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The study of oscillatory phenomena is an important part of the theory of differential equations.

Oscillations naturally occur in virtually every area of applied science including, e.g., mechanics,

electrical, radio engineering, and vibrotechnics.

This Special Issue includes 19 high-quality papers with original research results in theoretical

research, and recent progress in the study of applied problems in science and technology.
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Differential/difference equations;

Partial differential equations;

Dynamical systems;

Fractional calculus;

Delays;

Mathematical modeling and oscillations.
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Abstract: In this paper, we apply the pseudospectral method based on the Chebyshev cardinal
function to solve the parabolic partial integro-differential equations (PIDEs). Since these equations
play a key role in mathematics, physics, and engineering, finding an appropriate solution is important.
We use an efficient method to solve PIDEs, especially for the integral part. Unlike when using
Chebyshev functions, when using Chebyshev cardinal functions it is no longer necessary to integrate
to find expansion coefficients of a given function. This reduces the computation. The convergence
analysis is investigated and some numerical examples guarantee our theoretical results. We compare
the presented method with others. The results confirm the efficiency and accuracy of the method.

Keywords: interpolating scaling functions; hyperbolic equation; Galerkin method

1. Introduction

In this paper, we apply the pseudospectral method based on Chebyshev cardinal
functions to solve one-dimensional partial integro-differential equations (PIDEs)

wt(x, t) + αwxx(x, t) = β
∫ t

0
k(x, t, s, w(x, s))ds + f (x, t), x ∈ [a, b], t ∈ [0, T], (1)

with initial and boundary conditions

w(x, 0) = g(x), x ∈ [a, b], (2)

w(0, t) = h0(t), w(1, t) = h1(t), t ∈ [0, T], (3)

where α and β are constants and the functions f (x, t) and k(x, t, s, w) are assumed to be
sufficiently smooth on D := [0, 1]× [0, T] and S with S := {(x, t, s) : x ∈ [0, 1], s, t ∈ [0, T]},
respectively, as prescribed before and such that (1) has a unique solution w(x, t) ∈ C(D).
In addition, we assume that the kernel function is of diffusion type which is given by

k(x, t, s, w(x, s)) := k1(x, t − s)w(x, s), (4)

and satisfies the Lipschitz condition as follows

|k(x, t, s, w(x, s))− k(x, t, s, v(x, s)) ≤ A|w(x, s)− v(x, s)|, (5)

where A ≥ 0 is referred to as a Lipschitz constant.

1
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In various fields of physics and engineering, systems are often functions of space
and time and are described by partial differential equations. But in some cases, such a
formulation can not accurately model this system. Because we can not take into account
the effect of a past time when the system is a function of a given time. Such systems appear
in heat transfer, thermoelasticity and nuclear reactor dynamics. This phenomenon has
resulted in the inclusion of an integral term in the basic partial differential equation that
leads to a PIDEs [1]. The existence, uniqueness, and asymptotic behavior of the solution
of this equation are discussed in [2]. In this paper, we can find the physical situation that
leads to Equation (1). A Simple example that refers to a PIDEs is considered by Habetler
and Schiffman [3] where the compression of viscoelastic media is studied. For more
applications, we refer readers to [4–7].

Spectral methods are schemes to discretize the PDEs. To this end, they utilize the
polynomials to approximate the exact solution. Since any analytic function can be exponen-
tially approximated by polynomials. In contrast to other methods such as finite elements
and finite differences, these methods can achieve an infinite degree of accuracy. That’s
mean the order of the convergence of the approximate solution is limited only by the
regularity of the exact solution. In other words, for numerical simulations, fewer degrees of
freedom are necessary to obtain a given accuracy. The Galerkin method is a class of spectral
techniques that convert a continuous operator problem to a discrete problem. In other
words, this scheme applies the method of variation of parameters to function space by
transforming the equation to a weak formulation. To implement this method, we can not
compute the integrals analytically. That’s why we can’t use this method in most cases [8,9].
Another method that is closely related to spectral methods is the pseudospectral method.
The pseudospectral methods are a special type of numerical method that used scientific
computing and applied mathematics to solve partial differential equations. These methods
allow the representation of functions on a quadrature grid and cause simplification of the
calculations [10,11].

Several techniques have been used to solve one-dimensional partial differential equa-
tions, such as the finite difference method, finite element method, and spectral method.
In [12], the Legendre-collocation method is used to solve the parabolic Volterra integro-
differential equation. For an infinite domain, Dehghan et al. [12] used the algebraic map-
ping to obtain a finite domain and then they utilized their proposed method. The Legendre
multiwavelets collocation method is used to find the numerical solution of PIDEs [13].
To find the approximate solution of PIDEs, Avazzadeh et al. [14] applied the radial ba-
sis functions (RBFs) and finite difference method (FDM). To solve nonlinear parabolic
PIDEs in one space variable, Douglas and Jones [15] proposed backward difference and
Crank-Nicolson type methods. Han et al. [16] approximated the solution of (1) with kernel
function of diffusion type and on unbounded spatial domains using artificial boundary
method. In [17], a finite difference scheme is considered to solve PIDEs with a weakly
singular kernel.

According to the above, considerable attention has been devoted to solving PIDEs
numerically. In this paper, we introduce a simple numerical method with high accuracy.
To this end, while introducing the Chebyshev cardinal functions, the pseudospectral
method applies to obtain the approximate solution of PIDEs (1). Generally, cardinal
functions {Ci} are polynomials of a given degree that Ci vanishes at all interpolation grids
except xi. These bases are also called the shape functions, Lagrange basis, and so on. One
of the advantages of using such bases is the reduction of calculations to find the expansion
coefficients of a given function. In other words, to find the expansion coefficients based on
these bases, there is no need to integrate, and this is due to the cardinality, which makes
these bases superior to other functions. Laksetani and Dehghan [18] is used Chebyshev
cardinal functions to solve a PDE with an unknown time-dependent coefficient. In [19],
these functions are used to solve the fractional differential equation. Heydari [20] described
a new direct scheme for solving variable-order fractional optimal control problem via

2
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Chebyshev cardinal functions. For more details about the Chebyshev cardinal functions
and their applications, we refer the reader to [21,22].

This paper is organized as follows, Section 2 is devoted to a brief introduction to
Chebyshev cardinal functions. In Section 3, we presented an efficient and applicable
method based on Chebyshev cardinal functions to solve PIDEs (1). In Section 4, the conver-
gence analysis is investigated and we proved that the proposed method is convergence.
Section 5 is devoted to some numerical tests to show the ability ad accuracy of the method.
Finally, Section 6 contains a few concluding remarks.

2. Chebyshev Cardinal Functions

Given M ∈ N, assume that M := {1, 2, . . . , M + 1} and X := {xi : TM+1(xi) = 0,
i ∈ M} where TM+1 is the first kind Chebyshev function of order M + 1 on [−1, 1]. Recall
that the Chebyshev grid is obtained by

xi := cos
(
(2i − 1)π
2M + 2

)
, ∀i ∈ M. (6)

To utilize the Chebyshev functions of any arbitrary interval [a, b], one can apply the

change the variable x =
(

2(t−a)
b−a − 1

)
to obtain the shifted Chebyshev functions, viz

T∗
M+1(t) := TM+1

(
2(t − a)

b − a
− 1
)

, t ∈ [a, b]. (7)

Note that it is easy to show that the grids of shifted Chebyshev function T∗
M+1 is equal

to ti =
(x+1)(b−a)

2 + a.
A significant example of the cardinal functions for orthogonal polynomials is the

Chebyshev cardinal functions. The cardinal Chebyshev functions of order M + 1 are
defined as

Ci(x) =
TM+1(x)

TM+1,x(xi)(x − xi)
, i ∈ M, (8)

where the subscript x denotes x-differentiation. It is obvious that the functions Ci(x) are
polynomials of degree M which satisfy the condition

Ci(xl) = δil (9)

where δil is the Kronecker δ-function.
In view of (9), the cardinal functions are nonzero at one and only one of the points

xi ∈ X implies that for arbitrary function p(t), the function can be approximated by

p(t) ≈
M+1

∑
i=1

p(ti)Ci(t). (10)

Assume that Hn([a, b]), n ∈ N (Sobolev spaces) denotes the space of all functions
p ∈ Cn([a, b]) such that Dα p ∈ L2([a, b]) for all α ≤ n, where α is a nonnegative integer and
D is the derivative operator. Sobolov space Hn([a, b]) is equipped with a norm defined by

‖p‖2
Hn([a,,b]) =

n

∑
l=0

‖p(l)(t)‖2
L2([a,b]). (11)

There exista a semi-norm that is defined as follows

|p|2Hn,M([a,b]) =
M

∑
l=min n,M

‖p(l)(t)‖2
L2([a,b]). (12)

3
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It follows from [23] that the error of expansion (10) can be bounded by the follow-
ing lemma.

Lemma 1. Let {ti}i∈M ∈ X ∗ denotes shifted Gauss-Chebyshev points where X ∗ := {ti :
T∗

M+1(ti) = 0, i ∈ M} and that p(t) ∈ Hn([a, b]) can be approximated by pM via

pM(t) =
M+1

∑
i=1

p(ti)Ci(t).

Then one can prove that

‖p − pM‖L2([a,b]) ≤ CM−n|p|Hn,M([a,b]), (13)

where C is a constant and independent of M.

3. Pseudospectral Method

In this section, we apply the pseudospectral method to solve PIDEs (1) based on
Chebyshev cardinal functions. Let us consider the partial integro-differential Equation (1)
on the region Ω × T. We introduce differential operator

L :=
∂

∂t
+ α

∂2

∂x2 , (14)

and integral operator

I := β
∫ t

0
k(x, t, s, .)ds. (15)

Applying these operators, PIDEs (1) can be rewritten in the operator form

(L+ I)(w) = f . (16)

Let the solution of (1) is approximated by the polynomial w̃(x, t), via

w̃(x, t) =
M+1

∑
i=1

M+1

∑
j=1

wn(ti, tj)Ci(x)Cj(t). (17)

If we define a matrix W of dimension (M + 1)× (M + 1) whose (i, j)-th element is
w(ti, tj), then Equation (17) becomes the matrix problem

w̃(x, t) = CT(x)WC(t), (18)

where the vector elements of C(x) are the Chebyshev cardinal functions {Ci(x)}.
Inasmuch as the Chebyshev cardinal functions are polynomial, it is easy to evaluate

their derivatives. In view of (17), one can write

w̃x(x, t) =
M+1

∑
i=1

M+1

∑
i=1

w(ti, tj)Ci,x(x)Cj(t) = CT
x (x)WC(t), (19)

where Cx(x) is a vector of dimension (M + 1) whose i-th element is Ci,x(x). Similarly
we have

w̃t(x, t) =
M+1

∑
i=1

M+1

∑
i=1

w(ti, tj)Ci,x(x)Cj(t) = CT(x)WCt(t), (20)

where Ct(t) is a vector of dimension (M + 1) whose i-th element is Ci,t(t). Suppose
that D ∈ RM+1,M+1 is the operational matrix of derivative whose (i, j)-th element is
Di,j = Ci,t(tj). Thus, it follows from Cx(x) = DC(x) that

4
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w̃x(x, t) = CT(x)DTWC(t), (21)

and
w̃t(x, t) = CT(x)WDC(t). (22)

It can easily be shown that w̃xx(x, t) is approximated as follows

w̃xx(x, t) = CT(x)DT2
WC(t). (23)

Thus, by substituting (22) and (23) into the differential part of desired Equation (16),
we can approximate the differential operator L (14), via

L(w)(x, t) ≈ CT(x)WDC(t) + αCT(x)DT2
WC(t), (24)

To approximate the integral part, we assume that

∫ t

0
C(x)dx = IC(t), (25)

where I ∈ RM+1,M+1 is the operational matrix of integral. It follows from (15) that

I(w)(x, t) = β
∫ t

0
k(x, t, s, w(x, s))ds. (26)

If we replace w with w̃, then one can write

I(w)(x, t) ≈ β
∫ t

0
k(x, t, s, w̃(x, s))ds. (27)

Assume that k(x, t, s, w̃(x, s)) can be approximated by CT(x)KC(t) where K is a matrix
whose elements depend on t and unknown coefficients W. Replacing CT(x)KC(t) into (27),
and using the operational matrix of integration I, we get

I(w)(x, t) ≈ β
∫ t

0
CT(x)KC(s)ds

= βCT(x)K
∫ t

0
C(s)ds

= βCT(x)KIC(t)
= q(x, t) = CT(x)QC(t), (28)

where (i, j)-th element of matrix Q is q(ti, tj). Substituting (25) and (28) into (16), one
can write

CT(x)(WD + αDT2
W + Q)C(t) = CT(x)FC(t). (29)

The Chebyshev cardinal functions {Ci(x)} are orthogonal with respect to weighted
inner product on [−1, 1]

〈Ci(x), Cj(x)〉ω(x) =

{ π
M+1 , i = j,
0, i 6= j,

where ω(x) = 1/
√

1 − x2. This gives rise to equation

WD + αDT2
W + Q = F. (30)

Let us rewrite this system as

F (W) := WD + αDT2
W + Q − F = 0. (31)

5
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We Replace the first column of (31) with the initial condition (2) and the first and last
rows of (31) with the boundary conditions (3), i.e.,

[F (W)]i,1 = [WC(0)]i − g(ti),

[F (W)]1,i = [CT(0)W]i − h0(ti),

[F (W)]M+1,i = [CT(1)W]i − h1(ti),

i = 1, . . . , M + 1.

Using the matrix to vector conversion, this system is changed to a new system by
(M + 1)2 equations with (M + 1)2 unknowns

{
W̄Γ = F, if k is a nonlinear function of w,
F̄ = F, if k is a linear function of w,

(32)

where W̄, F, and F̄ are obtained using the matrix to vector conversion of W, F, and F
respectively.

After solving the linear or nonlinear system (32) using the generalized minimal resid-
ual method (GMRES) [24] and Newton-Raphson method, respectively, the unknowns W
are found, and then the approximate solution can be obtained using (18).

4. Convergence Analysis

Because the function f (x, t) is a continuous function on D, the approximate error by
comparing the function f with f̃ may be bounded, established by the following theorem.

Theorem 1. Let f : D → R2 be a sufficiently smooth function. Thus Chebyshev cardinal
approximation to function f can be written as

‖ f − f̃ ‖ ≈ O(2−2M). (33)

Proof. Let PM+1(x) denote that polynomial of degree M + 1 which interpolates to the func-
tion f at the M + 1 zeros of the first kind Chebyshev polynomials. It follows from [25] that

| f (x, t)− PM+1(x, t)| = ∂M+1

∂xM+1 f (ξ, t)
ΠM+1

i=1 (x − ti)

(M + 1)!
+

∂M+1

∂tM+1 f (x, η)
ΠM+1

j=1 (t − tj)

(M + 1)!

− ∂2M+2

∂xM+1tM+1 f (ξ ′, η′)
ΠM+1

i=1 (x − ti)Π
M+1
j=1 (t − tj)

(M + 1)!(M + 1)!
.

Since the leading coefficient of the first kind Chebyshev functions is 2M, and |Ti(x)| ≤ 1,
∀i ∈ M. It is possible to write

| f (x, t)− PM+1(x, t)| ≤
(

b − a
2

)M+1 1
2M(M + 1)!

(
sup

ξ∈[a,b]
| ∂M+1

∂xM+1 f (ξ, t)|+ sup
η∈[0,T]

|∂
M+1

∂tr f (x, η)|
)

+

(
b − a

2

)2M+2 1
4M((M + 1)!)2 sup

(ξ ′ ,η′)∈D
| ∂2M+2

∂xr∂tM+1 f (ξ ′, η′)|.

Since f̃ is approximated by Chebyshev cardinal functions and these bases are polyno-
mials, thus one can obtain

6
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‖ f − f̃ ‖2 =
∫∫

D
| f (x, t)− f̃ (x, t)|2dtdx

≤
∫∫

D
| f (x, t)− PM+1(x, t)|2dtdx

≤
∫∫

D

(
b − a

2

)M+1 1
2M(M + 1)!

(
sup

ξ∈[a,b]
| ∂M+1

∂xM+1 f (ξ, t)|+ sup
η∈[0,T]

|∂
M+1

∂tr f (x, η)|
)

dtdx

+
∫∫

D

(
b − a

2

)2M+2 1
4M((M + 1)!)2 sup

(ξ ′ ,η′)∈D
| ∂2M+2

∂xr∂tM+1 f (ξ ′, η′)|dtdx

≤ 2−2M (b − a)2M

(M + 1)!
Cmax(1/2 + 2−2M−2/(M + 1)!)

∫∫

D
dtdx

≤ C12−2M,

where C1 := (b−a)2M

(M+1)! Cmax(1/2 + 2−2M−2/(M + 1)!)|D| and

Cmax := max{ sup
ξ∈[a,b]

| ∂M+1

∂xM+1 f (ξ, t)|, sup
η∈[0,T]

|∂
M+1

∂tr |, sup
(ξ ′ ,η′)∈D

| ∂2M+2

∂xr∂tM+1 |}.

Theorem 2. The pseudospectral method for solving PIDEs (1) is convergence.

Proof. Let w̃ denotes the approximate solution of (1) for which e = w − w̃. We subtract
Equation (1) from

w̃t(x, t) + αw̃xx(x, t) = β
∫ t

0
k(x, t, s, w̃(x, s))ds + f̃ (x, t), (34)

to obtain the following equation

et(x, t) + αexx(x, t) = β
∫ t

0
k(x, t, s, e(x, s))ds + f (x, t)− f̃ (x, t). (35)

Now, Assume that we can approximate the error function e(x, t) as follows

e(x, t) ≈ CT(x)EC(t), (36)

where E is a matrix whose (i, j)-th element is e(ti, tj). Using this approximation and
Lipschitz condition (5), Equation (35) may be written as

CT(x)EDC(t) + αCT(x)DT2
EC(t) ≤ βACT(x)EIC(t) + CT(x)ηC(t), (37)

where | f − f̃ | ≈ CT(x)ηC(t). By dropping the second term in the left to the other side of
the inequality and taking norm from both sides, we have

‖ED‖ ≤ A|β|‖EI‖+ |α|‖DT2
E‖+ ‖η‖. (38)

Because {Ci} are orthogonal functions, we removed ‖C‖ from both sides. Multiplying
the right side of (38) by ‖D‖, it follows that

7
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‖ED‖ ≤ A|β|‖EI‖‖D‖+ |α|‖DT2
E‖‖D‖+ ‖η‖‖D‖

≤ A|β|‖E‖‖I‖‖D‖+ |α|‖DT2‖‖E‖‖D‖+ ‖η‖‖D‖,

and then

‖E‖‖D‖ ≤ A|β|‖EI‖‖D‖+ |α|‖DT2
E‖‖D‖+ ‖η‖‖D‖

⇒ ‖E‖ ≤ A|β|‖E‖‖I‖+ |α|‖DT2‖‖E‖+ ‖η‖.

So, it is obvious that we shall have

‖E‖
∣∣∣1 −A|β|‖I‖ − |α|‖D2‖

∣∣∣ ≤ ‖η‖. (39)

Consequently, we obtain

‖E‖ ≤
∣∣∣1 −A|β|‖I‖ − |α|‖D2‖

∣∣∣
−1

‖η‖. (40)

If f be a sufficiently smooth function, then ‖η‖ → 0 as M → ∞. Thus, we have

‖e‖ → 0, as M → ∞.

Therefore, the proposed method is convergent.

5. Test Problems

Example 1. Let us dedicate the first example to the case that the desired Equation (1) is of form

wt(x, t)− wxx(x, t) = f (x, t)−
∫ t

0
ex(t−s)w(x, s)ds,

with initial and boundary conditions

w(x, 0) = 0, x ∈ [0, 1],

w(0, t) = sin(t), w(1, t) = 0, t ∈ [0, 1],

and also f (x, t) := (−x2+1)ext+(x3+2 x2−x+2) sin(t)+(−x4+x2) cos(t)
x2+1 . The exact solution for this

example is given by [13]
w(x, t) = (1 − x2) sin(t).

Table 1 shows a comparison between the proposed method and Legendre multi-
wavelets collocation method [13]. As you can see, our proposed method gives better results
than [13]. According to Table 1, we can see that with fewer bases, we have achieved much
better accuracy than the method in [13]. For different values of M, the errors in Table 2 are
given with L∞, L2 norms applying pseudospectral method based on Chebyshev cardinal
functions. In Figure 1, the approximate solution, and absolute value of error are depicted.

8
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Table 1. Comparison of the maximum absolute errors at different times for Example 1.

Legendre Multiwavelets Collocation Method [13] Proposed Method

t M = 8 M = 16 M = 32 M = 8

0.0625 7.4383 × 10−5 4.6240 × 10−6 1.2106 × 10−5 2.2070 × 10−8

0.1875 7.5155 × 10−5 1.2275 × 10−5 2.4685 × 10−5 1.1514 × 10−9

0.3125 1.4643 × 10−4 2.5696 × 10−5 3.5745 × 10−5 4.8570 × 10−8

0.4375 7.5929 × 10−5 4.2169 × 10−5 4.5563 × 10−5 1.4616 × 10−9

0.5625 1.2180 × 10−4 6.0743 × 10−5 5.3926 × 10−5 1.7855 × 10−9

0.6875 1.0567 × 10−4 8.1933 × 10−5 6.0499 × 10−5 1.0870 × 10−7

0.8125 4.7215 × 10−5 1.0738 × 10−4 6.4915 × 10−5 5.3619 × 10−9

0.9375 2.1869 × 10−4 1.3833 × 10−4 6.6396 × 10−5 3.8717 × 10−7

Table 2. The L∞, L2 errors and CPU time for Example 1.

m M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

‖E‖2 5.8921× 10−3 1.0990 ×
10−3

5.7105 ×
10−5

3.2074 ×
10−6

6.3119 ×
10−8

4.6636 ×
10−9

7.3474 ×
10−11

‖E‖∞ 5.4300× 10−2 1.9000 ×
10−3

1.1000 ×
10−3

1.3510 ×
10−4

3.8717 ×
10−7

2.3385 ×
10−8

3.8785 ×
10−10

CPU time 1.141 1.985 3.953 7.172 15.890 23.515 42.031
Order of convergence - - 1.00679 1.10766 1.24750 1.27087 1.33619

Figure 1. Plot of the approximate solution and absolute value of the error for Example 1.

Example 2. Consider the following PIDEs [14]

wt(x, t)+wxx(x, t) =

(
−x3 +

(
t2 + 1

)
x2 − (t + 1)2x + 2 t

)
e−xt + e−tx

x − 1
−
∫ t

0
es−tw(x, s)ds,

with initial and boundary conditions

w(x, 0) = x, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = e−t, t ∈ [0, 1],

The exact solution for this example is w(x, t) = xe−xt.

In Table 3, we report the L∞, L2 errors and CPU time for different values of M.
These results guarantee our convergence investigation in Section 4. When M increases,
the error decreases, and approaches zero. The L∞, L2 errors obtained by presented method
are compared with Hermite-Taylor matrix method [26] and radial basis functions [14]
in Table 4. According to Table 4, we can see that our presented method is better than

9
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Hermite-Taylor matrix method [26] and radial basis functions [14]. Finally, we illustrate
the approximate solution and absolute error in Figure 2.

Table 3. The L∞, L2 errors and CPU time for Example 2.

m M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

‖E‖2 7.4563× 10−4 4.7516 ×
10−5

3.0177 ×
10−6

2.3288 ×
10−7

3.4667 ×
10−9

2.7823 ×
10−10

2.4512 ×
10−12

‖E‖∞ 5.8000× 10−3 1.1697 ×
10−4

2.6094 ×
10−5

6.7272 ×
10−8

5.0805 ×
10−8

1.74111 ×
10−9

5.4471 ×
10−11

CPU time 0.922 1.890 3.578 6.547 15.203 23.344 40.062
Order of convergence - - 1.19642 1.17133 1.29749 1.30468 1.38764

Table 4. Comparison of the L∞ and Ł2 errors at different times for Example 2.

Reference [14] (M = 12) Reference [26] (M = 40) Proposed Method (M = 10)

t L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

0.1 7.9401 × 10−8 3.9522 × 10−8 1.8818 × 10−5 1.1285 × 10−5 8.6171 × 10−15 6.0890 × 10−15

0.2 6.7287 × 10−8 3.2388 × 10−8 2.6480 × 10−5 1.6630 × 10−5 1.9171 × 10−14 8.9706 × 10−14

0.3 5.8151 × 10−8 2.6768 × 10−8 3.0188 × 10−5 1.9483 × 10−5 3.4101 × 10−14 4.2781 × 10−14

0.4 5.1314 × 10−8 2.3917 × 10−8 3.1915 × 10−5 2.0935 × 10−5 4.7705 × 10−14 6.2679 × 10−14

0.5 4.6268 × 10−8 2.3437 × 10−8 3.2470 × 10−5 2.1539 × 10−5 1.4383 × 10−13 3.5485 × 10−13

0.6 4.2620 × 10−8 2.3220 × 10−8 3.2421 × 10−5 2.1615 × 10−5 2.9489 × 10−13 4.3306 × 10−13

0.7 4.0062 × 10−8 2.3226 × 10−8 3.2001 × 10−5 2.1366 × 10−5 5.3306 × 10−13 7.6451 × 10−13

0.8 3.8392 × 10−8 2.3424 × 10−8 3.1393 × 10−5 2.0923 × 10−5 9.3758 × 10−13 1.3921 × 10−12

0.9 3.7575 × 10−8 2.3788 × 10−8 3.0699 × 10−5 2.0376 × 10−5 1.3326 × 10−12 1.3917 × 10−12

Figure 2. Plot of the approximate solution and absolute value of the error for Example 2.

Example 3. To show the ability of the proposed method for solving nonlinear PIDEs (1), we
consider the following equation.

wt(x, t) + wxx(x, t) =
∫ t

0
ex+t+sw2(x, s) + f (x, t),

where

f (x, t) =

(
x
(
(cos(t))2 + 2 cos(t) sin(t) + 2

)
ex+2 t − 3 ex+tx − 5 sin(t)

)
x

5
,

10
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with the boundary and initial conditions

w(x, 0) = x, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = cos(t), t ∈ [0, 1],

The exact solution for this Example is given by w(x, t) := x cos(t). Thus, we can easily judge
the accuracy and convergency of the method.

Figure 3 illustrates the log(L2errors), taking different values for M. To show the order
of convergence, we also plotted the linear regression. The slope of this line is equal to the
order of convergence (1.03248915355714). The numerical values with associated L2 error
and L∞ error are tabulated in Table 5. Finally, we illustrate the approximate solution and
absolute error, taking M = 8 in Figure 4.

Table 5. The L∞ and L2 errors for Example 3.

m M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

‖E‖2 9.8128× 10−2 5.2408× 10−3 8.3112× 10−4 1.7116 × 10−5 5.8815× 10−6 6.8421× 10−7 6.0015× 10−8

‖E‖∞ 3.8674× 10−1 2.9204× 10−2 7.7564× 10−3 2.6865 × 10−4 3.9205× 10−5 6.2192× 10−6 4.8173× 10−7

2 3 4 5 6 7 8

M

-8

-7

-6

-5

-4

-3

-2

-1

L
2
 (

lo
g

1
0
 e

rr
o

rs
)

linear regression

0.886926712099999 - 1.03248915355714t

Figure 3. Plot of the log(L2errors) and the linear regression for Example 3.

Figure 4. Plot of the approximate solution and absolute value of the error for Example 3.
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Example 4. The last example is dedicated to equation

wt(x, t)− wxx(x, t) = f (z, t) +
∫ t

0
3xstew(x,s)ds,

where

f (x, t) :=
−3 t2x cos(sin(x)t) sin(x) + 3 tx sin(sin(x)t)− sin(x)(cos(x)− 1)(cos(x) + 1)(t + 1)

(sin(x))2 ,

and

w(x, 0) = 0, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = sin(1)t, t ∈ [0, 1],

Since the closed form of the exact solution to the problem is unavailable, we compute
a reference solution by picking a large M = 12. The L∞, L2 errors, CPU time and order
of convergence are tabulated in Table 6 for different values of M. Figure 5 illustrates the
approximate solution and absolute error, taking M = 9. Table 7 shows the L∞, L2 errors at
the different times, taking different M.

Table 6. The L∞, L2 errors, CPU time and order of convergence for Example 4.

m M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9

‖E‖2 3.9186× 10−2 1.3828 ×
10−4

9.8169 ×
10−6

3.2073 ×
10−7

1.5216 ×
10−8

3.7417 ×
10−10

1.3539 ×
10−11

‖E‖∞ 6.3472× 10−4 7.3752 ×
10−6

2.8966 ×
10−6

7.4561 ×
10−8

3.2107 ×
10−9

1.5876 ×
10−11

2.3226 ×
10−12

CPU time 0.750 1.203 2.547 4.640 8.656 27.703 34.516
Order of convergence - - 1.73646 1.60251 1.51998 1.50915 1.49803

Table 7. Comparison of the L∞ and L2 errors at different times for Example 4.

M = 6 M = 8 M = 10

t L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

0.1 3.6577 × 10−8 7.4561 × 10−8 4.3201 × 10−11 5.8656 × 10−11 3.0868 × 10−14 4.9832 × 10−14

0.2 8.9209 × 10−8 1.7000 × 10−7 1.0306 × 10−10 1.4755 × 10−10 7.3013 × 10−14 1.1669 × 10−13

0.3 1.4797 × 10−7 2.6555 × 10−7 1.7008 × 10−10 2.4742 × 10−10 1.2171 × 10−13 1.9019 × 10−13

0.4 2.0766 × 10−7 3.5705 × 10−7 2.4193 × 10−10 3.5170 × 10−10 1.7217 × 10−13 2.6485 × 10−13

0.5 2.6816 × 10−7 4.4936 × 10−7 3.1506 × 10−10 4.5674 × 10−10 2.2295 × 10−13 3.3922 × 10−13

0.6 3.3127 × 10−7 5.4884 × 10−7 3.8600 × 10−10 5.6010 × 10−10 2.7508 × 10−13 4.1582 × 10−13

0.7 3.9738 × 10−7 6.5574 × 10−7 4.5574 × 10−10 6.6222 × 10−10 3.2645 × 10−13 4.9100 × 10−13

0.8 4.6191 × 10−7 7.5670 × 10−7 5.2929 × 10−10 7.6617 × 10−10 3.7527 × 10−13 5.6141 × 10−13

0.9 5.1196 × 10−7 8.1715 × 10−7 6.0246 × 10−10 8.7071 × 10−10 4.2776 × 10−13 6.3991 × 10−13

1.0 5.2605 × 10−7 8.0354 × 10−7 6.3088 × 10−10 9.5150 × 10−10 4.5370 × 10−13 6.7249 × 10−13
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Figure 5. Plot of the approximate solution and absolute value of the error for Example 4.

6. Conclusions

In this paper, an efficient and novel numerical method is applied to solve partial
integro-differential equations using the pseudospectral method based on Chebyshev cardi-
nal functions. Due to the simplicity of using cardinal functions, the presented method is
good for solving PIDEs. The convergence analysis is investigated and we can show when
the number of bases increases, the accuracy is also increased. The presented method was
applied to solve some numerical tests and the results guarantee our convergence inves-
tigation and application of the proposed method to this problem shows that it performs
extremely well in terms of accuracy.
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Abstract: We study the oscillatory behavior of a class of fourth-order differential equations and
establish sufficient conditions for oscillation of a fourth-order differential equation with middle
term. Our theorems extend and complement a number of related results reported in the literature.
One example is provided to illustrate the main results.

Keywords: deviating argument; fourth order; differential equation; oscillation

1. Introduction

In this paper, we are concerned with the oscillation and the asymptotic behavior of solutions of
the following two fourth-order differential equations. The nonlinear differential equation:

(
r (t)

(
x′′′ (t)

)α
)′

+ q (t) xβ (σ (t)) = 0, (1)

and the differential equation with the middle term of the form:

(
r (t)

(
x′′′ (t)

)α
)′

+ p (t)
(
x′′′ (t)

)α
+ q (t) xβ (σ (t)) = 0, (2)

where α and β are quotient of odd positive integers, r, q ∈ C ([t0, ∞), [0, ∞)) , r (t) > 0, q (t) > 0, σ (t) ∈
C ([t0, ∞),R) , σ (t) ≤ t, limt→∞ σ (t) = ∞. Moreover, we study Equation (1) under the condition

∫ ∞

t0

1
r1/α (s)

ds = ∞ (3)

and Equation (2) under the conditions p ∈ C ([t0, ∞), [0, ∞)) , r′ (t) + p (t) ≥ 0 and

∫ ∞

t0

[
1

r (s)
exp

(
−
∫ s

t0

p (u)
r (u)

du

)]1/α

ds = ∞. (4)

We aim for a solution of Equation (1) or Equation (2) as a function x(t) : [tx, ∞) → R, tx ≥ t0 such
that x(t) and r (t) (x′′′ (t))α are continuously differentiable for all t ∈ [tx, ∞) and sup{|x(t)| : t ≥ T} >

0 for any T ≥ tx. We assume that Equation (1) or Equation (2) possesses such a solution. A solution of
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Equation (1) or Equation (2) is called oscillatory if it has arbitrarily large zeros on [tx‚ ∞). Otherwise,
it is called non-oscillatory. Equation (1) or Equation (2) is said to be oscillatory if all its solutions are
oscillatory. The equation itself is called oscillatory if all of its solutions are oscillatory.

In mechanical and engineering problems, questions related to the existence of oscillatory and
non-oscillatory solutions play an important role. As a result, there has been much activity concerning
oscillatory and asymptotic behavior of various classes of differential and difference equations
(see, e.g., [1–34], and the references cited therein).

Zhang et al. [30] considered Equation (1) where α = β and obtained some oscillation criteria.
Baculikova et al. [5] proved that the equation

[
r (t)

(
x(n−1) (t)

)α]′
+ q (t) f (x (τ (t))) = 0

is oscillatory if the delay differential equations

y′ (t) + q(t) f

(
δτn−1 (t)

(n − 1)!r
1
α (τ (t))

)
f
(

y
1
α (τ (t))

)
= 0

is oscillatory and under the assumption that Equation (3) holds, and obtained some comparison theorems.
In [15], El-Nabulsi et al. studied the asymptotic properties of the solutions of equation

(
r (t)

(
x′′′ (t)

)α
)′

+ q (t) xα (σ (t)) = 0, (5)

where α is ratios of odd positive integers and under the condition (3).
Elabbasy et al. [14] proved that Equation (2) where α = β = 1 is oscillatory if

∫ ∞

t0

(
ρ (s) q (s)

µ

2
τ2 (s)− 1

4ρ (s) r (s)

[
ρ′+ (s)
ρ (s)

− p (s)
r (s)

]2
)

ds = ∞,

for some µ ∈ (0, 1) , and

∫ ∞

t0

[
ϑ (s)

∫ ∞

s

[
1

r (υ)

∫ ∞

υ
q (ν)

(
τ2 (ν)

ν2

)
dν

]
dυ − (ϑ′ (s))2

4ϑ (s)

]
ds = ∞

where positive functions ρ, ϑ ∈ C1 ([ν0, ∞) ,R) and under the condition in Equation (4).
The motivation in studying this paper improves results in [15]. An example is presented in the

last section to illustrate our main results.
We firstly provide the following lemma, which is used as a tool in the proofs our theorems.

Lemma 1 ([10]). Let h ∈ Cn ([t0, ∞) , (0, ∞)) . Suppose that h(n) (t) is of a fixed sign, on [t0, ∞), h(n) (t) not
identically zero and that there exists a t1 ≥ t0 such that, for all t ≥ t1,

h(n−1) (t) h(n) (t) ≤ 0.

If we have limt→∞ h (t) 6= 0, then there exists tλ ≥ t0 such that

h (t) ≥ λ

(n − 1)!
tn−1

∣∣∣h(n−1) (t)
∣∣∣ ,

for every λ ∈ (0, 1) and t ≥ tλ.
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Lemma 2 ([26]). If the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and x(n+1) (t) < 0, then

x (t)
tn/n!

≥ x′ (t)
tn−1/ (n − 1)!

.

Lemma 3 ([27] Lemma 1.2). Assume that α is a quotient of odd positive integers, V > 0 and U are constants.
Then,

Uy − Vy(α+1)/α ≤ αα

(α + 1)α+1 Uα+1V−α. (6)

2. Oscillation Results

Firstly we establish oscillation results for Equation (1). For convenience, we denote

G (t) :=
λβ

6β

q (t) σ3β (t)

rβ/α (σ (t))
,

R (t) :=
∫ ∞

t

(
1

r (u)

∫ ∞

u
q (s)ds

)1/α

du

and

R̃ (t) := µβ/α
∫ ∞

t

(
1

r (u)

∫ ∞

u
q (s)

(
σ (s)

s

)β

ds

)1/α

du,

where λ, µ ∈ (0, 1).

Lemma 4. Assume that Equation (3) holds. If x is an eventually positive solution of Equation (1); then, x′ > 0
and x′′′ > 0.

Proof. Assume that x is an eventually positive solution of Equation (1); then, x (t) > 0 and x (σ (t)) > 0
for t ≥ t1. From Equation (1), we get

(
r (t)

(
x′′′ (t)

)α
)′

= −q (t) xβ (σ (t)) < 0.

Hence, r (t) (x′′′ (t))α is decreasing of one sign. Thus, we see that

x′′′ (t) > 0.

From Equation (1), we obtain

(
r (t)

(
x′′′ (t)

)α
)′

= r′ (t) + αr (t)
(

x′′′ (t)
)α−1 x(4) (t) ≤ 0,

from which it follows that x(4) (t) ≤ 0, hence x′ (t) > 0, t ≥ t1. The proof is complete.

Theorem 1. Assume that Equation (3) holds. If the differential equation

u′ (t) + G (t) uβ/α (σ (t)) = 0 (7)

is oscillatory for some λ ∈ (0, 1) , then Equation (1) is oscillatory.

Proof. Assume to the contrary that Equation (1) has a nonoscillatory solution in [t0, ∞). Without loss
of generality, we only need to be concerned with positive solutions of Equation (1). Then, there exists a
t1 ≥ t0 such that x (t) > 0 and x (σ (t)) > 0 for t ≥ t1. Let

17



Mathematics 2020, 8, 520

u (t) := r (t)
(
x′′′ (t)

)α
> 0 [from Lemma 4],

which with Equation (1) gives
u′ (t) + q (t) xβ (σ (t)) = 0. (8)

Since x is positive and increasing, we have limt→∞ x (t) 6= 0. Thus, from Lemma 1, we get

xβ (σ (t)) ≥ λβ

6β
σ3β (t)

(
x′′′ (σ (t))

)β , (9)

for all λ ∈ (0, 1). By Equations (8) and (9), we see that

u′ (t) +
λβ

6β
q (t) σ3β (t)

(
x′′′ (σ (t))

)β ≤ 0.

Thus, we note that u is positive solution of the differential inequality

u′ (t) + G (t) uβ/α (σ (t)) ≤ 0.

In view of [25] (Theorem 1), the associated Equation (7) also has a positive solution, which is a
contradiction. The theorem is proved.

Corollary 1. Assume that α = β and Equation (3) holds. If

lim inf
t→∞

∫ t

σ(t)
G (s)ds >

1
e

, (10)

for some λ ∈ (0, 1) , then Equation (1) is oscillatory.

Proof. It is well-known (see [28] (Theorem 2.1.1)) that Equation (10) implies the oscillation of
Equation (11).

Lemma 5. Assume that Equation (3) holds and x is an eventually positive solution of Equation (1). If

∫ ∞

t0

(
Mβ−αρ (t) q (t)

σ3α (t)
t3α

− 2α

(α + 1)α+1
r (t) (ρ′ (t))α+1

µαt2αρα (t)

)
ds = ∞, (11)

for some µ ∈ (0, 1) , then x′′ < 0.

Proof. Assume to the contrary that x′′ (t) > 0. Using Lemmas 2 and 1, we obtain

x (σ (t))
x (t)

≥ σ3 (t)
t3 (12)

and
x′ (t) ≥ µ

2
t2x′′′ (t) , (13)

for all µ ∈ (0, 1) and every sufficiently large t. Now, we define a function ψ by

ψ (t) := ρ (t)
r (t) (x′′′ (t))α

xα (t)
> 0.

By differentiating and using Equations (12) and (13), we obtain

ψ′ (t) ≤ ρ′ (t)
ρ (t)

ω (t)− ρ (t) q (t)
σ3α (t)

t3α
xβ−α (σ (t))− αµ

2
t2

ρ1/α (t) r1/α (t)
ψ1+1/α (t) . (14)
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Since x′ (t) > 0, there exist a t2 ≥ t1 and a constant M > 0 such that x (t) > M, for all t ≥ t2.

Using the inequality in Equation (6) with U = ρ′/ρ, V = αµt2/
(

2r1/α (t) ρ1/α (t)
)

and y = ψ, we get

ψ′ (t) ≤ −Mβ−αρ (t) q (t)
σ3α (t)

t3α
+

2α

(α + 1)α+1
r (t) (ρ′ (t))α+1

µαt2αρα (t)
.

This implies that

∫ t

t1

(
Mβ−αρ (t) q (t)

σ3α (t)
t3α

− 2α

(α + 1)α+1
r (t) (ρ′ (t))α+1

µαt2αρα (t)

)
ds ≤ ψ (t1) ,

which contradicts Equation (11). The proof is complete.

Theorem 2. Assume that β ≥ α and Equations (3) and (11) hold, for some µ ∈ (0, 1). If

y′′ (t) + Mβ−αR̃ (t) y (t) = 0 (15)

is oscillatory, then Equation (1) is oscillatory.

Proof. Assume to the contrary that Equation (1) has a nonoscillatory solution in [t0, ∞). Without loss
of generality, we only need to be concerned with positive solutions of Equation (1). Then, there exists a
t1 ≥ t0 such that x (t) > 0 and x (σ (t)) > 0 for t ≥ t1. From Lemmas 4 and 1, we have that

x′ (t) > 0, x′′ (t) < 0 and x′′′ (t) > 0, (16)

for t ≥ t2, where t2 is sufficiently large. Now, integrating Equation (1) from t to l, we have

r (l)
(
x′′′ (l)

)α
= r (t)

(
x′′′ (t)

)α −
∫ l

t
q (s) xβ (σ (s))ds. (17)

Using Lemma 3 from [29] with Equation (16), we get

x (σ (t))
x (t)

≥ λ
σ (t)

t
,

for all λ ∈ (0, 1), which with Equation (17) gives

r (l)
(
x′′′ (l)

)α − r (t)
(

x′′′ (t)
)α

+ λβ
∫ l

t
q (s)

(
σ (s)

s

)β

xβ (s)ds ≤ 0.

It follows by x′ > 0 that

r (l)
(
x′′′ (l)

)α − r (t)
(
x′′′ (t)

)α
+ λβxβ (t)

∫ l

t
q (s)

(
σ (s)

s

)β

ds ≤ 0. (18)

Taking l → ∞, we have

−r (t)
(

x′′′ (t)
)α

+ λβxβ (t)
∫ ∞

t
q (s)

(
σ (s)

s

)β

ds ≤ 0,

that is

x′′′ (t) ≥ λβ/α

r1/α (t)
xβ/α (t)

(∫ ∞

t
q (s)

(
σ (s)

s

)β

ds

)1/α

.
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Integrating the above inequality from t to ∞, we obtain

−x′′ (t) ≥ λβ/αxβ/α (t)
∫ ∞

t

(
1

r (u)

∫ ∞

u
q (s)

(
σ (s)

s

)β

ds

)1/α

du,

hence
x′′ (t) ≤ −R̃ (t) xβ/α (t) . (19)

Now, if we define ω by

ω (t) =
x′ (t)
x (t)

,

then ω (t) > 0 for t ≥ t1, and

ω′ (t) =
x′′ (t)
x (t)

−
(

x′ (t)
x (t)

)2

.

By using Equation (19) and definition of ω (t) , we see that

ω′ (t) ≤ −R̃ (t)
xβ/α (t)

x (t)
− ω2 (t) . (20)

Since x′ (t) > 0, there exists a constant M > 0 such that x (t) ≥ M, for all t ≥ t2, where t2 is
sufficiently large. Then, Equation (20) becomes

ω′ (t) + ω2 (t) + Mβ−αR̃ (t) ≤ 0. (21)

It is well known (see [3]) that the differential equation in Equation (15) is nonoscillatory if and
only if there exists t3 > max {t1, t2} such that Equation (21) holds, which is a contradiction. Theorem
is proved.

Theorem 3. Assume that β ≥ α and σ′ (t) > 1 and Equations (3) and (11) hold, for some µ ∈ (0, 1). If

(
1

σ′ (t)
y′ (t)

)′
+ Mβ/α−1R (t) y (t) = 0 (22)

is oscillatory, then Equation (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2, we obtain Equation (17). Thus, it follows from
σ′ (t) ≥ 0 and x′ (t) ≥ 0 that

r (l)
(
x′′′ (l)

)α − r (t)
(
x′′′ (t)

)α
+ xβ (σ (t))

∫ l

t
q (s)ds ≤ 0. (23)

Thus, Equation (16) becomes

x′′ (t) ≤ −R (t) xβ/α (σ (t)) . (24)

Now, if we define w by

w (t) =
x′ (t)

x (σ (t))
,

then w (t) > 0 for t ≥ t1, and
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w′ (t) =
x′′ (t)

x (σ (t))
− x′ (t)

x2 (σ (t))
x′ (σ (t)) σ′ (t)

≤ x′′ (t)
x (σ (t))

− σ′ (t)
(

x′ (t)
x (σ (t))

)2

.

By using Equation (24) and definition of w (t) , we see that

w′ (t) + Mβ/α−1R (t) + σ′ (t)w2 (t) ≤ 0. (25)

It is well known (see [3]) that the differential equation in Equation (22) is nonoscillatory if and
only if there exists t3 > max {t1, t2} such that Equation (25) holds, which is a contradiction. Theorem
is proved.

There are many results concerning the oscillation of Equations (15) and (22), which include
Hille–Nehari types, Philos type, etc. On the basis of [33,34], we have the following corollary, respectively.

Corollary 2. Assume that β = α and Equations (3) and (11) hold, for some µ ∈ (0, 1). If

lim
t→∞

1
H (t, t0)

∫ t

t0

(
H (t, s) R̃ (s)− 1

4
h2 (t, s)

)
ds = ∞

or

lim inf
t→∞

t
∫ ∞

t
R̃ (s)ds >

1
4

, (26)

then Equation (1) is oscillatory.

Corollary 3. Assume that β = α and Equations (3) and (11) hold, for some µ ∈ (0, 1). If there exists a constant
κ ∈ (0, 1/4] such that

t2R̃ (s) ≥ κ

and

lim sup
t→∞

(
tκ−1

∫ t

t0

s2−κ R̃ (s)ds + t1−κ̃
∫ ∞

t
sκ̃ R̃ (s)ds

)
> 1,

where κ̃ = 1
2

(
1 −

√
1 − 4κ

)
, then Equation (1) is oscillatory.

We will now define the following notation:

ηt0 (t) := exp
(∫ t

t0

p (u)
r (u)

du

)

and

R̂ (t) := µ
β/α
1

∫ ∞

t

(
1

r (u) ηt0 (t)

∫ ∞

u
ηt0 (t) q (s)

(
σ (s)

s

)β

ds

)1/α

du,

where µ1 ∈ (0, 1). We establish oscillation results for Equation (2) by converting into the form of
Equation (1). It is not difficult to see that

1
ηt0 (t)

d
dt

(
µ (t) r (t)

(
x′′′ (t)

)α
)

=
1

ηt0 (t)

[
ηt0 (t)

(
r (t)

(
x′′′ (t)

)α
)′

+ η′
t0
(t) r (t)

(
x′′′ (t)

)α
]

=
(

r (t)
(

x′′′ (t)
)α
)′

+
η′

t0
(t)

ηt0 (t)
r (t)

(
x′′′ (t)

)α

=
(

r (t)
(

x′′′ (t)
)α
)′

+ p (t)
(
x′′′ (t)

)α ,
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which with Equation (2) gives

(
ηt0 (t) r (t)

(
x′′′ (t)

)α
)′

+ ηt0 (t) q (t) xβ (σ (t)) = 0.

Corollary 4. Assume that α = β and Equation (4) holds. If

lim inf
t→∞

∫ t

σ(t)
Ĝ (s)ds >

1
e

,

for some λ ∈ (0, 1) , where

Ĝ (t) :=
λβ

6β

ηt0 (t) q (t) σ3β (t)

η
β/α
t0

(σ (t)) rβ/α (σ (t))
,

then Equation (2) is oscillatory.

Corollary 5. Assume that β = α, Equation (4) and

∫ ∞

t0

(
Mβ−αρ (t) ηt0 (t) q (t)

σ3α (t)
t3α

− 2α

(α + 1)α+1
r (t) ηt0 (t) (ρ

′ (t))α+1

µαt2αρα (t)

)
ds = ∞, (27)

hold, for some µ ∈ (0, 1). If

lim
t→∞

1
H (t, t0)

∫ t

t0

(
H (t, s) R̂ (s)− 1

4
h2 (t, s)

)
ds = ∞

or

lim inf
t→∞

∫ ∞

t
R̂ (s)ds >

1
4

,

then Equation (2) is oscillatory.

Corollary 6. Assume that β = α and Equations (4) and (27) hold, for some µ ∈ (0, 1). If there exists a constant
κ ∈ (0, 1/4] such that

t2R̂ (s) ≥ κ

and

lim sup
t→∞

(
tκ−1

∫ t

t0

s2−κ R̂ (s)ds + t1−κ̃
∫ ∞

t
sκ̃ R̂ (s)ds

)
> 1,

where κ̃ is defined as Corollary 3, then Equation (2) is oscillatory.

3. Example

In this section, we give the following example to illustrate our main results.

Example 1. For t ≥ 1, consider a differential equation:

(
t3 (x′′′ (t)

)3
)′

+
q0

t7 x3 (γt) = 0, (28)

where γ ∈ (0, 1] and q0 > 0. We note that α = β = 3, r (t) = t3, σ (t) = γt and q (t) = q0/t7. Thus, it is
easy to verify that

G (t) =
λ3γ6

63
q0

t
and R̃ (t) = λ

( q0

6

)1/3
γ

1
2t2 .

By using Corollary 1, we see that Equation (28) is oscillatory if
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q0 >
63

e
(

ln 1
γ

)
γ6

. (29)

This result can be obtained from [5].
For using Corollary 2, we see that the conditions in Equations (11) and (26) become

q0 >

(
34

2

)
1

γ9

and

q0 > 6
(

1
4γ

)3

respectively. Thus, Equation (28) is oscillatory if

q0 > max

{(
34

2

)
1

γ9 , 6
(

1
4γ

)3
}

=

(
34

2

)
1

γ9 . (30)

Remark 1. By applying equation Equation (30) on the work in [15] where γ = 1/2, we find

q0 > 20736.

Therefore, our result improves results [15].

4. Conclusions

In this article, we study the oscillatory behavior of a class of non-linear fourth-order differential
equations and establish sufficient conditions for oscillation of a fourth-order differential equation with
middle term. The outcome of this article extends a number of related results reported in the literature.
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Abstract: It is easy to notice the great recent development in the oscillation theory of neutral differen-
tial equations. The primary aim of this work is to extend this development to neutral differential
equations of mixed type (including both delay and advanced terms). In this work, we consider
the second-order non-canonical neutral differential equations of mixed type and establish a new
single-condition criterion for the oscillation of all solutions. By using a different approach and
many techniques, we obtain improved oscillation criteria that are easy to apply on different models
of equations.

Keywords: non-canonical differential equations; second-order; neutral delay; mixed type; oscillation criteria

1. Introduction

This paper discusses the oscillatory behavior of solutions of second-order neutral
differential equations of mixed type:

(
r(s)

(
(x(s) + p1(s)x(̺1(s)) + p2(s)x(̺2(s)))

′
)α)′

+ q1(s)xα(θ1(s)) + q2(s)xα(θ2(s)) = 0, (1)

where s ≥ s0. Throughout this paper, we assume the following:

(C1) α ∈ Q+
odd := {a/b : a, b ∈ Z+ are odd};

(C2) r ∈ C([s0, ∞), (0, ∞)) r′(s) > 0, and
∫ ∞

s0
r−1/α(ξ)dξ < ∞, where C(I, J) is the set of

all continuous real-valued functions F : I → J;
(C3) ̺1, ̺2, θ1, θ2 ∈ C([s0, ∞),R), ̺1(s) ≤ s, ̺2(s) ≥ s, θ1(s) ≤ s, θ2(s) ≥ s,

and ̺1(s), ̺2(s), θ1(s), θ2(s) → ∞ as s → ∞;
(C4) p1, p2, q1, q2 ∈ C([s0, ∞), [0, ∞)) and q1, q2 are not identically zero for large s.

Let x be a real-valued function defined for all s in a real interval [sx, ∞), sx ≥ s0, which
has the properties

x + p1 · x ◦ ̺1 + p2 · x ◦ ̺2 ∈ C1([sx, ∞),R)

and
r · (x + p1 · x ◦ ̺1 + p2 · x ◦ ̺2)

′ ∈ C1([sx, ∞),R).

Then, x is called a solution of (1) on [sx, ∞) if x satisfies (1) for all s ≥ sx. We will
consider only the solutions of (1) that exist on some half-line [sx, ∞) for sx ≥ s0 and satisfy
the condition

sup{|x(s)| : sc ≤ s < ∞} > 0 for any sc ≥ sx.

A nontrivial solution x of any differential equation is said to be oscillatory if it has
arbitrary large zeros; otherwise, it is said to be non-oscillatory.
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The oscillation and asymptotic behavior of solutions to various classes of delay and ad-
vanced differential equations have been widely discussed in the literature. For second-order
delay equations, the studies found in [1–5] were concerned with studying the oscillatory
behavior of the equation:

(
r(s)

(
(x(s) + p1(s)x(̺1(s)))

′
)α)′

+ q1(s)xα(θ1(s)) = 0, (2)

with the canonical operator π(s0) = ∞, where

π(s) :=
∫ s

s0

r−1/α(ξ)dξ.

One can find developments and comparisons of the oscillation criteria of (2) in the
recently published paper by Moaaz et al. [4] for a non-canonical case, that is,

∫ ∞

s0

r−1/α(ξ)dξ < ∞.

Bohner et al. [6] simplified and improved the previous results found by Agarwal et al. [7]
and Han et al. [8]. For more general equations and more accurate results, see [9,10].

For second-order advanced equations, Chatzarakis et al. [11,12] studied the asymptotic
behavior of the equation:

(
r(s)

(
x(s)′

)α)′
+ q2(s)xα(θ2(s)) = 0,

in the non-canonical case, and improved a number of pre-existing results.
Although there are many results of studies of the oscillation of solutions of delay

differential equations, the results that concern the study of mixed equations are few—see,
for example [13–24]. By using the Riccati transformation technique, Arul and Shobha [13]
obtained some sufficient conditions for oscillation of the equation:

(
r(s)(x(s) + a(s)x(s − ̺) + b(s)x(s + δ))′

)′
+ q(s) f (x(θ(s))) = 0,

where 0 ≤ a(s) ≤ a < ∞, 0 ≤ b(s) ≤ b < ∞, and f (u)/u ≥ k > 0. Dzurina et al. [22]
established some criteria for the oscillation of the equation

(x(s) + p1x(s − ̺1) + p2x(s + ̺2))
′′ = q1(s)x(s − θ1) + q2(s)x(s + θ2),

where ̺i, θi ≥ 0 are constants, qi is nonnegative, and i = 1, 2. Tunc et al. [24] studied the
oscillatory behavior of solutions of the equation:

(
r(s)

(
(x(s) + p1(s)x(̺1(s)) + p2(s)x(̺2(s)))

′
)α)′

+ q(s)xα(θ(s)) = 0,

in the canonical case π(s0) = ∞, and considered the cases:

(i) p1(s) ≥ 0, p2(s) ≥ 1 and p2(s) 6= 1 eventually

and
(ii) p2(s) ≥ 0, p1(s) ≥ 1 and p2(s) 6= 1 eventually.

Thandapani et al. [23] considered the equation

(
(x(s) + p1x(s − ̺1) + p2x(s + ̺2))

α)′′ + q1(s)xβ(s − θ1) + q2(s)xγ(s + θ2) = 0,

where α, β, and γ are the ratios of odd positive integers, and established some sufficient
conditions for the oscillation of all of the solutions. For more results, techniques, and
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approaches that deal with the oscillation of delay differential equations of higher orders,
see [25–33].

The objective of this paper is to study the oscillatory and asymptotic properties of a
class of delay differential equations of mixed neutral type with the non-canonical operator.
The oscillation criteria are obtained via only one condition, and hence, they are easy to
apply. Moreover, by using generalized Riccati substitution, we get new criteria that improve
some of the results reported in the literature. An example is provided to illustrate the
significance of the main results.

2. Preliminary Results

In the following, we present the notations used in this study:

- For the continuous function r, we define the integral operator κ(u, v) for u < v as

κ(u, v) :=
∫ v

u
r−1/α(δ)dδ;

- For any solution x of (1), we define the corresponding function υ as

υ(s) := x(s) + p1(s)x(̺1(s)) + p2(s)x(̺2(s)), for s ≥ s0.

- Briefly, we use the notations

B1(s) : = 1 − p1(s)
κ(̺1(s), ∞)

κ(s, ∞)
− p2(s),

H(s) : = q1(s)Bα
2 (θ1(s)) + q2(s)Bα

2 (θ2(s)),

G(s) : = q1(s)Bα
1 (θ1(s)) + q2(s)Bα

1 (θ2(s))

and

B2(s) := 1 − p1(s)− p2(s)
κ(s1, ̺2(s))

κ(s1, s)
, for s ≥ s1 ≥ s0.

Lemma 1 ([6], Lemma 2.6). Assume that Θ(v) := Av − B(v − C)(α+1)/α, where A, B, and
C are real constants, B > 0, and α ∈ Q+

odd. Then, the maximum value of Θ on R at v∗ =
C + (αA/((α + 1)B))α is

Θ(v∗) ≤ max
v∈R

Θ(v) = AC +
αα

(α + 1)α+1 Aα+1B−α.

Lemma 2. Let x be a positive solution of (1). If υ is decreasing, then

(
υ(s)

κ(s, ∞)

)′
≥ 0, (3)

eventually. Further, if υ is increasing, then

(
υ(s)

κ(s1, s)

)′
≤ 0, (4)

for all s ≥ s1 ≥ s0.

Proof. Suppose that (1) has a positive solution x on [s0, ∞). Obviously, υ(s) ≥ x(s) > 0 for
all s ≥ s1 ≥ s0. Thus, from (1), we get

(
r(s)

(
υ′(s)

)α
)′

= −q1(s)xα(θ1(s))− q2(s)xα(θ2(s)) ≤ 0.
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Hence, r(s)(υ′(s))α is non-increasing, and so υ′(s) has a constant sign for s ≥ s1.
Assume that υ′(s) < 0 on [s1, ∞). Then,

υ(s) ≥ −
∫ ∞

s
r−1/α(ξ)r1/α(ξ)υ′(ξ)dξ ≥ −κ(s, ∞)r1/α(s)υ′(s), (5)

and so, (
υ(s)

κ(s, ∞)

)′
=

κ(s, ∞)υ′(s) + r−1/α(s)υ(s)

(κ(s, ∞))2 ≥ 0.

Next, assume that υ′(s) > 0 on [s1, ∞). Hence, we obtain

υ(s) ≥
∫ s

s1

r−1/α(ξ)r1/α(ξ)υ′(ξ)dξ ≥ κ(s1, s)r1/α(s)υ′(s),

and it follows that
(

υ(s)
κ(s1, s)

)′
=

κ(s1, s)υ′(s)− r−1/α(s)υ(s)
κ2(s1, s)

≤ 0.

Thus, the proof is complete.

3. Main Results

Theorem 1. Assume that H(s) ≥ G(s) > 0. If

lim sup
s→∞

∫ s

s1

1
r1/α(u)

(∫ u

s1

G(ξ)κα(θ2(ξ), ∞)dξ

)1/α

du = ∞, (6)

for s1 ≥ s0, then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x(̺1(s)), x(̺2(s)), x(θ1(s)), and x(θ2(s)) are positive for all s ≥ s1. Thus, from (1) and
the definition of υ, we note that υ(s) ≥ x(s) > 0 and r(s)(υ′(s))α is non-increasing. Hence,
υ′ > 0 or υ′ < 0 eventually.

Assume that υ′(s) < 0 on [s1, ∞). By using Lemma 2, we have

υ(̺1(s)) ≤
κ(̺1(s), ∞)

κ(s, ∞)
υ(s),

based on the fact that ̺1(s) ≤ s. Therefore,

x(s) = υ(s)− p1(s)x(̺1(s))− p2(s)x(̺2(s))

≥ υ(s)− p1(s)υ(̺1(s))− p2(s)υ(̺2(s))

≥
(

1 − p1(s)
κ(̺1(s), ∞)

κ(s, ∞)
− p2(s)

)
υ(s)

= B1(s)υ(s).

Hence, (1) becomes

(
r(s)

(
υ′(s)

)α
)′

≤ −q1(s)Bα
1 (θ1(s))υ

α(θ1(s))− q2(s)Bα
1 (θ2(s))υ

α(θ2(s)),
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and since θ1(s) ≤ θ2(s), we have

(
r(s)

(
υ′(s)

)α
)′

≤ −q1(s)Bα
1 (θ1(s))υ

α(θ2(s))− q2(s)Bα
1 (θ2(s))υ

α(θ2(s))

≤ −(q1(s)Bα
1 (θ1(s)) + q2(s)Bα

1 (θ2(s)))υ
α(θ2(s))

= −G(s)υα(θ2(s)). (7)

Since
(
r(s)(υ′(s))α)′ ≤ 0, we have

r(s)
(
υ′(s)

)α ≤ r(s1)
(
υ′(s1)

)α := −L < 0, (8)

for all s ≥ s1, and from (5) and (8), we have

υα(s) ≥ Lκα(s, ∞) for all s ≥ s1. (9)

Combining (7) with (9) yields

(
r(s)

(
υ′(s)

)α
)′

≤ −G(s)Lκα(θ2(s), ∞), (10)

for all s ≥ s1. Integrating (10) from s1 to s, we obtain

r(s)
(
υ′(s)

)α ≤ r(s1)
(
υ′(s1)

)α − L
∫ s

s1

G(ξ)κα(θ2(ξ), ∞)dξ

≤ −L
∫ s

s1

G(ξ)κα(θ2(ξ), ∞)dξ.

Integrating the last inequality from s1 to s, we get

υ(s) ≤ υ(s1)− L1/α
∫ s

s1

1
r1/α(u)

(∫ u

s1

G(ξ)κα(θ2(ξ), ∞)dξ

)1/α

du.

Passing to the limit as s → ∞, we arrive at a contradiction with (6).
Now, assume that υ′(s) > 0 on [s1, ∞). From Lemma 2, we arrive at

υ(̺2(s)) ≤
κ(s1, ̺2(s))

κ(s1, s)
υ(s). (11)

From the definition of υ, we obtain

x(s) = υ(s)− p1(s)x(̺1(s))− p2(s)x(̺2(s))

≥ υ(s)− p1(s)υ(̺1(s))− p2(s)υ(̺2(s)). (12)

Using that (11) and υ(̺1(s)) ≤ υ(s), where ̺1(s) < s in (12), we obtain

x(s) ≥ υ(s)

(
1 − p1(s)− p2(s)

κ(s1, ̺2(s))
κ(s1, s)

)

≥ B2(s)υ(s). (13)

Hence, (1) becomes

(
r(s)

(
υ′(s)

)α
)′

≤ −q1(s)Bα
2 (θ1(s))υ

α(θ1(s))− q2(s)Bα
2 (θ2(s))υ

α(θ2(s)),
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and since θ1(s) ≤ θ2(s), we have

(
r(s)

(
υ′(s)

)α
)′

≤ −q1(s)Bα
2 (θ1(s))υ

α(θ1(s))− q2(s)Bα
2 (θ2(s))υ

α(θ1(s))

≤ −(q1(s)Bα
2 (θ1(s)) + q2(s)Bα

2 (θ2(s)))υ
α(θ1(s))

= −H(s)υα(θ1(s)). (14)

On the other hand, it follows from (6) and (C2) that
∫ s

s1
G(ξ)κα(θ2(ξ), ∞)dξ must be

unbounded. Further, since κ′(s, ∞) < 0, it is easy to see that

∫ s

s1

G(ξ)dξ → ∞ as s → ∞. (15)

Integrating (14) from s2 to s, we get

r(s)
(
υ′(s)

)α ≤ r(s2)
(
υ′(s2)

)α −
∫ s

s2

H(ξ)υα(θ1(ξ))dξ

≤ r(s2)
(
υ′(s2)

)α − υα(θ1(s2))
∫ s

s2

H(ξ)dξ.

Since H(s) > G(s), we get

r(s)
(
υ′(s)

)α ≤ r(s2)
(
υ′(s2)

)α − υα(θ1(s2))
∫ s

s2

G(ξ)dξ, (16)

which, with (15), contradicts the fact that υ′(s) > 0. The proof is complete.

Theorem 2. Assume that H(s) ≥ G(s) > 0. If

lim sup
s→∞

κα(θ2(s), ∞)
∫ s

s1

G(ξ)dξ > 1, (17)

then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x(̺1(s)) > 0, x(̺2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. As in the
proof of Theorem 1, υ′ > 0 or υ′ < 0 eventually.

Assume that υ′ < 0 on [s1, ∞). Integrating (7) from s1 to s, we get

r(s)
(
υ′(s)

)α ≤ r(s1)
(
υ′(s1)

)α −
∫ s

s1

G(ξ)υα(θ2(ξ))dξ

≤ −υα(θ2(s))
∫ s

s1

G(ξ)dξ. (18)

Since θ2(s) ≥ s, then from (3), we have

υ(θ2(s)) ≥
κ(θ2(s), ∞)

κ(s, ∞)
υ(s), (19)

and using (19) and (5) in (18), we obtain

r(s)
(
υ′(s)

)α ≤ r(s)
(
υ′(s)

)α
κα(θ2(s), ∞)

∫ s

s1

G(ξ)dξ. (20)
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Dividing both sides of inequality (20) by r(s)(υ′(s))α and taking the limsup, we get

lim sup
s→∞

κα(θ2(s), ∞)
∫ s

s1

G(ξ)dξ ≤ 1,

we obtain a contradiction with the condition (17).

Now, assume that υ′ > 0 on [s1, ∞). From (17) and the fact that κ(θ2(s), ∞) < ∞, we
have that (15) holds. Then, this part of the proof is similar to that of Theorem 1. Therefore,
the proof is complete.

Theorem 3. Assume that H(s) ≥ G(s) > 0 and (15) hold. Further, if the differential equation

υ′(s) +
1

r1/α(s)

κ(θ2(s), ∞)

κ(θ1(s), ∞)

(∫ s

s1

G(ξ)dξ

)1/α

υ(θ1(s)) = 0 (21)

is oscillatory, then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x(̺1(s)) > 0, x(̺2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. As in the
proof of Theorem 1, υ′ > 0 or υ′ < 0 eventually.

Assume that υ′ < 0 on [s1, ∞). Since θ2(s) ≥ θ1(s), we get, from (3), that

υ(θ2(s)) ≥
κ(θ2(s), ∞)

κ(θ1(s), ∞)
υ(θ1(s)),

which, with (18), gives

r(s)
(
υ′(s)

)α ≤ κα(θ2(s), ∞)

κα(θ1(s), ∞)
υα(θ1(s))

∫ s

s1

G(ξ)dξ.

Now, we see that υ > 0 is a solution of the inequality

υ′(s) +
1

r1/α(s)

κ(θ2(s), ∞)

κ(θ1(s), ∞)

(∫ s

s1

G(ξ)dξ

)1/α

υ(θ1(s)) ≤ 0.

Using [34], we find that (21) also has a positive solution—a contradiction.
By proceeding as in the proof of Theorem 1, the proof of this theory is completed.

Corollary 1. Assume that H(s) ≥ G(s) > 0 and (15) hold. If

lim inf
s→∞

∫ s

θ1(s)

1
r1/α(u)

κ(θ2(u), ∞)

κ(θ1(u), ∞)

(∫ u

s1

G(ξ)dξ

)1/α

du >
1
e

, (22)

then all solutions of (1) are oscillatory.

Proof. Using ([35], Theorem 2), we have that (22) implies the oscillation of (21). From
Theorem 3, we have that (1) is oscillatory.

Theorem 4. Assume that H(s) > 0, G(s) > 0. If there exist functions ψ, δ ∈ C1([s0, ∞), (0, ∞)),
and s1 ∈ [s0, ∞) such that

lim sup
s→∞

{
κα(s, ∞)

δ(s)

∫ s

s1

(
δ(ξ)G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
− r(ξ)(δ′(ξ))α+1

(α + 1)α+1(δ(ξ))α

)
dξ

}
> 1 (23)
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and

lim sup
s→∞

∫ s

s1

(
ψ(ξ)H(ξ)− 1

(α + 1)α+1
r(ξ)(ψ′(ξ))α+1

ψα(ξ)
(
θ′1(ξ)

)α

)
dξ = ∞, (24)

then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the
same form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0
such that x(̺1(s)) > 0, x(̺2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. From
Theorem 1, υ′ > 0 or υ′ < 0 eventually.

Assume that υ′ < 0 on [s1, ∞). As in the proof of Theorem 1, we arrive at (7). Now, we
define the function

ω(s) = δ(s)

(
r(s)(υ′(s))α

υα(s)
+

1
κα(s, ∞)

)
on [s1, ∞). (25)

From (5), we get that ω ≥ 0 on [s1, ∞). Differentiating (25), we obtain

ω′(s) =
δ′(s)
δ(s)

ω(s) + δ(s)

(
r(s)(υ′(s))α)′

υα(s)
− αδ(s)r(s)

(
υ′(s)
υ(s)

)α+1

+
αδ(s)

r1/α(s)κα+1(s, ∞)

≤ δ′(s)
δ(s)

ω(s) + δ(s)

(
r(s)(υ′(s))α)′

υα(s)
− α

(δ(s)r(s))1/α

(
ω(s)− δ(s)

κα(s, ∞)

)(α+1)/α

+
αδ(s)

r1/α(s)κα+1(s, ∞)
. (26)

Combining (7) and (26), we have

ω′(s) ≤ − α

(δ(s)r(s))1/α

(
ω(s)− δ(s)

κα(s, ∞)

)(α+1)/α

− δ(s)G(s)
υα(θ2(s))

υα(s)

+
αδ(s)

r1/α(s)κα+1(s, ∞)
+

δ′(s)
δ(s)

ω(s). (27)

Using Lemma 1 with A := δ′(s)/δ(s), B := α(δ(s)r(s))−1/α, C := δ(s)/κα(s, ∞) and
ξ := ω, we get

δ′(s)
δ(s)

ω(s)− α

(δ(s)r(s))1/α

(
ω(s)− δ(s)

κα(s, ∞)

)(α+1)/α

≤ r(s)

(α + 1)α+1
(δ′(s))α+1

(δ(s))α

+
δ′(s)

κα(s, ∞)
, (28)

and since s ≤ θ2(s), we arrive at

υ(θ2(s)) ≥
κ(θ2(s), ∞)

κ(s, ∞)
υ(s), (29)
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which, in view of (27), (28), and (29), gives

ω′(s) ≤ δ′(s)
κα(s, ∞)

+
1

(α + 1)α+1 r(s)
(δ′(s))α+1

(δ(s))α − δ(s)G(s)
υα(θ2(s))

υα(s)

+
αδ(s)

r1/α(s)κα+1(s, ∞)

≤ −δ(s)G(s)
κα(θ2(s), ∞)

κα(s, ∞)
+

(
δ(s)

κα(s, ∞)

)′
+

r(s)(δ′(s))α+1

(α + 1)α+1(δ(s))α
. (30)

Integrating (30) from s2 to s, we arrive at

∫ s

s2

(
δ(ξ)G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
− r(ξ)(δ′(ξ))α+1

(α + 1)α+1(δ(ξ))α

)
dξ ≤

(
δ(s)

κα(s, ∞)
− ω(s)

)∣∣∣∣
s

s2

≤ −
(

δ(s)
r(s)(υ′(s))α

υα(s)

)∣∣∣∣
s

s2

.(31)

From (5), we have

− r1/α(s)υ′(s)
υ(s)

≤ 1
κ(s, ∞)

,

which, in view of (31), implies

κα(s, ∞)

δ(s)

∫ s

s2

(
δ(ξ)G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
− r(ξ)(δ′(ξ))α+1

(α + 1)α+1(δ(ξ))α

)
dξ ≤ 1.

Thus, we get a contradiction with (23).
Now, assume that υ′(s) > 0 on [s1, ∞). Let us define the Riccati function

ϕ(s) = ψ(s)
r(s)(υ′(s))α

υα(θ1(s))
, on [s1, ∞). (32)

We find that ϕ ≥ 0 on [s1, ∞). Differentiating (32), we get

ϕ′(s) =
ψ′(s)
ψ(s)

ϕ(s) + ψ(s)

(
r(s)(υ′(s))α)′

υα(θ1(s))
− αψ(s)r(s)

(υ′(s))α
υ′(θ1(s))θ′1(s)

υα+1(θ1(s))
. (33)

Combining (14) and (33), we have

ϕ′(s) ≤ ψ′(s)
ψ(s)

ϕ(s)− ψ(s)H(s)− αψ(s)r(s)
(υ′(s))α

υ′(θ1(s))θ′1(s)
υα+1(θ1(s))

.

Since
(
r(s)(υ′(s))α)′

< 0 and θ1(s) ≤ s, we arrive at

ϕ′(s) ≤ ψ′(s)
ψ(s)

ϕ(s)− ψ(s)H(s)− αψ(s)r(s)θ′1(s)
(υ′(s))α+1

υα+1(θ1(s))
,

and from (32), we have

ϕ′(s) ≤ ψ′(s)
ψ(s)

ϕ(s)− ψ(s)H(s)− αθ′1(s)
ψ1/α(s)r1/α(s)

φ(α+1)/α(s).

Using the inequality

Kv − sv
(α+1)/α ≤ αα

(α + 1)α+1
Kα+1

sα
, s > 0, (34)
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with K = ψ′(s)/ψ(s), s = αθ′1(s)/ψ1/α(s)r1/α(s), and v = ϕ, we have

ϕ′(s) ≤ −ψ(s)H(s) +
1

(α + 1)α+1
r(s)(ψ′(s))α+1

ψα(s)
(
θ′1(s)

)α . (35)

Integrating (35) from s2 to s, we arrive at

∫ s

s2

(
ψ(ξ)H(ξ)− 1

(α + 1)α+1
r(ξ)(ψ′(ξ))α+1

ψα(ξ)
(
θ′1(ξ)

)α

)
dξ ≤ ϕ(s2).

Taking the limsup on both sides of this inequality, we have a contradiction with (24).
The proof of the theorem is complete.

Theorem 5. Assume that H(s) > 0 and G(s) > 0. If there exist the functions δ ∈ C1([s0, ∞), (0, ∞))
and s1 ∈ [s0, ∞) such that (23) and

lim inf
s→∞

α

Ψ(s)

∫ ∞

s

θ′1(ξ)
r1/α(ξ)

Ψ(α+1)/α(ξ)dξ >
α

(α + 1)(α+1)/α
(36)

hold, where

Ψ(s) =
∫ ∞

s
H(ξ)dξ,

then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x(̺1(s)) > 0, x(̺2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. Theorem 1
yields that υ′ eventually has one sign.

Assume that υ′(s) < 0 on [s1, ∞). The proof is similar to that of Theorem 4.
Now, assume that υ′(s) > 0 on [s1, ∞).Let us define the Riccati function

ϕ(s) =
r(s)(υ′(s))α

υα(θ1(s))
. (37)

We see that ϕ ≥ 0 on [s1, ∞). Differentiating (37), we arrive at

ϕ′(s) =

(
r(s)(υ′(s))α)′

υα(θ1(s))
− αr(s)

(υ′(s))α
υ′(θ1(s))θ′1(s)

υα+1(θ1(s))
. (38)

Combining (14) and (38), we have

ϕ′(s) ≤ −H(s)− αr(s)
(υ′(s))α

υ′(θ1(s))θ′1(s)
υα+1(θ1(s))

.

Since
(
r(s)(υ′(s))α)′

< 0 and θ1(s) ≤ s, we arrive at

ϕ′(s) ≤ −H(s)− αr(s)θ′1(s)
(υ′(s))α+1

υα+1(θ1(s))
,

which, with (37), gives

ϕ′(s) ≤ −H(s)− αθ′1(s)
r1/α(s)

ϕ(α+1)/α(s). (39)
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Integrating (39) from s to ∞, and using the fact that ϕ(s) > 0 and ϕ′(s) < 0, we get

−ϕ(s) ≤ −
∫ ∞

s
H(ξ)dξ −

∫ ∞

s

αθ′1(ξ)
r1/α(ξ)

ϕ(α+1)/α(ξ)dξ.

Hence, we have

ϕ(s)
Ψ(s)

≥ 1 +
1

Ψ(s)

∫ ∞

s

αθ′1(ξ)
r1/α(ξ)

Ψ(α+1)/α(ξ)

(
ϕ(ξ)

Ψ(ξ)

)(α+1)/α

dξ. (40)

Let ϑ = infs≥s ϕ(s)/Ψ(s);then, obviously, ϑ ≥ 1. Hence, it follows from (40) and
(36) that

ϑ ≥ 1 + α

(
ϑ

α + 1

)(α+1)/α

or
ϑ

α + 1
≥ 1

α + 1
+

α

α + 1

(
ϑ

α + 1

)(α+1)/α

,

which contradicts the admissible value of ϑ and α. Therefore, the proof is complete.

Corollary 2. Assume that H(s) > 0 and G(s) > 0. If (36) and either

lim sup
s→∞

∫ s

s

(
G(ξ)κα(θ2(ξ), ∞)− αα+1

(α + 1)α+1r1/α(ξ)κ(ξ, ∞)

)
dξ > 1, (41)

lim sup
s→∞

κα−1(s, ∞)
∫ s

s

(
G(ξ)

κα(θ2(ξ), ∞)

κα−1(ξ, ∞)
− 1

(α + 1)α+1r1/α(ξ)κα(ξ, ∞)

)
dξ > 1, (42)

or

lim sup
s→∞

κα(s, ∞)
∫ s

s
G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
dξ > 1, (43)

hold, then all solutions of (1) are oscillatory.

Proof. By choosing δ(s) = κα(s, ∞), δ(s) = κ(s, ∞), or δ(s) = 1, the condition (23) reduces
to one of the conditions (41)–(43), respectively.

Example 1. Consider the second-order neutral differential equation

(
s2
(

x(s) + p∗1 x
( s

λ

)
+ p∗2 x(λs)

)′)′
+ q∗1 x

(
s
µ

)
+ q∗2 x(µs) = 0, (44)

where s ≥ 1, λ ≥ 1, µ ≥ 1, p∗1 > p∗2 , and λ
(

p∗1 + p∗2
)
∈ (0, 1). Now, we note that r(s) = s2,

p1(s) = p∗1 , p2(s) = p∗2 , ̺1(s) = s/λ, ̺2(s) = λs, q1(s) = q∗1 , q2(s) = q∗2 , θ1(s) = s/µ, and
θ2(s) = µs.Thus, we have that

B1(s) = 1 − λp∗1 − p∗2 , B2(s) = 1 − p∗1 − p∗2

(
s − 1

λ

s − 1

)

and
G(s) = (q∗1 + q∗2)(1 − λp∗1 − p∗2).

Set W(s) =
(

s − 1
λ

)
/(s − 1). Since lims→∞ W(s) = 1, there exists sǫ > s0 such that

W(s) < 1 + ǫ for all ǫ > 0 and every s ≥ sǫ. By choosing ǫ = λ − 1, we obtain W(s) < λ for all
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s ≥ s∗. Thus, and taking into account the fact that p∗1 > p∗2 and λp∗1 + p∗2 ∈ (0, 1), we get that
B2 ≥ B1 > 0. Now, from Theorem 2, we have that equation (44) is oscillatory if

q∗1 + q∗2 >
µ

1 − λp∗1 − p∗2
. (C1)

On the other hand, using Corollary 1, we see that (44) is oscillatory if

q∗1 + q∗2 >
µ(

1 − λp∗1 − p∗2
) µ

e ln µ
. (C2)

Next, since W(s) < λ for all s ≥ s∗, we find that B2(s) > 1 −
(

p∗1 + λp∗2
)
, and so,

H(s) >
(
q∗1 + q∗2

)(
1 −

(
p∗1 + λp∗2

))
.Hence, by choosing ψ(s) = 1, condition (24) holds, directly.

Using Theorem 4, we see that (44) is oscillatory if

q∗1 + q∗2 >
1
4

µ(
1 − λp∗1 − p∗2

) . (C3)

Remark 1. Taking the fact that µ > e ln µ into account, it is easy to notice that condition (C3)
supports the most efficient condition for oscillation of (44). Figures 1 and 2 display a comparison of
the criteria (C1)–(C3).

Figure 1. Comparison of the criteria (C1)–(C3) when λ = 2, p∗1 = 0.25, and p∗2 = 0

Figure 2. Comparison of the criteria (C1)–(C3) when µ = 2, p∗1 = 0.5, and p∗2 = 0
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Remark 2. In the special case of (44), p∗2 = q∗2 = 0, that is,

(
s2
(

x(s) + p∗1 x
( s

λ

))′)′
+ q∗1 x

(
s
µ

)
= 0.

The oscillation criterion (C3) reduces to

q∗1 >
1
4

µ(
1 − λp∗1

) , (45)

which is the exact criterion that was obtained in Example 3.1 in [7]. Moreover, if p∗1 = 0 and
µ = 1, then condition (45) reduces so that q∗1 > 1/4, which is a sharp condition for oscillation of
the second-order Euler equation.

4. Conclusions

Most works that studied the oscillatory behavior of mixed equations regarded the
canonical case π(l0) = ∞. Likewise, works that were concerned with the non-canonical
case of neutral equations obtained two conditions for testing the oscillation. In this paper,
we focused on studying the non-canonical case, and we created criteria with only one
condition that is easy to verify. Therefore, our results are an extension, complement, and
improvement to previous results in the literature. It is interesting to extend the results of
this paper to higher-order equations.
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Abstract: In this article, a simple expression for the center of mass of a system of material points
in a two-dimensional surface of Gaussian constant negative curvature is given. By using the basic
techniques of geometry, we obtained an expression in intrinsic coordinates, and we showed how this
extends the definition for the Euclidean case. The argument is constructive and serves to define the
center of mass of a system of particles on the one-dimensional hyperbolic sphere L1

R.

Keywords: center of mass; conformal metric; geodesic; hyperbolic lever law

1. Introduction

The center of mass (center of gravity or centroid) is a fundamental concept, and its
geometrical and mechanical properties are for understanding many physical phenomena.
Its definition for Euclidean spaces is elemental; nevertheless, in spaces with the non-zero
curvature, it is rare. In [1], the author gives an extensive explanation showing that the
possibility of the concept can be correctly defined in more general spaces, and he signalizes
the difficulties in defining spaces of non-zero curvature concerning the lack of the linear
structure of ones. While it is true that the author synthesizes the basic properties of the
center of mass, in his approach there are some entities without physical meaning, such as
the non-conservation of the total mass of the system or the presence of unbounded speeds
under normal conditions. In [2], there is a definition of center of mass for two particles in
hyperbolic space, in the same direction to the one presented here, but the authors do not
give an expression for calculating it. In [3], the author mentions the difficulty of defining
the center of mass in curved spaces. He provides a class of orbits in the curved n-body
problem for which “no point that could play the role of the center of mass is fixed or moves
uniformly along a geodesic”. This proves that the equations of motion lack center-of-mass
and linear momentum integrals. Nevertheless, he does not provide a way to calculate or
determine this element. In [4], the center of the mass problem on two-point homogeneous
spaces and the connection of existing mass center concepts with the two-body Hamiltonian
functions are considered. We discussed different possibilities for defining a center of the
mass in spaces of constant and non-zero curvature, and it was established that a natural
way of defining a concept of center of mass for two particles on a Riemannian space as the
point on the shortest geodesic interval joining these particles that divides the interval in
the ratio of the masses of particles and this is denoted by R1.

This last approach is followed in the present work.
In this article, the problem of finding a mathematical expression for computing the

center of mass of a system of n particles sited on the two-dimensional hyperbolic sphere
L2

R = {(x, y, z) : x2 + y2 − z2 = −R2} is considered. The stereographic projection of the
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upper sheet of L2
R on the Poincaré disk D2

R = {(x, y) : x2 + y2 < R2} = {w ∈ C : |w| < R},
endowed with the conformal metric (see [5]).

ds2 =
4R4 dwdw̄

(R2 − |w|2)2 (1)

Both D2
R with the metric (1) and L2

R with the Euclidean metric have the same Gaussian
curvature k = −1/R2, and for the Minding’s Theorem they belong to the isometric differen-
tiable class (see [6,7], chapter 2). In [8], we use the lever law, an explicit formula that allows
us to calculate the center of mass of a system of n particles with masses m1, m2, ..., mn > 0,
located on the superior half plane of Lobachevsky H2, endowed with a conformal metric
which induces a constant and negative Gaussian curvature.

Following the basic geometry methods, we obtain the expression for the center of
mass for a system of n particles sited in the hyperbolic sphere L2

R with arbitrary R.
We organized this article as follows: In Section 1 we introduced some concepts

relative to the center of mass in the Euclidean spaces. In Section 2, some properties of
stereographical projection are remembered, and we proceeded to deduce the expression for
the center of mass, for two particles on the upper branch of hyperbola, from the “hyperbolic
rule of the lever” (see [1,4]) extended to the surface of L2

R. After obtaining the expression
for the center of mass for two particles in L1

R, we naturally extended to a system of n
particles in L1

R, and in the same way, to a system of n particles in L2
R.

2. One-Dimensional Euclidean Case

Let us consider two particles with positive masses sited in the real line at points x1
and x2. The point defines the center of mass of the system

xc =
m1x1 + m2x2

m1 + m2
, (2)

A direct calculation shows that m1|xc − x1| = m2|xc − x2| (Euclidean rule of the lever).
It is easy to prove that xc is the unique point in a segment (geodesic) joining x1 and x2
with this property. We extended this definition to more dimensions in Euclidean spaces.
Nevertheless, this definition cannot be extended to spaces in general because it is possible
in such cases that it is not defined as a linear structure. However, with the “rule of the lever”
in mind is possible to have this definition to Riemannian surfaces, as we shall see later.

3. Center of Masses in a Two-Dimensional Hyperbolic Space

3.1. Some Observations about the Stereographic Projection of Hyperbolic Sphere on the
Poincaré Disk

Let D2
R = {w ∈ C : |w| < R} and P : L2

R → D2
R be the stereographic projection; then,

for (x, y, z) ∈ L2
R, we have P(x, y, z) = w = u + iv, where u = Rx

R+z , v = Ry
R+z and the

inverse projection is P−1 : D2
R → L2

R, where (see [5]),

P−1(u + iv) =

(
2R2u

R2 − u2 − v2 ,
2R2v

R2 − u2 − v2 ,
R(u2 + v2 + R2)

R2 − u2 − v2

)
.

P−1 transforms lines through the origin in meridians (hyperbolas through the point
(0, 0, R), with the axis being the z-axis) and circles with center at the origin, {w ∈ D2

R : |w| =
const. < R} in parallels (horizontal concentric circles on the upper sheet of hyperboloid).

If we consider the stereographic projection of the one-dimensional hyperbolic sphere
L1

R on the real line, we reduce the above equation to
P(x, y) = u where u = Rx

R+y , u ∈ (−R, R), and the inverse projection is

P−1(u) =

(
2R2u

R2 − u2 ,
R(R2 + u2)

R2 − u2

)
.
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Theorem 1. Let us consider two masses m1, m2 sited at the points Q1, Q2, respectively, and let
Qc(xc, yc) be the coordinates of the hyperbolic center of mass, and s1 the length of the arc from Q1
to Qc and s2 the length of the arc from Qc to Q2; then, from the relation (hyperbolic rule of the lever)
m1r1 = m2r2 it follows that:

(
R + uc

R − uc

)m

=

(
R + u1

R − u1

)m1
(

R + u2

R − u2

)m2

. (3)

where m = m1 + m2 is the total mass of the system.

Proof. In this case, the length of the arc from the South Pole Ps to the arbitrary point
(x, y) is

r =
∫ u

0

2R2dt
R2 − t2 = R ln

(
R + u
R − u

)
.

More generally, the length of the arc s from point Q1(x1, y1) to Q2(x2, y2) in the same
parallel, if their stereographical projections are u1 and u2, is

r = R

(
ln
(

R + u2

R − u2

)
− ln

(
R + u1

R − u1

))
.

Thus,

r1 = R

(
ln
(

R + u1

R − u1

)
− ln

(
R + uc

R − uc

))
, (4)

and

r2 = R

(
ln
(

R + uc

R − uc

)
− ln

(
R + u2

R − u2

))
, (5)

Rm1

(
ln
(

R + uc

R − uc

)
− ln

(
R + u1

R − u1

))
= Rm2

(
ln
(

R + u2

R − u2

)
− ln

(
R + uc

R − uc

))
.

Therefore,

ln
(

R + uc

R − uc

)
=

1
m1 + m2

(
m1 ln

(
R + u1

R − u1

)
+ m2 ln

(
R + u2

R − u2

))
. (6)

and from there the result follows.

Inductively, we can extend the last argument to n particles with masses m1,m2, . . . ,mn

sited on L1
R as expressed by the following.

Corollary 1. Let m1,m2, . . . ,mn be positive masses sited on the points (x1, y1),(x2, y2), . . . ,(xn, yn)
of L1

R with stereographical projections u1,u2, . . . ,un, respectively. Then there is a unique point
uc ∈ (−R, R) such that such that the following expression is fulfilled:

(
R + uc

R − uc

)m

=
n

∏
k=1

(
R + uk

R − uk

)mk

(7)

where m = ∑
n
k=1 mk is the total mass of the system.

3.2. Center of Mass for a System of Two Particles in L2
R

Now, we extend the “rule of the lever" to a more general context:
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Consider a Riemannian surface T and two particles with masses m1, m2 sited in the
points x1, x2 ∈ T, respectively. Then we define the T-center of mass as the point xc in the
geodesic joining x1 to x2 such that the following relation is verified:

m1d(x1, xc) = m2d(x2, xc)

where d is the metric in T, and d(x1, xc)+ d(xc, x2) = d(x1, x2). For the case of L2
R, geodesics

are hyperbolas determined for the intersection of the upper sheet of the hyperboloid with
the plane drawn for the pair of points and the origin (0, 0, 0).

Now we can calculate the hyperbolic center of mass for a system with a finite number
of particles on L2

R]. Following exactly the same reasoning as in the previous section, we
obtain the following.

Corollary 2. Let m1,m2, . . . ,mn be n masses of particles sited, respectively, in the points (x1, y1, z1),
(x2, y2, z2), . . . , (xn, yn, zn) on the same geodesic of L2

R with stereographical projections w1, w2,
. . . , wn, in the Poincaré disk. And let wc be their hyperbolic center of mass; then, the next relation
is fulfilled:

(
R + wc

R − wc

)m

=
n

∏
k=1

mk

(
R + wk

R − wk

)mk

, (8)

where m = ∑
n
k=1 mk.

Remark 1. If each fraction is divided, their numerator and denominator for R and both sides rise
to the power R, when R → ∞, is obtained,

exp(2mwc) = exp

(
2

n

∑
k=1

mkwk

)
.

Or equivalently,

wc =
1
m

n

∑
k=1

mkwk. (9)

This corresponds to the equation for the center of mass in the Euclidean complex plane, that is,
the complex plane (or R2), with Euclidean metric and zero curvature.

4. An Application to the Curved 2-Body Problem

In [5], the curved n-body problem in a two-dimensional space with constant nega-
tive curvature is studied, and the model L2

R is considered, in which there are systems.
Let z = (z1, z2, . . . , zn) ∈ (D2

R)
n be the configuration of n point particles with masses

m1, m2, . . . , mn > 0 ∈ D2
R.

mk z̈k = − 2mk z̄k ż2
k

R2 − |zk|2
+

2
λ(zk, z̄k)

∂UR

∂z̄k
, k = 1, ..., n (10)

where

λ(zk, z̄k) =
4R4

(R2 − |z2
k |)2

is the conformal function of the Riemannian metric,

∂UR

∂z̄k
=

n

∑
j=1,j 6=k

2mkmjRP2,(k,j)(z, z̄k)

(Θ2,(k,j)(z, z̄k))
3/2 ,

P2,(k,j)(z, z̄k) = (R2 − |zk|2)(R2 − |zj|2)2(zj − zk)(R2 − zk z̄j),
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Θ2,(k,j)(z, z̄k) = [2(zk z̄j + zj z̄k)R2 − (|zk|2 + R2)(|zj|2 + R2)]2 − (R2 − |zk|2)2(R2 − |zj|2)2,

k, j ∈ {1, . . . , n}, k 6= j.

We consider functions of the form

wk(t) = eitzk(t),

where z = (z1, . . . , zn) is a solution of Equation (10). Straightforward computations
show that





ẇk = (izk + żk)e
it

ẅk = (z̈k + 2iżk − zk)e
it

dz̄k
dw̄k

= eit, k = 1, . . . , n.

For the configurations called relative equilibrium, concerning the 2-body problem, the
next result is established.

Theorem 2. Consider two point particles of masses m1, m2 > 0 moving on the Poincaré disk D2
R,

whose center is the origin, 0, of the coordinate system. Then z = (z1, z2) is an elliptic relative
equilibrium of system (10) with n = 2 if and only if, for every circle centered at 0 of radius α,
with 0 < α < R, along which m1 moves, there is a unique circle centered at 0 of radius r, which
satisfies 0 < r < R, along which m2 moves, such that, at every time instant, m1 and m2 are on
some diameter of D2

R, with 0 between them. Moreover,

1. if m2 > m1 > 0 and α are given, then r < α;
2. if m1 = m2 > 0 and α are given, then r = α;
3. if m1 > m2 > 0 and α are given, then r > α.

This result was reformulated in a more precise form, using the expression for the
hyperbolic center of mass taking into account that in a configuration corresponding to a
relative equilibrium is invariant with the time, because the distance and angles between
particles do not change. This is sufficient, considering the initial configuration on the x-axis,
and α corresponds to the length measure over the Poincaré disk of the projection of arc r1
over the hyperbolic sphere L2

R, and r is the projection length in disk one of the arc r2 over
the hyperbolic sphere. Then we have the next relations:

r1 = ln

(
R + α

R − α

)

and

r2 = −ln

(
R + r
R − r

)
.

Substituting in the hyperbolic rule m1r1 = m2r2 and the expression for the center of
mass, we obtain

(
R + α

R − α

)m1

=

(
R + r
R − r

)−m2

.

Thus it follows from Equation (6) that

R − wc

R + wc
= 1

It follows that wc = 0 and so the center of mass is fixed for every time in the South Pole
of the hyperbolic sphere (0, 0, R), and Theorem 2 can be expressed in the following form.
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Theorem 3. For every configuration of elliptic relative equilibrium for the 2-body problem with
masses m1, m2 sited in the points P1(x1, y1, z1) and P2(x2, y2, z2) on the hyperbolic sphere of radius
R. If r1 and r2 are the lengths of arcs measured from the South Pole (0, 0, R) to the points P1 and
P2, respectively, then it satisfies the relation m1r1 = m2r2, and the center of mass of the system is
fixed in (0, 0, R) for every time.

The hyperbolic spaces are very special in relativity. A hyperbolic (i.e., Lobachevskian)
space can be represented upon one sheet of a two-sheeted cylindrical hyperboloid in
Minkowski space–time. According to works that recently appeared in literature (see [9]), in
hyperbolic spaces, the expression for the center of mass obtained by adopting the relativistic
rule of lever reads

m1 sinh
√
−kr1 = m2 sinh

√
−kr2, (11)

with ri, i = 1, 2, denoting the Riemannian distance of mi to the center of mass and k
the (negative) Gaussian curvature, respectively. Using the stereographic projection of a
hyperbolic sphere on the Poincaré disk.

For both the Euclidean and the hyperbolic spaces, the center of mass for the system
particles plays a central role in the conserved momentum principle. Adoption of the
conserved momentum principle for 2-body is expressed in spaces with negative Gaussian
curvature is along the following lines.

Theorem 4. Consider two masses m1, m2 sited in the points Q1, Q2, respectively, and r1, r2 the
length or arc from Qc to Q2; then, from the relation (hyperbolic rule of the lever) m1 sinh

√
−kr1 =

m2 sinh
√
−kr2 and using the stereographic projection of a hyperbolic sphere on the Poincaré

disk the conserved momentum principle for 2-body expressed in spaces with negative Gaussian
curvature is

m1 sinh
(

R ln
(

R + wc

R − wc

R − w1

R + w1

))
= m2 sinh

(
R ln

(
R − wc

R + wc

R + w2

R − w2

))
(12)

Proof. Following the ideas from [1] on relativistic momentum, we have

p = m
v√

1 − v2

where p is the momentum, v is the velocity of the particle with respect to a frame of
reference and the velocity of the light is c = 1. We take

r =
1
2

ln
(

1 + v
1 − v

)

the distance of the particle with respect to the center of the reference frame. This solution
with respect to v yields

v = tanh r.

Evaluating this in the momentum gives p = m sinh r. From the energy of the particle
E = m 1√

1−v2 and replacing the velocity of the particle v = tanh r gets E = m cosh r. From

the hyperbolic identity cosh x2 − sinh x2 = 1, the constant E2 − p2 = m2 can be obtained.
Let r1 be the distance between the particle with mass m1 and the mass center, and r2
the distance between the particle with mass m2 and the mass center; then, v1 = tanh r1,
and v1 = tanh r1 are the velocities of particles with mass m1 and m2, respectively. In
consequence, the relativistic momentum is constant,

m1 sinh r1 = m2 sinh r2
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The expression of the center of mass for a system of two particles in L2
R

is presented in
the following result.

Theorem 5. Consider two masses m1, m2 sited in the points Q1, Q2, respectively, and r1, r2 the
length or arc from Qc to Q2; then, from the relation (hyperbolyc rule of the lever) m1 sinh

√
−kr1 =

m2 sinh
√
−kr2 and using the stereographic projection of a hyperbolic sphere on the Poincaré disk,

the center of mass for a system of two particles in L2
R

is given by

m = m1 cosh
(√

−k ln
(
(R + wc)(R − w1)

(R − wc)(R + w1)

))
+ m2 cosh

(√
−k ln

(
(R − wc)

(R + wc)

(R + w2)

(R − w2)

))
(13)

where k is the (negative) Gaussian curvature

Proof. From the principle of conservation of relativistic momentum and total energy we
obtain the desired result. Following the ideas from [1],

E = m = m1 cosh r1 + m2 cosh r2

with E = m cosh 0 = m.

One of the most interesting aspects concerning the determination of the center of
mass of a particle system lies in its physical applications. As known, for Euclidean space,
Equations (2) may be derived from the Lever rule. If we suppose that the particles are under
the influence of an attractive potential force, depending only on their mutual distance, this
equation may be derived from the other two different characteristics of the center of mass:
(a) Collision point and (b) center of steady rotation.

In situation (a), for a collisional point, if the particles are initially at rest they will
collide at the center of mass; the expression of the centre of mass is along the following lines.

Theorem 6. Consider two masses m1, m2 sited in the points Q1, Q2, respectively, and r1, r2 the
length or arc from Qc to Q2; then, from the relation (hyperbolyc rule of the lever) m1r1 = m2r2 and
using the stereographic projection of a hyperbolic sphere on the Poincaré disk the center of mass for
a system of two particles in L2

R
is given by

(
1 +

√
−kwc

1 −
√
−kwc

)m

=

(
1 +

√
−kw1

1 −
√
−kw1

)m1
(

1 +
√
−kw2

1 −
√
−kw2

)m2

. (14)

Proof. Following the ideas from [9] we obtain our result.

In situation (b), for the center of steady rotation, if the particles rotate uniformly
along with concentric circles, maintaining a constant distance over time, then the center
of mass coincides with the circle’s center, the expression of the center of mass is given by
the following.

Theorem 7. Consider two masses m1, m2 sited in the points Q1, Q2, respectively, and r1, r2 the
length or arc from Qc to Q2; then, from the relation (hyperbolyc rule of the lever) m1 sinh 2

√
−kr1 =

m2 sinh 2
√
−kr2 and using the stereographic projection of a hyperbolic sphere on the Poincaré disk,

the center of mass for a system of two particles in L2
R

is given by

m = m1 cosh
(

2
√
−k ln

(
(R + wc)(R − w1)

(R − wc)(R + w1)

))
+ m2 cosh

(
2
√
−k ln

(
(R − wc)

(R + wc)

(R + w2)

(R − w2)

))
(15)

Proof. Following the ideas of [2,9], we can generalize, using the stereographic projection
of a hyperbolic sphere on the Poincaré disk, the center of mass for a system of two particles
in L2

R
our idea and so obtain the result.
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Remark 2. It has been established that if the particles have distinct masses, then the above defini-
tions of the center of mass are not equivalent for hyperbolic spaces. Similarly, using the stereographic
projection of a hyperbolic sphere on the Poincaré disk, the three meanings for the center of mass
(lever rule, collision point and center of steady rotation) are not equivalent. We consider that, from
the physical point of view, the most appropriate definition is the definition present here, because it
inherits two properties of the Euclidean center of mass (lever rule and collision point), while the
relativistic definition only preserves one (conservation of angular momentum).

5. Conclusions

In the present work, an analytical formula is obtained that allows the exact calculation
of the coordinates of the center of mass for a system of particles with positive masses
located on a two-dimensional Riemannian manifold with constant and negative Gaussian
curvature. The model of such a variety is taken as a model, Poincaré’s disk D2R, with the
conformal metric resulting from the stereographic projection of the hyperbolic sphere L2R.
The formula obtained is derived using the hyperbolic lever law in this context, as one of the
possibilities that is referenced in [4], and with it a previously obtained result is established
more precisely that allows characterizing the relative equilibria for a 2-body problem on
Poincaré’s disk.
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Abstract: In this work, we present new oscillation conditions for the oscillation of the higher-order
differential equations with the middle term. We obtain some oscillation criteria by a comparison
method with first-order equations. The obtained results extend and simplify known conditions in
the literature. Furthermore, examining the validity of the proposed criteria is demonstrated via
particular examples.

Keywords: higher-order; neutral delay; oscillation

1. Introduction

Neutral equations contribute to many applications in physics, engineering, biology,
non-Newtonian fluid theory, and the turbulent flow of a polytrophic gas in a porous
medium. Also, oscillation of neutral equations contribute to many applications of problems
dealing with vibrating masses attached to an elastic bar, see [1].

In this paper, we investigate the oscillatory properties of solutions of the higher-order
neutral differential equation

(
α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+ α2(x)
(

̟(ℓ−1)(x)
)(p−1)

+ ζ(x)δ(p−1)(β2(x)) = 0, x ≥ x0, (1)

where
̟(x) := δ(x) + c(x)δ(β1(x)). (2)

The main results are obtained under the following conditions:




α1 ∈ C1([x0, ∞)), α1(x) > 0, α′1(x) ≥ 0, 1 < p < ∞,

c, α2, ζ ∈ C([x0, ∞)), α2(x) > 0, ζ(x) > 0, 0 ≤ c(x) < c0 < 1,

β1 ∈ C1([x0, ∞)), β2 ∈ C([x0, ∞)), β′1(x) > 0, β1(x) ≤ x, limx→∞ β1(x) = limx→∞ β2(x) = ∞,

ℓ ≥ 4 is an even natural number, ζ is not identically zero for large x.

Moreover, we establish the oscillatory behavior of (1) under the conditions

β2(x) < β1(x), β′
2(x) ≥ 0 and

(
β−1

1 (x)
)′

> 0 (3)

and ∫ ∞

x0

(
1

α1(s)
exp

(
−
∫ s

x0

α2(̟)

α1(̟)
d̟

))1/(p−1)

ds = ∞. (4)
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Over the past few years, there has been much research activity concerning the oscil-
lation and asymptotic behavior of various classes of differential equations; see [2–11]. In
particular, the study of the oscillation of neutral delay differential equations is of great
interest in the last three decades; see [12–23].

Bazighifan et al. [2] examined the oscillation of higher-order delay differential equa-
tions with damping of the form




(
α1(x)Φp[̟(ℓ−1)(x)]

)′
+ α2(x)Φp[ f

(
̟(ℓ−1)(x)

)
] + ∑

j
i=1 ζi(x)Φp[g(̟(βi(x)))] = 0,

Φp[s] = |s|p−2s, j ≥ 1, x ≥ x0 > 0.

This time, the authors used the Riccati technique.
Zhang et al. in [3] considered a higher-order differential equation




L′̟ + α2(x)
∣∣∣̟(ℓ−1)(x)

∣∣∣
p−2

̟(ℓ−1)(x) + ζ(x)|δ(β2(x))|p−2δ(β2(x)) = 0,

1 < p < ∞, x ≥ x0 > 0, ̟(x) = δ(x) + c(x)δ(β1(x)),

where

L̟ =
∣∣∣̟(ℓ−1)(x)

∣∣∣
p−2

̟(ℓ−1)(x).

Bazighifan and Ramos [4] considered the oscillation of the even-order nonlinear
differential equation with middle term of the form





(
α1(x)

(
̟(ℓ−1)(x)

)p−1
)′

+ α2(x)
(

̟(ℓ−1)(x)
)p−1

+ ζ(x)̟(β(x)) = 0,

x ≥ x0 > 0,

where 1 < p < ∞.
Liu et al. [5] investigated the higher-order differential equations




(
α1(x)Φ

(
̟(ℓ−1)(x)

))′
+ α2(x)Φ

(
̟(ℓ−1)(x)

)
+ ζ(x)Φ(̟(β(x))) = 0,

Φ = |s|p−2s, x ≥ x0 > 0, ℓ is even,

where n is even and used integral averaging technique.
The authors in [6,7] discussed oscillation criteria for the equations





(
α1(x)

∣∣∣̟(ℓ−1)(x)
∣∣∣

p−2
̟(ℓ−1)(x)

)′
+ ∑

j
i=1 ζi(x)g(̟(βi(x))) = 0,

j ≥ 1, x ≥ x0 > 0,

where ℓ is even and p > 1 is a real number, the authors used comparison method with first
and second-order equations.

Li et al. [8] studied the oscillation of fourth-order neutral differential equations




(
α1(x)|̟′′′(x)|p−2

̟′′′(x)
)′

+ ζ(x)|δ(β2(x))|p−2δ(β2(x)) = 0,

1 < p < ∞, x ≥ x0 > 0,

where ̟(x) = δ(x) + c(x)δ(β1(x)).
In [9,10], the authors considered the equation

̟(ℓ)(x) + ζ(x)δ(β2(x)) = 0 (5)

50



Mathematics 2021, 9, 346

by using the Riccati method, they proved that this equation is oscillatory if

lim inf
x→∞

∫ x

β2(x)
z(s)ds >

(ℓ− 1)2(ℓ−1)(ℓ−2)

e
(6)

and

lim inf
x→∞

∫ x

β2(x)
z(s)ds >

(ℓ− 1)!
e

, respectively, (7)

where z(x) := βℓ−1
2 (x)(1 − α2(β2(x)))ζ(x).

We can easily apply conditions (6) and (7) to the equation

(
δ(x) +

1
2

δ

(
1
2

x

))(4)

+
ζ0

x4 δ

(
9

10
x

)
= 0, x ≥ 1, (8)

then we get that (8) is oscillatory if

The condition (6) (7)
The criterion ζ0 > 1839.2 ζ0 > 59.5

Hence, [10] improved the results in [9].
Thus, the main purpose of this article is to extend the results in [9,10,23]. An example

is considered to illustrate the main results.
We mention some important lemmas:

Lemma 1 ([11]). Let δ ∈ Cℓ([x0, ∞), (0, ∞)), δ(ℓ−1)(x)δ(ℓ)(x) ≤ 0 and limx→∞ δ(x) 6= 0, then

δ(x) ≥ µ

(ℓ− 1)!
xℓ−1

∣∣∣δ(ℓ−1)(x)
∣∣∣ for x ≥ xµ, µ ∈ (0, 1).

Lemma 2 ([16]). If δ(i)(x) > 0, i = 0, 1, ..., ℓ, and δ(ℓ+1)(x) < 0, then

δ(x)
xℓ/ℓ!

≥ δ′(x)
xℓ−1/(ℓ− 1)!

.

Lemma 3 ([13]). Let (30) hold and

δ be an eventually positive solution of (1). (9)

Then, we have these cases:

(I1) : ̟(x) > 0, ̟′(x) > 0, ̟′′(x) > 0, ̟(ℓ−1)(x) > 0 and ̟(ℓ)(x) < 0,
(I2) : ̟(x) > 0, ̟(j)(x) > 0, ̟(j+1)(x) < 0 for all odd integer

j ∈ {1, 2, ..., ℓ− 3}, ̟(ℓ−1)(x) > 0 and ̟(ℓ)(x) < 0,

for x ≥ x1, where x1 ≥ x0 is sufficiently large.

2. Oscillation Criteria

Theorem 1. If the differential equation

φ′(x) + (1 − c(β2(x)))(p−1)ζ(x)
yx0 (x)

yx0 (β2(x))

(
µβℓ−1

2 (x)

(ℓ− 1)!α1/(p−1)
1 (β2(x))

)(p−1)

φ(β2(x)) = 0 (10)
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is oscillatory for some constant µ ∈ (0, 1), where

yx0(x) := exp
(∫ x

x0

α2(t)
t1(t)

dt

)
,

then (1) is oscillatory.

Proof. Let (9) hold. Then, we see that δ(x), δ(β1(x)) and δ(β2(x)) are positive for all
x ≥ x1 sufficiently large. It is not difficult to see that

1
yx0 (x)

d
dx

(
yx0 (x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)

= 1
yx0 (x)

(
yx0 (x)

(
α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+ y′x0
(x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)

=

(
α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+
y′x0

(x)

yx0 (x) α1(x)
(

̟(ℓ−1)(x)
)(p−1)

=

(
α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+ α2(x)
(

̟(ℓ−1)(x)
)(p−1)

.

(11)

Taking into account (2) and ̟′(x) > 0, we get that δ(x) ≥ (1 − c(x))̟(x).
Thus, from (1) and (11), we have that

(
yx0 (x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+ yx0 (x)ζ(x)(1 − c(β2(x)))(p−1)̟(p−1)(β2(x)) ≤ 0, (12)

for c0 < 1.
Using Lemma 1, we get that

̟(x) ≥ µ

(ℓ− 1)!
xℓ−1̟(ℓ−1)(x), (13)

for some µ ∈ (0, 1). From (1), (12) and (13), we see that

(
yx0 (x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+ yx0 (x)ζ(x)(1 − c(β2(x)))(p−1)

(
µβℓ−1

2 (x)

(ℓ− 1)!

)(p−1)(
̟(ℓ−1)(β2(x))

)(p−1)
≤ 0.

Then, if we set φ(x) = yx0 (x)α1(x)
(

̟(ℓ−1)(x)
)(p−1)

, then we have that φ > 0 is a solution of the
delay inequality

φ′(x) + (1 − c(β2(x)))(p−1)ζ(x)
yx0 (x)

yx0 (β2(x))

(
µβℓ−1

2 (x)

(ℓ− 1)!α1/(p−1)
1 (β2(x))

)(p−1)

φ(β2(x)) ≤ 0.

It is clear that the equation (10) has a positive solution (see [17], Theorem 1), this is a
contradiction. The proof is complete.

Theorem 2. Assume that (3) and (30) hold. If the differential equations

z′(x) + ζ(x)
yx0 (x)

yx0

(
β−1

1 (β2(x))
)




µ
(

β−1
1 (β2(x))

)ℓ−1
cℓ(β2(x))

(ℓ− 1)!α1/(p−1)
1

(
β−1

1 (β2(x))
)




(p−1)

z
(

β−1
1 (β2(x))

)
= 0 (14)

and
ω′(x) + β−1

1 (β2(x))ỹℓ−3(x)ω
(

β−1
1 (β2(x))

)
= 0 (15)
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are oscillatory, where

ỹ0(x) : =

(
1

yx1(x)α1(x)

∫ ∞

x
ζ(s)yx1(s)c

(p−1)
2 (β2(s))ds

)1/(p−1)

,

ỹk(x) : =
∫ ∞

x
ỹk−1(s)ds, k = 1, 2, ..., ℓ− 2

and

cm(x) :=
1

c
(

β−1
1 (x)

)


1 −

(
β−1

1

(
β−1

1 (x)
))m−1

(
β−1

1 (x)
)m−1

c
(

β−1
1

(
β−1

1 (x)
))


, m = 2, ℓ,

then (1) is oscillatory.

Proof. Let (9) hold. Then, we see that δ(x), δ(β1(x)) and δ(β2(x)) are positive.

Let (I1) hold, from Lemma 2, we find ̟(x) ≥ 1
(ℓ−1) x̟′(x) and then

(
x1−ℓ̟(x)

)′
≤ 0.

Hence, since β−1
1 (x) ≤ β−1

1

(
β−1

1 (x)
)

, we obtain

̟
(

β−1
1

(
β−1

1 (x)
))

≤

(
β−1

1

(
β−1

1 (x)
))ℓ−1

(
β−1

1 (x)
)ℓ−1 ̟

(
β−1

1 (x)
)

. (16)

From (2), we obtain

c
(

β−1
1 (x)

)
δ(x) = ̟

(
β−1

1 (x)
)
− δ
(

β−1
1 (x)

)

= ̟
(

β−1
1 (x)

)
−



̟
(

β−1
1

(
β−1

1 (x)
))

c
(

β−1
1

(
β−1

1 (x)
)) −

δ
(

β−1
1

(
β−1

1 (x)
))

c
(

β−1
1

(
β−1

1 (x)
))




≥ ̟
(

β−1
1 (x)

)
− 1

c
(

β−1
1

(
β−1

1 (x)
))̟

(
β−1

1

(
β−1

1 (x)
))

, (17)

which with (1), (11) and (17) give

(
yx0 (x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+
yx0 ζ(x)

c(p−1)
(

β−1
1 (β2(x))

)


̟

(
β−1

1 (β2(x))
)
−

̟
(

β−1
1

(
β−1

1 (β2(x))
))

c
(

β−1
1

(
β−1

1 (β2(x))
))




(p−1)

≤ 0. (18)

We have that (18), which (16) gives

(
yx1 (x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+ yx1 (x)ζ(x)c(
p−1)
ℓ (β2(x))̟(p−1)

(
β−1

1 (β2(x))
)
≤ 0. (19)

From Lemma 1, we get (13). Therefore, from (19), we obtain

(
yx1(x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

≤ −yx1(x)ζ(x)

(
µcℓ(β2(x))
(ℓ− 1)!

(
β−1

1 (β2(x))
)ℓ−1

)(p−1)(
̟(ℓ−1)

(
β−1

1 (β2(x))
))(p−1)

.
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Then, if we set z(x) = yx0(x)α1(x)
(

̟(ℓ−1)(x)
)(p−1)

, then we have that z > 0 is a
solution of the delay inequality

z′(x) + ζ(x)
yx1(x)

yx1

(
β−1

1 (β2(x))
)




µ
(

β−1
1 (β2(x))

)ℓ−1
cℓ(β2(x))

(ℓ− 1)!α1/(p−1)
1

(
β−1

1 (β2(x))
)




(p−1)

z
(

β−1
1 (β2(x))

)
≤ 0.

It is clear (see [17] Theorem 1) that the Equation (14) also has a positive solution, this
is a contradiction.

Let (I2) hold, from Lemma 2, we obtain

̟(x) ≥ x̟′(x) (20)

and then
(
x−1̟(x)

)′ ≤ 0. Hence, since β−1
1 (x) ≤ β−1

1

(
β−1

1 (x)
)

, we get

̟
(

β−1
1

(
β−1

1 (x)
))

≤
β−1

1

(
β−1

1 (x)
)

β−1
1 (x)

̟
(

β−1
1 (x)

)
, (21)

which with (18) yields

(
yx1 (x)α1(x)

(
̟(ℓ−1)(x)

)(p−1)
)′

+ ζ(x)yx1 (x)c(
p−1)

2 (β2(x))̟(p−1)
(

β−1
1 (β2(x))

)
≤ 0. (22)

Integrating (22) from x to ∞, we obtain

−̟(ℓ−1)(x) ≤ −
(

1
yx1 (x)α1(x)

∫ ∞

x
ζ(s)yx1 (s)c

(p−1)
2 (β2(s))̟

(p−1)
(

β−1
1 (β2(s))

)
ds

)1/(p−1)

≤ −ỹ0(x)̟
(

β−1
1 (β2(x))

)
.

Integrating this inequality ℓ− 3 times from x to ∞, we find

̟′′(x) + ỹℓ−3(x)̟
(

β−1
1 (β2(x))

)
≤ 0, (23)

which with (20) gives

̟′′(x) + β−1
1 (β2(x))ỹℓ−3(x)̟′

(
β−1

1 (β2(x))
)
≤ 0.

Thus, if we put ω(x) := ̟′(x), then we conclude that ω > 0 is a solution of

ω′(x) + β−1
1 (β2(x))ỹℓ−3(x)ω

(
β−1

1 (β2(x))
)
≤ 0. (24)

It is clear (see [17] Theorem 1) that the equation (15) also has a positive solution, this
is a contradiction. The proof is complete.

Next, we establish new oscillation conditions for Equation (1) according to the results
obtained some related contributions to the subject.

Corollary 1. Assume that c0 < 1 and (30) hold. If

lim inf
x→∞

∫ x

β2(x)
(1 − c(β2(s)))

(p−1)ζ(s)
yx0 (s)

yx0 (β2(s))

(
µβℓ−1

2 (s)

α
1/(p−1)
1 (β2(s))

)(p−1)

ds >
((ℓ− 1)!)(p−1)

e
(25)

is oscillatory, then (1) is oscillatory.
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Corollary 2. Let (3) and (30) hold. If

lim inf
x→∞

∫ x

β−1
1 (β2(x))

ζ(s)
yx0 (s)

yx0

(
β−1

1 (β2(s))
)




µ
(

β−1
1 (β2(s))

)ℓ−1
cℓ(β2(s))

α
1/(p−1)
1

(
β−1

1 (β2(s))
)




(p−1)

ds >
((ℓ− 1)!)(p−1)

e
(26)

and

lim inf
x→∞

∫ x

β−1
1 (β2(x))

β−1
1 (β2(s))ỹℓ−3(s)ds >

1
e

(27)

are oscillatory, then (1) is oscillatory.

3. Applications

This section presents some interesting application which are addressed based on
above hypothesis to show some interesting results in this paper.

Example 1. Let the equation

(
δ(x) +

1
2

δ
( x

3

))(4)

(x) +
1
x

̟(3)(x) +
ζ0

x4 δ
( x

2

)
= 0, (28)

where ζ0 > 0 is a constant. Let p = 2, ℓ = 4, α1(x) = 1, α2(x) = 1/x, ζ(x) = ζ0/x4, β2(x) =
x/2 and β1(x) = x/3. So, we get

yx0(x) = x, yx0(β2(x)) = x/2.

Thus, we find

lim inf
x→∞

∫ x

β2(x)
(1 − c(β2(s)))

(p−1)ζ(s)
yx0(s)

yx0(β2(s))

(
µβℓ−1

2 (s)

α
1/(p−1)
1 (β2(s))

)(p−1)

ds

= lim inf
x→∞

∫ x

x/2

ζ0

x4

(
x3

8

)
ds =

ζ0

8
ln 2.

Hence, the condition becomes

ζ0 >
48

e ln2
. (29)

Therefore, by Corollary 1, every solution of (28) is oscillatory if ζ0 > 25.5.

Remark 1. Consider the equation (8), by Corollary 1, all solution of (8) is oscillatory if ζ0 > 57.5.
Whereas, the criterion obtained from the results of [9,10] are ζ0 > 1839.2 and ζ0 > 59.5. So, our
results extend the results in [9].

4. Conclusions

In this paper, we obtain sufficient criteria for oscillation of solutions of higher-order
differential equation with middle term. We discussed the oscillation behavior of solutions
for Equation (1). We obtain some oscillation criteria by comparison method with first
order equations. Our results unify and improve some known results for differential
equations with middle term. In future work, we will discuss the oscillatory behavior of
these equations using integral averaging method and under condition

∫ ∞

x0

(
1

α1(s)
exp

(
−
∫ s

x0

α2(̟)

α1(̟)
d̟

))1/(p−1)

ds < ∞. (30)
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For researchers interested in this field, and as part of our future research, there is a nice
open problem which is finding new results in the following cases:

(F1) ̟(x) > 0, ̟′(x) > 0, ̟′′(x) > 0, ̟(ℓ−1)(x) > 0, ̟(ℓ)(x) < 0,
(F2) ̟(x) > 0, ̟(j)(x) > 0, ̟(j+1)(x) < 0 for all odd integers

j ∈ {1, 3, ..., ℓ− 3}, ̟(ℓ−1)(x) > 0, ̟(ℓ)(x) < 0.
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Abstract: In this paper, we rediscover in detail a series of unknown attempts that some Spanish
mathematicians carried out in the 1930s to address a challenge posed by Mr. la Cierva in 1934, which
consisted of mathematically justifying the stability of la Cierva’s autogiro, the first practical use of the
direct-lift rotary wing and one of the first helicopter type aircraft.

Keywords: la Cierva’s autogiro; la Cierva’s equation; stability; differential equation with
periodic coefficients

1. Introduction

The autogiro was the first practical use of the direct-lift rotary wing, where a windmilling rotor
replaces the wing of the airplane, and the propulsive force is generated by a propeller. Interestingly,
the autogiro allows a very slow flight and also behaves like an airplane in cruise. This kind of aircraft
was developed by the Spanish aeronautical engineer Mr. Juan de la Cierva y Codorníu (Murcia (Spain),
1895–Croydon (UK), 1936), who also coined the term “autogiro”. The origins of the autogiro come
back to 1919, when an airplane that had been designed by Mr. la Cierva crashed due to stall near the
ground. This fact encouraged him to design an aircraft with both a low landing speed and take-off.

Mr. la Cierva evolved the autogiro over the years. Firstly, the C-3 autogiro, which included a
five-bladed rigid rotor, was built in 1922. The use of articulated rotor blades on the autogiro was
suggested later, and Mr. la Cierva was the first to successfully apply a flap hinge in a rotary-wing
aircraft. The C-4 autogiro (1923), which equipped a four-bladed rotor with flap hinges on the blades,
was proved to fly with success. Thereafter, in 1924, it was built the C-6 autogiro with a rotor consisting
of four flapping blades. This type, which is considered to be the first successful model of la Cierva’s
autogiro, took part in a demonstration at the Royal Aircraft Establishment the next year (c.f. [1]).

The Cierva Autogiro Company was founded in 1925 in UK by Mr. la Cierva, and about
500 autogiros were built in the next decade, many of them under license of the Cierva Company.
In this regard, and for illustration purposes, Figure 1 depicts an autogiro constructed under license
by Pitcairn in the United States (c.f. [2]). In those times, the autogiro was described as an easy to
handle and fast aircraft, ahead of its time, which could land almost without rolling and take off in
less than 30 m, and being able to stop off in the air, just to name some of its features. Certainly,
the autogiro developments had an effect on the subsequent helicopter developments. Presently,
however, the aircraft design seems to have evolved differently from the times of la Cierva’s autogiro.
In fact, novel settings consisting of combinations of four or more electric motors driving blades of
carbon fiber will allow for less pollution and noise, and also lead to higher efficient aircraft. From a
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mathematical viewpoint, several problems related to modern aviation have been addressed by means
of Fractional Calculus (c.f. [3]), path planning algorithms (c.f. [4]), or non-linear hyperbolic partial
differential equations (c.f. [5]), to name some groundbreaking techniques.

Figure 1. The picture above (public domain) shows a PCA-2 autogiro built in the United States by
Pitcairn under license of the Cierva Company. This unit was used by the National Advisory Committee
for Aeronautics (NACA) for research purposes on rotor systems (c.f. [2]).

One of the first versions of la Cierva’s aircraft, the C-3 autogiro, exhibited a certain tendency
to fall over side-ways [1]. This issue made him to pay special attention to several aspects related
to the stability of the autogiro. In this regard, in 1934, he attended a lecture at the Escuela Superior
Aerotécnica (Madrid - Spain), and posed the following linear differential equation with periodic
coefficients [6]:

m
d2 Θ

d ϕ2 +

(
3
4
+ λ sin ϕ

)
d Θ

d ϕ
+

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
Θ = 0, (1)

where ϕ is the azimuthal angle of the autogiro’s blade, Θ is a function of ϕ that measures the angle
of deviation of the blade with respect to its position of dynamic equilibrium when rotating, λ is a
parameter that provides a relationship between the forward speed of the aircraft and the peripheral
speed, and m is the ratio of the mass of the air volume (assumed to be contained in a rectangular
parallelepiped with sides equal to the radius of the rotor and the width of the blade, twice) to the
mass of the blade. The periodic nature of the coefficients of that equation is clear due to the autogiro’s
blade movement.

Following [7], we shall refer to Equation (1) as la Cierva’s equation hereafter. It is worth
mentioning that Mr. la Cierva appeared interested in mathematically determine whether the expression
that bears his name admits convergent solutions since it could imply positive consequences concerning
the stability of the autogiro. However, that expression resisted the attempts by Spanish and British
mathematicians to that date, and in fact, some articles requiring the attention of mathematicians to
address that equation can be found in the press of the time (c.f., e.g., [6]).

Next, let us provide some further comments regarding the parameters λ and m that are involved
in Equation (1). Firstly, notice that λ increases as the speed does. In this way, Mr. la Cierva posed λ = 1
as an appropriate limit value, thus taking into account future evolutions of the autogiro, the so-called
ultrarrapid autogiro. On the other hand, Mr. la Cierva suggested the parameter m to vary in the
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range [0.15, 1], depending on the aircraft. However, for a given autogiro, that parameter remains
constant except in the case of large variations concerning the air density. As such, m = 0.5 was then
considered to be an acceptable average value.

As stated in [7], Mr. la Cierva was especially interested in mathematically justifying the stability
of the movement of the blades of the autogiro rather than quantitatively integrating Equation (1) for
certain initial conditions. It is worth mentioning that such a stability had been fully verified in all
the autogiros that had been assembled until then, and was also expected for higher speeds of values
of the parameter λ. As such, the problem regarding the stability of la Cierva’s autogiro could be
mathematically stated in the following terms: does Θ go to zero as ϕ is increased regardless of the
initial conditions? Regarding the latter, the reader may think of possible gusts of wind that could affect
the movement of the blasts of the aircraft.

The main goal of this paper is to unveil the unknown attempts that some Spanish mathematicians
carried out in the 1930s to solve the problem of the stability of la Cierva’s autogiro. As such,
the structure of this paper is as follows. Section 2 contains some preliminaries regarding differential
equations with periodic coefficients. In this way, the concepts of characteristic exponent, characteristic
number, and characteristic equation will be introduced. Section 3 describes in detail the first attempt of
Prof. Orts y Aracil to analytically integrate Equation (1). Section 4 develops the calculations made by
Prof. Orts y Aracil leading to sufficient conditions to guarantee that Equation (1) possesses convergent
solutions. Shortly thereafter, the renowned Spanish engineer and mathematician Pedro Puig Adam
(Barcelona (Spain), 1900–Madrid (Spain), 1960), Ph.D. in mathematics in 1921, published a qualitative
approach regarding the stability of la Cierva’s autogiro. Their calculations, which we have described
in detail, have been included in Section 5 together with numerical calculations we have carried out in
Mathematica. On the other hand, Section 6 contains some results that Puig-Adam obtained in regard
to the reduced la Cierva’s equation. Finally, Section 7 presents some additional remarks to complete
the present study.

2. Preliminaries

In this section, we recall the basics on differential equations with periodic coefficients, thus paying
special attention to the key concepts of characteristic exponent, characteristic number, and characteristic
equation associated with a differential equation with periodic coefficients.

Firstly, it is clear that the so-called la Cierva’s equation (c.f. Equation (1)) stands as a particular
case of the following expression:

d2 y(x)
d x2 + p1(x)

d y(x)
d x

+ p2(x) y(x) = 0, (2)

where p1(x) and p2(x) are continuous and ω−periodic functions (with ω = 2π in the case of la
Cierva’s equation). Furthermore, if y(x) is a solution of Equation (2), then y(x + ω) also is.

Let y1(x) and y2(x) be two linearly independent solutions of Equation (2). Hence, y1(x + ω) and
y2(x + ω) also are. Thus, we can write

y1(x + ω) = a11 y1(x) + a12 y2(x)

y2(x + ω) = a21 y1(x) + a22 y2(x).
(3)

Moreover, the coefficients aij : i, j = 1, 2 in Equation (3) could be calculated just by assigning particular
values to the independent variable x.

Let a ∈ R and ϕ(x) be a ω−periodic function. Then the logarithmic derivative of the function

η(x) := eax ϕ(x) (i.e., η′(x)
η(x) ) is also ω−periodic, though η(x) is not. In fact, it holds that

η(x + ω) = ea(x+ω) ϕ(x + ω) = eaω eax ϕ(x) = eaω η(x) (4)
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for all x ∈ dom (η). Thus, if the variable x is increased in ω units, then the image of x + ω by
η coincides with η(x) multiplied by a factor equal to s := eaω. In this context, a is named the
characteristic exponent, whereas the factor s is known as the characteristic number. Notice that either
the characteristic number or the characteristic exponent provides information about whether η(x) goes
to zero as x → ∞. In particular, if |s| < 1, then µ(x) → 0 as x → ∞, which means that the oscillations
of the movement of the autogiro blade would get dampened. In fact, the amplitude of the oscillations
of that blade would be multiplied by a factor less than the unit each new rotation. As such, we are
interested in the calculation of those characteristic numbers, s.

Let ϕ(x) be a ω−periodic solution of Equation (2). Then we can write η(x) as a linear combination
of both y1(x) and y2(x), namely

η(x) = C1 y1(x) + C2 y2(x). (5)

Hence, we have that

η(x + ω) = C1 y1(x + ω) + C2 y2(x + ω)

= C1 (a11 y1(x) + a12 y2(x)) + C2 (a21 y1(x) + a22 y2(x))

= (C1 a11 + C2 a21) y1(x) + (C1 a12 + C2 a22) y2(x)

= s η(x) = s C1 y1(x) + s C2 y2(x),

(6)

where the identity at Equation (5) has been used in the first equality, Equation (3) has been applied in the
second identity, the fourth one is a consequence of η(x) assumed to be ω−periodic and Equation (4),
and the last identity is due to η(x) being a particular solution of Equation (2) (c.f. Equation (5)).
By identifying coefficients between the expressions at both the third and fifth equalities of Equation (6),
it holds that

C1 (a11 − s) + C2 a21 = 0

C1 a12 + C2 (a22 − s) = 0.
(7)

Therefore, the so-called characteristic equation stands from the following expression:

∣∣∣∣∣
a11 − s a21

a12 a22 − s

∣∣∣∣∣ = 0, (8)

which is equivalent to
s2 − (a11+22) s + [a11 a22 − a12 a21] = 0. (9)

Assume that the polynomial in Equation (9) possesses two distinct roots, s1 and s2. If both of them
are introduced in Equation (7), then a pair of specific values for each constant C1 and C2 will be
obtained, thus leading to a pair of functions, η1(x) and η2(x) (c.f. Equation (5)) satisfying the condition
at Equation (4). Accordingly, each solution of Equation (2) could be written as a linear combination of
the functions ηi(x) : i = 1, 2. Following the above, the next result holds.

Theorem 1. If the polynomial in Equation (8) has two distinct roots being less than the unit in absolute value,
then ηi(x) : i = 1, 2 go to zero as x goes to infinity. More generally, any solution of Equation (2) would go to
zero as x goes to infinity.

A consequence of Theorem 1 is that the movement of the blade of the autogiro will be in
equilibrium regardless the initial conditions.

We conclude this section by providing the statement of a known result concerning harmonic
combinations of periodic functions. In fact,
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Theorem 2. Let α, β ∈ R with α 6= 0. Then

α sin x + β cos x = A sin(x + γ),

where γ = arctan
(

β
α

)
and A = sgn(α)

√
α2 + β2.

The proof of that result becomes straightforward by using that sin(x + γ) = sin x cos γ +

cos x sin γ, and identiying coefficients with those from α sin x + β cos x. This result will be applied in
forthcoming Section 6.

3. Towards a Particular Solution of la Cierva’s Equation

In this section, we revisit in detail a first approach that Prof. José Mª Orts y Aracil
(Paterna, Valencia (Spain), 1891–Barcelona (Spain), 1968) contributed in [8] to mathematically determine
a particular solution to Equation (1). First, it is clear that la Cierva’s equation can be rewritten as follows:

d2 Θ

d ϕ2 +
1
m

(
3
4
+ λ sin ϕ

)
d Θ

d ϕ
+

1
m

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
Θ = 0. (10)

Let Θ = u ev, where both u and v are functions of ϕ. Then it is clear that

Θ′ = ev (u′ + v′u
)

Θ′′ = ev
(

u′′ + 2 v′u′ + (v′2 + v′′)u
)

. (11)

If we replace the expressions at Equation (11) in Equation (10), then we have

ev
(

u′′ + 2 v′u′ + (v′2 + v′′) u
)
+

1
m

(
3
4
+ λ sin ϕ

) (
u′ + v′u

)
ev

+
1
m

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
u ev = 0,

which is equivalent to

u′′ +
(

2v′ +
1
m

(
3
4
+ λ sin ϕ

))
u′

+

(
v′′ + v′2 +

1
m

(
3
4
+ λ sin ϕ

)
v′ + 1 +

λ

m
cos ϕ +

3λ2

4m
sin(2ϕ)

)
u = 0.

(12)

Next, we cancel the coefficient of u′ in Equation (12). In fact,

2v′ +
1
m

(
3
4
+ λ sin ϕ

)
= 0 ⇔ v′ = − 1

2m

(
3
4
+ λ sin ϕ

)
. (13)

Hence, it is clear that

v =
1

2m

(
λ cos ϕ − 3

4
ϕ

)
and v′′ = − λ

2m
cos ϕ. (14)

As such, Equation (12) can be reduced as follows:

u′′ + p(ϕ) u = 0,

where

p(ϕ) = v′′ + v′2 +
1
m

(
3
4
+ λ sin ϕ

)
v′ + 1 +

λ

m
cos ϕ +

3λ2

4m
sin(2ϕ). (15)
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If we replace the expressions in both Equations (13) and (14) into Equation (15), then

p(ϕ) = − 1
4m2

(
9

16
+ λ2 sin2 ϕ +

3λ

2
sin ϕ

)
+

λ

2m
cos ϕ + 1 +

3λ2

4m
sin(2ϕ). (16)

Moreover, if we replace sin2 ϕ by 1
2 (1 − cos(2ϕ)) in Equation (16), then we have

p(ϕ) = 1 − 9
64m2 − λ2

8m2 +
λ

2m
cos ϕ +

λ2

8m2 cos(2ϕ)

− 3λ

8m2 sin ϕ +
3λ2

4m
sin(2ϕ).

As such, Equation (12) can be expressed in the following terms:

d2 u
d ϕ2 = (a0 + a1 cos ϕ + a2 cos(2ϕ) + b1 sin ϕ + b2 sin(2ϕ)) u, (17)

where

a0 =
9 + 8 λ2

64 m2 − 1, a1 = − λ

2 m
, a2 = − λ2

8 m2

b1 =
3
8

λ

m2 , b2 = −3
4

λ2

m
.

(18)

Additionally, by writing u = e
∫

z d ϕ, the expression in Equation (17) can be rewritten as follows:

d z
d ϕ

+ z2 = a0 + a1 cos ϕ + a2 cos(2ϕ) + b1 sin ϕ + b2 sin(2ϕ), (19)

which leads to a Ricatti type equation. The next expression was suggested by Prof. Orts y Aracil as a
potential solution of Equation (19):

z1 = α + β sin ϕ + γ cos ϕ, (20)

where α, β, and γ are three constants that can be determined by introducing Equation (20) in the former
Equation (19) and identifying coefficients in both sides of that expression. As such, we obtain that

a0 = α2 + 1
2 (β2 + γ2), a1 = β + 2 α γ, a2 = 1

2 (γ
2 − β2)

b1 = 2 α β − γ, b2 = β γ.
(21)

Next, we observe that

a2
2 + b2

2 =

(
1
2
(γ2 + β2)

)2

≥ 0,

so α2 +
√

a2
2 + b2

2 = α2 + 1
2 (γ

2 + β2) = a0. Therefore,

a0 ≥ 1
2
(γ2 + β2) =

√
a2

2 + b2
2.

On the other hand, it is clear that

√
a2

2 + b2
2 − a2 =

1
2
(γ2 + β2)− 1

2
(γ2 − β2) = β2 ≥ 0.
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Furthermore, it holds that a2 +
√

a2
2 + b2

2 = 1
2 (γ

2 − β2) + 1
2 (γ

2 + β2) = γ2 ≥ 0. All the calculations
above lead to the following values of the parameters α, β, and γ of the particular solution at
Equation (19):

α =

√
a0 −

√
a2

2 + b2
2, β =

√√
a2

2 + b2
2 − a2, γ =

√
a2 +

√
a2

2 + b2
2.

Going beyond, it is possible to reduce the parameters α, β, and γ in Equation (21), thus leading to a
pair of relationships among the coefficients ai and bj for i = 0, 1, 2 and j = 1, 2. Recall that ai and bj can
be expressed, in turn, in terms of λ and m (c.f. Equation (18)). In fact, the following expressions hold.

1327104 m8 + 359424 m6 + 35712 m4 − 324 m2 = 0

λ2 =
9 + 16 m2 − (9 − 48 m2)

√
1 + 36 m2

8
√

1 + 36 m2 (1 −
√

1 + 36 m2)
.

(22)

If the eight order polynomial in m at Equation (22) is divided by 12 m2 (under the assumption
that m 6= 0), and the change of variable t = 48 m2 is considered, then the following third order
polynomial stands:

t3 + 13 t2 + 62 t − 27 = 0. (23)

By Bolzano’s Theorem, it is clear that the polynomial in Equation (23) possesses a root, say t1, in the
subinterval [0.4007, 0.4008]. That root could be approximated by some numerical method, though in [8],
t1 was considered merely as the middle point of that subinterval, i.e., t1 = 0.40075. Since t1 = 48 m2

1,
then we have m1 ≃ 0.0914. Hence, the second expression in Equation (22) leads to λ1 ≃ 0.7249. With the
values of both parameters m and λ estimated, the coefficients α, β, and γ of the particular solution
of Equation (19) given by Equation (20) can be calculated by Equation (18). In fact, that particular
solution remains as follows:

z1 = 3.8391 + 4.1036 sin ϕ + 1.0511 cos ϕ. (24)

Also, we have u1 = exp (3.8391 ϕ + 1.0511 sin ϕ − 4.1036 cos ϕ), and hence,

Θ1 = exp(3.8391 ϕ + 1.0511 sin ϕ

+ 0.6898
(

0.0914 cos ϕ − 3
4

ϕ

)
− 4.1036 cos ϕ),

stands as a particular solution of Equation (10), the differential equation which models the equilibrium
of the blade of la Cierva’s autogiro.

As Prof. Orts y Aracil commented, the approach contributed in this section threw a value of
λ1 = 0.7249 lying within the range suggested by Mr. Herrera in [6], i.e., the subinterval [0, 1], though the
value of m1 = 0.091 appears out of its corresponding range, the subinterval [0.15, 1]. In this regard,
it was argued that the problem of the equilibrium of la Cierva’s autogiro had been addressed from a
mathematical (and not an Saee) viewpoint.

4. Sufficient Conditions on the Existence of Convergent Solutions

In this section, sufficient conditions are provided to guarantee the existence of convergent solutions
for la Cierva’s equation, an issue that was further addressed by Prof. Orts y Aracil in [9]. With this
aim, we start by sketching an alternative approach to that one described in Section 3 with the aim to
integrate the expression at Equation (10).
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First of all, let us denote by p(ϕ) the continuous and periodic function that appears at the right
term of Equation (19), i.e.,

p(ϕ) = a0 + a1 cos ϕ + a2 cos(2ϕ) + b1 sin ϕ + b2 sin(2ϕ), (25)

which allows rewriting Equation (17) as follows:

d2 u
d ϕ2 = p(ϕ) u. (26)

Such a kind of differential equations can be integrated by means of a characteristic equation of the form

s2 − As + 1 = 0, where (27)

A = 2 +
+∞

∑
n=1

[
Fn(2π) + f ′n(2π)

]
, Fn(ϕ) =

∫ ϕ

0
d ϕ

∫ ϕ

0
p(ϕ) Fn−1(ϕ)d ϕ,

fn(ϕ) =
∫ ϕ

0
d ϕ

∫ ϕ

0
p(ϕ) fn−1(ϕ) d ϕ, F0(ϕ) = 1, and f0(ϕ) = ϕ

(28)

(c.f. ([10] [item 49, p. 402]) and ([11] [Chapter 3, Section 55])). Moreover, if p(ϕ) ≥ 0 for all ϕ > 0, then it
holds that Fn(ϕ), fn(ϕ), f ′n(ϕ) > 0 for all ϕ > 0 and all n ∈ N. Hence, A > 2 and the expression at
Equation (27) possesses two positive roots, say s1 and s2, with one of them being greater (resp., smaller)
than the unit and the other being smaller (resp., greater) than the unit.

A fundamental system of solutions for Equation (26) is provided by the functions

u1 = e
ϕ

2π l s1 · α(ϕ), u2 = e
ϕ

2π l s2 · β(ϕ), (29)

where α(ϕ) and β(ϕ) are 2π−periodic continuous functions.
Hence, one of the integrals at Equation (29), say u1, goes to zero as ϕ → ∞, and so does Θ. In this

way, the so-called Liapounov’s condition can be stated as follows (c.f. [10]).

Theorem 3 (Liapounov’s condition). The second order differential equation in Equation (26) admits a
convergent integral as ϕ → ∞, if and only if, p(ϕ) ≥ 0 for all ϕ > 0.

Following the above, our next goal is to verify that sufficient condition. To deal with, let us apply
the change of variable x = tan( ϕ

2 ) to the periodic function at Equation (25). As such, we have

p(ϕ) = a0 + a1 cos ϕ + a2
1 − tan2 ϕ

1 + tan2 ϕ
+ b1 sin ϕ + b2

2 tan ϕ

1 + tan2 ϕ

= a0 + a1
1 − x2

1 + x2 + a2
1 − 6 x2 + x4

(1 + x2)2 + b1
2 x

1 + x2 + b2
4 x (1 − x2)

(1 + x2)2 ,

(30)

and hence, we can write p(ϕ) = 1
(1+x2)2 q(x), where

q(x) = a0 (1 + x2)2 + a1 (1 − x2) (1 + x2) + a2 (1 − 6 x2 + x4)

+ 2 b1 x (1 + x2) + 4 b2 x (1 − x2)

= (a0 + a1 + a2) + 2 (b1 + 2 b2) x + 2 (a0 − 3 a2) x2

+ 2 (b1 − 2 b2) x3 + (a0 − a1 + a2) x4.

(31)
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Notice that the first equality at Equation (30) has been applied that

sin(2ϕ) =
2 tan ϕ

1 + tan2 ϕ
, cos(2ϕ) =

1 − tan2 ϕ

1 + tan2 ϕ
,

whereas the second identity at that expression holds since that change of variable implies that

cos ϕ =
1 − x2

1 + x2 , sin ϕ =
2x

1 + x2 , tan ϕ =
2 tan( ϕ

2 )

1 − tan2( ϕ
2 )

=
2x

1 − x2 .

Moreover, by writing
q(x) = c4 + c3 x + c2 x2 + c1 x3 + c0 x4, (32)

we can identify coefficients with those ones at the right side of Equation (31). In fact,

c0 = a0 − a1 + a2 =
9

64 m2 − 1 +
λ

2 m

c1 = 2 (b1 − 2 b2) =
3
4

λ

m2 + 3
λ2

m

c2 = 2 (a0 − 3 a2) =
9

32 m2 − 2 +
λ2

m2

c3 = 2 (b1 + 2 b2) =
3
4

λ

m2 − 3
λ2

m

c4 = a0 + a1 + a2 =
9

64 m2 − λ

2 m
− 1,

(33)

where Equation (18) allows writing the ci’s in terms of the parameters λ and m.
On the other hand, a necessary condition to get p(ϕ) ≥ 0 for all ϕ > 0 consists of both coefficients

c0 and c4 of the polynomial at Equation (32) being positive. In this way, Equation (33) implies that

c4 > 0 ⇔ 32m (λ + 2m) < 9 ⇔ X2 − Y2 < 9.

c0 > 0 ⇔ 32m (2m − λ) < 9 ⇔ m <
3
8
⇔ X − Y < 3,

(34)

where X := 8m + 2λ and Y := 2λ. Observe that X, Y > 0 since both parameters m and λ are positive.
In fact, regarding the second equivalence at the first line of Equation (34), just observe that we can write

9 > 32 m (λ + 2m) = 64 m2 + 32 mλ

= 82m2 + 2 × 16 mλ + (2λ)2 − (2λ)2

= (8m + 2λ)2 − (2λ)2 = X2 − Y2.

Thus, the condition c4 > 0 is equivalent to a point at the first quadrant, (X, Y), located above the
hyperbola X2 − Y2 = 9.

5. Puig-Adam’s Qualitative Approach

In this section, we revisit in detail the approach contributed by Puig-Adam in [7] to approach the
solutions of la Cierva’s equation from a qualitative viewpoint.

According to the contents of Section 2, we are interested in obtaining two particular solutions
of la Cierva’s equation (c.f. Equation (10)), say y1(x) and y2(x). Let them be given by the following
initial conditions:

y1(0) = 1, y′1(0) = 0

y2(0) = 0, y′2(0) = 1.
(35)
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It is clear that y1(x) and y2(x) would be independent since their Wronskian at 0 is distinct from zero,
W(y1, y2)(0) = 1. Moreover, from Equation (3), we have that

y′1(x + ω) = a11 y′1(x) + a12 y′2(x)

y′2(x + ω) = a21 y′1(x) + a22 y′2(x)
(36)

for all x. If we particularize both Equations (3) and (36) in x = 0, then

y1(ω) = a11, y′1(ω) = a12

y2(ω) = a21, y′2(ω) = a22.

Moreover, from Equation (9), the characteristic equation holds from the following expression:

s2 − (y1(ω) + y′2(ω)) s +
[
y1(ω) y′2(ω)− y′1(ω) y2(ω)

]
= 0. (37)

As such, Equation (37) would be fully determined once yi(ω) and their derivatives, y′i(ω) for i = 1, 2,
have been calculated. It is also worth mentioning that the coefficients of the characteristic polynomial
are independent from the initial conditions that were selected, i.e., such coefficients only depend
on the coefficients of the given differential equation. In particular, notice that the independent
term of Equation (37), which coincides with W(y1, y2)(ω), can be calculated in terms of p1(x)
(recall Equation (2)), by means of the following expression (c.f., e.g., [11]):

W(y1, y2)(x) = W(y1, y2)(x0) exp
[
−
∫ x

x0

p1(x) d x

]
. (38)

In fact, observe that the former expression can be justified just by identifying the differential equation
in Equation (2) with the next one:

W(y, y1, y2)(x) = 0. (39)

In fact, Equation (39) is equivalent to

(y1(x) y′2(x)− y′1(x) y2(x)) y′′(x) + (y′′1 (x) y2(x)− y1(x) y′′2 (x)) y′(x)

+ (y′1(x) y′′2 (x)− y′′1 (x) y′2(x)) y(x) = 0,

which leads to

y′′(x) +
y′′1 (x) y2(x)− y1(x) y′′2 (x)

y1(x) y′2(x)− y′1(x) y2(x)
y′(x) +

y′1(x) y′′2 (x)− y′′1 (x) y′2(x)

y1(x) y′2(x)− y′1(x) y2(x)
y(x) = 0 (40)

since y1(x) and y2(x) have been assumed to be independent solutions (and hence, W(y1, y2)(x) 6= 0 for
all x). Thus, if the expressions in both Equations (2) and (40) coincide term by term, then it holds that

p1(x) =
y′′1 (x) y2(x)− y1(x) y′′2 (x)

y1(x) y′2(x)− y′1(x) y2(x)
= −W ′(y1, y2)(x)

W(y1, y2)(x)
.

Following the above, it holds that the independent term of Equation (37) can be obtained just by
applying Equation (38) in the open interval (x0, x) = (0, ω). Since W(y1, y2)(0) = 1, then we have that

W(y1, y2)(2π) = exp
[
−
∫ 2π

0
p1(x)d x

]

= exp
[
−
∫ 2π

0

1
m

(
3
4
+ λ sin x

)
d x

]
= e−

3
2m π ,

(41)
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where it has been used that p1(x) = 1
m

( 3
4 + λ sin x

)
and ω = 2π in the case of la Cierva’s equation

(c.f. Equation (10)). Hence, the characteristic polynomial associated to la Cierva’s equation remains
as follows:

s2 − (y1(2π) + y′2(2π)) s + e−
3

2m π = 0. (42)

Interestingly, it holds that the independent term, e−
3

2m π , does not depend on the forward speed.
However, to fully determine the characteristic polynomial at Equation (42), it becomes necessary

to know the values of both functions y1(x) and y′2(x) at x = 2π. With this aim, Puig-Adam, instead of
carrying out a power series expansion in regard to the periodic coefficients of the starting equation,
for instance, preferred to apply a (second order) Runge-Kutta numerical approach to each particular
solution, y1(x) and y2(x), of la Cierva’s equation in the closed bounded interval [0, 2π] with parameters
m = 0.5 and λ = 1, that according to Puig-Adam, had been suggested by Mr. la Cierva. In [7], it was
stated that the trapezoidal method had been applied. In this paper, though, we shall apply a explicit
midpoint method (also known as modified Euler method), which appears implemented in Mathematica.
In any case, both of them are second-order approaches.

In this way, and similarly to [7], Figures 1 and 2 depicts our approximations to each particular
solution of Mr. la Cierva’s equation, y1(x) with initial conditions y1(0) = 1, y′1(0) = 0, and y2(x)
with initial conditions y2(0) = 0, y′2(0) = 1 (c.f. Equation (35)), as provided by the second-order
(Runge-Kutta explicit) midpoint approach on the interval [0, 2π], which corresponds to a turn of the
blade of the autogiro.
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0.6

0.8
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yi(φ)
Particular solutions of la Cierva's equation (first turn)

Figure 2. Second order Runge-Kutta approximations (obtained by the explicit midpoint method) to
each particular solution of la Cierva’s equation according to the procedure described in Section 5, i.e.,
y1(ϕ) (blue line) and y2(ϕ), where ϕ varies in the range [0, 2π], which means a turn of the blade of the
autogiro, and the choice of parameters was as suggested by Mr. la Cierva, i.e., m = 0.5 and λ = 1.

According to our numerical calculations, it holds that

y1(2π) = −0.0222528, y′2(2π) = 0.0230689,

and hence, the characteristic polynomial at Equation (42) remains as follows:

s2 − 0.000816093 s + e−
3

2m π = 0. (43)

As such, it holds that the polynomial at Equation (43) possesses two complex (conjugated) roots, namely
s1 = 0.000408046 − 0.00897402 i and s2 = 0.000408046 + 0.00897402 i . Since |si| = 0.00898329 ≪ 1 for
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i = 1, 2, it can be guaranteed that the blade movement of la Cierva’s autogiro behaves quite stably for
that choice of parameters.

Remark 1. It is worth mentioning that, in the original study carried out by Puig-Adam, the following values
were obtained by the numerical approach carried out therein: y1(2π) = −0.013 and y′2(2π) = 0.04197,
which led to the next characteristic equation:

s2 − 0.02897 s + e−
3

2m π = 0,

whose real roots are t1 = 0.00312209 and t2 = 0.0258479. Such results mainly differ from ours in the nature of
the roots of the characteristic polynomial. That issue was mainly caused by the approximation errors made due to
the limitations of the calculation systems available in the 1930s. It is also true that we have approximated the
coefficients y1(2π) and y′2(2π) by the midpoint method instead of the trapezoidal approach used by Puig-Adam.
However, both are second-order approaches, so they should lead to close results.

Recall also that W(y1, y2)(2π) = e−3π ≃ 8.0699518 × 10−5 (c.f. Equation (41)). Alternatively, if we
calculate an approximation to that Wronskian by means of the expression appeared at Equation (37) and
the values of the coefficients provided by the numerical approach used by Puig-Adam, then we have

W(y1, y2)(2π) = y1(2π) y′2(2π)− y′1(2π) y2(2π)

≃ −0.013 × 0.04197 + 0.00398 × 0.18509

≃ 1.910482 × 10−4 = WPA(y1, y2)(2π),

(44)

where WPA(y1, y2)(2π) denotes the Puig-Adam’s numerical approximation to that quantity. As such,
the absolute error obtained when comparing the theoretical value of that Wronskian with respect to
WPA(y1, y2)(2π), (c.f. Equation (44)) was found to be approximately equal to 1.10349 × 10−4, quite
close to zero. Going beyond, our midpoint-based approach, which approximated W(y1, y2)(2π) by
the quantity 8.0699523 × 10−5, threw an absolute error approximately equal to 5.33809 × 10−12.

Furthermore, it is possible to provide a qualitative viewpoint in regard to the stability of the
oscillations of the blade of the autogiro in its upcoming turns. In fact, let ω = 2π and consider
Equation (35). Applying such initial conditions to both Equations (3) and (36), it holds that the former
turns into the following expression:

y1(x + 2π) = y1(2π) y1(x) + y′1(2π) y2(x)

y2(x + 2π) = y2(2π) y1(x) + y′2(2π) y2(x).
(45)

By recursively applying Equation (45), we have

y1(x + 4π) = y1(2π) y1(x + 2π) + y′1(2π) y2(x + 2π)

=
(

y2
1(2π) + y′1(2π) y2(2π)

)
y1(x)

+ y′1(2π)
(
y1(2π) + y′2(2π)

)
y2(x)

y2(x + 4π) = y2(2π) y1(x + 2π) + y′2(2π) y2(x + 2π)

= y2(2π)
(
y1(2π) + y′2(2π)

)
y1(x)

+
(

y′22 (2π) + y2(2π) y′1(2π)
)

y2(x)

(46)
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which corresponds to the second turn of the blade. Figure 3 depicts (numerical approximations of)
both solutions after two turns of the autogiro’s blade. Also, regarding the third turn of the blade,
the following expression holds:

y1(x + 6π) = α1 y1(x) + α2 y2(x)

y2(x + 6π) = β1 y1(x) + β2 y2(x),
(47)

where

α1 =
(

y2
1(2π) + y′1(2π) y2(2π)

)
y1(2π) + y′1(2π)

(
y1(2π) + y′2(2π)

)
y2(2π)

α2 =
(

y2
1(2π) + y′1(2π) y2(2π)

)
y′1(2π) + y′1(2π)

(
y1(2π) + y′2(2π)

)
y′2(2π)

β1 = y2(2π)
(
y1(2π) + y′2(2π)

)
y1(2π) +

(
y′22 (2π) + y2(2π) y′1(2π)

)
y2(2π)

β2 = y2(2π)
(
y1(2π) + y′2(2π)

)
y′1(2π) +

(
y′22 (2π) + y2(2π) y′1(2π)

)
y′2(2π).

(48)

As with Figure 3, (numerical approximations) of the particular solutions of la Cierva’s equation (for
parameters m = 0.5 and λ = 1) after three turns of the autogiro’s blade are illustrated at Figure 4. It can
be seen that for angles beyond 5π

2 , the graph of the first particular solution of la Cierva’s equation at
the second turn of the blade becomes indistinguishable from the x−axis, as it is the case of the plot of
y2(x) as of the third turn of the blade.

Notice that, as Puig-Adam pointed out, the initial conditions y1(0) = 1, y′2(0) = 1
(c.f. Equation (35)) are quite extreme. Nevertheless, for k small enough, particular solutions of the form
ky1 and ky2, which exhibit smaller oscillations than those from y1 and y2, and whose graphs can be
depicted by a y−axis rescaling of those appeared in Figure 2, are possible.
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Figure 3. (Numerical approximations to the) particular solutions of la Cierva’s equation after two
turns of the autogiro’s blade (c.f. Equation (46)). In this occassion, the blue lines have been used to
distinguish the curves of both particular solutions in regard to the first turn to their prolongations to
the second turn of the blade. In addition, notice that the dotted line corresponds to y2(ϕ).
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Figure 4. (Numerical approximations to the) particular solutions of la Cierva’s equation after the first
three turns of the autogiro’s blade (c.f. Equations (47) and (48)). The blue lines represent the curves
of both particular solutions at the first turn, the orange lines correspond to their prolongations to the
second turn of the blade, and the green lines depict the extensions of such solutions to the third turn.
As with Figure 3, the dotted line corresponds to y2(ϕ).

6. La Cierva’s Reduced Equation

The aim of this section is to calculate a pair of particular solutions to la Cierva’s equation by
means of the so-called reduced la Cierva’s equation. Furthermore, a comparison of such solutions with
those solutions obtained in Section 5 is carried out.

First, recall that in Section 5, it was provided a numerical criterion to determine whether the
solutions of la Cierva’s equation (c.f. Equation (1)) behave stably for a choice of parameters (λ, m).
Specifically, let y1 and y2 be the particular solutions of that equation (as provided by a Runge-Kutta
method, in this case) in the interval [0, 2π], and calculate y1(2π) + y′2(2π). If that quantity stands <1 in
absolute value, then the behavior of the oscillations of the autogiro’s blade is stable for such parameters.

Firstly, we recall the original expression of la Cierva’s equation (c.f. Equation (1)):

m Θ′′ +
(

3
4
+ λ sin ϕ

)
Θ′ +

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
Θ = 0, (49)

where ϕ is the azimuthal angle of the autogiro’s blade and Θ is a function of ϕ that measures the angle
of deviation of the blade with respect to its position of dynamic equilibrium when rotating.

Let Θ = uv. Then it is clear that Θ′ = u′v + uv′ and Θ′′ = u′′v + 2 u′v′ + uv′′. If we apply that
change of variable to Equation (49), then that expression turns into the next one:

m (u′′v + 2 u′v′ + uv′′) +
(

3
4
+ λ sin ϕ

)
(u′v + uv′)

+

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
uv = 0,

(50)
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which is equivalent to

mv u′′ +
(

2mv′ +
(

3
4
+ λ sin ϕ

)
v

)
u′

+

(
mv′′ +

(
3
4
+ λ sin ϕ

)
v′ +

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
v

)
u

= 0.

(51)

The next goal is to cancel the coefficient of u′ in Equation (51). In fact,

2mv′ +
(

3
4
+ λ sin ϕ

)
v = 0 ⇔ v′

v
= − 1

2m

(
3
4
+ λ sin ϕ

)
. (52)

The integration of the expression in Equation (52) leads to

v = exp
[

λ

2m
cos ϕ − 3

8m
ϕ

]
. (53)

As such, Equation (50) has been reduced to the next one:

m u′′ +
(

m
v′′

v
+

(
3
4
+ λ sin ϕ

)
v′

v
+ m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
u = 0. (54)

Since
d

d ϕ

(
v′

v

)
=

v′′

v
−
(

v′

v

)2

, (55)

then it is clear that

v′′

v
=

(
v′

v

)2

+
d

d ϕ

(
v′

v

)

=

[
− 1

2m

(
3
4
+ λ sin ϕ

)]2

− λ

2m
cos ϕ.

Hence, Equation (54) can be rewritten as u′′ = −q(ϕ) u, where

q(ϕ) = 1 +
λ

2m
cos ϕ +

3
4m

λ2 sin(2ϕ)− 1
4m2

(
3
4
+ λ sin ϕ

)2

= 1 +
λ

2m
cos ϕ +

3
4m

λ2 sin(2ϕ)− 9
64

m2 − λ2

4m2 sin2 ϕ − 3λ

8m2 sin ϕ.

Firstly, notice that we can write

3λ

8m2 sin ϕ − λ

2m
cos ϕ = A sin(ϕ + ϕ1),

where A = λ
2m

√
1 +

( 3
4m

)2
and ϕ1 = arctan(− 4

3 m). In fact, just apply Theorem 2 for α = 3λ
8m2 > 0 and

β = − λ
2m .

On the other hand, we also affirm that

λ2

4m2 sin2 ϕ − 3
4m

λ2 sin(2ϕ) = B sin(2ϕ + ϕ2),

where B = − λ2

4m

√
9 + 1

4m2 and ϕ2 = arctan
(

1
6m

)
. In this case, it has been used that sin2 ϕ =

1
2 (1 − cos(2ϕ)), and applied Theorem 2 again for α = − 3

4m λ2 and β = − λ2

8m2 . Following the above,
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it holds that Equation (54) is equivalent to the next one, that we shall name as la Cierva’s reduced
equation, hereafter:

u′′ = (a + b sin(ϕ + ϕ1) + c sin(2ϕ + ϕ2)) u, (56)

where

a =
9

64 m2 +
λ2

8 m2 − 1, b =
λ

2m

√

1 +
(

3
4 m

)2

, c = − λ2

4m

√
9 +

1
4 m2

ϕ1 = arctan
(
−4

3
m

)
, ϕ2 = arctan

(
1

6 m

)
.

(57)

Going beyond, it is possible to turn la Cierva’s reduced equation into a Riccati type one. In fact,
similarly to Equation (55), we have that

u′′

u
=

d
d ϕ

(
u′

u

)
+

(
u′

u

)2

=
d η

d ϕ
+ η2,

where the second equality has been denoted η := u′
u . Hence, Equation (56) can be even rewritten in

terms of a first order Ricatti type equation:

η′ = a + b sin(ϕ + ϕ1) + c sin(2ϕ + ϕ2)− η2, (58)

where the coefficients a, b, c appear in Equation (57). In this regard, in [7], Puig-Adam realized
that a particular solution to la Cierva’s equation had been obtained previously by Prof. Aracil
in [8]. Despite the form of that particular solution was similar to the one provided in Equation (58)
(c.f. Equation (24)), it is worth pointing out that it was obtained for the choice of parameters λ = 0.7249
and m = 0.0914 /∈ [0.15, 1], the range proposed by Mr. la Cierva.

As with the numerical analysis carried out in Section 5 regarding la Cierva’s equation, next we
shall apply the midpoint method approach to a pair of (independent) particular solutions of the
reduced la Cierva’s equation (c.f. Equation (56)), namely u1(ϕ) and u2(ϕ), with initial conditions
u1(0) = 1, u′

1(0) = 0, and u2(0) = 0, u′
2(0) = 1. Also, the same parameters as in Section 5 will be used,

i.e., λ = 1 and m = 0.5, and both solutions will be numerically approximated in the subinterval [0, 2π]

(a turn of the autogiro’s blade). In this case, the values of the coefficients and angles in Equation (57)
are as follows: a ≃ 0.0625, b ≃ 80278, c ≃ −1.58114, ϕ1 ≃ −0.588003, and ϕ2 ≃ 0.321751. Figure 5
depicts both particular solutions.

Our next goal is to compare the particular solutions (obtained by the midpoint method) of la
Cierva’s equation (c.f. Figure 2) to the ones of the reduced la Cierva’s one. Since {u1(ϕ), u2(ϕ)} is a
fundamental system of solutions of the reduced la Cierva’s equation, then {u1(ϕ) v(ϕ), u2(ϕ) v(ϕ)}
is a fundamental system of solutions of la Cierva’s equation, where v(ϕ) = exp

(
λ

2m cos ϕ − 3
8m ϕ

)

(c.f. Equation (53)). Hence, each solution of la Cierva’s equation, y(ϕ), can be expressed in the
following terms:

y(ϕ) = v(ϕ) (C u1(ϕ) + D u2(ϕ))

= ecos ϕ− 3
4 ϕ (C u1(ϕ) + D u2(ϕ)) : C, D ∈ R,

(59)

where the last identity has been used that λ = 1 and m = 0.5. Also, it is clear that

y′(ϕ) = ecos ϕ− 3
4 ϕ

[
Cu′

1 + Du′
2 −

(
3
4
+ sin ϕ

)
(Cu1 + Du2)

]
. (60)
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Since y1(0) = 1, then Equation (59) leads to C = 1
e . Moreover, the condition y′1(0) = 0 applied to

Equation (60) implies that D = 3
4e . As such, we have

y1(ϕ) = ecos ϕ− 3
4 ϕ−1

(
u1(ϕ) +

3
4

u2(ϕ)

)
. (61)

On the other hand, the initial condition y2(0) = 0 applied to Equation (59) gives C = 0. Furthermore,
y′2(0) = 1 implies that D = 1

e . Thus,

y2(ϕ) = ecos ϕ− 3
4 ϕ−1 u2(ϕ). (62)

Upcoming Figure 6 displays a graphical comparison involving the particular solutions of la Cierva’s
equation from both Sections 5 and 6. Specifically, the first particular solutions of that equation are
depicted in blue (the dotted line corresponds to the expression in Equation (61)), and the second
particular solutions appear in orange (the dashed line corresponds to the expression in Equation (62)).
Observe that all the curves behave similarly, especially for angles ϕ ≥ π
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Figure 5. Second order Runge-Kutta approximations (obtained by the explicit midpoint method) to
each particular solution from the reduced la Cierva’s equation, where the first particular solution, y1(ϕ)

(c.f. Equation (61)), is depicted by a blue line, ϕ varies in the range [0, 2π], and the choice of parameters
was as suggested by Mr. la Cierva, i.e., m = 0.5 and λ = 1.
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Figure 6. Second order Runge-Kutta approximations (obtained by the explicit midpoint method)
to those pairs of particular solutions of la Cierva’s equation that were obtained in Sections 5 and 6,
respectively. The blue dotted line depicts the first particular solution of that equation as it appears in
Equation (61), whereas the orange dashed line illustrates the second particular solution of la Cierva’s
equation (c.f. Equation (62)). On the other hand, the continuous curves correspond to the particular
solutions of la Cierva’s equation as they were obtained in Section 5. As with Figure 5, ϕ varies in the
range [0, 2π], which means a turn of the blade of the autogiro, and the choice of parameters has been as
suggested by Mr. la Cierva, i.e., m = 0.5 and λ = 1. Notice that the y-axis has been labeled as Θ(ϕ) to
denote an approximation to each particular solution of la Cierva’s equation for ϕ ∈ [0, 2π].

7. Final Remarks

Next, we provide some additional remarks allowing us to complete our study on the stability of
la Cierva’s autogiro.

1. We recall that the conditions provided in Section 4 to guarantee the existence of convergent
solutions for la Cierva’s equation are sufficient but not necessary. In fact, let us consider the
reduced la Cierva’s equation (c.f. Equation (56)), and define

q(ϕ) = a + b sin(ϕ + ϕ1) + c sin(2ϕ + ϕ2), (63)

where the coefficients a, b, and c are given as in Equation (57). Then for λ = 1 and m = 0.5, i.e.,
the choice of parameters used in both Sections 5 and 6, it holds that the function q(ϕ) is not
positive in the whole interval [0, 2π] (c.f., e.g., Figure 7). As such, the Liapounov’s condition
(c.f. Theorem 3) cannot guarantee the existence of convergent solutions in regard to the reduced
la Cierva’s equation for that choice of parameters. However, as proved in Section 5, la Cierva’s
equation behaves stably for such parameters.
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Figure 7. Graph of the function q(ϕ) (as defined in Equation (63)) in the interval [0, 2π].

2. Let
y′′(x) + p2(x) y(x) = 0 (64)

be a second order differential equation with p1(x) = 0, as it is the case of the la Cierva’s reduced
equation (c.f. Equation (56)). Then its associated characteristic equation can be expressed in the
following terms (c.f. Equation (27)):

s2 − As + 1 = 0, (65)

where the roots of Equation (65) are of the form

s1 = e2π α s2 = e−2π α.

Hence, it is clear that A = s1 + s2 = 2 cosh(2πα), which leads to

α =
1

2π
arcosh

(
A
2

)
.

Let Θ = uv, where u = e±αx and v being as in Equation (53). Then the aperiodic part of Θ is
given by the next expression:

exp
[(

− 3
8m

± α

)
x

]

Since α > 0, then it is clear that

− 3
8m

− α < α − 3
8m

.

As such, α − 3
8m < 0 implies − 3

8m − α < 0. Observe that the stability condition consists of
α − 3

8m < 0, which is satisfied whether A < 2 cosh( 3π
4m ). On the other hand, the condition A < 2

is fulfilled provided that the characteristic exponent α ∈ i R. In that case, the aperiodic part of Θ

is of the form exp
(
− 3x

8m

)
, which goes to 0 as x → +∞.

Notice that A could be approximated by the quantity u1(2π) + u′
2(2π) through the midpoint

approach, for instance, as carried out in both Sections 5 and 6.
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3. In Section 4, it was provided a method, first proposed by Liapounov in [10], which allows
calculating the coefficient A that appears in characteristic equations of the form Equation (65)
that are associated to the next kind of differential equations (c.f. Equation (64)):

d2 y(x)
d x2 = ε p(x) y(x).

In fact, it holds that

A = 1 +
1
2

+∞

∑
n=1

[
Fn(ω) + f ′nω)

]
εn, (66)

where ε ∈ (0, 1), and Fn(ω) and fn(ω) being as in Equation (28). On the other hand, in [11],
Goursat applied that method for ε = 1, thus leading to the expressions contained in Equation (28).
However, even under the assumption that the series in Equation (66) is convergent, it holds that
such a convergence would be quite slow, especially as the period ω increases. As a consequence,
that particular expression becomes quite limited to deal with practical applications regarding the
calculation of the coefficient A.

4. The reader may think, at least at a first glance, that the form of the reduced la Cierva’s equation is
similar to the one of the generalized Hill’s type equation, whose origins go back to the study of
the movement of the Moon under the influence of the gravitational field of the system Earth-Sun.
That equation admits the following expression:

d2 y(x)
d x2 + [λ + γ Φ(x)] y(x) = 0 : λ, γ ∈ R.

However, notice that the parameters at the reduced la Cierva’s equation, λ and m, do not appear
linearly in Equation (56) (c.f. Equation (57)). As such, the reduced la Cierva’s equation cannot be
understood as a particular case of the generalized Hill’s equation.

5. The stability of la Cierva’s autogiro has been proved for the choice of parameters λ = 1 and
m = 0.5 (c.f. Sections 5 and 6). Going beyond, observe that the roots (i.e., the characteristic
numbers) of the characteristic equation (c.f. Equation (42)) are continuous functions of their
coefficients, which, in turn, are continuous functions of both parameters, λ and m. Hence,
the stability of la Cierva’s equation will be preserved in a neighborhood of such parameters due
to ([10] (Theorem, pp. 400)). Moreover, that neighborhood is expected to be wide enough since it
is evident that la Cierva’s equation behaves stably for those parameters. It is also worth pointing
out that if the movement of la Cierva’s autogiro is stable for a given speed, then it will be also
stable for lower speeds. In other words, the stability will be preserved by decreasing the value of
λ. This is a reason for which λ = 1 was selected to explore the stability of la Cierva’s equation in
the previous sections. In fact, observe that for λ = 0, the oscillations are dampened quickly.

6. In [7], Puig-Adam posed to analyze the area of the plane λ − m where la Cierva’s
equation becomes stable. To deal with, we considered the rectangle of the Euclidean plane,
R = [0, 1] × [0.15, 1], by taking into account the intervals proposed by Mr. la Cierva for each
parameter. A partition consisting of 50 points was considered for each subinterval, thus leading
to a 2500−point mesh contained in R. As such, for each (λ, m) ∈ R, a la Cierva’s type equation
(c.f. Equation (49)) holds, which was numerically solved as in Section 5 by means of the midpoint
approach. Next step was to apply the Puig-Adam criterion to determine whether that equation
is stable. Recall that such a condition consists of calculating |y1(2π) + y′2(2π)|, where y1 and y2

denote the particular solutions of the corresponding la Cierva’s equation for a choice of
parameters. If kλ,m := |y1(2π) + y′2(2π)| < 1, then the la Cierva’s equation is stable for those
parameters. All the above allowed us to construct a 3D-surface, S = {(λ, m, kλ,m) : (λ, m) ∈ R},
we shall refer to as la Cierva’s surface. Figure 8 depicts la Cierva’s surface, whereas Figure 9
displays the contours of la Cierva’s surface. Such figures reveal an overall stable behavior of
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almost all la Cierva’s surface. On the other hand, Figures 10 and 11 depict a neighborhood
of Puig-Adam’s choice of parameters where la Cierva’s surface behaves stably, as stated in
remark (5).

Figure 8. La Cierva’s surface, S = {(λ, m, kλ,m) : (λ, m) ∈ R}, where R = [0, 1] × [0.15, 1] (above).
The plane {(λ, m, 1) : (λ, m) ∈ R} has been graphically displayed as a benchmark regarding the limit
of the stability zone for la Cierva’s surface (below).
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Figure 9. Contours of la Cierva’s surface. Observe that the Puig-Adam’s choice of parameters,
λ = 1, m = 0.5 is indeed surrounded by a region of points with low kλ,m numbers. Notice that almost
all the whole surface behaves stably.

Figure 10. A neighborhood of the Puig-Adam’s choice of parameters where la Cierva’s surface is stable.
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Figure 11. Contours of a neighborhood of the Puig-Adam’s choice of parameters where la Cierva’s
surface behaves stably.
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Abstract: In this paper, we consider fast and high-order algorithms for calculation of highly oscillatory
and nearly singular integrals. Based on operators with regard to Chebyshev polynomials, we propose
a class of spectral efficient Levin quadrature for oscillatory integrals over rectangle domains, and give
detailed convergence analysis. Furthermore, with the help of adaptive mesh refinement, we are
able to develop an efficient algorithm to compute highly oscillatory and nearly singular integrals.
In contrast to existing methods, approximations derived from the new approach do not suffer from
high oscillatory and singularity. Finally, several numerical experiments are included to illustrate the
performance of given quadrature rules.

Keywords: highly oscillatory integral; Chebyshev polynomial; nearly singular; Levin quadrature
rule; adaptive mesh refinement

1. Introduction

Highly oscillatory integrals frequently arise in acoustic scattering [1], computational physical
optics [2], computational electromagnetics [3], and related fields. Generally, dramatically changing
integrands make classical approximations perform poor. Therefore, studies on numerical calculation
of highly oscillatory integrals have attracted much attention during the past few decades, and a variety
of contributions has been made, for example, Filon-type quadrature [4,5], numerical steepest descent
method [6], Levin method [7], and so on.

When the phase is nonlinear, researchers usually resort to Levin-type quadrature, which originates
from David Levin’s pioneering work in [7]. By transforming the oscillatory integration problem into
a special ordinary differential equation, one could get an efficient approximation to the generalized
Fourier transform with the help of collocation methods. Afterwards, Levin analyzed the convergence
rate of the innovative approach in [8]. Analogous to Filon-type quadrature, the Levin-type method
based on Hermite interpolation was developed by Olver in [9]. Application of Hermite interpolation
definitely increased the convergence rate of the numerical method with respect to the frequency. In [10],
Li et al. proposed a stable and high-order Levin quadrature rule by employing the spectral Chebyshev
collocation method and truncated singular value decomposition technique. Multiquadric radial basis
functions were applied to Levin’s equation and an innovative composite Levin method was presented
in [11]. Numerical tests manifested that such kind of algorithms was able to deal with stationary
problems. Sparse solvers for Levin’s equation in one-dimension were constructed by employing
recurrence of Chebyshev polynomials in [12,13]. Meanwhile, a class of preconditioners was proposed
by the second author to deal with the ill-conditioned linear system in [13]. Molabahrami studied
the Galerkin method for Levin’s equation and developed the Galerkin–Levin method for oscillatory
integrals in [14].
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Levin-type quadrature rules were extended to solving singular problems in the past several
years. In [15], Wang and Xiang employed the technique of singularity separation and transformed
Levin’s equation into coupled non-singular ordinary differential equations. By solving the
transformed equations numerically, they obtained an efficient Levin quadrature rule for weakly
singular integrals with highly oscillatory Fourier kernels. Recently, the second author proposed
the fractional Jacobi-Galerkin–Levin quadrature by investigating fractional Jacobi approximations
in [16]. Through properly choosing weighted Jacobi polynomials, the discretized Levin’s equation was
turned into a sparse linear system. It had been verified that the convergence rate of this kind of Levin
quadrature rules could be analyzed by studying coefficients of the fractional Jacobi expansion of the
error function. In [17], a multi-resolution quadrature rule was applied to deal with the singularity,
and the modified Levin quadrature rule coupled with the multi-quadric radial basis function was
developed to calculate oscillatory integrals with Bessel and Airy kernels.

Levin’s quadrature rule also plays an important role in solving multi-dimensional problems.
By introducing a multivariate ordinary differential equation, Levin found a non-oscillatory
approximation to the integrand in [7], which led to an efficient algorithm for computing oscillatory
integrals over rectangular regions. In [18], Li et al. devised a class of spectral Levin methods
for multi-dimensional integrals by utilizing the Chebyshev differential matrix and delaminating
quadrature rule. An innovative procedure for multivariate highly oscillatory integrals was devised by
employing multi-resolution analysis in [19]. Meanwhile, the meshless approximation was obtained
by truncated singular value decomposition. In [20], the second author studied a fast algorithm for
Hermite differential matrix by the barycentric formula. With the help of delaminating quadrature,
the spectral Levin-type method for calculation of highly oscillatory integrals over rectangular regions
was constructed.

Although researchers have made much contribution to numerical calculation of highly oscillatory
integrals, little attention has been paid to the computation of nearly singular and highly oscillatory
integrals, for example,

I[F, G1, G2, ω] =
∫ 1

−1

∫ 1

−1

F(x, y)
(x − a)2 + (x − b)2 + ǫ2 eiω(G1(x)+G2(y))dxdy. (1)

In this paper, we are concerned with efficient computation of Integral (1), and partly fill in the gap
in this field. Moreover, we suppose that F(x, y) is analytic with respect to both variables, G1(x) and
G2(y) are sufficiently smooth functions without stationary points, and the frequency parameter ω ≫ 1,
(a, b) ∈ R2, and |ǫ| ≪ 1.

A large frequency parameter ω implies that integrands of Integral (1) are highly oscillatory, and
classical quadrature rules suffer from the computational cost. In Table 1, we list numerical results
computed by the classical delaminating quadrature rule coupled with Clenshaw–Curtis quadrature
(CCQ), where the quadrature nodes are fixed 16. Referenced values are computed by CHEBFUN toolbox
(see [21]). CHEBFUN, which approximate functions by Chebyshev interplant, was firstly developed in
2004. Due to the fast and high-order approximation to the integrand, numerical integration methods
in CHEBFUN usually provide efficient numerical approaches for univariate and multivariate integrals.
Hence, the 2D quadrature method in CHEBFUN is chosen as a benchmark. It can be seen from
Table 1 that, as ω goes to infinity, CCQ diverges from the referenced values when we do not add
quadrature nodes.
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Table 1. Numerical results of classical delaminating quadrature rules for highly oscillatory multivariate

integrals
∫ 1

−1

∫ 1

−1
cos(x + y)eiω(x+y)dxdy.

CCQ Referenced Value

ω = 10 0.020725079138303 0.020722222756906

ω = 40 0.325821665438573 0.001251371233532

ω = 160 0.084546798935177 0.000107898607873

ω = 640 0.098831710673239 0.000004494735846

ω = 2560 0.213379710792315 0.000000211475406

In contrast to oscillatory integrals arising in existing studies, when the point (a, b) in Integral (1)
is close to or falls in the integration domain and ǫ is particularly small, the integrand attains its peak
value around (a, b) and decays dramatically away from such a critical point. In general, the point (a, b)
is called the nearly singular point. Plenty of additional quadrature nodes have to be used if we want to
make the numerical formula retain a tolerance error.

There also exist several contributions to tackle the nearly singular problem. The sinh
transformation is deemed one of the most important tools. For nearly singular moments arising
in Laplace’s equation, Johnston et al. proposed the sinh transformation in [22]. Occorsio and Serafini
considered two kinds of cubature rules for nearly singular and highly oscillatory integrals in [23].
With the help of 2D-dilation technique, Occorsio and Serafini were able to relax the fast changing
integrand and applied Gauss–Jacobi quadrature to the transformed integral. Numerical experiments
verified that such an approximation procedure greatly increased the numerical performance of
Gauss quadrature.

The remaining parts are organized as follows. In the second section, we review some results with
regard to the calculation of Chebyshev series and present the convergence property of Chebyshev
interplant and series. In Section 3, we first extend the idea in [13] to two-dimensional oscillatory
integrals. Compared with existing Levin quadrature, the new approach has an advantage in
computational time. Then, noting that there is little convergence analysis of 2D Levin quadrature
rules, we try to fill the gap through examining the modified Levin equation. Finally, we present
an innovative composite Levin quadrature rule for solving nearly singular and highly oscillatory
problems. In contrast to existing numerical integration methods, the proposed composite method does
not suffer from high oscillation and nearly singular amplitudes. Numerical tests included in Section 4
are conducted to verify the efficiency of the proposed approach, and some remarks are concluded
in Section 5.

2. Auxillary Tools

In this section, we first revisit auxillary operators with regard to Chebyshev series, which help
develop numerical algorithms for computation of two-dimensional oscillatory integrals. Then, error
bounds for coefficients of Chebyshev series and Clenshaw–Curtis interplant are introduced.

When the given function f (x) is analytic in a sufficiently large domain containing [−1, 1], one can
compute its Chebyshev series by (see [24])

f (x) =
∞

∑
n=0

fnTn(x),

with

f0 =
1
π

∫ 1

−1

f (s)√
1 − s2

ds, fn =
2
π

∫ 1

−1

f (s)Tn(s)√
1 − s2

ds, n = 1, 2, · · · .
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Here, Tn(x) denotes the first-kind Chebyshev polynomial of order n. Noting the relation between the
first- and second-kind Chebyshev polynomials Tn(x), Un(x) (see [24])

d
dx

Tn(x) =

{
nUn−1(x), n ≥ 1,
0, n = 0,

(2)

and

Tn(x) =





U0(x), n = 0,
1
2

U1(x), n = 1,
1
2
(Un(x)− Un−2(x)), n ≥ 2,

(3)

we are able to compute

f ′(x) =
∞

∑
n=0

f ′nTn(x) =
∞

∑
n=0

′
(

∞

∑
k=0

(2n + 4k + 2) fn+2k+1

)
Tn(x),

which implies Chebyshev coefficients of the derivative can be represented by




f ′0
f ′1
f ′2
f ′3
...




=




0 1 0 3 0 5 · · ·
0 0 4 0 8 0

. . .

0 0 0 6 0 10
. . .

0 0 0 0 8 0
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .







f0

f1

f2

f3
...




= D




f0

f1

f2

f3
...




. (4)

Secondly, suppose that there exists a sufficiently smooth function

a(x) =
∞

∑
n=0

anTn(x).

Noting the identity (see [24])

Tm(x)Tn(x) =
1
2
(Tm+n(x) + T|m−n|(x)),

we can compute the product a(x) f (x) by

a(x) f (x) =
∞

∑
n=0

cnTn(x),
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where a = [a0, a1, · · · ]T , and coefficients {cn}∞
n=0 are defined by




c0

c1

c2
...




=
1
2







2a0 a1 a2 a3 · · ·
a1 2a0 a1 a2

. . .

a2 a1 2a0 a1
. . .

...
. . .

. . .
. . .

. . .




+




0 0 0 0 · · ·
a1 a2 a3 a4

. . .

a2 a3 a4 a5
. . .

...
. . .

. . .
. . .

. . .










f0

f1

f2
...




=M[a]




f0

f1

f2
...




. (5)

Operators D,M[a] have been verified to be efficient tools for discretizing Levin’s equation. For more
details, one can refer to [13].

On the other hand, when f (x) is analytic with | f (x)| ≤ M in the region bounded by the Bernstein
ellipse with the radius ρ > 1, we have for every n 6= 0 (see [25])

| fn| ≤ 2Mρ−n.

Noting that

f ′n =
∞

∑
k=0

(2n + 4k + 2) fn+2k+1,

we can compute

| f ′n| ≤
∞

∑
k=0

(2n + 4k + 2)| fn+2k+1| ≤
∞

∑
k=0

(2n + 4k + 2)2Mρ−n−2k−1 ≤ 4Mρ−n−1

(
(n + 1)

∞

∑
k=0

ρ−2k + 2
∞

∑
k=0

kρ−2k

)
.

Employing
∞

∑
k=0

ρ−2k =
ρ2

ρ2 − 1
,

∞

∑
k=0

kρ−2k =
ρ2

(ρ2 − 1)2

leads to

| f ′n| ≤ 4Mρ−n−1
(
(n + 1)

ρ2

ρ2 − 1
+ 2

ρ2

(ρ2 − 1)2

)
≤ 4Mρ−n−1 ρ(ρ − 1)(n + 1) + 2

(ρ − 1)2 ≤ 4M(n + 1)
ρ−n+1

(ρ − 1)2 .

Furthermore, according to [25, Theorems 2.1, 2.4], we have

‖ f − pN‖∞ ≤ 4M
ρ−N

ρ − 1
(6)

and

‖ f ′ − p′N‖∞ ≤ 4M(N + 1)2 ρ−N+2

(ρ − 1)3 . (7)

Here, pN(x) denotes the interplant of f (x) at Clenshaw–Curtis nodes or the truncated Chebyshev
series of f (x).
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3. Main Results

This section is devoted to investigating fast algorithms for calculation of Integral (1). To begin
with, let us consider the computation of oscillatory integral without nearly singular integrands, that is,

Î[F, G1, G2, ω] =
∫ 1

−1

∫ 1

−1
F(x, y)eiω(G1(x)+G2(y))dxdy. (8)

Here, F(x, y), G1(x), G2(y) are smooth functions with sufficiently large analytic regions,
and G1(x), G2(y) do not have stationary points in the complex plane.

Consider the inner integral

H(y) =
∫ 1

−1
F(x, y)eiωG1(x)dx. (9)

For fixed yj = cos
j

N
π, j = 0, 1, · · · , N, we are restricted to finding a function Pj(x) satisfying

P′
j (x) + iωG′

1(x)Pj(x) = F(x, yj). (10)

Noting that G′
1(x) never vanishes over the interval [−1, 1], we can get the modified Levin equation,

P′
j (x)

G′
1(x)

+ iωPj(x) =
F(x, yj)

G′
1(x)

. (11)

Let

Pj(x) =
∞

∑
n=0

pj
nTn(x), 1/G′

1(x) =
∞

∑
n=0

g1
nTn(x), F(x, yj) =

∞

∑
n=0

f j
nTn(x).

With the help of operators D,M[a], we rewrite modified Levin’s Equation (11) as

M[G1]DPj + iωPj = M[G1]Fj, (12)

where

xj = cos
j

N
π, Pj =




pj
0

pj
1
...


 , G1 =




g1
0

g1
1
...


 , Fj =




f j
0

f j
1
...


 .

Solving Equation (12) by the truncation method [26] gives the unknown coefficients pj
n, n = 0, 1, · · · , N,

and we can get approximations to Pj(±1) by Clenshaw algorithm,

Pj(±1) ≈ b0(±1)− b2(±1)
2

with {
bN+1(±1) = 0, bN(±1) = pj,N

N ,

bk(±1) = (±2)× bk+1(±1) + pj,N
k ,

where pj,N
k denotes the approximation to pj

k. Hence, the inner integral (9) is computed by

∫ 1

−1
F(x, yj)e

iωG1(x)dx ≈ eiωG1(1) b0(1)− b2(1)
2

− eiωG1(−1) b0(−1)− b2(−1)
2

. (13)
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Since HN(yj), the approximation to H(y) at Clenshaw–Curtis nodes, has been obtained, we are
able to construct the polynomial HN(y) by

HN(y) =
N

∑
j=0

HN(yj)Lj(y) =
N

∑
n=0

hnTn(y),

where Lj(y) denotes Lagrange basis with respect to Clenshaw–Curtis nodes and hn can be computed
by fast Fourier transform. Letting

Q(y) =
∞

∑
n=0

qnTn(y)

denote the function satisfying

M[G2]DQ + iωQ = M[G2]HN , (14)

where

1/G′
2(y) =

∞

∑
n=0

g2
nTn(y), HN(y) =

N

∑
n=0

hnTn(y),

and

Q =




q0

q1
...


 , G2 =




g2
0

g2
1
...


 , HN =




h0

h1
...


 ,

we are able to approximate q0, · · · , qN by the truncation method again. Computing a0(±1), a2(±1) by

{
aN+1(±1) = 0, aN(±1) = qN

N ,
ak(±1) = (±2)× ak+1(±1) + qN

k ,

where qN
k denotes the approximation to qk, we arrive at 2D spectral coefficient Levin quadrature for

Integral (8)

Î[F, G1, G2, ω] ≈ ÎN [F, G1, G2, ω] := eiωG2(1) a0(1)− a2(1)
2

− eiωG2(−1) a0(−1)− a2(−1)
2

. (15)

In [27], Xiang established the relation between Filon and Levin quadrature rules in the case of the
phase g(x) = 1 and analyzed the convergence property of Levin quadrature. Instead of resorting to
Filon quadrature, we consider the convergence rate of the above spectral coefficient Levin method
with respect to quadrature nodes and frequency in the case of nonlinear oscillators through examining
the decaying rate of the coefficients.

For any fixed y ∈ [−1, 1], F(x, y) turns to the univariate function with regard to x.
Let MH , MF(y), MG1, MG2 denote the maximum of H(y), F(x, y), 1/G′

1(x), 1/G′
2(y) within their

corresponding Bernstein ellipse with radiuses ρH , ρF(y), ρG1, ρG2, respectively. Furthermore, denoting

ρF = inf
y∈[−1,1]

{ρF(y)}, MF := sup
y∈[−1,1]

{MF(y)}, M2 := sup
y∈[−1,1]

{G′′
2 (y)}, m2 := inf

y∈[−1,1]
{G′

2(y)},

we summarize the convergence analysis in the following theorem.

Theorem 1. Suppose

• F(x, y), 1/G′
1(y), and 1/G′

2(y) are analytic within corresponding Bernstein ellipses;

• G1(x), G2(y) are smooth and bounded over [−1, 1];
• The analytic radiuses PF, PG1 satisfy PF < PG1.
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Then, for sufficiently large ω, we have

∣∣ Î[F, G1, G2, ω]− ÎN [F, G1, G2, ω]
∣∣

≤C

(
(N + 1)2

ω

ρ−N+2
H

(ρH − 1)3 +
(N + 2)3 log(N + 1)

ω

ρ−N+4
F

(ρF − 1)6 +
(N + 2)3

ω

ρ−N+4
H

(ρH − 1)6

)
,

where the constant C does not depend on ω, N.

Proof. Let ĤN(y) =
N

∑
j=0

H(yj)Lj(y) denote the interplant of H(y) at Clenshaw–Curtis points. A direct

calculation implies the quadrature error can be decomposed into

Î[F, G1, G2, ω]− ÎN [F, G1, G2, ω]

=
∫ 1

−1
H(y)eiωG2(y)dy −

(
eiωG2(1) a0(1)− a2(1)

2
− eiωG2(−1) a0(−1)− a2(−1)

2

)

=
∫ 1

−1

∫ 1

−1
F(x, y)eiω(G1(x)+G2(y))dxdy −

∫ 1

−1
ĤN(y)eiωG2(y)dy

+
∫ 1

−1

N

∑
j=0

H(yj)Lj(y)e
iωG2(y)dy −

∫ 1

−1

N

∑
j=0

(
Pj(1)e

iωG1(1) − Pj(−1)eiωG1(−1)
)

Lj(y)e
iωG2(y)dy

+
∫ 1

−1
HN(y)eiωG2(y)dy −

(
Q(1)eiωG2(1) − Q(−1)eiωG2(−1)

)

=E1 + E2 + E3.

Here,

E1 :=
∫ 1

−1

∫ 1

−1
F(x, y)eiω(G1(x)+G2(y))dxdy −

∫ 1

−1
ĤN(y)eiωG2(y)dy,

E2 :=
∫ 1

−1

N

∑
j=0

H(yj)Lj(y)e
iωG2(y)dy −

∫ 1

−1

N

∑
j=0

(
Pj(1)e

iωG1(1) − Pj(−1)eiωG1(−1)
)

Lj(y)e
iωG2(y)dy,

E3 :=
∫ 1

−1
HN(y)eiωG2(y)dy −

(
Q(1)eiωG2(1) − Q(−1)eiωG2(−1)

)
,

In the remaining work, we give estimates for E1, E2, E3 with respect to the increasing truncation term
N and frequency ω.

For E1, note that H(y) is bounded within its Bernstein ellipse by

|H(y)| =
∣∣∣∣
∫ 1

−1
F(x, y)eiωG1(x)dx

∣∣∣∣ ≤
∫ 1

−1
|F(x, y)||eiωG1(x)|dx ≤ 2MF. (16)
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As a result, we have according to integration by parts

|E1| =
∣∣∣∣
∫ 1

−1
(H(y)− ĤN(y))eiωG2(y)dy

∣∣∣∣

≤
∣∣∣∣

H(y)− ĤN(y)
iωG′

2(y)
eiωG2(y)

∣∣∣
y=1

y=−1

∣∣∣∣+
∣∣∣∣∣

1
iω

∫ 1

−1

(
H(y)− ĤN(y)

G′
2(y)

)′
eiωG2(y)dy

∣∣∣∣∣

=

∣∣∣∣
H(y)− ĤN(y)

iωG′
2(y)

eiωG2(y)
∣∣∣
y=1

y=−1

∣∣∣∣+
∣∣∣∣∣

1
iω

∫ 1

−1

(H′(y)− Ĥ′
N(y))G

′
2(y)− (H(y)− ĤN(y))G′′

2 (y)

(G′
2(y))

2 eiωG2(y)dy

∣∣∣∣∣

≤ 2‖H(y)− ĤN(y)‖∞

ωm2
+

2‖H′(y)− Ĥ′
N(y)‖∞

ωm2
+

2M2‖H(y)− ĤN(y)‖∞

ωm2
2

≤ 8MF

m2ω

ρ−N
H

ρH − 1
+

16MF

m2ω

(N + 1)2ρ−N+2
H

(ρH − 1)3 +
8MF M2

m2
2ω

ρ−N
H

ρH − 1

≤ 8MF

m2ω

(
1 +

M2

m2

)(
ρ−N

H

ρH − 1
+

(N + 1)2ρ−N+2
H

(ρH − 1)3

)

≤ 8MF

m2ω

(
1 +

M2

m2

)
ρ−N

H (ρH − 1)2 + (N + 1)2ρ−N+2
H

(ρH − 1)3

≤ 8MF

m2ω

(
1 +

M2

m2

)
2(N + 1)2ρ−N+2

H

(ρH − 1)3

=C1
(N + 1)2

ω

ρ−N+2
H

(ρH − 1)3 , (17)

where C1 :=
16MF

m2

(
1 +

M2

m2

)
.

For E2, since

ĤN(y) =
N

∑
j=0

H(yj)Lj(y), HN(y) =
N

∑
j=0

HN(yj)Lj(y), HN(yj) = Pj(1)e
iωG1(1) − Pj(−1)eiωG1(−1),

letting
E2,j := H(yj)− HN(yj),

we obtain

E2 =
N

∑
j=0

E2,j

∫ 1

−1
Lj(y)e

iωG2(y)dy.

Furthermore, letting

Err2,j(x) :=
F(x, yj)− P′

j (x)− iωG′
1(x)Pj(x)

G′
1(x)

,

we have

E2,j =
∫ 1

−1
Err2,j(x)G′

1(x)eiωG1(x)dx.

A direct calculation as is done in the estimation procedure for E1 results in

|E2,j| ≤
2‖Err2,j(x)‖∞

ω
+

2‖Err′2,j(x)‖∞

ω
. (18)

Then, let us consider the decaying rate of coefficients of Chebyshev expansions of Err2,j(x), which
helps to analyze ‖Err2,j(x)‖∞ and ‖Err′2,j(x)‖∞. In fact, the truncation technique implies

MN [G1]DNPj,N + iωPj,N = MN [G1]Fj,N (19)
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with

Pj,N =




pj,N
0

pj,N
1
...

pj,N
N




, Fj,N =




f j
0

f j
1
...

f j
N




,

and pj,N
k denotes the approximation to pj

k in Equation (12). For sufficiently large ω > N, it follows that
1
ω
‖MN [G1]DN‖∞ < 1. By Neumann’s lemma, we have

Pj,N =
1

iω

(
∞

∑
n=0

(
− 1

iω

)n

Mn
N [G1]Dn

N

)
MN [G1]Fj,N . (20)

Denoting the maximum of

(
∞

∑
n=0

(
− 1

iω

)n

Mn
N [G1]Dn

N

)
MN [G1] by SN , we notice that

|pj,N
n | ≤ 2SN MF

ω
ρ−n

F , |dpj,N
n | ≤ 4SN MF

ω
(n + 1)

ρ−n+1
F

(ρF − 1)2 ≤ 4SN MF
ρ−n+1

F

(ρF − 1)2 .

The Chebyshev coefficients of Err2,j(x) can be computed by

c2,j
n =

∫ 1

−1

Err2,j(x)Tn(x)√
1 − x2

dx, n = 0, 1, · · · .

Noting the construction technique in the modified spectral Levin coefficient method, we get c2,j
n = 0

for n = 0, 1, · · · , N. On the other hand, for n ≥ N + 1, it follows that

|c2,j
n | ≤

∣∣∣∣∣

∫ 1

−1

F(x, yj)Tn(x)

G′
1(x)

√
1 − x2

dx

∣∣∣∣∣+
∣∣∣∣∣

∫ 1

−1

P′
j (x)Tn(x)

G′
1(x)

√
1 − x2

dx

∣∣∣∣∣ .

It is noted that the first term in the right-hand side of the above equation is the coefficient of
F(x, yj)

G′
1(x)

and

the second term is that of
P′

j (x)

G′
1(x)

, where we denote coefficients to be cFG
n , cPG

n , respectively. Recalling

the product operator in Equation (5), we have

|cFG
n | ≤ 3

2

(
|g1

n|| f j
0|+ |g1

n−1|| f j
1|+ · · ·+ |g1

0|| f j
n|
)
≤ 6MG1 MF(n + 1)ρ−n

F ,

and

|cPG
n | ≤ 3

2

(
|g1

n||dpj,N
0 |+ |g1

n−1||dpj,N
1 |+ · · ·+ |g1

0||dpj,N
n |
)
≤ 12MG1 MFSN(n + 1)

ρ−n+1
F

(ρF − 1)2 .

Therefore, it follows

|c2,j
n | ≤6MG1 MF(n + 1)ρ−n

F + 12MG1 MFSN(n + 1)
ρ−n+1

F

(ρF − 1)2

≤6MG1 MF(n + 1)
ρ−n+1

F

(ρF − 1)2 + 12MG1 MFSN(n + 1)
ρ−n+1

F

(ρF − 1)2

≤C′(n + 1)
ρ−n+1

F

(ρF − 1)2 . (21)
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Here, C′ := 2 max{6MG1 MF, 12MG1 MFSN}. Hence, ‖Err2,j(x)‖∞ and ‖Err′2,j(x)‖∞ can be bounded by

‖Err2,j(x)‖∞ ≤
∞

∑
n=N+1

|c2,j
n | ≤ C′

(ρF − 1)2

∞

∑
n=N+1

(n + 1)ρ−n+1
F ≤ C′ (N + 2)ρ−N+2

F

(ρF − 1)4 ,

and

‖Err′2,j(x)‖∞ ≤2
∞

∑
n=N+1

|c2,j
n |‖T′

n(x)‖∞ ≤ 2
∞

∑
n=N+1

C′(n + 1)
ρ−n+1

F

(ρF − 1)2 n2 ≤ C′(N + 2)3 ρ−N+4
F

(ρF − 1)6 .

As a result, it follows that

|E2,j| ≤
2
ω
(‖Err2,j(x)‖∞ + ‖Err′2,j(x)‖∞) ≤ 8C′

ω
(N + 2)3 ρ−N+4

F

(ρF − 1)6 .

Now, we arrive at the fact

|E2| ≤
N

∑
j=0

|E2,j|
∣∣∣∣
∫ 1

−1
Lj(y)e

iωG2(y)dy

∣∣∣∣ ≤ C2
(N + 2)3 log(N + 1)

ω

ρ−N+4
F

(ρF − 1)6 , (22)

where C2 :=
64C′

π
.

The estimation procedure for E3 is similar to that of E2,j. We ignore details and give the conclusion
directly

|E3| ≤ C3
(N + 2)3

ω

ρ−N+4
H

(ρH − 1)6 , (23)

where C3 does not depend on N and ω.
To sum up, we arrive at the following error bound by combining Equations (17), (22), and (23),

∣∣ Î[F, G1, G2, ω]− ÎN [F, G1, G2, ω]
∣∣

≤|E1|+ |E2|+ |E3|

≤C1(N + 1)2

ω

ρ−N+2
H

(ρH − 1)3 + C2
(N + 2)3 log(N + 1)

ω

ρ−N+4
F

(ρF − 1)6 + C3
(N + 2)3

ω

ρ−N+4
H

(ρH − 1)6

≤C

(
(N + 1)2

ω

ρ−N+2
H

(ρH − 1)3 +
(N + 2)3 log(N + 1)

ω

ρ−N+4
F

(ρF − 1)6 +
(N + 2)3

ω

ρ−N+4
H

(ρH − 1)6

)
, (24)

with C = max{C1, C2, C3}. It is easily seen that the constant C does not depend on N and ω.
This completes the proof.

Finally, let us turn to the construction of the composite quadrature rule for calculation of
Integral (1). It is observed in the above theorem that, when the radiuses ρF, ρH are close to 1, the error
bound would expand dramatically. Therefore, an efficient quadrature rule has to guarantee the fact that
the integrand has a relatively large analytic radius over the integration domain. To make this judgment
be satisfied, we choose a non-uniform grid instead of partitioning the integration region uniformly.

To begin with, the singular point z∗ is projected into the plane containing the integration region
and we get the projection point z. In the case of the projected point z falling into the integration domain
(Case I), the first box is determined by the distance between z∗ and z. We construct a square with
its center being z and its side length being 2‖z∗ − z‖. Then, the side length of level-2 box’s with the
center z is set to be 22‖z∗ − z‖. To devise the composite quadrature rule, we first select level-1 box as a
subdomain. Noting that the remaining domain is not a rectangle, we partition it into four subdomains,
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that is, Box21, Box22, Box23, and Box24 (see Figure 1). In general, the side length of level-l box’s with
the center z is set to be 2l‖z∗ − z‖, and the integration subdomain is constructed similarly, which finally
results in a nonuniform grid (see Figure 2).

When the projected point falls out of the integration domain, for example, it is around the side
(Case II) or vertex (Case III), we implement a similar partition procedure like that in Case I. The final
partition grid is shown in Figures 3 and 4. Applying 2D spectral coefficient Levin quadrature rule in
the subdomain leads to a class of composite 2D spectral coefficient Levin quadrature. It is noted that
such kind of partition techniques guarantee the fact that the distance between the singular and the
integration interval is no less than 2 when we map the integration domain into [−1, 1]× [−1, 1].

Figure 1. The integration subdomains for level-2 box.

Figure 2. The partition method in Case I (left: location of the singular point z∗ and projection point z.
right: the nonuniform grid).

 

on

Figure 3. The partition method in Case II (left: location of the singular point z∗ and projection point z.
right: the nonuniform grid).
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ion

Figure 4. The partition method in Case III (left: location of the singular point z∗ and projection point z.
right: the nonuniform grid).

4. Numerical Experiments

This section is devoted to illustrating the numerical performance of 2D spectral coefficient Levin
quadrature (2DSC-Levin) and composite 2D spectral coefficient Levin quadrature (C2DSC-Levin)
given in Section 3.

Example 1. Let us consider the computation of the oscillatory integral

∫ 1

−1

∫ 1

−1
cos(x + y)eiω(x+y)dxdy.

The phase x + y has no stationary points within the domain [−1, 1]× [−1, 1], and the amplitude cos(x + y)
is analytic with respect to both variables. Therefore, it is expected that the new approach has an exponential
convergence rate.

It is noted that approximation results derived from classical cubature usually do not make sense
when ω ≫ 1. We first employ CCQ and give the computational results in Table 2, where both quantity
of quadrature nodes N and oscillation parameter ω are variables.

Table 2. Absolute errors of CCQ for Example 1.

ω = 200 ω = 500 ω = 2000 ω = 5000 ω = 10,000

N = 200 2.2 × 10−16 3.5 × 10−2 8.8 × 10−2 6.2 × 10−4 1.6 × 10−2

N = 400 1.6 × 10−16 1.9 × 10−16 1.0 × 10−3 2.5 × 10−2 8.1 × 10−3

N = 800 2.0 × 10−17 4.2 × 10−17 7.2 × 10−3 1.5 × 10−4 1.7 × 10−2

N = 1600 4.4 × 10−17 8.8 × 10−18 8.2 × 10−17 1.4 × 10−3 4.9 × 10−4

Although plenty of quadrature nodes have been used in the above example, computed results
are not satisfactory especially in the case of high oscillation. Now, we list approximated results of
2DSC-Levin in Table 3, where the referenced exact value is computed by the CHEBFUN toolbox again.
It can be seen from Table 3 that absolute errors do not increase as the frequency ω enlarges, which
implies that the new method is robust to high oscillation. On the other hand, when we raise the
truncation term of Chebyshev series, the absolute error decays fast. In Figure 5, we give tendencies
of absolute errors with respect to increasing frequencies and compare the computational time of
2DSC-Levin and referenced algorithm in CHEBFUN. It can be found that the consumed time of
2DSC-Levin does not vary as the frequency ω enlarges, whereas that of CHEBFUN’s 2D quadrature
(2D-Cheb) increases dramatically. Since 2D-Cheb is a class of self-adaptive algorithms, it has to increase
quadrature nodes when the frequency goes to infinity to retain a tolerance error, which results in
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the dramatically growing curve. However, approximations derived from 2DSC-Levin do not suffer
from high oscillation according to Theorem 1. Hence, there is no need to raise quadrature nodes of
2DSC-Levin in high oscillation, and we do not witness an obvious change in Figure 5.

Table 3. Absolute errors of 2DSC-Levin for Example 1.

ω = 200 ω = 500 ω = 2000 ω = 5000 ω = 10,000

N = 6 1.7 × 10−10 6.0 × 10−11 7.3 × 10−13 2.1 × 10−14 1.8 × 10−13

N = 8 7.1 × 10−13 2.0 × 10−13 2.6 × 10−15 8.4 × 10−17 8.0 × 10−16

N = 10 1.9 × 10−15 4.3 × 10−16 7.6 × 10−18 3.5 × 10−17 1.8 × 10−16

N = 12 9.2 × 10−18 4.4 × 10−18 1.3 × 10−18 3.5 × 10−17 1.8 × 10−16

N = 16 5.9 × 10−18 3.7 × 10−18 1.3 × 10−18 3.5 × 10−17 1.8 × 10−16
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Figure 5. Comparison between 2DSC-Levin and 2D-Cheb in Example 1, ω is a variable (left: absolute
errors, right: CPU time).

We also employ 2D-Cheb–Levin quadrature given in [18] to give a comparison. Computed results
are shown in Table 4.

Table 4. Absolute errors of 2D-Cheb–Levin quadrature for Example 1.

ω = 200 ω = 500 ω = 2000 ω = 5000 ω = 10,000

N = 6 1.8 × 10−10 8.7 × 10−12 1.2 × 10−13 3.5 × 10−15 6.5 × 10−16

N = 8 1.4 × 10−12 5.7 × 10−14 8.4 × 10−16 4.2 × 10−17 1.8 × 10−16

N = 10 5.8 × 10−15 2.0 × 10−16 1.9 × 10−18 3.5 × 10−17 1.8 × 10−16

N = 12 1.1 × 10−17 4.2 × 10−18 1.3 × 10−18 3.5 × 10−17 1.8 × 10−16

N = 16 6.2 × 10−18 3.7 × 10−18 1.3 × 10−18 3.5 × 10−17 1.8 × 10−16

Comparison between Tables 3 and 4 illustrates that the accuracy of 2DSC-Levin and
2D-Cheb–Levin quadrature is similar. However, 2DSC-Levin does a little better than 2D-Cheb–Levin
quadrature when CPU time is considered. Since both approaches consist of approximations to a series
of one-dimensional integrals, we show the consuming time of both approaches for computing the
final highly oscillatory integrals in Table 5, where it can be seen that 2DSC-Levin is slightly faster than
2D-Cheb–Levin quadrature, which is partly due to the sparse structure of the discretizatized modified
Levin equation.
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Table 5. Comparison of CPU time for 2DSC-Levin and 2D-Cheb–Levin quadrature for fixed ω = 1000.

2DSC-Levin 2D-Cheb–Levin Quadrature

N = 32 0.000822 s 0.001703 s

N = 64 0.002251 s 0.005618 s

N = 128 0.009882 s 0.017755 s

N = 256 0.054631 s 0.088747 s

For computation of univariate oscillatory integrals, Levin quadrature does well in solving
problems with complicate phases. In the following example, we consider a highly oscillatory integral
with nonlinear oscillators over [0, 1]× [0, 1].

Example 2. Let us consider the computation of the oscillatory integral

∫ 1

0

∫ 1

0

1
x2 + y2 + 15

eiω(x2+x+y2+y)dxdy.

The amplitude
1

x2 + y2 + 15
is no longer an entire function, and the inverse of the phase function x2 + x+ y2 + y

can not be calculated directly.

We show absolute errors and CPU time of 2DSC-Levin in Table 6 and Figure 6, respectively.
Due to the fact that the amplitude in Example 2 has a limited analytic radius, 2DSC-Levin converges to
the machine precision much more slowly than that in Example 1. However, noting the decaying curve
in the left part of Figure 6 manifests that 2DSC-Levin has the property that the higher the oscillation,
the better the approximation, which also coincides with the theoretical estimate in Theorem 1.
Hence, 2DSC-Levin is feasible for calculation of highly oscillatory integrals over rectangle regions
when the oscillator g(x, y) is nonlinear. In addition, it is interesting that the curve of CPU time of
2DSC-Levin has a jump at about ω = 5500 in the right part of Figure 6. Such a phenomenon may
originate from the fact that the Levin equation can be solved more efficiently as the frequency becomes
larger. However, this is still a conjecture and we need more theoretical investigation in the future work.

Table 6. Absolute errors of 2DSC-Levin for Example 2.

ω = 200 ω = 500 ω = 2000 ω = 5000 ω = 10,000

N = 6 7.3 × 10−10 8.3 × 10−11 3.8 × 10−12 2.7 × 10−13 2.2 × 10−13

N = 8 6.3 × 10−11 5.5 × 10−12 2.9 × 10−13 2.0 × 10−14 1.6 × 10−14

N = 10 5.3 × 10−12 3.6 × 10−13 2.2 × 10−14 1.5 × 10−15 1.1 × 10−15

N = 12 4.2 × 10−13 2.2 × 10−14 1.7 × 10−15 1.2 × 10−16 8.0 × 10−17

N = 16 2.2 × 10−15 6.4 × 10−17 9.2 × 10−18 8.6 × 10−19 3.1 × 10−19
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Figure 6. Comparison between 2DSC-Levin and 2D-Cheb in Example 2, ω is a variable (left: absolute
errors, right: CPU time).

To illustrate the effectiveness of the composite 2D spectral coefficient Levin quadrature rule
(C2DSC Levin), we give a comparison among the new approach, 2D sinh transformation (JJE) in [22],
and 2D dilation quadrature (2D-d) in [23].

For Integral (1), the sinh transformation is defined by

x = a + ǫ sinh(µ1u − η1), y = b + ǫ sinh(µ2u − η2),

where

µ1 =
1
2

(
arcsinh

(
1 + a

ǫ

)
+ arcsinh

(
1 − a

ǫ

))
,

µ2 =
1
2

(
arcsinh

(
1 + a

ǫ

)
− arcsinh

(
1 − a

ǫ

))
.

Since the transformed integrand is no longer nearly singular, a direct 2D Gauss cubature can be applied
in practical computation.However, it should be noted that, although JJE can efficiently deal with nearly
singular problems, it generally suffers from the highly oscillatory integrands.

In [23], Occorsio and Serafini proposed 2D-d for the integral

I(F, ω) =
∫

D
F(x)K(x, ω)dx, (25)

where D := [−1, 1]× [−1, 1], x = (x, y), and

F(x) =
1

(x − a)2 + (y − b)2 + ǫ2 , K(x, ω) = eiω(G1(x)+G2(y)).

Letting ω1 =
√
|ω|, x =

η

ω1
, y =

θ

ω1
, we have

I(F, ω) = ω2
1

∫

[−ω1,ω1]2
F

(
η

ω1
,

θ

ω1

)
K

(
η

ω1
,

θ

ω1
, ω

)
dηdθ.

Properly choosing d ∈ R+ and S =
2ω1

d
∈ N results in

I(F, ω) = ω
S

∑
i=1

S

∑
j=1

∫

Di,j

F

(
η

ω1
,

θ

ω1

)
K

(
η

ω1
,

θ

ω1
, ω

)
dηdθ.
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Here, Di,j := [−ω1 + (i − 1)d,−ω1 + id]× [−ω1 + (j − 1)d,−ω1 + jd]. Employing the transformed
Gauss–Jacobi quadrature to the moment integral gives 2D-dilation quadrature.

Example 3. Consider the computation of

∫ 1

−1

∫ 1

−1

sin(xy)
(x + 0.5)2 + (y − 0.5)2 + 0.09

eiω(x+y)dxdy.

It is noted that the integrand will reach its peak value at (−0.5, 0.5), and dramatically decrease away from such
a critical point.

We list computed absolute errors of JJE, 2D-d and C2DSC-Levin in Tables 7–9. As the number
of quadrature nodes N increases, all of algorithms converge fast to the referenced value. When the
integrand does not change rapidly, JJE provides the best numerical approximation. However, as the
frequency ω enlarges, JJE and 2D-d suffer from high oscillation, while C2DSC-Levin is still able to
maintain a relatively high-order approximation. It should be noted that the dilation parameter d in
2D-d is restricted to make the number of quadrature nodes coincide with the other two methods, and a
slightly modified choice as is done in [23] may make 2D-d be able to deal with some highly oscillatory
problems. The corresponding results are shown in Figure 7. Numerical results in this figure indicate
that the absolute error derived from JJE increases dramatically when ω goes beyond 500, while the
error of 2D-d rises slowly. It is also found that both absolute errors and computational time of the new
approach do not suffer from the varying frequency ω. Hence, C2DSC-Levin is the most effective tool
for computing oscillatory and nearly singular integrals.

Table 7. Absolute errors of JJE for Example 3.

N = 28 N = 56 N = 84 N = 112 N = 140 N = 168

ω = 10 2.5 × 10−16 4.9 × 10−16 5.9 × 10−16 2.3 × 10−16 1.5 × 10−15 2.3 × 10−16

ω = 20 4.8 × 10−11 9.0 × 10−16 8.9 × 10−16 9.2 × 10−16 8.6 × 10−16 9.0 × 10−16

ω = 40 2.6 × 10−4 2.6 × 10−16 8.3 × 10−17 7.8 × 10−17 1.2 × 10−16 1.3 × 10−16

ω = 80 1.1 × 10−2 2.3 × 10−5 1.2 × 10−16 3.5 × 10−17 8.1 × 10−17 6.1 × 10−17

ω = 160 1.5 × 10−2 8.5 × 10−3 8.6 × 10−3 5.9 × 10−7 2.5 × 10−17 3.0 × 10−17

Table 8. Absolute errors of 2D-d for Example 3.

N = 32 N = 64 N = 96 N = 128 N = 160 N = 192

ω = 10 1.6 × 10−2 6.1 × 10−4 1.9 × 10−6 4.2 × 10−8 6.4 × 10−10 4.3 × 10−12

ω = 20 2.7 × 10−1 5.7 × 10−3 4.1 × 10−5 7.8 × 10−8 1.9 × 10−9 4.7 × 10−11

ω = 40 6.9 × 10−1 7.7 × 10−1 1.6 × 10−2 1.1 × 10−4 3.3 × 10−7 1.6 × 10−9

ω = 80 7.2 × 10−2 6.7 × 10−2 5.8 × 10−2 1.9 × 10−1 2.9 × 10−2 4.5 × 10−4

ω = 160 6.8 × 10−2 3.1 × 10−2 8.3 × 10−2 2.3 × 10−2 6.1 × 10−3 2.8 × 10−2

Table 9. Absolute errors of C2DSC-Levin for Example 3.

N = 28 N = 56 N = 84 N = 112 N = 140 N = 168

ω = 10 7.3 × 10−4 6.7 × 10−4 9.0 × 10−5 4.4 × 10−6 1.1 × 10−8 3.4 × 10−10

ω = 20 7.2 × 10−4 1.5 × 10−6 3.4 × 10−6 1.5 × 10−6 3.2 × 10−8 5.0 × 10−9

ω = 40 1.2 × 10−4 2.4 × 10−5 5.9 × 10−7 3.8 × 10−7 2.0 × 10−7 2.0 × 10−8

ω = 80 8.8 × 10−6 9.2 × 10−7 4.6 × 10−7 4.3 × 10−8 2.3 × 10−9 1.1 × 10−10

ω = 160 5.5 × 10−6 5.3 × 10−7 2.1 × 10−8 9.3 × 10−9 3.6 × 10−9 5.5 × 10−10
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Figure 7. Comparison of JJE, 2D-d and C2DSC-Levin in Example 3, ω is a variable (left: absolute errors,
right: CPU time).

Although JJE is efficient for solving some nearly singular problems, it may fail when b = 0 in
the integrand.

Example 4. Let us consider the computation of the following integral

∫ 1

0

∫ 1

0

1
(x + 0.02)2 + (y + 0.02)2 eiω(x3+3x+y2+6y)dxdy,

It is noted that JJE does not work in this case.

Absolute errors derived from 2D-d and C2DSC-Levin are listed in Tables 10 and 11, respectively.
It can be found that 2D-d provides more accurate approximation than that of C2DSC-Levin in the
relatively low frequency. Nevertheless, the absolute error of C2DSC-Levin never increases in the
high frequency while its 2D-d counterpart enlarges. Furthermore, although 2D-d will provide a more
accurate approximation if we employ the choice of the dilation parameter considered in [23], it still
cannot beat C2DSC-Levin in the high frequency when both absolute errors and computational time
are considered (see Figure 8).

Table 10. Absolute errors of 2D-d for Example 4.

N = 64 N = 128 N = 192 N = 256 N = 320 N = 384

ω = 10 3.0 × 10−1 1.3 × 10−4 6.5 × 10−7 2.9 × 10−9 2.1 × 10−11 5.5 × 10−14

ω = 20 4.1 × 10−1 7.0 × 10−2 1.1 × 10−4 8.9 × 10−8 5.3 × 10−11 4.3 × 10−13

ω = 40 9.4 × 10−1 3.9 × 10−1 9.0 × 10−2 2.2 × 10−2 1.1 × 10−3 8.2 × 10−6

ω = 80 3.7 × 10−1 1.6 × 10−1 4.6 × 10−1 1.3 × 10−1 5.0 × 10−2 3.5 × 10−2

ω = 160 1.3 × 100 1.9 × 10−1 2.6 × 10−1 1.8 × 10−1 2.0 × 10−1 6.3 × 10−2

Table 11. Absolute errors of C2DSC-Levin for Example 4.

N = 64 N = 128 N = 192 N = 256 N = 320 N = 384

ω = 10 9.5 × 10−5 8.4 × 10−8 3.3 × 10−11 1.5 × 10−12 1.8 × 10−13 4.8 × 10−13

ω = 20 7.2 × 10−5 5.6 × 10−8 5.1 × 10−12 3.9 × 10−13 6.8 × 10−15 1.5 × 10−13

ω = 40 6.8 × 10−6 1.3 × 10−8 4.9 × 10−12 3.3 × 10−14 1.8 × 10−13 6.4 × 10−13

ω = 80 1.1 × 10−5 1.3 × 10−8 9.4 × 10−12 1.2 × 10−14 3.7 × 10−12 5.5 × 10−13

ω = 160 1.6 × 10−6 2.6 × 10−9 2.2 × 10−12 4.4 × 10−15 3.8 × 10−15 2.6 × 10−13
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Figure 8. Comparison of 2D-d and C2DSC-Levin in Example 4, ω is a variable (left: absolute errors,
right: CPU time).

5. Conclusions

In this paper, we have presented the modified spectral coefficient Levin quadrature for calculation
of highly oscillatory integrals over rectangle regions and established its convergence rate with
respect to the truncation term and oscillation parameter. Furthermore, by considering numerical
calculation of moments over a non-uniform mesh, we derive the composite Levin quadrature.
Numerical experiments indicate that the non-uniform partition technique greatly reduces the nearly
singular problem. Recently, sharp bounds for coefficients of multivariate Gegenbauer expansion of
analytic functions have been studied in [28], which definitely opens a door for our ongoing work about
convergence analysis of Levin quadrature in high dimensional hypercube.

On the other hand, studies on the asymptotic and oscillatory behavior of solutions to highly
oscillatory integral and differential equations have attracted much attention during the past
decades [29–32]. It is noted that computation and numerical analysis of oscillatory integrals provide
efficient tools for such kinds of studies and investigation of application of the proposed approaches to
oscillatory equations is also necessary in the future work.
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2DSC-Levin 2D spectral coefficient Levin quadrature
C2DSC-Levin Composite 2D spectral coefficient Levin quadrature
2D-Cheb CHEBFUN’s 2D quadrature
JJE cubature with 2D sinh transformation in [21]
2D-d 2D dilation quadrature
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Abstract: In this paper, the functional dynamic equation of second order is studied on an arbitrary
time scale under milder restrictions without the assumed conditions in the recent literature.
The Nehari, Hille, and Ohriska type oscillation criteria of the equation are investigated. The presented
results confirm that the study of the equation in this formula is superior to other previous studies.
Some examples are addressed to demonstrate the finding.

Keywords: time scales; functional dynamic equations; second order; oscillation criteria

1. Introduction

In order to combine continuous and discrete analysis, the theory of dynamic equations on time
scales was proposed by Stefan Hilger in [1]. There are different types of time scales applied in many
applications (see [2]). The cases when the time scale T as an arbitrary closed subset is equal to the
reals or to the integers represent the classical theories of differential and of difference equations.
The theory of dynamic equations includes the classical theories for the differential equations and
difference equations cases and other cases in between these classical cases. That is, we are eligible
to consider the q-difference equations when T =qN0 := {qk : k ∈ N0 for q > 1} which has significant
applications in quantum theory (see [3]) and different types of time scales like T =hN, T = N

2 and
T = Tn (the set of the harmonic numbers) can also be applied. For more details of time scales calculus,
see [2,4,5]. The study of nonlinear dynamic equations is considered in this work because these
equations arise in various real-world problems like the turbulent flow of a polytrophic gas in a porous
medium, non-Newtonian fluid theory, and in the study of p−Laplace equations. Therefore, we are
interested in the oscillatory behavior of the nonlinear functional dynamic equation of second order
with deviating arguments

[
a(ζ)ϕγ

(
z∆(ζ)

)]∆

+ q(ζ)ϕβ (z(η(ζ))) = 0 (1)

on an above-unbounded time scale T, where ϕα(u) := |u|αsgnu, α > 0; a and q are positive
rd-continuous functions on T such that

∫ ∞ ∆≁

a
1
γ (≁)

= ∞; (2)

and η : T → T is a rd-continuous function such that limζ→∞ η(ζ) = ∞.
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By a solution of Equation (1) we mean a nontrivial real-valued function z ∈ C1
rd[ζz, ∞)T for some

ζz ≥ ζ0 with ζ0 ∈ T such that z∆, a(ζ)ϕγ

(
z∆(ζ)

)
∈ C1

rd[ζz, ∞)T and z(ζ) satisfies Equation (1) on
[ζz, ∞)T, where Crd is the space of right-dense continuous functions. It should be mentioned that in a
particular case when T = R then

σ(ζ) = ζ, µ(ζ) = 0, g∆(ζ) = g′(ζ),
∫ b

a
g(ζ)∆ζ =

∫ b

a
g(ζ)dζ,

and (1) turns as the nonlinear functional differential equation

[
a(ζ)ϕγ

(
z′(ζ)

)]′
+ q(ζ)ϕβ (z(η(ζ))) = 0. (3)

The oscillation properties of Equation (3) and special cases were investigated by Nehari [6], Fite [7],
Hille [8], Wong [9], Erbe [10], and Ohriska [11] as follows: The oscillatory behavior of the linear
differential equation of second order

z′′(ζ) + q(ζ)z(ζ) = 0, (4)

is investigated in Nehari [6] and showed that if

lim inf
ζ→∞

1
ζ

∫ ζ

ζ0

≁
2q(≁)d≁ >

1
4

, (5)

then all solutions of (4) are oscillatory. Fite [7] proved that if

∫ ∞

ζ0

q(≁)d≁ = ∞, (6)

then all solutions of Equation (4) are oscillatory. Hille [8] developed the condition (6) and illustrated
that if

lim inf
ζ→∞

ζ
∫ ∞

ζ
q(≁)d≁ >

1
4

, (7)

then all solutions of Equation (4) are oscillatory. For the delay differential equation

z′′(ζ) + q(ζ)z(η(ζ)) = 0, (8)

the Hille-type condition (7) is generalized by Wong [9], where η(ζ) ≥ γζ with 0 < γ < 1, and showed
that if

lim inf
ζ→∞

ζ
∫ ∞

ζ
q(≁)d≁ >

1
4γ

, (9)

then all solutions of (8) are oscillatory. Erbe [10] enhanced the condition (9) and examined that if

lim inf
ζ→∞

ζ
∫ ∞

ζ
q(≁)

η(≁)

≁
d≁ >

1
4

, (10)

then all solutions of (8) are oscillatory where η(ζ) ≤ ζ. Ohriska [11] proved that, if

lim sup
ζ→∞

ζ
∫ ∞

ζ
q(≁)

η(≁)

≁
d≁ > 1, (11)

then all solutions of (8) are oscillatory.
When T = Z, then

σ(ζ) = ζ + 1, µ(ζ) = 1, g∆(ζ) = ∆g(ζ),
∫ b

a
g(ζ)∆ζ =

b−1

∑
ζ=a

g(ζ),
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and (1) turns as the nonlinear functional difference equation

∆ [a(ζ)ϕγ (∆z(ζ))] + q(ζ)ϕβ (z(η(ζ))) = 0. (12)

The oscillation of Equation (12) when a(ζ) = 1, η(ζ) = ζ, and γ = β is the quotient of odd positive
integers was elaborated by Thandapani et al. [12] in which q(ζ) is a positive sequence and showed
that every solution of (12) is oscillatory, if

∞

∑
k=k0

q(k) = ∞.

We will examine that our results not only unite some of the known oscillation results for
differential and difference equations but they also can be applied on other cases in which the oscillatory
behavior of solutions for these equations on various types of time scales was not known. Note that,
if T =hZ, h > 0, then

σ(ζ) = ζ + h, µ(ζ) = h, z∆(ζ) = ∆hz(ζ) =
z(ζ + h)− z(ζ)

h
,

∫ b

a
g(ζ)∆ζ =

b−a−h
h

∑
k=0

g(a + kh)h,

and (1) turns as the nonlinear functional difference equation

∆h [a(ζ)ϕγ (∆hz(ζ))] + q(ζ)ϕβ (z(η(ζ))) = 0. (13)

If
T =qN0 = {ζ : ζ = qk, k ∈ N0, q > 1},

then
σ(ζ) = q ζ, µ(ζ) = (q − 1)ζ, z∆(ζ) = ∆qz(ζ) = (z(q ζ)− z(ζ))/(q − 1) ζ,

∫ ∞

ζ0

g(ζ)∆ζ =
∞

∑
k=n0

g(qk)µ(qk),

where t0 = qn0 , and (1) turns as the second order q−nonlinear difference equation

∆q
[
a(ζ)ϕγ

(
∆qz(ζ)

)]
+ q(ζ)ϕβ (z(η(ζ))) = 0. (14)

If
T = N

2
0 := {n2 : n ∈ N0},

then

σ(ζ) = (
√

ζ + 1)2, µ(ζ) = 1 + 2
√

ζ, ∆Nz(ζ) =
z((

√
ζ + 1)2)− z(ζ)

1 + 2
√

ζ
,

and (1) turns as the second order nonlinear difference equation

∆N [a(ζ)ϕγ (∆Nz(ζ))] + q(ζ)ϕβ (z(η(ζ))) = 0. (15)

If T = {Hn : n ∈ N0} where Hn is the harmonic numbers defined by

H0 = 0, Hn =
n

∑
k=1

1
k

, n ∈ N,

then
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σ(Hn) = Hn+1, µ(Hn) =
1

n + 1
, z∆(t) = ∆Hn z(Hn) = (n + 1)∆z(Hn),

and (1) turns as the second order nonlinear harmonic difference equation

∆Hn [a(Hn)ϕγ (∆Hn z(Hn))] + q(Hn)ϕβ (z(η(Hn))) = 0. (16)

For dynamic equations, Erbe et al. in [13,14] expanded the Hille and Nehari oscillation criteria to the
half-linear delay dynamic equation of second order

(a(ζ)(z∆(ζ))γ)∆ + q(ζ)zγ(η(ζ)) = 0, (17)

where γ is a quotient of odd positive integers,

η(ζ) ≤ ζ, a∆(ζ) ≥ 0,
∫ ∞

ζ0

ηγ(ζ)q(ζ)∆ζ = ∞. (18)

The authors showed that if either of the following conditions holds

lim inf
ζ→∞

ζγ
∫ ∞

σ(ζ)
q(≁)

(
η(≁)

σ(≁)

)γ

∆≁ >
γγ

lγ2(γ + 1)γ+1
, (19)

or

lim inf
ζ→∞

ζγ
∫ ∞

σ(ζ)
q(≁)

(
η(≁)

σ(≁)

)γ

∆≁+ lim inf
ζ→∞

1
ζ

∫ ζ

ζ0

≁
γ+1q(≁)

(
η(≁)

σ(≁)

)γ

∆≁ >
1

lγ(γ+1)
,

where l := lim infζ→∞

ζ

σ(ζ)
, then all solutions of (17) are oscillatory. We refer the reader to related

results [15–35] and the references cited therein.
A natural question now is: Do the oscillation criteria (5), (6), (7) and (11) for the differential

equations of second order by Nehari, Fite, Hille and Ohriska extend to the nonlinear dynamic equation
of second order (1) without the restrictive condition (18) in both cases η(ζ) ≤ ζ and η(ζ) ≥ ζ, and when
β ≥ γ and β ≤ γ.

The aim of this paper is to propose an obvious answer to the above question. We will establish
Nehari, Hille and Ohriska type oscillation criteria for (1) without imposing the restrictive condition
(18), which generalize and improve the aforementioned results in the literature.

2. Oscillation Criteria of (1) when β ≥ γ

In the subsequent results, we will use the subsequent notations

A (ζ) :=
∫ ζ

ζ0

∆≁

a
1
γ (≁)

and l := lim inf
ζ→∞

A(ζ)

A (σ(ζ))
≤ 1,

and

φ(ζ) :=





1, η(ζ) ≥ ζ,(
A(η(ζ))

A(ζ)

)β

, η(ζ) ≤ ζ.

Furthermore, l > 0 is assuming in the next results.
First, we derive Nehari type to the nonlinear dynamic equation of second order (1).

Theorem 1. Let (2) holds, and
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lim inf
ζ→∞

1
A(ζ)

∫ ζ

T
Aγ+1 (≁) φ(≁)q(≁)∆≁ >

1
lγ(γ+1)

(
1 − lγ

γlγ + 1

)
, 0 < γ ≤ 1,

lim inf
ζ→∞

1
A(ζ)

∫ ζ

T
Aγ+1 (≁) φ(≁)q(≁)∆≁ >

γ

lγ(γ+1) (γ + lγ)
, γ ≥ 1,

(20)

for enough large T ∈ [ζ0, ∞)T. Then all solutions of Equation (1) are oscillatory.

Proof. Assume z (t) is a nonoscillatory solution of Equation (1) on [ζ0, ∞)T. Thus, without loss of
generality, let z(ζ) > 0 and z(η(ζ)) > 0 on [ζ0, ∞)T. Since q ∈ Crd ([ζ0, ∞)T,R+) and then

[
a(ζ)ϕγ

(
z∆(ζ)

)]∆

< 0 for ζ ≥ ζ0.

Hence z∆(ζ) > 0, otherwise, it leads to a contradiction. Define

w(ζ) :=
a(ζ)ϕγ

(
z∆(ζ)

)

zγ(ζ)
.

Using the product and quotient rules, we reach

w∆(ζ) =

(
a(ζ)ϕγ

(
z∆(ζ)

)

zγ(ζ)

)∆

=
1

zγ(ζ)

[
a(ζ)ϕγ

(
z∆(ζ)

)]∆

+

(
1

zγ(ζ)

)∆ [
a(ζ)ϕγ

(
z∆(ζ)

)]σ

=

[
a(ζ)ϕγ

(
z∆(ζ)

)]∆

zγ(ζ)
− (zγ(ζ))∆

zγ(ζ)zγ(σ(ζ))

[
a(ζ)ϕγ

(
z∆(ζ)

)]σ
. (21)

From (1) and the definition of w(ζ), we have

w∆(ζ) = −
(

z (η(ζ))
z(ζ)

)β

zβ−γ (ζ) q(ζ)− (zγ(ζ))∆

zγ(ζ)
w (σ(ζ)) .

Since z∆ > 0, then z (ζ) ≥ z (ζ0) for ζ ≥ ζ0 and so

zβ−γ (ζ) ≥ zβ−γ(ζ0) =: k > 0 for ζ ≥ ζ0.

Therefore,

w∆(ζ) ≤ −k

(
z (η(ζ))

z(ζ)

)β

q(ζ)− (zγ(ζ))∆

zγ(ζ)
w (σ(ζ)) .

Let ζ ∈ [ζ0, ∞)T be fixed. If η(ζ) ≥ ζ, then z(η(ζ)) ≥ z(ζ) by the fact that z∆ > 0. Now the case

η(ζ) ≤ ζ is considered. Since
(
a ϕγ

(
z∆
))∆

< 0 on [ζ0, ∞)T, we achieve

z(ζ) ≥ z(ζ)− z(ζ1) =
∫ ζ

ζ0

z∆(≁)∆≁

≥ a
1
γ (ζ)z∆(ζ)

∫ ζ

ζ0

∆≁

a
1
γ (≁)

= a
1
γ (ζ)z∆(ζ)A(ζ).
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Therefore

[
z(ζ)
A(ζ)

]∆

=
A(ζ)z∆(ζ)− z(ζ)a−

1
γ (ζ)

A(ζ)Aσ(ζ)

=
a−

1
γ (ζ)

A(ζ)Aσ(ζ)

(
a

1
γ (ζ)z∆(ζ)A(ζ)− z(ζ)

)

≤ 0, ζ ∈ (ζ0, ∞)T.

So there exists a ζ1 ∈ (ζ0, ∞)T such that η(ζ) ∈ (ζ0, ∞)T for ζ ≥ ζ1 and so

z(η(ζ))
z(ζ)

≥ A(η(ζ))

A(ζ)
for ζ ∈ [ζ1, ∞)T.

In both cases and from the definition of φ(ζ) we have that

(
z (η(ζ))

z(ζ)

)β

≥ φ(ζ), (22)

and so

w∆(ζ) ≤ −k φ(ζ)q(ζ)− (zγ(ζ))∆

zγ(ζ)
w (σ(ζ)) , ζ ∈ [ζ1, ∞)T. (23)

Then by using the Pötzsche chain rule ([2], Theorem 1.90), we get that

(zγ(ζ))∆ = γ

(∫ 1

0

[
z(ζ) + hµ(ζ)z∆(ζ)

]γ−1
dh

)
z∆(ζ)

= γ

(∫ 1

0
[(1 − h) z(ζ) + hz (σ(ζ))]γ−1 dh

)
z∆(ζ)

≥
{

γzγ−1 (σ(ζ)) z∆(ζ), 0 < γ ≤ 1,
γzγ−1(ζ)z∆(ζ), γ ≥ 1.

If 0 < γ ≤ 1, then

w∆(ζ) < −k φ(ζ)q(ζ)− γ
z∆(ζ)

z (σ(ζ))

(
z (σ(ζ))

z(ζ)

)γ

w (σ(ζ)) ;

and if γ ≥ 1, then

w∆(ζ) ≤ −k φ(ζ)q(ζ)− γ
z∆(ζ)

z (σ(ζ))
z (σ(ζ))

z(ζ)
w (σ(ζ)) .

Note that z∆ > 0 and
(
a ϕγ

(
z∆
))∆

< 0 on [ζ1, ∞)T, we see for γ > 0,

w∆(ζ) ≤ −k φ(ζ)q(ζ)− γ
z∆(ζ)

z (σ(ζ))
w (σ(ζ))

≤ −k φ(ζ)q(ζ)− γa−
1
γ (ζ)w1+ 1

γ (σ(ζ)) , ζ ∈ [ζ1, ∞)T. (24)

Multiplying both sides of (24) by Aγ+1 (ζ) and integrating from ζ2 to ζ ∈ [ζ2, ∞)T, we get

∫ ζ

ζ2

Aγ+1(≁)w∆(≁)∆≁ ≤ −k
∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁

−γ
∫ ζ

ζ2

a−
1
γ (≁) (Aγ (≁)w (σ(≁)))

γ+1
γ ∆≁.

By integration by parts, we have
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Aγ+1(ζ)w(ζ) ≤ Aγ+1(ζ2)w(ζ2) +
∫ ζ

ζ2

(
Aγ+1(≁)

)∆

w (σ(≁))∆≁

−k
∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁

−γ
∫ ζ

ζ2

a−
1
γ (≁) (Aγ (≁)w (σ(≁)))

γ+1
γ ∆≁.

Using the Pötzsche chain rule, we arrive

(
Aγ+1(≁)

)∆

= (γ + 1)
∫ 1

0
[A(≁) + hµ(≁)A∆(≁)]γdh

1
a1/γ(≁)

= (γ + 1)
∫ 1

0
[(1 − h) A(≁) + hA (σ(≁))]γdh

1
a1/γ(≁)

≤ (γ + 1)
Aγ (σ(≁))

a1/γ(≁)
. (25)

Hence

Aγ+1(ζ)w(ζ) ≤ Aγ+1(ζ2)w(ζ2)−
∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁

+ (γ + 1)
∫ ζ

ζ2

1
a1/γ(≁)

[
A (σ(≁))

A(≁)

]γ

Aγ(≁)w (σ(≁))∆≁

−γ
∫ ζ

ζ2

1
a1/γ(≁)

(Aγ (≁)w (σ(≁)))
γ+1

γ ∆≁.

It follows that w∆(ζ) ≤ 0 on [ζ1, ∞)T. Let ε > 0, then we choose ζ2 ∈ [ζ1, ∞)T, enough large, so for
ζ ∈ [ζ2, ∞)T,

Aγ (ζ)w (σ(ζ)) ≥ a∗ − ε, (26)

and
A(ζ)

A (σ(ζ))
≥ l − ε, (27)

where a∗ is defined by
a∗ := lim inf

ζ→∞
Aγ(ζ)w (σ(ζ)) ≤ 1. (28)

By (27), we then get that

Aγ+1(ζ)w(ζ) ≤ Aγ+1(ζ2)w(ζ2)− k
∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁

+
∫ ζ

ζ2

1
a1/γ(≁)

[
γ + 1
(l − ε)γ Aγ (≁)w (σ(≁))− γ (Aγ (≁)w (σ(≁)))

γ+1
γ

]
∆≁.

Using the inequality

Yu − Xu
γ+1

γ ≤ γγ

(γ + 1)γ+1
Yγ+1

Xγ
(29)

with X = γ, Y =
γ + 1
(l − ε)γ and u = Aγ (≁)w (σ(≁)), we get
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Aγ+1(ζ)w(ζ) ≤ Aγ+1(ζ2)w(ζ2)− k
∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁

+
1

(l − ε)γ(γ+1)
[A(ζ)− A(ζ2)] .

Dividing both sides by A(ζ), we obtain

Aγ(ζ)w(ζ) ≤ Aγ+1(ζ2)w(ζ2)

A(ζ)
− k

A(ζ)

∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁

+
1

(l − ε)γ(γ+1)

[
1 − A(ζ2)

A(ζ)

]
.

Since wσ(ζ) ≤ w(ζ) we get

Aγ(ζ)w (σ(ζ)) ≤ Aγ+1(ζ2)w(ζ2)

A(ζ)
− k

A(ζ)

∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁

+
1

(l − ε)γ(γ+1)

[
1 − A(ζ2)

A(ζ)

]
.

Taking the lim sup of both sides as ζ → ∞ we get

A∗ ≤ − lim inf
ζ→∞

k
A(ζ)

∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁+
1

(l − ε)γ(γ+1)
.

where
A∗ := lim sup

ζ→∞

Aγ(ζ)w (σ(ζ)) .

Since k, ε > 0 are arbitrary constants, we obtain

A∗ ≤ − lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁+
1

lγ(γ+1)
. (30)

Now, multiplying both sides of (24) by Aγ+1 (ζ), we get

Aγ+1 (ζ)w∆(ζ) ≤ −k Aγ+1 (ζ) φ(ζ)q(ζ)− γa−1/γ(ζ)Aγ+1 (ζ)w1+ 1
γ (σ(ζ))

= −Aγ+1 (ζ) φ(ζ)q(ζ)

−γa−1/γ(ζ)Aγ (ζ)w (σ(ζ)) A (ζ)w
1
γ (σ(ζ)) .

Using (26) gives

Aγ+1 (ζ)w∆(ζ) ≤ −k Aγ+1 (ζ) φ(ζ)q(ζ)− ϑa−1/γ(ζ), ζ ∈ [ζ2, ∞)T, (31)

where ϑ = γ (a∗ − ε)1+ 1
γ . Integrating the inequality (31) from ζ2 to ζ ∈ [ζ2, ∞)T, we get

∫ ζ

ζ2

Aγ+1 (≁)w∆(≁)∆≁ ≤ −k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ
∫ ζ

ζ2

a−1/γ(≁)∆≁.

Using integrating by parts, we get
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Aγ+1 (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2) +
∫ ζ

ζ2

[
Aγ+1 (≁)

]∆

w (σ (≁))∆≁

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ [A(ζ)− A(ζ2)] . (32)

We consider the forthcoming two cases:

(I) When 0 < γ ≤ 1. Using the product rule, we have

[
Aγ+1 (≁)

]∆

= [Aγ (≁) A (≁)]∆ = [Aγ (≁)]∆ A (≁) + Aγ (σ (≁)) A∆ (≁) .

Again use the Pötzsche chain rule, we get

(Aγ (≁))∆ = γ

(∫ 1

0

[
A (≁) + hµ(≁)A∆ (≁)

]γ−1
dh

)
A∆ (≁)

= γ

(∫ 1

0
[(1 − h) A (≁) + hA (σ (≁))]γ−1 dh

)
A∆ (≁)

≤ γAγ−1 (≁) A∆ (≁) .

Then [
Aγ+1 (≁)

]∆

≤ (γAγ (≁) + Aγ (σ (≁))) A∆ (≁) .

and so

Aγ+1 (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2)

+
∫ ζ

ζ2

(γAγ (≁) + Aγ (σ (≁))) A∆ (≁)w (σ (≁))∆≁

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ [A(ζ)− A(ζ2)]

= Aγ+1 (ζ2)w∆(ζ2)

+
∫ ζ

ζ2

(
γ +

[
A (σ (≁))

A (≁)

]γ)
A∆ (≁) Aγ (≁)w (σ (≁))∆≁

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁)− ϑ [A(ζ)− A(ζ2)]

≤ Aγ+1 (ζ2)w∆(ζ2) +

[
γ +

1
(l − ε)γ

]
(A∗ + ε) [A(ζ)− A(ζ2)]

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁)− ϑ [A(ζ)− A(ζ2)] .

Dividing both sides by A(ζ), we have

Aγ (ζ)w (σ(ζ)) ≤ Aγ (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2)

A(ζ)

+

[
γ +

1
(l − ε)γ

]
(A∗ + ε)

[
1 − A(ζ2)

A(ζ)

]

− k
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ

[
1 − A(ζ2)

A(ζ)

]
.

Taking the lim sup of both sides as ζ → ∞ and using (2), we get
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A∗ ≤
[

γ +
1

(l − ε)γ

]
(A∗ + ε)− lim inf

ζ→∞

k
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ.

Since k and ε > 0 are arbitrary constants, we achieve the demanded inequality

lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁ ≤ A∗

[
γ − 1 +

1
lγ

]
− γa

1+ 1
γ

∗ . (33)

From (30) and (33), we obtain

lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁ ≤ 1
lγ(γ+1)

(
1 − lγ

γlγ + 1

)
,

which contradicts the condition (20) if 0 < γ ≤ 1.

(II) When γ ≥ 1. Using the product rule, we have

[
Aγ+1 (≁)

]∆

= [Aγ (≁) A (≁)]∆ = [Aγ (≁)]∆ A (σ (≁)) + Aγ (≁) A∆ (≁) .

Again by the Pötzsche chain rule we obtain

(Aγ (≁))∆ = γ

(∫ 1

0

[
A (≁) + hµ(≁)A∆ (≁)

]γ−1
dh

)
A∆ (≁)

= γ

(∫ 1

0
[(1 − h) A (≁) + hA (σ (≁))]γ−1 dh

)
A∆ (≁)

≤ γAγ−1 (σ (≁)) A∆ (≁) .

Then [
Aγ+1 (≁)

]∆

≤ (γAγ (σ (≁)) + Aγ (≁)) A∆ (≁) .

and so

Aγ+1 (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2)

+
∫ ζ

ζ2

(γAγ (σ (≁)) + Aγ (≁)) A∆ (≁)w (σ (≁))∆≁

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ [A(ζ)− A(ζ2)]

= Aγ+1 (ζ2)w∆(ζ2)

+
∫ ζ

ζ2

(
γ

[
A (σ (≁))

A (≁)

]γ

+ 1
)

A∆ (≁) Aγ (≁)w (σ (≁))∆≁

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁)− ϑ [A(ζ)− A(ζ2)]

≤ Aγ+1 (ζ2)w∆(ζ2) +

(
γ

(l − ε)γ + 1
)
(A∗ + ε) [A(ζ)− A(ζ2)]

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ [A(ζ)− A(ζ2)] .

Dividing both sides by A(ζ), we have

114



Mathematics 2020, 8, 1897

Aγ (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2)

A(ζ)
+

(
γ

(l − ε)γ + 1
)
(A∗ + ε)

[
1 − A(ζ2)

A(ζ)

]

− k
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ

[
1 − A(ζ2)

A(ζ)

]
.

Taking the lim sup of both sides as ζ → ∞ and by (2), we obtain

A∗ ≤
(

γ

(l − ε)γ + 1
)
(A∗ + ε)− lim inf

ζ→∞

k
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ.

Since k, ε > 0 are arbitrary constants, we reach the demanded inequality

lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁ ≤ γ

(
A∗
lγ

− a
1+ 1

γ
∗

)
. (34)

From (30) and (34), we get

lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁ ≤ γ

lγ(γ+1) (γ + lγ)
,

which is in contrast to the condition (20) if γ ≥ 1. The proof is accomplished.

Theorem 2. Let (2) holds, and

lim inf
ζ→∞

1
A(ζ)

∫ ζ

T
Aγ+1(≁)φ(≁)q(≁)∆≁ >

1
lγ(γ+1)

(
1 − lγ

γ + 1

)
, (35)

for enough large T ∈ [ζ0, ∞)T. Then all solutions of Equation (1) are oscillatory.

Proof. Assume z is a nonoscillatory solution of Equation (1) on [ζ0, ∞)T. Thus, without loss of
generality, let z(ζ) > 0 and z(η(ζ)) > 0 on [ζ0, ∞)T. As shown in the proof of Theorem 1, we obtain

Aγ+1 (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2) +
∫ ζ

ζ2

[
Aγ+1 (≁)

]∆

w (σ (≁))∆≁

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ [A(ζ)− A(ζ2)] , (36)

where ϑ = γ (a∗ − ε)1+ 1
γ . In addition, we have

[
Aγ+1(≁)

]∆

≤ (γ + 1) Aγ (σ(≁)) a−1/γ(≁). (37)

Substituting (37) into (36) we get

Aγ+1 (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2)

+ (γ + 1)
∫ ζ

ζ2

[
A (σ (≁))

A (≁)

]γ

a−1/γ(≁)Aγ (≁)w (σ (≁))∆≁

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ [A(ζ)− A(ζ2)]

≤ Aγ+1 (ζ2)w∆(ζ2) +
γ + 1
(l − ε)γ (a∗ + ε) [A(ζ)− A(ζ2)]

−k
∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ [A(ζ)− A(ζ2)] .
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Dividing both sides by A(ζ), we have

Aγ (ζ)w (σ(ζ)) ≤ Aγ (ζ)w(ζ) ≤ Aγ+1 (ζ2)w∆(ζ2)

A(ζ)

+
(γ + 1)
(l − ε)γ (a∗ + ε)

[
1 − A(ζ2)

A(ζ)

]

− k
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ

[
1 − A(ζ2)

A(ζ)

]

Taking the lim sup of both sides as ζ → ∞ and by (2), we obtain

a∗ ≤
(γ + 1)
(l − ε)γ (a∗ + ε)− lim inf

ζ→∞

1
A(ζ)

∫ ζ

ζ2

aγ+1 (≁) φ(≁)q(≁)∆≁− ϑ.

Since k, ε > 0 are arbitrary, we get the required inequality

lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ2

Aγ+1 (≁) φ(≁)q(≁)∆≁ ≤ a∗

[
γ + 1

lγ
− 1
]
− γa

1+ 1
γ

∗ . (38)

From (30) and (38), we obtain

lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ2

Aγ+1(≁)φ(≁)q(≁)∆≁ ≤ 1
lγ(γ+1)

(
1 − lγ

γ + 1

)
,

which is in contrast to the condition (35). The proof is accomplished.

Example 1. Consider the nonlinear dynamic equation of second order

[
ζγ−1 ϕγ

(
z∆(ζ)

)]∆

+
δζ

1−γ
γ

φ(ζ)Aγ+1(ζ)
ϕβ (z(η(ζ))) = 0, (39)

where γ, β, and δ are positive constants with β ≥ γ. Here a(ζ) = ζγ−1, and q(ζ) = δζ−(γ+1)

φ(ζ)Aγ+1(ζ)
, then the

condition (2) holds since ∫ ∞ ∆≁

a
1
γ (≁)

=
∫ ∞ ∆≁

≁
1− 1

γ

= ∞

by Example 5.60 in [5]. In addition, a straightforward computation yields that

lim inf
ζ→∞

1
A(ζ)

∫ ζ

ζ
Aγ+1(≁)φ(≁)q(≁)∆≁ = δ lim inf

ζ→∞

1
A(ζ)

∫ ζ

ζ

∆≁

≁γ+1 = δ.

By Theorem 2, every solution of (39) is oscillatory if

δ >
1

lγ(γ+1)

(
1 − lγ

γ + 1

)
.

We present a Fite–Wintner type oscillation criterion for (1). The proof is similar to that in [7],
and hence is omitted.

Theorem 3. Let (2) holds, and ∫ ∞

ζ0

q(≁)∆≁ = ∞. (40)

Then every solution of Equation (1) is oscillatory.
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From Theorem 3, we assume without loss of generality that

∫ ∞

ζ0

φ(≁)q(≁)∆≁ < ∞.

Otherwise, we have that (40) holds due to φ(ζ) ≤ 1, which implies that Equation (1) is oscillatory
by Theorem 3. The next theorem is generalized Hille type to the second order nonlinear dynamic
Equation (1).

Theorem 4. Let (2) holds, and

lim inf
ζ→∞

Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁ >

γγ

lγ2(γ + 1)γ+1
. (41)

Then every solutions of Equation (1) is oscillatory.

Proof. Assume z (t) be a nonoscillatory solution of Equation (1) on [ζ0, ∞)T. Thus, without loss of
generality, let z(ζ) > 0 and z(η(ζ)) > 0 on [ζ0, ∞)T. As depicted in the proof of Theorem 1, we obtain
(24) for ζ ≥ ζ1, for some ζ1 ∈ (ζ0, ∞)T such that η(ζ) ∈ (ζ0, ∞)T for ζ ≥ ζ1. Also for ε > 0, then we
can pick ζ2 ∈ [ζ1, ∞)T, sufficiently large, so that (26) and (27) for ζ ∈ [ζ2, ∞)T. Replacing ζ by ≁ in the
inequality (24) and then integrating it from σ(ζ) ≥ ζ2 to v ∈ [ζ, ∞)T and using the fact w > 0, we have

−w (σ(ζ)) ≤ w (v)− w (σ(ζ))

≤ −k
∫ v

σ(ζ)
φ(≁)q (≁)∆≁− γ

∫ v

σ(ζ)
a−

1
γ (≁) w1+ 1

γ (σ(≁))∆≁.

Taking v → ∞ we obtain

− w (σ(ζ)) ≤ −k
∫ ∞

σ(ζ)
φ(≁)q (≁)∆≁− γ

∫ ∞

σ(ζ)
a−1/γ(≁) w1+1/γ (σ(≁))∆≁. (42)

Multiplying both sides of (42) by Aγ (ζ), we obtain

−Aγ (ζ)w(σ(ζ)) ≤ −k Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q (≁)∆≁

−γAγ (ζ)
∫ ∞

σ(ζ)
a−1/γ(≁) w1+ 1

γ (σ(≁))∆≁

= −k Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q (≁)∆≁

−γAγ (ζ)
∫ ∞

σ(ζ)

A∆ (≁)

Aγ+1(≁)
[Aγ(≁)w (σ(≁))]1+

1
γ ∆≁.

It follows from (26) that

−Aγ (ζ)w(σ(ζ)) ≤ −k Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁

− (a∗ − ε)1+ 1
γ Aγ (ζ)

∫ ∞

σ(ζ)
γ

A∆ (≁)

Aγ+1(≁)
∆≁.

(43)

By Pötzsche chain rule, we reach

(−1
Aγ

)∆

= γ
∫ 1

0

1
[A + hµ(≁)A∆]γ+1 dh A∆ ≤ γ

A∆

Aγ+1 . (44)
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Then from (43) and (44), we have

−Aγ (ζ)w(σ(ζ)) ≤ −k Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁− (a∗ − ε)1+ 1

γ

[
A (ζ)

A(σ(ζ))

]γ

≤ −k Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁− (l − ε)γ (a∗ − ε)1+ 1

γ ,

which yields

k Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁ ≤ Aγ (ζ)w(σ(ζ))− (l − ε)γ (a∗ − ε)1+ 1

γ .

By taking the lim inf of both sides as ζ → ∞ we obtain that

lim inf
ζ→∞

k Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁ ≤ a∗ − (l − ε)γ (a∗ − ε)1+ 1

γ .

Since k and ε > 0 are arbitrary, we achieve the following inequality

lim inf
ζ→∞

Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁ ≤ a∗ − lγ a

1+ 1
γ

∗ .

Using the inequality (29) with z = lγ, Y = 1 and u = a∗, we get the desired inequality

lim inf
ζ→∞

Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁ ≤ γγ

lγ2(γ + 1)γ+1
,

which is in contrast to the condition (41). The proof is accomplished in Theorem 4.

Example 2. Consider the nonlinear second order dynamic equation

[
ϕγ

(
z∆(ζ)

)]∆

+
κγ

Lζγ+1 ϕβ (z(η(ζ))) = 0, (45)

where γ, β, κ are positive constants, and L = lim infζ→∞

(
ζ

σ (ζ)

)γ

with β ≥ γ. Here a(ζ) = 1, η(ζ) ≥ ζ

and q(ζ) =
ηγ

Lζγ+1 , then the condition (2) holds, A(ζ) = ζ − ζ0 and φ(ζ) = 1. In addition,

lim inf
ζ→∞

Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)q(≁)∆≁ =

κ

L
lim inf

ζ→∞
Aγ (ζ)

∫ ∞

σ(ζ)

γ∆≁

≁γ+1

≥ κ

L
lim inf

ζ→∞
Aγ (ζ)

∫ ∞

σ(ζ)

(−1
≁γ

)∆

∆≁

=
κ

L
lim inf

ζ→∞

(
ζ

σ (ζ)
− ζ0

σ (ζ)

)γ

= κ

if κ >
γγ

lγ2(γ + 1)γ+1
. Then by Theorem 4, all solutions of (45) are oscillatory if κ >

γγ

lγ2(γ + 1)γ+1
.

Remark 1. We could refer to the recent results due to [13,14] and others do not apply to Equations (39) and (45).

Theorem 5. Let (2) hold, and

lim sup
ζ→∞

Aγ(ζ)
∫ ∞

ζ
φ(≁)q(≁)∆≁ > 1. (46)
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Then all solutions of Equation (1) oscillate.

Proof. Assume z (t) is a nonoscillatory solution of Equation (1) on [ζ0, ∞)T. Thus, without loss of
generality, let z(ζ) > 0 and z(η(ζ)) > 0 on [ζ0, ∞)T. Integrating both sides of the dynamic Equation (1)
from ζ to v ∈ [ζ0, ∞)T, we obtain

∫ v

ζ
q(≁)zβ(η(≁))∆≁ = a(ζ)(z∆(ζ))γ − a(v)(z∆(v))γ ≤ a(ζ)(z∆(ζ))γ. (47)

As shown in the proof of Theorem 1, there exists ζ1 ∈ (ζ0, ∞)T satisfying η(ζ) ∈ (ζ0, ∞)T for ζ ≥ ζ1

such that for ζ ≥ ζ1

zβ(η(ζ)) ≥ k φ(ζ)zγ(ζ) (48)

and
zγ(ζ) ≥ a(ζ)

(
z∆(ζ)

)γ
Aγ(ζ). (49)

From (47) and (48), we obtain

k
∫ v

ζ
φ(≁)q(≁)zγ(≁)∆≁ ≤ a(ζ)(z∆(ζ))γ.

Since z∆(ζ) > 0, we get that

k zγ(ζ)
∫ v

ζ
φ(≁)q(≁)∆≁ ≤ a(ζ)(z∆(ζ))γ. (50)

From (49) and (50), we get

k Aγ(ζ)
∫ v

ζ
φ(≁)q(≁)∆≁ ≤ 1.

Taking v → ∞, we have

k Aγ(ζ)
∫ ∞

ζ
φ(≁)q(≁)∆≁ ≤ 1.

Since k > 0 is arbitrary, we have

Aγ(ζ)
∫ ∞

ζ
φ(≁)q(≁)∆≁ ≤ 1,

which gives us the contradiction

lim sup
ζ→∞

Aγ(ζ)
∫ ∞

ζ
φ(≁)q(≁)∆≁ ≤ 1.

The proof of Theorem 5 is accomplished.

3. Oscillation Criteria of (1) when β ≤ γ

Assume that

z(ζ) > 0, z(η(ζ)) > 0, z∆(ζ) > 0,
[

a(ζ)ϕγ

(
z∆(ζ)

)]∆

< 0

eventually. Integrating Equation (1) from ζ to v ∈ [ζ, ∞)T and then using (22) and the fact that z∆ > 0,
we obtain

119



Mathematics 2020, 8, 1897

−a(v)ϕγ

(
z∆(v)

)
+ a(ζ)ϕγ

(
z∆(ζ)

)
=

∫ v

ζ
q (≁) ϕβ (z (η (≁)))∆≁

≥
∫ v

ζ
φ(≁)q (≁) ϕβ (z (≁))∆≁

≥ ϕβ (z (ζ))
∫ v

ζ
φ(≁)q (≁)∆≁,

and a(v)ϕγ

(
z∆(v)

)
> 0 gives

a(ζ)ϕγ

(
z∆(ζ)

)
≥ ϕβ (z (ζ))

∫ v

ζ
φ(≁)q (≁)∆≁.

Hence by taking limits as v → ∞ we have

a(ζ)ϕγ

(
z∆(ζ)

)
≥ ϕβ (z (ζ))

∫ ∞

ζ
φ(≁)q (≁)∆≁. (51)

Since
[
a(ζ)ϕγ

(
z∆(ζ)

)]∆
< 0 eventually, then

a(ζ)ϕγ

(
z∆(ζ)

)
≤ a(ζ2)ϕγ

(
z∆(ζ2)

)
=: b for ζ ≥ ζ2,

and hence from (51), we have

b ≥ a(ζ)ϕγ

(
z∆(ζ)

)
≥ ϕβ (z (ζ))

∫ ∞

ζ
φ(≁)q (≁)∆≁,

and so

zβ−γ (ζ) =
[
ϕβ (z (ζ))

] β−γ
β ≥ c

[∫ ∞

ζ
φ(≁)q (≁)∆≁

] γ−β
β

,

where c := b
β−γ

β > 0. Combining all these we see that for every arbitrary c > 0,

zβ−γ (ζ) ≥ c

[∫ ∞

ζ
φ(≁)q (≁)∆≁

] γ−β
β

, (52)

eventually. Let

Q (ζ) := q (ζ)

[∫ ∞

ζ
φ(≁)q (≁)∆≁

] γ−β
β

.

Therefore, by (52) and the definition of Q (ζ), as direct consequence of Theorems 1, 2, 4 and 5, we get
oscillation criteria for Equation (1) with β ≤ γ.

Theorem 6. Let (2) hold, and

lim inf
ζ→∞

1
A(ζ)

∫ ζ

T
Aγ+1 (≁) φ(≁)Q(≁)∆≁ >

1
lγ(γ+1)

(
1 − lγ

γlγ + 1

)
, 0 < γ ≤ 1,

lim inf
ζ→∞

1
A(ζ)

∫ ζ

T
Aγ+1 (≁) φ(≁)Q(≁)∆≁ >

γ

lγ(γ+1) (γ + lγ)
, γ ≥ 1,

(53)

for enough large T ∈ [ζ0, ∞)T. Then all solutions of Equation (1) oscillate.
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Theorem 7. Let (2) holds, and

lim inf
ζ→∞

1
A(ζ)

∫ ζ

T
Aγ+1(≁)φ(≁)Q(≁)∆≁ >

1
lγ(γ+1)

(
1 − lγ

γ + 1

)
,

for enough large T ∈ [ζ0, ∞)T. Then all solutions of Equation (1) oscillate.

Theorem 8. Let (2) holds, and

lim inf
ζ→∞

Aγ (ζ)
∫ ∞

σ(ζ)
φ(≁)Q(≁)∆≁ >

γγ

lγ2(γ + 1)γ+1
.

Then all solutions of Equation (1) oscillate.

Theorem 9. Let (2) holds, and

lim sup
ζ→∞

Aγ(ζ)
∫ ∞

ζ
φ(≁)Q(≁)∆≁ > 1.

Then all solutions of Equation (1) oscillate.

4. Conclusions

(1) In this paper, several Nehari, Hille and Ohriska type oscillation criterion have been given.
The applicability of these criteria for (1) on an arbitrary time scale is achieved. The reported
results have extended related findings to the differential and dynamics equations of second order
as follows:

(i) Condition (41) reduces to (7) in the case if T = R, γ = β = 1, a (ζ) = 1, and η (ζ) = ζ;
(ii) Condition (41) reduces to (10) in the case when T = R, γ = β = 1, a (ζ) = 1, and g (ζ) ≤ ζ;
(iii) Condition (41) reduces to (19) under the assumptions that γ = β, a∆ (ζ) ≥ 0, and g (ζ) ≤ ζ;
(iv) Conditions (46) reduces to (11) supposing that T = R, γ = β = 1, a (ζ) = 1, and g (ζ) ≤ ζ.

(2) Several oscillation criteria for (1) have been derived in the cases: η(ζ) ≤ ζ, η(ζ) ≥ ζ, β ≥ γ,
and β ≤ γ. In contrast to [13,14], the restrictive condition (18) is not imposed in the oscillation
results of the presented case-study. This leads to a great improvement in comparison with the
proceeding results.
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Abstract: In this work, an efficient algorithm is proposed for solving the system of Volterra integral
equations based on wavelet Galerkin method. This problem is reduced to a set of algebraic
equations using the operational matrix of integration and wavelet transform matrix. For linear type,
the computational effort decreases by thresholding. The convergence analysis of the proposed
scheme has been investigated and it is shown that its convergence is of order O(2−Jr), where J is the
refinement level and r is the multiplicity of multi-wavelets. Several numerical tests are provided to
illustrate the ability and efficiency of the method.

Keywords: Volterra integral equations; operational matrix of integration; multi-wavelets

1. Introduction

In this paper, we study and construct a novel numerical algorithm for the system of Volterra
integral equations of the second kind

u(x) = f(x) +
∫ x

0
g(x, t, u(t))dt, x ∈ Ω := [0, 1], (1)

where f : Ω → Rn (n ∈ N) is a given real-valued continuous function, u : Ω → Rn is the unknown
function that will be determined and the function g : S → Rn with S = {(x, t) : x, t ∈ Ω} is a given
linear or nonlinear function of u which satisfies the following Lipschitz condition with respect to the
third variable: for all x, t ∈ [0, 1] and for all u1, u2 ∈ Rn,

|g(x, t, u1(t))− g(x, t, u2(t))| ≤ A|u1 − u2|. (2)

Therefore, the functions f and g are considered so that the Equation (1) has a unique solution.
Equation (1) is the general form of second-order Volterra integral equation and appears in scientific

applications in chemistry, engineering, mathematics, and physics [1–4]. Numerical and analytical
solutions of linear and nonlinear Volterra integral equations have been investigated in many papers.
A useful method to solve such equations is the Adomian decomposition method. This method was
used to investigate the existence and uniqueness of solutions of this type of equation [5,6]. One of the
best paper which utilizes the multi-wavelets for solving integro-differential equations was presented
by Saray [7]. In [7], an efficient algorithm was proposed for solving the Volterra integro-differential
equation. This method outperforming former approaches. Golbabai et al. [8] developed a general
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method based on radial basis function networks to solve the system of Volterra integral equations.
The modified homotopy perturbation method for solving this type of equation has been proposed by
Aminikhah et al. [5,9]. Kılıçman et al. [10] used Simpson’s 3/8 rule to solve this equation. Aguilar and
Brunner used collocation techniques based on spline polynomials [11]. The umbral calculus and the
Laplace transform methods were used as solution approaches as well [12].

Wavelets and specially multi-wavelets Galerkin method represent an efficient way to solve
a variety of equations, including ordinary differential equations (ODEs), partial differential
equations (PDEs), and integral equations [7,13,14]. Due to the discrete-time characterization of wavelet
coefficient decay, the sparse form of the coefficients matrices arises. This property is very useful
to reduce the computational cost. In this work, we aim to solve the system of the Volterra integral
equation using Alpert’s multi-wavelets by exploiting the above-mentioned property. Some results are
formally proved and supported by numerical experiments.

The paper is structured as follows. A brief introduction of the Alpert’s multi-wavelets is provided
in Section 2. In Section 3, the wavelet Galerkin method is used to approximate the solution of
the problem, and the convergence analysis is investigated. Some numerical experiments are performed
to illustrate the efficiency and accuracy of the proposed method.

2. Alpert’s Multi-Wavelets and Multiresolution Analysis

Alpert et al. [13,15] introduced a class of multi-wavelets for L2, which are indexed by a parameter
r ≥ 0 and built via Lagrange polynomials of degree less than r. These multi-wavelets are piecewise
polynomials that are locally supported and orthonormal. The multiresolution analysis (MRA)
framework, introduced and developed by Mallat [16] and Meyer [17], is useful to construct these bases.

According to MRA, a set of primal scaling functions {φ0
0,0, . . . , φr−1

0,0 } is introduced for primal
subspace Vr

0 ∈ L2[0, 1]. By translation and dilation of primal scaling functions {φk}, k = 0, . . . , r − 1,
we determine a space Vr

j ,

Vr
j = Span{φk

j,b := D2jTbφk, b ∈ Bj, k = 0, 1, . . . , r − 1},

where Da and Tb are the dilation and translation operators, respectively such that for a given
function h, Dah(x) = a

1
2 h(ax) and Tbh(x) = h(x − b), also Bj := {0, 1, . . . , 2j − 1} for j ∈ Z+ ∪ {0}.

Therefore, φk
j,b is a polynomial of degree less than k which is restricted to Ij,b = [xj,b, xj,b+1] where

xj,b := 2−jb and Ω := [0, 1] =
⋃

b∈Bj
Ij,b.

For a fixed integer J ≥ 0, the orthogonal projection P r
J h of h ∈ L2[0, 1] onto Vr

J is determined by

h ≈ P r
J (h) = ∑

b∈BJ

r−1

∑
k=0

〈h, φk
J,b〉φk

J,b. (3)

The coefficients hk
J,b = 〈 f , φk

J,b〉 are determined by hk
J,b =

∫
IJ,b

h(x)φk
J,b(x)dx [18–20]. To avoid

computing integrals, the Gauss–Legendre Quadrature are applied as follows

hk
J,b ≈ 2−J/2

√
ωk

2
h

(
2−J(

τk + 1
2

+ b)

)
, k = 0, ..., r − 1, b ∈ BJ , (4)

where ωk and τk are the Gauss-Legendre Quadrature weights and the roots of Legendre polynomial of
order r, respectively which are introduced in [21–23]. The projection P r

J h converges to h if the function
h ∈ Cr(Ω) (r times continuously differentiable) [15]. P r

J h approximates h with mean error bounded
as follows

‖P r
J (h)− h‖ ≤ 2−Jr 2

4rr!
sup
x∈Ω

|h(r)(x)|. (5)
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Assume that Φr
J := [Φr,J,0, . . . , Φr,J,2J−1]

T , where Φr,J,b := [φ0
J,b, . . . , φr−1

J,b ]. Φr
J refers to the function

vector called a multi-scaling function. In fact, Φr
J is a function vector which includes the scaling function

in the space Vr
J . By this definition, one can rewrite (3) viz, P r

J (h) = HTΨr
J where H is a vector with

entries Hbr+k+1 := hk
J,b and has dimension N := r2J .

This construction of multi-wavelets for L2(Ω) can be extended to the two–dimensional space
including L2(Ω)2. Let us introduce the space Vr,2

J := Vr
J × Vr

J which is spanned by orthonormal bases

{φk
J,bφk′

J,b′ : b, b′ ∈ BJ , k, k′ = 0, 1, . . . , r − 1}. Therefore, any function h ∈ L2(Ω)2 can be projected

onto the Vr,2
J by the projection P r

J via,

h ≈ P r
J h = ∑

b∈Bj

r−1

∑
k′=0

r−1

∑
k=0

∑
b′∈Bj

Hrb+(k+1),rb′+(k′+1)φ
k
J,b(x)φk′

J,b′(y) = Φr
J
T(x)HΦr

J(y), (6)

where H is an (N × N) matrix whose elements are obtained by

Hrb+(k+1),rb′+(k′+1) ≈ 2−J

√
ωk

2

√
ωk′

2
h
(

2−J(τ̂k + b), 2−J(τ̂k′ + b′)
)

, (7)

where τ̂k = (τk + 1)/2. By the following theorem, it is possible to bound the error for such projection,
if the function h is sufficiently smooth.

Theorem 1 ([15]). Suppose that the function h : [0, 1]2 → R2 has continuous partial derivatives of order r and
mixed partial derivative of order 2r. Then

‖P r
J h − h‖ ≤ Mmax

21−rJ

4rr!

(
2 +

21−Jr

4rr!

)
, (8)

where

Mmax = max

{
sup

ξ∈[0,1)
| ∂r

∂xr h(ξ, y)|, sup
η∈[0,1)

| ∂r

∂yr h(x, η)|, sup
ξ ′ ,η′∈[0,1)

| ∂2r

∂xr∂yr h(ξ ′, η′)|
}

.

As the subspaces Vr
j are nested, there exist complementary orthogonal subspaces Wr

j such that

Vr
j+1 = Vr

j

⊕
Wr

j , j ∈ Z∪ {0}, (9)

here and in the following
⊕

denotes orthogonal sums. There is a family of other bases such that the
dilations and translations of these bases span the complementary subspaces Wr

j , namely,

Wr
j = Span{ψk

j,b := D2jTbψk, b ∈ Bj, k = 0, 1, . . . , r − 1}.

The functions ψk
j,b are called multi-wavelets. Due to (9), the multi-scale decomposition can be

inductively found, Vr
J = Vr

0 ⊕ (⊕J−1
j=0 Wr

j ). This decomposition gives rise to the multi-scale projection

operator Mr
J that maps L2(Ω) onto Vr

J via

h ≈ Mr
J(h) = (P r

0 +
J−1

∑
j=0

Qr
j )(h), (10)
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where Qr
j is the orthonormal projection operator that maps L2(Ω) onto Wr

j . In fact, by using multi-scale

projection operator, any function h ∈ L2(Ω) can be approximated by multi-wavelets of higher levels
Wr

j , j = 0, 1, . . . , J − 1 and the multi-scaling functions of the coarse space Vr
0 viz,

h ≈ Mr
J(h) =

r−1

∑
k=0

hk
0,0φk

0,0 +
J−1

∑
j=0

∑
b∈Bj

r−1

∑
k=0

h̃k
j,bψk

j,b, (11)

where
hk

0,0 := 〈h, φk
0,0〉, h̃k

j,b := 〈h, ψk
j,b〉. (12)

Note that the single-scale coefficients hk
0,0 can be determined by (4). However, for evaluating the

multi-wavelets coefficients h̃k
j,b of higher levels, in many cases, they have to be calculated numerically.

To avoid such numerical computations, the wavelet transform matrix TJ can be applied, as introduced
in [14,24]. This matrix is useful to find the multi-wavelets by using the scaling functions

Ψr
J = TJΦ

r
J , (13)

where Ψr
J := [Φr,0,b, Ψr,0,b, Ψr,1,b, . . . , Ψr,J−1,b]

T and Ψr,j,b := [ψ0
j,b, . . . , ψr−1

j,b ], b ∈ Bj. Using the vector
function Ψr

J and (11), we can write

h ≈ Mr
J(h) = H̃T

J Ψr
J , (14)

where H̃J is an N-dimensional vector with entries hk
0,0 and h̃k

j,b for b ∈ Bj, j = 0, . . . , J − 1 and

k = 0, . . . , r − 1. Besides, it is obvious that H̃J = T−1
J

T
HJ .

Thresholding

Alpert’s multi-wavelets provide vanishing moments of order Nk
ψ = k + r − 1 for

k = 0, 1, . . . , r − 1, i.e.,

N k
p =

∫ ∞

−∞
xpψk

0,0(x)dx, 0 ≤ p < Nk
ψ, and k = 0, 1, . . . , r − 1. (15)

Furthermore, Alpert’s multi-wavelets are uniformly bounded concerning to L∞ and L1, i.e.,

‖ψk
J,b‖L∞(Ω) . 1, ‖ψk

J,b‖L1(Ω) . 1. (16)

The vanishing moments and normalization (16) imply that the detail coefficients h̃k
J,b become

small when the underlying function is locally smooth. Therefore it is possible to obtain [25]

h̃k
J,b = |〈h, ψk

J,b〉| ≤ inf
P∈∏Nk

ψ

|〈h − P, ψk
J,b〉| . 2−JNk

ψ‖h‖
W

1,Nk
ψ (Ω)

. (17)

So the detail coefficients decay at the rate of 2−JNk
ψ and in the regions where the function is smooth,

most of the detail coefficients may be discarded when the refinement level J increases. This gives rise
to thresholding. The thresholding operator TDε is introduced by

TDε(H̃J) = HJ , (18)

where Dε := {(J, b, k) : |h̃k
J,b| > ε} and the elements of HJ are defined by

h̄k
j,b :=

{
h̃k

j,b, (j, b, k) ∈ Dε,

0, else,
b ∈ Bj, j = 0, . . . , J − 1, k = 0, . . . , r − 1. (19)
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Note that the thresholding affects only the detail coefficients while the coarse scale coefficients
remain unchanged.

The approximation error due to the thresholding can be estimated similarly to the classical
wavelets. Let ADε be the approximation operator ADε := Mr

J
−1TDεMr

J . The approximation error due
to the thresholding can be bounded as stated by the following proposition [25].

Proposition 1. (Approximation error). Let Ω be bounded and ε j = āj−Jε with ā > 1. Then the approximation
error concerning to the set of significant details Dε is uniformly bounded concerning to Lq(Ω), q ∈ [1, ∞], i.e.,

‖P r
J h −P r

J,Dε
h‖Lq(Ω) ≤ Cthrε, (20)

for some constant Cthr > 0 independent of J, ε. Here P r
J h and P r

J,Dε
h are the projections according to (11)

corresponding to the coefficients H̃J and ADε H̃J .

3. Multi-Wavelets Galerkin Method

In this section, we use the wavelet Galerkin method to solve the system of the Volterra integral
Equation (1). To this end, we will apply the interpolation property of scaling functions to reach an
efficient algorithm. Assume that the solution u(x) of Equation (1) can be expanded using multi-scale
projection operator Mr

J based on multi-wavelets as follows

u(x) ≈ Mr
J(u)(x) = (P r

0 +
J−1

∑
j=0

Qr
j )(u)(x) = ŨT ⊗ Ψr

J(x), (21)

where ⊗ is the Kronecker product and Ũ = (ŨT
1 , . . . , ŨT

n )
T is a (1 × nr2J) vector whose elements are n

unknown sub-vectors Ũi with a dimension of (r2J × 1) such that

ui(x) := ŨT
i Ψr

J(x), i = 1, 2, . . . , n.

One can imagine two types of equations, linear and nonlinear. For the linear type, the i-th
component of the vector function g(x, t, u(t)) has the form

gj(x, t, u(t)) :=
n

∑
i=1

aji(x, t)ui(t), j = 1, 2, . . . , n, (22)

and it can be approximated by multi-scale operator, i.e.,

n

∑
i=1

aji(x, t)ui(t) ≈
n

∑
i=1

P r
J (ajiui)(x, t) =

n

∑
i=1

Φr
J
T(x)AT

jiΦ
r
J(t)

n

∑
i=1

Ψr
J
T(x)TJ AT

ji T
−1
J Ψr

J(t), j = 1, 2, . . . , n,

where Aji (j, i = 1 : n) are (r2J × r2J) matrices. Integrating from 0 to x, we get

∫ x

0
gj(x, t, u(t))dt =

n

∑
i=1

Ψr
J
T(x)TJ AT

ji T
−1
J IψΨr

J(x)
︸ ︷︷ ︸

pj(x)

=
n

∑
i=1

PT
i T−1

J Ψr
J(x) =

n

∑
i=1

ŨT
i AjiT

−1
J Ψr

J(t),

(23)
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where Aji (j, i = 1 : n) are (r2J × r2J) matrices and the rest are (r2J × 1) vectors. But if the j-th
component of vector function g(x, t, u(t)) is nonlinear, one can consider the following expansion

∫ x

0
gj(x, t, u(t))dt ≈ P r

J

(∫ x

0
gj

(
x, t,Mr

J(u)(t)
)

dt

)

GT
j Φr

J(x) = GT
j T−1

J Ψr
J(x), j = 1, 2, . . . , n,

(24)

where Gj is a (r2J × 1) vector whose elements are nonlinear algebraic equations. In view of the
Equations (23) and (24), and using operational matrix Iψ of integration for multi-wavelets introduced
in [7,14,15], one can write

∫ x

0
g(x, t, u(t))dt ≈

{
ŨTΓT ⊗ T−1

J Ψr
J(x), linear,

GT ⊗ T−1
J Ψr

J(x), nonlinear,
(25)

with Γ := (A)ji, (j, i = 1 : n) and G := (GT
1 , GT

2 , . . . , GT
n )

T .
Such an approximation can be considered for the j-th element of f viz,

f j(x) ≈ P r
J ( f j)(x) = FT

j Φr
J(x) = FT

j T−1
J Ψr

J(x),

and thus by putting F := (FT
1 , FT

2 , . . . , FT
n )

T we have

f ≈ FT ⊗ T−1
J Ψr

J(x). (26)

Now, we introduce the residual as

rr
J(x) = ŨT ⊗ Ψr

J(x)− FT ⊗ T−1
J Ψr

J(x)−
{

ŨTΓT ⊗ T−1
J Ψr

J(x), linear,
GT ⊗ T−1

J Ψr
J(x), nonlinear.

(27)

To apply the Galerkin method, it is necessary that 〈rr
J , Ψr

J〉 = 0. Thus we have

ŨT − FT ⊗ T−1
J −

{
ŨTΓT ⊗ T−1

J

GT ⊗ T−1
J

= 0,
linear,
nonlinear.

(28)

By solving this system of linear and nonlinear equations using restarted generalized minimal
residual method (GMRES) and Newton methods, respectively, we obtain the approximate solution of
the Equation (1). Note that because we use the Galerkin method with orthogonal bases, such a system
will have a unique solution [26].

Convergence Analysis

Theorem 2. Suppose that eJ = u −Mr
J(u) where u and Mr

J(u) are the exact and approximate solutions of
nonlinear system (1), respectively. Let X be an open set in R and let g : Ω × X → R be a function such that
g(x, t, u(x)) ∈ Cr(Ω) for any u ∈ X and the condition (2) is satisfied. Furthermore, presume that f ∈ Cr(Ω).
Furthermore, assume that the residual e := r̃ − (rr

J) where the residual r̃ is specified as

r̃(x) = u(x)− f (x)−
∫ x

0
g(x, t, u(t))dt, (29)

and rr
J is introduced in (27).
If u ∈ Cr(Ω), and the method used to solve system (28) is convergent then one has

‖e‖2
2 ≤ 21−Jr

4rr!

(
|1 +

√
nr2Jκ| sup

x∈Ω

|u(x)|+ sup
x∈Ω

|f(x)|
)

,
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where κ is a positive constant. Consequently, e → 0 when J → ∞.

Proof. Using (27), (29) and the hypotheses of the theorem, we can write

e(x) = eJ(x)−
(

f(x)−Mr
J(f)(x)

)
−
(∫ x

0
g(x, t, u(t))dt −Mr

J(
∫ x

0
g(x, t,Mr

J(u))(t)dt)

)
, (30)

where e := r̃ − (rr
J). Since the function g satisfies the Lipschitz condition (2), Equation (30) can be

reduced to
e(x) = eJ(x)−

(
f(x)−Mr

J(f)(x)
)
− A

∫ x

0
eJ(t)dt.

Now, suppose that
e ≈ E ⊗ Ψr

J , eJ ≈ EJ ⊗ Ψr
J ,

where E and EJ are the (1 × nr2J) vectors and thus, one can write

E ⊗ Ψr
J = EJ ⊗ Ψr

J −
(

f(x)−Mr
J(f)(x)

)
− AEJ ⊗ IψΨr

J ,

Taking L2-norm from both sides and using the triangle inequality yields

‖E ⊗ Ψr
J‖2

2 ≤ ‖EJ ⊗ Ψr
J‖2

2 + ‖f(x)−Mr
J(f)(x)‖2

2 + A‖EJ ⊗ IψΨr
J‖2

2

= ‖EJ‖2
2‖Ψr

J‖2
2 + A‖EJ‖2

2‖IψΨr
J‖2

2 + ‖f(x)−Mr
J(f)(x)‖2

2

≤ ‖EJ‖2
2‖Ψr

J‖2
2 + A‖EJ‖2

2‖Iψ‖2
2‖Ψr

J‖2
2 + ‖f(x)−Mr

J(f)(x)‖2
2

where the second row comes from theorem 8 in [27]. Since Alpert multi-wavelets are orthonormal,
one can write

‖E‖2
2 ≤ ‖EJ‖2

2 + A‖EJ‖2
2‖Iψ‖2

2 + ‖f(x)−Mr
J(f)(x)‖2

2

= ‖EJ‖2
2

(
‖Inr2J‖2

2 + A‖Iψ‖2
2

)
+ ‖f(x)−Mr

J(f)(x)‖2
2.

According to the previous section, when Ψr
J has high vanishing moments and the function h is

smooth, 〈h, Ψr
J〉 decays fast in J → ∞. By means of vanishing moments of Alpert’s multi-wavelets and

the matrix norms inequalities, we get

‖E‖2
2 ≤ ‖EJ‖2

2|1 +
√

nr2Jκ|+ ‖f(x)−Mr
J(f)(x)‖2

2,

where κ = A‖Iψ‖2
∞. Now Equation (5) leads to the desired result

‖E‖2
2 ≤ 21−Jr

4rr!

(
|1 +

√
nr2Jκ| sup

x∈Ω

|u(x)|+ sup
x∈Ω

|f(x)|
)

.

Theorem 3. Let the condition of Theorem 2 be valid. Suppose that uJ is the approximate solution obtained from
solving (28) using restarted GMRES or Newton methods. If these methods solve (28) with proper accuracy,
the error can be estimated from

‖u − uJ‖2
2 ≤ (1 − A‖Iψ‖2

2)
−1 21−Jr

4rr!
sup
x∈Ω

|f(x)|+ η, (31)

where η is a small positive number that desire to zero.
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Proof. Taking Mr
J(u) as the approximate solution of (1) and uJ as the approximate solution obtained

from solving (28) using restarted GMRES or Newton methods, the convergence can be concluded from

‖u − uJ‖ ≤ ‖u −Mr
J(u)‖+ ‖Mr

J(u)− uJ‖. (32)

The approximate solution of (1) satisfies

Mr
J(u)(x) = Mr

J(f)(x) +Mr
J

(∫ x

0
g(x, t,Mr

J(u)(t)dt

)
. (33)

Subtracting (33) from (1), and using the Lipschits condition (2), one can write

eJ ≤ f −Mr
J(f) + A

∫ x

0
eJdt. (34)

Let us consider eJ ≈ EJ ⊗ Ψr
J where EJ is the (1 × nr2J) vector and thus, we have

EJ ⊗ Ψr
J =

(
f(x)−Mr

J(f)(x)
)
+ AEJ ⊗ IψΨr

J . (35)

Taking L2-norm from both sides of (35) and using Theorem 8 in [27] yields

‖EJ ⊗ Ψr
J‖2

2 ≤ ‖f(x)−Mr
J(f)(x)‖2

2 + A‖EJ ⊗ IψΨr
J‖2

2

≤ ‖f(x)−Mr
J(f)(x)‖2

2 + A‖EJ‖2
2‖IψΨr

J‖2
2

Since Alpert multi-wavelets are orthonormal, one can write

‖EJ‖2
2 ≤ ‖f(x)−Mr

J(f)(x)‖2
2 + A‖EJ‖2

2‖Iψ‖2
2. (36)

Therefore one can bound the error of ‖u −Mr
J(u)‖ via

‖EJ‖2
2 ≤ (1 − A‖Iψ‖2

2)
−1‖f(x)−Mr

J(f)(x)‖2
2. (37)

According to the theorem hypotheses, the methods used to solve the obtained system
are convergent. So η := ‖Mr

J(u) − uJ‖ will be very small. Inequality (31) is obtained
using (5) and (32), i.e.,

‖u − uJ‖2
2 ≤ (1 − A‖Iψ‖2

2)
−1 21−Jr

4rr!
sup
x∈Ω

|f(x)|+ η.

4. Numerical Examples

In this section, some numerical experiments are considered to illustrate the convergence and
efficiency of the proposed method. To this end, we report the L2 errors of the solution which is
defined by

ξu := ‖u −Mr
J(u)‖2 =

(∫

Ω
|u(x)−Mr

J(u)(x)|2dx

)1/2

,

where u and Mr
J(u) are the exact and approximate solution of systems (1), respectively. In order to get

the sparse coefficients matrix in the linear type, all the entries of this matrix that are less than a small
positive number ε are set to zero. Finally, one can find the rate of sparsity Sε which is defined by [28]

Sε =
N0 − Nε

N0
× 100%.
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where N0 is the total number of elements and Nε the number of elements remaining after thresholding.

Example 1. Let us run the proposed method on the following linear Volterra integral equation [5,29]

u1(x) = −
∫ x

0
e−(s−x)u1(s)ds −

∫ x

0
cos(s − x)u2(s)ds + cosh(x) + x sin(x),

u2(x) = −
∫ x

0
es+xu1(s)ds −

∫ x

0
x cos(s)u2(s)ds + 2 sin(x) + x(sin2(x) + ex).

The exact solution is u(x) = (e−x, 2 sin(x)). The effect of thresholding on L2-errors and sparsity
percentage is reported in Table 1 for different values of r, J ad ε. To illustrate the effect of the refinement level
J and the multiplicity parameter r on L2 error, Figure 1 is plotted. Figure 2 shows sparse matrix when r = 5,
J = 3 and ε = 10−4, 10−2.

Table 1. Effects of parameters r, J and ε on sparsity and L2-error for Example 1.

Without Thresholding ε = 10−5 ε = 10−3

r J Sε L2-Error Sε L2-Error Sε L2-Error

3

2 6.25
ξu1 = 3.24 × 10−5

24.48
ξu1 = 3.30 × 10−5

49.83
ξu1 = 2.42 × 10−4

ξu2 = 8.41 × 10−5 ξu2 = 8.41 × 10−5 ξu2 = 3.04 × 10−4

3 17.19
ξu1 = 4.05 × 10−6

53.30
ξu1 = 6.02 × 10−6

74.13
ξu1 = 2.41 × 10−4

ξu2 = 1.05 × 10−5 ξu2 = 1.26 × 10−5 ξu2 = 5.15 × 10−4

5

2 6.25
ξu1 = 6.38 × 10−9

45.69
ξu1 = 4.62 × 10−6

70.69
ξu1 = 1.53 × 10−4

ξu2 = 1.66 × 10−8 ξu2 = 1.28 × 10−6 ξu2 = 6.51 × 10−4

3 17.19
ξu1 = 2.00 × 10−10

71.42
ξu1 = 1.24 × 10−5

86.75
ξu1 = 1.53 × 10−4

ξu2 = 5.19 × 10−10 ξu2 = 8.54 × 10−6 ξu2 = 6.52 × 10−4
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Figure 1. Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error
when r = 5 and J = 2 for Example 1.
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Figure 2. Plot of sparse matrix after thresholding with ε = 10−4 (left) and ε = 10−2 (right) for
Example 1.

Example 2. Let us consider the following system of Volterra integral equation as a further example

u1(x) = − x5

3
− x4

4
+

x3

3
+ x +

∫ x

0
(x2 − s)(u1(s) + u2(s))ds

u2(x) =
x3

2
− x4

3
+ x2 −

∫ x

0
x(u1(s)− u2(s))ds.

The solution is reported in [5,30] and is u = (x, x2). To illustrate the effect of thresholding on the
coefficients matrix obtained from proposed method, the graph in Figure 3 is provided. Figure 4 shows the effect of
parameters r and J.
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Figure 3. Effects of the refinement level J (left) and the multiplicity parameter r (right) on L2 error
when r = 4 and J = 3 for Example 2.
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Figure 4. Plot of sparse matrix after thresholding with ε = 10−5 (left) and ε = 10−3 (right) for
Example 2.

Example 3. Let us consider the following nonlinear system

u1(x) = sin(x)− x +
∫ x

0
(u2

1(s) + u2
2(s))ds

u2(x) = cos(x)− 1
2

sin2(x) +
∫ x

0
u1(s)u2(s)ds.

The exact solutions of this system are u1 = sin(x) and u2 = cos(x) [8].
Table 2 is reported to show the efficiency and accuracy of the proposed method. We observe when the

refinement level J and multiplicity parameter r increase, the L2-errors decrease. In Tables 3 and 4, results are
compared with other methods [10,31–33] in terms of the absolute errors. In this paper, J and r are the criteria
for the discretization and the degree of polynomials used as a basis, respectively. Taking r = 7 and J = 2,
the results of Tables 3 and 4 indicate that the proposed method solves this equation better than others [10,31–33].
Furthermore, we reported the exact and numerical solution by Figure 5.

Table 2. Effect of the refinement level J and multiplicity parameter r on L2-error for Example 3.

r J = 2 J = 3 J = 4 J = 5

u1

3 4.20 × 10−5 5.25 × 10−6 6.56 × 10−7 8.20 × 10−8

4 4.04 × 10−7 2.53 × 10−8 1.58 × 10−9 9.86 × 10−11

5 8.31 × 10−9 2.60 × 10−10 8.12 × 10−12 2.54 × 10−13

u2

3 2.50 × 10−5 3.21 × 10−6 4.01 × 10−7 5.02 × 10−8

4 6.62 × 10−7 4.14 × 10−8 2.59 × 10−9 1.62 × 10−10

5 5.06 × 10−9 1.58 × 10−10 4.94 × 10−12 1.54 × 10−13

Table 3. The comparison between absolute errors of Example 3 for u1.

HPM Method Based upon Simpson’s 3/8 Bernstein Collocation Present Method
[31] Discretization [32] Rule [10] Method [33] (r = 7, J = 2)

x (n = 5) (h = 200) (h = 0.025) (n = 10)

0.1 1.4 × 10−07 2.4 × 10−05 3.0 × 10−10 5.5 × 10−10 1.0 × 10−12

0.2 3.5 × 10−06 9.8 × 10−05 1.1 × 10−09 1.7 × 10−10 1.1 × 10−12

0.3 5.5 × 10−05 2.3 × 10−04 3.6 × 10−09 2.6 × 10−10 1.1 × 10−12

0.4 3.8 × 10−04 4.1 × 10−04 6.0 × 10−09 1.0 × 10−10 9.6 × 10−13

0.5 1.6 × 10−03 6.6 × 10−04 8.7 × 10−09 1.1 × 10−10 3.2 × 10−12

0.6 9.7 × 10−04 1.4 × 10−08 2.5 × 10−10 8.4 × 10−13

0.7 1.4 × 10−03 1.9 × 10−08 5.8 × 10−10 9.2 × 10−13

0.8 1.8 × 10−03 2.4 × 10−08 1.0 × 10−08 9.2 × 10−13

0.9 2.5 × 10−03 3.3 × 10−08 1.0 × 10−07 5.0 × 10−12

1.0 3.2 × 10−03 4.0 × 10−08 8.2 × 10−07 6.7 × 10−11
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Table 4. The comparison between absolute errors of Example 3 for u2.

HPM Method Based upon Simpson’s 3/8 Bernstein Collocation Present Method
[31] Discretization [32] Rule [10] Method [33] (r = 7, J = 2)

x (n = 5) (h = 200) (h = 0.025) (n = 10)

0.1 3.2 × 10−07 2.5 × 10−04 5.3 × 10−10 6.5 × 10−11 1.2 × 10−13

0.2 1.1 × 10−05 5.0 × 10−04 3.0 × 10−10 1.3 × 10−10 1.6 × 10−13

0.3 1.2 × 10−04 7.5 × 10−04 6.0 × 10−10 6.5 × 10−12 4.0 × 10−13

0.4 6.3 × 10−04 1.0 × 10−04 2.1 × 10−09 6.5 × 10−11 3.9 × 10−13

0.5 2.2 × 10−03 1.2 × 10−03 3.1 × 10−09 9.0 × 10−11 1.3 × 10−12

0.6 1.5 × 10−03 5.3 × 10−09 4.2 × 10−11 6.0 × 10−13

0.7 1.8 × 10−03 9.4 × 10−09 4.2 × 10−11 6.8 × 10−13

0.8 2.0 × 10−03 1.4 × 10−08 3.6 × 10−09 8.1 × 10−13

0.9 2.3 × 10−03 2.0 × 10−08 3.5 × 10−08 4.8 × 10−13

1.0 2.6 × 10−03 2.9 × 10−08 2.9 × 10−07 4.2 × 10−11
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Figure 5. Plot of the exact and numerical solution taking r = 6 and J = 2 for Example 3.

5. Conclusions

In this paper, we proposed the multi-wavelets Galerkin method to solve the linear and nonlinear
Volterra integral equation. The convergence analysis and numerical simulations indicate that the
proposed method gives a satisfactory approximation to the exact solution. Thresholding can be
used to increase sparsity for a lower computational cost, without affecting the error in L2. Using the
interpolation property of Alpert’s multi-wavelets, the proposed method turns out to be fast and very
competitive against state-of-the-art techniques. The main advantages of the proposed method are the
lower computational cost and lower complexity.
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Abstract: In this paper, we study the oscillatory behavior of solutions for a type of generalized
proportional fractional differential equations with forcing and damping terms. Several oscillation
criteria are established for the proposed equations in terms of Riemann-Liouville and Caputo settings.
The results of this paper generalize some existing theorems in the literature. Indeed, it is shown that
for particular choices of parameters, the obtained conditions in this paper reduce our theorems to
some known results. Numerical examples are constructed to demonstrate the effectiveness of the
our main theorems. Furthermore, we present and illustrate an example which does not satisfy the
assumptions of our theorem and whose solution demonstrates nonoscillatory behavior.

Keywords: generalized proportional fractional operator; oscillation criteria; nonoscillatory behavior;
damping and forcing terms

1. Introduction

Fractional calculus is a mathematical branch investigating the properties of derivatives and
integrals of non-integer orders. The significance of this subject falls in the fact that the fractional
derivative has the feature of nonlocal nature. This property makes these derivatives suitable to simulate
more physical phenomena such as earthquake vibrations, polymers, and so forth; see, for example,
References [1–10] and the references cited therein.

In recent years, there have appeared different types of fractional derivatives. However, it has been
realized that most of these derivatives lose some of their basic properties that classical derivatives have
such as the product rule and the chain rule. Fortunately, Khalil et al. [11] defined a new well-behaved
fractional derivative, called the “conformable fractional derivative”, which depends entirely on the
classical limit definition of the derivative. Thereafter, researchers developed the conformable derivative
and obtained different results exposing its features [12–14]. Recently, Jarad et al. [15] introduced the
generalized proportional fractional (GPF) derivative of Caputo and Riemann-Liouville type involving
exponential functions in their kernels. The GPF derivative not only preserves classical properties but
also verifies semi group property and of nonlocal behavior. For recent results involving GPF derivative,
one can refer to References [16–18].

In 2012, Grace et al. [19] initiated the study of oscillation theory for fractional differential equations.
Thereafter, many researchers have investigated the oscillatory properties of fractional differential
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equations; see for instance References [20–25]. In 2019, Aphithana et al. [24] studied forced oscillatory
properties of solutions to the conformable initial value problem of the form





aD1+α,ρx(t) + p(t)aDα,ρx(t) + q(t) f (x(t)) = g(t), t > a,

lim
t→a+

aJ j−α,ρx(t) = bj (j = 1, 2, . . . , m),

where m = ⌈α⌉, 0 < ρ ≤ 1,p, g ∈ C(R+,R), q ∈ C(R+,R+), f ∈ C(R,R) are continuous functions,

aDα,ρ is the left conformable derivative of order α ∈ C of x, Re(α) ≥ 0 in the Riemann-Liouville setting
and aJ j−α,ρ is the left conformable integral operator of order j − α ∈ C, bj ∈ R, j = 1, 2, . . . , m.

They also studied the forced oscillation of conformable initial value problems in the Caputo
setting of the form





C
a D1+α,ρx(t) + p(t)C

a Dα,ρx(t) + q(t) f (x(t)) = g(t), t > a,

k
aDρx(a) = bk (k = 0, 1, . . . , m − 1),

where m = ⌈α⌉, 0 < ρ ≤ 1, and C
a Dα,ρ is the left conformable derivative of order α ∈ C of x, Re(α) ≥ 0

in the Caputo setting.
In 2020, Sudsutad et al. [26] established some oscillation criteria for the following generalized

proportional fractional differential equation





aDα,ρx(t) + ξ1(t, x(t)) = µ(t) + ξ2(t, x(t)), t > a ≥ 0,

lim
t→a+

a I j−α,ρx(t) = bj (j = 1, 2, . . . , n),

with n = ⌈α⌉, aDα,ρ is the generalized proportional fractional derivative operator of order α ∈ C,
Re(α) ≥ 0, 0 < ρ ≤ 1 in the Riemann-Liouville setting and a Iα,ρ is the generalized proportional
fractional integral operator.

In this paper, motivated by the above papers, we establish some sufficient conditions for forced
oscillation criteria of all solutions of the generalized proportional fractional (GPF) initial value problem
with damping term in the Riemann-Liouville type of the form:





aD1+α,ρy(l) + p(l)aDα,ρy(l) + q(l) f (y(l)) = g(l), l > a ≥ 0,

lim
l→a+

a I j−α,ρy(l) = bj (j = 1, 2, . . . , m),
(1)

where m = ⌈α⌉, 0 < ρ ≤ 1, aDα,ρ is the left GPF derivative of order α ∈ C of y, Re(α) ≥ 0 in the
Riemann-Liouville setting and a I j−α,ρ is the left GPF integral of order j − α ∈ C, Re(j − α) > 0, bj ∈ R,
j = 1, 2, . . . , m and p, g ∈ C(R+,R), q ∈ C(R+,R+), f ∈ C(R,R).

Moreover, we study the forced oscillation criteria of all solutions of the GPF initial value problem
with damping term in the Caputo type of the form

C
a D1+α,ρy(l) + p(l)C

a Dα,ρy(l) + q(l) f (y(l)) = g(l), l > a ≥ 0,

Dk,ρy(a) = bk (k = 0, 1, . . . , n − 1),
(2)

where n = ⌈α⌉, 0 < ρ ≤ 1, C
a Dα,ρ is the left GPF derivative of order α ∈ C of y, Re(α) ≥ 0 in the Caputo

setting and Dk,ρ = DρDρ · · · Dρ
︸ ︷︷ ︸

k times

, and Dρ is the proportional derivative defined in Reference [13].

We claim that the results of this paper improve and generalize previously existing oscillation
results in Reference [24].
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Definition 1. The solution y of problem (1) (respectively (2)) is called oscillatory if it has arbitrarily large zeros
on (0, ∞); otherwise, it is called nonoscillatory. An equation is called oscillatory if all its solutions are oscillatory.

2. Preliminaries

In this section, we provide some basic definitions and results which will be used throughout this
paper. For the justifications and proofs, the reader can consult References [13,15].

Definition 2. [15] (Modified Conformable Derivatives).
For ρ ∈ [0, 1], let the functions k0, k1 : [0, 1]×R → [0, ∞) be continuous such that for all l ∈ R we have

lim
ρ→0+

k1(ρ, l) = 1, lim
ρ→0+

k0(ρ, l) = 0, lim
ρ→1−

k1(ρ, l) = 0, lim
ρ→1−

k0(ρ, l) = 1, (3)

and k1(ρ, l) 6= 0, ρ ∈ [0, 1), k0(ρ, l) 6= 0, ρ ∈ (0, 1].

Then, Anderson et al. [13] defined the modified conformable differential operator of order ρ by

Dρ f (l) = k1(ρ, l) f (l) + k0(ρ, l) f ′(l), (4)

provided that the right-hand side exists at l ∈ R and f ′(l) = d
dl f . The derivative given in (4) is called

a proportional derivative. For more details about the control theory of the proportional derivatives
and its component functions k0 and k1, we refer the reader to [27].

Of special interest, we shall restrict ourselves to the case when k1(ρ, l) = (1 − ρ) and k0(ρ, l) = ρ.
Therefore, (4) becomes

Dρ f (l) = (1 − ρ) f (l) + ρ f ′(l). (5)

Notice that lim
ρ→0+

Dρ f (l) = f (l) and lim
ρ→1−

Dρ f (l) = f ′(l). It is clear that the derivative (5) is

somehow more general than the conformable derivative which does not tend to the original function
as ρ tends to 0.

To find the associated integral to the proportional derivative in (5), we solve the following equation

Dρg(l) = (1 − ρ)g(l) + ρg′(l) = f (l), l ≥ a.

The above equation is a first order linear differential equation and its solution is given by

g(l) =
1
ρ

∫ l

a
e

ρ−1
ρ (l−s) f (s)ds.

Define the proportional integral associated to Dρ by

a I1,ρ f (l) =
1
ρ

∫ l

a
e

ρ−1
ρ (l−s) f (s)ds, (6)

where we accept that a I0,ρ f (l) = f (l).

Lemma 1. [15] Let f be defined on [a, ∞) and differentiable on (a, ∞) and ρ ∈ (0, 1]. Then, we have

a I1,ρDρ f (l) = f (l)− e
ρ−1

ρ (l−a) f (a). (7)

Definition 3. [15] For ρ ∈ (0, 1] and α ∈ C, Re(α) > 0, we define the left GPF integral of f by

(a Iα,ρ f )(l) =
1

ραΓ(α)

∫ l

a
e

ρ−1
ρ (l−s)

(l − s)α−1 f (s)ds = ρ−α e
ρ−1

ρ l
a Iα
(

e
1−ρ

ρ l f (l)
)

, (8)
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where a Iα is the left Riemann-Liouville fractional integral of order α.
The right GPF integral ending at b, however, can be defined by

(Iα,ρ
b f )(l) =

1
ραΓ(α)

∫ b

l
e

ρ−1
ρ (s−l)

(s − l)α−1 f (s)ds = ρ−α e
ρ−1

ρ l Iα
b

(
e

1−ρ
ρ l f (l)

)
, (9)

where Iα
b is the right Riemann-Liouville fractional integral of order α.

Definition 4. [15] For ρ ∈ (0, 1] and α ∈ C, Re(α) ≥ 0, we define the left GPF derivative of f by

(aDα,ρ f )(l) = Dn,ρ
a In−α,ρ f (l)

=
Dn,ρ

l

ρn−αΓ(n − α)

∫ l

a
e

ρ−1
ρ (l−s)

(l − s)n−α−1 f (s)ds. (10)

The right GPF derivative ending at b is defined by

(Dα,ρ
b f )(l) = ⊖Dn,ρ In−α,ρ

b f (l)

=
⊖Dn,ρ

l

ρn−αΓ(n − α)

∫ b

l
e

ρ−1
ρ (s−l)

(s − l)n−α−1 f (s)ds, (11)

where n = [Re(α)] + 1.

If we let ρ = 1 in Definition 4 , then one can obtain the left and right Riemann-Liouville fractional
derivatives as in [6]. Moreover, it is clear that

lim
α→0

Dα,ρ f (l) = f (l) and lim
α→1

Dα,ρ f (l) = Dρ f (l).

Lemma 2. [15] Let Re(α) > 0, n = −[−Re(α)], f ∈ L1(a, b) and (a Iα,ρ f )(l) ∈ ACn[a, b]. Then,

(a Iα,ρ
aDα,ρ f )(l) = f (l)− e

ρ−1
ρ (l−a)

n

∑
j=1

(a I j−α,ρ f )(a+)
(l − a)α−j

ρα−jΓ(α + 1 − j)
. (12)

Definition 5. [13] (Partial Conformable Derivatives). Let ρ ∈ [0, 1], and let the functions k0, k1 : [0, 1]×R →
[0, ∞) be continuous and satisfy (3). Given a function f : R2 → R such that ∂

∂l f (l, s) exists for each fixed
s ∈ R, define the partial differential operator Dρ

l via

Dρ
l f (l, s) = k1(ρ, l) f (l, s) + k0(ρ, l)

∂

∂l
f (l, s). (13)

Definition 6. [13] (Conformable Exponential Function). Let ρ ∈ (0, 1], the points s, l,∈ R with s ≤ l, and let
the function p : [s, l] → R be continuous. Let k0, k1 : [0, 1]× R → [0, ∞) be continuous and satisfy (3),
with p/k0 and k1/k0 Riemann integrable on [s, l]. Then the exponential function with respect to Dρ in (4) is
defined to be

ep(l, s) := e
∫ l

s
p(τ)−k1(ρ,τ)

k0(ρ,τ) dτ
, e0(l, s) := e

−
∫ l

s
k1(ρ,τ)
k0(ρ,τ) dτ

. (14)

Using (4) and (14), we have the following basic results.

Lemma 3. [13] (Basic Derivatives). Let the conformable differential operator Dρ be given as in (4),
where ρ ∈ [0, 1]. Let the function p : [s, l] → R be continuous. Let k0, k1 : [0, 1] × R → [0, ∞) be
continuous and satisfy (3), with p/k0 and k1/k0 Riemann integrable on [s, l]. Assume the functions f and g
are differentiable as needed. Then

(i) Dρ[a f + bg] = aDρ[ f ] + bDρ[g] for all a, b ∈ R;
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(ii) Dρc = ck1(ρ, · ) for all constants c ∈ R;
(iii) Dρ[ f g] = f Dρ[g] + gDρ[ f ]− f gk1(ρ, · );
(iv) Dρ[ f /g] = gDρ [ f ]− f Dρ [g]

g2 + f
g k1(ρ, · );

(v) for ρ ∈ (0, 1] and fixed s ∈ R, the exponential function satisfies

Dρ
l [ep(l, s)] = p(l)ep(l, s)

for ep(l, s) given in (14);
(vi) for ρ ∈ (0, 1] and for the exponential function e0 given in (14), we have

Dρ

[∫ l

a

f (s)e0(l, s)
k0(ρ, s)

ds

]
= f (l).

Definition 7. [15] For ρ ∈ (0, 1] and α ∈ C with Re(α) ≥ 0, we define the left GPF derivative of Caputo type
starting at a by

(C
a Dα,ρ f )(l) = a In−α,ρ(Dn,ρ f )(l)

=
1

ρn−αΓ(n − α)

∫ l

a
e

ρ−1
ρ (l−s)

(l − s)n−α−1(Dn,ρ f )(s)ds. (15)

The right GPF derivative of Caputo ending at b is defined by

(CDα,ρ
b f )(l) = In−α,ρ

b (⊖Dn,ρ f )(l)

=
1

ρn−αΓ(n − α)

∫ b

l
e

ρ−1
ρ (s−l)

(s − l)n−α−1(⊖Dn,ρ f )(s)ds, (16)

where n = [Re(α)] + 1.

Lemma 4. [15] For ρ ∈ (0, 1] and n = [Re(α)] + 1, we have

a Iα,ρ(C
a Dα,ρ f )(l) = f (l)−

n−1

∑
k=0

(Dk,ρ f )(a)

ρkk!
(l − a)ke

ρ−1
ρ (l − a). (17)

Proposition 1. [15] Let α, β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any 0 < ρ ≤ 1 and
n = [Re(α)] + 1, we have

(i)

(
a Iα,ρe

ρ−1
ρ l

(l − a)β−1
)
(y) = Γ(β)

Γ(β+α)ρα e
ρ−1

ρ y
(y − a)β+α−1, Re(α) > 0.

(ii)

(
aDα,ρe

ρ−1
ρ l

(l − a)β−1
)
(y) = ραΓ(β)

Γ(β−α)
e

ρ−1
ρ y

(y − a)β−α−1, Re(α) ≥ 0.

(iii)

(
C
a D

α,ρ
e

ρ−1
ρ l

(l − a)β−1
)
(y) = ραΓ(β)

Γ(β−α)
e

ρ−1
ρ y

(y − a)β−α−1, Re(α) > n.

3. Oscillation Results via Riemann-Liouville Operator

In this section, we establish the oscillation criteria for the GPF initial value problem (1). We prove
our results under the following assumption:

(H) p ∈ C(R+,R), q ∈ C(R+,R+), g ∈ C(R+,R), f ∈ C(R,R) with f (u)
u > 0 for all u 6= 0.

For our convenience, we set the following notations:
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Φ(l) := Γ(α)e
ρ−1

ρ (l−a)
m

∑
j=1

ρjbj(l − a)α−j

Γ(α + 1 − j)
, (18)

Λ(l, L) :=
∫ L

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds, (19)

V(l) := exp
∫ l

l1

ρp(τ)− (1 − ρ)

ρ
dτ, (20)

M := l1 Dα,ρy(l1)V(l1), M is an arbitrary constant. (21)

Theorem 1. Assume that (H) holds. If

lim
l→∞

inf l1−α
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = −∞ (22)

and

lim
l→∞

sup l1−α
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = ∞, (23)

for every sufficiently large L, where V(l) and M are defined as in (20) and (21) respectively, then every solution
of problem (1) is oscillatory.

Proof. Suppose that y(l) is a nonoscillatory solution of problem (1). Without loss of generality,
let L > a be large enough and l1 ≥ L such that y(l) > 0 for all l ≥ l1. Using Lemma 3 (iii),
Equations (5) and (13), we have

Dρ[aDα,ρy(l)V(l)] = aDα,ρy(l)DρV(l) + V(l)Dρ (aDα,ρy(l))− (1 − ρ)aDα,ρy(l)V(l)

= aDα,ρy(l)DρV(l) + V(l)

[
(1 − ρ)aDα,ρy(l) + ρ

d
dl

(aDα,ρy(l))

]

−(1 − ρ)aDα,ρy(l)V(l)

= ρ
[

aD1+α,ρy(l) + p(l)aDα,ρy(l)
]

V(l)

= ρ [−q(l) f (y(l)) + g(l)]V(l)

< ρg(l)V(l).

Taking the proportional integral operator l1 I1,ρ on both sides to the above inequality, we obtain

l1 I1,ρ (Dρ [aDα,ρy(l)V(l)]) < l1 I1,ρ (ρg(l)V(l)) . (24)

Using Lemma 1 on the L.H.S of (24), we have

aDα,ρy(l) <
e

ρ−1
ρ (l−l1)M + l1 I1,ρ (ρg(l)V(l))

V(l)
.

Taking the left GPF integral operator a Iα,ρon both sides to the above inequality, we get

a Iα,ρ (aDα,ρy(l)) < a Iα,ρ


 e

ρ−1
ρ (l−l1)M + l1 I1,ρ (ρg(l)V(l))

V(l)


 . (25)
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Using Lemma 2 on the L.H.S of (25), we have

y(l)− e
ρ−1

ρ (l−a)
m

∑
j=1

bj(l − a)α−j

ρα−jΓ(α + 1 − j)
< a Iα,ρ


 e

ρ−1
ρ (l−l1)M + l1 I1,ρ (ρg(l)V(l))

V(l)


 . (26)

Applying the left GPF integral formula on the R.H.S of (26) , we have

y(l) < e
ρ−1

ρ (l−a)
m

∑
j=1

bj(l − a)α−j

ρα−jΓ(α + 1 − j)

+
1

ραΓ(α)

∫ l

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρ g(s)V(s))

V(s)


 ds,

for every sufficiently large L. If we multiply the above inequality by ραΓ(α), we get

ραΓ(α)y(l) < Γ(α)e
ρ−1

ρ (l−a)
m

∑
j=1

ρjbj(l − a)α−j

Γ(α + 1 − j)

+
∫ L

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1) M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

+
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds (27)

= Φ(l) + Λ(l, L) +
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds,

where Φ(l) and Λ(l, L) are defined in (18) and (19), respectively.
Multiplying (27) by l1−α, we get

0 < l1−αραΓ(α)y(l)

< l1−αΦ(l) + l1−αΛ(l, L) (28)

+l1−α
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds.

Let us consider the following two cases for L1 ≥ L.

Case(i): Let 0 < α ≤ 1. Then m = 1. Since
∣∣∣∣e

ρ−1
ρ (l−a)

∣∣∣∣ ≤ 1 and the function h1(l) =
(

l−a
l

)α−1
is

decreasing for ρ > 0 , 0 < α < 1 , we get for l ≥ L1,

∣∣∣l1−αΦ(l)
∣∣∣ =

∣∣∣∣∣e
ρ−1

ρ (l−a)
ρb1

(
l − a

l

)α−1
∣∣∣∣∣ ≤ ρ|b1|

(
L1 − a

L1

)α−1

:= C1(L1), (29)
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and

∣∣∣l1−αΛ(l, L)
∣∣∣ =

∣∣∣∣∣∣
l1−α

∫ L

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

∣∣∣∣∣∣

≤
∫ L

a

∣∣∣∣e
ρ−1

ρ (l−s)
∣∣∣∣
(

l − a
l

)α−1
∣∣∣∣∣∣
e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)

∣∣∣∣∣∣
ds (30)

≤
∫ L

a

(
L1 − a

L1

)α−1
∣∣∣∣∣∣
e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)

∣∣∣∣∣∣
ds

:= C2(L, L1).

From (28), (29) and (30), we get, for l ≥ L1,

l1−α
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds ≥ −[C1(L1) + C2(L, L1)].

Since the R.H.S of the above inequality is a negative constant, it follows that

lim
l→∞

inf l1−α
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds > −∞,

which leads to a contradiction with (22).

Case(ii): Let α > 1. Then m ≥ 2 and
(

l−a
l

)α−1
< 1 for α > 1 and ρ > 0. Since

∣∣∣e
ρ−1

ρ (l−a)
∣∣∣ ≤ 1 and

the function h2(l) = (l − a)1−j is decreasing for j > 1 and ρ > 0, for l ≥ L1, we have

∣∣∣l1−αΦ(l)
∣∣∣ =

∣∣∣∣∣l
1−αΓ(α)e

ρ−1
ρ (l−a)

m

∑
j=1

ρjbj(l − a)α−j

Γ(α + 1 − j)

∣∣∣∣∣

≤ Γ(α)

(
l − a

l

)α−1 m

∑
j=1

ρj|bj|(l − a)1−j

Γ(α + 1 − j)
(31)

≤ Γ(α)
m

∑
j=1

ρj|bj|(L1 − a)1−j

Γ(α + 1 − j)

:= C3(L1),

and

∣∣∣l1−αΛ(l, L)
∣∣∣ =

∣∣∣∣∣∣

∫ L

a
e

ρ−1
ρ (l−s)

(
l − s

l

)α−1

 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

∣∣∣∣∣∣

≤
∫ L

a

∣∣∣∣∣∣
e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)

∣∣∣∣∣∣
ds (32)

:= C4(L).

From (28), (31) and (32), we conclude that for l ≥ L1,

l1−α
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds ≥ −[C3(L1) + C4(L)].
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Since, the R.H.S of the above inequality is a negative constant, it follows that

lim
l→∞

inf l1−α
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds > −∞,

which is a contradiction to (22).
Therefore, y(l) is oscillatory. If y(l) is eventually negative, by a similar argument, we get a

contradiction with condition (23). Hence the theorem.

4. Oscillation Results via Caputo Operator

In this section, we establish the oscillation criteria for the GPF initial value problem (2) under the
assumption (H):

We set

Ψ(l) := Γ(α)
m−1

∑
k=0

bk

ρk−αk!
(l − a)ke

ρ−1
ρ (l−a), (33)

Ω(l, L) :=
∫ L

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds, (34)

M∗ := C
a Dα,ρy(a)V(a), M∗ is an arbitrary constant. (35)

Theorem 2. Assume that (H) holds. If

lim
l→∞

inf l1−n
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = −∞ (36)

and

lim
l→∞

sup l1−n
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = ∞, (37)

for every sufficiently large L, where V(l) and M∗ are defined as in (20) and (35), respectively, then every solution
of problem (2) is oscillatory.

Proof. Suppose that y(l) is a nonoscillatory solution of problem (2). Without loss of generality,
let L > a be large enough and l1 ≥ L such that y(l) > 0 for l ≥ l1. Using Lemma 3 (iii), Equations (5)
and (13), we have

Dρ[Ca Dα,ρy(l)V(l)] = C
a Dα,ρy(l)DρV(l) + V(l)Dρ

(
C
a Dα,ρy(l)

)
− (1 − ρ)C

a Dα,ρy(l)V(l)

= C
a Dα,ρy(l)DρV(l) + V(l)

[
(1 − ρ)C

a Dα,ρy(l) + ρ
d
dl

(
C
a Dα,ρy(l)

)]

−(1 − ρ)C
a Dα,ρy(l)V(l)

= ρ
[

C
a D1+α,ρy(l) + p(l)C

a Dα,ρy(l)
]

V(l)

= ρ [−q(l) f (y(l)) + g(l)]V(l)

< ρg(l)V(l).
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Taking the proportional integral operator l1 I1,ρ on both sides to the above inequality, we obtain

l1 I1,ρ
(

Dρ
[

C
a Dα,ρy(l)V(l)

])
< l1 I1,ρ (ρg(l)V(l)) . (38)

Using Lemma (1) on the L.H.S of (38) , we have

C
a Dα,ρy(l) <

e
ρ−1

ρ (l−l1)M∗ + l1 I1,ρ (ρg(l)V(l))

V(l)
.

Applying the left GPF integral operator a Iα,ρon both sides to the above inequality, we get

a Iα,ρ
(

C
a Dα,ρy(l)

)
< a Iα,ρ


 e

ρ−1
ρ (l−l1)M∗ + l1 I1,ρ (ρg(l)V(l))

V(l)


 . (39)

Using Lemma 4 on the L.H.S of (39), we have

y(l)−
n−1

∑
k=0

(Dk,ρy)(a)

ρkk!
(l − a)ke

ρ−1
ρ (l−a)

< a Iα,ρ


 e

ρ−1
ρ (l−l1)M∗ + l1 I1,ρ (ρg(l)V(l))

V(l)


 . (40)

Applying the left GPF integral formula on the R.H.S of (40), we have

y(l) <
n−1

∑
k=0

bk

ρkk!
(l − a)ke

ρ−1
ρ (l−a)

+
1

ραΓ(α)

∫ l

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds,

for every sufficiently large L. If we multiply the above inequality by ραΓ(α), we get

ραΓ(α)y(l) < ραΓ(α)
n−1

∑
k=0

bk

ρkk!
(l − a)k e

ρ−1
ρ (l−a)

+
∫ L

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

+
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds (41)

= Ψ(l) + Ω(l, L)

+
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds,

where Ψ(l) and Ω(l, L) are defined in (33) and (34), respectively.
Multiplying (41) by l1−n, we get

0 < l1−nΓ(α)y(l)

< l1−nΨ(l) + l1−nΩ(l, L) (42)

+l1−n
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds.
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Let us consider the following two cases for L1 ≥ L.

Case(i): Let 0 < α ≤ 1. Then n = 1. Since
∣∣∣∣e

ρ−1
ρ (l−a)

∣∣∣∣ ≤ 1 and the function h3(l) = (l − s)α−1 is

decreasing for 0 < α < 1 , we get for l ≥ L1 ,

∣∣∣l1−nΨ(l)
∣∣∣ =

∣∣∣∣∣l
1−nΓ(α)

n−1

∑
k=0

bk

ρk−αk!
(l − a)ke

ρ−1
ρ (l−a)

∣∣∣∣∣ ≤ ραΓ(α)|b0| := C5(L), (43)

and

∣∣∣l1−nΩ(l, L)
∣∣∣ =

∣∣∣∣∣∣
l1−n

∫ L

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

∣∣∣∣∣∣

≤
∫ L

a
(l − s)α−1

∣∣∣∣∣∣
e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)

∣∣∣∣∣∣
ds (44)

≤
∫ L

a
(L1 − s)α−1

∣∣∣∣∣∣
e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)

∣∣∣∣∣∣
ds

:= C6(L, L1).

Then, from (42) and l ≥ L1, we get

l1−n
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds ≥ −[C5(L) + C6(L, L1)].

Since, the R.H.S of the above inequality is a negative constant, it follows that

lim
l→∞

inf l1−n
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds > −∞,

which leads to a contradiction with the condition (36).

Case(ii): Let α > 1. Then n ≥ 2 and
(

l−a
l

)n−1
< 1 for n ≥ 2 and α > 1. Since

∣∣∣∣e
ρ−1

ρ (l−a)
∣∣∣∣ ≤ 1 and

the function h4(l) = (l − a)k−n+1 is decreasing for k > n − 1 and for l ≥ L1, we have

∣∣∣l1−nΨ(l)
∣∣∣ =

∣∣∣∣∣l
1−n Γ(α)

n−1

∑
k=0

bk

ρk−αk!
(l − a)ke

ρ−1
ρ (l−a)

∣∣∣∣∣

=

∣∣∣∣∣ρ
αΓ(α)

(
l − a

l

)n−1 n−1

∑
k=0

bk

ρkk!
(l − a)k−n+1e

ρ−1
ρ (l−a)

∣∣∣∣∣

≤ ραΓ(α)
n−1

∑
k=0

|bk|
ρkk!

(l − a)k−n+1 (45)

≤ ραΓ(α)
n−1

∑
k=0

|bk|(L1 − a)k−n+1

ρkk!

:= C7(L1),
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and

∣∣∣l1−nΩ(l, L)
∣∣∣ =

∣∣∣∣∣∣
l1−n

∫ L

a
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

∣∣∣∣∣∣

=

∣∣∣∣∣∣
lα−n

∫ L

a
e

ρ−1
ρ (l−s)

(
l − s

l

)α−1

 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

∣∣∣∣∣∣

≤
∫ L

a

∣∣∣∣∣∣
e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)

∣∣∣∣∣∣
ds (46)

:= C8(L).

From Equations (42), (45) and (46), we conclude that for l ≥ L1,

l1−n
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds ≥ −[C7(L1) + C8(L)].

Since, the R.H.S of the above inequality is a negative constant, it follows that

lim
l→∞

inf l1−n
∫ l

L
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds > −∞,

which contradicts the (36).
Therefore, y(l) is oscillatory. If y(l) is eventually negative, by a similar argument, we get

a contradiction with condition (37). Hence the theorem.

Remark 1. If we put ρ = 1 in Theorem (1) and Theorem (2), then they reduced to Theorem 3.1 and Theorem
4.1, respectively, of [24].

5. Examples

This section include some examples for the illustration of our main results.

Example 1. Consider the following GPF initial value problem





0D
3
2 ,1y(l)− 0D

1
2 ,1y(l) + (l + 7)2(y + 3)ecos 2y = e2l sin l, l > 0,

lim
l→0+

0 I
1
2 ,1y(l) = b1.

(47)

Setting α = 1
2 , ρ = 1, a = 0, p(l) = −1, q(l) = (l + 7)2, f (y) = (y + 3)ecos 2y, g(l) = e2l sin l and

V(l) = el1−l . The assumption (H) is satisfied if y(l) > 0. Then,

l1 I1,ρ (ρg(s)V(s)) =
1
ρ

∫ s

l1
e

ρ−1
ρ (s−τ)

ρg(τ)V(τ)dτ

=
∫ s

l1
el1+τ sin τdτ

=
el1+s

2
(sin s − cos s)− e2l1

2
(sin l1 − cos l1)

=

√
2el1+s

2
sin
(

s − π

4

)
− e2l1

2
(sin l1 − cos l1) .
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Set a point l1 = π
2 . Hence, we compute that

l1−α
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

= l
1
2

∫ l

0
(l − s)−

1
2 es− π

2

[(
M − eπ

2

)
+

√
2

2
e

π
2 +s sin

(
s − π

4

)]
ds.

By setting l − s = τ2, we can get the above integral as

l
1
2

∫ l

0
(l − s)−

1
2 es− π

2

[(
M − eπ

2

)
+

√
2

2
e

π
2 +s sin

(
s − π

4

)]
ds

= l
1
2

∫ 0
√

l

1
τ

el−τ2− π
2

[(
2M − eπ

2

)
+

√
2

2
e

π
2 +l−τ2

sin
(

l − τ2 − π

4

)]
(−2τ)dτ

= (2M − eπ) l
1
2 el− π

2

∫ √
l

0
e−τ2

dτ +
√

2l
1
2 e2l

∫ √
l

0
e−2τ2

sin
(

l − τ2 − π

4

)
dτ

= (2M − eπ) l
1
2 el− π

2

∫ √
l

0
e−τ2

dτ +
√

2l
1
2 e2l sin

(
l − π

4

) ∫ √
l

0
e−2τ2

cos τ2dτ

−
√

2l
1
2 e2l cos

(
l − π

4

) ∫ √
l

0
e−2τ2

sin τ2dτ.

Let l → +∞ as the result of |e−2τ2
cos τ2| ≤ e−2τ2

, |e−2τ2
sin τ2| ≤ e−2τ2

and liml→+∞

∫ √
l

0 e−2τ2
dτ =

√
2π
4 . Thus, we know that liml→+∞

∫ √
l

0 e−2τ2
cos τ2dτ and

liml→+∞

∫ √
l

0 e−2τ2
sin τ2dτ are convergent.

Hence, we set liml→+∞

∫ √
l

0 e−2τ2
cos τ2dτ = A and liml→+∞

∫ √
l

0 e−2τ2
sin τ2dτ = B. Select the

sequence {lk} =
{

3π
2 + π

4 + 2kπ − arctan
(
− B

A

)}
, liml→+∞ lk = ∞, then

lim
k→+∞

{
l

1
2
k elk

[
(2M − eπ) e−

π
2

∫ √
lk

0
e−τ2

dτ +
√

2elk

(
sin
(

lk −
π

4

) ∫ √
lk

0
e−2τ2

cos τ2dτ

− cos
(

lk −
π

4

) ∫ √
lk

0
e−2τ2

sin τ2dτ

)]}
. (48)

Firstly, we consider the following limit:

lim
k→+∞

{
sin
(

lk −
π

4

) ∫ √
lk

0
e−2τ2

cos τ2dτ − cos
(

lk −
π

4

) ∫ √
lk

0
e−2τ2

sin τ2dτ

}

= A · lim
k→+∞

sin
(

3π

2
+ 2kπ − arctan

(
− B

A

))
− B · lim

k→+∞
cos

(
3π

2
+ 2kπ − arctan

(
− B

A

))

= A · sin
(

3π

2
− arctan

(
− B

A

))
− B · cos

(
3π

2
− arctan

(
− B

A

))

= −
√

A2 + B2.
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Secondly, we know that limk→+∞ elk = +∞ and limk→+∞ 2Melk e−
π
2
∫√lk

0 e−τ2
dτ = 2Me−

π
2

√
π

2 =√
πMe−

π
2 . Hence, for (48), we have

lim
k→+∞

{
l

1
2
k elk

[
(2M − eπ) e−

π
2

∫ √
lk

0
e−τ2

dτ +
√

2elk

(
sin
(

lk −
π

4

) ∫ √
lk

0
e−2τ2

cos τ2dτ

− cos
(

lk −
π

4

) ∫ √
lk

0
e−2τ2

sin τ2dτ

)]}

=
[√

πMe−
π
2 + (+∞)

(
−
√

A2 + B2
)]

= −∞.

Then, we obtain

lim
l→∞

inf l1−α
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = −∞ < 0.

Similarly, selecting the sequence {lr} =
{

3π
2 + π

4 + 2rπ − arctan
(
− B

A

)}
, we can obtain

lim
l→∞

sup l1−α
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = +∞ > 0.

Therefore, by Theorem 1 all solutions of the problem (47) are oscillatory.

Example 2. Consider the following GPF Caputo initial value problem





C
0 D

3
2 ,1

y(l)− C
0 D

1
2 ,1

y(l) + e(l+1)2
ln(y2 + e) = e2l cos l, l > 0,

y(0) = b0.
(49)

Setting α = 1
2 , ρ = 1, a = 0, p(l) = −1, q(l) = e(l+1)2

, f (y) = ln(y2 + e), g(l) = e2l cos l and
V(l) = el1−l . The assumption (H) is satisfied if y(l) > 0. Then, we get

l1 I1,ρ (ρg(s)V(s)) =
1
ρ

∫ s

l1
e

ρ−1
ρ (s−τ)

ρg(τ)V(τ)dτ

=
∫ s

l1
el1+τ cos τdτ

=
el1+s

2
(sin s + cos s)− e2l1

2
(sin l1 + cos l1)

=

√
2el1+s

2
sin
(

s +
π

4

)
− e2l1

2
(sin l1 + cos l1) .

Set l1 = π
2 with n = 1. Hence, we can compute that

l1−n
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

=
∫ l

0
(l − s)−

1
2 es− π

2

[(
M∗ − eπ

2

)
+

√
2

2
e

π
2 +s sin

(
s +

π

4

)]
ds.
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By setting l − s = τ2, we can get the above integral as

∫ l

0
(l − s)−

1
2 es− π

2

[(
M∗ − eπ

2

)
+

√
2

2
e

π
2 +s sin

(
s +

π

4

)]
ds

=
∫ 0
√

l

1
τ

el−τ2− π
2

[(
2M∗ − eπ

2

)
+

√
2

2
e

π
2 +l−τ2

sin
(

l − τ2 +
π

4

)]
(−2τ)dτ

= (2M∗ − eπ) el− π
2

∫ √
l

0
e−τ2

dτ +
√

2e2l
∫ √

l

0
e−2τ2

sin
(

l − τ2 +
π

4

)
dτ

= (2M∗ − eπ) el− π
2

∫ √
l

0
e−τ2

dτ +
√

2e2l sin
(

l +
π

4

) ∫ √
l

0
e−2τ2

cos τ2dτ

−
√

2e2l cos
(

l +
π

4

) ∫ √
l

0
e−2τ2

sin τ2dτ.

Let l → +∞ as the result of |e−2τ2
cos τ2| ≤ e−2τ2

, |e−2τ2
sin τ2| ≤ e−2τ2

and liml→+∞

∫ √
l

0 e−2τ2
dτ =

√
2π
4 . Thus, we know that liml→+∞

∫ √
l

0 e−2τ2
cos τ2dτ and

liml→+∞

∫ √
l

0 e−2τ2
sin τ2dτ are convergent.

Hence, we can set liml→+∞

∫ √
l

0 e−2τ2
cos τ2dτ = A and liml→+∞

∫ √
l

0 e−2τ2
sin τ2dτ = B.

Select the sequence {lk} =
{

7π
2 − π

4 + 2kπ − arctan
(
− B

A

)}
, liml→+∞ lk = ∞, then we compute

the following term:

lim
k→+∞

{
elk

[
(2M∗ − eπ) e−

π
2

∫ √
lk

0
e−τ2

dτ +
√

2elk

(
sin
(

lk +
π

4

) ∫ √
lk

0
e−2τ2

cos τ2dτ

− cos
(

lk +
π

4

) ∫ √
lk

0
e−2τ2

sin τ2dτ

)]}
. (50)

Firstly, we consider the following limit:

lim
k→+∞

{
sin
(

lk +
π

4

) ∫ √
lk

0
e−2τ2

cos τ2dτ − cos
(

lk +
π

4

) ∫ √
lk

0
e−2τ2

sin τ2dτ

}

= A · lim
k→+∞

sin
(

7π

2
+ 2kπ − arctan

(
− B

A

))
− B · lim

k→+∞
cos

(
7π

2
+ 2kπ − arctan

(
− B

A

))

= A · sin
(

7π

2
− arctan

(
− B

A

))
− B · cos

(
7π

2
− arctan

(
− B

A

))

= −
√

A2 + B2.

Secondly, we know that limk→+∞ elk = +∞ and limk→+∞ 2M∗elk e−
π
2
∫√lk

0 e−τ2
dτ =

2M∗e−
π
2

√
π

2 =
√

πM∗e−
π
2 . Hence, for (50), we have

lim
k→+∞

{
elk

[
(2M∗ − eπ) e−

π
2

∫ √
lk

0
e−τ2

dτ +
√

2elk

(
sin
(

lk +
π

4

) ∫ √
lk

0
e−2τ2

cos τ2dτ

− cos
(

lk +
π

4

) ∫ √
lk

0
e−2τ2

sin τ2dτ

)]}

=
[√

πM∗e−
π
2 + (+∞)

(
−
√

A2 + B2
)]

= −∞.
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Then, we obtain

lim
l→∞

inf l1−n
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = −∞ < 0.

Similarly, selecting the sequence {lr} =
{

π
2 − π

4 + 2rπ − arctan
(
− B

A

)}
, we can obtain

lim
l→∞

sup l1−n
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M∗ + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds = +∞ > 0.

Therefore, by Theorem 2 all solutions of the problem (49) are oscillatory.

Example 3. Consider the following GPF Riemann-Liouville initial value problem





0D
3
2 ,1y(l) +

√
l

(
4√
π
+ e3

√−y

(−y)
1
4

)
= e3l , l > 0,

lim
l→0+

0 I
1
2 ,1y(l) = 0.

(51)

Setting α = 1
2 , ρ = 1, a = p(l) = 0, q(l) =

√
l, f (y) = 4√

π
+ e3

√−y

(−y)
1
4

, g(l) = e3l and V(l) = 1.

The assumption (H) is satisfied if y(l) > 0. Then,

l1 I1,ρ (ρg(s)V(s)) =
1
ρ

∫ s

l1
e

ρ−1
ρ (s−τ)

ρg(τ)V(τ)dτ =
∫ s

l1
e3τdτ =

e3s

3
− e3l1

3
=

1
3

(
e3s − e3l1

)
.

By setting l1 = 1
3 and l − s = τ2, it follows that

l1−α
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−l1)M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

= l
1
2

∫ l

0
(l − s)−

1
2

[
M +

1
3

(
e3s − e

)]
ds.

= l
1
2

[(
M − e

3

) ∫ l

0
(l − s)−

1
2 ds +

1
3

∫ l

0
(l − s)−

1
2 e3sds

]

= 2l
1
2

[(
M − e

3

)√
l +

1
3

e3l
∫ √

l

0
e−3τdτ

]
.

However, the condition (22) does not holds since

lim
l→∞

inf l1−α
∫ l

0
e

ρ−1
ρ (l−s)

(l − s)α−1


 e

ρ−1
ρ (s−a) M + l1 I1,ρ (ρg(s)V(s))

V(s)


 ds

= lim
l→∞

inf

{
2l

1
2

[(
M − e

3

)√
l +

1
3

e3l
∫ √

l

0
e−3τdτ

]}

=

[(
M − e

3

)
(+∞) + (+∞)

√
π

2

]
= ∞.

Using Proposition 1 (ii) with α = 3
2 , β = 3 and ρ = 1, we get aDα,ρy(l) = − 4

√
l√

π
, it is easy to verify

that y(l) = −l2 is a nonoscillatory solution of (51). Figure 1 demonstrates the solution y(l) = −l2.
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Figure 1. The nonoscillatory behavior of the solution y(l) = −l2.

6. Conclusions

In this paper, the oscillatory behavior of solutions of generalized proportional fractional initial
value problem is studied. Forced and damped oscillation results are obtained via GPF operators in
the frame of Riemann-Liouville and Caputo settings. The main theorems of this paper improve and
generalize some existing oscillation theorems reported in the literature. In particular, for the choice of
ρ = 1, our contributions obtained using GPF operators cover the results discussed in Reference [24]
which are obtained via conformable operators. At the end, we presented some numerical examples
with particular values of parameters to illustrate the validity of the proposed results. Interestingly,
we provided an example demonstrating that the failure of any condition forces the existence of
a nonoscillatory solution. This justifies the advantage of our findings.

We believe that the results of this paper are of great importance for the audience of interested
researchers. Several types of oscillation conditions could be generalized by considering respective
equations within GPF derivatives.
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Abstract: This article is dealing with the analytical solution of Fornberg–Whitham equations in
fractional view of Caputo operator. The effective method among the analytical techniques, natural
transform decomposition method, is implemented to handle the solutions of the proposed problems.
The approximate analytical solutions of nonlinear numerical problems are determined to confirm the
validity of the suggested technique. The solution of the fractional-order problems are investigated for the
suggested mathematical models. The solutions-graphs are then plotted to understand the effectiveness
of fractional-order mathematical modeling over integer-order modeling. It is observed that the derived
solutions have a closed resemblance with the actual solutions. Moreover, using fractional-order
modeling various dynamics can be analyzed which can provide sophisticated information about
physical phenomena. The simple and straight-forward procedure of the suggested technique is the
preferable point and thus can be used to solve other nonlinear fractional problems.

Keywords: Adomian decomposition method; Caputo operator; Natural transform; Fornberg–Whitham
equations

1. Introduction

It is well known that in many fields of physics, the studies of non-linear wave problems and
their effects are of wide significance. Traveling wave solutions are a significant kind of result for the
non-linear partial differential condition and numerous non-linear fractional differential equations
(FDEs) have been shown to an assortment of traveling wave results. Although water wave are among
the extremely important of all-natural phenomena, they have an extraordinarily rich mathematical
structure. Water waves are one of the most complicated fields in wave dynamics, including the
study in non-linear, electromagnetic waves in 1 space and 3-time dimensions [1–5]. For illustration,
the well-known Korteweg–de Vries equation

Dtµ − 6µDxµ + µDxxxµ = 0,

has a simple solitary-wave solution [6]. Camassa-Holm equation

Dtµ − Dxxtµ + 3µDxµ = 2DxµDxxµ + µDxxxµ,
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a model approximation for symmetric non-linear dispersive waves in shallow water, was suggested by
Camassa and Holm [7]. Due to its useful mathematical proprieties, this scenario has attracted much
attention during the past decade. It has been found that the Camassa Holm equation includes poles,
composite wave, stumpons, and cuspons solutions [8]. The specific Camassa–Holm equation solutions
were studied by Vakhnenko and Parkes [9]. In mathematical physics the Fornberg-Whitham (FW)
model is a significant mathematical equation. The FWE [10,11] is expressed as

Dtµ − Dxxtµ + Dxµ = µDxxxµ − µDxµ + 3DxµDxxµ,

where µ(x, t) is the fluid velocity, x is the spatial co-ordinate and t is the time. In 1978 Fornberg
and Whitham derived a µ(x, t) = Ce

x
2 − 4t

3 peaked solution with an arbitrary constant of C [12]. This
algorithm was developed to analyze the breakup of dispersive nonlinear water waves. The FWE has
been found to require peakon results as a simulation for limiting wave heights as well as the frequency
of wave breaks. In fractional calculus (FC) has gained considerable significance and popularity,
primarily because of its well-shown applications in a wide range of apparently disparate areas of
engineering and science [13]. Many scholars, such as Singh et al. [14], Merdan et al. [15], Saker et al. [16],
Gupta and Singh [17] etc., have therefore researched the fractional extensions of the FW model for the
Caputo fractional-order derivative [18].

The existence, uniqueness and stability are the important ingredient to show for any mathematical
problems in science and engineering. In this connection Li et al. have determine the existance and unique
of the solutions for some nonlinear fractional differential equations [19]. Becani et al. have discussed the
theory of existence and uniqueness for some singular PDEs [20]. The generalized theorem of existence
and uniqueness for nth order fractional DEs was analyzed by Dannan et al. in [21]. Similarly the stability
of solutions for the Fornberg-Whitham equation was investigated by Xiujuan Gao et al. in [22]. Shan et al.
have discussed the optimal control of the Fornberg-Whitham equation [23].

Recently, the researchers have taken greater interest in FC, i.e., the study of integrals and
derivatives of fractional-order non-integer. Major importance have been demonstrated in the analysis
of the FC and its various implementations in the field engineering [24–27]. FDEs are widely utilized
to model in a variety of fields of study, including an analysis of fractional random walking, kinetic
control schemes theory, signal processing, electrical networks, reaction and diffusion procedure [28,29].
FD provides a splendid method for characterizing the memories and genetic properties of different
procedures [30,31].

Over the last few years, FDEs have become the subject of several studies owing to their frequent
use in numerous implementations in viscoelasticity, biology, fluid mechanics, physics, dynamical
schemes, electrical network, physics, signal and optics process, as they can be modelled by linear
and nonlinear FDEs [32–36]. FD offer an outstanding method for explaining the memories and
inherited properties of specific materials and processes. Fractional-order integrals and derivatives
have proven more effective in formulating such electrical and chemical problems than the standard
models. Non-linear FPDEs have many applications in various areas of engineering such as heat and
mass transfer, thermodynamics and micro-electro mechanics scheme [37–39].

The technique of natural decomposition (NDM) was initially developed by Rawashdeh
and Maitama in 2014 [40–42], to solve ODEs and PDEs that appear in different fields of mathematics.
The suggested technique is mixing of the Adomian technique (ADM) and natural transformation.
The key benefit of this suggested technique is the potential to integrate two important methods of
achieving fast convergent series for PDEs. Many scholars have recently solved different types of
fractional-order PDEs, for example heat and wave equations [43], coupled Burger equations [44],
hyperbolic telegraph equation [45], Harry Dym equation [46] and diffusion equations [47].
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2. Preliminaries

Definition 1. Let g ∈ Cβ and β ≥ −1, then the Riemann–Liouville integral of order γ, γ > 0 > is given
by [48–50]:

Jγ
t g(x, t) =

1
Γ(γ)

∫ t

0
(t − θ)γ−1g(x, θ)dθ, t > 0. (1)

Definition 2. Let g ∈ Ct and t ≥ −1, then Caputo definition of fractional derivative of order γ if m − 1 <

γ ≤ m with m ∈ N is describe as [48–50]

Dγ
t g(t) =





dmg(t)
dtm , γ = m ∈ N,

1
Γ(m−γ)

∫ t
0 (t − θ)m−γ−1g(m)(θ)dθ, m − 1 < γ < m, m ∈ N,

(2)

Remark 1. Some basic properties are below [48–50]

Dγ
x Iγ

x g(x) = g(x),

Iγxλ =
Γ(λ + 1)

Γ(γ + λ + 1)
xγ+λ, γ > 0, λ > −1, x > 0,

Dγ
x Iγ

x g(x) = g(x)−
m

∑
k=0

g(k)(0+)
xk

k!
, for x > 0.

Definition 3. The natural transform of the function g(t) is expressed by N[g(t)] for t ∈ R and is given
by [40–42,51]

N [g(t)] = G(s, ω) =
∫ ∞

−∞
e−stg(ωt)dt; s, ω ∈ (−∞, ∞),aa

where s and ω are the NT variables. If g(t)H(t) is defined for positive real numbers, then NT can be presented
as [40–42,51]

N[g(t)Q(t)] = N+[g(t)] = G+(s, ω) =
∫ ∞

0
e−stg(ωt)dt; s, ω ∈ (0, ∞), and t ∈ R, (3)

where Q(t) denotes the Heaviside function.

Theorem 1. The NT of the Caputo derivative of fractional order of any function g(t) is defined as [40–42,51]

N+[cDγg(t)] =
sγ

ωγ
G(s, ω)−

m−1

∑
k=0

sγ−(k+1)

ωγ−k
[Dkg(t)]t=0, m − 1 ≤ γ < m. (4)

where m is the natural number and γ represent the order of the derivative with fractional order.

Remark 2. Some basic NT properties are listed below [40–42,51]

N+[1] =
1
s

,

N+[tγ] =
Γ(γ + 1)ωγ

sγ+1 ,

N+[g(m)(t)] =
sm

ωm R(s, ω)−
m−1

∑
k=0

sm−(k+1)

ωm−k

Γ(γ + 1)ωγ

sγ+1 .
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3. NDM Procedure

In this section, NDM procedure is introduced to solve general FPDEs of the form [41,42]

Dγµ(x, t) + Lµ(x, t) + Nµ(x, t) = P(x, t), x, t ≥ 0, ℓ− 1 < γ < ℓ, (5)

The fractional derivative in Equation (5) is represented by Caputo operator. The linear and nonlinear
terms are denoted by L and N respectively and the source term is P(x, t).

The solution at t = 0 is
µ(x, 0) = h(x). (6)

Using NT to Equation (5), we get [41,42]

N+ [Dγµ(x, t)] + N+ [Lµ(x, t) + Nµ(x, t)] = N+ [P(x, t)] , (7)

Applying the differential property of NT [41,42]

sγ

ωγ
N+ [µ(x, t)]− sγ−1

ωγ
µ(x, 0) = N+ [P(x, t)]− N+ [Lµ(x, t) + Nµ(x, t)] ,

N+ [µ(x, t)] =
1
s

µ(x, 0) +
ωγ

sγ
N+ [P(x, t)]− ωγ

sγ
N+ [Lµ(x, t) + Nµ(x, t)] .

Now µ(x, 0) = k(x),

N+ [µ(x, t)] =
h(x)

s
+

ωγ

sγ
N+ [P(x, t)]− ωγ

sγ
N+ [Lµ(x, t) + Nµ(x, t)] . (8)

The infinite series of NDM µ(x, t) is shown by

µ(x, t) =
∞

∑
ℓ=0

µℓ(x, t). (9)

Adomian polynomial for nonlinear terms is

Nµ(x, t) =
∞

∑
ℓ=0

Aℓ, (10)

Aℓ =
1
ℓ!

[
dℓ

dλℓ

[
N

∞

∑
ℓ=0

(λℓµℓ)

]]

λ=0

, ℓ = 0, 1, 2 · · · (11)

putting Equations (9) and (11) into Equation (8), we have

N+

[
∞

∑
ℓ=0

µℓ(x, t)

]
=

h(x)
s

+
ωγ

sγ
N+ [P(x, t)]− ωγ

sγ
N+

[
L

∞

∑
ℓ=0

µℓ(x, t) +
∞

∑
ℓ=0

Aℓ

]
. (12)

N+ [µ0(x, t)] =
h(x)

s
+

ωγ

sγ
N+ [P(x, t)] , (13)

N+ [µ1(x, t)] = −ωγ

sγ
N+ [Lµ0(x, t) + A0] .

We will usually compose

N+ [µℓ+1(x, t)] = −ωγ

sγ
N+ [Lµℓ(x, t) + Aℓ] , ℓ ≥ 1. (14)
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Using the inverse NT to Equations (13) and (14) [41,42].

µ0(x, t) = h(x) + N−
[

ωγ

sγ
N+ [P(x, t)]

]
,

υℓ+1(x, t) = −N−
[

ωγ

sγ
N+ [Lµℓ(x, t) + Aℓ]

]
. (15)

4. NDM Implementation

Example 1. The following nonlinear Fornberg-Whitham with fractional derivative is considered [14]

Dγ
t µ − Dxxtµ + Dxµ = µDxxxµ − µDxµ + 3DxµDxxµ, t > 0, 0 < γ ≤ 1, (16)

having initial solution as

µ(x, 0) = exp
( x

2

)
. (17)

Applying NT to Equation (16), we have

sγ

ωγ
N+ [µ(x, t)]− sγ−1

ωγ
µ(x, 0) = N+ [Dxxtµ − Dxµ + µDxxxµ − µDxµ + 3DxµDxxµ] .

N+ [µ(x, t)]− 1
s

µ(x, 0) =
ωγ

sγ
N+ [Dxxtµ − Dxµ + µDxxxµ − µDxµ + 3DxµDxxµ] .

Using inverse natural transformation

µ(x, t) = N−
[

µ(x, 0)
s

− ωγ

sγ
N+ [Dxxtµ − Dxµ + µDxxxµ − µDxµ + 3DxµDxxµ]

]
.

Applying the ADM process, we have

µ0(x, t) = N−
[

µ(x, 0)
s

]
= N−

[
exp

( x
2

)

s

]
,

µ0(x, t) = exp
( x

2

)
, (18)

∞

∑
ℓ=0

µℓ+1(x, t) = N−
[

ωγ

sγ
N+

[
∞

∑
ℓ=0

(Dxxtµ)ℓ −
∞

∑
ℓ=0

(Dxµ)ℓ +
∞

∑
ℓ=0

Aℓ −
∞

∑
ℓ=0

Bℓ + 3
∞

∑
ℓ=0

Cℓ

]]
, ℓ = 0, 1, 2, · · ·

A0(µDxxxµ) = µ0Dxxxµ0,

A1(µDxxxµ) = µ0Dxxxµ1 + µ1Dxxxµ0,

A2(µDxxxµ) = µ1Dxxxµ2 + µ1Dxxxµ1 + µ2Dxxxµ0,

B0(µDxµ) = µ0Dxµ0,

B1(µDxµ) = µ0Dxµ1 + µ1Dxµ0,

B2(µDxµ) = µ1Dxµ2 + µ1Dxµ1 + µ2Dxµ0,

C0(DxµDxxµ) = Dxµ0Dxxµ0,

C1(DxµDxxµ) = Dxµ0Dxxµ1 + Dxµ1Dxxµ0,

C2(DxµDxxµ) = Dxµ1Dxxµ2 + Dxµ1Dxxµ1 + Dxµ2Dxxµ0,

for ℓ = 1
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µ1(x, t) = N−
[

ωγ

sγ
N+ [(Dxxtµ)0 − (Dxµ)0 + A0 − B0 + 3C0]

]
,

µ1(x, t) = −1
2

N−
[

ωγ exp( x
2 )

sγ+1

]
= −1

2
exp

( x
2

) tγ

Γ(γ + 1)
.

(19)

for ℓ = 2

µ2(x, t) = N−
[

ωγ

sγ
N+ [(Dxxtµ)1 − (Dxµ)1 + A1 − B1 + 3C1]

]
,

µ2(x, t) = −1
8

exp
( x

2

) t2γ−1

Γ(2γ)
+

1
4

exp
( x

2

) t2γ

Γ(2γ + 1)
,

(20)

for ℓ = 3

µ3(x, t) = N−
[

ωγ

sγ
N+ [(Dxxtµ)2 − (Dxµ)2 + A2 − B2 + 3C2]

]
,

µ3(x, t) = − 1
32

exp
( x

2

) t3γ−2

Γ(3γ − 1)
+

1
8

exp
( x

2

) γ3γ−1

Γ(3γ)
− 1

8
exp

( x
2

) t3γ

Γ(3γ + 1)
,

(21)

The NDM solution for problem (16) is

µ(x, t) = µ0(x, t) + µ1(x, t) + µ2(x, t) + µ3(x, t) + µ4(x, t) · · · .

µ(x, t) = exp
( x

2

)
− 1

2
exp

( x
2

) tγ

Γ(γ + 1)

− 1
8

exp
( x

2

) t2γ−1

Γ(2γ)
+

1
4

exp
( x

2

) t2γ

Γ(2γ + 1)
− 1

32
exp

( x
2

)

t3γ−2

Γ(3γ − 1)
+

1
8

exp
( x

2

) γ3γ−1

Γ(3γ)
− 1

8
exp

( x
2

) t3γ

Γ(3γ + 1)
− · · · .

(22)

The simplification of Equation (22);

µ(x, t) = exp
( x

2

) [
1 − tγ

2Γ(γ + 1)
− 1

8
t2γ−1

Γ(2γ)
+

1
4

t2γ

Γ(2γ + 1)
− 1

32
t3γ−2

Γ(3γ − 1)
+

1
8

t3γ−1

Γ(3γ)
− 1

8
t3γ

Γ(3γ + 1)
+ · · ·

]
. (23)

The exact result of Example 1

µ(x, t) = exp
(

x
2
− 2t

3

)
, (24)

In Table 1, the NDM-solutions at different fractional-order derivatives, γ = 0.5, 0.7 and 1 are
shown. The NDM-solutions at various time level, t = 0.2, 0.4 and t = 1 are determined. The absolute
error of the proposed method at γ = 1 is also displayed. From Table 1, it is investigated that suggested
method has the desire rate of convergence and considered to be the best tool for the analytical solution
of FPDEs. In Table 2, the NDM and LADM solutions are compared at various fractional-order of the
derivatives. It is observed that the NDM has the higher degree of accuracy as compared to LDM.
The comparison has been done at γ = 0.5, 0.7 and 0.9. It is also investigated that the fractional-order
solutions of NDM have the higher accuracy as compared LDM.
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Table 1. The NDM solutions and absolute error of Example 1 at γ = 0.5, 0.7 and 1.

t x γ = 0.50 γ = 0.7 NDM (γ = 1) Exact NDM (AE) (γ = 1)

0.2

0.5 1.168497921 1.229840967 1.266952492 1.267018708 6.620 × 10−5

1.0 1.500381030 1.579147061 1.626799201 1.626884224 8.500 × 10−5

1.5 1.926527377 2.027664962 2.088851523 2.088960694 1.090 × 10−4

2.0 2.473710118 2.603573348 2.682138447 2.682278626 1.400 × 10−4

0.4

0.5 1.123744786 1.197168588 1.250129766 1.25023725 1.070 × 10−4

1.0 1.442916867 1.537194895 1.605198393 1.60533640 1.380 × 10−4

1.5 1.852741931 1.973797315 2.061115536 2.06129274 1.770 × 10−4

2.0 2.378967730 2.534405920 2.646524735 2.64675227 2.270 × 10−4

1

0.5 1.039959208 1.124099772 1.201030155 1.20114746 1.84 × 10−4

1.0 1.335334055 1.443372678 1.542153245 1.542390265 2.370 × 10−4

1.5 1.714602867 1.853327204 1.980163963 1.980468303 3.004 × 10−4

2.0 2.201593661 2.379719235 2.542580858 2.542971638 3.900 × 10−4

Table 2. Two terms comparison of NDM and LDM [16] of different fractional-order at γ = 0.5, 0.7 and
0.9 of Example 1.

x t NDM LDM NDM LDM NDM LDM

γ = 0.5 γ = 0.5 γ = 0.7 γ = 0.7 γ = 0.9 γ = 0.9

0.1 1.259 × 10−1 4.021 × 10−1 5.006 × 10−2 2.158 × 10−1 2.833 × 10−3 4.973 × 10−2

0.2 1.408 × 10−1 4.171 × 10−1 5.916 × 10−2 2.249 × 10−1 2.978 × 10−3 5.227 × 10−2

0.3 1.411 × 10−1 4.174 × 10−1 6.148 × 10−2 2.272 × 10−1 3.131 × 10−3 5.496 × 10−2

0.4 1.356 × 10−1 4.119 × 10−1 6.153 × 10−2 2.273 × 10−1 3.291 × 10−3 5.777 × 10−2

0.2 0.5 1.276 × 10−1 4.039 × 10−1 6.107 × 10−2 2.268 × 10−1 3.460 × 10−3 6.074 × 10−2

0.6 1.186 × 10−1 3.949 × 10−1 6.096 × 10−2 2.267 × 10−1 3.638 × 10−3 6.385 × 10−2

0.7 1.095 × 10−1 3.858 × 10−1 6.164 × 10−2 2.274 × 10−1 3.824 × 10−3 6.712 × 10−2

0.8 1.007 × 10−1 3.771 × 10−1 6.337 × 10−2 2.291 × 10−1 4.020 × 10−3 7.057 × 10−2

0.9 9.288 × 10−2 3.691 × 10−1 6.626 × 10−2 2.320 × 10−1 4.226 × 10−3 7.418 × 10−2

1.0 8.576 × 10−2 3.622 × 10−1 7.038 × 10−2 2.361 × 10−1 4.443 × 10−3 7.799 × 10−2

In Figures 1 and 2, the NDM and actual solution of Example 1 are plotted. It is observed that NDM
solutions are in closed contact with the exact solutions of Example 1. In Figures 3 and 4, the solutions
of Example 1 at various fractional-order of the derivatives are plotted. The graphical representation
has shown the convergence phenomena of fractional-order solution towards the solution at integer
order of Example 1.

Figure 1. Exact and NDM solutions at γ = 1 of Example 1.
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Figure 2. Exact and NDM solutions at γ = 1 of Example 1.

Figure 3. The NDM solutions of different valve of γ of Example 1.

Figure 4. Solution graph of Example 1, at various value of γ.
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Example 2. Consider the following nonlinear time-fractional Fornberg–Whitham equation [18]

Dγ
t µ − Dxxtµ + Dxµ = µDxxxµ − µDxµ + 3DxµDxxµ, t > 0, 0 < γ ≤ 1, (25)

with initial condition
µ(x, 0) = cosh2

( x
4

)
, (26)

Applying natural transformation of Equation (25),

sγ

ωγ
N+ [µ(x, t)]− sγ−1

ωγ
µ(x, 0) = N+ [Dxxtµ − Dxµ + µDxxxµ − µDxµ + 3DxµDxxµ] .

N+ [µ(x, t)]− 1
s

µ(x, 0) =
ωγ

sγ
N+ [Dxxtµ − Dxµ + µDxxxµ − µDxµ + 3DxµDxxµ] .

Using inverse natural transformation

µ(x, t) = N−
[

µ(x, 0)
s

− ωγ

sγ
N+ [Dxxtµ − Dxµ + µDxxxµ − µDxµ + 3DxµDxxµ]

]
.

Applying the ADM process, we have

µ0(x, t) = N−
[

µ(x, 0)
s

]
= N−

[
cosh2 ( x

4

)

s

]
,

µ0(x, t) = cosh2
( x

4

)
, (27)

∞

∑
ℓ=0

µℓ+1(x, t) = N−
[

ωγ

sγ
N+

[
∞

∑
ℓ=0

(Dxxtµ)ℓ −
∞

∑
ℓ=0

(Dxµ)ℓ +
∞

∑
ℓ=0

Aℓ −
∞

∑
ℓ=0

Bℓ + 3
∞

∑
ℓ=0

Cℓ

]]
, ℓ = 0, 1, 2, · · ·

A0(µDxxxµ) = µ0Dxxxµ0,

A1(µDxxxµ) = µ0Dxxxµ1 + µ1Dxxxµ0,

A2(µDxxxµ) = µ1Dxxxµ2 + µ1Dxxxµ1 + µ2Dxxxµ0,

B0(µDxµ) = µ0Dxµ0,

B1(µDxµ) = µ0Dxµ1 + µ1Dxµ0,

B2(µDxµ) = µ1Dxµ2 + µ1Dxµ1 + µ2Dxµ0.

C0(DxµDxxµ) = Dxµ0Dxxµ0,

C1(DxµDxxµ) = Dxµ0Dxxµ1 + Dxµ1Dxxµ0,

C2(DxµDxxµ) = Dxµ1Dxxµ2 + Dxµ1Dxxµ1 + Dxµ2Dxxµ0,

for ℓ = 1

µ1(x, t) = N−
[

ωγ

sγ
N+ [(Dxxtµ)0 − (Dxµ)0 + A0 − B0 + 3C0]

]
,

µ1(x, t) = −11
32

N−
[

ωγ sinh
( x

2

)

sγ+1

]
= −0.3437 sinh

( x
4

) tγ

Γ(γ + 1)
,

(28)
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for ℓ = 2

µ2(x, t) = N−
[

ωγ

sγ
N+ [(Dxxtµ)1 − (Dxµ)1 + A1 − B1 + 3C1]

]
,

µ2(x, t) = −0.08593 sinh
( x

4

) tγ

Γ(γ + 1)
+ 0.11816 cosh

( x
4

) t2γ

Γ(2γ + 1)
,

(29)

for ℓ = 3

µ3(x, t) = N−
[

ωγ

sγ
N+ [(Dxxtµ)2 − (Dxµ)2 + A2 − B2 + 3C2]

]
,

µ3(x, t) = −0.08593 sinh
( x

4

) tγ

Γ(γ + 1)
+ 0.11816 cosh

( x
4

) t2γ

Γ(2γ + 1)
− 0.02707 sinh

( x
4

) t3γ

Γ(3γ + 1)
.

(30)

The NDM result for problem 2 is

µ(x, t) = µ0(x, t) + µ1(x, t) + µ2(x, t) + µ3(x, t) + µ4(x, t) · · · .

µ(x, t) = cosh2
( x

4

)
− 0.3437 sinh

( x
4

) tγ

Γ(γ + 1)
− 0.08593 sinh

( x
4

) tγ

Γ(γ + 1)

+ 0.11816 cosh
( x

4

) t2γ

Γ(2γ + 1)
− 0.08593 sinh

( x
4

) tγ

Γ(γ + 1)

+ 0.11816 cosh
( x

4

) t2γ

Γ(2γ + 1)
− 0.02707 sinh

( x
4

) t3γ

Γ(3γ + 1)
− · · · .

The exact result is;

µ(x, t) = cosh2
(

x
4
− 11t

24

)
.

In Figures 5 and 6, the solution graph of exact and NDM of Example 2 at integer-order are plotted.
The closed relation is observed between NDM and exact solution of Example 2. In Figures 7 and 8,
the fractional-order solutions of Example 2 are presented. The graphical representation have confirmed the
different dynamics of Example 2, which are correlated with each other.

Figure 5. The graph of exact and approximate solution of Example 2.
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Figure 6. The graph of exact and approximate solution of Example 2.

Figure 7. The NDM solutions of different valve of γ of Example 2.

Figure 8. The graph of Example 2, for different value of γ.
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5. Conclusions

In the current work. an innovative technique is used to find the solution of fractional Fornberg-Whitham
equations. The fractional-derivatives are discussed within Caputo operator. The solutions are determined
for fractional-order problems and an aesthetically a strong relation is found. The fractional models
have shown convergence to the ordinary model as the order of the derivative tends towards to an
integer. The graphical representation has provided similar behavior of actual and derived results. It is
also noted the current method needs small calculation and higher convergence to achieve the solution
of the targeted problems.
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Abstract: By establishing new conditions for the non-existence of so-called Kneser solutions, we can
generate sufficient conditions to ensure that all solutions of odd-order equations are oscillatory.
Our results improve and expand the previous results in the literature.

Keywords: odd-order differential equations; Kneser solutions; oscillation criteria

1. Introduction

In the 20th century, the extremely fast development of science led to applications in the fields of
biology, population, chemistry, medicine dynamics, social sciences, genetic engineering, economics, and
others. Many of these phenomena are modeled by delay differential equations. All these disciplines were
promoted to a higher level and discoveries were made with the help of this kind of mathematical modeling.

The neutral differential equations are the differential equations in which the delayed argument occurs
in the highest derivative of the state variable. The neutral equations appear in the modeling of the networks
containing lossless transmission lines (as in high-speed computers where the lossless transmission lines
are used to interconnect switching circuits); see [1].

Recently, an increasing interest in establishing conditions for the oscillatory behavior of different
order of differential equations has been observed; see [2–9].

It is known that determination of the signs of the derivatives of the solution is necessary and causes
a significant effect before studying the oscillation of delay differential equations. The other essential
thing is to establish relationships between derivatives of different orders, which may lead to additional
restrictions during the study. In odd-order differential equations, in some cases, it is difficult to find
relationships between derivatives of different orders, which in turn is central to the study of oscillatory
behavior. Therefore, it can very easily be observed that differential equations of odd-order received less
attention than differential equations with even-order. Additionally, most studies are concerned with
finding sufficient conditions that guarantee that every non-oscillating solution tends to zero; see [4,10–20].

In this paper, in Section 2, we offer some auxiliary lemmas that define the different cases of signs of
derivatives and the relationships between derivatives of different orders. In Section 3, we establish a set of
new criteria that ensure that there are no non-oscillating solutions in each case of derivatives separately.
In Section 4, we establish new criteria for the oscillation of all solutions of the studied equation. Finally,
in conclusion, we discuss the results and compare them to the related works.
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In detail, we investigate the oscillatory properties of solutions to the odd-order neutral equation

(
r (t)

(
(x (t) + p (t) x (τ (t)))(n−1)

)α)′
+ q (t) f (x (g (t))) = 0, (1)

where n is an odd natural number. Moreover, we suppose that

Hypothesis 1 (H1). α is the ratio of odd positive integers, r ∈ C1 (I0,R+) , p ∈ C (I0, [0, p0]) , where p0 is a
positive constant, τ, g ∈ C1 (I0,R) , q ∈ C (I0, [0, ∞)) , r′ (t) ≥ 0, g (t) ≤ t, limt→∞ g (t) = ∞, limt→∞ τ (t) =
∞,
∫ ∞

t0
r−1/α (ρ)dρ = ∞, q is not eventually zero on any half line I∗ for t∗ ≥ t0, and Is := [ts, ∞) .

Hypothesis 2 (H2). f ∈ C (R,R) and there exists a positive constant k such that f (x) ≥ kxα.

Next, we present the basic definitions.

Definition 1. The function z (t) := x (t) + p (t) x (τ (t)) is called the corresponding function of x, and

φ (s, t) =
∫ t

s
r−1/α (̺)d̺

is called the canonical operator.

Definition 2. Let x be a real-valued function defined for all t in a real interval Ix, tx ≥ t0, and having a nth

derivative for all t ∈ Ix. The function x is called a solution of the differential equation (Equation (1)) on I if x is

continuous; r
(

z(n−1)
)α

is continuously differentiable and x satisfies (1), for all t in Ix.

Definition 3. A nontrivial solution x of (1) is said to be oscillatory if it has arbitrary large zeros; that is, there
exists a sequence of zeros {tn}∞

n=0 (i.e., x (tn) = 0) of x such that limn→∞ tn = ∞. Otherwise, it is said to be
non-oscillatory.

Notation 1. The set of all eventually positive solutions of (1) is denoted by X+.

We restrict our discussion to those solutions x of (1) which satisfy sup {|x (t)| : t1 ≤ t0} > 0 for every
t1 ∈ Ix. All functional inequalities and properties, such as increasing, decreasing, positive, and so on,
are assumed to hold eventually; that is, they are satisfied for all t large enough.

2. Preliminary Results

During this part of the paper, we provide auxiliary lemmas. These lemmas will be the cornerstone of
the main results.

Notation 2. For the sake of convenience, we use the following notation:

η (t) :=
λ

(n − 2)!
gn−2 (t) g′ (t)

r1/α (t)
,

Θ (t) := kq (t) (1 − p (g (t)))α , Θ̃ (t) :=
∫ ∞

t
Θ (̺)d̺,

Q1 (t) := min {q (t) , q (τ (t))} , Q2 (t) := min
{

q
(

g−1 (t)
)

, q
(

g−1 (τ (t))
)}

,

172



Mathematics 2020, 8, 937

ψ1 (s, t) :=
∫ t

s
φ (̺, t)d̺, ψk+1 (s, t) :=

∫ t

s
ψk (̺, t)d̺, k = 1, 2, ..., n − 2,

and

µ :=
{

1 for 0 < α ≤ 1;
2α−1 for α > 1.

Lemma 1. ([21], Lemma 1, Lemma 2) Assume that u, v ∈ [0, ∞). Then,

(u + v)α ≤ µ (uα + vα) .

Lemma 2. [22] Let F ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that F(n) (t) is of fixed sign and not identically zero on I0

and that there exists a t1 ≥ t0 such that F(n−1) (t) F(n) (t) ≤ 0 for all t ≥ t1. If limt→∞ F (t) 6= 0; then for every
λ ∈ (0, 1) there exists tµ ≥ t1 such that

F (t) ≥ λ

(n − 1)!
tn−1

∣∣∣F(n−1) (t)
∣∣∣ for t ≥ tµ.

The following lemma is a well-known result; see ([20], Lemma 2.4, Lemma 2.5); also
see ([22], Lemma 2.2.1).

Lemma 3. Suppose that x ∈ X+. Then, there exists a sufficiently large t1 ≥ t0 such that, for all t ≥ t1,

z (t) > 0, z′′ (t) > 0, z(n−1) (t) > 0 and z(n) (t) ≤ 0.

Furthermore, there are only two cases:
P : z′ (t) > 0,

or
N : (−1)k z(k) (t) > 0, for k = 1, 2, ..., n − 2.

Lemma 4. Suppose that x ∈ X+ and z satisfies N. Then

z (ρ) ≥ r1/α (σ) z(n−1) (σ)ψn−2 (ρ, σ) (2)

for ρ ≤ σ.

Proof. It follows from the monotonicity of r(z(n−1)) (t) that

−z(n−2) (ρ) ≥ z(n−2) (σ)− z(n−2) (ρ) =
∫ σ

ρ

1
r1/α (s)

r1/α (s) z(n−1) (s)ds

≥ r1/α (σ) z(n−1) (σ) φ (ρ, σ) . (3)

Integrating (3) from ρ to σ, we have

−z(n−2) (σ) + z(n−2) (ρ) ≥ r1/α (σ) z(n−1) (σ)
∫ σ

ρ
φ (s, σ)ds

and so
z(n−3) (ρ) ≥ r1/α (σ) z(n−1) (σ)ψ1 (ρ, σ) . (4)
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Integrating (4) n − 3 times from ρ to σ, we get

z (ρ) ≥ r1/α (σ) z(n−1) (σ)ψn−2 (ρ, σ) .

The proof is complete.

Lemma 5. Suppose that x ∈ X+ and z satisfies P. If p0 < 1, g is non-decreasing and

w (t) := δ (t) r (t)

(
z(n−1) (t)
z (g (t))

)α

, (5)

then

w′ (t) ≤ δ′ (t)
δ (t)

w (t)− δ (t)Θ (t)− αδ (t) η (t)w1+1/α (t) , (6)

where δ ∈ C1 (I0, (0, ∞)).

Proof. Assume that x ∈ X+and z satisfies P. Then, there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0
and x (g (t)) > 0 for t ∈ I1. Since z (t) > x (t) and z′ (t) > 0, it follows from the Definition 1 that
x (t) > (1 − p (t)) z (t). Thus, (1) becomes

(r (t) (z(n−1) (t))α)′ = −q (t) f (x(g(t))) ≤ −kq (t) xα (g (t))

≤ −kq (t) (1 − p (g (t)))α zα (g (t)) . (7)

Using Lemma 2 with F = z′, we obtain for every λ ∈ (0, 1) ,

(n − 2)!z′ (t) ≥ λtn−2z(n−1) (t)

which with the fact that z(n) ≤ 0 gives

z′ (g (t)) ≥ λ

(n − 2)!
gn−2 (t) z(n−1) (g (t)) ≥ λ

(n − 2)!
gn−2 (t) z(n−1) (t) . (8)

Hence, from (5), (7) and (8), we get

w (t) =
δ′ (t)
δ (t)

w (t) + δ (t)

(
r
(

z(n−1)
)α)′

(t)

zα (g (t))
− δ (t)

(
r
(

z(n−1)
)α)

(t)

zα+1 (g (t))
αz′ (g (t)) g′ (t)

≤ δ′ (t)
δ (t)

w (t)− δ (t)Θ (t)− αλ

(n − 2)!
δ (t) r (t) gn−2 (t) g′ (t)

(
z(n−1) (t)
z (g (t))

)α+1

≤ δ′ (t)
δ (t)

w (t)− δ (t)Θ (t)− αδ (t) η (t)w1+1/α (t) .

The proof is complete.

Lemma 6. Suppose that x ∈ X+. If
τ′ (t) ≥ τ0 > 0, (9)

then (
(r(z(n−1))α) (t) +

pα
0

τ0

(
r
(

z(n−1)
)α)

(τ (t))

)′
+ kQ (t) zα (g (t)) ≤ 0. (10)
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Moreover, if (9) holds and (
g−1 (t)

)′
≥ g0 > 0, (11)

then

(
1
g0

(
r
(

z(n−1)
)α) (

g−1 (t)
)
+

pα
0

g0τ0

(
r
(

z(n−1)
)α) (

g−1 (τ (t))
))′

+
k
µ

Q2 (t) zα (t) ≤ 0. (12)

Proof. Let x ∈ X+. Then, there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and x (g (t)) > 0 for t ∈ I1.
From (1), we get

1
τ′ (t)

(
r
(

z(n−1)
)α)′

(τ (t)) + kq (τ (t)) xα (g (τ (t))) ≤ 0, (13)

Combining (1) and (13) and taking into account that τ′ (t) ≥ τ0, we obtain

(r(z(n−1))α)′ (t) +
pα

0
τ0

(
r
(

z(n−1)
)α)′

(τ (t)) + kq (t) xα (g (t)) + kpα
0q (τ (t)) xα (g (τ (t))) ≤ 0. (14)

This implies that

(
(r(z(n−1))α) (t) +

pα
0

τ0

(
r
(

z(n−1)
)α)

(τ (t))

)′
+ kQ1 (t) (xα (g (t)) + pα

0 xα (g (τ (t)))) ≤ 0.

Using Lemma 1, we obtain

(
(r(z(n−1))α) (t) +

pα
0

τ0

(
r
(

z(n−1)
)α)

(τ (t))

)′
+

k
µ

Q1 (t) ((x (g (t)) + p0x (g (τ (t)))))α ≤ 0.

From the definition of z, it is easy to conclude that

(
(r(z(n−1))α) (t) +

pα
0

τ0

(
r
(

z(n−1)
)α)

(τ (t))

)′
+

k
µ

Q1 (t) zα (g (t)) ≤ 0.

Next, from (1), we get

1

(g−1 (t))′
(

r
(

z(n−1)
)α)′ (

g−1 (t)
)
+ kq

(
g−1 (t)

)
xα (t) ≤ 0 (15)

and
1

(g−1 (τ (t)))′
(

r
(

z(n−1)
)α)′ (

g−1 (τ (t))
)
+ kq

(
g−1 (τ (t))

)
xα (τ (t)) ≤ 0. (16)

Using (15) and (16) and taking into account (9) and (11), we obtain

1
g0

(
r
(

z(n−1)
)α)′ (

g−1 (t)
)
+

pα
0

g0τ0

(
r
(

z(n−1)
)α)′ (

g−1 (τ (t))
)
+ kq

(
g−1 (t)

)
xα (t)

+ kq
(

g−1 (τ (t))
)

xα (τ (t)) ≤ 0. (17)

By replacing (14) with (17), this part of proof is similar to that of the previous case and so we
omit it.
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3. Nonexistence Criteria of Non-Oscillatory Solutions

At the beginning of this section, we define the following classes:

Notation 3. The set of all positive solutions of (1) whose corresponding function z satisfies P or N is denoted by
X+

P or X+
N , respectively.

Now, we create various criteria that ensure that there are no positive solutions of (1) whose
corresponding function satisfies P.

Theorem 1. If
1

Θ̃ (t)

∫ ∞

t
η (̺) Θ̃1+1/α (̺)d̺ >

1

(1 + α)1+1/α
, (18)

then X+
P is an empty class.

Proof. Assume the contrary that x ∈ X+
P . Then, there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and

x (g (t)) > 0 for t ∈ I1. Using Lemma 5 with δ (t) := 1, we arrive at

w′ (t) ≤ −Θ (t)− αη (t)w1+1/α (t) < 0.

By integrating the last inequality from t to ∞, we find

w (t) ≥ Θ̃ (t) + α
∫ ∞

t
η (̺)w1+1/α (̺)d̺. (19)

This implies that

w (t)

Θ̃ (t)
≥ 1 +

α

Θ̃ (t)

∫ ∞

t
η (̺) Θ̃1+1/α (̺)

(
w (̺)

Θ̃ (̺)

)1+1/α

d̺. (20)

From (19), we note that w (t) ≥ Θ̃ (t). Thus, we have

β := inf
w (t)

Θ̃ (t)
≥ 1. (21)

Taking into account (18) and (21), (20) becomes

β ≥ 1 + α

(
β

1 + α

)1+1/α

or
β

α + 1
≥ 1

α + 1
+

α

α + 1

(
β

α + 1

)1+1/α

,

which contradicts the expected value of β > 1 and α > 0; therefore, the proof is complete.

Now, let {Sm (t)}∞
m=0 be a sequence of continuous functions defined as follows: S0 (t) = Θ̃ (t) and

Sm+1 (t) = S0 (t) + α
∫ ∞

t
η (̺) S1+1/α

m (̺)d̺, m = 0, 1, .... (22)

By using the definition of {Sm (t)}∞
m=0, we can infer more new criteria as follows:
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Theorem 2. If ∫ ∞

t0

ϕ (̺)Θ (̺)d̺ = ∞, (23)

then X+
P is an empty class, where

ϕ (t) := exp
(∫ t

t1

αη (̺) S1/α
m (̺)d̺

)
.

Proof. Assume the contrary that x ∈ X+
P . Then, there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t)) > 0 and

x (g (t)) > 0 for t ∈ I1. From Theorem 1, we have that (19) holds. By induction, using (19), it is easy to
see that the sequence {Sm (t)}∞

m=0 is non-decreasing and w (t) ≥ Sm (t). Thus the sequence {Sm (t)}∞
m=0

converges to S (t). By the Lebesgue monotone convergence theorem and letting m → ∞ in (22), we get

S (t) = S0 (t) + α
∫ ∞

t
η (̺) S1+1/α (̺)d̺

which with S (t) ≥ Sm (t), gives

S′ (t) = −Θ (t)− αη (̺) S1+1/α (̺)

≤ −Θ (t)− αη (̺) S (̺) S1/α
m (̺) ,

and so
S′ (t) +

(
αη (̺) S1/α

m (̺)
)

S (̺) ≤ −Θ (t) .

Thus, we get that

ϕ (t) S′ (t) + ϕ (t)
(

αη (̺) S1/α
m (̺)

)
S (̺) ≤ −ϕ (t)Θ (t)

or
(ϕ (t) S (t))′ ≤ −ϕ (t)Θ (t) . (24)

Integrating (24) from t1to t, we obtain

ϕ (t) S (t) ≤ ϕ (t1) S (t1)−
∫ t

t1

ϕ (̺)Θ (̺)d̺.

However, letting t → ∞ and using (23), the above inequality yields ϕ (t) S (t) → −∞, which
contradicts the fact that ϕ (t) S (t) is nonnegative. The proof is complete.

Theorem 3. If there exist some λ ∈ (0, 1) and Sm (t) such that

lim sup
t→∞

1
r (t)

gα(n−1) (t) Sm (t) >

(
(n − 1)!

λ

)α

, (25)

then X+
P is an empty class.
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Proof. Assume the contrary that x ∈ X+
P . Using Lemma 2 and taking into account the fact that z(n−1) (t)

is non-increasing, we find

z (g (t)) ≥ λ

(n − 1)!
gn−1 (t) z(n−1) (g (t))

≥ λ

(n − 1)!
gn−1 (t) z(n−1) (t) ,

for λ ∈ (0, 1). Then, from definition of w (t) with δ (t) = 1, we have

1
w (t)

=
1

r (t)

(
z (g (t))

z(n−1) (t)

)α

≥ 1
r (t)

(
λgn−1 (t)
(n − 1)!

)α

,

and so (
(n − 1)!

λ

)α

≥ 1
r (t)

gα(n−1) (t)w (t) ≥ 1
r (t)

gα(n−1) (t) Sm (t) ,

which contradicts (25). The proof is complete.

Corollary 1. If there exist some λ ∈ (0, 1) such that

lim sup
t→∞

1
r (t)

(
g(n−1) (t)

)α
∫ ∞

t
Θ (̺)d̺ >

(
(n − 1)!

λ

)α

, (26)

then X+
P is an empty class.

Proof. Letting m = 0 in Theorem 3, we get (26).

Next, by using comparison principles, we will create various criteria that ensure that there are no
positive solutions of (1) whose corresponding function satisfies N.

Theorem 4. If the first-order advanced inequality

G′ (t) +
kτ0

τ0 + pα
0

Q1 (t)ψα
n−2 (g (t) , t) G

(
τ−1 (t)

)
≤ 0, (27)

then X+
N is an empty class.

Proof. Assume the contrary that x ∈ X+ and z satisfy N. Then, there exists a t1 ≥ t0 such that x (t) > 0,
x (τ (t)) > 0 and x (g (t)) > 0 for t ∈ I1. From Lemmas 4 and 6, we arrive at (2) and (10), respectively.
Now from (2), we get

z (g (t)) ≥ r1/α (t) z(n−1) (t)ψn−2 (g (t) , t) (28)

which, by virtue of (10) yields that

0 ≥
(
(r(z(n−1))α) (t) +

pα
0

τ0

(
r
(

z(n−1)
)α)

(τ (t))

)′
+ kQ1 (t) r (t)

(
z(n−1) (t)ψn−2 (g (t) , t)

)α
. (29)

Now, set

G (t) := (r(z(n−1))α) (t) +
pα

0
τ0

(
r
(

z(n−1)
)α)

(τ (t)) > 0. (30)
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Using the fact that r (t) (z(n−1) (t)) is non-increasing, we obtain

G (t) ≤ r (τ (t))
(

z(n−1) (τ (t))
)α
(

1 +
pα

0
τ0

)

or equivalently,

r (t) (z(n−1) (t))α ≥ τ0

τ0 + pα
0

G
(

τ−1 (t)
)

. (31)

Using (31) in (29), we see that G is a positive solution of the inequality

G′ (t) +
kτ0

τ0 + pα
0

Q1 (t)ψα
n−2 (g (t) , t) G

(
τ−1 (t)

)
≤ 0.

This a contradiction, and thus the proof is complete.

Theorem 5. If there exists a function ϑ (t) ∈ C (I0, (0, ∞)) satisfying

g (t) ≤ ϑ (t) , τ−1 (ϑ (t)) < t (32)

and the first-order delay equation

G′ (t) +
kτ0

τ0 + pα
0

Q1 (t)ψα
n−2 (g (t) , ϑ (t)) G

(
τ−1 (ϑ (t))

)
= 0 (33)

is oscillatory, then X+
N is an empty class.

Proof. Assume the contrary that x ∈ X+ and z satisfy N. Then, there exists a t1 ≥ t0 such that x (t) > 0,
x (τ (t)) > 0 and x (g (t)) > 0 for t ∈ I1. From Lemma 4 and Lemma 6, we arrive at (2) and (10),
respectively. Now from (2), we get

z (g (t)) ≥ r1/α (ϑ (t)) z(n−1) (ϑ (t))ψn−2 (g (t) , ϑ (t)) . (34)

By replacing (28) with (34) and proceeding as in proof of Theorem 4, we arrive at G (defined as in (30))
which is a positive solution of the inequality

G′ (t) +
kτ0

τ0 + pα
0

Q1 (t)ψα
n−2 (g (t) , ϑ (t)) G

(
τ−1 (ϑ (t))

)
≤ 0.

In view of ([23], Theorem 1), we have that (33) also has a positive solution, a contradiction. Thus, the
proof is complete.

Corollary 2. If there exists a function ϑ (t) ∈ C (I0, (0, ∞)) satisfying (32) and

lim inf
t→∞

∫ t

τ−1(ϑ(t))
Q1 (̺)ψα

n−2 (g (t) , ϑ (t))d̺ >
τ0 + pα

0
ekτ0

, (35)

then X+
N is an empty class.

Proof. By using Theorem 2 in [15], conditions (35) imply that (33) is oscillatory.
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Theorem 6. Assume that f (x (g (t))) := xα (t) and p (t) < R̃ (t). If there exists a function θ ∈ C1 (I0, (0, ∞))

satisfying

θ′ (t) ≥ 0, θ (t) > t, τ
(

θn−1 (t)
)
< t (36)

and the first-order delay equation

ω′ (t) + Bn−2 (t)ω
(

τ
(

θn−1 (t)
))

= 0 (37)

is oscillatory, then X+
N is an empty class, where θm−1 (t) := θ

(
θm−2 (t)

)
, θ0 (t) := θ (t) ,

R0 (t) :=
(

1
r (t)

∫ ∞

t
kq (̺)d̺

)1/α

, Rm (t) :=
∫ ∞

t
Rm−1 (̺)d̺,

R̃ (t) := exp
(
−
∫ t

τ(t)
Rn−2 (̺)d̺

)
,

B0 (t) :=
(

1
r (t)

∫ θ(t)

t
q (t)

(
R̃ (̺)− p (̺)

)α
d̺

)1/α

and Bm (t) :=
∫ θ(t)

t
Bm−1 (̺)d̺,

for m = 1, 2, ..., n − 2.

Proof. Assume the contrary that x ∈ X+ and z satisfy N. Then, there exists a t1 ≥ t0 such that x (t) > 0,
x (τ (t)) > 0 and x (g (t)) > 0 for t ∈ I1. It is easy to notice that limt→∞ z(j) = 0 for j = 1, 2, ..., n − 2 and

limt→∞ r (t)
(

z(n−1) (t)
)α

= 0. Hence, by integrating (1) from t to ∞, we obtain

r (t)
(

z(n−1) (t)
)α

=
∫ ∞

t
q (̺) xα (̺)d̺ ≤

∫ ∞

t
kq (̺) zα (̺)d̺

≤ zα (t)
∫ ∞

t
kq (̺)d̺,

and hence

z(n−1) (t) ≤ z (t)

(
1

r (t)

∫ ∞

t
kq (̺)d̺

)1/α

= z (t) R0 (t) .

Integrating the last inequality n − 2 times from t to ∞, we obtain

−z′ (t) ≤ z (t) Rn−2 (t) .

Thus, we get

z (v) ≥ z (u) exp
(
−
∫ v

u
Rn−2 (̺)d̺

)
,

for u ≤ v. From the definition of z, we have

x (t) ≥ z (t)− p (t) z (τ (t)) ≥
(

R̃ (t)− p (t)
)

z (τ (t))

which with (1) yields

(
r (t)

(
z(n−1) (t)

)α)′
= −q (t) xα (t) ≤ −q (t)

(
R̃ (t)− p (t)

)α
zα (τ (t)) .
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Integrating the last inequality from t to θ (t), we arrive at

z(n−1) (t) ≥
(

1
r (t)

∫ θ(t)

t
q (t)

(
R̃ (̺)− p (̺)

)α
zα (τ (̺))d̺

)1/α

≥ z (τ (θ (t))) B0 (t) .

Integrating the last inequality n − 2 times from t to θ (t), we get

z′ (t) + z
(

τ
(

θn−1 (t)
))

Bn−2 (t) ≤ 0.

If we set
ω (t) :=

∫ ∞

t
z
(

τ
(

θn−1 (t)
))

Bn−2 (t) > 0,

then ω is a positive solution of the inequality ω′ (t) + Bn−2 (t)ω
(
τ
(
θn−1 (t)

))
≤ 0. In view of ([23],

Theorem 1), we have that (37) also has a positive solution, a contradiction. The proof is complete.

Corollary 3. Assume that f (x (g (t))) := xα (t) and p (t) < R̃ (t). If there exists a function θ ∈ C1 (I0, (0, ∞))

satisfying (36) and

lim inf
t→∞

∫ t

τ(θn−1(t))
Bn−2 (̺)d̺ >

1
e

, (38)

then X+
N is an empty class, where the functions R̃, θn−1 and Bn−2 are defined as in Theorem 6.

Proof. By using Theorem 2 in [15], condition (38) implies that (37) is oscillatory.

4. Asymptotic and Oscillatory Properties

Theorem 7. Each non-oscillatory solution of (1) tends to zero if

lim
̺→∞

∫ ̺

t

(
1

r (t)

∫ ∞

t
q (̺)d̺

)1/α

= ∞ (39)

and one of the conditions (18) or (26) is fulfilled.

Proof. Let x be a non-oscillatory solution of (1). Without loss of generality, we assume that x ∈ X+.
From Lemma 3, we have only two cases for z. Each of the conditions (18) or (26) contradicts that z fulfills P.
Now, we suppose that z satisfies N. Since z (t) > 0 and z′ (t) < 0, we get that z → c as t → ∞, where c ≥ 0.
Suppose that c > 0. Then, for every ǫ > 0, there exists a T ≥ t0 such that c < z (t) < c + ǫ for all t > T.
By set ε < (1 − p) (c/p), we get that

x(t) = z(t)− p(t)x(τ(t)) > c − pz(τ(t))

> M(c + ǫ) > Mz(t),

where M = (c − p(c + ǫ)) / (c + ǫ) > 0. Thus, integrating from t to ∞, we have

r (t)
(

z(n−1) (t)
)α

≥ k
∫ ∞

t
q (̺) xα (g (̺))d̺ ≥ kMα

∫ ∞

t
q (̺) zα (g (̺))d̺

≥ kMαzα (t)
∫ ∞

t
q (̺)d̺ > kMαcα

∫ ∞

t
q (̺)d̺
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or

z(n−1) (t) > k1/α Mc

(
1

r (t)

∫ ∞

t
q (̺)d̺

)1/α

.

By integrating from t to ̺, we find

z(n−2) (t) < z(n−2) (̺)− k1/α Mc
∫ ̺

t

(
1

r (t)

∫ ∞

t
q (̺)d̺

)1/α

.

Taking the limit of both sides as t → ∞ and using (39), we get that z(n−2) (t) → −∞ as t → ∞. But,
zn−2 is a negative increasing function, this a contradiction. Therefore, limt→∞ z(t) = 0, which implies that
limt→∞ x(t) = 0. The proof is complete.

In the following, based on the fact that there are only two cases for the corresponding function z,
we infer new criteria for oscillation of all solutions of the Equation (1). In each of the following theorems,
we refer to two conditions through which it is possible to exclude the existence of solutions in X+

P or X+
N .

Thus, we rule out the existence of non-oscillatory solutions.

Theorem 8. Assume that (18) or (26) holds. If there exists a function ϑ (t) ∈ C (I0, (0, ∞)) satisfying (32) and the
first-order delay Equation (33) is oscillatory, then every solution of (1) is oscillatory.

Theorem 9. Assume that f (x (g (t))) := xα (t), p (t) < R̃ (t) and (18) hold. If there exists a function θ ∈
C1 (I0, (0, ∞)) satisfying (36) and the first-order delay Equation (37) is oscillatory, then every solution of (1) is
oscillatory, where the functions R̃, θn−1 and Bn−2 are defined as in Theorem 6.

Corollary 4. Assume that (18) or (26) holds. If there exists a function ϑ (t) ∈ C (I0, (0, ∞)) satisfying (32)
and (35), then every solution of (1) is oscillatory.

Corollary 5. Assume that f (x (g (t))) := xα (t), p (t) < R̃ (t) and (18) (or (26)) hold. If there exists a function
θ ∈ C1 (I0, (0, ∞)) satisfying (36) and (38), then every solution of (1) is oscillatory, where the functions R̃, θn−1

and Bn−2 are defined as in Theorem 6.

Example 1. Consider the third-order neutral differential equation

((
(x (t) + p0x (τ0t))′′

)α)′
+

q0

t2α+1 xα (g0t) = 0, (40)

where p0, τ0, g0 ∈ (0, 1) and q0 > 0. From (40), we note that n = 3, p (t) := p0, τ (t) := τ0t, q (t) := q0/t2α+1,
g (t) := g0t and r (t) = 1. It is easy to verify that

η (t) = λg2
0t, Θ (t) = q0 (1 − p0)

α 1
t2α+1 , Q1 (t) := q0/t2α+1,

φ (s, t) = (t − s) , ψ1 (s, t) =
1
2
(s − t)2

and

Θ̃ (t) =
1

2α
q0 (1 − p0)

α 1
t2α

.
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Thus, the condition (18) becomes:

q0 (1 − p0)
α >

1
g2α

0

(
2α

1 + α

)α+1

.

The condition (26) simplifies to

q0 (1 − p0)
α >

α2α+1

λαg2α
0

.

By choosing ϑ (t) := (g0 + τ0) (t/2), where g0 < 1, the condition (35) extends to

q0 (τ0 − g0)
2α ln

2τ0

g0 + τ0
> 22α+1 τ0 + pα

0
eτ0

.

Using Corollary 4, Equation (40) is oscillatory if

q0 > max

{
1

g2α
0 (1 − p0)

α

(
2α

1 + α

)α+1

,
22α+1 (τ0 + pα

0

)

eτ0 (τ0 − g0)
2α

(
ln

2τ0

g0 + τ0

)−1
}

(41)

or

q0 > max

{
α2α+1

g2α
0 (1 − p0)

α ,
22α+1 (τ0 + pα

0

)

eτ0 (τ0 − g0)
2α

(
ln

2τ0

g0 + τ0

)−1
}

.

Next, if we set g (t) := t, θ (t) := γt, γ > 1 and p0 < τA
0 , then the condition (38) becomes

q1/α
0

(
τA

0 − p0

) (γ − 1)−3

(2α)1/α
ln
(

1
γ2τ0

)
>

1
e

,

where A = (q0/2α)1/α. When g0 = 1, by using Corollary 5, Equation (40) is oscillatory if

q0 > max

{
1

(1 − p0)
α

(
2α

1 + α

)α+1

,
2α (γ − 1)3α

e
(
τA

0 − p0
)α

(ln 1/γ2τ0)
α

}
(42)

or

q0 > max

{
α2α+1

(1 − p0)
α ,

2α (γ − 1)3α

e
(
τA

0 − p0
)α

(ln 1/γ2τ0)
α

}
.

5. Conclusions

When studying the oscillatory behavior of solutions of differential equations with odd-order, it is
customary to find conditions that ensure solutions are either oscillatory or tend to zero. Dzurina et al. [5]
and Vidhyaa et al. [24] established criteria for the oscillation of all solutions of a third-order linear and
half-linear neutral differential equation, respectively. As an extension and also an improvement of these
results, we obtained new oscillation criteria for the odd-order non-linear neutral Equation (1).

If we consider the third order differential equation

(
x (t) +

1
10

x

(
1
2

t

))′′′
+

q0

t3 xα

(
1
10

t

)
= 0. (43)
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From Example 1 in [5], Equation (43) is oscillatory if q0 > 120. However, by using our criterion (41),
we get that (43) is oscillatory if q0 > 111.11. Moreover, we consider the equation

(
x (t) +

1
3

x

(
1
2

t

))′′′
+

q0

t3 xα (t) = 0. (44)

From Example 3 in [24], by choosing β = 4/3 Equation (44) is oscillatory if q0 > 4. However, if we
choose γ = 4/3, then our criterion (42) becomes q0 > 2, and hence (44) is oscillatory. Thus, our results
improve the results in [5,24]. In the future, we can try to study the advanced odd-order differential
equations by the same approach.
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Abstract: In this paper, a new solution process of (1/G′)-expansion and (G′/G, 1/G)-expansion
methods has been proposed for the analytic solution of the Zhiber-Shabat (Z-S) equation. Rather
than the classical (G′/G, 1/G)-expansion method, a solution function in different formats has been
produced with the help of the proposed process. New complex rational, hyperbolic, rational and
trigonometric types solutions of the Z-S equation have been constructed. By giving arbitrary values
to the constants in the obtained solutions, it can help to add physical meaning to the traveling wave
solutions, whereas traveling wave has an important place in applied sciences and illuminates many
physical phenomena. 3D, 2D and contour graphs are displayed to show the stationary wave or the
state of the wave at any moment with the values given to these constants. Conditions that guarantee
the existence of traveling wave solutions are given. Comparison of (G′/G, 1/G)-expansion method
and (1/G′)-expansion method, which are important instruments in the analytical solution, has been
made. In addition, the advantages and disadvantages of these two methods have been discussed.
These methods are reliable and efficient methods to obtain analytic solutions of nonlinear evolution
equations (NLEEs).

Keywords: (1/G′)-expansion method; the Zhiber-Shabat equation; (G′/G, 1/G)-expansion method;
traveling wave solutions; exact solutions

1. Introduction

The analysis of analytic solutions of nonlinear evolution equations (NLEEs) plays a significant role
in the study of nonlinear physical phenomena. Various techniques have been tried to obtained analytic
solutions, such as the sine–cosine method [1], extended sinh-Gordon equation expansion method [2,3],
(G′/G)-expansion method [4,5], improved Bernoulli sub-equation function method [6], variational
iteration algorithm-II [7–9], sub equation method [10], collocation method [11,12], (1/G′)-expansion
method [13–15], first integral method [16], adomian decomposition methods [17–19], hirota bilinear
method [20], modified variational iteration algorithms [21–24], homotopy perturbation method [25],
residual power series method [26], (G′/G, 1/G)-expansion method [27] and so on [28–38].

In this study, our main purpose is to obtain the traveling wave solutions of the evolution equations
in nonlinear dynamics. As it is known, scientific studies take place gradually. The first step is to
examine a physical event, the second step is to model the event, the third step is to produce the solution
of the model and the fourth step is to load the produced solution into physical meaning. In this article,
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to produce the solution in the third stage and to prepare for the fourth stage. As it is known, in soliton
theory, it will be much more valuable if solitons gain physical meaning. For example, today, the
pandemic patients that affect the world may represent a stationary wave on a graph consisting of
numerical data related to parameters such as number of patients and number of tests. Employees on
this subject can relate to the solutions we will offer in this study. We consider the Zhiber-Shabat (Z-S)
equation [39]

uxt + peu + qe−u + re−2u = 0, (1)

where p, r, q are arbitrary constants. When r = 0, q 6= 0, Equation (1) gives the well-known
sinh–Gordon equation, while, r 6= 0, q = 0, gives the Dodd–Bullough–Mikhailov (DBM) equation.
However, for p = 0, q = −1, r = −1, Equation (1) reduced to the Tzitzeica–Dodd–Bullough (TDB)
equation, while for r = q = 0, gives the Liouville equation. These equations play an effective role in
various scientific applications such as fluid dynamics, solid state physics, nonlinear optics and chemical
kinetics. When the analytical solution of Equation (1) is found, the solutions of the sinh–Gordon, DBM,
TDB and the Liouville equations can also be obtained.

Many researchers have investigated the Z-S equations and discussed its applications in different
field of science and engineering. Some of these investigations are as follows: various types of solution
for the Z-S equation are obtained [40] by using qualitative theory of polynomial differential system,
while qualitative behavior and exact travelling wave solutions of the Z-S equation are obtained
in [41]. Analytic solutions of the Z-S equation are obtained using the (−φ (ξ))-expansion method [42],
exponential rational function method [43], while exact solutions of it are obtained using bifurcation
theory and method of phase portraits analysis [44].

In the current work, we are interested in constructing exact solutions of the Zhiber-Shabat (Z-S)
equation using (1/G′)-expansion method and (G′/G, 1/G)-expansion method. The solutions of the
equation have not been studied with either method. In this study, both to provide the literature with
the solution produced by these methods and to discuss the advantages and disadvantages of the
methods.

2. (1/G′)-Expansion Method

Consider a general form of NLEEs as

S

(
u,

∂u
∂t

,
∂u
∂x

,
∂2u
∂x2 , . . .

)
= 0. (2)

Let u = u (x, t) = u (ξ) , ξ = x − wt, w 6= 0. where w is a constant speed of the wave. After using
transformation, it can be converted into the following nonlinear ODE for u (ξ) :

̺
(
u, u′, u′′, u′′′, . . .

)
= 0. (3)

The solution of Equation (3) is assumed to have the form

u (ξ) = a0 +
m

∑
i=1

ai

(
1

G′

)i

, (4)

where ai, i = 0, 1, . . . , m are constants and G = G (ξ) provides the following second order IODE

G′′ + λG′ + µ = 0, (5)

where, λ and µ are constants to be determined after,

1
G′ =

λ

−µ + λA (Cosh (ξλ)− Sinh (ξλ))
, (6)
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where A is an integral constant. If the desired derivatives of the Equation (4) are calculated and
substituting in the Equation (3), a polynomial with the argument (1/G′) is attained. An algebraic
equation system is created by equalizing the coefficients of this polynomial to zero. These equations
are solved with the help of the package program and put into place in the default Equation (3) solution
function. Finally, the solutions of Equation (1) are obtained.

3. (G′/G, 1/G)-Expansion Method

Consider the following general form of NLEEs

Z
(
u, ut, ux, uy, uz, utt, uxx, . . .

)
= 0. (7)

If u (x, t) = u (ξ) , ξ = x − wt where w is a constant, when transmutation is applied to
Equation (7), it becomes a NLODE and this equation may be written as:

z
(
u′, u′′, u′′′, . . .

)
= 0. (8)

Complexity can be reduced by integrating Equation (8). By the nature of this method, G (ξ) is a
quadratic function ODE solution,

G′′ (ξ) + λG (ξ) = µ. (9)

Furthermore, to provide operational aesthetics as φ = φ (ξ) = G′/G and ψ = ψ (ξ) = 1
G(ξ)

. We
may write derivatives of functions defined here;

φ′ = −φ2 + µψ − λ, ψ′ = −φψ. (10)

We can offer the behavior of solution function Equation (9) according to the state of λ, taking into
account the equations given by the Equation (10).

i: If λ < 0
G (ξ) = c1 sinh

(√
−λξ

)
+ c2 cosh

(√
−λξ

)
+

µ

λ
, (11)

whereas c1 and c2 are reel numbers. Considering Equation (11);

ψ2 =
−λ

λ2σ + µ2

(
φ2 − 2µψ + λ

)
, σ = c2

1 − c2
2, (12)

Equation (12) is written.
ii: If λ > 0

G (ξ) = c1 sin
(√

λξ
)
+ c2 cos

(√
λξ
)
+

µ

λ
, (13)

here c1 and c2 are reel numbers. Considering Equation (13), there is following equation;

ψ2 =
λ

λ2σ − µ2

(
φ2 − 2µψ + λ

)
, σ = c2

1 + c2
2, (14)

iii: If λ = 0
G (ξ) =

µ

2
ξ2 + c1ξ + c2, (15)

here c1 and c2 are reel numbers. Considering Equation (15), there is following equation;

ψ2 =
1

c2
1 − 2µc2

(
φ2 − 2µψ

)
. (16)
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In terms of φ and ψ polynomials, solution of Equation (8) is ;

U (ξ) = a0 +
n

∑
i=1

(aiφ
i + biψ

i). (17)

In this study, we reorganized the solution function in classical (G′/G, 1/G)-expansion method
as Equation (17) with the logic of solution functions of (G′/G) and (1/G′)-expansion methods. This
logic is considered together with the classical (G′/G, 1/G)-expansion method and the method can be
developed in future studies and different solutions can be offered.

Wherein, ai (i = 0, 1, . . . , m) and bi (i = 1, . . . , m) counts then are constants to be determined.
m is a positive equilibrium term that may be attained by comparing the maximum order derivative
and the maximum order nonlinear term in Equation (8). If Equation (17) is written in Equation (8)
with Equations (10), (12), (14) or (16), a polynomial function associated with φ and ψ is written.
Each term coefficient of φiψj (i = 0, 1, . . . , m) (j = 1, . . . , m) of the attained polynomial functions are
equated to zero and a system algebraic equations is attained for ai, bi, w, µ, c1, c2 and λ (i = 0, 1, . . . , m).
The required coefficients are obtained by solving the algebraic equation with the help of computer
package programs. These coefficients found are written in Equation (17) and u (ξ) solution function of
Equation (8) is obtained and if ξ = x − wt transmutation is employed in reverse order, we will attain
analytic solution u (x, t) of Equation (7).

4. Solutions of The (Z-S) Equation Using (1/G′)-Expansion Method

We consider Equation (1). Using transmutation u (x, t) = u (ξ) , ξ = x − wt, we obtain

− wuξξ + peu + qe−u + re−2u = 0, (18)

where w is the wave speed. To implement this method, we use transmutation u = ln v and v = V (ξ),
Equation (18) becomes

− w
(

VV′′ −
(
V′)2

)
+ pV3 + qV + r = 0. (19)

In Equation (19), we find balancing term m = 2 and in Equation (4), the following situation is
obtained:

V = a0 + a1

(
1

G′

)
+ a2

(
1

G′

)2

, a2 6= 0, (20)

where a0, a1, a2 unknown constants to be determined later. Replacing Equation (20) into Equation (19)
and the coefficients of the algebraic Equation (1) are equal to zero, we can establish the following
algebraic equation systems

(
1

G′ [ξ]

)0
: r + qa0 + pa3

0 = 0,
(

1
G′ [ξ]

)1
: qa1 − wλ2a0a1 + 3pa2

0a1 = 0,
(

1
G′ [ξ]

)2
: −3wλµa0a1 + 3pa0a2

1 + qa2 − 4wλ2a0a2 + 3pa2
0a2 = 0,

(
1

G′ [ξ]

)3
: −2wµ2a0a1 − wλµa2

1 + pa3
1 − 10wλµa0a2 − wλ2a1a2 + 6pa0a1a2 = 0,

(
1

G′ [ξ]

)4
: −wµ2a2

1 − 6wµ2a0a2 − 5wλµa1a2 + 3pa2
1a2 + 3pa0a2

2 = 0,
(

1
G′ [ξ]

)5
: −4wµ2a1a2 − 2wλµa2

2 + 3pa1a2
2 = 0,

(
1

G′ [ξ]

)6
: −2wµ2a2

2 + pa3
2 = 0.

(21)

Case I.

µ =
pλa0a1

2
(
q + 3pa2

0

) , a2 =
pa0a2

1

2
(
q + 3pa2

0

) , w =
q + 3pa2

0
λ2a0

, r = −qa0 − pa3
0, (22)
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considering Equation (6), substituting Equation (22) into Equation (20), the following solution is
attained

V =




a0 +
pa0a2

1

2
(
q + 3pa2

0

) (
A cosh [λ (x − wt)]− A sinh [λ (x − wt)]− pa0a1

2(q+3pa2
0)

)2

+
a1

A cosh [λ (x − wt)]− A sinh [λ (x − wt)]− pa0a1
2(q+3pa2

0)




. (23)

In addition, if Equation (23) is written instead of u = ln v transformation, the analytical solution
of Equation (1) is as follows,

u1 (x, t) = ln




a0 +
pa0a2

1

2
(
q + 3pa2

0

) (
A cosh [λ (x − wt)]− A sinh [λ (x − wt)]− pa0a1

2(q+3pa2
0)

)2

+
a1

A cosh [λ (x − wt)]− A sinh [λ (x − wt)]− pa0a1
2(q+3pa2

0)




. (24)

The hyperbolic traveling wave solution of Equation (24) produced from the (1/G′)-expansion
method is as in Figure 1.
Case II.

a0 =
pa2

1 +
√

p
√

pa4
1 − 48qa2

2

12pa2
, w =

pa2

2µ2 , λ =
µa1

a2
,

r =
− pa6

1
a2

−
√

pa4
1

√
pa4

1−48qa2
2

a2
− 24qa2

√
pa4

1−48qa2
2√

p

432a2
2

,

(25)

considering Equation (6), replacing Equation (25) into Equation (20), the following solution is attained

V =
1

12




√
pa4

1 − 48qa2
2√

pa2
+ a2

1




12

Ae
a1

(
pt
2µ −

xµ
a2

)

a1 − a2

+
1
a2

+
12a2(

−Ae
a1

(
pt
2µ −

xµ
a2

)

a1 + a2

)2







. (26)

-4 -2 0 2 4

-4

-2

0

2

4

Figure 1. 3D, contour and 2D graphs respectively for p = −1, λ = −0.8, A = −3, a0 = −1, a1 =

−1, q = 2 values of Equation (24).
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In addition, if Equation (26) is written instead of u = ln v transformation, the analytical solution
of Equation (1) is as follows,

u2 (x, t) = ln




1
12




√
pa4

1 − 48qa2
2√

pa2
+ a2

1




12

Ae
a1

(
pt
2µ −

xµ
a2

)

a1 − a2

+
1
a2

+
12a2(

−Ae
a1

(
pt
2µ −

xµ
a2

)

a1 + a2

)2










. (27)

The analytic solution of Equation (27) produced from the (1/G′)-expansion method is as in
Figure 2.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2. 3D, contour and 2D graphs respectively for p = −1, µ = −0.8, A = −3, a2 = −1, a1 =

−1, q = 2 values of Equation (27).

5. Solutions of The (Z-S) Equation Using (G′/G, 1/G)-Expansion Method

We consider Equation (1). Using transmutation u (x, t) = u (ξ) , ξ = x − wt, w 6= 0, we get

− wuξξ + peu + qe−u + re−2u = 0, (28)

To apply this method, we use transmutation u = ln v and v = V (ξ), Equation (28) becomes

− w
(

VV′′ −
(
V′)2

)
+ pV3 + qV + r = 0. (29)

In Equation (29), we find balancing term m = 2 and in Equation (10), the following situation is
obtained

u (ξ) = a0 + a1φ [ξ] + b1ψ [ξ] + a2φ[ξ]2 + b2ψ[ξ]2, (30)
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where a0, a1, a2, b1, b2 constants to be determined are unknown. Replacing Equation (30) into
Equation (29) and the coefficients of the algebraic Equation (1) are equal to zero, we can establish the
following algebraic equation systems

Cons : r + qa0 + pa3
0 + wλ2a2

1 −
wλ2µ2a2

1
µ2 + λ2σ

− 2wλ2a0a2 +
2wλ2µ2a0a2

µ2 + λ2σ
− wλ2µa0b1

µ2 + λ2σ

+
4wλ3µ3a2b1

(µ2 + λ2σ)
2 − 4wλ3µa2b1

µ2 + λ2σ
− 2wλ3µ2b2

1

(µ2 + λ2σ)
2 +

wλ3b2
1

µ2 + λ2σ
− 3pλ2a0b2

1
µ2 + λ2σ

− 2pλ3µb3
1

(µ2 + λ2σ)
2 − qλ2b2

µ2 + λ2σ
− 4wλ3µ2a0b2

(µ2 + λ2σ)
2 +

2wλ3a0b2

µ2 + λ2σ
− 3pλ2a2

0b2

µ2 + λ2σ

− 8wλ4µ2a2b2

(µ2 + λ2σ)
2 +

2wλ4a2b2

µ2 + λ2σ
+

6wλ4µb1b2

(µ2 + λ2σ)
2 − 12pλ3µa0b1b2

(µ2 + λ2σ)
2 = 0,

φ [ξ] : qa1 − 2wλa0a1 + 3pa2
0a1 + 2wλ2a1a2 −

2wλ2µ2a1a2

µ2 + λ2σ
− 2wλ2µa1b1

µ2 + λ2σ

−3pλ2a1b2
1

µ2 + λ2σ
− 2wλ3µ2a1b2

(µ2 + λ2σ)
2 − 6pλ2a0a1b2

µ2 + λ2σ
− 12pλ3µa1b1b2

(µ2 + λ2σ)
2 = 0,

(31)

(φ [ξ])2 : − wλµ2a2
1

µ2 + λ2σ
+ 3pa0a2

1 + qa2 − 8wλa0a2 +
2wλµ2a0a2

µ2 + λ2σ
+ 3pa2

0a2 + 2wλ2a2
2

−2wλ2µ2a2
2

µ2 + λ2σ
− wλµa0b1

µ2 + λ2σ
+

4wλ2µ3a2b1

(µ2 + λ2σ)
2 − 11wλ2µa2b1

µ2 + λ2σ
− 2wλ2µ2b2

1

(µ2 + λ2σ)
2

+
2wλ2b2

1
µ2 + λ2σ

− 3pλa0b2
1

µ2 + λ2σ
− 3pλ2a2b2

1
µ2 + λ2σ

− 2pλ2µb3
1

(µ2 + λ2σ)
2 − qλb2

µ2 + λ2σ

− 4wλ2µ2a0b2

(µ2 + λ2σ)
2 +

8wλ2a0b2

µ2 + λ2σ
− 3pλa2

0b2

µ2 + λ2σ
− 3pλ2a2

1b2

µ2 + λ2σ
−−16wλ3µ2a2b2

(µ2 + λ2σ)
2

+
4wλ3a2b2

µ2 + λ2σ
− 6pλ2a0a2b2

µ2 + λ2σ
+

14wλ3µb1b2

(µ2 + λ2σ)
2 − 12pλ2µa0b1b2

(µ2 + λ2σ)
2 − 12pλ3µa2b1b2

(µ2 + λ2σ)
2 = 0,

(φ [ξ])3 : −2wa0a1 + pa3
1 − 2wλa1a2 −

2wλµ2a1a2

µ2 + λ2σ
+ 6pa0a1a2 −

2wλµa1b1

µ2 + λ2σ
− 3pλa1b2

1
µ2 + λ2σ

− 2wλ2µ2a1b2

(µ2 + λ2σ)
2 +

4wλ2a1b2

µ2 + λ2σ
− 6pλa0a1b2

µ2 + λ2σ
− 6pλ2a1a2b2

µ2 + λ2σ
− 12pλ2µa1b1b2

(µ2 + λ2σ)
2 = 0,

(φ [ξ])4 : −wa2
1 − 6wa0a2 + 3pa2

1a2 −
2wλµ2a2

2
µ2 + λ2σ

+ 3pa0a2
2 −

7wλµa2b1

µ2 + λ2σ
+

wλb2
1

µ2 + λ2σ

− 3pλa2b2
1

µ2 + λ2σ
+

6wλa0b2

µ2 + λ2σ
− 3pλa2

1b2

µ2 + λ2σ
− 8wλ2µ2a2b2

(µ2 + λ2σ)
2 +

6wλ2a2b2

µ2 + λ2σ

−6pλa0a2b2

µ2 + λ2σ
− 3pλ2a2

2b2

µ2 + λ2σ
+

8wλ2µb1b2

(µ2 + λ2σ)
2 − 12pλ2µa2b1b2

(µ2 + λ2σ)
2 = 0,

(φ [ξ])5 : −4wa1a2 + 3pa1a2
2 +

4wλa1b2
µ2+λ2σ

− 6pλa1a2b2
µ2+λ2σ

= 0,

(φ [ξ])6 : −2wa2
2 + pa3

2 +
4wλa2b2
µ2+λ2σ

− 3pλa2
2b2

µ2+λ2σ
= 0,
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ψ [ξ] : −2wλµa2
1 +

2wλµ3a2
1

µ2 + λ2σ
+ 4wλµa0a2 −

4wλµ3a0a2

µ2 + λ2σ
+ qb1 − wλa0b1 +

2wλµ2a0b1

µ2 + λ2σ

+3pa2
0b1 − 2wλ2a2b1 −

8wλ2µ4a2b1

(µ2 + λ2σ)
2 +

10wλ2µ2a2b1

µ2 + λ2σ
+

4wλ2µ3b2
1

(µ2 + λ2σ)
2 − 3wλ2µb2

1
µ2 + λ2σ

+
6pλµa0b2

1
µ2 + λ2σ

+
4pλ2µ2b3

1

(µ2 + λ2σ)
2 − pλ2b3

1
µ2 + λ2σ

+
2qλµb2

µ2 + λ2σ
+

8wλ2µ3a0b2

(µ2 + λ2σ)
2 − 6wλ2µa0b2

µ2 + λ2σ

+
6pλµa2

0b2

µ2 + λ2σ
+

16wλ3µ3a2b2

(µ2 + λ2σ)
2 − 8wλ3µa2b2

µ2 + λ2σ
− 12wλ3µ2b1b2

(µ2 + λ2σ)
2 +

3wλ3b1b2

µ2 + λ2σ

+
24pλ2µ2a0b1b2

(µ2 + λ2σ)
2 − 6pλ2a0b1b2

µ2 + λ2σ
= 0,

φ [ξ]ψ [ξ] : 3wµa0a1 − 4wλµa1a2 +
4wλµ3a1a2

µ2 + λ2σ
− wλa1b1 +

4wλµ2a1b1

µ2 + λ2σ
+ 6pa0a1b1

+
6pλµa1b2

1
µ2 + λ2σ

+
4wλ2µ3a1b2

(µ2 + λ2σ)
2 − wλ2µa1b2

µ2 + λ2σ
+

12pλµa0a1b2

µ2 + λ2σ
+

24pλ2µ2a1b1b2

(µ2 + λ2σ)
2 − 6pλ2a1b1b2

µ2 + λ2σ
= 0,

φ[ξ]2ψ [ξ] : wµa2
1 + 10wµa0a2 − 4wλµa2

2 +
4wλµ3a2

2
µ2 + λ2σ

− 2wa0b1 + 3pa2
1b1 − 5wλa2b1

+
16wλµ2a2b1

µ2 + λ2σ
+ 6pa0a2b1 −

3wλµb2
1

µ2 + λ2σ
+

6pλµa2b2
1

µ2 + λ2σ
− pλb3

1
µ2 + λ2σ

− 14wλµa0b2

µ2 + λ2σ

+
6pλµa2

1b2

µ2 + λ2σ
+

16wλ2µ3a2b2

(µ2 + λ2σ)
2 − 12wλ2µa2b2

µ2 + λ2σ
+

12pλµa0a2b2

µ2 + λ2σ
− 16wλ2µ2b1b2

(µ2 + λ2σ)
2

+
7wλ2b1b2

µ2 + λ2σ
− 6pλa0b1b2

µ2 + λ2σ
+

24pλ2µ2a2b1b2

(µ2 + λ2σ)
2 − 6pλ2a2b1b2

µ2 + λ2σ
= 0,

φ[ξ]3ψ [ξ] : 5wµa1a2 − 2wa1b1 + 6pa1a2b1 − 9wλµa1b2
µ2+λ2σ

+ 12pλµa1a2b2
µ2+λ2σ

− 6pλa1b1b2
µ2+λ2σ

= 0,

φ[ξ]4ψ [ξ] : 2wµa2
2 − 4wa2b1 + 3pa2

2b1 −
12wλµa2b2

µ2 + λ2σ

+
6pλµa2

2b2

µ2 + λ2σ
+

4wλb1b2

µ2 + λ2σ
− 6pλa2b1b2

µ2 + λ2σ
= 0,

ψ[ξ]4 : −2wµ2a2b2 + 3wµb1b2 + 3pb2
1b2 − 2wλb2

2 + 3pa0b2
2 = 0,

φ [ξ]ψ[ξ]4 : 3pa1b2
2 = 0,

φ[ξ]2ψ[ξ]4 : −2wb2
2 + 3pa2b2

2 = 0,
ψ[ξ]5 : 2wµb2

2 + 3pb1b2
2 = 0,

ψ[ξ]6 : pb3
2 = 0,

Our aim with the computer package program was reaching the solutions of system (31) and we
attained the following situations.

If λ < 0,
Case I:

a0 =
4pwλ −

√
−3p3q + 4p2w2λ2

3p2 , a1 = 0, b1 = 0, a2 =
2w
p

, b2 = 0, µ = 0,

r =
1

27p2 2

(
16w3λ3 + 3q

√
p2 (−3pq + 4w2λ2) +

8w2λ2
√

p2 (−3pq + 4w2λ2)

p

)
,

(32)
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considering Equation (6), replacing Equation (32) into Equation (30), the following solution is attained

V =
4pwλ −

√
−3p3q + 4p2w2λ2

3p2

+
2w
(

c2
√
−λ cosh

[
(−tw + x)

√
−λ
]
+ c1

√
−λ sinh

[
(−tw + x)

√
−λ
])2

p
(

c1 cosh
[
(−tw + x)

√
−λ
]
+ c2 sinh

[
(−tw + x)

√
−λ
])2 .

(33)

In addition, if Equation (33) is written instead of u = ln v transformation, the hyperbolic traveling
wave solution of Equation (1) is as follows,

u1 (x, t) = ln




4pwλ −
√
−3p3q + 4p2w2λ2

3p2

+
2w
(

c2
√
−λ cosh

[
(−tw + x)

√
−λ
]
+ c1

√
−λ sinh

[
(−tw + x)

√
−λ
])2

p
(

c1 cosh
[
(−tw + x)

√
−λ
]
+ c2 sinh

[
(−tw + x)

√
−λ
])2




. (34)

The hyperbolic traveling wave solution of Equation (34) produced from the
(G′/G, 1/G)-expansion method is as in Figure 3.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 3. 3D, contour and 2D graphs respectively for p = −0.5, λ = −1, c2 = −1, c1 = 5, q =

−1, w = 0.5 values of Equation (34).

Case II:

a0 = − 3r
4q

, a1 = 0, b1 = 0, a2 =
9r

4qλ
, b2 = 0, µ = 0, w = − q2

12rλ
, p = − 2q3

27r2 , (35)

considering Equation (6), replacing Equation (35) into Equation (30), the following solution is attained

V = − 3r
4q

+
9r
(

c2
√
−λ cosh

[(
x + q2t

12rλ

)√
−λ
]
+ c1

√
−λ sinh

[(
x + q2t

12rλ

)√
−λ
])2

4qλ
(

c1 cosh
[(

x + q2t
12rλ

)√
−λ
]
+ c2 sinh

[(
x + q2t

12rλ

)√
−λ
])2 , (36)

In addition, if Equation (36) is written instead of u = ln v transformation, the hyperbolic traveling
wave solution of Equation (1) is as follows,

u2 (x, t) = ln


− 3r

4q
+

9r
(

c2
√
−λ cosh

[(
x + q2t

12rλ

)√
−λ
]
+ c1

√
−λ sinh

[(
x + q2t

12rλ

)√
−λ
])2

4qλ
(

c1 cosh
[(

x + q2t
12rλ

)√
−λ
]
+ c2 sinh

[(
x + q2t

12rλ

)√
−λ
])2


 . (37)

The hyperbolic traveling wave solution of Equation (37) produced from the
(G′/G, 1/G)-expansion method is as in Figure 4.
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Figure 4. 3D, contour and 2D graphs respectively for λ = −1, c2 = 2, c1 = 5, q = −5, r = 3 values of
Equation (37).

If λ > 0,
Case III:

a0 =
2pλa2 −

√
−3pq + p2λ2a2

2

3p
, a1 = 0, b1 = 0, b2 = 0, µ = 0, w =

pa2

2
,

r =
2
27


2pλ3a3

2 +
3q
√

p
(
−3q + pλ2a2

2

)

p
+ 2λ2a2

2

√
p
(
−3q + pλ2a2

2

)

 ,

(38)

considering Equation (6), replacing Equation (38) into Equation (30), the following solution is attained

V =

(
c2
√

λ cos
[√

λ
(

x − 1
2 pta2

)]
− c1

√
λ sin

[√
λ
(

x − 1
2 pta2

)])2
a2

(
c1 cos

[√
λ
(

x − 1
2 pta2

)]
+ c2 sin

[√
λ
(

x − 1
2 pta2

)])2

+
2pλa2 −

√
−3pq + p2λ2a2

2

3p
.

(39)

In addition, if Equation (39) is written instead of u = ln v transformation, the trigonometric
traveling wave solution of Equation (1) is as follows,

u3 (x, t) = ln




(
c2
√

λ cos
[√

λ
(

x − 1
2 pta2

)]
− c1

√
λ sin

[√
λ
(

x − 1
2 pta2

)])2
a2

(
c1 cos

[√
λ
(

x − 1
2 pta2

)]
+ c2 sin

[√
λ
(

x − 1
2 pta2

)])2

+
2pλa2 −

√
−3pq + p2λ2a2

2

3p




. (40)

The trigonometric traveling wave solution of Equation (40) produced from the
(G′/G, 1/G)-expansion method is as in Figure 5.
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Figure 5. 3D, contour and 2D graphs respectively for c2 = −0.5, c1 = −1, q = 1, a0 = 0.5, p =

−0.2, λ = 2, a2 = −2 values of Equation (40).
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Case IV:

a1 = 0, b1 = 0, b2 = 0, µ = 0, w =
pa2

2
, r = 2pa0(−a0 + λa2)

2,

q = −3pa2
0 + 4pλa0a2 − pλ2a2

2,
(41)

considering Equation (6), replacing Equation (41) into Equation (30), the following solution is attained

V = a0 − λa2 +

(
c1

2 + c2
2) λa2(

c1 cos
[√

λ
(

x − 1
2 pta2

)]
+ c2 sin

[√
λ
(

x − 1
2 pta2

)])2 . (42)

In addition, if Equation (42) is written instead of u = ln v transformation, the analytical solution
of Equation (1) is as follows,

u4 (x, t) = ln


a0 − λa2 +

(
c1

2 + c2
2) λa2(

c1 cos
[√

λ
(

x − 1
2 pta2

)]
+ c2 sin

[√
λ
(

x − 1
2 pta2

)])2


 . (43)

The trigonometric traveling wave solution of Equation (43) produced from the
(G′/G, 1/G)-expansion method is as in Figure 6.
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Figure 6. 3D, contour and 2D graphs respectively c2 = −0.5, c1 = −1, a0 = 0.5, p = −0.2, λ =

2, a2 = −2 values of Equation (43).

If λ = 0,
Case V:

a0 =
i
√

q√
3
√

p
, a1 = 0, b1 = 0, a2 =

2w
p

, b2 = 0, µ = 0, r = − 2iq3/2

3
√

3
√

p
, (44)

considering Equation (6), replacing Equation (44) into Equation (30), the following solution is attained

V =
i
√

q√
3
√

p
+

2c2
2w

p(c1 + c2 (−tw + x))2 . (45)

In addition, if Equation (45) is written instead of u = ln v transformation, the complex analytical
solution of Equation (1) is as follows,

u5 (x, t) = ln

[
i
√

q√
3
√

p
+

2c2
2w

p(c1 + c2 (−tw + x))2

]
. (46)

The complex analytical solution of Equation (46) produced from the (G′/G, 1/G)-expansion
method is as in Figures 7 and 8.
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Figure 7. The real part of the 3D, contour and 2D graphics respectively for c2 = 5, c1 = −1, q =

−1, p = −0.5, w = 3 values of Equation (46).
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Figure 8. The imaginary part of 3D, contour and 2D graphs respectively for c2 = 5, c1 = −1, q =

−1, p = −0.5, w = 3 values of Equation (46).

Case VI:
a1 = 0, b1 = 0, b2 = 0, µ = 0, r = 2pa3

0, w =
pa2

2
, q = −3pa2

0, (47)

considering Equation (6), replacing Equation (47) into Equation (30), the following solution is attained

V = a0 +
c2

2a2(
c1 + c2

(
x − 1

2 pta2

))2 . (48)

In addition, if Equation (48) is written instead of u = ln v transformation, the analytical solution
of Equation (1) is as follows,

u5 (x, t) = ln


a0 +

c2
2a2(

c1 + c2

(
x − 1

2 pta2

))2


 . (49)

The analytical solution of Equation (49) produced from the (G′/G, 1/G)-expansion method is as
in Figure 9.
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Figure 9. 3D, contour and 2D graphs respectively for c2 = −0.1, c1 = 2, a2 = 2, p = −0.5, a0 = 5
values of Equation (49).
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6. Results and Discussion

There are various methods for obtaining the exact solution of NLEEs. Analytic solutions of the
Z-S equations were successfully constructed by using both methods. When u = ln v transformation
is performed in both methods, solution functions are logarithmic. This is a result of the exponential
functions in the structure of the Z-S equation. In different cases of p, q, r coefficients of Z-S equation,
this equation is recognized by a different name. The main purpose of this article is to present the
solution of Z-S equation and also to solve the equations of the sinh–Gordon, (DBM), (TDB) and the
Liouville equations. For example; The Z-S equation for r = q = 0 is called the Liouville equation.
In this study, if the values r = q = 0 in Equation (24) are written, the traveling wave solution of the
Liouville equation is obtained as

u (x, y) = ln




a0 +
a2

1

6a0

(
A cosh

[
λ
(

x − 3pta0
λ2

)]
− A sinh

[
λ
(

x − 3pta0
λ2

)]
− a1

6a0

)2

+
a1

A cosh
[
λ
(

x − 3pta0
λ2

)]
− A sinh

[
λ
(

x − 3pta0
λ2

)]
− a1

6a0




, (50)

Similarly, the solutions of the sinh–Gordon, DBM, TDB and Liouville equations can be
obtained by using both the methods. The V solution described above is presented in hyperbolic
form in (1/G′)-expansion method, and in hyperbolic, trigonometric and rational forms in
(G′/G, 1/G)-expansion method. In this case, (G′/G, 1/G)-expansion method is advantageous in
terms of solution. However, in (G′/G, 1/G)-expansion method, the process complexity is higher. This
can be observed in the system Equation (31), (1/G′)-expansion method is more advantageous in terms
of process. 2D, 3D and contour graphics which we consider will help in traveling wave solutions
which have considerable importance in applied sciences, are presented. In order to draw these graphs,
real values are given to arbitrary constants in the analytical solution.

This problem contains the properties of many equations. For the different states of the coefficients,
to offer the solution of the equation which includes equations with different names, also to offer the
solution of the subclass equations. It is known that each equation has different meanings. For example,
with the interaction of solitons produced by sinh-Gordon equation, kink and antikink solutions came
to the fore. We can make the same comments for the solutions obtained in these studies for. In this
case, the equation we dealt with is the umbrella task. It makes the wave solutions valuable because it
will carry the properties of the equations under the umbrella. The most important factor that stands
out in this study is to take a different solutions from the solution in classical (G′/G, 1/G)-expansion
method. This results in obtaining different types of traveling wave solutions from the classical method.
It also creates a basis for a new study. This is an improved method that can produce different solutions
by adding the solution we offer with the Equation (17) to the classical (G′/G, 1/G) solution. Because
the Equation (17) presented and the equilibrium term 2 in the equation discussed are different from
the solutions offered in the classical (G′/G, 1/G)-expansion method. Different types of solutions were
obtained with both methods and both methods can be used as important instruments to get traveling
wave solution for many different NLEEs.

7. Conclusions

In this article, we have applied the (1/G′)-expansion and (G′/G, 1/G)-expansion methods to
derive analytic solutions for the Zhiber-Shabat equation. The solutions obtained are complex rational,
hyperbolic, rational and trigonometric type traveling wave solutions. The 2D, 3D and contour graphics
of these solutions were presented by giving value to arbitrary parameters. These graphs represent
the stationary wave at any given moment. As it is very difficult to obtain the solutions of NLEEs, in
this study traveling wave solutions of Zhiber-Shabat equation are presented applying two complex
methods using many complex operations and transformations. These are very effective and powerful
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methods for obtaining analytical solutions and can be used to obtain solutions of many mathematical
models representing physical phenomena. The accuracy of the attained solutions has been assured by
putting them back into the original equations with the help of the computer package program.
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Abstract: In this study, we establish new sufficient conditions for oscillation of solutions of
second-order neutral differential equations with distributed deviating arguments. By employing
a refinement of the Riccati transformations and comparison principles, we obtain new oscillation
criteria that complement and improve some results reported in the literature. Examples are provided
to illustrate the main results.

Keywords: deviating argument; second order; neutral differential equation; oscillation

1. Introduction

This study is concerned with creating new oscillation criteria for the second-order non-linear
neutral differential equation with distributed deviating arguments

(
r (t)

(
z′ (t)

)α
)′

+
∫ b

a
q (t, s) f (x (σ (t, s)))ds = 0, (1)

where t ≥ t0 and

z (t) := x (t) +
∫ d

c
p (t, s) x (τ (t, s))ds.

Throughout this paper, we assume that:

(H1) α is a quotient of add positive integers;
(H2) r ∈ C (I, (0, ∞)) , p ∈ C (I × [c, d] , [0, ∞)) , q ∈ C (I × [a, b] , [0, ∞)) , q (t, s) is not zero on any

half line [t∗, ∞)× [a, b] , t∗ ≥ t0,
∫ d

c p (t, s)ds < 1 and

∫ ∞

t0

r−1/α (s)ds = ∞; (2)

(H3) τ, σ ∈ C (I,R) , τ (t, s) ≤ t, σ (t, s) ≤ t and limt→∞ τ (t, s) = limt→∞ σ (t, s) = ∞;
(H4) f ∈ C (R,R) and there exists a constant k > 0 such that f (x) ≥ kxα for x 6= 0.

By a solution of (1), we mean a function x ∈ C1 ([t, ∞),R) , tx ≥ t0, which has the property
r (t) (z′ (t))α ∈ C1 ([t0, ∞),R) , and satisfies (1) on [tx, ∞). We consider only those solutions x of (1)
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which satisfy sup{|x (t)| : t ≥ tx} > 0, for all t > tx. If x is neither eventually positive nor eventually
negative, then x is called oscillatory; otherwise it is called non-oscillatory. The equation itself is called
oscillatory if all its solutions oscillate.

In a differential equation with neutral delay, the highest-order derivative appears both with and
without delay. In addition to the theoretical importance, the qualitative study of neutral equations has
great practical importance. In fact, the neutral equations arise in the study of vibrating masses attached
to an elastic bar, in problems concerning electric networks containing lossless transmission lines (as in
high-speed computers), and in the solution of variational problems with time delays, see [1,2].

Over the past decades, the issue of studying the oscillation properties for delay/neutral differential
equations has been a very active research area see [1–19].

For some related works, Sun et al. [13] and Dzurina et al. [5] obtained some oscillation criteria for

(r(t)|x′(t)|α−1x′(t))′ + q(t)|x[σ(t)]|α−1x[σ(t)] = 0. (3)

Xu et al. [15,16] and Liu et al. [8] extended the results of [5,13] to (3) with neutral term. Sahiner [12]
obtained some general oscillation criteria for neutral delay equations

(
r (t) (x (t) + p (t) x (t − τ0))

′
)′

+ q (t) f (x (σ (t))) = 0,

In [14], Wang established some general oscillation criteria for equation

(
r (t) (x (t) + p (t) x (t − τ0))

′
)′

+
∫ b

a
q (t, s) x (σ (t, s))ds = 0, (4)

by using Riccati technique and averaging functions method. Xu and Weng [17] and Zhao and Meng [19],
established some oscillation criteria for (4), which complemented and extended the results in [12,14].
In 2011, Baculikova and Dzurina [3] investigated the properties of delayed equations

(
r (t)

(
(x (t) + p (t) x (τ (t)))′

)α)′
+ q (t) xβ (σ (t)) = 0. (5)

They are provided some comparison theorems which compare the second-order (5) with the
first-order differential equations.

It is known that the determination of the signs of the derivatives of the solution is necessary and
significant effect before studying the oscillation of delay differential equations. The other essential
thing is to establish relationships between derivatives of different orders. Depending on improving
the relationship between the neutral function z and its first derivative z′, we create new and improved
criteria for oscillation of solutions of Equation (1). During this study, we use Riccati transformations
and comparison principles to obtain the different criteria for oscillation of (1). Examples are provided
to illustrate the main results.

2. Preliminary Results

For convenience, we denote that

U (t) :=
∫ b

a
q (t, s)

[
1 −

∫ d

c
p (σ (t, s) , v)dv

]α

ds,

ηt0 (t) :=
∫ t

t0

r−1/α (u)du, η̃t0(t) := ηt0 (t) +
k
α

∫ t

t0

ηt1 (u) ηα
t0
(σ(u, a))U (u)du,

η̂ (t) := exp
(
−α

∫ t

σ(t,a)

du

η̃t0(u)r
1/α (u)

)
,
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R (t) = α/ (r (t))1/α , Q (t) := kU (t) η̂ (t) and G (t) :=
∫ ∞

t
Q (s)ds.

The following lemmas mainly help us to prove the main results:

Lemma 1. Let g (x) = Ax − Bx(α+1)/α where A, B > 0 are constants. Then g attains its maximum value on
R at x∗ = (αA/ ((α + 1) B))α and

max
x∈r

g = g (x∗) =
αα

(α + 1)α+1
Aα+1

Bα
. (6)

Lemma 2. [3] If x is a positive solution of (1) on [t0, ∞), then there exists a t1 ≥ t0 such that

z (t) > 0, z′ (t) > 0,
(

r (t)
(
z′ (t)

)α
)′

≤ 0, (7)

for t ≥ t1.

Lemma 3. Let x be a positive solution of Equation (1). Then the function z satisfies

(
r (t)

(
z′ (t)

)α
)′

≤ −kU (t) (z (σ (t, a)))α , (8)

z (t) ≥ η̃t1 (t) r1/α (t) z′ (t) (9)

and (
r (t)

(
z′ (t)

)α
)′

≤ −kU (t) η̂ (t) zα (t) . (10)

Proof. Assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0 for
t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 2, we have (7) holds. Thus, by definition of z (t), we obtain

x (t) = z (t)−
∫ d

c
p (t, v) x (τ (t, v))dv

≥ z (t)−
∫ d

c
p (t, v) z (τ (t, v))dv

≥ z (t)

[
1 −

∫ d

c
p (t, v)dv

]
,

which, with (1), implies that

(
r (t)

(
z′ (t)

)α
)′

≤ −k
∫ b

a
q (t, s) zα (σ (t, s))

[
1 −

∫ d

c
p (σ (t, s) , v)dv

]α

ds.

Since z′ (t) > 0 and ∂
∂s σ (t, s) > 0, we obtain z (σ (t, s)) > z (σ (t, a)) and so

(
r (t)

(
z′ (t)

)α
)′

≤ −kU (t) zα (σ (t, a)) .

Applying the chain rule and simple computation, it is easy to see that

ηt1 (t)
(

r (t)
(
z′ (t)

)α
)′

= α
(

r1/α (t) z′ (t)
)α−1

ηt1 (t)
(

r1/α (t) z′ (t)
)′

= −α
(

r1/α (t) z′ (t)
)α−1 d

dt

(
z (t)− ηt1 (t) r1/α (t) z′ (t)

)
. (11)

Combining (8) and (11), we obtain
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d
dt

(
z (t)− ηt1 (t) r1/α (t) z′ (t)

)
≥ k

α
ηt1 (t)

(
r1/α (t) z′ (t)

)1−α
U (t) zα (σ (t, a)) .

Integrating this inequality from t1 to t, we have

z (t) ≥ ηt1 (t) r1/α (t) z′ (t) +
k
α

∫ t

t1

ηt1 (u)U (u)
(

r1/α (u) z′ (u)
)1−α

zα (σ(u, a))du. (12)

From the monotonicity of r1/α (t) z′ (t), we have

z (t) = z (t1) +
∫ t

t1

1
r1/α (u)

(
r1/α (u) z′ (u)

)
du ≥ ηt1 (t) r1/α (t) z′ (t) .

Thus, from the fact that
(

r1/α (t) z′ (t)
)′

≤ 0, (12) becomes

z (t) ≥ ηt1 (t) r1/α (t) z′ (t)

+
k
α

∫ t

t1

ηt1 (u)U (u)
(

r1/α (u) z′ (u)
)1−α

ηα
t1
(σ(u, a))

[
r (σ(u, a))

(
z′ (σ(u, a))

)α
]

du.

≥ ηt1 (t) r1/α (t) z′ (t) +
k
α

∫ t

t1

(
r1/α (u) z′ (u)

)1−α
ηt1 (u) ηα

t1
(σ(u, a))U (u)

[
r1/α (u) z′ (u)

]α
du

≥ r1/α (t) z′ (t)
[

ηt1 (t) +
k
α

∫ t

t1

ηt1 (u) ηα
t1
(σ(u, a))U (u)du

]
.

≥ η̃t1(t)r
1/α (t) z′ (t) ,

or
z′ (t)
z(t)

≤ 1
η̃t1(t)r

1/α (t)
.

Integrating the latter inequality from σ (t, a) to t, we get

z (σ (t, a))
z (t)

≥ exp
(
−
∫ t

σ(t,a)

du

η̃t1(u)r
1/α (u)

)
.

which with (8), gives

(
r (t) (z′ (t))α)′

zα (t)
≤ −kU (t)

(
z (σ (t, a))

z (t)

)α

≤ −kU (t) η̂ (t) .

The proof is complete.

Lemma 4. Let x be a positive solution of equation (1). If we define the function

Ψ (t) = φ (t) r (t)

(
z′ (t)
z (t)

)α

, (13)

then

Ψ′ (t) ≤ φ′
+ (t)

φ (t)
Ψ(t)− kφ(t)U (t) η̂ (t)− α

(φ (t) r (t))1/α
Ψ(α+1)/α (t) . (14)

Proof. Assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0 for
t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (10) holds. Thus, from the definition of
Ψ (t), we obtain Ψ (t) > 0 for t ≥ t1. Differentiating (13), we arrive at
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Ψ′ (t) =
φ′ (t)
φ (t)

Ψ (t) + φ (t)
(r (t) z′ (t))′

zα (t)
− αφ (t) r (t)

(
z′ (t)
z(t)

)α+1

.

From (10) and (13), we deduce that

Ψ′ (t) ≤ φ′
+ (t)

φ (t)
Ψ(t)− kφ(t)U (t) η̂ (t)− α

(φ (t) r (t))1/α
Ψ(α+1)/α (t) .

The proof is complete.

3. Main Results

In this section, we establish the oscillation criteria for the solutions of (1).

Theorem 1. If the first-order delay differential equation

ω′ (t) + kη̃α
t1
(σ (t, a))U (t)ω (σ (t, a)) = 0 (15)

is oscillatory, then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (8) and (9) hold. Using (8) and (9), one can
see that ω (t) = r (t) (z′ (t))α is a positive solution of the first order delay differential inequality

ω′ (t) + kη̃α
t1
(σ (t, a))U (t)ω (σ (t, a)) ≤ 0.

In view of ([11] Theorem 1), the associated delay equation (15) also has a positive solution, we
find a contradiction. The proof is complete.

Corollary 1. If

lim sup
t→∞

∫ t

σ(t,a)
η̃α

t1
(σ (u, a))U (u)du >

1
k

,
∂

∂t
σ (t, s) ≥ 0 (16)

or

lim inf
t→∞

∫ t

σ(t,a)
η̃α

t1
(σ (u, a))U (u)du >

1
ke

, (17)

then (1) is oscillatory.

Proof. It is well known that (16) or (17) ensures oscillation of (15), see ([7] Theorem 2.1.1).

Lemma 5. Assume that σ is strictly increasing with respect to t for all s ∈ (a, b). Suppose for some δ > 0 that

lim inf
t→∞

∫ t

σ(t,a)
η̃α

t1
(σ (u, a))U (u)du ≥ δ (18)

and (1) has an eventually positive solution x. Then,

w (σ (t, a))
w (t)

≥ θn (δ) , (19)

for every n ≥ 0 and t large enough, where w (t) := r (t) (z′ (t))α,

θ0 (u) := 1 and θn (u) := exp (ρθn−1 (u)) . (20)
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Proof. Assume that (1) has a positive solution x on [t0, ∞). Then, we can expect the existence of
a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0 for t ≥ t1, v ∈ [c, d] and s ∈ [a, b].
Proceeding as in the proof of Theorem 1, we deduce that ω is a positive solution of first order delay
differential equation (15). In a similar way to that followed in proof of Lemma 1 in [18], we can prove
that (19) holds.

Theorem 2. Assume that σ is strictly increasing with respect to t for all s ∈ (a, b) and (18) holds for some
δ < 0. If there exists a function ϕ ∈ C1(I, (0, ∞)) such that

lim
t→∞

sup
∫ t

t1

(
kϕ (u)U (u)− (ϕ′

+ (u))α+1 r (σ (u, a))

(α + 1)α+1 θn (δ) ϕα (u) (σ′(u, a))α

)
= ∞, (21)

for some sufficiently large t ≥ t1and for some n ≥ 0, where θn(δ) is defined as (20) and ϕ′
+(t) =

max {0, ϕ′(t)} , then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (8) holds. It follows from Lemma 5 that
there exists a t ≥ t1 large enough such that

z′ (σ (t, a))
z′ (t)

≥
(

θn (δ) r (t)
r (σ (t))

)1/α

. (22)

Define the function

Φ(t) := ϕ(t)r(t)

(
z′(t)

z (σ (t, a))

)α

. (23)

Then, Φ(t) > 0 for t ≥ t1. Differentiating (23), we get

Φ′(t) =
ϕ′(t)
ϕ(t)

Φ(t) + ϕ(t)
(r(t)(z′(t))α)′

zα (σ (t, a))
− αϕ(t)r(t)

(
z′(t)

z (σ (t, a))

)α ( z′ (σ (t))
z (σ (t, a))

)
σ′ (t, a) .

From (8), (22) and (23), we obtain

Φ′ (t) ≤ −kϕ (t)U (t) +
ϕ′
+ (t)
ϕ(t)

Φ (t)− αθ1/α
n (δ) σ′ (t, a)

(ϕ (t) r (σ (t, a)))1/α
Φ(α+1)/α (t) . (24)

Using Lemma 1 with A = ϕ′
+ (t) /ϕ (t) and B = αθ1/α

n (δ) / (ϕ (t) r (σ (t)))−1/α, (24) yield

Φ′ (t) ≤ −kϕ (t)U (t) +
ϕ′
+ (t)α+1 r (σ (t, a))

(α + 1)α+1 θn (δ) ϕα (t) (σ′ (t, a))α
.

Integrating this inequality from t1 to t, we have

∫ t

t1

(
kϕ (u)U (u)− (ϕ′

+ (u))α+1 r (σ (u, a))

(α + 1)α+1 θn (δ) ϕα (u) (σ′ (u, a))α

)
du ≤ Φ (t) ,

then we find a contradiction with condition (21). The proof is complete.

Theorem 3. Assume that there exists a function φ ∈ C1 (I, (0, ∞)) such that

lim
t→∞

sup
∫ t

t1

(
kφ (u)U (u) η̂ (u)− r (u) (φ′

+ (u))α+1

(α + 1)α+1 φα (u)

)
du = ∞. (25)
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for some sufficiently large t ≥ t1, where φ′
+ (t) = max {0, ψ′ (t)} , then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (8)–(10) hold. Next, using Lemma 4,
we arrive at (14). Using Lemma 1 with A = φ′

+ (t) /φ (t) and B = α (φ (t) r (t))−1/α, (14) becomes

Ψ′ (t) ≤ −kφ(t)U (t) η̂ (t) +
r (t) (φ′

+ (t))α+1

(α + 1)α+1 φα (t)
.

Integrating this inequality from t1 to t, we have

∫ t

t1


kφ (u)U (u) η̂ (u)−

r (u)
(

φ′
+ (u)α+1

)

(α + 1)α+1 φα (u)


du ≤ Ψ (t) ,

This is the contrary with condition (25). The proof is complete.

By different method, we establish new oscillation results for Equation (1).

Theorem 4. Assume that ∫ ∞

t0

Q (t)dt = ∞, (26)

then, Equation (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. Consider the function Ψ defined as in (13), it follows from Lemma 4
that (14) holds. Set φ (t) := 1, (14) becomes

Ψ′ (t) + Q (t) + R (t)Ψ
α+1

α (t) ≤ 0 (27)

or
Ψ′ (t) + Q (t) ≤ 0. (28)

Integrating (28) from t3 to t and using (26), we arrive at

Ψ (t) ≤ Ψ (t3)−
∫ t

t3

Q (t)ds → ∞ as t → ∞,

which is a contradiction with the fact that Ψ (t) > 0 and therefore the proof is complete.

Definition 1. Let {yn (t)}∞
n=0 be a sequence of functions defined as

yn (t) =
∫ ∞

t
R (s) y

α+1
α

n−1 (s)ds + y0 (t) , t ≥ t0, n = 1, 2, 3, .... (29)

and
y0 (t) = G (t) , t ≥ t0,

where yn (t) ≤ yn+1 (t) , t ≥ t0.

Lemma 6. Assume that x is a positive solution of (1). Then Ψ (t) ≥ yn (t) such that Ψ (t) and yn (t) are
defined as in (13) and (29), respectively. Moreover, there exists a positive function y (t) on [T, ∞) such that
limn→∞ yn (t) = y (t) for t ≥ T ≥ t0 and
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y (t) =
∫ ∞

t
R (s) y

α+1
α (s)ds + y0 (t) , t ≥ T. (30)

Proof. Let x be a positive solution of (1). Proceeding as in the proof of Theorem 4, we arrive at (27).
By integrating (27) from t to t′, we obtain

Ψ
(
t′
)
− Ψ (t) +

∫ t′

t
Q (s) ds +

∫ t′

t
Ψ

α+1
α (s) R (s)ds ≤ 0.

This implies

Ψ
(
t′
)
− Ψ (t) +

∫ t′

t
Ψ

α+1
α (s) R (s)ds ≤ 0.

Then, we conclude that
∫ ∞

t
Ψ

α+1
α (s) R (s)ds < ∞ for t ≥ T, (31)

otherwise, Ψ(t′) ≤ Ψ(t) −
∫ t′

t Ψ
α+1

α (s) R(s)ds → −∞ as t′ → ∞, which is a contradiction with
Ψ(t) > 0. Since Ψ(t) > 0 and Ψ′(t) > 0, it follows from (27) that

Ψ (t) ≥ G (t) +
∫ ∞

t
Ψ

α+1
α (s) R (s)ds = y0 (t) +

∫ ∞

t
Ψ

α+1
α (s) R (s)ds, (32)

or
Ψ (t) ≥ G (t) := y0 (t) .

Hence, Ψ(t) ≥ yn(t), n = 1, 2, 3, .... Since {yn(t)}∞
n=0 increasing and bounded above, we get

thatyn → y as n → ∞. Using Lebesgue’s monotone convergence theorem, we see that (29) turns
into (30) as n → ∞.

Theorem 5. Assume that

lim inf
t→∞

1
y0 (t)

∫ ∞

t
y

α+1
α

0 (s) R (s)ds >
α

(α + 1)
α+1

α

, (33)

then, (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0 for t ≥ t1. Proceeding as in the
proof of Lemma 6, we arrive at (32). From (32), we find

Ψ(t)
y0(t)

≥ 1 +
1

y0(t)

∫ ∞

t
y

α+1
α

0 (s) R (s)

(
Ψ(s)
y0(s)

) α+1
α

ds. (34)

If we consider µ = in ft≥T (Ψ(t)/y0(t)), then obviously µ ≥ 1. Using (33) and (34), we see that

µ ≥ 1 + α

(
µ

α + 1

) α+1
α

or
µ

α + 1
≥ 1

α + 1
+

α

α + 1

(
µ

α + 1

) α+1
α

,

which contradicts the expected value of µ and α, therefore, the proof is complete.
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Theorem 6. If there exist some yn(t) such that

lim sup
t→∞

yn(t)

(∫ t

t0

r−
1
α (s)ds

)α

> 1, (35)

then, (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0 for t ≥ t1. Let Ψ(t) defined as
in (13). Then,

1
Ψ (t)

=
1

r (t)

(
z (t)
z′ (t)

)α

=
1

r (t)

(
z (T) +

∫ t
T r−1/α (s) r1/α (s) z′ (s)ds

z′ (t)

)α

≥ 1
r (t)

(
r1/α (t) z′ (t)

∫ t
T r−1/α (s)ds

z′ (t)

)α

=

(∫ t

T
r−1/α (s)ds

)α

, (36)

for t ≥ T. Thus, it follows from (36) that

Ψ (t)

(∫ t

t0

r−1/α (s)ds

)α

≤


∫ t

t0
r−1/α (s)ds

∫ t
T r−1/α (s)ds




α

,

and so

lim sup
t→∞

Ψ (t)

(∫ t

t0

r−
1
α (s)ds

)α

≤ 1,

which contradicts (35). The proof is complete.

Corollary 2. If there exist some yn(t) such that either

∫ ∞

t0

Q (t) exp
(∫ t

t0

y
1
α
n (s)R (s)ds

)
dt = ∞ (37)

or ∫ ∞

t0

R (t) y
1
α
n (t)y0(t) exp

(∫ t

t0

R (s) y
1
α
n (s)ds

)
dt = ∞, (38)

then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0 for t ≥ t1. From Lemma 6, we get
that (30) holds. Using (30), we have

y′ (t) = −R (t) y
α+1

α (t)− Q (t)

≤ −R (t) y
1
α
n (t) y (t)− Q (t) . (39)

Hence, ∫ t

T
Q (s) exp

(∫ s

T
y

1
α
n (u)R (u)du

)
ds ≤ y (T) < ∞,

which contradicts (37).
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Next, let M (t) =
∫ ∞

t R (s) y
α+1

α (s)ds. Then, we obtain

M′ (t) = −R (t) y
α+1

α (t)

≤ −R (t) y
1
α
n (t) y (t)

= −R (t) y
1
α
n (t) (M (t) + y0 (t)) .

Therefore, we find

∫ ∞

T
R (t) y

1
α
n (t)y0(t) exp

(∫ t

T
R (s) y

1
α
n (s)ds

)
dt < ∞,

which contradicts (38). The proof is complete.

4. Examples

Example 1. Consider the differential equation

((
(x (t) + p0x (τ0t))′

)α)′
+
∫ 1

λ

q0

tα+1 xα (ts)ds = 0, (40)

where λ, τ0 ∈ (0, 1). It is easy to verify that

U (t) =
q0

tα+1 (1 − λ) [1 − p0]
α , ηt0 (t) = t and η̃t0(t) = Mt,

where
M := 1 + λα q0

α
(1 − λ) [1 − p0]

α .

Using Corollary 1, we see that (40) is oscillatory if

(
Mαλαq0 (1 − λ) [1 − p0]

α) ln
1
λ
>

1
e

or

α (M − 1) Mα ln
1
λ
>

1
e

. (41)

Next, we note that R (t) = α,

η̂t1 (t) = λ1/M , Q (t) =
N

tα+1 λα/M , G (t) =
Nλα/M

α

1
tα+1 ,

where N = q0 (1 − p0)
α (1 − λ). From Theorem 5, (40) is oscillatory if

(
N
α

λα/M
)1/α

>
α

(α + 1)(α+1)/α
.

Remark 1. Consider a particular case of (40), namely,

(
x (t) +

1
2

x (τ0t)

)′′
+

q0

t2 x (λt) = 0, (42)

From the results in Example 1, Equation (42) is oscillatory if

λ
q0

2

(
1 +

1
2

λq0

)
ln

1
λ
>

1
e

. (43)
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Applying Corollary 2 in [3], we see that (42) is oscillatory if

q0λ ln
1

2λ
>

2
e

. (44)

Obviously, in the case where λ = 1/3, conditions (43) and (44) reduce to q > 1.588 and q > 5.443,
respectively. Thus, a new criterion improve some related results in [3].

Example 2. Consider the differential equation

(
x (t) +

∫ 1

0

1
2

x

(
t − x

3

)
dx

)′′
+
∫ 1

0

( q0

t2

)
x

(
t − s

2

)
ds = 0, (45)

where q0 > 0. It is easy to verify that

U (t) =
q0

t2 , ηt0 (t) = t

and

η̃t0 = t +
q0

4

∫ t

t0

dx = t
(

1 +
q0

4

)
.

Using Corollary 1, if
q0

4

(
1 +

q0

4

)
ln 2 >

1
e

,

then (45) is oscillatory.

5. Conclusions

The growing interest in the oscillation theory of functional differential equation is due to the many
applications of this theory in many fields, see [1,2]. In this work, we used comparison principles and
Riccati transformation techniques to obtain new oscillation criteria for neutral differential Equation (1).
Our new criteria improved a number of related results [3,4,14]. Further, we extended and generalized
the recent works [9,10].

Author Contributions: O.M., W.M., O.B.: Writing original draft, Formal analysis, writing review and editing.
R.A.E.-N.: writing review and editing, funding and supervision. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors received no direct funding for this work.

Acknowledgments: The authors thank the reviewers for for their useful comments, which led to the improvement
of the content of the paper.

Conflicts of Interest: There are no competing interest between the authors.

References

1. Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Oxford University Press:
New York, NY, USA, 1991.

2. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977.
3. Baculikova, B.; Dzurina, J. Oscillation theorems for second order nonlinear neutral differential equations.

Comput. Math. Appl. 2011, 62, 4472–4478. [CrossRef]
4. Candan, T. Oscillatory behavior of second order nonlinear neutral differential equations with distributed

deviating arguments. Appl. Math. Comput. 2015, 262, 199–203. [CrossRef]
5. Dzurina, J.; Stavroulakis, I.P. Oscillation criteria for second-order delay differential equations. Appl. Math.

Comput. 2003, 140, 445–453. [CrossRef]
6. Elabbasy, E.M.; Hassan, T.S.; Moaaz, O. Oscillation behavior of second order nonlinear neutral differential

equations with deviating arguments. Opuscula Math. 2012, 32, 719–730. [CrossRef]
7. Ladde, G.; Lakshmikantham, V.; Zhang, B. Oscillation Theory of Differential Equationswith Deviating Arguments;

Marcel Dekker: NewYork, NY, USA, 1987.

213



Mathematics 2020, 8, 849

8. Liu, L.; Bai, Y. New oscillation criteria for second-order nonlinear neutral delay differential equations.
J. Comput. Appl. Math. 2009, 231, 657–663. [CrossRef]

9. Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. Adv. Differ. Equ. 2019,
2019, 484. [CrossRef]

10. Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized
Emden–Fowler neutral differential equation. J. Inequal. Appl. 2020, 2020, 69. [CrossRef]

11. Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with
positive delay. Arch. Math. (Basel) 1981, 36, 168–178. [CrossRef]

12. Sahiner, Y. On oscillation of second-order neutral type delay differential equations. Appl. Math. Comput.

2004, 150, 697–706.
13. Sun, Y.G.; Meng, F.W. Note on the paper of Dzurina and Stavroulakis. Appl. Math. Comput. 2006, 174,

1634–1641. [CrossRef]
14. Wang, P.G. Oscillation criteria for second-order neutral equations with distributed deviating arguments.

Comput. Math. Appl. 2004, 47, 1935–1946. [CrossRef]
15. Xu, R.; Meng, F. Some new oscillation criteria for second order quasi-linear neutral delay differential

equations. Appl. Math. Comput. 2006, 182, 797–803. [CrossRef]
16. Xu, R.; Meng, F. Oscillation criteria for second order quasi-linear neutral delay differential equations.

Appl. Math. Comput. 2007, 192, 216–222. [CrossRef]
17. Xu, Z.T.; Weng, P.X. Oscillation of second-order neutral equations with distributed deviating arguments.

J. Comput. Appl. Math. 2007, 202, 460–477. [CrossRef]
18. Zhang, B.G.; Zhou, Y. The distribution of zeros of solutions of differential equations with a variable delay.

J. Math. Anal. Appl. 2001, 256, 216–228. [CrossRef]
19. Zhao, J.; Meng, F. Oscillation criteria for second-order neutral equations with distributed deviating argument.

Appl. Math. Comput. 2008, 206, 485–493. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

214



mathematics

Article

A Class of Quantum Briot–Bouquet Differential
Equations with Complex Coefficients

Rabha W. Ibrahim 1,2 , Rafida M. Elobaid 3,* and Suzan J. Obaiys 4

1 Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
rabhaibrahim@tdtu.edu.vn

2 Faculty of Mathematics & Statistics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
3 Department of General Sciences, Prince Sultan University, Riyadh 12345, Saudi Arabia
4 School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia,

Putrajaya 62200, Malaysia; s.obaiys@hw.ac.uk
* Correspondence: robaid@psu.edu.sa

Received: 8 April 2020; Accepted: 12 May 2020; Published: 14 May 2020
����������
�������

Abstract: Quantum inequalities (QI) are local restraints on the magnitude and range of formulas.
Quantum inequalities have been established to have a different range of applications. In this paper,
we aim to introduce a study of QI in a complex domain. The idea basically, comes from employing
the notion of subordination. We shall formulate a new q-differential operator (generalized of Dunkl
operator of the first type) and employ it to define the classes of QI. Moreover, we employ the q-Dunkl
operator to extend the class of Briot–Bouquet differential equations. We investigate the upper solution
and exam the oscillation solution under some analytic functions.

Keywords: differential operator; unit disk; univalent function; analytic function; subordination;
q-calculus; fractional calculus; fractional differential equation; q-differential equation

MSC: 30C45

1. Introduction

Quantum calculus exchanges the traditional derivative by a difference operator, which permits
dealing with sets of non-differentiable curves and admits several formulas. The most common formula
of quantum calculus is constructed by the q-operator (q-indicates for the quantum), which is created
by the Jackson q-difference operator [1] as follows: let δq be the q-calculus which is formulated by

δq(g(ξ)) = g(qξ)−g(ξ) ,

then the derivatives of functions are presented as fractions by the q-derivative

Dq(g(ξ)) =
δq(g(ξ))

δq(ξ)
=

g(qξ)−g(ξ)

(q − 1)ξ
, ξ 6= 0.

For example, the q-derivative of the function ξn (for some positive integer n) is

Dq(ξ
n) =

qn − 1
q − 1

ξn−1 = [n]q ξn−1, [n]q =
qn − 1
q − 1

.

Recently, quantum inequalities (differential and integral) have extensive applications not only
in mathematical physics but also in other sciences. In variation problems, Cruz et al. [2] presented a
new variational calculus created by the general quantum difference operator of Dq. Rouze and Datta
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used the quantum functional inequalities to describe the transportation cost functional inequality [3].
Giacomo and Trevisan proved the conditional Entropy Power Inequality for Gaussian quantum
systems [4]. Bharti et al. provided a novel algorithm to self-test local quantum systems employing
non-contextuality quantum inequalities [5]. The class of quantum energy inequalities is studied by
Fewster and Kontou [6]. In the control system, Ibrahim et al. established different classes of quantum
differential inequalities [7]. In quantum information processing, Mao et al formulated a new quantum
key distribution based on quantum inequalities [8].

In this investigation, we formulate a novel q-differential operator of complex coefficients and
discuss its behavior in view of the theory of geometric functions. The suggested q-differential operator
indicates a generalization of well-known differential operators in the open unit disk, such as the Dunkl
operator and the Sàlàgean operator. It will be considered in some subclasses of starlike functions.
Quantum inequalities involve the q-differential operator and some special functions are studied.
Sharpness of QI is studied in the sequel. As an application, we employ the q-differential operator to
define the q-Briot–Bouquet differential equations (q-BBE). Special cases are discussed and compared
with recent works. Moreover, we illustrate a set of examples of q-BBE (for q = 1/2) and exam its
oscillated solutions.

2. Related Works

The quantum calculus receives the attention of many investigators. This calculus, for the first time
appeared in complex analysis by Ismail et al. [9]. They defined a class of complex analytic functions
dealing with the inequality condition | g (qξ)| < | g (ξ)| on the open unit disk. Grinshpan [10]
presented some interesting outcomes filled with geometric observations are of very significant in
the univalent function theory. Newly, q-calculus becomes very attractive in the field of special
functions. Srivastava and Bansal [11] presented a generalization of the well-known Mittag–Leffler
functions and they studied the sufficient conditions under which it is close-to-convex in the open
unit disk. Srivastava et al. [12] established a new subclass of normalized smooth and starlike
functions in ∪. Mahmood et al. [13] introduced a family of q-starlike functions which are based
on the Ruscheweyh-type q-derivative operator. Shi et al. [14] examined some recent problems
concerning the concept of q-starlike functions. Ibrahim and Darus [15] employed the notion of
quantum calculus and the Hadamard product to amend an extended Sàlàgean q-differential operator.
Srivastava [16] developed many functions and classes of smooth functions based on the q-calculus.
The q-Subordination inequality presented by Ul-Haq et al. [17]. Govindaraj and Sivasubramanian [18]
as well as Ibrahim et al. [7] used the quantum calculus and the Hadamard product to deliver some
subclasses of analytic functions involving the modified Sàlàgean q-differential operator and the
generalized symmetric Sàlàgean q-differential operator respectively.

3. q-Differential Operator

Assume that
∧

is the set of the smooth functions formulating by the followed power series

g(ξ) = ξ +
∞

∑
n=2

gnξn, ξ ∈ ∪ = {ξ : |ξ| < 1}.

For a function g ∈ ∧, the Sàlàgean operator expansion is formulated by the expansion

ςm g (ξ) = ξ +
∞

∑
n=2

nm gn ξn.

For g ∈ ∧, we get

Dq g (ξ) =
∞

∑
n=1

gn [n]qξn−1, ξ ∈ ∪, g1 = 1.
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Now, let g ∈ ∧, the Sàlàgean q-differential operator [18] is formulated by

ς0
q g (ξ) = g(ξ), ς1

q g (ξ) = ξDq g (ξ), ..., ςm
q g (ξ) = ξDq

(
ςm−1

q g (ξ)
)

,

where m is a positive integer. A calculation associated by the formula of Dq, yields ςm
q g (ξ) =

g(ξ) ∗ Θm
q (ξ), where ∗ is the convolution product,

Θm
q (ξ) = ξ +

∞

∑
n=2

[n]mq ξn

and

ςm
q g (ξ) = ξ +

∞

∑
n=2

[n]mq gn ξn.

Next, we present the q-differential operator as follows:

qΛ0
λ g (ξ) = g(ξ)

qΛ1
λ g (ξ) = ξDq g (ξ) +

(
(λ g (ξ)− ξ)− λ (g(−ξ) + ξ)

)
,

...

qΛm
λ g (ξ) =q Λλ(qΛm−1

λ g (ξ))

= ξ +
∞

∑
n=2

(
[n]q + ((−1)n+1 + 1)λ

)m
gn ξn,

(1)

where λ ∈ C. For λ = 0, q → 1−, the operator subjects to the Sàlàgean operator [19]. In addition,
the operator qΛm

λ represents to the q-Dunkl operator of first rank [20], such that the value of λ is
the Dunkl parameter. The term

(
[n]q + λ(1 + (−1)n+1)

)m
indicates a major law in oscillation study

(see [21]). Furthermore, the term e2iπ is denoting the quantum number q when ℏ = 1. That is there is a
connection between the definition of the qΛm

λ and its coefficients.
Two functions g and f in

∧
are subordinated ( g ≺ f), if there occurs a Schwarz function

ζ ∈ ∪ with ζ(0) = 0 and |ζ(ξ)| < 1, whenever g(ξ) = f(ζ(ξ)) for all ξ ∈ ∪ (see [22]).
Literally, the subordination inequality is indicated the equality at the origin and inclusion regarding ∪.

Definition 1. Assume that λ ∈ C, m ∈ N and g ∈ ∧ . Then it is in the set qS
∗
m(λ, ς) if and only if

ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

≺ ς(ξ), ξ ∈ ∪,

where ς is univalent function of a positive real part in ∪ realizing ς(0) = 1,ℜ(ς′(ξ)) > 0.

The set of functions qS
∗
m(α, λ, ς) is an extension of types related to the Ma and Minda classes

(see [23–27]). Next result indicates the upper and lower bound of a convex formula involving special
functions, which will be useful in the next section.

Theorem 1. Assume that 0 ≤ β ≤ 1. Then for ς ∈ ∪ as follows:

1. ς(ξ) = (1 − β)
√

1 + ξ + β,
2. ς(ξ) = (1 − β)eξ + β,
3. ς(ξ) = (1 − β)(1 + sin(ξ)) + β,

4. ς(ξ) = (1 − β)eeξ−1 + β,
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satisfying
min
|ξ|=r

ℜ(ς(ξ)) = ς(−r) = min
|ξ|=r

|ς(ξ)|, r < 1

and
max
|ξ|=r

ℜ(ς(ξ)) = ς(r) = max
|ξ|=r

|ς(ξ)|, r < 1.

Proof. For ϑ ∈ (0, 2π), ℜ(ς(reiϑ)) = (1 − β)er cos(ϑ) cos(r sin(ϑ)) + β, the first and second formula
can be found in [25]. In the same manner, we show the third formal. When β = 0 this implies that
ς(ξ) = 1 + sin(ξ) (see [24]). Obviously,

sin(reiϑ) = sin(r cos (ϑ)) cosh (r sin(ϑ)) + i cos (r cos(ϑ)) sinh (r sin (ϑ))

thus, this yields
ℜ(ς(ξ)) = sin (r cos( ϑ)) cosh(r sin ( ϑ)) + 1.

Now, let r → 0, this leads to

min
|ξ|=r

ℜ(ς(ξ)) = 1 − sin(r) = min
|ξ|=r

|ς(ξ)| = 1.

Consequently, we indicate that

| sin(reiϑ)|2 = cos2(r cos ϑ) sinh 2(r sin ϑ) + sin2 2(r cos ϑ) cosh 2(r sin r) ≤ sinh2(r);

thus, this yields
max
|ξ|=r

ℜ(ς(ξ)) = 1 + sin(r) = max
|ξ|=r

|ς(ξ)| ≤ 1 + sinh2(r).

Extend the above outcome, for β > 0, we obtain

min
|ξ|=r

ℜ(ς(ξ)) = β + (1 − β)(1 − sin(r)) = min
|ξ|=r

|ς(ξ)| = 1,

and
max
|ξ|=r

ℜ(ς(ξ)) = β + (1 − β)(1 + sin(r)) = max
|ξ|=r

|ς(ξ)| ≤ β + (1 − β)(1 + sinh2(r)).

Similarly, for the last assertion,where for β = 0, we have a result in [27].

The next result can be found in [22].

Lemma 1. Suppose that τ > 0 and ς ∈ H[1, n]. Then for two constants ℘ > 0 and ν > 0 with ν = ν(℘, τ, n)
are achieving

ς(ξ) + τξς′(ξ) ≺
[

1 + ξ

1 − ξ

]ν

⇒ ς(ξ) ≺
[

1 + ξ

1 − ξ

]℘
.

Lemma 2. Consider ϕ(ξ) is a convex function in ∪ and h(ξ) = ϕ(ξ) + nν(ξ ϕ′(ξ)) for ν > 0 and n is a
positive integer. If ̺ ∈ H[ϕ(0), n], and

̺(ξ) + νξ̺′(ξ) ≺ h(ξ), ξ ∈ ∪,

then ̺(ξ) ≺ ϕ(ξ), and this outcome is sharp.

4. q-Subordination Relations

In this section, we deal with the set qS
∗
m(λ, ς) for some ς.

Theorem 2. Assume that qS
∗
m(λ, ς) fulfills the next relation:

qS
∗
m(λ, ς) ⊂ qS

∗
m(λ, γ) ⊂ qS

∗
m(λ),
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where γ is non-negative real number (depending on β) and ς is one of the form in Theorem 1 and

qS
∗
m(λ, γ) := {g ∈

∧
: ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
> γ, γ ≥ 0};

qS
∗
m(λ) := {g ∈

∧
: ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
> 0}.

Proof. Suppose that g ∈q S∗
m(λ, ς) and ς(ξ) = (1 − β)

√
1 + ξ + β. This implies the inequality

ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

≺ (1 − β)
√

1 + ξ + β, ξ ∈ ∪.

According to Theorem 1, one can find

min
|ξ|=1−

ℜ((1 − β)(ξ + 1)0.5 + β) < ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< max

|ξ|=1+
ℜ ((1 − β)(ξ + 1)0.5 + β,

which indicates

β < ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< (1 − β)

√
2 + β.

Hence, we have

ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
> β := γ ≥ 0,

which leads to the requested result. Assume that ς(ξ) = (1 − β) eξ + β, then we conclude the next
minimization and maximization inequality

min
|ξ|=1

ℜ((1 − β)eξ + β) < ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< max

|ξ|=1
ℜ((1 − β)eξ + β),

which implies

((1 − β)
1
e
+ β) < ℜ

( ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

)
< ((1 − β)e + β),

that is

ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
> ((1 − β)

1
e
+ β) := γ ≥ 0.

Now, suppose that ς(ξ) = (1 − β) (1 + sin(ξ) + β), which implies that

min
|ξ|=1

ℜ((1 − β)(1 + sin (ξ)) + β) < ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< max

|ξ|=1
ℜ((1 − β)(1 + sin(ξ)) + β).

A calculation yields

(0.158(1 − β) + β) < ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< (1.841(1 − β) + β),

this yields

ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
> (0.158(1 − β) + β) := γ ≥ 0.

Remark 1. In Theorem 2,
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• When m = 0, β = 0, ς(ξ) = 1 + sin ξ =⇒ qS
∗
0(λ, 1 + sin ξ) ⊂ qS

∗
0(λ, γ) ⊂ qS

∗
0(λ) for

non-negative γ (see [24]);

• When m = 0 =⇒ qS
∗
0(λ, ς) ⊂ qS

∗
0(λ, γ) ⊂ qS

∗
0(λ) for all ς in Theorem 2 and non-negative real

number γ (see [25]);

• When m = 0, β = 0, ς(ξ) = eξ =⇒ qS
∗
0(λ, eξ) ⊂ qS

∗
0(λ, γ) ⊂ qS

∗
0(λ) for all non-negative γ

(see [28]);

• When m = 0, β = 0, ς(ξ) = (ξ + 1)0.5 =⇒ qS
∗
0(λ, (ξ + 1)0.5) ⊂ qS

∗
0(λ, γ) ⊂ qS

∗
0(λ) for all

non-negative γ (see [28]).

Next outcome shows the inclusion relation between the class qS
∗
m(λ, σ) and other geometric class.

Theorem 3. The set qS
∗
m(λ, ς) satisfies the inclusion:

qS
∗
m(λ, ς) ⊂ qMm(λ, α) := {g ∈

∧
: ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< α, α > 1},

where ς is given in Theorem 1 .

The class qMm(λ, α) is an extension of the Uralegaddi set (see [29])

M(α) := {g ∈
∧

: ℜ
( ξ(g(ξ))′

g(ξ)

)
< α, α > 1}.

Proof. Suppose that g ∈ qS
∗
m(λ, ς), where ς is termed in Theorem 1. Then we obtain

ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< (1 − β)

√
2 + β := α,

ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< (1 − β)e + β := α

and

ℜ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)
< 1.841(1 − β) + β := α,

Thus, g ∈ qMm(g(ξ), α).

Remark 2. We have the following special cases from Theorem 3,

• m = 0, β = 0, ς(ξ) = 1 + sin ξ =⇒q S∗
0(λ, 1 + sin ξ) ⊂ qM0(λ, α) for α > 1 (see [24]);

• m = 0, ς(ξ) = β + (1 − β)eξ =⇒q S∗
0(λ, (1 − β) eξ) + β ⊂ qM0(λ, α) for α > 1 (see [25],

Theorem 2.5);

• m = 0, ς(ξ) = (1 − β)((ξ + 1)0.5) + β =⇒q S∗
0(λ, β + (1 − β)(ξ + 1)0.5) + β) ⊂ qM0(λ, α) for

α > 1 (see [25], Theorem 2.6).

• m = 0, β = 0, ς(ξ) = ((ξ + 1)0.5) =⇒q S∗
0(λ, (ξ + 1)0.5) ⊂ qM0(λ, α) where α > 1 (see [25],

Corollary 2.7).

The following theorem confirms the belonging of a normalized function in the class qS
∗
m(λ, ς),

where ς indicates the Janowski formula of order ℘ > 0.

Theorem 4. If g ∈ ∧ satisfies the subordination

( ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

)(
2 +

ξ(qΛm
λ g (ξ))′′

(qΛm
λ g (ξ))′

− ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

)
≺
(

ξ + 1
1 − ξ

)τ
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then g ∈q S∗
m(λ, ς), where ς(ξ) =

(
ξ + 1
1 − ξ

)℘

for ℘ > 0, τ > 0.

Proof. In virtue of Lemma 1, a computation yields

( ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

)
+ ξ
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)′

=
( ξ(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

)( ξ(qΛm
λ g (ξ))′′

(qΛm
λ g (ξ))′

− ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

+ 2
)

≺
(

ξ + 1
1 − ξ

)τ

.

Now, according to Lemma 1, we attain

( ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

)
≺
(

ξ + 1
1 − ξ

)℘

:= ς (ξ),

which indicates that g ∈q S∗
m(λ, ς).

The next result shows the iteration inequality including the q-differential operator qΛm
λ and qΛm+1

λ .

Theorem 5. Suppose that ϕ is convex with ϕ(0) = 0 and g is defined as follows:

g(ξ) = ϕ(ξ) +

(
1

1 − ℓ

)
(ξ ϕ′(ξ)), ℓ ∈ (0, 1), ξ ∈ ∪.

If g ∈ ∧ fulfills the inequality

( ξ

qΛm+1
λ g (ξ)

)ℓ qΛm
λ g (ξ)

1 − ℓ

((
qΛm+1

λ g (ξ)
)′

qΛm+1
λ g (ξ)

− ℓ

(
qΛm

λ g (ξ)
)′

qΛm
λ g (ξ)

)
≺ g(ξ)

then
( qΛm+1

λ g (ξ)

ξ

)( ξ

qΛm+1
λ g (ξ)

)ℓ ≺ ϕ(ξ).

Proof. For all ξ ∈ ∪, we define

̺(ξ) =
( qΛm+1

λ g (ξ)

ξ

)( ξ

qΛm+1
λ g (ξ)

)ℓ.

Please note that the term

( ξ

qΛm+1
λ g (ξ)

)ℓ
=

(
ξ

ξ + ∑
∞
n=2

(
[n]q + (1 + (−1)n+1) λ

)m+1

)ℓ

= 1 + ...;

therefore,
( ξ

qΛm+1
λ g (ξ)

)ℓ∣∣∣
ξ=0

= 1. A differentiation implies that

( ξ

qΛm+1
λ g (ξ)

)ℓ
(

qΛm
λ g (ξ)

1 − ℓ

)((
qΛm+1

λ g (ξ)
)′

qΛm+1
λ g (ξ)

− ℓ

(
qΛm

λ g (ξ)
)′

qΛm
λ g (ξ)

)

=

(
1

1 − ℓ

) (
ξ̺′(ξ)

)
+ ̺(ξ)
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Consequently, we indicate that

(
1

1 − ℓ

) (
ξ̺′(ξ)

)
+ ̺(ξ) ≺ g(ξ) =

(
1

1 − ℓ

) (
ξ ϕ′(ξ)

)
+ ϕ(ξ).

In virtue of Lemma 2, we conclude that ̺(ξ) ≺ g(ξ), which leads to

(
qΛm+1

λ g (ξ)

ξ

)(
ξ

qΛm+1
λ g (ξ)

)ℓ

≺ ϕ(ξ).

5. Q-Differential Equations

This section deals with a class of differential equations type complex Briot–Bouquet (see [30,31] for

recent works) and its analytic solutions. The main formula of BBE is ξ(g(ξ))′
g(ξ)

= Υ(ξ). The operator (1)
can be used to extend q-BBE as follows:

ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

= Υ(ξ), ξ ∈ ∪,g ∈
∧

, (2)

where Υ(ξ) ∈ C (the set of univalent and convex in ∪). The aim is to discuss the maximum outcome
of (2) by using q−inequalities.

Theorem 6. Suppose that g ∈ ∧ and Υ(ξ) ∈ C satisfy

ξ ( qΛm
λ g (ξ))′

qΛm
λ g (ξ)

≺ Υ(ξ). (3)

Then the maximum solution of (3) is

qΛm
λ g (ξ) ≺

(
exp

( ∫ ξ

0

Υ(Φ(ι))− 1
ι

dι
))

ξ,

where Φ(ξ) is smooth in ∪, such that Φ(0) = 0, |Φ(ξ)| < 1 and it is the upper limit in the above integral.
Also, for |ξ| = ι, qΛm

λ g (ξ) achieves the inequality

exp
( ∫ 1

0

Υ(Φ(−ι))− 1
ι

dι
)
≤
∣∣∣ qΛm

λ g (ξ)

ξ

∣∣∣ ≤ exp
( ∫ 1

0

Υ(Φ(ι))− 1
ι

dι
)

.

Proof. By the definition of the subordination, inequality (3) achieves that there exists a Schwarz
function Φ satisfying |Φ(ξ)| < 1, Φ(0) = 0 and

ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

= Υ(Φ(ξ)), ξ ∈ ∪.

This implies
(qΛm

λ g (ξ))′

qΛm
λ g (ξ)

− 1
ξ
=

Υ(Φ(ξ))− 1
ξ

.

Integrating both sides yields

logq Λm
λ g (ξ)− log ξ =

∫ ξ

0

Υ(Φ(ι))− 1
ι

dι.
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A calculation indicates

log
(

qΛm
λ g (ξ)

ξ

)
=
∫ ξ

0

Υ(Φ(ι))− 1
ι

dι. (4)

Then, we have

qΛm
λ g (ξ) ≺ ξ exp

( ∫ ξ

0

Υ(Φ(ι))− 1
ι

dι
)

for some Schwarz function. In addition, by the behavior of the function Υ on the disk 0 < |ξ| < ι < 1
we have

Υ(−ι|ξ|) ≤ ℜ(Υ(Φ(ιξ))) ≤ Υ(ι|ξ|), ι ∈ (0, 1),

and
Υ(−ι) ≤ Υ(−ι |ξ|), Υ(ι |ξ|) ≤ Υ(ι).

Thus, we conclude that

∫ 1

0

Υ(Φ(−ι|ξ|))− 1
ι

dι ≤ ℜ
( ∫ 1

0

Υ(Φ(ι))− 1
ι

dι
)
≤
∫ 1

0

Υ(Φ(ι|ξ|))− 1
ι

dι,

which implies

∫ 1

0

Υ(Φ(−ι|ξ|))− 1
ι

dι ≤ log
∣∣∣ qΛm

λ g (ξ)

ξ

∣∣∣ ≤
∫ 1

0

Υ(Φ(ι|ξ|))− 1
ι

dι,

and

exp
(∫ 1

0

Υ(Φ(−ι|ξ|))− 1
ι

dι

)
≤
∣∣∣ qΛm

λ g (ξ)

ξ

∣∣∣ ≤ exp
(∫ 1

0

Υ(Φ(ι|ξ|))− 1
ι

dι

)
.

We conclude that

exp
( ∫ 1

0

Υ(Φ(−ι))− 1
ι

dι
)
≤
∣∣∣ qΛm

λ g (ξ)

ξ

∣∣∣ ≤ exp
( ∫ 1

0

Υ(Φ(ι))− 1
ι

dι
)

.

Next result presents the condition on the coefficients of the normalized function g to satisfy the
upper bound in Theorem 6.

Theorem 7. Suppose that g ∈ ∧ has non-negative coefficients. If Υ ∈ C in Equation (2) and ℜ(λ) > 0 then
there is a solution satisfying the maximum bound inequality

qΛm
λ g (ξ) ≺ ξ exp

( ∫ ξ

0

Υ(Φ(ι))− 1
ι

dι
)

, (5)

where Φ(ξ) is smooth with |Φ(ξ)| < 1 and Φ(0) = 0.
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Proof. By the condition of the theorem, we get the following assertions:

ℜ
(

ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

)
> 0

⇔ ℜ
(

ξ + ∑
∞
n=2 n[[n]q + λ(1 + (−1)n+1)]m gn ξn

ξ + ∑
∞
n=2[[n]q + λ(1 + (−1)n+1)]m gn ξn

)
> 0

⇔ ℜ
(

1 + ∑
∞
n=2 n[[n]q + λ(1 + (−1)n+1)]m gn ξn−1

1 + ∑
∞
n=2[[n]q + λ(1 + (−1)n+1)]m gn ξn−1

)
> 0

⇔
(

1 + ∑
∞
n=2 n[[n]q + λ(1 + (−1)n+1)]m gn

1 + ∑
∞
n=2[[n]q + λ(1 + (−1)n+1)]m gn

)
> 0

⇔
(

1 +
∞

∑
n=2

n [[n]q + (1 + (−1)n+1) λ]m gn

)
> 0.

Moreover, we have (qΛm
λ g)(0) = 0, which leads to

ξ(qΛm
λ g (ξ))′

qΛm
λ g (ξ)

∈ P .

Hence the proof.

We illustrate an example to find the upper and oscillation solution of q-BBE when q = 1/2,
see Tables 1 and 2.

Table 1. The upper bound solution of q-BBE for different Υ(ξ).

Υ(ξ) Upper Solution Graph Polynomial

cos(ξ) (ξ ∗ exp(sin(ξ)− ξ)) ξ − ξ4/6 + O(ξ6)

1 − sin(ξ) (ξ ∗ exp(cos(ξ) + ξ − 1)) ξ + ξ2 − ξ4

3 − ξ5

24 + O(ξ6)

1/(1 − ξ) (ξ ∗ exp(−ξ − log(1 − ξ))) ξ + ξ3

2 + ξ4

3 + 3ξ5

8 + O(ξ6)

1/(1 − ξ)2 (ξ ∗ exp( ξ2

1−ξ )) ξ + ξ3 + ξ4 + 3ξ5

2 + O(ξ6)

1 − ξ (ξ ∗ exp(−ξ2/2)) ξ − ξ3

2 + ξ5

8 − ξ7

48 + O(ξ9)
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Table 2. The oscillation solution for different Υ(ξ).

1
2 -BBE (2) Oscillation Solution Graph

cos(ξ) c1eCi(ξ)

1 − sin(ξ) c1ξe(−Si(ξ))

1/(1 − ξ) c1e(1/(1−ξ))ξ

1 − ξ c1e(−ξ)ξ

Where Ci is the cos integral function and Si is the sin integral function. The first example of 1
2 -BBE

of (2) is Y(ξ) = cos(ξ) which has an oscillation solution with one branch point at the origin and has
a local maximum at ξ = π

2 + 2nπ and local minimum at ξ = π
2 − 2nπ. While, for Y(ξ) = 1 − sin(ξ),

the oscillation solution has no branch point in the disk. Moreover, for Y(ξ) = 1/(1 − ξ) the oscillation
solution has no branch point. Finally, when Y(ξ) = 1− ξ, the oscillation solution has a global maximum
equal to 1/e at ξ = 1.

6. Conclusions

From above, we conclude that in view of the quantum calculus, some generalized differential
operators in the open unit disk can have connections (coefficients) convergence of quantum numbers.
These numbers might change the behavior of the operator and its classes of analytic functions.
We investigated the oscillation solution and asymptotic solutions of different differential equations
of the Briot–Bouquet type. For future work, one can employ the q-operator (1) in different classes of
analytic functions such as the meromorphic and multivalent functions (see [32–34]).
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Abstract: The main objective of this paper is to establish new oscillation results of solutions to a
class of fourth-order advanced differential equations with delayed arguments. The key idea of our
approach is to use the Riccati transformation and the theory of comparison with first and second-order
delay equations. Four examples are provided to illustrate the main results.

Keywords: advanced differential equations; oscillations; Riccati transformations; fourth-order delay
equations

1. Introduction

In the last decades, many researchers have devoted their attention to introducing more
sophisticated analytical and numerical techniques to solve mathematical models arising in all fields of
science, technology and engineering. Fourth-order advanced differential equations naturally appear in
models concerning physical, biological and chemical phenomena, having applications in dynamical
systems such as mathematics of networks and optimization, and applications in the mathematical
modeling of engineering problems, such as electrical power systems, materials and energy, also,
problems of elasticity, deformation of structures, or soil settlement, see [1].

The present paper deals with the investigation of the oscillatory behavior of the fourth order
advanced differential equation of the following form

(
a (υ)

(
y′′′ (υ)

)β
)′

+
j

∑
i=1

qi (υ) g (y (ηi (υ))) = 0, υ ≥ υ0, (1)

where j ≥ 1 and β is a quotient of odd positive integers. Throughout the paper, we suppose the
following assumptions:
a ∈ C1 ([υ0, ∞), (0, ∞)) , a′ (υ) ≥ 0, qi, ηi ∈ C ([υ0, ∞),R) , qi (υ) ≥ 0, ηi (υ) ≥ υ, i = 1, 2, .., j, g ∈
C (R,R) such that g (x) /xβ ≥ ℓ > 0, for x 6= 0 and under the condition

∫ ∞

υ0

1
a1/β (s)

ds = ∞. (2)

During this decade, several works have been accomplished in the development of the oscillation
theory of higher order advanced equations by using the Riccati transformation and the theory of
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comparison between first and second-order delay equations. Further, the oscillation theory of fourth
and second order delay equations has been studied and developed by using an integral averaging
technique and the Riccati transformation, see [2–23].

In this paper, we are aimed to complement the results reported in [24–26], therefore we discuss
their findings and results below.

Moaaz et al. [27] considered the fourth-order differential equation

(
a (υ)

(
y′′′ (υ)

)γ
)′

+ q (υ) yα (η (υ)) = 0,

where γ, α are quotients of odd positive integers.
Grace et al. [28] considered the equation

(
a (υ)

(
y′′ (υ)

)γ
)′′

+ q (υ) g (y (η (υ))) = 0, (3)

where η (υ) ≤ υ.
Zhang et al. in [29] studied qualitative behavior of the fourth-order differential equation

(
a (υ)

(
w′′′ (υ)

)β
)′

+ q (υ)w (σ (υ)) = 0,

where σ (υ) ≤ υ, β is a quotient of odd positive integers and they used the Riccati transformation.
Agarwal and Grace [24] considered the equation

((
y(κ−1) (υ)

)β
)′

+ q (υ) yβ (η (υ)) = 0, (4)

where κ is even, and they established some new oscillation criteria by using the comparison technique.
Among others, they proved it oscillatory if

lim inf
υ→∞

∫ η(υ)

υ
(η (s)− s)κ−2

(∫ ∞

η(υ)
q (υ) dυ

)1/β

ds >
(κ − 2)!

e
. (5)

Agarwal et al. in [25] extended the Riccati transformation to obtain new oscillatory criteria for
ODE (4) under the condition

lim sup
υ→∞

υβ(κ−1)
∫ ∞

υ
q (s) ds > ((κ − 1)!)β . (6)

Authors in [26] studied oscillatory behavior of Equation (4) where β = 1 and if there exists a
function τ ∈ C1 ([υ0, ∞) , (0, ∞)) , also, they proved oscillatory by using the Riccati transformation if

∫ ∞

υ

(
τ (s) q (s)− (κ − 2)! (τ′ (s))2

23−2κsκ−2τ (s)

)
ds = ∞. (7)

To compare the conditions, we apply the previous results to the equation

y(4) (υ) +
q0

υ4 y (3υ) = 0, υ ≥ 1, (8)

1. By applying Condition (5) in [24], we get

q0 > 13.6

2. By applying Condition (6) in [25], we get

q0 > 18.
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3. By applying Condition (7) in [26], we get

q0 > 576.

The main aim of this paper is to establish new oscillation results of solutions to a class of
fourth-order differential equations with delayed arguments and they essentially complement the
results reported in [24–26].

The rest of the paper is organized as follows. In Section 2, four lemmas are given to prove the
main results. In Section 3, we establish new oscillation results for Equation (1), comparisons are carried
out with oscillations of first and second-order delay differential equations and some examples are
presented to illustrate the main results. Some conclusions are discussed in Section 4.

2. Some Auxiliary Lemmas

In this section, the following some auxiliary lemmas are provided

Lemma 1 ([23]). Suppose that y ∈ Cκ ([υ0, ∞) , (0, ∞)) , y(κ) is of a fixed sign on [υ0, ∞) , y(κ) not identically
zero and there exists a υ1 ≥ υ0 such that

y(κ−1) (υ) y(κ) (υ) ≤ 0,

for all υ ≥ υ1. If we have limυ→∞ y (υ) 6= 0, then there exists υθ ≥ υ1 such that

y (υ) ≥ θ

(κ − 1)!
υκ−1

∣∣∣y(κ−1) (υ)
∣∣∣ ,

for every θ ∈ (0, 1) and υ ≥ υθ .

Lemma 2 ([30]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then

Ux − Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
,

for all positive x.

Lemma 3 ([9]). If y(i) (υ) > 0, i = 0, 1, ..., κ, and y(κ+1) (υ) < 0, then

y (υ)
υκ/κ!

≥ y′ (υ)
υκ−1/ (κ − 1)!

.

Lemma 4 ([7]). Suppose that y is an eventually positive solution of Equation (1). Then, there exist two possible
cases:

(S1) y (υ) > 0, y′ (υ) > 0, y′′ (υ) > 0, y′′′ (υ) > 0, y(4) (υ) < 0,
(S2) y (υ) > 0, y′ (υ) > 0, y′′ (υ) < 0, y′′′ (υ) > 0, y(4) (υ) < 0,

for υ ≥ υ1, where υ1 ≥ υ0 is sufficiently large.

3. Oscillation Criteria

In this section, we shall establish some oscillation criteria for fourth order advanced differential
Equation (1).

Remark 1. It is well known (see [31]), the differential equation

[
a (υ)

(
y′ (υ)

)β
]′
+ q (υ) yβ (g (υ)) = 0‚ υ ≥ υ0, (9)
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where β > 0 is the ratio of odd positive integers, a , q ∈ C ([υ0, ∞),R+) is nonoscillatory if and only if there
exists a number υ ≥ υ0, and a function ς ∈ C1 ([υ, ∞),R) , satisfying the following inequality

ς′ (υ) + γa−1/β (υ) (ς (υ))(1+β)/β + q (υ) ≤ 0‚ on [υ, ∞).

In what follows, we compare the oscillatory behavior of Equation (1) with the second-order
half-linear equations of the type in Equation (9). There are numerous results concerning the oscillation
of (9), which included Hille and Nehari types, Philos type, etc.

Theorem 1. Assume that Equation (2) holds. If the differential equations


2a

1
β (υ)

(θυ2)
β

(
y′ (υ)

)β




′

+
j

∑
i=1

qi (υ) yβ (υ) = 0 (10)

and

y′′ (υ) + y (υ)
∫ ∞

υ

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς = 0 (11)

are oscillatory for some constant θ ∈ (0, 1), then every solution of Equation (1) is oscillatory.

Proof. By contradiction, assume that y is a positive solution of Equation (1). Then, we can suppose
that y (υ) and y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 4, we have two
possible cases (S1) and (S2).

Let case (S1) holds, then with the help of Lemma 1, we get

y′ (υ) ≥ θ

2
υ2y′′′ (υ) , (12)

for every θ ∈ (0, 1) and for all large υ.
Define

ϕ (υ) := τ (υ)

(
a (υ) (y′′′ (υ))β

yβ (υ)

)
, (13)

we see that ϕ (υ) > 0 for υ ≥ υ1, where there exists a positive function τ ∈ C1 ([υ0, ∞) , (0, ∞)) and

ϕ′ (υ) = τ′ (υ)
a (υ) (y′′′ (υ))β

yβ (υ)
+ τ (υ)

(
a (y′′′)β

)′
(υ)

yβ (υ)

−βτ (υ)
yβ−1 (υ) y′ (υ) a (υ) (y′′′ (υ))β

y2β (υ)
.

Using Equations (12) and (13), we obtain

ϕ′ (υ) ≤ τ′
+ (υ)

τ (υ)
ϕ (υ) + τ (υ)

(
a (υ) (y′′′ (υ))β

)′

yβ (υ)

−βτ (υ)
θ

2
υκ−2 a (υ) (y′′′ (υ))β+1

yβ+1 (υ)

≤ τ′ (υ)
τ (υ)

ϕ (υ) + τ (υ)

(
a (υ) (y′′′ (υ))β

)′

yβ (υ)

− βθυ2

2 (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β . (14)
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From Equations (1) and (14), we obtain

ϕ′ (υ) ≤ τ′ (υ)
τ (υ)

ϕ (υ)− ℓτ (υ)
∑

j
i=1 qi (υ) yβ (ηi (υ))

yβ (υ)
− βθυ2

2 (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β .

Note that y′ (υ) > 0 and ηi (υ) ≥ υ, thus, we get

ϕ′ (υ) ≤ τ′ (υ)
τ (υ)

ϕ (υ)− ℓτ (υ)
j

∑
i=1

qi (υ)−
βθυ2

2 (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β . (15)

If we set τ (υ) = ℓ = 1 in Equations (15), then we find

ϕ′ (υ) +
βθυ2

2a
1
β (υ)

ϕ (υ)
β+1

β +
j

∑
i=1

qi (υ) ≤ 0.

Thus, we can see that Equation (10) is a nonoscillatory, which is a contradiction.
Let suppose the case (S2) holds. Define

ψ (υ) := ϑ (υ)
y′ (υ)
y (υ)

,

we see that ψ (υ) > 0 for υ ≥ υ1, where there exist a positive function ϑ ∈ C1 ([υ0, ∞) , (0, ∞)).
By differentiating ψ (υ), we obtain

ψ′ (υ) =
ϑ′ (υ)
ϑ (υ)

ψ (υ) + ϑ (υ)
y′′ (υ)
y (υ)

− 1
ϑ (υ)

ψ (υ)2 . (16)

Now, integrating Equation (1) from υ to m and using y′ (υ) > 0, we obtain

a (m)
(
y′′′ (m)

)β − a (υ)
(
y′′′ (υ)

)β
= −

∫ m

υ

j

∑
i=1

qi (s) g (y (ηi (s))) ds.

By virtue of y′ (υ) > 0 and ηi (υ) ≥ υ, we get

a (m)
(
y′′′ (m)

)β − a (υ)
(
y′′′ (υ)

)β ≤ −ℓyβ (υ)
∫ m

υ

j

∑
i=1

qi (s) ds.

Letting m → ∞ , we see that

a (υ)
(
y′′′ (υ)

)β ≥ ℓyβ (υ)
∫ ∞

υ

j

∑
i=1

qi (s)ds

and hence

y′′′ (υ) ≥ y (υ)

(
ℓ

a (υ)

∫ ∞

υ

j

∑
i=1

qi (s)ds

)1/β

.

Integrating again from υ to ∞, we get

y′′ (υ) + y (υ)
∫ ∞

υ

(
ℓ

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0. (17)
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From Equations (16) and (17), we obtain

ψ′ (υ) ≤ ϑ′ (υ)
ϑ (υ)

ψ (υ)− ϑ (υ)
∫ ∞

υ

(
ℓ

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς − 1
ϑ (υ)

ψ (υ)2 . (18)

If we now set ϑ (υ) = ℓ = 1 in Equation (18), then we obtain

ψ′ (υ) + ψ2 (υ) +
∫ ∞

υ

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0.

Thus, it can be seen that Equation (11) is non oscillatory, which is a contradiction. Hence,
Theorem 1 is proved.

Remark 2. It is well known (see [19]) that if

∫ ∞

υ0

1
a (υ)

dυ = ∞, and lim inf
υ→∞

(∫ υ

υ0

1
a (s)

ds

) ∫ ∞

υ
q (s)ds >

1
4

,

then Equation (9) with β = 1 is oscillatory.

Based on the above results and Theorem 1, we can easily obtain the following Hille and Nehari
type oscillation criteria for (1) with β = 1.

Theorem 2. Let β = ℓ = 1, and assuming that Equation (2) holds, if

∫ ∞

υ0

θυ2

2a (υ)
dυ = ∞

and

lim inf
υ→∞

(∫ υ

υ0

θs2

2a (s)
ds

) ∫ ∞

υ

j

∑
i=1

qi (s)ds >
1
4

, (19)

also, if

lim inf
υ→∞

υ
∫ υ

υ0

∫ ∞

v

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)
dςdv >

1
4

, (20)

for some constant θ ∈ (0, 1), then all solutions of Equation (1) are oscillatory.

In the following theorem, we compare the oscillatory behavior of Equation (1) with the first-order
differential equations:

Theorem 3. Assume that Equation (2) holds, if the differential equations

x′ (υ) + ℓ

j

∑
i=1

qi (υ)

(
θυ2

2a1/β (υ)

)β

x (η (υ)) = 0 (21)

and

z′ (υ) + υz (υ)
∫ ∞

υ

(
ℓ

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς = 0 (22)

are oscillatory for some constant θ ∈ (0, 1), then every solutions of Equation (1) is oscillatory.
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Proof. We prove this theorem by contradiction again, assume that y is a positive solution of Equation
(1). Then, we can suppose that y (υ) and y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From
Lemma 4, we have two possible cases (S1) and (S2).
In the case where (S1) holds, from Lemma 1, we see

y (υ) ≥ θυ2

2a1/β (υ)

(
a1/β (υ) y′′′ (υ)

)
,

for every θ ∈ (0, 1) and for all large υ. Thus, if we set

x (υ) = a (υ)
(
y′′′ (υ)

)β
> 0,

then we see that ψ is a positive solution of the inequality

x′ (υ) + ℓ

j

∑
i=1

qi (υ)

(
θυ2

2a1/β (υ)

)β

x (η (υ)) ≤ 0. (23)

From [20] [Theorem 1], we conclude that the corresponding Equation (21) has a positive solution,
which is a contradiction. In the case where (S2) holds. From Lemma 3, we get

y (υ) ≥ υy′ (υ) , (24)

From Equations (17) and (24), we get

y′′ (υ) + υy′ (υ)
∫ ∞

υ

(
ℓ

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0.

Now, we set
z (υ) = y′ (υ) .

Thus, we find ψ is a positive solution of the inequality

z′ (υ) + υz (υ)
∫ ∞

υ

(
ℓ

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0. (25)

From ([20], Theorem 1), we conclude that the corresponding Equation (22) has a positive solution,
which is a contradiction again. Thus the proof is completed.

Corollary 1. Let Equation (2) hold, if

lim inf
υ→∞

∫ ηi(υ)

υ
ℓ

j

∑
i=1

qi (s)

(
θs2

2a1/β (s)

)β

ds >
6β

e
(26)

and

lim inf
υ→∞

∫ ηi(υ)

υ
s
∫ ∞

υ

(
ℓ

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dςds >
1
e

(27)

for some constant θ ∈ (0, 1), then every solutions of Equation (1) is oscillatory.

Example 1. Consider a differential equation

(
υ3 (w′′′ (υ)

)3
)′

+
q0

υ6 w3 (2υ) = 0, υ ≥ 1, (28)
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where q0 is a constant. Let β = 3, a (υ) = υ3, q (υ) = q0/υ6 and η (υ) = 2υ. If we set ℓ = 1, then
Condition (26) becomes

lim inf
υ→∞

∫ ηi(υ)

υ
ℓ

j

∑
i=1

qi (s)

(
θs2

2a1/β (s)

)β

ds = lim inf
υ→∞

∫ 2υ

υ

q0

s6

(
θs2

2s1/3

)3

ds

= lim inf
υ→∞

(
q0θ3

8

)3 ∫ 2υ

υ

q0

s
ds

=
q0θ3 ln 2

8
>

63

e

and Condition (27) holds. Therefore, from Corollary 1, all solutions of Equation (28) are oscillatory if q0 >

1728/
(
θ3e ln 2

)
for some constant θ ∈ (0, 1) .

Example 2. Let the equation

y(4) (υ) +
q0

υ4 y (2υ) = 0, υ ≥ 1, (29)

where q0 > 0 is a constant. Let β = 1, a (υ) = 1, q (υ) = q0/υ4 and η (υ) = 2υ. If we set ℓ = 1, then
Condition (19) becomes

lim inf
υ→∞

(∫ υ

υ0

θs2

2a (s)
ds

) ∫ ∞

υ

j

∑
i=1

qi (s)ds = lim inf
υ→∞

(
υ3

3

) ∫ ∞

υ

q0

s4 ds

=
q0

9
>

1
4

and Condition (20) becomes

lim inf
υ→∞

υ
∫ υ

υ0

∫ ∞

v

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dςdv = lim inf
υ→∞

υ
( q0

6υ

)

=
q0

6
>

1
4

.

Therefore, from Theorem 2, all solutions of Equation (29) are oscillatory if q0 > 2.25.

Remark 3. We compare our result with the known related criteria

The condition (5) (6)

The criterion q0 > 25.5 q0 > 18
(7)

q0 > 1728
our condition

q0 > 2.25

Example 3. Consider a differential Equation (8) where q0 > 0 is a constant. Note that β = 1, κ = 4, a (υ) =
1, q (υ) = q0/υ4 and η (υ) = 3υ. If we set ℓ = 1, then Condition (19) becomes

q0

9
>

1
4

.

Therefore, from Theorem 2, all the solutions of Equation (8) are oscillatory if q0 > 2.25.

Remark 4. We compare our result with the known related criteria

The condition (5) (6)

The criterion q0 > 13.6 q0 > 18
(7)

q0 > 576
our condition

q0 > 2.25

Example 4. Let the equation

y(4) (υ) +
q0

υ2 y (cυ) = 0, υ > 1, (30)
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where q0 > 0, c > 1 are constants. Note that β = 1, a (υ) = 1, q (υ) = q0/υ2 and η (υ) = cυ.
From ([14], Corollary 2.4), we have that the equation

y′′ (υ) +
q0

υ2 y (cυ) = 0, c > 1, q0 > 0,

is oscillatory if

q0 (1 + q0 ln c) >
1
4

.

Therefore, from Theorem 1, all the solutions of Equation (30) are oscillatory if q0 (1 + q0 ln c) > 1/4.

4. Conclusions

In this paper, the main aim to provide a study of asymptotic behavior of the fourth order
advanced differential equation has been achieved. We used the theory of comparison with first
and second-order delay equations and the Riccati substitution to ensure that every solution of this
equation is oscillatory. The presented results complement a number of results reported in the literature.
Furthermore, the findings of this paper can be extended to study a class of systems of higher order
advanced differential equations.
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Abstract: In this paper, we consider a certain class of third-order nonlinear delay differential equations(
r (w′′)α)′ (v) + q (v) xβ (ς (v)) = 0, for v ≥ v0, where w (v) = x (v) + p (v) x (ϑ (v)). We obtain new

criteria for oscillation of all solutions of this nonlinear equation. Our results complement and improve
some previous results in the literature. An example is considered to illustrate our main results.

Keywords: oscillation criteria; thrid-order; delay differential equations

1. Introduction

The continuous development in various sciences is accompanied by the continued emergence
of new models of difference and differential equations that describe this development. Studying the
qualitative properties of differential equations helps to understand and analyze many life phenomena and
problems; see [1]. Recently, the study of the oscillatory properties of differential equations has evolved
significantly; see [2–10]. However, third-order differential equations attract less attention compared to first
and second-order equations; see [11–20].

In this paper, we consider the third-order neutral nonlinear differential equation of the form

(
r
(
w′′)α

)′
(v) + q (v) xβ (ς (v)) = 0, for v ≥ v0, (1)

where w (v) = x (v) + p (v) x (ϑ (v)) , α and β are ratios of odd positive integers. In this work, we assume
the following conditions:

(I1) r ∈ C ([v0, ∞) , (0, ∞)) ∫ ∞

v0

r−1/α (s)ds = ∞;

(I2) p, q ∈ C ([v0, ∞) , [0, ∞)) , p (v) ≤ p0 < ∞, q does not vanish identically;
(I3) ϑ, ς ∈ C1 ([v0, ∞) ,R) , ϑ (v) < v, ς (v) < v, ϑ′ (v) ≥ ϑ0 > 0, ϑ ◦ ς = ς ◦ ϑ and

limv→∞ ϑ (v) = limv→∞ ς (v) = ∞.
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A solution of (1) means x ∈ C ([v0, ∞)) with v∗ ≥ v0, which satisfies the properties w ∈ C2 ([v∗, ∞)) ,
r (w′′)α ∈ C1 ([v∗, ∞)) and satisfies (1) on [v∗, ∞). We consider the nontrivial solutions of (1) which exist
on some half-line [v∗, ∞) and satisfy the condition sup{|x (v)| : v1 ≤ v < ∞} > 0 for any v1 ≥ v∗.

Definition 1. The class S1 is a set of all solutions x of Equation (1) such that their corresponding function
w satisfies

Case (i) : w (v) > 0, w′ (v) > 0, w′′ (v) > 0;

and the class S2 is a set of all solutions of Equation (1) such that their corresponding function w satisfies

Case (ii) : w (v) > 0, w′ (v) < 0, w′′ (v) > 0.

Definition 2. If the nontrivial solution x is neither positive nor negative eventually, then x is called an oscillatory

solution. Otherwise, it is a non-oscillatory solution.

When studying the oscillating properties of neutral differential equations with odd-order, most of
the previous studies have been concerned with creating a sufficient condition to ensure that the solutions
are oscillatory or tend to zero; see [11–20]. For example, Baculikova and Dzurina [11,12], Candan [13],
Dzurina et al. [15], Li et al. [18] and Su et al. [19] studied the oscillatory properties of (1) in the case
where α = β and 0 ≤ p (v) ≤ p0 < 1. Elabbasy et al. [16] studied the oscillatory behavior of general
differential equation

(
r2

((
r1
(
w′)α

)′)β
)′

(v) + q (v) f (x (ς (v))) = 0, for v ≥ v0,

For an odd-order, Karpuz at al. [17] and Xing at al. [20] established several oscillation theorems
for equation (

r2

(
w(n−1)

)α)′
(v) + q (v) xα (ς (v)) = 0, for v ≥ v0.

As an improvement and completion of the previous studies, Dzurina et al. [14], established standards
to ensure that all solutions of linear equation

(
r2
(
r1w′)′)′ (v) + q (v) x (ς (v)) = 0,

by comparison with first-order delay equations.
The main objective of this paper is to obtain new criteria for oscillation of all solution of nonlinear

Equation (1). Our results complement and improve the results in [11–19] which only ensure that
non-oscillating solutions tend to zero.

Next, we state the following lemmas, which will be useful in the proof of our results.

Lemma 1. Assume that c1, c2 ∈ [0, ∞) and γ > 0. Then

(c1 + c2)
γ ≤ µ

(
cγ

1 + cγ
2

)
, (2)

where

µ :=
{

1 if γ ≤ 1
2γ−1 if γ > 1.
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Lemma 2. Let u, g ∈ C ([v0, ∞) ,R) , u (v) = g (v) + ag (v − b) for v ≥ v0 + max{0, c}, where a 6= 1,
b are constants. Suppose that there exists a constant l ∈ R such that limv→∞ u (v) = l.

(H1) : If lim infv→∞ g (v) = g∗ ∈ R, then g∗ = l/ (1 + a) ;
(H2) : If lim supv→∞ g (v) = g∗ ∈ R, then g∗ = l/ (1 + a) .

Lemma 3. Let x ∈ Cn ([v0, ∞) , (0, ∞)) . Assume that x(n) (v) is of fixed sign and not identically zero on [v0, ∞)

and that there exists a v1 ≥ v0 such that x(n−1) (v) x(n) (v) ≤ 0 for all v ≥ v1. If limv→∞ x (v) 6= 0, then for every
µ ∈ (0, 1) there exists vµ ≥ v1 such that

x (v) ≥ µ

(n − 1)!
vn−1

∣∣∣x(n−1) (v)
∣∣∣ for v ≥ vµ.

2. Criteria for Nonexistence of Decreasing Solutions

Through this paper, we will be using the following notation:

£w (v) : = r
(
w′′)α

(v) ,

q̃ (v) : = min {q (v) , q (ϑ (v))}

and

η (v, u) :=
∫ v

u

1

r
1
α (s)

ds and η̃ (v, u) =
∫ v

u

(∫ s

u

1

r
1
α (ζ)

dζ

)
ds,

where v ∈ [v0, ∞).

Lemma 4. Assume that x ∈ S2. Then

w (u) ≥ η̃ (̟, u) £1/αw (̟) , (3)

for u ≤ ̟, and (
£w (v) +

(p0)
β

ϑ0
£w (ϑ (v))

)′
≤ − 1

µ
q̃ (v)wβ (ς (v)) . (4)

Proof. Let x be an eventually positive solution of (1). Then, we can assume that x (v) > 0, x (ϑ (v)) > 0
and x (ς (v)) > 0 for v ≥ v1, where v1 is sufficiently large. From Lemma 1, (1) and (I2), we obtain

wβ (v) ≤ µ
(

xβ (v) + pβ
0 xβ (ϑ (v))

)
. (5)

Since £w (v) is non-increasing, we have

− w′ (u) ≥
∫ ̟

u

1
r1/α (s)

£1/αw (s)ds ≥ £1/αw (̟)
∫ ̟

u

1
r1/α (s)

ds, for u ≤ ̟. (6)

Integrating this inequality from u to ̟, we get

w (u)− w (̟) ≥ £1/αw (̟)
∫ ̟

u

(∫ σ

u

1
r1/α (s)

ds

)
dσ.

Thus,
w (u) ≥ η̃ (̟, u) £1/αw (̟) . (7)
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Now, from (1) and (I3), we obtain

(£w (ϑ (v)))′
1

ϑ′ (v)
+ q (ϑ (v)) xβ (ς (ϑ (v))) = 0. (8)

Using (1), (5) and (8), we have

0 ≥ (£w (v))′ + q (v) xβ (ς (v)) + pβ
0

(
1
ϑ0

(£w (ϑ (v)))′ + q (ϑ (v)) xβ (ς (ϑ (v)))

)

≥ (£w (v))′ +
1
ϑ0

pβ
0 (£w (ϑ (v)))′ + q̃ (v)

(
xβ (ς (v)) + pβ

0 xβ (ς (ϑ (v)))
)

.

Thus, (
£w (v) +

1
ϑ0

pβ
0 £w (ϑ (v))

)′
+

1
µ

q̃ (v)wβ (ς (v)) ≤ 0. (9)

The proof of the lemma is complete.

Theorem 1. If there exists a function δ ∈ C ([v0, ∞) , (0, ∞)) such that ϑ (v) ≤ δ (v) , ς−1 (δ (v)) < v and the
delay differential equation

φ′ (v) +
1
µ

(
ς0

ς0 + pβ
0

)β/α

q̃ (v) (η̃ (ϑ (v) , δ (v)))β φβ/α
(

ς−1 (δ (v))
)
= 0 (10)

is oscillatory, then S2 is an empty set.

Proof. Assume the contrary that x is a positive solution of (1) and which satisfies case (ii). Then, we assume
that x (v) > 0, x (ς (v)) > 0 and x (ϑ (v)) > 0 for v ≥ v1, where v1 is sufficiently large. Thus, from (1),
we get

(
r (w′′)α)′ (v) ≤ 0 for v ≥ v1. Using Lemma 4, we get (3) and (4). Combining (4) and (3) with

[u = ϑ (v) and ̟ = δ (v)], we find

(
£w (v) +

1
ς0

pβ
0 £w (ς (v))

)′
+

1
µ

q̃ (v) (η̃ (ϑ, δ))β £β/αw (δ (v)) ≤ 0. (11)

Since £w (v) is non-increasing, we see that £w (v) ≤ £w (ς (v)) , and hence

£w (v) +
1
ς0

pβ
0 £w (ς (v)) ≤

(
1 +

1
ς0

pβ
0

)
£w (ς (v)) . (12)

Using (11) along with (12), we have that φ (v) := £w (v) + 1
ς0

pβ
0 £w (ς (v)) is a positive solution of the

differential inequality

φ′ (v) +
1
µ

q̃ (v) (η̃ (ϑ, δ))β

(
ς0

ς0 + pβ
0

)β/α

φβ/α
(

ς−1 (δ (v))
)
≤ 0.

By Theorem 1 [21], the associated delay Equation (10) also has a positive solution, which is a contradiction.
The proof is complete.
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Theorem 2. Assume that β ≥ α. If there exists a function θ ∈ C ([v0, ∞) , (0, ∞)) such that θ (v) ≤ v,
ϑ (v) ≤ ς (θ (v)) and

lim sup
v→∞

Mβ−αηα (ϑ, ς (θ))
∫ v

θ(v)
q̃ (s)ds > µ

(
1 +

1
ς0

pβ
0

)
, (13)

then S2 is an empty set.

Proof. As in the proof of Theorem 1, we obtain (12). Using Lemma 4, we get (3) and (4). Integrating (4)
from θ (v) to v, we get

0 < £w (v) +
1
ς0

pβ
0 £w (ς (v)) ≤ £w (θ (v)) +

1
ς0

pβ
0 £w (ς (θ (v)))− 1

µ

∫ v

θ(v)
q̃ (s)wβ (ϑ (s))ds,

which together with (12) gives

(
1 +

1
ς0

pβ
0

)
£w (ς (θ (v))) ≥ 1

µ
wβ (ϑ (v))

∫ v

θ(v)
q̃ (s)ds. (14)

Since w′ (v) < 0, there exists a constant M > 0 such that w (v) ≥ M for v ≥ v2, and hence (14) becomes

(
1 +

1
ς0

pβ
0

)
£w (ς (θ (v))) ≥ Mβ−α

µ
wα (ϑ (v))

∫ v

θ(v)
q̃ (s)ds.

From (3) [u = ϑ (v) and ̟ = ς (θ (v))], we find

(
1 +

1
ς0

pβ
0

)
≥ Mβ−α

µ
ηα (ϑ, ς (θ))

∫ v

θ(v)
q̃ (s)ds.

From above inequality, taking the lim sup on both sides, we obtain a contradiction to (13). The proof
is complete.

Corollary 1. Assume that there exists a function δ ∈ C ([v0, ∞) , (0, ∞)) such that ϑ (v) ≤ δ (v) ,
ς−1 (δ (v)) < v. Then S2 is an empty set, if one of the statements is hold:
(b1) α = β and

lim
v→∞

inf
∫ v

ϑ−1(δ(v))
q̃ (s) η̃ (ς (s) , δ (s))ds >

ϑ0 + pβ
0

ϑ0µe
; (15)

(b2) α < β, there exists a function ξ (v) ∈ C1 ([v0, ∞)) such that ξ ′ (v) > 0, limv→∞ ξ (v) = ∞,

lim sup
v→∞

βξ ′
(
ϑ−1 (δ (v))

) (
ϑ−1 (δ (v))

)′

αξ ′ (v)
< 1 (16)

and

lim inf
v→∞


 1

µξ ′ (v)

(
ϑ0

ϑ0 + pβ
0

)β/α

q̃ (v) ς (ς, δ) e−ξ(v)


 > 0. (17)

Proof. It is well-known from [22,23] that conditions (15)–(17) imply the oscillation of (10).
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3. Criteria for Nonexistence of Increasing Solutions

Theorem 3. Assume that ϑ (v) ≤ ς (v) and ς′ (v) > 0. If there exist a function σ (v) and v1 ≥ v0 such that

lim sup
v→∞

∫ v

v1

[
1
µ

σ (s) q̃ (s)− (σ′ (s))α+1

(α + 1)α+1 (σ (s) η (ς (s) , s1) ς′ (s))α

(
1 +

σ
β
0

ϑ0

)]
ds = ∞, (18)

then S1 is an empty set.

Proof. Let x be a positive solution of (1) and which satisfies case (i). In view of case (i), we can define
a positive function by

ψ (v) = σ (v)
£w (v)

wα (ς (v))
. (19)

Hence, by differentiating (19), we get

ψ′ (v) = σ′ (v)
£w (v)

wα (ς (v))
+ σ (v)

(£w (v))′

wα (ς (v))
− ασ (v) £w (v)wα−1 (ς (v))w′ (ς (v)) ς′ (v)

w2α (ς (v))
. (20)

Substituting (19) into (20), we have

ψ′ (v) = σ (v)
(£w (v))′

wα (ς (v))
+

σ′ (v)
σ (v)

ψ (v)− αη (ς (v) , v1) ς′ (v)

σ
1
α (v)

ψ
α+1

α (v) . (21)

Now, define another positive function by

̟ (v) = σ (v)
£w (ϑ (v))
wα (ς (v))

. (22)

By differentiating (22), we get

̟′ (v) = σ′ (v)
£w (ϑ (v))
wα (ς (v))

+ σ (v)
(£w (ϑ (v)))′

wα (ς (v))
(23)

−ασ (v) £w (ϑ (v))wα−1 (ς (v))w′ (ς (v)) ς′ (v)
w2α (ς (v))

. (24)

Substituting (22) into (23) implies

̟′ (v) = σ (v)
(£w (ϑ (v)))′

wα (ς (v))
+

σ′ (v)
σ (v)

̟ (v)− αη (ς (v) , v1) ς′ (v)

σ
1
α (v)

̟
α+1

α (v) . (25)

We can write the inequalities (21) and (25) in the form

ψ′ (v) +
σ

β
0

ϑ0
̟′ (v) ≤ σ (v)

(£w (v))′ + σ
β
0

ϑ0
(£w (ϑ (v)))′

wα (ς (v))

+
σ′ (v)
σ (v)

ψ (v)− αη (ς (v) , v1) ς′ (v)

σ
1
α (v)

ψ
α+1

α (v)

+
σ

β
0

ϑ0

(
σ′ (v)
σ (v)

̟ (v)− αη (ς (v) , v1) ς′ (v)

σ
1
α (v)

̟
α+1

α (v)

)
. (26)
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Taking into account Lemma 1, (4) and (26), we obtain

ψ′ (v) +
σ

β
0

ϑ0
̟′ (v) ≤ −σ (v)

(
q̃ (v)

µ

)

+
σ′ (v)
σ (v)

ψ (v)− αη (ς (v) , v1) ς′ (v)

σ
1
α (v)

ψ
α+1

α (v)

+
σ

β
0

ϑ0

(
σ′ (v)
σ (v)

̟ (v)− αη (ς (v) , v1) ς′ (v)

σ
1
α (v)

̟
α+1

α (v)

)
.

Applying the following inequality

Bu − Au
α+1

α ≤ ααBα+1

(α + 1)α+1 Aα
, A > 0,

with

A =
αη (ς (v) , v1) ς′ (v)

σ
1
α (v)

and B =
σ′ (v)
σ (v)

,

we get

ψ′ (v) +
σ

β
0

ϑ0
̟′ (v) ≤ −σ (v)

q̃ (v)
µ

+
(σ′ (v))α+1

(α + 1)α+1 (σ (v) η (ς (v) , v1) ς′ (v))α

+

σ
β
0

ϑ0
(σ′ (v))α+1

(α + 1)α+1 (σ (v) η (ς (v) , v1) ς′ (v))α
.

Integrating last inequality from v1 to v, we arrive at

∫ v

v1

[
σ (s)

q̃ (s)
µ

− (σ′ (s))α+1

(α + 1)α+1 (σ (s) η (ς (s) , s1) ς′ (s))α

(
1 +

σ
β
0

ϑ0

)]
ds ≤ ψ (v2) +

σ
β
0

ϑ0
̟ (v2) .

The proof is complete.

Theorem 4. Assume that there exist continuously differentiable functions σ (v) and ξ (v) and ϑ−1 (δ (v)) such
that

(
ϑ−1 (δ (v))

)′
> 0, ξ ′ (v) > 0 and if (3) and one of the conditions (16), (17) or (15) holds, then Equation (1)

is oscillatory.

Theorem 5. Assume that x is a positive solution of (1). If there exist θ ∈ C ([v0, ∞) , (0, ∞)) such that θ (v) < v,
ς (v) < ϑ (θ (v)) and if conditions (3) and (13) hold, then Equation (1) is oscillatory.

In this section we state and prove some results by considering

ς (v) = v − δ0 for δ0 ≥ 0, p (v) = p0 6= 1.

Lemma 5. Let x (v) be positive solution of Equation (1), eventually. Assume that w (v) satisfies case (ii). If

∫ ∞

v0

∫ ∞

φ

(
1

r (u)

∫ ∞

u
q (s)ds

)1/α

dudφ = ∞, (27)
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then
lim

v→∞
x (v) = 0. (28)

Proof. Since w (v) is a non-increasing positive function, there exists a constant w0 ≥ 0 such that
limv→∞ w (v) = w0 ≥ 0. We claim that w0 = 0. Otherwise, using Lemma 2, we conclude that
limv→∞ w (v) = w0/ (1 + p0) > 0. Therefore, there exists a v2 ≥ v0 such that, for all v ≥ v2

x (ς (v)) >
w0

2 (1 + p0)
> 0. (29)

From (1) and (29), we see that

(£w ((v)))′ ≤ −q (v)

(
w0

2 (1 + p0)

)β

.

Integrating above inequality from v to ∞, we have

£w ((v)) ≥
(

w0

2 (1 + P0)

)β ∫ ∞

v
q (s)ds.

It follows that

w′′ (v) ≥
(

w0

2 (1 + P0)

) β
α
(

1
r (v)

∫ ∞

v
q (s)ds

) 1
α

. (30)

Integrating (30) from v to ∞, yields

−w′ (v) ≥
(

w0

2 (1 + P0)

) β
α
∫ ∞

v

(
1

r (u)

∫ ∞

v
q (s)ds

)1/α

du.

Integrating again from v2 to ∞, we obtain

w (v2) ≥
(

w0

2 (1 + P0)

) β
α
∫ ∞

v2

∫ ∞

φ

(
1

r (u)

∫ ∞

u
q (s)ds

)1/α

dudφ,

which contradicts with (27). Therefore, limv→∞ w (v) = 0, and from the inequality 0 < x (v) ≤ w (v) ,
we have property (28). The proof is complete.

Theorem 6. Let condition (27) be satisfied and suppose that there exists a function ̺ ∈ C (I,R) such that
̺ (v) ≤ ς (v) , ̺ (v) < v and limv→∞ ̺ (v) = ∞. If the first-order delay differential equation

y′ (v) +
q (v)

(1 + p0)
β

(∫ ̺(v)

v1

∫ φ

u1

a−1/γ (s)dsdu

)β

y
β

α (̺ (v)) = 0

is oscillatory, then every solution x (v) of Equation (1) is either oscillatory or satisfies (28).

Proof. Assume that x (v) is positive solution of (1), eventually. This implies that there exists v1 ≥ vo such
that either (i) or (ii) hold for all v ≥ v1.
For (ii), by lemma 5, we see that (28) holds.
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For (i), since w′ (v) is a non-decreasing positive function, there exists a constant c0 such that
limv→∞ w′ (v) = c0 > 0 (or c0 = ∞). By Lemma 2, we have

lim
v→∞

x′ (v) = c0/ (1 + p0) > 0,

which implies that x (v) is a non-decreasing function and taking into account δ0 ≥ 0, we get

w (v) = x (v) + p0x (v − δ0) ≤ (1 + p0) x (v) ,

therefore

x (v) ≥ 1
1 + p0

w (v) ,

for ̺ (v) ≤ ς (v) , and

x (ς (v)) ≥ x (̺ (v)) ≥ 1
1 + p0

w (̺ (v)) .

By substitution in (1), we have

(£w (v))
′
+

q (v)

(1 + p0)
β

wβ (̺ (v)) ≤ 0. (31)

Using (7) and (31), we get

(£w (v))
′
+

q (v)

(1 + p0)
β

(∫ ̺(v)

v2

∫ φ

u1

a−1/γ (s)dsdu

)β

(£w (̺ (v)))
β

α ≤ 0.

Therefore, we have y = £w (v) is positive solution of a the first order delay equation

y′ (v) +
q (v)

(1 + p0)
β

(∫ ̺(v)

v1

∫ φ

u1

a−1/γ (s)dsdu

)β

y
β

α (̺ (v)) ≤ 0.

The proof is complete.

Theorem 7. If the first-order delay differential equation

w′ (v) +
1
µ

(
ϑ0

ϑ0 + pβ
0

)
q̃ (v)

λβς2β (v)

2βrβ/α (ς (v))
wβ/α (ς (v)) = 0 (32)

is oscillatory, eventually. Then, every solution x (v) of Equation (1) is either oscillatory or satisfies (28).

Proof. As in the proof of Lemma 1, we get, from (1), (5) and (8), that (9) holds. Now, by using Lemma 3,
we have

w (v) >
λ

2
v2w′′ (v) . (33)

Since d
dv £w (v) ≤ 0 and ϑ (v) ≤ v, we obtain £w (ϑ (v)) ≥ £w (v), and so

£w (v) +
1
ϑ0

pβ
0 £w (ϑ (v)) ≤

(
1 +

1
ϑ0

pβ
0

)
£w (v) ,
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which with (9) gives

(£w (v))′ +
1
µ

(
ϑ0

ϑ0 + pβ
0

)
q̃ (v)wβ (ς (v)) ≤ 0.

Thus, from (33), we find

(£w (v))′ +
1
µ

(
ϑ0

ϑ0 + pβ
0

)
q̃ (v)

λβ

2β
ς2β (v)

(
w′′ (ς (v))

)β ≤ 0.

If we set w := £w (v) = r (w′′)α, then we have that w > 0 is a solution of delay inequality

w′ (v) +
1
µ

(
ϑ0

ϑ0 + pβ
0

)
q̃ (v)

λβς2β (v)

2βrβ/α (ς (v))
wβ/α (ς (v)) ≤ 0.

By Theorem 1 [21] the associated delay differential Equation (32) also has a positive solution. The proof is
complete.

Example 1. Consider the third order delay differential equation

[(
[x (v) + px (λv)]′′

)α]′
+

q0

vα(n−1)+1
xα (γv) = 0, (34)

where γ, λ ∈ (0, 1) . Then q̃ (v) = q0
v2α+1 , ς (v) = γv, ϑ (v) = λv, set σ (v) = v2, ζ (v) = (γ+λ)v

2 .

It is easy to get η (v, u) = (v − u) , η̃ (v, u) = (v−u)2

2 and ϑ−1 (v) = v
γ .

By Theorem 3, (18) imply

q0 >
(2)β−1 (2α)α+1

γ2α (α + 1)α+1

(
1 +

σ
β
0

ϑ0

)
,

also, by (15) with α = 1, we get
q0

8
(γ − λ)2 ln

2γ

λ + γ
>

ϑ0 + p0

ϑ0e
,

By Theorem 4 with α = 1, the Equation (34) is oscillatory if

q0 > max





1
γ2

(
1 +

σ0

ϑ0

)
,

8 (ϑ0 + p0)

(γ − λ)2
(

ln 2γ
λ+γ

)
ϑ0e



 .

Remark 1. The results in [11–19] only ensure that the non-oscillating solutions to Equation (34) tend to zero,
so our method improves the previous results.

Remark 2. For interested researchers, there is a good problem which is finding new results for non existence of
Kneser solutions for (1) without requiring

ϑ ◦ ς = ς ◦ ϑ or
(

ϑ−1 (v)
)′

≥ ϑ0.
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Abstract: This paper aims to study the oscillatory properties of fourth-order advanced differential
equations with p-Laplacian like operator. By using the technique of Riccati transformation and the
theory of comparison with first-order delay equations, we will establish some new oscillation criteria
for this equation. Some examples are considered to illustrate the main results.

Keywords: oscillation; advanced differential equations; p-Laplacian equations; comparison theorem

1. Introduction

In the last decades, many researchers from all fields of science, technology and engineering have
devoted their attention to introducing more sophisticated analytical and numerical techniques to solve
and analyze mathematical models arising in their fields.

Fourth-order advanced differential equations naturally appear in models concerning physical,
biological, chemical phenomena applications in dynamical systems, mathematics of networks,and
optimization. They also appear in the mathematical modeling of engineering problems to study
electrical power systems, materials and energy, elasticity, deformation of structures, and soil
settlement [1]. The p-Laplace equations have some applications in continuum mechanics, see for
example [2–4].

An active and essential research area in the above investigations is to study the sufficient criterion
for oscillation of delay differential equations. In fact, during this decade, Several works have been
accomplished in the development of the oscillation theory of higher order delay and advanced
equations by using the Riccati transformation and the theory of comparison between first and
second-order delay equations, (see [5–12]). Further, the oscillation theory of fourth and second
order delay equations has been studied and developed by using integral averaging technique and the
Riccati transformation, (see [13–27]). The study of oscillation has been carried to fractional equations
in the setting of fractional operators with singular and nonsingular kernels, as well (see [28,29] and the
references therein).

We provide oscillation properties of the fourth order advanced differential equation with a
p-Laplacian like operator

(
b (υ)

∣∣y′′′ (υ)
∣∣p−2 y′′′ (υ)

)′
+

j

∑
i=1

qi (υ) g (y (ηi (υ))) = 0, (1)
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where υ ≥ υ0 and j ≥ 1. Throughout this paper, we assume that:

(D1) p > 1 is a real number,
(D2) qi, ηi ∈ C ([υ0, ∞),R) , qi (υ) ≥ 0,
(D3) ηi (υ) ≥ υ, lim

υ→∞
ηi (υ) = ∞, i = 1, 2, .., j,

(D4) g ∈ C (R,R) such that
g (x) / |x|p−2 x ≥ k > 0, for x 6= 0. (2)

(D5) b ∈ C1 ([υ0, ∞),R) , b (υ) > 0, b′ (υ) ≥ 0 and under the condition

∫ ∞

υ0

1
b1/(p−1) (s)

ds = ∞. (3)

In fact, our aim in this paper is complete and improves the results in [5–7]. For the sake of
completeness, we first recall and discuss these results. Li et al. [3] examined the oscillation of equation

(
a (υ)

∣∣z′′′ (υ)
∣∣p−2 z′′′ (υ)

)′
+

j

∑
i=1

qi (υ) |w (δi (υ))|p−2 w (δi (υ)) = 0,

where p > 1 is a real number. The authors used the Riccati transformation and integral averaging
technique. Park et al. [8] used Riccati technique to obtain necessary and sufficient conditions for
oscillation of (

a (υ)
∣∣∣w(κ−1) (υ)

∣∣∣
p−2

w(κ−1) (υ)

)′
+ q (υ) g (w (δ (υ))) = 0,

where κ is even and under the condition
∫ ∞

υ0

1
a1/(p−1) (s)

ds = ∞.

Agarwal and Grace [5] considered the equation

((
y(κ−1) (υ)

)γ)′
+ q (υ) yγ (η (υ)) = 0, (4)

where κ is even and they proved it oscillatory if

lim inf
υ→∞

∫ η(υ)

υ
(η (s)− s)κ−2

(∫ ∞

s
q (υ) dυ

)1/γ

ds >
(κ − 2)!

e
. (5)

Agarwal et al. in [6] studied Equation (4) and obtained the criterion of oscillation

lim sup
υ→∞

υγ(κ−1)
∫ ∞

υ
q (s) ds > ((κ − 1)!)γ . (6)

Authors in [7] studied oscillatory behavior of (4) where γ = 1, κ is even and if there exists a function
δ ∈ C1 ([υ0, ∞) , (0, ∞)) , also, they proved it oscillatory by using the Riccati transformation if

∫ ∞

υ0

(
δ (s) q (s)− (κ − 2)! (δ′ (s))2

23−2κsκ−2δ (s)

)
ds = ∞. (7)

To compare the conditions, we apply the previous results to the equation

y(4) (υ) +
q0

υ4 y (3υ) = 0, υ ≥ 1, (8)
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1. By applying condition (5) on Equation (8), we get

q0 > 13.6.

2. By applying condition (6) on Equation (8), we get

q0 > 18.

3. By applying condition (7) on Equation (8), we get

q0 > 576.

From the above we find the results in [6] improves results [7]. Moreover, the results in [5] improves
results [6,7], we see this clearly in the Section 3. Thus, the motivation in studying this paper is
complement and improve results [5–7].

We will need the following lemmas.

Lemma 1 ([18]). If the function y satisfies y(i) (υ) > 0, i = 0, 1, ..., n, and y(n+1) (υ) < 0, then

y (υ)
υn/n!

≥ y′ (υ)
υn−1/ (n − 1)!

.

Lemma 2 ([10]). Suppose that y ∈ Cn ([υ0, ∞) , (0, ∞)) , y(n) is of a fixed sign on [υ0, ∞) , y(n) not identically
zero and there exists a υ1 ≥ υ0 such that

y(n−1) (υ) y(n) (υ) ≤ 0,

for all υ ≥ υ1. If we have limυ→∞ y (υ) 6= 0, then there exists υλ ≥ υ1 such that

y (υ) ≥ λ

(n − 1)!
υn−1

∣∣∣y(n−1) (υ)
∣∣∣ ,

for every λ ∈ (0, 1) and υ ≥ υλ.

Lemma 3 ([21]). Let γ be a ratio of two odd numbers, V > 0 and U are constants. Then

Ux − Vx(γ+1)/γ ≤ γγ

(γ + 1)γ+1
Uγ+1

Vγ
, V > 0.

Lemma 4 ([15]). Assume that y is an eventually positive solution of (1). Then, there exist two possible cases:

(S1) y (υ) > 0, y′ (υ) > 0, y′′ (υ) > 0, y′′′ (υ) > 0, y(4) (υ) ≤ 0,
(S2) y (υ) > 0, y′ (υ) > 0, y′′ (υ) < 0, y′′′ (υ) > 0, y(4) (υ) ≤ 0,

for υ ≥ υ1, where υ1 ≥ υ0 is sufficiently large.

2. Oscillation Criteria

In this section, we shall establish some oscillation criteria for equation (1).

Lemma 5. Assume that y be an eventually positive solution of (1) and (S1) holds. If

π (υ) := δ (υ)

(
b (υ) (y′′′ (υ))p−1

yp−1 (υ)

)
, (9)
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where δ ∈ C1 ([υ0, ∞) , (0, ∞)) , then

π′ (υ) ≤ δ′ (υ)
δ (υ)

π (υ)− kδ (υ)
j

∑
i=1

qi (υ)−
(p − 1) ευ2

2 (δ (υ) b (υ))
1

(p−1)

π (υ)
p

(p−1) , (10)

for all υ > υ1, where υ1 large enough.

Proof. Let y is an eventually positive solution of (1) and (S1) holds. Thus, from Lemma 2, we get

y′ (υ) ≥ ε

2
υ2y′′′ (υ) , (11)

for every ε ∈ (0, 1) and for all large υ. From (9), we see that π (υ) > 0 for υ ≥ υ1, and

π′ (υ) = δ′ (υ)
b (υ) (y′′′ (υ))p−1

yp−1 (υ)
+ δ (υ)

(
b (y′′′)p−1

)′
(υ)

yp−1 (υ)

− (p − 1) δ (υ)
yp−2 (υ) y′ (υ) b (υ) (y′′′ (υ))p−1

y2(p−1) (υ)
.

Using (11) and (9), we obtain

π′ (υ) ≤ δ′ (υ)
δ (υ)

π (υ) + δ (υ)

(
b (υ) (y′′′ (υ))p−1

)′

yp−1 (υ)

− (p − 1) δ (υ)
ε

2
υ2 b (υ) (y′′′ (υ))p

yp (υ)

≤ δ′ (υ)
δ (υ)

π (υ) + δ (υ)

(
b (υ) (y′′′ (υ))p−1

)′

yp−1 (υ)

− (p − 1) ευ2

2 (δ (υ) b (υ))
1

(p−1)

π (υ)
p

(p−1) . (12)

From (1) and (12), we get

π′ (υ) ≤ δ′ (υ)
δ (υ)

π (υ)− kδ (υ)
∑

j
i=1 qi (υ) yp−1 (ηi (υ))

yp−1 (υ)
− (p − 1) ευ2

2 (δ (υ) b (υ))
1

(p−1)

π (υ)
p

(p−1) .

Note that y′ (υ) > 0 and ηi (υ) ≥ υ, thus, we find

π′ (υ) ≤ δ′ (υ)
δ (υ)

π (υ)− kδ (υ)
j

∑
i=1

qi (υ)−
(p − 1) ευ2

2 (δ (υ) b (υ))
1

(p−1)

π (υ)
p

(p−1) .

The proof is complete.

Lemma 6. Assume that y be an eventually positive solution of (1) and (S2) holds. If

ξ (υ) := σ (υ)
y′ (υ)
y (υ)

. (13)
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where σ ∈ C1 ([υ0, ∞) , (0, ∞)) , then

ξ ′ (υ) ≤ σ′ (υ)
σ (υ)

ξ (υ)− σ (υ)
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv − 1
σ (υ)

ξ (υ)2 , (14)

for all υ > υ1, where υ1 large enough.

Proof. Let y is an eventually positive solution of (1) and (S2) holds. Integrating (1) from υ to m and
using y′ (υ) > 0, we obtain

b (m)
(
y′′′ (m)

)p−1 − b (υ)
(
y′′′ (υ)

)p−1
= −

∫ m

υ

j

∑
i=1

qi (s) g (y (ηi (s))) ds.

By virtue of y′ (υ) > 0 and ηi (υ) ≥ υ, we get

b (m)
(
y′′′ (m)

)p−1 − b (υ)
(
y′′′ (υ)

)p−1 ≤ −kyp−1 (υ)
∫ u

υ

j

∑
i=1

qi (s) ds.

Letting m → ∞ , we see that

b (υ)
(
y′′′ (υ)

)p−1 ≥ kyp−1 (υ)
∫ ∞

υ

j

∑
i=1

qi (s)ds

and so

y′′′ (υ) ≥ y (υ)

(
k

b (υ)

∫ ∞

υ

j

∑
i=1

qi (s)ds

)1/(p−1)

.

Integrating again from υ to ∞, we get

y′′ (υ) + y (υ)
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv ≤ 0. (15)

From the definition of ξ (υ), we see that ξ (υ) > 0 for υ ≥ υ1. By differentiating, we find

ξ ′ (υ) =
σ′ (υ)
σ (υ)

ξ (υ) + σ (υ)
y′′ (υ)
y (υ)

− 1
σ (υ)

ξ (υ)2 . (16)

From (15) and (16), we obtain

ξ ′ (υ) ≤ σ′ (υ)
σ (υ)

ξ (υ)− σ (υ)
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv − 1
σ (υ)

ξ (υ)2 .

The proof is complete.

Theorem 1. Assume that there exist positive functions δ, σ ∈ C1 ([υ0, ∞) , (0, ∞)) such that

∫ ∞

υ0

(
kδ (s)

j

∑
i=1

qi (s)−
2p−1b (s) (δ′ (s))p

pp (s2εδ (s))p−1

)
ds = ∞, (17)

for some ε ∈ (0, 1), and either
∫ ∞

υ0

j

∑
i=1

qi (s) ds = ∞ (18)
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or
∫ ∞

υ0


σ (s)

∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv − 1
4σ (s)

(
σ′ (s)

)2


ds = ∞. (19)

Then every solution of (1) is oscillatory.

Proof. Assume that y is eventually positive solution of (1). Then, we can suppose that y (υ)and
y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 4, we have two possible cases (S1)

and (S2).
Assume that case (S1) holds. From Lemma 5, we get that (10) holds. Using Lemma 3 with

U = δ′ (υ) /δ (υ) , V = (p − 1) ευ2/
(

2 (δ (υ) b (υ))
1

(p−1)

)
and x = π (υ) ,

we get
δ′ (υ)
δ (υ)

π (υ)− (p − 1) ευ2

2 (δ (υ) b (υ))
1

(p−1)

π (υ)
p

(p−1) ≤ −2p−1b (υ) (δ′ (υ))p

pp (υ2εδ (υ))
p−1 . (20)

From (10) and (20), we obtain

π′ (υ) ≤ −kδ (υ)
j

∑
i=1

qi (υ) +
2p−1b (υ) (δ′ (υ))p

pp (υ2εδ (υ))
p−1 .

Integrating from υ1 to υ, we get

∫ υ

υ1

(
kδ (s)

j

∑
i=1

qi (s)−
2p−1b (s) (δ′ (s))p

pp (s2εδ (s))p−1

)
ds ≤ π (υ1) ,

for every ε ∈ (0, 1) , which contradicts (17).
Let case (S2) holds. Integrating (1) from m to υ, we conclude that

−b (m)
(
y′′′ (m)

)p−1
= −

∫ υ

m

j

∑
i=1

qi (s) g (y (ηi (s))) ds.

By virtue of y′ (υ) > 0 and ηi (υ) ≥ υ, we get

∫ υ

m

j

∑
i=1

qi (s) ds ≤ b (m) (y′′′ (m))p−1

kyp−1 (m)
,

which contradicts (18).
From Lemma 6, we get that (14) holds. Using Lemma 3 with

U = σ′ (υ) /σ (υ) , V = 1/σ (υ) and x = ξ (υ) ,

we get
σ′ (υ)
σ (υ)

ξ (υ)− 1
σ (υ)

ξ2 (υ) ≤ − 1
4σ (υ)

(
σ′ (υ)

)2 . (21)

From (14) and (21), we obtain

ξ ′ (υ) ≤ −σ (υ)
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv +
1

4σ (υ)

(
σ′ (υ)

)2 . (22)
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Integrating from υ1 to υ, we get

∫ υ

υ1


σ (s)

∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/γ

dv − 1
4σ (s)

(
σ′ (s)

)2


ds ≤ ξ (υ1) ,

which contradicts (19). The proof is complete.

When putting δ (υ) = υ3 and σ (υ) = υ into Theorem 1, we get the following oscillation criteria:

Corollary 1. Let (3) hold. Assume that

∫ ∞

υ0

(
s3

j

∑
i=1

qi (s)−
2p−13ps−3(p−1)+2b (s)

ppεp−1

)
ds = ∞, (23)

or some ε ∈ (0, 1) . If (18) holds and

∫ ∞

υ0


s

∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv − 1
4s


ds = ∞, (24)

then every solution of (1) is oscillatory.

In the next theorem, we compare the oscillatory behavior of (1) with the first-order differential
equations:

Theorem 2. Assume that (3) holds. If the differential equations

θ′ (υ) + k
j

∑
i=1

qi (υ)

(
ευ2

2b1/γ (υ)

)p−1

θ (η (υ)) = 0 (25)

and

φ′ (υ) + υφ (υ)
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv = 0 (26)

are oscillatory, then every solution of (1) is oscillatory.

Proof. Assume the contrary that y is a positive solution of (1). Then, we can suppose that y (υ)and
y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 4, we have two possible cases (S1)

and (S2).
In the case where (S1) holds, from Lemma 2, we get

y (υ) ≥ ευ2

2b1/(p−1) (υ)

(
b1/(p−1) (υ) y′′′ (υ)

)
,

for every ε ∈ (0, 1) and for all large υ. Thus, if we set

θ (υ) = b (υ)
(
y′′′ (υ)

)p−1
> 0,

then we see that ξ is a positive solution of the inequality

θ′ (υ) + k
j

∑
i=1

qi (υ)

(
ευ2

2b1/(p−1) (υ)

)p−1

θ (η (υ)) ≤ 0. (27)
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From ([27], Theorem 1), we conclude that the corresponding Equation (25) also has a positive
solution, which is a contradiction.

In the case where (S2) holds, from Lemma 1, we get

y (υ) ≥ υy′ (υ) , (28)

From (28) and (15), we get

y′′ (υ) + υy′ (υ)
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv ≤ 0.

Thus, if we set
φ (υ) = y′ (υ) ,

then we see that ξ is a positive solution of the inequality

φ′ (υ) + υφ (υ)
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv ≤ 0. (29)

It is well known (see ([27], Theorem 1)) that the corresponding Equation (26) also has a positive
solution, which is a contradiction. The proof is complete.

Corollary 2. Assume that (3) holds. If

lim inf
υ→∞

∫ υ

ηi(υ)

j

∑
i=1

qi (s)

(
εs2

2b1/(p−1) (s)

)p−1

ds >
((n − 1)!)p−1

e
(30)

and

lim inf
υ→∞

∫ υ

ηi(υ)
υ
∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dvds >
1
e

, (31)

then every solution of (1) is oscillatory.

3. Examples

For an application of Corollary 1, we give the following example:

Example 1. Consider a differential equation

y(4) (υ) +
q0

υ4 y (2υ) = 0, υ ≥ 1, (32)

where q0 > 0 is a constant. Note that p = 2, b (υ) = 1, q (υ) = q0/υ4 and η (υ) = 2υ. If we set k = 1, then
condition (23) becomes

∫ ∞

υ0

(
s3

j

∑
i=1

qi (s)−
2p−13ps−3(p−1)+2b (s)

ppεp−1

)
ds =

∫ ∞

υ0

(
q0

s
− 9

2εs

)
ds

=

(
q0 −

9
2ε

) ∫ ∞

υ0

1
s

ds

= ∞ if q0 > 4.5
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and condition (24) becomes

∫ ∞

υ0


s

∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv − 1
4s


ds =

∫ ∞

υ0

(
q0

6s
− 1

4s

)
ds

= ∞, if q0 >
3
2

.

Therefore, from Corollary 1, all solution Equation (32) is oscillatory if q0 > 4.5.

Remark 1. We compare our result with the known related criteria for oscillation of this equation are as follows:

The condition (5) (6) (7) our condition

The criterion q0 > 25.5 q0 > 18 q0 > 1728 q0 > 4.5

Therefore, it is clear that we see our result improves results [5–7].

For an application of Theorem 1, we give the following example.

Example 2. Consider a differential equation

(
υ
(
y′′′ (υ)

))′
+

a
υ3 y (cυ) = 0, υ ≥ 1, (33)

where c > 0 and a > 1 is a constant. Note that p = 2, b (υ) = υ, q (υ) = a/υ3.
If we set k = 1, δ (s) = σ (s) = s2, then conditions (17) and (19) become

∫ ∞

υ0

(
kδ (s)

j

∑
i=1

qi (s)−
2p−1b (s) (δ′ (s))p

pp (s2εδ (s))p−1

)
ds =

∫ ∞

υ0

(
a
s
− 2

sε

)
ds

=

(
a − 2

ε

) ∫ ∞

υ0

1
s

ds

= ∞ if a >
2
ε

and

∫ ∞

υ0


σ (s)

∫ ∞

υ

(
k

b (v)

∫ ∞

v

j

∑
i=1

qi (s)ds

)1/(p−1)

dv − 1
4σ (s)

(
σ′ (s)

)2


ds =

∫ ∞

υ0

(
a
4
− 1

4

)
ds

= ∞, if q0 > 1.

for some constant ε ∈ (0, 1). Hence, by Theorem 1, every solution of Equation (33) is oscillatory if

a >
2
ε

.

Remark 2. By applying condition (23) in Equation (8), we find

q0 > 4.5,

while the conditions that we obtained in the introduction as follows:

The condition (5) (6) (7) our condition

The criterion q0 > 13.6 q0 > 18 q0 > 576 q0 > 4.5
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Therefore, our result improves results [5–7].

4. Conclusions

This paper is concerned with the oscillatory properties of the fourth-order differential equations
with p-Laplacian like operators. New oscillation criteria are established, and they essentially improves
the related contributions to the subject. In this paper the following methods were used:

1. Riccati transformations technique.
2. Method of comparison with first-order differential equations.

Further, in the future work we get some oscillation criteria of (1) under the condition∫ ∞

υ0

1
b1/(p−1)(s)

ds < ∞.
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Abstract: Some new oscillatory and asymptotic properties of solutions of neutral differential
equations with odd-order are established. Through the new results, we give sufficient conditions for
the oscillation of all solutions of the studied equations, and this is an improvement of the relevant
results. The efficiency of the obtained criteria is illustrated via example.
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1. Introduction

During this paper, we investigate the asymptotic properties of solutions to the odd-order
neutral equation

(r (l) (z(n−1) (l))α)′ + f (l, u(η(l))) = 0, l ≥ l0 > 0, (1)

where l ≥ l0, z (l) = u (l) + p (l) u (θ (l)) , 0 ≤ p (l) ≤ p0 < ∞ and n is an odd natural number.
Through the paper, we assume that

(I) α is a ratio of odd positive integers, r, η, θ ∈ C1 (I0,R+) , r′ (l) ≥ 0, η (l) < l, η′ > 0,
(
η−1 (l)

)′ ≥
η0 > 0, θ′ (l) ≥ θ0 > 0, liml→∞ η (l) = ∞, liml→∞ θ (l) = ∞, Iρ :=

[
lρ, ∞

)
, the function

f ∈ C (I0 ×R,R), and there exists a nonnegative function q such that | f (l, u)| ≥ q (l) |u|α.
Moreover, we study asymptotic behavior and oscillation of solutions of (1) in a canonical case,
that is, ∫ ∞

l0

1
r1/α(̺)

d̺ = ∞. (2)

(II) θ (l) < l and θ ◦ η = η ◦ θ.

If there exists lu ≥ l0 such that the real valued function u is continuous, r
(

z(n−1)
)α

is continuously
differentiable and satisfies (1), for all l ∈ Iu; then, u is said to be a solution of (1). We restrict our
discussion to those solutions u of (1) which satisfy sup {|u (l)| : l1 ≤ l0} > 0 for every l1 ∈ Iu.

Definition 1. A solution u of Equation (1) is called an N-Kneser solution if there exists a l∗ ∈ I0 such that
z (l) z′ (l) < 0 for all l ∈ I∗. The set of all eventually positive N-Kneser solutions of Equation (1) is denoted
by ℜ.
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Definition 2. A solution u of (1) is said to be non-oscillatory if it is positive or negative, ultimately; otherwise,
it is said to be oscillatory. The equation itself is termed oscillatory if all its solutions oscillate.

There are many authors who studied the problem of oscillation of differential equations of a
different order and presented many techniques in order to obtain criteria for oscillation of the studied
equations, for example, [1–12].

For applications of odd-order equations in extrema, biology, and physics, we refer to the following
examples. In 1701, James Bernoulli published the solution to the Isoperimetric Problem—a problem in
which it is required to make one integral a maximum or minimum, while keeping constant the integral
of a second given function, thus resulting in a differential equation of third-order (see [13]). In the early
1950s, Alan Lloyd Hodgkin and Andrew Huxley developed a mathematical model for the propagation
of electrical pulses in the nerve of a squid. The Hodgkin–Huxley Model is a set of nonlinear ordinary
differential equations. The model has played a seminal role in biophysics and neuronal modeling.

Recently, researchers have paid attention to neutral differential equations, as well as studying
the oscillation behavior of their solutions. There is a practical side to study the problem of the
oscillatory properties of solutions of neutral equations besides the theoretical side. For example,
the neutral equations arise in applications to electric networks containing lossless transmission
lines. Such networks appear in high-speed computers where lossless transmission lines are used
to interconnect switching circuits. For more applications in science and technology, see [14–16].

Karpuz et al. [17] studied the higher-order neutral differential equations of the following type:

(u(l) + p(l)u(θ(l)))(n) + q(l)u(η(l)) = 0, for l ∈ [l0, ∞) (3)

where oscillatory and asymptotic behaviors of all solutions of higher-order neutral differential
equations are compared with first-order delay differential equations, depending on two different
ranges of the coefficient associated with the neutral part

Xing et al. [18] established some oscillation criteria for certain higher-order quasi-linear neutral
differential equation

(r (l)
(
(u(l) + p(l)u(θ(l)))(n−1)

)α
)′ + q(l)uα(η(l)) = 0, n ≥ 2 (4)

where α ≤ 1 is the quotient of odd positive integers.
Li and Rogovchenko [19] concerned with the asymptotic behavior of solutions to a class of

third-order nonlinear neutral differential equations

(
r (t)

(
(x (t) + p0x (t − ̟0))

′′
)α)′

+ q (t) xα (τ (t)) = 0,

where p0 ≥ 0, p0 6= 1 and ̟0 are constants, ̟0 ≥ 0 (delayed argument) or ̟0 ≤ 0 (advanced
argument).

Some results that are closely related to our work are presented as follows:

Theorem 1 ([17], Corollary 2, see [20], Theorem 3.1.1 and [21]). Assume that p satisfies the condition

p ∈ C
(
[l0, ∞) , R+

)
satisfies lp := lim sup

l→∞

p (l) < 1.

If

lim sup
l→∞

∫ l

η(l)

1
(n − 1)!

(η (ρ))n−1 q (ρ)dρ > 1

or

lim inf
l→∞

∫ l

η(l)

1
(n − 1)!

(η (ρ))n−1 q (ρ)dρ >
1
e
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holds, then (3) is almost oscillatory.

Theorem 2 ([18], Corollary 2.8 ). Let n be odd, α ≤ 1,
(
η−1 (l)

)′ ≥ η0 > 0, 0 ≤ p (l) ≤ p0 < ∞, θ (l) ≤ l,
and θ′ (l) ≥ θ0 > 0, suppose that (2) holds. If θ−1 (η (l)) < l and

lim inf
l→∞

∫ l

θ−1(η(l))

Θ (ρ)
(
ρn−1)α

r (ρ)
dρ >

(
1
η0

+
pα

0
η0θ0

)
((n − 1)!)α

e
,

where Θ (l) = min{q
(
η−1 (l)

)
, q
(
η−1 (θ (l))

)
; then, every solution of (4) is oscillatory or tends to zero

as l → ∞.

Lemma 1 ([18,22]). Assume that u1, u2 ∈ [0, ∞). Then,

(u1 + u2)
α ≤ µ (uα

1 + uα
2) ,

and

µ =

{
1 for 0 < α ≤ 1;
2α−1 for α > 1.

Lemma 2 ([23]). Let u ∈ Cn ([l0, ∞) , (0, ∞)) . Assume that u(n) (l) is of fixed sign and not identically zero
on [l0, ∞) and that there exists a l1 ≥ l0 such that u(n−1) (l) u(n) (l) ≤ 0 for all l ≥ l1. If liml→∞ u (l) 6= 0,
then, for every λ ∈ (0, 1), there exists lµ ≥ l1 such that

u (l) ≥ λ

(n − 1)!
ln−1

∣∣∣u(n−1) (l)
∣∣∣ for l ≥ lµ.

2. Main Results

For the sake of convenience, we use the following notation:

R0 (ς, ̺) =
∫ ς

̺
r−1/α (ρ)dρ, Rk (ς, ̺) =

∫ ς

̺
Rk−1 (ς, ρ)dρ, k = 1, 2, ..., n − 2

and
Q (l) = min{q (l) , q (θ (l))}, Q1 (l) = min{q

(
η−1 (l)

)
, q
(

η−1 (θ (l))
)
}.

The following lemma is a direct conclusion from Lemmas 2.1 and 2.4 in [18], so its proof
was neglected.

Lemma 3. Assume that u is an eventually positive solution of (1). Then, there exists a sufficiently large
l1 ≥ l0 such that, for all l ≥ l1, either

Case (1) : z (l) > 0, z′ (l) > 0, z(n−1) (l) > 0, (r (l) (z(n−1) (l))α)′ < 0

or
Case (2) : (−1)k z(k) (l) > 0, for k = 0, 1, 2, ..., n.

Now, in the following theorem, we will provide a new criterion for non-existence of N-Kneser
solutions of (1) by using the comparison theorem.

Theorem 3. Assume (I) and (II) holds. If there exists a function ζ (l) ∈ C ([l0, ∞) , (0, ∞)) satisfying
η (l) < ζ (l) and θ−1 (ζ (l)) < l, such that the differential equation

G′ (l) +
1
µ

θ0

θ0 + pα
0

Rα
n−2 (ζ (l) , η (l)) Q (l) G

(
θ−1 (ζ (l))

)
= 0 (5)
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is oscillatory, then ℜ is an empty set.

Proof. Let u be a N-Kneser solution of (1), say u (l) > 0 and u (η (l)) > 0 for l ≥ l1 ≥ l0.
This implies that

(−1)k z(k) (l) > 0, for k = 0, 1, 2, ..., n. (6)

From (1), we see that

0 ≥ pα
0

θ′ (l)

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ pα

0q (θ (l)) uα (η (θ (l)))

≥ pα
0

θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ pα

0q (θ (l)) uα (η (θ (l)))

=
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ pα

0q (θ (l)) uα (θ (η (l))) . (7)

Combining (1) and (7), we obtain

0 ≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+ q (l) uα (η (l))

+ pα
0q (θ (l)) uα (θ (η (l)))

≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
(8)

+ Q (l) (uα (η (l)) + pα
0uα (θ (η (l)))) .

From definition of z and using (I), we have

z (η (l)) = u (η (l)) + p (η (l)) u (θ (η (l))) ≤ u (η (l)) + p0u (θ (η (l))) .

By using the latter inequality in (8), we get

0 ≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′

+Q (l) (u (η (l)) + p0u (θ (η (l))))α

≥ (r (l) (z(n−1) (l))α)′ +
pα

0
θ0

(
r (θ (l))

(
z(n−1) (θ (l))

)α)′
+

1
µ

Q (l) zα (η (l)) ,

that is,

0 ≥
(

r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α
)′

+
1
µ

Q (l) zα (η (l)) . (9)

On the other hand, it follows from the monotonicity of r (l) (z(n−1) (l)) that

−z(n−2) (̺) ≥ z(n−2) (ς)− z(n−2) (̺) =
∫ ς

̺

r1/α (ρ) z(n−1) (ρ)

r1/α (ρ)
dρ

≥ r1/α (ς) z(n−1) (ς) R0 (ς, ̺) . (10)

Integrating (10) from ̺ to ς, we have

− z(n−3) (̺) ≤ z(n−3) (ς)− z(n−3) (̺) = r1/α (ς) z(n−1) (ς) R1 (ς, ̺) . (11)

Integrating (11) n − 3 times from ̺ to ς and using (6), we get

z (̺) ≥ r1/α (ς) z(n−1) (ς) Rn−2 (ς, ̺) . (12)
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Thus, we have

z (η (l)) ≥ r1/α (ζ (l)) z(n−1) (ζ (l)) Rn−2 (ζ (l) , η (l)) ,

which, by virtue of (9), yields that

0 ≥ (r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α

)′

+
1
µ

Q (l) r (ζ (l))
(

z(n−1) (ζ (l)) Rn−2 (ζ (l) , η (l))
)α

. (13)

Now, set

G (l) = r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α

> 0.

From (I) and the fact that r (l) (z(n−1) (l)) is non-increasing, we have

G (l) ≤ r (θ (l))
(

z(n−1) (θ (l))
)α
(

1 +
pα

0
θ0

)

or equivalently,

r (ζ (l)) (z(n−1) (ζ (l)))α ≥ θ0

θ0 + pα
0

G
(

θ−1 (ζ (l))
)

. (14)

Using (14) in (13), we see that G is a positive solution of the differential inequality

G′ (l) +
1
µ

θ0

θ0 + pα
0

Rα
n−2 (ζ (l) , η (l)) Q (l) G

(
θ−1 (ζ (l))

)
≤ 0.

In view of [24], Theorem 1, we have that (5) also has a positive solution, a contradiction. Thus,
the proof is complete.

In the following theorem, we establish a hille and nehari type condition that confirms the
non-existence of N-Kneser solutions of (1).

Theorem 4. Assume (I) and (II) hold. If there exists a function δ (l) ∈ C ([l0, ∞) , (0, ∞)) satisfying δ (l) < l
and η (l) < θ (δ (l)) such that

lim sup
1
µ

l→∞

Rα
n−2 (θ (δ (l)) , η (l))

r (θ (δ (l)))

∫ l

δ(l)
Q (ρ)dρ >

θ0 + pα
0

θ0
, (15)

then ℜ is an empty set.

Proof. By using the same method in proof of Theorem 3, we obtain (9). Integrating (9) from δ (l) to l
and using the fact that z is decreasing, we get

r (δ (l)) (z(n−1) (δ (l)))α +
pα

0
θ0

r (θ (δ (l)))
(

z(n−1) (θ (δ (l)))
)α

≥ r (l) (z(n−1) (l))α +
pα

0
θ0

r (θ (l))
(

z(n−1) (θ (l))
)α

+
1
µ

zα (η (l))
∫ l

δ(l)
Q (ρ)dρ

≥ 1
µ

zα (η (l))
∫ l

δ(l)
Q (ρ)dρ.
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Since θ (δ (l)) < θ (l) and r (l) (z(n−1) (l)) is non-increasing, we have

r (θ (δ (l))) (z(n−1) (θ (δ (l))))α

(
1 +

pα
0

θ0

)
≥ 1

µ
zα (η (l))

∫ l

δ(l)
Q (ρ)dρ. (16)

By using (12) with ς = θ (δ (l)) and ̺ = η (l) in (16), we obtain

r (θ (δ (l))) (z(n−1) (θ (δ (l))))α

(
1 +

pα
0

θ0

)

≥ 1
µ

(
z(n−1) (θ (δ (l)))

)α
Rα

n−2 (θ (δ (l)) , η (l))
∫ l

δ(l)
Q (ρ)dρ,

that is,
θ0 + pα

0
θ0

≥ 1
µ

Rα
n−2 (θ (δ (l)) , η (l))

r (θ (δ (l)))

∫ l

δ(l)
Q (ρ)dρ.

Now, we take the lim sup of both sides of the previous inequality, and we obtain a contradiction
to (15). The proof is complete.

In the following theorem, we will provide another criterion for the non-existence of N-Kneser
solutions of (1) using the comparison theorem.

Theorem 5. Assume (I), (II), and η (θ (l)) < l hold. If the differential equation

Ψ′ (l) + Q1 (l) Rα
n−2 (θ (l) , l)

(
η0θ0

θ0 + pα
0

)
Ψ (η (l)) = 0 (17)

is oscillatory, then ℜ is an empty set.

Proof. Let u be a N-Kneser solution of (1), say u (l) > 0, u (θ (l)) > 0 and u (η (l)) > 0 for l ≥ l1 ≥ l0.
This implies that

(−1)k z(k) (l) > 0, for k = 0, 1, 2, ..., n.

By using (1) and (I), we see that

0 ≥ 1

(η−1 (l))′
(

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α)′

+ q
(

η−1 (l)
)

uα (l)

≥ 1
η0

(
r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α)′

+ q
(

η−1 (l)
)

uα (l) ,

and, similarly,

0 ≥ pα
0

(η−1 (θ (l)))′
(

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α)′

+pα
0q
(

η−1 (θ (l))
)

uα (θ (l))

≥ pα
0

η0θ0

(
r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α)′

+pα
0q
(

η−1 (θ (l))
)

uα (θ (l)) .
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Combining the above inequalities yields that

0 ≥ 1
η0

(
r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α)′

+
pα

0
η0θ0

(
r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α)′

+q
(

η−1 (l)
)

uα (l) + pα
0q
(

η−1 (θ (l))
)

uα (θ (l)) ,

that is,

0 ≥
(

1
η0

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α

+
pα

0
η0θ0

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α

)′

+Q1 (l) zα (l) . (18)

Now, we set

Ψ (l) =
1
η0

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α

+
pα

0
η0θ0

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α

. (19)

From (II) and the fact that r (l) (z(n−1) (l)) is non-increasing, it is easy to see that

Ψ (l) ≤
r
((

η−1 (θ (l))
)) (

z(n−1)
(
η−1 (θ (l))

))α

η0

(
1 +

pα
0

θ0

)
. (20)

By using (12) with ς = θ (l) and ̺ = l and (20), we have

zα (l) ≥ r (θ (l))
(

z(n−1) (θ (l))
)α

Rα
n−2 (θ (l) , l) ≥ Ψ (η (l)) Rα

n−2 (θ (l) , l)

(
η0θ0

θ0 + pα
0

)
.

From definition Ψ and using the above inequality in (18), we get

0 ≥ Ψ′ (l) + Q1 (l) Rα
n−2 (θ (l) , l)

(
η0θ0

θ0 + pα
0

)
Ψ (η (l)) .

In view of [24], Theorem 1, we have that (17) also has a positive solution, a contradiction. Thus,
the proof is complete.

3. New Oscillation Criteria

In the following lemma, we present criteria that ensure that non-existence of solutions satisfies
case (1).

Lemma 4. Assume that u be an eventually positive solution of (1) and the differential equation

Φ′ (l) +
Q (l)(

1 + pα
0

θ0

)
(

λ0

(n − 1)!r1/α (η (l))
(η (l))n−1

)α

Φ
(

η
(

θ−1 (l)
))

= 0 (21)

or

φ′ (l) +
Q1 (l)(

1
η0

+
pα

0
η0θ0

)
(

λ1

(n − 1)!r1/α (l)
ln−1

)α

φ
(

θ−1 (η (l))
)
= 0 (22)

is oscillatory, then z does not satisfy the following case:

z (l) > 0, z′ (l) > 0, z(n−1) (l) > 0 and z(n) (l) ≤ 0. (23)
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Proof. Assume on the contrary that u is an eventually positive solution of (1) and z satisfies (23).
Proceeding as in the proof of Theorem 3, we obtain (9). By using Lemma 2, we get

z (l) ≥ λ

(n − 1)!r1/α (l)
ln−1r1/α (l) z(n−1) (l) . (24)

Therefore, by setting w (l) = r (l) (z(n−1) (l))α in (9) and utilizing (24), we see that w is a positive
solution of the equation

(
w (l) +

pα
0

θ0
w (θ (l))

)′
+ Q (l)

(
λ

(n − 1)!r1/α (η (l))
(η (l))n−1

)α

w (η (l)) = 0. (25)

Since w (l) = r (l) (z(n−1) (l))α is non-increasing and it satisfies (25), let us denote

Φ (l) = w (l) +
pα

0
θ0

w (θ (l)) .

It follows from θ (l) < l

Φ (l) ≤ w (θ (l))

(
1 +

pα
0

θ0

)
.

Substituting these terms into (25), we get that Φ is a positive solution of

Φ′ (l) +
Q (l)(

1 + pα
0

θ0

)
(

λ

(n − 1)!r1/α (η (l))
(η (l))n−1

)α

Φ
(

η
(

θ−1 (l)
))

≤ 0.

In view of [24], Theorem 1, we have that (21) also has a positive solution, which is a
contradiction (21).

Now, proceeding as in the proof of Theorem 5, we obtain (18). In the same style as the first part,
we have

0 ≥
(

1
η0

r
(

η−1 (l)
) (

z(n−1)
(

η−1 (l)
))α

+
pα

0
η0θ0

r
(

η−1 (θ (l))
) (

z(n−1)
(

η−1 (θ (l))
))α

)′

+Q1 (l) zα (l) .

By using Lemma 2, we get

z (l) ≥ λ

(n − 1)!r1/α (l)
ln−1r1/α (l) z(n−1) (l) .

Therefore, by setting U (l) = r (l) (z(n−1) (l))α in (18) and utilizing (24), we see that U is a positive
solution of the equation

(
1
η0

U
(

η−1 (l)
)
+

pα
0

η0θ0
U
(

η−1 (θ (l))
))′

+ Q1 (l)

(
λ

(n − 1)!r1/α (l)
ln−1

)α

U (l) = 0. (26)

Since U (l) = r (l) (z(n−1) (l))α is non-increasing and it satisfies (26), let us denote

φ (l) =
1
η0

U
(

η−1 (l)
)
+

pα
0

η0θ0
U
(

η−1 (θ (l))
)

.

It follows from θ (l) < l

φ (l) ≤ U
(

η−1 (θ (l))
)( 1

η0
+

pα
0

η0θ0

)
.
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Substituting these terms into (26), we get that φ is a positive solution of

φ′ (l) +
Q1 (l)(

1
η0

+
pα

0
η0θ0

)
(

λ

(n − 1)!r1/α (l)
ln−1

)α

φ
(

θ−1 (η (l))
)
≤ 0.

In view of [24], Theorem 1, we have that (22) also has a positive solution, which is a
contradiction (22). Thus, the proof is complete.

The following theorems give the criteria for oscillation for all solutions of Equation (1).

Theorem 6. If (5) and (21) are oscillatory, then (1) is oscillatory.

Proof. Assume on the contrary that u is an eventually positive solution of (1). Then, from Lemma 3,
we conclude that there are two possible cases for the behavior of z and its derivatives. By using
Theorem 3 and Lemma 4, conditions (5) and (21) ensure that there are no solutions for Equation (1)
satisfy case (1) and case (2) respectively. Thus, the proof is complete.

Theorem 7. If (17) and (21) are oscillatory, then (1) is oscillatory.

Proof. Assume on the contrary that u is an eventually positive solution of (1). Then, from Lemma 3,
we conclude that there are two possible cases for the behavior of z and its derivatives. By using
Theorem 5 and Lemma 4, conditions (17) and (21) ensure that there are no solutions for Equation (1)
satisfying case (1) and case (2), respectively. Thus, the proof is complete.

The following corollaries provided criteria for the oscillation of the first-order equations that were
used in the comparison.

Corollary 1. If there exists a function ζ (l) ∈ C ([l0, ∞) , (0, ∞)) satisfying η (l) < ζ (l) and θ−1 (ζ (l)) < l,
such that

lim inf
l→∞

∫ l

θ−1(ζ(l))
Rα

n−2 (ζ (ρ) , η (ρ))
Q (ρ)

µ
dρ ≥ θ0 + pα

0
θ0e

(27)

and

lim inf
l→∞

∫ l

η(θ−1(l))
Q (l)

(
λ0

(n − 1)!r1/α (η (l))
(η (l))n−1

)α

dρ ≥ θ0 + pα
0

θ0e
(28)

hold, then (1) is oscillatory.

Corollary 2. Let δ (l) = θ (l) in Theorem 4. If η (l) < θ (θ (l)), such that (28) and

lim sup
1
µ

l→∞

Rα
n−2 (θ (θ (l)) , η (l))

r (θ (θ (l)))

∫ l

θ(l)
Q (ρ)dρ >

θ0 + pα
0

θ0
(29)

hold, then (1) is oscillatory.

Corollary 3. If η (θ (l)) < l, such that (28) and

lim inf
l→∞

∫ l

η(θ(l))
Q1 (ρ) Rα

n−2 (θ (ρ) , ρ) >
θ0 + pα

0
η0θ0e

(30)

hold, then (1) is oscillatory.
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Example 1. Consider the differential equation

((
(u (l) + pu (δl))(n−1)

)α)′
+

q0

lα(n−1)+1
uα (λl) = 0, l ≥ 1 (31)

From (31), we have r (l) = 1, p (l) = p, θ (l) = δl, η (l) = λl and q (l) = q0/lα(n−1)+1. Using some
mathematical operations. By using Corollary 1, we find that (31) is oscillatory if

q0 ln
(

2δ

δ + λ

)
>

µ
(
θ0 + pα

0

)

θ0e

(
(n − 1)!

(
2

δ − λ

)n−1
)α

and

q0 ln
(

λ

δ

)
>

(
θ0 + pα

0

)

θ0e
((n − 1)!)α

λα
0λα(n−1)

.

By using Corollary 3, we find that (31) is oscillatory if

q0 ln
(

λ

δ

)
>

(
θ0 + pα

0

)

θ0e
((n − 1)!)α

λα
0λα(n−1)

and

q0 ln
(

1
δλ

)
>

(
θ0 + pα

0

)

η0θ0e
((n − 1)!)α

λα(n−1)+1 (δ − 1)α(n−1)
.

4. Conclusions

This article is concerned with oscillatory properties of solutions for the odd-order neutral
equation. Many works have studied the oscillatory properties of solutions of an odd-order equation;
see [17,18]. However, in these works, we find sufficient conditions to ensure that every non-oscillatory
solution tends to zero, that is, conditions that guarantee that all solutions are oscillatory or tend
to zero. Unusually, in this paper, we presented new criteria ensuring that all solutions of (1) are
oscillatory, which in turn is an improvement and extension of the results in [17,18]. For this purpose,
we used the comparison technique with first-order equations. For ease of application in the examples,
Corollaries 1–3 provided criteria for the oscillation of the first-order equations that were used in
the comparison.
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