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José L. Escalona, Pedro Urda and Sergio Muñoz
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Preface to ”Combining Sensors and Multibody

Models for Applications in Vehicles, Machines,

Robots and Humans”

Measuring and simulating sensors and physical models represent two ways of obtaining

information from a dynamical system. Each of them has advantages and disadvantages, but the

combination of both leads to more consistent results. This general idea can be particularized to mobile

mechanical systems, also known as multibody systems. In this type of system, with popular examples

including vehicles, machines, robots and humans, there is a tradition of using simplified models

along with sensors to estimate the states, inputs and/or parameters of the system. However, in the

last decade, research activity has been devoted to substituting the simplified models with detailed

multibody models, which can be useful in some applications. Therefore, the aim of this Special Issue

has been to gather contributions that illustrate the interest in this recent trend.

Javier Cuadrado, Miguel A. Naya

Editors
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The combination of physical sensors and computational models to provide additional
information about system states, inputs and/or parameters, in what is known as virtual
sensing, is becoming more and more popular in many sectors, such as the automotive,
aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors.
While, in many cases, control-oriented models, which are generally simple, are the best
choice, multibody models, which can be much more detailed, may have applications, for
example, during the design stage of a new product.

This Special Issue sought to attract works dealing with the many challenges that
must be overcome when developing multibody-based virtual sensors. These challenges
include the selection of the fusion algorithm and its parameters, the coupling or the inde-
pendence between the fusion algorithm and the multibody formulation, the magnitudes
to be estimated, the stability and accuracy of the adopted solution, optimization of the
computational cost, real-time issues and implementation on embedded hardware. Studies
of the application of multibody-based virtual sensors to, for example, vehicles, heavy
machinery, mobile or humanoid robots, assistive orthotic and prosthetic devices or the
measurement and analysis of human movement were also welcome.

In the next paragraphs, a brief description of the content of each contribution forming
the Special Issue is provided.

The first work [1] focuses on the measurement of human motion and employs an
extended Kalman filter to carry out the optical motion capture, the problem being to
adjust the filtering level of the algorithm, for which the accelerometers contained in inertial
measurement units are used.

The second work [2] addresses the measurement of railway track geometric irregulari-
ties by means of a system included on board, composed of a kinematic model of the track
and a set of sensors.

The objective of the third work [3] is to avoid the danger of reaching singular positions
in a parallel robot for rehabilitation. For this purpose, a control system is developed based
on computer vision and the multibody model of the robot.

The fourth work [4] is not centered on a particular field of application, but on the
general problem of state and input estimation, its contribution being a method to extract
the matrices required for a discrete Kalman filter which provides stable and accurate results,
demonstrated in a slider–crank mechanism.

The fifth work [5] foresees naval applications in the future, although it tackles the
general problem of state, input and parameter estimation, proposing that the model
equations are based on Pontryagin’s treatment of Hamiltonian systems, and that feedback is
used to re-initialize the initial values of a reformulated two-point boundary value problem.

The sixth work [6] deals with human-in-the-loop applications with haptic feedback,
providing examples in the automotive and musical fields. Sensors are used to characterize
and validate the multibody model, to measure the system kinematics and dynamics within
the human-in-the-loop process, and to validate the haptic device behavior.

Sensors 2021, 21, 6345. https://doi.org/10.3390/s21196345 https://www.mdpi.com/journal/sensors
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The field of application of the seventh work [7] is machinery. More specifically,
the work seeks to determine the characteristic curves of a directional control valve in a
hydraulic system. For this purpose, it employs an augmented discrete extended Kalman
filter based on a multibody model of the mechanism and the lumped fluid theory for a
fluid power system, along with a curve-fitting method to describe the characteristic curves
of the valve.

The eighth work [8] looks at the general problem of state and force estimation, consid-
ering the automotive field as a clear target of application. The authors apply an adaptive
method to estimate the noise covariance matrices of a state and input estimator based on
multibody models.

The ninth work [9] intends to estimate the sideslip angle in road vehicles, and proposes
an alternative to traditional methods of state estimation by representing the problem as a
probabilistic graphical model which can be optimized by several methods.

The tenth work [10] is a spatial application consisting of the design of a six-legged
integrated lander and rover for repetitive lunar landings. The possibilities of successful
landing despite the failure of some integrated drive units of the system are explored,
assuming that at least three legs of the hexapod are operative.

In summary, it can be seen that the papers gathered in the Special Issue contributed
either by proposing solutions to the general problem of state, input and/or parameter
estimation [4,5,7–9], and/or by suggesting applications of the combined use of sensors
and multibody models to different fields, such as automotive [6,8,9], railway [2], naval [5],
spatial [10], machinery [4,7], robotics [3], biomechanics [1] and music [6] applications, thus
showing the theoretical challenges and practical interest of this research topic.

Finally, we wish to thank the authors, reviewers and journal staff for their commitment
and effort, which made it possible to complete this Special Issue on time.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Optical motion capture is currently the most popular method for acquiring motion data
in biomechanical applications. However, it presents a number of problems that make the process
difficult and inefficient, such as marker occlusions and unwanted reflections. In addition, the obtained
trajectories must be numerically differentiated twice in time in order to get the accelerations. Since
the trajectories are normally noisy, they need to be filtered first, and the selection of the optimal
amount of filtering is not trivial. In this work, an extended Kalman filter (EKF) that manages
marker occlusions and undesired reflections in a robust way is presented. A preliminary test with
inertial measurement units (IMUs) is carried out to determine their local reference frames. Then,
the gait analysis of a healthy subject is performed using optical markers and IMUs simultaneously.
The filtering parameters used in the optical motion capture process are tuned in order to achieve
good correlation between the obtained accelerations and those measured by the IMUs. The results
show that the EKF provides a robust and efficient method for optical system-based motion analysis,
and that the availability of accelerations measured by inertial sensors can be very helpful for the
adjustment of the filters.

Keywords: Kalman filter; motion capture; gait analysis; inertial sensor

1. Introduction

Human motion capture during gait provides a way to understand the principles
of the natural mode of locomotion of the human being. Technological advances have
changed its practice and improved its accuracy along history [1,2]. Recent developments
in microelectromechanical systems (MEMS) have caused a renewed interest in the use
of inertial measurement units (IMUs) to perform three-dimensional (3D) human move-
ment reconstruction [3–10]. However, getting orientation from IMUs presents accuracy
and consistency issues [11–16], especially in the presence of environmental ferromagnetic
disturbances or when measuring fast complex movements over long periods of time [17].
This is why, although the performance of inertial sensors has improved in the last decade,
optical motion capture remains as the preferred method to perform precise biomechanical
studies. In fact, as pointed out in [18,19], IMU-based methods for motion capture and
reconstruction are usually validated against optical methods, which remain as the golden
standard reference. The problem with optical motion capture systems is that it is very
difficult to ensure that all markers are visible to the cameras all the time and, moreover,
other reflective objects present in the capture zone can be incorrectly identified as markers.
In general, obtaining the skeletal motion involves some manual post-processing of the cap-
tured data, so the technique is not straightforward [20,21]. This problem can be overcome
by using an extended Kalman filter (EKF) [22], as will be described later in this paper.

The typically high-frequency noise harmonics present in the recorded marker trajecto-
ries are hardly perceptible at displacement level. However, after numerical differentiation,

Sensors 2021, 21, 427. https://doi.org/10.3390/s2102042 https://www.mdpi.com/journal/sensors
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the amplitude of each harmonic increases with its harmonic number; for velocities, it
increases linearly, and, for accelerations, the increase is proportional to the square of the
harmonic number [2]. For this reason, filtering is required when trying to obtain velocities
and accelerations by numerically differentiating position data. The problem here lies on
the choice of the cutoff frequency of the filter, since it is difficult to achieve a value that
filters out most of the noise, without also removing relevant motion information [23–27].
From what has been said, it is deduced that different filtering quality is demanded for
the animation of virtual characters, where only configuration-level information is needed,
and for biomechanical analysis including dynamics, where velocity- and acceleration-level
information is also required.

Numerous filtering approaches can be found in the literature [2,23,28,29]. While the
Butterworth filter has generally been preferred, because impulsive-type inputs are rarely
seen in human movement data [28,30,31], recent studies have applied the Kalman filter [32]
(most commonly used in the literature for inertial sensors), thus improving the accuracy of
estimated joint kinematics and computed orientation data [22,33,34]. However, beyond the
choice of a filtering algorithm, the main problem remains in the tuning of its parameters.
In almost all the filtering studies for gait analysis, the smoothing level is based on the
author’s decision of how much noise is acceptable. A common criterion is to establish an
error threshold at position level, and then setting the cutoff frequency accordingly [22,23].
Regardless of the method used, there is no way of assessing the accuracy of the obtained
accelerations by relying on position data alone. In order to provide an objective filter-tuning
procedure, this work proposes to compare the filtered accelerations from the optical capture
with their experimental measurement from the inertial sensors in the case of gait. In [24], a
similar procedure was applied in the case of jumping, but it was not successful due to the
overshoot provided by the accelerometers in their horizontal measurements.

IMUs are capable of estimating their own orientation within an Earth-fixed frame by
using sensor fusion algorithms, such as Madgwick’s algorithm [35] or the EKF [36]. These
algorithms provide an estimate of the orientation by combining the information from the
triaxial accelerometers, gyroscopes and magnetometers present in the IMU. Because IMUs
show limitations to give an accurate orientation [13] (closely related to sensor calibration,
magnetometer sensitivity, and presence of accelerations other than gravity) and, moreover,
their Earth-based global frame will in general differ from that of the optical motion capture
system, a preliminary test was performed with nine IMUs. This test was carried out in
order to assess the instrumental errors associated, select the most accurate units, and
determine the global frame offset corresponding to each one [11]. Second, the gait analysis
of a healthy subject was conducted. The motion was recorded by both the optical and
the inertial techniques, using the seven most accurate IMUs among the nine previously
tested. The human motion was then reconstructed by using both the classic Vaughan’s
method [37], which does not impose the kinematic constraints and is similar to those
proposed in [19] and the EKF introduced in this paper, which allows automatic marker
labeling, is robust to short marker occlusions and imposes kinematic constraints, even in
real time, so the local accelerations measured by the IMUs could be used to tune the filters
applied to the optical motion capture data.

The remaining of the paper is organized as follows. Section 2 describes the two
experiments carried out, sensor test and gait analysis. It points out the errors that may
be incurred by inertial sensors, and proposes a way to minimize their influence. Then, it
explains the two motion reconstruction methods applied and compared in this work, with
a detailed description of the EKF, and shows the procedure to obtain the accelerations of
the IMU attachment points from the optical system-based analysis, so that they can be
compared with the accelerations measured by the IMUs. Section 3 presents the results of
both the preliminary test and the gait analysis, showing the errors of the inertial sensors in
orientations and accelerations, and the effect of the filter parameters adopted for the motion
reconstructions methods in the accuracy of the accelerations obtained from the optical
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system recordings. Finally, Section 4 discusses the results and points out the limitations of
the study, while Section 5 draws the conclusions of the work.

2. Materials and Methods

2.1. Preliminary Test

IMUs provide the measured accelerations expressed in their local reference frames,
while the optical motion capture system provides marker positions within its own fixed
reference frame. Therefore, in order to establish a comparison between accelerations
coming from both techniques, it is necessary to express them in the same reference frame,
and this implies obtaining the transformation matrix between each IMU and the fixed
frame used by the optical motion capture system.

As mentioned above, an IMU can use sensor fusion algorithms to estimate its ori-
entation within an Earth-fixed frame. This Earth-fixed frame is usually defined as NED
(North-East-Down) or NWU (North-West-Up), and will be probably rotated with respect to
the reference frame used by the motion capture lab. Therefore, the first step is to determine
the offset between both reference frames, for which two methods can be applied: (i) the first
option is to carry out a preliminary IMU calibration process, as the spot check proposed
in [11]; (ii) the second alternative is to attach three markers to each IMU, so the local frames
can be obtained directly from the optical motion capture system [38]. Since the second
method requires a large number of markers, thus making the motion capture process more
involved and error-prone, the calibration approach has been chosen in this work.

2.1.1. Experimental Data Collection

Nine IMUs (STT-IWS, STT Systems, San Sebastián, Spain) sampling at 100 Hz were
fixed on a flat rigid wooden plate (with no ferromagnetic disturbances), equally spaced
and accurately aligned to each other. Four reflective markers were also attached to four of
the sensors, as illustrated in Figure 1.

 
Figure 1. Calibration setup composed by nine IMUs and four markers on a rigid plate.

The optical motion capture system was formed by 18 infrared cameras (OptiTrack
FLEX 3, Natural Point, Corvallis, OR, USA), also sampling at 100 Hz. Starting with the
plate on the floor, where it was kept for 5 s, it was manually moved around for 30 s and,
finally, put again in the original place during 5 s. Data from both the IMU set and the
optical system were recorded and the plate orientation during the motion was obtained
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from: (i) each IMU, based on gravity, magnetic North and gyroscope integration within
the commercial software iSen provided by the manufacturer; (ii) the optical system, by
rigid-body motion reconstruction based on the trajectories of the reflective markers 1,
2 and 3.

2.1.2. Sensor Orientation and Geomagnetic Frame of Reference

Figure 2 shows the three reference frames involved in the problem. The first reference
frame is the global reference frame of the motion capture lab, obtained after calibration of
the optical system, and it is noted with subscript O (after optical). This reference frame
is fixed and common for all IMUs. The second reference frame is the global, Earth-fixed
reference frame of each inertial sensor, and it is noted with subscript E (after Earth-fixed),
and superscript i denoting the IMU number. Although this frame should be the same for
all the IMUs, their inherent errors in determining gravity and magnetic North directions
lead to discrepancies among sensors. The third reference frame is the local reference frame
of each inertial sensor, and it is noted with subscript I (after inertial). In the calibration
setup, the local reference frame is the same for all the IMUs, and it coincides with the local
reference frame of the wooden plate. Note that the axes of this reference frame have a bar
on them, meaning that they are moving axes, rigidly attached to the wooden plate.

 

Figure 2. The three reference frames involved in the calibration: fixed global reference frame of the
optical system (subscript O); Earth-fixed global reference frame of each IMU (in grey, subscript E and
superscript i); moving local reference frame of all the IMUs and the wooden plate (subscript I).

If ROI is the variable rotation matrix that transforms the components of a vector
expressed in the reference frame I into the components of the same vector expressed in the
reference frame O, Ri

OE is the constant rotation matrix that does the same between frames E
and O for the inertial sensor i, and Ri

EI is the variable rotation matrix that makes the same
between frames I and E for that sensor, the following relation can be stated at any instant
of the plate motion:

ROI = Ri
OERi

EI (1)

At any time point, the trajectories of the markers measured by the optical system
provide ROI, while the sensor fusion algorithm from the ith IMU provides Ri

EI. Therefore
Ri

OE can be derived from Equation (1) as,

Ri
OE = ROIR

i T
EI (2)

Each Ri
OE matrix must be constant, since it represents a rotation between two fixed

frames. However, if it is calculated for all the time points of the recorded motion, the
obtained values will not be completely constant, due to sensor and estimation errors. In
order to find a unique matrix for each IMU, an average rotation matrix is calculated and
taken as its effective Ri

OE. Since rotation matrices are orthogonal, care must be taken when
averaging them, so that orthogonality is preserved. The method followed here consisted
of extracting the roll, pitch and yaw angles from each rotation matrix at every time point,
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averaging them, and using these values to build back the corresponding effective rotation
matrix. This calibration procedure to get the Ri

OE matrices yields different results for
different days due to magnetic changes, so it should be ideally performed right before
using the IMUs.

Once the IMUs were properly calibrated, the orientation error provided by each
of them along the motion of the wooden plate was obtained. For each time point, the
trajectories of the markers measured by the optical system provided matrix ROI, while data
from ith IMU provided Ri

EI. Since the constant matrix Ri
OE had been obtained for each IMU

in the calibration process described before, it can be written from Equation (1),

Ri
OI = Ri

OERi
EI (3)

where Ri
OI is the rotation matrix between frames I and O provided by the ith inertial

sensor. Ideal IMUs would provide the same matrix Ri
OI for all the sensors, and it would

be coincident with matrix ROI provided by the optical system. However, due to errors in
the IMUs, such matrices differ, and the orientation error committed by each IMU at each
time point can then be obtained by calculating the roll, pitch and yaw angles of Ri

OI, and
comparing them with the roll, pitch and yaw angles of ROI, taken as reference. This was
done for the nine IMUs, the results being shown in Section 3.

Once the method to obtain the orientation error of each inertial sensor has been
described, the objective of comparing the accelerations provided by the optical and the
inertial systems is addressed. The optical system provides the trajectories of the markers,
based on which the position history of any point of the body can be obtained through
a motion reconstruction method. Then, double differentiation of the position history
yields velocity and acceleration histories of the point considered. Positions, velocities
and accelerations are expressed in the global reference frame of the motion capture lab
(previously denoted by O). On the other hand, IMU accelerometers measure a combination
of the gravitational and translational accelerations. As reported by Woodman [21], it is
necessary to have very accurate rotation sensors in inertial navigation systems, because
knowing the precise orientation of the body allows to properly subtract the gravitational
acceleration from the measurement, in order to find the translational acceleration. Each
IMU provides its acceleration expressed in its local reference frame (previously denoted by
I). Therefore, to compare accelerations obtained through the optical and inertial techniques,
it is necessary to express them in the same reference frame and to take into account the
gravity constant, which is present in the inertial case.

To highlight all the mentioned issues, the acceleration of point 4 in Figure 1 was
obtained in three different ways. First, since point 4 had a marker on it, the marker
trajectory was filtered by means of a 8 Hz forward-backward 2nd order Butterworth filter,
then it was differentiated twice with respect to time, and the gravity constant (9.81 m/s2)
was added to the vertical component of the resulting acceleration; the presence of the
marker attached at the point made it unnecessary the use of any motion reconstruction
method, thus eliminating a source of error for the optical system. Second, the acceleration
provided by the IMU at point 4 was expressed in frame O by multiplying it by matrix
R5

OI (orientation provided by the IMU #5, attached to that point). Third, the acceleration
provided by the IMU at point 4 was expressed in frame O by multiplying it by matrix ROI
(orientation provided by the optical system after the mentioned filtering of the marker
trajectory). The resulting accelerations and their comparison are shown in Section 3.

2.2. Gait Analysis
2.2.1. Experimental Data Collection

A healthy adult male, 24 years old, 70 kg, and 175 cm, performed a complete gait
cycle. Both 36 reflective markers in all his body segments for optical motion capture (same
equipment as that described in Section 2.1) and 7 IMUs (the best seven among the nine
tested in the preliminary test) at pelvis, thighs, shanks and feet for inertial motion capture
were attached to the subject’s body, as can be seen in Figure 3. One additional marker

7



Sensors 2021, 21, 427

was attached to each IMU so as to determine its local position within the corresponding
segment during a static pose recording.

 

Figure 3. Markers and IMUs (red numbers) attached to the subject’s body for gait analysis.

2.2.2. Skeletal Model and Kinematics

The human body is modeled as a three-dimensional multibody system formed by
rigid bodies, as shown in Figure 4. The model consists of 18 anatomical segments [39]: two
hind feet, two forefeet, two shanks, two thighs, pelvis, torso, neck, head, two arms, two
forearms, and two hands. The segments are linked by ideal spherical joints (black dots in
Figure 4b), thus defining a model with 57 degrees of freedom (DOF). The axes of the global
reference frame are defined as follows: x-axis in the antero-posterior direction, y-axis in the
medio-lateral direction, and z-axis in the vertical direction.

Figure 4. 3D human model: (a) graphical output; (b) multibody model showing the segments: joints
(black dots), and marker locations (white dots).

8
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2.2.3. Motion Reconstruction from Motion Capture Data

Optical motion capture records the motion of entities (markers) that are external to the
body, and the objective is to use the marker data to determine the positions and orientations
of the body segments. The traditional approach for accomplishing this is to use the method
described by Vaughan [37]: (i) select three non-collinear entities, which can be either
markers or already located joints, within each body segment; (ii) define an orthogonal
reference frame for the corresponding segment, based on the three selected entities; (iii)
use correlation equations, based on archived anthropometric data and body measurements,
to estimate the position and orientation of the body segment. When applying this method,
marker trajectories are previously filtered with a low-pass filter (forward-backward 2nd
order Butterworth filter), whose cutoff frequency must be selected by the analyst.

Another commonly used approach is to solve a weighted optimization problem,
in order to fit the skeletal model to the measured markers, as done in the OpenSim
software [40]. The fitting is carried out in two steps. First, a reference skeletal model, with
virtual markers fixed to the anatomical points, is scaled in order to match the markers
from a static capture, taken in a reference pose. Then, a second optimization problem
finds the positions and orientations of the scaled body segments that best track the motion
capture data. This last optimization uses an independent set of positions and orientations
as design variables, which can be filtered and differentiated afterwards to find velocities
and accelerations.

These methods present important drawbacks. In the first one, the local frames are
obtained directly from the markers, which are not rigidly attached to the bones, so the
obtained skeletal motion is not consistent with the rigid body constraints, i.e., the distances
between joints do not remain constant. This can be addressed by enforcing kinematic
consistency in a post-processing stage [41]. Another problem, common to both methods, is
that they require clean capture data: marker trajectories must not contain any gaps, and
the markers need to be properly labeled at every time step, something that is not always
guaranteed by the motion capture system. The procedure used for fixing this problem
usually involves some manual gap filling and marker labeling [20] and, in some cases of
severe marker loss, it is not even possible to salvage a take. The main consequence of these
drawbacks is the impossibility of knowing if a motion capture take has been successful
until all post-processing has been carried out.

2.2.4. Extended Kalman Filter for Motion Reconstruction

In order to overcome these drawbacks, a motion capture algorithm based on the
extended Kalman filter has been developed. The filter uses a purely kinematic model for
the plant, while the markers act as position sensors. The kinematic model mostly coincides
with that described in Figure 4 but, in order to avoid the need for additional markers,
the spherical joint at the base of the neck has been substituted by a universal joint, and
metacarpophalangeal joints are modeled here as revolute pairs. Therefore, the kinematic
model used in the Kalman filter has 52 degrees of freedom instead of 57. Since the Kalman
filter requires using independent state variables, the position of the model must be defined
by a set of independent coordinates, including 3 base body translations (pelvis), 2 relative
angles at the toes, 2 relative angles at the base of the neck, and 45 Euler angles representing
the absolute orientation of the remaining bodies.

The Kalman filter is based on a discrete white noise acceleration model (DWNA) [42],
in which the plant is considered as a discrete-time state-space system,

xk+1 = Fxk + Γak (4)

where xk+1 and xk are the state vector at time instants k + 1 and k respectively, F is the
state propagation matrix, ak is the process noise vector, and Γ is the noise gain matrix. The
DWNA is a second-order kinematic model, so the state vector contains the 52 degrees
of freedom, q, along with their first time derivatives,

.
q. Accelerations are introduced in

the system through the process noise vector a. This vector contains the 52 independent
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accelerations, being each of them a discrete-time zero-mean white sequence. Therefore, they
are assumed to be constant along every time step, and their values are random variables
with a zero-mean normal distribution of variance σ2

a . This variance has dimensions of
squared acceleration for the translational DOFs, and squared angular acceleration for the
angular ones. In order to reduce the number of parameters, in this work the same numerical
value will be used for all of them.

Taking into account that accelerations are assumed to remain constant along each time
step, the state transition in Equation (4) particularized to any given DOF i is,[

qi
k+1

.
qi

k+1

]
=

[
1 Δt
0 1

][
qi

k.
qi

k

]
+

[ 1
2 Δt2

Δt

]
ai

k i = 1, . . . , 52 (5)

where Δt is the sampling period, which is fixed to 10 ms (the motion capture cameras used
in this work have a maximum frame rate of 100 Hz). As can be seen in Equation (5), the
state propagation and noise gain matrices defined for each DOF only depend on the time
step Δt, so they are constant and equal for all of them. Therefore, matrices F and Γ for the
whole system are the result of assembling these individual matrices, following the structure
of the state vector x.

The process noise covariance matrix Qi has also the same form for all DOFs [42],

Qi =

[ 1
4 Δt4 1

2 Δt3

1
2 Δt3 Δt2

]
σ2

a (6)

The Q matrix for the whole system is the result of assembling these individual matrices,
as done for the state transition and noise gain matrices.

The observation function h(x) provides the observation vector z, which in this case
contains the absolute x, y and z coordinates of the 36 optical markers, as a function of the
state vector x,

zk = h(xk) + wk (7)

The additive term wk represents the noise introduced by the motion capture system,
along with the skin motion artifact. Since the latter is correlated to the skeletal motion,
modeling the sensor noise as a random variable following a Gaussian distribution is
not strictly correct, so the Kalman filter will not be optimal. All sensors are considered
independent and equally affected by noise, so the observation noise covariance matrix R is
a diagonal matrix, whose diagonal elements are all equal to the sensor noise variance σ2

s ,
which has dimensions of squared length.

In order to compute the absolute marker positions from the system states, a recursive
kinematic relationship can be established, as shown in Figure 5. The absolute position zi of
a marker i, which is attached to body b (right hand in Figure 5), can be obtained from the
following recursive relationships,

zi = rb + Abmi
rb = rb−1 + Ab−1rb

(8)

where rb is the absolute position of the proximal joint of body b, Ab is the rotation matrix of
the same body, which depends on its three orientation angles, and mi is the local position
vector of marker i within the local frame of body b. In the observation model, the markers
are considered as rigidly attached to the skeleton, so mi is a constant vector. The vector
rb itself can be obtained in a recursive way from the position vector rb−1 and orientation
matrix Ab−1 of the preceding body in the kinematic chain, knowing that rb is the position
of the proximal joint of body b in the local frame of b − 1, which, due to the rigid body
assumption, is considered constant. This recursive process starts at the pelvis, whose
position vector is contained directly in q and, consequently, in x.

10
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Figure 5. Kinematic description of the observation function h(x).

The local position vectors rb and mi must be scaled prior to running the Kalman
filter, in order for the model to adjust to the experimental data. This is performed by
solving, at a reference pose, a nonlinear least squares optimization problem, in which the
design variables are a set of scale factors k and the skeletal degrees of freedom q, being the
objective function the quadratic error between measured and estimated marker positions,

min
q,k

f (q, k) = [ha(x, k)− z]T [ha(x, k)− z] (9)

where ha(x, k) is an augmented version of the observation function that also takes the
scale factors as input variables. The resulting scale factors are then used to scale the rb
and mi vectors that will be used in h(x). It has been found that the Levenberg-Marquardt
algorithm works very well for this problem, converging in a very robust way even from
rough initial estimates.

The Kalman filter algorithm follows a recursive predictor-corrector scheme. It uses the
current estimate of the state vector, x̂k, along with the sensor measurements, zk+1, to obtain
an optimal estimate x̂k+1 at the next time step. In the predictor stage, the state estimate is
updated by means of the state transition matrix F, leading to the so-called a priori estimate
x̂−k+1. The estimate covariance matrix P is updated accordingly, by using matrices F and Q,

x̂−k+1 = Fx̂k
P−

k+1 = FPkFT + Q
(10)

The state estimate at the first time step, x̂0, will contain the initial independent po-
sitions, q0, along with the corresponding velocities,

.
q0. The positions are obtained after

solving the initial marker labeling problem, which will be described later. The initial
velocities are unknown, as well as the value of P0, so they are both set to zero, but they
converge quickly to their correct values after a short transient.

The corrector stage uses the sensor measurements zk+1 to find the optimal a posteriori
estimate x̂k+1, as well as its corresponding covariance matrix, Pk+1,

Kk+1 = P−
k+1HT

k+1

(
Hk+1P−

k+1HT
k+1 + R

)−1

x̂k+1 = x̂−k+1 + Kk+1

[
zk+1 − h(x−k+1)

]
Pk+1 = (I − Kk+1Hk+1)P

−
k+1

(11)

In these equations, Hk+1 is the Jacobian matrix of the observation function, evaluated
at x̂−k+1. This matrix can be computed very efficiently due to the recursive nature of h(x).
Moreover, it is quite sparse, due to the usage of absolute angles as state variables: most
rotation matrices will only depend on three angles, greatly simplifying their derivatives.
In addition, the gradient used in the scale optimization problem shown in Equation (9)
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mostly coincides with this matrix, which is very convenient from the implementation point
of view.

Since this algorithm is recursive and each step can be evaluated very efficiently, it can
be used for real-time motion reconstruction and visualization, as opposed to the previously
mentioned methods, which provide skeletal motion after post-processing the captured data.
In order to achieve on-the-fly motion reconstruction, the marker labeling and occlusion
issues must be addressed.

The problem of initial marker labeling is addressed by using a simple heuristic method
to identify the markers. The procedure consists of checking their relative positions at the
initial time step, according to a reference pose. Then, the same Levenberg-Marquardt
optimization algorithm previously used for scaling the model is used here to fit the DOFs
to the measured markers. This time, the objective function uses the regular observation
function h(x) with the scale factors already applied to the local position vectors, so only
the positions q0 are considered as design variables. If the objective function value after
the optimization (i.e., the fitting error) is below a certain threshold, the marker order is
considered valid, and the iterative process of the Kalman filter can begin.

During the execution of the Kalman filter, marker labeling must be carried out on
the fly, between the predictor in Equation (10) and the corrector in Equation (11). This is
because, for several reasons, the raw measurement vector zr

k+1 obtained from the cameras
cannot be directly used within the corrector. First, the markers are provided as an unsorted
list by the cameras. Second, some markers may be missing due to occlusions. Third, other
bright objects present during the motion capture can be incorrectly identified as markers.
Therefore, the raw measurement zr

k+1 must be correctly labeled and sorted, the missing
markers need to be identified, and all spurious markers have to be discarded, in order to
get the “clean” measurement vector zk+1. After the Kalman filter predictor has computed
the a priori state estimate x−k+1, the observation function h(x) is evaluated at that point to
obtain the corresponding set of estimated marker positions ẑk+1. Ideally, these estimated
markers would coincide with the measured ones zr

k+1, and this fact can be used to identify
the measured markers by using a simple, nearest-neighbor approach. First, a matrix of
squared cross-distances D is built, such that

Dij =
(

ẑi − zr
j

)T(
ẑi − zr

j

)
(12)

where ẑi contains the estimated x, y and z coordinates of marker i, and zr
j is the position

vector of measured marker j. By setting a maximum search distance, estimated markers
that do not have a measured one close enough are considered as missing, and the remaining
ones are assigned to their closest measured counterparts. Any marker from zr

k+1 remaining
unassigned, after all estimated markers have been either paired to their measured counter-
parts or marked as missing, are regarded as spurious, so they are discarded. In order to
avoid resizing vectors and matrices at runtime, missing markers are set to zero in z, and
the same is done to their corresponding rows in H, so they do not affect the correction.

The EKF can provide a smoothing effect depending on the tuning of its parameters,
so in this case there is no need for filtering the marker trajectories. If the sensor noise
variance σ2

s is fixed to a constant value, the smoothing can be controlled by the process
noise variance, i.e., the acceleration variance σ2

a . Low values of the variance limit the
accelerations the system can reach at every time step, thus having a smoothing effect on the
resulting position histories, while high values of the variance allow for larger accelerations,
so that the system can follow the sensors (i.e., the markers) more closely, at the expense of
introducing sensor noise into the reconstructed motion. In this work, the accelerations are
obtained by further filtering the independent positions, and differentiating them twice to
obtain velocities and accelerations. There exist higher order state-space models that include
accelerations in the state vector, but they present two major issues when used with position
sensors only: the resulting accelerations are noisy and delayed, and some unwanted
oscillations may appear in the resulting motion for certain values of the filter parameters.
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The analyst has in this case two parameters for tuning the obtained accelerations: the
process noise variance and the cutoff frequency of the Butterworth filter. In order to find
their optimum values, the use of accelerometers can be of great help.

2.2.5. Calculation of the Accelerations

In order to make the accelerations obtained from the optical system directly compa-
rable to those obtained by the inertial sensors, it was necessary to transform the former
into the local axes of the corresponding IMUs, and to add the gravity effect to them. Such
an acceleration obtained from the optical system will be called hereafter the virtual ac-
celeration, as it comes from a virtual accelerometer. It is possible to do the opposite, i.e.,
to rotate the IMU measurements to the global frame of reference instead, subtracting the
acceleration of gravity afterwards. However, this procedure involves mixing data from
both systems (to rotate the IMU accelerations to the global frame), so the first alternative
seems more appropriate.

Figure 6 shows a segment or body of the multibody model of the human skeleton,
where the black dots are joints connecting the segment with its neighbors, and the white
dots are the markers attached to the segment. The small rectangle represents the IMU
attached to the segment, which in turn has a marker attached to it, as also shown in Figure 3.
The local reference frame of the body is denoted by B, a moving frame rigidly attached
to the body, and its origin is defined in frame O by the position vector rB while the local
position of the IMU in frame B is given by the constant vector ri (i is the number of the
IMU attached to that particular body). The following equation can be written,

ri = rB + ROBri (13)

where ri is the position vector of the IMU in frame O and ROB is the rotation matrix between
frames B and O. Then, ri can be worked out as,

ri = RT
OB(ri − rB) (14)

 
Figure 6. Kinematics at segment level to get the virtual acceleration (acceleration of the point of
the body where the IMU is attached) from the optical motion capture recordings. The black dots
represent joints connecting the segment with its neighbors. The white dots represent the markers
attached to the segment.
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Regarding the orientations, the following relation stands,

ROBRBI = Ri
OERi

EI (15)

being RBI the unknown constant rotation matrix between frames B and I. Superscript i in
the rotation matrices of the right-hand side refers to the number of the IMU attached to
that particular body. From Equation (15), the constant rotation matrix RBI can be worked
out as,

RBI = RT
OBRi

OERi
EI (16)

The two constant terms worked out in Equation (14) and Equation (16), respectively,
must be determined in order to obtain, later on, the virtual acceleration. To this end, a
capture of a static pose of the subject is recorded by both the optical and inertial systems.
From the positions of the markers, ri, rB and ROB can be derived, so that ri is calculated
from Equation (14). On the other hand, the constant matrix Ri

OE had been obtained in
the calibration process carried out during the preliminary test, while Ri

EI can be derived
from the orientation provided by the IMU, so that RBI is calculated using Equation (16).
It must be noted that this is the only point, along the process of getting the virtual ac-
celeration, in which the orientation provided by the IMU is used. However, this does
not induce a significant error, since the estimated orientations are much more accurate in
static conditions.

Once the constant terms ri and RBI have been determined in the described preprocess,
the history of the virtual acceleration can be derived from the info recorded by the optical
system. At each time point, the global acceleration of the point where the IMU is attached,
expressed in frame O, can be obtained by differentiating Equation (13) twice with respect
to time,

..
ri =

..
rB +

..
ROBri (17)

where
..
rB and

..
ROB are calculated as the second derivative with respect to time of the position

data obtained from the optical motion capture. The virtual acceleration, still expressed
in frame O, is obtained by including the gravity effect into the acceleration given by the
Equation (17),

ai =
..
ri + g (18)

being g the gravity vector (9.81 m/s2 in the positive vertical direction, as it would be
perceived by the IMU). To get the virtual acceleration, vector ai must be expressed in the
local frame of the IMU, I,

ai = RT
OIai (19)

with,
ROI = ROBRBI (20)

where ROB is calculated from the optical motion capture. Compacting Equations (17)–(20)
into a single expression, the virtual acceleration can be written as,

ai = R
T
BIR

T
OB

(
..
rB +

..
ROBri + g

)
(21)

Therefore, the acceleration directly measured by the IMU can now be compared
to the virtual acceleration provided by the Equation (21) from the measurements of the
optical system, and the filtering parameters applied in the latter can be adjusted so as
to yield the optimal correlation. The error was measured as the root-mean-square error
(RMSE) between the histories of the two accelerations compared, the results being shown
in Section 3.
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3. Results

3.1. Preliminary Test and Calibration

As explained in Section 2, the orientation error committed by the ith IMU, i = 1, . . . ,9,
at each time point, was obtained by calculating the roll, pitch and yaw angles of Ri

OI, and
comparing them with the roll, pitch and yaw angles of ROI, taken as reference. Figure 7
shows the error incurred by each IMU in roll, pitch and yaw angles, along the time of
the calibration experiment. Maximum errors of 19◦ in yaw (around the vertical axis) with
respect to the reference (optical system) were found, while mean error differences of up
to 4◦ were detected among IMUs. Similar results were obtained for Ri

OE, the rotation
matrix between frames E and O for the inertial sensor i: differences of up to 8◦ in yaw were
detected among IMUs.

Figure 7. Orientation errors in roll, pitch and yaw incurred by the nine IMUs with respect to the
optical system (reference).

As explained in the last paragraph of Section 2.1.2, the acceleration of point 4 of the
wooden plate was obtained in three different ways: (i) from the optical system, using the
marker attached to point 4; (ii) from the inertial system, using the orientation provided
by the inertial system; (iii) from the inertial system, using the orientation provided by the
optical system. A forward-backward 2nd order Butterworth filter with a cutoff frequency of
8 Hz was applied to the optically captured trajectories of the markers, while no filtering was
applied to the inertial measurements. Figure 8 gathers the global components, expressed in
frame O, of the three accelerations. While the x- and z-components are similar, significant
discrepancies are observed between 15 and 20 s for the y-component, with a maximum error
of 1.9 m/s2 when using the orientation provided by the IMU. Moreover, the accelerometer
shows some peaks that are not captured by the optical system, for instance when the
plate touches the ground after the 30 s mark. Due to the low sampling rate of the optical
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system, it cannot capture high-frequency events such as impacts, regardless of the filter
cutoff frequency.

Figure 8. Comparison of the global acceleration of point 4 of the wooden plate, obtained by three
methods: from the optical system (red); from the inertial system with the orientation provided by
the inertial system (blue); from the inertial system with the orientation provided by the optical
system (black).

3.2. Gait Analysis

This Section is devoted to gather the results obtained when comparing the accelera-
tions provided by each of the seven IMUs during the gait analysis described in Section 2.2,
with the so-called virtual accelerations obtained from the optical motion capture. As ex-
plained in the mentioned Section, the trajectories of the markers recorded by the optical
system should be processed by a motion reconstruction method, which includes filtering
of the recorded data. Therefore, the results from each of the two reconstruction methods
proposed in Section 2.2 are shown in what follows.

3.2.1. Vaughan’s Method

The virtual accelerations obtained after the application of the forward-backward
2nd order Butterworth filter with different cutoff frequencies were compared with those
directly measured by the IMUs. Figure 9 shows the three components of the accelerations
at the seven segments analyzed for cutoff frequencies of 6, 12 and 40 Hz, while Figure 10
provides more detail for the left foot. Table 1 gathers the RMSE of the optical-system based
accelerations, with cutoff frequencies ranging between 6 and 40 Hz, with respect to those
directly measured by the inertial system.
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Figure 9. Accelerations obtained from the optical system with Vaughan’s method, for cutoff frequencies of 6 Hz (black),
12 Hz (blue) and 40 Hz (cyan), respectively, vs. accelerations measured by the IMUs (red).

Figure 10. Detail of accelerations at the left foot obtained from the optical system with Vaughan’s
method, for cutoff frequencies of 6 Hz (black), 12 Hz (blue) and 40 Hz (cyan), respectively, vs.
accelerations measured by the IMUs (red).
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Table 1. RMSE of the accelerations obtained from the optical system through Vaughan’s method with different cutoff
frequencies, with respect to the accelerations measured by the IMUs, taken as reference. The row with the lowest mean
RMSE is highlighted in red.

Cutoff Freq. (Hz)
RMSE (m/s2)

Pelvis R Thigh L Thigh R Tibia L Tibia R Foot L Foot Mean

6 0.626 1.034 1.123 1.583 1.502 2.743 2.485 1.585
8 0.578 1.005 1.071 1.538 1.448 2.640 2.405 1.336
10 0.559 0.997 1.043 1.515 1.428 2.571 2.362 1.309
12 0.559 1.003 1.031 1.508 1.426 2.529 2.339 1.299
15 0.583 1.034 1.036 1.521 1.445 2.504 2.328 1.306
20 0.680 1.138 1.086 1.607 1.510 2.526 2.354 1.363
25 0.840 1.303 1.181 1.771 1.602 2.590 2.422 1.464
30 1.045 1.517 1.314 2.002 1.706 2.679 2.526 1.599
40 1.531 2.035 1.654 2.602 1.931 2.897 2.815 1.933

It can be seen that the influence of the filtering parameter is significant. For high cutoff
frequencies (above 20 Hz), the accelerations were too noisy, with peak errors over 5 m/s2.
Conversely, for low cutoff frequencies (below 8 Hz), the accelerations were too smooth, not
reaching the experimental peak measurements of the inertial sensors. As opposed to the
preliminary test, some acceleration peaks can be captured by the optical system at high
cutoff frequencies, due to the softer contacting materials involved in this case, but at the
cost of very noisy accelerations along the whole capture. The lowest errors were obtained
for a cutoff frequency of 12 Hz, as highlighted in Table 1.

3.2.2. Extended Kalman Filter

The accelerations obtained after the application of different values of the process noise
standard deviation σa (with the sensors noise standard deviation σs fixed to 0.001 m), along
with the application of the forward-backward 2nd order Butterworth filter with different
cutoff frequencies to the position data, were compared to those directly measured by the
IMUs. The units for σa are omitted in what follows for the sake of brevity, since they
depend on the associated degree of freedom: for translational DOFs, σa is expressed in
m/s2 whereas for rotational DOFs it is in rad/s2.

Figure 11 shows the three components of the accelerations at the seven segments
analyzed for combinations of σa and cutoff frequencies of 0.1/30 Hz, 1/20 Hz and 50/6 Hz,
while Figure 12 provides more detail for the left foot. Table 2 gathers the RMSE of the
optical-system based accelerations with σa ranging between 0.1 and 50 m/s2 (or rad/s2,
depending on the corresponding coordinate), and cutoff frequencies ranging between 6
and 30 Hz, with respect to those directly measured by the inertial system.

It can be seen in Figures 11 and 12 that the accelerations obtained with the EKF
were smoother than those obtained with Vaughan’s method, and that the experimental
peak measurements of the inertial sensors were better dissociated from the noise peaks.
Moreover, Table 2 presents lower values of the RMSEs. The best results were obtained for a
process noise standard deviation of 1 m/s2 combined with a 20 Hz Butterworth filter.

In addition to obtaining better accelerations, it should be noted that the EKF auto-
matically ensures kinematic consistency, whereas Vaughan’s method shows joint distance
variations above 1 cm along the gait cycle, so the resulting motion would require further
post-processing depending on the intended application.
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Figure 11. Accelerations obtained from the optical system with the EKF for combined process noise variances and cutoff
frequencies of 0.1/30 Hz (black), 1/20 Hz (blue) and 50/6 Hz (cyan), respectively, vs. accelerations measured by the
IMUs (red).

Figure 12. Detail of accelerations at the left foot obtained from the optical system with the EKF-based
method for combined process noise standard deviations and cutoff frequencies of 0.1/20 Hz (black),
1/15 Hz (blue) and 50/6 Hz (cyan), respectively, vs. accelerations measured by the IMUs (red).
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Table 2. RMSE of the accelerations obtained from the optical system through the EKF-based method with different
combinations of process noise standard deviations and cutoff frequencies, with respect to the accelerations measured by the
IMUs, taken as reference. The row with the lowest mean RMSE is highlighted in red.

Acc. Std.
(m/s2 or rad/s2)

Cutoff Freq.
(Hz)

RMSE (m/s2)

Pelvis R Thigh L Thigh R Tibia L Tibia R Foot L Foot Mean

0.1 6 0.717 1.047 1.195 1.663 1.624 2.649 2.430 1.618
0.1 10 0.679 1.020 1.155 1.679 1.618 2.530 2.338 1.377
0.1 15 0.676 1.018 1.136 1.678 1.614 2.433 2.274 1.354
0.1 20 0.682 1.022 1.133 1.674 1.611 2.377 2.229 1.341
0.1 25 0.690 1.028 1.135 1.672 1.612 2.341 2.198 1.335
0.1 30 0.698 1.035 1.140 1.672 1.615 2.318 2.176 1.332
0.5 6 0.606 1.011 1.108 1.513 1.442 2.553 2.274 1.313
0.5 10 0.545 0.969 1.030 1.514 1.412 2.340 2.105 1.239
0.5 15 0.557 0.965 1.017 1.524 1.415 2.183 2.004 1.208
0.5 20 0.582 0.977 1.034 1.530 1.424 2.098 1.943 1.198
0.5 25 0.608 0.996 1.058 1.538 1.439 2.049 1.907 1.199
0.5 30 0.634 1.018 1.083 1.553 1.458 2.018 1.887 1.207
1 6 0.604 1.006 1.099 1.484 1.433 2.565 2.267 1.307
1 10 0.538 0.963 1.026 1.454 1.383 2.330 2.072 1.221
1 15 0.562 0.961 1.033 1.457 1.379 2.161 1.955 1.188
1 20 0.601 0.978 1.067 1.466 1.393 2.074 1.890 1.183
1 25 0.639 1.004 1.105 1.483 1.417 2.026 1.857 1.191
1 30 0.679 1.036 1.143 1.511 1.446 1.999 1.843 1.207
10 6 0.632 0.987 1.132 1.473 1.439 2.580 2.324 1.321
10 10 0.576 0.926 1.086 1.393 1.343 2.344 2.131 1.225
10 15 0.606 0.928 1.115 1.374 1.300 2.174 2.002 1.187
10 20 0.665 0.973 1.168 1.397 1.307 2.084 1.934 1.191
10 25 0.739 1.041 1.228 1.452 1.342 2.037 1.909 1.218
10 30 0.823 1.124 1.292 1.538 1.391 2.014 1.913 1.262
50 6 0.633 0.989 1.134 1.478 1.442 2.578 2.330 1.323
50 10 0.574 0.933 1.088 1.401 1.348 2.343 2.142 1.229
50 15 0.603 0.943 1.119 1.386 1.307 2.177 2.018 1.194
50 20 0.666 1.000 1.179 1.424 1.319 2.091 1.955 1.204
50 25 0.753 1.085 1.253 1.507 1.359 2.047 1.937 1.243
50 30 0.859 1.190 1.336 1.632 1.416 2.032 1.953 1.302

4. Discussion and Limitations of the Study

This work proposes both an extended Kalman filter that facilitates optical motion
capture, and an objective filter-tuning procedure that improves the resulting accelerations in
gait analysis by using accelerometer data. First, a preliminary test including nine IMUs was
carried out to assess the errors incurred by the inertial sensors in the measured orientations
and accelerations. Second, the gait analysis of a healthy subject was performed. Both
optical motion capture and inertial motion capture (using the seven most accurate IMUs
out of the nine tested in the spot check) were recorded. The motion was then reconstructed
by the classic Vaughan’s method (filtering the marker trajectories with a Butterworth filter)
and by the proposed EKF (applying a process noise variance and filtering the marker
trajectories with a Butterworth filter), and the accelerations measured by the IMUs were
used to tune the parameters of the filters for both methods.

As observed earlier in [11–13], the preliminary test highlighted the IMUs limitation to
yield an accurate orientation. These errors depend on the calibration of the accelerometers
and magnetometers, and on the algorithm used to estimate the orientations. Brodie [13]
showed that it is possible to reduce the errors by substituting the commercial algorithm
implemented in the inertial sensors by an improved one, which is consistent with the
experience of the authors using other algorithms [35,36], but even in this case their accuracy
remains limited. Therefore, although the performance of the IMUs has been improved in the
last decade, optoelectronic systems are still used as the golden standard reference [18,19,43].
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For this reason, it was decided to reduce the use of the orientations provided by the IMUs
to a minimum for the gait analysis, taking as reference the local accelerations measured by
the IMUs, and applying all the required transformations in the optical methods so as to
obtain the accelerations, denoted as virtual accelerations, which are directly comparable to
those provided by the inertial sensors.

This decision was enforced after observing, in the preliminary test, the effect of the
orientation errors incurred by the IMUs on the global accelerations. As reported by Wood-
man [44], it is necessary to have very accurate rotation sensors in inertial navigation systems
because the precise orientation of the body must be known in order to mathematically
calculate the gravitational acceleration to find the translational acceleration. As observed
in Figure 8, the gravitational acceleration was incorrectly estimated and appeared as trans-
lational acceleration perpendicular to the gravitational vector. To alleviate this problem,
the orientations obtained from the optical system could be used instead but, as they are
sensitive to the filter tuning, the resulting global accelerations from the IMUs would be
distorted too.

The virtual accelerations obtained by Vaughan’s method were very sensitive to the
filtering applied to the trajectories of the markers. Best matches with experimental values
were observed for cutoff frequencies ranging between 10 and 15 Hz. Bartlett [45] stated
that cutoff frequencies between 4 and 8 Hz are often used in filtering movement data, while
the OpenSim software [40] recommends to use a cutoff frequency of 6 Hz. However, it was
observed that by using low cutoff frequencies, the accelerations were too smooth and the
peaks measured by the IMUs were not reached. Schreven et al. [31] found that filtering the
data with a cutoff frequency of 6 Hz decreases the accuracy of the reconstructed kinematics
and, hence, can affect the accuracy of the joint moments obtained from inverse dynamics,
as shown in [46].

Regarding the EKF method, apart from its robustness and simplicity of use, it showed
a better accuracy in the resulting accelerations. The best filtering was obtained for a plant
noise variance of 1 m/s2 (or rad/s2, depending on the corresponding coordinate) and a
cutoff frequency of 20 Hz. Noise was eliminated, peaks measured by the IMUs were almost
reached, and the resulting RMSEs were better than those incurred by Vaughan’s method.
Moreover, the EKF offered consistent kinematics by providing constant lengths of the body
segments along the motion. Vaughan’s method is similar to those proposed in [19] and,
like them, does not impose the kinematic constraints to compute the joint kinematics from
the marker trajectories. Therefore, it would require an additional step to correct these
inconsistencies before dynamic analysis.

Although gait may be perceived as a smooth activity, acceleration peaks due to foot
impact are observed in Figures 10 and 12, captured by the inertial system. In fact, they were
also captured by the optical system when sampling at 100 Hz. Focusing on the acceleration
peaks due to left foot landing, happening at around 60% of the gait cycle, it can be seen in
Figure 10 that filtering with a cutoff frequency of 40 Hz already allows to capture them,
but at the cost of keeping a lot of noise in the rest of the signal. On the other hand, using a
cutoff frequency under 30 Hz provides a much cleaner signal, but notably oversmooths
the impact peaks. Therefore, the procedure proposed in this paper can be useful for other
researchers to evaluate existing filtering methods, design new ones and chose the best
filtering parameters, but also to select the best capture frequency for their applications,
because they will be able to distinguish between peaks due to noise and peaks due to
actual motion.

The conducted study has been based on the results obtained from the gait analysis of
one single subject. Although it could be expected that the frequency content of the motion
signals is more dependent on the type of activity than on the particular subject performing
it, tests including a greater number of subjects would be advisable in order to confirm
the presented conclusions. This has been the reason to include the word ‘preliminary’ in
the title.
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5. Conclusions

The conclusion is twofold. First, when performing motion capture and analysis using
a marker-based optical system, the extended Kalman filter significantly streamlines the mo-
tion capture and reconstruction process, since it facilitates automatic marker labeling, and
manages occlusions and reflections in a robust and efficient way. Second, the availability of
accelerations measured by inertial sensors can be very helpful for the tuning of the filters,
no matter which motion reconstruction method is used. Consequently, the reliability of the
obtained accelerations is improved.
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Abstract: This paper describes the kinematics used for the calculation of track geometric irregularities
of a new Track Geometry Measuring System (TGMS) to be installed in railway vehicles. The TGMS
includes a computer for data acquisition and process, a set of sensors including an inertial measuring
unit (IMU, 3D gyroscope and 3D accelerometer), two video cameras and an encoder. The kinematic
description, that is borrowed from the multibody dynamics analysis of railway vehicles used in
computer simulation codes, is used to calculate the relative motion between the vehicle and the track,
and also for the computer vision system and its calibration. The multibody framework is thus used
to find the formulas that are needed to calculate the track irregularities (gauge, cross-level, alignment
and vertical profile) as a function of sensor data. The TGMS has been experimentally tested in a 1:10
scaled vehicle and track specifically designed for this investigation. The geometric irregularities of a
90 m-scale track have been measured with an alternative and accurate method and the results are
compared with the results of the TGMS. Results show a good agreement between both methods of
calculation of the geometric irregularities.

Keywords: rail vehicles; track irregularities; multibody dynamics; inertial sensors; computer vision

1. Introduction

Measurement of track geometry irregularities is a fundamental task in railway track
maintenance with immense economic significance worldwide. Geometric irregularity is
the most important track feature affecting safety and comfort of the rail transport. There
are two different equipment that rail administrations and infrastructure managers use
for track irregularity measurement: man-driven rail track trolleys (RTT) and track recording
vehicles (TRV), also called laboratory vehicles or inspection vehicles. There are many companies
that manufacture both types of equipment. The technology behind the RTT is simple and
accurate. The relative irregularities, this is, gauge and cross-level are measured with a
distance sensor, like an LVDT, and an inclinometer, respectively. The absolute irregularities,
alignment and longitudinal profile require and absolute positioning system, like a total
station or a very accurate GNSS. The technology used in TRV is more varied. Essentially,
there are two technologies [1]: versine measurement systems (VMS), also called chord-
based measurement systems and inertial measurement systems (IMS) or optical-inertial
measurement systems. In addition to the sensors used, the main difference between these
two methods is on the reference kinematics. The VMS use a physical reference, the chord,
that can be a solid bar or a laser beam, while the IMS use an inertial reference frame or,
in other words, the frame does not physically exist. The existence of the physical reference
is an important advantage of the VMS that improves its accuracy. The main drawback
of the VMS is that only irregularities with wave-lengths shorter than the length of the
physical reference can be measured. A purely inertial IMS, as those based on accelerometer
measurements, is based on the premise that the measuring device follows a trajectory that
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is parallel to one of the rails or the track centerline. This is in practice very difficult to
obtain, or even impossible, if one wants to get the four irregularities with a single device.
However, the most serious problem of the IMS is not that but the need to integrate the
sensor signals in time to get the irregularities. The resulting accuracy depends very much
on the filtering and other signal processing techniques that are needed to avoid the signal
drift due to the integration.

The scientific foundation of the VMS is based on simple kinematics that only requires
the measurements of distance sensors. The main challenge is to find the transfer function
between the chord measurements and the vertical and lateral track irregularities [1,2].
The kinematics of the IMS is much more involved, due to the use of the inertial frame,
as mentioned previously, and the use of different sensors (distance sensors, optical and in-
ertial) requiring sensor fusion algorithms. To the authors’ best knowledge, the description
of the TRV used in the early eighties in British Rail by Lewis [3] remains the most complete
description of the kinematics and signal processing behind the track geometry measure-
ment with IMS. This paper tries to fill this gap. In a paper by Escalona [4], the calculation
of the track vertical geometry using inertial sensors mounted on an un-suspended bogie
was fully described, including analytical relationships, transfer functions, sensor fusion
algorithms and signal processing. However, the method was valid only for the vertical
geometry and the results were not experimentally validated.

Despite the existence of different measuring equipment, there is a need for improve-
ment of the technology in track geometry inspection. RRT are much cheaper than TRV
(small rail administrations cannot afford TRV) but much slower also. As a result, the fre-
quency of track geometry inspection is not as high as desired. Due to this reason, there
is an increasing tendency in the railway industry and research teams to developed track
geometry measuring systems (TGMS) to be installed in in-service vehicles. That way,
the frequency of the inspection is increased, the vehicle response to the irregularity can
be measured simultaneously, and the time-evolution of the irregularities can be followed
closely. However, what the sensors can get in an in-service vehicle, in general, is not a
measurement of the irregularity but an estimation. There are two approaches: purely
kinematic or model-based methods. Weston et al. published a set of papers [5–7] showing
the measurement of vertical and lateral track irregularities using accelerometers and gy-
roscopes mounted in the bogie frame and a very simple kinematic model of the vehicle
motion. Although these papers do not show results in frequency domain, the measured
irregularities could only be relatively accurate for low frequencies, because the bogie frame
does not follow the high frequency irregularities. Lee et al. [8] presented a Kalman filter
data fusion approach based on accelerometer signals mounted on the body frame and the
axle-box. Tsai et al. [9,10] presented a fast inspection technique based on the Hilbert–Huang
Transform, that is a very useful time–frequency analysis technique, applied to the signal of
an accelerometer mounted on the axle-box of an in-service car. Both methods that are based
on axle-box-mounted accelerometers are only valid to measure vertical track irregulari-
ties. Tsumashima et al. [11] estimated the vertical track geometry using the accelerations
measured in the car-body of the Japanese Shinkansen using a Kalman filter based on a
very basic car model. In a more recent work, Tsumashima [12] has develop a method to
detect and isolate track faults that are later classified using machine learning techniques.
Tsumashima and Hirose [13] have applied the time–frequency Hilbert–Huang Transform
method to identify track faults using the measured car-body acceleration as the input.

This paper describes a TGMS based on inertial sensors and computer vision that can
be installed in in-service vehicles. The 3D kinematics used for the geometry measurements
considers a general track design geometry, and the assumed kinematic approximations and
simplifications are fully described. As a result of the background of the authors in on the
development of multibody dynamics models for railway simulations [14–16], the presented
kinematic equations follow the multibody formalism. The kinematic equations used for the
computer vision are adapted to this formalism. The sensor fusion algorithms and signal
processing tools used to find the track irregularities are explained also. The presented
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TGMS has been built, tested and validated in an experimental scale track facility. Compared
with the existing IMS methods that are implemented in the industry, the contribution of
the method presented in this paper lies in the description of the methodology and the
experimental validation. To the authors’ best knowledge, the algorithms used to turn the
sensors data into measured irregularities have not been described in the scientific literature,
or they are described using an over-simplified track geometry, for example, assuming
that the track is straight. This information is not provided by the companies that work
in the important business of track inspection. In addition, an experimental proof of the
accuracy of the equipment used for this task in not generally provided by these companies.
This paper provides a full description of the signal processing that can be used to turn
the sensors data into track irregularities. As shown below, the kinematic analysis needed
to this end is not straightforward. This paper also provides an experimental validation
of the measured irregularities. Authors do not claim that the presented method is more
accurate or more efficient than existing methods, simply because the data are not accessible
to compare.

This paper is organized as follows: Section 2 describes the sensors needed and the
main features of the TGMS. Section 3 explains the kinematics of the irregular track and the
rail vehicles based on the multibody dynamics formalism. Section 4 applies this formalism
to the kinematics of the computer vision with the pin-hole camera model. Section 5 explains
the method that is used to find the relative position of the rail cross-sections with respect
to the moving vehicle using the computer vision data. Section 6 shows the kinematic
relationships that are used to find the four track irregularities: gauge variation, cross-level,
alignment and vertical profile, as a function of the sensors data. Section 7 describes a
Kalman filter that is used to calculate the TGMS relative orientation with respect to the
track. Section 8 describes an odometry algorithm that is used to locate at any instant the
vehicle along the track. Section 9 explains the method that is used to find the relative
trajectory of the TGMS with respect to the track centerline. The content of Sections 5–9
includes all the calculations needed to obtain the track irregularities out of the sensors data.
Finally, Section 10 shows the experimental setup that has been used to build and validate
the TGMS system and Section 11 compares the measured irregularities with accurate
reference values. Summary and conclusions are given in Section 12.

2. Description of the TGMS

The TGMS sketched in Figure 1 (only right-side equipment in shown here) comprises:

1. Two video cameras.
2. Two laser line-projectors.
3. An IMU.
4. A rotary encoder.

It is important that the cameras, lasers and IMU are installed in a solid that can be
considered as a rigid body when moving with the vehicle. The lasers and cameras must be
equipped with orientation mechanisms that can be fully locked when the TGMS is working.
The laser projectors draw red lines (when using a red laser) in the rail-heads (one on the
left, one on the right) that are filmed by the video cameras. The information provided by
the position and orientation of the red lines in the rails, together with the acceleration and
angular velocity acquired with the IMU, are used to find the track geometry irregularities.
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Figure 1. Kinematics of the Track Geometry Measuring System (TGMS) installed in a vehicle moving
along the track.

The main features of the proposed system are:

1. It is capable to measure track alignment, vertical profile, cross-level, gauge, twist and
rail-head profile using non-contact technology.

2. It can be installed in in-service vehicles. It is compact and low cost. Provided that the
equipment sees the rail heads when the vehicle is moving, it can be installed in any
body of the vehicle: at the wheelsets level, above primary suspension (bogie frame)
or above the secondary suspension (car body).

Measuring devices must be selected taking into account the dusty environment under
the train, affecting mainly the computer vision system, and the high level of accelerations
that they will be subjected to. Protecting the video cameras and laser projectors may be
solved, in part, locating them in a closed box with a polycarbonate window that must be
cleaned frequently. Regarding the high level of accelerations, their expected value depends
on the solid where the equipment is installed. The most critical body would be the axle-box
(wheelset level) where the vertical accelerations can reach 100 g in high velocity trains.
Reducing the possibility of damaging the measuring devices due to excessive accelerations
is achieved if the equipment is installed at the car-body level.

3. Kinematics of the Irregular Track and the Railway Vehicle

This section includes the kinematic description of the rail geometry as a combination
of a design geometry and the irregularities, and the kinematic description of an arbitrary
body moving along the track, like the TGMS. Before presenting the kinematics, the different
frames that are used and the nomenclature used to describe vectors, matrices and their
components are described.

3.1. Frames of Reference

As shown in Figures 2 and 3, four different frames are used in railroad kinematics:

1. The inertial and global frame (GF) < X, Y, Z >. It is a frame fixed in space.
2. The track frame (TF) < Xt, Yt, Zt >. It is not a single frame but a field defined for

each value of the arc-length coordinate along the track s. The position Rt(s) and
orientation matrix At(s) of the TF with respect to the GF are functions of an arc-length
coordinate s along the center line of the design track (without irregularities). These
functions are implemented computationally in a track preprocessor.
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3. The body frame (BF) < Xi, Yi, Zi > of each body i. It is a frame rigidly attached to
the body. In this document, the body i is the TGMS. The body frame of the TGMS is
denoted as < Xtgms, Ytgms, Ztgms >

4. The rail profile frames. Left rail-profile frame (LRP), < Xlrp, Ylrp, Zlrp >, and right-
profile frame (RRP), < Xrrp, Yrrp, Zrrp >. These frames are not unique frames but
fields defined for each value of the arc-length coordinate along the track s. These
frames are rigidly attached to the rail-heads.
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Figure 2. Kinematics of a body moving along the track.

The definition of the TF is such that the Xt axis is tangent to the track design centerline,
the Yt axis is perpendicular to Xt and connects the origin Olrp of the LRP and the origin
Orrp of the RRP in the design track geometry (with no track irregularities) and the Zt axis
is perpendicular to both Xt and Yt. Therefore, the TF is not the Frenet frame of the design
track centerline. Each body i moving along the track has an associated TF at each instant
of time. Its position and orientation can be obtained substituting the position of the body
along the track, si(t), in the functions Rt(s) and At(s) that are explained in next section.
More details about the rail kinematics and the nomenclature used in this work for vectors
and rotation matrices can be found in [17].

r
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Figure 3. Kinematics of the irregular track cross-section.

3.2. Kinematics of the Design Track Centerline

Track geometry is the superposition of the design geometry and the irregularities.
The components of the absolute position vector of an arbitrary point on the design track
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centerline with respect to an inertial and global frame is a function of the arc-length s,
as follows:

Rt(s) =

⎡
⎣ Rt

x(s)
Rt

y(s)
Rt

z(s)

⎤
⎦ (1)

where Rt contains the components of vector �Rt shown in Figure 2. The geometry of the
track centerline 3D-curve is defined by the horizontal profile and the vertical profile. Both
profiles are defined in the rail industry using sections of variable length. Points between
two sections are called vertices. Horizontal profile vertices do not necessary coincide
with vertical profile vertices. Horizontal profile includes three types of sections: tangent
(straight), curve (circular) and transitions (clothoid). Vertical profile includes two types of
sections: constant-slope (straight) and transitions (cubic).

At each track section, the track centerline geometry is characterized by the following
geometric values:

• Horizontal curvature: ρh.
• Vertical curvature: ρv.
• Twist curvature: ρtw.
• Spatial-derivative of horizontal curvature: ρh

′.
• Vertical slope: αv.

Figure 2 shows the TF < Xt, Yt, Zt > associated with the track centerline at each value
of s. The orientation of the TF with respect to a GF can be measured with the Euler angles
ψt (azimuth or heading angle), θ t (vertical slope, positive when downwards in the forward
direction) and ϕ t (cant or superelevation angle). The rotation matrix from the TF to the GF
is given by:

At(s) =

⎡
⎣ cθ tcψt sϕtsθ tcψt − cϕtsψt sϕtsψt + cϕtsθ tcψt

cθ tsψt cϕtcψt + sϕtsθ tsψt cϕtsθ tsψt − sϕtcψt

−sθ t sϕtcθ t cϕtcθ t

⎤
⎦ (2)

The azimuth ψt can have an arbitrary value, however, the slope θ t and cant ϕ t angles
can be considered as small angles, such that the rotation matrix from the TF to the GF can
be approximated to:

At(s) �

⎡
⎣ cψt −sψt ϕtsψt + θtcψt

sψt cψt θtsψt − ϕtcψt

−θt ϕt 1

⎤
⎦ (3)

An ideal body that moves along the track, taking the same orientation as the track
frame with a forward velocity V and a forward acceleration V̇, has the following absolute
velocity and acceleration:

¯̇Rt =

⎡
⎣ V

0
0

⎤
⎦, ¯̈Rt =

⎡
⎣ V̇

ρhV2

−ρvV2

⎤
⎦ (4)

Similarly, the absolute angular velocity and the absolute angular acceleration of that
body are given by:

ω̄t =

⎡
⎣ ρtwV

ρvV
ρhV

⎤
⎦, ᾱt =

⎡
⎣ ρtwV̇

ρvV̇
ρhV̇ + ρ′hV2

⎤
⎦ (5)

3.3. Kinematics of the Irregular Track

Figure 3 shows the displacement of the rail heads due to irregularity in a cross-section
of the track (Yt − Zt plane). The irregularity vectors�r lir (lir, left rail irregularity) and�r rir
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(rir, right rail irregularity) describe the displacement of the rail centerlines with respect
to their design positions. The components of these vectors in the TF are functions of s,
given by:

r̄lir =

⎡
⎣ 0

ylir

zlir

⎤
⎦, r̄rir =

⎡
⎣ 0

yrir

zrir

⎤
⎦ (6)

In the railway industry, the following four combinations of the rail head centerlines
irregularities are measured:

Alignment: ξal =
(

ylir + yrir
)

/2

Vertical profile: ξvp =
(

zlir + zrir
)

/2

Gauge variation: ξgv = ylir − yrir

Cross level: ξcl = zlir − zrir

The orientation of the rail head frames with respect to the TF is given by the following
rotation matrices:

At,lrp =

⎡
⎣ 1 0 0

0 cos(β + δ) − sin(β + δ)
0 sin(β + δ) cos(β + δ)

⎤
⎦,

At,rrp =

⎡
⎣ 1 0 0

0 cos(−β + δ) − sin(−β + δ)
0 sin(−β + δ) cos(−β + δ)

⎤
⎦,

(7)

where β is the orientation angle of the rail profiles, δ =
(

zlir − zrir
)/

2Lr is the linearized
rotation angle due to the irregularity, and Lr is the distance from the track centerline to the
rail profile frames. These angles and distance can be observed in Figure 3.

The absolute position vectors of two points, P and Q, defined in the right and left rail
heads, respectively, are given by:

R
rrp
P = Rt + At

(
r̄rrp + r̄rir + At,rrpû

rrp
P

)

R
lrp
Q = Rt + At

(
r̄lrp + r̄lir + At,lrpû

lrp
Q

) (8)

where û
rrp
P and û

lrp
Q contain the components of the position vector of points P and Q in the

rail head profiles as shown in Figure 3. These vectors are parameterized following the rail
head profile geometry:

û
rrp
P =

⎡
⎣ 0

srr
2

hr(srr
2 )

⎤
⎦, û

lrp
Q =

⎡
⎢⎣ 0

slr
2

hr
(

slr
2

)
⎤
⎥⎦ (9)

where lr and rr stand for “left rail” and “right rail”, and hr is the function that defines the
rail head profile.

3.4. Kinematics of a Body Moving along the Track

The coordinates used to describe the position and orientation of an arbitrary body i,
as shown in Figure 2, or the TGMS shown in Figure 1, moving along the track are:

qi =
[

si ri
y ri

z ϕi θi ψi
]T

(10)

where si is the arc-length along the track of the position of the body, ri
y and ri

z are the
non-zero components of the position vector �ri of the BF with respect to the TF, this is
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r̄i =
[

0 ri
y ri

z

]T
, and ϕi, θi and ψi are three Euler angles (roll, pitch and yaw, respec-

tively) that define the orientation of the BF with respect to the TF. Note that, out of the six
coordinates used for the kinematic description of a body, only the arc-length coordinate si

is an absolute coordinate, being the other 5 track-relative coordinates.
The three Euler angles are assumed to be small, such that the following kinematic

linearization is used:

At,i �

⎡
⎣ 1 −ψi θi

ψi 1 −ϕi

−θi ϕi 1

⎤
⎦ (11)

The absolute position vector of point P that belongs to body i, as shown in Figure 2, is
given by:

Ri
P = Rt + At

(
r̄i + At,iûi

P

)
(12)

Using basic rigid body kinematics (see details in [17]), the absolute velocity and
acceleration of point P are given by:

¯̇Ri
P = ¯̇Rt + ˙̄ri + ˜̄ωt

r̄i + At,i
(

˜̂ω
i
ûi

P

)
(13)

¯̈Ri
P = ¯̈Rt + ¨̄ri +

(
˜̄αt + ˜̄ωt ˜̄ωt

)
r̄i + 2 ˜̄ωt ˙̄ri + At,i

(
˜̂α

i
+ ˜̂ω

i ˜̂ω
i
)

ûi
P, (14)

where these vectors are projected to the track frame. In order to compute
Equations (13) and (14), the orientation matrices, angular velocities and angular accel-
erations of the different frames need to be computed as a function of the generalized
coordinates and velocities. The angular velocity ω̄t and acceleration ᾱt vectors of the TF
are given in Equation (5). The absolute angular velocity of body i is obtained as:

ω̂i = ω̂t + ω̂t,i =
(

At,i
)T

ω̄t + ω̂t,i (15)

The relative angular velocity of body i with respect to the TF, under the small-angles
assumption, is given by:

ω̂t,i =

⎡
⎣ ϕ̇i

θ̇i

ψ̇i

⎤
⎦, ω̄t,i = At,iω̂t,i =

⎡
⎣ 1 ψi −θi

−ψi 1 ϕi

θi −ϕi 1

⎤
⎦

⎡
⎣ ϕ̇i

θ̇i

ψ̇i

⎤
⎦ (16)

The absolute angular acceleration of body i, α̂t is simply calculated as the time-
derivative of Equation (15).

4. Kinematics of the Computer Vision

Using the pin-hole model of the camera, Figure 4 shows the relation between the
position vector �n im

P′ of an arbitrary point P in the camera frame < Xcam, Ycam, Zcam > (in
our problem it can be left cam lcam or right cam rcam) and the position vector of the
recorded point P’ in the image plane < Xim, Yim >.
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Figure 4. Kinematics of the computer vision.

Figure 5 shows the location of the camera in the TGMS and the relation between the
position vector �v cam

P of the arbitrary point P in the camera frame and its position vector
�u tgms

P in the TGMS frame.

Figure 5. TGMS frame and camera frame.

The components of vectors�n im
P′ and �u tgms

P are related through the equation [18,19]:

c
[

nim
P′
1

]
= MintMext

[
û

tgms
P
1

]
(17)

where c is an unknown scale f actor. The matrix product on the right-hand side of this
equation is called projection matrix P = MintMext. The column matrix nim

P′ is 2 × 1 (image
is planar), and its components are given in pixel units (dimensionless) while the column
matrix û

tgms
P is 3 × 1, and its components are given in meters. Due to these dimensions,

the projection matrix P is 3 × 4. Matrix Mint is 3 × 3 and it is called matrix of intrinsic
parameters of the camera, and matrix Mext is 3× 4, it is called matrix of extrinsic parameters
of the camera, and it is given by:

Mext =
[ (

Atgms,cam)T −
(
Atgms,cam)T

û
tgms
cam

]
(18)

Matrices of intrinsic and extrinsic parameters can be experimentally obtained, for ex-
ample, using the Zhang calibration method [18]. In this investigation, the calibration
method is based on Zhang method but adapted to the application at hand. This method is
fully detailed in [19].

Just using the 3 scalar equations in Equation (17), the position vector û
tgms
P of the

point P cannot be obtained using the values of nim
P′ because there are 4 unknowns (three
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components of û
tgms
P and the scale factor c). One exception occurs when the point P moves

on a surface whose equation is known in the TGMS frame. This is the case at hand if P
belongs to the plane highlighted by the laser projector. In this case, the following system of
equations can be solved to find û

tgms
P :⎧⎪⎪⎨

⎪⎪⎩
c
[

nim
P′
1

]
= MintMext

[
û

tgms
P
1

]
Alas

[
utgms

P

]
x
+ Blas

[
utgms

P

]
y
+ Clas

[
utgms

P

]
z
+ Dlas = 0

(19)

where Alas, Blas, Clas and Dlas are the constants that define the laser plane (left laser, llas,
or right laser, rlas, in our case), and

[
utgms

P

]
k

k = x, y, z means the component k of the

vector �u tgms
P in the TGMS frame. The constants that define the laser planes have to be ex-

perimentally obtained in the TGMS computer vision-calibration process [19]. Equation (19)
is a system of 4 algebraic equations with 4 unknowns that can be used to find vector
components û

tgms
P using as input data the vector components nim

P′ and the parameters of
the cameras and the lasers.

5. Detecting the Rail Cross-Section from a Camera Frame

As a result of the solution of Equation (19) for all highlighted pixels in the image frames,
a cloud of points Pi in the right rail and a cloud of points Qi in the left rail, with position
vectors û

tgms
P and û

tgms
Q , respectively, that belong to the rails cross-sections can be identified.

In fact, the points do not really belong to cross-sections, just to sections, because the laser
planes are not necessarily perpendicular to the rails center line. However, because the
relative angles of the TGMS with respect to the TF are very small, the irregularities are also
small, and the lasers are set to project the light plane at right angles with respect to the rails,
it will be assumed in this paper that the highlighted sections are actually cross-sections.

Figure 6a shows a sketch of the cloud of points and, in dashed line, the theoretical
rail-head profile. The theoretical rail-head profiles, when they are new, not worn, have
a known geometry that is made of circular and straight segments. An example is the
UIC 54 E1 rail-head profile shown in Figure 6b. Detecting the rail cross-section from a
camera frame can be solved with the well-developed computer vision algorithms of feature
detection or feature tracking [20]. However, in this investigation, because the feature to be
detected can be represented analytically, an optimization approach has been developed.
The optimization problem consists of finding the position û

tgms
Orp and angle ϕtgms,rp of the

rail profile that better fits the cloud of points. This will be the assumed position and
orientation of the rail head profile (lrp or rrp) in the TGMS frame when the vehicle is
moving. The objective function to minimize is the sum of the squares of the distance of the
points in the cloud to the theoretical profile curve shown in Figure 6b.

34



Sensors 2021, 21, 683

Figure 6. Cloud of points detected with computer vision (a). UIC 54 E1 rail-head profile (b).

6. Equations for Geometry Measurement

The equations that can be used to measure the track irregularities are easily deduced
with the help of Figure 7. In this figure, vectors û

tgms
Olrp and û

tgms
Orrp are output data of the

computer vision algorithm explained in previous section. The following equalities can be
easily identified with the help of the figure:

�r tgms + �u tgms
Olrp =�r lrp +�r lir

�r tgms + �u tgms
Orrp =�r rrp +�r rir (20)

Figure 7. Planar view of the TGMS.

Subtracting these vector equations, one gets:

�u tgms
Olrp − �u tgms

Orrp =�r lrp +�r lir −
(
�r rrp +�r rir

)
(21)

In this equation, the position vector�rtgms of the TGMS does not appear. This vector
equation can be projected in the TF, as follows:

At,tgms
(

û
tgms
Olrp − û

tgms
Orrp

)
= r̄lrp − r̄rrp + r̄lir − r̄rir (22)

35



Sensors 2021, 21, 683

Using again the small-angles assumption, the Y, Z components of this equation are
given by:

[
1 −ϕtgms

ϕtgms 1

]⎡
⎣

[
ûtgms

Olrp

]
y
−

[
ûtgms

Orrp

]
y[

ûtgms
Olrp

]
z
−

[
ûtgms

Orrp

]
z

⎤
⎦ =

[
2Lr

0

]
+

[
rlir

y − rrir
y

rlir
z − rrir

z

]
(23)

where Lr is half the distance between the rail-head profiles without irregularities. In this
equation, the result r̄lrp − r̄rrp =

[
2Lr 0

]T has been used. According to the definition
given in Section 3.3, the components of the last column matrix of Equation (23) are the
gauge variation (gv) and the cross-level (cl). Therefore, rearranging Equation (23) yields:

ξgv =

([
ûtgms

Olrp

]
y
−

[
ûtgms

Orrp

]
y

)
− ϕtgms

([
ûtgms

Olrp

]
z
−

[
ûtgms

Orrp

]
z

)
− 2Lr

ξcl = ϕtgms
([

ûtgms
Olrp

]
y
−

[
ûtgms

Orrp

]
y

)
+

([
ûtgms

Olrp

]
z
−

[
ûtgms

Orrp

]
z

) (24)

Adding the vector Equation (20), one gets:

2�r tgms + �u tgms
Q + �u tgms

P =�r lir +�r rir (25)

where the fact that�r lrp +�r rrp =�0 has been used. Using again the small-angles assumption,
the Y, Z components of this equation are given by:

2

[
rtgms

y

rtgms
z

]
+

[
1 −ϕtgms

ϕtgms 1

]⎡
⎣

[
ûtgms

Olrp

]
y
+

[
ûtgms

Orrp

]
y[

ûtgms
Olrp

]
z
+

[
ûtgms

Orrp

]
z

⎤
⎦ =

[
rlir

y + rrir
y

rlir
z + rrir

z

]
(26)

According to the definition given in Section 3.3, the components of the last column
matrix of Equation (26) are twice the alignment irregularity (ξal) and twice the vertical
profile (ξvp). Therefore, rearranging Equation (26) yields:

ξal =
1
2

([
ûtgms

Olrp

]
y
+

[
ûtgms

Orrp

]
y

)
− ϕtgms

2

([
ûtgms

Olrp

]
z
+

[
ûtgms

Orrp

]
z

)
+ rtgms

y

ξvp = ϕtgms

2

([
ûtgms

Olrp

]
y
+

[
ûtgms

Orrp

]
y

)
+ 1

2

([
ûtgms

Olrp

]
z
+

[
ûtgms

Orrp

]
z

)
+ rtgms

z

(27)

Therefore, Equations (24) and (27) can be used to find all track irregularities. The fol-
lowing conclusions are highlighted:

1. The calculation of the relative track irregularities (ξgv and ξcl), as shown in
Equation (24), needs as an input the output of the computer vision û

tgms
Olrp and û

tgms
Orrp

and the roll angle of the TGMS with respect to the track ϕtgms.
2. The calculation of the absolute track irregularities (ξal and ξvp), as shown in

Equation (27), needs, in addition, the relative trajectory r̄tgms of the TGMS with
respect to the TF.

The next section is devoted to the calculation of the TGMS to TF relative orientation,
that includes the calculation of ϕtgms. Section 9 is devoted to the calculation of the relative
trajectory r̄tgms of the TGMS with respect to the TF.

7. Measurement of TGMS to TF Relative Orientation

The calculation of the relative rotation of the TGMS with respect to the TF requires
the calculation of the absolute orientation of the TGMS and the absolute orientation of
the TF. As given in Equations (2) and (3), finding the orientation of the TF just requires
the instantaneous value of the arc-length s, because the track design geometry is known.
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The value of s has to be known accurately. The odometry algorithm explained in the next
section has been developed to this end.

The calculation of the absolute orientation of the TGMS is obtained with the IMU sen-
sor. Most IMU sensors come with their own internal algorithm to calculate the orientation
angles or quaternions. However, these algorithms are not accurate in the application at
hand. They are based on the sensor fusion of the data of the gyroscope, the accelerometer
and the magnetometer, as follows:

1. The gyroscope provides three signals that are proportional to the components of the
angular velocity vector in the sensor frame (the sensor frame is assumed to be parallel
to the TGMS frame), as follows:

ωimu = ω̂
tgms
abs (28)

These components are non-linearly related to the coordinates that define the TGMS
orientation and their time-derivatives, as shown later.

2. The accelerometer signals are proportional to the components of the absolute acceler-
ation in the local frame plus the absolute gravity vector field, as follows:

aimu = ˆ̈Rtgms +
(
Atgms)T[

0 0 g
]T (29)

This is the absolute acceleration in the sensor frame, plus the gravitational constant g,
that is assumed to act in the absolute Z direction.

3. The magnetometer signals are proportional to the components of the Earth’s magnetic
field in the local frame. This information can be used to find the direction of the
Earth’s magnetic north.

In the algorithm developed in this investigation to find the TGMS absolute orientation,
the magnetometer’s signals are not used. This is mainly because out of the three Euler
angles needed to define the orientation, the yaw angle lacks interest in our application. It is
mainly the yaw angle which can be identified with the help of the magnetometer.

Following an Euler’s angle sequence yaw-pitch-roll, as done with the TF to get the
rotation matrix given in Equation (2), the absolute angular velocity of the TGMS that appear
in Equation (28) can be obtained as follows:

ω̂
tgms
abs =

⎡
⎢⎣ − sin θ

tgms
abs

cos θ
tgms
abs sin ϕ

tgms
abs

cos θ
tgms
abs cos ϕ

tgms
abs

⎤
⎥⎦ψ̇

tgms
abs +

⎡
⎢⎣ 0

cos ϕ
tgms
abs

− sin ϕ
tgms
abs

⎤
⎥⎦θ̇

tgms
abs +

⎡
⎣ 1

0
0

⎤
⎦ϕ̇

tgms
abs =

=

⎡
⎢⎣ 1 0 − sin θ

tgms
abs

0 cos ϕ
tgms
abs cos θ

tgms
abs sin ϕ

tgms
abs

0 − sin ϕ
tgms
abs cos θ

tgms
abs cos ϕ

tgms
abs

⎤
⎥⎦

⎡
⎢⎣ ϕ̇

tgms
abs

θ̇
tgms
abs

ψ̇
tgms
abs

⎤
⎥⎦ = ĜtgmsΦ̇

tgms
abs ,

(30)

where Φ
tgms
abs = [ ϕ

tgms
abs θ

tgms
abs ψ

tgms
abs ]T is the set of absolute angles (with respect to the

global frame) of the TGMS. This expression is non-linear in terms of the TGMS absolute
angles, but linear in term of their time-derivative. This equation can be inverted to isolate
the time-derivatives of the angles, as follows:

⎡
⎣ ϕ̇

θ̇
ψ̇

⎤
⎦ =

(
Ĝ

)−1
ω̂ =

⎡
⎢⎣ 1 sin ϕ sin θ

cos θ
cos ϕ sin θ

cos θ
0 cos ϕ − sin ϕ

0 sin ϕ
cos θ

cos ϕ
cos θ

⎤
⎥⎦

⎡
⎣ ω̂x

ω̂y
ω̂z

⎤
⎦ (31)
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where, as done in the rest of this section, the superscript tgms and subscript abs have been
eliminated in the symbols for simplicity. Using again the small-angles assumption of the
roll and pitch angles, the following linearized formulas result:

ϕ̇ = ω̂x +
sin ϕ sin θ

cos θ ω̂y +
cos ϕ sin θ

cos θ ω̂z � ω̂x + θω̂z
θ̇ = cos ϕω̂y − sin ϕω̂z � ω̂y − ϕω̂z

ψ̇ = sin ϕ
cos θ ω̂y +

cos ϕ
cos θ ω̂z � ϕω̂y + ω̂z

(32)

For the accelerometer signals, Equation (29) can be linearized as follows:

aimu � ˆ̈Rtgms + g

⎡
⎣ −θ

ϕ
1

⎤
⎦ (33)

where:

ˆ̈Rtgms =
[
At,tgms]T ¯̈Rtgms, At,tgms �

⎡
⎣ 1 −ψtgms θtgms

ψtgms 1 −ϕtgms

−θtgms ϕtgms 1

⎤
⎦ (34)

Again, because of the small-angles assumption and for the sake of simplicity, the fol-
lowing approximation is used:

ˆ̈Rtgms � ¯̈Rtgms (35)

Using the result of Equation (14), the absolute acceleration of the TGMS is given by:

¯̈Rtgms = ¯̈Rt + ¨̄rtgms +
(

˜̄αt + ˜̄ωt ˜̄ωt
)

r̄tgms + 2 ˜̄ωt ˙̄rtgms (36)

In this equation, the last three terms on the right-hand side are unknown. These are
the TGMS to TF relative acceleration, the tangential and centripetal relative accelerations
and the Coriolis acceleration, respectively. In order to calculate these terms, the value of
the relative position vector r̄tgms, velocity ˙̄rtgms and acceleration ¨̄rtgms of the TGMS with
respect to the TF are needed. As it can be observed in Figure 8, the trajectory followed by
the TGMS when the vehicle is moving is a 3D curve that slightly differs with respect to the
track centerline. In fact, the difference between these 3D curves is needed to measure the
absolute track irregularities. However, in order to find the TGMS to TF relative orientation,
it is going to be assumed that the acceleration equals the one of a particle moving along the
track centerline, this is:

¯̈Rtgms � ¯̈Rt =

⎡
⎣ V̇

ρhV2

−ρvV2

⎤
⎦ (37)

Therefore, the influence of the last three terms in Equation (36) has been neglected.
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Figure 8. TGMS trajectory.

The sequence of approximations that has been assumed to calculate the acceleration
of the TGMS may look rough for some readers. However, it has to be taken into account
that in most algorithms used to find orientation from IMU’s signals [21,22] the true ac-
celeration measured by the sensor is neglected in comparison with the gravity term in
Equation (33). In the application at hand, this approximation is not accurate and the
“compensation” introduced with Equation (36) is much better than nothing.

Finally, the following measurement equation is used to account for the accelerome-
ter signals:

aimu
corr = aimu

f ilt −

⎡
⎣ V̇

ρhV2

−ρvV2

⎤
⎦ ≈ g

⎡
⎣ −θ

ϕ
1

⎤
⎦ (38)

where aimu
corr is the “corrected” accelerometer signal and aimu

f ilt is the low-pass filtered acceler-
ation signal. The reason for low-pass filtering the acceleration signals is that the effect of
the TGMS to TF relative accelerations that have been neglected in Equation (36) contribute
to relatively high-frequencies to the signals. This way their contribution is, in part, filtered
out of the signals.

Using the two first gyroscope equations given in Equation (32) and the last two
accelerometer equations given in Equation (38), the following linear dynamic system can
be formulated in state-space form:

ẋ =

[
ϕ̇
θ̇

]
=

[
0 ω̂z

−ω̂z 0

][
ϕ
θ

]
+

[
ω̂x
ω̂y

]
= Fx + u

z =

[ (
aimu

corr
)

x(
aimu

corr
)

y

]
=

[
0 −g
g 0

][
ϕ
θ

]
= Hx

(39)

where the state vector x =
[

ϕ θ
]T just includes the roll and pitch angles, the state

transition matrix F is not constant but depends on the measured vertical angular velocity,
the measurement matrix H is constant, the measurement vector z includes the x and y
measured-corrected accelerations and the input vector u includes the x and y measured
angular velocities. The linear system shown in (39) is a very simple set of equations that
can be used with a standard Kalman filter algorithm to find the TGMS to TF relative angles
ϕ and θ.

8. Odometry Algorithm

The odometry algorithm presented here can be used when the TGMS has no access to
the data of a precise odometer of the vehicle and/or a GNSS cannot be used, for example,
as it happens in underground trains. Underground trains use to be metropolitan. Being
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metropolitan, there used to be many narrow curved sections. Curved sections facilitate the
method presented next.

As shown in Figure 9, the design geometry of a railway track (horizontal profile,
as explained in Section 3.2) is a succession of segments of three types: straight (s in the
figure) with zero curvature, circular (c in the figure) with constant curvature and transitions
(t in the figure) with linearly varying curvature. The curvature function can be decomposed
into a set of zero segments (straight segments) plus a set of curvature functions that have
trapezoidal shape (normal curve) or double-trapezoidal shape (S-curve). The location of
the curvature functions (start and end points) is exactly identified along the track using the
design geometry provided by the track preprocessor.

Figure 9. Design horizontal curvature of a railway track.

The curvature of the track can be experimentally approximated in the TGMS with the
installed sensors. The curvature of the trajectory followed by the TGMS can be obtained as:

ρ
exp
h � ω̂

tgms
z
V

(40)

Of course, this approximate measure is a noisy version of the track horizontal cur-
vature. However, experimental measures show that the overall shape of the curvature
functions can be clearly obtained with this approximation.

The concept of the odometry algorithm is to monitor the experimental curvature
during the ride of the train using Equation (40) and to store the data together with the
approximate coordinate stgms

app obtained with the help of the installed encoder and the
assumption of rolling-without-slipping of the wheel. The plot of the experimental curvature
looks like the plot at the top of Figure 10. Using the track preprocessor, the design value of
the curvature of the track ρ

design
h in the area where the train is located, may look like the

lower plot in Figure 10. As shown in the figure, this information can be used to correct the
value of stgms

app at points 1, 2, 3 and 4 located at the entry or exit of the curves. Measures of

stgms
app between these corrected points are also corrected using a linear mapping, as shown

in Figure 11. Where, black arrows mean odometry corrections due to the algorithm output.
Coloured arrows mean odometry correction using linear interpolation of the algorithm
output. Different colours are just used to distinguish the curvature function sections
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Figure 10. Odometry algorithm.

The problem is how to detect the entry and exit of the curves using the functions
ρ

exp
h

(
stgms

app

)
and ρ

design
h

(
stgms). In fact, it is the exit of the curves that is detected first. Once

the TGMS leaves a curve, the shape of the curvature function that the TGMS has ahead
is known. Therefore, when the measured curvature ρ

exp
h

(
stgms

app

)
“looks similar” to the

expected curvature function ρ
design
h

(
stgms), the exit of the curve has been reached. This

similarity is computed by calculating at each instant the squared-error of the experimentally
measured curvature and the expected curvature function, as follows:

e2(s) =
∫ s̄=s

s̄=s−Δs

[
ρ

exp
h (s̄)− ρ

design
h (s̄ − s + sexit)

]2
ds̄ (41)

where e2(s) is the squared error (s substitute stgms
app for simplicity in the formula), Δs is the

length of the expected curvature function and sexit is the location of the exit of the curve in
the design geometry. For a better accuracy, the value of the squared error is normalized for
each curvature function using the following factor:

I2 =
∫ s̄=Δs

s̄=0

[
ρ

design
h (s̄)

]2
ds̄ (42)

Figure 11. Correction of tgms.

The normalization factors, that are different for each curvature function, are of course
computed in a preprocesing stage. The normalized squared-error is given by:

ne2(s) =
e2(s)

I2
(43)
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Thanks to the normalization, the value of ne2 varies between approximately 1, in straight
track sections, and 0 when there is a perfect matching between ρ

exp
h

(
stgms

app

)
and ρ

design
h

(
stgms).

A typical plot of the function is observed in Figure 12. This function used to be smooth,
such that detecting the local minimum that indicates the detection of the exit of the curve is
a very easy task. Once the exit of the curve is detected, the expected curvature function is
substituted by the next curve ahead along the track. It can be shown that this method can
be run in real-time. The main computational cost is the one associated with the calculation
of the integral given in Equation (41).

Figure 12. Normalized squared-error.

9. Measurement of TGMS to TF Relative Motion

The final and most difficult step needed to find the absolute irregularities of the track
using Equation (27) is to obtain the relative trajectory r̄tgms of the TGMS with respect to the
TF shown in Figure 8. Equation (36) can be treated as a second order differential equation
in terms of r̄tgms. This equation has the following scalar components:

¯̈Rtgms =

⎡
⎣ V̇

ρhV2

−ρvV2

⎤
⎦ +

⎡
⎢⎣ 0

r̈tgms
y

r̈tgms
z

⎤
⎥⎦+

⎡
⎢⎣−rtgms

y
(
V̇ρh + V2(ρ′h − ρtwρv)

)
+ rtgms

z
(
V2ρtwρh + V̇ρv

)
−rtgms

y
(
V2(ρ2

tw + ρ2
h
))

− rtgms
z

(
−V2ρvρh + V̇ρtw

)
rtgms

y
(
V2ρvρh + V̇ρtw

)
− rtgms

z
(
V2(ρ2

tw + ρ2
v
))

⎤
⎥⎦+

+2

⎡
⎢⎣Vṙtgms

z ρv − Vṙtgms
y ρh

−Vṙtgms
z ρtw

Vṙtgms
y ρtw

⎤
⎥⎦

(44)

Alternatively, the absolute acceleration of the TGMS can be obtained using the mea-
surement of the accelerometer given in Equation (29). If the vectors in Equation (29) are
projected to the TF, it yields:

¯̈Rtgms = At,tgmsaimu −
(
At)T[

0 0 g
]T

=⎡
⎢⎣ aimu

x − aimu
y ψtgms + aimu

z θtgms

aimu
y + aimu

x ψtgms − aimu
z ϕtgms

aimu
z − aimu

x θtgms + aimu
y ϕtgms

⎤
⎥⎦ +

⎡
⎣ gθt

−gϕt

−g

⎤
⎦ (45)

where the small-angles assumption has been used again. The left-hand sides of
Equations (44) and (45) represent the same physical magnitudes, therefore, the right hand
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sides of these equations can be equated. Using just the second and third components of the
right hand sides and rearranging yields:[

r̈tgms
y

r̈tgms
z

]
+

[
0 −2Vρtw

2Vρtw 0

][
ṙtgms

y

ṙtgms
z

]
+

[−V2(ρ2
tw + ρ2

h
)

V2ρvρh − V̇ρtw
V2ρvρh + V̇ρtw −V2(ρ2

tw + ρ2
v
)][

rtgms
y

rtgms
z

]
=

[
aimu

y + aimu
x ψtgms − aimu

z ϕtgms − gϕt − ρhV2

aimu
z − aimu

x θtgms + aimu
y ϕtgms − g + ρvV2

]
(46)

This is a 2nd order linear system of ordinary differential equations (ODE) with time-
variant coefficients (linear time-varying system, LTV). This ODE has to be integrated
forward in time to find the TGMS to TF relative trajectory (rtgms

y (t) and rtgms
z (t)). The inputs

of these equations are all calculated or measured so far. These inputs are:

1. The accelerometer data aimu.
2. The instantaneous forward velocity V and acceleration V̇ of the vehicle. This is

obtained from the encoder data.
3. The position stgms of the TGMS along the track. This is the output of the odometry

algorithm explained in previous section. The position stgms is used as an entry
to the track preprocessor to get the track design cant angle ϕt and the curvatures
ρtw, ρv and ρtw.

4. The relative orientation of the TGMS with respect to the TF that is calculated in
Section 7.

In the case of a tangent (straight) track, where all track curvatures are zero,
Equation (46) reduces to:[

r̈tgms
y

r̈tgms
z

]
=

[
aimu

y + aimu
x ψtgms − aimu

z ϕtgms

aimu
z − aimu

x θtgms + aimu
y ϕtgms − g

]
(47)

Numerical integration of Equation (46) can be used to find the TGMS to TF relative
motion. However, a close look to Equation (46) shows that these differential equations
are equivalent to the equations of motion of a linear 2-degrees of freedom system with
negative-definite stiffness and damping matrices. It is a highly unstable system. Therefore,
serious problems of drift of the resulting displacements are expected. As a result that the
track irregularity is a relatively-high frequency component of the track geometry (being
the design geometry the low-frequency component), the drift of the solution can be solved
using several methods, like these two:

1. Using a digital signal processing approach for the integration that combines double-
integration and high-pass filtering of the signal [3].

2. Using a Kalman filter approach that adds to the system dynamic equations,
Equation (46), a set of measurements. These measurements are virtual sensors that in
practice always provide a zero value of the TGMS to TF relative motion. The assumed
covariance of these measurements is the expected covariance of the track irregularities.
This method has been successfully applied in [23] to eliminate the drift in the results
while keeping a good accuracy.

The second method is used in this investigation to get the results presented in
Section 11.

10. Experimental Setup

A scale track has been built at the rooftop of the School of Engineering at the University
of Seville. Figure 13 on the left shows an aerial view of the 90 m-track. The scale is
approximately 1:10 (5-inch gauge). The track includes a tangent section (next to end A),
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a 26 m-curved section and a 12 m-curved section, among other features. The track is
supported on a set of mechanisms that can be observed on the right of the figure that are
separated 10 cm. These mechanisms can be used to create any irregularity profile. Details
of the track design can be found in [24].

Figure 13. Scaled track at the School of Engineering, University of Seville. (a) Aerial view, (b) detail of track supports.

Figure 14 shows the scale vehicle that has been used to install the TGMS. The vehicle
has a classical architecture of 4 wheelsets, 2 bogies and 1 car-body. The TGMS is attached
to the car-body. The right picture shows a detail of the vehicle where the video cameras
and the laser beam can be observed. The vehicle drive is an electric motor with a chain
transmission. Details of the vehicle design can be found in [24]. The TGMS is equipped
with two video cameras Ximea MQ003CG-CM. The VGA cameras have a resolution of
648 × 488 pixels. They include a CMOS RGB bayer matrix sensor. Their maximum frame
acquisition rate reaches 500 fps. The camera has a C-mount lens FUJINN 2/3” 12.5 F1.2–
F1.6 MI E1.5MP MV that allows the adjustment of focus and exposure. The projection
lasers have a power of 10 mW and they illuminate in red. The IMU is a LORD Microstrain
3DM-GX5-25 AHRS, an triaxial accelerometer, gyroscope and magnetometer industrial
sensor fully calibrated and temperature compensate. It has a maximum sampling rate of
1 kH. The accelerometer has two different measuring ranges ±8 g (25 μg/

√
Hz) or ±20 g

(80 μg/
√

Hz). The gyroscope has an angle random walk of 0.3◦/
√

h. The traveled distance
by the vehicle along the track is obtained using a precision digital encoder Kubler 2400
series. It is a two channel encoder with up to 1440 pulses per revolution.

In order to have a reference value of the track irregularities, an accurate track geometry
measurement has been performed. The relative irregularities have been measured with the
instrument that can be observed in the right of Figure 15. This instrument slides along the
track. It includes a LVDT to measure the gauge variation and an inclinometer to measure
the cross-level. In order to measure the absolute irregularities, alignment and longitudinal
profile, the total station shown in the left hand side of the figure has been used. Details of
the track geometry measurement can be found in [24].

44



Sensors 2021, 21, 683

Figure 14. Scale vehicle, (a) global view of instrumented scale vehicle, (b) detail showing video cameras and laser beam.

Figure 15. Irregularity measurement. (a) Robotic total station, (b) LVDT and inclinometer.

11. Computer Implementation and Comparison of TGMS Measurement with
Reference Irregularity

The methods and algorithms described in this paper have been implemented in
Matlab environment. However, only built in functions of the basic package have been used,
avoiding the use of functions, for example, of the computer vision toolbox. The program
that produces the track irregularity out of the sensor data includes the following modules:

1. Pre-process: Camera calibration module. It finds the cameras’ intrinsic and extrinsic
parameters using pictures of a checkerboard pattern [19].

2. Pre-process: Track pre-processor module. It is set to provide the design geometry of
the track.

3. Process: Computer vision module. It finds the position and orientation of the rail
cross-sections using the recorded frames and the method described in Section 5.

4. Process: Odometry module. As described in Section 8, it finds the position, velocity
and acceleration of the TGMS every time instant.
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5. Process: TGMS orientation module. It finds the orientation of the TGMS using the
method described in Section 7.

6. Process: TGMS trajectory module. It finds the relative trajectory of the TGMS with
respect to the TF using the method described in Section 9.

7. Process: Irregularity module. It calculates the track irregularities with the method of
Section 6.

The results of this program are now compared with the reference value of the irregulari-
ties that were obtained with the method described in the previous section.
Figures 16–19 show the comparison between the reference geometry measurement ex-
plained in the previous section and the measurement of the TGMS developed in this
investigation. The experiment was done with the vehicle shown in Figure 14 at a forward
velocity of 2.5 m/s, that, considering the scale, it is equivalent to 25 m/s = 90 km/h of a
real train. This is approximately the maximum forward velocity of metropolitan trains.
The figures show the irregularities in the first 56 m of the track. The complete length of
the scale track could not be measured because the vehicle had difficulties to negotiate the
12 m-radius curve at that forward velocity. The irregularities shown in the figures are
high-pass filtered with a cut-off wave length of 3 m (wavelengths above 3 m are filtered out).
It is a common practice in the geometry measurement of metropolitan trains to measure
just wave lengths below 30 m, what is equivalent to 3 m in our scaled track.

The cross-level shown in Figure 16 shows a good agreement between the reference
geometry and the measure of the TGMS. The agreement in gauge variation shown in
Figure 17 is even better. Both curves are almost identical. However, in both figures, some
edge effect is observed at the beginning of the measurement.

Figure 16. Measurements of cross level.
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Figure 17. Measurements of gauge variation.

The absolute irregularities are compared in Figures 18 and 19. As it can be observed,
the agreement is fine, but not as good as the agreement of the relative track irregularities.
The reason is clearly the influence in the results of the approximations and noise associated
with the calculation of the TGMS to TF relative trajectory explained in Section 9. Recall
that this relative trajectory is not needed for the calculation of the relative irregularities. It
can also be observed that the measurements of the designed TGMS shows higher spatial-
frequencies than the measurement with the total station. However, these higher frequencies
must not be considered as noise, because the measuring method used with the total station
can not detect high-frequency (short wavelength) irregularities.

Figure 18. Measurements of alignment.
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Figure 19. Measurements of vertical profile.

12. Summary and Conclusions

This paper explains the numeric algorithms used to calculate track geometry irreg-
ularities with a new TGMS. These algorithms are basically kinematic relationships that
describe the motion of a body moving along a track. After the description of the system
and the sensors needed, the multibody-based kinematics is described in detail as well as
the approximations used due to the small angles assumption. In this kinematic description,
the track geometry (design geometry plus irregularities) is assumed totally arbitrary. As
a result that the TGMS uses a computer vision system, the kinematic equations needed
to locate the recorded rail cross-sections in the TGMS frame have been deduced, as well
as a method to find the relative coordinates of the rail cross-sections with respect to the
TGMS frame.

Section 6 shows the equations that can be used to find the value of the four independent
track irregularities: gauge and cross-level in Equation (24), and alignment and vertical
profile in Equation (27), as a function of the output of the computer vision system (explained
in Section 5), the relative TGMS to TF relative orientation and the relative TGMS to TF
relative trajectory. However, there is a long way to go to apply these equations.

Section 7 explains the development of a linear dynamic model that can be used to find
the TGMS to TF relative orientation using the installed inertial sensors, 3D accelerometer
and 3D gyroscope. This model is the basis of a Kalman filter that provides as the output the
required TGMS angles. The application of this algorithm requires a precise knowledge of
the position of the TGMS along the track. This position together with the vehicle forward
velocity are needed to calculate the accelerations due to the motion of the TGMS along
the design geometry of the track. In turn, these accelerations are needed to calculate the
relative orientation based on the accelerometer signals. Section 8 explains the odometry
algorithm that is used in this investigation for the precise calculation of the value of the
arc-length s of the TGMS along the track. This algorithm is based on the measurement of
the track horizontal curvature and the knowledge of the track design geometry.
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The most difficult step for the calculation of the track irregularities is to obtain the
TGMS to TF relative trajectory. Fortunately, this trajectory is needed to find the absolute
irregularities but not needed to find the relative irregularities. The calculation of the relative
trajectory is explained in Section 9. After a set of approximations, Equation (46) shows a
second-order linear system of ordinary differential equations that can be solved to find
the TGMS to TF relative trajectory. However, these equations are intrinsically unstable,
requiring special solution methods that need to be improved, as it can be deduced from the
experimental results.

The calculation of the track irregularities has been experimentally validated in a scale
track that is described in Section 10 as well as the alternative method used to measure the
track irregularities. This alternative method is accurate and based on the sensors used in the
commercial rail track trolleys, LVDT and inclinometer, and a total station. The comparison
of the measurements of the TGMS presented in this paper and this reference measure-
ment is shown in Section 11. The relative irregularities are measured with high accuracy.
The measurement of the absolute irregularities can be considered as acceptable, but the
accuracy is much less. It can be concluded that the method of calculation of the TGMS to
TF relative trajectory, that is the additional input needed for the calculation of the absolute
irregularities, needs to be improved.
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Abbreviations

The following abbreviations are used in this manuscript:

TGMS Track geometry measurement system.
RTT Rail track trolleys.
TRV Track recording vehicles.
VMS Versine measurement systems.
IMS Inertial measurement systems.
< X, Y, Z > Global frame (GF).
< Xt, Yt, Zt > Track frame (TF).
< Xi, Yi, Zi > Body frame i (BF).
< Xtgms, Ytgms, Ztgms > TGMS frame.
< Xlrp, Ylrp, Zlrp > Left rail-profile frame (LRP).
< Xrrp, Yrrp, Zrrp > Right rail-profile frame (RRP).
�R Position vector with respect to the GF.
�Rt Position vector of the TF with respect to the GF.
�r Position vector with respect to the TF.
�u Position vector with respect to the BF, LRP or RRP.
�ui

P Position vector of point P that belongs to body i.
v Components of a generic vector �v in the GF.
v̄ Components of a generic vector �v in the TF.
v̂ Components of a generic vector �v in the BF, LRP or RRP.
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At Rotation matrix of the TF with respect to the GF.
Ai Rotation matrix of the BF of body i with respect to the GF.
At,i Rotation matrix from the BF of body i to the TF.
ρh, ρv, ρtw Horizontal, vertical and twist curvatures of the track centerline.
ρh

′ Spatial-derivative of horizontal curvature.
αv Vertical slope of the track centerline.
ψt, θ t, ϕ t Euler angles that describe the orientation of the TF with respect to

the GF.
ψi, θ i, ϕ i Euler angles that describe the orientation of the body i with respect to

the TF.
ψ i

abs, θ i
abs, ϕ i

abs Euler angles that describe the orientation of the body i with respect to
the GF.

s Arc-length coordinate.
V, V̇ Forward velocity and acceleration.
�ωt,�αt Absolute angular velocity and acceleration vectors of the TF.
�ωi,�αi Absolute angular velocity and acceleration vectors of body i.
�ωt,i,�αt,i Angular velocity and acceleration vectors of body i with respect to

the TF.
�rlir = [ 0, ylir, zlir] Irregularity vector of the left rail.
�rrir = [ 0, yrir, zrir] Irregularity vector of the right rail.
ξal , ξvp, ξgv, ξcl Alignment, vertical profile, gauge variation and cross level.
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Abstract: The high accuracy and dynamic performance of parallel robots (PRs) make them suitable
to ensure safe operation in human–robot interaction. However, these advantages come at the expense
of a reduced workspace and the possible appearance of type II singularities. The latter is due to
the loss of control of the PR and requires further analysis to keep the stiffness of the PR even after
a singular configuration is reached. All or a subset of the limbs could be responsible for a type II
singularity, and they can be detected by using the angle between two output twist screws (OTSs).
However, this angle has not been applied in control because it requires an accurate measure of the
pose of the PR. This paper proposes a new hybrid controller to release a 4-DOF PR from a type II
singularity based on a real time vision system. The vision system data are used to automatically
readapt the configuration of the PR by moving the limbs identified by the angle between two OTSs.
This controller is intended for a knee rehabilitation PR, and the results show how this release is
accomplished with smooth controlled movements where the patient’s safety is not compromised.

Keywords: singular configuration; parallel robot; motion control; 3D tracking; screw theory

1. Introduction

Parallel robots (PRs) are composed of two or more closed kinematic chains connecting
a fixed and a mobile platform that defines the end-effector to be controlled [1]. As opposed
to their serial counterpart, they benefit from greater accuracy, stiffness, and load capacity,
making them suitable for a great variety of applications [2,3]. Human–robot interaction
is one of the major applications, for instance, in the context of medical rehabilitation [4].
Within this field, lower limb rehabilitation [5–9] is an active research area. However, PRs
also present several drawbacks regarding the size of their workspace and the presence of
singularities within the workspace. The former can be addressed by means of a proper
mechanical design of the PR to cover the workspace as required, while the latter requires
further analysis.

Singularities in a PR were first analysed by Gosselin and Angeles [10], who established
a classification of singular configurations according to the characteristics of the Jacobian
matrices calculated from constraint equations. They defined a type I (or inverse kinematic)
singularity to refer to the loss of at least one degree of freedom (DOF) due to a degeneracy
of the inverse Jacobian matrix (‖JI‖ = 0) and a type II (or forward kinematic) singularity to
indicate the gain of at least one DOF caused by the degeneracy of the forward Jacobian
matrix (‖JD‖ = 0). Some other related classifications of singular configurations can be
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found in [11,12]. type I singularities typically occur as the manipulator approaches the
boundary of the workspace and are easy to detect and avoid, but type II singularities can
arise within the workspace and are more difficult to treat [13].

Type II singularities prevent the mobile platform from bearing external forces despite
having all the actuators locked, leading to an uncontrolled motion of the end-effector. The
main goal of lower-limb rehabilitation is to perform specific movements that stimulate the
motor plasticity of the patient to improve the motor recovery [5]. In conventional rehabili-
tation, the movements of the patient are controlled and monitored by a physiotherapist,
while in robotic rehabilitation, the control task is performed by a PR. For this task, a PR
must ensure stiff behaviour despite the presence of type II singularities to maintain control
during the rehabilitation process.

Extensive research has been conducted to tackle type II singularities. The determinant
of the forward Jacobian JD gives no further information than the proximity to a singularity,
as it lacks a physical meaning [14]. Based on screw theory [15], a transmission index (TI)
was designed by Yuan et al. [16] to express the quality of force and motion transmission
by using the transmission wrench screw (TWS) and output twist screw (OTS). Takeda and
Funabashi [17] designed a TI that expresses how each actuator individually contributes to
the motion of the mobile platform by leaving just one actuator active and the rest locked.
Subsequently, Wang et al. [18] using the TI proposed by Takeda and Funabashi established
that for a type II singularity, at least two OTSs are linearly dependent. Pulloquinga et al. [19]
proposed the angle between two instantaneous screw axes from the OTSs (Ω) as a measure
for the proximity detection of type II singularities, providing physical meaning and the
capability to determine the chains producing the singular configuration.

The extensive analysis of type II singularities presented has been incorporated in mo-
tion/force performance evaluation [18,20], path planning, and the design of reconfigurable
PRs [21,22]. These analyses have been developed offline, and very little has been found
about including this information in the control unit of the PR [23,24]. Abgarwal et al. [24]
designed a control scheme to avoid type II singularities of a planar PR by using artificial
potential functions. The potential functions are activated near the singularity to alter the
trajectory by means of repulsion forces. This setting prevents the PR from entering into a
singular configuration by avoiding it. However, an evader controller cannot deal with the
situation in which the robot is initially in a type II singularity. Such a task would require
extra instrumentation, since solving the forward kinematic problem based on the joint
variable measures does not have a single solution. The various possible positions of the
mobile platform are due to the degeneracy of the forward Jacobian matrix.

One unambiguous solution to estimate the actual pose of the PR is by using a vision
system [25]. Huynh et al. [26] implemented a vision/position hybrid control for a Hexa
PR by defining a two-level closed-loop controller. Amarasinghe et al. [27] designed a
vision-based hybrid control on a mobile robot. It could autonomously reach a docking
station by using a finite-state machine and proportional control combined with image
processing.

However, to the best of the authors’ knowledge, no research has been published
focusing on PR singularity releasing, i.e., letting the robot autonomously get out of a type II
singularity. In this paper, a novel algorithm based on online readings from a vision system
is proposed to release the PR from a type II singularity. The proposed algorithm is the
first to use the angle Ω as an online detector for the proximity to singular configurations.
This algorithm is integrated into a two-level closed-loop hybrid controller that results in
more compliant manipulation when performing knee rehabilitation tasks. In the inner
loop, there is an algebraic closed-loop controller. The outer loop implements a vision-based
controller whose algorithm determines the two limbs that most affect the type II singularity
by means of the angle Ω. Then, only the references of those two limbs are modified online
to feed the inner loop of the controller.

Section 2 describes the 4-DOF PR for knee rehabilitation used to perform the simu-
lations and experiments. Next, the mathematical foundations of type II singularities and
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the angle Ω are explained. Then, the 3D vision system that has been used to keep track
of the pose of the PR is presented, together with a detailed description of the proposed
vision-based hybrid controller. Section 3 begins with a description of the requirements for
simulation and experimentation as well as the singular trajectories that were designed for
this research. The main results are also presented in this section. Finally, the results are
discussed in Section 4.

2. Materials and Methods

This section presents the mathematical foundation used in the development of the
angle Ω that detects the proximity to a type II singularity in a knee rehabilitation PR.
Subsequently, the 3D tracking system (3DTS) used to measure the actual pose of the mobile
platform is described. Then the 3DTS and Ω are combined to develop a novel vision-based
hybrid controller to release the actual PR under study from a type II singularity. This
section also includes a detailed explanation of the algorithm corresponding to this hybrid
controller, which detects and moves the actuators according to the angle Ω.

2.1. 3UPS+RPU Parallel Robot

After knee surgery, the diagnosis and rehabilitation tasks require two translational
movements (xm, zm) in the tibiofemoral plane, one rotation (ψ) around the coronal plane
and one rotation (θ) around the tibiofemoral plane [28]. These four DOFs are shown in
Figure 1. In order to accomplish these requirements, a PR with 4-DOF has been designed,
built [29], and optimized [30] at the Universitat Politècnica de València. The PR under
study is named 3UPS+RPU due to its four-limb architecture. The external limbs or open
kinematic chains have a UPS configuration, while the central one has an RPU configuration
(see Figure 1). The letters R, U, S and P stand for revolute, universal, spherical and prismatic
joints, respectively, and the actuated joints are indicated by the underlined format.

Figure 1. Mechanical configuration of the 3UPS+RPU PR.

The kinematic model of the 3UPS+RPU PR is established by 15 generalized coordinates
as follows:
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• The position (xm, zm) and the orientation (θ, ψ) of the mobile platform.
• The orientation of the four universal joints: ql1, ql2 for limbs l = 1 . . . 3 and q43, q44 for

limb 4.
• The length of the four linear actuators given by ql3 for limbs l = 1 . . . 3 and q42 for

limb 4.
• The orientation of the three spherical joints represented by ql4, ql5, ql6 for external

limbs l = 1 . . . 3.
• The orientation of the revolute joint q41.

The variables q are measured with respect to a local reference system attached to each
joint. The coordinates xm, zm, θ, and ψ are measured with respect to the reference system{

Of − XFYFZF

}
attached to the centre of the fixed platform to reduce the complexity of

the model.
The locations of A0, B0, C0, and D0 that link the four limbs to the fixed platform are

defined by the geometric variables R1, R2, R3, βFD, βFI , and ds. The locations of A1, B1, C1,
and Om that link the limbs to the mobile platform are defined by the geometric variables
Rm1, Rm2, Rm3, βMD, and βMI . Figure 1 shows the location of A0, B0, and C0 and A1, B1,
and C1 on the fixed and mobile platform. Table 1 shows the values of R1, R2, R3, βFD, βFI ,
and ds measured with respect to

{
Of − XFYFZF

}
and Rm1, Rm2, Rm3, βMD, and βMI with

respect to {Om − XMYMZM}. The mobile reference system {Om − XMYMZM} is attached
to the centre of the mobile platform.

Table 1. Geometric parameters for the 3UPS+RPU PR.

R1 (m) R2 (m) R3 (m) βFD (◦) βFI (
◦) ds (m)

0.4 0.4 0.4 90 45 0.15

Rm1 (m) Rm2 (m) Rm3 (m) βMD (◦) βMI (
◦)

0.3 0.3 0.3 50 90

2.2. Type II Singularities

The velocity equations of a PR [10] are defined by the time derivatives of the geomet-

rical constraint equations (
→
Φ) as follows:

JD

.→
X + JI

.→
q ind =

→
0 (1)

→
X is the set of outputs that represents the DOFs of the mobile platform;

→
q ind is the set of

inputs that corresponds to the active joint length; and JD and JI are the forward and inverse
Jacobian matrices, respectively. JD and JI are FxF square matrices for a non-redundant PR,
where F is the number of DOF.

A type II singularity takes place when JD is rank deficient; i.e., its determinant is
zero (‖JD‖ = 0). In this configuration, if an external force is applied to the PR, the mobile

platform may move (
.→

X 	= 0) despite the actuators being locked (
.→
q ind = 0). For this reason,

in a type II singularity, the control over the PR is lost, becoming potentially dangerous for
the user or the robot itself. The PR under study must ensure a safe interaction with the
knee of the patient, and, therefore, the treatment of type II singularities is an important
problem to solve. A general method to detect the proximity to a type II singularity is by
calculating the ‖JD‖.

In the 3UPS+RPU PR, JD is defined as a 4 × 4 matrix,

JD =

⎡
⎣ ∂

→
Φ

∂xm

∂
→
Φ

∂zm

∂
→
Φ

∂θ

∂
→
Φ

∂ψ

⎤
⎦ (2)

56



Sensors 2021, 21, 4080

with
→
X = [xm zm θ ψ]T and

→
q ind = [q13 q23 q33 q42]

T .

The online calculation of JD requires an accurate measure of
→
X. In a model-based

controller,
→
X is estimated by solving the forward kinematic problem using the sensors

installed in the actuated joints. In a type II singularity, the forward kinematic problem

presents several feasible solutions, and an unambiguous estimation of the actual
→
X is not

possible. The accurate measure of the actual
→
X of the PR requires direct sensing of the

mobile platform by means of extra instrumentation, such as a 3DTS.

2.3. Angle between Two Output Twist Screws

The motion of the mobile platform of a PR is produced by the combined action of the
active joints, making it difficult to identify the contribution of each actuator. Takeda and
Funabashi [17] divided the movement of the mobile platform ($) into F OTSs as follows:

$ = ρ1$̂O1 + ρ2$̂O2 + . . . + ρF $̂OF (3)

with
$̂O =

( →
μωO;

→
μv

∗
O

)
(4)

ρi is the amplitude for each OTS, and
→
μωO and

→
μv

∗
O are the instantaneous screw axis

and the linear component of the normalized OTS ($̂O), respectively. Each $̂O is determined
by solving Equation (5) considering that F − 1 actuators are locked.

$̂Oi ◦ $̂T j = 0 (i, j = 1, 2, . . . , F, i 	= j) (5)

where ◦ stands for the reciprocal product, and $̂T is the unitary TWS.
In [18], Wang et al. proved that for a singular configuration of a PR, at least two $̂Os

are linearly dependent. This means that in a type II singularity, both
→
μωO and

→
μv

∗
O are equal

or parallel. Based on this feature, a novel type II singularity proximity index is defined by
measuring the angle Ωi,j between two

→
μωOs and verifying the equality of their respective

→
μv

∗
O. Grouping in pairs the F

→
μωO, there are

(
F
2

)
angles Ω, which are defined as:

Ωi,j = acos
( →

μωOi
· →μωOj

)
(i, j = 1, 2, . . . , F, i 	= j) (6)

where i and j represent the selected
→
μωO.

In contrast with the ‖JD‖, the index Ωi,j provides a physical scale for the measure of

the proximity to a type II singularity. When Ωi,j = 0 and
→
μv

∗
Oi

=
→
μv

∗
Oj

, $̂Oi and $̂O j are
linearly dependent in Equation (3), identifying the open chains (i, j) involved in the type
II singularity. Considering the centre of the mobile platform of the 3UPS+RPU PR, six
possible Ωi,js are considered:

Ω1,2 = arccos
( →

μωO1
· →μωO2

)
Ω2,3 = arccos

( →
μωO2

· →μωO3

)
Ω1,3 = arccos

( →
μωO1

· →μωO3

)
Ω2,4 = arccos

( →
μωO2

· →μωO4

)
Ω1,4 = arccos

( →
μωO1

· →μωO4

)
Ω3,4 = arccos

( →
μωO3

· →μωO4

) (7)

The variables
→
μωO1

. . .
→
μωO4

are calculated by solving Equation (5) with the four $̂Ts
of the linear actuators defined as

$̂T1 =

[ →
z 12→

r Om A1 ×
→
z 12

]
, $̂T2 =

[ →
z 22→

r OmB1 ×
→
z 22

]
, $̂T3 =

[ →
z 32→

r OmC1 ×
→
z 32

]
, $̂T4 =

[ →
z 41→
0

]
(8)
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where
→
z is the unit vector of the forces applied by the actuators, and

→
r is the position

vector for the connection point of the limbs with the mobile platform measured from Om;
see Figure 2.

Figure 2. TWSs in the 3UPS+RPU PR.

The capability to detect the proximity to a type II singularity given by the six Ωi,j
indices defined in Equation (7) has been verified from an analytical and experimental
perspective [19]. However, the capability to identify the pair of limbs responsible for the
type II singularity has not been exploited. Therefore, this study proposes a novel hybrid
controller that takes advantage of the index Ωi,j to release the 3UPS+RPU PR from a type II
singular configuration. The index Ωi,j is defined by means of the position and orientation

of the mobile platform. For this reason, an accurate measure of the actual
→
X is essential for

developing the hybrid controller proposed.

2.4. 3D Tracking System

To be able to capture the movements of the mobile platform of the PR, a 3D tracking
system (3DTS) based on artificial vision was used. The system consists of 10 Flex13 cameras
from the manufacturer OptiTrack (Corvallis, OR, USA). These cameras use the infrared
emission principle to be able to capture and detect the reflection that it creates on markers
made of reflective 3M material.
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Figure 3 shows the Robotics Laboratory and some cameras of the 3DTS used in this
work. The cameras have a 1.3 Megapixel resolution and a capture velocity of 120 Hz. They
have a latency or frame delay of 8.3 ms. The set of 10 cameras and the use of high-quality
14 mm markers make it possible to obtain an accuracy of more than 0.1 mm.

Figure 3. Robotics Laboratory equipped with the OptiTrack 3DTS.

The cameras are connected to two OptiHub2 devices. The OptiHub2 allows higher
and more consistent power delivery to cameras for enhanced tracking range, simpler
camera setup and cabling, and support for camera synchronization. The OptiHub2 devices
are connected to high-speed USB ports in the camera control computer, and this computer
communicates with the robot control computer using an Ethernet connection. The Figure 4
below shows the architecture of the OptiTrack 3DTS of the laboratory.
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Figure 4. Laboratory OptiTrack 3DTS architecture.

The Motive Tracker software (Motive) from the same manufacturer, OptiTrack, is used
on the camera control computer. This software is used to perform vision system calibration
and obtain 6-DOF positioning results of objects within the tracking area. Motive uses high-
level tracking filters and constraints to fine tune the performance of the high-speed object
tracking. Motive associates a custom set of markers to a virtual element called rigid body
and offers data access at any stage in the pipeline, i.e., 2D camera images, marker centroid
data, labelled markers, and rigid bodies. In addition, it is possible to completely replace
the Motive user interface and directly control the system operation in a new application
with the NatNet SDK.

NatNet’s client/server architecture allows client applications to run on the same sys-
tem as the tracking software (Motive), on separate system(s), or both. The SDK integrates
seamlessly with standard APIs (C/C++/.NET), tools (Microsoft Visual Studio), and proto-
cols (UDP/Unicast/Multicast). Using the NatNet SDK, developers can quickly integrate
OptiTrack motion tracking data into new and existing applications, including custom plug-
ins for third-party applications and engines for real-time streaming. In addition, this SDK
provides a .NET interface and sample programs that work directly with MATLAB core,
requiring no additional MATLAB modules. Figure 5 summarizes the software architecture
of the 3DTS used in this study.
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Figure 5. Software architecture of the OptiTrack 3DTS.

Regarding the experimental setup, each camera individually builds a 2D image based
on the markers’ location, so a calibration process is required prior to the experiments in
order to ensure that the system correctly reconstructs the 3D position of every marker.

The first step involved in this process is the correct orientation of the cameras to aim
them at the workspace and, specifically, at the tracking volume, which, in this case, is
the 4-DOF PR. Since the robot always operates in the same location and its workspace is
limited, no changes in the camera location or orientation are required, and, therefore, they
remain in the same position from the moment they are installed.

Another aspect to control is the brightness and illumination of the scene, as this allows
the markers to be visible for the cameras, and, as such, no other unwanted objects are
detected. Since the lighting conditions are the same for all experiments, some configuration
parameters of the cameras, such as the exposure time, the gain, and the threshold, are set
at constant values for all cameras using the software. If any intrusive markers are detected,
they can either be manually covered by a cloth or masked in the software before performing
the calibration.

After configuring the cameras, the calibration process starts with an empty scene
where no markers should be detected, except for those attached to the calibration wand.

By moving the calibration wand, which is provided by OptiTrack, around the workspace,
the cameras provide successive 2D projections of the markers. The 2D projections are
used to compute the relative position of the cameras. The software shows the increasing
precision of this estimation as the process progresses (Figure 6), and when a high enough
quality is achieved, the process is manually stopped.
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Figure 6. Calibration wand and experiment to determine the location of the markers.

The second tool, which concludes the calibration process, is the calibration square
shown in Figure 7. This object includes three markers in right angle that define the origin
and axes of the world coordinate system (also called ground plane by Motive). The ground
plane is placed on the floor within the workspace area in such a way that its markers can
be visible by as many cameras as possible. This tool incorporates a level to ensure its
horizontal position.

Figure 7. Calibration square.

Although all the cameras remain in the same position, minor movements of any of the
cameras between experiments (for example, due to vibrations) can lead to poor tracking
performance. For that reason, the calibration process must be performed once a day to
ensure reliable 3D tracking. The calibration steps take no more than five minutes. After
calibrating the cameras, Motive starts streaming data from all rigid bodies within the
workspace. Rigid bodies are a set of 3 or more (maximum 20) markers whose relative
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distances remain constant. In this research, there are 2 rigid bodies represented by the fixed
and mobile platform, respectively, and a set of 4 markers was attached to them. Three of
the markers describe the cartesian coordinate frame of both platforms, and the fourth is
added in a random (but known) position. If one of the markers is missed by the software
during an experiment, the other three make it possible to reconstruct its position and keep
streaming enough accurate data.

In the PR pose tracking App presented in this paper, the NatNet SDK provides a client
class to communicate with the Motive server. A data handler is attached to this client,
which works as a call-back that is executed every time there is a new frame of data available
from the server. This handler has been used for retrieval of the x, y, z position of three
markers placed on the fixed platform and another three placed on the mobile platform of
the PR. Given the coordinates of the six markers, the actual position and orientation of the

mobile platform (
→
Xc) are calculated with respect to the

{
Of − XFYFZF

}
coordinate frame.

Finally,
→
Xc is sent through ROS2 messages to feed the control system. A MATLAB program

has also been designed to provide an online view of
→
Xc and calculate the actual actuator’s

length by solving the inverse kinematics. Figure 8 presents the graphic user interface (GUI)

for online measures of
→
Xc. It is important to note that this program is independent of the

control system (and therefore runs in a personal computer) and simply offers a viewing
tool.

Figure 8. GUI for position and orientation tracking designed in MATLAB.

2.5. Hybrid Controller Description

If a PR reaches a type II singularity, a controller must move the actuators to release the
PR from the singularity, maintaining a minimum deviation from the original configuration.
Therefore, a method to identify the best set of actuators to be moved is needed. The
index Ωi,j, using the position and orientation of the mobile platform, is able to identify
the actuators involved in the type II singularity. However, in a type II singularity, the
measurement of the actual position and orientation of the PR require an external sensor,
such as a 3DTS. For this reason, a novel controller able to release the PR under study from
a type II singularity using the index Ωi,j and a 3DTS is proposed. It is important to note
that this is the first time that the index Ωi,j is employed as an online proximity detector to a
type II singularity.

The novel vision-based hybrid controller to release the 3UPS+RPU PR from a type II
singularity is shown in Figure 9. The hybrid controller combines two-level closed loops: an
algebraic algorithm (inner loop) and a type II singularity releaser (outer loop). The type II
singularity releaser calculates the Ωi,j indices using the position and orientation of the PR
provides by the OptiTrack 3DTS.
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Figure 9. Hybrid controller architecture.

In the inner loop, the control signals (
→
μ ) to track the desired actuator’s location

→
q indd

are calculated by an algebraic algorithm based on the measured location of the actuators
→
q indc

. The
→
μ is proportional to the forces (

→
τ ) applied by the linear actuators to move the

mobile platform.
In the outer loop, the reference location of the actuators (

→
q indr

) is obtained by solving

the inverse kinematics for a knee rehabilitation trajectory (
→
Xr), and

→
Xr is designed for the

4-DOF of the 3UPS+RPU PR.
Based on the

→
Xc measured by the 3DTS, the proximity to a type II singularity is de-

tected by
→

VΩc and ||JD||c at every time step.
→

VΩc stores the six Ωi,j indices as[
Ω1,2 Ω1,3 Ω1,4 Ω2,3 Ω2,4 Ω3,4

]T . If the 3UPS+RPU PR gets close to a type II

singularity,
→
q indr

is modified to define
→
q indd

. In Figure 9, the type II singularity releaser
module (SRM) calculates the desired location of the actuator as follows:

→
q indd

=
→
q indr

+ νd·ts·
→
Δi (9)

where νd is the releasing velocity module for each actuator, ts stands for the controller

sample time, and
→
Δi represents an integer vector that counts the deviation required in the

F actuators to release the PR from a type II singularity.

The SRM calculates
→
q indd at every time step, although

→
Δi is modified only if an enable

pin (epin) is activated. Two versions of the algorithms have been proposed to contrast
the results when (i) moving the actuators that cause the singularity and (ii) moving the

actuators that do not cause the singularity according to
→

VΩc.
The first version (SRM-V1) releases a PR from a type II singularity by moving the

limbs identified by minΩc, which represents the minimum value of
→

VΩc. If minΩc or

‖JD‖c is lower than a certain limit, Ωlim and ‖JD‖lim, respectively, the two rows of
→
Δi that

have to change are identified by
→
i ch. The possible change combinations for the two rows

of
→
Δi are defined by the columns of Minc as follows:

Minc =

[
1
1

−1
−1

1
−1

−1
1

1
0

−1
0

0
1

0
−1

]
(10)

where 0, 1, and −1 correspond to the stop, unit forward motion, and unit backward motion
commands for an actuator, respectively.
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For each column of Minc, an auxiliary variable
→
q ch is initialized as

→
q indd

, and then its

elements indexed by
→
i ch are modified using the current Minc column. Then, it is checked

that this position is confined within the geometrical limits. If
→
q ch is inside the actuators’

displacement range, the forward kinematic problem is solved (
→
Xch). Next, the angles

reached by the spherical joints (
→
αch) are calculated. If

→
αch is within the working range,

a new Ωi,j is calculated for the limbs identified by
→
i ch, and it is added to

→
VΩch. Then,

→
Δi takes the value of the column of Minc that produces the maximum element of

→
VΩch

(maxΩch), as that combination contributes the most to releasing the singularity without

exceeding any range limit. Finally,
→
q indd

is updated using the new
→
Δi.

An alternative algorithm called SRM-V2 has been proposed to test the behaviour

when moving the wrong limbs. It modifies the rows of
→
Δi that are not related to minΩc

(
→
i nc) to release the PR from the type II singularity caused by the actuators

→
i ch. SRM-V2 is

designed to verify that moving the actuators identified by minΩc is the best way to release
the 3UPS+RPU PR from a type II singularity.

The complete process performed by SRM-V1 is described in the pseudocode shown in
Algorithm 1, where SRM-V2 is obtained by adding and replacing, the lines marked with
∗ and ∗∗, respectively. A description of the variables used in Algorithm 1 is presented in
Table 2.

Table 2. Description of parameters, inputs, and outputs of SRM-V1 and SRM-V2.

Parameters

Variable Description Default

νd releasing velocity module in m/s 0.01
ts controller sample time in s 0.01

‖JD‖lim experimental limit for ‖JD‖ 0.015
Ωlim experimental limit for Ωi,j 1.8◦

→
maxqind

maximum feasible values for the
actuators’ length in m, 4x1 vector

[
0.93 0.92 0.93 0.82

]T

→
minqind

minimum feasible values for the
actuators’ length in m, 4x1 vector

[
0.65 0.64 0.65 0.54

]T

→
α lim

experimental limits for the spherical
joints, 3x1 vector 38◦

Minc possible increments/decrements for
→
Δi See equation (10)

→
Δi

column vector 4x1, persistent
variable -

Inputs

Variable Description Default

epin enable pin -

‖JD‖c
determinant of the forward Jacobian
matrix, feedback signal -

→
VΩc

column vector with the six Ωi,j
indices, feedback signals -

→
Xc

position and orientation of the mobile
platform, feedback signal -

→
q indr

trajectory for the actuators, reference
signal -

Outputs

Variable Description Default

→
q indd

trajectory for the actuators, desired
signal -
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Algorithm 1. Initialization 3

INITIALIZATION
→
Δi =

→
0

Nch = number of columns of Minc.
BEGIN
→
q indd

=
→
q indr

+ νd·ts·
→
Δi

IF epin == true

minΩc = minimum element in
→

VΩc
IF minΩc < Ωlim OR ‖JD‖c < ‖JD‖lim

IF minΩc ==
→

VΩc(1)
→
i ch =

[
1 2

]
∗

→
i nc =

[
3 4

]
ELSEIF minΩc ==

→
VΩc(2)

→
i ch =

[
1 3

]
∗

→
i nc =

[
2 4

]
ELSEIF minΩc ==

→
VΩc(3)

→
i ch =

[
1 4

]
∗

→
i nc =

[
2 3

]
ELSEIF minΩc ==

→
VΩc(4)

→
i ch =

[
2 3

]
∗

→
i nc =

[
1 4

]
ELSEIF minΩc ==

→
VΩc(5)

→
i ch =

[
2 4

]
∗

→
i nc =

[
1 3

]
ELSE minΩc ==

→
VΩc(6)

→
i ch =

[
3 4

]
∗

→
i nc =

[
1 2

]
ENDIF

→
VΩch = column vector of Nch zeros

FOR c1 = 1 : Nch→
q ch =

→
q indd

→
q ch

(→
i ch

)
=

→
q ch

(→
i ch

)
+ νd·ts·Minc(:, c1)

∗ ∗ →
q ch

(→
i nc

)
=

→
q ch

(→
i nc

)
+ νd·ts·Minc(:, c1)

IF
→

minqind <
→
q ch <

→
maxqind (element-wise comparison)

→
Xch = Solve the Forward Kinematics for

→
q ch, using

→
Xc as initial condition

→
α ch = Angle of spherical joints for

→
Xch

IF
→
α ch <

→
α lim (element-wise comparison)

→
VΩch(c1) = Calculate the index Ωi,j for

→
Xch with i, j =

→
i ch

ENDIF

ENDIF

ENDFOR

c1 = argmax
( →

VΩch

)
→
Δi

(→
i ch

)
=

→
Δi

(→
i ch

)
+ Minc(:, c1)

→
q indd

=
→
q indr

+ νd·ts·
→
Δi

ENDIF

ENDIF

END
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Due to the properties of the index Ωi,j, the SRM algorithm has the advantage of
moving a pair of F actuators simultaneously in each time step of the controller. For this
reason, the SRM reduces the consumption of computing resources and the difference
between

→
q indd

and the original
→
q indr

.

3. Results

This section begins with a detailed description of the simulation setup, including
the singular trajectories to be tested with SRM-V1 and SRM-V2 versions of the hybrid
controller. Next, the performance of the hybrid controller in simulation is evaluated, where
SRM-V1 appears to be better than SRM-V2. Subsequently, the experimental setup and the
features of the actual 3UPS+RPU PR are detailed. Finally, the main experimental results
show the effectiveness of the hybrid controller using SRM-V1 to release the PR under study
from a type II singularity.

3.1. Simulation of the Vision-Based Hybrid Controller

Prior to implementing the algorithm on the actual PR, some simulations are performed
on a kinematic and dynamic model of the 3UPS+RPU PR designed in MATLAB/Simulink.
In both simulation and experimentation, the PR is moved from the initial position to a
singular test configuration without activating the releaser. Then, it remains in the singular
configuration for 15 s, after which the loop of the SRM is activated via epin. In that moment,
one of the SRMs in Section 2.5 is launched based on the assumption that it will help release
the robot from the type II singularity. The SRM launched has a lapse of 15s, allowing it to
move the PR under study to a non-singular configuration.

Due to the lack of a simulated model of the 3DTS (see Figure 9) for MATLAB/Simulink,
→
Xc is calculated directly by solving the forward kinematic problem. The main objective of
the simulation is to test that the novel hybrid controller increases the values of ‖JD‖ and
Ωi,j in the vicinity of a type II singular configuration; i.e., it is able to release the PR under
study from the type II singularity.

Since the 3UPS+RPU PR was built to interact with human knees, it is used to execute
three rehabilitation movements: flexion of the hip, flexion–extension of the knee, and
internal–external rotation of the knee [19]. This study, combining these three fundamental
movements for simulation and experimentation, performs five knee rehabilitation trajecto-
ries ending in a type II singular configuration (see Table 3). The singular configurations of
these five trajectories have ‖JD‖ and Ωi,j close to zero but not exactly zero, avoiding several
forward kinematic solutions in the simulation. All five knee trajectories are designed with
constant velocity; in this case, the translational DOFs move at 0.02 m/s and the rotational
ones at 0.03 rad/s.

Table 3. Description of the trajectories with a type II singularity at the end.

Trajectory Description
Type II Singularity

xm (m) zm (m) θ (rad) ψ (rad)

1 Hip flexion 0.01 0.70 0.15 0.31
2 Partial internal–external knee rotation 0.01 0.70 −0.02 0.14

3
Flexion–extension of the knee

combined with ankle and knee
rotations

0.05 0.72 −0.01 0.15

4 Flexion–extension of the knee
combined with hip flexion 0.12 0.77 −0.06 0.11

5 Complete internal–external knee
rotation −0.05 0.73 0.10 0.33

The simulation of the five knee rehabilitation trajectories verifies that SRM-V1 and
SRM-V2 release the 3UPS+RPU PR from a singular configuration. Figure 10 shows how the
type II singularity indices ‖JD‖c and minΩc increase when epin is activated for trajectory
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1. These results verify from an analytical perspective that the hybrid controller proposed
releases the 3UPS+RPU PR from a type II singularity.

Figure 10. (a) ‖JD‖ (b) minΩ for trajectory 1 in the simulation.

The performance of the proposed hybrid controller in tracking
→
q indr is evaluated by

three overall measures:

• The mean absolute error (MAE)

MAE =
1
F

F

∑
i=1

(
1
n

n

∑
j=1

|qindr(i, j)− qindc(i, j)|
)

(11)

• The mean absolute percentage error (MAPE)

MAPE =
100
F

F

∑
i=1

(
1
n

n

∑
j=1

∣∣∣∣ qindr(i, j)− qindc(i, j)
qindr(i, j)

∣∣∣∣
)

(12)

• The mean distance travelled for type II singularity release (MDSR)

MDSR =
1
F

F

∑
i=1

(
n

∑
j=1

|qindr(i, k)− qindc(i, j)|
)

(13)

where n is the number of samples taken after the activation of epin at instant k, and i
and j are the actuator and the time instant, respectively.

Table 4 shows the MAE, MAPE, and MDSR results for the simulation of the hybrid
controller with SRM-V1 and SRM-V2. In this table, the MAE and the MAPE show that
SRM-V1 has less error in position tracking than that of SRM-V2 during release from the
type II singularity. In addition, the MDSR shows that SRM-V1 needs fewer movements of
the actuators than SRM-V2 to release the PR from a singular configuration. These results
show that moving the pair of actuators identified by the index Ωi,j (SRM-V1) is the best
option to release a PR from a type II singularity.
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Table 4. Performance of the hybrid controller using SRM-V1 and SRM-V2 in the simulation.

Trajectory
MAE (mm) MAPE (%) MDSR (mm)

SRM-V1 SRM-V2 SRM-V1 SRM-V2 SRM-V1 SRM-V2

1 3.87 10.74 0.53 1.40 7.01 18.18
2 1.09 2.04 0.14 0.28 5.05 2.92
3 1.77 6.15 0.24 0.82 4.78 6.74
4 3.00 10.24 0.38 1.25 7.48 10.81
5 10.74 10.44 1.43 1.37 15.47 35.23

MEAN 4.09 7.92 0.54 1.02 7.95 14.77

3.2. Experimentation of the Vision-Based Hybrid Controller

After testing the novel vision-based controller in simulation, the next step is im-
plementing the hybrid controller on the real robot according to the diagram shown in
Figure 9. Although both the simulation and experimentation have the same procedure, the
experimentation presents two notable differences:

•
→
Xc is provided by processing the data stream from the 3DTS in real time.

• During the 15 s before the SRM is activated, an external perturbation is applied to the
PR. Since in a type II Singularity the PR can vary its position and orientation without
moving any actuators, the researcher can apply some forces to the PR by hand to check
whether the mobile platform experiences uncontrolled motion.

In the experimental context, the type II singularity release can be tested by trying
to move the PR by hand before (when the PR is expected to move) and after the SRM
is activated. After the activation of the SRM, the 3UPS+RPU PR will regain the stiffness
required to ensure safe interaction with a patient.

Regarding the actual robot, the external limbs are driven by Festo DNCE 32-BS10
prismatic actuators, and the central limb is driven by a NIASA M100-F16 prismatic actuator.
All the actuators are attached to Maxon 148867 150 W DC motors commanded by ESCON
50/5 servo controllers, which control the current by means of pulse width modulation
(PWM). The current is proportional to the applied voltage (which comes from the control
actions), and the torque is in turn proportional to the current. The DC motors are equipped
with incremental encoders with a resolution of 500 counts per turn.

The control unit is connected to an industrial computer using acquisition cards. A
PCI 1784 Advantech card is used to read the position from the encoders, having four 32-bit
quadruple AB phase encoder counters. On the other hand, a 12-bit, 4-channel PCI 1720
Advantech card is used to send the control actions

→
μ .

The proposed vision-based hybrid controller runs on the Robot Operating System 2
(ROS2) [31,32]. The two levels of the hybrid controller and the processing of the data stream
from the 3DTS are implemented in a modular way using the C++ and Python programming
languages. The controller receives the set of references

→
q indr

from the solution of the inverse

kinematics given the Cartesian references for the end-effector. The
→
q indr

is sampled at a
rate of 100 Hz, and the desired releasing velocity νd is set to 0.01 m

s . These parameters are
suitable for knee rehabilitation requirements.

For the actual PR, a fourth performance index is added to evaluate the smoothness of
the movements performed by the controller, which is measured with the absolute variation
rate (AVR) of the control actions as follows:

AVR =
1
F

F

∑
i=1

(
n

∑
j=2

|τ(i, j)− τ(i, j − 1)|
)

(14)

During the first run of trajectory 1 using the hybrid controller with SRM-V2, the actual
3UPS+RPU PR reaches an AVR of 8N, which is too high for knee rehabilitation. For this
reason, the experiment on the actual PR under study only focuses on the hybrid controller

69



Sensors 2021, 21, 4080

with SRM-V1. This decision is also supported by the better performance shown in the
simulation (see Table 4).

Table 5 shows the results of performance tracking of
→
q indr

of the hybrid controller with
SRM-V1 implemented on the 3UPS+RPU PR. The MAE and MAPE for experimentation
are similar to the simulation results, with a low AVR ensuring smooth movements of the
mobile platform. In contrast, the actual MDSR is lower than the values calculated in the

simulation. The reduction in MDSR is due to the accurate measure of
→
Xc provided by the

3DTS, which is fundamental for a proper measure of the proximity to a type II singularity.

Table 5. Performance of the hybrid controller using SRM-V1 in the experimentation.

Trajectory MAE (mm) MAPE (%) MDSR (mm) AVR (N)

1 3.26 0.45 3.64 0.22
2 3.02 0.41 7.61 0.52
3 2.05 0.27 1.60 0.17
4 2.14 0.27 1.90 0.46
5 10.66 1.42 11.82 1.44

MEAN 4.22 0.56 5.31 0.56

Figure 11 shows the measures of the two indices (‖JD‖c and minΩc) when the actual
PR is released from a singular configuration, corresponding to trajectory 1 with Ω3,4 as
minΩc. The variation of ‖JD‖c and minΩc before SRM-V1 is activated is due to the external
force applied to the actual PR. It is important to mention that the actual PR recovers its
stiffness at the end of all experiments. To the best of the author’s knowledge, this is the first
time that an actual PR has been driven to a type II singularity and successfully released
from it by using the index Ωi,j. The results can be seen in Video 1 and Video 2 provided as
Supplementary Materials of this research.

Figure 11. (a) ‖JD‖ (b) minΩ for trajectory 1 in the experimentation.

Figure 12 shows the reference (r) trajectory for xm in contrast to its estimation (ĉ)
by using the forward kinematic model and the experimental measures (c) based on data
streaming from the 3DTS. Despite both estimated and experimental measures being cal-
culated online, only the experimental measure detects the movement produced by the
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external force applied to the PR. This verifies that when the 3UPS+RPU PR is in a type II
singularity, the actual xm cannot be determined by solving the forward kinematic.

Figure 12. xm position for trajectory 1.

Figure 13a shows the position for limb 3, which is one of the two limbs involved in
the type II singularity in trajectory 1. In this figure, the measured position (c) accurately
tracks the desired position (d), which differs from the reference (r) only after SRM-V1
activation. Furthermore, Figure 13a clearly shows that the desired position is modified by
a few millimetres from the reference to release the actual PR from the type II singularity.
Finally, Figure 13b shows the smooth control actions calculated by the hybrid controller
implemented on the actual PR using SMR-V1. Video 1 provides an interactive view of the
results presented in Figures 12 and 13 and can be found in the Supplementary Materials
Section.

Figure 13. (a) qind (b) τ on limb 3 for trajectory 1.
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The experimental results conclude that the vision-based hybrid controller with SMR-
V1 releases an actual PR from a type II singularity with minimum deviation from the
original reference. In addition, the OptiTrack 3DTS allows the hybrid controller with
SMR-V1 to take advantage of the features of the index Ωi,j.

4. Discussion

This study has addressed the novel task of releasing a 4-DOF PR from type II singular
configuration using the index Ωi,j to identify the limbs involved in the singularity. The
hybrid controller proposed combines an algebraic controller with an external computational
loop that modifies the joint references only for the limbs that are causing the singularity.
This mechanism can be activated whenever the robot enters into a type II singularity by
measuring the ‖JD‖c and minΩc. Both ‖JD‖c and minΩc are measured based on the actual
position and orientation of the mobile platform that is provided online by a OptiTrack
3DTS. The embedded sensorization includes a set of encoders attached to the motors to
ascertain the joint positions.

To show the effectiveness of the designed method, several experiments have been
conducted with trajectories that leave the robot in distinct singular configurations, where
the releasing algorithm is activated. This scheme has been implemented in both simulation
and actual settings to compare the differences in performance when moving the limbs
involved (SRM-V1) or not involved (SRM-V2) in the type II singularity. The algorithm
for SRM-V1 and SRM-V2 defined the movement of the actuators based on the results of
minΩc.

The results of the simulation in Section 3.1 clearly show that SRM-V1 makes the robot
behave better in terms of all the performance measures with respect to SRM-V2. According
to Table 4, SRM-V1 presents a 0.54% (4.09 mm) mean error in tracking the original reference
with a mean distance travelled of 7.95 mm for releasing the PR from a type II singularity.
These errors are approximately half of those obtained with SRM-V2, thus verifying that
moving the actuators identified by minΩc is the best option to release the 3UPS+RPU PR
from a type II singularity. In fact, no trajectories were performed with the actual robot using
SRM-V2, as a first experiment using this algorithm showed that the robot was struggling
to get out of the singular configuration, with sharper control actions than those obtained in
simulation.

Section 3.2 shows that by using knowledge of the true position and orientation of the
mobile platform, the hybrid controller with SRM-V1 can successfully release the actual PR
from a type II singularity. All singular trajectories were overcome, even in the cases where
the mobile platform was manipulated to change its position during the standby time. The
results show how the simulated and real experiments are alike, as all of the indicators for
SMR-V1 are somewhat similar. These errors are proven to be dependent on the starting
singular configuration, since trajectory 5 is harder for the PR to overcome.

Based on the results of simulation and experimentation, this is the first use of a vision-
based hybrid controller capable of releasing a 4-DOF PR from a singular configuration.
It is also notable that the effectiveness of the release from a type II singularity with a
minimum deviation of the original reference depends on minΩc. The smoother response
of the vision-based hybrid controller is achieved because of the accurate measures of the
3DTS, making it a fundamental element of the hybrid controller. It is important to highlight
that before this research, the Ωi,j had not been used as an online detector of the proximity
to type II singularities for controlling purposes.

The proposed vision-base hybrid controller compensates a main drawback of PRs,
and it represents a step forward towards compliant manipulation of PRs. This system
improves the performance of knee rehabilitation tasks by ensuring the safety of the patient
during human–robot interaction, even if the PRs arise a type II singularity.

In future research, SRM-V1 can be extended for its use in the task of type II singularity
avoidance, i.e., preventing the PR from entering into a singular configuration. Although
little literature exists regarding this field, the SRM-V1 algorithm offers valuable insight
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into the limbs that are expected to lead the robot to a type II singularity. After adding
the possibility of returning to the original reference to SRM-V1, the avoidance of type II
singularities could be achieved in a more reliable way than using other methods such as
artificial potential fields.

Supplementary Materials: The following videos are available online at https://imbio3r.ai2.upv.es/
videos/TypeII_singularities: Video 1: 4-DOF parallel robot: vision-based hybrid controller to release
from a type II singularity. Trajectory 1; Video 2: 4-DOF parallel robot: vision-based hybrid controller
to release from a type II singularity. Trajectory 5.
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Abstract: Model-based force estimation is an emerging methodology in the mechatronic community
given the possibility to exploit physically inspired high-fidelity models in tandem with ready-to-use
cheap sensors. In this work, an inverse input load identification methodology is presented combining
high-fidelity multibody models with a Kalman filter-based estimator and providing the means for
an accurate and computationally efficient state-input estimation strategy. A particular challenge
addressed in this work is the handling of the redundant state-description encountered in common
multibody model descriptions. A novel linearization framework is proposed on the time-discretized
equations in order to extract the required system model matrices for the Kalman filter. The presented
framework is experimentally validated on a slider-crank mechanism. The nonlinear kinematics
and dynamics are well represented through a rigid multibody model with lumped flexibilities to
account for localized interaction phenomena among bodies. The proposed methodology is validated
estimating the input torque delivered by a driver electro-motor together with the system states and
comparing the experimental data with the estimated quantities. The results show the stability and
accuracy of the estimation framework by only employing the angular motor velocity, measured by
the motor encoder sensor and available in most of the commercial electro-motors.

Keywords: multibody dynamics; Kalman filtering; coupled states-inputs estimation; virtual sensors;
slider-crank mechanism

1. Introduction

In mechatronic systems, operational forces and moments are essential quantities in
the different stages of the development cycle and strongly impact the design, durability,
diagnostic, prognostic, maintenance, and advanced control strategies [1]. However, forces
and moments are also difficult, even impossible, quantities to measure. This is due to high
force sensor costs and the geometrical constraints (space limitations) that would make the
sensor integration impossible without influencing the overall system design and behavior.

In past decades, different test-driven and model-based inverse force methods have
been presented in the literature to overcome these limitations. Initially, the challenge of
inverse load identification was tackled in offline test-based strategies. One of the most
commonly used technique for mechanical applications relates to the field of Transfer Path
Analysis (TPA) [2].

TPA summarizes the family of test-based methodologies to study the vibration trans-
mission in mechanical systems where the Matrix Inversion and Mount Stiffness approaches
are the most commonly used to estimate inputs and transmitted forces respectively. De-
spite the wide variety of methods and extensive use in the industrial world, TPA still
remains quite expensive from an experimental point of view in terms of preparation and
execution time.

Sensors 2021, 21, 4495. https://doi.org/10.3390/s21134495 https://www.mdpi.com/journal/sensors
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The growing computational power of modern computers opened new opportunities to
exploit numerical model-based methods. These models can be exploited in virtual sensing
approaches [3] which enable the exploitation of low cost, accessible and non-collocated
measurements together with first-principle/physically inspired models to obtain state and
input estimates.

State estimation techniques such as the Kalman Filter (KF) methods allow the joint
estimation of unknown inputs and model states [4] in an efficient manner. By regularly
feeding back the measurements on a physical asset, KF techniques enable the compensation
of drift in the model while reducing the noise from the direct measurements.

Multibody (MB) modeling approaches are regularly used in the literature and industry [5–7]
for full scale rigid and flexible mechanical systems where conventional Finite Element (FE)-
based methods would be unnecessarily expensive. The MB methods establish a good trade-off
between model fidelity and computational cost. Moreover, MB models disclose 3D system-level
information, enabling dynamic interaction phenomena among bodies due to distributed and/or
localized flexibilities.

However, the link between MB models and estimation algorithms is nontrivial since
most estimators require an ordinary differential state-space representation of the system
dynamics. Instead, the MB model dynamics, depicted by the Equations of Motion (EOMs),
are generally described by a set of Implicit-Differential Algebraic Equations (I-DAEs) that
makes the state-space representation difficult to be met. On the other hand, Explicit-
Ordinary Differential Equations (E-ODEs) are well suited for a state-space representation
but specific MB formulations should be employed to obtain this structure (e.g., [8]), other-
wise, dedicated manipulations of the EOMs are demanded to achieve an ODE form.

In [9] the Matrix-R method was proposed to eliminate the constraint equations of the
MB model reducing the initial EOMs to an ODE form in independent coordinates. The aim
of this work was to combine an extended KF estimator with detailed MB models to obtain
an automotive real-time observer. Despite the high accuracy of the estimated quantities,
the real-time target was not achieved due to the costly solver iterations.

Similarly in [10–12] the Matrix-R method was used to deal with the DAE structure of
the EOMs. Here, different KF estimators are compared in terms of accuracy and perfor-
mance on a rigid 4 and 5-bar linkage mechanisms.

Alternatively, in [13] a kinematic state observer is presented. It combines the con-
strained kinematic MB equations with nonlinear estimators. Here, the dynamic equations
of the MB system are not considered therefore leading to an estimation which is less sensi-
tive to input and mechanical (properties) uncertainties. Moreover the system accelerations
are treated as random walk models and augmented to the kinematic discrete state vector
that imply the use of a more extensive number of measurement sensors.

In [14,15] an interesting approach based on the combination of deep learning and MB
dynamics information was proposed to achieve this transformation. It allows reducing a
generic MB model to minimal coordinates allowing the description of the EOMs through
E-ODEs while not requiring a specific formulation or access to the constraint equations.
However, the methodology depends on a reference numerical simulation as training data
which must cover the mechanism workspace; moreover only rigid MB systems can be
tackled by the technique.

In [16] an Augmented Discrete Extended Kalman filter (ADE-KF) approach tailored
for flexible MB models to construct a state-input estimator is presented.The methodology
demonstrates the advantages of using analytical expressions to cover the necessary lin-
earized and explicit EOMs. However, this approach relies on the use of a penalty constraint
formulation to achieve E-ODE type of equations. This leads to a relatively poorly condi-
tioned problem and introducing additional model parameters, namely the penalty factors,
in comparison to a Lagrange-multiplier approach.

In this work, a generalization of the methodology described in [16] is presented which
is compatible with a Lagrange multiplier approach for the constraint equations.
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The proposed methodology starts from a novel linearization approach of the EOMs that
includes the algebraic variables (Lagrange multipliers) to the system states. Consequently,
the resulting unconstrained discrete-time state-space model is employed in a constraint KF
scheme where the kinematic constraints are enforced trough the augmented measurement
equations, therefore eliminating the effort of selecting effective penalty factors.

The scientific contribution is structured as follows: in Section 2 a general overview
of the governing EOMs of the MB system dynamics is given; in Section 3 the implicit
constrained EOMs are linearized and made explicit through a first order Taylor expansion;
in Section 4 the system and measurement Kalman filter equations are introduced. Here,
the system and measurement matrices are analytically assembled thanks to the use of the
in-house Multibody Research Code (MBRC) [17]; finally, in Section 5 the methodology is
validated on an industrial relevant application comparing the estimated quantities with
the experimentally measured one.

2. Multi-Body Model and Time-Disretization

This section summarizes the derivation of the EOMs of flexible multibody systems, as
they will be employed in this work.

2.1. The Multibody Equations of Motion

The mathematical description of the system dynamics can be derived by means of the
Lagrange’s equations for constrained mechanical systems [18]:

d
dt

(
∂L(q̇, q, λ)

∂[q̇, λ̇]

)
− ∂L(q̇, q, λ)

∂[q, λ]
= ue(q, u), (1)

with the Lagrangian defined as:

L = T − V − φ(q)Tλ. (2)

L represents the Lagrangian functional, T the kinetic energy, V the potential energy,
φ(q)Tλ the constraint contribution with the Lagrange multipliers λ, and ue is the vector
of the external actions. MB models describe the dynamics of several rigid and/or flexible
interacting bodies linked together through the definition of kinematic joints which are
mathematically represented by the constraint equations φ(q) while J = ∂φ(q)/∂q represent
the Jacobian of the constraint equations. q ∈ R

nq is the generalized coordinates vector,
λ ∈ R

nλ is known as Lagrange multipliers and u ∈ R
nu is the input vector. Through the

definition of the assembled body coordinates and the motion parametrization Equation (1)
can be written in a residual form as a fully implicit real-valued non-linear function:

g(q̈, q̇, q, λ, u) = 0. (3)

2.2. The Differential-Algebraic form of the EOMs

A set of natural coordinates qn ∈ R
nqn was proposed in [18], where redundant degrees

of freedom are employed to define the system coordinates of the assembled bodies. More-
over, including the motion parameterization employed in the Flexible Natural Coordinate
Formulation (FNCF) [19] allows deriving a constant singular mass matrix M ∈ R

nqn×nqn .
Assuming this formulation, Equation (3) can be written in the so-called index-3 form:

{
g1 = Mnq̈n + fnl(q̇n, qn, u) + JTλ = 0q

g2 = φ(qn) = 0λ

. (4)

Here, fnl ∈ R
nqn is the non-linear generalized force vector expressed as:

fnl(q̇n, qn, u) = fv(q̇n, qn) + fint(q̇n, qn) + fext(q̇n, qn, u). (5)
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fv represents the quadratic velocity vector related to the gyroscopic forces of the bodies,
which is zero for FNCF formulation. fint is the internal force vectors which accounts for the
elastic energy stored by deformable bodies and if rigid bodies are assumed fint vanishes;
fext is the external force vector and can be spilt in the sum of two contributions, the
interaction forces among bodies fb (i.e., contact and friction forces) and the input forces fu.
They can be summarized as follows:

fext(q̇n, qn, u) = fb(q̇n, qn) + fu(qn, u). (6)

Here, fu can be written as fu(qn, u) = Ut(qn)u, where Ut is tangent input matrix
defined as:

Ut =
∂ fu

∂u
. (7)

Due to the structure of the EOM, Equation (4), for the FNCF formulation, derivatives
can be more readily obtained than for may alternative flexible multibody formulations.
Therefore, the above mentioned coordinates definition and motion parameterization will
be considered in this work. For the sake of brevity, we omit the subscript n referred to the
natural coordinate formulation for the remainder of this manuscript.

Despite the computational advantages of the above mentioned MB approach, the
methodologies that will be introduced in the next sections can be easily extended to
alternative MB formulation, such as the floating-frame of reference component mode
synthesis approach or the generalized component mode synthesis [5,20].

The I-DAEs form of Equation (4) are generally not suitable for estimation algorithms
such as the Kalman Filter family, since these have been designed to handle E-ODEs type
of equations.

In the next section, we present a new methodology to directly linearize the I-DAEs
starting from its discrete form but without employing any explicit constraint elimina-
tion technique.

2.3. EOMs: The Discrete Index-3 Form

To transform the second order differential equation into first-order differential equa-
tions, it is common to introduce the velocity variable q̇ = v, allowing to write Equation (4)
in a first-order form as:

g(v̇, v, q̇, q, λ, u) =

⎧⎪⎨
⎪⎩

g1 = v − q̇ = 0v

g2 = M(q)v̇ + fnl(v, q, u) + JTλ = 0q

g3 = φ(q) = 0λ

. (8)

These equations represent a system of constrained-DAEs of index 3 [21]. Numerical
differentiation is generally employed [22] to convert Equation (8) into a discrete form.

In this work, a first order, constant time-step Backward Differentiation Formula
(BDF-1), also known as Backward Euler, is employed. This choice does not imply that other
differentiation schemes cannot be applied to discretize the EOMs in time. However, the
time-discretization must be consistent with the defined estimation sampling and particular
attention should be paid to choosing the differentiation schemes (e.g., forward or backward)
because it influences the achievement of the discrete-time E-ODE form of the EOMs, as
will be discussed in Section 3.

The single step method BDF-1 can be written as{
v̇k+1 = 1

h (vk+1 − vk)

vk+1 = 1
h (qk+1 − qk)

, (9)

where h represents the constant time step size and k ∈ Z the k − th time instance. By
substituting Equation (9) into Equation (8) the discrete-time EOMs gd are obtained:
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⎧⎪⎨
⎪⎩

gd1 = vk+1 − 1
h (qk+1 − qk) = 0v

gd2 = M(qk+1)
vk+1−vk

h + fnl(qk+1, qk, uk+1) + JT(qk+1)λk+1 = 0q

gd3 = φ(qk+1) = 0λ

. (10)

This can be summarized as

gd(vk+1, qk+1, vk, qk, λk+1, uk+1) = 0. (11)

Assuming the generalized coordinates qk and velocities vk at the time instance k to
be known and given the input uk+1 at the time instance k + 1, Equation (10) is solved for
qk+1 and λk+1 by substituting gd1 in gd2, and applying a Newton-Raphson-based iterative
algorithm with iteration gradient JNR:

JNR =

[
Kt + βCt + γMt JT

J 0λ,λ

]
. (12)

Here, Kt, Ct and Mt are the tangent stiffness, damping and mass matrices obtained
from the partial derivatives of the continuous g2 equations in Equation (8) evaluated at
time step k + 1:

Kt =
∂g2

∂q

∣∣∣∣∣
k+1

; Ct =
∂g2

∂v

∣∣∣∣∣
k+1

; Mt =
∂g2

∂v̇

∣∣∣∣∣
k+1

, (13)

and β and γ are matrix coefficients function of the defined integration rule, which are given
for the BDF-1 scheme by:

β =
∂vk+1
∂qk+1

=
∂v̇k+1
∂vk+1

=
1
h

Iq; γ =
∂v̇k+1
∂qk+1

=
1
h2 Iq; (14)

∂vk+1
∂qk

=
∂v̇k+1

∂vk
= −β;

∂v̇k+1
∂qk

= −γ. (15)

This time integration scheme will be exploited in the following section to set up a
suitable solver structure for use in an ODE-base estimation framework.

3. An Explicit Linearized Approximation for Use of the Multibody Model in
State-Estimation

The aim of this work is to combine MB models with a Kalman filter-based estimator
to concurrently estimate the system states and unknown forces of a mechanism. These
presented estimators, as will be discussed in Section 4, require the linearized time-discrete
model matrices. In this section, a new approach to linearize the EOMs of a MB model
starting from an ID-DAE form is presented. Subsequently, the linearized system matrices
are analytically assembled.

By introducing the state vector x ∈ R
nx for a time step k

xk =
[
vk qk λk

]T , (16)

the ID-DAE form of the EOMs in Equation (11) can be re-written as:

gd(xk+1, xk, uk+1) = 0x. (17)

In this work we assume the function gd of Equation (17) to be continuously differ-
entiable in all its variables. Therefore, an explicit discrete function fd locally exists by
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applying the implicit function theorem. Through a first order Taylor expansion, gd can be
approximated as

g0
d +

∂gd
∂xk+1

∣∣∣
0

(
xk+1 − x0

k+1

)
+

∂gd
∂xk

∣∣∣
0

(
xk − x0

k

)
+ . . .

∂gd
∂uk+1

∣∣∣
0

(
uk+1 − u0

k+1

)
+O(xk+1, xk, uk+1) = 0x; (18)

where (x0
k+1,x0

k ,u0
k+1) represents the linearization set point while g0

d = gd(x0
k+1,x0

k ,u0
k+1)

for convenience of notation. Manipulating Equation (18) and neglecting the higher order
terms, it can be made explicit as

xk+1 = x0
k+1 −

[
∂gd

∂xk+1

∣∣∣
0

]−1(
g0

d +
∂gd
∂xk

∣∣∣
0

(
xk − x0

k
)
+

∂gd
∂uk+1

∣∣∣
0

(
uk+1 − u0

k+1
))

. (19)

In compact form Equation (19) becomes:

xk+1 = fd(xk, uk+1) = x0
k+1 + f 0

d (xk, uk+1) + A0
k+1(xk − x0

k) + B0
k+1(uk+1 − u0

k+1). (20)

A0
k+1 = ∂ fd

∂x

∣∣∣0

k+1
and B0

k+1 = ∂ fd
∂u

∣∣∣0

k+1
are the linearized system and input matrices

around the linearization set point.
Starting from Equation (19) and differentiating Equation (10), the Jacobians for the

backward Euler implicit time-integrator can be computed as:

Gxk+1 =
∂gd

∂xk+1
=

⎡
⎢⎢⎣

∂gd1
∂vk+1

∂gd1
∂qk+1

∂gd1
∂λk+1

∂gd1
∂vk+1

∂gd2
∂qk+1

∂gd2
∂λk+1

∂gd3
∂vk+1

∂gd3
∂qk+1

∂gd3
∂λk+1

⎤
⎥⎥⎦ =

⎡
⎣ Iv −β 0v,λ

0q,v γMt + βCt + Kt JT

0λ,v J 0λ,λ

⎤
⎦; (21)

Gxk =
∂gd
∂xk

=

⎡
⎢⎢⎣

∂gd1
∂vk

∂gd1
∂qk

∂gd1
∂λk

∂gd2
∂vk

∂gd2
∂qk

∂gd2
∂λk

∂gd3
∂vk

∂gd3
∂qk

∂gd3
∂λk

⎤
⎥⎥⎦ =

⎡
⎣ 0v,v β 0v,λ
−βMt −γMt − βCt 0q,λ

0λ,v 0λ,q 0λ,λ

⎤
⎦; (22)

Guk+1 =
∂gd

∂uk+1
=

⎡
⎢⎢⎣

∂gd1
∂uk+1
∂gd2

∂uk+1
∂gd3

∂uk+1

⎤
⎥⎥⎦ =

⎡
⎣0v,u

Ut
0λ,u

⎤
⎦, (23)

where Ut represents the tangent input matrix of Equation (7).
The linearized system and input matrices can be computed for any working point at

the time step k + 1 as:
Ak+1 = −G−1

xk+1
Gxk ; (24)

Bk+1 = −G−1
xk+1

Guk+1 . (25)

These equations enable the evaluation of the linearized time-discretized explicit de-
scription of the EOMs suitable for estimation methods such as the extended Kalman filter.
Their deployment of this estimation scheme is discussed in the next section.

It is important to note that the invertibility of the matrix Gxk+1 is guaranteed thanks to
the choice of BDF-1 differentiation scheme and that in contrast, it would not be possible.
For completeness, the limitations of a forward differentiation scheme is demonstrated in
the Appendix A.
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4. State-Input Estimation for MB Models

The augmented discrete extended Kalman filter (ADE-KF) tailored for MB models is
discussed in this section. In this section we discuss all the required components to set up a
Kalman filter for assimilating the different multibody states and unknown inputs. More in
details, in Section 4.1, the general form of the discrete-time system and measurement model
equations are summarized. In Section 4.2, the measurement equations are augmented with
the constraint equations φ, to deal with the constrained nature of the MB EOMs, leading to a
constrained estimation problem. Moreover, in Section 4.3 the adopted approach to compute
the linearized measurement matrices C and D are presented since they are required in
the estimation framework and not directly available. Finally, in Section 4.4 the ADE-KF is
assembled to deal with the estimation of states and unknown inputs, and the Kalman filter
steps tailored for MB models are reported.

4.1. Model and Measurement Equations with Uncertainty

The system of EOMs in Equation (4) described in the previous section are assumed
as deterministic. However, in practice, various noise sources will disturb the behavior of
the system. For the dynamic model equations, the process noise vector ν∗x,k+1 influences
the response:

gd(xk+1, xk, uk+1) = ν̃x,k+1, (26)

where ν̃x,k+1 is associated with the noise term νx,k+1 described by the following equation:

xk+1 = x∗k+1 + νx,k+1. (27)

Here, x∗k+1 is the deterministically varying state vector while νx,k+1 is a zero-mean
noise term with a (possibly time-varying) covariance Qk.

The estimation framework relies on combining the prior model information with
measurements y ∈ R

ny on the physical process. To compare the prediction of the model
with these measurements, a set of measurement equations h are necessary which are
affected by measurement noise νy,k+1:

y = h(v̇k+1, xk+1, uk+1) + νy,k+1, (28)

where again νy,k+1 is assumed to be zero-mean with a (time-varying) covariance Rk. Similar
to the model measurement equations y, the concept of virtual sensor (VS) yvs ∈ R

nyvs

is introduced:
yvs = hvs(v̇k+1, xk+1, uk+1) + νvs. (29)

A virtual sensor represents model-based information; more specifically, it is a physical
quantity that can be expressed as a function of the system variables, such as joint forces,
body motion trajectories (e.g., linear and angular positions, velocities, and accelerations)
and body strains/stresses. A VS equation can be treated similarly to a measurement
equation but evaluated after the a posteriori Kalman filter step and hence to exploited in
the estimation process itself.

4.2. The Augmented Constraint Measurement Equations

In [23] different approaches have been proposed to deal with constrained state estima-
tion, although the authors deem it impossible to give a general guideline for constrained
filtering because each individual problem is unique and dependent on how the constraints
are handled.

In this work, the combination of hard and soft constraint methods is considered [23],
where the constraint measurement equations are implemented in the Kalman filter scheme
by augmenting the measurement equations y of Equation (28) with the constraint equations:

ỹ =

{
h(v̇k+1, xk+1, uk+1) + νy,k+1

φ(qk+1) + νφ,k+1
. (30)
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Here, νφ,k+1 is a small zero-mean noise term added to the idealized constraint equa-
tions φ(qk+1) if small constraints violation is allowed (soft constraints method). In the case
νφ,k+1 is assumed to be zero, the constraint equations are treated as perfect measurements
(hard constraint method).

4.3. An Efficient Strategy for the Measurement Sensitivities Computation

To evaluate the EKF equations at each filter step, the linearized measurement sensitiv-
ity matrices Ck+1 and Dk+1 are required and they are defined as:

Ck+1 =
∂ỹ
∂x

∣∣∣
k+1

=

[
dy
dx
∂φ
∂x

]
k+1

=

[
dy
dv

dy
dq

dy
dλ

0λ,v J 0

]
k+1

; (31)

Dk+1 =
∂ỹ
∂u

∣∣∣
k+1

=

[
dy
du

0λ,u

]
k+1

. (32)

Generally, the measurement equations can be expressed as a function of the generalized
accelerations, velocities, positions, Lagrange multipliers, and inputs, Equation (30).

However, due to the state-space description presented in Section 3, the explicit rela-
tionship of the sensor equations with respect to the generalized accelerations is lost. More
in particular, when considering acceleration sensors, their sensitivity with respect to the
generalized accelerations is non zero, thus it must be indirectly included. Acceleration
sensors are really common in the mechanical engineering community due to their non-
invasive and simple installation requirements. Within the estimation framework, they can
be used either in form of measurements or in form of VSs.

Similarly, the sensitivity of the measurement equations with respect to the system
inputs are not always available or nontrivial to obtain.

Therefore, an approach to explicitly obtain these dependencies is here derived by
means of the acceleration level constraints.

Introducing the auxiliary variables z ∈ R
3nq+nλ

z =
[
q̈T q̇T qT λT]T

=
[
v̇T vT qT λT]T , (33)

for a generic measurement sensor y, the sensitivities ∂y
∂z with respect to the auxiliary variable

z can be analytically computed starting from their fundamental equations.

∂y
∂z

=
[

∂y
∂v̇

∂y
∂v

∂y
∂q

∂y
∂λ

]
. (34)

Applying the chain rule, the non-augmented linear measurement matrix dy
dx for a

generic time step can be written as

dy
dx

=
∂y
∂z

dz
dx

. (35)

And the full derivative dz
dx can be expressed as

dz
dx

=

⎡
⎢⎢⎢⎢⎣

∂v̇
∂v

∂v̇
∂q

∂v̇
∂λ

∂v
∂v

∂v
∂q

∂v
∂λ

∂q
∂v

∂q
∂q

∂q
∂λ

∂λ
∂v

∂λ
∂q

∂λ
∂λ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∂v̇
∂v

∂v̇
∂q

∂v̇
∂λ

Iv 0v,q 0v,λ
0q,v Iq 0q,λ
∂λ
∂v

∂λ
∂q Iλ

⎤
⎥⎥⎥⎦. (36)
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To analytically compute the unknown terms of Equation (36), we introduce the ac-
celeration level constraints φ̈ defined as the second time derivative of the position level
constraints. Starting from the velocity level constraints φ̇:

φ̇ =
∂φ

∂q
dq
dt

= Jv, (37)

the acceleration level constraint equations are obtained as follows:

φ̈ = J̇v + Jv̇ =
nq

∑
i,j=1

vi
∂2φ

∂[qi, qj]
vj + Jv̇ = 0λ. (38)

By means of the continuous dynamic equations g2 of Equation (8) and the acceleration
level constraint of Equation (38), a new set of equations p ∈ R

nq+nλ can be constructed:

p(z, u) =

⎧⎪⎨
⎪⎩

p1 = M(q)v̇ + fnl(v, q, u) + JTλ = 0q

p2 =
nq

∑
i,j=1

vi
∂2φ

∂[qi, qj]
vj + Jv̇ = 0λ

. (39)

Equations (39) represent the governing set of equations that implicitly determines the
relation between the different coordinates v, q, v̇ and the Lagrange multipliers λ.

Therefore, the unknown terms of Equation (36) can be computed as[
∂v̇
∂v

∂v̇
∂q

∂v̇
∂λ

∂λ
∂v

∂λ
∂q

∂λ
∂λ

]
= −

[
∂p
∂v̇

∂p
∂λ

]−1[ ∂p
∂v

∂p
∂q

∂p
∂λ

]
=

−
[

M(q) JT

J 0λ,λ

]−1
⎡
⎢⎣ Ct Kt JT

2
nv

∑
j=1

∂2φ

∂[q, qj]
vj

nv̇

∑
j=1

∂2φ

∂[q, qj]
v̇j 0λ,λ

⎤
⎥⎦, (40)

where the third order partial derivative of the constraint equations φ(q) with respect to
the generalized coordinates q is zero for FNCF. Another important ingredient to fulfill the
Kalman filter requirements is the measurement input matrix dy

du of Equation (32). However,
this matrix is not directly available and it is computed similarly to Equation (35) but with
respect to input u:

dy
du

=
∂y
∂z

dz
du

+
∂y
∂u

. (41)

Here, the full derivative dz
du represents how the vector z varies when the input u is

perturbed obtaining:

dz
du

=
[

∂v̇
∂u

∂v
∂u

∂q
∂u

∂λ
∂u

]
=

[
∂v̇
∂u 0v,u 0q,u

∂λ
∂u

]
. (42)

From Equation (42) can be seen that only the sensitivities of the acceleration and
Lagrange multipliers are non-zero terms. A second order system is fully defined by the
position coordinates, velocity coordinates, and time. An external force only influences the
force balance of that system and thus the acceleration coordinates and Lagrangian multipli-
ers while only through time-integration the velocity and position coordinates. However,
these derivatives are evaluated at a single time instance. Therefore, in Equation (36), the
acceleration coordinates and Lagrangian multipliers depend on the position and velocity
coordinates, but not the other way around: the position and velocity coordinates do not
depend on the acceleration coordinates, Lagrangian multipliers, or the external forces.
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Subsequently, the remaining terms of Equation (42) can be computed as

[
∂v̇
∂u
∂λ
∂u

]
= −

[
∂p
∂v̇

∂p
∂λ

]−1 ∂p
∂u

= −
[

M(q) JT

J 0λ,λ

]−1[ Ut
0λ,u

]
. (43)

In Figure 1 a schematic summary of the followed steps required for the computation
of the system and measurement matrices is reported.

Figure 1. Block diagram representation of the system and measurement matrices computation for a
generic integration step.

4.4. Augmented Discrete Extended Kalman Filter

The goal of this work is to estimate the unknown input forces, often referred to as
disturbances, d ∈ R

nd , concurrently with the system states x through the augmented state
vector x̃ ∈ R

nx+nd defined as:

x̃k+1 =

[
xk+1
dk+1

]
. (44)

As the estimation algorithm also needs a model for the unknown inputs, a random
walk model is associated with the unknown input:

dk+1 = dk + νd,k; (45)

with νd,k also being zero-mean, random noise with covariance matrix Qd,k.
In this work, the random walk model is chosen for the unknown disturbance. This

approach is chosen as in general no prior information on the input is assumed to be known.
However, if useful information is available, e.g., periodicity of the input, other input models
can be employed, as in [24].
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The augmented discrete-time state-space system of equations can be written combin-
ing Equations (26) and (45):

g̃d(x̃k+1, x̃k, uk+1) =

{
gd(xk+1, xk, uk+1) = ν̃x,k

dk+1 − dk = νd,k
. (46)

The linearized system matrix F refers to the augmented system of equations Equation (46)
at the time step k + 1 and it is assembled as

F =
∂ f̃d
∂x̃

∣∣∣
k+1

=

[
Ak+1 Bd

k+1
0x,d Id

]
; (47)

where f̃d is the augmented explicit ODEs associated with Equation (46), is obtained from
Equation (24), while Bd

k+1 is the linear disturbance matrix obtained similarly to Bk+1 in
Equation (25) but with respect to the unknown input d.

Subsequently, the linearized augmented measurement matrix H associated with the
augmented state vector x̃ is assembled as:

H =
∂ỹ
∂x̃

∣∣∣
k+1

=
[
Ck+1 Dd

k+1

]
, (48)

where the matrix Dd
k+1 is computed in a similar fashion as for Dk+1 in Equation (32) but

with respect to the unknown input d.
Starting from these model, measurement and tangent matrices, an extended Kalman fil-

ter (EKF) procedure can be set up in order to estimate both the states and the unknown input
forces. The application of this estimation approach is discussed in the following section.

4.5. The Adopted Extended Kalman Filter Scheme

In this work, we employ an extended Kalman filter (EKF) [25] to perform the state-
estimation. With the various model and measurement equations, and their respective
derivatives, defined for a MB model in the previous sections this EKF can be run efficiently.
As all terms have been defined analytically it is not necessary to resort to numerical
derivatives, which allows for an effective application of the EKF. Several researchers have
shown the applicability of the estimators even for the strongly nonlinear case of MB
systems [9,12,26].

In general, we can group the EKF scheme in two main steps: the a-priori and a
posteriori steps.

• A-priori step: Assuming that the augmented states x̃+k at the previous filter step and the
input uk+1 are known, the a-priori state prediction x̃−k+1 and generalized accelerations
v̇−k+1 can be computed solving the ID-DAEs of Equation (17):

gd(x̃−k+1, x̃+k , uk+1) = 0x. (49)

Knowing the estimated state covariance matrix P+
k for the previous timestep, the a-

priori covariance at the current time (k+ 1) step can be approximated from Equation (47)
as

P−
k+1 = FP+

k FT + Q̃k. (50)

where Q̃k is the process noise matrix of the augmented state-space model.
The predicted measurement ỹ−k+1 can then be evaluated from Equation (30) as:

ỹ−k+1 = ỹ(v̇−k+1, x−k+1, uk+1). (51)
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The Kalman filter gain K allows achieving a desireable trade-off between the confi-
dence in the model and the available measurements, and can be evaluated as:

Kk+1 = P−
k+1HT(HP−

k+1HT + R̃k)
−1, (52)

where H is obtained from Equation (48) and R̃k is the measurement covariance matrix
of the augmented measurement equations.

• A-posteriori step: When the real measurement y∗k+1 becomes available together with
the predicted measurement ỹ−k+1, the a posteriori state vector x̃+k+1 is obtained as:

x̃+k+1 = x̃−k+1 +Kk+1(y∗k+1 − ỹ−k+1) (53)

The inclusion of the actual measurements also affects the posterior covariance matrix
P+

k+1 and can be evaluated as:

P+
k+1 = (Ix −Kk+1H)P−

k+1. (54)

In Figure 2 a block diagram scheme summarizing a generic kth step of the recursive
ADE-KF is shown.

Figure 2. Block diagram representation of the recursive ADE-KF scheme for a generic filter step.
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With this scheme the entire state-input estimation can be performed for an arbitrary
(flexible) multibody model. In the following section we will validate it on an experimen-
tal setup.

In practical applications the performance of the estimation scheme will strongly
depend on the tuning of the model covariance Q̃ and measurement covariance R̃. Unfortu-
nately this tuning is also highly case dependent, which makes it difficult to set up general
guidelines. For the particular validation case considered in this work, a detailed discussion
on a possible tuning strategy is presented in the following section.

5. Validation: Joint State-Input Estimation

In this section, the presented joint state-input estimation methodology is experimen-
tally validated on a slider-crank mechanism.

5.1. The Slider-Crank System

The slider-crank system in Figure 3 is a mechanism widely used in industry to trans-
form a rotational motion in a linear motion as for instance in pick and place operations or
in car engines.

Figure 3. The slider-crank: experimental setup.

Figure 4 represents the multibody model of the experimental setup shown in Figure 3
consisting of 14 bodies: base block (BB), motor housing (MH), motor rotor (MR), motor
support (MS), crank (C), crank shaft (CSh), crank support (CS), connecting rod (CR), crank-
rod bearing (BC−CR), slider (S), rod-slider bearing (BCR−S), slider accelerometer (SA), track
rail (TR) and track support (TS).

Figure 4. The slider-crank: multibody model.

The mechanical properties of the various bodies are listed in Table 1.
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Table 1. Mechanical properties expressed with respect to the center of gravity of each individual body.

Body m [kg] Jxx [kg· m2] Jyy [kg· m2] Jzz [kg· m2]

BB 3.2175 × 103 2.9225 × 102 6.274 × 102 8.714 × 102

MH 1.420 × 101 2.48647 × 10−2 9.366 × 10−2 9.366 × 10−2

MR 6.670 × 10−1 2.947 × 10−3 2.001 × 10−3 2.001 × 10−3

MS 1.350 6.052 × 10−3 3.897 × 10−3 2.346 × 10−3

C 1.830 × 10−1 5.742 × 10−4 4.930 × 10−4 1.522 × 10−5

CSh 4.960 × 10−1 1.644 × 10−4 7.068 × 10−4 7.068 × 10−4

CS 8.4058 × 10−1 2.678 × 10−3 1.954 × 10−3 8.047 × 10−4

BC−CR 2.820 × 10−1 - - -
CR 2.540 × 10−1 1.185 × 10−2 1.1840 × 10−2 3.654 × 10−5

BCR−S 2.820 × 10−1 - - -
S 2.562 × 10−1 2.665 × 10−4 1.131 × 10−4 3.29510−4

SA 2.200 × 10−2 - - -
TR 1.206 2.800 × 10−1 9.424 × 10−3 2.800 × 10−1

TS 4.206 1.392 × 10−2 1.256 × 10−2 4.963 × 10−3

Even though the presented slider-crank mechanism is an academic example it com-
bines several challenging phenomena such as non-linear kinematics and complex slider-
track interaction phenomena. The various bodies are connected trough fixed, revolute,
spherical, and universal joints to allow the desired kinematics. The slider and track bodies
are connected through a contact stiffness kc along the perpendicular directions to the
sliding trajectory. The Pacejka friction model [27] defines the friction coefficient μ as a
function of the sliding velocity Δv:

μ = dsin
[
ctan−1

(
bΔv − e

(
bΔv − tan−1(bΔv)

))]
, (55)

where the friction force f f is evaluated as

f f = μ fn = μ(kcδ + cc δ̇), (56)

where fn is the resultant normal force acting on the slider and, δ is the local compliance
between the slider and track rail interfaces projected onto the normal direction to the
sliding direction. The adopted (identified) Pacejka friction model parameters are listed in
Table 2.

Table 2. Pacejka friction model parameters.

kc [N/m] cc [Ns/m] b [s/m] c[−] d[−] e[−]

9.7854 × 106 1.196 5.036 × 102 1.5708 2.653 × 10−2 −9.8534

The system motion is driven by a brushless servomotor “MAC3000”’ with integrated
controller MAC00-B4 from JVL (www.jvl.dk, accessed on 1 March 2021). It includes
a motor encoder sensor allowing the measurement of the rotation angle and velocity
of the motor shaft, indicated by θ and θ̇ respectively.As can be seen in Figures 3 and 4,
the slider is equipped with a mono-axial MEMS accelerometer (3711D1FB200G) from
PCB (www.pcb.com) to measure its translational acceleration along the sliding direction
indicated by Ÿ. The entire system is controlled via the motor using a closed-loop PID
controller targeting a desired rotational motor velocity while adapting the determined
motor torque T.

5.2. Results

After the setup of the MB model of the slider-crank mechanism, it is embedded into
the ADE-KF estimation framework presented in Section 4.
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The input torque delivered by the motor is assumed unknown, and jointly estimated
with the model states as introduced in Section 4.4. It is assumed that all model uncertainties
is dominated by the augmented state, representing the unknown input, while the model is
considered perfect.

The a posteriori Kalman filter step is computed using the augmented measurements
discussed in Section 4.2. These combine the angular motor velocity θ̇ together with the
model constraint equations φ. The angular motor velocity is directly available on many
mechatronic drives since they are equipped with relatively accurate encoders for control or
monitoring purposes.

For the validation of our estimation framework, summarized in Figure 5, we compare
the estimates (virtual sensors) of the motor position θ, motor velocity θ̇, slider acceleration
Ÿ and motor torque T with measurements directly obtained from the experimental setup.
Besides the motor encoder, an accelerometer on the slider is employed and motor torques
can be directly extracted from the drive unit.

Figure 5. Diagram of the coupled state-input estimation scheme and signal comparisons. θ and θ̇ are
the motor angle and angular motor velocity respectively; Ÿ is the translational slider acceleration; T
is the motor torque.

The performed experiments span 9.4 s and are executed for three levels of desired
angular motor velocity, which are provided to the motor controller as desired set points:
40, 50 and 60 rad/sec. Note that, due to the non-ideal behavior of the system and the
limitations of the PID controller, the desired set point results in practice in a varying angular
velocity.

The measured and the estimated motor angle θ, rotational velocity θ̇, and the slider
translational acceleration Ÿ are compared in Figure 6.

Three subsets of this full timespan are shown in Figure 7 to better appreciate the
transient effects during the start-up and the two velocity transitions.

It is clear from Figures 6 and 7 that the ADE-KF with the MB model tracks these
various (derivative) states very well, underlining the well represented system kinematics.

In Figure 8 the estimated motor torque is compared to the measured motor torque.
This comparison shows a good prediction over the full time series (on the left)

and on the angular velocity transitions (zoom-in figures on the right) thanks to the pro-
posed methodology.
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Figure 6. Comparison of the measured and estimated motor angle θ (top), motor angular velocity θ̇

(middle) and translational slider acceleration Ÿ (bottom) for the full time series.

Figure 7. Comparison of the measured and estimated motor angle θ (top row), motor angular velocity
θ̇ (middle row) and translational slider acceleration Ÿ (bottom row). Zoom-in per column on the
velocity transitions.

Figure 8. Comparison of the measured and estimated motor torque; on the left, full time series; on
the right, the zoom-in on the velocity transitions are shown.
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In Table 3 the root mean square error of the estimated virtual sensors and input
torque are reported, underlying the relatively high accuracy of the estimated quantities.

It is defined as ErrorRMS =
√

∑k [χm(k)−χe(k)]2
nk

, where χm and χe are the measured and
estimated variables respectively, while nk is the total number of data samples.

Table 3. Accuracy of the estimated quantities in terms of root mean square error.

θ [rad] θ̇ [rad/s] Ÿ [m/s2] T [Nm]

ErrorRMS 0.005 0.051 13.651 0.334

The choice of performing the experiments for a relatively long timespan was made to
demonstrate the filter stability in terms of both mean value and covariance prediction. For
these kind of applications, where the uncertainty is dominated by difficult to model load
effects (friction, etc.), the choice of focussing the model covariance on the input load allows
effectively propagating the uncertainties. The dashed blue curves in Figure 8 represent the
estimated expected variation of the augmented average state estimate within the 70% of

confidence. It is expressed in terms of the standard deviations σd =
√
P+

d computed for

each kth filter step where P+
d is the diagonal term of the a posteriori estimated covariance

associated with the augmented state (disturbance). It is important to notice that the
experimental motor torque (in red) remains bounded by the estimated input uncertainty
therefore being an accurate estimation of the real covariance.

These results for the estimated torques show a significantly larger error than those
obtained for the (derivative) states. For multibody problems in general, the state-estimates
can be expected to be dominated by the kinematics of the system, which are generally well
known. For the load estimates however, the dynamics of the system will play a crucial
role. Besides key dynamic quantities such as the system inertia which can be modelled
very accurately, other effects such as friction forces also influence this outcome. In this
work we employed the friction model from Equation (56), but any error on this model
is also propagated to the torque estimates. Due to the complex nature of the interface
conditions for the slider and the rail (and the other bearings in the system), some errors
are to be expected here. Key for future research will therefore be to examine how these
complex load phenomena can be accounted for as effectively as possible. Moreover, by
only employing one physical measurement (θ̇) in the ADE-KF scheme, it is guarantied that
the accuracy of the estimated input torque would be less accurate for a poorly identified
model. This can be observed in [15] where the same validation case was considered. Here,
Angeli et al. proposed a deep learning methodology to reduce the initial MB equations
from redundant to minimal coordinates where the resulting equations are then employed
in an augmented extended Kalman filter scheme. Alternatively to what is presented in
the current contribution, the supposed unknown motor torque is estimated employing the
slider acceleration (Ÿ) and no slider-track friction model was considered which has led to
slightly less accurate input and virtual sensors estimation as compared to the currently
proposed approach and model.

An important aspect in estimation problems is the choice of the Kalman filter pa-
rameters such as the process and measurement noise covarince matrices, Q̃k and R̃k. It is
recurrent while dealing with KF-based estimators that the accuracy of the estimated quan-
tities is highly influenced by the selection of those parameters. However, general rules are
not available since the filter parameters and influence strongly depend on the application
case. Therefore, it is common to resort to a tuning step as the process of investigating and
selecting these parameters. In the context of this work, the adopted strategy is described in
the following section.
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5.3. Kalman Filter Tuning

To attain the best accuracy from the presented estimation scheme, the model and
measurement covariances need to be judiciously selected. In this work we have started
with the selection of the measurement covariance matrix R̃k associated with the augmented
measurement equations ỹ. In lack of other information, We assume this measurement
covariance constant over time. The covariance results from the combination of two main
measurement contributions: the (motor) angular velocity θ̇ and the augmented constraint
measurements φ, which reads as

R̃k =

[
Rθ̇ 0T

λ
0λ Rφ

]
, (57)

where Rθ̇ is generally tuned based on reference noise measurements while for this ap-
plication, since no noise reference was available, the author has chosen a value which is
representative of the encoder measurement noise: Rθ̇ = 10−2 (rad2/s2). Moreover, the
authors have experienced that the influence of the measurement noise parameter Rθ̇ is
relative to the value of the process noise covariance Q̃k.

Rφ instead is linked to the mathematical and physical meaning of the constraint
equations. In MB applications, we can distinguish two types of constraint equations: the
ones that come from the inherent coordinates formulations, i.e., φc (e.g., Euler parameters
should be unit vector and rotation matrix should be orthogonal), and the ones that come
from joints definition, i.e., φj, as for instance the spherical and/or revolute joints. In this
work, for the latter a small noise term is allowed (i.e., all diagonal terms of Rφj are set
to 10−9 while the off-diagonal terms are set to zero) representing the joint imperfections
typical of real systems, whereas for the former, they are treated as perfect measurements
(i.e., Rφc = 0), otherwise the kinematics and the mathematical principles that are used to
describe the MB system are no longer valid.

Similarly to the augmented measurement covariance R̃k, the augmented process noise
matrix Q̃k is assumed constant for all filter steps and it can be written as combination of
the system and augmented states contributions as

Q̃k =

[
Qx 0
0 Qd

]
. (58)

As we assume the model to be practically perfect compared to the high uncertainty on
the unknown inputs, the process noise matrix Qx associated with the system states is set
to zero.

The remaining parameter Qd associated with the unknown input torque (disturbance)
is obtained in a brute-force optimization fashion. Since in this case there is only a single
value to be chosen, an exhaustive search is therefore not computationally prohibitive. In this
regard a grid of Qd values have been selected, going from 10−5 to 105 sampled exponentially
in eleven increments, leading to a corresponding eleven performed estimations. The choice
of the Qd is based on the L-curve method proposed by [28] where its nearly optimal value
(Not optimal in absolute sense due to discrete evaluation points Qd and the user defined
Rθ̇) is such that the best trade-off is achieved between the Error norm and Smoothing error.
These norms are defined as

Error norm =
nk

∑
k=1

||y∗k − ỹ−k ||2 (59)

and,

Smoothing norm =
∑nk

k=1 ||d(k)||2
∑nk

k=1 ||T(k)||2
(60)
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where d(k) and T(k) are the estimated (disturbance) and measured torque respectively,
while nk is the total number of sampling point k. On the left side of Figure 9 the L-curve
for the evaluated Qd grid points is shown where the blue marked point is the chosen value
corresponding to Qd = 100. This value have been used for the results shown in Figures 6–8.
As expected, it is observed that the error norm decreases with an increasing smoothing
error which corresponds to an increasing Qd till a saturation is reached. This occurs when
a further increase of process noise value does not show significant improvements to the
estimation results (Qd > 100).

On the right side of Figure 9 the estimated torque with the chosen Qd (marked in blue)
is compared to a sub-optimal value (marked in orange) on the velocity transitions zones
while in Figure 10 the full time series are compared.

Figure 9. The L-curve plot for different process variance Qd (left figure) and zoom-in comparison
on the velocity transition of the measured and estimated motor torque using two different values of
process variance Qd (right figure).

In Figures 9 and 10, it can be seen that despite a relatively similar tracking of the input
(more delayed), at low rotational speed using a smaller covariance than the “optimal” one,
the estimation accuracy degrades over time with a worse tracking of estimated torque.

Figure 10. Comparison of the estimated motor torque using two different values of process covariance
Qd of the augmented state.
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Although this study does not address the full scope of noise covariance tuning, the
author deemed it sufficient to explain the methodological developments considered in this
contribution. Further research on covariance tuning might be necessary to obtain a more
holistic approach.

6. Discussion and Conclusions

This work presents a new estimation methodology tailored for MB models to enable
the definition of virtual sensors for various system states and inputs.

Through the choice of a general MB modeling approach various key physical effects
can be accurately accounted for, ranging from nonlinear kinematics to complex dynamic
effects. The developed framework allows using these multibody models in an estimation
framework without particular additional modeling assumptions or reformulations. More
specifically, no constraint elimination methods are required to employ the defined MB
model into the estimation framework, reducing the preparation time and the user effort
to setup the estimation problem while ensuring the correct physical and mathematical
interpretation of the system under investigation. As the proposed methodology has no
particular assumptions with respect to the multibody model formulation it can be easily
extended to any of the commonly available (flexible) MB approaches, e.g., FNCF, FFR-CMS,
or GCMS. However, to fully benefit from the proposed approach the equations of motion
and tangent stiffness matrices of the system should be analytically available to efficiently
assemble the linearized system and measurement matrices.

In the present work, we exploited the FNCF MB approach, as this methodology
inherently enables an easy and efficient evaluation of the different tangent model matrices
required for the estimation framework.

Finally, the developed methodology has been experimentally validated on a slider-
crank mechanism. Very high accuracy is obtained for the estimated states with respect
to the available measurements. Good accuracy is also obtained for the estimated input
torque, but due to the larger dynamic model errors in e.g., friction effects the resulting
errors are higher than those obtained for the states. The validation has been performed
over a relatively large time-span which also demonstrates the capability of the presented
framework to obtain long-term stable estimates with a bounded uncertainty, in the form of
a bounded covariance.

The presented methodology has some drawbacks since a large number of states (in-
cluding the Lagrange multipliers) and measurements (including the constraints equations)
are employed. These lead to a computationally less efficient approach as compared to other
state of the art techniques (e.g., using minimal coordinates [15]). A possible solution to mit-
igate this issue might come from a wise selection of the number of bodies and constraints
equations to construct the high-fidelity model. For instance, in this contribution, the choice
of redundant number of bodies and constraints was made in purpose to stress the potential
of the proposed methodology while dealing with redundant set of DAEs equations. More
precisely, not all bodies and hence constraints were required to achieve the estimated motor
torque with the same level of accuracy (e.g., the motor housing and the different supports).
Nevertheless, if computational efficiency is not a limiting factor, i.e., if an online estimation
is not required, this approach has the potential to enable a very generic deployment of
(flexible) multibody-based state-input estimation.

Future work will focus on how these methodologies can be employed to obtain more
accurate descriptions for key dynamic effects such as the friction present in these multibody
systems.
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Abbreviations

The following abbreviations are used in this manuscript:

TPA Transfer Path Analysis
KF Kalman Filter
ADE-KF Augmented Discrete Extended Kalman Filter
MB MultiBody
FE Finite Element
EOM Equation Of Motion
(I-), (E-) DAE (Implicit), (Explicit) Differential Algebraic Equation
(I-), (E-) ODE (Implicit), (Explicit) Ordinary Differential Equation
MBRC MultiBody Research Code
FNCF Flexible Natural Coordinates Formulation
BDF Backward Differentiation Formula
VS Virtual Sensor
MEMS Micro Electro-Mechanical Systems
PID Proportional Integrative Derivative
Z integer numbers set
R real numbers set
a ∈ R scalar
a ∈ R

na column vector[
aT

1 aT
2
]T ∈ R

na1+na2 vertical vector concatenation
A ∈ R

n1×n2 matrix
Ia ∈ Z

na×na identity matrix
0a1 ∈ Z

na1 zero vector
0a1,a2 ∈ Z

na1×na2 zero matrix
�T transpose operator
�−1 inverse matrix operator
�− a priori prediction
�+ a posteriori prediction
�k = �(t = tk) kth time step
�n natural coordinates
�̇ = d�

dt , �̈ = d2�
dt2 time derivatives

da1
da2

∈ R
na1×na2 total derivative

∂a1
∂a2

∈ R
na1×na2 partial derivative

∂2a1
∂a2∂a3

∈ R
na1×na2×na3 second partial derivative

||�||2 2-norm operator

Appendix A. Influence of the Forward Differentiation Scheme to the Linearization of

the EOMs

In Section 3, the single step backward differentiation formula (BDF-1) was introduced
to derive the fully explicit discrete-time linearized form of the EOMs (Equation (19)). In
this appendix, the influence of another differentiation scheme, namely the single step
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forward differentiation scheme, is reported, demonstrating the limitations introduced by
such differentiation formula to the proposed linearization approach.

The single step forward differentiation scheme can be written as{
v̇k =

1
h (vk+1 − vk)

vk =
1
h (qk+1 − qk)

, (A1)

with h representing the constant time step size as shown in Figure A1.

Figure A1. Graphical interpretation of the forward and backward linearization for a generic state-time
evolution x.

By substituting Equation (A1) into Equation (8) the discrete-time EOMs g′d are obtained:

⎧⎪⎨
⎪⎩

g′d1 = vk − 1
h (qk+1 − qk) = 0v

g′d2 = M(qk)
vk+1−vk

h + fnl(qk) + JT(qk)λk = 0q

g′d3 = φ(qk) = 0λ

. (A2)

Similarly to Equation (21) the Jacobian for the forward Euler time-integrator can be
computed as:

G′
xk+1

=
∂g′d

∂xk+1
=

⎡
⎢⎢⎢⎣

∂g′d1
∂vk+1

∂g′d1
∂qk+1

∂g′d1
∂λk+1

∂g′d1
∂vk+1

∂g′d2
∂qk+1

∂g′d2
∂λk+1

∂g′d3
∂vk+1

∂g′d3
∂qk+1

∂g′d3
∂λk+1

⎤
⎥⎥⎥⎦ =

⎡
⎣ 0v,v −β′ 0v,λ

β′M′
t −γ′M′

t + β′C′
t 0q,λ

0λ,v 0λ,q 0λ,λ

⎤
⎦; (A3)

Here, C′
t and M′

t are the tangent damping and mass matrices obtained from the partial
derivatives of the continuous g2 equations in Equation (8) evaluated at time step k:

C′
t =

∂g2

∂v

∣∣∣∣∣
k

; M′
t =

∂g2

∂v̇

∣∣∣∣∣
k

, (A4)

and β′ and γ′ are matrix coefficients function of the defined integration rule, which are
given for the forward Euler scheme by:

β′ =
∂vk

∂qk+1
=

∂v̇k
∂vk+1

=
1
h

Iq; γ′ =
∂v̇k

∂qk+1
=

1
h2 Iq; (A5)

∂vk
∂qk

=
∂v̇k
∂vk

= −β′;
∂v̇k
∂qk

= −γ′. (A6)

As it can be seen from Equation (A3), the matrix G′
xk+1

is singular and therefore not
invertible to compute the linearized system matrix A of Equation (24) required for the
KF-based estimation framework. Based on the above demonstration, the forward Euler
differentiation scheme is not applicable to the proposed linearization approach.
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This can be better understood looking at the fundamental assumptions behind the
choice of the differentiation scheme. If a forward differentiation scheme is chosen, it
practically means that Equation (19) will be derived starting from xk looking forward in
time to xk+1 as graphically depicted in Figure A1, but due to the implicit nature of the
problem there are not enough information in xk to invert the problem with respect to xk+1.
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Abstract: To aid the development of future unmanned naval vessels, this manuscript investigates
algorithm options for combining physical (noisy) sensors and computational models to provide
additional information about system states, inputs, and parameters emphasizing deterministic
options rather than stochastic ones. The computational model is formulated using Pontryagin’s
treatment of Hamiltonian systems resulting in optimal and near-optimal results dependent upon the
algorithm option chosen. Feedback is proposed to re-initialize the initial values of a reformulated
two-point boundary value problem rather than using state feedback to form errors that are corrected
by tuned estimators. Four algorithm options are proposed with two optional branches, and all
of these are compared to three manifestations of classical estimation methods including linear-
quadratic optimal. Over ten-thousand simulations were run to evaluate each proposed method’s
vulnerability to variations in plant parameters amidst typically noisy state and rate sensors. The
proposed methods achieved 69–72% improved state estimation, 29–33% improved rate improvement,
while simultaneously achieving mathematically minimal costs of utilization in guidance, navigation,
and control decision criteria. The next stage of research is indicated throughout the manuscript:
investigation of the proposed methods’ efficacy amidst unknown wave disturbances.

Keywords: virtual sensoring; physical sensors; smart/intelligent sensors; sensor technology and
applications; sensing principles; signal processing in sensor systems

1. Introduction

Inertial measurement units provide continuous and accurate estimates of motion states
in between sensor measurements. Future unmanned naval vessels depicted in Figure 1a
require very accurate motion measurement units including active sensor systems and
inertial algorithms when active sensor data is unavailable. State observers are duals of
state controllers used for establishing decision criteria to declare accurate positions and
rates and several instantiations are studied here when fused with noisy sensors, where
theoretical analysis of the variance resulting from noise power is presented and validated
in over ten-thousand Monte Carlo simulations.

The combination of physical sensors and computational models to provide additional
information about system states, inputs, and/or parameters, is known as virtual sensor-
ing. Virtual sensoring is becoming more and more popular in many sectors, such as the
automotive, aeronautics, aerospatial, railway, machinery, robotics, and human biomechan-
ics sectors. Challenges include the selection of the fusion algorithm and its parameters,
the coupling or independence between the fusion algorithm and the multibody formu-
lation, magnitudes to be estimated, the stability and accuracy of the adopted solution,
optimization of the computational cost, real-time issues, and implementation on embedded
hardware [1].

The proposed methods stem from Pontryagin’s treatment of Hamiltonian systems,
rather than utilization of classical or modern optimal estimation and control concepts
applied to future naval vessels as depicted in (Figure 1) [2–4].
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(a) (b) (c) 

Figure 1. Representative motion measurement units for future ships depicted in (a) with measurement bases depicted in (b)
are proposed to be augmented by virtual sensoring by minimization of Hamiltonian systems by the principles of Pontryagin
depicted in (c). Future unmanned U.S. Navy vessels [3] Medium Unmanned Surface Vessel (MUSV) concept renderings in
(a) from shipbuilder Austal USA. Photo Credit: Austal USA. Boat motion monitoring [4] uses measurement bases depicted
in (b) whose graphic is from cited reference modified by author. Photo (c) of Lev Pontryagin from the archive of the Steklov
Mathematical Institute [2] used with permission (30 June 2021).

Typical motion reference units conveniently have accuracies on the order of 0.05 (in
meters and degree for translation and rotation, respectively, as depicted in Figure 1b for
representative naval vessels as depicted in Figure 1a). These figures of merit are aspirational
for the virtual sensor that must provide accurate estimates whether active measurements
are available to augment the algorithm. Lacking active measurements, the algorithm is
merely an inertial navigation unit, while with active measurements, the algorithm becomes
an augmented virtual sensor. This manuscript investigates virtual sensoring by evaluating
several options for algorithms, resulting estimated magnitudes, accuracy of each solution,
optimization of resulting costs of motion, and sensitivity to variations like noise and
parameter uncertainty of the translational and rotational motion models investigated (both
simplified and high-fidelity). Algorithms are compared using various decision criteria to
compare approaches for consideration of usage as motion reference units potentially aided
by global navigation systems.

Noting the small size of motion measurement units, simple algorithms are preferred to
minimize computational burdens that can increase unit size. Motion estimation and control
algorithms to be augmented by sensor measurements are based on well-known mathemati-
cal models of translation and rotation from physics, both presented in equations. In 1834,
the Royal Society of London published two celebrated papers by William R. Hamilton on
Dynamics in the Philosophical Transactions. Ref. [5] The notions were slowly adopted,
and not presented relative to other thoughts of the age for nearly seventy years [6], but
quickly afterwards, the now-accepted axioms of translational and rotational motion were
self-evidently accepted by the turn of the twentieth century [7–10] as ubiquitous concepts.
Half a century later [11,12], standard university textbooks elaborate on the notions to the
broad scientific community. Unfortunately, the notions arose in an environment already
replete with notions of motion estimation and control based on classical proportional,
rate, and integral feedback, so the fuller utilization of the first principals languished until
exploitation by Russian mathematician Pontryagin [13]. Pontryagin proposed to utilize the
first principles as the basis for treating motion estimation and control as the classical math-
ematical feedback notions were solidifying in the scientific community. Decades later, the
first-principal utilization proposed by Pontryagin are currently rising in prominence as an
improvement to classical methods [14]. After establishing performance benchmarks [15] for
motion estimation and control of unmanned underwater vehicles, the burgeoning field of
deterministic artificial intelligence [16,17] articulates the assertion of the first-principles as
“self-awareness statements” with adaption [18,19] or optimal learning [20] used to achieved
motion estimation and control commands. The key difference between the usage of first
principals presented here follows. Classical methods impose the form of the estimation and
control (typically negative feedback with gains) and they have very recently been applied
to railway vehicles [21], biomechanical applications [22], and remotely operated undersea
vehicles [23], electrical vehicles [24], and even residential heating energy consumption [25]
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and multiple access channel usage by wireless sensor networks [26]. Deterministic artificial
intelligence uses first principals and optimization for all quantities but asserts a desired
trajectory. Meanwhile the proposed methods in this manuscript leave the trajectory “free”
and calculate an optimal state and rate trajectory for fusion with sensor data and calculates
optimal decision criteria for estimation and controls in the same formulation.

This manuscript seeks to use the same notion, assertion of the first principals (via Pon-
tryagin’s formulation of Hamiltonian systems) in the context of inertial motion estimation
fused with sensor measurements (that are presumed to be noisy). Noise in sensors is a
serious issue elaborated by Oliveiera et al. [27] for background noise of acoustic sensors and
by Zhang et al. [28] for accuracy of pulse ranging measurement in underwater multi-path
environments. Barker et al. [29] evaluated impacts on doppler radar measurements beneath
moving ice. Thomas et al. [30] proposes a unified guidance and control framework for
Autonomous Underwater Vehicles (AUVs) based on the task priority control approach,
incorporating various behaviors such as path following, terrain following, obstacle avoid-
ance, as well as homing and docking to stationary and moving stations. Zhao et al. [31]
very recently pursued the presently ubiquitous pursuit of optimality via stochastic artificial
intelligence using particle swarm optimization genetic algorithm, while Anderlini et al. [32]
used real-time reinforcement learning. Sensing the ocean environment parallels the current
emphasis in motion sensing, e.g., Davidson et al.’s [33] parametric resonance technique for
wave sensing and Sirigu et al.’s [34] wave optimization via the stochastic genetic algorithm.
Motion control similarly mimics the efforts of motion sensing and ocean environment
sensing, e.g., Veremey’s [35] marine vessel tracking control, Volkova et al.’s [36] trajectory
prediction using neural networks, and the new guidance algorithm for surface ship path
following proposed by Zhang et al. [37]. Virtual sensory will be utilized in this manuscript
where noisy state and rate sensors are combined to provide smooth, non-noisy, accurate
estimates of state, rate, and acceleration, while no acceleration sensors were utilized. A
quadratic cost was formulated for acceleration, since accelerations are directly tied to forces
and torques and therefore fuels.

“ . . . condition of the physical world can either be “directly” observed (by a physical
sensor) or indirectly derived by fusing data from one or more physical sensors, i.e.,
applying virtual sensors”. [38]

Thus, the broad context of the field is deeply immersed in a provenance of classical
feedback driving a current emphasis on optimization by stochastic methods. Meanwhile
this study will iterate options utilizing analytic optimization including evaluation of the
impacts of variations and random noise in establishing the efficacy of each proposed
approach. Analytical predictions are made of the impacts of applied noise power, and
Monte Carlo analysis agrees with the analytical predictions. Developments presented in
this manuscript follow the comparative prescription presented in [39], comparing many
(eleven) optional approaches permitting the reader to discern their own preferred approach
to fusion of sensor data with inertial motion estimation:

1. Validation of simple yet optimal inertial motion algorithms for both translation and
rotation derived from Pontryagin’s treatment of Hamiltonian systems when fused
with sensor data that is assumed to be noisy.

2. Validation of high-fidelity optimal (nonlinear, coupled) internal motion algorithms
for rotation with translation asserted by logical extension derived from Pontryagin’s
treatment of Hamiltonian systems when fused with sensor data that is assumed to
be noisy;

3. Validation of three approaches for sensor data fused with the proposed motion
estimation algorithm (not using classical feedback in a typical control topology):
pinv, backslash, and LU inverses derived from Pontryagin’s treatment of Hamiltonian
systems when fused with sensor data that is assumed to be noisy;

4. Comparison of each proposed fused implementation algorithm to three varieties of
classical feedback motion architectures including linear-quadratic optimal tracking
regulators, classical proportional plus velocity feedback tuned for performance spec-
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ification and manually tuned proportional plus integral plus derivative feedback
topologies, where these classical methods are utilized as benchmarks for performance
comparisons when fused with sensor data that is assumed to be noisy.

5. Comparisons are made based on motion state and velocity errors, algorithm parameter
estimation errors, and quadratic cost functions, which map to fuel used to create
translational and rotational motion.

6. Vulnerability to variation is evaluated using ten-thousand Monte Carlo simulations
varying state and rate sensor noise power and algorithm plant model variations,
where noise power is tailored to the simulation discretization, permitting analytic
prediction of the impacts of variations to be compared to the simulations provided.

7. Sinusoidal wave action is programmed in the same simulation code to permit future
research, and inclusion of such is indicated throughout the manuscript.

Appendix A, Table A1 contains a consolidated list of variables and acronyms in
the manuscript.

2. Materials and Methods

Inertial navigation algorithms use physics-based mathematics to make predictions
of motion states (position, rate, acceleration, and sometimes jerk). The approach taken
here is to utilize the mathematical relationships from physics in a feedforward sense
to produce optimal, nonlinear estimates of states that when compared to noisy sensor
measurements yield corrected real-time optimal, smooth, and accurate estimates of state,
rate, and acceleration. Sensors are modeled as ideal with added Gaussian noise and the
smooth estimates will be seen to exhibit none of the noise. The optimization of the estimates
will be derived using Pontryagin’s optimization.

Motion control algorithms to be augmented by sensor measurements are based on
well-known mathematical models of translation and rotation from physics, both presented
in Equation (1), where both high-fidelity motion models are often simplified to identical
double-integrator models where nonlinear coupling cross-products of motion are sim-
plified, linearized, or omitted by assumption. The topologies are provided in Figure 2.
Centrifugal acceleration is represented in Equation (1) by −mω × (ω × r′). Coriolis ac-
celeration is represented in Equation (1) by −2mω × v′. Euler acceleration is represented
in Equation (1) by m

.
ω × r′. In this section, double-integrator models are optimized by

Pontryagin’s treatment of Hamiltonian systems, where the complete (not simplified, lin-
earized, or omitted) nonlinear cross-products of motion are accounted for using feedback
decoupling. Efficacy of feedback decoupling of the full equations of motion is validated by
disengaging this feature in a single simulation run to reveal the deleterious effects of the
coupled motion when not counteracted by the decoupling approach.

τ = I
.

ω + ω × Iω︸ ︷︷ ︸
rotation due
to rotating
re f erence

↔ F = ma′ + m
.

ω × r′ − 2mω × v′ − mω ×
(
ω × r′

)︸ ︷︷ ︸
translation due to rotating re f erence

(1)

where

F, τ external force and torque, respectively
m, I mass and mass moment of inertia, respectively
ω,

.
ω angular velocity and acceleration, respectively

r′, v′, a′ position and velocity, and acceleration relative to rotating reference
τ = I

.
ω and F = m a′ are double integrator plants

ω × Iω cross-product rotational motion due to rotating reference frame
m

.
ω × r′ cross-product translation motion due to rotating reference frame

−2mω × v′ cross-product translation motion due to rotating reference frame
−mω × (ω × r′) cross-product translation motion due to rotating reference frame.
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(a) System topology (b) Rotational plant topology 

Figure 2. SIMULINK simulation program topologies used to generate the results in Section 3: (a) Overall system topology
used to simultaneously produce state and rate estimates integrated with noisy sensors and additionally optimal control
calculations; (b) Euler’s moment from Equation (1) elaborated in [5–12] describing rotational motion (notice the nonlinear
coupled motion).

2.1. Problem Scaling and Balancing

Consider problems whose solution must simultaneously perform mathematical op-
erations on very large numbers and very small numbers. Such problems are referred
to as poorly conditioned. Scaling and balancing problems are one potential mitigation
where equations may be transformed to operate with similarly ordered numbers by scaling
the variables to nominally reside between zero and unity. Scaling problems by common,
well-known values permits single developments to be broadly applied to a wide range of
state spaces not initially intended. Consider problems simultaneously involving very large
and very small values of time (t), mass (m)/mass moments of inertia (I), and/or length (r).
Normalizing by a known value permit variable transformation such that newly defined
variables are of similar order, e.g., t ≡ t

t f
, I ≡ I

Isystem
= J ≡ J

Jsystem
, m ≡ m

msystem
, r ≡ r

r′ where
r indicates generic displacement units like x, y, or angle. Such scaling permits problem
solution with a transformed variable mass and inertia of unity value, initial time of zero
and final time of unity, and state and rate variables that range from zero to unity making
the developments here broadly applicable to any system of particular parameterization.

2.2. Scaled Problem Formulation

The problem is formulated in terms of standard form described in Equations (2)–(8),
where x(·), v(·) are the decision variables. The endpoint cost E

(
x
(

t f

))
is also referred to

as the Mayer cost. The running cost F(x(t), u(t)) is also referred to as the Lagrange cost
(usually with the integral). The standard cost function J[x(·), u(·)] is also referred to as the
Bolza cost as the sum of the Mayer cost and Lagrange cost. Endpoint constraints e

(
x
(

t f

))
are equations that are selected to be zero when the endpoint is unity.

xT = [x, v], u = [u] (2)

Minimize J[x(·), v(·), u(·)] = E
(

x
(

t f

))
+

∫ t f

0
F(x(t), u(t))dt =

1
2

∫ t f

0
u2dt (3)

Subject to
.
x1 = f1(x(t), u(t)) = v (4)

.
x2 = f2(x(t), u(t)) =

.
v = u (5)

(x0, v0) = (0, 0) (6)(
x f−1, v f , t f−1

)
= (0, 0, 0) (7)

e
(

x
(

t f

))
= 0 (8)

where

J[x(·), u(·)] cost function
xT = [x, v] state vector of motion state x and rate v with initial condition
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xT = [x, v] (x0, v0) and final conditions
(

x f−1, v f , t f−1

)
= (0, 0, 0)

u = [u] decision vector
H Hamiltonian operator corresponding to system total energy
λT adjoint operators, also called co-states (corresponding to each state)
υT endpoint costates

e
(

x
(

t f

))
endpoint constraints.

2.3. Hamiltonian System: Minimization

The Hamiltonian in Equation (8) is a function of the state, co-state, and decision criteria
(or control) and allows linkage of the running costs F(x, u) with a linear measure of the
behavior of the system dynamics f (x, u). Equation (9) articulates the Hamiltonian of the
problem formulation described in Equations (2)–(5). Minimizing the Hamiltonian with
respect to the decision criteria vector per Equation (10) leads to conditions that must be
true if the cost function is minimized while simultaneously satisfying the constraining
dynamics. Equation (11) reveals the optimal decision u will be known if the rate adjoint
can be discerned.

H = F(x, u) + λT f (x, u) (9)

H =
1
2

u2 + λxv + λvu (10)

∂H
∂u

= 0 → u + λv = 0 (11)

2.4. Hamiltonian System: Adjoint Gradient Equations

The change of the Hamiltonian with respect to the adjoint λ maps to the time-evolution
of the corresponding state in accordance with Equations (12) and (13).

.
λx = −∂H

∂x
= 0 → λx(t) = a (12)

.
λv = −∂H

∂v
= λx →

.
λv = λx(t) = a → λv(t) = −at − b (13)

The rate adjoint was discovered to reveal the optimal decision criteria, and the adjoint
equations reveal the rate adjoint is time-parameterized with two unknown constants still
to be sought. Together, Equations (11)–(13) form a system of differential equations to be
solved with boundary conditions (often referred to as a two-point boundary value problem
in mathematics).

2.5. Terminal Transversality of the Enpoint Lagrangian

The endpoint Lagrangian E in Equation (14) adjoins the endpoint function endpoint
cost E

(
x
(

t f

))
and the endpoint constraints functions e

(
x
(

t f

))
in Equation (8) and pro-

vides a linear measure for endpoint conditions in Equation (7). The endpoint Lagrangian
E exists at the terminal (final) time alone. The transversality condition in Equation (15)
specifies the adjoint at the final time is perpendicular to the cost at the end point. In this
problem, the endpoint cost E

(
x
(

t f

))
= 0. These Equations (16) and (17) are often useful

when seeking a sufficient number of equations to solve the system.

E = E + υTe = υTe = υx

(
x f − 1

)
+ υv

(
v f − 0

)
= υx

(
x f − 1

)
+ υvv f (14)

∂E
∂x f

= λx

(
t f

)
(15)
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∂E
∂x f

= λx

(
t f

)
= υx (16)

∂E
∂v f

= λv

(
t f

)
= υv (17)

2.6. New Two-Point Boundary Value Problem

For the two-state system, four equations are required with four known conditions to
evaluate the equations. In this instance, two Equations (3)–(10) have been formulated for
state dynamics, two more Equations (18) and (19) have been formulated for the adjoints,
and two more Equations (20) and (21) have been formulated for the adjoint endpoint condi-
tions. Four known conditions, Equations (22)–(25) have also been formulated. Combining
Equations (11) and (13) produce Equation (26).

.
x = v (18)

.
v = u (19)
.
λx = 0 (20)

.
λv = −λx (21)

x(0) = 0 (22)

v(0) = 0 (23)

x(1) = 1 (24)

v(1) = 0 (25)

Evaluating Equation (27) with Equation (23) produces the value c = 0. Evaluating
Equation (28) with Equation (22) produces the value d = 0. Evaluating Equation (27) with
Equation (25) produces Equation (29), while evaluating Equation (28) with Equation (24)
produces Equation (30).

.
v = −λv(t) = at + b (26)

v =
∫

.
vdt =

1
2

at2 + bt + c (27)

x =
∫

vdt =
1
6

at3 +
1
2

bt2 + ct + d (28)

v(1) =
1
2

a + b = 0 (29)

x(1) =
1
6

a +
1
2

b = 1 (30)

Solving the system of two Equations (29) and (30) produces a = −12 and b = 6.
Substituting Equation (26) into Equation (11) with a and b produces Equation (31), and
substitution of a and b into Equations (27) and (28), respectively, produce Equations (32)
and (33) the solution of the trajectory optimization problem.

u∗(t) = −12t + 6 (31)

v∗(t) = −3t2 + 6t (32)

x∗(t) = −2t3 + 3t2 (33)

Equations (31)–(33) constitute the optimal solution for quiescent initial conditions and
the state final conditions (zero velocity and unity scaled position). To implement a form
of feedback (not classical feedback), consider leaving the initial conditions non-specific in
variable-form as described next.
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2.7. Real-Time Feedback Update of Boundary Value Problem Optimum Solutions

Classical methods utilize feedback of asserted form u = −Kx for state variable x,
where the decision criteria (for control or state estimation/observer) and gains K are solved
to achieve some stated performance criteria. Such methods are used in Section 3 and their
results are established as benchmarks for comparison. So-called modern methods utilize
optimization problem formulation to eliminate classical gain tuning substituting optimal
gain selection but retaining the asserted form of the decision criteria. Such methods are
often referred to as “linear-quadratic optimal” estimators or controllers. These estimators
are also presented as benchmarks for comparison, where the optimization problem equally
weights state errors and estimation accuracy.

Alternative use of feedback is proposed here (whose simulation is depicted in Figure 3b).
Rather than classical feedback topologies asserting u = −Kx utilization of state feed-
back in formulating the estimator or control’s decision criteria, this section proposes re-
labeling the current state feedback as the new initial conditions of the two-point boundary-
value problems used to solve for optimal state estimates or control decision criteria in
Equations (22) and (23). The solution of (26)–(28) using the initial values of (22) and (23)
manifest in values of the integration constants: a = −12 and b = 6. As done in real-time
optimal control, the values of the integration constants are left “free” in variable form, and
their values are newly established for each discrete instance of state feedback (re-labeled as
new initial conditions). This notion is proposed in Proposition 1, whose proof expresses
the form of the online calculated integration constants that solve the new optimization
problem. The two constants â and b̂ are utilized in the same decision Equation (31) where
the estimates replace the formerly solved values of the boundary value problem resulting
in Equation (40).

(a) Sensor topology (b) Decision topology 

Figure 3. Simulink systems for noisy sensors and decision criteria (guidance or control) subsystem: (a) noisy sensor
subsystem; (b) decision topology (guidance or control).

Proposition 1. Feedback may be utilized not in closed form to solve the constrained optimization
problem in real time.

x =
1
6

at3 +
1
2

bt2 (34)

v =
1
2

at2 + bt (35)

x f =
1
6

at3
f +

1
2

bt2
f (36)

v f =
1
2

at2
f + bt f (37)

Proof of Proposition 1. Implementing Equations (34)–(37) in matrix form as revealed in
Equation (38) permits solution for the unknown constants as a function of time as displayed
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in Equation (39), and subsequent use of the unknown constants form the new optimal
solution from the current position and velocity per Equation (40).

⎡
⎢⎢⎢⎣

t3
0
6

t2
0
2 t0 1

t2
0
2 t0 1 0
1
6

1
2 1 1

1
2 1 1 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
T

⎧⎪⎪⎨
⎪⎪⎩

a
b
c
d

⎫⎪⎪⎬
⎪⎪⎭︸ ︷︷ ︸

p

=

⎧⎪⎪⎨
⎪⎪⎩

x0
v0
1
0

⎫⎪⎪⎬
⎪⎪⎭︸ ︷︷ ︸

q

(38)

⎧⎪⎪⎨
⎪⎪⎩

â
b̂
ĉ
d̂

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎢⎣

t3
0
6

t2
0
2 t0 1

t2
0
2 t0 1 0
1
6

1
2 1 1

1
2 1 1 0

⎤
⎥⎥⎥⎦
−1⎧⎪⎪⎨

⎪⎪⎩
x0
v0
1
0

⎫⎪⎪⎬
⎪⎪⎭ (39)

u∗ ≡ ât + b̂ (40)

In Section 3, estimation of â and b̂ becomes singular due to the inversion in Equation (39)
as approaching the terminal endpoint, where switching to Equations (31)–(33) is imple-
mented as depicted in Figure 4d to avoid the deleterious effects of singularity when
applying Proposition 1. The cases with switching at singular conditions are suffixes with
“with switching” in the respective label.

 
(a) Classical feedback decision topology (b) Quadratic cost calculation topology 

   
(c) Open loop decision topology (d) Switching topology for singular inversion 

Figure 4. SIMULINK subsystems: (a) implementation of classical feedback methods; (b) calculation of quadratic cost;
(c) open loop decision topologies (sinusoidal and optimal); (d) switching function to disengage use of real-time parameter
updates when the matrix in Equation (39) is rank deficient. Notice in subfigure (c) sinusoidal wave input is coded using the
identical time-index of the rest of the simulation. The next stages of future research will utilize this identical simulation to
investigate efficacy of the proposed virtual sensoring amidst unknown wave actions.

2.8. Feedback Decoupling of Nonlinear, Coupled Motion Due to Cross Products

The real-time feedback update of boundary value problem optimum solutions is often
used in the field of real-time optimal control, but a key unaddressed complication remains
the nonlinear, coupling cross-products of motion due to rotating reference frames. Here,
a feedback decoupling scheme is introduced, allowing the full nonlinear problem to be
addressed by the identical scaled problem solution presented, and such is done without
simplification, linearization, or reduction by assumption. In proposition 2, feedback
decoupling is proposed to augment the optimal solution already derived. The resulting
modified decision criteria in Equation (42) is utilized in simulations presented in Section 3
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of this manuscript, but a single case omitting Proposition 2 is presented to highlight the
efficacy of the approach.

Proposition 2. The real-time optimal guidance estimation and/or control solution may be extended
from the double-integrator to the nonlinear, coupled kinetics by feedback decoupling as implemented
in Equation (41).

τ = I
.

ω + ω × Iω︸ ︷︷ ︸
rotation due
to rotating
re f erence

(41)

Proof of Proposition 2. For nonlinear dynamics of translation or rotation as defined in
Equation (1), where the double-integrator is augmented by cross-coupled motion due to
rotating reference frames, the same augmentation may be added to the decision criteria in
Equation (40) using feedback of the current motion states in accordance with Equation (42).
The claim is numerically validated with simulations of “cross-product decoupling” that
are nearly indistinguishable from open loop optimal solution, and a single case “without
cross-product decoupling” is provided for comparison.

u∗ ≡ ât + â + ω × Iω (42)

2.9. Analytical Prediction of Impacts of Variations

Assuming Euler discretization (used in the validating simulations) for output y, index
i and integration solver timestep h Equation (43) would seem to indicate a linear noise
output relationship. Equation (44) indicates the relationship for quiescent initial conditions
indicating the results of a style draw. In a Monte Carlo sense (to be simulated) of a very large
number n, Equation (45) indicates expectations from theory Equation (46) in simulation
for scaled noise entry to the simulation to correctly reflect the noise power of the noisy
sensors in the discretized computer simulation. Equation (46) was used to properly enter
the sensor noise in the simulation (Figures 2a and 3a).

.
y(t) =

yi+1 − yi
h

= ni → yi+1 = yi + hni (43)

y1 = y0︸︷︷︸
0

+ hn0 (44)

1
N

N

∑
i=1

y2
1i = σ2

y → 1
N

N

∑
i=1

(hno,i)
2 = h2 1

N

N

∑
i=1

n2
o,i → σ2

y = h2σ2
n (45)

let σ2
sim =

σ2
n

h
→ σ2

y = h2σ2
sim = h2 σ2

n
h

= hσ2
n → σ2

sim =
σ2

n
h

(46)

Assuming this implementation of noise power for a given Euler (ode1) discretization
in SIMULINK, 1 − σ error ellipse may be calculated as Equation (47) for the system in
canonical form in accordance with [40] and was implemented in Figure 3a and depicted
on “scatter plots” in Section 3’s presentation of results of over ten-thousand Monte Carlo
simulations.

σnstate =

√
ω2

n + 4ζ2

4ζωn
σnrate =

√
ω3

n + 4ζ2ωn

4ζ
(47)
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2.10. Numerical Simulation in MATLAB/SIMULINK

Validating simulations were performed in MATLAB/SIMULINK Release R2021a with
Euler integration solver (ode1) and a fixed time step of 0.01 s, whose results are presented
in Section 3, while this subsection displays the SIMULINK models permitting the reader to
duplicate the results presented here. Sensor noise was added per Section 2.8. The classical
feedback subsystem is displayed in Figure 4a. The optimal open loop subsystem implements
Equation (31), and is elaborated in Figure 4b,c. The real time optimal subsystem implements
Equations (42) and (31) augmented by feedback decoupling as in Equation (42). The “switch
to open loop” subsystem switches when the matrix inverted in Equation (39) is singular
indicated by a zero valued determinant and is elaborated in Figure 4d. The quadratic cost
calculation computes Equation (3) and is elaborated in Figure 4b, while the cross-product
motion feedback implements the cross product of Equation (42). The P + V subsystem and
PD/PI/PID subsystems depicted in Figure 4a implement classical methods not re-derived
here, but whose computer code is presented in Appendix B, Algorithms A1 and A2.

Figure 5 displays the SIMULINK subsystems used to implement the three instan-
tiations of real-time optimization (labeled RTOC from provenance in optimal control)
where the switching displayed in Figure 3b permits identical simulation experiments to
be performed with all conditions fixed, varying only the proposed implementation. The
subsystems execute Equation (39) with three variations of matrix inversion: (1) MATLAB’s
backslash “\”, (2) Moore-Penrose pseudoinverse (pinv), (3) LU-inverse.

 

 
Figure 5. SIMULINK subsystems; (a) real-time optimal decision switching topology; (b) real-time optimal calculation of
Equation (39) using backslash\inverse; (c) real-time optimal calculation of Equation (39) using pinv inverse; (d) real-time
optimal calculation of Equation (39) using LU inverse.

Section 2.10 presented SIMULINK subsystems used to implement the equations
derived in the section. Table 1 displays the software configuration used to simulate the
equations leading to the results presented immediately afterwards in Section 3.

Table 1. Software configuration for simulations reported in Section 3.

Software Version Integration Solver Step-Size

MATLAB R2021a Euler (ode1) 0.01 secs
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3. Results

Section 2 derived several options for estimating state, rate, and control simultaneously
as outputs of Pontryagin’s treatment of the problem formulated as Hamiltonian systems.
Section 2.9 described implementation of sensor noise narratively, while Figure 3 illustrated
the topological elaboration using SIMULINK including state and rate sensor with added
Gaussian noise whose noise power was set in accordance with Section 2.9. SIMULINK
subsystems were presented to aid repeatability (with callback codes in the Appendix B).
Those subsystems were used to run more than ten-thousand simulations: a nominal sim-
ulation run for each technique with the remainder utilized to evaluate vulnerability to
variations as described in Section 2.9. In Section 3.1, benchmarks of performance are
established using classical methods for state and rate errors and optimum cost calculated
in Section 2. Sections 3.2–3.4 describe real-time optimal utilization of feedback to estab-
lish online estimates of the solution of the modified boundary value problem described in
Section 2. Each section respectively evaluates the three methods compared: backslash\inverse,
pinv inverse, and LU inverse.

General lessons from the results include:

1. Classical feedback estimation methods are very effective at achieving very low estima-
tion errors, but at higher costs utilizing the estimates in the decision criteria (guidance
or control).

2. Backslash\inverse is relatively inferior to all other inverse methods
3. Singular switching generally improves state and rate estimation and costs;
4. LU inverse and pinv inverse methods perform alike with disparate strengths and

weaknesses relative to each other.
5. Choosing the pinv inverse method as the chosen recommendation, Monte Carlo anal-

ysis reveals the residual sensitive to parameter variation is indistinguishable from
the inherent sensitivity of the optimal solution when using the singular switching
technique. Meanwhile, substantial vulnerability to parameter variation is revealed
when singular switching is not used.

6. Lastly, omitting the complicating cross-products in the problem results in an order
of magnitude high estimation errors and several orders of magnitude higher pa-
rameter estimation error. Therefore, cross-product motion decoupling is strongly
recommended for all instantiations of state and rate estimation.

3.1. Benchmark Classical Methods

Classical methods as presented in [41,42] with nonlinear decoupling loops as pro-
posed in Equation (42) depicted in Figure 3b were implemented in SIMULINK accord-
ing to Figure 4a. Computer code implementing these classical methods is presented in
Appendix B, Algorithm 1. Estimation was executed by feedback of proportional plus inte-
gral plus derivative (PID), proportional plus derivative (PD), and also proportional plus
velocity, and the results displayed in Figure 6, establishing the benchmark for state and
rate tracking. Table 2 displays quantitative data corresponding to Figure 6’s qualitative
displays. Notice the optimal estimation of state, rate, and decision criteria is also included
in Figure 6 and Table 2, since the optimal cost benchmark is established by Pontryagin’s
treatment in Equation (31).
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(a) Comparison of states  (b) Comparison of rates  (c) Comparison of decision criteria  
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Figure 6. Comparison of classical methods with scaled time on the abscissae and respective ordinates titled in the subplot
captions: thinner solid blue line is manually tuned PID, dashed line is linear quadratic optimal PD, dotted line is proportional
plus velocity tuned to performance specification, thicker solid black line is open loop optimal per Pontryagin (Equation (31)
provided for anticipated comparison). (a) States, (b) rates, and (c) decision criteria). Notice the solid black line representing
the optimal open loop solution in subfigure (c) is initially positive to create movement in the desired direction, and the
control switches exactly at the halfway point to a negative input, slowing progress towards the final desired end states
(position and rate states). The ranges of the zoomed view in the inset are indicated by the respective scales.

Table 2. Comparison of classical decision methods.

Decision Method Final State Error Final Rate Error
Decision

Criteria/Control Effort

Classical feedback: proportional + integral +
derivative (manually tuned) 0.0949 0.0850 2192

Classical feedback: proportional + derivative (linear
quadratic optimal) −0.0120 0.4341 152.7

Classical feedback: proportional + velocity (tuned to
performance specs) −0.0082 0.0555 30.82

Open loop optimal 0.0296 0.06 6

3.2. Real-Time Optimal Methods with Backslash

This section displays the results of real-time optimal estimation using the backslash\inverse
depicted in Figure 5b with and without singular switching displayed in Figure 4d to inverse
the [T] in Equation (39). The results are compared to open loop optimal results per Equation
(31) displayed in Figure 4c. Figure 7 reveals real-time optimal state estimation performs
relatively poorly using the MATLAB backslash\inverse, but performance is restored to near-
optimal performance when augmented with singular switching. State and rate errors are
restored to essentially optimal values, while cost is restored to very near the optimal case
as evidenced by the quantitative results displayed in Table 3.

Table 3. Comparison of real-time optimal decision methods using backslash matrix inversion.

Decision Method Final State Error Final Rate Error Decision Criteria/Control Effort

Open loop optimal 0.0296 0.06 6
Real-time optimal using backslash 0.2849 2.0762 2.863

Real-time optimal using backslash with singular
switching 0.0296 0.06 6.0012
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(a) Comparison of states  (b) Comparison of rates  (c) Comparison of control  

Figure 7. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: solid line is open loop optimal (benchmark), dashed line is real-time optimal using backslash, thick dotted
line is real-time optimal using backslash with singular switching. (a) States, (b) rates. Notice the solid black line representing
the optimal open loop solution in subfigure (c) is initially positive to create movement in the desired direction, and the
control switches exactly at the halfway point to a negative input, slowing progress towards the final desired end states
(position and rate states). The ranges of the zoomed view in the inset are indicated by the respective scales.

Figure 8 and Table 4 reveal the estimation performance of the constants of integra-
tion solving the modified two-point boundary value problem (BVP) using state and rate
feedback to reset the initial conditions of the BVP. Oddly, despite relatively superior per-
formance estimating the state and rates when using singular switching augmentation,
parameter estimation is far inferior.

 
(a) estimates of . (b) estimates of . 

Figure 8. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in
the subplot captions: dashed line is real-time optimal using backslash, dotted line is real-time optimal using backslash with
singular switching. (a) Estimates of â, (b) estimates of b̂. The ranges of the zoomed view in the inset are indicated by the
respective scales.

Table 4. Comparison of real-time optimal decision methods using backslash matrix inversion.

Decision Method Mean â Error Mean b̂ Error

Open loop optimal −12 6
Real-time optimal using backslash 21.2 −26.6

Real-time optimal using backslash with
singular switching 4142 −4121

Section 3.1 presented the results of classical and optimal methods as benchmarks
for performance. Meanwhile, Section 3.2 presented the results of implementing real-time
optimal estimation with backslash\inverse with and without singular switching compared
to the optimal benchmark. Next, Section 3.3 presents results using pinv inverse with and
without singular switching.
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3.3. Real-Time Optimal Methods with Pinv

Inversion of the [T] matrix in Equation (39) was also accomplished by the Moore–

Penrose pseudoinverse equation: [T]−1 ∼= [T]† ≡
(
[T]T [T]

)−1
[T]T . All other facets of the

problem are left identical, while only the method of matrix inversion is modified resulting
in state and rates estimates and comparison of control in Figure 9 with corresponding
quantitative results in Table 5. Parameter estimation accuracy is displayed in Figure 10 and
Table 6.

   
(a) Comparison of states  (b) Comparison of rates  (c) Comparison of control  
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Figure 9. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: solid line is open loop optimal (benchmark), dashed line is real-time optimal using backslash, thick dotted
line is real-time optimal using pinv with singular switching. (a) States, (b) rates, and (c) decision criteria or control. The
ranges of the zoomed view in the inset are indicated by the respective scales.

Table 5. Comparison of real-time optimal decision methods using pinv matrix inversion.

Decision Method Final State Error Final Rate Error Decision Criteria/Control Effort

Open loop optimal 0.0296 0.060 6
Real-time optimal using pinv 0 −0.1088 6.6914
Real-time optimal using pinv

with singular switching 0.0296 0.0600 6.0012

−without cross-product
decoupling 0.3381 −0.5936 6.0012

  
(a) estimates of . (b) estimates of . 

Figure 10. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: dashed line is real-time optimal using backslash, dotted line is real-time optimal using pinv with singular
switching. (a) Estimates of â, (b) estimates of b̂. The ranges of the zoomed view in the inset are indicated by the respective scales.

113



Sensors 2021, 21, 4603

Table 6. Comparison of real-time optimal decision methods using p-inv matrix inversion.

Decision Method Mean â Error Mean b̂ Error

Open loop optimal −12 6
Real-time optimal using p-inv 21 −26
Real-time optimal using p-inv

with singular switching 4101 −4080

3.4. Real-Time Optimal Methods with Lu-Inverse

Inversion of the [T] matrix in Equation (39) was also accomplished by the LU-inverse,
which first creates a pivoted version Tp and then inverts the product of a lower triangular

matrix, [L] and an upper triangular matrix [U] based on [T]: [T]−1 ∼=
[
Tp

]−1 ≡ ([L][U])−1.
All other facets of the problem are left identical, while only the method of matrix inversion is
modified resulting in state and rates estimates and comparison of control in Figure 11 with
corresponding quantitative results in Table 7. Parameter estimation accuracy is displayed
in Figure 12 and Table 8.

  
(a) Comparison of states  (b) Comparison of rates  (c) Comparison of control  
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Figure 11. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: solid line is open loop optimal (benchmark), dashed line is real-time optimal using backslash, thick dotted
line is real-time optimal using LU-inverse with singular switching. (a) States, (b) rates, and (c) decision criteria or control.
The ranges of the zoomed view in the inset are indicated by the respective scales.

Table 7. Comparison of real-time optimal decision methods using LU-inverse matrix inversion.

Decision Method Final State Error Final Rate Error Decision Criteria/Control Effort

Open loop optimal 0.0296 0.060 6
Real-time optimal using LU-inverse 0.0030 −0.087 6.371
Real-time optimal using LU-inverse

with singular switching 0.0284 0.1188 5.8283

Table 8. Comparison of real-time optimal decision methods using LU-inverse matrix inversion.

Decision Method Mean â Error Mean b̂ Error

Open loop optimal −12 6
Real-time optimal using LU-inverse 21 21

Real-time optimal using LU-inverse with
singular switching 4142 4142
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(a) estimates of  (b) estimates of  

Figure 12. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: dashed line is real-time optimal using backslash, dotted line is real-time optimal using LU-inverse with
singular switching. (a) Estimates of â, (b) estimates of b̂. The ranges of the zoomed view in the inset are indicated by the
respective scales.

3.5. Monte Carlo Analysis Using Pinv (with Singular Switching) and Open Loop Optimal with
Cross-Product Deoupling

Over ten-thousand simulation runs were performed with 10% uniformly random
variations in plant parameters (mass and mass moment of inertia). Noise was added to state
and rate sensors with zero mean and standard deviation 0.01, and the results are displayed
in the “scatter” plots in Figure 13 with corresponding quantitative results displayed in
Table 9. Feedback implemented by resetting the initial condition of the reformulated
boundary value problem (when implemented with singular switching) yielded optimal
results when augmented with cross-product decoupling.

  
(a) (b) (c) 

Figure 13. Comparison of the impacts of system variations on real-time optimal using (a) open loop optimal, (b) pinv
without switching, (c) pinv with switching. Scaled state on the abscissae and scaled rate on the ordinates.

Table 9. Impact of variations with real-time optimal decision methods using pinv inversion.

Decision Method Mean Final State Error Mean Final RateError

Open loop optimal 0.0264 0.0573
Real-time optimal using pinv 0.0041 −4.960
Real-time optimal using pinv

with singular switching 0.0264 0.0573

3.6. Comparison of Results

Section 3.1 presented the benchmark results produced by classical methods and open
loop optimal mathematical solutions. Section 3.2 presented results utilizing MATLAB’s
backslash\inversion, while Section 3.3 included results using Moore–Penrose pseudoinverse,
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pinv. Section 3.4 presented results using LU-inverse. Section 3.5 revealed robustness to
variations in plan parameters with both state and rate sensor noise. This section consolidates
the results into a single table of raw data depicted in Table 10. This data will be used to
produce percent performance improvement as figures of merit in the Discussion (Section 4).

Table 10. Comparison of real-time optimal decision methods.

Decision Method
Mean â

Error
Mean b̂

Error
Mean Final

Position Error
Mean Final Rate

Error
Decision

Criteria Cost

Classical feedback: PID (manually tuned) – – 0.0949 0.0850 2192
Classical feedback: PD (linear quadratic optimal) – – −0.0120 0.4341 152.7

Classical feedback: P+V (tuned to performance specs) – – −0.0082 0.0555 30.82
Open loop optimal 0 0 0.0264 0.0573 6.000

Real-time optimal using Backslash (\) inverse 9.2 −20.6 0.2849 2.0762 2.863
Real-time optimal using Backslash (\) with switching 4130 −4115 0.0296 0.0600 6.0012

Real-time optimal using LU-inverse 9 15 0.0041 −4.960 6.371
Real-time optimal using LU-inverse with switching 4142 4136 0.0264 0.0573 5.8283

Real-time optimal using pinv-inverse 21 −20 0.0000 −0.1088 6.6914
Real-time optimal using pinv-inverse with switching 4130 −4074 0.0296 0.0600 6.0012

− without cross-product decoupling −47,766 47,449 0.3381 −0.59357 6.0012

4. Discussion

State and rate estimation algorithms fused with noisy sensor measurements using
several of the proposed methodologies achieve state-of-the art accuracies with optimality
that is analytic and deterministic rather than stochastic, and therefore use very simple
equations with necessarily low computational burdens. Simple relationships with small
numbers of multiplications and additions are required to be comparable to the simplicity
of classical methods, but optimum results are produced that exceed the modern notion of
linear-quadratic optimal estimation. Implementation of non-standard feedback achieves
robustness with the additional computational cost of a matrix inverse, and therefore three
optional inversion methods were compared. General lessons taken with manually tuned
PID as a benchmark for state and rate estimation errors, while optimal loop optimal cost is
the benchmark for the cost of utilization of state estimations for guidance and control:

1. Classical feedback estimation methods (tuned per computer code is presented in
Appendix B, Algorithm A1) are very effective at achieving very low estimation errors,
but at higher costs utilizing the estimates in the decision criteria (guidance or control).

a. Linear-quadratic optimal estimation achieved 87% better state estimates, but
over 400% poorer rate estimates compared to classical PID with costs over
2000% open-loop optimal costs.

b. Classical position plus velocity estimation achieved 90% improved state estima-
tion with over 30% better rate estimation, but cost of implementation remains
high (over 400% higher than the optimal benchmark).

2. Open loop optimal estimation established the mathematical benchmark for cost, and
achieved 72% improved state estimation and 33% rate estimation errors.

3. Backslash\inverse is relatively inferior to all other inverse methods, producing 200%
poorer state estimation and over 2000% poorer rate estimates with 52% reduced costs
compared to the optimal benchmark;

4. Singular switching generally improves state and rate estimation and costs;

a. Singular switching with backslash\inverse produced 69% improvement in state
estimation and 29% improvement in rate estimation with roughly optimal costs.

b. Singular switching with LU-inverse produced 72% improvement in state estima-
tion and 33% improvement in rate estimation with roughly optimal costs (3%
better than optimal . . . a numerical curiosity).

c. Singular switching with pinv inverse produced 69% improvement in state esti-
mation and 29% improvement in rate estimation with roughly optimal costs
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(approximately identical improvement percentages to LU-inverse with singular
switching).

5. LU inverse and pinv inverse methods perform alike with disparate strengths and
weaknesses relative to each other.

6. Choosing the pinv inverse method as the chosen recommendation, Monte Carlo anal-
ysis reveals the residual sensitive to parameter variation is indistinguishable from
the inherent sensitivity of the optimal solution when using the singular switching
technique. Meanwhile, substantial vulnerability to parameter variation is revealed
when singular switching is not used.

7. Lastly, omitting the complicating cross-products in the problem results in an order
of magnitude higher estimation errors and several orders of magnitude higher pa-
rameter estimation error. Therefore, cross-product motion decoupling is strongly
recommended for all instantiations of state and rate estimation.

4.1. Notes on Percentages of Performance Improvements

The choice of benchmarks for establishing percentage performance improvements
leads to seemingly exaggerated numbers. The current selection of benchmarks empha-
sizes the strengths of the respective methods: classical feedback estimation methods are
designable to achieve high accuracy but suffer from high effort by the decision criteria
associated with their use. Optimal methods as instantiated here emphasize minimization
of decision effort, so the benchmark for control effort is selected as optimal open loop
rather than classical feedback (e.g., manually tuned PID). Percent degradation over thirty
thousand percent results when compared to the optimal value (of six) as a benchmark. If
the calculation had instead used the manually tuned classical PID as a benchmark, the
optimal effort would exhibit an improvement over ninety-nine percent.

The final line in Table 11 illustrates the extreme penalty of not using feedback de-
coupling of the vector cross-products in Equation (1) representing translation due to the
rotating reference. The penalty embodies the deleterious effects of neglecting treatment of
the nonlinear, coupled, full six-degree-of-freedom system of equations.

Table 11. Percent improvement comparison of real-time optimal decision methods percent performance improvement.

Decision Method
Mean Final Position Error

Percent Improvement
Mean Final Rate Error
Percent Improvement

Decision Criteria/Control
EffortPercent Compared to

Optimal

Classical PID (manually tuned) – – +36,433%
Classical PD (linear quadratic optimal) 87% −411% +2445%

Classical P+V (tuned to performance specs) 91% 35% +414%
Open loop optimal 72% 33% –

Real-time optimal using Backslash (\) inverse −200% −2343% −52%
Real-time optimal using Backslash (\)

with switching
69% 29% 0%

Real-time optimal using LU-inverse 96% −5735% +6%
Real-time optimal using LU-inverse with switching 72% 33% −3%

Real-time optimal using pinv-inverse 100% −28% +12%
Real-time optimal using pinv-inverse

with switching
69% 29% 0%

−without cross-product decoupling −256% −598% 0%

4.2. Notes on Executability

Table 12 displays simulation run time for the eleven methods compared in the
manuscript. Run-time was established by establishing the run start-time with the tic
command, while simulation stop-time was the very first command (toc) following each
simulation run. Simply neglecting the cross-product terms results in the fastest calculation.
All the methods evaluated are of the same order of magnitude of computational burden.
Simulations are depicted graphically in Figures 2–5 and alphanumerically in Appendix B.
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Table 12. Simulation run-time comparison.

Decision Method Simulation Run-Time Percent Improvement

Classical PID (manually tuned) 1.4342 - -
Classical PD (linear quadratic optimal) 1.4325 −0.1

Classical P + V (tuned to performance specs) 1.3372 −6.8
Open loop optimal 1.3511 −5.8

Real-time optimal using Backslash (\) inverse 1.3908 −3.0
Real-time optimal using Backslash (\) with switching 1.3954 −2.7

Real-time optimal using LU-inverse 1.3814 −3.7
Real-time optimal using LU-inverse with switching 1.3829 −3.6

Real-time optimal using pinv-inverse 1.3407 −6.5
Real-time optimal using pinv-inverse with switching 1.3361 −6.8

−without cross-product decoupling 1.3273 −7.5

4.3. Future Research

Notice in Figure 3c sinusoidal wave input is coded using the identical time-index
of the rest of the simulation. The next stages of future research will utilize this identical
simulation to investigate efficacy of the proposed virtual sensoring amidst unknown wave
actions. Secondly, hardware validation of key facets of this research is a logical next step.

5. Conclusions

Using variations of mathematical optimization to provide state, rate, and decision/control
provides virtual sensing information useful as sensor replacements. In this instance, ar-
bitrary position and rate sensors were modeled as ideal sensors, plus Gaussian random
noise and algorithms were presented and compared that provide very smooth (not noisy)
signals for position, rate, and acceleration (manifest in the decision/control). There was
no acceleration sensor, so the notion of sensor replacement is manifest for acceleration,
while the position and rate information was provided by the selected algorithm acting as
a vital sensor. Real-time optimal (nonlinear) state estimation using the Moore–Penrose
pseudoinverse (implemented in MATLAB using the pinv command) was revealed to be
the most advised approach with very highly accurate estimates and essentially mathemati-
cally optimally low costs of utilization. The real-time optimal inverse calculation becomes
poorly conditioned as the end-state is approached due to rank deficiency in the matrix
inversion, so switching to the open loop optimal in the very end was implemented when
the determinant of the matrix became nearly zero.
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Appendix A

This appendix contains a table of variable and acronym definitions used in
the manuscript.

Table A1. Variables and acronyms.

Variable/Acronym Definition

F, τ external force and torque, respectively
m, I mass and mass moment of inertia, respectively
ω,

.
ω angular velocity and acceleration, respectively

r′, v′, a′ position and velocity, and acceleration relative to rotating reference
τ = I

.
ω & F = ma′ double integrator plants
ω × Iω cross-product translation motion due to rotating reference frame
m

.
ω × r′ cross-product translation motion due to rotating reference frame

−2mω × v′ cross-product translation motion due to rotating reference frame
−mω × (ω × r′) cross-product translation motion due to rotating reference frame

E
(

x
(

t f

))
endpoint cost also known as “Mayer cost”

F(x(t), u(t)) running cost also known as “Lagrange cost”
J[x(), u()] cost function
e
(

x
(

t f

))
endpoint constraints

xT = [x, v]
state vector of motion state x and rate v with initial condition (x0, v0)

and final conditions
(

x f−1, v f , t f−1

)
= (0, 0, 0)

u = [u] control vector
H Hamiltonian operator corresponding to system total energy
λT adjoint operators, also called co-states (corresponding to each state)
υT endpoint costates

a, b, c, d constants of integration
â, b̂ estimates of constants of integration

t time variable
x f , v f states evaluated at the final endpoint time t f
x0, v0 states evaluated at the initial time t0

. Dot notation for time-derivative d
dt

1
s notation for integration
I mass moment of inertia, normalized to unity by scaling in Section 2.1
yi output at discrete time index i
i discretization time-interval (timestep)

σ2
y theoretical variance of output

σ2
sim variance predicted in simulation of proposed methods

ζ, ωn critical damping ratio and natural frequency
P+V proportional plus velocity

PD,PI,PID proportional plus derivative, integral respectively
det determinant

RTOC real-time optimal calculation
\ backslash matrix inversion (a MathWorks technique)

pinv Moore–Penrose pseudoinverse matrix inversion
LU matrix inversion by factoring and inverting a row-pivoted variant
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Appendix B

The appendix contains computer codes inserted into the InifFcn callback and StopFcn
call back, respectively. Together with figures, implementation of Equations (1), (31)–(46),
this is the only computer code needed to achieve the results presented in this manuscript.

Algorithm A1. InitFcn callbacks for SIMULINK model depicted in Figures

Includes classical feedback tuning methods

clear all; close all; clc;

% Initialize variables and matrices for assembly of results

timestep = 0.01; theta0 = 0; omega0 = 0; thetaD = 1; omegaD = 0; J = 1;
MeanAngleNoise = 0; STDAngleNoise = 0.01; VarianceAngleNoise = (STDAngleNoise)ˆ2/sqrt(timestep);
MeanRateNoise = 0; STDRateNoise = 0.01; VarianceRateNoise=(STDRateNoise)ˆ2/sqrt(timestep);

% PID: Rule of thumb

Kp = 1; Kd = 6.5; Ki = 5;
A = [0 1; 0 0]; B = [0;1]; C = [10]; D = 0; Q = ones(2,2); R = 1*ones(1);

% PD: Ziegler-Nichols tuning for manually tuning PD

%[NUM,DEN] = ss2tf(A,B,C,D); G = tf(NUM,DEN); C = tf([Kd Kp],[1]); sisotool(G,C)

% PD: Linear Quadratic Regulator

%K = lqr(A,B,Q,R); Kp = K(1); Kd = K(2); Ki = 0; % J = 76 (ish)
Kp = 1; Kd = 1.7321; Ki = 0;

% P + V: Tuning for performance specification

tr = 0.3; ts = 2; wn = 1.8/tr; zeta = 4.6/(ts*2.4);
Kp = wnˆ2;
Kv = 2*zeta*wn;

Algorithm A2. StopFcn callbacks for SIMULINK model depicted in Figures

% Printing scripts

theta = squeeze(out.theta); omega = squeeze(out.omega);
t = squeeze(out.tout); J = squeeze(out.J); u = squeeze(out.u);

qxv = squeeze(out.qxv); a = squeeze(qxv(1,:)); b = squeeze(qxv(2,:));
thetaText = [‘\theta(t) J=‘, num2str(J(end)), ‘: ‘, ‘\theta(t_f)= ‘, num2str(theta(end))];
omegaText = [‘\omega(t) J=‘, num2str(J(end)), ‘: ‘, ‘\omega(t_f)= ‘, num2str(omega(end))];
ControlText = [‘\mu_u_(_t_)=‘, num2str(mean(u)) ];

figure(1); plot(t,theta, ‘:’, ‘LineWidth’, 2); hold on; plot(t,omega, ‘–’, ‘LineWidth’, 2); hold off;
legend(thetaText, omegaText, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);
set(gca, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);grid;

figure(2); plot(t,a, ‘:’, ‘LineWidth’, 2); hold on; plot(t,b, ‘:’, ‘LineWidth’, 2); hold off;
legendtexta=[‘\mu_a=‘, num2str(mean(a))]; legendtextb=[‘\mu_b=‘, num2str(mean(b))]
legend(legendtexta,legendtextb,’FontSize’,16, ‘FontName’,’Palatino Linotype’);
set(gca, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);grid; axis([0,1,-12.1,6.1])

figure(3); plot(t,u,’LineWidth’, 2);
legend(ControlText, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);
set(gca, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);grid;
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Abstract: Multibody modeling of mechanical systems can be applied to various applications. Human-
in-the-loop interfaces represent a growing research field, for which increasingly more devices include
a dynamic multibody model to emulate the system physics in real-time. In this scope, reliable and
highly dynamic sensors, to both validate those models and to measure in real-time the physical
system behavior, have become crucial. In this paper, a multibody modeling approach in relative
coordinates is proposed, based on symbolic equations of the physical system. The model is running
in a ROS environment, which interacts with sensors and actuators. Two real-time applications with
haptic feedback are presented: a piano key and a car simulator. In the present work, several sensors
are used to characterize and validate the multibody model, but also to measure the system kinematics
and dynamics within the human-in-the-loop process, and to ultimately validate the haptic device
behavior. Experimental results for both developed devices confirm the interest of an embedded
multibody model to enhance the haptic feedback performances. Besides, model parameters variations
during the experiments illustrate the infinite possibilities that such model-based configurable haptic
devices can offer.

Keywords: multibody dynamics; symbolic generation; real-time computation; human-in-the-loop;
haptic devices

1. Introduction

Multibody formalisms, which appeared in the seventies, were intended to produce
the equations of motion of so-called multibody systems (MBS) of any size and of any kind,
with the aim of studying their motion. For several decades, multibody models were mainly
used to study mechanical systems with a purely predictive (development of a new device)
or corrective (improvement of an existing device) target. The “real-time computation”
character was completely absent for obvious limitations related to the performance of
computers at the time.

The massive and amazing arrival of increasingly more powerful processors and of
faster and larger memories (RAM) encouraged research teams to produce very compact
multibody formalisms (e.g., based on so-called recursive techniques or Order-N methods),
to exploit programming techniques (such as symbolic generation) and to take maximum
advantage of state-of-the-art computer architectures (vector or parallel processors).

All this contributed to exploring the possibilities of using multibody models in the
context of real-time computing. Already at the beginning of the nineties for instance,
the inverse dynamic computation of robot actuator torques was carried out to enrich
their internal controllers with a feedforward component (e.g., predicted-torque control).
Computational algorithms in haptic rendering may consider various approaches [1].

Among demanding applications (in terms of real-time computation point of view),
one finds a series of multibody systems (vehicle simulator, remotely-actuated surgical
robot, etc.) whose haptic feedback (i.e., the force or torque to be sent back to the human)
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should reproduce, as accurately as possible, the dynamics of the system with which it is
in interaction. Among the ingredients required to develop such devices one finds, beside
the real-time multibody model, a series of sensors (at the human–machine and machine–
machine interfaces), powerful computer processors, and an operating meta-system. The
latter must play the role of a real conductor responsible for synchronizing and interfacing
the involved hardware and software components.

This work presents the developments realized in this sense by the UCLouvain multi-
body team, who decided to make the most to couple the symbolic multibody models
(issuing from their symbolic ROBOTRAN (www.robotran.eu, accessed on 13 July 2021)
software) within the ROS (www.ros.org, accessed on 13 July 2021) architecture (Robot
Operating System). The latter is used to interface the models with a set of well-chosen
sensors pursuing two objectives: (i) first to validate the multibody models with respect to
experimental physics and (ii) second to handle specific haptic devices whose underlying
physical system is dynamic in nature.

Two very distinct applications are presented to illustrate the approach. The first
one—of research type—concerns the development of a digital piano keyboard with haptic
feedback, based on the real-time multibody model of the grand piano action. The second
application—rather educational—concerns a car simulator whose 3D multibody model
allows to feedback pertinent sensory information, namely, the steering torque and a 3D
visualization with realistic visual clues. The model can be tuned in real-time by instan-
taneously modifying the suspension settings but also the contact characteristics of the
tire/ground forces.

In all cases, the haptic specifications and requirements of the envisaged applications
have guided our choices for (i) the electromechanical design itself, (ii) the level of refinement
and computational efficiency of the multibody model, (iii) the type and conditioning of
the sensors, and (iv) the way of interfacing the whole through a suitable meta-architecture
(ROS). The results confirm the advantages and assets of the symbolic multibody approach
and the interest of embedding such models in haptic devices to best capture highly dynamic
effects (a technique that was not conceivable with the technologies of the past in a context
of haptic feedback).

The paper is organized as follows. After a state-of-the-art on multibody formalisms
and haptic devices (Section 2), the multibody approach and its symbolic implementation
are treated in Section 3. Section 4 addresses the different aspects of the haptic problem,
still focusing on multibody applications. Section 5 illustrates the approach proposed for
the two above-mentioned applications and, more succinctly and illustratively, for other
systems developed in our laboratory. A concluding section closes this work, pointing
out the interesting perspectives of this research. Having a immense potential, haptics
technology is still in its beginning stage [2].

2. State-of-the-Art

2.1. Multibody Formalisms

Multibody dynamics, a scientific discipline that emerged in the early seventies (see,
e.g., in [3,4]), is concerned with the kinematic and dynamic study of “polyarticulated” me-
chanical systems (referred to as MultiBody Systems, or MBS in short) such as transmission
mechanisms, humanoid robots, road and railway vehicles, human body, cranes, etc. (Figure 1).

Beside experimental investigations, the analysis of the motion of these MBS requires
their mathematical modeling, based on the fundamental laws of mechanics, of which the
Newton equations (for body translations) and Euler equations (for body rotations) are
common starting points, in the same way as the Lagrange equations or the virtual work
and virtual power principles.

To obtain the equations describing the motion of MBS, several choices of variables
(referred to as generalized coordinates q) are possible. Some schools have favored absolute
or nodal coordinates (denoting the configuration of each body of the MBS with respect
to an inertial frame) [4–6], others preferred using relative coordinates (representing the
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configuration of each body with respect to another body of the MBS) [7,8] or natural
coordinates (representing the absolute configuration of specific material points on each
body of the MBS) [9].

Figure 1. Multibody applications range from small piano action, through road and railway vehicles,
to huge port cranes (UCLouvain).

Concerning the bodies themselves, the formalisms are distinguished according to
whether they consider them rigid or flexible, in which case deformation equations are
superimposed to the equations of the overall motion of the MBS (see. e.g., in [6,8]).

Regardless of the formalism used, the complexity of real applications is such that
the automatic generation of their multibody models on a computer has quickly become
essential. Indeed, it allows obtaining reliable and sufficiently generic models to deal with
the numerous MBS families (see above). A distinction is made between the numerical
approach (e.g., Adams-MSC or Samcef-Mecano software) and the so-called symbolic
approach (e.g., Neweul-M2, Maplesoft, and ROBOTRAN software) which still presently
cohabit among the available multibody computer programs.

The first approach requires reconstructing the model through a series of numerical
subroutines at each step of the computation (e.g., integration time step). This reconstruc-
tion inevitably drains a series of useless computations linked to the numerous zeros of
multibody models (inherent to the data or to the tree-like morphology of the physical
system). Symbolic multibody programs avoid this algorithmic reconstruction: the whole
dynamic model fits in a single file. Above all, symbolic engines can eliminate unnecessary
operations like multiplication by zero, condensation of trigonometric formulas or even dele-
tion of complete unnecessary equations provided by generic multibody formalisms [10].
Their superiority in terms of FLOPS is established and leads to much lower computation
times, favorable to the real-time performances required here. In sum, symbolic multibody-
dedicated programs allow to produce compact equations leading to very efficient and
portable models, written in the desired language (e.g., C, Python, Matlab).

Multibody dynamics then opened up to other physics disciplines (e.g., hydraulics,
pneumatics, mechatronics, and granular media) and to specific analysis methods (control,
optimization, and HIL real-time applications), the challenge being essentially to ensure
a numerically robust and computationally efficient coupling between the mathematical
models of the disciplines involved (see, e.g., in [11]). The scientific literature of the last
twenty years is full of developments in this field of multibody-multiphysics coupling, most
often guided by a specific type of application (see, e.g., in [12]).

For systems requiring real-time (or even faster than real-time) computation of their
multibody model, as in the case of haptic devices whose internal kinematics or dynamics
cannot be disregarded, specific developments have been carried out by the scientific
community. They allow, among others, to achieve feedforward computed-torque control of
walking robots, to increase the precision of surgical tools or to improve the haptic feedback
of driving simulators.
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In this context, one of the current challenges concerns the inclusion in haptic feedback
devices of dynamic models that are (i) sufficiently representative of the system (number
of bodies, joints, nature of internal forces, etc.), (ii) accurate (correct identification of
parameters and force laws), and (iii) efficient (i.e., faster than real-time). All this cannot be
achieved without a strong interaction between the virtual model, the real device and the
external world, through the use of both virtual and real sensors, in order to claim high-level
haptic performances.

2.2. Hardware Implementation

On one hand, validation of a multibody model thanks to specific sensors is widespread
and ranges from many applications with various sensors, for example, a railway track
geometry measurement based on IMUs, cameras, and encoders [13]; model estimation of a
vehicle suspension system with strain gauges [14]; gait analysis through IMUs compared to
optical motion capture [15]; validation of a axial piston pump model via force and pressure
sensors [16]; and acceleration and force piezoelectric sensors to test a wind turbine flexible
multibody model [17].

On the other hand, a growing number of researches has been carried out to use sensors
in real-time to measure the physical system behavior. This information is crucial to properly
feed the multibody model.

For example, in 2016, Torres-Moreno et. al focused on an online dynamic estimation
of the four-bar mechanism [18]. The kinematics of the system is retrieved through IMUs
measurements and optical encoders. They proposed an extended Kalman filter approach
that allows to deal with constrained multibody system. The estimators are run in real-time
and experiments show good agreements with simulation results.

Running a multibody model in real-time requires sufficient computational power on
the considered hardware. While it is possible to perform the online computation on a
classic computer with Intel processor and Windows OS [19], it may not be the most robust
solution. Besides, if one aims to perform an embedded simulation, the hardware is often
limited. In this regard, some researches have achieved to run multibody models on other
kinds of platforms, such as FPGA [20] or ARM-based systems [21]. In particular, the
above-mentioned symbolic approach has been proved to be a good candidate to achieve
real-time computation without having to resort to simplifications within the model [22].

Concerning the software implementation, new tools have been provided by the sci-
entific community to combine integrated devices and simulators, mainly in the robotic
field. The so-called middleware platforms are able to manage the communications between
the different interfaces and facilitate the code modularity and reuse. Rivera presented a
recent summary of the middleware platforms in [23], while using a Gazebo/ROS-based
environments for his application. The ROS environment is now widely used for real-time
robotics, for example, in [24] to represent a complex robot real-time dynamic simulator.

In the recent past, our multibody software ROBOTRAN has been coupled with the
YARP interface for humanoid applications [25], combining the real robot with the simulated
one. Force–torque sensors and IMUs have been used in reality and successfully matched
with their simulation equivalent.

Despite all these researches, the real-time multibody models are still rarely embedded
in haptic devices, the goal being to improve the feedback for “rigid–rigid interaction” type
applications, which only represent one of the multiple components of the Haptic rendering
discipline [26]. Haptic devices often consider simplified dynamics to synthesize the haptic
feedback, for example in the REPLALINK prototype [27] or in a piano action model [28]
(see also Section 5.1). Advanced haptic devices embedding a full multibody model begin
to appear in the literature [29,30], exhibiting promising prospects thanks to the conjoint
evolution of modeling, computational and technological tools.
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3. Multibody Formalism

Among the modeling options presented in Section 2.1, we have opted for a relative
coordinate formalism (Section 3.1) and a symbolic implementation of multibody equations
(Section 3.2). This combination offers the advantage of producing models that can be
easily interfaced, either with other disciplines (in a multiphysics perspective) or within a
middelware platform (to couple devices and software in a real-time process).

3.1. Modeling MBS Using Relative Coordinates

When choosing relative coordinates, a MBS can be built on the basis of its topology
characterized by the successive bodies and joints, as shown in Figure 2, on the left for a
tree-like MBS (such as a serial robot) and on the right for a MBS containing kinematic loops
(such as a multi-link car suspension). The relative angular (rad) or linear (m) displacements
within the joints are called the generalized coordinates, q, of the MBS (also called joint
coordinates). These are independent for a tree-like MBS but not for a closed-loop one, each
loop of bodies leading to geometrical constraints, denoted as h(q) = 0, between the joint
coordinates present in the loop. The distinction between tree-like and closed-loop MBS
is essential because it is at the root of the relative coordinate formalisms as synthetically
explained below.

loop

loop

Figure 2. Tree-like (left) and closed-loop (right) MBS topologies.

Tree-Like MBS Modeling

Basically (see in [8] for more details), in the case of a tree-like MBS containing n joint
coordinates, these confer n motion degrees of freedom (DOF) to the system, leading to a
set of n equations of motion.

Various techniques can be envisaged to obtain them (d’Alembert principle, Lagrange
equations, Newton–Euler equations recursively computed on the topology [8]). In any case,
one ends up with a form equivalent to the following one (“.” stands for d

dt and “..” for d2

dt2 ):

M(q) q̈ + c(q, q̇, f rc, trq) = Q(q, q̇), (1)

in which q̇ and q̈, respectively, stand for the generalized relative velocities and accelerations;
M(q) represents the system mass matrix; c(q, q̇) gather the centripetal, Coriolis, gyroscopic
terms as well as the external forces f rc(q, q̇) and torques trq(q, q̇); and Q(q, q̇) denotes the
efforts within the joints (actuators or passive elements).

Equation (1) can be straightforwardly solved using linear algebra to obtain the relative
accelerations q̈: this refers to Direct Dynamics. This computation has a O(n3) computational
complexity due to the factorization of the mass matrix. Among other things, direct dynam-
ics allows, via the time integration of the accelerations, to determine the time history of the
positions q(t) and velocities q̇(t) and thus to predict the motion of the MBS subjected to
internal or external forces, starting from initial conditions q(0), q̇(0).
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As an illustration, direct dynamics is widely used for road and railway vehicles to
predict, analyze, or optimize their dynamic performances. Direct dynamics is also used
in various driving simulators to make haptic feedback more accurate and realistic (see
Section 5.2).

Inverse Dynamics is another way of using Equation (1) for applications where the
MBS trajectory is known (q(t), q̇(t), and q̈(t)) and for which the unknowns are now the
joint forces and torques Q(t) and not the accelerations anymore. Equation (1) can then be
written as follows:

Q(q, q̇) = φ(q, q̇, q̈, f rc, trq) (2)

with
φ = M(q) q̈ + c(q, q̇, f rc, trq)

As the explicit computation of the mass matrix M is not necessary anymore to compute
Q via (2), φ can be generated without explicitly computing it, which leads to an efficient
O(n) computational complexity of the formalism.

For instance, inverse dynamics is useful to compute the actuator torques of robots for
evaluating a feedforward component in their motion controller.

Closed-Loop MBS Modeling

A multibody system can be subject to different types of constraints between its gener-
alized coordinates, q, which can be holonomic (i.e., algebraic, like assembly constraints),
non-holonomic (expressed at the level of velocities, like for a slip-free rolling), and/or
rheonomic (when they depend explicitly on time t). In the present context of haptic devices
modeling, we will limit ourselves to the holonomic case, focusing on kinematic loop con-
straints; this does not exclude the case of other algebraic constraints that would be treated
in the same way by the following formalism.

When dealing with closed-loop MBS (as depicted on the right of Figure 2), m loop
constraints between the generalized coordinates q, denoted h(q) = 0, must be solved in
parallel to the equations of motion (1) or (2), in which an additional term is required to take
the constraint forces and torques into account, according to the well-established Lagrange
multipliers technique. For the direct dynamics, the final form reads

M(q) q̈ + c(q, q̇, f rc, trq) = Q(q, q̇) + Jt(q) λ

h(q) = 0 ; ḣ(q, q̇) = J(q) q̇ = 0 ; ḧ(q, q̇, q̈) = 0 (3)

And in a similar way, for the inverse dynamics the equations becomes

Q(q, q̇) = φ(q, q̇, q̈, f rc, trq)− Jt(q) λ

h(q) = 0 ; ḣ(q, q̇) = J(q) q̇ = 0 ; ḧ(q, q̇, q̈) = 0 (4)

in which J(q) � ∂h
∂qt denotes the constraint Jacobian matrix and λ are the Lagrange mul-

tipliers associated with the constraints h(q). In both cases, the number of DOF equals
n − m, that is the number of generalized coordinates q minus the number of independent
constraints h (The case of redundant constraints is treated within Robotran, but only for
“classical” multibody simulations, and not for the proposed haptic coupling. As there were
no redundant constraints for the applications treated in this paper, this topic has not been
discussed.).

Let us illustrate closed-loop morphologies in the field of robotics. An anthropomorphic
serial robot with 6 actuated joints (Figure 3 (left)) possesses 6 DOFs. On the other hand, a
parallel structure such as the Stewart platform (Figure 3 (right)) has 18 joints embedded
into multiple loops of bodies, but its upper-plate only possesses 6 DOFs and its motion is
ensured by 6 actuators forming the legs of the platform.
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Figure 3. Serial (left) versus parallel (right) manipulators.

Equations (3) or (4) form a DAE system, as they are made of differential and algebraic
equations, whose direct solving is not trivial. A practical and elegant way to solve them is
to transform them into ordinary differential equations (ODE), using the so-called Coordinate
Partitioning Method briefly presented below (see in [4,8] for more details).

The starting point of the method refers to the number of degrees of freedom (n − m)
of the system, to which (n − m) generalized coordinates can match. They are called
independent coordinates, denoted u, while the others, denoted v, are dependent. Therefore,
we can partition the column vector q as follows:

q =

(
u
v

)
(5)

By applying this partitioning to all the matrices and vectors appearing in Equation (3)
or (4), and by expressing the dependent coordinates via the solving of the constraints at
position, velocity and acceleration levels,

h(q) = 0 ⇒ v = f (u),

ḣ(q, q̇) = 0 ⇒ v̇ = g(q, u̇), (6)

ḧ(q, q̇, q̈) = 0 ⇒ v̈ = h(q, q̇, ü),

it is possible, after a few matrix manipulations, to end up with a reduced set of equations
of motion in terms of the independent coordinates u:

Mr(u), ü + cr(u, u̇, f rc, trq) = Qr(u, u̇) (7)

Qr(u, u̇) = φr(u, u̇, ü), (8)

for the direct and inverse dynamics, respectively.
The coordinate partitioning technique amounts to projecting the equations of motion

in the MBS motion manifold, with the advantage of getting rid rigorously of the algebraic
constraint equations. Therefore, one ends up with a ODE system of minimum size (n-m)
which exactly corresponds to the number of DOF of the MBS (ex. n − m = 6 for the Stewart
platform of Figure 3).

It is worth mentioning that the resolution of the constraints (6) can be very accurate
using an iterative (for h) or an algebraic (for ḣ and ḧ) algorithm, at each evaluation of the
dynamic equations.

Driven Motion

When dealing with MBS in which the time evolution of some of the generalized
coordinates u is fully imposed (such as for instance in robotics when motion control is
achieved), the corresponding joints are qualified as driven. The time history of the associated
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coordinates is thus a prescribed function of time t. To take them into account in the above
formalism, we can apply a second partitioning, but on u in the present case, that is,

u =

(
uu
ud

)
, (9)

in which uu represents the new subset of independent coordinates and ud stands for the
driven coordinates viewed, from the MBS point of view, as known functions of time at
position, velocity, and acceleration levels:

ud = f (t) ; u̇d =
dud
dt

; üd =
d2ud
dt2 (10)

Note that driven variables can also be used to deal with rheonomic constraints. Indeed,
they allow to describe an explicit time dependence of any function in which they appear,
as in an algebraic constraint for example.

Introducing the partitioning (9) into the equations of motion (7) gives(
Muu

r Mud
r

Mdu
r Mdd

r

)(
üu
üd

)
+

(
cu

r
cd

r

)
=

(
Qu

r
Qd

r

)
(11)

The first line of (11) can be solved with respect to üu and represents the final form of a
direct dynamics problem (to be time integrated with respect to the uu variables for instance):

Muu
r üu + cu

r = Qu
r − Mud

r üd (12)

Let us note that this equation can also be formulated in an inverse dynamics form, in
a similar way to Equation (8).

The second line of (11) can be put aside if we are only interested in analysing the
motion of the MBS Equations (12). However, those equations can be very useful to compute
efforts (Qd

r ) associated with the driven coordinates (ex. a motor torque, a force in an
mechanical assembly or a reaction force in a bearing):

Qd
r = Mdu

r üu + Mdd
r üd + cd

r (13)

In a certain manner, this equation represents an inverse dynamics computation carried
out in parallel with—or as a postprocess of—the direct dynamics (12).

Implementation in a Haptic Context

The multibody computation workflow varies slightly whether direct dynamics or
inverse dynamics are considered (Figure 4). For direct dynamics simulations, a numerical
integrator computes the time evolution of the independent variables. Trajectory sensors
(i.e., position, velocity, or acceleration sensors) define the motion of driven joints (Step A),
such as the angular position of a steering wheel for a driver simulator or the displacement
of a piano key (see Section 5). When the trajectories of all independent joints are measured,
the inverse dynamics formulation is used. Filtering, differentiating or integrating the sensor
signal may be necessary.

The algebraic constraints (6) of closed-loop MBS are used to compute dependent
positions and velocities (step B). Once the configuration of the system is fully defined,
external and internal forces are computed, for instance, the tyre/ground interaction for a
car or the contact interaction between the parts of a piano action (step C). At this stage,
inputs coming from force/torque sensors can be considered in the dynamics. The dynamic
Equations (3) or (4) are computed and, for closed-loop systems, the coordinate partitioning
technique is applied (step D) to get the reduced set of Equation (7). In the case of direct
dynamics, a linear system of equations must be solved (step E) to compute the independent
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acceleration that will be handled by the time integrator. For the inverse dynamics, joint
forces/torques are derived directly from the dynamics (step F) using (8).

Forces or torques associated with driven joints are computed (step F) using (13), which
enables computing a feedback that takes the dynamics into account, like the wheel steering
torque on the driver or the reaction of the piano key on the musician finger. In addition, any
kinematic information of the system, such as the position or velocity of any point, can also be
computed (step G) and be used for the system feedback using so-called multibody sensors.

Position, velocity
or acceleration

sensor

Kinematic constraints
(at position and velocity levels, Eq.6)

MBS internal forces/torques

Reduced dynamics equations (Eq. 7)

interaction
forces/torques

Position, velocity
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Figure 4. Flow diagram of direct and inverse dynamics in view of coupling them with haptic devices.

3.2. Symbolic Multibody Model

The aim of the symbolic generation of multibody models is to take advantage of
both the genericity inherent to a numerical generation of multibody equations and of the
simplification potentialities of their manual writing. So-called symbolic multibody programs
manipulate arithmetical operators (+, −, *, /) and alphanumeric strings representing the
data (m, c, K, etc., see Figure 5) to generate analytical equations in C, Python, or MATLAB,
making the most of arithmetical and trigonometric simplifications. For a generic 3D MBS,
the symbolic generation is performed only once (in less than one second with ROBOTRAN
for MBS containing a hundred DOF) prior to any numerical analysis.
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Figure 5. Symbolic Generation Process.

The computational superiority of the symbolic vs. the numerical approach is particu-
larly attractive since it gives the opportunity to

• significantly speed up the computation of MBS models; this represents a very valuable
asset for applications requiring real-time computing, such as those targeted here, and

• easily couple multibody models—being encapsulated in symbolic files—to other dis-
ciplines (such as optimization, control, electromechanical dimensioning) at software
but also at hardware levels.

These two advantages are widely exploited in the applications underlying this work
as detailed in the next sections.

ROBOTRAN Symbolic Generation

This section summarizes the key elements of the symbolic generation underlying
the multibody software ROBOTRAN, the details of which can be found in reference [10],
dedicated to this precise topic. There do obviously exist commercial general-purpose
symbolic packages: why do we not use these to generate multibody equations?

The first reason relates to the amount of computer memory required to generate large
symbolic models (up to 400 DOFs in our case). The combined use of dynamic memory
allocation (via the use of C-pointers) and of the linked lists technique, allows us to finely
control the ROBOTRAN memory requirement during the generation process.

The second reason concerns the possible simplifications of mathematical alphanumeric
expressions. Although the simplification capabilities of commercial packages are extremely
powerful, the symbolic condensation of multibody equations relies on a set of rules and
tricks which are specific to MBS, namely, the simplification of complex trigonometric
formulae and kinematic expressions, the pure and lasting elimination of unnecessary
recursive equations and the parallelization of the latter, among others.

Arithmetic and Trigonometric Simplifications

To simplify multibody expressions containing unnecessary null data or similar terms
which cancel each other, any encountered expression is recursively reorganized by ROBO-
TRAN on the basis of a so-called multibody priority rule (e.g., a force symbol has a lesser
priority than a mass symbol but has a higher priority than a generalized coordinate) as
illustrated in the following priority “<” relationship:

mi < dij < Fi
ext < qi < sin, cos < b ∗ c < (a − d) (14)

in which we have intentionally classified expressions with respect to their physical meaning
(ex.: mass, length, force, generalized coordinates, sine and cosine, etc.) in addition to their
arithmetical nature.
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For purely illustrative purposes, here are some excerpts of the symbolic generation
of the inverse dynamics of a mechanism (articulation 2). qk, qdk, and qddk, respectively,
represent the generalized coordinate, velocity and acceleration associated with joint k, mi,
and bij are, respectively, masses and barycentric vectors. Dij and Ljk are geometric vectors.
Pre-computations:

S1 = sin(q1); S2 = sin(q2); C1 = cos(q1); S3 = sin(q3);

q1p2 = q1 + q2; q2p3 = q2 + q3; q1p2p3 = q1p2 + q3;

S1p2 = sin(q1p2); S2p3 = sin(q2p3); S1p2p3 = sin(q1p2p3);

mb2 = m2 + m3; b11 = m1 ∗ L11; b21 = m2 ∗ L12 + m3 ∗ D13; b31 = m3 ∗ L13; b32 = m3 ∗ L23;

Inverse dynamics (excerpt):

Q(2) = b11 ∗ qdd1 ∗ C1 . . . − b31 ∗ qd1 ∗ qd1 ∗ S1p2p3 . . . − 2 ∗ b21 ∗ qd1 ∗ qd2 ∗ S1p2 . . . − mb2 ∗ g.

When dealing with a given symbolic expression (whatever its length and complexity),
the ROBOTRAN symbolic engine recursively refers to the above priority rule (14) to ensure
that the final form of any expression will be purged of zero parameters and of consecutive
identical terms—or sub-expressions—with opposite signs.

As regards trigonometric expressions, which can be very numerous in MBS due to
the 3D rotations, an internal process is activated to drastically simplify them, as illustrated
by the following example (in which C and S stand for the sine and cosine functions,
respectively, and Sij denotes the sine of the sum of the generalized coordinates qi and qj).

C2 ∗ C4 ∗ C56 ∗ C56 ∗ S8 + C2 ∗ C4 ∗ S56 ∗ S56 ∗ S8 + C2 ∗ S4 ∗ S56 ∗ C8

+S2 ∗ C4 ∗ S56 ∗ C8 − S2 ∗ S4 ∗ C56 ∗ C56 ∗ S8 − S2 ∗ S4 ∗ S56 ∗ S56 ∗ S8

is automatically simplified on-line by ROBOTRAN into:

C24 ∗ S8 + S24 ∗ S56 ∗ C8

leading to far more efficient trigonometric computation.

Generation of Recursive Schemes

The formalism governing the generation of the direct or inverse dynamics (Equa-
tions (3) and (4)), uses a recursivity principle to compute all the variables along the tree-like
structure of the MBS. For instance, the kinematic relation which expresses the absolute
angular velocity ω3 of a given body 3 with respect to that of its parent body 2, ω2 is written
in a vector form as

ω3 = ω2 + Ω23 (15)

where Ω23 represents the relative angular velocity vector of body 2 with respect to body 3.
Among the three components of this vector (and of all vectors recursively computed

in the same manner as vector ω3 in (15)), one surprisingly notices that some of them are
squarely useless for the final form of the equations of motion (3) or (4). This can represent
up to 30% of the intermediate equations such as some components of the above vector
Equation (15): the ROBOTRAN symbolic engine can detect all of them before printing, via
the use of a double-linked list containing the full set of recursive equations of type (15),
and by tracing their individual utility for the final expected result, such as the mass matrix
M(q) or the generalized accelerations q̈.

Constrained MBS: Fully Symbolic Models

Let us rewrite the semi-explicit form (12) in an explicit way in terms of the independent
accelerations üu:

üu = f (uu, u̇u, ud, u̇d, üd, f rc, trq) (16)
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Thanks to the current ROBOTRAN symbolic engine capabilities, particularly in terms
of memory management, it is possible to generate the independent accelerations üu accord-
ing to Equation (16) in a fully symbolic manner (Figure 6) and in the form of a unique set of
recursive equations of type (15), which successfully compute (in C or Python):

• the constraints and their resolution at position, velocity, and acceleration levels;
• the external forces and torques (interfaced with possible external user constitutive

equations);
• the dynamics of the restored tree-like MBS; and
• the reduction to an ODE system and its resolution with respect to the generalized

accelerations üu.

Figure 6. Fully symbolic generation of constrained MBS models.

Nowadays, this represents the most efficient symbolic direct dynamics model that
ROBOTRAN can provide, making the most of its symbolic engine capabilities. More details
on the above symbolic manipulations and tricks underlying the ROBOTRAN process can
be found in details in [8].

4. Hardware Framework

The dynamic models obtained from the above symbolic multibody approach rep-
resent the key ingredient of our haptic device framework. Various competing—or even
complementary—approaches can be used to reduce the computational complexity of the
model, e.g., via deep learning techniques [31] or to make the most of object-oriented lan-
guages [32] and parallel programming [33]. Some results are promising but currently
remain limited to rather simple MBS [31]. Regarding parallel computation, let us point out
that symbolic generation lends itself perfectly to the vectorization of multibody models [8]
and represents a promising avenue of exploitation of GPUs or FPGAs architectures in order
to further improve model computation performances.

This section will detail the relationship between the multibody model and the human,
that are both in-the-loop. In particular, we will describe the coupling between ROBOTRAN
and the middleware ROS.

4.1. Specifications

First, as the haptic device is designed to be manipulated by a person, the apparatus
specifications must meet some requirements of the human body. The human somatosensory
system is composed of many sensors present at different levels of perception. According
to the authors of [34], the exact contribution of the various mechanoreceptive channels
to the formation of haptic perception remains to be established. Moreover, the physical
values of perception, that are still the topic of fundamental researches, strongly depend
on the application at hand. As regards tactile sensitivity, the latter is hard to characterize
in term of frequency sensed [35] and force measurable [36] and needs psychophysical
experiments to be able to understand the human tactile perception [37]. Generally speaking,
it would appear that an update frequency of 1 kHz is considered as acceptable for human
interactions [26,34,35].

In the scope of this paper, only the force feedback is considered, as the physical inter-
face of our devices is exactly the same between the real object and its haptic equivalent, see
Sections 5.1 and 5.2. In other words, the above-mentioned tactile sensitivity is intrinsically
representative in our applications.
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Second, the hardware design of a haptic device is a bidirectional apparatus that
contains both motors and sensors, as it is for the human [38]. The latter may inject
energy at some point, while receiving energy from the device at another time [39]. This
bidirectionality is the most distinguishing feature of haptic interfaces [40].

The sensor resolution must be sufficient, especially when the movement is fast and
small [41]. Of course, the sensors must not influence the device behavior, whose dynamics
must satisfy the physics laws such as that of Newton [26].

4.2. Human-in-the-Loop Haptics with ROBOTRAN

The multibody approach described in Section 3 can be used to insert a highly dynamic
model inside a real-time haptic device, which interacts with a human. Figure 7 shows the
relationships between the ROBOTRAN model, the device, and the human body.

Human

force/torque

Device Sensor

Device 
actuator

Device sensors
motion

force/
torque admittanceadmittance

Haptic feedback

impedance

Multibody model

Figure 7. HIL haptic principle with ROBOTRAN. The light blue box, in this case, corresponds to the
Direct Dynamics of Figure 4.

In haptics, taking the motion as input and the force as output, and vice versa, are the
two possibilities, referred as impedance and admittance approaches in [41]. For the flow
diagram shown in Figure 7, the device and the human are considered as an admittance
operators, while the model can be assimilated to an impedance one. Other scenarios from
Figure 4 are obviously possible.

The haptic device contains sensors that are used to measure the motion and to feed
the multibody model. Those sensors are critical as they are in-the-loop located. Any error,
noise or non-physic behavior will be reflected in the model and ultimately influence the
feedback felt by the human who possesses his own somatosensory system, as discussed in
Section 4.1.

Let us note of the importance of integration loop on the left in Figure 7, which must
be fast, stable and precise enough. Indeed, the loop involving the human and the haptic
device is instantaneous, while the integration loop is unavoidably slower, due to a fixed
time-step size and thus a constant computation time.

4.3. ROS-ROBOTRAN Coupling

ROS (for “Robot Operating System”) is a open-source software framework widely
used in robotics. It contains numerous useful tools and libraries that allow for interactions
between individual components, both in terms of software and hardware. ROS allows
exploiting these tools in real-time to automate and control an electromechanical device.

Many ROS tools have been created by the ROS community to manipulate sensors or
actuators and to publish or receive their data on a network. In addition, ROS offers many
other benefits such as the ability to distribute the tasks requiring high processor usage
across multiple hardware components. Furthermore, it makes possible to easily modify the
system hardware without the need to make major changes in the software.

The coupling architecture between ROS and ROBOTRAN is presented in Figure 8.
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Figure 8. Software architecture with ROS and ROBOTRAN.

Regarding the software, two packages constitute the basis of the coupling. In ROS, a
package designates a folder containing one or several executable codes, a configuration file
for compiling these, as well as other files useful to ROS. A ROS node is an executable that is
able to process some computation but also to communicate with other nodes thanks to the
ROS messages and topics.

As far as we are concerned, a ROS-ROBOTRAN package—called ROSbotran—has
been created, that is able to publish/subscribe to the data of a ROS network. It contains the
multibody model running in real-time, which allows to simulate the mechanical system
and to forecast, analyze, and control its behavior. Inside this package, for our applications
of Section 5, this node uses the multi-threads approach to parallelize the calculations.

Another package—called ROScom—has simply a listener–receiver role, containing
two nodes: Listener and Talker. Two topics are used to exchange kinematic and dynamic
information between the ROSbotran and ROScom packages, see Figure 8. The communica-
tion is ensured through the SSH protocol and physically via an ethernet cable.

Regarding the hardware implementation, the ROSbotran package is run on a laptop
with a high-frequency Intel Core i7-9700 CPU 3.6 GHz. This allows to compute in real-time
the multibody models, even if they are complex. An embedded processor—the Odroid
UX4—hosts the ROScom package, which requires less computing power. This processor
ensures the interface with the sensors and actuator via appropriate electronics.

This ROS-ROBOTRAN integration is already operational for several applications
(see Section 5) but could be easily generalized to all types of models, sensors and actu-
ators. Let us note that the real-time process considered in this work achieves so-called
soft requirements. Indeed, the Linux OS used does not meet a hard real-time implementa-
tion. Future works should implement this approach to specific hardware and adapt the
software accordingly.
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5. Applications

Following the general concepts of Section 4, practical implementations have been de-
signed in our laboratory for rather contrasting applications: a haptic piano key (Section 5.1)
and a driving simulator (Section 5.2). Other realizations have also been conceived within
the framework of ongoing researches dealing with specific road vehicles.

Several sensors have been utilized in these prototypes, mostly to be ran in-the-loop.
However, some external sensors presented in this section have also been specifically
designed to validate both the multibody model and the corresponding haptic device.

In this section, we take benefits of several sensors to both validate the multibody
itself and the ability of the ROS-ROBOTRAN coupling to give a representative feedback to
the human.

5.1. Haptic Piano Key

The touch of a grand piano mainly results from a dynamic transmission mechanism—
called action—which propels the hammer up to the string, given the key motion. The
multibody model of Figure 9 has been developed at UCLouvain [42].
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Figure 9. Main components of the grand piano action for the MBS model: mobile bodies (resp. other
elements) are indicated by letters (resp. numbers). Circular arrows represent the DOFs (adapted
from [43]).

This model finely represents the action kinematic and dynamic behavior. A first kine-
matic validation with an external sensor—a high-speed camera—shows that the hammer
motion is well caught by the model, a little less well from the back-check capture occurring
at the end of the motion, when the key is fully depressed [42].

5.1.1. Previous Realizations

Several researchers have already worked to reproduce the haptic feeling of a piano
keyboard thanks to active devices. In this context, the highly dynamic behavior of a
piano action could clearly benefit from a multibody approach. Besides, it is difficult to
reproduce its effect with only passive elements, as it is done in current digital piano for
which manufacturers try to imitate the touch of a real acoustic piano.

In 1993, Gillespie presented the modeling of the piano action dynamics applied within
an electromechanical apparatus [28]. The model is derived analytically and contains strong
simplifications, which lack some very important dynamic features as the so-called action
escapement, Timmermans2020. That being said, almost 30 years ago, using the technologies
of that time, it was a first trial for a haptic piano key involving a dynamic model.
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In 2002, Oboe developed the MIKEY keyboard [44], which allows one to simulate the
type of touch of three instruments: the grand piano, the harpsichord, and the Hammond
organ. He improved the grand piano action model from Gillespie’s by managing the
escapement phase. The considered dynamics still remains simplified compared to the
complexity of the piano action. As Gillespie, the experimental prototype uses position
sensors and voice coil motors.

Lozada proposed a different approach in 2007 [45], using a magneto-rheological
system. He has derived an analytical model of both the physical behavior of the haptic
device and the piano action. The key motion is sensed by a contactless photoelectric sensor,
and the actuator needs also a force sensing. The final design differs quite significantly from
a classic piano key.

With the same purpose to create a haptic piano key, Horvàth proposed in 2014 [46] an
experimental fitting of a simplified model with only four constant parameters. He used
force and optical sensor to relate the torque acting on the key under different impulses.
Unfortunately, no further works has been published by the author to show the practical
implementation inside a haptic device.

A broader platform called GENESIS-RT has been introduced by Leonard in 2015 [47]
whose goal is to reproduce, among others, the piano action feedback. The piano model is
based on a piano-inspired mechanics. The sensors and real-time update rates are quite high,
44 kHz and 4.41 kHz, respectively. No experimental results are shown with the device.

More recently in 2019, Adamou has suggested a two steps approach in [48]. First, an
original measurement device has been used to characterize the force feedback according to
the key position and velocity. Then, a replication device has been build with an electromag-
netic actuator combined with a spring. A laser sensor is placed under the key to measure
its position. Again, no validation with the proposed design is proposed.

Those previous attempts have used relatively few sensors, such as optical position
sensors or force sensors. The goal was of course to limit the complexity and the cost of
such devices. From our perspective, in a purely research context, using multiple sensors of
high quality could help in quantifying the haptic feedback quality and prove the approach
feasibility. Afterwards, one can imagine to simplify the design complexity for a possible
industrial application. For instance, sensors could be integrated in the actuator itself,
sensing the position through sensorless methods [49–51].

Using the multibody approach described in Section 3, a haptic piano key has been
recently developed in our laboratory, with an experimental validation of its force feed-
back [30]. This implementation is described in the next section. Some improvements
brought to the device, as well as further experimental validation are the subject of the
subsequent Sections 5.1.3–5.1.5.

5.1.2. Mechatronic Implementation

For the pianists, the force feedback principle aims at reproducing the same touch
sensation, i.e., Fhaptic in Figure 10. An active device reproduces the force Fact on the key
pilot, based on the reference force Fmod computed by the multibody model.

Kinematic sensors measure in real-time the key angular position and velocity, which
are inputs of the multibody model, as shown in Figure 7.

Our prototype (Figure 11) consists of a linear actuator rigidly attached to a piano key.
An embedded controller computes the model in real-time (i.e., in less than 1 ms), while
the electronic boards drive the actuator accordingly. More details about the mechatronic
design are given in [30].
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Figure 10. Piano action multibody model force feedback principle, adapted from the work in [30].

ElectronicsController

Position sensors

Key

Linear actuator Force sensor

Velocity sensor
Figure 11. Mechatronic design of one key haptic feedback device, enhanced from the work in [52].

5.1.3. Model Validation

The model output force Fmod should render the force at the key pilot that would cause
a force Fhaptic equivalent to that of an acoustic piano keyboard. A custom force sensor has
been developed that is based on strain gauges. The sensor sensitivity is 0.765 mV/V, for
a measuring range from 0 up to 50 N, with a sampling frequency of 50 kHz, and with a
resolution below the milliNewton. The designed load cell of Figure 12 will be inserted
instead of the key pilot number 3 in Figure 9 to capture the strain so that the sensor can
measure the force applied by the whippen to the key pilot. The latter is exactly the force Fact
of Figure 10 that the actuator has to apply in the haptic device. This allows us to validate
the output force of the multibody model, see Figure 7.

The experimental sensor is inserted in a real piano action demonstrator, a Renner®

action (Figure 13). This homemade binocular element contains four strain gauges glued to
the sides, connected through a Wheatstone bridge. This setup allows to precisely measure
the normal force between the whippen and the key pilot, without influencing the action
dynamic behavior.

Figure 12. Load cell design.
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Figure 13. Experimental homemade force sensor set-up.

The key is actuated by an external actuator shown at the right of Figure 13. A high-
speed camera at 1000 fps uses the markers to retrieve the action kinematics. The key
motion is then supplied as a model input. This allows to validate the model dynamics,
considering the measured motion as the reference, keeping in mind the limitations of the
sensing method.

In Figure 14, a first experiment shows the hammer behavior, compared to the modeling
and the measured angle with the high speed camera. Hammer angles are very close in case
of this relatively slow double keystroke.
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Figure 14. Piano action model dynamic validation: hammer joint position (slow double keystroke).

Results of the measured force versus the offline model-simulated force are shown in
Figure 15. A double blow pattern is visible, the first key strike starting around 0.3 s and
the second around 1.5 s. In both cases, the force starts by increasing, with oscillations,
until a quasi steady-state value close to 3 N. Then, when the key is released—around 0.9 s
and 2.1 s—the action returns to its resting position, with forces peaks due to the hammer
rebound, whose mass and inertia dynamic contributions are relatively high compared to
other elements.
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Figure 15. Piano action model dynamic validation: force (slow double keystroke).

In Figure 15, the simulation presents more oscillations all along the curve and shows
higher force peaks. Apart from that, the measured force is very similar, which is encour-
aging for the model quality and its ability to finely reproduce the dynamic behavior of a
piano action.

A faster double blow is experimented in Figures 16 and 17.
The hammer behavior is not identical between the simulation and the experiments

after the hammer–string contact in Figure 16. In fact, the repetition lever acts differently:
in experiments, the lever moves the hammer upwards around [0.25;0.35] s and [0.7;0.8] s,
while the simulated behavior is different. Indeed, the repetition lever is difficult to tune
both in practice and in simulation.

Despite that, the forces of Figure 17 are very similar, apart from the first part of the
strokes, around 0.1 s and 0.5 s. Being a fast double blow, those differences are acceptable,
and these results show rather good agreements with experiments, given all the remaining
model parameter uncertainties.
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Figure 16. Piano action model dynamic validation: hammer joint position (fast double keystroke).
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Figure 17. Piano action model dynamic validation: force (fast double keystroke).

5.1.4. Real-Time Sensors Validation

The kinematic input supplied to the multibody model, see Figure 7, is of the utmost
importance for the quality of the haptic feedback. Noise, oscillations, or error in the input
would unavoidably result in a non-realistic force computed by the multibody model.

In the piano key haptic device of Figure 11, two position sensors and a velocity sensor
capture the key kinematics to continuously drive the multibody simulation.

The key angle is retrieved through two Hall effect Allegro A1301 sensors placed in
opposition under the key, one at the front and one at the rear, as presented in Figure 11.
These two sensors measure respectively the voltages Ufront and Urear.

Hall sensors use magnetic field measurements which are not linear versus displace-
ment. However, a chosen combination Ucombined between Ufront and Urear allow obtaining
experimentally a linear relation between the measurements and the key front height:

Ucombined = k · (U2
front − U2

rear) + O (17)

where k is a proportionality factor determined by calibration and O is a fixed offset, also de-
termined by experiments. The Ucombined can then be converted to a position measurement
and finally to the key angle via simple trigonometry.

The velocity sensor of Figure 11 is an homemade voice coil, with a copper coil fixed
on the frame and a moving permanent magnet glued on the key. The motion of the magnet
creates a magnetic field variation inside the coil, inducing a varying back-electromotive force
in the coil. This way, a voltage Ucoil is created between the coil wire edges, whose value is
directly proportional to the speed of the coil:

Ucoil = κ ż (18)

where κ is a proportionality factor found by experiment and linked to the coil characteristics
and ż is the moving magnet vertical velocity. This velocity is considered as purely vertical
because the key angle remains small.

To validate those position and velocity sensors, an external Polytec OFV-534 vibrometer
is used, as presented in Figure 18. This vibrometer independently measures the position
and the velocity with a resolution of 175 μm and 4.4 mm/s in our setup.
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Figure 18. Piano haptic key: kinematics sensing validation.

First, the position estimation is experimented by manually applying up and down
movements to the key, as shown in Figure 19.
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Figure 19. Haptic key validation of position sensors: slow motion.

The Hall effect real-time measured position is close to the reference obtained with
the vibrometer. The right graph in Figure 19 shows the relation between measured and
reference positions.

The experiment of Figure 19 includes a motion at slow frequency, less than 1 Hz.
Performing the exact the process at a higher input frequency, around 5 Hz, provides the
results shown in Figure 20. The position sensing is still consistent. However, discrep-
ancies appear that cause the Hall effect measurement to have a maximum error of 10%
between the estimation and the reality, which could be enhanced, but is sufficient for the
considered application.

Furthermore, the combination of (17) allows to maintain the sensor sensitivity, i.e., the
slope of the right curves in Figures 19 and 20. Indeed, the relation between the measured
position and the real one of Figure 19 has almost a constant slope, except for a small
quadratic deviation at the lower and upper position between [0;1] and [9;10] mm, due to
the magnetic field quadratic relation with the position. This does not impact the haptic
prototype behavior but it can be improved in the future by enhancing the position sensing
via a better calibration.
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Figure 20. Haptic key validation of position sensors: fast motion.

Regarding the velocity, several up and down motions are again manually applied to
the key, and the homemade coil sensor output is compared to the vibrometer measurements
in Figure 21.

The homemade sensor captures the velocity amplitude quite well, despite some
erroneous values at some points. Indeed, some peaks are present with the homemade but
not with the vibrometer, for instance, around 5.5 and 6.7 s in Figure 21, left.

Figure 22 shows the same experiment for halfway keystroke, for which the key is
not fully depressed but the action is still able to repeat the note, as foreseen by the so-
called double escapement grand piano action: this feature is fundamental for pianists. The
validation of Figure 22 presents our sensor capability to capture this specific movement.
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Figure 21. Haptic key validation of the velocity sensor: high amplitude, fast motion.
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Figure 22. Haptic key validation of the velocity sensor: halfway keystroke.

5.1.5. Haptic Key Results

In [30], the actuator design of our haptic prototype (Figure 11) was exposed and its
ability to reproduce the force on the piano key was tested. In the present section, we
analyze in further detail the haptic force felt by the pianist in various conditions. For this
purpose, we take advantage of the ROS-ROBOTRAN coupling presented above in order to
investigate various settings of the piano action like the position of the button height or the
mass of the hammer.

The force felt by the pianist is Fhaptic of Figure 10, which depends of course of Fmod
and Fact but also on the physical components of the prototype. To characterize Fhaptic, an
external actuator Faulhaber LM1247 has been used to apply the same position-driven profile
that corresponds to one full key dip at 10 mm/s. The Fhaptic force can be deduced from the
external actuator current measurement on both the action demonstrator and the prototype,
see Figure 23.

Figure 23. Piano haptic key: measurements of the force felt by the pianist Fhaptic through an external
linear actuator for the Renner® demonstrator (up) and the haptic prototype (bottom) [30].
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We first reproduced and checked the test in [30] with the additional sensors presented
and validated above. Figure 24 shows Fhaptic versus the key vertical position measured at
its tip. A key at rest refers to position zero and position 9.5 mm to a fully depressed key, as
proposed by [53]. We clearly retrieve the phases A - B - C - D as described in [30].
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Figure 24. Haptic piano key force validation: prototype comparison with the Renner® demonstrator
(results confirming those obtained in [30]).

In addition, similar behaviors can be observed in the profiles of Figure 24, despite
some differences due to the physical components that differ between the prototype and the
demonstrator. For instance, the blue curve shows the action behavior, without the damper,
illustrating its role. The measure on the action demonstrator has been performed three
times in a row to highlight the consistency between experiments.

In short, the crucial escapement phenomenon occurs during phase C in Figure 24. The
difference in the force amplitude between the prototype and the reference may be due to
residual inaccuracies in the MBS model.

To illustrate the interest of having a multibody model included in the haptic prototype,
variations of the action parameters can be done with the prototype. Their effects on the
haptic feedback can be compared with the Renner® demonstrator for which these values
have been physically modified.

Figure 25 presents the haptic force for the Renner® (left) and the haptic prototype
(right). The parameter is the height of the let-off button [43], see also Figure 9. In the legend,
Normal means that the setting value is nominal and Low (resp. High) that the let-off button
is lower (resp. higher) than its nominal height, by approximately 0.5 mm.
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Figure 25. Haptic piano key force validation: variation of the button height, physically on the Renner® demonstrator (left)
and virtually on the haptic key prototype (right).
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In Figure 25, the trends are similar between the prototype and the demonstrator: a
higher (resp. lower) button causes the escapement phase to have a higher (resp. lower)
force value around [8–9] mm. The escapement is even more stressed in the prototype.

Figure 26 shows the effects of the hammer mass variation, i.e., meaning that a punctual
mass of 0.003 kg has been added once (resp. twice) for the High (resp. Very high) case.
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Figure 26. Haptic piano key force validation: variation of the hammer mass, physically on the Renner® demonstrator (left)
and virtually on the haptic key prototype (right).

Again, the impact is similar for the High and Very high cases, with an increase of the
haptic force because the hammer is heavier.

Besides, one advantage of the multibody model is that it can virtually perform many
interesting investigations, for instance, the hammer mass can easily be lowered. Doing so
in real life would require to manufacture a whole new hammer. This variation is illustrated
with the Low curve in Figure 26, for the haptic prototype only, resulting with a lower haptic
force until the key-bottom contact (phase D in Figure 24).

Despite some discrepancies, the above results (Figures 24–26) show that the ROS-
ROBOTRAN coupling proposed in this paper allows to develop a haptic key for digital
pianos able to reproduce the Fhaptic action dynamic force quite faithfully, i.e., the gold-
standard touch of a grand piano. Moreover, the symbolic multibody modeling approach
makes it very easy to modify any physical parameter of the action or even the action
itself in the haptic device, to modulate the haptic force accordingly. This feature was
actually appreciated by some pianists and piano tuners who were consulted for this haptic
keyboard project.

5.2. Haptic Driving Simulator

Simulators for vehicle driving are nowadays a common tool and used for many
applications [54]. Using a real-time multibody model including all the suitable physical
parameters, allows to deal with the highly dynamics effects of a vehicle behavior. To
analyze the dynamic performances of a vehicle, other approaches consider for example
object-oriented programming of autonomous virtual drivers [32], instead of a real human.
A prototype has been built that aims at reproducing the handling torque feedback in the
steering wheel. Figure 27 shows the experimental set-up with the block schematics. As
in all simulators, the driver has a real-time visualisation of the moving environment on a
front screen.

In this haptic demonstrator, mainly developed at UCLouvain for educational purpose,
a direct drive actuator acts on the steering wheel rotation. It contains an absolute angular
encoder SinCos Hiperface SKM36 Multiturn which measures the position q and the velocity
q̇ of the steering wheel. This information is sent through the data transfer module—in this
case, an embedded processor Raspberry Pi 3—to the multibody model of the a full 3D
vehicle. Afterwards, the corresponding torque T—computed by the inverse dynamics
Equation (13)—is applied by the actuator to the human arms.
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Figure 27. Haptic steering wheel: experimental setup with its real-time visualization and its corre-
sponding block diagram below.

In the following illustrative experiment, in which a driver handles a virtual vehicle,
the situation represents an obstacle avoidance while driving on a straight line at constant
speed of 75 km/h. During the simulation, an obstacle suddenly and randomly appears, and
the driver needs to avoid it by turning on the left and then coming back on the straight line.
Meanwhile, for each of the three simulations, the caster distance of the front suspensions is
modified without notifying it to the driver.

Figure 28 shows the corresponding lateral versus longitudinal vehicle displacements,
as well as the obstacle. Without going into a detailed analysis, one can see that the behavior
clearly differs depending on the trials and on the setting of the caster.

Figure 28. Haptic steering wheel: vehicle displacement on the ground with various caster.

The steering wheel angle, visible in Figure 29, illustrates in a different way the reaction
of the driver to the obstacle apparition.
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Figure 29. Haptic steering wheel: angle with various caster.

Finally, the torque given as a feedback is shown in Figure 30. Note that this value is
taken from the model output, directly in the loop, not measured with an external sensor.
For the first negative peak and for a very close angle value, the feedback torque is higher
for a higher caster, as expected. After that, the driver counter-steers and tries to stabilize
the vehicle towards its initial trajectory.

While a wide range of experiments could be achieved to relate the caster to the driver
behavior, this illustrative example clearly highlights the capabilities of a multibody-based
haptic steering wheel.

The prototype currently lacks the possibility to control the vehicle velocity. Simulations
are done at a constant speed. Current work is ongoing to add Penny&Giles HLP190
potentiometers to measure the position of the existing brake and accelerator pedals. Adding
these sensors would allow to instantaneously adapt the vehicle velocity. Thanks to the
ROS-ROBOTRAN coupling described in the previous sections, adding this hardware is
quite straightforward in this software environment.

In the future, more experiments can be envisaged with several types of drivers, to
analyze their feeling and torque feedback. This way, a wide range of vehicle dynamic
parameters can be analyzed, such as the wheel toe-in/toe-out, the tire friction, the roll
center height or the anti-roll bar stiffness, among others.

Figure 30. Haptic steering wheel: torque with various caster.

5.3. Other Implementations

The two projects presented before constitute the main current applications of the ROS-
ROBOTRAN approach. However, other implementations involving a coupling between
multibody models with real-time environments have been developed. In this scope, various
sensors have been customized and utilized, showing our growing interest in coupling
multibody dynamics with sensors for validation or haptic purposes.

For instance, during the Ph.D. thesis of Docquier [55] at UCLouvain, a small-scale
demonstrator of a Narrow Tilting Vehicles (NTV) has been designed. The demonstrator
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allows to test embedded controllers thanks to inboard sensors that are used in real-time
via ROS to update and analyze the vehicle behavior whose multibody model was built in
parallel. Figure 31 presents the prototype and zooms on the two main sensors.

Figure 31. NTV demonstrator and its two main sensors: a rotating potentiometer and a binocular strain gauge for
torque measurement.

Besides a classical potentiometer connected to the titling shaft to measure the vehicle
tilt, a torque sensor based on a binocular strain gauge provides information associated with
the actuated tilting degree of freedom of the vehicle. This information is thereafter used for
control and validation purposes. Let us note that the vehicle also carries an IMU on board,
to combine the tilting value from both IMU and potentiometer with a Kalman filter.

The second project concerns a so-called “kart” bench designed by and for students,
to enable them to visualize and understand the road handling behavior of a four-wheel
vehicle (Figure 32), and to compare the real system with its multibody model. The kart is
laterally held on a conveyor belt and can be human-driven from a remote steering wheel
linked to the front suspension via Bowden-type cables. Real-time multibody model can
show live the four lateral forces on the tires, for instance, for different types of driving
behaviors and/or kart suspension settings.

Figure 32. Sensors of the kart bench.

Apart from a classical optical sensor measuring the conveyor belt velocity, see Figure 32, a
longitudinal and transverse force measurement through a homemade binocular load cell
with strain gauges is placed between the frame and the moving kart to quantify the lateral
force on the kart. It allows to analyze in real-time the effects on the tire-belt interaction
forces and also to compare them with those computed live by the multibody model, while
modifying suspension settings such as the toe-in/toe-out.

150



Sensors 2021, 21, 4794

Let us note that this prototype does not run with ROS. Instead, it exploits Labview to
communicate with the dedicated electronics and to retrieve the necessary sensors informa-
tion, as for the above-mentioned applications.

6. Conclusions and Prospects

The main objective of this work was to highlight that the current multibody modeling
formulations had reached a sufficient maturity to be exploited within haptic devices applied
to mechanical systems involving high dynamics.

In a first step, we presented a multibody formalism in relative coordinates whose
constraint equations are eliminated by a proper reduction of the equations. This formalism
lends itself perfectly to its programming via the symbolic approach whose capacity of equa-
tion manipulation and simplification allows to produce very compact models, i.e., perfect
candidates to real-time computation.

The interaction and coupling of these models with the world of sensors is essential, on
the one hand, to validate the models themselves with respect to their underlying physics
and, on the other hand, to allow a reliable coupling between the model, the sensors, and the
actuators of a haptic device. The ROS platform has been chosen as the meta architecture to
ensure these couplings successfully: two applications illustrate our developments. The first
one, presented in detail, concerns the development of a haptic piano key and demonstrates
the capabilities of the approach for a very high dynamic system. The second one refers
to a driver simulator under development in our laboratory, whose interest—above all
pedagogical—is to show the appeal of multibody models for this kind of application. In
particular, it allows students to observe the impact of different parameters on the system
dynamics, as taught in the academic courses but through multibody equations that can be
a little bit abstruse for some of them.

In terms of perspectives, it would be interesting to continue the investigations on the
model side, in particular through the fine-grain parallelization of the symbolic equations.
Preliminary tests in ROBOTRAN have indeed shown that recursive equations can be
reorganized in very few sequential vectorial steps: this asset could be exploited in order
to further reduce the computation time of models to be embedded in devices requiring
real-time computation.

Besides, we think that the potentialities of coupling real-time multibody dynamics
with sensors and actuators within a middleware platform (e.g., ROS) are very promising
for the future. It will enable to develop new concepts of haptic systems that are generic,
user-friendly, and efficient. In particular, we see a real pedagogical interest in the use of
such an architecture for the fields of multibody modeling, sensor implementation and
mechatronic design of haptic systems with a very pronounced dynamic character, such as
those presented in the present work.
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Abstract: The estimation of the parameters of a simulation model such that the model’s behaviour
matches closely with reality can be a cumbersome task. This is due to the fact that a number of
model parameters cannot be directly measured, and such parameters might change during the course
of operation in a real system. Friction between different machine components is one example of
these parameters. This can be due to a number of reasons, such as wear. Nevertheless, if one is able
to accurately define all necessary parameters, essential information about the performance of the
system machinery can be acquired. This information can be, in turn, utilised for product-specific
tuning or predictive maintenance. To estimate parameters, the augmented discrete extended Kalman
filter with a curve fitting method can be used, as demonstrated in this paper. In this study, the
proposed estimation algorithm is applied to estimate the characteristic curves of a directional control
valve in a four-bar mechanism actuated by a fluid power system. The mechanism is modelled by
using the double-step semi-recursive multibody formulation, whereas the fluid power system under
study is modelled by employing the lumped fluid theory. In practise, the characteristic curves of
a directional control valve is described by three to six data control points of a third-order B-spline
curve in the augmented discrete extended Kalman filter. The results demonstrate that the highly non-
linear unknown characteristic curves can be estimated by using the proposed parameter estimation
algorithm. It is also demonstrated that the root mean square error associated with the estimation
of the characteristic curve is 0.08% with respect to the real model. In addition, all the errors in the
estimated states and parameters of the system are within the 95% confidence interval. The estimation
of the characteristic curve in a hydraulic valve can provide essential information for performance
monitoring and maintenance applications.

Keywords: parameter estimation; curve fitting method; multibody dynamics; hydraulic system;
predictive maintenance; characteristic curve; product life cycle; digital twin

1. Introduction

Multibody system dynamics (MBS) approaches enable the creation of the equations
of motion that describe a mechanical system and relevant sub-components of complex
mechanical systems [1,2]. The use of MBS leads to physics-based models that act as a single
source of information [3] and represent the operation of an equivalent physical system in
the real world [4]. The data generated by an MBS simulation model can be used to solve
real-world problems throughout a product’s life cycle [5].

A physical system might have parameters that are difficult to estimate and that could
accordingly create uncertainties in MBS models. In the real world, these parameters might
be cumbersome or sometimes even impossible to measure directly due to economical
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limitations and sensor implementation difficulties. In addition, these parameters might
change over time due to wear and other factors that come into play during operation. In
some cases, parameters can only be interpreted from the manufacturer’s catalogues while
not manifesting the current state of a product or differences in individual products due to
manufacturing tolerances. Estimating these parameters can provide valuable information
about the state and working performance of a product [6,7]. Manufacturers can use this
information for condition monitoring [8,9], predictive maintenance [10–12], and real-time
simulations for digital-twin applications [13,14].

In general, parameter estimation is a discipline that provides the essential tools for the
estimation of parameters appearing in the modelling of a system [15]. The most common
techniques for parameter estimation are weighted least squares [16,17], Kalman filter-
ing [18,19], orthogonal least squares [20], robust techniques that include clustering [10],
and regression diagnostics [21]. Among these algorithms, Kalman filters for parameter
estimation have been utilised in a wide variety of engineering studies, ranging from
control [22] and mechatronics [23] to heat transfer [24,25], fluid mechanics [26,27], turbu-
lence [28], and others.

In the MBS field, several types of Kalman filter algorithms have been used to estimate
system states based on the multibody equations of motion [29–34]. In state estimation,
the independent coordinate method was introduced by using the independent positions
and velocities of the multibody model as the states of the Kalman filter [30]. Using the
independent coordinate method, the MBS formulation offers a general approach for esti-
mating the system coordinates in terms of independent states for open- and closed-loop
systems [30,31,34]. Less attention has been given to parameter estimation in MBS sys-
tems [35]. This is due to the complexity of the problem. As in many cases, the parameters
are not constant and have to be estimated from the measurable variables of the dynamic
system. In an-MBS related study, vehicle suspended mass and road friction were estimated
in a dual-estimation application by using the extended Kalman filter (EKF) and the un-
scented Kalman filter (UKF) [36]. The generalised polynomial chaos (gPC) theory was first
implemented in the framework of MBS in 2006 to quantify the parametric and external
uncertainties [37,38]. However, in [37,38], only constant parameters were estimated.

Contrary to this, in practical systems, the parameters are a function of several system
variables and may follow very complicated and unknown non-linear variations during
the working cycles [39,40]. For instance, in the case of a hydraulically actuated mobile
working machine, the characteristic curve of a hydraulic valve can play a significant
role in terms of machine performance [41,42]. The characteristic curve of a hydraulic
valve can be expressed as a function of the spool position and the semi-empiric flow rate
coefficient [41,42]. The semi-empiric flow rate coefficient relates the discharge coefficient,
pressure losses, and flow characteristics that demonstrate the dynamic characteristics
of a hydraulic valve [43–45]. Accordingly, the characteristic curve of a hydraulic valve
can be used in the condition monitoring and predictive maintenance of hydraulically
driven systems [42]. However, in an operating hydraulic system, only the minimum and
maximum points on the characteristic curve can be determined from the manufacturer’s
catalogues with a high level of certainty [41,42]. The characteristic curve of a hydraulic
valve remains unclear in a working cycle and varies from one hydraulic valve to another
due to manufacturing tolerances and possible wear [41,42]. Applying parameter estimation
theories [46,47] in combination with MBS equations of motion can enable the estimation of
the characteristic curve of a hydraulically driven physical system in operation by using a
limited amount of information.

Generally, unknown parameters are treated as constants in the dynamic equations of
motion. The estimation of non-linear parameters typically requires an accurate description
of the first derivatives of the corresponding parameters. However, in the real world, the
first derivatives of parameters are unclear. The first derivative of a characteristic curve in a
hydraulic valve is an example. In the case of a characteristic curve, a vector of data points
can be constructed using random points between the minimum and maximum values
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provided in the manufacturer’s catalogues. Through a parameter vector, the characteristic
curve of a hydraulic valve in the real world can be estimated by combining parameter
estimation algorithms [46,47] and curve-fitting methods [48–52]. Considering parameter
estimation constraints, this study proposes the estimation of parameters by combining the
augmented discrete extended Kalman filter (ADEKF) with curve-fitting methods.

The objective of this study is to propose a parameter estimation algorithm by com-
bining the ADEKF algorithm with a curve-fitting method in an application for estimating
linear and non-linear parameters. To this end, parameters are introduced as vectors in
the augmented state vector. Due to the accuracy of the finite difference schemes in the
complex plane, as demonstrated in [53,54], an approach to computing the Jacobian of a
non-linear system of ordinary differential equations (ODEs) through complex variables in
the framework of a parameter estimation algorithm is proposed. Based on the parameter
estimation algorithm, the structures of covariance matrices of plant and measurement
noises are introduced. The parameter estimation algorithm is applied to estimate the char-
acteristic curve of a directional control valve in a hydraulically driven four-bar mechanism.
As reported in [55], the double-step formulation has advantages over Index-3 Augmented
Lagrangian formulation due to the use of a coordinate partitioning method [56]. Therefore,
the double-step semi-recursive formulation is used to model the four-bar mechanism with
relative coordinates. A fluid power system, in turn, is modelled by using the lumped fluid
theory. This algorithm is verified by estimating the characteristic curves of the directional
control valve using three, four, five, and six vector data control points in the mechanism.
The implementation of the parameter estimation algorithm is explained by using MBS
simulation models that represent the real model, estimation model, and simulation model.
The estimation model considers the actuator position, pump pressure, and the pressure on
the piston side as sensor measurements to account for the system responses. Applying the
proposed parameter estimation methodology in MBS systems can enable the estimation of
parameters of any complex system in a real-world system.

The rest of this paper is organised as follows. In Section 2, the parameter estimation
methodology is described. Section 2 details further into the double-step semi-recursive
MBS formulation, lumped fluid theory, monolithic approach, the ADEKF with a curve-
fitting method, and structure of covariance matrices of plant and measurement noises. The
parameter estimation methodology is applied to the case example presented in Section 3.
Section 4 demonstrates the results of the parameter estimation algorithm for the case
example. Finally, conclusions about parameter estimation are provided in Section 5.

2. Parameter Estimation Methodology

Figure 1 depicts a methodology that can be used to estimate the parameters of a
dynamic system by using a simulation model. In this model, an initial covariance matrix

P+
k−1 ∈ R

L×L and an augmented state vector x̂′+k−1 =
[
xT

k−1 yT
k−1

]T
at the time step k − 1

are introduced. Here, L is the dimension of the augmented state vector, and R denotes the
set of real numbers. x ∈ R

L−nhp and y ∈ R
nhp represent the states and parameters of the

system, respectively. Here, nhp is the number of hydraulic parameters.
In the real world, the sensors shown in the Figure 1 can be replaced by sensor measure-

ments obtained from a physical system, such as a forklift, a tractor, etc. [4,57]. To account
for the system response, the sensor measurement vector o includes the minimum number
of measurements required by the ADEKF algorithm to estimate the states and parameters
of a real system. In Figure 1, h corresponds to the sensor measurement function. Note
that the parameters should not be included in the measurement vector, i.e., y /∈ o. The
parameter estimation algorithm estimates the augmented state vector x̂′+k and covariance
matrix P+

k from the minimum information of the real system at time step k − 1 in the
simulation model.
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Figure 1. Parameter estimation methodology.

2.1. Multibody Dynamic Formulations

The parameter estimation methodology described in Section 2 is applied to the sim-
ulation of a hydraulically driven mechanism. In this study, the hydraulically driven
mechanism is modelled using a double-step semi-recursive MBS formulation and the
lumped fluid theory. The coupled multibody and hydraulic dynamics are integrated
by using a single-step implicit trapezoidal integration scheme in a monolithic coupling
approach. As demonstrated in [55], the double-step semi-recursive formulation uses a
coordinate partitioning method [58–60] to express the hydraulically driven mechanism in
terms of independent coordinates. As a result, the double-step semi-recursive formulation
presents an appropriate multibody simulation approach for state and parameter estimation
applications.

2.1.1. Double-Step Semi-Recursive Formulation

In the semi-recursive formulation, a body i is defined by the set of six Cartesian

velocities as Zi =
[
ṙT

i ωT
i

]T
and six Cartesian accelerations as Żi =

[
r̈T

i ω̇T
i

]T
for a

complete description [61,62]. Here, ṙi, r̈i, ωi and ω̇i are velocities, accelerations, angular
velocities, and angular accelerations of the body, respectively. In the relative coordinate
system, the position of nb bodies in a system can be described by using joint coordinates

as z =
[
z1 z2 .... znb

]T
[61,62]. The absolute velocity Z and the absolute acceleration

Ż of the system bodies can be mapped in terms of the relative joint velocity vector ż

and the relative joint acceleration vector z̈ by using the velocity transformation matrix as
follows [61,62]:

Z = TRdż

Ż = TRdz̈ + TṘdż

}
, (1)

where T ∈ R
6nb×6nb is the path matrix that demonstrates the topology of the system, and

Rd ∈ R
6nb×nb is a block diagonal matrix. The path matrix T is a lower triangular matrix

and contains entries of 6× 6 (I6) unit matrices representing bodies between the body under
observation and the root of the system [61]. In Equation (1), the block diagonal matrix Rd
and the product Ṙdż can be computed with the joint-dependent element of the velocity
transformation matrix bi ∈ R

6×1 and the joint-dependent element of the acceleration
transformation vector di ∈ R

6×1, respectively [61,62]. The semi-recursive formulation is
described hereafter, but the interested reader is referred to [61,62] for further details of T, bi,
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and di. The composite mass matrix Mi ∈ R
6×6 and the composite force vector Qi ∈ R

6×1

of the ith body can be described using absolute coordinates as [61,62]:

Mi =

[
miI3 −mig̃i
mig̃i Ji − mig̃ig̃i

]
, (2)

Qi =

[
fi − ω̃i(ω̃imigi)

ni − ω̃iJiωi + g̃i(fi − ω̃i(ω̃imigi))

]
, (3)

where mi is the mass of the i body, fi ∈ R
3×1 is a vector of external forces, ω̃i is the

skew-symmetric matrix of the angular velocity vector, ni ∈ R
3×1 is the vector of external

moments, I3 is a 3 × 3 unit matrix, and g̃i ∈ R
3×3 is the skew-symmetric matrix of the

position vector of the centre of mass of the body in the global coordinate system. In
Equation (2), Ji is the inertia tensor of the ith body, which can be computed as described
in [61]. Applying the principle of virtual work and using Equation (1) yields the equation
of motion for an open-loop system in the simplified form [61,62]:

Rd
TTTMTRdz̈ = Rd

TTT(Q − MTṘdż), (4)

where M ∈ R
6nb×6nb is the block diagonal matrix consisting of the composite mass matrices

of the bodies. The force vector Q ∈ R
6nb×1 is the column matrix of composite forces. To

incorporate closed-loop systems, the double-step semi-recursive formulation is used in
this study [62]. In this method, a set of m constraint equations Φ(z) = 0 are introduced
for closure of an open-loop system. This method employs Gaussian elimination with a
full pivoting approach to identify the independent and dependent columns of the Jacobian
matrix Φz [62–64]. Through this formulation, relative joint-independent coordinates can be
used to define the dynamics of a system, i.e., the relative joint-dependent coordinates can
be computed in terms of the relative joint-independent coordinates. Hence, this provides
an appropriate option for the state and parameter estimation applications. The relative
joint velocity vector ż can be described using the coordinate partitioning method [59]:

[
żd

żi

]
=

⎡
⎣−(

Φd
z

)−1
Φi

z

I

⎤
⎦żi ≡ Rzżi, (5)

where żd ∈ R
m are the relative joint-dependent velocities, żi ∈ R

n f are the relative joint-
independent velocities, Rz ∈ R

nb×n f is the velocity transformation matrix, Φd
z ∈ R

m×m,
and Φi

z ∈ R
m×n f are the Jacobian matrices of the constraint equations with respect to the

dependent and independent relative joint positions, respectively. In Equation (5), it is
assumed that neither singular configurations nor redundant constraints exist; as a conse-
quence, the inverse of matrix Φd

z can be obtained [55,59]. The relative joint acceleration
vector can be expressed by differentiating Equation (5) [59]:

z̈ = Rzz̈i + Ṙzżi, (6)

where z̈i are the relative joint-independent accelerations, and Ṙz is the derivative of the
velocity transformation matrix. Substituting Equation (6) into Equation (4) results in an
equation of motion for a closed-loop system in a simplified form [55,56,58,63,64]:

RT
z RT

d TTMTRdRzz̈i = RT
z RT

d

(
TTQ − TTMD

)
, (7)

where D = TRd

⎡
⎣−(

Φd
z

)−1(
Φ̇zż

)
0

⎤
⎦ + TṘdż represent the absolute accelerations when

the vector z̈ is zero in Equation (6). Equation (7) can be further simplified using the

159



Sensors 2021, 21, 5029

accumulated mass matrix MΣ = RT
z RT

d TTMTRdRz and the accumulated force matrix

QΣ = RT
z RT

d

(
TTQ − TTMD

)
.

2.1.2. Hydraulic Lumped Fluid Theory

The lumped fluid theory can be used to compute pressures within a hydraulic cir-
cuit [65]. Using this approach, a hydraulic circuit is assumed to be composed of discrete
volumes. The pressures inside the volumes are equally distributed, with the acoustic
waves having a negligible effect on the pressures [41,65]. In any hydraulic volume Vh, the
differential pressure ṗh can be computed [41,65] as

ṗh =
kp + phk0

Vh

n f

∑
h=1

Qh, (8)

where Qh is the sum of incoming and outgoing volume flow rates, k0 is the flow gain, kp is
the pressure flow coefficient, and n f is the total amount of volume flows. By employing a
semi-empirical method, the volume flow rate QR through a throttle valve can be described
as [66]

QR = CR sgn(Δp)
√
| Δp |, (9)

where Δp is the pressure difference and CR = Cd AR

√
2
ρ is the semi-empirical flow rate

coefficient of the throttle valve. Here, Cd is the flow discharge coefficient and ρ is the fluid
density. In Equation (9), AR is the cross-sectional area of the pressure relief valve. Similarly,
the volume flow rate Qd through a directional control valve can be computed as [67,68]

Qd = CvU sgn(Δp)
√
| Δp |, (10)

where Cv is the semi-empiric flow rate coefficient, and U is the relative position of the spool.
Equation (10) is complemented by the following first-order differential equation:

U̇ =
Ure f − U

τ
, (11)

where Ure f is the reference voltage signal, and τ is the time constant. The incoming flow
rate Qin and outgoing flow rate Qout in the hydraulic cylinder can be described as

Qin = ṡA1, Qout = ṡA2, (12)

where ṡ is the piston velocity, and A1 and A2 are the areas on the piston and piston-rod
side of the cylinder, respectively. The force Fh produced by the cylinder can be written as

Fh = p1 A1 − p2 A2 − Fμ, (13)

where p1 and p2 are, respectively, the pressure on the piston and piston-rod side, which can
be calculated by using Equation (8). Fμ is the total friction force in the hydraulic cylinder
caused by the hydraulic sealing. As proposed in [69], this friction force can be calculated
by employing the Brown and McPhee model [70], which is valid for both positive and
negative tangential velocity. The actuator velocity dependent friction force can be written
in the vector form as

Fμ =

⎛
⎝Fc tanh

(
4
‖ṡ‖
vs

)
+ (Fs − Fc)

‖ṡ‖
vs⎛

⎝ 1
4

(
‖ṡ‖
vs

)2

+ 3
4

⎞
⎠2

⎞
⎠sgn(ṡ) + σ2ṡ tanh(4), (14)
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where Fc is the Coulomb friction, vs is the Stribeck velocity, Fs is the static friction, σ2 is the
coefficient of viscous friction, and ṡ is the actuator velocity vector.

2.1.3. Monolithic Approach: Coupling MBS and Hydraulic Dynamic Systems

The MBS formulation can be combined with the fluid power system solver to form a
unified set of non-linear differential equations in a monolithic approach:

MΣ(z)z̈i = QΣ(z, ż, p)

ṗ = v(z, ż, p, y, U)

}
, (15)

where p is the pressure vector, and y is the vector of hydraulic parameters. Equation (15) is
a set of non-linear equations that can be represented as f(x, U) = 0. Here, the vector x =[

zT żT pT yT
]T

. The solution of the non-linear equations described in Equation (15)
is stiff. A stiff equation can be solved by using single-step implicit trapezoidal integration
scheme [55,71–73]. In this integration scheme, the relative joint-independent positions and
the pressures are initially predicted as zi

k+1 = zi
k + żi

kΔk + 1
2 z̈i

kΔk2 and pk+1 = pk + ṗkΔk,
respectively [73]. The derivatives of zi

k+1 and pk+1 can be predicted as

żi
k+1 =

2
Δk

zi
k+1 + ˇ̇zi

k

z̈i
k+1 =

4
Δk2 zi

k+1 + ˇ̈zi
k

ṗk+1 =
2

Δk
pk+1 + ˇ̇pk

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (16)

where ˇ̇zi
k = −( 2

Δk zi
k + żi

k), ˇ̈zi
k = −( 4

Δk2 zi
k +

4
Δk żi

k + z̈i
k) and ˇ̇pk = −( 2

Δk pk + ṗk). Note that
the relative joint-dependent positions zd

k+1 are obtained from zi
k+1 and the previous step zd

k
by solving the position problem Φ(z) = 0 [59–61]. The non-linear constraint equations are
solved iteratively with the Newton–Raphson method [59–61]. The derivatives of the relative
joint-dependent positions zd

k+1 are computed from Equations (5) and (6) at the velocity and
acceleration levels, respectively [55]. Substituting Equation (16) into Equation (15) leads to
a set of dynamic equilibrium equations as F(χk+1) = 0 at the time step k + 1 as

MΣzi
k+1 −

Δk2

4
QΣ

k+1 +
Δk2

4
MΣ ˇ̈zi

k = 0

Δk
2

pk+1 −
Δk2

4
vk+1 +

Δk2

4
ˇ̇pk = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭, (17)

where χk+1 =
[
(zi)T

k+1 pT
k+1

]T
is unknown. The Newton–Raphson method is employed

on the non-linear Equation (17) to iteratively compute the unknown variables [73,74]:

[
∂F(χ)

∂χ

](h)
k+1

Δχ
(h)
k+1 = −

[
F(χ)

](h)
k+1

, (18)

where
∥∥∥Δzi

k+1

∥∥∥ < 1 × 10−10 rad and
∥∥Δpk+1

∥∥ < 1 × 10−2 Pa are the error tolerances in
the relative joint independent positions and pressures provided in the Newton–Raphson

method. In Equation (18),
[
F(χ)

](h)
k+1

is the residual vector, which can be computed as

[
F(χ)

](h)
k+1

=
Δk2

4

[
MΣz̈i − QΣ

ṗ − v

](h)

k+1

. (19)
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In Equation (18),
[

∂F(χ)
∂χ

](h)
k+1

is the tangent matrix, which can be numerically ap-

proximated at a point χ0 by using a forward finite differences, as demonstrated in the
literature [72,75]. Now, by computing Δχ

(h+1)
k+1 from Equation (18), the next iteration χ

(h+1)
k+1

can be calculated.

2.2. Estimation Algorithm: ADEKF with a Curve-Fitting Method

In this section, the ADEKF parameter estimation algorithm is introduced in the frame-
work of a B-spline curve-fitting method. It is important to note, however, that the intro-
duced procedure can be easily modified for applications of other curve-fitting methods, as
mentioned in [48,49]. Parameter estimation through the ADEKF comprises prediction and
update stages. At the prediction stage, in the case of the coupled multibody and hydraulic

systems, the augmented state vector can be described as x′ =
[
(zi)T (żi)T pT yT

]T
.

At this step, x̂′−k is calculated in the time integration of a dynamic model described as [46]

x̂′−k = f(x̂′+k−1, Uk), (20)

To account for unknown parameters, the proposed parameter estimation algorithm
employs the curve-fitting method. Through this method, a B-spline curve is constructed
with the knot vector u for non-uniform open splines [48,49] at the current time step:

C(u) =
n

∑
i=0

Bi,d(u)Ni, (21)

where n is the number of control points, d is the degree, Bi,d(u) are the dth order of B-spline
basis functions, and Ni is the control point vector. The control point vector can be expressed
in terms of the system parameters y. For instance, in the case of the characteristic curve,
the control point vector can be written in terms of the spool position and semi-empiric flow

rate coefficient as N =

[
Umin U1 ... Un Umax
Cvmin Cv1 ... Cvn Cvmax

]
. Here, Umin, U1, and Un represent

spool positions, and Cvmin , Cv1 , and Cvmax are the semi-empiric flow rate coefficients of a
hydraulic valve. Bi,d(u) can be defined by using the Cox–de Boor recursion formula [48,49]:

Bi,0(u) =

⎧⎨
⎩1 ui ≤ u < ui+1

0, otherwise
, (22)

Bi,j(u) =
u − ui

ui+j − ui Bi,j−1(u) +
ui+j+1 − u

ui+j+1 − ui+1 Bi+1,j−1(u), (23)

where ui is the ith element of the knot vector for non-uniform open splines. Next, the nu-
merical values of parameters, which are scalar, should be evaluated by using Equation (21)
at time step k to be incorporated in Equation (20). The calculation of Equation (20) at the
desired input signal is straightforward. However, the numerical computation of the Jaco-
bian matrix fx′k−1

could be challenging when using a curve-fitting method. Each term of the
Jacobian matrix can be approximated by using complex variables to reduce the truncation
error [53,54] for very small increments. For instance, in the case of a multi-variable function,
the Jacobian column of Equation (20) with respect to the rth term of the augmented state
vector x̂′k−1 can be written in the partial derivative form as

∂f(x̂′k−1,1, x̂′k−1,2, ..., x̂′k−1,L)

∂x̂′k−1,r
=

Im(f(x̂′+k−1,1, x̂′+k−1,2, ..., x̂′k−1,r + iδ, ..., x̂′+k−1,L))

δ
+ O(δ2), (24)
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where r ∈ [1, L], and iδ represents a very small increment in the complex plane. δ = Lε is a
real value. Epsilon ε is a very small number and depends on the machine’s precision. The
rth term of the state vector x̂′k−1,r + iδ is expanded by using the Taylor series [53,54].

The evaluation of Im(f(x̂′+k−1,1, x̂′+k−1,2, ..., x̂′k−1,r + iδ, ..., x̂′+k−1,L)) for the parameter vector
uk requires the evaluation of C(uk−1) as complex numbers. However, the knot vector
cannot contain any complex numbers [48,49]. Therefore, a criterion |t − ti

k−1| < Ξ is
introduced, where Ξ can be a small real number, such as 0.1, which implies that the knot-
point distance between ti

k−1 and the complex input argument t should be less than Ξ. Using
this criterion enables the knot points to be evaluated with the curve-fitting method through
complex input. With the Jacobian of the dynamic system fx′k−1

, the covariance matrix P−
k is

approximated as [46]
P−

k = fx′k−1
P+

k−1fT
x′k−1

+ Qk, (25)

where Qk is the covariance matrix of the plant noise. In the update stage, the sensor
measurements are taken into account to improve the estimated augmented state vector x̂′−k .
The innovation Δk is calculated as [46]

Δk = ok − h(x̂′−k ), (26)

where ok are the sensor measurements at the k time step, and h(x′−k ) is the sensor measure-
ment function. With the Jacobian of the sensor measurement function hx′ , the innovation
in the covariance matrix Sk and the Kalman gain Kk can be calculated as [46]

Sk = hx′k
P−

k hT
x′k
+ Rk

Kk = P−
k hT

x′k
S−1

k

⎫⎪⎬
⎪⎭, (27)

where Rk is the covariance matrix of the measurement noise. Finally, the augmented state
vector x̂′+k and covariance matrix P+

k are updated at the time step k, which will be used for
the next time step as [46]

x̂′+k = x̂′−k + KkΔk

P+
k = (IL − Kkhx′k

)P−
k

⎫⎬
⎭, (28)

where IL is the identity matrix of dimension L.

Covariance Matrices of Process and Measurement Noises

It is well known that when applying Kalman filters, the tuning of the filter parameters
is crucial, especially the covariance matrices of the plant and measurement noises. Further-
more, it was established in [30,31] that in dealing with non-linear systems, the improper
tuning/setting of these covariance matrices can make the algorithm unstable. In this study,
the properties of measurement noise are precisely known because the measurements are
built from a dynamic model (providing ground truth) with an addition of white Gaussian
noise to replicate real sensors. Thus, the covariance matrix of measurement noise can be
obtained. For instance, when using position and pressure sensors, the covariance matrix of
the measurement noise, R, would then take the form [30,31,34]

R =

⎡
⎢⎣

(
σ′

s

)2
In 0n×np

0np×n

(
σ′

p

)2
Inp

⎤
⎥⎦, (29)

where σ′
s and σ′

p are the standard deviations of measurement noises at the position and
pressure levels, respectively. In Equation (29), n is the number of actuator sensors and
np is the number of pressure sensors. In, Inp , 0n×np , and 0np×n are the identity and zero
matrices of corresponding orders, respectively. In the case of a multibody model along
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with positions and velocities as the state vector, the structure of the plant noise in the
discrete-time frame was well established in [30,31] and can be written as

Q =

⎡
⎢⎢⎢⎣

σ2
ẍ Δt3In f

3

σ2
ẍ Δt2In f

2
σ2

ẍ Δt2In f

2
σ2

ẍ ΔtIn f

⎤
⎥⎥⎥⎦, (30)

where Δt is the size of the integration time step and n f is the number of degrees of
freedom of the system. It should be noted that Equation (30) includes the variance at
the acceleration level, σẍ, because of the acceleration errors arising from the inaccurate
description of forces and mass distribution. Furthermore, the state vector in this study also
includes the hydraulic pressures and the hydraulic parameters, along with the positions
and velocities, and errors can occur at the pressure and parameter levels as well. Therefore,
inspired by [34], the variance of hydraulic pressures, σp,D, and the variance of hydraulic
parameters, σhp,D , can be directly incorporated as the diagonal elements in Equation (30).
Accordingly, the structure of the covariance matrix of the plant noise, Q, in the parameter
estimation can be written as

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ẍ Δt3In f

3

σ2
ẍ Δt2In f

2
0n f ×np+nhp

0n f ×np+nhp

σ2
ẍ Δt2In f

2
σ2

ẍ ΔtIn f 0n f ×np+nhp
0n f ×np+nhp

0np+nhp×n f 0np+nhp×n f σ2
p,D 0n f ×np+nhp

0np+nhp×n f 0np+nhp×n f 0np+nhp×n f σ2
hp,D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

In this study, the integration errors are assumed to be negligible in comparison to the
acceleration, pressure, and parameter errors.

3. Case Example: Hydraulically Actuated System

The parameter estimation methodology described in Section 2 is applied to estimate
the characteristic curves at the a, b, c, and d ports of the 4/3 directional control valve shown
in Figure 2. A four-bar mechanism actuated by a hydraulic circuit is presented in Figure 2.
The dynamics of the mechanism are modelled using the semi-recursive and hydraulic
lumped fluid theories, as described below.

3.1. Dynamic Model of the System

The bodies of the mechanism are assumed to be rectangular beams whose lengths are
L1 = 2 m, L2 = 8 m, and L3 = 5 m and whose masses are m1 = 100 kg, m2 = 400 kg, and

m3 = 250 kg, respectively. The position vector at point D is rD =
[
− L1

2 0 0
]T

. The point
G is located at the centre of mass of body 1. The double-step semi-recursive formulation
described in Section 2.1.1 is used to model the four-bar mechanism.

The four-bar mechanism is actuated using the sinusoidal reference input signal, which
is taken as Ure f = 10 sin (0.4πk), where k is the simulation run time. The simulations are
performed for 5 s. The hydraulic circuit consists of a double-acting hydraulic cylinder, con-
necting hoses 1 and 2, a 4/3 directional control valve, a pressure relief valve, a connecting
hose of volume Vp, a differential pump of pressure pp , and a tank with a constant pressure
source pT .
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Qd2

Qd1
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Cvb

Cvd
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Figure 2. Hydraulically actuated four-bar mechanism. The mechanism is actuated by a differential
pressure pump. Cva ,Cvb ,Cvc , and Cvd represent the semi-empiric flow rate coefficients at the a, b, c,
and d ports of the 4/3 directional control valve. Grey rectangles indicate the pressure sensors on the
control volumes Vp and V1.

The lumped fluid theory described in Section 2.1.2 is used to compute the pressures
within the hydraulic circuit. In the application of the lumped fluid theory, the hydraulic
circuit can be divided into three control volumes Vp, V1, and V2. The pressure derivatives
ṗp, ṗ1, and ṗ2 through these volumes can be computed as

ṗp =
kp + ppk0

Vp
(Qp − QR − Qd1)

ṗ1 =
kp + p1k0

V1
(Qd1 − A1 ṡ)

ṗ2 =
kp + p2k0

V2
(A2 ṡ − Qd2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (32)

where Qd1 and Qd2 are the flow rates in the control volumes 1 and 2. In Equation (32), Qp
and QR are the pump flow rate and flow rate through the pressure relief valve, respectively.
The flow rates QR, Qd1 , and Qd2 can be computed by employing Equations (9) and (10),
respectively. The constant hydraulic parameters are tabulated in Table 1. In Equation (32),
ṡ is the actuator velocity, which can be determined from the actuator position vector s.
Following Figure 2, the vector s can be calculated from the position vectors rG and rD as

s = rG − rD

ṡ =
d | s |

Δt
= ṡ ·

s

| s | = ṙG ·
s

| s |

⎫⎪⎬
⎪⎭, (33)
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where ṙG is the velocity vector of point G. The control volumes V1 and V2 appearing in
Equation (32) can be calculated as follows:

V1 = Vh1 + A1l1
V2 = Vh2 + A2l2

}
, (34)

where Vh1 , Vh2 , and Vp are the control volumes of the respective hoses, as described in
Table 1. In Equation (34), l1 and l2 are the lengths of the piston side and the piston-rod side
chambers, respectively. l1 and l2 can be calculated with the vector s as

l1 = l10 − |s|+ s0

l2 = l20 + |s| − s0

}
, (35)

where l10 and l20 are the initial piston side length and the initial piston-rod side length,
respectively. l10 and l20 are computed from the length of cylinder l, which is given in Table 1.

Table 1. Parameters of the hydraulic circuit.

Parameter Symbol Value

Pump flow rate Qp 0.001 m3/s
Tank pressure pT 0.1 MPa

Volume of the hose p Vp 3.42 × 10−3 m3

Volume of the hose 1 Vh1 3.42 × 10−1 m3

Volume of the hose 2 Vh2 3.42 × 10−1 m3

Oil density ρ 869 kg/m3

Hydraulic parameter kp 1600 MPa
Hydraulic parameter k0 0.5

Area of the piston A1 2 × 10−3 m2

Area of the piston-rod A2 1.8 × 10−3 m2

Length of the cylinder/piston l
√

3 m
Area of pressure relief valve Ar 2.24 × 10−12 m2

Area of directional control valve Ad 1.96 × 10−6 m2

Coulomb friction force Fc 210 N
Static friction force Fs 830 N
Stribeck velocity vs 1.25 × 10−2 m/s

Coefficient of viscous friction σ 330 Ns/m
Discharge coefficient Cd 0.5

Area of throttle AR 2.24 × 10−12 m2

Using the vector s, the hydraulic force Fh produced by the double-acting cylinder can
be calculated as

Fh =
[

sX
|s| Fh

sY
|s| Fh

sZ
|h| Fh

]T
, (36)

where Fh is computed from Equation (13). The hydraulic force vector Fh is combined
with the external force vector fi to calculate Q in Equation (3). The resultant equations of
motion (15) are formulated for the hydraulically driven four-bar mechanism. Equations (15)
are solved by using an implicit single-step trapezoidal integration scheme in a monolithic
approach, which was described in Section 2.1.3.

3.1.1. Real and Estimation Models

In this study, three dynamic versions of the mechanism are used to demonstrate the
implementation of the parameter estimation algorithm. One of the models is the real
model. The sensor measurements o are taken from the real model. The modelling errors are
introduced in the force model of the estimation model with respect to the real model. The
properties of the estimation model and the simulation model are the same. In Table 2, the
properties of the real model, the estimation model, and the simulation model are provided.
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Note that the simulation model is used in this study to demonstrate the differences between
the simulated world and the real world.

Table 2. Properties of the real model, the estimation model, and the simulation model. Errors in the
simulation model and the estimation model are given in comparison to the real model. s10 , pp0 , and
p10 represent the initial actuator position, the initial pump pressure, and the initial pressure on the
piston side as the system states. The system parameters Cva , Cvb , Cvc , Cvd , k0, and kp represent the
semi-empiric flow rate coefficient at the a, b, c, and d ports of the directional control valve, the flow
gain, and the pressure flow coefficients, respectively.

Errors Symbol Real Model Estimation Model Simulation Model

State s10

√
3 m 1.62 m 1.62 m

State pp0 7.6 MPa 5.6 MPa 5.6 MPa
State p10 1 MPa 2 MPa 2 MPa

Parameter Cva Non-linear Linear Linear
Parameter Cvb Non-linear Linear Linear
Parameter Cvc Non-linear Linear Linear
Parameter Cvd Non-linear Linear Linear

Parameter k0 0.5 0.4 0.4
Parameter kp 1600 MPa 1500 MPa 1500 MPa

As in practise, the minimum and maximum points on the characteristic curves of a
directional control valve can be determined from the manufacturer’s catalogues. Using
this limited information, the characteristic curves are defined linearly at all ports of the
directional control valve in the cases of the estimation model and the simulation model. The
linear characteristic curves are implemented by using the minimum and maximum values
of the semi-empiric flow rate coefficients Cva , Cvb , Cvc , and Cvd at the valve closing and
the valve opening positions, respectively. The linear characteristic curves of the directional
control valve affect the dynamics of the estimation model throughout the simulation
runtime. In the case of the real model, the characteristic curves of the directional control
valve are unclear and can be non-linear. With Equation (21), the non-linear characteristic
curves of the directional control valve are implemented using Cva , Cvb , Cvc , and Cvd in the
hydraulic circuit of the real model. Similarly, the initial actuator positions s10 of the real
model and the estimation model are different. Note that the initial relative joint coordinates
of the bodies in the system can be found from s10 and ṡ10 by using geometrical relationships.
To avoid instabilities in the integration process, the simulations are started in the static
equilibrium position, the details of the mechanism of which can be found in [34].

3.1.2. Sensor Measurements

In this study, the measurable observations o =
[
s pp p1

]T
are taken from the real

model. In the real model, the actuator position sensor measures the actuator position
s [76]. Gauge pressure sensors are used for the pressure measurements pp and p1 [34].
These pressure sensors measure the pressure with respect to the atmospheric pressure. The
pressure sensors are installed on their respective volumes, as also shown in Figure 2. The
numerical values of the standard deviation, as mentioned in Equation (29), are taken as
σ′

s = 1.12× 10−3 m and σ′
p = 1.5× 105 Pa for the actuator and pressure sensors, respectively.

3.2. Parameter Estimation Algorithm

In the parameter estimation algorithm, the augmented state vector x̂′ is defined as

x̂′ =
[
︸ ︷︷ ︸

x̂

s ṡ pp p1 p2 ︸ ︷︷ ︸
ŷ

kp k0 Cv

]T
, (37)
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where s is the actuator position, ṡ is the actuator velocity, pp, p1, and p2 are the pressures,

kp is the pressure flow coefficient, k0 is the flow gain, and Cv =
[
Cva Cvb Cvc Cvd

]
are

the semi-empiric flow rate coefficients at the corresponding ports of the directional control
valve. In Equation (37), x̂ and ŷ present the states and the parameters of the hydraulically
driven four-bar mechanism, respectively. Equations (20)–(28) are implemented to estimate
the augmented state vector x̂′ and the characteristic curves of the directional control valve.
In this application, the third-order B-spline interpolation method is combined with the
ADEKF. For the case example, three, four, five, and six control points are used in the
parameter estimation algorithm to compute Equations (20) and (24). As mentioned earlier,
the first, third, and fourth state variables are measured. Therefore, the sensor measurement
function h(x̂′−k ) and its Jacobian hx′ can be written as

h(x̂′−k ) =
[
x̂′−k,1 x̂′−k,3 x̂′−k,4

]T

hx′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
∂h

∂Cva

∂h

∂Cvb

∂h

∂Cvc

∂h

∂Cvd

0 0 1 0 0 0 0
∂h

∂Cva

∂h

∂Cvb

∂h

∂Cvc

∂h

∂Cvd

0 0 0 1 0 0 0
∂h

∂Cva

∂h

∂Cvb

∂h

∂Cvc

∂h

∂Cvd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (38)

where Cv =
[
Cva Cvb Cvc Cvd

]
. h(x̂′−k ) and hx′ are used in Equations (26) and (27),

respectively, in the parameter estimation algorithm.

4. Results and Discussion

In this section, the results of the simulation of the estimation model of the parameter
estimation algorithm are presented. The results of the estimation model are compared
to those of the real model and the simulation model. The initial covariance P0 used in
the augmented state estimator includes σ2

s = 1 × 10−4 m2 for the actuator position, σ2
ṡ =

1× 10−4 m2/s2 for the actuator velocity, and three pressure terms of σ2
p = 22.50× 107 Pa2 in

the diagonal. For the hydraulic parameters, the initial covariance values σ2
kp

= 1× 1014 Pa2,

σ2
k0

= 1 × 102 and σ2
Cv

= 9 × 102 m6

s2Pa are used in the diagonal. The numerical values of
the plant noise σ2

ẍ = 0.8 m2/s4 and σ2
p = 259.81 × 107 Pa2 for Equation (31) are obtained

through trial and error. All models are run with a time step of 1 ms and provide sensor
data to the parameter estimation algorithm at 1000 Hz.

4.1. Estimating the Characteristic Curve of the Valve

In the real model, as only the minimum point cmin and the maximum point cmax on
the characteristic curves are known at the a, b, c, and d ports of the directional control valve,
the characteristic curves are generally unclear in the working cycles of the real model. The
characteristic curves may vary from one valve to another and can be highly non-linear in
the working cycle. In Figure 3, Spline 1 and Spline 2, which are in the cyan colour, are used
to demonstrate the non-linear behaviour of the directional control valve in the real model.
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Figure 3. The estimation of the characteristic curves of the directional control valve by using the ADEKF with third-order
B-spline interpolation. (a) Three-point B-spline estimation. (b) Four-point B-spline estimation. (c) Five-point B-spline
estimation. (d) Six-point B-spline estimation.

The proposed parameter estimation algorithm can be used to estimate the characteris-
tic curves of the real model with this limited information. To this end, the semi-empiric flow
rate coefficients Cva , Cvb , Cvc , and Cvd are defined with the data control points between
cmin and cmax in Equation (37). Equation (37) is further used in terms of the control point
vector N in Equations (20)–(28) to estimate the characteristic curves.

For instance, in the case of Figure 4, the control point vector Na at port a of the
directional control valve can be defined in terms of c1, c2, c3, and c4 as

Na =
[
cmin c1 c2 c3 c4 cmax

]T
. (39)

To estimate the characteristic curve, three, four, five, and six control points are used in
the control point vector Na. As an example, these data control points for Spline 1 in each
case are presented in Table 3.

The abscissa of vector Na represents the spool position U, whereas the ordinate of
vector Na indicates the semi-empiric flow rate coefficients Cva at port a of the directional
control valve. The results of the second-order B-spline are described in Appendix A. The
results of the third-order B-spline demonstrate the characteristic curve of the directional
control valve relatively better in a working cycle, as shown in Figure 3. As can be seen, Spline
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1 and Spline 2 of the third-order B-spline are drawn in each data control point estimation
case. The dashed red-coloured line indicates the characteristic curve of the simulation
model. The dashed black-coloured line demonstrates the estimation model. In Figure 3a,
three points, cmin, c1, and cmax, are used to estimate Spline 1 and Spline 2 of the real model.
The characteristic curve of the estimation model precisely follows the real model in the
case of three points. Further, the percentages of the root mean square error (RMSE) are
described in the Table 3 for Spline 1 and Spline 2 to verify the observations.
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Figure 4. Data control points between cmin and cmax on the characteristic curve of the directional
control valve.

Table 3. Root mean square error in the estimation of the characteristic curve. The third and fourth
columns represent the root mean square errors in Spline 1 and Spline 2, respectively.

Control Points Control Point Vector Na RMSE RMSE

Three points

[
0 5 10
0 47.5 95

]
0.04% 0.03%

Four points

[
0 3.3 6.6 10
0 31.6 63.3 95

]
0.05% 0.01%

Five points

[
0 2.5 5 7.5 10
0 23.7 47.5 71.2 95

]
0.06% 0.07%

Six points

[
0 2 4 6 8 10
0 19 38 57 76 95

]
0.07% 0.08%

Figure 3b shows the estimation of the characteristic curve when using four points
cmin, c1, c2, and cmax. As can be seen in Figure 3b, the semi-empiric flow rate coefficient
Cva for Spline 2 changes with small increments until 52% opening of the spool as compared
to Spline 1 in the real model. After this point, the parameter Cva increases sharply towards
the maximum point cmax. The difference of the estimated curve from the real model’s
curve is indistinguishable. The RMSEs of these curves are given in Table 3. The relatively
complicated non-linear behaviours of the directional control valve can be estimated by
using five control points and six control points. This can be seen in Figure 3c,d. By using
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the estimated characteristic curves, the working conditions of the directional control valve
can be predicted.

4.2. Convergence of the Vector Data Control Points

The convergence rate of the data control points in the parameter vector Cva is further
explained in Figure 5 to describe the estimation process. These plots demonstrate the
convergence rate of data control points in the case of Spline 2, as presented in Figure 3. For
instance (see Figure 5b), c1 and c2 converge towards the corresponding point on the curve
of the real model at 0.22 s. However, during the estimation process, c1 briefly becomes
negative, and shortly thereafter converges smoothly to the real model.

(a) (b)

(c) (d)

Figure 5. Convergence of the control points in the vector Cva in the case of Spline 2. (a) Convergence
of c1 in the three-point estimation process. (b) Convergence of c1 and c2 in the four-point estimation
process. (c) Convergence of c1, c2, and c3 in the five-point estimation process. (d) Convergence of c1,
c2, c3, and c4 in the six-point estimation process.

The curves of Spline 2 change into an S-shape during the working cycle, as shown in
Figure 3c,d. In these cases, c2, c3, and c4 converge at different simulation times according
to the corresponding order in the vector Cva . Through the ADEKF algorithm, unknown
curves start converging within a range of 0 < t ≤ 0.3 s when using the three-, four-, five-,
and six-point estimation techniques.

4.3. Accuracy Requirements of State Estimations

The successful application of the parameter estimation algorithm requires the accurate
estimation of the system states x. To demonstrate this requirement, the errors in the
estimated actuator position s, estimated actuator velocity ṡ, estimated pump pressure pp,
estimated piston side pressure p1 , estimated piston-rod side pressure p2, and estimated
parameter Cva in the case of Spline 2 (described in Figure 3d) are shown in Figure 6. The
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errors in the estimated parameters kp and k0 are presented in Appendix B. The average of
the parameter vector Cva at each time step is considered in Figure 6.

The errors are computed from ±1.96σ. Here, σ is the standard deviation calculated from
the covariance matrix P+

k at each time step. These plots demonstrate the requirement of an
accurate estimation of the system’s states to estimate the system’s parameters. As can be seen
in Figure 6, the 95% confidence interval (CI) is used by the system states in the 5 s simulation
period. The errors in s, ṡ, pp, p1, and ṡ fluctuate in the confidence interval. As indicated earlier,
s, ṡ, and pp are measured in this example. The errors in the parameters Cva , kp, and k0 are
also in the CI, as can be seen in the corresponding plots. The key to the parameter estimation
is that the estimated system states should be in the 95% CI during the working cycle.
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Figure 6. Requirements for the accuracy in the system states for parameter estimation. (a) Error in
s with 95% CI. (b) Error in ṡ with 95% CI. (c) Error in pp with 95% CI. (d) Error in p1 with 95% CI.
(e) Error in p2 with 95% CI. (f) Error in parameter Cv with 95% CI.
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5. Conclusions

This work proposes the estimation of the parameters of a system by combining param-
eter estimation theories and curve-fitting methods. The ADEKF algorithm is introduced in
the framework of a B-spline curve-fitting method. Using the proposed algorithm, the pa-
rameters can be defined as a vector containing a set of data control points. This algorithm
is applied on a hydraulically driven four-bar mechanism to estimate the characteristic
curves of a directional control valve. The double-step semi-recursive formulation and
lumped fluid theories are used to model the four-bar mechanism and the hydraulic system,
respectively. The measurements taken from the real system include the actuator position,
pump pressure, and piston side pressure. The semi-empiric flow rate coefficient vector Cva

is defined with three to six data control points in order to define the characteristic curve of
the directional control valve.

The unknown non-linear nature of the characteristic curves of the directional control
valve are precisely estimated. The maximum RMSE observed in the estimation of the
characteristic curves is 0.08%. This implies that the characteristic curves are accurately
estimated. The data control points in the parameter vector Cva converge in the range
of 0 < t ≤ 0.3 s in these estimation cases. To account for the system’s response, the
estimation of the system’s state vector variables should be located in the 95% confidence
interval. By using the estimated characteristic curves, important information about the
discharge coefficient, pressure losses, and flow characteristics of the directional control
valve can be interpreted. With this valuable information, manufacturers and users can
monitor the condition of a system and make decisions about the repair and maintenance of
hydraulically driven systems.

Applying the parameter estimation algorithm in the real world by using a multibody-
based estimation model can enable the estimation of important parameters. This can be
challenging, as the estimation model might not be as accurate as the real world necessitates.
However, despite implementation challenges, the application of this parameter estimation
algorithm will provide an interesting area for manufacturers and researchers. Manufac-
turers can use these parameters in condition monitoring, repair and maintenance, and the
anticipation of product life cycles. With a product’s application history, important design
changes can be introduced in future designs of the product. This will ultimately lead to
more efficient MBS-based digital-twin applications through the use of real-time simulations
and more sustainable future products.
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Appendix A. The Estimation of the Curve Using Second-Order (Linear) B-Spline

Interpolation

When using second-order (linear) B-spline interpolation, the characteristic curves of
the directional control valve are not continuous, as shown in the Figure A1. Therefore, to
demonstrate the real-world application, it is recommended to use the third-order B-spline
or above.
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(a) (b)

(c) (d)

Figure A1. The estimation of the characteristic curve of the directional control valve by using
the ADEKF algorithm with second-order (linear) B-spline interpolation. (a) Three-point B-spline
estimation. (b) Four-point B-spline estimation. (c) Five-point B-spline estimation. (d) Six-point
B-spline estimation.

Appendix B. Estimation of the Pressure Flow Coefficient and the Flow Gain

The estimation of the pressure flow coefficient kp and the flow gain k0 in the case
example is represented below.
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Figure A2. Requirements for the accuracy in the system states for parameter estimation. (a) Error in
kp with 95% CI. (b) Error in k0 with 95% CI.
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Abstract: The aim of this work is to explore the suitability of adaptive methods for state estimators
based on multibody dynamics, which present severe non-linearities. The performance of a Kalman
filter relies on the knowledge of the noise covariance matrices, which are difficult to obtain. This
challenge can be overcome by the use of adaptive techniques. Based on an error-extended Kalman
filter with force estimation (errorEKF-FE), the adaptive method known as maximum likelihood is
adjusted to fulfill the multibody requirements. This new filter is called adaptive error-extended
Kalman filter (AerrorEKF-FE). In order to present a general approach, the method is tested on two
different mechanisms in a simulation environment. In addition, different sensor configurations
are also studied. Results show that, in spite of the maneuver conditions and initial statistics, the
AerrorEKF-FE provides estimations with accuracy and robustness. The AerrorEKF-FE proves that
adaptive techniques can be applied to multibody-based state estimators, increasing, therefore, their
fields of application.

Keywords: adaptive Kalman filter; multibody dynamics; nonlinear models; virtual sensing; multi-
body based observers

1. Introduction

In many applications, it is required to acquire data in order to analyze the performance
of a particular machine, to make decisions through control strategies or to gather data for
durability purposes. Most of the time, it is possible to get all the data through sensors.
However, there are particular cases where a sensor cannot be installed due to economical
or technical issues. In these situations, data acquisition relies on estimations.

Kalman filter [1] stands out as one of the most used estimation techniques. It combines
a model describing the system with sensor measurements. The estimations are based on the
statistical properties of the desired variables conditioned on the sensors measurements [2].
Although the Kalman filter was designed for linear systems, several approaches have been
developed in the literature extending its use to non-linear models. Such is the case of the
extended Kalman filter (EKF) or unscented Kalman filter (UKF) [2]. These approaches
introduced the Kalman filter to real problems, which are predominantly non-linear.

Similarly, the interest for mulibody models has grown in the recent years in several
fields of the industry, such as automotive, biomechanics or machinery. Through multibody
dynamics, a system can be modeled with high accuracy [3], at expenses of a moderate
computational cost. Recently, multibody models have started to be used in combination
with Kalman filters for estimation. Such is the case of virtual sensing in automotive
applications [4]. However, the assembly between a multibody model and a Kalman filter is
not trivial due to the high non-linearities of multibody models.

The first approach presented in the literature is [5], where an EKF was combined with
a simple mechanism. However, the complexity of the implementation and the computa-
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tional cost limits its application. Several approaches have been presented later on [6–9].
In [7], an UKF based on a multibody model is proposed, reducing the complexity of the
implementation. However, it entails high computational cost: the estimations are based
on a set of sample points propagated through the model. Hence, it requires to simulate
as many multibody models as sample points each time step. From the work presented
in [8], a new Kalman filter known as error-state extended Kalman filter (errorEKF) shows
accurate results while reducing the computational cost. In addition, the filter entails low
coupling with the model. Thus, the implementation of any model becomes simpler. The
errorEKF has been improved in more recent works, extending its estimations to inputs [9]
and parameters [10].

The Kalman filter, besides being developed for linear systems, assumes that the noise
of the measurements and the process (or system) are zero-mean white Gaussian with
known covariance matrices [1]. These assumptions are hard to satisfy in real scenarios. The
use of wrong statistics in the design of the filter can lead to large estimation errors or even
a divergence in the filter [11]. In practice, these matrices are estimated through a tedious
trial-and-error procedure. This is especially critical for the process noise covariance matrix
(PNCM), since it is not possible to determine the accuracy of the model. Regarding the
measurement noise covariance matrix (MNCM), each sensor is characterized and, hence,
an initial value can be approximated.

However, even though a proper value of the noise covariance matrices is found, they
remain constant reducing the robustness of the filter [10,12]. In some scenarios, the system
can experiment a noticeable change during a particular maneuver. This change can affect
the model accuracy and, thus, invalidate the initial noise covariances. This explains the
increasing interest on developing methods for noise covariance matrices estimation [13].
These methods are usually known as Adaptive Kalman filters (AKF).

Adaptive Kalman filters can be divided in two major approaches: multiple-model
based adaptive estimation (MMAE) and innovation-based adaptive estimation (IAE). Both
approaches share the same concept of using the new information of the innovation sequence
of the filter (difference between real and estimated measurements) [14]. MMAE methods
implement a bank of several different models and compute the probability for each model
to be the true system model given the measurement sequence and under the assumption
that one of the models in the bank is the correct one. IAE performs the adaptation based
directly on the innovation sequence, using the fact that the innovation sequence is white
noise if the filter has the right values of the covariance matrices [15].

Multibody models can be computationally expensive and achieving real-time perfor-
mance in practical applications is a challenge [16]. Hence, executing several models in
parallel following the MMAE approach would compromise real-time performance and,
thus, the viability of the solution.

Focusing on the IAE, there are many alternatives presented in the literature. In [14], an
approach based on the maximum likelihood criteria (ML) is proposed to estimate both the
PNCM and MNCM for inertial navigation, where Kalman filters are employed to overcome
the lack of GPS signals in certain areas. The proposed approach is also compared against
conventional Kalman filters. The ML aims to maximize the probability that a set of data (i.e.,
innovation) is observed for a given a parameter (i.e., noise covariance matrices). The ML
depends on a window of past innovation data. If the sample data grows without bound,
the estimate converges to the true value of the covariance matrices. As a counterpart, the
ML could be biased for small sample sizes (over-trained). This issue is addressed in [17] by
combining the ML with a fuzzy control in order to select only the viable satellites for the
estimation, removing outlier data from the innovation sequence.

In [18], an IAE adaptive Kalman filter is also proposed for sensor fusion in INS/GPS
navigation. The algorithm is equivalent to the maximum likelihood criteria. Combining the
GPS with an IMU, the position can be accurately tracked, even in environments without
GPS signal.
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For spacecraft navigation, in [12], an AKF based on ML combined with fuzzy logic
is proposed. The fuzzy logic is based on the discrepancy between the estimated covari-
ance and the theoretical covariance bounds. The use of fuzzy logic helped to reduce the
computational cost. However, the use of fuzzy logic incremented the estimation errors.

In [19], a Sage-Husa (SH) filter is combined with a Kalman filter to obtain the angular
velocities of a vehicle from an inertial navigation system which uses only accelerometers.
The SH algorithm is equivalent to those resulting from maximum likelihood estimation [20].
It is based on the maximum a posterior probability (MAP), which maximizes the probability
of a parameter for a given set of data. It means that the likelihood is weighted by the prior
information. In practice, it can be seen as applying weights in the ML estimates, giving
more relevance to the most recent estimations. Sage-Husa algorithm is an alternative to the
ML when there are not enough data available. However, it cannot estimate the PNCM and
MNCM simultaneously without causing divergence in the estimations [21].

The SH algorithm is also used with modifications in [22] to estimate the MNCM of an
UKF for state estimation in a vehicle. A similar approach is followed in [21], where a robust
UKF is complemented with the SH algorithm for estimating the PNCM for autonomous
underwater vehicle acoustic navigation.

Another approach for adaptive Kalman filtering is known as Variational Bayesian (VB).
While ML and MAP give a fixed value for the noise covariance matrices (point estimators),
the VB gives a probability density function. The advantage of this method is that it
mitigates the effect of over-trained filters [23]. As an example, the VB is applied in [24] in
order to improve the measurements of inertial navigation systems. It shows robustness
against anomalous measurements. As a counterpart, the VB assumes that the PNCM is
accurately known. Thus, it can be only used for estimating the states and the MNCM [25].
This is an important drawback since, as reflected in [26,27], the filter performance will
decrease with the uncertainties of the PNCM. The VB approach is extended in [26,28]
including the calculation of the predicted error covariance matrix instead of the process
covariance matrix seeking for higher accuracy. In the same way, in [29], the VB approach
is enhanced by its combination with a Sage-Husa algorithm for the PNCM estimation
achieving satisfactory results.

The aim of this work is to explore the use of adaptive algorithms with multibody
based Kalman filters, solving the actual limitation of the unknown statistics of the noise
covariance matrices. For that purpose, a Kalman filter based on multibody models has to
be combined with an adaptive method. This implies to study how to combine the different
equations involved, performing the required modifications. Most of the research made
in adaptive Kalman filtering is related to navigation applications. However, multibody
models present strong non-linearities that can affect the performance of the adaptive filters.
To the authors’ knowledge, adaptive Kalman filtering is a technique that has never been
applied to multibody-based estimation and, at the state of the art of Kalman filtering in
this field, it is the next natural step to be taken.

As novelty, this work presents a state and input estimator for multibody models,
which includes an adaptive methodology in order to estimate the noise covariance matrices.
The lack of knowledge on the statistics of the system is an actual limitation for industrial
applications of multibody-based estimation. That is the case, for example, of automotive
applications, where the maneuvers are continuously changing and adjusting the noise
covariance matrices following a trial-and-error procedure is not viable. Following the
presented approach, this limitation can be overcome, and the use of estimation based on
multibody models can be increased in real industrial applications.

2. Materials and Methods

This work continues the development of an accurate and efficient Kalman filter for
multibody models. Starting from the work presented in [9], the errorEKF with force
estimation is extended with adaptive methods improving its accuracy and robustness.
The errorEKF with force estimation is one of the best options in terms of accuracy and
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computational efficiency for multibody-based Kalman filtering. Regarding the adaptive
method, whereas the Variational Bayesian can only be used for estimating the measurement
noise covariance matrix, the Sage-Husa and maximum likelihood can estimate the process
and measurement noise covariance matrices. The former has shown lack of stability if
both matrices are estimated simultaneously. Hence, the filter of this work combines the
maximum likelihood method with the errorEKF with force estimation.

The adaptive techniques used in this work are evaluated when applied to mechanisms
described by multibody models. In order to present a fair comparison with the previous
version of the filter, the mechanisms employed in this work are the same as in [9]: a four bar
linkage (Figure 1a) and a five bar linkage (Figure 1b). The dimensions of both mechanisms
are summarized in Tables 1 and 2.

θ

(a) Four-bar linkage.

θ1
θ2

(b) Five-bar linkage.

Figure 1. Mechanisms employed in this work.

Table 1. Properties of the four-bar linkage.

Crank Coupler Rocker Ground Element

Mass (kg) 2 8 5 -
Length (m) 2 8 5 10

Table 2. Properties of the five-bar linkage.

Left Crank Left Coupler Right Coupler Right Crank
Ground
Element

Mass (kg) 3 1 2 3 -
Length (m) 0.5 2.062 3.202 0.5 3

2.1. Multibody Modeling

The input and state observer that is used in this work, the errorEKF with force
estimation, can be applied to any multibody formulation and integrator [8]. This is one of
its main advantages, since it reduces the complexity of implementing estimators based on
multibody models (MBS). For example, in [9], an augmented Lagrangian formulation of
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index 3 (ALI3P) using natural coordinates is employed. Meanwhile, in [10], the multibody
model is based on a semi-recursive method using relative coordinates.

In this work, the ALI3P formulation is selected following the work in [9]. First
presented in [30], this formulation is widely used in multibody applications due to its
efficiency and robustness [16,31–34]. The formulation is briefly described next. The reader
is referred to [30,31,35] for further details. The multibody models are simulated using
MBDE, a MATLAB® Open Source toolbox (See https://github.com/MBDS/mbde-matlab
(accessed on 12 May 2021)).

The dynamics of a multibody system can be described by an index-3 augmented
Lagrangian formulation as,

M
..
q +Φq

TαΦ +Φq
Tλ∗ = Q (1)

being M the mass matrix,
..
q the accelerations of the natural coordinates, Φ the constraints

vector, Φq the Jacobian matrix of the constraint equations with respect to the generalized
coordinates q, α the penalty factor, Q the vector of generalized forces, and λ∗ the vector of
Lagrange multipliers obtained through the following iteration process [35],

λ∗i+1 = λ∗i + αΦi+1, i = 0, 1, 2 . . . (2)

where i is the index of the iteration.
It should be noted that this method directly includes the constraint equations at posi-

tion level as a dynamical system, penalized by a large factor, α. The larger the penalty factor,
the better the constraints will be achieved. In order to avoid numerical ill conditioning, a
factor between 107 and 109 (depending on the mass of the system) gives excellent results
for double arithmetic [3].

In order to integrate Equation (1), the implicit single-step trapezoidal rule has been
adopted. The corresponding difference equations in velocities and accelerations can be
derived as,

.
qn+1 =

2
Δt

qn+1 +
.
q
∗
n;

.
q
∗
n = −

(
2

Δt
qn +

.
qn

)
(3)

..
qn+1 =

4
Δt2 qn+1 +

.̂.
q
∗
n;

.̂.
q
∗
n = −

(
4

Δt2 qn +
4

Δt
.
qn +

..
qn

)
(4)

where Δt is the time-step. Introducing the previous equations in Equation (1) leads to a
nonlinear system of equations, f, in which the positions at time-step n+ 1 are the unknowns.
Hence,

f(qn+1) = 0 (5)

Since Equation (5) is a nonlinear system of algebraic equations, the Newton–Raphson
iteration can be used to find a solution. The residual vector is,

f(q) =
Δt2

4
(M

..
q +Φq

TαΦ +Φq
Tλ∗ − Q) (6)

and the approximated tangent matrix,

∂f(q)

∂q
= M +

Δt
2

C +
Δt2

4

(
Φq

TαΦq + K̄
)

(7)

where K̄ and C represent the contribution of damping and elastic forces of the system.
After converging to a solution, the positions satisfy the equations of motion and the

constraint conditions, Φ = 0. However, there is no guarantee on satisfying the constraint
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equations at velocity,
.
Φ = 0, and acceleration level,

..
Φ = 0, since they were not imposed.

To overcome this issue, the velocities and accelerations are projected,

∂f(q)

∂q

.
q =

[
M +

Δt
2

C +
Δt2

4
K̄

]
.̃
q − Δt2

4
Φq

TαΦt (8)

∂f(q)

∂q

..
q =

[
M +

Δt
2

C +
Δt2

4
K̄

]
.̃.
q − Δt2

4
Φq

Tα
( .
Φq

.
q +

.
Φt

)
(9)

where
.̃
q and

.̃.
q are the velocities and accelerations obtained from the integration process,

i.e., non-compliant with the constraints equations.

2.2. Adaptive Error-State Extended Kalman Filter with Force Estimation (AerrorEKF-FE)

The errorEKF with force estimation is based on indirect estimation, also known as
error-state estimation. It combines the efficiency of an EKF filter with the easy integration
of the dynamical system in the UKF filters [36]. The coupling between the filter and model
is limited to share information regarding the states, which are the error in the kinematics
of the model. The multibody model can be used without modifications and, thus, any
formulation or integrator can be employed.

The diagram of Figure 2 illustrates the procedure followed by the adaptive errorEKF
with force estimation for a time step k. The method starts integrating the multibody equa-
tions, obtaining the predicted coordinates qMBS, velocities

.
qMBS and accelerations

..
qMBS.

These coordinates are later used to obtain the virtual measurements h(qMBS,
.
qMBS,

..
qMBS).

Later, the equations of the filter are used to perform the estimation.

MBS

H

+ EKF

+

ML

EKF

ML

q+
k−1,

.
q
+
k−1,

..
q
+
k−1, Q+

k−1 q−
k ,

.
q
−
k ,

..
q
−
k , Q−

k

-
Sensors +

x̂−k = 0

Σ̂P−
k , Σ̂S−

k

MBS errors (x̂+k )

Innovation sequence

q+
k ,

.
q
+
k ,

..
q
+
k , Q+

k

Σ̂P+
k , Σ̂S+

k

Figure 2. Simplified flow diagram of a time step of the adaptive errorEKF with force estimation. MBS
refers to the multibody system, whose output is the predicted position, velocities and accelerations
of the system. H is the observation matrix, employed to obtain the virtual measurements, which
are compared with the measurements from the sensors. Σ̂P and Σ̂S are the PNCM and MNCM,
respectively, where the superscripts − and + refer to the a priori and a posteriori estimations. EKF
represents the application of the extended Kalman filter equations, whose outputs are the estimated
errors in the predicted state vector (MBS errors). ML refers to maximum likelihood and is where the
noise covariance matrices are estimated.

2.2.1. State and Input Estimation

For estimating the states and inputs of the system, the state vector consists in the error
in position, velocity and acceleration of the degrees of freedom of the mechanism, ensuring
a certain level of independence within the states. Hence,

xT =
[
ΔzT, Δ

.
z

T, Δ
..
z

T
]

(10)
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where Δz, Δ
.
z, Δ

..
z are the errors in position, velocity and acceleration of the independent

coordinates (coincident with the degrees of freedom), respectively, such that,

z = zMBS + Δz (11)
.
z =

.
zMBS + Δ

.
z (12)

..
z =

..
zMBS + Δ

..
z (13)

being zMBS,
.
zMBS,

..
zMBS the virtual positions, velocities and accelerations of the degrees

of freedom (i.e., the coordinates predicted by the multibody model), and z,
.
z,

..
z the real

positions, velocities and accelerations of the degrees of freedom of the mechanism. It
should be noted that estimating the accelerations is closely related with the estimation of
the forces, as can be seen from Equations (22)–(24).

Combining the information from the real and virtual measurements into the Kalman
filter, the state of the multibody model is corrected. Thus, the expected error for the next
time step is null. As a consequence, the propagation phase takes the form of,

x̂−k = 0 (14)

P−
k = fxk−1P+

k−1fx
T
k−1 + Σ̂P+

k−1 (15)

where P is the covariance matrix of the estimation error, fx is the Jacobian matrix of the
transition model and Σ̂P is the estimated covariance matrix of the plant or process (i.e., the
multibody model), referred as PNCM. Note that since the filter is adaptive, the value of Σ̂P

is estimated each time step. For the propagation phase, the best estimation of the Σ̂P is the
one obtained in the previous time step.

Equations (14) and (15) are equivalent to the equations employed in the discrete
extended Kalman filter (DEKF) [2,37]. Following [9], the Jacobian matrix of the transition
model can be derived through a forward Euler integrator of the states and a random walk
for modeling the acceleration error,

fx =

⎡
⎢⎢⎢⎢⎢⎣

I + 1
2

∂Δ
..
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∂z Δt2 IΔt + 1
2
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.
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Δt2 1
2 IΔt2

∂Δ
..
z

∂z Δt I + ∂Δ
..
z

∂
.
z

Δt IΔt

0 0 I

⎤
⎥⎥⎥⎥⎥⎦ (16)

where the terms ∂Δ
..
z

∂z and ∂Δ
..
z

∂
.
z

reflect the effect of the acceleration error through the force
models of the multibody model. Deriving expressions for these terms is not straightforward
and is out of the scope of this work. The reader is referred to [9,38] for a comprehensive
explanation on how to obtain these terms.

Following the equations defined for the DEKF [2,37], the corrections can be propagated
through the states obtaining the a posteriori state vector, x̂+, yielding,

yk = ok − h(qMBS,
.
qMBS,

..
qMBS) (17)

Σk = hxkP−
k hx

T
k + Σ̂S+

k−1 (18)

Kk = P−
k hx

T
k Σ−1

k (19)

x̂+k = 0 + Kkyk (20)

P+
k = (I − Kkhxk)P

−
k (21)

being yk the innovation sequence, ok the measurements, Σk the innovation covariance
matrix, Kk the Kalman gain, and Σ̂S the covariance matrix of the sensors or measurements
(MNCM). Similarly to Σ̂P in Equation (15), Σ̂S can vary within time steps. Hence, Σ̂S+

k−1 is
the more accurate value for propagating the corrections. The state vector and covariance
matrix are estimated in Equations (20) and (21), respectively.

185



Sensors 2021, 21, 5241

From the a posteriori state vector, x̂+, and through Equation (13), the estimated position
ẑ, velocities

.̂
z and accelerations

.̂.
z for the time step k are obtained. Since the model relies on

the set of dependent coordinates, it is required to compute the errors in these coordinates.
Projecting the independent coordinates over the constraints manifold, the dependent
coordinates can be obtained as stated in [9].

After correcting the states of the model, the forces (or inputs) can be estimated. The
error in forces can be seen as the forces required to avoid the error in accelerations, which
is referred as ΔQ. Since (in general) there are more dependent coordinates than degrees of
freedom, there are infinite force combinations producing the same effect. Hence, depending
on the application, different criteria should be considered in order to find a proper force
distribution [10]. A common solution, valid for simple mechanisms, is to assume that the
unknown forces are applied to the degrees of freedom. Therefore,

ΔQ
q
k = 0 (22)

ΔQz
k = ΔQz

k−1 + M̄Δ
.̂.
z (23)

ΔQ =
[
(ΔQz)T (ΔQq)T

]T
(24)

being ΔQq and ΔQz the force correction acting on the dependent and independent coordi-
nates (equivalent to the degrees of freedom), respectively.

2.2.2. Process and Measurement Covariance Matrices Estimation

As reflected in Section 1, knowing the covariance matrices of the process and mea-
surements noises is critical for a proper behavior of the filter in terms of accuracy and
robustness. For the particular case of multibody models, the PNCM is the most critical.
The PNCM is completely unknown and can vary depending on the maneuver due to, for
example, external perturbations which are not modeled. On the other hand, the MNCM
can be approximated by the information provided by the sensor manufacturer. In addition,
fluctuations of this noise is not expected within maneuvers. In order to address this issue, in
this work, the previous errorEKF with force estimation is extended with adaptive strategies
for the PNCM. The effect of a proper estimation of the MNCM is also addressed.

Following the work presented in [14], through the maximum likelihood technique, the
PNCM and MNCM can be estimated. The ML has the attractive property of uniqueness
and consistency of the solution. This ensures, in a probabilistic sense, a convergence to the
true value of the covariance matrices. However, the ML relies on a sliding window of the
innovation sequence, whose size directly affects its performance: small sample sizes would
lead to biased estimations.

In addition, the solution proposed in [14] is developed for navigation purposes. It
assumes that the filter transition matrix, fx, and the design matrix, h, are time invariant.
This is not true when using the errorEKF. Thus, the algorithm should be adapted for the
use-case of this work.

The detailed procedure for estimating the PNCM and MNCM through the ML method
is presented in [14]. Before presenting the method, it should be noted the difference
between probability and likelihood. Probability refers to the chances of an event to happen
based on the statistical distribution of some data. Likelihood corresponds to finding the
distribution that fits best to a given set of data.

The ML estimation aims to solve the question of, given the observed data, which
are the model parameters that maximize the likelihood of the observed data occurring.
The likelihood function can be defined as L(α|Z), where α are the parameters and Z the
observed data. In innovation-based adaptive Kalman filtering, the parameters are the noise
covariance matrices, and the observed data corresponds to the innovation sequence. In
plain words, the ML estimates the noise covariance matrices searching for the values which
give the maximum probability of obtaining a particular innovation sequence.
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In order to calculate the likelihood, it is expressed as the probability of observing a
certain dataset under an unknown statistical distribution, that is P(Z|α). Hence, the target
is to find the value of α, which maximizes P(Z|α). If the sets of observed data, N, are
independent, the likelihood of observing the data can be expressed as the product of the
probability of observing each data point individually yielding,

L(α|Z) =
N

∏
j=1

P(Zj|α) (25)

where α, for this particular case, corresponds to the elements of the noise covariance
matrices, and Z are the innovations of the errorEKF with force estimation, y. Regarding
N
∏
j=1

(·), it implies the product of the full set of innovations. However, storing the entire set

of past data is not viable for online estimation. Thus, a slide window is defined so that the
filter only processes a fixed number of past events.

Assuming that the innovation sequence is Gaussian distributed, the likelihood func-
tion can be expressed as,

L(α|y) =
N

∏
j=1

1√
(2π)m|Σj|

exp− 1
2 yT

j Σ−1
j yj (26)

being y the innovation sequence, Σ the covariance matrix, m the number of measurements
per time step, | · | the determinant operator, and exp the natural base.

The value of α maximizing the likelihood can be obtained by deriving the likelihood
function (Equation (25)) with respect to α and setting it to zero. However, differentiate
Equation (25) is difficult. As an alternative, Equation (25) is simplified by taking the natural
logarithm of the equation yielding,

L(α|y) = −1
2

k

∑
j=j0

[
ln|Σj|+ yT

j Σ−1
j yj + cj

]
(27)

where cj is a constant term independent of the adaptive parameters, α. Maximizing the
previous equation is equivalent to minimizing its negative version. Neglecting the constant
terms, the maximum likelihood condition can be derived,

k

∑
j=j0

ln|Σj|+
k

∑
j=j0

yT
j Σ−1

j yj = min (28)

where k is the time step in which the covariance matrix is estimated and j is the counter
inside the estimating window. Equation (28) aims at finding the covariance matrix, which
results in the smallest error norm, being complementary to the state estimation.

As stated before, the solution for Equation (28) can be constructed by taking its deriva-
tive with respect to the adaptation parameters and setting the results to zero. This yields,

k

∑
j=j0

[
tr

{
Σ−1

j

∂ΣS
j

∂αk

}
− yjΣ

−1
j

∂ΣS
j

∂αk
Σ−1

j yT
j

]
= 0 (29)

In addition, using Equations (15) and (18), the covariance matrix, Σk, can be replaced
by ΣP and ΣS. After some manipulation [14], the equation that maximizes the likelihood
function for the adaptation parameters can be expressed as,

k

∑
j=j0

tr

{[
Σ−1

j − Σ−1
j yjy

T
j Σ−1

j

][∂ΣS
j

∂αk
+ hx j

∂ΣP
j−1

∂αk
hx j

]}
= 0 (30)
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From Equation (30), expressions for ΣP and ΣS can be obtained independently. For
deriving the expression of ΣP, it is assumed that ΣS is known and independent of α (i.e.,
∂ΣP

j−1
∂αk

= 0). Under this assumption, the adaptation relies on ΣP. This means that the

covariance noises of the process are the adaptive parameters (i.e., α = σ2). Considering ΣP

as a diagonal matrix leads to

k

∑
j=j0

tr
{[

Σ−1
j − Σ−1

j yjy
T
j Σ−1

j

][
0 + hx jIhx j

]}
= 0 (31)

which can be reduced to

k

∑
j=j0

hx
T
j

[
Σ−1

j − Σ−1
j yjy

T
j Σ−1

j

]
hx j = 0 (32)

Introducing now the expressions of the errorEKF, the covariance matrix Σ can be
replaced by ΣP, leading to

Σ̂P
k =

1
N

k

∑
j=j0

[
ΔxjΔxT

j + P+
j − fx jP

+
j−1fx

T
j

]
(33)

where P+
j − fx jP

+
j−1fx

T
j covers the change in the covariances between time steps, and Δxk is

the state correction sequence. Since the state vector in the errorEKF, defined in Equation (10),
is the error in the variables, and the a priori state vector is null,

Δxk = x̂+k − 0 (34)

The same procedure can be followed to estimate the measurement noise covariance
matrix. Thus, assuming that ΣP is known and independent of α, and that ΣS is diagonal,

Σ̂S
k =

1
N

k

∑
j=j0

[
yjy

T
j − hx jP

−
j hx

T
j

]
(35)

Note that both estimations (Equations (33) and (35)) are considering that the transition
matrix, fx, and observation matrix, hx, are time-varying.

Furthermore, the shape of both matrices for the errorEKF with force estimation is
known. The information of the matrices shape is useful to help the algorithm to reach the
convergence. Thus, the estimated PNCM and MNCM are modified in order to adapt them
to their theoretical shape. The MNCM is a diagonal matrix composed by the covariance of
each sensor. The PNCM, according to [9], is

Σ̂P =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 diag
(
σ̂2)

⎤
⎥⎥⎥⎥⎥⎦ (36)

where diag
(
σ̂2) is a diagonal matrix containing the variance of all the components of the

discrete plant noise at acceleration level.
A last consideration is that the covariance matrices must be semi-definite positive.

With this algorithm, this cannot be guaranteed. Having a negative definite matrix would
lead the filter to failure. To ensure the semi-definite positiveness of the matrices, the
negative values are set to their absolute value [39].
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2.3. Methods

All the experiments of this work are performed in a simulation environment in
MATLAB®, using the Open Source toolbox MBDE (See https://github.com/MBDS/mbde-
matlab (accessed on 12 May 2021)). The simulations are executed in a single core of a
PC with an Intel Core i5 at 3.50 GHz and 8 Gb of RAM. Since there is not a physical
prototype, three multibody models of each mechanism are employed in order to replicate
a real scenario through simulation. All the simulations are launched with a time step of
5 milliseconds, that is a frequency of 200 Hz. They are detailed hereafter:

• Real mechanism: This model represents the real version of the mechanism, providing
the ground truth. It is equivalent to the physical mechanism. The sensor measurements
are obtained from this model. The sensor data is gathered from the kinematics of
the real mechanism. Since the sensor data is obtained from a simulation, it is required
to add white noise to the simulated measurements in order to represent the noise
properties of real sensors.

• Model: This model represents the modeling of the real mechanism. The model can be
affected by several uncertainties. Even though multibody modeling can represent
with high accuracy a real mechanism, it is always subjected to modeling errors. While
the geometry of a system can be accurately determined, the force models present
a high level of uncertainty. Hence, this model is modified, creating a discrepancy
between model and real mechanism. It should be mentioned that the errors in the
mass or the mass distribution will lead to a similar accuracy level regarding kinematics
magnitudes, since both force and mass errors result in acceleration errors. In addition,
while the mass usually remains constant, force models are prone to change during a
maneuver. Thus, it is of interest to test the estimator under errors in force models. The
modeling error introduced is of 1 m/s2 in gravity acceleration. In addition, the initial
value of the crank angle has an offset of π/16 rad.

• Observer: The estimations are computed based on this model. Regarding the modeling,
it is the same as the model. The difference is that it is combined with the filter. Thus, its
motion and dynamics are corrected with the information of the sensors installed on
the real mechanism.

For the estimation, different sensors are considered. Although there are multiple
possible configurations, for a reliable comparative with the results of [9], the same four
combinations are considered. The four-bar and five-bar linkage share the same config-
urations for the sensors, duplicating the number of sensors in the case of the five-bar
linkage, since it has two degrees of freedom. The sensor models are provided in [9]. The
characteristics of each sensor are presented in Table 3. They are obtained from the technical
data sheet of similar sensors. The four considered configurations are listed next:

• Encoder on the crank for measuring the crank angle, which is the degree of freedom
(Figure 3a).

• Gyroscope on the crank for measuring the angular rates (Figure 3b).
• Gyroscope in the coupler of the mechanism (Figure 3c).
• Pair of accelerometers at the end of the crank, in such a manner that there is one

sensitive axis parallel and another perpendicular to the crank (Figure 3d).

Table 3. Characteristics of the sensors considered in this work.

Encoder Gyroscope Accelerometers

Standard deviation 1.745 × 10−2 rad 9.839 × 10−4 rad/s 5.638 × 10−2 m/s2

Sampling frequency (Hz) 200 200 200
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Encoder

(a) Encoder.

Gyro

(b) Gyro on crank.

Gyro

(c) Gyro on coupler.

Accelerometers

(d) Accelerometers.

Figure 3. Sensor configurations considered in the four-bar linkage.

The performance of the proposed estimator is evaluated in terms of accuracy and
robustness. For the accuracy, a set of tests is executed under different initial noise covariance
matrices. It is expected that the filter converges to a similar accuracy level independently
from the initial noise covariance matrices, due to the adaptive equations. With respect to
the robustness, it is of interest that the estimator can cope with unexpected events during
the simulations without causing a divergence in the estimations.

The numerical results of each test are analyzed using two different metrics: the root-
mean square error (RMSE) and the confidence interval of the estimation errors. The RMSE
is used to measure the accuracy of the estimations in position, velocity, acceleration and
force acting in the degree of freedom of each mechanism. The RMSE can be obtained
following Equation (37).

RMSE =

√
∑N

i=0(Virtuali − Reali)2

N
(37)

being N the number of samples gathered during the simulation. Virtual refers to the
estimated value of the variable and Real to the reference value obtained from the real
mechanism.

The confidence intervals of the errors give a different insight with respect to the RMSE
on the accuracy of the estimator. For being reliable, the error of the estimations must be
inside the confidence interval. Thus, the confidence interval of the estimation errors in
position, velocity and acceleration are also provided. A confidence interval is calculated as
a function of the standard deviation of a variable, which is related to the diagonal elements
of the covariance matrix, P (Equation (21)). In this work, a confidence interval of 95% is
selected. It can be calculated through Equation (38).

CI = Ē ± 1.96
√

σi (38)

where Ē is the mean estimation error of the ith variable and
√

σi the standard deviation of
the ith variable.
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3. Results

To asses the performance of the proposed adaptive Kalman filter, different tests are
launched. During the first test, the mechanisms are in the vertical plane and they are
only affected by the gravity force. A batch of tests is executed under these conditions for
different initial values of the PNCM. The results of each simulation are compared against
the results obtained from the conventional errorEKF with force estimation. In a second test,
the mechanisms are modified with the addition of a torsional spring in the crank. During
the simulation, the spring is removed from the real mechanism, simulating a failure on a real
machine. The AerrorEKF-FE is expected to overcome this new modeling error (together
with the error in the gravity acceleration and initial position) in the observer and adapt the
covariance matrices to the new situation.

The simulations are executed with a time step of 5 milliseconds, that is a frequency
of 200 Hz. The measurements are gathered at 200 Hz. Hence, there is one measurement
available at each time step. The errors introduced in the model for each test are of 1 m/s2

in gravity acceleration and of an offset in the initial value of the crank angle π/16 rad. In
addition, for testing the robustness, a torsional spring is introduced in the crank. During
the simulation, this spring is removed only from the real mechanism. The observer should
detect this event through the sensor measurements and perform the required corrections.

3.1. Accuracy Test

For testing the convergence of the adaptive filter, different initial values of the PNCM
are selected. While the MNCM can be approximated by testing the sensors, an initial value
for the process noise is more difficult to obtain. Due to this inconvenience, it is of interest
to test the robustness of the proposed filter under different initial values of the PNCM.
The results are compared with the ones obtained from the errorEKF-FE. This would show
the error reduction when using the AerrorEKF-FE if the initial PNCM is not close to the
true value.

Following Equation (36), for the four-bar linkage, only one value is required. For the
five-bar linkage, since it has two degrees of freedom, two elements of the PNCM matrix
should be instantiated. For simplicity, both elements are set to the same value. The different
initial values are summarized in Table 4.

Table 4. Initial values of the PNCM.

Test 1 2 3 4 5 6

σ2
0 0 0.0001 0.0023 0.1 1 10

Note that the initial values of both noise covariance matrices are used for the errorEKF-
FE and AerrorEKF-FE. For the errorEKF-FE, these values are constant during the simulation,
since it assumes that the PNCM is constant. Meanwhile, for the AerrorEKF-FE, these are
the initial values of the PNCM, which are modified by the adaptive method. Hence, a total
of six simulations for each sensor configuration are launched for each filter in order to
compare their performance.

From the initial tests, an undesired behavior is detected. If both the PNCM and
MNCM are estimated at the same time, the filter shows a trend to diverge. In Figure 4, the
evolution of the estimated PNCM in the four-bar linkage is represented and compared
with its evolution when the MNCM is not included in the estimation. Except for the case of
the accelerometers, there is a trend to a continuous growth of the PNCM. This implies that
the filter is reducing its trust on the model in exchange of the measurements.

The different behavior within configuration relies on the nature of the sensors. In the
scenarios without accelerometers, there is a trend of divergence in the acceleration error.
In addition, when using only an encoder, both the velocity and acceleration error diverge.
Once that the estimator detects that the error is increasing through the innovation sequence,
it starts to reduce the confidence in the model and trusting more in the sensors. However,
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correcting the acceleration error from measurements in position or velocity is not accurate.
Hence, the error keeps growing causing the filter to diverge. At some point, this issue will
lead to a failure of the filter. This, together with the non-linearities of the mechanisms, can
result in unpredictable behaviors as the case of the gyroscope in the crank. Hence, for the
rest of the experiments, only the PNCM is estimated.
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Figure 4. Estimated PNCM element in the four-bar linkage test for the case of estimating PNCM and
MNCM simultaneously and estimating only the PNCM.

Regarding the size of the sliding window for the innovation sequence, it should be
noted that a large window leads to low mean errors in smooth maneuvers. However, a
large window also implies slow corrections to the covariance matrix. Hence, in some tests,
the delay in the correction can result in an error which is not corrected. This is the case
shown in Figure 5. It corresponds to a simulation of the four-bar linkage with a gyroscope
on the coupler and an initial process covariance noise of σ2

ii,0 = 10, and a window length of
100 time steps. The same maneuver is performed with a window length of 50 samples. The
innovation sequences are shown in Figure 5a. The value of the crank angle for each slide
window size is shown in Figure 5b.
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Figure 5. Comparison of innovation and crank angle for the simulation of the four-bar linkage with a
gyroscope on the coupler for different window lengths.
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As can be seen in Figure 5a, with a window length of 100 samples, there are a notable
difference between the estimated and measured angular rate of the coupler at particular
moments of the maneuvers. In these points of the maneuver, the mechanism reaches a
position where the crank and the rocker are parallel. In this situation, the possible velocities
of the coupler are limited. Thus, for an error in position, the error in velocity can be
incorrigible. This is a consequence of the non-linearity of the system.

Comparing the results between different window sizes, it is possible to appreciate
the effects of the samples considered for the estimation. With a large window, the filter
cannot correct with immediacy the error. Although it is able to correct the error in terms of
crank angular rate, as is shown in the innovation sequence, a permanent offset appears in
the position of the crank angle. Meanwhile, with a short window length, the influence of
previous values is reduced and the filter can perform the correction properly. Hence, the
tests of this work are executed with a window of 50 samples for the innovation sequence.

There is no a general criteria for selecting the length of this window. It should be
adjusted depending on the nature of the maneuver aiming to include only the relevant
information of past events. The main idea is to avoid the effect of past events which do not
have relation with the actual state of the mechanism. If a maneuver is close to steady state,
a large window can be selected. On the other hand, a short window length is adequate in
cases where the system changes.

In order to analyze the performance of the proposed adaptive filter, the RMSE for the
position, velocity, acceleration and force acting in the degree of freedom of each mechanism
is evaluated. From Figures 6–9, the RMSE between the AerrorEKF-FE and errorEKF-FE
are compared for the four-bar mechanism. Results show that the adaptive version of the
errorEKF-FE leads in most of the test to a lower error in all the measured magnitudes. In
fact, in some configurations, the RMSE is almost constant. This behavior is what could
be initially expected: despite the different initial PNCM, the AerrorEKF-FE is capable of
finding an optimal covariance that minimizes the errors in all tests.
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Figure 6. RMSE in the crank angle (position) provided by the observers for the four-bar linkage.
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Figure 7. RMSE in the crank angular rate (velocity) provided by the observers for the four-bar
linkage.

0 0.0001 0.0023 0.1 1 10

Initial PNCM values 2
ii,0

10-2

10-1

100

101

R
M

S
E

 (
ra

d/
s2 )

RMSE in crank angular acceleration (four-bar lkg)
Gyro in crank AerrorEKF-FE
Gyro in crank errorEKF-FE
Gyro in coupler AerrorEKF-FE
Gyro in coupler errorEKF-FE

Encoder AerrorEKF-FE
Encoder errorEKF-FE
Accelerometers AerrorEKF-FE
Accelerometers errorEKF-FE
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The confidence intervals of the error in position, velocity and acceleration are shown
in Figure 10 for one of the simulations. It can be seen how the errors converge to the
true value and that the confidence intervals are consistent with the evolution of the error.
Considering that the confidence interval is of 95%, it can be asserted that only the 5% of the
estimations will have an error higher than 1.96 times the standard deviation of the variable
(i.e., the square root of the diagonal elements of the covariance matrix, P, of Equation (21)).
These plots also provide useful information about the observability of the system. Since
the confidence interval is based on the PNCM elements, if the system were not observable,
it could be expected an unlimited growth of the covariance of the states.
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Figure 10. Error and confidence interval of the position, velocity and acceleration of the crank angle
in the configuration which considers a gyroscope on the coupler.

With respect to the five-bar linkage, a similar trend can be appreciated from
Figures 11–14. Except for the crank angle and angular rate when using gyroscopes in
couplers, the rest of the experiments show that the AerrorEFK-FE converges to accurate
solutions in every tested case. Thus, it is able to estimate the value of the PNCM which
minimizes the error.
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Figure 11. RMSE of the norm of the two crank angles (position) provided by the observers for the
five-bar linkage.
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Figure 12. RMSE of the norm of the two crank angular rates (velocity) provided by the observers for
the five-bar linkage.
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Figure 13. RMSE of the norm of the two crank angular accelerations provided by the observers for
the five-bar linkage.
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Figure 14. RMSE of the norm of the forces acting on the two cranks provided by the observers for the
five-bar linkage.
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3.2. Robustness Test

For evaluating the robustness of the filter, the four-bar linkage is equipped with a
torsional spring actuating over the crank angle. In order to replicate a failure, at 5 s, the
spring breaks. In this new scenario, the real mechanism continues the maneuver without
the spring, while the observer is still considering its existence for the dynamics. This test
is useful to analyze the response of the filter to unexpected changes. The observer is also
under the errors of previous tests: 1 m/s2 in gravity acceleration. In addition, the initial
value of the crank angle has an offset of π/16 rad.

The results in terms of force estimation are shown in Figure 15. The estimated force can
be understood as the torque, which would have to be applied to the crank to compensate
the errors. It is equivalent to the difference between the force applied in the real mechanism
and the model. It can be seen how, at the time of 5 s, the observer has to subtract the force
in the crank. Since there is no spring in the real mechanism, the observer needs to apply a
torque equal in magnitude but different in sign to the torque applied by its spring.
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Figure 15. Torque estimation for the four-bar linkage for the spring failure scenario. Obs refers to the
estimated torque and Ref refers to the theoretical value.

It can be seen how, except for the encoder configuration, the observer tracks the
reference values. In addition, the filter responses with immediacy to the spring failure.
This time response can be achieved by adjusting the innovation window length, seeking
for a compromise between accuracy and time response. For this case, the window length is
of 50 samples. Regarding the encoder configuration, the behavior is similar to what could
be appreciated in [9]. There is a delay in the estimation and the noise is noticeable. It can
be explained by the fact that obtaining acceleration from position information.

With respect to the other three configurations, the estimations present a reduced noise,
being the use of accelerometers the most accurate solution. The use of gyroscopes shows
a good behavior before the spring breaks. Once this event takes place, both tests show a
remarkable overshooting which is quickly corrected at expenses of higher noise. However,
in both cases, it can be appreciated how the noise is being reduced with time. This is in line
with what is shown in Figure 16.
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Figure 16. Error and confidence interval of the position, velocity and acceleration of the crank angle
in the configuration which considers a gyroscope on the coupler.

It can be seen how the confidence interval becomes wider when the spring breaks.
In terms of the PNCM, it means that the AerrorEKF-FE has detected the change in the
real mechanism. To address this new modeling error, the filter increases the values of the
PNCM giving more relevance to the sensor measurements. Once that the observer tracks
the new scenario of the real mechanism, the covariances are reduced together with the noise
of the estimations.

3.3. Computational Cost

For most of the industrial applications, it is required to achieve real-time performance.
In previous works, the errorEKF-FE has proven to be capable of running in real time
with complex multibody models [10]. Hence, it is of interest to analyze the increment in
computational cost derived by the presented adaptive procedure.

It is important to remark that this work is developed in MATLAB®, which is not
oriented to real-time applications. Hence, measuring the computation time of the algorithm
is not a fair test. However, since the errorEKF-FE and AerrorEKF-FE are executed under
the same conditions, a reference in the increment in computational cost can be derived. It
can be seen in Table 5. From the results, it can be concluded that the AerrorEKF requires
about the double of time than the error errorEKF-FE for computing the same simulation.

Table 5. Computational cost analysis of the AerrorEKF-FE. The simulations tested correspond to the
use of position sensors.

Simulated Time (s)
Computing Time (s)

errorEKF AerrorEKF

Four-bar linkage 10 1.5931 3.1955
Five-bar linkage 10 2.2551 4.7234

4. Discussion

From the presented results, it can be seen that the adaptive version of the errorEKF-FE
solves one of the main drawbacks of the filter: setting the values of the process noise
covariance matrix. The tests performed during this work show that, with independence of
the initial assumptions on the PNCM, the AerrorEKF-FE converge to an accurate solution.
As shown during the accuracy test, the AerrorEKF-FE is able to achieve a similar level of
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error in the estimations despite of the initial values of the PNCM. This allows to reduce
the development time of multibody-based Kalman filters, where the determination of
the statistics of the system is a tedious process. In addition, even though the maximum
likelihood method depends on a sliding window of the past innovation, the filter has
shown an acceptable response to sudden changes in the system. Through the simulation
of a sudden failure in the real mechanism, the robustness of the filter is tested. The results
show that the estimator is able to track the new situation and correct the new error with
accuracy, without compromising the convergence of the simulation.

It can also be concluded that, although the measurement noise covariance matrix
can also be estimated through the ML method, in this particular case it led to a filter
divergence in the absence of accelerometers. When the estimator detects an error, it starts
to rely on the corrections in the measurements instead of the model. However, through
sensors in position or velocity, the acceleration cannot be obtained with accuracy and hence,
the error cannot be corrected. This, together with the non-linearities of the model, leads
to a divergence of the filter. In addition, the estimation of the MNCM did not offer an
improvement of the estimations. However, as opposite from the PNCM, it is possible to
obtain an acceptable initial value for the MNCM after characterizing the sensors or through
the information provided by the manufacturer of each sensor.

The length of the sliding window for the innovation sequence is also an important
factor and one of the main limitations of the approach. A large window size can result
into wrong estimations in maneuvers with high variability. This is one of the known
disadvantages of the ML method, since there does not exist a general rule in order to select
the most suitable innovation window length. Algorithms such as Sage-Husa are focused
on minimizing the impact of the window length by giving different weights to the elements
of past events, giving higher weights to the more recent events.

Regarding the computational cost, the AerrorEKF-FE has lower efficiency than the
errorEKF-FE due to the adaptive procedure. Estimating the process noise covariance matrix
each time step entails an increment of the computations per time step, which is turned into
a noticeable increment of computational cost. This limitation can be critical in real-time
applications. It is necessary to test the computational cost of the method in each particular
application. The efficiency of the estimator not only depends on the algorithm, but on
the platform where it is going to be executed. This also implies to explore the possibility
of increasing the efficiency of the solution. Since the estimation of the noise covariance
matrices is independent from the state estimation each time step, the code execution can be
parallelized, increasing the algorithm efficiency and reducing the computational cost of
the approach.

5. Conclusions

This work presents an adaptive Kalman filter for state and input estimation based on
multibody models (AerrorEKF-FE). The aim is to accurately estimate the noise covariance
matrix of the estimator, which has shown to be a critical factor for accurate and robust
observer performance. The method is tested on two different planar mechanisms: a four-
bar linkage and a five-bar linkage. In addition, four different sensor configurations are
considered, increasing the general application of the proposed solution. Several tests are
presented in order to analyze the behavior of the filter in terms of accuracy and robustness.

The AerrorEKF-FE combines an error-state Kalman filter with an adaptive method
based on the maximum likelihood criteria. This adaptive technique, commonly used
for navigation estimation, has several assumptions which are not fulfilled in multibody
dynamics. Even though adaptive algorithms have the capacity of overcoming some of
the main difficulties of multibody based Kalman filtering, its application has never been
explored. In this work, the selected adaptive method is adjusted to fit with multibody
particularities, such as time-variant transition and observation matrices. Furthermore,
the estimated matrix should be adapted to the shape of the covariance matrix (if known),
increasing the accuracy of the observer.
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The first test evaluates the accuracy of the filter under different initial values of the
noise covariance matrix. The results are compared against the estimations obtained with
a non-adaptive version of the filter (errorEKF-FE). The results show an improvement
in accuracy with the use of adaptive techniques. In addition, it can be seen how the
adaptive method allows to achieve similar results in terms of accuracy in spite of the initial
assumption of the covariance noises.

In a second test, the robustness of the filter is studied through a simulation in which
an unexpected event changes the system. The filter shows a quick reaction and corrects
with accuracy the new error, without loosing the stability of the estimator.

The tests executed in this work and their results show the potential of adaptive
Kalman filtering for multibody based estimation. Determining the noise covariance matrix
(specially the noise of the process) in multibody based estimators is an actual limitation for
the general use of this techniques in multibody applications. Through adaptive estimation,
the uncertainties on the process noise covariance matrix can be solved and the robustness
and accuracy of the estimators can be increased and guaranteed during different scenarios.
However, this method also implies a reduction of the computational efficiency that should
be considered in real-time applications.

In future works, the proposed adaptive filter should be applied in systems of more
complexity, such as vehicle dynamics, where the state and input estimation is of high
interest. In addition, techniques for reducing the associated increment in computational
cost can be studied.
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Abstract: Sideslip angle is an important variable for understanding and monitoring vehicle dynamics,
but there is currently no inexpensive method for its direct measurement. Therefore, it is typically
estimated from proprioceptive sensors onboard using filtering methods from the family of the Kalman
filter. As a novel alternative, this work proposes modeling the problem directly as a graphical model
(factor graph), which can then be optimized using a variety of methods, such as whole-dataset batch
optimization for offline processing or fixed-lag smoothing for on-line operation. Experimental results
on real vehicle datasets validate the proposal, demonstrating a good agreement between estimated
and actual sideslip angle, showing similar performance to state-of-the-art methods but with a greater
potential for future extensions due to the more flexible mathematical framework. An open-source
implementation of the proposed framework has been made available online.

Keywords: vehicle dynamics estimation; sideslip angle estimation; factor graph; graphical models;
Kalman filtering

1. Introduction

A large body of research work has accumulated during the past three decades regard-
ing sideslip estimation, which is a fundamental feature of vehicle dynamics [1]. Despite its
central role, the direct measurement of sideslip angle over time is often impractical during
vehicle motion, for both technical and economic reasons. For instance, a cheap but few
practical solution is to use measures coming from the Global Positioning System (GPS)
that can provide the position of the receiver without any numerical integration and then
derive the velocity of the vehicle using Doppler measurements [2]. Nevertheless, GPS
receivers have issues such as temporary signal unavailability due to signal blocking by
trees, buildings, or urban canyons, as well as (typically) a much lower measuring rate
than other onboard sensors involved in vehicle dynamics control such as accelerometers
or gyroscopes. On the other hand, direct measurement of the vehicle sideslip angle can
be achieved by high-precision optical sensors, but they are sophisticated, still in an early
research and development (R&D) stage, and expensive for production vehicles [3].

For these reasons, sideslip angle estimation continues to pose a significant challenge
in vehicle dynamics research, attracting noticeable interest in both the academic and
industrial worlds [4–6]. Several methods have been developed and described throughout
the scientific literature which make use of different models and estimators. The most
common approach relies on model-based observers [7–11], which make use of a vehicle
reference model for state and parameter estimators. Different levels of sophistication can
be obtained in order to achieve a phenomenon description that is as accurate as possible.
One of the most common combinations that can be found in the literature is the bicycle
(single-track) model as an observer for a Kalman filter (KF). This arrangement allows the
estimation of states and parameters at the same time. For instance, in [12,13] a linear bicycle
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model is used in combination with an extended Kalman filter (EKF) for the estimation of
the sideslip angle and vehicle parameters at the same time. The former estimates lateral
velocity and vehicle mass by also correcting the bias of the gyroscope, while the latter
estimates the front and rear cornering stiffness and the sideslip angle directly as a dynamic
state. In [14], the same linear model is exploited but using a cubature Kalman filter (CKF)
as the estimator for obtaining the sideslip angle and other states from the input noisy
measurements (i.e., accelerations, vehicle longitudinal velocity, etc.). In [15], a combined
approach between kinematic and dynamic models is carried out, since the kinematic model
performs well during transient maneuvers but fails in steady-state conditions. Therefore,
the information provided by the kinematic formulation is exploited to update the single-
track model parameters (i.e., the tire cornering stiffness), while the dynamic state observer
is used in the nearly quasi-state condition. The steady-state or transient conditions are
discriminated via a fuzzy-logic procedure. Furthermore, the bicycle model can also be
coupled with nonlinear tire models, as in [16], where the authors attempt to estimate
the sideslip angle of a heavy-duty vehicle by using a rational tire model and an EKF
as the estimator. The study showed good estimation performance, but at the cost of an
overparametrized and complex model. On the other hand, four-contact models provide
a better description of vehicle dynamics, but obviously at the cost of a greater number of
parameters and an increase in the complexity of the systems. For instance, the authors
in [17] use an EKF applied to a four-contact vehicle model with a Dugoff tire model in
order to estimate the sideslip angle and the tire/road forces. The authors in [18] again use
a four-contact model, but with a semiphysical nonlinear tire model called “Unitire”, and
apply a reduced-order sliding mode observer (SMO), evaluating the performance of the
proposed method by means of simulation and experiments. In [19] the Magic Formula
(or Pacejka tire model [20]) is exploited, where a preliminary filtering on vertical forces is
performed via linear KF in order to estimate the roll angle and then an EKF is applied to
the four-contact vehicle model to achieve the sideslip angle. Again, the Magic Formula
with a four-contact vehicle model is used in [21], where a dual estimation scheme was
adopted: the sideslip angle and tire/road forces by means of a dual unscented Kalman
filter (UKF) algorithm and the Pacejka tire parameters by solving a nonlinear least squares
(LS) problem. However, the sophistication of these models might be unpractical in real
applications. To overcome this issue, some authors (e.g., [22]) rely on direct causality
equations without the need of any explicit tire model. In the cited research, different
estimators are developed, such as the standard EKF, the CKF, and particle filtering (PF),
and the results are evaluated using a vehicle model with 14 degrees of freedom (DOFs)
which performs standard maneuvers. Authors in [23] perform vehicle sideslip angle and
road bank angle estimation via a simple algebraic relationship in real time, based on two
online parameter identification techniques, combining a single-track model with roll and
tire slip models and force due to bank angle. Moreover, with the use of a lateral G sensor
signal and by including road bank angle effect, the front and rear cornering stiffness and
vehicle sideslip angle are identified, in the absence of any a priori knowledge of the road
bank angle. In order to completely overcome the need for a vehicle model of any kind
and its related complex set of parameters, different approaches based on artificial neural
networks (ANNs) [24–27] are now widely investigated, since they are suitable for modeling
complex systems using their ability to identify relationships from input–output data.

In this paper, we present a novel estimation technique grounded in factor graphs (FGs)
theory. To the best of our knowledge, this is the first time an FG-based observer is proposed
in the automotive field. An FG is one of the possible types of probabilistic graphical models
that can be used to describe the structure of an estimation problem [28,29]. Factor graphs
are bipartite graphs comprising two kinds of nodes: variable and factor nodes. Variable
nodes represent the unknown data to be estimated, while factors represent cost functions to
be minimized, modeling relationships between the variables. Each factor node is connected
to only those variables that appear in its cost function; this allows an FG to explicitly model
the key property of how sparse a problem is, depending on the connection pattern between
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its variables. As shown below, by applying this estimation approach to the classical linear
bicycle model, good estimation accuracy can be achieved even in the nonlinear regions
of the tire behavior compared to the celebrated Kalman filtering, while preserving the
inherent simplicity of the linear model and the use of few parameters (i.e., the front and
rear cornering stiffness).

The paper is organized as follows. In Section 2 the equations related to the linear
bicycle model are recalled and reorganized in order to directly obtain the sideslip angle.
Section 3 introduces the estimation problem with the use of FGs, applied to the case at
hand with details on its implementation. Results obtained with the proposed method are
evaluated by means of real data gathered in the Stanford database [30] in Section 4. Finally,
conclusions are drawn in Section 5.

2. Vehicle Dynamic Model

Lateral dynamics represents a basic challenge in vehicle behavior, because lateral
velocity is usually not directly measurable for practical and/or economic reasons. Nonethe-
less, it represents fundamental information, since it influences the entire vehicle dynamics,
especially the direction of motion. In fact, the total velocity of the vehicle center of gravity
(CoG) is the vectorial sum of the longitudinal and lateral velocities u and v, respectively.
Figure 1 shows the model used in this paper for dealing with the vehicle’s lateral behavior.
It is known as a “bicycle” or “single-track” model, and it is based on the following sim-
plifications [31]: equal internal and external dynamics so that the tires of the same axle
can be fused, leading to the model’s bicycle-like appearance; linear range of the tires, thus
lateral forces are a linear function of slip angles by means of a specific coefficient named
cornering stiffness; rear-wheel drive; negligible motion resistance; small-angle approxi-
mation to preserve the linearity of the model; constant longitudinal velocity u, which is
guaranteed within a small time-step Δt. This model is characterized by two degrees of
freedom (DoFs)—namely, the vehicle lateral velocity v and the yaw rate r. Hence, two
equations of motion are sufficient to fully describe its behavior over time:

v̇ = −
(Cf + Cr

mu

)
v −

(Cf l f − Crlr
mu

+ u
)

r +
Cf δ

m

ṙ = −
(Cf l f − Crlr

Jzu

)
v −

(
Cf l2

f + Crl2
r

Jzu

)
+

Cf l f δ

Jz
(1)

where m is the vehicle mass, Jz is the moment of inertia with respect to the yaw axis, Cf
and Cr are the front and rear cornering stiffness, respectively, l f and lr are respectively the
distance of the CoG from the front and rear axle, and δ is the front steering angle.

Usually, the sideslip angle β is of interest in the study of lateral dynamics, in place of
the lateral velocity v; therefore, one can consider as DoFs β and r in place of the couple v
and r. From Figure 1, the relation between v and β is the following:

β = arctan
( v

u

)
≈ v

u
(2)

where the approximation comes from the assumption of small angles, as stated above.
Therefore,

v = βu and v̇ = β̇u + β���
0

u̇ ≈ β̇u, (3)
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considering the constancy of u within each time-step Δt. The Equation (1) become:

β̇ = −
(Cf + Cr

mu

)
β −

(Cf l f − Crlr
mu2 + 1

)
r +

Cf δ

mu

ṙ = −
(Cf l f − Crlr

Jz

)
β −

(
Cf l2

f + Crl2
r

Jzu

)
+

Cf l f δ

Jz
(4)

By considering Equation (4), β and r are variables of the vehicle lateral dynamics and
the other terms are considered to be known parameters.

Figure 1. Single-track model.

It is worth noting that the yaw rate r can be directly measured by means of a ver-
tical gyroscope, while the sideslip angle β usually has to be estimated. Although β can
also be measured via GPS and Equation (2), this type of measurement is often unstable
and unreliable due to the presence of shady areas of the GPS signal, such as tunnels or
mountains. This leads to the need to indirectly estimate the sideslip angle. To achieve this
estimation, the lateral acceleration ay is considered as a further measurement. Both ay and
r are generally already available onboard common vehicles via the ESP system. Therefore,
the following set of measurements is here considered:

ϕ̇ = r

ay = v̇ + ur = u(β̇ + r) (5)

As a matter of practicality, Equations (4) and (5) in their continuous-time form need to
be converted into the following discrete-time representations, obtained from the forward
Euler integration with time step Δt = tk − tk−1:
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βk = βk−1 + Δt

[
−

Cf + Cr

muk−1
βk−1 −

(
Cf l f − Crlr

mu2
k−1

+ 1

)
rk−1 +

Cf δk−1

muk−1

]
(6)

rk = rk−1 + Δt

(
−

Cf l f − Crlr
Jz

βk−1 −
Cf l2

f + Crl2
r

Jzuk−1
rk−1 +

Cf l f δk−1

Jz

)
(7)

ϕ̇k = rkayk = −
Cf + Cr

m
βk −

Cf l f − Crlr
muk

rk +
Ckδk

m
(8)

3. Factor Graph for Vehicle Lateral Dynamics

3.1. The Estimation Problem

The discrete-time Equation (8) refer to the vehicle system and to the measurements
gathered for a correct estimate of the DoFs, in particular for the estimation of β, since r is
directly measured. The most common method followed throughout the literature relies
on a state-space representation of the above equations, writing two compacted matrix
equations: one for the propagation of the model over time and one relating to the measures,
both as a function of suitable state variables. Therefore, a recursive routine, often based
on Kalman filtering, is performed to achieve the correct estimation of the unknown state
variables [22].

In this paper, an alternative approach is suggested for the estimation of the unknown
variables, without passing through the state-space form—namely, the factor graphs (FGs),
a method belonging to the family of probabilistic graphical models. The objective is to
minimize given cost functions in each time step. The FG relative to the problem at hand
is displayed in Figure 2 for a generic time-step k. Each factor (filled circle in the figure)
is connected with the unknown variables involved in the cost function that the factor
minimizes. The cost functions come directly from Equation (8):

ek−1
β = βk − βk−1 − Δt

[
−

Cf + Cr

muk−1
βk−1 −

(
Cf l f − Crlr

mu2
k−1

+ 1

)
rk−1 +

Cf δk−1

muk−1

]
(9)

ek−1
r = rk − rk−1 − Δt

(
−

Cf l f − Crlr
Jz

βk−1 −
Cf l2

f + Crl2
r

Jzuk−1
rk−1 +

Cf l f δk−1

Jz

)
(10)

ek
ϕ̇ = ϕ̇ − rk (11)

ek
ay = ayk +

Cf + Cr

m
βk +

Cf l f − Crlr
muk

rk −
Cf δk

m
(12)

The cost functions ek−1
β and ek−1

r are handled, respectively, by the black and gray
ternary factors (Figure 2). On the other hand, the unary and binary factors are referred to
the measurements: the unary factor minimizes the difference between the actual yaw rate
ϕ̇ and the associated unknown r, whilst the binary factor minimizes the difference between
the actual lateral acceleration ay and the estimated one.

In principle, the value of the error functions (12) has to be equal to zero, but actually
an uncertainty is associated to each factor due to the stochastic nature of the estimation
problems. First, measurements are collected through the use of sensors with inherent
precision and accuracy. The uncertainties associated to the model include mathematical
approximations and uncertainties of the inputs u and δ.
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.   .   .

.   .   . .   .   .

.   .   .

Figure 2. Factor graph (FG) relative to the linear bicycle model.

Without loss of generality, with the assumption of a zero-mean Gaussian probability
density function (pdf) associated to the uncertainty in each factor, the minimization problem
can be reduced to a linear least squares problem. Since the unknown variables Xk to
minimize at the k-th instant are [βk rk]

T , Equation (12) can be written in compact matrix
form as: ⎡

⎢⎢⎣
eβ

er
eϕ̇

eay

⎤
⎥⎥⎦

k

= HkXk + Ckhk (13)

where

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(

1 − Δt
Cf + Cr

muk−1

)
Δt

(
Cf l f − Crlr

mu2
k−1

+ 1

)
1 0

Δt
Cf l f − Crlr

Jz
−

(
1 − Δt

Cf l2
f + Crl2

r

Jzuk−1

)
0 1

0 0 0 −1

0 0
Cf + Cr

m
Cf l f − Crlr

muk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ck = diag
( Cf

muk−1

Cf l f

Jz
0 −

Cf

m

)

hk = [δk−1 δk−1 0 δk]
T

By defining the state update vector as Δk := Xk − Xk−1, the next equation holds:

HkXk = HkΔk + HkXk−1 (14)
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The target is the estimation of the state update vector Δk via least squares. It is important to
remark that the problem at hand is linear; therefore, the following weighted least squares
(WLS) problem is set:

Δ̂ = argmin
Δ

∑
k

∥∥HkΔk − (zk − HkXk−1 − Ckhk)
∥∥2

Qk
(15)

where zk is the k-th vector of measures, Qk is the error covariance matrix and the paren-
thesis (zk − HkXk−1 − Ckhk) is the prediction error. The argument of the sum is the Maha-
lanobis norm:[

Q
− 1

2
k [HkΔk − (zk − HkXk−1 − Ckhk)]

]T[
Q

− 1
2

k [HkΔk − (zk − HkXk−1 − Ckhk)]

]
(16)

and from the following replacements:

Q
− 1

2
k Hk = Ak (17)

Q
− 1

2
k (zk − HkXk−1 − Ckhk) = bk (18)

one obtains the following simple least squares problem:

Δ̂ = argmin
Δ

∥∥AΔ − b
∥∥2

2 =
(

ATA
)−1

ATb (19)

where A is a large matrix collecting all matrices Ak. From the calculation of the state update
vector: X̂k = X̂k−1 + Δ̂k, where A, b, and Δ grow over time.

3.2. Implementation

Figure 3 displays the first three steps for the estimation problem at hand. The first step,
surrounded by the closed dashed black line, includes two prior factors (the unitary gray
ones) in place of the dynamic factors. The prior factors minimize the difference between
the first estimates and the initial guess of the unknown variables, enforcing known initial
conditions; therefore, a reliable initial guess is assumed, with values very close to the
correct ones. Their error functions are:

e0
pβ = β1 − β0 (20)

e0
pr = r1 − r0 (21)

The other steps follow the logic of the second step, contained in the closed dashed-
dotted gray line. This line encloses four unknown variables and four factors: two belonging
to the dynamic model and two for the measures. By looking at the first dynamic step
enclosed in the gray line, the dynamic model is managed by the ternary factors e1

β and e1
r

for the estimation of the sideslip angle and the yaw rate, respectively, while factors e2
ay and

e2
ϕ̇ introduce new measurements and minimize the difference between what is effectively

measured and the what is expected from the model.
In order to understand how to move from the graphical representation of factors to

the minimization problem, the A matrix and vectors b and Δ are shown for the first three
steps of Figure 3.
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Figure 3. FG relative to the first three steps of the estimation problem: the first step with priors is
shown in the black dashed window, and the generic step is shown in the gray dashed-dotted window,
with the involved factors.

In Table 1 matrix A and vector b are reported, and the Δ vector for the first three steps
is that in Equation (22). ⎡

⎢⎢⎢⎢⎢⎢⎣

Δ1
Δ2
Δ3
Δ4
Δ5
Δ6

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

β1 − β0
r1 − r0
β2 − β1
r2 − r1
β3 − β2
r3 − r2

⎤
⎥⎥⎥⎥⎥⎥⎦ (22)

Table 1. Matrix A and vector b for the first three steps of estimation.

Factor Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 b

p1 A1,1 b1
p2 A2,2 b2
m1 A3,2 b3
m2 A4,1 A4,2 b4
d1 A5,1 A5,2 A5,3 b5
d2 A6,1 A6,2 A6,4 b6
m3 A7,4 b7
m4 A8,3 A8,4 b8
d3 A9,3 A9,4 A9,5 b9
d4 A10,3 A10,4 A10,6 b10
m5 A11,6 b11
m6 A12,5 A12,6 b12

Matrix A in Table 1 is composed of blocks, each one corresponding to a single time-step
of the FG, as shown in Figure 3. The first block corresponds to the black dashed window
containing the two priors, two measures, and the first two unknown variables β1 and r1.
Hence, the whitened matrix A1 is a 4 × 2 matrix, where each row is associated to a specific
factor of Figure 3. The whitened matrix A2 is composed of a square matrix containing
the first and second blocks together, and so forth. Vectors b and Δ grow accordingly. It
is worth noting that the resulting matrix is a sparse matrix, with elements concentrated
near the diagonal. This characteristic can be exploited in the minimization problem of
Equation (19). For further details on the elements of matrix A and vector b in Table 1, the
interested reader can refer to the Appendix A.
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Matrix Qk collects the uncertainty associated to each factor. Therefore, Q
− 1

2
k contains

the weights of the factors, representing the tuning parameters of this estimation problem.
The greater the confidence given to a factor, the higher the values associated with its
weight and the lower the corresponding standard deviation. In this case, by looking at
Equation (12) it is clear that the factor associated to the yaw rate measurement has a large
weight, being precisely measured; therefore, the standard deviation associated to the error
of Equation (11) is very small. In this work, a value of σϕ̇ = 10−8 rad/s is assumed. Instead,
the error associated to the Equation (12) relative to the lateral acceleration measurement is
taken to be larger because a linear model is compared with the actual lateral acceleration;
therefore, a smaller weight is associated to that factor by assuming a σay = 10−2 m/s2.
Regarding the error relative to the model equations, a high weight is associated to the
corresponding factors for the well-known reliability of the model, with standard deviations
equal to σβ = 10−5 rad and σr = 10−4 rad/s for the sideslip angle model and yaw rate
model, respectively.

During vehicle motion, a large amount of data can be collected. Two estimator
implementations are explored: performing a batch estimation on the whole dataset, and a
fixed-lag-smoother. The latter considers a sliding window, which contains a fixed number
of samples M. Hence, the minimization is achieved on these samples and the most reliable
estimate is retained as a set of priors for the next estimation. The length of the sliding
window is a tuning parameter. In this work, a window length of M = 5 samples is
heuristically found to be a a good trade-off between computational speed and goodness
of estimation.

By looking at Figure 3, this window will be composed of one closed dashed black line
with the priors consisting of the previous estimate (or of the initial conditions for the first
window) and by five closed dashed-dotted gray lines, where the indices of every factor
change accordingly with the time step. Of course, the matrix A will be composed of six
blocks following the rationale of Table 1, and vectors b and Δ grow accordingly.

4. Results

This section collects results obtained with the proposed approach and evaluated by
means of real data acquired by an instrumented Ferrari 250 LM Berlinetta GT and made
publicly available by Center for Automotive Research at Stanford [30]. A global navigation
satellite system (GNSS)-aided inertial navigation system provides overall vehicle body
motion, resulting in centimeter-level position accuracy and direct slip-angle measurement.
The 2014 Targa Sixty-Six event served as the data collection venue that took place at the
Palm Beach International Raceway, a 3.3 km-long track featuring 10 turns and a 1 km
straight. Experiments have been carried out using an open-source implementation of
the proposed framework (Available online at https://github.com/MBDS/sideslip-angle-
vehicle-estimation (accessed on 9 August 2021)).

For a thorough understanding of the advantages of the proposed method, the results
obtained with the celebrated linear KF are first shown, which are well known in the
automotive field. For the sake of brevity, the KF equations and the state-space form of
the problem at hand is here omitted, since it is widespread in the literature (e.g., [13]).
Figure 4 shows the estimation of the vehicle sideslip angle β and yaw rate r obtained
via linear Kalman filtering during some laps of the Palm Beach International circuit. As
expected, the unknown state associated to the yaw rate is estimated very well, since it is
directly measured. In fact, only the sensor noise is filtered out, leading to an RMSE value of
0.27 deg/s. Note as well the relatively good estimation of β (RMSE of 0.87 deg) despite the
approximation of assuming a linearized model. This is explained by the relatively small
range of β values observed in practice and, in particular, for this race dataset.
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Figure 4. Vehicle sideslip angle β estimate at the top and yaw rate r at the bottom obtained by using
a KF-based observer applied to the linear bicycle model.

In Figure 5 the estimation of the sideslip angle β and yaw rate r is shown, but this
time obtained from the FG-based observer. As seen from the figure, the estimator can
track β more closely and even for higher values than KF, although it is based on a linear
model. A corresponding RMSE of 0.57 deg is achieved that is a 34% improvement over
the KF implementation. Note that the numerical estimators used for the FG are capable
of optimally handling strongly nonlinear models due to their iterative nature, but in this
particular case this advantage is not exploited due to the linearity of the model. In fact, the
adopted nonlinear solver (Gauss–Newton) only ran a single iteration before detecting that
it reached the optimum.

Figure 5. Vehicle sideslip angle β estimate at the top and yaw rate r at the bottom obtained by using
FG applied to the linear bicycle model.
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On the other hand, one fundamental difference between the FG solver and the KF is
the use of a sliding-window estimator for the former, which is then capable of smoothing
out sensor noise much more effectively than KF is able to by sequentially processing time
steps one by one. However, for very small β angles (see the whole comparison in Figure 6
and detailed view in Figure 7), KF seems to provide a less noisy output. This effect may be
explained by the use of different tuning parameters in both approaches.

Figure 6. Estimation of vehicle sideslip angle β by considering both KF and FG estimators with a
window of 5 samples.

Figure 7. Estimation of vehicle sideslip angle β by considering both KF and FG estimators for small
values of the sideslip angle.
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For completeness, another experiment performed on a different set of real data gath-
ered in a different race session is displayed in Figure 8. Again, the KF shows the best
performance in the linear region characterized by small β values, but fails for higher values
of sideslip angle. In contrast, the FG is noisier for small β values but well estimates the
actual sideslip angle for higher values, which are the most interesting for vehicle handling
and passenger safety.

Figure 8. Estimation of vehicle sideslip angle β by considering both KF and FG estimators with a
window of 5 samples, for another set of real data.

In order to show the potential of the proposed method to cope with large datasets by
exploiting the variable sparsity, the batch estimation is reported in Figure 9 on the total
number of samples acquired. As one can see, both the advantages of KF and FG with
sliding window method are obtained, consisting of a good estimation for high values of β
beyond the linear region and a very smooth estimate, especially in the linear one, similar
to the KF, where a better visualization is achieved at the bottom of the figure in a shorter
period of time, associated to a single lap. Moreover, Figure 10 displays the absolute error of
the sideslip angle estimation performed with KF (red dashed line) and FG (green solid line)
with respect to the ground truth, as further proof of the validity of the proposed approach.
As can be seen, the error associated with the KF is almost always higher than the FG error.
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Figure 9. Estimation of vehicle sideslip angle β by considering both KF and FG batch estimators.

Figure 10. Absolute error in the estimation of sideslip angle β by considering KF against the FG
batch estimator.

Finally, for the sake of completeness, the path followed by the vehicle during a single
lap is shown in Figure 11, effectively obtaining a path shape that matches the Palm Beach
International Raceway. The black path is the actual one obtainable from GPS data or
by exploiting the actual yaw rate, sideslip angle, and longitudinal and lateral velocities
provided by the dataset. As one can see from the figure, the green path representing
the shape of the circuit estimated via FG is closer to the black path than is the red one
corresponding to the path estimated by using KF for most of the route, especially for
sudden curves, in agreement with the previous results.
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Figure 11. Path followed by the vehicle during a single lap: black is ground truth, red represents KF,
and green indicates FG.

5. Conclusions

In this paper an estimator grounded in the factor graph theory is applied for the
first time to the estimation of the sideslip angle of a vehicle during motion. A linear
single-track model is considered in this research as the vehicle model for the estimator.
The performance of the proposed estimation approach is evaluated by using real data
and contrasted with the performance obtained from the standard Kalman filter. It is
demonstrated that the proposed method accurately estimates the sideslip angle even when
its value exceeds the linearity range, which represents the more critical situation in terms
of vehicle handling and passenger safety, and thus the knowledge of the correct β value
becomes more important. On the other hand, for small values of the sideslip angle, the
Kalman filtering preserves its superiority, as expected. Nonetheless, a batch estimation
leads to a good estimate of the sideslip angle with a level of noise similar to that achieved
using the KF. However, it is worth pointing out that higher values of the sideslip angle can
be correctly estimated by keeping a linear bicycle model with very few parameters with
respect to other more complex vehicle models, representing an important aspect in terms
of practical implementation in real commercial vehicles.

Next steps will take into account FGs applied to more complex (nonlinear) vehicle
models, in order to investigate the effectiveness and the ability to achieve even more
accurate estimates, as well as other aspects related to vehicle dynamics that cannot be
represented with the bicycle model.
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Appendix A

In this Appendix, details about matrix A and vector b in Table 1 are provided for the
convenience of the interested reader. Starting with matrix A, two different kinds of block
matrix can be found: one associated to the first step with priors and one associated to the
other steps with the dynamic model. By recalling that

Q− 1
2 = diag

(
1
σβ

,
1
σr

,
1

σϕ̇
,

1
σay

)
(A1)

216



Sensors 2021, 21, 5409

the former kind of block matrix is a 4 × 2 matrix where:

⎡
⎢⎢⎣

A1,1 0
0 A2,2
0 A3,2

A4,1 A4,2

⎤
⎥⎥⎦ = Q− 1

2

⎡
⎢⎢⎢⎢⎣

1 0
0 1
0 −1

Cf + Cr

m
Cf l f − Crlr

muk

⎤
⎥⎥⎥⎥⎦ (A2)

The longitudinal velocity uk is that measured at the specific time step on which the priors
are applied—for instance, for the first time step with priors associated to initial guess,
uk = u(k = 1). The other terms are constant in this work. The latter kind of block matrix is
a 4 × 4 matrix obtained as in the following:⎡

⎢⎢⎣
A1,1 A1,2 A1,3 0
A2,1 A2,2 0 A2,4

0 0 0 A3,4
0 0 A4,3 A4,4

⎤
⎥⎥⎦ = Q− 1

2 Hk (A3)

with Hk depending on the k-th time step. A smoother with a window comprising 5
samples has an A matrix composed of one matrix (A2) and five matrices (A3) arranged on
the diagonal.

Vector b grows accordingly with matrix A. By looking at Equation (18), the parentheses
enclose the prediction error between the actual value and the estimated one. Therefore:

• For priors, the actual value is the guess and the function is the difference between
these two values; hence:

b1 =
(

β0 −��β0 +��β0
)/

σβ (A4)

and b2 follows the same rationale.
• For dynamic factors, the actual value is zero, since it is the difference between the forward

value and the same obtained by integrating the differential equation; for instance:

b5 =

[
0 − β1 +

(
1 − dt

Cf + Cr

mu1

)
β0 − dt

(
Cf l f − Crlr

mu2
1

+ 1

)
r0 + dt

Cf δ1

mu1

]/
σr (A5)

and b6 follows the same rationale.
• Finally, measures follow this rationale (only yaw rate is taken for the sake of brevity):

b3 = (ϕ̇1 + r0)
/

σϕ̇ (A6)

where, naturally, all indices change according to the time step.
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Abstract: The cascading launch and cooperative work of lander and rover are the pivotal methods to
achieve lunar zero-distance exploration. The separated design results in a heavy system mass that
requires more launching costs and a limited exploration area that is restricted to the vicinity of the
immovable lander. To solve this problem, we have designed a six-legged movable repetitive lander,
called “HexaMRL”, which congenitally integrates the function of both the lander and rover. However,
achieving a buffered landing after a failure of the integrated drive units (IDUs) in the harsh lunar
environment is a great challenge. In this paper, we systematically analyze the fault-tolerant capacity
of all possible landing configurations in which the number of remaining normal legs is more than two
and design the landing algorithm to finish a fault-tolerant soft-landing for the stable configuration.
A quasi-incentre stability optimization method is further proposed to increase the stability margin
during supporting operations after landing. To verify the fault-tolerant landing performance on the
moon, a series of experiments, including five-legged, four-legged and three-legged soft-landings
with a vertical landing velocity of −1.9 m/s and a payload of 140 kg, are successfully carried out on
a 5-DoF lunar gravity ground-testing platform. The HexaMRL with fault-tolerant landing capacity
will greatly promote the development of a next-generation lunar prober.

Keywords: movable repetitive lander; fault-tolerant soft-landing; landing configuration; stability
optimization

1. Introduction

The moon is the hub and bridge between mankind and the universe, while lunar
exploration is the premise and basis of deep space exploration. Nowadays, the separated
design of an immovable lander and rover is still the core method of zero-distance explo-
ration on the moon. Many countries have made world-renowned achievements such as the
Soviet/Russian Luna-9 [1], the first lander to achieve lunar soft-landing, which absorbs
impact energy using four airbags; American Surveyor-1 [2], the first legged lander to
reach the lunar surface, which uses three three-branch buffered legs filled with aluminum
honeycomb material, providing technical support for Apollo program [3]; Chinese Chang’e
4 [4] reaches the far side of the moon first, which utilizes four similar buffer legs. Notably,
all these landers are immovable and are designed to help the rover finish landing, so their
exploration capacity is restricted to around the fixed landing site. Two kinds of rover
are applied to expand the exploration range, one is a manned lunar rover, like LRV [5],
which can carry up to two astronauts, another is the unmanned wheeled rover, like Yutu
1 & 2 [4,6], which can maneuver quickly with scientific instruments. However, the sepa-
rated design of the lander and rover creates a heavy and complex prober system. The rover
only executes exploration in a circle district with the lander as the center and the safety
distance as the radius.

Thanks to excellent traversing performance on irregular terrain [7,8], legged robots
are promising to accomplish lunar exploration compared with a wheeled rover. On the
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one hand, the leg form is utilized in most existing landers, though they lack mobility on
the lunar surface. On the other hand, legged robots are well designed in many fields
such as running robots, Bigdog [9], Cheetah-3 [10] and Anymal [11,12]; underwater robots,
Crabster [13,14]; heavy-duty robots, Octopus [15]; and exploration robots, Athlete [16],
Spaceclimber [17] and Spacebok [18,19]. Furthermore, to combine the excellent speed
performance for wheeled robots on even terrain and a great adaptive capacity for legged
robots on irregular terrain, the wheel-legged robot [20] adopted a hierarchical framework
to control wheel and leg motions; this has drawn a lot of researcher attention. Nevertheless,
the current legged or wheel-legged robots are difficult to directly apply to lunar exploration.
The hydraulic actuator is widely employed in HyQ2Max [21] or Bigdog [9] to obtain high
explosive torque, which is infeasible for extraterrestrial exploration. The leg layout of a
running robot cannot withstand the landing impact in all directions. The buffer capacity of
the current robot is relatively weak, so the engine nozzle under the lander body will be
easily damaged for colliding with the ground.

We have designed a six-legged movable repetitive lander “HexaMRL” in previous
work to integrate the function of both lander and rover. IDUs are used to simulate the
dynamic characters of an active dissipative system of spring and dampener by impedance
control to achieve a buffered landing and protect the leg structure, different from the
irreversible deformation of aluminum honeycomb material after landing [22–24]. Hence,
the lander can still execute locomotion as a rover. After exploration at a current landing
site, it can fly to the next landing site using the engine and repetitively perform buffered
landing tasks. This new exploration mode will significantly increase the utilization rate of
an individual prober on the moon and greatly extend the exploration district. However, the
repetitive work mode has higher requirements for the quality and fault-tolerant landing
capacity of the lander.

In the harsh lunar environment (i.e., intense radiation, large temperature difference
and ultravacuum), it is hard to repair with the remote operation if some failures occur on
the IDUs. Fault-tolerant control (FTC) for the robot has attracted great attention all over
the world and is pivotal for the prober to execute exploration tasks. Nowadays, FTC is
generally achieved by the following three methods. Firstly, multiple drives are used in the
active joints; for example, Zhang et al. [25] employ dual-input/single-output (DISO) to
drive the servo press machine. Secondly, the parallel robot could use a redundant drive [26]
to eliminate singularities in the workspace. The third one is to increase the DoF of robot
end-effector, such as the Canadian space station’s remote manipulator system (SSRMS) [27],
which adopted seven series joints to improve the workspace. However, the above FTC
relies on more drives or more complex mechanisms, which will increase the system mass
and complexity that are difficult for the lander to accept. Furthermore, fault-tolerant
landing is not generally considered in current landers because most of the existing landers
are three-legged or four-legged, which constructively lack fault-tolerant landing capacity
when one leg fails. For a three-legged lander like Surveyor-1, the remaining two legs
cannot support the lander. As for four-legged landers like Apollo 11 [3] or Chang’e 3, 4, &
5 [4,6,28], the center of mass of the lander will move to the side of the supporting triangle
constructed by the remaining three legs, leading to a failed buffer landing on the uneven
lunar surface. Therefore, hard strict standards are required for the manufacture and control
of such landers and would be abandoned if any failures occur.

The six-legged design in HexaMRL makes the fault-tolerant soft-landing feasible with-
out any supplement of drivers or mechanisms. In this paper, we have systematically studied
the fault-tolerant soft-landing performance on the moon for HexaMRL. Firstly, we analyze
the classification and stability of the landing configuration and establish the relationship
between fault number and landing configuration by the synthesis equation. Secondly,
regarding stable configuration, the corresponding fault-tolerant landing algorithms are
designed to achieve a buffered landing, and a quasi-incentre stability optimization method
is further proposed to increase the stability margin during supported operations. Thirdly, to
verify the fault-tolerant landing on the moon, a series of experiments including five-legged,
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four-legged and three-legged soft-landing with a vertical landing velocity of −1.9 m/s and
a payload of 140 kg are successfully carried out on a 5-DoF lunar gravity ground testing
platform.

The rest of the paper is organized as follows. Section 2 introduces the lander system.
The landing configuration is analyzed in Section 3. Sections 4 and 5 design the fault-tolerant
algorithm and optimize the stability margin in supporting the operations, respectively.
Section 6 clarifies the fault-tolerant landing experiments, and Section 7 discusses the
experiment results. The last section is the conclusion and its expansion.

2. Lander System

The HexaMRL is composed of six identical legs that adopt a hybrid mechanism
actuated by three IDUs. During buffer landing, each IDU imitates the dynamic characters
of both spring and damper. If some errors occur in the IDUs of the leg under the harsh
lunar environment, the leg residual mobility capacities are a great variant in different fault
combinations.

2.1. HexaMRL

As shown in Figure 1 the HexaMRL is designed to execute repetitive soft-landing
and roving for lunar exploration. Its size is about 1.35 m long, 0.94 m wide and 0.75 m
high; it weighs 60 kg, including a 20 kg aluminum shell. The robot consists of a body
and six identical legs. Each leg is composed of side IDU, thigh IDU, shank IDU, thigh,
rocker, connecting link, sole and shank. All legs are connected to the body that carries the
controller, inertial measurement unit (IMU), power system, sensing system, payloads, etc.

Figure 1. The six-legged movable and repetitive lander (HexaMRL).

The leg distribution design needs to meet landing and roving functions simultaneously.
On the one hand, to withstand the impact force uniformly during buffer landing, all
legs are arranged as an equilateral polygon like a regular triangle in Surveyor-1 [2] or
Square in Apollo program [3] and Chang’e series [4,6,28]. As for the six-legged lander, the
angular interval between adjacent legs should be 60◦. On the other hand, to achieve quick
locomotion, all legs will be laid out in a slender shape as in animals like the cheetah, lion
or goat, like the hexapod robot RHex [29] or TUM-walking machine [30]. Eventually, as
illustrated in Figure 2, the angle between leg 2 and leg 3 is designed to be 54.2◦. Leg 1 (or 2)
and leg 5 (or 4) are symmetric about axis-x, while leg 1 (or 5) and leg 2 (or 4) are symmetric
about axis-y.
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Figure 2. The leg distribution of HexaMRL.

2.2. Leg Mechanism

The leg mechanism is presented in Figure 3. It has three active DoFs that are actuated
by side IDU, thigh IDU and shank IDU to control the mobility of the rocker, thigh and
shank, respectively. Let q =

[
α β γ

]T denote the generalized coordinate vector where
α, β and γ are the joint angles of the side, thigh and shank, respectively. The tiptoe position
Ptip in the leg coordinate frame can be obtained as follows:

Ptip =

⎡
⎣ ltcosβ + lscosγ

cosα(ltsinβ + lssinγ)
sinα(ltsinβ + lssinγ)

⎤
⎦ (1)

where lt and ls are the length of the thigh and shank, separately.

Figure 3. The leg mechanism.

The IDU consists of an encoder, servo motor, torque sensor, harmonic reducer, shell,
coupler, bearing, etc. During buffer landing, each IDU imitates the dynamic characters of
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an active torsion spring and an active torsion damper by the impedance control method,
whose control rule can be written as follows:

τact − τdes = Ka(ϕdes − ϕact) + Ba
( .

ϕdes −
.
ϕact

)
(2)

where τact and τdes are the actual torque and desired torque of IDU, Ka and Ba are the
coefficients of stiffness and damping of active compliance, ϕdes and ϕact are the desired
angle and actual angle of the active joint,

.
ϕdes and

.
ϕact are corresponding angular velocity.

2.3. Leg Residual Capacity

In order to reduce the rocket size, all legs need folding, as in Figure 4a, for compact
volume when launched from Earth. Before the buffer landing on the moon, all legs need to
deploy from the folded state, as in Figure 4b, to obtain better supporting stability and a
larger buffer stroke. Since the mobility demand before and after the deploying task is not
the same, the fault-tolerant landing capacity is significantly different as well.

Figure 4. Leg function. (a) folding; (b) deploying.

Here, because the capacities of fault-tolerant are different, we use LB and LA to
distinguish the time of fault occurrence on side IDU before and after deploying operation.
On the contrary, as for the thigh or shank IDU, distinguishing separate failure times is
unnecessary due to them having the same capacities. The normal IDU of the thigh or
shank is denoted by N, while the failed IDU is represented by L. When some IDUs are
failed, the residual workspaces are illustrated in Figure 5. There are four cases when one
IDU fails. Firstly, if the side IDU fails after deploying, and the other two IDUs are normal,
this case can be denoted by LANN. Its residual workspace is the purple vertical plane,
and the mobility character is expressed as GII

F
(
0, Rβ, 0; Ta, 0, 0

)
by Gf theory [31]. Where

Rβ and Ta are the swing movement and the stretching/shrinking movement in the leg
sagittal plane. Secondly, if the side IDU fails before deploying and the other two IDUs
are normal, denoted by LBNN, the residual workspace is the blue horizontal plane, and
the mobility character is expressed as GII

F
(
0, Rβ, 0; Ta, 0, 0

)
. Thirdly, if the thigh IDU fails,

denoted by NLN, the residual workspace is the red surface, and the mobility character is
expressed as GII

F
(

Rα, Rβ, 0; 0, 0, 0
)

where Rα is the abduction/adduction movement. Lastly,
if the shank IDU fails, denoted by NNL, the residual workspace is the green surface, and
the mobility character is expressed as GII

F
(

Rα, Rβ, 0; 0, 0, 0
)
. There are five cases if two

IDUs fail, separately denoted by LBNL, LBLN, NLL, LANL and LALN. Their residual
workspaces are the dotted curves of green, blue, red, black and purple; their corresponding
mobility characters are expressed as GII

F
(
0, Rβ, 0; 0, 0, 0

)
or GII

F (Rα, 0, 0; 0, 0, 0). There are
two cases if all three IDUs fail, denoted by LBLL and LALL; their residual workspaces are
a fixed point of black and red while the mobility characters are GI

F(0, 0, 0; 0, 0, 0).
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Figure 5. The leg residual workspace. (a) One fault; (b) two or three faults.

Noticeably, the lander must possess the up/down movement character during the
buffer landing period. Therefore, only the fault case LANN satisfies the mobility demand
and has the fault-tolerant landing capacity, further symbolized as E11. The other three
cases with one fault don’t have fault-tolerant landing capacity and are symbolized as E12,
uniformly. All cases with two or three faults cannot finish fault-tolerant landing, so the
fault time before or after deploying operation will not be distinguished, and the symbol LA
or LB will be replaced by L. Finally, the two faulted IDUs cases are denoted as E2, while
the three faulted IDUs case is written as E3. The detailed fault-tolerant capacity of the leg
is shown in Table 1.

Table 1. Fault-tolerant capacity of single leg.

Fault Number Side Thigh Shank Number Symbol Gf Set Fault Tolerance

1

LA N N

4

E11 GII
F

(
0, Rβ, 0; Ta, 0, 0

)
1

LB N N
E12

GII
F

(
0, Rβ, 0; Ta, 0, 0

)
0

N L N GII
F

(
Rα, Rβ, 0; 0, 0, 0

)
0

N N L GII
F

(
Rα, Rβ, 0; 0, 0, 0

)
0

2
L L N

3 E2
GII

F
(
0, Rβ, 0; 0, 0, 0

)
0

L N L GII
F

(
0, Rβ, 0; 0, 0, 0

)
0

N L L GII
F (Rα, 0, 0; 0, 0, 0) 0

3 L L L 1 E3 GI
F(0, 0, 0; 0, 0, 0) 0

3. Landing Configuration Analysis

When more than one IDU fails, different legs may be involved, and their spatial distri-
bution will affect the landing performance. The landing performance will be determined by
the configuration that consists of the supporting polygon of the foothold of the remaining
normal legs and the position of the lander’s center of mass. The stabilities in landing
configurations are different, and we systematically assess this by the dimensionless index
SAI. Then, we establish a synthesis equation to deduce all possible configurations under a
certain number of failed IDUs.

3.1. Classification

Specifically, we need to consider the equivalent leg when the landing configurations
are analyzed. As shown in Figure 2, all legs have different effects on landing performance
because their interval angles are not equal to 60◦. However, legs 1, 2, 4 and 5 are a group of
equivalent legs while legs 3 and 6 are the other group, and the influence of equivalent legs
on landing performance is the same.

Noticeably, there are three basic properties for landing configuration. (1) The landing
performance is different if the landing configuration is different. (2) The configuration is
the same if one equivalent leg fails, e.g., leg 1 or 2 failed. (3) If configuration 1 coincides
with configuration 2 after rotation and symmetry operations, the two configurations are
considered the same, e.g., legs 1 and 3 or legs 3 and 6.
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The classification of landing configuration is shown in Figure 6. The red point denotes
the center of mass, while the purple points express the footholds. The solid purple lines
illustrate the leg position, while the blue dotted lines show the body contour. The support-
ing polygon constructed by the footholds of remaining normal legs is denoted by the green
plane. The relationship between the normal supporting leg and landing configuration is
illustrated in Table 2. As for six-legged landing, there is only one configuration (C6

6 = 1)
called VI-1. As for five-legged landing, there are six configurations (C5

6 = 6) that are further
divided into two groups: V-1 includes supporting leg 2-3-4-5-6, 1-3-4-5-6, 1-2-3-5-6 and
1-2-3-4-6; V-2 consists of supporting leg 1-2-4-5-6 and 1-2-3-4-5. As for four-legged landing,
there are fifteen configurations (C4

6 = 15) that are detailly classified into six groups: IV-1
includes supporting leg 3-4-5-6 and 1-2-3-6; IV-2 includes supporting leg 2-4-5-6, 1-3-4-5, 1-
2-4-6 and 1-2-3-5; IV-3 includes supporting leg 2-3-5-6 and 1-3-4-6; IV-4 includes supporting
leg 2-3-4-6 and 1-3-5-6; IV-5 includes supporting leg 2-3-4-5, 1-4-5-6 and 1-2-5-6; IV-6 in-
cludes supporting leg 1-2-4-5. As for three-legged landing, there are twenty configurations
(C3

6 = 20) categorized in six groups: III-1 includes supporting leg 1-2-3, 1-2-6, 3-4-5 and
4-5-6; III-2 includes supporting leg 1-2-4, 1-2-5, 1-4-5 and 2-4-5; III-3 includes supporting
leg 1-3-4, 1-4-6, 2-3-5 and 2-5-6; III-4 includes supporting leg 1-3-5 and 2-4-6; III-5 includes
supporting leg 1-3-6, 2-3-6, 3-4-6 and 3-5-6; III-6 includes supporting leg 2-3-4 and 1-5-6.
Here, the analysis of configuration consisting of one or two legs is omitted because the
lander cannot finish a fault-tolerant landing.

Figure 6. Classification of landing configuration.

225



Sensors 2021, 21, 5680

Table 2. Analysis table of landing configuration under fault combinations.

Type I Number Supporting Leg Type II Type I Number Supporting Leg Type II

VI C6
6 = 1 1-2-3-4-5-6 VI-1

III C3
6 = 20

1-2-3

III-1

V C5
6 = 6

2-3-4-5-6

V-1

1-2-6
1-3-4-5-6 3-4-5
1-2-3-5-6 4-5-6
1-2-3-4-6 1-2-4

III-2
1-2-4-5-6

V-2
1-2-5

1-2-3-4-5 1-4-5

IV C4
6 = 15

3-4-5-6
IV-1

2-4-5
1-2-3-6 1-3-4

III-3
2-4-5-6

IV-2

1-4-6
1-3-4-5 2-3-5
1-2-4-6 2-5-6
1-2-3-5 1-3-5

III-42-3-5-6
IV-3

2-4-6
1-3-4-6 1-3-6

III-5
2-3-4-6

IV-4
2-3-6

1-3-5-6 3-4-6
2-3-4-5

IV-5

3-5-6
1-4-5-6 2-3-4

III-61-2-5-6 1-5-6
1-2-3-4
1-2-4-5 IV-6

3.2. Stability

The influence of different configurations on landing stability is determined by the
shortest distance from the ground projection point of the center of mass to each side of
the supporting polygon (d) and the area of the supporting polygon (S). The dimension-
less index SAI is proposed to evaluate the stability of each configuration and is written
as follows:

SAI =
d

dVI
∗ S

SVI
(3)

where dVI and SVI are the values of d and S in normal six-legged landing configuration VI,
respectively. If the center of mass is within the supporting polygon, then d > 0. On the
contrary, d < 0.

Eventually, the SAI value in each configuration can be calculated because the legs
are deployed to the predetermined position from the folded status for the buffer landing.
According to the SAI, the configuration stabilities will be divided into three statuses: stable,
critical stable and unstable, and can be written as follows:

SS =

⎧⎨
⎩

Stable (S), i f SAI > 0;
Critical Stable (CS), i f SAI = 0;

Unstable (US), i f SAI < 0.
(4)

As seen in Table 3, the stable configurations have eight cases: VI-1, V-1, V-2, IV-2,
IV-3, IV-4, IV-6 and III-4, in which the robot can execute fault-tolerant landing. The critical
stable configurations have five cases: IV-1, IV-5, III-2, III-3 and III-5. In these cases, the
robot can only perform soft-landing if the landing site is absolutely even. The unstable
configurations include III-1 and III-6. Owing to the irregular lunar surface, the lander
cannot finish soft-landing under both critical stable and unstable configurations.
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Table 3. Stability evaluation results of landing configurations.

Type I Type II Stability Radius d(m) Supporting Area S(m2) SAI SS

VI VI − 1 0.5998 1.5233 1 S

V
V − 1 0.3577 1.2640 0.4948 S
V − 2 0.4324 1.2803 0.6058 S

IV

IV − 1 0 0.7617 0 CS
IV − 2 0.3577 1.021 0.3997 S
IV − 3 0.3577 1.0047 0.3933 S
IV − 4 0.4324 1.0047 0.4754 S
IV − 5 0 0.7617 0 CS
IV − 6 0.4324 1.0373 0.4908 S

III

III − 1 −0.3577 0.2593 −0.1015 US
III − 2 0 0.5187 0 CS
III − 3 0 0.5023 0 CS
III − 4 0.3577 0.7617 0.2982 S
III − 5 0 0.5023 0 CS
III − 6 −0.4324 0.243 −0.1150 US

3.3. Relationship between Fault Number and Configuration

When the number of faulted IDUs is Nm, all the possible configurations will be
concluded by the following equation:⎧⎪⎪⎨

⎪⎪⎩
3
∑

i=1
Ni·i = Nm

3
∑

i=1
Ni = NL

(5)

s.t.

⎧⎨
⎩

0 ≤ NL ≤ min{6, Nm}
0 ≤ Nm ≤ 18

0 ≤ Ni ≤ 6, i = 1, 2, 3
(6)

where Ni is the number of legs with i faulted IDUs, NL is the total number of failed legs.
The solve set

{
N1, N2, N3

}
illustrates the faults distribution. Considering the fault-

tolerant capacity of a single leg in Table 1, we can get the possible configuration details.
When Nm is 1, the solve set is

{
1, 0, 0

}
. The landing configuration is VI if the failed

leg is E11. On the contrary, the landing configuration is V if the failed leg is E12. Similarly,
when Nm is 2, there are two solve sets. Different fault leg groups will result in VI, V, or IV
configuration. Table 4 lists all possible landing configurations when the number of faulted
IDUs is less than seven. Lastly, we can get landing configuration type II by substituting the
number of failed legs into Table 2. If the faulted number is more than six, the combination
results can be obtained by the above Equations (5) and (6), similarly.
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Table 4. Fault combination results.

Nm Solve Sets Fault Legs Group Type I Nm Solve Sets Fault Legs Group Type I

1 {1,0,0}
E11 VI

4

{1,0,1}
E11E3 V

E12 V E12E3 IV

2

{0,1,0} E2 V {0,2,0} E2E2 IV

{2,0,0}
E11E11 VI

{2,1,0}
E11E11E2 V

E11E12 V E11E12E2 IV
E12E12 IV E12E12E2 III

3

{0,0,1} E3 VI

{4,0,0}

E11E11E11E11 VI

{1,1,0}
E11E2 V E11E11E11E12 V
E12E2 IV E11E11E12E12 IV

{3,0,0}

E11E11E11 VI E11E12E12E12 III
E11E11E12 V

6

{0,0,2} E3E3 IV
E11E12E12 IV

{1,1,1}
E11E2E3 IV

E12E12E12 III E12E2E3 III

5

{0,1,1} E2E3 IV {0,3,0} E2E2E2 III

{2,0,1}
E11E11E3 V

{3,0,1}
E11E11E11E3 V

E11E12E3 IV E11E11E12E3 IV
E12E12E3 III E11E12E12E3 III

{1,2,0}
E11E2E2 IV

{2,2,0}
E11E11E2E2 IV

E12E2E2 III E11E12E2E2 III

{3,1,0}
E11E11E11E2 V

{4,1,0}
E11E11E11E11E2 V

E11E11E12E2 IV E11E11E11E12E2 IV
E11E12E12E2 III E11E11E12E12E2 III

{5,0,0}

E11E11E11E11E11 VI

{6,0,0}

E11E11E11E11E11E11 VI
E11E11E11E11E12 V E11E11E11E11E11E12 V
E11E11E11E12E12 IV E11E11E11E11E12E12 IV
E11E11E12E12E12 III E11E11E11E12E12E12 III

4. Fault-Tolerant Landing Algorithms

During the buffer landing period, the force and torque equations of the lander can be
written as: ⎧⎪⎪⎨

⎪⎪⎩
Fez = mbg +

N
∑

i=1
Fgiz

τexy =
N
∑

i=1

(
rc + rbfi

)
× Fgiz

(7)

where mb is the mass of the lander, g is the gravity acceleration on the moon, N is the
number of normal supporting legs, Fgiz is the vertical supporting force of the i-th leg, rc is
the vector from the center of mass to the origin Ob of the body coordinate frame, rbfi is the

vector from Ob to the i-th foothold, Fgiz =
[

0 0 Fgiz
]T is the vector form of Fgiz, Fez

and τexy =
[

τex τey
]T are dividedly the resultant force and torque.

By adjusting the leg force Fgiz, we can control the stable body states. After landing,
we desire a constant body height and a horizontal body plane. The Fez will be set to zero
and the τexy will be employed to control the angle deviation of pitch and roll. The PID
controller will generate the adjusted torque in real-time. Considering the desired stable
values of angle and angular velocity are zero, the τexy will be calculated from the following
equation: {

τex = −kpxθra − kdx
.
θra − kix

∫
θradt

τey = −kpyθpa − kdy
.
θpa − kiy

∫
θpadt

(8)

where kpx, kdx, kix, kpy, kdy and kiy are the proportional, integral and derivative gains in the

x-axis and y-axis, respectively. θra and θpa are the actual angles of roll and pitch.
.
θra and

.
θpa are the corresponding velocities.
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4.1. VI Configuration

In six-legged normal soft-landing, the force/torque balance equations can be written
as follows in matrix form by substituting Equation (8) and Fez = 0 into Equation (7).

⎡
⎣ 1 1 1 1 1 1

rcy + rbf1y rcy + rbf2y rcy + rbf3y rcy + rbf4y rcy + rbf5y rcy + rbf6y
rcx + rbf1x rcx + rbf2x rcx + rbf3x rcx + rbf4x rcx + rbf5x rcx + rbf6x

⎤
⎦·

⎡
⎢⎢⎢⎢⎢⎢⎣

Fg1z
Fg2z
Fg3z
Fg4z
Fg5z
Fg6z

⎤
⎥⎥⎥⎥⎥⎥⎦=

⎡
⎣ −mbg

τex
τey

⎤
⎦ (9)

However, Equation (9) is an indeterminate equation group and has numerous solu-
tions. It is time-consuming to solve the generalized inverse matrix in a real-time system.
Here, a virtual three-legged supporting method (VTLSM) is proposed to allocate the ad-
justed force Fgiz quickly. As illustrated in Figure 7, we divide the six supporting legs into
two groups: leg 1-3-5 supporting (group A) and leg 2-4-6 supporting (group B). During
buffer landing, the legs of each group provide half the adjusted force and torque. Then
Equation (9) can be rewritten as follows:

⎡
⎣ 1 1 1

rcy + rbfky rcy + rbfmy rcy + rbfny
rcx + rbfkx rcx + rbfmx rcx + rbfnx

⎤
⎦·

⎡
⎢⎣ Fkmn

gkz
Fkmn

gmz
Fkmn

gnz

⎤
⎥⎦ =

1
2

⎡
⎣ −mbg

τex
τey

⎤
⎦ (10)

where k, m and n are the number of supporting legs in each group. Particularly, k = 1,
m = 3 and n = 5 in group A while k = 2, m = 4 and n = 6 in group B. Lastly, the
indeterminate Equation (9) is transformed into a two determinate Equation (10) that will
generate the adjusted foot force Fgiz easily in real-time by solving the inverse matrix of a
3 × 3 matrix.

Figure 7. Virtual three-legged supporting method (VTLSM).

The desired torque of the joint impedance controller in Equation (2) comes from the
following equation:

τdes = J(q)−1
f Fg (11)
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where Fg =
[

0 0 Fgz
]T is the vector form of adjusted leg force and J(q) f is the force

Jacobian matrix.

4.2. V Configuration

As for five-legged landing, the 3 × 6 coefficient matrix in Equation (9) will be trans-
formed into a 3 × 5 matrix that is still indeterminate. Here we chose configuration V-2
to illustrate the allocated process of leg forces. The force/torque balance equations are
written as:⎡

⎢⎣ 1 1 1 1 1
rcy + rbf1y rcy + rbf2y rcy + rbf3y rcy + rbf4y rcy + rbf5y
rcx + rbf1x rcx + rbf2x rcx + rbf3x rcx + rbf4x rcx + rbf5x

⎤
⎥⎦·

⎡
⎢⎢⎢⎢⎢⎣

Fg1z
Fg2z

Fg3z

Fg4z
Fg5z

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎣ −mbg

τex

τey

⎤
⎥⎦ (12)

The VTLSM will be again used to quickly solve the foot force. There are ten virtual
triangles (C3

5 = 10) constructed by any three supporting legs. They are divided into two
cases according to the ground projected position of the center of mass of the lander. If this
point is inside the virtual supporting triangles, these triangles are valid, and the number of
them is Nv. On the contrary, if the others are invalid and their number is Ni. The supporting
legs of the valid triangle are leg 1-2-4, leg 1-2-5, leg 1-3-4, leg 1-4-5, leg 2-3-5 and leg 2-4-5,
while the ones of the invalid triangle are leg 1-2-3, leg 2-3-4 and leg 3-4-5. Then the Nv is
seven and Ni is three. Meanwhile, the Equation (10) is modified as follows:

⎡
⎣ 1 1 1

rcy + rbfky rcy + rbfmy rcy + rbfny
rcx + rbfkx rcx + rbfmx rcx + rbfnx

⎤
⎦

⎡
⎢⎣ Fkmn

gkz
Fkmn

gmz
Fkmn

gnz

⎤
⎥⎦ =

1
Nv

⎡
⎣ −mbg

τex
τey

⎤
⎦ (13)

Noticeably, the i-th supporting leg provides adjusted force in multiple valid triangles,
so we will obtain the eventual foot force by the following sum operation:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Fg1z = F124
g1z + F125

g1z + F134
g1z + F135

g1z + F145
g1z

Fg2z = F124
g2z + F125

g2z + F235
g2z + F245

g2z
Fg3z = F134

g3z + F135
g3z + F235

g3z
Fg4z = F124

g4z + F134
g4z + F145

g4z + F245
g4z

Fg5z = F125
g5z + F135

g5z + F145
g5z + F235

g5z + F245
g5z

(14)

In configuration V-1, we will just change the leg number to 2, 3, 4, 5 and 6. Then
the adjusted force can be found by the similar Equations (13) and (14). The detailed
classification of the virtual supporting triangle is listed in Table 5.

Table 5. Classification of virtual supporting triangle of stable configuration in five-legged soft-landing.

Type II Valid Virtual Supporting Triangle Nv Invalid Virtual Supporting Triangle Ni

V-1 2-3-5, 2-3-6, 2-4-5, 2-4-6, 2-5-6, 3-4-6, 3-5-6 7 2-3-4, 3-4-5, 4-5-6 3
V-2 1-2-4, 1-2-5, 1-3-4, 1-3-5, 1-4-5, 2-3-5, 2-4-5 7 1-2-3, 2-3-4, 3-4-5 3
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4.3. IV and III Configurations

As for four-legged landing, the 3 × 6 coefficient matrix in Equation (9) will be trans-
formed into a 3 × 4 matrix. For example, in IV-2 configuration, the force/torque balance
equations are written as:

⎡
⎣ 1 1 1 1

rcy + rbf2y rcy + rbf4y rcy + rbf5y rcy + rbf6y
rcx + rbf2x rcx + rbf4x rcx + rbf5x rcx + rbf6x

⎤
⎦·

⎡
⎢⎢⎣

Fg2z
Fg4z
Fg5z
Fg6z

⎤
⎥⎥⎦ =

⎡
⎣ −mbg

τex
τey

⎤
⎦ (15)

Similarly, we utilize the VTLSM to calculate the adjusted leg force in real-time. The
classification of the virtual supporting triangle is listed in Table 6.

Table 6. Classification of virtual supporting triangle of stable configuration in four-legged soft-landing.

Type II Valid Virtual Supporting Triangle Nv Invalid Virtual Supporting Triangle Ni

IV-2 2-4-5, 2-4-6, 2-5-6 3 4-5-6 1
IV-3 2-3-5, 2-3-6, 2-5-6, 3-5-6 4 0
IV-4 2-3-6, 2-4-6, 3-4-6 3 2-3-4 1
IV-6 1-2-4, 1-2-5, 1-4-5, 2-4-5 4 0

As for three-legged landing, the 3 × 6 coefficient matrix in Equation (9) will be
transformed into a 3 × 3 matrix. For configuration III-4, the equation is written as follows:⎡

⎣ 1 1 1
rcy + rbf1y rcy + rbf3y rcy + rbf5y
rcx + rbf1x rcx + rbf3x rcx + rbf5x

⎤
⎦·

⎡
⎣ Fg1z

Fg3z
Fg5z

⎤
⎦ =

⎡
⎣ −mbg

τex
τey

⎤
⎦ (16)

Then we can get the adjusted force directly by solving the inverse matrix without the
usage of VTLSM.

5. Quasi-Incentre Stability Optimization

After buffer landing, the normal legs need to support the lander to finish the sampling
task using the drill or spoon mounted on the body. If the fault does not occur, the ground
projected point just locates on the center of the hexagon constructed by all leg footholds.
In this case, the robot has the largest stability margin without adjustment demand for the
center of mass. However, if several IDUs have failed, the old center of the hexagon does
not coincide with the new center of the supporting polygon constructed by the remaining
normal leg footholds. We should find a new center that maximizes the supporting stability
margin.

5.1. Quasi-Incentre Definition

Here, we define the target center as a quasi-incentre that satisfies the following two/s:
firstly, the sum value of distance (di) between this point and any sides of the supporting
polygon is the maximum; secondly, all the distances di should be as consistent as possible.
Specifically, for regular polygons, the quasi-incentre is the center of the inscribed circle. As
for the regular triangle, the quasi-incentre is just the incentre.

According to the definition of quasi-incentre, we can search the target point q ∗ by the
following function:

min f (q) = w1·
n

∑
i=1

1
di

+ w2·
n

∑
i=1

|di − dmax|
dmax

(17)
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where n is the number of normal supporting legs, dmax is the maximum distance between
all di, w1 and w2 is the weight coefficients, ∑n

i=1
1
di

illustrates the first demand while

∑n
i=1

|di−dmax |
dmax

denotes the second demand.

5.2. Quasi-Incentre Searching

Particle Swarm Optimization (PSO) algorithm [32,33] is widely used in function
optimization because it is simple to implement and has fewer adjusting parameters. In this
algorithm, each particle possesses attributes of position and velocity. They are updated
according to the following equation:

vi(k + 1) = vi(k) + c1·rand( )·(Popti(k)− xi(k)) + c2·rand( )·(Wopt (k)− xi(k)) (18)

xi(k + 1) = xi(k) + vi(k + 1) (19)

where xi(k) and xi(k + 1) are the position of the i-th particle at the k-th and (k + 1)-th
iteration, vi(k) and vi(k + 1) are the corresponding velocity, rand( ) is the random number
between zero and one, Popti(k) is the best position of i-th particle, Wopt (k) is the best
position of the swarm, c1 and c2 are the learning factors. The actual particle velocity satisfies
the following limits:

vi(k + 1) =

⎧⎨
⎩

vmax, i f vi(k + 1) ≥ vmax;
−vmax, i f vi(k + 1) ≤ vmax;

vi(k + 1), else.
(20)

where vmax is the maximum of the searching velocity.

5.2.1. Searching in V Configuration

During five-legged landing, V-1 and V-2 are stable configurations. Here, we chose
the V-2 configuration as the searching example. As shown in Figure 8, the numbers 1, 2,
3, 4, 5 and 6 denote the foothold positions of normal landing. All the particle positions at
k-th iteration are expressed by the blue circles. The red star is the center of the hexagon
that is constructed by all leg footholds and represented by the red dotted line. The new
supporting polygon constructed by normal legs is expressed by the solid green line. Each
subgraph is arranged in an increment of 5 iterations. At the first iteration, all the particles
are scattered in the supporting plane. After 21 iterations, they are quickly concentrated
into a small circular area. Then the particles slowly converge to the optimal position.

A similar process of particle convergence can also be found in the curve of target
function value vs. iterations in V-2 configuration (Figure 9). At the first iteration, the
function value is a larger number of 2.856. After a quick descent, it becomes a relatively
stable value at the thirteenth iteration. Lastly, the value converges to a stable value of 1.692.
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Figure 8. Particle evolution process in V-2 configuration (the horizontal axis denotes the for-
ward/backward direction illustrated in Figure 2 while the vertical axis represents the left-
ward/rightward direction, respectively).

Figure 9. Target function value vs. iterations in V-2 configuration.

5.2.2. Searching in IV Configuration

During four-legged landing, the stable configurations are IV-2, IV-3, IV-4 and IV-6.
Here, we take the IV-2 configuration as an example to illustrate the converge process.
Figure 10 shows the particle evolution process in IV-2 configuration. All particles are
distributed in the supporting plane at the first iteration. After a quick evolution process,
they concentrate on a small circle district, then converge to the optimal position with slow
velocity.
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Figure 10. Particle evolution process in IV-2 configuration (the definition of vertical or horizontal
axis is same as the one in Figure 8).

At the same time, the converged process is detailly illustrated in the curve of target
function value vs. iterations in IV-2 configuration (Figure 11). The initial target function
value is 2.124 at the first iteration. After 23 iterations, it reduces to 1.839 rapidly. Eventually,
the value converges to the stable value of 1.834 at a slow velocity.

Figure 11. Target function value vs. iterations in IV-2 configuration.

5.2.3. Searching in III Configuration

In a three-legged landing, the stable landing configuration is III-4. As is well-known,
the triangle must exist in the center. In the III-4 configuration, its incentre coincides with the
old center of the normal supporting hexagon and is set as the origin of the world coordinate
frame. It is not necessary to search the quasi-incentre by the PSO algorithm. However,
we can verify the target position obtained in the PSO algorithm by comparing it with the
incentre. Here, we chose the III-3 configuration to check the searching result. The particle
evolution process is shown in Figure 12. The green star is the theoretical incentre of the
supporting triangle. After 31 iterations, the scattered particles concentrate to the incentre
quickly and are limited in a small circle. Then they converge to the optimal position with a
slow velocity.
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Figure 12. Particle evolution process in III-4 configuration (the definition of vertical or horizontal
axis is same as the one in Figure 8 or Figure 10).

As shown in Figure 13, the curve of the target function value vs. iterations in the III-4
configuration can be divided into three terraces. The first terrace is the period from the first
iteration to the fourth iteration; the second one is from the fifth iteration to the nineteenth
iteration, while the third one is from the twentieth iteration to the final iteration. The
corresponding function value reduces from initial 0.1302 to 0.0055, then to zero. The target
function value of zero means that the distances between optimal position and any sides of
the supporting triangle are equal, and the quasi-incentre is the incentre. Noticeably, we
only use the second part in Equation (17) to achieve the searching in a supporting triangle
while the weight coefficient of the first part is zero (w1 = 0).

Figure 13. Target function value vs. iterations in III-4 configuration.

6. Experiments

In order to verify the fault-tolerant landing, we design a 5-Dof lunar gravity ground
testing platform to provide the experiment scene. There were a series of experiments for
stable configurations, including the five-legged, four-legged and three-legged soft-landing
experiment conducted to verify the fault-tolerant landing capacity on the platform.
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6.1. Experiment Platform

Figure 14a shows the detailed components, while Figure 14b expresses the construction
of the counterweight system. The simulation capacity of the platform includes vertical
movement z, horizontal x, and 3-Dof spatial rotation of Rx, Ry and Rz. The design principle
of counterweight is to make that the resultant force for the lander system in the vertical
direction is equal to the one on the lunar surface by trickily dividing the load weight into
two parts of counterweight one and counterweight two. In the experiments, we would
simulate the soft-landing with a load of 140 kg on the Moon, which means the total mass
(mt) including lander and load is 180 kg, the counterweight one mass is 75 kg while the
counterweight two mass is 65 kg.

Figure 14. 5-Dof lunar gravity ground testing platform. (a) components and Degrees of freedom; (b)
components of counterweight system.

6.2. Five-Legged Landing

As shown in Figure 15, the lander adopts V-2 configuration to finish soft-landing
while the other configuration can bring out similar results. No. 01 is the initial position.
No. 02 and No. 03 are declining in the air. No. 04 is the moment of full-touching with the
ground. No. 05 is compressing to the lowest position (No. 06). After a damped vibration,
the body reaches the stable position No. 10.

Figure 15. Keyframe snapshots in five-legged fault-tolerant landing.
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Owing to the non-centrosymmetric pentagon constructed by the normal supporting
leg, the difference of joint torques is great. As illustrated in Figure 16, the maximum of
peak joint torques in each leg occurs in leg 1 while the minimum occurs in leg 2. The torque
changes dramatically at the moment of touching the ground. The thigh peak torque is
203.7 Nm, while the shank peak torque is −84.14 Nm in leg 1. As for leg 2, the thigh peak
torque is 115.1 Nm, while the shank peak torque is −72.47 Nm. The side joint torques are
always small. After about a 2 s fluctuation, all joint torques reach a low, stable value. The
curves of body angles are shown in Figure 17a. The fluctuation ranges are −1.8~0◦ and
−7.98~1.13◦ for roll and pitch angles, respectively. The curves of position and velocity
of the body are seen in Figure 17b. The lander touches the ground with a maximum
velocity of −1.9 m/s in the z-direction. Next, the body continues to fall with a deceleration.
After 0.36 s, the body velocity reduces to zero, and the body reaches the lowest position.
Owing to the overturning force/torque caused by eccentricity, extra maximum velocities
of 0.355 m/s and 0.04 m/s in the x and y direction are generated. Eventually, the body
reaches a stable state after a damping vibration of 1.8 s.

 
Figure 16. Joint torques in five-legged fault-tolerant landing.

 
Figure 17. Body states in five-legged fault-tolerant landing.

6.3. Four-Legged Landing

Here, we chose the IV-6 configuration as the example to present the four-legged soft-
landing. As shown in Figure 18, the buffer process in four-legged landing is similar to
the one in five-legged landing. No. 01, No. 04, No. 06 and No. 10 are the initial position,
touching ground moment, lowest position, and stable position, respectively.
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Figure 18. Keyframe snapshots in four-legged fault-tolerant landing.

Thanks to the centrosymmetric supporting rectangle, all curves of joint torque in each
leg are basically the same. The maximum peak torque occurs in leg 4. As illustrated in
Figure 19, the thigh peak torque is 175.2 Nm, while the shank peak torque is −98.39 Nm.
At the moment of touching the ground, the torques of the thigh or shank and the angles of
roll or pitch change greatly. As expressed in Figure 20, the maximum roll angle is −1.46◦

while the one of pitch angle is −0.93◦. The touching ground velocity is the same as the
one in a five-legged landing, but the fluctuation time is shorter and lasts about 1.6 s. The
extra horizontal velocities in the x and y direction are almost zero because of the excellent
symmetry of the supporting polygon.

Figure 19. Joint torques in four-legged fault-tolerant landing.
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Figure 20. Body states in four-legged fault-tolerant landing.

6.4. Three-Legged Landing

As for three-legged landing, there is only one stable configuration denoted by III-4.
Figure 21 shows the fluctuation process with damping vibration. The curves of joint
torque in each leg are almost consistent, and the maximum peak torque occurs in leg
1. As illustrated in Figure 22, the thigh peak torque is 184.7 Nm, while the shank peak
torque is −78.57 Nm. The fluctuation ranges of the angles of roll and pitch are −1.26~0.53◦

and −1.16~1.08◦ in Figure 23a, respectively. The maximum velocity in the z-direction
is −1.9 m/s at the moment of touching the ground. The body velocity reduces to zero
and reaches the lowest position after 0.416 s. Lastly, the body keeps a stable height by a
damping vibration of about 2 s.

Figure 21. Keyframe snapshots in three-legged fault-tolerant landing.
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Figure 22. Joint torques in three-legged fault-tolerant landing.

Figure 23. Body states in three-legged fault-tolerant landing.

7. Discussion

As shown in Table 7, the soft-landing performances in different landing configurations
with the same touch-ground conditions are obviously numerous. While the number of
supporting legs has a great influence on landing performance, the spatial distribution of
normal legs also plays an important role. In the four-legged and three-legged landing,
all normal legs are evenly distributed, which generates almost no derivative velocity and
results in a small angle derivation of roll and pitch (≈ ±1.5◦). Thanks to more normal legs,
the peak torque is smaller, and the damping vibration duration is shorter in four-legged
landing than the ones in three-legged landing. As for five-legged landing, this case has the
most supporting legs than three/four-legged landing, but its landing performance is not
very great due to the terrible non-centrosymmetric distribution of normal legs. The indexes
of peak torque and angle derivation in five-legged landing are worse than the ones in the
centrosymmetric configuration, like four/three-legged landing. Furthermore, a derivative
velocity of 0.355 m/s and 0.04 m/s in the x and y direction is separately generated due
to the large angle derivation. Thanks to more supporting legs, the damping vibration
duration in a five-legged landing is longer than the one in a four-legged landing, but it is
still shorter than the one in a three-legged landing.
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Table 7. The comparison of the key index in different fault-tolerant landings.

Index
Five-Legged

Landing
Four-Legged

Landing
Three-Legged

Landing

Touch-ground velocity (m/s) 1.9 1.9 1.9
System mass (kg) 180 180 180

Thigh peak torque (Nm) 203.7 175.2 184.7
Shank peak torque (Nm) −84.14 −98.39 −78.57
Roll angle derivation (◦) −1.8~0◦ −1.46~0.74◦ −1.26~0.53◦

Pitch angle derivation (◦) −7.98~1.13◦ −0.93~0.47◦ −1.16~1.08◦

Damping vibration duration (s) 1.8 1.6 2
Derivative x Velocity (m/s) 0.355 ≈ 0 ≈ 0
Derivative y Velocity (m/s) 0.04 ≈ 0 ≈ 0

8. Conclusions

To execute the tasks of landing and roving simultaneously, a six-legged movable
repetitive lander is designed and manufactured. Instead of absorbing the landing impact
energy by irreversible deformation of aluminum honeycomb material in the current legged
lander, a new electric IDU with high power, low weight and small volume is utilized to
dissipate the energy actively by simulating the dynamic characters of spring and damper
based on impedance control. The leg structure is still intact rather than permanent de-
formation, so the HexaMRL can perform repetitive exploration like the lander and rover.
Fault-tolerant landing capacity is important for adapting this repetitive work mode. The
main contributions are as follows:

(1) To achieve the soft-landing as far as possible with a failed IDU, we systematically
analyze the classification and stability of landing configurations. Then the relationship
between fault number and landing configuration is concluded by equation and listed
by table.

(2) As for stable configuration, we have designed corresponding fault-tolerant landing
algorithms to achieve buffer landing and further proposed a quasi-incentre stability
optimization method to increase the stability margin during supported operations.

(3) A series of experiments including five-legged, four-legged and three-legged soft-
landing with a vertical landing velocity of −1.9 m/s and a payload of 140 kg were
conducted to verify the fault-tolerant landing capacity on the constructed 5-DoF lunar
gravity ground testing platform by means of counterweight.

In future work, we will study the fault-tolerant walking capacity for HexaMRL to
further improve the control theory under faults.
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