damage scenarios depicted in Figure 4b are portrayed in Figure 9.
Only the 1st mode shape is showed for brevity; the 2nd and 3rd mode shape returned
similar results in terms of accuracy (with similar rates of occurrence for both false positives
and false negatives). Artificial white Gaussian was added considering SNR = 60 dB and 40 dB.

One can see that the method always successfully labels the undamaged and damaged
states correctly for SNR = 60 dB, which is already a relatively large amount of noise.

Note that no damage was inserted in state 00; therefore, no damage was to be identified
there, similarly to what expressed for the results of the beam structure (in Figure 6).

The states 01 and 02, which have too small variations of Young’s modulus to be
effectively considered as damaged, are rightly identified as false negatives. This proves the
reliability of the method in discerning small perturbations, which may happen in real-life
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acquisitions due to the statistical variance of the acquisitions, from the actual damage.
On the other hand, with even more white Gaussian noise artificially added to the input
data (SNR = 40), the approach still correctly identifies the undamaged states, while it
loses accuracy on the damaged mode shapes of the test set. Specifically, it remains able to
recognise the most damaged situations (with a 25% or 50% reduction of Young’s modulus)
whenever the damage is inserted at the clamped base. As expected, also by comparison
with previous works [10], the scenarios with the damage inserted solely at the mid-length
cross-section (states 3 to 5) or on the sides of the base cross-section not fixed to the centre
wing box (states 18 to 20).

) Average Effectiveness - SNR = 60 dB

SUCCESS UNDAMAGED 1 =
FALSE POSITIVE ¢
SUCCESS DAMAGED

FALSE NEGATIVE

—— STATES

(a)

) Average Effectiveness - SNR =40 dB

SUCCESS UNDAMAGED { y —
FALSE POSITIVE ! 7

SUCCESS DAMAGED “

FALSE NEGATIVE

STATES

(b)

Figure 9. Extreme Function Theory (EFT) results for the HAR wing FEM, 1st mode shape with
artificially added White Gaussian Noise (WGN) (a): SNR = 60 dB; (b): SNR = 40 dB. Effectiveness
expressed in percentage.

Regarding the computational efficiency of the algorithm, the whole simulation of the
complete HAR wing dataset was performed in around 31 s. The non-optimised MatLab
script elapsed on average 2.2 s to perform a single training fold, 3.9 s for CDF validated
estimation and 0.02 s for the damage detection task on a single damage state, with no major
differences among the 20 states, on an Intel® Core™ i7-10750H CPU with 2.6 GHz base
frequency and 15.8 GB of available RAM. Similar elapsed times were found for the other
numerical and experimental cases.
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3.3. Results for the Frame FE Model

The settings for the second numerical investigation are the same as described in
Table 1. Figure 9 reports the results of the frame structure FE model for an increasing
level of artificially added noise. Again, as for the previous case studies, consider that
no damage was inserted in the baseline (state 1). For what concerns the noise level,
the results in Figure 10b show how, for a realistic noisy scenario consistent with current
measurement technology, a good performance is reached in the states with high damage
severity (stiffness reduction ~75%) or when the damage location is highly influent (states
8 and 9, i.e., with both base columns damaged). Otherwise, Figure 10a shows a high
performance level obtained in correspondence of a small noise reduction, achievable with
improvement in measurement accuracy or by applying data cleansing and noise reduction
techniques. All these findings are consistent with what preliminary assessed in the previous
works [28] for the simpler cantilevered beam model.
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Figure 10. Results for the Frame FEM. (a) SNR = 60 dB (b) SNR = 40 Db Sensors channels deployed
as indicated by the purple dots in Figure 5.
4. Experimental Validation

The experimental validation was performed on a well-known database realised at the
Los Alamos National Laboratory (LANL). As for the frame numerical model described in
the previous Section, the structure (represented in Figure 11) is a three-storey shear-type
frame. Seventeen scenarios were considered, as described in Table 4. They include one or
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more stiffness reductions applied to the beams (to simulate damage) and/or one or more
added masses (to simulate changing operational conditions). The dataset also included
some scenarios with a bumper-column apparatus attached at the top floor. The original
intent of this mechanism was to emulate the nonlinear effects induced by a breathing
crack [41], which is known to act as a pointwise source of bi-linearity (a deeper discussion
can be found in Reference [42]).

© © )
3rd Floor cceler
ol 5 Accelerometer
T ST 12 | (Channel #5)
[ Cotumn |
17.70 | Bumper |-— F—®
2nd Floor] (81| Acc
& ¥ P (Channel #4)
17270 — f———1+—Q@
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{
Shalcer
1770 — p———¢ —@D
Base
q °
1 —
17.45 !
L el #1)

¥ . ‘ e Baseplate

Figure 11. Scheme of the Los Alamos National Laboratory (LANL) frame. Left: Side view. Right:
Front view.

Table 4. Damage States for the Los Alamos National Laboratory (LANL) frame.

Case Description
1 Undamaged Baseline
2 Added mass of 1.2 kg at the base
3 Added mass of 1.2 kg at the 1st floor
4 87.5% stiffness reduction in one column of the 1st inter-storey
Linear States 5 87.5% stiffness reduction in two columns of the 1st inter-storey
6 87.5% stiffness reduction in one column of the 2nd inter-storey
7 87.5% stiffness reduction in two columns of the 2nd inter-storey
8 87.5% stiffness reduction in one column of the 3rd inter-storey
9 87.5% stiffness reduction in two columns of the 3rd inter-storey
10 Distance between bumper and column tip 0.20 mm
11 Distance between bumper and column tip 0.15 mm
12 Distance between bumper and column tip 0.13 mm
Nonlinear 13 Distance between bumper and column tip 0.10 mm
States 14 Distance between bumper and column tip 0.05 mm
15 Bumper 0.20 mm from column tip, 1.2 kg added at the base
16 Bumper 0.20 mm from column tip, 1.2 kg added on the 1st floor
17 Bumper 0.10 mm from column tip, 1.2 kg added on the 1st floor

Generally, the presence of such nonlinearities is used to detect and localise surface
cracks in otherwise linear systems [43]. However, these data are here used with another
intent. As it can be noticed from Figure 12¢,d, the insertion of the mechanism causes an
increase in the system stiffness. Therefore, the natural frequencies grow as well, while a
breathing crack would decrease them. However, the bumper-column mechanism affects
the mode shapes making them detectable as a deviation from the undamaged baseline.
Moreover, since the structural nonlinearities generate noise-like distortions in the frequency
response, the damage scenarios 10-17 can be utilised as well to prove the robustness of the
procedure when dealing with distorted signals.
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Figure 12. The frequency shifts induced in the averaged frequency response function (FRF). (a) Due to the mass added at
the 1st floor (State 3); (b) due to the stiffness reduction inserted in two columns of the 1st inter-storey (State 5) (c) due to the
column-bumper with 0.20 mm gap (State 10, weakly nonlinear system); (d) due to the column-bumper with 0.05 mm gap
(State 13, strongly nonlinear system).

The acquisition procedure can be summed up as follows (more details can be found in
the original source [44]). Fifty band-limited (20-150 Hz) white Gaussian noise realisations
were applied as input for 25.6 s at the structure base. The system response was recorded
at four points corresponding to the three levels plus the base, with a sampling frequency
fs = 320 Hz. The mode shapes were then extracted from the frequency response functions
(FRFs) defined between the acceleration output time histories and the force input utilising
the FRVF procedure described previously.

Importantly, for states 10-17, the concept of “mode shapes” in a nonlinear context
could be not totally accurate. It is necessary to remark that the specific experimental setup
(single-input multi-output acquisitions with a random noise as input) only allows linear
system identification [45]. The experimental identification of nonlinear normal modes
would require more complex procedures which are beyond the objective of this study.
Therefore, the extracted mode shapes should be considered as the ones of the underlying
linear system for these eight nonlinear states [45].
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The Data Augmentation procedure described in Section 2 was applied to increase
the number of training and validation data. For illustrative purposes, Figure 13 shows
the resulting model obtained by applying the GP Regression over the three mode shapes
identified from the experimental data.
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Figure 13. An example of Gaussian Process (GP) Regression over the experimental data for the first (a), second (b), and third
(c) mode shapes.

The results of the experimental validation are shown in Figure 14. As for all the
previous examples, no damage was to be identified in the first state, therefore there are
no false alarms nor successful damage identifications. The EFT-based procedure correctly
identifies all the structural changes except for the configurations with the bumper-column
gap larger than 10 mm and no added mass (i.e., states 10 to 12). However, as it can be seen
from Figure 12¢, the nonlinear distortions are minimal for this larger gap and the response
of the structure is almost indistinguishable from the pristine baseline. The algorithm
struggled to recognise the last two states (16 and 17) as well when fed with the first mode
shape; this issue did not arise either with the second or the third eigenmode. On the other
hand, due to the larger confidence intervals (Figure 13c), the fitting of the third mode
shape returned a relatively larger number of false positives (almost constantly 17% for any
damage scenario).
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Figure 14. The results for the experimental dataset. (a) mode #1; (b) mode #2; (c) mode #3.

5. EFT vs. EVT
To conclude this work, a comparison between the extreme value and the extreme

function theory has been performed on all the numerical and experimental data. This com-
parison can be done directly since the same spatial coordinates were utilised to define
all the damaged and undamaged mode shapes. That means that any i-th mode shape is
defined on the same n; points. For EFT, this results in n vectors, which return a single
distribution over functions, i.e., 1-dimensional data; while in EVT, there are n; distributions

over scalar values, each one with 7 samples.
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The results are reported in Appendix A (Tables A1-A5) for all the numerical and
the experimental case studies presented in the previous Sections (in the same order).
Everywhere, the increment is calculated as FALSE POSITIVE EVT—FALSE POSITIVE EFT,
expressed in percentage.

As expected, the incidence of false positives decreased significantly, with an improve-
ment everywhere larger than 6% for the HAR spar Finite Element Model (even with a
double-digit increment in the false alarm reduction for the case with SNR = 40 dB) and
still very relevant for the second numerical case study. The EVT outperformed the EFT in
terms of fewer false positives only for the simply supported beam and for the third mode
shape with the lowest SNR. This is most probably due to the combination of the larger
confidence intervals of the GP regression over the 3rd mode shape, the larger variability
induced by the noise, and the structural symmetry. The experimental data confirmed the
key findings encountered on the simulated dataset. Specifically, the percentage of false
positives decreased for all the three mode shapes.

6. Conclusions

This study investigated the validity of EFT as a framework for mode shape-based
SHM in 2-dimensional plate-like and frame structures, which are representative of common
applications in Aerospace and Civil Engineering, respectively. The rationale is that damage
is a rare occurrence and therefore the data-driven models defined over the undamaged
conditions must take this consideration into account. Experimental and numerical data
were utilised to this aim for different damage locations and severity levels. The robustness
of the procedure to artificially added white Gaussian noise has been methodically studied
and the results have been benchmarked against the results of the same algorithm trained
with pointwise EVT values, showing a statistically relevant decrease of the number of
false positives. Moreover, the use of EFT allows to compare points where the data were
not directly collected; furthermore, it assigns only one possible outcome (“normal” or
“abnormal”) to the whole function. On the other hand, the single components of the mode
shape, if taken one by one as in the EVT, could be under the threshold at some modal
coordinates and over it at other locations for the same identification.

This study provides a strong foundation for future works in the field of EFT and EVT
for structural health monitoring purposes. It will be important to validate the proposed
approach in situ on real-life civil structures. Another related field of research, which the
Authors are intended to investigate deeper in the next future, regards the scarcity of data
from damaged structures and the need to compensate with numerically simulated data.
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Appendix A

Table Al. The comparison between Extreme Value Theory (EVT) and EFT for the simply supported
beam numerical case study.

BEAM FEM (Hinged-Hinged, SNR = 60 dB)

FALSE POSITIVE EFT ~ FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 6.44 15.53 9.09
Mode Shape #2 9.22 16.87 7.64
Mode Shape #3 4.64 10.76 6.11
BEAM FEM (hinged-hinged, SNR = 40 dB)
FALSE POSITIVE EFT  FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 12.04 15.60 3.56
Mode Shape #2 8.40 13.56 5.16
Mode Shape #3 16.07 14.87 —1.20

Table A2. The comparison between EVT and EFT for the clamped-hinged beam numerical case study.

BEAM FEM (Clamped-Hinged, SNR = 60 dB)

FALSE POSITIVE EFT FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 6.00 16.62 10.62
Mode Shape #2 8.11 14.40 6.29
Mode Shape #3 1.64 8.82 7.18
BEAM FEM (clamped-hinged, SNR = 40 dB)
FALSE POSITIVE EFT FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 12.91 20.71 7.80
Mode Shape #2 10.60 15.51 491
Mode Shape #3 7.40 12.87 5.47

Table A3. The comparison between EVT and EFT for the HAR wing spar numerical case study.

HAR FEM (SNR = 60 dB)

FALSE POSITIVE EFT FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 11.26 19.28 8.02
Mode Shape #2 7.6 14.96 7.36
Mode Shape #3 9.56 16.16 6.6
HAR FEM (SNR =40 dB)
FALSE POSITIVE EFT FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 12.32 28.04 15.72
Mode Shape #2 10.42 23.02 12.6
Mode Shape #3 11.52 26.28 14.76
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Table A4. The comparison between EVT and EFT for the shear-type frame numerical case study.

FRAME FEM (SNR = 60 dB)

FALSE POSITIVE EFT FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 11.19 20.49 9.30
Mode Shape #2 8.81 15.81 7.00
Mode Shape #3 12.24 13.78 1.56

FRAME FEM (SNR = 40 dB)

FALSE POSITIVE EFT FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 14.06 20.28 6.22
Mode Shape #2 7.06 10.70 3.64
Mode Shape #3 14.97 22.66 7.69

Table A5. The comparison between EVT and EFT for the experimental case study.

FRAME EXPERIMENTAL
FALSE POSITIVE EFT  FALSE POSITIVE EVT IMPROVEMENT
[%] [%] [%]
Mode Shape #1 1.25 3.08 1.83
Mode Shape #2 0.43 2.50 2.07
Mode Shape #3 10.38 17.55 7.16
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Abstract: This work investigates the inverse problem of reconstructing the continuous displacement
field of a structure using a spatially distributed set of discrete uniaxial strain data. The proposed
technique is based on the inverse Finite Element Method (iFEM), which has been demonstrated to
be suitable for full-field displacement, and subsequently strain, reconstruction in beam and plate
structures using discrete or continuous surface strain measurements. The iFEM uses a variationally
based approach to displacement reconstruction, where an error functional is discretized using a
set of finite elements. The effects of position and orientation of uniaxial strain measurements on
the iFEM results are investigated, and the use of certain strain smoothing strategies for improving
reconstruction accuracy is discussed. Reconstruction performance using uniaxial strain data is
examined numerically using the problem of a thin plate with an internal crack. The results obtained
highlight that strain field reconstruction using the proposed strategy can provide useful information
regarding the presence, position, and orientation of damage on the plate.

Keywords: shape sensing; inverse Finite Element Method; structural health monitoring; inverse
problem; fiber optics; full-field reconstruction

1. Introduction

Structural health monitoring (SHM) has been identified as a key technology for the
operation and maintenance of future civil, naval, and aerospace structures. An ideal
SHM system uses sensors embedded on the structure to provide a real-time assessment
of structural integrity. This leads to a reduction in maintenance cost, time, and an overall
improvement in structural safety. A variety of SHM methodologies are currently available
in the open literature. The primary approach for damage detection is a comparison between
the damaged and healthy state of the structure, using certain damage sensitive mechanical
features. Some of the most popular SHM methods are based on modal parameters of the
structure, where changes in the natural frequencies or mode shapes are used as damage
indicators [1]. Similarly, techniques that investigate slope or curvature discontinuities
(caused by damage) in the mode shapes have been applied to beam [2,3] and plate [4—6]
structures. Data-normalization procedures based on machine learning have also been
developed to improve SHM performance under the influence of different operational and
environmental conditions [1]. Aside from modal parameters, methods that analyze the
strain or displacement field are also used. Here, damage can be detected using inverse
modeling approaches [7] or directly by examining the strain or displacement field for
any violations of the governing differential equations of the structure [8,9]. The use of
fiber optic strain sensors has become increasingly common [10], due to their small size,
resistance to electromagnetic interference, reliability, and resistance to weathering and
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corrosion, making them ideal candidates for long-term health monitoring applications.
These advantages have seen them being widely used for SHM of civil structures such as
bridges and tunnels [11,12], structures subjected to seismic loads [13], and for monitoring
offshore wind turbine structures [14]. The possibility of embedding the fiber within a
structure has seen its growing use in aerospace applications. Some of these applications
include monitoring of future inflatable space habitats [15] and composite structures, like an
aircraft wing box [16,17].

In this context, the use of shape sensing methods for developing strain or displacement-
based SHM systems is hugely appealing. Shape sensing refers to the inverse problem of
reconstructing the displacement field of a structure using discrete surface strains. The re-
constructed strain or displacement field can be analyzed to reveal the presence of damage
on the structure. Current shape-sensing methods vary depending on their theoretical
approaches to displacement reconstruction. Methods based on integrating experimental
strains [18] and using basis functions to approximate the displacement field [19] have been
used widely, while the use of neural networks (NN) has also been explored [20].

Another approach for shape sensing is based on a variational principle, such as the
inverse Finite Element Method (iFEM). The iFEM is based on discretizing the structural
domain into a set of finite elements. The displacement field is obtained by minimizing an
error functional defined as the least-square error between the analytic and experimental
strain measures [21,22]. The iFEM has been developed for 1D beams and frames [23],
2D plates and shells [24,25], and multi-layered composite and sandwich plates [26,27].
The iFEM can analyze both the static and dynamic response of a structure [23,28], in the
linear and non-linear displacement regimes [29], without any prior knowledge of the
structure’s material properties or loading conditions. The use of iFEM for SHM has been
demonstrated on simple beams using fiber optic strain measurements [30] and on thin
plates using strain measurements from a grid of strain rosettes [31,32].

The majority of aforementioned iFEM applications used tri-axial strain rosette mea-
surements. In the few cases, where uniaxial strain data were considered, the primary focus
was on reconstructing simple membrane or bending deformations of the structure [27,30].
Due to the high measurement density and operational convenience of a fiber optic system,
there is enormous potential in using fiber optic strain measurements for the iFEM recon-
struction. A possible application is for the SHM of plates or shells, where potential damage
can cause local perturbations in the strain field. An accurate reconstruction of these 2D
strain perturbations can provide useful information to identify the size, position, and orien-
tation of the damage. However, in comparison with a strain rosette, strain measurements
from a fiber optic sensor are uniaxial, i.e., only the component of strain along the local fiber
direction is measured. iFEM reconstruction using only uniaxial strain data could lead to
errors due to insufficient information regarding the strain field of a structure.

This work addresses the problem of damage detection in a thin cracked plate under the
action of in-plane loading. Strain reconstruction is performed using the iFEM methodology
in the presence of the discrete uniaxial strain data resulting from several fiber-optic strain
sensor patterns. The approach also examines the use of a one-dimensional smoothing
algorithm for generating additional input strain data along the paths of the fiber optic
sensors. The paper is organized as follows. In Section 2, an iFEM formulation for plate/shell
structures is briefly described. In Section 3, the use of iFEM for strain field reconstruction
using uniaxial strain data is demonstrated using an example problem of a biaxially loaded
thin plate under various internal damage scenarios. The effect of position and orientation
of uniaxial strain data are investigated, and the damage detection performance of the
reconstructed strain field is also discussed. Finally, Section 4 presents the major conclusions
and directions for future work.
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2. The Inverse Finite Element Method

The iFEM formulation for plate/shell structures is based on the kinematic assumptions
of Mindlin plate theory [21,22]. For a plate of thickness, 2t, lying in a cartesian coordinate
system, the components of the displacement vector are expressed as

ux(x,y,z) = u + 20y,
uy(x,y,z) = v — 26y, (1)
uz(x,y,z) =w,

where u, v, w, 6y, and 6y are the kinematic variables associated with the mid-plane of
the plate and are used to describe the displacement vector at any point of the structure.
Variables u, v, and w are average displacements along the x, y, and z axis, respectively;
0y, 0y are the bending rotations about the x and y axis, respectively (see Figure 1).

Figure 1. Sign conventions used for the kinematic variables of a 4-node quadrilateral inverse element.

The linear strain displacement relations are used to obtain the strain field from the
displacement assumptions of Equation (1)

Exx €x0 Kx0
ey ¢ =19 &0 +zq Kp o =e(u)+zk(u). ()
Yy Yxyo Kxy0

The strain field of Equation (2) is represented by six strain measures; three membrane
strain measures, e(u), representing the in-plane stretching of the mid-plane, and three bend-
ing strain measures, k(u), representing the bending and twisting curvatures. Additionally,
Mindlin theory gives rise to two transverse shear strain measures, g(u). The eight strain
measures are given as

T T
e(u) {slo, €40, nyo} ={uyx, vy wy+ox},
u { x0, Ky0, nyO} = {91 X7 9x,y/ *ex,x + Gy,y}Tr (3)
T
g(u) {YXZO/ szo} = {w,x + Gy, wy — ex} .
Throughout this study, a four-node plate/shell element, iQS4 [25], is used. The el-

ement is formulated using a set of anisoparametric C-continuous shape functions that
enabled improved kinematic interdependency between the bending and shear deforma-
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tions. Using the element shape functions, the strain measures can be expressed in terms of
the element nodal degrees-of-freedom (DOF)

Exx
gy o =e(u’) +zk(u’) = B"u’ + szu",{ zxz } = g(u’) = B’u’, 4)
Yy v

where B", B! and B® are matrices of shape function derivatives corresponding to the
membrane, bending, and transverse shear strains, respectively. The vector, u®, representing
the element DOF of each element, ¢, can be expressed as
€ [44€ 1€ e T

o = [ g, ©)
where u denotes the vector of nodal DOF for each node i, and 1 denotes the total number of
nodes of the element. The membrane and bending strain measures, ef and k{, correspond-
ing to experimental surface strain measurements at any location (xj, y)), are evaluated as

€ +

€50 1 Exx Exx
£ — .
e]? = €50 =5 a;ry +4 &y ,i=1,...,N, (6)
Y50 Yay Yy )
Xy i Y j Y j
Kx0 1 E%;X Exx
£ — .
kf = Ky0 =5 Eyy - Epy ,j=1,...,N, (7)
KE ,Y+ Y
xy0 w Jj xy Jj

j
where {aj{x, Efyr yjy} and {a;x, Eyyr y;y}, are the in-plane normal and shear strains
measured on the top and bottom surface of the structure, respectively, and N refers to the
total number of strain-sensor locations corresponding to the mid-plane coordinates (x;, y;).

The iFEM variational formulation is based on a weighted-least squares error func-
tional that minimizes the least-square errors between the analytic and experimental strain
measures. The structural domain is discretized using the customary finite element frame-
work, and the individual inverse finite elements are formulated on the basis of the error
functional, given as

P, (u’) = wg||e(u") - e£||2 +wk||k(ue) —

ke |[2 + we|g(u) — &°||2 ®)

where w,, wy and wg are vectors of weighting coefficients associated with the squared
norms. The weighting coefficients are used to enforce a stronger or weaker correlation
between the experimental strain measures and those described analytically. In elements
where experimental strain measures are known, the coefficient vectors were assigned a
value of unity (we = wi = {1, 1, 1}, wy = {1, 1}), and the squared norms are expressed as

etw) — e[| = 4 J, le(w) — eda,
‘ ‘k(u €[l = @ [ [k(ut) — KEPdA, )
Hg 2= AefAe u’) _gs]szr

where A, is the element area. In specific situations of a pure membrane or bending behavior,
Equations (6) and (7) can be simplified further. When the plate is only under in-plane loads,
the in-plane normal and shear strains on the top and bottom surfaces of the plate are equal.
Strain measurements on only one surface of the plate are required to calculate e® using
Equation (6). In this case, the bending curvatures k® in Equation (7) vanish identically.
Similarly, when the plate is under pure bending, the strains on the top and bottom surfaces
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have the same magnitude with opposing signs (tension and compression). Measurements
on only one surface of the plate are required to calculate k®, whereas the membrane strain
measures e® vanish identically. In elements, where the experimental strain measures are
unknown (due to the absence of experimental data), the coefficient vectors are assigned
a relatively small value (w, = wy = {10*4, 1074, 10*4}, w, = {10*4, 10*4}), and the
corresponding squared norms reduce to

He(u"’) —efl|, = A%fAe e(uf)sz ;
Hk(uf) K|, = ‘iff [, K(w)*dA, (10)
8(u) — 822 = A [, g(u)dA.

In cases where only specific components of membrane, bending, or transverse shear
strains are experimentally measured at a point, two different strategies can be used for
calculating the error functional of Equation (8). The first approach uses a suitable def-
inition of the corresponding weighting coefficient vector. When using uniaxial strain
sensors, where only specific components of the in-plane strains are measured at a point,
the weighting coefficient vector for the membrane squared norms, w,, is defined accord-
ingly. For example, if the in-plane strain along the x-axis (eg;) is the only strain component
measured at a point. Then the corresponding weighting coefficient vector could be set
as, Wy = {1, 104, 10*4}. The use of a small value for the weighting coefficient reduces
the contribution of those unknown strain components to the element error functional.
The second approach employs a smoothing technique. The smoothing technique uses the
existing e strain measurements to obtain a smoothed value of ££, at points with no strain
data. Using this approach, all unknown components of the membrane, bending or trans-
verse shear strain measures, not experimentally measured at a point, can be obtained by
smoothing strain data from other measurement locations of the plate. The latter approach
is used in the current work; a detailed explanation of the steps involved is discussed in
Section 3.

The transverse shear strain measure, g¢, cannot be obtained directly using exper-
imental strain measurements. Hence, the transverse shear squared norm (defined in
Equation (10)) is associated with a small value of the corresponding weighting coeffi-
cient vector (wg = {10*4, 10*4}) for all elements. The error functional, ®,, is solved by
minimizing with respect to the nodal DOF, yielding a set of linear algebraic equations

0P, (u°)
Tl K - =0, 1
Ju’ an
where the matrix, k°, and vector, f°, are functions of the strain sensor positions and mea-
sured surface strain data, respectively. Both k° and f° can be expanded and given as

K= L[, [we(B")TB" +wi(26)2(BY) " BY + wy (BS)TB?| d4, )
£ = 1 [, [we(B™) et +wi(26)2(BY) k¢ + wy(B9) g¢| dA.

Since the above terms involve area integrals, a suitable numerical integration scheme
was used. The global matrices and vectors can be assembled by summing up the contribu-
tions from all the inverse elements, N,

N, Ne Ne
K=Y (T)'kT, F=) (T, Uu=Y (T u’, (13)
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3.80

where matrix, T, represents the element coordinate transformation matrix. The finite
element assembly results in the global system of algebraic equations, given as

KU=F. (14)

The solution of Equation (14) involves the application of the requisite displacement
boundary conditions to restrain the structure against a rigid-body motion. Subsequently,
provided K is non-singular, the DOF vector, U, can be uniquely determined.

3. Numerical Studies

The application of the iFEM method for strain field reconstruction using uniaxial
strain data is presented using an example problem of a biaxially loaded square plate.
The reconstructed strain field is further assessed to detect the presence of damage on
the plate. The plate had a length L = 3.8 m, thickness 2t = 3.8 mm, and is made of an
Aluminium alloy (Young’s modulus, E = 73 GPa, and Poisson’s Ratio, v = 0.3). The plate
is subjected to a uniform biaxial load of magnitude 10°> N/m. The damage on the plate
is modeled as a crack, and three different damage scenarios of the plate (varying size,
position, and orientation of the crack) are investigated (see Figure 2a),

e Damage Case-1: a 25 cm long crack is embedded at the center of the plate (crack posi-
tion coordinates, {xc, yc} = {1.9, 1.9}), with the crack front parallel to the vertical axis.

e  Damage Case-2: a 10 cm long crack is embedded near the corner of the plate ({x¢, .} =
{3.1, 3.1}), with the crack front parallel to the vertical axis.

e Damage Case-3: a 25 cm long crack is embedded at the center of the plate ({x¢,y.} =
{1.9, 1.9}), with the crack front oriented at 45° with the vertical axis.

Damage Case: —1 —2 —3 |

2.85

0.95

0.00
0.00

0.95

I
1.90 2.85 3.80
(a) (b)

Figure 2. The damaged plate model showing: (a) crack size and position for all three damage cases (each crack represents a

separate damage scenario), and (b) FE mesh used for Damage Case-1.

Because of the pure membrane loading involved in this example problem, only the first
term in Equation (8) is relevant for this iFEM application [33]. This is because the membrane
response is totally decoupled from the bending and transverse-shear deformations.

A high-fidelity FE model of the plate is developed in ABAQUS using the S3R element,
a 3-node constant-strain shell element with reduced integration. A mesh convergence
study is performed to ensure the convergence of the FE results. The FE model provided
the simulated experimental strain measurements required for the iFEM analysis. The em-
bedded crack is modeled in ABAQUS using the seam feature [34], which created a set
of overlapping duplicate nodes along the crack front. The FE model for Damage Case-1
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used a total of 3368 elements, with a dense mesh near the crack tip (see Figure 2b). The
uniform biaxial loading condition is implemented in the FE model by prescribing a uniform
distributed load on the top and right edge of the plate and imposing symmetric displace-
ment boundary conditions on the left and bottom edge of the plate. The iFEM analysis is
carried out using the 4-node iQS4 element [25]. The iFEM mesh used has 16 elements along
the plate length, leading to a total of 256 inverse elements (mesh is shown in Figure 3).
The absence of suitable displacement boundary conditions in the iFEM model can lead to
a singular system matrix, K (see Equation (14)), resulting in no available iFEM solution.
Hence, the present iFEM model used symmetric displacement boundary conditions on the
left (u = w = 0, = 0, = 0), and bottom (v = w = 0, = 0, = 0) edge of the plate (similar to
the FE model).

380 Per e er e er e e e
: 2.60
.
2.85 250 F . . .
: L]
1.90}: 2.40
. .
3 F .
0.95}% 230
.
220
0.00
0.00 0.95 1.90 2.85 3.80 3.60 3.70 3.80
(a) (b)

Figure 3. Sensor configuration of the benchmark inverse Finite Element Method (iFEM) model: (a) strain rosette grid
(each point represents a strain rosette and the sensors divide the plate into nine square cells), and (b) magnified view of

boundary elements with a maximum of five, and a minimum of three rosettes per element.

The results of the iFEM reconstruction are presented as contour plots of the maximum

principal strain
Exx T € Exr — Eyy \ 2
£ xx 5 vy \/( xx 5 W> VW2' (15)

A damage index, Ip, which provides a normalized value of ¢, within the range [0, 1]
is also proposed

Ip = &p — £F7|min , (16)
€p |max & |min

where Ep|min and Ep|max define the minimum and maximum values of ¢, for a recon-
structed strain field. The damage index is used in setting thresholds for damage localization.

3.1. Benchmark iFEM Results

Before investigating the effects of uniaxial strain data, iFEM reconstruction using strain
data measured by a dense grid of strain rosettes is used to establish a set of benchmark
iFEM results. These results corresponded to a high accuracy iFEM reconstruction and are
used as reference results for forthcoming comparisons. As the plate is under biaxial loading,
in-plane strains are uniform across the plate thickness. Hence, only strain measurements
made either on the top or bottom surface of the plate are required for calculating the
experimental strain measures. In the present work, strain measurements made on the top
surface of the plate are used. Membrane strain measures, e could be calculated using
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Equation (6)), while the bending strain measures, k® are equal to zero (Equation (7)).
The sensor configuration used for the benchmark results is shown in Figure 3a, where each
point designates a strain rosette, and a total of 440 strain rosettes are used. Such a sensor
grid divided the plate into nine square cells, where strain measurements are performed
only along the cell boundaries. At each sensor position, the ¢, €y and Yay components of
strain are measured. Figure 3b shows a magnified view of the sensor positions within some
boundary elements. Depending on element position, strain measurements are available in
at least three and at most five points within each element. For this analysis, the integrals of
Equation (12) are integrated numerically using the 3 x 3 Gauss scheme.

Initially, the benchmark iFEM model is used to reconstruct the strain field of an
undamaged plate under biaxial loading. The FE and benchmark iFEM results for an
undamaged plate are shown in Figure 4. As the plate is under uniform biaxial loading,
the in-plane normal strains are uniform, and the shear strain is negligible. Hence, ¢, is
a constant over the plate, as evident from the FE results (see Figure 4a). The contour
plot of iFEM results also showed a constant value of ¢,, with minor variations of the
order of 1078 (which are negligible). Accurate reconstruction of the undamaged far-field
strains is essential for the damage detection strategy presented, as it acted as the baseline
strain field of the structure. The present results clearly demonstrated the accuracy of
the benchmark iFEM model in reconstructing the undamaged strain field. Next, the
reconstruction accuracy of a damaged strain field is investigated.

& -
+2.523%10

(a) (b)

Figure 4. Contour plots of ¢, for an undamaged plate: (a) FE results, and (b) benchmark iFEM results.

The FE and benchmark iFEM results for Damage Case-1 are shown in Figure 5.
Both plots showed a strain concentration in the vicinity of the crack, with the iFEM results
having a more diffuse distribution and a lower magnitude of ¢,. This is due to the absence
of strain measurements close to the crack tip. The iFEM reconstruction utilized strains
measured by the grid of sensors around the crack (see Figure 3), and the sensors measured
a lower strain magnitude than at the crack tip. This resulted in a lower magnitude and a
more diffuse strain distribution in the iFEM results. Nevertheless, for damage detection,
the iFEM results of Figure 5b are promising as they successfully reconstructed a strain
concentration at the damage site.

The FE and benchmark iFEM results for Damage Case-2 are shown in Figure 6. In this
case, the magnitude of ¢, is smaller due to the smaller damage size. The FE results are
highly localized, and the iFEM results showed a more diffuse ¢, distribution at the damage
site. The minimum value of ¢, (corresponding to far-field strains) is similar in both plots of
Figure 6. This further corroborated the conclusions derived from Figure 4, that the iFEM is
accurate in reconstructing the undamaged far-field strains of the plate.

The results for Damage Case-3 are shown in Figure 7. The inferences here are sim-
ilar to those of Damage Case-1, except for a key feature, i.e., the strain field orientation.
Both FE and iFEM results showed a greater ¢), distribution perpendicular to the crack
front, i.e., oriented at 45° with respect to the horizontal axis. This indicated that informa-
tion regarding damage orientation could also be obtained by analyzing the reconstructed
strain field.

40



Appl. Sci. 2021, 11, 1681

&,
+1.13x1077
+1.09x10°°

+5.42x10°°

6‘I’
+2. 85><10
+2. 81X10
+2. 78><10
+2. 75X10
+2. 72><10
+2. 68X10
+2. 65x10
+2. 62X10
+2. 59x10
+2. 56X10
+2.52x10°*

(a) (b)

Figure 5. Contour plots of ¢}, for Damage Case-1: (a) FE results, and (b) benchmark iFEM results.
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Figure 6. Contour plots of ¢}, for Damage Case-2: (a) FE results, and (b) benchmark iFEM results.
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Figure 7. Contour plots of ¢}, for Damage Case-3: (a) FE results, and (b) benchmark iFEM results.

The following conclusions could be drawn from the benchmark iFEM results. The iFEM
procedure successfully reconstructed the far-field strains since the strain sensors are located
far from the vicinity of the crack. Nevertheless, the presence and location of damage
could be inferred from the iFEM results by contrasting the local strain peaks with the
far-field strains (that acted as a healthy baseline state of the structure). It is noted that
although a highly accurate reconstruction of the damaged strain field across the entire plate
domain is preferred, it is not a prerequisite for the presented damage detection methodology.
The current study aimed to maximize reconstruction accuracy and minimize the number of
sensors used so that meaningful conclusions could be drawn from the reconstructed strain
field for the purpose of damage detection. For the damage cases investigated, damage
detection is successful regardless of the damage size and orientation. Although these
benchmark results are promising, using such a large number of strain rosettes (440) may be
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generally impractical. This limitation could be overcome by using fiber optic strain sensors
as discussed in the next section.

3.2. iFEM Studies Involving Uniaxial Strain Data

Fiber optic sensors are ideal candidates for strain field reconstruction using iFEM
as they can provide a dense set of strain measurements over the fiber length. A typical
strain rosette measurement system comprises sensors attached via a cable network to a
Data Acquisition (DAQ) system. The measurements are processed into viable information
and are subsequently stored and analyzed for decision making. In comparison, the cable
network of a fiber optic system is composed entirely of the fiber with strain measure-
ments all along the fiber length. The instrumentation systems used for fiber optic sensors
depend on the specific sensing technology used [10]. A distributed fiber optic system
uses an interrogator to transmit optical pulses into the fiber and capture the backscattered
light. The backscattered light is subsequently analyzed to obtain strain measurements
along the fiber. In contrast to strain rosettes, fiber optic strain measurements are uniaxial,
i.e., along the local fiber direction. Uniaxial strain measurements cannot provide all the
components of in-plane strain (e, &y, ny) at a point, leading to inaccuracies in the iFEM
reconstruction. The number and position of strain sensors used also affects the iFEM
solution. Sensor configurations with an insufficient number of boundary elements with
available strain data can lead to a singular system matrix and a breakdown of the iFEM
solution. Similar is the case for configurations with discontinuous sensor patterns. Any pro-
posed sensor configuration should avoid these conditions to ensure accurate iFEM results.
In what follows, we describe efforts to reconstruct the strain field in a damaged plate using
spatially distributed uniaxial fiber-optic strain sensors. The results are compared with the
benchmark iFEM results of Section 3.1.

As the location and orientation of the strain measurements depend on the fiber arrange-
ment, different fiber patterns are investigated. The plate is assumed to be instrumented
with one or two continuous fibers to recreate the sensor pattern of the benchmark model
(Figure 3). The fiber arrangement should also maximize the quality and quantity of strain
measurements, minimize fiber length, and avoid any self-intersections. Based on these
requirements, two fiber arrangements are proposed (see Figure 8),

e  Configuration-1: a continuous non-intersecting fiber arranged as a wave on the plate.
The fiber arrangement within an element is referred to as “Unitcell-1” (Figure 9a),
having the same pattern repeated across multiple elements. Strain measurements
corresponding to Unitcell-1 are along the directions: {0, £90}, which is a mixture of
€x and ¢y, strain data at different 3 x 3 Gauss integration points within an element.
At most, three strain measurements are made per element.

e  Configuration-2: two continuous non-intersecting fibers are used to create a strain
rosette within each element [35]. The fiber arrangement within an element is referred to
as “Unitcell-2’ (Figure 9b), and the pattern is repeated across multiple elements. Strain
measurements corresponding to Unitcell-2 are along directions: {0, £60}. These three
measurements formed a strain rosette and are used to calculate the ey, &y and Yay
components of strain at the centroid of each element (Figure 9b).

Strain measurements corresponding to Unicells-1 and 2 suffered from certain limita-
tions. The fiber arrangements of Figure 8 are unable to replicate the benchmark pattern
of Figure 3, resulting in certain boundary elements of the plate without any strain data
(see Figure 10), potentially leading to a singular system matrix, K. This issue could be
readily resolved by a pre-processing procedure that would enable these elements to be pop-
ulated with strain data. For this purpose, a one-dimensional (1D) version of the Smoothing
Element Analysis (SEA) [36] is used herein.
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Figure 8. Fiber arrangements investigated: (a) Configuration-1 (with a wave-like fiber pattern, referred to as ‘Unitcell-1’,
repeated across multiple elements), and (b) Configuration-2 (with a strain rosette fiber pattern, referred to as ‘Unitcell-2/,

repeated across multiple elements).
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Figure 9. Unitcells corresponding to the fiber arrangements: (a) Unitcell-1 (single fiber arrangement measuring a mixture of
ey and €y strains within each element), and (b) Unitcell-2 (dual fiber arrangement measuring e, gy and Yy strains at the

centroid of each element).
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Figure 10. In-situ strain measurements and their locations corresponding to: (a) Unitcell-1, and (b) Unitcell-2.
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The SEA is a finite element (FE) based method that has been used as an FE post-
processing tool for stress or strain ‘recovery’ (improved prediction) and error estimation.
It is a variational based approach where the structural domain is discretized using smooth-
ing elements. The problem is solved by minimizing a discrete least-squares error functional
enforcing the continuity of the strains and their derivatives. Thus, the SEA recovers C!-
continuous strains with C%-continuous derivatives. As the present work focused on a 1D
formulation of the SEA, a two-node linear smoothing element with quadratic interpolation
of strains and linear interpolation of the strain derivatives is used. The accuracy of the
smoothed, SEA-generated strain data depended on the interpolation order of the smooth-
ing element used and the complexity of the plate’s strain field. The SEA is expected to
provide high accuracy results for an undamaged plate under uniform biaxial loading as
the in-plane normal strains had uniform distributions, and the contribution of in-plane
shear strain is negligible. For a damaged plate, recovering the strain field due to the crack
is more challenging. In the presented context, however, the role of the SEA-based strain
smoothing is to provide relatively accurate strain fields along the boundary of the plate.
In addition to the in-situ measured strains, these smoothed strains would become input
strains in the iFEM analysis.

Figure 11 shows the use of the SEA on the strain data set of Unitcell-2. Along the grid
lines, the SEA is used to interpolate existing FE strain data. Each grid line is discretized
into a series of 1D smoothing elements, with at least one FE strain data point per element.
The 1D SEA is used to smooth each in-plane strain component (ex, ¢, and y,,) individually.
At the end of the smoothing procedure, each element of the grid would have tri-axial
strain data at the element centroid. A similar SEA approach is used for Unitcell-1 as well.
The use of fiber optics enabled strain measurements along long one-dimensional sensor
paths, making it suitable for the 1D SEA methodology. However, different smoothing
strategies, such as using 2D SEA elements or an alternate smoothing strategy, may also be
used depending on the problem.

~~~~~~~~~ SEA smoothing line
X SEA generated strain data

3.80
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X X
K X
2.85
X
% X
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% X
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X X
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0.00 095 1.90 285 3.80

Figure 11. Use of Smoothing Element Analysis (SEA) for the strain data set of Unitcell-2; the position
of the smoothing lines and the smoothed strain data generated have been shown.

Note that Unitcell-1 lacked shear strain measurements, potentially leading to an
inaccurate iFEM reconstruction. This issue is resolved by assuming a constant value of
in-plane shear strain for all elements along the grid lines. A few additional strain rosettes
are introduced in Configuration-1 to calculate shear strains at some discrete locations,
and their average is used to represent the constant shear strain value for all elements along
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the grid lines. Although theoretically incorrect, this assumption is used to improve the
quality of strain data available for the iFEM reconstruction. As the presented problem
explored the plate cases under uniform biaxial loading, this assumption is expected to be
moderately successful. However, in alternative problems involving more complex loading
scenarios, the effect of in-plane shear strain would be more prominent, and this assumption
would lead to erroneous results. The validity of this assumption will be discussed further
when discussing the results in the following sections.

Different numerical integration strategies are employed for the iFEM analysis using
strain data corresponding to the two Unitcells. As Unitcell-1 provided at most three strain
measurement points within each element, the 3 x 3 Gauss scheme is used. In contrast,
Unitcell-2 had only one measurement point within each element. Hence, the 2 x 2 Gauss
scheme is used for Unitcell-2, with the same centroidal strain data used at all 4 Gauss
points. This also led to an interesting investigation into using a constant set of strain data
for integrating within an iQS4 element.

3.2.1. Results for Damage Case-1

The iFEM results for Damage Case-1, using strain data corresponding to Unitcells-1
and 2 are shown in Figure 12.

1 I
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Figure 12. iFEM reconstructed Ip distribution for Damage Case-1 using: (a) Unitcell-1, and (b) Unitcell-2.

Results for Unitcell-2 are similar to the benchmark results, while Unitcell-1 results are
deficient. Both plots showed a Ip concentration at the center of the plate; however, the re-
sults of Unitcell-1 are asymmetric. A greater Ip concentration is observed in the vicinity of
those elements along which actual strain measurements are made using the optical fiber
(see Figure 12a). This asymmetry is not observed in the results of Unitcell-2. A comparison
with the benchmark results revealed differences in the strain field distribution around
the damage site. Compared to the benchmark results, the results of Unitcell-2 showed a
greater dispersion of the damaged strain field to far-field locations. As the benchmark
model used a greater number of strain-sensors along with a symmetric sensor grid, the re-
sults are symmetric with a well-defined strain peak at the center (see Figure 5b). Despite
these shortcomings, the plots of Figure 12 offered sufficient information for successful
damage detection.

Next, the effect of measurement noise on the results is investigated. The strain data
is contaminated using random noise, added as a percentage of the strain magnitude.
The noise distribution is based on a Gaussian curve with zero mean and the value of three
standard deviations equal to 5%. The use of random noise in the measured strain data
allowed for the introduction of various external factors that affected the method’s practical
implementation. One key issue is the sensor bonding to the host structure [37]. As the
strain is transmitted from the host structure through the bonding surface (typically an
epoxy adhesive) to the sensor, a strong and complete bond must be ensured for ideal strain
transfer to the sensor and avoid any measurement errors. A similar issue is faced when
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fiber optic sensors are embedded within structures. Incorrect inclusion could lead to stress
concentration between the structure and the sensor leading to erroneous measurements
and potential damages to the host structure. Strain transfer analysis between the fiber
cable, protective layer, bonding material, and the host structure [38,39] offers a way of
identifying the parameters influencing the actual and measured strains and could be used
for improving the strain measurements using fiber optic sensors. The current study adopted
a more simplistic approach by using random noise to introduce these experimental effects
in the numerical examples. The contour plots of Ip using contaminated strain data are
shown in Figure 13.
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Figure 13. iFEM reconstructed Ip distribution for Damage Case-1 (5% noise) using: (a) Unitcell-1, and (b) Unitcell-2.
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Figure 13 shows that the introduction of noise lead to further diffusion of the strain
field, with a prominent Ip peak at the center and smaller I peaks at far-field locations.
This could be better illustrated using a Ip threshold of 0.5, i.e., the lower limit of the Ip plot
is restricted to 0.5. The contour plots with this threshold level are shown in Figure 14.
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Figure 14. iFEM reconstructed Ip distribution for Damage Case-1 (5% noise and threshold = 0.5) using: (a) Unitcell-1, and

(b) Unitcell-2.

The use of a threshold helped to discriminate between regions with and without
damage. Figure 14 shows that the damage is located at the center of the plate. As discussed
previously, asymmetry in Figure 14a may lead to a false conclusion that the damage is
not at the center but slightly off centric. Similarly, the dual peaks observed in Figure 14b
may also lead to a false interpretation of multiple damages present. Instead, these Ip
distributions could be considered a feature of the method. These results are compared with
benchmark iFEM results for Damage Case-1 using strain data contaminated with 5% noise
and enforcing a threshold of 0.5 for isolating the damage location. These benchmark results
are shown in Figure 15. The threshold enforced Ip plot (Figure 15b) depicted similar results
to those of Unitcell-2 in terms of the distribution and location of the Ip peaks. Both cases
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showed the dual Ip peak at the center of the plate and no peaks at far-field locations.
As demonstrated here, the use of a threshold to define a damage region rather than an
exact point constituted an improved damage detection strategy for the present problem.
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Figure 15. Benchmark iFEM results of I for Damage Case-1 (5% noise) using: (a) no threshold, and (b) threshold = 0.5.

3.2.2. Results for Damage Case-2

The iFEM results for Damage Case-2 are shown in Figure 16. Despite the smaller
damage size, the plots clearly showed a Ip peak near the actual damage site. Compared
to the benchmark results (Figure 6), the strain concentration is more diffuse; nevertheless,
the plots illustrated the presence of damage near the corner of the plate. An interesting
point to be noted is that even for Unitcell-2, the strain distribution far from the damage site
is more prominent. This is not the case in the benchmark results where the far-field strains
are virtually unaffected by the damage. The leakage of the strain field and subsequent
contamination of the far-field strains are limitations of the Unitcell strategy. This illustrated
potential difficulties in using the present strategy for detecting small-sized damages.
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+9.00x10;
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Figure 16. iFEM reconstructed Ip distribution for Damage Case-2 using: (a) Unitcell-1, and (b) Unitcell-2.

The iFEM results obtained using strain data contaminated with 5% noise are shown in
Figure 17.

The plots of Figure 17 showed numerous Ip peaks at various locations of the plate.
None of the peaks coincided with the actual damage site, leading to erroneous conclusions
when used for damage detection. These results are compared with benchmark iFEM results
for Damage Case-2 using contaminated strain data (5% noise). These benchmark results
are shown in Figure 18, and they also indicated a drop in damage detection performance
due to the addition of noise. Compared to Unitcell-2, the benchmark results showed a
prominent Ip peak near the damage site (Figure 18b). The benchmark results also had the
same limitations seen for Unitcell-2, where minor Ip peaks are seen at far-field locations.
However, these results provided one significant inference: there is a lower limit to damage
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size that could be successfully detected using the proposed methodology. Successful
damage detection is not possible as the strain perturbations due to the damage, measured
by the strain-sensors, are smaller than the strain perturbations due to the added noise.
It also pointed to possible alternative scenarios where similar-sized damages could be
detected, e.g., when the damage is closer to one of the sensors and measures a higher
strain perturbation.

(a) (b)

Figure 17. iFEM reconstructed Ip distribution for Damage Case-2 (5% noise) using: (a) Unitcell-1, and (b) Unitcell-2.

(a) (b)
Figure 18. Benchmark iFEM results of Ip for Damage Case-2 (5% noise) using: (a) no threshold, and (b) threshold = 0.5.

3.2.3. Results for Damage Case-3

The iFEM results for Damage Case-3 are shown in Figure 19. As seen in the benchmark
results, Figure 19 showed a Ip peak at the center of the plate and the damage orientation
is reflected in the Ip distribution. Compared to the previous two cases, the results of
Unitcell-2 are quite similar to the benchmark results, particularly in the regions around the
damage and the strain distribution far away from the damage location.

Results of Unitcell-2 (Figure 19b) showed a greater distribution of Ip perpendicular to
the crack front. However, Unitcell-1 results are relatively symmetric, and no significant
inference could be made regarding the damage orientation. The iFEM results obtained
using strain data contaminated with 5% noise are shown in Figure 20.

The contour plots of Figure 20 showed notable changes due to the addition of noise.
Unitcell-1 results no longer presented an obvious damage location; however, improved
predictions are obtained using Unitcell-2. These results are further refined using a threshold
of 0.5; the corresponding plots are shown in Figure 21. The use of a threshold showed
multiple Ip peaks in the results of Unitcell-1, making accurate damage detection difficult.
In contrast, the results of Unitcell-2 are of improved quality, with a well-defined Ip peak at
the center. These results are again compared with the benchmark iFEM results for Damage
Case-3 using strain data contaminated with 5% noise. The benchmark results are shown
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in Figure 22. Compared to Unitcell-2, the benchmark results offered better directional
information, with larger Ip distribution perpendicular to the crack front and a less diffuse
strain field near the damage site. These results offer improved predictions of the crack
position and orientation.
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Figure 19. iFEM reconstructed Ip distribution for Damage Case-3 using: (a) Unitcell-1, and (b) Unitcell-2.
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Figure 20. iFEM reconstructed Ip distribution for Damage Case-3 (5% noise) using: (a) Unitcell-1, and (b) Unitcell-2.
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Figure 21. iFEM reconstructed Ip distribution for Damage Case-3 (5% noise, threshold = 0.5) using: (a) Unitcell-1,

and (b) Unitcell-2.
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Figure 22. Benchmark iFEM results of Ip for Damage Case-3 (5% noise) using: (a) no threshold, and (b) threshold = 0.5.

The superior predictions achieved with Unitcell-2 are attributed to its ability to pro-
vide the complete three strain component information within an element. Although the
presented results focused on a relatively simple load case of a plate under biaxial loading,
the real challenge is the strain field reconstruction near the damage site. Near the damage,
the strain field distribution is complex, and the in-plane shear strain effect is significant.
In this context, it is understandable that those sensor configurations with more in-plane
shear strain measurements, i.e., the iFEM benchmark and Unitcell-2, yielded more accurate
results. Although Unitcell-1 results are of theoretical interest, in most practical applications,
the assumption of a constant in-plane shear strain over the plate is expected to produce
somewhat erroneous results. In such situations, it would be of interest to investigate
alternate configurations inspired by Unitcell-2.

Aside from the strain-sensor arrangement, the numerical integration scheme used
and the smoothing strategy employed also influenced the iFEM accuracy. Both the 2 x 2
and 3 x 3 Gauss integration schemes are employed for the current set of results. Although
an explicit claim regarding the superiority of one scheme over the other cannot be made,
the accuracy of Unitcell-2 when using a constant set of centroidal strain data at all integra-
tion points of the 2 x 2 Gauss scheme is promising. This strategy reduced the number of
strain measurement points required within an element, is more computationally efficient,
and proved to be robust in the face of measurement noise. The choice of smoothing strategy
also affected the iFEM results. Although the 1D smoothing strategy adopted in the present
work produced good results, alternate strategies can also be explored and are expected
to produce varying degrees of success. Regardless of the specific method considered,
the relevant problem is the interpolation order of the smoothing strategy used and the
complexity of the strain field investigated. A possible alternative is a 2D SEA scheme,
where the plate is discretized using triangular smoothing elements. The refinement of the
mesh could also be a contributing factor. The effect of the numerical integration scheme
and the smoothing strategy employed are factors worthy of future investigation.

3.3. Damage Detection as a Function of Noise Level in Measured Strain Data

This section presents the results of a numerical study that explored the damage
detection quality as a function of the noise level. Section 3.2 reported iFEM results using
strain data contaminated with 5% noise, where the two Unitcells reported a mixed level
of success. The results of Unitcell-2 for Damage Cases-1 and 3 are successful in detecting
damage and provided information regarding damage position and orientation. The effect
of noise is further investigated here using Unitcell-2 strain data for reconstructing the strain
field of Damage Case-1. The strain data is contaminated incrementally using eight different
noise levels from 2.5% to 20%. The results of the study are presented as contour plots of Ip
with a threshold of 0.5, and the plots are shown in Figure 23.
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Figure 23. Noise study considering Unitcell-2 results for Damage Case-1; contour plots of Ip for different noise levels
(threshold = 0.5): (a) 2.5%, (b) 5%, (¢) 7.5%, (d) 10%, () 12.5%, (f) 15%, (g) 17.5%, and (h) 20%.

The study results showed that successful damage detection is possible up to a noise
level of 10%. For noise levels below 10%, the prominent Ip peak is observed at the center
of the plate, coinciding with the damage location. As the noise level increased further,
additional peaks at far-field locations started to become more prominent. Even up to a
noise level of 17.5%, it could be claimed that the prominent peak is at the center of the plate,
and the use of a higher threshold could lead to successful damage detection by isolating the
central peak. But that is no longer the case for noise levels of 20% or greater, as far-field Ip
peaks are dominant, and successful damage detection was no longer possible. The results
further demonstrate the robustness of Unitcell-2 results in the presence of random noise
and are promising for potential practical applications.

4. Conclusions

This paper presented a numerical study using the inverse Finite Element Method
(iFEM) to reconstruct the two-dimensional displacement and strain fields of a cracked
plate undergoing membrane deformations. The study’s main goal was damage detection.
The plate was instrumented using fiber-optic strain sensors that measure only uniaxial
strains. Several fiber arrangements were investigated, and strain-interpolation strategies
were used to improve the quality of strain data used for the iFEM analysis. Various damage
scenarios were investigated by varying the damage size, position, and orientation. The ef-
fects of measurement noise were also investigated. The location of the damage occurred
as a region of strain concentration in the reconstructed strain field, and the iFEM results
were successful in detecting and localizing the damage. It was also shown that informa-
tion regarding the damage orientation is represented in the iFEM results. The addition
of measurement noise led to difficulties in detecting small-size cracks because the noise
overshadows the strain perturbations due to the actual damage. The use of a fiber pattern
resembling a strain rosette produced superior results because it provided greater informa-
tion regarding the strain field within an element. These results highlight the potential of
strain measurements based on fiber optic sensors for practical SHM applications. This re-
search has also revealed that additional post-processing procedures can be investigated to
obtain requisite information regarding the position and orientation of damage.
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Abstract: Rail tracks undergo massive stresses that can affect their structural integrity and produce
rail breakage. The last phenomenon represents a serious concern for railway management authorities,
since it may cause derailments and, consequently, losses of rolling stock material and lives. Therefore,
the activities of track maintenance and inspection are of paramount importance. In recent years,
the use of various technologies for monitoring rails and the detection of their defects has been
investigated; however, despite the important progresses in this field, substantial research efforts are
still required to achieve higher scanning speeds and improve the reliability of diagnostic procedures.
It is expected that, in the near future, an important role in track maintenance and inspection will
be played by the ultrasonic guided wave technology. In this manuscript, its use in rail track moni-
toring is investigated in detail; moreover, both of the main strategies investigated in the technical
literature are taken into consideration. The first strategy consists of the installation of the monitoring
instrumentation on board a moving test vehicle that scans the track below while running. The second
strategy, instead, is based on distributing the instrumentation throughout the entire rail network,
so that continuous monitoring in quasi-real-time can be obtained. In our analysis of the proposed
solutions, the prototypes and the employed methods are described.

Keywords: rail; guided wave ultrasound; broken rail detection; rail diagnostics; structural health
monitoring; non destructive testing

1. Introduction

The track is one of the basic elements of railroading. Since the weight of trains is
discharged on a very small portion of rail surfaces, tracks require careful maintenance [1].
It is well known that: (a) rails are subject to intense bending and shear stresses, plastic
deformation and wear, leading to progressive degradation of their structural integrity [2];
(b) they may contain internal fabrication defects undetected by quality control. All of this
may result in rail breakage and, consequently, in train derailment with potential catastrophic
consequences (traffic interruption, possible losses of rolling stock material and even lives, etc.).

According to the European Union agency for railways (ERA) safety overview for
2017 [3], in the years 20112015, broken rails have represented the main form of precursors
to accidents, i.e., of inconveniences that, under other circumstances, could have led to an
accident (other precursors to accidents include track buckles, signals passed at danger,
wrong-side signaling failures, broken wheels, and axles). On the average, 4445 broken
rails per year have been detected over a total of 11,222 precursors to accidents in the whole
European Union (EU-28) in the same period. This explains why track inspection and
maintenance play a fundamental role; moreover, these aspects are expected to become more
and more crucial since operative loads, traffic, and speeds are progressively increasing [1].

Over the years, various systems have been developed to monitor the health of rails.
Since all the currently available solutions do not fully match the requirements set by railway
infrastructure management companies, substantial research efforts are still required in this
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field. In particular, an important challenge is represented by the development of reliable
methods for detecting potentially hazardous rail defects before they evolve in rail break-
ages. In fact, the availability of rail diagnostics methods allow for introducing predictive
maintenance procedures instead of the preventive maintenance strategy commonly used
nowadays. This will lead to more reliable railway networks, with a substantial increase of
the efficiency and economic sustainability of maintenance procedures [4].

In the last two decades, few review articles about the monitoring of rail tracks have
been published [4-6]. Moreover, in recent years, new technologies and approaches have
been developed in this field, and the interest of authorities and companies has grown.
This has motivated the writing of this manuscript that aims at providing a self-contained
and comprehensive overview of the techniques and systems for rail defect detection
based on ultrasonic guided waves (UGWs). This technology is relevant since it allows for
accomplishing non destructive testing (NDT) and to sound a large area by means of a single
transducer [7]. Two technical solutions are available for track monitoring based on UGWs.
The first solution is based on a measuring equipment placed on board a moving diagnostic
vehicle. It offers the important advantage of an increased inspection speed with respect
to conventional bulk ultrasound or eddy currents methods; it is worth remembering that
conventional methods suffer from slow inspection speed and, consequently, reduce the
infrastructure availability for commercial services. The second solution, instead, relies on a
monitoring equipment placed on the ground; this makes possible a constant monitoring of
rail status if the employed sensors are distributed along the considered rail network.

The remaining part of this manuscript is organized as follows. In Section 2, a taxonomy
of rail defects and the main techniques for their detection are described. A classification of
the techniques based on guided ultrasound waves and a description of their architecture
is provided in Sections 2 and 4, respectively. Various details about their implementation
are illustrated in Sections 5-8, whereas their performance is analyzed in Section 9. Finally,
some conclusions are offered in Section 10.

2. An Overview of Rail Defects and of the Techniques for Their Detection

The railroad track system is very complex, and involves many interactions [8]: damage
can occur anytime and anywhere. The development of defects in rails is due to uncontrolled
and random processes. If not detected in time, defects can lead to rail failures, which, in
some cases, happen without any previous indication. The prediction of crack growth rates
and of the size of defects at failure are both influenced by various parameters [4,9]. In the
following two paragraphs, we focus on the different types of defects and on the techniques
that can be employed for their detection.

2.1. Rail Defects

The transverse section of a rail is represented in Figure 1. Rails in the past were joined
together using fishplates; this procedure has been replaced by welding that allows for
developing long and continuous stretches of rails forming a continuously welded rail.

Running surface

Gauge

(a) (b)

Figure 1. Representation of the terminology commonly adopted in the description of rails: (a)
transverse section; (b) reference planes.

56



Appl. Sci. 2021, 11,1071

Various classifications of rail defects are adopted in the technical literature. Following
Ref. [10], a rail track defect could be either of geometry or structural type. Track geometry
defects are related to the geometric conditions of tracks; track structural defects, instead,
refer to ill-conditioned structural parameters of tracks (including rails [8]). In the remaining
part of this paragraph, we take into consideration track structural defects only; these are
divided into the three broad categories described below.

2.1.1. Rail Manufacturing Defects

Rail manufacturing defects usually comprise inclusions or incorrect local mixings
in rail steel; these generate localized stresses under operative load, which, in turn, can
trigger a rail failure process [1,11]. Damages of this category include transverse defects (TD)
and longitudinal defects (LD) [1,12,13]. The former type of defects consists of a progressive
fracture developing in the railhead parallel to the transverse direction [1] (see Figure 2);
the latter type, instead, is represented by an internal progressive fracture propagating
longitudinally in rails. Longitudinal defects can be further subdivided into vertical and
horizontal split heads (see Figure 3).

(@) (b)

Figure 2. Three-dimensional representation of transverse defects: (a) section with shell; (b) lateral
view.

(b)

() (d)

Figure 3. Three-dimensional representation of longitudinal defects: (a,b) horizontal fissures; (c,d)
vertical fissures.
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2.1.2. Defects Due to Improper Use or Handling of Rails

Defects related to improper use or handling of rails are usually caused by train wheels
spinning on rails (this produces the so-called wheelburn defect, shown in Figure 4) or by
sudden train brakes [1].

<«

Figure 4. Three-dimensional representation of a wheelburn defect.

2.1.3. Defects Due to Rail Wear and Fatigue

Rail wear and fatigue defects are due to wearing mechanisms of the rolling surface
and/or to fatigue. Well known examples of this category are: (a) corrugation; (b) rolling
contact fatigue (RCF) damages; (c) bolt-hole cracks [1].

Corrugation is related to the wearing of railhead [14] and does not compromise rolling
safety, but affects both track elements and rolling stock, since it increases noise emission,
loading, and fatigue [15].

Rolling contact fatigue damages are much more severe from the point of view of
structure integrity, as they could lead to complete rail failure [16-18]. Independently of any
material defect, fatigue cracks initiate on (or very close to) the rail running surface [17].
The RCF damage can be further subdivided in: (a) checking and possible spalling; (b) shelling;
(c) squats (see Figure 5) [19]. The occurrence rate of RCF is proportional to the speed of the
train or to its weight [1]. To counteract RCF, the damaged rail can be prematurely removed
in the most severe cases or ground to remove the surface-initiated crack. The running
surface can also be lubricated; however, it is believed that fluid entrapment in metal can
speed up the growth of a surface-initiated crack [16].

Bolt-hole cracks appear in joined tracks; as shown in Figure 6, they originate on
the surface closer to bolt-holes and propagate with a +45° angle from the vertical up to
reaching web-railhead junctions. These defects may originate from the fretting fatigue
caused by the bolt shank against the surface of bolt-holes [1].

In welded rails, critical points requiring careful inspections are represented by welds
(see Figure 7); in fact, internal defects of welds can affect structural integrity and fatigue
performance, bringing rapid failures [5].

(a) (b) ()

Figure 5. Three-dimensional representation of defects originating from RCEF: (a) gauge corner checking and spalls can
produce (b) shelling and (c) squats.
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Figure 6. Three-dimensional representation of bolt-hole cracks.

o =

Figure 7. Thermite weld joining two rails with different profiles (50E5, UNI-50, on the right and 60E1,
UNI-60, on the left).

2.1.4. Defect Growth

The failure due to cracks of metallic structures goes through the following three phases:
(a) crack initiation; (b) crack growth; (c) a subsequent quick crack growth culminating in a total
fracture. Specific techniques can be used to detect cracks when they are in their earlier
stages [8], so that the third phase is not reached [16]. Since defect development is due to
uncontrolled and random processes or events, this process does not lend itself to a simple
statistical description [4].

2.2. Rail Diagnostics Techniques

Different inspection techniques for non destructive testing (NDT) of rails are available
and currently in use. These can be divided in the following classes [5]: (a) eddy current (EC)-
based methods; (b) ultrasonic techniques; (c) visual inspection techniques; (d) thermal techniques;
(e) radiographic techniques. These techniques require that some instrumentation is installed
on a vehicle (i.e., a train or a special vehicle) to acquire the required measurements while
moving on tracks.

2.2.1. EC-Based Methods

These methods include eddy current inspection and magnetic flux leakage (MFL). The
method based on eddy current measures the material response to an induced electro-
magnetic field: the presence of a surface or near-surface defect produces a distributed
electromagnetic field that can be measured. This method is contactless, but very sensi-
tive to probe lift-off from the surface of test specimens [20]. The method based on MFL
consists of magnetizing the object to be tested and in scanning its surface by means of a
flux-sensitive sensor [21]. In the presence of a defect, the magnetic flux (usually contained
into the magnetized test object) leaks into air [22]. This method is able to detect superficial
or near-superficial transverse fissures (like RCF) but is not suited to longitudinal fissures,
and its performance is influenced by the selected scanning speed [23].

The inspection speeds of the systems based on the two methods described above are
limited (75 km/h for EC testing, 35 km/h for MFL) and smaller than those characterizing
revenue service trains [5].
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The limitations of EC inspection of rails are analyzed in Ref. [24]. Some of the most
recent advances in EC-based testing of rails are illustrated in Refs. [25,26]. Finally, it is worth
mentioning that a recent implementation of the MFL technology can be found in Ref. [27].

2.2.2. Ultrasonic Techniques

These comprise conventional bulk wave ultrasonics, phased arrays, and ultrasonic guided
waves (A brief introduction to ultrasonic guided waves and to their propagation in rails
is provided in Appendices A and B, respectively.) (UGW) techniques; the last class of
techniques can be further divided into on-board and land-based systems. An introduction to
ultrasonic techniques applied to rail diagnostics is given in Section 2.3.

2.2.3. Visual Inspection

Visual inspection can be exploited by a human expert walking on tracks and searching
for defects, or by automated techniques. Automated visual inspection is based on video
cameras, optical sensors, and custom-designed algorithms to analyze the rail surface as the
diagnostic train rides over [28-31]. Test speeds can be as high as the velocity of high-speed
trains [4], but only the visible surface of the rail is inspected and internal defects cannot be
detected [5]. Furthermore, since detection performance is influenced by lighting conditions,
proper countermeasures need to be adopted [32]. An example of a high-speed diagnostic
train also making use of visual inspection techniques is shown in Figure 8 [33].

Figure 8. ETR.500 Y 2 “Dia.man.te”, high speed (300 km/h) visual inspection EMU (courtesy of ©
Stefano Paolini).

2.2.4. Thermal Techniques

These techniques exploit the change in the thermal properties of rail material in
the presence of a defect. The presence of an anomaly is inferred from a single frame or
from a video sequence of the temperature distribution of the surface of the considered
specimen [5,34]. Some recent approaches are illustrated in Refs. [35,36].

2.2.5. Radiographic Techniques

Radiography is the only technique able to analyze visually the interior of a rail or a
weld. This method can detect cracks, flaws, and thickness reduction in detail, but has safety
hazard concerns, is expensive, and time consuming. For these reasons, it is often used to
analyze rails; only after that have other NDT techniques detected a specific problem [5].

2.2.6. Track Circuits

Track circuits are systems used to detect the presence of a train in a stretch (section)
of track by means of an electrical current. A transmitter and a receiver placed at the two
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ends of the considered track section are exploited. In the absence of trains, an electrical
signal flows through the rails from transmitter to receiver. On the contrary, when a train
enters into the track section, its wheels short-circuit the pair of rails, so that the signal
sent by the transmitter is unable to reach the receiver and the section status becomes busy.
An occupied section is also detected if a complete rail failure occurs, since the electrical
continuity is interrupted. The main problem of track circuits is represented by the fact that
they are able to detect a rail failure only if the electrical continuity of the associated circuit
is interrupted; consequently, early-stage cracks are not detected [37].

2.3. Defect Detection Techniques Based on Ultrasonic Waves

Detection techniques based on ultrasonic waves are divided into three main cate-
gories [5]: (a) conventional ultrasound, (b) phased arrays, and (c) guided waves ultrasound.

2.3.1. Conventional Ultrasonic Techniques

If these techniques are employed, the railhead is scanned by means of ultrasonic
beams: defects are detected by measuring the reflected or scattered energy. The presence
of a defect, along with its location and severity, is inferred from the amplitude of the
resulting reflections and their arrival times [23]. The employed ultrasonic transducers are
contained within a liquid-filled tire; this allows for improving signal quality by reducing
the acoustic mismatch between rail steel and air. For the same reason, water is sprayed
between the wheel containing the ultrasonic probes and rails [4]. Although ultrasonic
testing is capable of inspecting the whole railhead [38], it has the following limitations: (a)
limited car speed in ultrasonic inspection [16] (in practice, the achievable test speeds can
be as low as 15 km/h [4] and, consequently, inspection has to be accomplished outside the
operation period of commercial trains [1]); (b) shallow crack shadowing [13,16] (small shallow
cracks can shade more severe and deeper cracks by reflecting ultrasonic beams [1]); (c) false
defect detection [1] (this slows down inspection operations).

The ultrasonic testing vehicle “us1-Galileo” employed by the Italian railway infras-
tructure manager, Rete Ferroviaria Italiana (RFI), is shown in Figure 9.

Figure 9. Ultrasonic testing vehicle “us1-Galileo” (courtesy of © Benedetto Sabatini).

2.3.2. Phased Arrays

Phased arrays use multiple ultrasonic elements and electronic time delays to generate
beams by exploiting constructive and destructive interference. Phased arrays provide
ultrasonic beams that can be steered, scanned, swept, and focused electronically [39].
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2.3.3. Guided Waves

In an effort to overcome some of the technical problems associated with ultrasonic
wheel inspections, some research groups are investigating ultrasonic guided waves for rail
inspections. Different types of guided waves can propagate in any bounded medium.
Inspection tests can be accomplished in pulse-echo mode; this means that an ultrasonic
transducer is employed to transmit a pulsed guided wave along the structure of interest
and that the presence of defects or other structural features is inferred from analyzing the
returning echoes sensed by the same transducer [7]. Operation in pitch—catch mode can be
also employed; in this case, a transmitter generates a guided wave in the waveguide and a
receiver (i.e., a different transducer, placed at the other end of the sample) is employed to
detect the incoming wave. If a defect reflects a portion of the transmitted energy, the re-
ceived signal is weaker than that observed in pristine waveguide conditions; this allows
for detecting the presence of defects [40].

Ultrasonic guided waves offer the following advantages [41]: (a) guided waves propagate
along (rather than across) rails, and are ideal for detecting critical TDs, even if they are
relatively insensitive to parallel fissures [42]; (b) guided waves allow for improving inspection
coverage, thereby relaxing limits on the maximum achievable speed (if the inspection
equipment is installed on-board a moving vehicle); (c) guided waves can travel underneath
shelling and still interact with internal defects, since they penetrate a finite depth of the surface
of rails; iv) guided waves can penetrate alumino-thermic welds, hence potentially targeting
weld cracks and discontinuities, since they travel in the mid-frequency range (say, in the
20 kHz-1 MHz range).

Unluckily, the complicated propagation behavior of guided waves cannot be easily
managed [43]. In fact, ultrasonic guided waves, especially in complex waveguides such
as rails, express a multi-mode character (many modes can propagate simultaneously) and
a dispersive character (the propagation velocity depends on frequency) [7]. In practice,
tens of different modes can be observed in the employed frequency range; moreover, the
dispersion curves characterizing this propagation phenomena are very complicated [43],
as it can be easily inferred from Figure 10.
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Figure 10. Dispersion curves (a) and mode shapes (b) observed in a rail waveguide. Some candidate modes for long range

damage detection are highlighted. Modes 1 and 2 are symmetric and anti-symmetric, respectively, and their energy is

concentrated in the crown of the considered rail; the energy of mode 3, instead, is more evenly distributed across the rail
cross section (a small portion of it is observed in the foot), whereas that of mode 4 is concentrated in the web of the rail
(pictures taken from Ref. [44]).
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3. Systems for Rail Defect Detection Based on Ultrasonic Guided Waves: Classification

Substantial research efforts have been devoted to the study of systems exploiting
ultrasonic guided waves for the detection of rail defects. More specifically, the following
two broad categories of systems have been investigated:

1. On-board systems [40,45-49]-The measurement equipment is embarked on board a
moving vehicle (e.g., an inspection cart), allowing for scanning the head of the rails
on which it is riding. The detection of defects in the scanned rails is achieved through
a pitch—catch mechanism. Initial implementations were based on an active approach,
in which a source of ultrasounds was used to inject UGW into the rails, and sensing
was accomplished through an array of transducers. More recent implementations
adopt a passive approach, in which the ultrasonic excitation is generated by the rolling
wheels of the moving vehicle. The approaches based on on-board systems have
been promoted, among others, by the Experimental Mechanics & NDE Laboratory of the
University of California, San Diego, USA.

2. Land-based systems [9,50—-67]-The employed equipment is placed on the ground near
to the railway infrastructure, and its actuators and sensors are attached to the rails
under test. The detection of defects in the rails is achieved through a pulse-echo
approach. A lot of contributions about this topic have been published by the Sensor
Science and Technology Department of the Council for Scientific and Industrial Research,
South Africa. The ultrasonic broken rail detection (UBRD) system has been developed by
this institution and put in use on the Oreline in South Africa to detect the presence
of a fully broken rail; the system is evolved to implement an early defect detection
system. In recent years, important results in this research field have been achieved
by two Chinese research groups. In fact, significant contributions about the best
methods to excite and detect propagation modes in a rail, and about feasible methods
for rail defect location have been published by various researchers working at the
Beijing Jiaotong University (School of Mechanical, Electronic, and Control Engineering,
and Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology).
Moreover, an electronic system able to efficiently excite ultrasonic guided waves in
rails has been developed by various researchers working at the Xi’an University of
Technology (Department of Electronic Engineering).

In the remaining part of this manuscript, both categories of systems are taken into
consideration. In particular, the architecture of these systems is described in Section 4.
Sections 5-7 are devoted to the implementation of on-board approaches, to that of the
UBRD system, and to the evolution of the UBRD system towards early defect detection and
monitoring. In Section 8, commercial projects like Rail Acoustic (by Enekom), or university
studies, like those accomplished by the Beijing Jiaotong University or the Xi’an University
of Technology are summarized. Finally, various results about the performance provided by
each of the considered systems are illustrated in Section 9.

4. Systems for Rail Defect Detection Based on Ultrasonic Guided Waves: Architecture

In the technical literature, various architectures have been proposed for on-board or
land-based systems for rail defect detection based on UGWs. In this section, some essential
features of the available technical options are illustrated.

4.1. On-Board Systems

Over the years, active and passive detection strategies have been proposed for on-
board systems. The main characteristics of the systems employing such strategies can be
summarized as follows:

e Anactive rail inspection system is able to detect surface-breaking cracks and internal
defects located in the railhead. It is based on UGWs and air-coupled contactless
probing. Both the transmission of test signals and their reception are accomplished
by means of air-coupled piezoelectric transducers arranged in a pitch—catch configu-
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ration. The use of a laser transmitter has been also investigated [40]; however, this
option has been judged too costly and is potentially hard to maintain. In an active
system, receivers are arranged in pairs and placed at the two sides of the transmitter:
this allows for implementing a differential detection scheme. The system output,
after data analysis, is represented by the so-called damage index (DI), exhibiting peaks
in correspondence of discontinuities (i.e., of potential defects) in rails. In recent years,
the use of laser technology for both exciting UGWs in rails and sensing them has been
investigated [68,69]. In this case, non-ablative laser sources are used to generate a
guided tensional wave system in the rail; the response to such a system can be sensed
by means of a rotational laser vibrometer.

® A passive rail inspection system aims at estimating the acoustic transfer function of
rails; the excitation is represented by the rolling wheels of the moving instrumented
train [48]. When a train is in motion, its rotating wheels generate a continuous
dynamic excitation of the rail. Such an excitation is uncontrolled, non-stationary,
and difficult to characterize [48]. Therefore, in this case, the challenge to be faced is
to generate a stable rail transfer function that is not affected by the excitation [49].
The presence of a discontinuity in the rail can be inferred from the estimated transfer
function, using again the DI indicator.

4.2. Land-Based Systems

The UBRD is a broken rail detection (BRD) system, designed to continuously detect full
breaks in rails [50]. Its transducers are tied to the rail and allow for monitoring a span
of up to 1 km of track in pitch—catch mode. This system has been already installed on
841 km of tracks in the high-haul Oreline network in South Africa [51,52]. The system
architecture is represented in Figure 11; its operation is based on a simple transmit-receive
confirmation protocol. As long as a reliable reception of the ultrasonic signal generated
by the transmitter is possible, the integrity of the rail is verified; otherwise, an alarm is
set [50,53].

Train << ! { }

Telemetry AH—{

Solar Power
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electronics electronics electronics

Figure 11. UBRD system concept [51].

The developers of the UBRD system are studying how UGWs can be exploited to
detect and monitor a growing defect, and how specific guided modes can be excited in a
rail. The use of techniques for the excitation of guided waves different from those based on
piezoelectric transducers have been investigated. For example, the use of electromagnetic
acoustic transducers (EMATs) has been taken into consideration [55]. In the meantime,
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the reflection characteristics of defects and their dependence on time and environmental
conditions are under evaluation [9,56,57,65].

In principle, UGWs have the potential to monitor a long span of a waveguide using
permanently installed transducers in pulse-echo mode. The same transducer array is
used to generate the ultrasonic wave and then to measure the echo generated by the wave
reflection on a defect. A continuously welded rail is a perfect example of such a waveguide
and, as a matter of fact, defects (and welds) act as reflectors for guided waves. A system
based on this approach is able to detect the presence of a defect, and to estimate its magnitude
and location. These results are achieved by monitoring the echoes coming from defects
(defect presence), measuring their amplitude (defect magnitude) and the time-of-flight
required by the transmitted wave to travel back and forth from the transducer to the defect
(defect location) [51].

An important advantage offered by land-based solutions is represented by the fact that
monitoring can be accomplished in near real-time, so that defect growth can be analyzed
over time and an alarm set only when a crack assumes a potentially critical size [9,65].

Further details about the architecture of the UBRD system are provided in Section 6.
In Section 7, its evolution towards an early defect detection system is described.
Other projects or studies about land-based systems are illustrated in Section 8.

5. Implementation of On-Board Systems

In this section, the implementation of on-board systems is described in detail;
both active and passive approaches are considered.

5.1. Active Approach
5.1.1. Hardware Configuration

The configuration adopted in the active on-board system is shown in Figure 12:
a single focused transmitter and four pairs of receivers are fixed to a frame which is in
turn attached to a cart [40,45,47]. The lower active surface of the transducer is separated
from the upper surface of the rail; their distance is known as lift-off and is on the order of a
few centimeters for both the transmitter and the receivers. The transmitter feeds the top
of the rail surface with a narrowband toneburst signal (a Hanning-windowed sinusoid);
it has a tunable repetition rate (representing the frequency of the excitation and related to
spatial resolution). This results in a (repeated) multimodal guided wave that propagates
symmetrically with respect to the excitation line. The receivers detect the guided waves
leaking into the surrounding air; for this reason, they are tilted according to Snell’s law.

Air-coupled Air-coupled focused Air-coupled Excitation
piezoelectric piezoelectric transducer piezoelectric N
transducers (transmitter) transducers

4 receivers 4 receivers

FIELD SIDE

(receivers) T (receivers)
AT 4 [as
Iy 1 F1

V¥ 4 GAUGE SIDE
Vertical Transverse
Split Defect
Head
(a) (b)

Figure 12. Schematic of the non-contact defect detection system based on ultrasonic guided waves:
(a) side view and (b) top view. The two red lines indicate the possible locations of a vertical split head
and a transverse defect [46].

5.1.2. Defect Detection Principles

The pair of receivers placed at the two sides of the transmitter are employed in a
differential detection scheme; this compares the strength of the signal received at both
sides. If an internal flaw is present on one side of the transmitter or on the other one,
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the transmitted wave is scattered and the outputs of the receiver pair are unbalanced. Some
strength-related metrics are extracted from the received waveforms to generate a “feature
supervector”; in practice, this is obtained by combining the “feature vectors” provided
by the two receivers. These metrics are listed in Table 1, in which the symbols PkPk(x) and
RMS(x) denote the mean peak-to-peak and root-mean-square, respectively, of the quantity x [46].

Table 1. Features extracted from the received time-domain waveforms x; and x,; these are recorded
by two receivers forming a symmetric pair [46].

Feature # Feature Content
1 max|x;| max|xz|
max max|xz|” max|xq|

Pkpk|xq| Pkpk|xz|

max ( PkpK[x;| ” PkpK[x
RMS(x3)
RMS(x1)

5.1.3. Signal Processing

The received signal needs to be properly processed (and, in particular, denoised)
to overcome the inherently low signal-to-noise ratio (SNR) of air-coupled piezoelectric
sensors [40]. A multivariate outlier analysis (MOA) is used to compensate for the natural
signal variations expected during the test; the final result is represented by a damage index
(DI) computed at each test position. Defects are detected by an high value of DI, i.e.,
by an unusually large discordancy index from the “normal” baseline of the rail. The DI is
represented by the Mahalanobis squared distance discordancy metric D; of a MOA [46],
which is defined as

D;=(x;—x)" K- (x — %), 1)

where x; is the potential outlier vector, X is the mean vector of the baseline, K is the
covariance matrix of the baseline, and (-)7 represents the transpose operator. A new
observation is classified as an outlier if the corresponding value of D; is higher than a
proper threshold, previously established [45].

To reduce the probability of false alarms due to the occurrence of isolated noise-related
high peaks in the DI trace, system redundancy can be exploited [46]. When scanning a
defect, the presence of a real crack should result in multiple peaks in the observed trace.
Therefore, a peak is detected by the system only when a given number of DI values exceeds
the above-mentioned threshold.

5.1.4. Reverberation of Airborne Signals Caused by an Acoustic Mismatch

The presence of reverberations of the airborne waves between the transmitter and the
top of the excited rail has been found. This phenomenon is caused by the unavoidably high
acoustic impedance mismatch between the air medium and the solid boundaries of the rail
steel and of the piezoelectric transducer. The strong intensity of the reverberations affects
the detection of acoustic waves traveling through the rail steel associated with the presence
of rail defects. Although time gating can effectively separate the signal of interest, a lower
SNR is observed when the repetition rate (i.e., the frequency of the excitation) is sufficiently
high such that the airborne reverberations from a previous excitation overlap with the
waves of a new excitation. This limits the test speed to ~1.6 km/h (~2.4 km/h when a
slightly worse SNR is acceptable) because of the required spatial resolution. The most
effective solution developed for this problem until now consists of inserting a sponge
between the transmitter and the rail to attenuate the airborne reverberations. The main
drawback of this solution is represented by the fact that the sponge has friction with the
rail, and this raises the noise level affecting the received waves as the train speed increases;
in practice, a reliable signal detection is possible up to 24 km/h [47]. Some test results are
illustrated in Section 9.1.
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5.2. Passive Approach
5.2.1. Hardware Configuration

In this case, as illustrated in Refs. [49,66], the sensing head is made of two receivers,
denoted A and B, separated by a known distance; both are sensitive only to waves prop-
agating unidirectionally (from left to right in Figure 13). The sensing head is mounted
on a beam rigidly connected to the front-axle of the test car; similarly as in the active
approach, contactless probing is employed. The sensors are tilted with respect to the rail
surface (according to Snell’s law) to best capture the leaky surface waves propagating in the
railhead. The orientation of receivers ensures directional sensing of the waves excited by
the wheels located on only one side of the arrays (front end), with virtually no sensitivity
to waves propagating in the opposite direction (i.e., to reflections or waves excited from
the wheels located to the other side of the arrays’ back end).
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Figure 13. Representation of the linear wheel-rail interaction in the frequency domain [49].

Data are continuously recorded for the entire duration of the test [49]. A tachometer
logic pulse marking the spatial position of the test car and GPS positioning are recorded,
in addition to high-speed camera videos of the tested rail to verify the presence of visible
discontinuities when the prototype detects an anomaly [48].

5.2.2. Defect Detection Principle

In this case, defect detection requires the estimation of the time domain Green'’s func-
tion G,p(t) between the two receivers A and B, without prior knowledge of the source
excitation spectrum. This function represents the response of the test object measured
a B from an impulse excitation at A. If the frequency domain Green'’s transfer function
Gp(w) can be estimated, discontinuities in the rail (such as defects) can be detected by
means of a procedure similar to that illustrated for the pitch—catch ultrasonic guided-wave
approach. In fact, discontinuities can be perceived as a change in the structural impulse
response, G4p(t), obtained from G4p(w) through an inverse Fourier transform. In terms
of defect detection, as long as the reconstructed Green’s function is stable during a test run,
successful passive structural inspection becomes possible.

The estimation of the Green’s function is based on the computation of the ensemble
averaged cross-power spectrum between the output and the excitation, normalized to a
modified ensemble averaged auto-power spectrum of the excitation. The following assump-
tions are made: (a) the system is linear and piecewise stationary, so that the statistics of
the excitation W(w) do not change in the observation interval; (b) the noise terms are
uncorrelated, have a zero DC component, and tend to zero on average, thus enabling for
separating the useful signal component from noise. The function Gp(w) is estimated by
computing the deconvolution of the cross and auto power spectra. In fact, the spectra of
the responses at A and B can be expressed as
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Va(w) = W(w) - WA(w) - Aw) + Na(w) @

and
V(w) = W(w) - WA(w) - Gap(w) - B(w) + Np(w), (3

respectively; here, V4 (w) (Vp(w)) is the response measured at receiver A (B), W(w) is the
wheel excitation spectrum, WA (w) is the transfer function of the rail between the wheel
and the transducer at A, A(w) (B(w)) is the frequency response of the receiving sensor A
(B), Na(w) (Np(w)) is the uncorrelated noise originating from the environment at A (B)
(see Figure 13).

Based on Equations (2) and (3), it can be shown that [49]

(Cross Power) = |W(w)|* |[WA(w)|?* Gag(w) 4)
and
(Auto Power) = |W(w)|* [WA(w)[?, (5)

in which the symbol () represents the ensemble average operator.
By using Equations (4) and (5), the frequency Green’s Function between the two
receivers is computed as

(CrossPower)  |[W(w)|* [WA(w)|* Gap(w)
(AutoPower) \W(w)\2|WA(w)T§ = Gap(w). (6)

Then, the time domain Green'’s function can be evaluated by taking the inverse Fourier
transform from the left-hand side of the last equation, i.e., as
1 e .
Gap(t) = — Gap(w) et dw. 7)
27T J oo
The last integral is computed in an approximate fashion through an inverse fast Fourier
transform (IFFT).

5.2.3. Data Processing

The employed data processing is sketched in Figure 14. In each run, the recordings
from receivers A and B are first amplitude-clipped to within the 43 standard deviations to
mitigate the effects of isolated spikes in the passive reconstruction of the impulse response
Gap(t). Then, the resulting signals undergo fast Fourier transform (FFT) processing, so that
cross and auto power spectra and the transfer function G4p(w) can be computed. Finally,
the time domain Green’s function G 45(t) is evaluated by (a) averaging the function G 45 (w)
over four sensor pairs and (b) accomplishing band-pass filtering and IFFT processing.
An outlier analysis is implemented in order to compute the DI related to the strength of
the reconstructed transfer function; this issue has already been discussed in Section 5.1.3,
when describing the active method for rail defect detection. The computation of the
DI allows for normalizing the available data, thus mitigating the normal (baseline) data
variability occurring in each run [48,49].
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Figure 14. Signal processing steps accomplished in the passive reconstruction of the transfer function
Gap(w) [48].

5.2.4. Trade-Offs

The impulse response Gp(t) is the result of the constructive interference of the
wave modes continuously generated by the wheel excitation and propagating in the rail
between the receivers. The constructive interference and, hence, the rate of convergence
of the passively reconstructed transfer function (or, equivalently, its SNR) benefit from
signal averaging. For this reason, time windows involving long recordings are preferred.
Note, however, that, since both the transmitters and the receivers are moving along the test
specimen (rail), the stationarity of the reconstructed transfer function can be guaranteed
only in a fixed position. For this reason, a good trade-off needs to be achieved between
the long recording time required by the averaging process and the stationarity (related to
spatial localization) of the transfer function that calls for shorter observations. This explains
why the test speed has to be properly selected: the higher the velocity is, the shorter the
recording time is, ensuring a sufficiently accurate spatial localization [48].

Some test results are illustrated in Section 9.2.

6. Land-Based Systems Implementation-Premise: Ultrasonic Broken Rail Detector (UBRD)

In this section, we focus on the implementation of land-based systems. Since the
topic is wide, the description of these systems is provided in three consecutive sections,
each focusing on specific technical issues, as already mentioned at the end of Section 4.

6.1. UBRD Hardware Configuration and Generated Signals

Transmitters and receivers of the UBRD system are interleaved, as illustrated in
Figure 15. Every receiver is able to acquire signals coming from both directions of the
rail; to identify the exact orientation, the transmitted signals consist of different burst
sequences depending on the transmitter. In fact, as it can be easily inferred from Figure 16,
each transmitted sequence consists of a number of pulses spaced by a given burst repetition
interval (BRI) and is repeated at a specific interrogation interval (II). This avoids the overlap
at one receiver of burst trains coming from adjacent transmitters for extended periods.
For such reason, receivers are also individually configured to recognize specific pulses
as arriving from either the up or down direction depending on the settings of adjacent
transmitters. Note also that each signal does not reach a receiver far from its transmitter
because of the attenuation due to the propagation medium [50,53].
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Figure 16. Burst injection scheme [50].

6.2. Defect Detection Principle and Employed Signal Processing Method

The transducers of each transmitter generate an acoustic signal that propagates
through the rail; this signal travels in both directions and can reach receivers located
at a significant distance from the transmitter. The received signals are filtered, amplified,
and processed. Rail integrity between the transmitter and each receiver is confirmed as
long as an acceptable signal is received. If a clean break occurs in the considered stretch
of rail, the corresponding receiver will no longer be reached by the transmitted signal
and will generate an alarm [50,53]. Receivers detect valid signals on the basis of specific
criteria concerning signal frequency, burst length, burst repetition interval, and burst
train continuity.

Severe continuous noise (such as that generated by an approaching train) at a re-
ceiver will affect signal detection, regardless of the efficiency of the employed detector.
Under such circumstances, the receiver will generate the message “train in section”,
will stop processing its input signals, and will remain idle until the noise intensity decreases;
then, it will return to its normal conditions.

This system is commercialized under the name “RailSonic-ultrasonic broken rail
detector”. The system is not classified “Fail Safe”, although in Ref. [50], it is claimed
that many fail safe principles have been incorporated in order to correctly detect most of
equipment failures; this allows for correctly identifying these events and are, at the same
time, to avoid false alarms.

6.3. UBRD Updates

To update the UBRD, a new piezoelectric transducer has been developed, thanks
to numerical modeling and measurement techniques. This improvement and the use of
new digital signal processing techniques have been incorporated into a new version of
the UBRD system that allows for doubling the distance between transmit and receive
stations [51].

Yuan et al. have proposed a method to integrate the UBRD system with a train detection
(TD) system [54]; the resulting system is able to distinguish the following three different
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track conditions: free, busy, and broken rail. This is made possible by extracting, from the
ultrasonic guided waves, the following three features: (a) the RMS value and (b) the energy
in the time-domain; (c) the frequency component with the highest amplitude in the frequency
domain. In addition, temporal and spatial dependencies of the signals are taken into consider-
ation. High-level signal processing techniques, such as deep learning algorithms, are also
employed to deal with varying environmental situations and conditions. The suitability of
this approach has been assessed through experimental tests.

In Ref. [67], the same authors as Ref. [54] have proposed to exploit the variational
mode decomposition (VMD) algorithm to de-noise and reconstruct ultrasonic guided wave
signals. The VMD method is a quasi-orthogonal signal decomposition technique for non-
recursively decomposing a multi-component signal into a finite number of compactly
band-limited intrinsic mode functions (IMFs). The VMD algorithm is used to decompose
ultrasonic guided wave signals into the fundamental, harmonics, interharmonics, and
non-stationary disturbances, and can be used in conjunction with the method developed in
Ref. [54].

7. Land-Based Systems Implementation-Evolution: Early Rail Defect Detection Capability

An experimental system able to monitor an operational rail track by means of ultra-
sonic guided waves has been proposed in Ref. [65]. In this section, the prototype and the
methodologies adopted to process and analyze the available data are illustrated. Moreover,
various technical problems and the solutions developed to solve them are briefly described.

7.1. Introduction

Numerous types of defects appear in rail tracks, and multiple parameters affect the
prediction of crack growth rates and of the defect size at failure [9]. In principle, the baseline
subtraction method could be used to detect the insurgence of a defect over time. Baseline
subtraction is based on the idea of feeding a system in a given condition with a known
excitation, measuring its response, and storing it as a baseline. Each and every modification
in the system reflects in a change in its response to the same excitation. Therefore, in
principle, the occurrence of any change potentially due to a defect can be detected by
comparing each new response to the baseline. In practice, however, it is not easy to establish
if such a change is caused by a defect or by a variation of other parameters affecting the
system response to the considered excitation. In fact, it should be always kept in mind that,
in harsh environments like rail tracks, any variation observed in the propagation conditions
of ultrasonic signals can also originate from changes in environmental and operating conditions
(EOCs); these conditions include, for instance, temperature, train passing, or maintenance
operations [51].

The continuous monitoring of a rail track can provide better performance results in
terms of defect detection probability than a single inspection, though it is influenced by
the EOC. In this case, the most important technical challenges are: (a) the development
of a permanently installed UGW-based monitoring system for rail defect detection at a
reasonable cost per kilometer of track; (b) the development of a defect detection technique
able to reliably operate in the presence of real EOCs. Of course, if a suitable facility is
unavailable, tests can be performed on operative tracks. The problem is that damaged
sections of rails are removed as soon as defects are detected; furthermore, rails must not
be damaged or altered. Consequently, it is impossible to test the available prototypes on
real cracks: their performance is assessed by using welds or glued masses, both acting as
reflectors for guided waves [9].

Different problems must be addressed in order to achieve an effective automatic
monitoring system for rail damage detection. In particular, the following specific technical
issues should be investigated: (a) the behavior of a defect growing over time; (b) the
influence of the selected transducers on the quality of the received signal; (c) the influence of
the changes in rail properties on the propagation of guided waves and the parameterization
of these changes; (d) the influence of time varying EOCs on wave propagation and the
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methods for compensating for these variations; and (e) the identification of the defect
detection algorithm and the use of proper methods for assessing its performance.

7.2. Monitoring Set-Up

In this section, the hardware and software architecture of the system illustrated in
Ref. [65] are briefly described.

7.2.1. Selected Modes for Guided Wave Propagation

Numerical simulations based on the semi-analytical finite element algorithm (SAFE) have
allowed for identifying a guided wave mode suited for the detection of defects in rails.
This mode propagates with relatively small attenuation and dispersion, and it is strongly
reflected by transverse defects in the railhead. It can be excited by a transducer attached
under the railhead. The identified mode, used for both transmission and reception, is a
symmetric mode that has motion in the vertical axis while propagating along the longitudi-
nal direction moreover with the energy mainly concentrated in the railhead [65]. The SAFE
is a popular method developed to solve wave propagation problems in waveguides. It can
be employed to compute the dispersion curves of the modes that propagate along a waveg-
uide characterized by an arbitrary cross-section. It has been shown that, in the analysis of
waveguides that are infinitely long in one direction, SAFE achieves better accuracy than
finite element (FE) methods at a lower computational cost. A detailed description of this
method can be found in Ref. [70].

7.2.2. Monitoring System Hardware and Software

Two piezoelectric transducers, forming an array and attached under the railhead,
are employed to perform pulse-echo measurements [9]; the sandwich piezoelectric trans-
ducers have been designed to effectively excite the selected mode of propagation around
35 kHz [65]. The distance between the axes of the transducers has to be equal to one quarter
of the wavelength of the excitation signal.

Two specific technical problems have been faced in system design [56]. The first
problem is represented by the slightly different resonant frequencies of the two transducers;
this is due to the tolerances characterizing the manufacturing process. Moreover, the
transducer performance may change differently over time and, in the presence of tempera-
ture variations, thus causing asymmetric changes in the measured reflections and replicas.
A possible solution to this problem is to independently scale the reflections from the
positive direction and from the negative one, so that the difference in their amplitudes
can be compensated for; this requires the estimation of the attenuation in both directions.
The second problem is represented by the presence of multiple replicas originating from
reflections; phased array processing can be exploited to solve this problem.

The experiments were performed on a section of tracks consisting of rails joined by
aluminothermic welds. Transducers and the artificial defects mentioned in Section 7.2.3
have been placed far from the joints.

7.2.3. Behavior of a Defect during Time

The behavior of a defect over time can be analyzed by using a deteriorating defect
emulator, such as a glued mass. The reflection of a glued mass deteriorates quickly
over time, thanks to the stresses caused by trains and to the progressive corrosion of
the rail under the glue. A monotonically increasing defect, similar to a growing crack,
can be simulated if the reflected signals recorded during the time window starting at
the installation of the defect emulator and ending at its detachment are time reversed [9].
The size of the mass representing the crack has to be selected to provide a realistic reflection,
such as a small transverse crack in the railhead. Reflections from rail welds can provide a
useful reference during testing; furthermore, if these welds can be detected, it is believed
that a crack can be found well before it reaches a critical size [44].
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7.3. Signal Pre-Processing

The employed excitation signal is a Hanning-windowed tone burst signal whose
center frequency is equal to 35 kHz. The measurements are acquired by exciting one
piezoelectric transducer, acquiring the response of both transducers of the array, and then
repeating the process by exciting the other transducer. This cycle is repeated k times, and
the average of the k acquired measurements is stored as a new signal in the measurement
set, which consists of four time domain signals.

Noise from passing trains has to be avoided since it would overwhelm the useful
signal. For this reason, the system first senses the presence of train noise and proceeds with
the acquisition only in its absence; otherwise, it delays its acquisition. In the observation
interval m, distinct sets of measurements are recorded.

Before defect detection or monitoring, the acquired data must be pre-processed to
compensate for unwanted effects. The pre-processing steps are illustrated in Figure 17
and described in the following sub-sections. Data pre-processing involves (a) phased array
processing; (b) dispersion compensation; (c) signal stretching and scaling; (d) signal reordering.
These steps are required to discriminate the direction of the reflections, to reduce the
influence of dispersion and to compensate for some of the changes occurring in EOC,
respectively. Signal reordering accounts for the use of a mass as a defect emulator: the
mass, in fact, behaves in a reversed time order with respect to a crack (see Section 7.2.3).

[

Time domain
signals
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Phased array | | Dispersion | | Stretchand | |  Signal Pre-processed
processing compensation scale signals re-ordering data

Figure 17. Pre-processing steps of the acquired signals [65].

7.3.1. Acquired Signals

The impact of noise in the received signal can be reduced by band-pass filtering,
making easier the task of detecting the reflections in the steps to follow. The center
frequency and bandwidth of the filter can be set to be the same of the excitation signal.
During pre-processing, the signals are converted to the frequency domain.

7.3.2. Phased Array Processing

An array of transducers allows for exciting a specific mode in a desired direction of
propagation, even if the array is composed of two transducers only. This result is obtained
by feeding both transducers with excitation signals characterized by a small difference
in delay or phase. The phase difference depends on the wavelength of the propagation
mode selected at the transmission frequency and on the axial distance between the two
transducers. The same idea can be exploited at the receive side; in fact, if a phase shift is
applied to the signal acquired by a transducer, the energy associated with the desired mode
and originating from the desired direction can be captured. It is worth noting that a perfect
cancellation is impossible, since other modes characterized by different wavelengths are
transmitted and received in both directions. This problem can be mitigated by increasing
the overall number of transducers forming the array.

Phased array processing can be applied to the full matrix of signals acquired from
an array of transducers, as explained by Wilcox in Ref. [71]. The acquired time signals
are converted to the frequency domain and, after processing, are converted back to the
time domain. When the first (second) transducer is excited, the responses acquired by both
transducers are stored in the first (second) column of the measured displacement matrix

_ Vi1 (w) Vip (w)
V21 (a}) sz (a})
Here, Vj;(w) is the spectrum of the response of the i-th transducer in the array (withi =

1 and 2, if the array consists of two transducers only) in response to the excitation injected
through the j-th transducer (with j = 1 and 2, if the array consists of two transducers only).

V(w) ®)
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The analysis of different combinations of transmitted and received propagation modes
requires the computation of mode shape matrices. Each column of the mode-shape matrix
refers to the displacement of a mode at each of the transducer locations. The mode shape
matrices for an array of transducers in a 1D waveguide (such as a rail) contains both mode
shape and phase information according to the axial position of the associated transducer,
for each mode in every possible direction [71]. Since it may happen that the modes selected
for receive processing are different from those chosen for transmit processing, two mode
shape matrices are required, one for reception and the other for transmission (denoted R (w)
and T(w), respectively). If the same modes are selected for reception and transmission,
then R(w) = T(w). The coefficients of these matrices are computed through a SAFE
analysis of the rail.

If the mode shape matrices R(w) and T(w), and the measured displacement matrix
V(w) (8) are known, the contributions of the different modes to the received signal can be
computed. The spectrum «(w) of the overall response is evaluated as

@) =R@ V@@ = [Tefe) el ] o

Here, the spectrum &y, 1, (w) (ay,t, (w)) describes the transmission and reception in the for-
ward (backward) direction, whereas &y,t, (w) (&, (w)) is the transmission in the forward
(backward) direction and the reception in the backward (forward) direction. Note that
(@) &yt (w) is ideally equal to zero; (b) the presence of reflections from features (defects,
welds, and any other element reflecting back guided waves towards the array of transduc-
ers) in the forward (backward) direction are inferred from a,,t, (w) (&r,1, (w)); (c) proper
calibration factors can be introduced to compensate for the different sensitivities of the two
transducers (see Section 7.2.2).

7.3.3. Dispersion Compensation

Even if a mode characterized by a small dispersion is selected, the effects of this phe-
nomenon can be appreciable in the presence of a long propagation range.
Dispersion compensation can be performed by exploiting the algorithm developed by
Wilcox [72] and the dispersion data evaluated by means of the SAFE method in the consid-
ered scenario. The compensation process allows also for converting the received signals
from the time domain to the distance domain. The correctness of this conversion can
be verified by comparing the location of the welds on field and that inferred from the
reflections appearing in the compensated signals.

7.3.4. Signal Stretching and Scaling

Time varying EOCs influence the acquired signals, even in a defect-free rail: for this
reason, compensation techniques not affecting the influence of defects on the processed
signal are required. The group velocities of guided wave modes are influenced by tem-
perature variations; in fact, the reflections appear to be shifted in time (or distance) if
measurements are acquired at a different temperature. This effect can be compensated
for by stretching the dispersion-compensated signals, in time or in distance domain [65].
Since dispersion compensation converts time domain signals in the distance domain,
stretching in Ref. [65] has been performed in the last domain.
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The influence of temperature variations cannot be represented only through a phase
shift, since the wave envelope can also be distorted. A piecewise linear stretch can be
exploited to compensate for the envelope distortion; in doing so, the knowledge about
the location of the welds appearing along the considered span of rails is used. If this
method is adopted, the distorted envelope is stretched in a way that the reflection peaks
corresponding to the welds are aligned with their known locations. In this phase, however,
the phase information is discarded. The received signal might also be affected by variations
in their amplitude during the monitoring period. These can originate from a change in the
sensitivity of transmitters or in the attenuation of the rail with temperature, or from the
rail itself gradually sinking into the ballast. To compensate for this effect, signal scaling
based on the peaks originating from weld reflection can be performed. Guided waves are
attenuated during propagation; for this reason, distant weld reflections appear smaller
than those due to welds closer to the transducer array. To compensate for this effect,
an energy-based normalization can be applied to each signal envelope by adopting the
technique proposed by Moustakidis et al. in Ref. [73]. The energy attenuation employed in
normalization is computed by exploiting a moving average technique.

The phase of the compensated signals is discarded, and only their envelope re-
mains. Unluckily, the envelope is affected by a large direct current (DC) component, af-
fecting the performance of the defect detection algorithms (and, in particular, of the ICA;
see Section 7.4). To reintroduce phase information, the wave envelopes of scaled signals
are multiplied by a single-frequency sine wave. However, the employed method for defect
detection is based only on the analysis of signal envelopes [65].

7.3.5. Signal Reordering to Simulate the Monotonic Growth of a Defect

The reflection of a glued mass deteriorates quickly over time because of the stresses
caused by trains and of the progressive corrosion of the rail under the glue. A monotonically
increasing defect, similar to a growing crack, can be simulated if the reflected signals
recorded during the time window starting at the installation of the defect emulator and
ending at its detachment are time reversed [9]. A steady decrease in the amplitude of the
reflection due to the artificial defect amplitude is expected, with some fluctuation due to
temperature changes. Test results illustrated in Refs. [9,65] have proven that the reflection
peak due to an artificial defect does not have a simple correlation with temperature; no
satisfactory explanation for this behavior has been provided, although it is known that
measurements may have been affected by the complicated resonant conditions producing
the large reflections [9].

7.4. Defect Detection

The processing steps accomplished in defect detection are summarized in Figure 18.
Because of the EOCs-induced variations in the propagation conditions of UGW signals,
the simple baseline subtraction is not effective [65]. Some promising results in structural
health monitoring of plates and pipes have been obtained by means of two unsupervised
machine learning techniques, namely singular value decomposition (SVD) [74] and independent
component analysis (ICA) [75]. These techniques outperform baseline subtraction in the
detection of simulated defect signatures superimposed on measured data from a pipe
subject to time varying EOCs [76]. Therefore, it makes sense to apply these techniques to
rails too.

Ideally, if EOCs are perfectly compensated for, the signal obtained from pre-processing
can be seen as the additive contribution of two or more distinct components: (a) one
resembling the baseline ultrasonic signal containing weld reflections, with a constant
weight over the duration of the experiment; (b) other components resembling the ultrasonic
signature of the defect, with a weight increasing over time and corresponding to the
deterioration of the defect [9].
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Figure 18. Processing steps in defect detection.

Data-Driven Defect Detection Techniques

The pre-processed measurements are stored in the m X n matrix X; here, m represents
the overall number of performed measurements over the monitoring time, whereas # is the
number of samples acquired in each measurement. The matrix X can be factored as

X = AC. (10)

The matrix C contains the additive components of the acquired signal (baseline and
defect signatures) in the distance domain, whereas the matrix A is the corresponding
weights in the observation interval.

The singular value decomposition (SVD) technique can be exploited to evaluate the
factorization expressed by Equation (10) [74]. In fact, applying this technique to the real
data matrix X produces

X = USVT, (11)

where U and V are the left and right singular vector matrices, respectively, and S is the
diagonal singular value matrix. The columns of the matrix U are related to the slow signal
behavior evolution over the monitoring period, while the columns of the matrix V are
related to the fast signal behavior evolution over the same observation interval. S allows for
quantifying the amount of information contained in the associated left and right singular
vectors. In fact, the main diagonal of S collects the singular values, sorted in descending
order. The size of the given dataset can be reduced by discarding small singular vectors,
since these convey a negligible amount of information.

The independent component analysis (ICA) technique is employed to extract the additive
components of a multivariable signal and analyze their relative trends. More specifically,
this technique allows for decomposing the matrix X into a given number of independent
components forming the columns of the matrix C in Equation (10); such components
have minimal statistical correlation. In addition, the matrix A contains the weights of
the independent components. In our case, the ICA method can be used to separate the
contributions of different sources. In fact, we are interested in separating the contribution
of the defect signatures from the system background, including the baseline signal and
EOC-related variations. To efficiently implement ICA, the iterative FastICA algorithm can
be used. This algorithm is fed by a normalized version of the data set X, and computes the
principal values and associated components of the input data by calculating the eigenvalues
and eigenvectors, respectively, of the covariance matrix XXT. Repeatable results are
generated if the initial value is selected for the vector of weights.
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If the presence of data overfitting is detected while using the ICA algorithm,
dimensionality reduction techniques, like the principal component analysis (PCA) and can
be employed to mitigate this problem [77]. The combination of the ICA algorithm with
principal component analysis (PCA) is called ICA with dimension reduction in Ref. [65].
During ICA processing, the eigenvalues (principal values) are ordered according to their
magnitude, and only the largest values and their associated components are kept.

Some test results are shown in Section 9.4.

7.5. Adaptive SAFE Model for Rail Parameter Estimation

Temperature is not the only EOC variation affecting signal propagation. For instance,
the propagation environment of ultrasonic guided waves in rails is modified by any change
occurring in rail geometry and in the parameters of the employed materials. Compensating
for these additional effects allows for achieving better performance.

7.5.1. Problem Statement

Since the performance of any monitoring system that makes use of ultrasonic guided
waves is influenced by some characteristics of the propagating environment, it would
be useful to estimate these characteristics from the signals acquired by the system itself.
In fact, the dispersion curves of a rail depend on the properties of its material, as well as
on its geometry, neither of which are known with a sufficient level of accuracy. Moreover,
the rail geometry changes over time because of wear and regular maintenance operations
(including rail grinding of the crown) [52].

7.5.2. Possible Solutions

Material and geometric parameters are implicit in the computation of the dispersion
curves. For this reason, inferring these parameters from such curves requires solving an
inverse problem through an iterative approach. Solving this inverse problem becomes easier
if the corresponding forward problem, consisting of the computation of dispersion curves,
can be solved efficiently and if the number of rail parameters to be estimated can be reduced.

The use of the semi-analytical finite element (SAFE) method for efficiently solving the
forward problem is investigated in Refs. [52,57]. In these manuscripts, a set of parameters
describing the geometry and material properties of a worn rail has been determined. This
set is employed to develop a SAFE model for computing the propagation characteristics of
worn rails. Wear and grinding of the railhead can be represented through the three geo-
metric parameters shown in Figure 19. An adaptive mesh model has also been developed
by means of parametric equations to represent material removal. This allows an efficient
automatic modification of the geometry and the mesh of the considered rail.

X=R X=H

Figure 19. Representation of the parameters useful to identify the presence of a worn rail.

The use of the SAFE method requires the knowledge of different properties of the
employed material, such as its elastic modulus E and its density p, or its Poisson’s ratio v.
The evaluation of the dispersion curves of a waveguide through this method requires
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solving an eigenvalue problem. Material properties are usually unknown to an acceptable
accuracy, and their value is dependent on environmental conditions. In the case of an
isotopic elastic medium, it is shown that E and p can be combined in a single parameter,
namely the longitudinal speed of sound in the medium, ¢ = \/Elp. Therefore, only two
parameters, ¢ and v, are required instead of three (i.e., E, p, and v): this allows for saving
computation time. Computational efficiency can be further improved by solving the
eigenvalue problem in terms of the parameter B = w/c, i.e., of the ratio between the
frequency w and the longitudinal speed of sound c. Thus, only a single set of dispersion
curves needs to be computed for each value of the couple (c, v): if ¢ changes, but v remains
constant; the dispersion curves need only to be scaled according to the variation of the
parameter f.

Experimental results have proven that various propagating modes could be detected
on field. This has allowed for achieving a proper tracking of mode shapes computed
through the SAFE method by using different material and rail geometric properties.
The modal assurance criterion (MAC) has been adopted to accomplish the tracking task.
More specifically, the mode shapes produced by the SAFE method in the presence of
different input parameters have been correlated with three reference groups of the mode
shapes identified manually on the basis of field measurements, as illustrated in Figure 20 [57].
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Figure 20. Representation of the mode shape tracking process that employs selected mode shape groups [57].

Finally, it is worth mentioning that the technique developed in Ref. [57] allows for
identifying which set of simulated dispersion curves best fits the experimental spectrograms
computed in the absence of prior knowledge about the distance of the reflectors from the
transducer. Experimentation results on the field have proven that this technique performs well.

7.5.3. Conclusions

The estimation technique illustrated in Section 7.5.2 has been developed specifically
for the considered application; hence, the involved inverse problem appears to be well-
posed. Further research work is required to establish which conditions need to be satisfied
to ensure that this technique works, or to determine when the associated inverse problem
becomes ill-posed. The inverse problem has been solved by simply finding the SAFE model
that provides the best fit in the sample space. The use of a response surface to interpolate
the sample space should also be investigated.

8. Land-Based Systems Implementation—Other Projects

Other land-based systems and products based on similar working principles as Rail-
Sonic by IMT-CSIR have been or are being developed. A brief introduction to these systems
is provided in this section.

8.1. RailAcoustic by Enekom

The Broken Rail Detection System-RailAcoustic by ENEKOM is a system based on
vibrations and not on ultrasonic guided waves. In Ref. [58], it is claimed that the operation
of this system is exclusively based on electro-mechanical methods. A transmitter injects a
vibration into the rail; this excitation is detected simultaneously by a receiver close to the
transmitter and by a second receiver placed 2 km apart. The received signal is de-noised
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thanks to a synchronization signal, and the status of the rail is inferred from the difference
between transmitted and received vibration signals. The receiver close to the transmitter
allows the system to check if the excitation signal matches some specifications. Enekom
claims that: (a) the modules of this system can be installed or dismantled without any
damage to the involved rails; (b) this system works reliably and responsively under all
weather conditions. Successful performance testing has been done on the Konya-Ankara
high-speed railway.

8.2. Technical Contributions Provided by the Beijing Jiaotong University

A research group working at the Beijing Jiaotong University is investigating the
propagation characteristics of rails and, in particular, the most suitable modes for detecting
their defects [59-61]. They do so by analyzing the diagrams representing the strain energy
distribution and the phase velocity dispersion curves of different propagation modes.
Moreover, the researchers of the above-mentioned institution are trying to discover the
best way to excite a specific mode or, alternatively, the best way to detect a given mode in a
multi-mode scenario. As a matter of fact, their investigation has led to the development of
a method for locating rail defects [62]; this method is called the single modal extraction
algorithm (SMEA) and is briefly described in the next paragraph.

Single Modal Extraction Algorithm

The single modal extraction algorithm is described in Ref. [62]. It relies on the
observation that: (a) the vibration displacement measured at any point on the rail is the
superposition of the contributions of all the propagation modes at that point; (b) the
vibration displacement due to each mode at any point can be extracted from the total
displacement of the point.

A flow chart describing this method for defect location is shown in Figure 21. The prin-
ciples on which this method is based can be summarized as follows. The primary task of
defect location is to select the mode, the frequency, and the excitation conditions under
which defect detection can be accomplished. The excitation response of the rail is ana-
lyzed through ANSYS (an engineering simulation software), that allows for simulating
a three-dimensional model of the rail that also includes some defects. This allows for
evaluating the vibration displacements of a series of points on the rail, thus providing a
realistic representation of the signals observed in an experiment. Information about the
reflected signals corresponding to the selected modes is provided by the results of the
modal identification and SMEA. Defect location is based on the estimation of the group
velocity and propagation time of the reflected modes.

Calculate i i
SAFE method Dispersion curves and mode }‘
shapes
{

Select mode type and
frequency for defect detection
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models | Select excitation condition |
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[ smea
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Figure 21. Flow chart describing the defect location algorithm described in Reference [62].
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8.3. Technical Contributions Provided by the Xi’an University of Technology

A research group working at the Xi’an University of Technology has provided rele-
vant contributions to the development of the electronics employed to drive the piezoelectric
transducers that excite ultrasonic guided waves in rails. Their specific contributions include:

e The design of a high-voltage pulser achieving an improved transmission efficiency [63].

e The development of a tracking method able to estimate the optimal excitation fre-
quency, i.e., the one maximizing the received signal power [64].

e The use of Baker coded UGW signals for enhancing the SNR of the received signal
and the development of an adaptive peak detection algorithm [78].

As far as the last point is concerned, it is worth mentioning that Baker coding,
albeit simple, is characterized by a autocorrelation with lower sidelobes than those observed
in the autocorrelation of binary codes having the same length; moreover, its simplicity
enables minimizing hardware complexity at the transmit side. It is also worth mentioning
that the proposed peak detection algorithm offers the advantage of a low energy consump-
tion and achieves better performance than other more sophisticated techniques, like those
based on the discrete wavelet transform [79].

9. Performance Analysis

The target of a rail diagnostics system is to detect most of the defects affecting rails,
while minimizing the number of false alarms [47]. Its performance can be assessed through
the so-called receiver operating characteristic curves (ROC), which represent the trade-off
between the probability of detection (PD) and the probability of false alarm (PFA) achievable by
varying the threshold level adopted in defect detection. A related performance indicator
is the area under the receiver operating characteristic curve (AUC) that provides an overall
indication of the “goodness” of detection. In fact, AUC = 1 means that perfect detection is
achieved for the given threshold (i.e., PD = 1 and PFA = 0); conversely, if AUC =0, detection
is jeopardized by false alarms, so that PD = 0 and PFA = 1.

In this section, various numerical results referring to the on-board and land-based
systems described in the previous sections are illustrated.

9.1. On-Board Active System: Performance Analysis

Some representative DI traces acquired along a test track and at various testing speeds by
means of the prototype of on-board active defect detection system described in Section 5.1 are
illustrated in Figure 22; note that the SNR of the DI traces degrades as the train speed increases.
The plots of Figure 22 are generated on the basis of the data available in Ref. [47].
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Figure 22. Example of damage index traces collected during tests (dashed lines = locations of defects;
dashed-dotted lines = locations of welds; dotted lines = locations of joints). Testing speeds: (a)
1.6 km/h; (b) 8 km/h; (c) 16 km/h; (d) 24 km/h.
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The performance of the above-mentioned prototype, expressed in terms of ROC, are
illustrated in Figure 23 (its plots have been generated on the basis of the data available in
Ref. [47]).

The probabilities of detection computed for four different PFAs on the basis of the
cumulative curves shown in Figure 23 are listed in Table 2. From Figure 23 and Table 2, it is
easily inferred that the performance of the considered defect detection system gets worse
as the speed at which the test is accomplished increases [47]. Moreover, the experimental
campaigns accomplished for this system have proven that it is sensitive to both transverse-
type defects and mixed-mode cracks (vertical split heads or compound fractures). However,
its performance is limited by the fact that air-coupled ultrasound transduction in steel
suffers from a loss of energy due to the large impedance mismatch between air and steel,
both in transmission and in reception. This explains the low SNR characterizing received
signals [40] and limits the test speed [47].

Table 2. Significant PD and PFA values extracted from the cumulative ROC curves of Figure 23 [47].

Test Speed PD (%) Achievable for Specific PFAs .
AUC (%)
(km/h) 0% PFA 1% PFA 5% PFA 10% PFA
1.6 65.38 76.92 86.54 92.31 97.58
8 7.08 47.79 78.76 85.84 95.03
16 0.00 29.23 47.69 56.92 77.90
24 1.92 9.62 28.85 32.69 69.05
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Figure 23. Cumulative ROC curves for runs executed at four different speeds: (a) 1.6 km/h;
(b) 8 km/h; (c) 16 km/h; (d) 24 km/h. The results associated with three different values of the
detection threshold are identified by specific labels.

9.2. On-Board Passive System: Performance Analysis

Some DI traces obtained for the on-board passive defect detection system described in
Section 5.2 are illustrated in Figure 24 (its plots have been generated generated on the basis
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of the data available in Ref. [49]). Additional results illustrated in Ref. [66] have evidenced
that:

1. The zones in which the received signal was strong enough for defect detection were
primarily localized in sections of curved tracks, where wheels were flanging, so gener-
ating stronger excitation signals.

2. Asspeed decreases, a larger portion of the run becomes sub-optimal, since the presence
of a defect cannot be easily detected.

3. At high speeds (say, higher than 96 km/h), an optimal source excitation energy is
generated; this allows for achieving a stable Green’s function.

4. Poor results were found in areas where the source excitation energy was too low to be
detected by the receivers, e.g., in most of the tangent portion of the track. affecting the
performance of the defect detection algorithms (and, in particular, of the ICA; see
Section 7.4).
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Figure 24. Damage index traces referring to the RDTF test track at 25 mph (40 km/h) in three selected
test zones.
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The performed tests did not allow for assessing the true repeatability of the achieved
results; for this reason, further tests have been planned to investigate the reliability of the
considered system [49]. Moreover, it has been found that, as long as acoustic excitation is
detectable, the strength of the received signal does not play an important role in the recon-
struction stability. However, instability is found when the signal intensity is comparable to
the noise floor of the receiver sensors.

Based on the considerations illustrated in Section 5.2.4, concerning the conflicting
needs of selecting a proper test speed and achieving an accurate localization, some experi-
ments have been made; the obtained results are illustrated in Ref. [48]. In these experiments,
various lengths for the recording time have been tested when the prototype was running at
three different test speeds (30 mph, 50 mph, and 80 mph, corresponding to 48.28 km/h,
80.46 km/h, and 128.75 km /h, respectively). Such results prove that, in general, the SNR
increases when the recording time increases; however, this leads to progressively losing
spatial localization and to generating a non-stationary transfer function. Moreover, the SNR
decreases as test speeds get larger. The duration of the time window has been selected in a
way to achieve an accuracy equal to 8 in. (corresponding to 20.3 cm) in spatial localization
at the various test speeds. The values evaluated for this duration are listed in Table 3.

Table 3. Compromise values between test speeds, recording time window and SNR of the passively
reconstructed transfer function achieved in field tests.

SNR of Reconstructed

Test Speed Recording Time Window Transfer Function
30 mph (48.28 km/h) ~15.25 ms ~12
50 mph (80.46 km /h) ~9.15ms ~9
80 mph (128.75 km/h) ~5.7 ms ~4.5

Additional work is in progress to quantify and improve the reliability of the defect
detection prototype by (a) determining the optimal value of the threshold for the DI; (b)
minimizing the effects of poor signal reconstruction; (c) improving the strength of the
source excitation signal at low speeds [66].

9.3. Land-Based Ultrasonic Broken Rail Detection System Test Results and Performance Analysis

The performance of the UBRD system version 4 is illustrated in Ref. [80].
After having solved some initial problems (equipment failures and GSM network reli-
ability in some areas), a preliminary analysis of this system has been accomplished. In the
first two months of operation, four broken rails and approximately four cracks have been
detected before complete fracture occurred. It is believed that the system has prevented at
least one derailment, the cost of which is similar to the cost of installing the system on the
entire 840 km line. Detailed performance results have not been published yet.

9.4. Land-Based UBRD System with Early Rail Defect Detection Capability: Performance Analysis

Various experimental results referring to the land-based UBRD system with early
defect detection capability are analyzed in Ref. [65]. As already mentioned in Section 7.4,
the reordered set of pre-processed data has been processed by three algorithms (namely,
SVD, ICA, and dimensionally-reduced ICA), whose performance in defect detection has
been evaluated. Since the outcomes generated by these algorithms are highly dependent
on the input dataset, we do not illustrate here an accurate analysis of the achieved results.
We comment briefly on the performance achieved by such algorithms.
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It is expected that, when a monotonically growing defect is found, its weight in ICA
or SVD also grows monotonically. To establish if a weight exhibits a monotonic increase,
the Mann—Kendall (M-K) test can be exploited, as suggested in Ref. [76]. This test is based
on computing the difference between the number of increments and that of decrements
between each pair of data points forming the input sequence; normalizing this difference
with respect to the overall number of data points produces the normalized test statistic,
denoted Z,. If the value of Z,; is greater than 1.96, the probability of a monotonic trend
is equal to 0.95; larger values of Z,,; indicate that this probability is even higher. The M-K
test has been performed on the weights computed by all the considered algorithms.

9.4.1. Defect Detection in the Presence of Large Defects
From test results, it can be inferred that:

e The SVD, ICA, and dimensionally-reduced ICA techniques are able to separate the
signature of artificial defects from the baseline.

e Their performance is appreciably affected by the EOCs and the multi-mode nature of
ultrasonic guided waves propagation in rails. As far as the last issue is concerned, it
is important to stress that mode conversion is one of the possible causes of phantom
reflections appearing when ultrasonic guided waves impinge on a defect; the multi-
mode nature of propagation may cause the defect signature to spread over different
components. Moreover, the EOCs can have a different influence on each mode.

*  In general, the independent components produced by the ICA algorithm appear to be
less noisy than the singular vectors generated by the SVD technique.

e The presence of relatively large monotonic trends is confirmed by the analysis of the
M-K test scores over the component weights.

e A good match between the components achieving a large M-K test score and the com-
ponents related to the defect signature is found in the SVD, ICA, and dimensionally-
reduced ICA techniques.

9.4.2. Defect Detection in the Presence of Small Defects

The performance of the SVD, ICA, and dimensionally-reduced ICA algorithm was
tested also by considering a dataset composed only of the measurements corresponding to
the initial evolution of the defect. When the defect appears, it is supposed to reflect only a
small amount of the impinging UGW. Therefore, the corresponding dataset is composed of
the measurements in which the peak of reflection caused by the defect is small in amplitude.
In this case:

e From the outcomes of SVD analysis, it has been inferred that the presence of an
artificial defect cannot be easily detected. Moreover, selecting the singular values char-
acterized by the highest M—K score does not guarantee defect detection; furthermore,
in these conditions, the defect cannot be located by analyzing the components of the
singular vectors.

e The analysis of the results generated by the ICA have proven that the defect signature
is spread over multiple independent components, whose associated weights exhibit a
monotonic increase, proportional to defect growth.

All of these results have led to the conclusion that ICA with dimension reduction
performs better than the SVD algorithm in the presence of EOCs when attempting to detect
the growth of small defects [65].
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9.4.3. Concluding Analysis on the Evolved UBRD System

The cancellation of unwanted modes through phased array processing can be im-
proved by using a larger number of transducers in the array employed for transmission
and reception. The resulting system is able to accurately estimate the distance and di-
rection of reflectors along the considered span of rails. However, since EOCs are not
exclusively due to temperature variations, an important role in the achievable performance
is played by techniques for compensating EOCs other than temperature. Defect detec-
tion has been performed through SVD and ICA; test results have led to the conclusion
that ICA with dimension reduction performs better than SVD. Nevertheless, it has been
found that the signature of a given defect spreads over different independent components;
this might be due to the multi-modality of defect reflection signature. The last issue
deserves further investigation.

Based on the results obtained in Ref. [65], it can be stated that the detection of
relatively small defects in the railhead is possible even if an array consisting of two
transducers only is used and that, despite this positive result, the development of an
automatic monitoring system, capable of autonomous operation with a low rate of false
alarms, requires substantial effort. For this reason, the authors of that manuscript suggest
that, during the design of an autonomous machine learning algorithm, the decision to stop
trains or to ask for an on field inspection should be made by an expert able to interpret
its output. A possible workflow for the development of a defect detection algorithm
is also suggested: this could start from the analysis of the size of M-K scores, looking
for values characterized by a significantly larger trend than the others. Then, it can be
verified if the associated independent component resembles a single reflection from a
defect. An appropriate level of alarm could be assigned on the basis of magnitude of the
considered weight and its rate of increase. In any case, decision thresholds for these steps
should be selected only after analyzing a large dataset.

10. Discussion and Conclusions

In this manuscript, different types of rail defects have been described and the main
techniques for their detection have been outlined; the main features of these techniques
are summarized in Table 4. Then, our attention has focused on the diagnostic technique
based on ultrasonic guided waves. This technique is expected to solve the problem of
the high-speed (or quasi-real-time) inspection of both the surface and the inner part of
rails. In our analysis, two possible approaches, namely an on-board approach and a
land-based approach, have been taken into consideration. In the on-board approach,
the ultrasonic instrumentation is installed on an inspection car for high-speed scanning.
In the land-based approach, instead, the ultrasonic equipment is attached to the rail in a
fixed position for quasi-real-time monitoring. Moreover, in our analysis of the on-board
approach, two different technical methods have been described: an active method and
a passive one. In the on-board active method, ultrasonic guided waves are generated
and sensed by the instrumentation installed on the inspection vehicle. On the other hand,
the on-board passive method exploits the ultrasonic waves generated by the rail-wheel
interaction of the moving train; consequently, the instrumentation placed in the lead car
of the train only measures the response of the rail. A land-based system for ultrasonic
broken rail detection is already active in South Africa; the system is being evolved to detect
early-stage cracks too.
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10.1. Advantages and Disadvantages of the Considered Systems

The systems reviewed in this manuscript present both advantages and disadvantages.
Due to the approaches followed being so different, a direct comparison is impossible.
However, an attempt can be made to assess their pros and cons by considering their main
characteristics, range of application, and ease of development.

The main disadvantage of the active on-board inspection system is its limited inspec-
tion speed; in these terms, the system does not achieve a significant improvement over
the conventional ultrasonic inspection systems. On the contrary, if the passive on-board
system is considered, the opposite problem is found: in fact, the system is able to provide
good results only when the diagnostic vehicle is moving at high speed or along curved
tracks. This limitation can be circumvented by exploiting the ability of this system to recon-
struct the waveguide transfer function (which allows defect detection) without the perfect
knowledge of the excitation signal. An alternative to on-board approaches is constituted
by land-based systems, such as the UBRD and the UBRD evolved to recognize small-scale
defects. The main feature of the simple UBRD system, the detection of complete rail breaks,
is already implemented in the track circuits, which are well known to railway engineers.
The advantage of the UBRD system is that it does not perform critical operations in terms of
railway traffic safety (such as train detection); therefore, it might not be subject to stringent
safety constraints, unlike track circuits. The main advantages of the evolved UBRD system
are represented by its ability to identify defects before a complete rail breakage and the
possibility of accomplishing a continuous monitoring of the health status of rails. The
last feature is not provided by on-board systems that, because of their nature, call for a
periodic inspection of the infrastructure. It should be also kept in mind that a continuous
monitoring system allows for acquiring a large number of measurements having limited
accuracy. In fact, the process of searching for a defect, identifying it, and monitoring its
evolution is repeated continuously over a long period. Basically, it does not matter that
a defect is identified and reported at its onset, when it still has a small size. What really
matters is that the presence of a defect is signaled and its evolution kept under control over
time, so that maintenance operations for its removal can be planned before they become
dangerous for the safety of railway traffic. A periodic inspection system, depending on the
frequency of its tests, needs to acquire accurate measurements. A defect must be detected
in time, when it is still small in size, so that its evolution can be monitored, inspection after
inspection, before it reaches a critical state. This is needed since any defect can exhibit a
sudden evolution.

Other advantages and disadvantages to be taken into consideration are those related
to the practical usage of the considered systems. If the health of the rails of an entire railway
network has to be monitored, a land-based system must be installed on all its tracks; this
could be time-consuming, laborious, and expensive. In addition, system maintenance
might require a relevant effort, especially when some of its devices have been installed
in remote areas, which are hard to reach. Another relevant problem is represented by the
fact that its equipment, being physically attached to the rails, could represent an obstacle
during any operation of infrastructure renovation. On the contrary, if an on-board system
is employed, it is only needed to equip an adequate number of diagnostic vehicles, and
make them travel frequently and regularly throughout the network. This means that fewer
devices, albeit more complicated, need to be built, installed, and maintained. Moreover,
their regular maintenance may take place in workshops and not on the field, perhaps in
remote areas. On the other hand, the costs associated with carrying out special diagnostic
runs have to be paid; moreover, these runs could prevent the circulation of commercial
service trains in certain time intervals, reducing the capacity of the network. If a system
achieving a good balance between performance, installation, and maintenance costs is
developed, these problems can be overcome. In fact, a part of the fleet of commercial service
trains could be equipped with such a system, allowing such trains to perform diagnostic
inspections while performing their normal duties.
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Another relevant issue to be considered is the complexity of system testing during its
development. An on-board system requires the execution of high-speed tests on field using
railway vehicles in a relatively early stage of its development period. For this reason, it is
required to have (a) a test vehicle capable of sustaining the envisioned inspection speeds,
(b) the possibility of accessing an infrastructure suitable for tests, and finally (c) qualified
personnel to drive and route the diagnostic vehicle on the selected infrastructure. All this
might be quite costly. From this perspective, a land-based system has very different require-
ments. In fact, its initial development does not require access to particular infrastructures
other than a sufficiently long stretch of rail. This is true at least until it is needed to test the
system in its effective operating conditions. Even in this case, however, it is sufficient to
have access to an adequate stretch of track where the system can be installed. Once the
system has been set up, the execution of tests does not require to run dedicated trains or to
employ specialized personnel.

10.2. Future Developments

Various possible developments of the systems described in this manuscript have been
already mentioned in the previous sections. In summary, as far as the passive on-board
system is concerned, research efforts should aim at improving its performance in defect
detection at low speeds. Moreover, it is necessary to quantify and improve the reliability of
the developed prototype in defect identification. On the other hand, to achieve a reliable
operation of land-based systems, a fundamental research problem needs to be solved.
In fact, it is needed to acquire a deeper understanding on the evolution over time of the
defect response to UGW solicitations. In addition, the influence of variable EOCs on such
a response must be studied in detail. Some improvement in defect identification and
localization based on unsupervised machine learning techniques is also foreseeable.

10.3. Conclusions

All of the ultrasonic systems described in the technical literature still suffer from
various technical problems, related to ultrasonic propagation and sensing in rail, to the
influence of environmental and operating factors, etc. Therefore, even if various technically
relevant results have already been obtained in this field, substantial research efforts are
still needed. The strong interest in the above-mentioned problems is motivated by the
increasing attention paid to railway transport safety in recent years.

Author Contributions: D.B. has written the first draft of the whole manuscript, whereas G.M.V. has
carefully rewritten it. G.F. has revised the final manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to thank Alstom Ferroviaria S.p.A. (Bologna, Italy) for funding a
PhD scholarship on the research topic analyzed in this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Guided Waves

Any disturbance affecting a portion of an elastic medium propagates through the
medium itself in a finite time as a mechanical sound wave (elastic wave). An ultrasound or
ultrasonic wave is characterized by a frequency greater than 20 kHz. There are two types
of ultrasonic waves [81]: bulk (fundamental) waves and guided waves. Bulk propagation
refers to waves propagating without any boundary, like in an infinite medium (or in media
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whose boundaries does not influence wave propagation). Guided waves propagate in
bounded media, like plates, rods, or tubes.

In general, an elastic wave consists of two components, which propagate indepen-
dently from each other; these components are known as longitudinal and transverse (shear)
waves. In longitudinal waves, the variation of the propagating quantity is observed parallel
to the propagation direction. In transverse waves, instead, the variation of propagating
quantity is orthogonal to the propagation direction. The existence of such waves depend
on the elastic properties of the medium in which they propagate [82].

In a waveguide, interference phenomena arise from the waves bouncing back and
forth inside the waveguide itself when impinging on its boundaries. Bouncing produces
mode conversion because of reflection and refraction of longitudinal and shear waves.
Depending on the angle and frequency, constructive, destructive, or intermediate in-
terference takes place: this leads to hundreds of solutions of constructive interference
points and, consequently, to guided wave packets traveling in the waveguide and named
modes. The interference points can be represented through a wave velocity dispersion curve,
which relates phase velocity to frequency. Each waveguide has its own set of dispersion
curves, and every curve in the set is related to a specific mode of propagation. In the
technical literature, dispersion curves are commonly employed to display all the types of
waves and modes that can propagate inside a given waveguide. The ability to select, for a
given dispersion curve, specific phase velocity and frequency has a significant impact on
the penetration power and sensitivity of an ultrasound inspection system based on guided
waves [83].

Another important feature to be taken into consideration is the wave structure of
the selected mode, i.e., the mode shape. This shows the mode in-plane displacement, out-
of-plane displacement, or actual stress distribution that varies across the thickness of the
considered waveguide [70]. This knowledge is useful to establish the maximum penetration
power of waves in a given structure, or to establish the maximum sensitivity to a defect
located in a specific area of a test specimen [83].

When an ultrasonic wave propagates through a medium, it undergoes attenuation.
The waveform and the amplitude of an ultrasonic wave are influenced by a number of
factors, including ultrasonic beam spreading, energy absorption, dispersion, nonlinearity,
transmission at interfaces, scattering by inclusions and defects, Doppler effect, etc. [81].
Attenuation is a fundamental factor to be always kept in mind when designing ultrasonic
guided waves systems, especially if they are required to operate on a long range.

A finite body can support an infinite number of guided wave modes; these represent
the solutions of a differential guided wave problem, defined by the boundary conditions.
Specific solutions to guided wave problems are those related to Rayleigh, Lamb, and Stonely
waves. Rayleigh waves are waves on the surface of a semi-infinite solid, Lamb waves are
waves of plain strain occurring in a free plate, and Stonely waves are waves that occur at
the interface between two media [70].

Appendix B. Characteristics of Guided Waves in Rails

Modeling the rail as a waveguide is not easy because of its complicated profile. For this
reason, the accurate computation of the dispersion characteristics of guided waves traveling
through rails represents a difficult problem, whose solutions are based on finite elements
methods [7]. A frequently used method is the semi-analytical finite element (SAFE) method.

The dispersion curves of rails exhibit mode repulsion and mode crossing: these phenom-
ena cannot be easily distinguished. The meaning of these two terms can be understood
by analyzing the dispersion curves of a waveguide. When two modes (curves) approach
each other, they can cross (mode crossing) or suddenly diverge without crossing (mode
repulsion). The mode shapes of rails, having a symmetric profile (e.g., see Figure 1), are ei-
ther symmetric or anti-symmetric. A mode is symmetric when its energy is distributed
symmetrically over the waveguide cross-section, i.e., it is equally distributed between
field side and gauge side in the case of rails. A mode is antisymmetric when its energy
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is concentrated non-symmetrically in the waveguide, i.e., on one side only if rails are
considered. It has been shown that: (a) symmetric and antisymmetric modes can cross
each other; (b) the modes within symmetric and antisymmetric families do not cross each
other [84]. Furthermore, the introduction of even a small asymmetry in the waveguide
shape produces repulsion forces that prevent mode crossings. This information is useful in
the selection of a propagation mode to be employed for rail integrity inspection. Examples
of wavenumber vs. frequency curves and of the concentration of energy for different modes
are shown in Figure 10.

The energy of different (symmetric or antisymmetric) modes is concentrated in the
head, web, or foot of the rail. This explains the possibility of locating defects in a specific
portion of the rail cross-section by selecting the most appropriate mode [7].

Some concerns can originate from the influence of ties, fasteners, and absorbing pads.
It has been found that, at high frequencies (such as those of ultrasonic guided waves),
their presence does not influence dispersion curves, but only decay rates [85]. Moreover,
experimental studies have led to the conclusion that the most effective frequency interval
for long range wave propagation along railway tracks is between 20 and 40 kHz [86].

The three main technical problems observed in the use of guided ultrasonic waves are [7]:

1. Dispersion—If different modes are excited, they travel at different (frequency-dependent)
velocities in both directions. Consequently, each mode takes a different time to travel
along the employed waveguide, so compromising spatial resolution (for instance,
a given reflector can generate multiple echoes). This problem can be mitigated by
resorting to dispersion compensation.

2. Coherent noise—This noise is observed in the same frequency band of the signal of
interest. It is due to: (a) the excitation and reception of unwanted modes; (b) the
transmission of waves in the wrong direction along the waveguide and the reception
of echoes from that direction. Therefore, mitigating coherent noise requires exciting
and sensing only the selected modes. This can be accomplished by using a proper
transducer or excitation signal, and by suppressing unwanted modes.

3. Changes in temperature or in material properties with age—These changes, even if small,
affect the above-mentioned dispersion phenomenon. This problem has to be taken
into account when comparing signals received at different instants.

Appendix B.1. Excitation of Guided Modes

A mode is most efficiently excited when the harmonic force applied by the employed
transducer to the considered waveguide is well coupled to the displacement associated
with the mode itself. Therefore, a transducer should be possibly placed on the rail surface
where the displacement of the selected mode shape is large; the polarization of mode shape
and that of the transducer must be equal. These considerations also apply to efficient
reception [42]. Mode control is achieved by choosing an appropriate transducer and a
suitable excitation signal [7].

Important alternatives for the transducers are represented by piezoelectric transducers
and electro-magnetic acoustic transducers (EMATs). An EMAT generates a wave in a given
structure via the Lorentz force and/or magnetostriction (see Figure Ala). The phase ve-
locity ¢, of such a wave is given by ¢, = f - A, where f is the frequency of the driving
signal and A is the meander coil spacing (i.e., the wavelength imposed by the EMAT).
Direction control can be achieved by employing a second coil overlapping the first one,
but displaced from it along the structure by a quarter wavelength. A piezoelectric trans-
ducer generates compression waves towards the employed structure via a coupling
medium, as shown in Figure Ala (where 6; denotes the orientation angle of the trans-
ducer with respect to the structure). The wavelength A, of the waves generated in the
structure is related to the wavelength A, of the compression waves traveling through the
coupling medium by A, = A,/ sin 6;, where 6; is the angle of incidence. The phase velocity
in the structure is given by ¢, = v/ sin 6;, where v is the velocity of the compression waves
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in the coupling medium. Therefore, a mode at a given frequency can be excited by properly
orienting the employed transducer.

® O ® O ® Q ® O Meander coil

[ Test plate
A
(@
Piezoelectric transducer
Wedge
Wavefronts in wedge
i i i Test plate
A Wavefronts in test plate
P
(b)

Figure A1l. Representation of the excitation of guided waves through (a) an EMAT or (b) a piezoelec-
tric transducer [7].

The size of the transducer and the generated excitation signal influence the achieved
degree of modal selectivity. On the one hand, the effective wavelength bandwidth (the
effective phase velocity bandwidth) depends on the transducer size if an EMAT (a piezoelectric
transducer) is employed; on the other hand, the frequency bandwidth depends on the
excitation signal. If the transducer has a diameter of 3-5 times the selected wavelength,
satisfactory mode control is achieved: moreover, an array of point sources has to be preferred
in long-range testing with respect to a monolithic transducer. A fundamental contribution to
the improvement of the signal to coherent noise ratio is provided by the signal processing
techniques employed at the receive side; in fact, these should allow for extracting the desired
input mode-received mode combination only, while rejecting the others [7].

Appendix B.2. Selection of Guided Modes

As it can be easily inferred from the dispersion curves shown in Figure 10a, various
propagating modes can be excited in rails in the frequency range of interest (25 kHz—45 kHz).
However, not all of these modes are suitable for long-range propagation due to the attenuation
they experience (e.g., in the foot of the rail) or their high dispersivity [44].

As already mentioned in Appendix A, a specific mode is highly sensitive to defects at
positions of the rail cross section where the energy in the mode shape is most concentrated.
The following considerations have to always be kept in mind when selecting the mode best
suited for detecting a defect in pulse-echo operation. When a uni-modal wave impinges
on a defect (or on another feature), a portion of its energy is reflected, but the reflected
wave is no longer uni-modal because of modal conversion. Therefore, it is important to
acquire data about reflection coefficients for each combination of incident and reflected
modes; such data can be organized in a matrix of reflection coefficients for each defect
or feature. A useful way of representing the information contained in such a matrix is
through a color or grayscale map of the amplitudes of each element [42]; an example of
such a map is shown in Figure A2 [44]. Based on this map, it can be shown that, on the
one hand, a symmetric mode with energy concentrated in the railhead (e.g., mode 1 of
Figure A2) is well suited to distinguish between cracks in the railhead and welds. On the
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other hand, a mode with energy concentrated in the web (e.g., mode 4 of Figure A2) can be
exploited to detect welds and damages in the rail web, but not to differentiate them. Finally,
it is worth noting that detecting cracks at thermite welds (through a land-based approach;
see Section 6) or in the foot of the rail can be very difficult.

x107
3

Y 25

[

(X3

Reflected power measure

Reflected mode number 1
Incoming mode number

Figure A2. Reflection map for a thermite weld with a 6 mm thick weld cap (picture taken from Ref. [44]).
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Abstract: This paper presents a machine learning method for detecting the mooring failures of SFT
(submerged floating tunnel) based on DNN (deep neural network). The floater-mooring-coupled
hydro-elastic time-domain numerical simulations are conducted under various random wave
excitations and failure/intact scenarios. Then, the big-data is collected at various locations of
numerical motion sensors along the SFT to be used for the present DNN algorithm. In the input
layer, tunnel motion-sensor signals and wave conditions are inputted while the output layer provides
the probabilities of 21 failure scenarios. In the optimization stage, the numbers of hidden layers,
neurons of each layer, and epochs for reliable performance are selected. Several activation functions
and optimizers are also tested for the present DNN model, and Sigmoid function and Adamax are
respectively adopted to enhance the classification accuracy. Moreover, a systematic sensitivity test
with respect to the numbers and arrangements of sensors is performed to find the appropriate sensor
combination to achieve target prediction accuracy. The technique of confusion matrix is used to
represent the accuracy of the DNN algorithms for various cases, and the classification accuracy as
high as 98.1% is obtained with seven sensors. The results of this study demonstrate that the DNN
model can effectively monitor the mooring failures of SFTs utilizing real-time sensor signals.

Keywords: submerged floating tunnel; deep neural network; machine learning; sensor optimization;
failure monitoring accuracy; mooring line; sigmoid function; Adamax; categorical cross-entropy

1. Introduction

SFT (Submerged floating tunnel) is an alternative infrastructure to conventional/floating bridges
and immersed tunnels for deep-sea crossing. It is balanced underwater by its buoyancy, weight,
and constraint forces by means of mooring systems [1]. Feasibility studies of SFT have been performed
by many researchers worldwide based on its potential advantages such that SFT can be safe in both
waves and earthquakes since wave loads exponentially decay with submergence depth and seismic
excitations are indirectly transmitted through flexible moorings [2]. However, the real SFT construction
is not realized since its safety and feasibility are not fully guaranteed yet. Since the structure is deeply
submerged, its structural health monitoring is another big challenging area. In this regard, the present
paper focuses on smart structural health monitoring to design safer and more reliable SFTs in the future.

Two major investigations are essential in the design and operation of SFT for its safety and
reliability. First, in the design stage, dynamic and structural analyses are needed under various
environmental conditions and scenarios. Environmental loads include waves, earthquakes, currents,
and tsunamis. Among them, waves tend to be the most important environmental loading if the
submergence depth is not sufficiently large [3-7]. For SFT with a large diameter, it was found
through hydro-elastic analysis that large static and dynamic mooring tensions were critical issues [7].
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To solve this, various design concepts were suggested, e.g., variable-span mooring design [7] and
suspension-cable type [8]. However, despite the effort to reduce mooring tension, there still exist several
uncertainties, such as nonlinear SFT behaviors and related snap loading that can lead to unexpectedly
large tension. In such a case, unexpected mooring failure can potentially happen. Similarly, collisions
and underwater explosions can break mooring lines. Second, when any mooring failure happens, it has
to be rapidly detected to avoid further problems. Since SFTs are not visible, the detection is not that
simple. Diverse monitoring systems have been suggested for underwater flexible systems. The most
direct method is to use ROVs (remotely operated vehicles); however, they are expensive and continuous
real-time monitoring is not possible. The beam-theory-and-sensor-based monitoring systems with
accelerometers/strain gauges [9] and inclinometers/GPS were developed [10]. These methods need mode
shapes or structural parameters in advance. Other researchers also used analytical, transfer-function,
and mode-matching methods for riser monitoring [11]. However, the above methods still require
many sensors to predict global behaviors and local failures.

Recently, ML (machine learning) has newly been employed for the smart monitoring of marine
structures. While the above conventional methods require a lot of sensors to monitor potential
failures, machine-learning-based algorithms can accurately detect problems with the fewer number
of sensors. For example, Chung et al. [12] performed analyses to detect the damage of TLP (tension
leg platform) mooring by using DNN (deep neural networks). Jaiswal and Ruskin [13] presented the
development of a machine learning algorithm for mooring-failure detection using measured vessel
positions and 6-DOF acceleration data. Sidarta et al. [14] developed an ANN (artificial neural network)
algorithm for detecting broken mooring lines for FPSO (floating production storage and offloading).
Sidarta et al. [15] also developed a machine-learning-based algorithm for detecting mooring-line failures
of a semi-submersible. The above examples utilized floaters” motions to detect mooring-line failures so
that much fewer sensors can be used compared to the conventional deterministic methods. They [12-15]
also assumed that floating structures are rigid to simplify the analyses of motion-sensor signals.

In this study, we developed a ML-based mooring-failure-monitoring system for a long and highly
flexible SFT with DNN algorithms to detect mooring-line failures in real time without employing
human effort or any devices. The effects of variable number of sensors (accelerometers) and their
locations were analyzed. The training data for the developed ML algorithm was produced by
running the author-developed time-domain SFT simulation program [7] using the commercial software,
OrcaFlex [16]. The simulations of SFT’s wave-induced motions and mooring tensions were partly
validated through comparisons with an independent SFT hydro-elastic simulation program [7,17]
and a series of experimental results with small SFT sections [18]. To validate the developed smart
monitoring system, various intact/failure scenarios and wave conditions were considered for training
and testing of the algorithm. In the algorithm optimization stage, not only the numbers of the hidden
layers, neurons, and epochs but also the activation function and optimizer were properly utilized to
enhance the detection accuracy. Contrary to previous researches [12-15], in the case of highly elastic
SFT, a single sensor cannot cover the entire motion, so several sensors are required, as presented in [19].
In this regard, in the testing stage, we checked the detection accuracy of the developed algorithm with
different numbers and arrangements of sensors. Machine learning algorithms for the failure detection
of submerged deformable structures like SFT have rarely been investigated in the open literature.
In this regard, this study using DNN will help other researchers to investigate similar problems in
the future.

2. Numerical Model

2.1. Submerged Floating Tunnel

We considered SFT with 28 mooring lines as an example, as shown in Figure 1. Material properties
and design parameters are presented in Table 1. The tunnel, 20 m in diameter and 800 m in length,
is made of high-density concrete. BWR (buoyancy weight ratio) is set as 1.3. We assume that the tunnel
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has fixed stations at both ends and water depth is constant at 100 m. The submergence depth, which is
a vertical distance between the MWL (mean water level) and the tunnel centerline, is set at 61.5 m.
As can be seen in Figure 1, four 60-degree inclined mooring lines made of studless chains are installed
with 100-m interval along the longitudinal length. The lengths of the mooring lines are 50.2 m for lines
#1 and #2 and 38.7 m for lines #3 and #4. In addition, accelerometers are located along the tunnel’s
centerline, as shown in Figure 1c. We conduct a systematic sensitivity test with respect to the numbers

and arrangements of accelerometers, as discussed in Section 4.3.
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Figure 1. 2D and 3D schematic drawings (accelerometers are marked with red dots in (a); mooring line
numbers are given in (b); sensor numbers (1-9) are given in (c)).

Table 1. Design parameter of the SFT (E is Young’s modulus, I is area moment of inertia, A is

cross-sectional area).

Parameter Value Unit
Tunnel length 800 m
Tunnel diameter 20 m
Interval of mooring lines 100 m
End boundary condition Fixed-fixed -
Material of tunnel High-density concrete -
Length of mooring lines 50.2 (line #1,2), 38.7 (line #3,4) m
Added mass coefficient 1.0 -
Nominal diameter of mooring lines 0.18 m
Drag coefficient 0.55 (tunnel), 2.4 (mooring lines) -
Bending stiffness (EI) 1.34 x 10" (tunnel), 0 (mooring lines) kN-m?2
Axial stiffness (EA) 3.23 x 107 (tunnel), 2.77 x 10° (mooring lines) kN
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2.2. Time-Domain Numerical Simulation

Authors developed a numerical model [7] that can perform tunnel-mooring-coupled time-domain
simulations using OrcaFlex [16] to produce data-sets for machine learning. The SFT was modeled
by the long-beam model, which consists of nodes (lumped masses) and segments (massless linear
and rotational springs). The mass, drag, and other important properties are all lumped at the nodes,
and stiffness properties are modeled in the segments. The time-domain equation of motion for SFT can
be expressed as:

Mx + Kx = FM+W+Fc(S(X,‘—E,) 1)

where M and K are system’s mass and structural stiffness matrices, respectively, x is the displacement
vector, ; is the longitudinal position vector of tunnel nodes, & is the vector representing longitudinal
locations of mooring lines, Fy is the hydrodynamic force vector, w is the wet-weight vector (i.e., net sum
of weight and buoyancy), Fc is the constraint force vector at the tunnel-mooring connection locations
(i.e., coupling force induced by mooring lines on the tunnel and vice versa), and ¢ is the Dirac delta
function. Upper dot in the equations means time derivative of a variable.

The line’s elastic behaviors are considered by the Kx term with axial, bending, and torsional
springs. The axial and torsional springs located at the center of two neighboring nodes evaluate the
tension force and torsional moment while the rotational springs located at either side of the node
estimate the shear force and bending moment.

The hydrodynamic force at nodes’ instantaneous locations was evaluated by the Morison equation
for a moving body, which can be written for a cylindrical object as:

Fp = —CapVX' + CypVa" + %CDPA|‘1H - ’.‘n|(“n - 5(;1) @

where C4, Cpy, and Cp are the added mass, inertia, and drag coefficients, respectively, V and A stand
for the displaced volume and projected area, p is density of water, 1 is velocity of a fluid particle,
and superscript 7 means the normal direction. More details of the numerical model can be found in [7].
The developed SFT dynamics simulation program was partly validated through comparisons with a
series of experimental results for a small SFT segment with similar mooring set-up [18].

2.3. Big-Data Generation under Various Environmental Conditions and Failure Scenarios

Big data were generated and collected by using the developed time-domain simulation program
under various wave conditions and intact/failure scenarios, as summarized in Tables 2 and 3. As shown
in Figure 1c, we considered accelerometers as sensors. However, we collected displacement signals
directly assuming that real-time double integration is feasible with an appropriate bandwidth filter.
Then, we conducted a systematic sensitivity test with respect to the arrangements of accelerometers to
discover effective sensor combinations. Note that sensors #1 and #9 were not used for the analysis due
to the fixed-fixed boundary conditions. As presented in Table 2, 21 intact/failure cases were simulated
for 1800 sec with a time interval of 0.2 sec at each environmental condition. The failure cases were
simulated by disconnecting the target mooring lines. The wave heading is assumed to be normal
to the longitudinal direction of SFT. Based on symmetry, failure scenarios on the half domain were
considered. For the random wave-elevation generation, a JONSWAP wave spectrum was utilized,
and 100 regular-wave components were superposed to generate the random wave signals. Signal
repetition in time histories was avoided through the equal energy method in which each regular
wave component has equal spectral energy. Ten wave conditions were considered, as shown in
Table 3. The enhancement parameter (y) of the wave spectrum was fixed at 2.14. The total data
points and time were, therefore, 210 (21 scenarios times 10 environmental conditions) and 378,000 sec
(210 simulations times 1800 s). As given in Table 3, we employed 80% of data collected from eight
environmental conditions for training, and thus the total data points for training were 134 while the
number of data points for testing was 76. Data from the first eight environmental conditions were
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utilized for studies of optimization and failure-detection performance with different arrangements of
the sensors. Later, we further tested the feasibility of the algorithm by employing data from the last
two environmental conditions not used for training.

Table 2. Mooring-failure scenarios (mooring line number is based on the line number in Figure 1b,
In = intact case, All = failure of all mooring lines (# 1, 2, 3, and 4) at their tunnel location).

Failure Case
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 In

Item

L Tunnel -300 -200 -100 0 -300 200 100 0 -
ocation (m)

Mooring LineNumber 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Al Al Al Al -

Table 3. Wave conditions (Tr is training, Te is testing, percentage in bracket denotes the percentage of
data used for training or testing).

Significant Wave Height (Hs) (m) Peak Period (Tp) (s) Data Usage
1 6 Tr (80%), Te (20%)
1 10.5 Tr (80%), Te (20%)
1 13 Tr (80%), Te (20%)
5 6 Tr (80%), Te (20%)
5 10.5 Tr (80%), Te (20%)
5 13 Tr (80%), Te (20%)
11.7 10.5 Tr (80%), Te (20%)
11.7 13 Tr (80%), Te (20%)
3 8 Te (100%)
7 12 Te (100%)

3. Deep Neural Network

3.1. Artificial Neural Network

ANN is a parallel computational model consisting of adaptive processing units that are densely
connected to each other [20]. ANN is a biologically inspired computing method based on the neural
structures of the brain. Neurons and layers are basic elements to design a neural network structure.
To be specific, a layer consists of a certain number of neurons while neurons in a layer are connected with
neurons in neighboring layers linearly. There are three types of layers, i.e., input, hidden, and output
layers [21]. When there exist multiple hidden layers, it is called DNN.

Learning in DNN is a process of determining the weights and biases in each layer so that the error
between the final output value and the actual value can be minimized. Figure 2 shows the mechanism
of the learning process. This learning procedure is called feedforward because it flows from the input
nodes a to the last output  through the intermediate layer where the activation function f(x) exists.
The weighted sum of the inputs x is firstly estimated by weights w, a, and bias b, and activation function
decides whether outside connections consider this neuron as activated or not. Finally, the network
produces the predicted value § [22]. In this sense, the error of the network is defined as the correct
answer y minus the predicted value .

Figure 2. Layout of feedforward algorithm.
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Classification learning needs to update the weights based on the error values to enhance accuracy.
In this regard, the backpropagation algorithm was adapted. The backpropagation algorithm trains the
neural network by backpropagating the error of the output layer to the hidden layers while updating
weights and bias. In this study, a delta rule was utilized, which can be expressed as [23,24]:

Wil = @+ 16 3

where 7 and 6 are the learning rate and delta. The learning rate is a parameter of the optimization
algorithm that determines the step size at each epoch, moving towards the minimum loss function [24].
Delta is first calculated by multiplying the error value by the derivative of the activation function,
and error is then calculated for the next layer as:

6=f(x)-e 4)
e=WTs (5)

where WT is the transpose of weight matrix {w1, @, ... , @p,). Delta of the output node is backpropagated
to calculate the delta of the hidden nodes while repeating this process of backpropagation to the
leftmost hidden layer. The neural network learning of feedforward and backpropagation is repeated
until the error converges.

3.2. Neural Network Model Architecture

Figure 3 shows the present DNN model for mooring-failure monitoring. In this study,
mooring-failure locations are to be predicted by the change of tunnel motion-sensor signals under
given wave conditions. In other words, the input layer consists of the tunnel motions from
sensors and wave conditions, and the output layer provides the probabilities of 21 failure scenarios.
We optimized the number of hidden layers and neurons, and the selected numbers of hidden layers
and neurons per each layer were three and 200, respectively, which is discussed in Section 4.2 in
detail. Therefore, the proposed architecture consists of an input layer, three hidden layers, and an
output layer.

Input Hidden Output
Layer Layer Layer

Vertical b
displacement \
sensor data \
\\
\\
. Mooring line
S
[ failure case
Lateral \
displacement
sensor data

Wave condition
(Hs / Tp)

Figure 3. Deep neural network architecture with three hidden layers (although 3 hidden layers are not
that deep, it is called DNN in this paper for convenience).
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3.3. Building Neural Network for Classification Tasks

To build the neural networks, the first step is importing the data and defining the input and target
variables as illustrated in Section 3.2. To the next, we need to create the structure of ANN that is
composed of the input, hidden, and output layers. To be specific, the number of hidden layers and the
size of input and output are defined. Hidden and output layer neurons have activation functions that
can learn and perform more complex tasks by performing a nonlinear transformation on the input.
In this study, while four types of activation functions were investigated, Sigmoid function was selected
as the best activation function for the hidden layers, and Softmax was used as the activation function of
the output layer. Model compiling is the next stage to build the neural network. In the compile process,
optimizer and loss function need to be specified. Optimizer is the part of the machine learning process
that actually updates parameters such as weights to decrease losses. On the other hand, the loss is a
prediction error in the neural network, and the method of calculating the loss is called the loss function,
also referred to as the cost function. In this study, Adamax was used as optimizer after comparing four
different optimizers, and Cross-entropy was adopted to define a loss function in ANN [23]. Table 4
summarizes the characteristics of those activation functions and optimizers, and Figure 4 represents the
layout of DNN model applied in the present research. The optimization process to select the activation
function and optimizer is discussed in Section 4.2.2.

Table 4. Characteristics of activation functions and optimizers.

Parameter Characteristic Advantage Disadvantage
e Sigmoid takes areal valueas ¢  Smooth gradient e Vanishing
input and outputs another e Good for a classifier gradient problem
value between 0 and 1. It's e Have activations *  Not zero centered
Sigmoid easy to work with and has all bound in a range e  Sigmoid saturates
the nice properties of and kills gradients

activation functions [25]

e Biological plausibility e  Non-differentiable

e ReLU stands for rectified e Sparse activation at zero
ReLU linear unit. Mathematic e Better e Not zero-centered
form: y = max(0, x) [26,27] gradient propagation e  Unbounded
e Efficient computation e  Dying ReLU problem
Activation function e The range of the Tanh
function is from —1to 1. e Derivatives are e Vanishing
Tanh Tanh is also Sigmoidal steeper than Sigmoid gradient problem
(s-shaped) [25]
Network
e SELU stands for Scaled ° erwor fast e Relatively new
Exponential Linear Unit. It is converges faster. activation function —
SELU self-normalizing the neural *  Noproblem of needs more papers
network [27] Vanishing and on architectures
exploding gradient
e Using moving average of the ° iny requires
o . first-order gradients
Adam gradient instead of gradient 1o
itself [28] withlittle o Generalization issue
memory requirement [29,30]
e Itisavariantof Adam based ° Infinite-order norm
Adamax on the infinity norm [28] makes the algorithm
surprisingly stable
o Agradient-based e Differentiation
Optimizer optimization technique used pclwgcn parameters - nitialization
RMSProp in training neural networks is maintained and bias problem
[31.92] g prevent convergence P
” to zero [31]
e Anoptimizer with e Well-suited for
o . : N e Accumulates squared
parameter-specific learning dealing with radients
. rates, which are adapted sparse data ign den(m‘1in1tor
AdaGrad relative to how frequentlya e  Lesser need to c the 1‘ .
parameter gets updated manually tune ° auses the ‘earming
. gt Y rate to shrink
during training [32] learning rate
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Figure 4. Layout of the present neural network model.

Finally, model fitting is required to execute the model. The training process will run for a fixed
number of iterations over the dataset called epochs. The number of dataset rows is also arranged before
the model weights are updated within each epoch, called the batch size. The number of epochs means
the number of times that the algorithm repeatedly learns the entire training dataset. One epoch means
that each sample of the training dataset can be used to update internal model parameters. The size of
epochs is usually large up to hundreds to thousands to minimize errors sufficiently. The batch size
is the number of samples processed before the model is updated. The numbers of epochs and batch
sizes can be determined experimentally through trial and error. The model must be sufficiently trained
to well map the rows of input data to the output classification. There are always some errors in the
model, but after a certain point in time for a given model configuration, the model converges, and the
amount of error is reduced. In this study, 2000 epochs and 200 batch sizes were used. Figure 5 shows
the learning process of the neural network. Loss is a sum of errors that occurred for each example
in the training set. Loss values indicate how well a particular model works after each optimization
iteration. Ideally, the loss is expected to decrease after each or multiple iterations. The accuracy of the
model is usually determined after training and correction of model parameters. The test sample is
then provided to the model and compared to the actual target, and the number of times that the model
makes a mistake is memorized.
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Figure 5. Learning process of the network model.
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4. Results and Discussions

4.1. Failure Identification Examples

While the mooring-failure-detection algorithm is designed, finding appropriate measurement
parameters is the first important task to provide high-accuracy detection. Using the tension sensor is
the most direct method to detect the failure. However, it is unrealistic to install the tension sensor to all
mooring lines because tension sensors need regular calibrations and are hard to be repaired and replaced
especially for deeply submerged structures such as SFT. In this regard, accelerometers, which can easily
be installed inside the tunnel along its longitudinal direction, are chosen. Furthermore, it can be
directly connected to the electric wire to continuously function in real time. Being inside in dry space,
it is easy to be calibrated and checked up. For the present monitoring algorithm, we directly use the
lateral and vertical displacements of SFT, which can be obtained by integrating the acceleration signals
twice. We confirmed that appropriate bandwidth filter and baseline correction can accurately recover
the displacements from accelerations during time integrations even if there is noise. Zheng et al. [33]
showed the feasibility of real-time displacement monitoring using double integration of acceleration
with measurement noise based on a recursive baseline correction and recursive high-pass filter.
However, when mean displacements cannot be captured and/or noise cannot be handled during time
integrations, real-time displacements can alternatively be obtained from inclinometers instead of
accelerometers, as developed by 3rd author’s research group [34].

Figures 6 and 7 show the time histories of lateral and vertical displacements of the tunnel at its
mid-length (sensor No. 5, x = 0 m) in intact and failure scenarios. While simulation time is 1800 sec
(9000 steps), the results for the first 400 sec are presented there. The corresponding significant wave
height and peak period are 11.7 m and 13 sec. Cases 1 and 13 in Figure 6 are the results when one of
the mooring lines is broken at x = =300 m and x = 0 m, respectively (see Table 2). There are noticeable
differences between the intact case and Case 13. For the lateral motion, Case 13 has lager motions in
the negative direction since one-mooring failure leads to less stiffness of the system there. The larger
fluctuations and static shift of the vertical displacement are observed for Case 13. These results
demonstrate that failure can more easily be detected by motion changes when sensors are close to
the failure locations. On the other hand, for Case 1, since the failure location (x = —300 m) is far
away from the sensor location (x = 0 m), there is no visible difference in displacements between
intact and failure cases. In addition, as shown in Figure 7, depending on the left- and right-side
mooring failure, the corresponding asymmetrical bias can be observed in the lateral motion trends.
However, the corresponding difference in the vertical response is small, as can be seen from Figure 7b.
By observing the pattern of those sensor signals, the monitoring algorithm can figure out the best guess
for the failure incidence. If we place several accelerometers along the longitudinal direction of the
tunnel, the prediction accuracy can significantly be improved while much more detailed comparisons
of multiple sensor signals have to be made. As was seen i