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Preface to ”Evolutionary Computation 2020”

Intelligent optimization is based on the mechanism of computational intelligence to refine a

suitable feature model, design an effective optimization algorithm, and then obtain an optimal

or satisfactory solution to a complex problem. Intelligent algorithms should try to ensure global

optimization quality, fast optimization efficiency and robust optimization performance. Many

researchers have made different findings on the study of intelligent optimization algorithms.

In terms of improving algorithm performanc, Li et al. proposed a co-evolutionary algorithm

based on a dynamic learning strategy. The evolution is mainly achieved by using the Pareto criterion

and the non-Pareto criterion for two populations, respectively, and using the information exchange

between the two populations to better explore the whole target space. Hussien et al. proposed

two binary variants of the Whale Optimization Algorithm (WOA), called bWOA-S and bWOA-V.

They are used to reduce the complexity and improve the performance of the system by selecting

important features for classification purposes. Sun et al. proposed a steering-based variational

approach for solving the premature convergence problem of the success history-based adaptive

differential evolution algorithm in a high-dimensional search space. Wei et al. optimized the particle

swarm optimization algorithm by quantum behavior and optimized the krill swarm algorithm by

simulated annealing, thus proposing a new hybrid algorithm called the annealed krill quantum

particle swarm optimization (AKQPSO) algorithm. A comprehensive review of algorithms based on

elephant grazing optimization and their applications is presented by Li et al. Various aspects of EHO

variants for continuous optimization, combinatorial optimization, constrained optimization, and

multi-objective optimization are reviewed. Future research directions in the field of EHO are further

discussed. Novak et al. proposed a new metric for game feature verification in real-time strategy

(RTS) games, comparing evolutionary and tree-based approaches for game feature verification in

real-time strategy games.

In order to solve complex problems. Li et al. proposed a discrete artificial bee colony (DABC)

algorithm based on similarity and non-dominated solution ordering, which can solve the fuzzy

hybrid green shop scheduling problem with fuzzy processing time. Li et al. proposed a new modal

strategy based on particle swarm optimization algorithm, which can solve the severe nonlinear

problem in one-dimensional geodesic electromagnetic inversion. Zhao et al. proposed a novel

multi-objective optimization solution, MooFuzz, which identifies different states of the seed pool

and continuously collects different information about the seeds to guide seed scheduling and energy

allocation. The method can be used to find bugs and vulnerabilities in software. Wang et al. proposed

a new quantum-inspired differential evolution algorithm based on the gray wolf optimizer, which

can solve the 0-1 backpacking problem. Zhang et al. proposed a pair-wise ant colony optimization

algorithm combined in position-based learning in order to solve the traveling merchant problem

(TSP). Two strategies for constructing opposite paths based on TSP solution features for OBL were

also proposed. Muhammad et al. conducted a comparative study of multi-objective evolutionary

algorithms and single-objective evolutionary algorithms in optimizing the knapsack problem (KNP)

and the traveling merchant problem (TSP). Marrero et al. proposed a multi-objective modal approach

based on the decomposition-based multi-objective evolutionary algorithm (MOEA/D). The method

contains crossover operators specifically designed for this problem. In addition, an interim iterative

local search (ILS) is considered in the improvement phase. The modified algorithm can be used to

develop healthy, balanced and inexpensive menu plans. Rahnamayan et al. proposed a new and

ix



improved Pareto dominance depth ranking strategy that uses some dominance indicators obtained

from the basic Pareto dominance depth ranking and some ranked statistical indicators to rank

scientific outcomes. Li et al. proposed a new CS extension with Q-learning steps and genetic

operators, namely the dynamic step cuckoo search algorithm (DMQL-CS), which can be used to solve

the logistics distribution center site selection problem.

The editors are confident that this book will help beginners to understand the principles and

design of intelligent algorithms. This book serves as a viable resource for readers interested in the

applications of intelligent algorithms. It will further promote the development and improvement of

intelligent algorithm research, strengthen the research of computational intelligence algorithms, and

promote the intersection and integration of related disciplines.

Gai-Ge Wang, Amir H. Alavi

Editors

x
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Abstract: Traditional evolution algorithms tend to start the search from scratch. However, real-world
problems seldom exist in isolation and humans effectively manage and execute multiple tasks at
the same time. Inspired by this concept, the paradigm of multi-task evolutionary computation
(MTEC) has recently emerged as an effective means of facilitating implicit or explicit knowledge
transfer across optimization tasks, thereby potentially accelerating convergence and improving the
quality of solutions for multi-task optimization problems. An increasing number of works have
thus been proposed since 2016. The authors collect the abundant specialized literature related
to this novel optimization paradigm that was published in the past five years. The quantity of
papers, the nationality of authors, and the important professional publications are analyzed by
a statistical method. As a survey on state-of-the-art of research on this topic, this review article
covers basic concepts, theoretical foundation, basic implementation approaches of MTEC, related
extension issues of MTEC, and typical application fields in science and engineering. In particular,
several approaches of chromosome encoding and decoding, intro-population reproduction, inter-
population reproduction, and evaluation and selection are reviewed when developing an effective
MTEC algorithm. A number of open challenges to date, along with promising directions that can
be undertaken to help move it forward in the future, are also discussed according to the current
state. The principal purpose is to provide a comprehensive review and examination of MTEC for
researchers in this community, as well as promote more practitioners working in the related fields to
be involved in this fascinating territory.

Keywords: multi-task optimization; multi-task evolutionary computation; knowledge transfer;
evolutionary algorithm; assortative mating; unified search space

1. Introduction

Due to its extensive application in science and engineering fields, global optimization
is a topic of great interest nowadays. Without a loss of generality, it implies the minimiza-
tion of a specific objective function or fitness function [1]. Effective and common approaches
for optimization problems can be mainly divided into deterministic and heuristic methods.
Deterministic methods (such as linear programming and nonlinear programming) can find
a global or an approximately global optimum using mathematical formulas. Generally
speaking, they take advantage of the analytical properties of the optimization problem
to generate a sequence of solutions that converge to a global optimum [2]. On the other
hand, heuristic methods use random processes, and thus cannot guarantee the quality of
the obtained solutions. Comparatively speaking, to find an acceptable solution, the deter-
ministic approach needs fewer objective function evaluations than the stochastic approach.

Mathematics 2021, 9, 864. https://doi.org/10.3390/math9080864 https://www.mdpi.com/journal/mathematics
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However, stochastic approaches have been found to be more flexible and efficient than
deterministic approaches, especially for complex “black box” problems [3].

Evolutionary algorithms (EAs) are a kind of population-based stochastic optimization
methods involving the Darwinian principles of “Natural selection and survival of the
fittest” [4–8]. The algorithm starts with a population of randomly generated individuals.
Then, new offspring are produced iteratively by undergoing evolutionary operators such
as crossover and mutation, and fitter offspring will survive to the next generation. The
production and selection procedure terminates when a predefined condition is satisfied.
Due to their simple implementation and strong search capability, in the last few decades,
EAs have been successfully applied to solve a wide range of real-world optimization
problems in areas such as defense and cybersecurity, biometrics and bioinformatics, finance
and economics, sport, and games [9,10].

Despite their great successes in science and engineering, existing EAs still contain
some drawbacks. One major point is that traditional EAs typically start to solve a problem
from scratch, assuming a zero prior knowledge state, and focus on solving one problem at
a time [11,12]. However, it is well known that real-world problems seldom exist in isolation
and are usually mixed with each other. The knowledge extracted from past learning
experiences can be constructively applied to solve more complex or new encountered tasks.

Traditional machine learning algorithms only work well under a common assumption
that the distributions of the training and test data are the same [13]. Nevertheless, the
domains, tasks, and distributions may be very different in many real-world applications.
In such cases, transfer learning or multitask learning between multiple source tasks and
a target task would be desirable. In contrast to tabula rasa learning, transfer learning in
the field of machine learning can leverage on a pool of available data from various source
tasks to improve the learning efficacy of a related target task. The fundamental motivation
for transfer learning in machine learning community was discussed in a NIPS (Conference
and Workshop on Neural Information Processing Systems) 1995 post-conference workshop
on “Learning to Learn: Knowledge Consolidation and Transfer in Inductive Systems” [14].
Since 1995, it has attracted substantial scholar attention, and achieved significant suc-
cess [13,15–17]. Although the notion of knowledge transfer or transfer learning has been
prominent in machine learning, it is relatively scarce, and has received far less attention
in the evolutionary computation community. Frankly speaking, a detailed description of
transfer learning in machine learning is beyond the scope of this review article, which is
limited in transfer learning or multi-task learning in evolutionary computation.

As a novel paradigm, transfer optimization can facilitate the automatic knowledge
transfer across optimization problems [11,12]. Following from the formalization, the con-
ceptual realizations of this paradigm are classified into three distinct categories, namely
sequential transfer optimization, multi-task optimization (MTO), the main focus of this
article, and multiform optimization. Note that the concept of multi-task optimization is
also described using other terms such as multifactorial optimization (MFO) [18], multi-
tasking optimization (MTO) [19], multi-task learning (MTL) [20], multitask optimization
(MTO) [11], multitasking [12], evolutionary multitasking (EMT) [21], evolutionary multi-
tasking (EMT) [22], and multifactorial operation optimization (MFOO) [23].

The basic concept of multi-task optimization was originally introduced by Prof.
Ong [24]. In contrast to the traditional EAs which optimize only one task in a single
run, the main idea of MTO is to solve multiple self-contained optimization tasks simulta-
neously. Due to its strong search capability and parallelism nature, it has attracted great
research attention since it was proposed in 2015. Nevertheless, to the best of our knowledge,
there is no effort being conducted on the comprehensive survey, especially in future trends
and challenges, about MTO. Thus, the intention of this article is to present an attempt to fill
this gap.

Up to now, no research monograph on this topic has been published, except a book
chapter written by Gupta et al. [25]. The review of the literature in this paper consists
of 140 articles from refereed journals and conference proceedings. These papers listed in
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the bibliography are drawn from the past five years. Note that dissertations [26–29] have
generally not been included, although the tendency is to be inclusive when dealing with
borderline cases. One of the major concerns here is that these results and key contribu-
tions with rarely novel ideas in dissertations are usually the collection of previous results
published in journals or conferences.

The remaining of this review is organized as follows. The basic definition and some
confusing concepts of MTO are introduced in Section 2. In this section, we also conduct a
statistical analysis of the literature. In Section 3, the mathematical analysis of conventional
multi-task evolutionary computation (MTEC) is provided which theoretically explains why
some existing MTECs perform better than traditional methods. Then, Section 4 describes
some basic implementation approaches for MTEC, such as chromosome encoding and
decoding scheme, intro-population reproduction, inter-population reproduction, balance
between intra-population reproduction and inter-population reproduction, and evaluation
and selection strategy. Further, related extension issues of MTEC are summarized in
Section 5. In Section 6, a review of the applications of MTEC in science and engineering is
conducted. Finally, the trends and challenges for further research of this exciting field are
discussed in Section 7. Finally, Section 8 is devoted to main conclusions.

2. Basic Concept of Multi-Task Optimization and Multi-Task Evolutionary Computation

2.1. Definition of Multi-Task Optimization

Generally, the goal of multi-task optimization is to find the optimal solutions for
multiple tasks in a single run. Without a loss of generality, suppose there are K minimization
tasks to be optimized simultaneously. Specifically, denote Ti as the ith minimization task to
be solved. Then, the definition of a MTO problem can be mathematically represented as
follows [18]:

x∗i = argminxTi(x), i = 1, 2, · · · , K (1)

where x∗i is a feasible solution of the ith task Ti. Note that Ti itself could be single-objective
optimization or multi-objective optimization problem. A general schematic of multi-task
optimization is depicted in Figure 1.

Figure 1. An illustration of a multi-task optimization problem [30].

3
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To evaluate the individuals in MTO, several properties associated with every individ-
ual are defined as follows [18]:

Definition 1 (Factorial Cost): The factorial cost of individual pi on task Tj is the objective value
fj of potential solution pi, which is denoted as ψi

j.

Definition 2 (Factorial Rank): The factorial rank of pi on Tj is the rank index of pi in the sorted
objective value list in an ascending order, which is denoted as ri

j.

Definition 3 (Skill Factor): The skill factor is defined by the index of the task assigned to an
individual. The skill factor of pi is given by τi = argminj∈{1,2,...,K}ri

j.

Definition 4 (Scalar Fitness): The scalar fitness of pi is the inverse of ri
j, which is given by

ϕi = 1/minj∈{1,2,...,K}ri
j.

Herein, the skill factor is regarded as the cultural trait which can be inherited from
its parents in MTO. The scalar fitness is used as the unified performance criterion in a
multi-task framework.

2.2. Confusing Concepts of MTO

As an emerging paradigm in evolutionary computation community, multi-task opti-
mization is easy to confuse with other optimization concepts outlined and distinguished in
this section.

2.2.1. Multi-Objective Optimization (MOO)

In a real-world scenario, a decision maker in the general case has to simultaneously
account for multiple disparate or even contradictory criteria while selecting a particular
plan of action. Mathematically, a multi-objective optimization problem can be formulated
as follows:

minF(x) = ( f1(x), f2(x), · · · , fm(x))
T (2)

where x is the decision variable vector. Typically, no single optimal solution can minimize
all the objectives simultaneously due to the confliction between each pair of objectives.
Thus, the main purpose of an MOO problem is to obtain an optimal solution set, called a
Pareto solution set, with splendid convergence and diversity.

In the literature, multi-objective evolutionary algorithms (MOEAs) that are commonly
used today can be classified into three categories [31]: (a) dominance-based MOEAs, such as
NSGA-II [32], (b) indicator-based MOEAs, such as HypE [33], and (c) decomposition-based
MOEAs, such as MOEA/D [34].

Although MOO and MTO problems both involve the optimization of multiple objec-
tive functions, they are two distinct optimization paradigms. MOO focuses on efficiently
resolving conflicts among competing objective functions in one task. As a result, solving
a MOO problem typically yields a Pareto solution set that provides the best trade-offs
among all objective functions. Differently, MTO aims to leverage the implicit parallelism of
a population-based search to seek out the optimal solutions for two or more tasks simulta-
neously. Therefore, the output of a MTO problem contains two or more optimal solutions
corresponding to each task.

In order to further exhibit the distinction between MOO and MTO, we refer to their
population distributions in Figure 2. In real life, you can imagine a scenario where you
plan to buy a cheap and fine table in a furniture store. Actually, this problem that you
face is a multi-objective optimization problem. Based on the definition of Pareto optimal
solution, individuals {p2, p3, p4, p5} are incomparable to each other and are better than the
individuals {p1, p6} in Figure 2a. As a result, the output of this MOO problem is the Pareto
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optimal solution set {p2, p3, p4, p5}, and then you can buy any table from this set based on
personal preference.

Figure 2. Population distribution for multi-objective optimization (MOO) and multi-task optimiza-
tion (MTO) problems. (a) Multi-objective optimization problem finding a cheap and fine table.
(b) Multi-task optimization problem finding a cheap table and a cheap chair concurrently.

In contrast, you may possibly plan to buy a cheapest table and a cheapest chair at once,
which is a typical multi-task optimization problem. In Figure 2b, individuals {p1, p2} are the
cheapest chairs, and individuals {p5, p6} are the cheapest tables in this furniture store. Thus,
the output of this MTO problem is two optimal solution sets: {p1, p2} and {p5, p6}, and then
you can buy randomly ONE table from the set {p5, p6} and ONE chair from the set {p1, p2}.

2.2.2. Sequential Transfer Optimization

The search process of many existing EAs typically begins from scratch, assuming a zero
prior knowledge state. However, there is a great deal of knowledge from past exercises that
can be exploited the similar search spaces in order to improve the algorithm performance.
For instance, an engineering team designing a turbine for an aircraft engine would use, as
a reference, past designs that have been successful and modify them accordingly to suit the
current application [20].

Mathematically, we make the strict assumption that while tackling task TK, the tasks
T1, T2, . . . , TK−1 have already been addressed previously with the extracted information
available in the knowledge base M [12]. Herein, TK is said to act as the target optimization
task, while T1, T2, . . . , TK−1 are said to be source tasks. As illustrated in Figure 3, the
objective of sequential transfer optimization is to improve the learning of the predictive
function of a target task using knowledge from any source task.

Figure 3. An illustration of a sequential transfer optimization problem [12].
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2.2.3. Multi-Form Optimization

Different from multi-task optimization dealing with distinct self-contained tasks
simultaneously, multi-form optimization is a novel concept for exploiting multiple alternate
formulations of a single target task [12]. As illustrated in Figure 4, instead of treating each
formulation independently, the basic idea of multi-form optimization is to combine different
formulations into a single multi-task optimization algorithm [20].

Figure 4. An illustration of multi-form optimization problem [30].

The challenge of multi-form optimization lies in the fact that it may often be difficult
to ascertain which formulation is most suited for a particular problem at hand, given the
known limits on computational resources. Alternate formulations induce different search
behaviors, some of which may be more effective than others for a particular problem
instance [30].

2.3. Multifactorial Evolutionary Algorithm

As a pioneering implementation of multi-task optimization, the multifactorial evolu-
tionary algorithm (MFEA), inspired by the multifactorial inheritance [35,36], has gained
increasing research interests due to its effectivity [18]. Algorithm 1 gives a description of
the entire process of the canonical MFEA.

At the initialization phase, MFEA randomly generates a single population with N·K
individuals in a unified search space (line 1). The individuals in the population then have
a skill factor (see Definition 3 in Section 2.1), indicating the most suitable task in terms
of ranking values on different tasks, and a scalar fitness (see Definition 4 in Section 2.1),
determining by the reciprocal of the ranking value with respect to the most suitable task
(lines 2–8).

There are two key features of MFEA, called assortative mating and selective imitation,
which distinguish it from traditional EAs. The assortative mating mechanism allows not
only the standard intra-task crossover between parents from the same task (lines 13–15)
but also the inter-task crossover between distinct optimization instances (lines 16–18).
The intensity of knowledge transfer is controlled by a user-defined parameter labeled as
random mating probability (rmp). Since mutation is essential in genetic algorithms, MFEA
with mutation applied on all newly generated candidates may achieve better performance
(lines 20–23). As each newly generated individual has been assigned skill factor, the
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evaluation for the individual is taken only on the task corresponded to such skill factor
(line 24). After evaluation, the whole population obtain new ranking values and thus new
skill factor and scalar fitness (lines 26–27), which is then used to select survivors for the
next generation (line 28). Selective imitation is derived from the memetic concept of vertical
cultural transmission, which aims to reduce the computational burden by evaluating an
individual for their assigned task only.

Algorithm 1 Basic Structure of the Canonical MFEA

1 Randomly sample N·K individuals to form initial population P(0);
2 for each task Tk do

3 for every individual pi in P(0) do

4 Evaluate pi for task Tk;
5 end for

6 end for

7 Calculate skill factor r over population P(0);
8 Calculate scalar fitness ϕ according to skill factor r;
9 t = 1;

10 while stopping conditions are not satisfied do

11 while offspring generated for each task < N do

12 Sample two individuals (xi and xj) randomly from P(t);
13 if τi = τj then

14 [xa, xb] ← intra-task crossover between xi and xj;
15 Assign offspring xa and xb with skill factor τi(τj);
16 else if rand < rmp then

17 [xa, xb] ← inter-task crossover between xi and xj;
18 Assign each offspring with skill factor τi or τj randomly;
19 end if

20 [xa] ← mutation of xi;
21 Assign offspring xa with skill factor τi;
22 [xb] ← mutation of xj;
23 Assign offspring xb with skill factor τj;
24 Evaluate [xa, xb] for their assigned task only;
25 end while

26 Calculate skill factor r over population P(t);
27 Calculate scalar fitness ϕ according to skill factor r;
28 Select survivors to next generation;
29 t = t+1;
30 end while

2.4. Literature Review and Analysis

After retrieving several important full-text databases, abstract databases, and Google
Scholar, 69 articles published in peer-review journals and 71 papers published in conference
proceedings were collected and reviewed for this paper. The quantity of papers published
each year is contained in Table 1.

Table 1. The quantity of papers published each year in the past five years. The number in parentheses
represents the quantity of papers published first online.

Year 2016 2017 2018 2019 2020 Subtotal

Journal 4 4 3 20(3) 38(10) 69
Conference 12 9 12 19 19 71

Total 16 13 15 39(3) 57(10) 140

As the first paper in this field, [24] is a keynote presentation abstract published in
2016 by Springer, while the International Conference on Computational Intelligence, Cyber
Security and Computational Models was held in Coimbatore, India in December 2015.
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Interestingly, the first journal paper [37] was received on 1 December, 2015, and published
online on 26 February, 2016, while it was published in the first volume of Complex &
Intelligent Systems in 2015. For simplicity, two papers both count towards 2016, as shown
in Table 1.

From Table 1, we noticed that the quantity increased for the past five years and
exploded in the past two years. It had already reached 39 and 57 in 2019 and 2020,
respectively, more than two thirds of the total. The results demonstrate the high research
intensity and productivity in MTO, becoming a hot research topic in the evolutionary
computation community.

These articles involve 277 co-authors from 12 countries, including China (184), Vietnam
(19), Singapore (18), New Zealand (11), and the UK (10), as shown in Figure 5. The most
prolific contributing authors in this field are summarized in Table 2. From here we see
clearly that China and Singapore have demonstrated great research power in this field, and
some famous research teams have emerged from China and Singapore. It is worth noting
that these prominent scholars have some kind of academic connection (research scientist,
Ph.D candidate, co-investigator, etc.) with the pioneer of MTO, Prof. Ong. In addition,
each paper was written by 4.21 co-authors on average.

These articles were published in 34 journals and 24 international conferences. The
preferential journals involve IEEE Transactions on Cybernetics (12), IEEE Transactions on
Evolutionary Computation (12), IEEE Access (4), and Information Sciences (3), while the
preferential conferences involve IEEE Congress on Evolutionary Computation (IEEE CEC)
(33), Genetic and Evolutionary Computation Conference (GECCO) (8), and IEEE Sympo-
sium Series on Computational Intelligence (IEEE SSCI) (6). It is evident that the publication
distribution shows a high concentration. The authors tend to publish these research results
in the top journals and conferences in the evolution computation community, in order to
promote their academic reputations. Open Access journals (like IEEE Access), meanwhile,
are new options for scholars trying to seize the initiative first and achieve high visibility.

Figure 5. Number of co-authors from different countries.
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Table 2. The most prolific contributing authors devoted to MTO and MTEC.

Rank Name Affiliations Address E-mail
Total Number

(Journal + Conference)

1 Yew-Soon Ong Nanyang Technological
University Singapore asysong@ntu.edu.sg 27 (17 + 10)

2 Abhishek Gupta
Singapore Institute of

Manufacturing
Technology (SIMTech)

Singapore abhishek_gupta@simtech.a-
star.edu.sg 25 (17 + 8)

3 Liang Feng Chongqing University Chongqing, China liangf@cqu.edu.cn 24 (13 + 11)
4 Zexuan Zhu Shenzhen University Shenzhen, China zhuzx@szu.edu.cn 15 (6 + 9)

5 Jinghui Zhong South China University
of Technology Guangzhou, China jinghuizhong@gmail.com 13 (7 + 6)

6 Maoguo Gong Xidian University Xi’an, China gong@ieee.org 11 (5 + 6)

7 Huynh Thi Thanh Binh Hanoi University of
Science and Technology Hanoi, Vietnam binhht@soict.hust.edu.vn 11 (4 + 7)

8 Kay Chen Tan City University of
Hong Kong Hong Kong, China kaytan@cityu.edu.hk 10 (7 + 3)

As of January 31, 2021, the most cited papers are [11,12,18,21,38,39], in descending
order, and the other papers were cited less 70 times. Although [18] by Gupta et al. is
not the first paper published in a journal or submitted to a journal, it has been widely
recognized by the evolution computation community. The possible reason for this is that
it provided the algorithmic background, biological foundation, basic concepts, algorithm
framework, simulation experiments, and excessive experimental results of MFEA. As a
result, this paper has been cited 233 times so far and considered the most classic paper in
MTO and MTEC.

3. Theoretical Analyses of Multi-Task Evolutionary Computation

Experimentally, many success stories have surfaced in multi-task optimization scenar-
ios in recent years, and demonstrated the superiority of multi-task evolutionary compu-
tation over traditional methods. A natural question is whether MTEC always improves
convergence performance.

Follows directly from Holland’s schema [40], under fitness proportionate selection,
single-point crossover, and no mutation, the expected number of individuals in a popula-
tion containing given a schema at generation is deduced in [30]. This demonstrates that,
compared to conventional methods, the potential ability for MTEC to utilize knowledge
transferred from other tasks in the multi-task environment to accelerate convergence to-
wards high quality schema. Further, it was proved that the MFEA with parent-centric
evolutionary operators and (μ, λ) selection can asymptotically converge to the global
optimum of each constitutive task, regardless of the choice of rmp [41]. On the other hand,
the reduction in the convergence rate of MFEA depends on the chosen rmp and single-task
optimization may lead to faster convergence feature in the worst case.

Referring to [41], Tang et al. further proved that, by aligning two subspaces, the
inter-task knowledge transfer method proposed in [42] can implicitly minimize the KL-
divergence between two different subpopulations. In this way, we can implement the
low-drift inter-task knowledge transfer.

In [43], adaptive model-based transfer (AMT) was proposed and analyzed theoretically.
The theoretical result indicates that, by combining all available (source + target) probabilistic
models, the gap between the underlying distributions of parent population and offspring
population is reduced. In fact, with increasing number of source models, we can in principle
make the gap arbitrarily small. Therefore, the proposed AMT framework facilitates the
global convergence characteristic.

Yi et al. [44] discovered mathematically that the proposed interval dominance method
has a strict transitive relation to the original method when γ = 0.5 and can be applied
when comparing the dominance relationship between interval values.

The principal finding of [45] is that, for vehicle routing problems (VRPs), the positive
knowledge transfer across tasks is strictly related to the intersection degree among the best
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solutions. More concretely, Osaba et al. have shown that intersection degrees greater than
11% are enough for ensuring a minimum positive activity.

Recently, Lian et al. [46] provided a novel theoretical analysis and evidence of the
effectiveness of MTEC. It was proved that the upper bound of expected running time for
the proposed simple (4 + 2) MFEA algorithm on the Jumpk function can be improved to
O (n2 + 2k) while the best upper bound for single-task optimization on the same problem is
O (nk−1). This theoretical result indicates that MTEC is probably a promising approach to
deal with some distinct problems in the field of evolutionary computation. The proposed
MFEA algorithm is further analyzed on several benchmark pseudo-Boolean functions [47].
Theoretical analysis results show that, by properly setting the parameter rmp for the group
of problems with similar tasks, the upper bound of expected runtime of (4 + 2) MFEA on
the harder task can be improved to be the same as on the easier one, while for the group of
problems with dissimilar tasks, the expected upper bound of (4 + 2) MFEA on each task
are the same as that of solving them independently. This study theoretically explains why
some existing MFEAs perform better than traditional EAs.

4. Basic Implementation Approaches of Multi-Task Evolutionary Computation

Gupta and Ong [48] provided a clearer picture of the relationship between implicit
genetic transfer and population diversification. The experimental results highlighted
that genetic transfer is a more appropriate metaphor for explaining the success of MTEC.
Da et al. [49] further considered the incorporation of gene-culture interaction to be a pivotal
aspect of effective MTEC algorithms. In [50], the inheritance probability (IP) of the selective
imitation was firstly defined and then the influence on MTEC algorithm was studied
experimentally. To alleviate the influence of IP on the algorithm performance, an adaptive
inheritance mechanism (AIM) was thus introduced to automatically adjust the IP value for
different tasks at different evolutionary stages.

Solving the multi-task optimization problem in a natural way is the multipopulation
evolution strategy, in which each subpopulation evolves and exploits separate search
spaces independently in order to solve the corresponding task. As an example, in Figure 6,
a multi-population evolution model is depicted to solve two tasks [51]. According to the
multi-population evolution model of MTEC, various implementation approaches of each
element proposed so far are described in detail in the following subsection.

Figure 6. Multi-population evolution model for a simple case comprising two tasks [51].

4.1. Chromosome Encoding and Decoding Scheme

For effective EAs including MTEC, the unified individual representation scheme
coupled with the decoding process is perhaps the most important ingredient, which
directly affects the problem-solving process.
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Canonical MFEA employed the unified representation scheme in a unified search
space [18]. In particular, every variable of individual is simply encoded by a random key
between 0 and 1 [52]. For the case of continuous optimization, decoding can be achieved in
a straightforward manner by linearly mapping each random key from the genotype space
to the design space of the appropriate optimization task [18,38]. For instance, consider a
task Tj in which the ith variable is bounded in the range [Li, Ui]. If the ith random-key of a
chromosome y takes value yi ∈ [0, 1], then the decoding procedure is given by

xi = Li + (Ui − Li) · yi. (3)

In contrast, for the case of discrete optimization (such as knapsack problem (KP),
quadratic assignment problem (QAP), and capacitated vehicle routing problem (CVRP)),
the chromosome decoding scheme is usually problem dependent.

However, there are two obvious limitations of using a random key representation
when dealing with permutation-based combinatorial optimization problems (PCOPs) [53].
Firstly, the decoding can be inefficient, since the transformation from the random key
representation to the permutation is required for each fitness evaluation of EAs. Secondly,
the decoding process can be highly prone to losses, since only information on relative
order is derived. Therefore, Yuan et al. [53] introduced an exquisite and effective variant,
called permutation based unified representation, to better adapt to PCOPs. To encode
multiple VRPs, the permutation-based representation [54,55] was also adopted [56,57].
With it, a chromosome is encoded as a giant tour represented by a sequence in which each
dimension is a customer id. In addition, the extended split approach [54,55] was introduced
to translate a permutation-based chromosome into a feasible routing solution.

Chandra et al. [58] employed direct encoding strategy for weight representation,
where all the weights are encoded in a consecutive order. Therefore, different tasks results
in varied length real-parameter chromosomes in the MTEC algorithm.

The solutions offered by genetic programming (GP) are typically represented by an ex-
pression tree [59]. In the multifactorial GP (MFGP) paradigm, a novel scalable chromosome
encoding scheme, gene expression representation with automatically defined functions [60],
was utilized to effectively represent multiple solutions simultaneously [61]. In particular,
this encoding scheme using a fixed length of strings contains one main function and mul-
tiple automatically defined functions (ADFs). The main function gives the final output,
while the ADFs represent subfunctions of the main function. The corresponding decoding
scheme was also proposed in [61].

Binh et al. [62] proposed an individual encoding and decoding method in unified
search space for solving clustered shortest-path tree (CluSPT) problem. The number of
clusters of individuals is equal to the maximum number of clusters of all tasks and the
number of vertices of cluster i is the maximum number of vertexes of cluster i of all
tasks. Note that such individual encoding and decoding approaches can also apply to the
minimum routing cost clustered tree (CluMRCT) problem [63].

Thanh et al. [64,65] introduced the Cayley Code encoding mechanism to solve clus-
tered tree problems. Cayley Code was chosen to be the solution representation for two
reasons. The first advantage is that it can encode a solution into spanning tree easier than
other methods. The other one is that it takes full advantage of existing evolutionary oper-
ators such as one-point crossover and swap-change mutation. In addition, three typical
coding types in the Cayley Code families were also analyzed when performed on both
single-task and multi-task optimization problems.

The Edge-sets structure has been proved to be efficient in finding spanning trees in
graphs [66]. In [67], it was used to construct optimal data aggregation trees in wireless
sensor networks. Each gene represents an edge, each taking a value of 0 or 1, correspond-
ing to whether the edge is present in the spanning tree. In [68], solution presented by
edge-sets representation was also built for the CluSPT problem. An individual has three
properties: an ES property (edges connecting all clusters), IE property (vertices in each
cluster connecting it to other vertices of different clusters), and LR property (roots of all
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clusters). In order to transform a chromosome in unified search space into solutions for
each task, the decoding scheme contains two separate parts. For the first task, a solution
for the CluSPT problem is constructed from an individual in a unified search space by
using its key properties, while the decoding method for the second task is the HBRGA
algorithm proposed in [69]. However, this method cannot guarantee that the sub-graphs
in clusters are also spanning trees, leading to create invalid solutions. Recently, Binh and
Thanh [70] introduced another method for generating random solutions which can only
produce valid solutions.

Nowadays, connectivity among communication devices in networks has been playing
a significant role and multi-domain networks have been designed to help resolving scala-
bility issues. Recently, Binh et al. [71] introduced MFEA with a new solution representation.
With it, a chromosome consists of two parts in a unified search space: the first part encodes
the priority of the corresponding nodes while the second part encodes the index of edges
in the solution. In addition, the corresponding decoding scheme was also proposed in [71].

Constructing optimal data aggregation trees in wireless sensor networks is an NP-hard
problem for larger instances. A new MFEA was proposed to solve multiple minimum
energy cost aggregation tree (MECAT) problems simultaneously [67]. The authors also
presented am encoding and decoding strategy, a crossover operator, and a mutation
operator enabling multifactorial evolution between instances.

For solving multiple optimization tasks of fuzzy system, the encoding and decoding
scheme was proposed in [72]. Each individual comprises multiple chromosomes corre-
sponding to every fuzzy variables of the fuzzy system. Each chromosome is a series of
gene sequences, and per gene has one-to-one correspondence with a membership function
parameter of the fuzzy variable. When a decoding procedure is carrying out, according to
the task space to be decoded, in the order that the output variable is decoded first and the
input variables are decoded later, taking first few parameters of the required length from
each chromosome and arranging them in ascending order, then splicing them to obtain the
decoded individual.

For solving the community detection problem and active module identification prob-
lem simultaneously, a unified genetic representation and problem-specific decoding scheme
was proposed [73]. An individual is encoded as an integer vector, to which each integer
representing the label of community to which corresponding node is assigned.

For semantic Web service composition, a permutation-based representation was pro-
posed [74]. A permutation is a sequence of all the services in the repository, and each service
appears exactly once in the sequence. Using a forward graph building technique [75], a
DAG-based solution can easily be decoded from the above permutation-based solution.

Membership function plays an important role in mining fuzzy associations. Wang and
Liaw [76] proposed a structure-based representation MFEA for mining fuzzy associations.
The optimization of each membership function is treated as a single task, and the proposed
method can optimize all tasks in one run. More importantly, the structure based represen-
tation [77] can avoid the illegality by the transformation procedure and also reduce the
number of arrangements of membership functions.

Very recently, in an evolutionary multitasking graph-based hyper-heuristic (EMHH),
the chromosome of an individual is represented as a sequence of heuristics, with each bit
representing a low-level heuristic [78].

4.2. Intro-Population Reproduction

As a core search operator, intro-population reproduction can significantly affect the
performance of MTEC, as shown in Figure 6. The most widely utilized one is probably
genetic mechanisms, namely crossover and mutation. Specifically, several typical genetic
strategies include simulated binary crossover [18,79], ordered crossover (OX) [57,80], one-
point crossover [59,61], DE crossover [61], guided differential evolutionary crossover [81],
partially mapped crossover (PMX) and two-point crossover (TPX) [71], Gaussian muta-
tion [18], uniform mutation [61], swap mutation (SW) [57,80], polynomial mutation [53,79],
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DE mutation [61], mutation using the Powell search method [81], swap-change muta-
tion [64], and one-point mutation [71]. The other EAs, differential evolution (DE) [82–87],
particle swarm optimization (PSO) [85–94], artificial bee colony (ABC) [95], fireworks
algorithm (FWA) [96], self-organized migrating algorithm (SOMA) [97], brain storm opti-
mization (BSO) [98,99], Bat Algorithm (BA) [100], and genetic programming (GP) [61], are
also utilized as fundamental algorithm for MTEC paradigms.

In addition, inspired by cooperative co-evolution genetic algorithm (CCGA), an evo-
lutionary multi-task algorithm was proposed for the high-dimensional global optimization
problem [101]. In this, a MTO problem is decomposed into multiple lower-dimensional
sub-problems. In [22], the novel hyper-rectangle search strategy was designed based on
the main idea of opposition-based learning. It contains two modes, which enhance the
exploration ability in the unified search space and improve the exploitation ability in the
sub-space of each task, respectively.

4.3. Inter-Population Reproduction

The major function of inter-population reproduction is knowledge transfer between
different subpopulations, which may help to accelerate the search process and find global
solutions [51]. Therefore, when, what, and how to transfer are the key issues in MTEC. An
excellent MTEC algorithm should be able to deal with the three problems properly [102].

4.3.1. When to Transfer

As depicted in Figure 6, inter-population reproduction can happen at any stage of the
optimization process in a multi-task scenario. Generally, the offspring are generated via
genetic transfer (crossover and mutation) across tasks for each generation in [18].

In fact, knowledge transfer across tasks can also occur with a fixed generation interval
along the evolution search. The interval of inter-population reproduction was set to
10 generations in EMT (evolutionary multitasking) [21], and the generation interval was
fixed at 20 generations in SGDE [102]. Experimental results based on the island model
revealed that better results are observed from small transfer intervals than from large
transfer intervals [103].

Due to the essential differences among the landscapes of the optimization tasks,
Wen and Ting [104] suggested stopping the information transfer when the parting way
is detected. In MT-CPSO, if a particle within a particular population did not improve its
personal best position over prescribed consecutive generations, knowledge acquired from
the other task was transferred across to assist the search in more promising regions [53].
Obviously, the greater the value of the prescribed iterations is, the smaller the probability
of inter-population reproduction is. Similarly, in SOMAMIF, the current optimal fitness of
each population was firstly judged, and the knowledge transfer demand across tasks was
triggered when the evolution process of a task stagnated for successive generations [97].

4.3.2. What to Transfer

In MFEA and its variants, each solution in every task will be selected as a transferred
solution based on the same probability. The light-weight knowledge transfer strategy was
proposed by Zheng et al. [105]. To be more specific, the best solutions found so far on
transfer other tasks to the given task and randomly replace some individuals during the
optimization process.

However, some transferred solutions, even the best solutions found so far, do not help
to optimize the other tasks, thereby leading to the low efficiency of achieving the positive
transfer. In evolutionary multi-task via explicit autoencoding, transferred solutions are
selected from the nondominated solutions in each task [21], while the performance of this
method may primarily rely on the high degree of underlying intertask similarities [41].
Recently, Lin et al. [19] proposed a new strategy for selecting valuable solutions for positive
transfer. In the proposed approach, a transferred solution achieves positive transfer if it is
nondominated in its target task. Then, in the original search space of this positive-transfer
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solution, its several closest (based on the Euclidean distance) solutions will turn into the
transferred solutions, since these solutions are more likely to achieve positive transfer.

In the existing DE-based on MTEC, the knowledge is transferred only by randomly
selecting the solutions from different tasks to generate offspring without regarding the
search property of DE. In fact, the successful difference vectors from the past generations
can not only retain the important landscape information of the optimization problem, but
also preserve the population diversity during the evolutionary process. Motivated by
this consideration, Cai et al. [87] proposed a difference vector sharing mechanism for DE-
based MTEC, aiming at capturing, sharing, and utilizing the knowledge of the promising
difference vectors found in the evolutionary process.

More recently, Lin et al. [106] have utilized incremental Naive Bayes classifiers to
select valuable solutions to be transferred during multi-task search, thus leading to the
promising convergence of tasks. Furthermore, under the existing mapping strategies, tasks
may be trapped in local Pareto Fronts with the guide of knowledge transfer. Thus, with the
aim of improving overall convergence behavior, a randomized mapping among tasks is
added that enhances the exploration capacity of transferred solutions.

Zhou et al. [107] investigated what information, except to the selective individuals,
should be transferred in an MFEA framework. In particular, the difference between the
individual solution and the estimated optimal solution, called the individual gradient (IG),
was introduced as the additional knowledge to be transferred. The proposed approach
was applied to mobile agent path planning (MAPP) [107] and the autonomous underwater
vehicles (AUV) 3D path planning problem [108].

Based on a novel idea of multiproblem surrogates (MPS), an adaptive knowledge
reuse framework was proposed for surrogate-assisted multi-objective optimization of
computationally expensive problems [109]. The MPS provides the capability of acquiring
and spontaneously transferring learned models gained from distinct but possibly related
problem-solving experiences. The proposed framework consists of four primary steps:
initialization, aggregation, multi-problem surrogate, and evolutionary optimization. The
authors further present one possible instantiation, which utilizes a Tchebycheff aggregation
approach, Gaussian process surrogate models with linear meta-regression, and an expected
improvement measure to quantify the merit of evaluating a new point.

4.3.3. How to Knowledge Transfer Implicitly

As the most natural way, knowledge transfer across tasks is realized implicitly when
two individuals possessing different skill factors are selected for generating the offspring
via crossover. The implicit MTEC usually employs a single population with unified solution
representation to solve multiple optimization tasks.

Compared with single-population SBX crossover, two parents come from two different
subpopulations (Pk and Pr). Take MFEA as an example, knowledge transfer is done by
inter-population SBX crossover as below [18]:

xk
i∗ or xr

i∗ =

⎧⎨
⎩

0.5
(
(1 + γ)xk

i + (1 − γ)xr
j

)
, rand ≤ 0.5

0.5
(
(1 + γ)xr

j + (1 − γ)xk
i

)
, rand > 0.5

. (4)

For MT-CPSO (multitasking coevolutionary particle swarm optimization), the inter-
population reproduction is provided as follows [88,92,93]:

xk
i∗ = 0.5

(
(1 + rand)xk

i + (1 − rand)xr
gb

)
(5)

where xk
i and xk

i∗ are the position of the i-th particle and its corresponding updated particle
in subpopulation Pk, respectively, xr

gb is the current global best position in subpopulation
Pr, and rand is a random number between 0 and 1.

To explore the generality of MFEA with different search mechanisms, Feng et al. [85]
investigated two MTEC approaches by using PSO and DE as the search engine, respectively.
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While the other genetic operators are kept the same as the original MFEA, the velocity
is updated for MFPSO (multifactorial particle swarm optimization) using the following
equation [85]:

vk
i∗ = ω · vk

i + c1 · rand · (xk
lb − xk

i ) + c2 · rand · (xk
gb − xk

i ) + c3 · rand · (xr
gb − xk

i ). (6)

For MFDE (multifactorial differential evolution), the mutation operator with genetic
materials transfer is defined as following [85]:

xk
i∗ = xk

r1 + Fi(xr
r2 − xr

r3). (7)

For AMFPSO (adaptive multifactorial particle swarm optimization), the velocity is
updated using the following equation [94]:

vk
i∗ = ω · vk

i + c1 · rand · (xk
lb − xk

i ) + c2 · rand · (xk
gb − xk

i ) + c3 · rand · (xr
r1 − xr

r2) (8)

where vk
i and vk

i∗ are the velocity of the i-th particle and its corresponding updated particle
in subpopulation Pk, respectively, xk

i and xk
lb are the position of the i-th particle and its

best found-so-far particle in subpopulation Pk, respectively, xk
gb is the current global best

position in subpopulation Pk, r1 and r2 are random and mutually exclusive integers, c1, c2,
c3, and ω are four parameters to adapt to problems, and rand is a random number within
0 and 1.

Recently, Song et al. [90] proposed a multitasking multi-swarm optimization (MTMSO)
algorithm, in which knowledge transfer across tasks was realized via arithmetic crossover
on the personal best xbestk

i of each particle among different tasks for every generation.

xbestk
i∗ = (1 − rand) · xbestk

i + rand · xbestr
j (9)

For MPEF-SHADE (multi-population evolution framework—success-history based
adaptive DE), the mutation operator with genetic materials transfer is defined as
following [82,83]:

xk
i∗ = xk

i + Fi

(
xr

gb − xk
i

)
+ Fi(xr

r1 − xr
r2) (10)

where xk
i and xk

i∗ are the i-th individual and the corresponding updated individual in
subpopulation Pk, respectively, xr

gb is the current best individual in subpopulation Pr, Fi is
the scaling factor, and r1 and r2 are random and mutually exclusive integers.

The transfer spark was proposed to exchange information between different tasks in
MTO-FWA [96]. The core idea is to bind a firework and its generated explosion sparks and
guiding sparks into a task module to solve a specific problem. Based on this, assume the
ith firework for the optimization task k is denoted as FWk

i and the transfer spark generated

by FWk
i under the guiding of TVkj

i is represented as TSkj
i . Therefore, TVkj

i and TSkj
i can be

obtained by Equations (11) and (12), respectively

TVkj
i =

2
σMk + σMj

(∑
σMj
i=1 xj

i − ∑σMk
i=1 xk

i )
r−α

∑Nk
r=1 r−α

(11)

TSkj
i = FWk

i + TVkj
i (12)

where Mk and Mj denote the total number of the individuals that the skill factor is k and
j, respectively.

In order to enhance knowledge transfer among different tasks, Yin et al. [110] inte-
grated a new cross-task knowledge transfer as following, which used a search direction
from another task

xk
i∗ = xk

elite + (xr
i − xr

elite) (13)
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where xk
elite and xr

elite are the elite individuals of task k and r, respectively. The elite
individual of the task is used to speed up the population convergence and the difference
vector from another task can enhance the search diversity.

In EMT-RE framework for large-scale optimization, the knowledge transfer across
tasks was conducted implicitly through the chromosomal crossover with two solutions
possessing different skill factors [111]. If the current task is exactly the original task, the
mutant chromosome vp

i is simply generated from intermediate vector ui by:

vp
i = vp

r1 + Fiui (14)

where vp
r1 is a randomly chosen individual from the current task, and Fi is the differen-

tial weight for controlling the amplitude of difference. If not, ui will be mapped into
the embedded space of the current task by the pseudo inverse of random embedding
matrix pinv(Ap):

vp
i = vp

r1 + Fi
(

pinv
(
Ap
)
ui
)

(15)

where pinv(A) is approximated by
(
ATA

)−1AT .
Under the existing mapping strategies, tasks may be trapped in local Pareto Fronts

with the guide of the knowledge transfer. Thus, with the aim of improving overall conver-
gence behavior, a randomized mapping among tasks was added as follows, that enhances
the exploration capacity of transferred solutions [106].

x′ =
{

(Uk−Lk)(x−Li)
Ui−Li

+ Lk, r > p
(Uk−Lk)(x−Li)

Ui−Li
+ λ(Uk − Lk), otherwise

(16)

where λ ∼ U[a, b], r ∼ U[0, 1], and p ∈ [0, 1], which controls the probability of exploring
the search space.

4.3.4. How to Knowledge Transfer Explicitly

In contrast to the existing implicit MTEC, the explicit MTEC algorithm employs an
independent population for each optimization task and conducts knowledge transfer across
tasks in an explicit manner. There are several advantages of explicit MTEC [112]. First, since
each task has separate population for evolution, task-specific solution encoding schemes
are employed for different tasks. Next, by only designing an explicit knowledge transfer
operator, the explicit MTEC paradigm can be easily developed by employing different
existing evolutionary solvers with various search capabilities for each optimization task.
As different search mechanisms possess various search biases, the employment of problem-
specific search operators in explicit MTEC could lead to a significantly improved algorithm
performance. Further, rather than probabilistically selecting solutions for mating across
tasks in the implicit MTEC, more flexible solution selection schemes, such as elite selection,
can be performed before transfer in the explicit EMT for reducing negative knowledge
transfer effects. However, compared with the accomplishments made in the implicit
MTEC algorithms, only a few attempts have been conducted for developing the explicit
MTEC approaches.

As a pioneering work, Bali et al. [113] put forward an MFEA variant with a linearized
domain adaptation strategy, named LDA-MFEA, for transforming the search space of a sim-
ple task into its constitutive complex task which possesses a similar search space. The goal
is to alleviate the negative transfer and to improve the quality of the generated offspring.

Feng et al. [21,114] developed an explicit MTEC algorithm to learn optimal linear
mappings between different multiobjective tasks using a denoising autoencoder. In this
method, different evolutionary mechanisms with different biases are cooperatively applied
to solve various tasks simultaneously and the learned mappings serve as a bridge between
tasks so that adaptive knowledge transfers can be conducted. By configuring the input
and output layers to represent two task domains, the hidden representation provides a
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possibility for conducting knowledge transfer across task domains. In particular, let P and
Q represent the set of solutions uniformly and independently sampled from the search
space of two different tasks T1 and T2, respectively. Then the mapping M from T1 to T2 is
given by

M =
(

QPT
)(

PPT
)−1

. (17)

Therefore, the optimized solutions found for different tasks along the evolutionary
search can be explicitly transferred across tasks via a simple matrix multiplication opera-
tion with the learned M. The authors further improved the explicit knowledge transfer to
address combinatorial optimization problems, such as VRPs [112]. In particular, they devel-
oped two mechanisms: the weighted l1-norm-regularized learning process for capturing
the transfer mapping and the solution-based knowledge transfer process across VRPs.

Aiming to strengthen the knowledge transfer efficiency, a novel genetic transform
strategy was proposed and applied in individual reproduction [22]. Given two tasks T1
and T2, two mapping vectors M12 (from T1 to T2) and M21 (from T2 to T1) are calculated
as follows:

M21 =
(
meanT1 + ε

)
./
(
meanT2 + ε

)
(18)

M12 =
(
meanT2 + ε

)
./
(
meanT1 + ε

)
(19)

where meanT1 and meanT2 are mean vectors of some selected individuals specific to the
two tasks, respectively, and ε represents a small positive number. The operator performs
element-wise division of two vectors. Based on two vectors, the parent individuals can be
mapped to the vicinity of the other solutions.

It was very recently determined that a novel search space mapping mechanism,
namely, subspace alignment (SA) could enable efficient and high-quality knowledge trans-
fer among different tasks [115]. In particular, the SA strategy establishes the connection
between two tasks using two transforming matrices, which can reduce the probability of
negative transfer. This involves assuming there are two subpopulations P and Q, with
each associated with a task. They denote the source data and target data, respectively.
WP = 1

n PTP and WQ = 1
n QTQ denote the covariance matrices of P and Q, respectively.

Then EP and EQ consist of the set of all eigenvectors of WP and WQ, respectively, with one
eigenvector per column. From EP and EQ, the eigenvectors corresponding to the largest
h eigenvalues that can retain 95% of the information are selected to construct the subspaces
of P and Q, that is, SP and SQ. Afterward, the transformation matrix M∗ of mapping SP
and SQ is obtained according to Equation (20).

M∗ = SP
TSQ (20)

The transferability between two distinct tasks is effectively enhanced with a proper
domain adaptation technique. However, the improper pairwise learning fashion may incur
a chaotic matching problem, which dramatically degrades the inter-task mapping [110].
Keeping this in mind, a novel rank loss function for acquiring a superior inter-task mapping
between the source-target instances was formulated [116]. Then, an evolutionary-path-
based probabilistic representation model was proposed to represent the optimization
instances. With the proposed representation model, the threat of chaotic matching between
the source-target domains is effectively avoided. Finally, with a progressional Gaussian
representation model, a closed-form solution of affine transformation for bridging the gap
between the source-target instances was mathematically derived from the proposed rank
loss function.

Recently, Chen et al. [117] proposed an evolutionary multi-task algorithm with learn-
ing task relationships (LTR) for the MOO problem. The decision space of each task is
treated as a manifold, and all decision spaces of different tasks are jointly modeled as a
joint manifold. The joint mapping matrix composed of multiple mapping functions is then
constructed to map the decision spaces of different tasks to the latent space. Finally, the
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relationships among distinct tasks can be jointly learned so as to promote the optimizing of
all the tasks in a MOO problem.

Similarly, Tang et al. [42] also introduced an inter-task knowledge transfer strategy.
Specifically, the low-dimension subspaces of task-specific decision spaces are first estab-
lished via the principal component analysis (PCA) method. Then, the alignment matrix
between two subspaces is learned and solved. After that, the corresponding solutions
belonging to different tasks are projected into the subspaces. With this, two inter-task
reproduction strategies are then designed in the aligned subspaces.

4.4. Balance between Intra-Population Reproduction and Inter-Population Reproduction

As illustrated in Figure 6, the offspring of individuals are generated in two ways: intra-
population reproduction and inter-population reproduction. On one hand, the inductive
biases transferred from another task are helpful to effectively accelerate convergence. On
the other hand, excessive inter-population reproduction may lead to negative genetic
transfer across tasks and bad algorithm performance [11,118]. Thus, a natural question in
multi-task optimization community is finding a proper balance between intra-population
reproduction and inter-population reproduction [51]. Up to now, the proposed approaches
have been divided into three groups (fixed parameter, parameter adaptation, and resource
reallocating) explained in the following subsections.

4.4.1. Fixed Parameter Strategy

In the original MFEA, the extent of inter-task knowledge transfer is mandated by a
scalar parameter defined as the random mating probability (rmp), which is set as a constant
of 0.3 [18]. A larger value of rmp induces more exploration of the entire search space,
thereby facilitating population diversity. In contrast, a smaller value would encourage
the exploitation of current solutions and speed up the population convergence. In TMO-
MFEA, a larger rmp is used for diversity-related variables (DV) to enhance its diversity,
while a smaller rmp is designed for convergence-related variables (CV) to achieve a better
convergence [119,120]. Particularly, rmp for CV equals to 0.3, and rmp for DV equals to 1,
which means a random assortative mating.

An appropriate parameter is essential to the efficiency and effectiveness of MTEC
algorithm, and vice-versa. However, the user-defined and fixed parameter in MFEA and its
variants is likely to have some distinct disadvantages. Firstly, the rmp parameter is manually
specified based on the intuition of a decision maker. It is indeed patently clear that such an
offline rmp assignment scheme is heavily dependent on the existence of prior knowledge
about the different optimization tasks. Given the lack of prior knowledge, particularly
in general black-box optimization, inappropriate (blind) rmp values risks the possibility
of harmful inter-task knowledge transfers, thereby leading to significant performance
slowdowns [41,79,121]. Secondly, the rmp parameter is immutably fixed for all tasks during
the optimization process. Similar to biomes symbiosis [122], there are three relationships
between source tasks and a target task in an MTO scenario: mutualism, parasitism, and
competition. More importantly, the relationship may vary as the population distributions
in their corresponding landscapes change. Although this fixed mechanism can make use
of the positive knowledge transfer in some very special cases, it may intuitively bring
negative effects in general cases [83].

4.4.2. Parameter Adaptation Strategy

If an optimization task is improved more times by the offspring from other tasks, the
probability of knowledge transfer should be increased; otherwise, we will decrease this
rate [122,123]. Thus, the probability is defined by

rmpk =
Ro

k
Rs

k + Ro
k

(21)
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where Rs
k and Ro

k are the proportions of times that the current best solution in subpopulation
Pk is improved by the offspring of the same task and other tasks, respectively. In addition
to the transfer rate, the size of the selected candidate solutions also influences the effect of
information transfer. An adaptive control mechanism for the size for each task was also
devised in [123].

|Ck| = rmpk(|O f sp| − |O f spk|) + |O f spk| (22)

In MPEF (multi-population evolution framework), this parameter was adaptively
determined based on evolution status [82,83]:

rmpk =

{
min(rmpk + c · tsrk, 1), tsrk > srk
max(rmpk − c · (1 − tsrk), 0), tsrk < srk

(23)

where srk is the success rate of subpopulation Pk, tsrk is the success rate of that offspring
generated with the genetic material transfer, and c is a constant parameter.

A simple random searching method was introduced to adjust this parameter [94]. The
current rmp is stored in the candidate list when at least one of K best solutions is updated
by a better solution. Otherwise, the parameter is adapted as follows:

rmpk = rmpk + δ · N(0, 1) (24)

where δ is a constant parameter, and N (0,1) is a Gaussian noise with zero mean and
unit variance.

Based on the saturation point of the knowledge transfer (SPKT), the knowledge
transfer control scheme was proposed to control the generation of hybrid-offspring and
alleviate the harmful transferred knowledge [99]. Based on the efficiencies of the global
search and local search component, Liu et al. [86] proposed an adaptive control strategy,
which can determine whether to perform the global search (DE) or the local search (CMA-
ES) during the evolution.

Further, Binh et al. [124] proposed a new method for automatically adjusting rmp
parameter. Specifically, the separate rmp value for each task is updated by

rmp[i] =
Sτi ,NF=0

NPi
(25)

where NPi is number of individuals in the current task, Sτi ,NF=0 is the set of individuals
with skill factor τi and belong to the first nondominated front. The idea behind this
definition is that, when most of the individuals are in the first nondominated front, the
search process may get stuck in a local nondominated front and then we should increase
RMP parameter for the cross-task crossover.

Besides, Zheng et al. [125] defined a novel notion of ability vector to capture the
correlations between different tasks and automatically changed the intensity of knowledge
transfer across tasks to enhance the performance of MTEC algorithm.

It was very recently reported that an enhanced MFEA called MFEA-II was presented,
which enables an online parameter rmp estimation scheme in order to theoretically mini-
mize the negative interactions between distinct optimization tasks [41]. Specifically, the
extent of transfer parameter matrix is learned and adapted online based on the optimal
blending of probabilistic models in a purely data-driven manner. Bali et al. [79] further
presented a realization of a cognizant evolutionary multi-task engine. This framework
learns inter-task relationships based on overlaps in the probabilistic search distributions
derived from data generated during the search course. Recently, it was also used to solve
the operation optimization of integrated energy systems [121].

Some concepts and operators of the parameter adaptation strategy utilized in MFEA-
II cannot be directly applied to permutation-based discrete optimization environments,
such as parent-centric interactions. Osaba et al. [126] entirely reformulated such concepts,
making them suitable to deal with discrete optimization problem without losing the
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inherent benefits of MFEA-II. Furthermore, dMFEA-II implements a novel and simple
strategy for dynamically updating the RMP matrix to the search performance.

4.4.3. Resource Reallocating Strategy

Recently, resource reallocating strategies in MFEA were integrated, which allocate
the computational resources according to the complexities of tasks. For example, Wen
and Ting [104] proposed an MFEA with resource allocation, named MFEARR. It can
determine the occurrence of parting ways during evolution, at which time the effective
cross-task knowledge transfer begins to fail. Then, an adaption strategy was proposed,
where the transformation frequency is proportional to the probability of positive knowledge
transfer. Gong et al. [127] put forward a MTO-DRA algorithm to enable dynamic resources
allocation according to task requirements, such that more computing resources are assigned
to complex tasks. Motivated by the similar idea that the limited computing resources
should be adaptively allocated to different tasks, Yao et al. [128] also proposed dynamic
resource allocation strategy. During the evolution of the population, individuals with high
scalar fitness will get more investments or rewards, that is, more computing resources are
allocated to them, and the scalar fitness of each individual is measured by a utility and
updated periodically.

4.5. Evaluation and Selection Strategy

General speaking, the complete definition of a universal selection operator is com-
posed of evaluation, comparison, and selection methods. The individual’s performance
can be evaluated directly or indirectly [51]. As an indirect method, the scalar fitness was
originally proposed in MFEA and its variants [18,57]. On the other hand, the fitness value
of objective function is a nature and typical direct method [82,83,86,88,122]. Note that
scalar fitness and function fitness are equivalence relations in a multi-task scenario [51].

After evaluating all individuals’ performances (function fitness or scalar fitness), the
next question is the scope or level of comparison objects. In MFEA, the offspring-pop (Rt)
and current-pop (Pt) were concatenated and then a sufficient number of individuals were
selected to yield a new population [18]. This approach can be called population-based (or
all-to-all) comparison. As a contrast, individual-based (or one-to-one) comparison was also
utilized [61,82–84,88]. Once the offspring individual is generated by intra-population or
inter-population reproduction, it is compared with its parent directly and then the better
one can remain in the next generation.

For the case of population-based comparison, some alternative strategies were pro-
posed to select the fittest individuals from the joint population. For example, MFEA and its
variation follow elitist selection [18], level-based selection [53], and self-adaptive parent
selection [129]. Furthermore, it may remove the worse or redundant individuals so as to
create more population diversity [61].

The existing MTEC algorithms adopt a fitness-based selection criterion for effectively
transferring elite genes across tasks. However, population diversity is necessary when it
becomes a bottleneck against the genetic transfer. In [130], Tang et al. proposed a new
selection criterion keeping a balance between individual fitness and population diversity
as follows:

mini{α · pi.FS + (1 − α) · pi.CD} (26)

where α is the balance factor, FS is fitness scalar which can adjust factorial cost of individuals
evaluated for different tasks to a common scale, and CD is crowding distance which can
approximately estimate individual diversity.

5. Related Extension Issues of Multi-Task Evolutionary Computation

5.1. Algorithm Framework

Hashimoto et al. [103] firstly explained that MFEA can be viewed as a special island
model and then implemented a simple MTEC framework under the standard island model,
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as illustrated in Figure 7. Note that, it is essentially an explicit multi-population structure,
in which the knowledge transfer across tasks is achieved through migration periodically.

Figure 7. An illustration of the MTEC framework under the standard island model [103].

Another multi-population evolution framework (MPEF) was first established for MTO,
as shown in Figure 8, wherein each population addressed its own optimization task and
genetic material transfer with the other populations can be implemented and controlled
in an effective manner [82,83]. Moreover, by adaptively adjusting random mating proba-
bility, it is effective for encouraging positive knowledge transfer, while avoiding negative
knowledge transfer.

Figure 8. An illustration of the multi-population evolution framework (MPEF) [83].

Liu et al. [86] proposed an efficient surrogate-assisted multi-task memetic algorithm
(SaM-MA) for solving MTO problems. In the proposed method, the population is di-
vided into multiple sub-populations, with each sub-population focusing on solving a
task. In addition, a surrogate model with the Gaussian process model is used to predict
the best solution, so as to reduce the number of fitness evaluations and to improve the
search efficiency.

In order to isolate the information of each task, a light-weight multi-population
framework was developed, in which each population corresponds to a single task [131]. In
the proposed framework depicted in Figure 9, the inter-task knowledge transfer (individual
immigration) is employed to generate the offspring, and then the successful individuals
(generated from the inter-task crossover and surviving in the next generation) can replace
the inferior individuals of the aforementioned task.
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Figure 9. An illustration of the multipopulation technique for multitask optimization [131].

Besides this, research articles [84,90,100] also proposed the MTEC algorithm based
on the multi-population framework, in which the number of populations is equal to the
number of tasks to be optimized and each population concentrates on solving a specific task.

In order to clearly understand the focuses and differences of existing and potential
works on MTEC, Jin et al. [132] proposed a general multitasking DE (MTDE) framework,
which contains three major components, i.e., DE solver, knowledge transfer, and knowledge
reuse. As illustrated in Figure 10, knowledge transfer is defined as both the processes
of transferring knowledge out and in, and knowledge reuse as the process of utilizing
the knowledge selected from the archive. In addition, two DE-specific knowledge reuse
strategies were also studied in [132]: the base vector based strategy and the differential
vector based strategy.

Figure 10. An illustration of multitasking DE (MTDE) framework [132].

Inspired by the cluster-based search feature of brain storm optimization (BSO), a
brain storm multi-task problems solver (BSMTPS) framework was proposed by dividing
individuals into several groups [99]. As illustrated in Figure 11, the offspring are generated
by the internal brain storm (IBS) and the cross-task brain storm (CBS), achieving knowledge
transfer within a special task and across different tasks, respectively. Zheng et al. [98] also
employed the clustering technique to cluster similar solutions into one group. In this
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way, it can avoid the knowledge transfer between dissimilar tasks and speed up the
solving process.

Figure 11. An illustration of the brain storm multi-task problems solver (BSMTPS) framework [99].

MFEA adopts a simple inter-task knowledge transfer with randomness and tends to
suffer from excessive diversity, thereby resulting in a slow convergence speed. To deal
with the above issue, a two-level transfer learning framework was proposed for MTO [133].
Particularly, the upper level performs inter-task knowledge transfer via crossover and
exploited the knowledge of the elite individuals to enhance the efficiency and effectiveness
of genetic transfer. The lower level is an intra-task knowledge transfer, which transmits the
beneficial information from one dimension to other dimensions to improve the exploration
ability of the proposed algorithm. As a result, the two levels cooperate with each other in a
mutually beneficial fashion.

In order to accelerate the algorithm convergence and improve the accuracy of solutions,
Xie et al. [134] introduced a hybrid algorithm combining MFEA and PSO, in which the
PSO was added after genetic operation of MFEA and applied to the intermediate-pop
in each generation. Furthermore, an adaptive variation adjustment factor was proposed
to dynamically adjust the velocity of each particle and guarantee that the convergence
velocity was not too fast.

5.2. Similarity Measure between Tasks

Some researchers have focused on analyzing and measuring task relatedness [135]. As
a pioneering work in [136], the similarity between tasks for MFEA was measured from three
different perspectives, i.e., the distance between best solutions, the fitness rank correlation,
and the fitness landscape analysis.

Based on a correlation analysis of the objective function landscapes of distinct tasks,
Gupta et al. [137] presented a synergy metric (ξ) for capturing and quantifying a promising
mode of complementarity between distinct optimization tasks. The metric can explain
when and why the notion of implicit genetic transfer of MTEC algorithms may lead to
performance enhancements.

For classification tasks, the relatedness between tasks is estimated by comparing their
most appropriate patterns [138]. Nguyen et al. [138] proposed a multiple-XOF system,
which can dynamically guide the feature transfer among learning classifier systems. The
proposed method improves the learning performance of individual tasks when they are
related, and reduces harmful signals from other tasks when they are not supportive to a
target task.
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5.3. Many-Task Optimization Problem

Until now, the existing MTEC approaches mainly focused on solving two optimization
tasks simultaneously and few works have been developed solving many-task optimization
(MaTO) problems. The work [139] in 2016 is the first attempt to demonstrate its feasibility
for solving real-world problems with more than two tasks. In an MaTO environment, a
natural idea of knowledge exchange is to select the most matching individuals from all
tasks [122,123]. When the number of tasks to be optimized is more than two, in order to
avoid this time-consuming approach, it is important to choose the most suitable task (or
assisted task) to be paired with the present task (or target task) for effective knowledge
transfer. The problem of recommending an internal source task has been considered as an
open challenge in a MaTO context [140].

In [102], the roulette method based on the measured similarity of each task pair was
used to select the source task. In this way, one task that has high similarity with the target
task has a high chance to be selected. This can reduce the harm of negative transfer because
only useful knowledge is transferred.

An adaptive mechanism of choosing suitable tasks was also proposed by simultane-
ously considering the similarity between tasks and the accumulated rewards of knowledge
transfer during evolution [141]. Based on the reliable archives storing more sufficient
individuals, the similarity between different tasks is measured by the Kullback–Leibler
divergence. Inspired by the idea of reinforcement learning, a reward system was further
developed in the proposed framework. Finally, the most likely beneficial task is identified
and transfers knowledge via a new crossover method.

As task similarity may not capture the useful knowledge between tasks, instead of
using similarity measures for task selection, Shang et al. [142] proposed a task selection ap-
proach based on credit assignment to conduct positive knowledge transfer. This approach
selects the appropriate task according to how good the solutions transferred from different
tasks performed along the evolutionary search process. The probability of selecting task Tj
to task Ti is defined by:

SPj =
Wij

K
∑

j=1
Wij

(27)

where an element Wij gives how useful is task Tj for helping task Ti. In addition, the task
assigned to individual xi is selected by task selective probability pk

i defined by [95]:

pk
i (a) =

exp(a · qk
i )

K
∑

k=1
exp(a · qk

i )

(28)

where qk
i is the degree of how individual xi can handle task Tk, which is defined by

qk
i =

N − rk
i + 1

K
∑

k=1
(N − rk

i + 1)
(29)

where rk
i is the rank of individual xi in task Tk.

Moreover, Tang et al. [130] proposed a group-based MFEA by clustering the similar
tasks (tasks with near global optima) and dispersing the dissimilar tasks. More importantly,
the genetic materials can only be transferred within the same groups so that negative
genetic transfers are eliminated.

Recently, Bali et al. [79] further utilized an RMP matrix in place of a scalar parameter
rmp to effectively many-task genetic transfers online. It offers the distinct advantage of
adapting the extent of knowledge transmissions between diverse task pairs with possibly
nonuniform inter-task similarities.
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5.4. Decision Variable Translation Strategy

For MTO problems, the optimal solutions of all constituent tasks tend to be in different
locations of the unified search space. Within the range between those optimal solutions of
different tasks, the trend of those objective functions may be in different directions. As a
result, the effectiveness of knowledge transfer and sharing in MTEC may degrade or even
be negative in this case. The main purpose of the decision variable translation strategy is
to map the optimal solution of all tasks to the center point of the unified search space so
that the growth trends of all tasks are similar and facilitate knowledge transfer during the
optimization process [39,143,144].

In generalized MFEA (G-MFEA), each individual in the population was translated to
a new location according to Equations (30) and (31):

opi = pi + dk (30)

dk = s f · α · (cp − mk) (31)

where pi and opi (i = 1, 2, . . . , Np) are the ith solution and the corresponding transformed
solution, respectively in the unified search space, Np is the population size and the trans-
lated value dk is estimated based on the promising solutions of the kth task. Furthermore,
mk is the estimated optimum determined by calculating the mean value of the μ percent
best solutions of the kth task.

Note that the translated direction and distance are both fixed for all individuals.
Unfortunately, it is easy for individuals to go beyond the legal range, and then manual
efforts are required to ensure their legality. As a result, the original population distribution
is destroyed inevitably. Keeping this in mind, a novel variable transformation strategy
and the corresponding inverse transformation were defined as Equations (32) and (33),
respectively [143,144]

opij =

⎧⎨
⎩

cpj
mj

· pij, pij ≤ mj
cpj−1
mj−1 · pij +

mj−cpj
mj−1 , pij > mj

, j = 1, 2, · · · , D (32)

pij =

⎧⎨
⎩

mj
cpj

· opij, opij ≤ cpj
mj−1
cpj−1 · opij +

cpj−mj
cpj−1 , opij > cpj

, j = 1, 2, · · · , D (33)

where cp = (0.5, 0.5, . . . , 0.5) is the center point of the unified search space, pi = {pi1, pi2, . . . ,
piD} is the ith solution in the original unified search space and opi = {opi1, opi2, . . . , opiD}
is the corresponding ith solution in the transformed unified search space. Furthermore, m
is the estimated optimal solution, which can be calculated as the mean value of the top
μ*Np best solutions in the current generation.

5.5. Decision Variable Shuffling Strategy

In case the dimensions of decision space of different tasks in the MTO problem are
different, a fine solution with small dimension may be poor and nonintegrated for task
with large dimension, and some decision variables in the latter dimension of solution is
always not used for tasks with small dimensions. Thus, the canonical MFEA is inefficient
for MTO problems in this particular case.

To address this issue, a decision variable shuffling strategy was introduced [39]. To
be specific, this strategy first randomly changes the order of the decision variables of
individuals with small dimensions to give each variable an opportunity for knowledge
transfer between two tasks. Then, the decision variables of individuals for the small
dimensional task that are not in use are replaced with those of individuals for the large
dimensional task to ensure the quality of the transferred knowledge.

Zhang and Jiang [145] systematically analyzed the defects of MFEA in dealing with
heterogeneous MTO problems, and proposed the concepts of harmful transfer and defective
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parents. Then hetero-dimensional assortative mating and self-adaption elite replacements
were proposed to overcome these issues. On six hetero-dimensional MTO problems, the
proposed algorithm performed better than other algorithms.

Generally speaking, the order of decision variables has no significant influence on
the single-task EAs. In contrast, the situation is significantly different for MTEC, in which
the optimization process of one task more or less influences the optimization process
of other tasks. Wang et al. analyzed the influence of the order of decision variables on
single-task optimization (STO) and MTO problems, respectively. In addition, three orders
of decision variables were proposed in [146,147]: full reverse order, bisection reverse order,
and trisection reverse order. An important feature of these orders of decision variables
is that an individual can recover as himself after two times of changing the order of
decision variables.

5.6. Adaptive Operator Selection Strategy

It has been found that different crossover operators have various capabilities for
solving optimization problems. Therefore, the appropriate configuration of crossover is
necessary for robust search performance in MFEA. Zhou et al. [148] first investigated how
the different types of crossover operator used affect the knowledge transfer in MFEA
on both single-objective optimization (SOO) and MOO problems. As an efficient and
robust MTEC, a new MFEA with adaptive knowledge transfer (MFEA-AKT) was further
proposed, in which the crossover operator employed for knowledge transfer across tasks is
self-adapted based on the information collected along the evolutionary search process.

In DE, a mutant vector is obtained by perturbing a base vector with several weighted
difference vectors via a certain mutation strategy. Applying different mutation operators on
current population can generate different search directions and offspring populations. Mul-
tiple commonly-used mutation strategies (DE/rand/1, DE/best/1, DE/current-to-rand/1,
DE/current-to-best/1, DE/rand/2, DE/best/2, and DE/best/1 + ρ) were investigated to
accelerate the convergence speed in [23,115,149], where DE/best/1 + ρ is defined as follows:

xk
i∗ = xk

best + Fi(xr
r1 − xr

r2) + Fi

( gen
Gmax

)a
(xr

r3 − xr
r4). (34)

In the proposed mutation strategy, the value of ρ varies from 0 to 1. Its rationale is
that the current-found best solution is utilized adequately to guide the search to promising
areas in the early phase, while an increased perturbation is also integrated subsequently for
a diverse exploration [149]. Note that we selected the suitable mutation strategy randomly
in [115] or adaptively according to their success rates in previous generations in [23].

5.7. Multi-Task Optimization under Uncertainties

Optimization problems often have different kinds of uncertainties in practice due to
the influence of subjective and objective factors [150,151]. Specifically, the objective and
constraint functions across tasks usually contain uncertain variables [152].

The MFEA algorithm was extended to solve the interval MTO problem under uncer-
tainty conditions [44]. In the proposed method, an interval crowding distance based on
shape evaluation is calculated to evaluate the interval solutions more comprehensively. In
addition, an interval dominance relationship based on the evolutionary state is designed to
obtain the interval confidence level, which considers the difference of average convergence
levels and the relative size of the potential possibility between individuals.

5.8. Hyper-Heuristic Multi-Task Evolutionary Computation

Instead of searching directly in the solution space like conventional meta-heuristics,
hyper-heuristics work at the higher-level search space of a set of low-level heuristics [153,154].
The goal of hyper-heuristics is to solve the problem at hand by selecting existing low-level
heuristics or generating new low-level heuristics.
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Although hyper-heuristics search in heuristics space, their current paradigms still
focus on solving isolated optimization problems independently. To integrate the advantages
of MTEC and hyper-heuristics effectively, Hao et al. [78] proposed a unified framework of
the evolutionary multi-task graph-based hyper-heuristic (EMHH). Note that, in EMHH,
the concept of MTEC and graph heuristics are used as the high-level search methodology
and low-level heuristics, respectively. It has been evaluated on examination timetabling
and graph coloring problems and the experimental results demonstrate the effectiveness
and efficiency of the proposed framework.

5.9. Auxiliary Task Construction

The distinctive performance of MTEC algorithms greatly depends on the similarity
of tasks in MTO problem. These methods may fail in cases where no prior knowledge on
the task correlations or even no related tasks are existed. Therefore, it is worth noting that
constructing the auxiliary and related task for the main task is essential to the improved
performance of evolutionary search [155,156].

As the first attempt in this direction, Da et al. [80] solved a complex travel salesman
problem (TSP) problem in conjunction with a closely related (but artificially generated)
multi-objective optimization task in a multi-task setting. The motivation behind the pro-
posal is that the associated MOO task can often act as a helper task which aids the search
process of the original problem by leveraging upon the implicit genetic transfer. Specif-
ically, the MOO task is formulated by decomposing the original TSP problem into two
distinct sub-tours.

Similarly, vehicle routing problem with time window (VRPTW) was modeled as a
two-task problem in [157], i.e., a MOO version (main task) and a single-objective version
(auxiliary task). The auxiliary task provides inspiration for the creation of bone routes
and semi-finished product solutions, which work together to speed up the algorithm
convergence by using these illegal solutions in the search process.

Feng et al. [111] proposed an evolutionary multitasking assisted random embedding
method (EMT-RE) for solving the large-scale optimization problem. Besides the original
problem, several low-dimensional auxiliary tasks are constructed by random embedding
to assist target optimization in a multi-task scenario.

For a given MOO problem, each single objective problem naturally shares great
similarity with it [158]. Therefore, the optimization processes on these single objective
functions could generate useful knowledge to enhance the problem solving process on the
target MOO problem. Huang et al. [158] treated each single objective problem as a separate
task domain and then discussed the detailed designs of building the dynamic domain
mapping and conducting knowledge transfer from multiple single objective problems to
the multi-objective problem.

In industrial production, excessive process data are generated and collected, even
leading to information overload. They are predicted by models with different precision.
In [119], the operational indices optimization was first established based on an accurate
model (multilayer perception) and two assistant models (the first-order polynomial regres-
sion model and the second-order polynomial regression model). Note that the assistant
models are alternatively used in the multi-task environment with the accurate model to
realize good knowledge transfer from the assistant models to the accurate model.

Inspired by the idea of the weight function, Zheng et al. [159] introduced a new
additional helper-task to accelerate the convergence of the main task in multi-task scenario.
As expected, the proposed method is beneficial to positive inter-task knowledge transfer
by adding possible similar tasks.

6. Applications of Multi-Task Evolutionary Computation

Since the first establishment of MFEA, a number of MTEC algorithms have been
proposed and successfully applied in many benchmark problems and real-world problems
over the past few years, as summarized in Table 3.
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Table 3. Application domains of MTEC algorithms in the past five years.

Category Domain Problem Algorithms

Benchmark problem

Continuous
optimization

problem

Single-objective
optimization problem

(SOOP)

MFEA [11], MFEA [18], None [21], MFEA-GHS [22],
G-MFEA [39], MFEA-II [41], ASCMFDE [42],

PGEA [49], MFDE with AIM [50], MPEF-SHADE [82],
MFMP [83], MFDE [85], MFPSO [85], SaM-MA [86],

MT-CPSO [86], MDE-DVSM [87], MTMSO [90],
CPSOM [92], AMFPSO [94], MTO-FWA [96],

MFBSO [98], BSMTO [99], BSMTO-II [99],
EMTSO-CCMA [101], MFEARR [104], DEMTO [105],

MFEA-DV [110], EMT-RE [111], LDA-MFEA [113],
None [114], AT-MFEA [116], EBS-CMAES [122],

EBSFA-CMAES [123], SREMTO [125],
MTO-DRA [127], AMA [129], GMFEA [130],

mMTDE [131], MTDE [132], TLTLA [133],
MFEA [137], MaTDE [141], None [142],
MFEA-VT [143,144], HD-MFEA [145],

MFEA-FuR [146,147], MFEA-AKT [148], MFDE [149],
MFEA/DE-OBL [160]

Multiobjective
optimization problem

(MOOP)

EMT/ET [19], None [21], MFEA-GHS [22],
AdaMOMFDE [23], MO-MFEA [38], AMTEA [43],

IMFEA [44], MO-MFEA-II [79], GDE-MO-MFEA [81],
MM-DE [84], MTO-FWA [96], EMTIL [106],
TEMO-MPS [109], MOMFEA-SADE [115],

EMT-LTR [117], TMO-MFEA [120],
RPB-MO-MFEA [124], MFEA/D-DRA [128],

MaTDE [141], MFEA-AKT [148], NSGAII+M [158],
MO-MFEA/HELP TASK [159], MFEA/D [161],

MFEA/D-M2M-SVM [162]

Bi-level optimization
problem M-BLEA [37]

Expensive optimization
problem MCEEA [39], MS-MTO [163]

Discrete
optimization

problem

Deceptive trap function
(DTF) MF-LTGA [164]

Clustered traveling
salesman problem

(CluTSP)
MF-LTGA [165]

Vehicle routing problem
(VRP)

MFEA [18], MFCGA [45], P-MFEA [56], EMA [57],
EEMTA [112], dMFEA-II [126], MTO-DRA [127],

MOMFMA [157]

Quadratic assignment
problem (QAP)

MFEA [11], MFEA [18], MFEA-Perm-LBS [53],
MTO-DRA [127]

Knapsack problem (KP) MFEA [18], AMTEA [43]

Sudoku puzzles MFEA [48], GMFEA [130]

Travel salesman problem
(TSP)

MFEA-Perm-LBS [53], S&M-MFEA [80], COEBA [100],
dMFEA-II [126]

Linear ordering problem
(LOP) MFEA-Perm-LBS [53]

Job-shop scheduling
problem (JSP) MFEA [11], MFEA-Perm-LBS [53], NGP [165]

9 LOGIC suite None [140]

N-bit parity problem EMTL [58]
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Table 3. Cont.

Category Domain Problem Algorithms

Minimum routing cost
clustered tree problem

(CluMRCT)
MFEA [63]

Pollution-routing
problem (PRP) None [166]

Package delivery
problem (PDP) EEMTA [112]

Team orienteering
problem with time
windows (TOPTW)

Island-EMT [167]

Examination timetabling
problem EMHH [78]

Graph coloring problem EMHH [78]

Minimum inter-cluster
routing cost clustered

tree problem
(InterCluMRCT)

CC-MFEA [65]

Clustered shortest path
tree problem (CluSTP)

None [62], None [64], CC-MFEA [65], N-MFEA [68],
N-MFEA [70]

Real-world problem Machine learning

Time series prediction
problem MFGP [61]

Performance prediction
problem None [168]

Gene regulatory
network (GRN)
reconstruction

MMMA-FCM [169]

Community detection MUMI [73]

Chaotic time series
prediction problem HD-MFEA neuroevolution [145]

Training deep neural
networks (DNN)

problem
AMTO [170], None [171]

Fuzzy cognitive map
(FCM) learning MMMA-FCM [169]

Symbolic regression
problem (SRP) MFGP [61]

Multi-classification
problem mXOF [138], EMC-GEP [172]

Binary classification
problem MFGP [59]

Automatic
hyperparameter tuning

of machine learning
models

TEMO-MPS [109]

Fuzzy system
optimization problem MTGFS [72]

Association mining
problem MFEA [76]

Classification problem DMSPSO [89], PSO-EMT [173], MMT-ELM [174]
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Table 3. Cont.

Category Domain Problem Algorithms

Manufucturing
industry

Composites
manufacturing

technique

M-BLEA [37], MO-MFEA [38], MT-CPSO [88],
CPSOM [92], TEMO-MPS [109]

Pressure vessel design
problem (PVDP) MT-CPSO [88]

Parameter extraction of
photovoltaic model SGDE [102]

Minimum energy cost
aggregation tree

(MECAT) problem
ESMFA [67]

Hyperspectral unmixing MTSR [175], MTES [176]

Spread spectrum radar
polyphase code design

(SSRPCD) problem
MFMP [83]

Industrial
engineering

Operational indices
optimization of

beneficiation (OIOB)
ATMO-MFEA [119]

Continuous annealing
production process

(CAPL)
AdaMOMFDE [23], MFEA/D-DRA [128]

Inter-domain path
computation under
domain uniqueness

constraint (IDPC-DU)

MFEA [71]

Optimal power flow
(OPF) problem MFEA [177]

Electric power dispatch
problem MO-MFO [178]

Well location
optimization problem AT-MFEA [116]

Operation optimization
of integrated energy

system
MO-MFEA-II [121]

Car structure design
optimization problem

Multifactorial PSO-FA hybrid algorithm [91],
TS+FM [95]

Robotic

Mobile robot path
planning IMFEA [44], MFEA-IG [107,108]

Unmanned aerial
vehicle (UAV) path
planning problem

MFEA [11], MO-MFEA-II [79]

Software engineering

Search-based software
test data generation

(SBSTDG)
MT-EC [139]

Cloud computing
service composition

(CCSC) problem
PMFEA [74], CCSC-EMA [179]

Medicine HIV-1 protease cleavage
site prediction None [180]

Cybernetics Double-pole balancing
problem MFEA-II [41], ASCMFDE [42], AMTEA [43]
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6.1. Benchmark Problems
6.1.1. Continuous Optimization Problem

Evolutionary algorithms often lose their effectiveness and efficiency when applied to
large-scale optimization problems. Feng et al. [111] presented a primary trial of solving
large-scale optimization (up to 2000 dimensions) via the evolutionary multi-task assisted
random embedding method.

EAs are not well suited for solving computationally expensive optimization problems,
where the evaluation of candidate solutions needs to perform time-consuming numerical
simulations or expensive physical experiments. Ding et al. [39] extended the basic MFEA
to handle expensive optimization problems by transferring knowledge from multiple com-
putationally cheap tasks to computationally expensive tasks. Similarly, a multi-surrogate
based approach was adopted regarding the two surrogates as two related tasks [163].
The global surrogate model (expensive) is trained using all available data, and the local
surrogate model (cheap) is trained using only part of the data subsequently selected from
the data sorted.

A bi-level optimization problem (BLOP) is defined in the sense that one optimization
task (the lower level problem) is nested within another (the upper level problem), which
together comprise a pair of objective functions [181]. A multi-task bi-level evolutionary
algorithm (M-BLEA) was provided as a promising paradigm to promote solving the
upper level problem [37]. In M-BLEA, multiple lower level optimization tasks were to
be appropriately solved during every generation of the upper level optimization, thereby
facilitating the exploitation of underlying commonalities among them.

Although the original MFEA was designed for SOO problem [18], the idea of knowl-
edge transfer or sharing across constitutive tasks also holds for the MOO problem. As a
pioneer in multi-objective MTO, Gupta et al. [38] firstly extended the MFEA framework to
the MOO domain. As a key element, a meaningful order of preference among candidate
solutions in different tasks was proposed. Notice that for ordering individuals in a popula-
tion, the binary preference relationship between two individuals satisfies the properties of
irreflexivity, asymmetry, and transitivity [38].

Inspired by the division approach, Mo et al. [162] proposed a decomposition-based
multi-objective multi-factorial evolutionary algorithm (MFEA/D-M2M). It adopts the M2M
approach to decompose the MOO problem into multiple constrained sub-problems in order
to enhance the population diversity. Note that a matting pool is also constructed to ensure
genetic transfer across different sub-problems.

Yang et al. [120] presented the TMO-MFEA algorithm, in which decision variables
were divided into two types, namely, diversity variables and convergence variables. The
knowledge transfer on diversity variables is intensified to obtain evenly distributed solu-
tions over the Pareto front (PF), whereas the knowledge transfer on convergence variables
is restrained to maintain the convergence of the solution population toward the PF.

In MFEA based on decomposition strategy (MFEA/D), through multiple sets of weight
vectors, each multi-objective task was decomposed into a series of SOO subtasks optimized
with an independent population [161].

Recently, Ruan et al. [182] investigated when and how knowledge transfer works
or fails in dynamic multi-objective optimization. Computationally knowledge transfer
works poorly on problems with a fixed Pareto optimal set and under small environmental
changes. In addition, the Gaussian kernel function used is not always adequate for the
knowledge transfer.

6.1.2. Discrete Optimization Problem

As a preliminary attempt, several NP-hard combinatorial problems were efficiently
solved within the MTEC framework, such as the traveling knapsack problem (KP) [18],
Sudoku puzzles [48], travel salesman problem (TSP) [56], quadratic assignment problem
(QAP) [56], linear ordering problem (LOP) [56], job-scheduling problem (JSP) [56], vehicle
routing problems (VRPs) [53], and deceptive trap function (DTF) [164].
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Recently, Feng et al. [57] presented a generalized variant of VRPOD, namely, the
vehicle routing problem with heterogeneous capacity, time window, and occasional driver
(VRPHTO), by taking the capacity heterogeneity and time window of vehicles into con-
sideration. To illustrate its benefit, 56 new VRPHTO instances were further generated
based on the existing common vehicle routing benchmarks. In addition, the stochastic team
orienteering problem with time windows (TOPTW) models the trip design problem under
more realistic settings by incorporating uncertainties. In [167], a new MTEC approach
based on island model was developed to effectively enable knowledge sharing and transfer
across search spaces.

The CluSTP problem has been solved by MFEA with new genetic operators [62,64].
In [62], the major ideas of the novel genetic operators were first constructing a spanning
tree for smallest sub-graph then the spanning tree for larger sub-graph based on the
spanning tree for the smaller sub-graph. Thanh et al. [64] also proposed genetic operators
based on the Cayley code. Tran et al. [63] proposed a MTEC algorithm to solve multiple
instances of minimum routing cost clustered tree problem (CluMRCT) together. Crossover
and mutation operators were studied to create a valid solution, and a new method of
calculating the CluMRCT solution was also introduced to reduce the consuming resources.
More recently, Thanh et al. [68,70] further presented a novel MFEA algorithm for the
CluSPT problem. Its notable feature is that the proposed MFEA has two tasks. The goal of
the first task is finding the fittest solution as possible for the original problem while the goal
of the second one is determining the best tree which enveloped all vertices of the problem.

Rauniyar et al. [166] put forward an MFEA based on NSGA-II to solve the pollution-
routing problem (PRP). The authors considered a PRP formulation with two conflicting
objectives: minimization of fuel consumption, and minimization of total travel distance.

In the literature, the n-bit parity problem is used to demonstrate the effectiveness and
superiority of particular neural network architecture, training algorithms or neuroevolution
methods. Chandra et al. [58] presented an evolutionary multi-task learning (EMTL) for
feedforward neural networks that evolved modular network topologies for the n-bit
parity problem.

6.2. Real-World Problems
6.2.1. Machine Learning

Tang et al. [174] introduced an MTEC algorithm for training multiple extreme learn-
ing machines with different number of hidden neurons for classification problem. The
proposed method had achieved better quality of solutions even if some hidden neurons
and connections were removed. Feature selection is an important data preprocessing tech-
nique to reduce the dimensionality in data mining and machine learning. Zhang et al. [89]
proposed an ensemble classification framework based on evolutionary feature subspaces
generation, which formulated the tasks of searching for the most suitable feature subspace
into a MTO problem and solved it via a MTEC optimizer. Recently, MFPSO was also used
to solve high-dimensional classification [173]. To be specific, two related tasks with the
promising feature subset and the entire features set were developed, respectively. The MTO
paradigm naturally fits the multi-classification problem by treating each binary classifica-
tion problem as an optimization task within certain function evaluations. In the proposed
framework, several knowledge transfer strategies (segment-based transfer, DE-based trans-
fer, and feature transfer) were implemented to enable the interaction among the population
of each separate binary task [172].

Training a deep neural network (DNN) with sophisticated architectures and a massive
amount of parameters is equivalent to solving a highly complex non-convex optimization
task. Zhang et al. [170] proposed a novel DNN training framework which formulated
multiple related training tasks via a certain sampling method and solved them simultane-
ously via a MTEC algorithm. During the training process, the intermediate knowledge is
identified and shared across all tasks to help their training. Recently, Martinez et al. [171]
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also presented a MTEC framework to simultaneously optimize multiple deep Q learning
(DQL) models.

By identifying the overlaps between communities and active modules, Chen et al. [73]
revealed the complex and dynamic mechanisms of high-level biological phenomena that
cannot be achieved through identifying them separately. This MTO problem contains two
tasks: identification of active modules and division of network into structural communities.

The optimization problem of fuzzy systems is used to optimize the parameters or
(and) structure of the fuzzy system. Zhang et al. [72] presented a general framework of the
multi-task genetic fuzzy system (MTGFS) to effectively solve this problem. For the sake of
better searches in multiple optimization tasks, an efficient assortative mating method (a
chromosome-based shuffling strategy and a cross-task bias estimation based on shuffling)
was designed according to the specialty of the membership functions.

Shen et al. [169] proposed a novel multi-objective MTEC for learning multiple large-
scale fuzzy cognitive maps (FCMs) simultaneously. Each task is treated as a bi-objective
problem involving both the differences between the real and learned time series and the
sparsity of the whole structure.

6.2.2. Manufacturing Industry

Li et al. [175] established a multi-task sparse reconstruction (MTSR) framework to
optimize multiple sparse reconstruction tasks using a single population. The proposed
method aims to search the locations of nonzero components or rows instead of searching
sparse vectors or matrices directly, and the intra-task and inter-task genetic transfer are
employed implicitly. Besides, Zhao et al. [176] successfully handled the endmember
selection of hyperspectral images.

Constructing optimal data aggregation trees in wireless sensor networks is an NP-hard
problem for larger instances. A new MTEC algorithm was proposed to solve multiple min-
imum energy cost aggregation tree (MECAT) problems simultaneously [67]. The authors
presented crossover and mutation operators, enabling multi-task evolution between instances.

6.2.3. Industrial Engineering

The operational indices optimization is crucial and difficult for the global optimization
in beneficiation processes. Yang et al. [17] presented a multi-objective MFEA to solve this
problem. Sampath et al. [177] also handled the optimal power flow problems with different
load demands on power systems via MTEC framework. The process of continuous anneal-
ing production line is very complex in the iron and steel industry. Some environmental
parameters and control variables have coupling relationships, which makes it difficult
to achieve global optimization with traditional EAs. Wang and Wang [23] proposed an
AdaMOMFDE algorithm based on the search mechanism of differential evolution. The
optimal operation of integrated energy systems (IES) is of great significance to facilitate the
penetration of distributed generators and then improve its overall efficiency. Wu et al. [121]
developed a novel grid-connected IES framework by considering the biogas-solar-wind
energy complementarities and solved it by MO-MFEA-II. In the Mazda multiple car design
benchmark problem, three kinds of cars (SUV, CDW, and C5H) with different sizes and
body shapes need to be optimized simultaneously [183]. This MTO problem was solved by
two distinct MTEC algorithms [91,95].

6.2.4. Others

Thanks to the effectiveness of MTEC algorithms, they have been successfully ap-
plied to tackle other real-world problems in the literature, such as mobile robot path
planning [44,107,108], search-based software test data generation [139], the cloud comput-
ing service composition problem [74,179], HIV-1 protease cleavage sites prediction [180],
and the double-pole balancing problem [61–63].
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7. Future Works

Although multi-task optimization methodology in the evolutionary community has
been a tremendous success, compared with other well-known evolutionary and swarm
intelligent methods, it is just at the stage of discipline creation and preliminary exploration
in a so far unexplored research direction. Many challenges are yet to be discovered
and overcome in the future in theoretical models, efficient algorithms, and engineering
applications of this promising paradigm. Based on the literature analysis in the past
five years, some opportunities and challenges of MTO and MTEC are summarized as
follows [11,184].

7.1. Explore Mechanism of Knowledge Transfer

One of the main features of MTEC algorithms is knowledge transfer from one task
to help solve other tasks, which greatly affects the optimization process and algorithm
performance. Considering the general process of transfer learning, there are three key
issues to be solved serially: (1) when to transfer; (2) what to transfer; (3) how to transfer.

As the original, the first question is to answer when the knowledge transfer is triggered.
Theoretically, it is initiated at any stage of optimization process. Thus, the straightforward
answer is executing it periodically in a fixed generation interval [21,102]. However, this
trial-and-error approach does not properly explain or define the true transfer demands,
leading to resource waste. Therefore, we should carefully strike a good balance between
transfer cost and transfer effect. One possible and reasonable attempt in the literature is
the knowledge transfer across tasks being triggered when the best solutions found so far
stagnate for successive generations [88,97].

The second question might seem simple, but it is deceptively difficult. Intuitively,
the best solutions found so far are good choices to be transferred. However, it might be
counter-productive due to distinctly different search spaces of constitutive tasks. Inspired
by biomes symbiosis, three relationships between source tasks and target tasks (mutualism,
parasitism, and competition) were summarized in [83] by Li et al. Xu et al. [144] also
provided a negative case when the optimal solutions were located in different positions
in the unified search space. A potential approach is using the distribution characteristics
of population or fitness landscape characteristics of task, instead of a special solution.
These characteristics represent a full view of population or task, guiding to the global
optimal solutions of each task. More importantly, the MTEC algorithm can learn these
characteristics online and then adjust knowledge transfer strategy in a timely manner
and properly. As a result, an important research topic is the formulation of approximate
online models that can make use of the data generated during the optimization process to
somehow quantify the relatedness between tasks.

The research findings of the third question are the most fruitful among three issues. In
general, there are two knowledge transfer schemes in multi-task scenario in the literature:
implicit transfer and explicit transfer, which are systematically discussed in Section 4.3.
Although the experimental results of these schemes are encouraging, it must be kept in
mind that the transfer of genetic material across tasks may be pessimistic or negative in
some cases. Therefore, the mechanism of knowledge transfer across tasks should be further
explored. Only by fully understanding internal mechanisms and external connections of
knowledge transfer can we construct novel and positive knowledge transfer strategies.

7.2. Balance Theoretical Analysis and Practical Application

At present, most scholars concentrated mainly on algorithmic advancement and
practical application. The superiority of MTEC algorithms is, in most cases, illustrated
by simulation results, not by mathematical analysis with some pertinent mathematical
concepts and tools. On the other hand, the researchers and practitioners ignore further
study on the theoretic analysis of MTO and MTEC, either consciously or unconsciously.
The most representative results focused on convergence performance [37,41] and time
complexity [46,47] of simplified MFEA, which theoretically explains the superiority of the
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MTEC algorithm compared with traditional single-task EAs. Comparatively speaking,
other theoretical analysis (stability, diversity, etc.) of the MTEC algorithm is very limited
and the distinct theoretical framework has not been assessed so far.

As a novel evolution computation paradigm, MTEC has distinct characteristics, such
as a unified search space, assortative mating, and selective evaluation, to distinguish it
from the single-task EAs. The intensive research of the theoretical models and functioning
mechanisms of these key stone characteristics is infrequent. For this reason, the essential
and fundamental development of MTO and MTEC has been hard to obtain until now.

7.3. Enhance Effectiveness and Efficiency of MTEC Algorithms

To optimize multiple tasks simultaneously, the effectiveness and adaptation of MTEC
algorithm is especially important for a practitioner. In addition to canonical genetic op-
erators (crossover, mutation, and selection), individuals encoding schemes in the unified
genotype space and the implicit genetic transfer (via assortative mating and vertical cul-
tural transmission) are the most critical ingredients of the original MFEA [18]. To improve
the effectiveness and efficiency, more existing encoding schemes and genetic operators
available in the literature need to be tested in a multi-task setting.

On the other hand, the performance of MTEC algorithm mainly depends on the tasks
to be optimized. If the adopted methodology does not appropriately suit the behavior
or feature of optimization tasks, the optimization process may be counterproductive.
Therefore, we should accurately depict and deeply understand the optimization problem
we face. As a critical problem to be solved urgently, based on the key feature of each task,
a variety of novel encoding schemes and genetic operators can be designed to achieve
the active controlling of population diversity and adaptive adjustment over the search
direction of the population.

More fundamentally, we can try to modify the basic structure of the MTEC algo-
rithm [185,186]. For instance, Chen et al. [129] introduced a local search strategy based on
quasi-Newton, a re-initialization technique of worse individuals, and a self-adapt parent
selection strategy to obtain better solutions. Due to the great success of memetic algorithms,
incorporating local search to MTEC can also be another possible orientation. The new
algorithm framework discussed in Section 5.1 can be seen as a certain positive attempt for
this research topic.

7.4. Extend MTEC Algorithmic Advancements

In addition to the core demands of having suitable individuals encoding and the
knowledge transfer, the advancements of peripheral elements will certainly play a crucial
role in the future progress of MTO and MTEC. In this regard, some potential research
prospects are in (a) the many-task optimization problem, (b) uncorrelated optimization
tasks, (c) heterogeneous optimization tasks, (d) adaptively selecting the most appropriate
genetic operators, (e) the multi-task optimization problem under uncertainties, (f) develop-
ing hyper-heuristic MTEC algorithms, and (g) exploring an effective approach to construct
auxiliary tasks, as discussed in Section 5.

Without a doubt, these examples studied so far are just the tip of the iceberg. They
are simply divided into two groups: issues similar to single-task EAs, such as (e), (f), and
(g), and distinct issues in a multi-task scenario, such as (a), (b), (c), (d), and (h). Further,
inspired by the single-task EAs, a good deal of similar algorithmic advancements will be
explored in a multi-task scenario. For instances, adaptive MTEC is capable of adapting
core mechanisms such as genetic operators, population size, and a choice of local search
steps. On the other hand, several distinct forms of research in a multi-task scenario should
be also conducted in the near future. For example, a natural extension of canonical MTO is
effective handling of many tasks or heterogeneous tasks at a time.
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7.5. Develop New Science and Engineering Applications

Finally, we believe that the notion of MTO provides a fresh perspective in terms of
available knowledge transfer for improved problem solving. Several complex problems in
science, engineering, operations research, etc. benefit immensely from the proposed ideas.
At present, most applications focus on traditional continuous or discrete optimization
fields. Thus, there is still a big gap between MTEC and the practical applications in
the real world. As a preliminary attempt in the community of multi-task optimization,
Prof. Ong et al. [135,187] have designed two MTO test suites for single-objective and multi-
objective continuous optimization tasks, respectively. The test suite for single-objective
and multi-objective MTO both contains 10 MTO complex problems, and 10 50-task MTO
benchmark problems. Note that the MTO benchmark problems feature different degrees of
latent synergy between their involved two component tasks.

Up to now, MTEC has not gained international recognition in community of evolu-
tionary computation, and the reason for this might be just a lack of inspiring results in
fundamental, subversive, and pioneering fields. What is more to the point, nobody has
carefully and deeply considered why no breakthrough has occurred in such fields, or even
summarized the basic features of MTO and MTEC.

7.6. Compare Disparate Algorithms under Different Scenarios

The No Free Lunch (NFL) theory proposed by Wolpert and Macready states that all
algorithms are equivalent when their performance is evaluated over all possible prob-
lems [188]. Accordingly, each MTEC algorithm with its unique structure and operation
strategy always shows different algorithm performance under different scenarios. Al-
though some similar results have been repeatedly confirmed experimentally, it is not
enough to draw a conclusion. In order to investigate the sense of the relative strengths and
weaknesses of MTEC approaches, disparate strong algorithms based on a novel strategy
should be compared directly and thoroughly [189].

As we all know, the overall performance of EAs more or less depends on the tested
benchmark problems. Therefore, it is necessary for design diverse benchmark problems to
receive a thorough investigation or evaluation. Similarly to the classical EAs, the benchmark
problems for MTEC algorithms can be continuous and discrete, unimodal and multimodal,
low and high dimension, static and dynamic, non-adaptive and adaptive, and with and
without noise instances [152,190]. More importantly, the deviation and complementarity
between any two problems should be taken into consideration. Ideally, the benchmark
problems should contain various features mentioned above.

8. Conclusions

As a novel optimization paradigm proposed five years ago, with the increasing
complexity and volume of data collected in the data-driven world of today, multi-task
optimization appears to be an indispensable and competitive tool for the future. Since it
has been proposed by Ong in 2015 [24], it has gradually attracted the attention of scholars
in the community of evolutionary computation and many good results have been obtained.

To the best of our knowledge, this paper is the first literature review devoted to multi-
task optimization and multi-task evolutionary computation. This overview introduced the
basic definition of MTO and several confusing concepts of MTO, such as multi-objective
optimization, sequential transfer optimization, and multi-form optimization. Some bold
theoretical conclusions are also provided, mainly in terms of convergence performance and
time complexity of some simplified forms of MFEA. Its goal is theoretically explaining the
superiority of the existing MTEC algorithm compared with traditional single-task EAs.

As the core of this review article, a variety of implementation approaches of key
components of MTEC are described in Section 4, including a chromosome encoding and
decoding scheme, intro-population reproduction, inter-population reproduction, balance
between intra-population reproduction and inter-population reproduction, and evaluation
and selection strategy. In particular, we provided a clear description of inter-population
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reproduction, dealing with the when, what, and how of achieving positive knowledge
transfer. Further, other related extension issues of MTEC were summarized in Section 5,
but they are just preliminary, fragmentary attempts and lack systematization. Next, the ap-
plications of MTEC in science and engineering were reviewed, highlighting the theoretical
meaning and practical value of each problem.

Finally, a number of trends for further research and challenges that can be undertaken
to help move the field forward are discussed. In a word, the future work in MTO and
MTEC includes but is not limited to (1) exploring a novel mechanism of positive knowledge
transfer, (2) strengthening the theoretical research to set a solid foundation, (3) enhancing
the effectiveness and efficiency of MTEC algorithms by various advanced technologies,
(4) extend MTEC algorithms in more complex scenarios, such as many-task or uncorrelated
optimization problems under uncertainties, (5) developing real-world applications of
MTEC, e.g., in machine learning, smart manufacturing [191], and smart logistics [192], and
(6) comparing disparate MTEC algorithms under different scenarios.

In short, the purpose of this review article is twofold. For researchers in the evolution
computation community, it provides a comprehensive review and examination of MTEC.
Further, we hope to encourage more practitioners working in the related fields to become
involved in this fascinating territory.
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Abstract: Cuckoo search (CS) algorithm is a novel swarm intelligence optimization algorithm, which is
successfully applied to solve some optimization problems. However, it has some disadvantages, as it is
easily trapped in local optimal solutions. Therefore, in this work, a new CS extension with Q-Learning
step size and genetic operator, namely dynamic step size cuckoo search algorithm (DMQL-CS),
is proposed. Step size control strategy is considered as action in DMQL-CS algorithm, which is used
to examine the individual multi-step evolution effect and learn the individual optimal step size by
calculating the Q function value. Furthermore, genetic operators are added to DMQL-CS algorithm.
Crossover and mutation operations expand search area of the population and improve the diversity
of the population. Comparing with various CS algorithms and variants of differential evolution (DE),
the results demonstrate that the DMQL-CS algorithm is a competitive swarm algorithm. In addition,
the DMQL-CS algorithm was applied to solve the problem of logistics distribution center location.
The effectiveness of the proposed method was verified by comparing with cuckoo search (CS),
improved cuckoo search algorithm (ICS), modified chaos-enhanced cuckoo search algorithm (CCS),
and immune genetic algorithm (IGA) for both 6 and 10 distribution centers.

Keywords: global optimization; cuckoo search algorithm; Q-learning; mutation; self-adaptive
step size

1. Introduction

Optimization problems have been one of the most important research topics in recent years.
They exist in many domains, such as scheduling [1,2], image processing [3–6], feature selection [7–9]
and detection [10], path planning [11,12], feature selection [13], cyber-physical social system [14,15],
texture discrimination [16], saliency detection [17], classification [18,19], object extraction [20], shape
design [21], big data and large-scale optimization [22,23], multi-objective optimization [24], knapsack
problem [25–27], fault diagnosis [28–30], and test-sheet composition [31]. Metaheuristic algorithms [32],
a theoretical tool, are based on nature-inspired ideas, which have been extensively used to solve highly
non-linear complex multi-objective optimization problems [33–35]. Several popular metaheuristics
with a stochastic nature are compared in some studies [36–38] with deterministic Lipschitz methods
by using operational zones. Most of these metaheuristics methods are inspired by natural or
physical processes, such as bat algorithm (BA) [39], biogeography-based optimization (BBO) [40],
ant colony optimization (ACO) [41], earthworm optimization algorithm (EWA) [42], elephant herding
optimization (EHO) [43,44], moth search (MS) algorithm [45], firefly algorithm (FA) [46], artificial bee

Mathematics 2020, 8, 149; doi:10.3390/math8020149 www.mdpi.com/journal/mathematics45
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colony (ABC) [47–49], harmony search (HS) [50,51], monarch butterfly optimization (MBO) [52,53],
particle swarm optimization (PSO) [54,55], genetic programming [56], krill herd (KH) [57–63], immune
genetic algorithm (IGA) [64], and cuckoo search (CS) [65–69].

Yang and Deb [69] proposed a metaheuristic optimization method named CS algorithm, which is
inspired by smart incubation behavior of a type of birds called cuckoos in nature.

CS performs local search well in most cases, but sometimes it cannot escape from local optima,
which restricts its ability to carry out full search globally. To enhance the ability of CS, Mlakar et al. [70]
proposed a novel hybrid self-adaptively CS algorithm adding three features: a self-adaptively of cuckoo
search control parameters, a linear population reduction, and a balancing of the exploration search
strategies. Li et al. [71] enhanced the exploitation ability of the cuckoo search algorithm by using an
orthogonal learning strategy. An improved discrete version of CS was presented by Ouaarab et al. [72].

On the other hand, most researchers agree that the performance of algorithms can be improved
by using learning techniques. For example, Wang et al. [73] presented a new method to enhance
learning speed and improved final performance, which directly tuned the Q-values to affect the
action selection policy. Alex et al. [74] presented a new evolutionary cooperative learning scheme
that is able to solve function approximation and classification problems, improving accuracy and
generalization capabilities. A new CS algorithm named snap-drift cuckoo search (SDCS) was presented
by Hojjat et al. [75]. In SDCS, a snap-drift learning strategy is employed to improve search operators.
The snap-drift learning strategy provides an online trade-off between local and global search via two
snap and drift modes.

Although much effort has been made to enhance the performance of CS, many of the variants fail
to improve the performance of CS algorithm on certain complicated problems. Furthermore, there are
few studies on optimizing the parameters of CS algorithm by using learning strategy. In this paper,
we present an improved CS algorithm called dynamic step size cuckoo search algorithm (DMQL-CS)
that adopts strategies with Q-Learning and genetic operator. Step size strategy of the traditional
CS focused only on examining the individual fitness value based on the one-step evolution effect
of individual, but ignored the evaluation of step size from the multi-step evolution effect, which is
not conducive to the evolution of the algorithm. We use Q-Learning method to optimize the step
size, in which the most appropriate step size control strategies are retained for the next generation.
At the same time, their weights are adaptively adjusted by using learning rate, which is used to guide
individuals to search for a better solution at the next evolution. In addition, crossover operation and
mutation operation are added into the DMQL-CS algorithm to accelerate the convergence speed of the
algorithm and expand the diversity of the population.

The present manuscript differs from other similar work insofar as the advantage of learning
based on Q-Learning and genetic operators. Q-Learning considers the multi-step evolution effect
of individual such that the most appropriate step size control strategies are retained for the next
generation. For the proposed DMQL-CS approach, the outstanding work of the paper is mainly listed
in the following two aspects:

(1) In the DMQL-CS algorithm, the step size strategy is considered as an action which applies multiple
step control strategies (linear decreasing strategy, non-linear decreasing strategy, and adaptively
step-size strategy). In the DMQL-CS algorithm, according to multi-step effect of individual for
a few steps forward, the optimal step size control strategy is learned. During each learning
evolution step size, finally, the optimal individual and corresponding optimal step size strategy
are derived by calculating the Q function value. The current individual continues to evolve
through the step size obtained, which increases the adaptability of individual evolution.

(2) The research introduces two genetic operators, crossover and mutation, into the DMQL-CS
algorithm, intended for accelerating convergence. During crossover and mutation process,
chromosomes are divided into pairs according to certain probability. We introduce the specifically
designed crossover operation into problem of logistics distribution center location in this paper,
which determines the performance of the algorithm to some extent. To improve the search ability
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of the CS algorithm, numerous strategies have been designed to adjust the crossover rate. In this
work, a self-adaptive scheme is used to adjust the crossover rate. Genetic operators expand
the search area of the population to improve the exploration and maintain the diversity of the
population, which also helps to improve the exploration of the population of learners.

Finally, the DMQL-CS method was tested on 15 benchmark functions, CEC 2013 test suite, and the
problem of logistics distribution center location. The experimental results compared with those of other
approaches demonstrated the superiority of the proposed strategy. A series of simulation experiments
showed that DMQL-CS performs more accurately and efficiently than other evolutionary methods in
terms of the quality of the solution and convergence rate.

The remainder of this paper is organized as follows. In Section 2, the related work on cuckoo
search is presented. Section 3 presents cuckoo search. The proposed DMQL-CS algorithm, including
Q-Learning model, step size control model with Q-Learning, and genetic operator, is described in
Section 4. The comparison with other methods, through 15 functions, CEC 2013 test suite, and the
problem of logistics distribution center location, is given in Section 5. Finally, Section 6 concludes this
paper and points out some future research directions.

2. Related Work

CS algorithm is capable of finding the best solutions by continuously using new and potentially
better solution to replace a not-so-good cuckoo in the population, and it has been applied successfully
to diverse fields. Recently, many CS variants have been developed to improve the performance of the
CS algorithm. These variants can be generally divided into four categories: (1) parameter control [70];
(2) novel learning schemes [76]; (3) hybrid methods with other algorithm [74]; and (4) local search
operator [77].

Due to the important influence of control parameters for the performance, much meaningful work
has been done on the control parameter settings of CS algorithm. Initially, step size parameter control
was investigated to improve the performance of CS algorithms. For instance, aiming at the faults that
Cuckoo Search algorithm cannot acquire exact solutions and converges slowly in the later period,
Ma et al. [78] proposed a self-adaptively step size adjustment cuckoo search algorithm (ASCS), which
is an adaptively adjusted step size by using the distance between cuckoo nest location and the optimal
nest location, which speeds up CS algorithm speed and improves the calculation accuracy. To balance
the exploration and exploitation, Li and Yin [79] introduced two mutation rules and combined these
two rules using a linear decreasing probability. Then, an adaptive parameter adjustment strategy
was developed according to the relative success number of two newly added parameters in the
previous iteration. Comparison results of the proposed algorithm show that this scheme is better
than other algorithms. Two important factors, speed factor and aggregation factor, were defined by
Yang et al. [80]. Then, according to these two factors, the step size and discovery probability were
regulated. Experimental results show that the CS with improved step size and discovery probability
has strong competitiveness in tackling numerical optimization problems. Li et al. [79] proposed the
self-adaptive parameter CS algorithm, which uses two new mutation rules based on the rand and best
individuals among the entire population. The self-adaptive parameter is set as a uniform random
value based on the relative success number of the two new proposed parameters in the previous period,
which enhance diversity of the population. Experimental results show that the proposed method
performs better than twelve algorithms from the literature.

Li et al. [65] proposed an enhanced CS algorithm called dynamic CS with Taguchi opposition-based
search and dynamic evaluation. The Taguchi search strategy provided random generalized learning
based on opposing relationships to enhance the exploration ability of the algorithm. The dynamic
evaluation strategy reduced the number of function evaluations, and accelerated the convergence
property. Statistical comparisons of experimental results showed that the proposed algorithm makes
an appropriate trade-off between exploration and exploitation. Li et al. [81] proposed a new cuckoo
search algorithm extension based on self-adaptive knowledge learning, in which a learning model
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with individual history knowledge and population knowledge is introduced into the CS algorithm.
Individuals constantly adjust their position according to historical knowledge and communicate in the
optimization process. Statistical comparisons of the experimental results showed that the proposed
algorithm is a competitive new type of algorithm. Hojjat et al. [75] presented a new CS algorithm,
called snap-drift cuckoo search (SDCS), which first employs a learning strategy and then considers
improved search operators. The snap-drift learning strategy provides an online trade-off between
local and global search via two snap and drift modes. SDCS tends to increase global search to prevent
algorithm of being trapped in local minima via snap mode and reinforces the local search to enhance
the convergence rate via drift mode. Statistical comparisons of experimental results showed that SDCS
is superior to modified CS algorithms in terms of convergence speed and robustness.

According to the rand and best individuals among the entire population, Cheng et al. [82]
proposed an ensemble CS variant in which three different cuckoo search algorithms coexist in the
entire search process, which compete to produce better offspring for numerical optimization. Then,
an external archive is introduced to further maintain population diversity. Statistical comparisons
of experimental results showed that the improved CS variant is superior to modified CS algorithms
in terms of convergence speed and robustness. Wen et al. [83] proposed a new hybrid algorithm
based on grey wolf optimizer and cuckoo search (GWOCS), which was developed to extract the
parameters of different PV cell models with the experimental data under different operating conditions.
Zhang et al. [84] proposed an ensemble CS variant that divides the population into two subgroups and
adopts CS and DE for these two subgroups independently. These two subgroups can exchange useful
information by division. These two algorithms can utilize each other’s advantages to complement their
shortcomings, thus balancing the quality of solution and the computation consumption. Zhang et al. [85]
devised a hybridization of CS and covariance matrix adaption evolution strategy (CMA_ES) to
improve performance for the different optimization problems. Computational results demonstrate
that the proposed algorithm outperforms other competitor algorithms. Tang et al. [86] introduced
Gaussian distribution, Cauchy distribution, Levy distribution, and Uniform distribution, improving
the performance of cuckoo search algorithm by the method of pair combination. Simulation results
show that the hybrid distribution with Cauchy distribution and Levy distribution can make the CS
algorithm perform better.

With respect to applications, CS has been extensively applied to many domains, such as neural
networks [87], image processing [88], nonlinear systems [89,90], network structural optimization [91],
agriculture optimization [92], engineering optimization [93], and scheduling [94]. These applications
indicate that CS algorithm is an effective and efficient optimizer for solving some real-world problems.

3. Cuckoo Search

The cuckoo search algorithm [69] is a stochastic optimization algorithm that models brood
parasitism of cuckoo birds. The algorithm is based on the obligate brood parasitic behavior found in
some cuckoo nests by combining a model of this behavior with the principles of Lévy flights, which
discard worst solutions and generate new ones after some certain iteration.

According to the mentioned characteristics, CS can be expressed as three idealized rules:

(1) Each cuckoo lays one egg at a time, and places it in a randomly chosen nest.
(2) The best nests with the highest-quality eggs (solutions) will be carried over to the next generations.
(3) The number of available host nests is fixed, and the alien egg is discovered by the host bird with

the probability pa ∈ [0, 1]. If the alien egg is discovered, the nest is abandoned and a new nest is
built in a new location.

The CS algorithm is equiponderant to the integration of Lévy flights. The position of the ith nest
is indicated by using D-dimensional vector Xi = (xi1, xi2, . . . , xid), 1 ≤ i ≤ n; a Lévy flight is performed:

Xt+1
i = xt

i + a⊗ levy(λ) (i = 1, 2, . . . , n), (1)
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a = a0 ⊗ (xt
j − xt

i)± (2)

where α > 0 is the step size that is used to control the range of the random search, which should
be related to the scales of the problem of interests, and step size information is more useful can be
computed by Equation (2). The product ⊗means entry-wise multiplications. xt

i and xt
j are two different

solutions selected randomly. A new solution with the same number of cuckoos is generated after
partial solutions are discarded. levy(λ) with the random walk can be expressed in terms of a simple
power-law equation.

levy(β) ∼ μ = t−1−β, 0 < β ≤ 2 (3)

where μ and t are two random numbers following the normal distribution and β often takes a fixed
value of 1.5.

levy(β) ∼ φ× μ|v|1/β
(4)

φ =

⎡⎢⎢⎢⎢⎢⎢⎣Γ(1 + β) × sin(π×β2 )

Γ( 1+β
2 ) × β× 2

β−1
2

⎤⎥⎥⎥⎥⎥⎥⎦
1/β

(5)

where Γ is gamma function. μ and v are random numbers drawn from a normal distribution with
mean of 0 and standard deviation of 1, which have an infinite variance with an infinite mean. Here,
the consecutive jumps/steps of a cuckoo essentially form a random walk process that obeys a power-law
step length distribution with a heavy tail. In Lévy flights random walk component, the new solution
Xi is generated through Equation (6).

Xg+1,i = Xg,i + α0
φ× μ
|v|1/β

(Xg,i−Xg,best) (6)

where Xg,best represents the best solution obtained thus far and α0 is a scaling factor. The Lévy
distribution is a process of random walk; after a series of smaller steps, Lévy flights can suddenly
obtain a relatively larger step size. Lévy distribution is implemented at the initial stage of algorithm,
which helps to jump out of the local optimum.

Xt+1
i = xt

i + r(Xt
m −Xt

n) (7)

where Xt
m and Xt

n are random solutions at the tth generation. r generates a random number between
−1 and 1. The basic steps of the CS algorithm are summarized in Algorithm 1.

Algorithm 1 CS Algorithm.

(1) randomly initialize population of n host nests
(2) calculate fitness value for each solution in each nest
(3) while (stopping criterion is not meet do)
(4) Generate xt+1

i as new solution by using Lévy flights;
(5) Choose candidate solution xt

i ;
(6) if f (xt

i) > f (xt+1
i )

(7) Replace xt
i with new solution xt+1

i ;
(8) end if

(9) Throw out a fraction (pa) of worst nests;
(10) Generate solution kt+1

i using Equation (3);
(11) if f (xt

i) > f (xt+1
i )

(12) Replace xt
i with new solution xt+1

i ;
(13) end if

(14) Rank the solution and find the current best.
(15) end while
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4. Cuckoo Search Algorithm with Q-Learning and Genetic Operations

4.1. Q-Learning Model

Q-Learning model, a milestone in reinforcement learning research, is an enhanced learning
method that is not constrained by the problem model. The optimal policy of Q-Learning is generated
by executing the action with the highest expected Q-values, which is the action of maximizing the
cumulative benefits with a discount. Control strategy of the optimal step size can be transformed into
the optimal action for the agent. The Q function is defined as discounted. In general, the environment
is the current state in which the agent makes decisions. The agent includes a set of feasible actions
which affect both next state and reward. In fact, the Q-Learning is a mapping from state–action to
prediction. The output for state vector s and action a are denoted by Q-value Q(s, a):

Q(st, at)← (1− a)Q(st, at) + a
[
rt+1 + γmax

at+1
Q(st+1, at+1)

]
(8)

where Q(st, at) represents the cumulative reward of action in the state of s at time t. Q(st+1, at+1)

indicates the cumulative reward of action in the state vector s at time t + 1. rt+1 is the reward received
for the action a at time t + 1. When st+1 is terminal, Q(st+1, at+1) goes to zero, where a and γ represent
learning factors and discount factors, respectively (0 < a < 1, 0 ≤ γ < 1). γ determines the impact of
lagging returns on optimal action. Q-Learning provides strong proof of convergence. The Q value
will converge with probability 1 to Q when each state–action pair is repeatedly visited. The error of Q
(s, a) must be reduced by γwhenever it is updated. When each state–action pair is visited infinitely,
the estimates of Qn(s, a) converge to real values of Q(s, a) as n→∞ .

4.2. Step Size Control Model by Using Q-Learning

In CS algorithm, the most important parameter is step size scaling factor with the typical
characteristics of Lévy flight, in addition to the population size, the number of iterations, and the
probability of discovery. Step size scaling factor is as suitable action that is selected to control an
individual search process. The accuracy of selected parameter can be improved by predicting before
making an action decision. When an individual selects an action, the advantages and disadvantages of
various actions can be evaluated by the multi-step effect of individual. Q-Learning is helpful to learn
the optimal step size control strategy and transform optimal step size control strategy into optimal
action selected of agent.

During the iteration of CS algorithm, the fixed step size strategy cannot meet the dynamic
requirements of the algorithm. Considering the aforementioned facts, at the later stage of the CS
algorithm, we add three step size control methods in the iterative process: (1) Dynamic linear decreasing
strategy (L1) is defined by Equation (9). (2) Dynamic non-linear decreasing strategy (L2) is defined
by Equation (10). (3) Adaptive step-size strategy (L3) is defined by Equation (11). Each individual
obtains the optimal step size control strategy via learning multiple steps forward, thus becomes
close to the optimal solution. Therefore, we try to evaluate the step size control strategy by using
multi-step evolution method, which increases the adaptability of individual evolution and improves
the performance of the algorithm. The current best step size control strategy is selected to execute the
next iteration by using Q-Learning method.

a = (a1 − a0) × (tmax − t)/tmax + a1 (9)

a = (a1 − a0) · (t/tmax)
2 + (a0 − a1) · (2 · t/tmax) + a1± (10)

a = a0 + (a1 − a0) · di (11)

di =
||xi − xbest||

dmax
(12)
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where tmax expresses the total number of iterations, t is the current number of iterations, and dmax is
the maximum distance between the optimal nest and all other nests. a0 < a1, a0 is the initial value of
step size.

In Q-Learning algorithm, the agent receives feedback, which is called reward, for each action.
When the state is set to s and the action is set to a, a set of actions is set to H = {a1, a2, . . . an}, the agent
has n actions to choose from each state, and the maximum reward of discount for the agent is:

Q(s, a)= r(st, at) + γ ·max
a′

Q(s′, a′) (13)

where r(s, a) is the immediate benefits for state s. max
a′

Q(s′, a′) is the maximum return value that the

agent select different actions at the next state s′. a′ is the action which is selected at the next state s′. γ
is the discount factor. The benefits that the agent selecting action a receives is:

Q(a) = r(a) + γ ·Q(a(1)) + γ2 ·Q(a(2)) + . . .+ γm ·Q(a(m)) (14)

where m represents the number of steps forward, a, a(i) ∈ A, 1 ≤ i ≤ m. When γ = 0, Q is reduced to one
step forward. When γ is close to 1, the lagging benefits of optimal action increase gradually. r(a) is
the immediate benefit that the agent selects action a, which expresses that individuals have evolved
once, and new individuals use (a(1)) to generate new individuals again. At this time, the benefit is
recorded as Q(a(1)). By analogy, after m evolution, a new individual is generated by using (a(m)),
and the corresponding benefit is recorded as Q(a(m)).

n offspring will be generated after each evolution. These offspring are evolved again by adopting n
strategies. nm offspring will be produced after m evolutions. Boltzmann distribution is used to calculate
the probability of new individuals retained. Boltzmann distribution can be defined by Equation (15):

p(ai) = e
r(ai)

T /
∑n

i
e

r(ai)
T (15)

where r(ai) indicates the immediate benefits of the ith step strategy and T represents the temperature.
The step size control strategy corresponding to the maximum probability is selected. The results

of each generation are simplified by Boltzmann distribution. fp(a) is defined as the fitness function
corresponding to parent individual in the population and fo(a) is the fitness function corresponding to
the individual after adopting the parameter selection strategy. Substituting r(a) = fp(a) − fo(a) into
Equation (13) Equation (16) is obtained.

Q(a) = fp(a) − (1− γ) · fo(a(1)) − γ · (1− γ) · fo(a(2)) − . . .− γm · fo(a(m)) (16)

where ∀m, limm
→1(1−) = 0 limm

→1 = 1; according to Equation (17), it can be concluded
that lim→1Q(a) = fp(a) − fo(a(m)), a′ = argmaxa ∈ Alim→ 1Q(a) = argmaxa ∈ A( fp(a) − fo(a(m))) .
The step size control strategy model with Q-Learning is described in Algorithm 2 and Figure 1.
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Algorithm 2 Step size with Q-Learning.

(1) Each individual is expressed as (x, σ), and the number of learning steps M is set;
(2) Generate three new offspring for each individual by using the given step size control strategy (Linear
decreasing strategy, non-linear decreasing strategy, adaptively step-size dynamic adjustment strategy), and set
t = 1;
(3) Do while t < m
Each individual generates three offspring by using the given step size control strategy, as shown in
Equations (9)–(12).
Calculate the probability of the newly generated offspring by using the Boltzmann distribution, and an
individual is selected according to the probability.
t = t + 1;
(4) Calculate the corresponding Q value of each retained individual according to the three-step selection
strategy. The step size corresponding to the step control strategy is retained when Q is maximized,
the corresponding offspring are selected, and other offspring will be discarded.
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X

X

X
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Figure 1. Step selection model with Q-Learning.

4.3. Genetic Operation

4.3.1. Crossover Process

As we know, two of the most important operators are the crossover operator and mutation operator
for genetic operation [95], which have a great influence on the behavior and performance of genetic
operation. Therefore, these operations are introduced into the DMQL-CS algorithm. In crossover
process, a parameter Cr is defined as the probability of crossover and chromosomes are divided
into pairs. We introduce the specifically designed crossover operation into the problem of logistics
distribution center location in this paper, and apply it to a pair of chromosomes G1 and G2, as illustrated
in Figure 2. First, some genes are randomly selected in chromosome G1, as those pointed to by a red
arrow in the illustration. Then, these genes are found in chromosome G2, as pointed to by a green
arrow. If the same gene is not found in G2, two genes are randomly selected as the crossover point.
Generate one child as the combination of red-pointed genes in G1 and the rest of blue genes in G2,
and generate another child as the combination of green-pointed genes in G2 and the rest of blue genes
in G1. Finally, the optimal is found as an arc between any two nodes by using enumeration method,
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which keep the child to obtain the lowest objective value, and obtain chromosomes R1 and R2. Two
chromosomes are selected from the parents and children with the smallest objective values to replace
the parents.

 
Figure 2. Crossover process of chromosomes.

At the same time, the crossover rate (Cr) is a critical factor for how the crossover operator behaves,
which determines the performance of the algorithm to some extent. To improve the search ability
of the algorithm, a substantial number of strategies have been designed to adjust the crossover rate.
In this work, a self-adaptive scheme was used to adjust the crossover rate, which can be calculated as
shown below.

Cr = 1/[1 + exp(K1) ] (17)

where = favg − fmax, favg is the average fitness, fmax is the max fitness, and K1 is the scale factor between
0 and 1, K1 = 0.02.

4.3.2. Mutation Process

A parameter Cm is defined as the mutation probability. The number r is randomly generated in
the interval [0, 1]. If r < Cm, the ith chromosome G1 is selected to perform the mutation operation
and this process is repeated at each iteration. For illustration, we continue to use the problem of
logistics distribution center location with 40 cities and 10 distribution centers. Two genes located on
chromosome G1 are randomly selected and their positions swapped to obtain a possible child. Then,
the optimal is found as an arc between any two nodes by using enumeration method, which keeps the
child obtaining the lowest objective value. Finally, we get chromosome R1, as shown in Figure 3. If R1

has a smaller objective value than G1, G1 is replaced with R1, else G1 is retained. A new generation of
population is generated after the evaluation, crossover, and mutation operations.
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Figure 3. Mutation process of chromosomes.

4.3.3. Cuckoo Search Algorithm with Q-Learning Model and Genetic Operator

Introducing Q-Learning into CS algorithm helps to learn the optimal step size strategy and
transform. Crossover and mutation strategies enable the nest to approach the historical optimal nest
quickly, which can speed up the global convergence rate. The structure of the genetic operator cuckoo
search algorithm with Q-Learning model (DMQL-CS) is described in Algorithm 3.

Algorithm 3 DMQL-CS Algorithm.

Input: Population size, NP; Maximum number of function evaluations, MAX_FES, LP
(1) Randomly initialize position of NP nest, FES = NP;
(2) Calculate the fitness value of each initial solution;
(3) while (stopping criterion is not meet do)
(4) Select the best step size control strategy according to Algorithm 2;
(5) Generate new solution xt+1

i with the new step size by Lévy flights;
(6) Randomly choose a candidate solution xt

i ;
(7) if f (xt

i) > f (xt+1
i )

(8) Replace xt
i with new solution xt+1

i ;
(9) end if

(10) Generate new solution xt+1
i by using crossover operator and mutation operator;

(11) Throw out a fraction (pa) of worst nests, generate solution kt+1
i using Equation (3);

(12) if f (xt
i) > f (xt+1

i )

(13) Replace xt
i with new solution xt+1

i ;
(14) end if

(15) Rank the solution and find the current best.
(16) end while

4.3.4. Analysis of Algorithm Complexity

To show the convergence effect of the algorithm, typical function Rastrigrin was selected to
analyze the convergent process of DMQL-CS algorithm. Figure 4 shows the location distribution of
cuckoo individuals in the search area with a population size of 10. Figure 4a describes the individual
distribution at the first generation, Figure 4b describes the individual distribution at the 30th generation,
Figure 4c describes the individual distribution at the 50th generation, and Figure 4d describes the
individual distribution at the 80th generation. In Figure 4, it can be seen that the activity area of
individuals keeps changing and gradually draws closer to the optimal solution during the evolution of
the algorithm. It is worth noting that algorithm converged at the 80th generation, which indicates that
Q-learning and genetic operation expand activity area of the population and improve the convergence
performance of the DMQL-CS algorithm.
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(a) 1st iteration (b) 10th iteration 

 
(c) 30th iteration (d) 80th iteration 

Figure 4. Analysis of algorithm complexity.

5. Results

5.1. Optimization of Functions and Parameter Settings

In this section, to check and verify the efficacy DMQL-CS algorithm, it is thoroughly investigated
through benchmark evaluations from various respects. We tested our algorithms on two function
groups: Group A and Group B. Group A contains fourteen different global optimization problems, as
shown in Table 1. Group B is the CEC 2013 test suite including 28 benchmark functions. To make a fair
comparison, all experiments were carried out on a P4 Dual-core platform with a 1.75 GHz processor
and 4 GB memory, running under the Windows 7.0 operating system. The algorithms were written in
MATLAB R2017a. The following were set: maximum number of evaluation MAX_FES = NP × 105,
population size NP = 30, run time T = 30, and probability of foreign eggs pa = 0.25.
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Table 1. Brief description of fifteen functions.

Type Function Name Search Range
Acceptable
Accuracy

Global
Optimum

Unimodal

F1 Sphere [−100, 100] 1 × 10−8 0

F2 Rosenbrock [−30, 30] 1 × 10−8 0

F3 Step [−100, 100] 1 × 10−8 0

F4 Schwefel2.22 [−10, 10] 1 × 10−8 0

Multimodal Shifted
multimodal

F5 Ackley [−32, 32] 1 × 10−8 0

F6 Rastrigin [−5.12, 5.12] 10 0

F7 Griewank [−600, 600] 0.05 0

F8 Generalized Penalized1 [−50, 50] 1 × 10−8 0

F9 Generalized Penalized2 [−50, 50] 1 × 10−8 0

F10 Shifted Schwefels Problem 1.2 [−100, 100] 1 × 10−8 −450

F11 Shifted Rotated High
Conditioned Elliptic Function [−100, 100] 1 × 10−8 −450

F12 Shifted Rosenbrock [−100, 100] 2 390

F13 Shifted Rotated Ackleys [−32, 32] 2 −140

F14 Shifted Griewanks [−600, 600] 0.2 0

F15 Shifted Rotated Rastrigin [−5.12, 5.12] 10 −330

5.2. Comparison with Other CS Variants and Rank Based Analysis

We compared the performance of DMQL-CS with four improved CS variants: CCS [68],
GCS [96], CSPSO [97], and OLCS [71]. CCS is a modified Chaos enhanced Cuckoo search algorithm.
GCS introduces Gaussian disturbance into the CS algorithm. CSPSO is a kind of algorithm combining
CS with PSO. A new search strategy based on orthogonal learning strategy is used in OLCS to enhance
the exploitation ability of CS algorithm. The parameter configurations of these algorithms are shown
in Table 2 according to corresponding references. Fifteen benchmark functions are shown in Tables 3–6
at D = 30 and D = 50. All optimization algorithms were tested by using the same parameter settings:
population size NP = 30, MAX_FES = 100,000 × D, probability switching parameter pa = 0.25, and run
time T = 30.

As shown in Table 3, the DMQL-CS find global optima 0.00 on the four benchmark functions F1,
F6, F7, and F14 when D = 30. For unimodal functions F1–F5, the DMQL-CS algorithm achieves higher
accuracy than other CS variants on functions F2, F4, and F5. DMQL-CS is only inferior to OLCS on F2.
For multimodal problems F6–F11, DMQL-CS algorithm shows higher performance than the other CS
variants on functions F6, F7, F8, and F11. For F10, the same solution is found by the four algorithms
(CCS, GCS, CSPSO, and OLCS). For the shifted unimodal functions F13–F15, DMQL-CS is significantly
better than CCS, GCS, OLCS, and CSPSO on F13, F14 and F15. For F12, CCS performs the best.

Table 2. The personal parameters of different algorithms.

Algorithms Parameter Configurations

CCS [68] pa = 0.2, a = 0.5, b = 0.2, xi = (0, 1)
GCS [96] a = 1/3, pa = 0.25
CSPSO [97] pa = 0.25, a = 0.1, W = 0.9~0.4, c1 = c2 = 2.0
OLCS [71] pa = 0.2, a = 0.5, K = 9, Q = 3
DMQL-CS pa = 0.25, M = 3, γ = 0.5
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DMQL-CS still has outstanding optimization performance when D = 50, as shown in Table 5. From
the results, it is apparent that the convergence precision of other algorithms drops rapidly, while the
DMQL-CS algorithm achieves better performance than other CS variants on most functions. DMQL-CS
and OLCS achieve the global optimum on function F7. DMQL-CS cannot get the minimum; even
then, it is not inferior to other algorithms on F4, F5, F10, F12, F13, and F15. In addition, the DMQL-CS
demonstrates a remarkable accuracy on benchmark F1 and F2. Comparing with the optimization
results, we can conclude that the DMQL-CS optimization algorithm explored a larger search space
than other CS variants. Moreover, it is important to point out that, regardless of the problem’s
dimensionality, the DMQL-CS converges to the better solution on the shifted multimodal functions F13,
F14 and F15. Therefore, these statistical tests confirmed that DMQL-CS algorithm with Q-Learning
step size and genetic operators has a better overall performance than all other tested competitors.
For a clearer observation that DMQL-CS performs best, Table 4 shows the ranking of the strategies in
Table 3 according to the Friedman test. We can see that DMQL-CS obtains the best rank, OLCS ranks
second, followed by CCS, GCS, and CSPSO. Table 6 shows the ranking of the five strategies according
to the Friedman test. OLCS obtains the best rank, DMQL-CS ranks second, followed by GCS, CSPSO,
and CCS.

To further demonstrate the convergence of DMQL-CS, the median convergence properties of five
algorithms are illustrated in Figure 5. There is no obvious “evolution stagnation” for all algorithms.
For the same population size and number of generations, the optimization performance of the four
algorithms declines rapidly. However, DMQL-CS can get better convergence curve than CCS, GCS,
CSPSO, and OLCS on F1–F2, F5–F6, F12, and F14. In Figure 5, DMQL-CS algorithm converged to
the specified error threshold on function F1, which suggests that DMQL-CS algorithm has a faster
convergence rate for the specified error threshold. Generally speaking, when M is too small, useful
step size information will not be learned. When M is too large, the speed of Q-Learning will be slowed
down. When the value of M is 3 or 5, the convergence performance of DMQL-CS can be improved for
the ill-condition function F2, complex multimodal functions F5–F6, and Shifted multimodal functions
F12 and F14. It is worth mentioning that the accuracy of OLCS is similar to that of DMQL-CS,
but the convergence speed of DMQL-CS is much faster than that of OLCS. For multimodal function,
all algorithms converge to the specified error threshold with the same number of successes. However,
DMQL-CS has good reliability, stability, and faster convergence rate on functions F5–F6. For function
F14, DMQL-CS algorithms can find the global optimum with 50,000 FES. As mentioned above, it can
be clearly observed that DMQL-CS provided better performance than the four other CS versions,
and achieves a promising solution on most test functions.
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Figure 5. Convergence curves of different algorithms on test functions when D = 30.

A series of comparisons proved the high efficiency of DMQL-CS. The performance ranking of
the multiple algorithms of the test suite is listed in Tables 7–9. The average rankings of the five CS
variants for functions F1–F8 are shown in Table 7 (D = 30 and D = 50). The average rankings of
the five CS variants for functions F9–F15 are shown in Table 8 (D = 30 and D = 50). In competition
ranking, if performances of algorithms are the same, they received the same rank. It can be seen in
Tables 7–9 that the average ranking value of DMQL-CS on D = 30 is smaller than that of CCS, GCS,
OLCS, and CSPSO. Therefore, the performance of DMQL-CS is better than the other CS variants. When
D = 50, the results are similar to those when D = 30, with the average ranking value of DMQL-CS being
smaller than those of CCS, GCS, OLCS, and CSPSO.
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Table 7. Rank results of each algorithm on F1–F8 for D = 30 and D = 50.

Dim Algorithm F1 F2 F3 F4 F5 F6 F7 F8

30

CCS 4 3 3 3 4 4 4 4

GCS 5 4 4 2 3 3 3 3

CSPSO 3 5 5 4 5 5 5 5

OLCS 2 1 1 5 2 1 1 2

DMQL-CS 1 2 2 1 1 1 1 1

50

CCS 5 5 5 5 4 4 3 3

GCS 4 3 4 4 3 2 4 2

CSPSO 3 2 3 3 5 5 5 4

OLCS 2 4 1 2 2 1 1 1

DMQL-CS 1 1 2 1 1 3 1 5

Table 8. Rank results of each algorithm on F9-F15 for D = 30 and D = 50.

Dim Algorithm F9 F10 F11 F12 F13 F14 F15

30

CCS 3 4 4 1 2 4 4
GCS 4 3 5 2 4 3 3

CSPSO 5 1 3 5 5 2 5
OLCS 1 2 2 3 3 1 2

DMQL-CS 2 5 1 4 1 1 1

50

CCS 4 3 5 4 4 3 2
GCS 2 2 4 2 3 4 4

CSPSO 5 5 1 5 5 5 3
OLCS 1 4 2 1 2 1 5

DMQL-CS 3 1 3 3 1 2 1

Table 9. Total rank and final rank on F1–F15 for D = 30 and D = 50.

Dim Rank
Algorithms

CCS GCS CSPSO OLCS DMQL-CS

30
Total rank 49 53 63 29 25
Final rank 3 4 5 2 1

50
Total rank 60 47 55 30 29
Final rank 5 3 4 2 1

In Table 9, DMQL-CS has the best total rank when D = 30 and D = 50, i.e., 25 and 29, which means
that DMQL-CS has the best performance on most of the test functions compared with other algorithms.
OLCS has the second-best total rank at D = 30 and D = 50, i.e., 29 and 30. Obviously, OLCS has better
performance than the three other algorithms on high-dimension test functions. Similarly, in Table 9,
the order can be clearly observed: DMQL-CS >OLCS > CCS > GCS > CSPSO at D = 30; and DMQL-CS
> OLCS > GCS > CCS > CSPSO at D = 50. Based on the analysis of the above, DMQL-CS has the best
performance among all the algorithms on both D = 30 and D = 50.

5.3. Statistical Analysis of Performance for the CEC 2013 Test Suite

In this section, the CEC 2013 test suite is selected to test the effectiveness of three different
algorithms (jDE [98], SaDE [99], and CLPSO [100]). These algorithms can be seen as representatives of
the state-of-the-art algorithms for comparison, and the parameter configurations of these algorithms
were set according to the corresponding references, as listed in Table 10.
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Table 10. The personal parameters of different algorithms.

Algorithms Parameter Configurations

jDE [98] F = 0.5, CR = 0.9
SaDE [99] F~N(0.5, 0.3), CR0 = 0.5, CR~N(CRm, 0.1), LP = 50
CLPSO [100] W = 0.7298, c = 1.49618, m = 7, pc = 0.05~0.5
DMQL-CS pa = 0.25, PL = 20, η = 0.015

Table 11 summarizes the results of CEC 2013 test problems on 28 benchmark functions for
30-dimensional case. The rank was used to obtain the ranking of different algorithms on all problems,
as shown in Table 12. This means that DMQL-CS gets the first rank and outperforms jDE, SaDE,
and CLPSO. The results in Table 11 indicate that with 80% certainty DMQL-CS has statistically higher
accuracy than the other algorithms. Note that DMQL-CS obtains the global optimal value 0.00 on F1
and F11. DMQL-CS is significantly better than the three other algorithms, especially on functions CEC
2013-F1, CEC 2013-F2, and CEC 2013-F4. About basic Multimodal Function and composition Functions
(CEC 2013-F6–CEC 2013-F28), the ability of DMQL-CS to find the optimal solution is slightly better
than that of CLPSO. For functions CEC 2013-F5, CEC 2013-F7, CEC 2013-F17, CEC 2013-F22, and CEC
2013-F25, the performance of DMQL-CS is slightly worse than the other algorithms. For the Unimodal
problem CEC 2013-F3, jDE obtains the best solution 2.99 × 106. On Shift Rastrigin Function, SaDE
and jDE can get better solutions of 1.10 × 101 and 1.06 × 10−4, respectively. For CEC 2013-F25–CEC
2013-F26, DMQL-CS is obviously better than SaDE and jDE. CLPSO has the weakest ability to find
the optimal solution for 28 functions. From the above results, it can be seen that DMQL-CS with
Q-Learning and genetic operations has a better overall performance than all other tested competitors
on the CEC 2013 test suite. Table 13 reports the rankings of the results between DMQL-CS and other
algorithms. In Table 13, it can be seen that DMQL-CS performs the best among the four algorithms.
DMQL-CS exhibits consistent ranks of the first in optimizing most of the functions. For a clearer
observation that DMQL-CS performs best, Table 12 shows the ranking of the algorithms in according to
the Friedman test. DMQL-CS obtains the best rank, jDE ranks second, followed by SaDE and CLPSO.
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Table 12. The ranking of different strategies according to the Friedman test.

SaDE jDE CLPSO DMQL-CS

Friedman rank 3.34 2.95 4.26 2.59
Final rank 3 2 4 1

Table 13. Comparisons between DMQL-CS and other algorithms for CEC 2013 test suite.

Function
SaDE jDE CLPSO DMQL-CS

Rank Rank Rank Rank

CEC 2013-F1 1 (≈/=) 1 (≈/=) 4 (-) 1
CEC 2013-F2 4 (-) 2 (-) 3 (-) 1
CEC 2013-F3 2 (-) 1 (+) 4 (-) 3
CEC 2013-F4 3 (-) 2 (-) 4 (-) 1
CEC 2013-F5 1 (+) 3 (+) 2 (+) 4
CEC 2013-F6 3 (-) 2 (-) 4 (-) 1
CEC 2013-F7 2 (+) 1 (+) 3 (+) 4
CEC 2013-F8 4 (-) 1 (+) 3 (-) 2
CEC 2013-F9 2 (-) 3 (-) 4 (-) 1

CEC 2013-F10 2 (-) 3 (-) 4 (-) 1
CEC 2013-F11 3 (-) 1 (≈/=) 4 (-) 1
CEC 2013-F12 2 (-) 3 (-) 4 (-) 1
CEC 2013-F13 1 (+) 3 (+) 4 (+) 2
CEC 2013-F14 2 (+) 1 (+) 4 (-) 3
CEC 2013-F15 1 (+) 3 (-) 4 (-) 2
CEC 2013-F16 2 (-) 3 (-) 4 (-) 1
CEC 2013-F17 1 (+) 2 (+) 3 (+) 4
CEC 2013-F18 2 (-) 3 (-) 4 (-) 1
CEC 2013-F19 4 (-) 1 (+) 2 (+) 3
CEC 2013-F20 2 (-) 3 (-) 4 (-) 1
CEC 2013-F21 3 (-) 2 (-) 4 (-) 1
CEC 2013-F22 3 (+) 2 (+) 1 (+) 4
CEC 2013-F23 2 (-) 3 (-) 4 (-) 1
CEC 2013-F24 2 (+) 1 (+) 4 (-) 3
CEC 2013-F25 1(+) 2 (+) 3 (+) 4
CEC 2013-F26 4 (-) 3 (-) 2 (-) 1
CEC 2013-F27 1 (+) 2 (+) 4 (-) 3
CEC 2013-F28 3 (-) 3 (-) 2 (-) 1

Rank_Sun 63 60 96 56
Rank_Final 3 2 4 1

5.4. Application in the Problem of Logistics Distribution Center Location

5.4.1. Problem Description

The location of logistics distribution center is an important link in the logistics system. The location
of distribution center determines the efficiency of the entire logistics network system and the utilization
of resources. The location selection model of logistics distribution center is a nonlinear model with
more complex constraints and non-smooth characteristics, which can be attributed to HP-hard problem.
The problem of logistics distribution center location can be described as: m cargo distribution centers
are searched in n demand points, so that the distance between m searched distribution centers and
other n cargo demand points is the shortest. At the same time, the following constraint conditions
must be met: the supply of goods in the distribution center can meet the requirements of the cargo
demand points; the goods required for a cargo demand point can only be provided by one distribution
center; and the cost of transporting the goods to the distribution center is not considered. According
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to the above assumptions, the mathematical model of the problem for logistics distribution center
location can be described as:

min(cos t) =
m∑

i=1

n∑
j=1

(needj · disti, j · μi. j) (18)

s.t.
m∑

i=1

μi, j = 1, i ∈M, j ∈ N (19)

μi, j ≤ hj, i ∈M, j ∈ N (20)

m∑
t=1

hi ≤ p, i ∈M (21)

hj ∈ {0, 1}, i ∈M (22)

μi, j ∈ {0, 1}, i ∈M, j ∈ N (23)

M =
{
j
∣∣∣ j = 1, 2, . . . , m

}
N =

{
j
∣∣∣ j = 1, 2, . . . , n

}
(24)

where Equation (18) is the objective function, cost represents the transportation cost, m is the number
of logistics distribution center, n determines the number of goods demand point, nestj is the demand
quantity of demand point j, and disti,j indicates the distance between distribution center i and goods
demand point j. When ui,j is equal to 1, the goods of demand point j are distributed by distribution
point i. Equations (19)–(24) are the constraints. Equation (19) defines that a demand point of goods can
only be distributed by a distribution center. Equation (20) indicates that each demand point of goods
must have a distribution center to distribute goods. Equation (21) represents the number of goods
demand points for a distribution center. Equations (22)–(24) are the relevant definitions.

5.4.2. Analysis of Experimental Results

To verify the performance of the DMQL-CS algorithm in solving the problem of logistics
distribution center location, 40 demand points were adopted. The geographical position coordinates
and demands are shown in Table 14. To make a fair comparison, all experiments were carried out on
a P4 Dual-core platform with a 1.75 GHz processor and 4 GB memory, running under the Windows
7.0 operating system. The algorithms were written by MATLAB R2017a. The maximum number
of iterations, population size, and the times of running were set to 30,000, 15, and 30, respectively.
The probability of foreign eggs being found was = 0.25.

Table 14. The geographical position coordinates and demands.

No
Coordinates

Demand No
Coordinates

Demand No
Coordinates

Demand No
Coordinates

Demand
x y x y x y x y

1 97 28 94 11 91 96 85 21 111 117 92 31 125 66 45
2 100 56 11 12 39 90 54 22 63 42 99 32 169 49 98
3 45 67 50 13 50 101 25 23 67 105 98 33 31 188 31
4 150 197 88 14 67 66 87 24 160 156 88 34 86 42 91
5 105 48 80 15 157 54 66 25 100 125 47 35 90 21 79
6 24 158 29 16 104 35 82 26 35 48 47 36 46 53 47
7 88 61 93 17 169 95 48 27 143 172 34 37 62 30 84
8 55 105 10 18 48 39 78 28 94 56 33 38 163 176 52
9 120 120 18 19 115 61 16 29 57 73 43 39 190 141 10
10 43 105 38 20 154 174 49 30 25 127 100 40 170 30 77

To further verify the efficiency of the DMQL-CS algorithm, the effectiveness of the proposed
method was verified by comparing the standard cuckoo search algorithm (CS) [69], the improved
cuckoo search algorithm (ICS) [101], a modified chaos-enhanced cuckoo search algorithm (CCS) [68],
and the immune genetic algorithm (IGA) [64]. Figure 5 shows the average convergence curve and
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optimal convergence curve of DMQL-CS algorithm for running 20, 30, and 50 times, respectively, in 40
cities and six distribution centers. The six optimal distribution center points and optimal routes found
by DMQL-CS algorithm are also shown in Figure 6. Figure 7 shows the average convergence curve and
optimal convergence curve of DMQL-CS algorithm running 20, 30, and 50 times, respectively, in 40
cities and 10 distribution centers. Table 15 shows distribution ranges for six distribution centers in 40
cities, and Table 16 shows distribution ranges for 10 distribution centers in 40 cities.

Figure 6. Convergence curves and optimal distribution centers scheme for the DMQL-CS algorithm in
6 distribution centers.

Figure 7. Convergence curves and optimal distribution centers scheme for the DMQL-CS algorithm in
10 distribution centers.

Table 15. The distribution scheme for six distribution centers in 40 cities.

Distribution Center Distribution Scope

10 33, 6, 30, 12, 13, 8, 23
21 11, 25, 9
20 4, 27, 38, 24, 39
22 14, 29, 3, 36, 26, 18, 37, 7
1 28, 25, 16, 19, 34, 35
15 31, 17, 32, 40
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Table 16. The distribution scheme for 10 distribution centers in 40 cities.

Distribution Center Distribution Scope

30 6, 33
23 8,12, 13, 10
14 3, 29
18 26, 36, 22, 37
11 -
28 7, 34, 2, 19, 31, 5
21 25, 9
1 16, 35
20 4, 27, 38, 24, 39
15 17, 32, 40

For the first set of experiments, the DMQL-CS algorithm was run 20, 30, and 50 times independently
in 40 cities for six distribution centers. As shown in Figure 6, the average convergence curve can
converge at 30 iterations. It indicates that the fitness value decreases rapidly for the logistics distribution
center location method based on DMQL-CS algorithm at early stage of the algorithm. The optimal
distribution cost and average distribution cost obtained by the DMQL-CS algorithm are 4.5013 × 104

and 4.8060 × 104, respectively, which indicates that DMQL-CS has high solution accuracy for six
distribution centers and reduces the cost of logistics distribution. The optimal distribution center
points found in Figure 3 are: 10, 21, 20, 22, 1, and 15.

For the second set of experiments, the DMQL-CS algorithm was run 20, 30, and 50 times
independently for 40 cities and 10 distribution centers. As shown in Figure 7, the average convergence
curve can converge at 20 iterations. The optimal distribution cost and average distribution cost obtained
by the DMQL-CS algorithm are 2.9811 × 104 and 3.0157 × 104, respectively, which indicates that
DMQL-CS has high solution accuracy not only for six distribution centers but also for 10 distribution
centers. The 10 optimal distribution centers and distribution addressing schemes are shown in Table 16
and Figure 7. The optimal distribution center points are: 30, 23, 14, 18, 11, 28, 21, 1, 20, and 15.

Due to limited space, only three comparison algorithms (CS [69], CCS [68], and IGA [64]) are
listed in this paper. IGA algorithm introduced crossover and variation strategy into immune algorithm,
which improves performance of the immune algorithm. In this experiment, the convergence curves
and optimal distribution scheme diagrams of 6 and 10 distribution centers in 40 cities are shown,
respectively. Figures 8 and 9 show the convergence curves and optimal distribution centers scheme
for the IGA algorithm for 6 and 10 distribution centers. Figures 10 and 11 show the convergence
curves and optimal distribution centers scheme for the CS algorithm for 6 and 10 distribution centers.
Figures 12 and 13 show the convergence curves and optimal distribution centers scheme for CCS
algorithm for 6 and 10 distribution centers. The six optimal distribution centers and distribution
addressing schemes for these algorithms are shown in Table 17, while the 10 optimal distribution
centers and distribution addressing schemes are shown in Table 18.
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Figure 8. Convergence curves and optimal distribution centers scheme for the IGA algorithm for six
distribution centers.

Figure 9. Convergence curves and optimal distribution centers scheme for the IGA algorithm for 10
distribution centers.

Figure 10. Convergence curves and optimal distribution centers scheme for the CS algorithm for six
distribution centers.
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Figure 11. Convergence curves and optimal distribution centers scheme for the CS algorithm for 10
distribution centers.

Figure 12. Convergence curves and optimal distribution centers scheme for the CCS algorithm for six
distribution centers.

Figure 13. Convergence curves and optimal distribution centers scheme for the CCS algorithm for 10
distribution centers.
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Table 17. Comparisons between DMQL-CS and other algorithms for six distribution centers.

CS IGA CCS

D-C Distribution Scope D-C Distribution Scope D-C Distribution Scope

3 30, 12, 10, 13, 29, 14, 36, 26 10 33, 6, 30, 12, 8, 23, 13 23 33, 6, 30, 10, 12, 13, 8, 11
11 8, 23, 6, 33, 25, 21, 9 22 26, 36, 3, 18, 29, 14, 37, 35 21 9, 25
22 18, 37, 7 21 25, 11, 9 22 26, 36, 3, 29, 14, 18, 37
1 34, 35, 28, 2, 5, 16, 19 2 7, 34, 28, 19, 31, 1, 16, 5, 19 16 1, 35, 34, 7, 28, 2, 5, 19
15 31, 32, 17, 40 20 4, 27, 24, 38, 39 15 31, 17, 32, 40
20 27, 4, 38, 24, 39 17 15, 32, 40 20 4, 27, 24, 38, 39

Table 18. Comparisons between DMQL-CS and other algorithms for 10 distribution centers.

CS IGA CCS

D-C Distribution Scope D-C Distribution Scope D-C Distribution Scope

6 30, 33 30 6, 33 6 33
8 10, 12, 13, 23, 19 23 12, 10, 13, 8 10 30, 12, 13, 8
18 3, 26, 36, 22, 37 14 29, 3, 26, 36, 18, 22 23 11
11 - 1 34, 37, 35, 16 14 3, 29
21 25, 9 2 7, 28,5,19,31 22 36, 26, 18, 37
28 14, 7, 34, 2, 19, 31 11 - 25 21, 9
16 5 25 21, 9 7 34, 28, 2,19
1 35 24 17, 20, 38, 39 16 1, 35, 5
20 4, 27, 38, 24, 39 15 17, 32, 40 15 31, 17, 32, 40
15 17, 32, 40 4 - 20 4, 27, 38, 24, 39

For the third set of experiments, the CS algorithm was run 20, 30 and 50 times independently for
the 40 city and six distribution center example. As shown in Figure 10, both the average convergence
curve and the optimal convergence curve can converge at 80 iterations. The optimal distribution
cost and average distribution cost obtained by the CS algorithm are 4.9629 × 104 and 6.1392 × 104,
respectively. As shown in Figure 11, average convergence curve can converge at 100 iterations for 10
distribution centers. The optimal distribution cost and average distribution cost obtained by the CS
algorithm are 3.2435 × 104 and 3.9502 × 104, which indicates that logistics distribution location strategy
of CS algorithm is the worst in both the optimal convergence curve and the average convergence curve.
Convergence curve of CCS algorithm can converge at 20 iterations in both the optimal convergence
curve and the average convergence curve. CCS algorithm is much inferior to DMQL-CS algorithm in
solving accuracy for 6 and 10 distribution centers. Although the IGA algorithm can converge, it has a
lot of noise for the average convergence curve. The convergence effect of IGA is worse compared with
CCS algorithm. The results of standard deviation indicate that DMQL-CS has a better robustness than
the other algorithms. The optimal distribution centers and distribution addressing schemes are shown
in Tables 17 and 18. According to Tables 17 and 18, the optimal distribution center points found by CS
algorithm for 6 and 10 distribution centers are (3, 11, 22, 1, 15, 20) and (6, 8, 18, 11, 21, 28, 16, 1, 20, 15).
The optimal distribution center points found by IGA algorithm for 6 and 10 distribution centers are (10,
22, 21, 2, 20, 17) and (30, 23, 14, 1, 2, 11, 25, 24, 15, 4). The optimal distribution center points found by
CCS algorithm for 6 and 10 distribution centers are (23, 22, 21, 16, 15, 20) and (6, 10, 23, 14, 22, 25, 7, 16,
15, 20).

To further analyze the effectiveness of DMQL-CS algorithm, DMQL-CS was compared with four
algorithms: CS [69], CCS [68], ICS [101], and IGA [64]. The comparison results with average fitness
value (Mean), the best fitness value (Best), the worst fitness value (Worst), standard deviation (Std),
and running time (Time) are shown in Table 19. It can be seen that the average distribution cost of
DMQL-CS at six distribution centers is 4.8060 × 104 which is 13,332 lower than CS, and the average
distribution cost in 10 distribution centers is 3.0157 × 104, which is 9345 lower than CS. Therefore,
DMQL-CS is obviously superior to CS algorithm. Although ICS can provide far better final results
for most of the cases, it takes more execution time because of the use of more expensive exploration
operation during the initial phases. For 6 and 10 distribution centers, there is not much difference
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between ICS and DMQL-CS for average distribution cost, but the optimal distribution cost of DMQL-CS
is significantly higher than that of ICS algorithm. Meanwhile, from the standard deviation and running
time data, it can be known that DMQL-CS has better robustness. The IGA algorithm achieved the worst
performance compared with other comparison algorithms, except for the CS algorithm. For the six
distribution centers, the average value obtained by IGA algorithm is 5.3008 × 104, which is 4948 more
than DMQL-CS. The average value obtained by IGA algorithm is 3.6460 × 104, which is 6330 more than
DMQL-CS for 10 distribution centers. CCS algorithm obtains the third best performance for 6 and 10
distribution center, respectively. In summary, the results of DMQL-CS are better than the comparison
algorithms in terms of optimal value, worst value, average value, or running time. The reason may
be that the Q-learning step size strategy improves the precision of the algorithm. The crossover and
mutation operator accelerate the convergence speed of the algorithm. Overall, the selection method of
logistics distribution center based on cuckoo search algorithm with Q-Learning and genetic operation
has better optimal value compared with the five other algorithms for both 6 and 10 distribution centers,
which indicates that the selection strategy based on DMQL-CS has higher solution accuracy and wider
range of optimization. Meanwhile, it can be seen in Table 19 that the running time of DMQL-CS is
significantly lower than the four other algorithms, and the number of iterations is significantly reduced.
In general, DMQL-CS algorithm can select the address of logistics distribution center more quickly and
accurately compared with the comparison algorithm. Finally, we can say that our proposed algorithm
interestingly outperforms other competitive algorithms in terms of convergence rate and robustness.

Table 19. Comparisons between DMQL-CS and other algorithms for 6 and 10 distribution centers in
40 cities.

Algorithm Distribution Points
Algorithms

Best Mean Worst Std Time (s)

CS
6 4.9629 × 104 6.1392 × 104 7.9211 ×104 2.4874 × 105 4.5187

10 3.2435 × 104 3.9502 × 104 4.3961 × 104 3.9872 × 105 4.5530

CCS
6 4.7913 × 104 4.9009 × 104 5.2085 × 104 4.9009 × 105 4.9486

10 3.1619 × 104 3.3815 × 104 3.4209 × 104 3.3815 × 104 4.8706

IGA
6 5.2032 × 104 5.3008 × 104 5.3814 × 104 5.9226 × 105 4.4255

10 3.5424 × 104 3.6460 × 104 3.6980 × 104 9.0172 × 105 4.5235

ICS
6 4.5748 × 104 4.6187 × 104 4.6919 × 104 5.8622 × 104 4.7245

10 3.1034 × 104 3.2197 × 104 3.3113 × 104 8.0172 × 104 4.7811

DMQL-CS
6 4.5013 × 104 4.8060 × 104 4.9253 ×104 1.2763 × 104 4.6255

10 2.9811 × 104 3.0157 × 104 3.2132 ×104 2.7651 × 104 4.6509

6. Conclusions

In this study, we constructed a model of CS with Q-Learning and genetic operators, and then solved
the address of logistics distribution center with DMQL-CS algorithm in which adopts Q-Learning
scheme to learn the individual optimal step size strategy according to the effect of individual multi-steps.
The most appropriate step size control strategy is chosen as a parameter for the current step size
evolution of the cuckoo, which increases the adaptability of individual evolution. At the same time,
to accelerate the convergence of the algorithm, genetic operators and hybrid operations are added to
DMQL-CS algorithm. Crossover and mutation operations expand the search area of the population,
and accelerate the convergence of the DMQL-CS algorithm.

To verify the performance of DMQL-CS, DMQL-CS was employed to solve fifteen benchmark test
functions and CEC 2013 test suit. The results show that the proposed DMQL-CS algorithm clearly
outperforms the standard CS algorithm. Comparing with some improved CS variants and DE variants,
we found that DMQL-CS algorithm outperforms the other algorithms on a majority of benchmarks.

71



Mathematics 2020, 8, 149

In addition, the effectiveness of the proposed method was further verified by comparing with CS, ICS,
CCS, and IGA for both 6 and 10 distribution centers.

In the future, we will focus our research work on the study of special cases to strengthen the
algorithm in more complex conditions. We will determine how to generalize our work to handle
combinatorial optimization problems and to extend DMQL-CS optimization algorithms to in the
realistic engineering areas and feature selection for machine learning [102].
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Abstract: When it comes to game playing, evolutionary and tree-based approaches are the most
popular approximate methods for decision making in the artificial intelligence field of game research.
The evolutionary domain therefore draws its inspiration for the design of approximate methods
from nature, while the tree-based domain builds an approximate representation of the world in a
tree-like structure, and then a search is conducted to find the optimal path inside that tree. In this
paper, we propose a novel metric for game feature validation in Real-Time Strategy (RTS) games.
Firstly, the identification and grouping of Real-Time Strategy game features is carried out, and,
secondly, groups are included into weighted classes with regard to their correlation and importance.
A novel metric is based on the groups, weighted classes, and how many times the playtesting
agent invalidated the game feature in a given game feature scenario. The metric is used in a series
of experiments involving recent state-of-the-art evolutionary and tree-based playtesting agents.
The experiments revealed that there was no major difference between evolutionary-based and
tree-based playtesting agents.

Keywords: evolutionary computation; playtesting; game feature; game simulation; game trees;
playtesting metric; validation

1. Introduction

Real-Time Strategy (RTS) games are designed as turn-based games where players, each following
their own strategies, try to defeat one another through a series of turns. The term ‘strategy’ stands for
the highest form of decision-making process, where the ultimate purpose is to defeat the opponent.
Decisions are made between turns (a turn is a transition from the current game state to the next one),
which are so short (i.e., in the range of milliseconds) that the game looks as though it is progressing in
real time. After a decision is made, the actions are executed. The difference between RTS games and
classical turn-based board games, of which probably the most well-known representative is the game
of chess, is in the execution of the actions. Actions in RTS games are durative and simultaneous [1],
as opposed to the instant moves, of which each player can make one per turn, in classical board games.

During the last decade, RTS games have become one of the best test beds for researching Artificial
Intelligence (AI) for games [2,3]. The main reason for the growth in research is the fact that RTS games
offer plenty of challenges for researchers. For example, RTS games are representatives of the highest
class of computational complexity [4], which is due to their extremely large state-action spaces [5]
(i.e., search space). Search space is often impossible to search exhaustively, because a specific game is
a high-dimensional space of game variants (many different parameters are available), and it is also
called game space [6].

Mathematics 2020, 8, 688; doi:10.3390/math8050688 www.mdpi.com/journal/mathematics77



Mathematics 2020, 8, 688

Exploring the search space of games is often considered to be a difficult problem [7], and most
of the complex optimization problems relating to games’ search spaces cannot be solved using the
exact methods that search for the optimal solution by enumerating all possible solutions. To solve
these problems, various methods have emerged in the past decades that solve problems approximately.
In recent times, researchers have been looking for inspiration for the design of these approximate
algorithms/methods in nature, e.g., Darwin’s evolutionary theory [8], the collective behavior of social
living insects [9], the social behavior of some animal species [10,11], physical phenomena [12], and so on.

The bio-inspired computation field [13] is a field that covers all of the algorithms/methods that
fall within the scope of these mentioned inspirations and is an extensively studied research area of AI.
Nowadays, numerous algorithms exist that fall under the bio-inspired computation umbrella, such as
the Artificial Bee Colony (ABC) Algorithm [14], Differential Evolution (DE) [15], Firefly Algorithm (FA),
Genetic Algorithm (GA) [16], Monarch Butterfly Optimization (MBO) [17], etc. Due to the popularity
of this subject, numerous unprecedented implications of these approaches exist among real-world
applications [13]. Some of the application areas where bio-inspired computation approaches have
been successfully applied include: antenna design [18], medicine [19], and dynamic data stream
clustering [20].

In addition to the many different application areas, bio-inspired computation also plays an
important role in the design and development of games. Bio-inspired computation approaches in
games have been used for procedural content generation [21], the development of controllers that
are able to play games [22], educational and serious games [23], intelligent gaming systems [24],
evolutionary methods in board games [25], behavioral design of non-player characters [26], etc.

Gameplaying agents (algorithms) are made to play the game in question, with the game rules being
hard-coded or self-obtained (general gameplaying), in a self-sustained way (i.e., no human input is
needed during the (general) gameplay) [27]. The primary task of the gameplaying agent is to win games,
and the secondary task is to win them with a higher score [28]. For the RTS gameplaying agent [29] to
be able to cope with the high computational complexity of the game space, it has to be able to function
inside different segments of the game, which are as follows: resource and production management
(also categorized as economy) [30], strategical [31], tactical [32] and micromanagement [33] operations,
scouting [34] and sometimes even diplomacy [35]. For one to be successful when playing an RTS game,
a balanced combination of all those segments must be considered by the agent [36]. Since gameplaying
agents are already built to operate and cover a variety of tasks in a given game space, they can be
adapted to become playtesting agents.

Playtesting agents are meant to play through the game (or a slice of it) and try to explore the
behavior that can generate data that would assist developers during the development phase of a
game [37,38]. Game studios conduct countless tests on gameplaying with real players [39], but relying
on humans for playtesting can result in higher costs and can also be inefficient [37]. The research on
playtesting is, therefore, very important for the following two reasons: it has a huge economic potential
and is of considerable interest to the game industry [40]. Further economic potential is also apparent in
semi-related fields, like Gamification [41].

A Game Design Document (GDC) specifies core gameplay, game elements, necessary game
features, etc. [42]. With this paper, we tackle the problem of the automatic validation of game
features for the game space specified in GDC and also address research requirements from articles
(for instance, [43]), where the authors point out the need that games with a higher complexity have
of scaling.

In this article, we will try to find the answers to the following research questions:

• RQ1: How easy is it to adapt gameplaying agents as playtesting agents in RTS games?
• RQ2: Which RTS game definitions can be used to make a comparison between different

playtesting agents?
• RQ3: How to evaluate playtesting agents based on RTS game definitions, and which are the most

beneficial to them?
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• RQ4: Is there a difference between evolutionary and the non-evolutionary approaches (like
standard Monte Carlo tree searches [44]) with regard to playtesting abilities?

• RQ5: How does one define valid/invalid game features in the game space?

Altogether, the main contributions of this paper are as follows:

- A novel metric is proposed to make a comparison between different playtesting agents;
- A method is proposed for adapting gameplaying agents as playtesting agents in real-time strategy

games; and
- The proposed metric is used in a series of experiments involving adapted evolutionary and

tree-based state-of-the-art gameplaying agents.

The structure of the remainder of this paper is as follows. Section 2 outlines the game features
of real-time strategy games and the microRTS simulation environment, while Section 3 presents the
proposed novel metric that will allow for the comparison of different playtesting agents. Section 4
describes the experimental environment, adaptation of gameplaying agents as playtesting agents
(including detailed descriptions of them) and the results of the experiments. A Discussion is provided
in Section 5, and the conclusion is presented in Section 6.

2. Real-Time Strategy Games

This chapter briefly outlines the game features of RTS games, and a description of the microRTS
environment is also provided.

2.1. Game Features of RTS Games

“Game feature” is a generic term used to refer to differences and similarities between games [45].
Game features are defined in GDC [46], and, after they are implemented, each game’s features rely on
the use of game mechanics. Game mechanics are methods invoked by agents in interacting with the
game world (e.g., to obtain the health value of the unit) [47]. In [48], 18 general definitions of game
features (hereinafter referred to as groups) can be found.

In the RTS game domain, different kinds of game feature subset groupings are possible (Economic,
Military, Map Coverage, Micro Skill and Macro Skill) [49], but to the best of our knowledge, the RTS
game features have not yet been placed into groups. The placement of RTS game features into groups
is, in our opinion, important, because it allows for the possibility of comparing RTS game features with
the features of other game genres in the future.

2.2. microRTS

There are many different RTS game worlds in existence. Not all of them are openly available,
but even some of the commercial ones have been opened up for research purposes (e.g., StarCraft™
was opened through the programming interface). microRTS is a simple non-commercial simulation
environment, which was created to test any theoretical ideas a game researcher might have.

This simulation environment follows standard RTS game genre game rules:

1. Players gather resources and use them to create structures and new mobile units;
2. The game goal is to defeat the opposing player in a battle for supremacy; and
3. Resources, structures, and mobile units must be cleverly used.

The microRTS environment includes the following features (seen in Figure 1):

• Four mobile units: worker, light (battle unit), heavy (battle unit) and ranged (battle unit);
• Two structures: base and barracks;
• Resources; and
• A wall.
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Figure 1. Micro real-time strategy (microRTS) environment, with all features visible.

Workers are used to gather resources and build structures, and they also possess the ability to
attacks with limited firepower. Light, heavy and ranged are the main battle units used for attacks on
opponent structures and mobile units. Battle units have different initial properties (i.e., a heavy battle
unit can sustain more damage before being destroyed versus a light battle unit, and a ranged unit can
shoot farther). Bases produce workers. Barracks are used to create battle units. The wall is used as a
physical barrier in the map.

microRTS allows configurable scenarios to be placed in the environment. Figure 1 presents one
such scenario: an 8 × 8 cell map, with fixed positions for resources (in the top left and bottom right
corners) and walls. The mobile units are not fixed and can be moved freely inside this environment.

Scenarios can be configured for varying map sizes (4 × 4, 8 × 8, 12 × 12, etc.) and with different
starting positions for the unit types, structures, and resources (which can be placed anywhere on the
map). The game can be played with visible features (graphical interface turned on for observations) or
in the background (which allows for a faster execution of scenarios and quicker overall simulations,
with less computer resources used).

microRTS also already includes many gameplaying agents that can be used in experiments.

3. Proposal of a Metric for Game Feature Validation

Our motivation to create a metric came from the need to be able to differentiate easily between
different playtesting agents’ performances, when multiple game features need to be validated. In order
to propose a novel metric for comparing playtesting agents, the following steps were considered in
our study:

- STEP 1: The RTS game features are identified;
- STEP 2: The game features are grouped in precise game feature groups; (STEP 2.1): Classification

of game feature groups according to their correlation (groups that are similar in description tend
to be correlated, and this also allows single game features to be placed into multiple groups) and
importance (some groups are of a higher importance, because they reflect and are essential to
RTS gameplay, while some could be left out without jeopardizing the game’s position in the RTS
game genre);

- STEP 3: For empty groups in STEP 2, a further identification of the RTS game features is conducted
by including more search strings and other search engines (e.g., Google Scholar); and

- STEP 4: The novel metric is proposed.
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All steps are described in detail in the following subsections and are presented graphically in
Figure 2.

 

Figure 2. Pathway (steps taken) from the identification of the RTS game features to the novel metric.

3.1. Identification of RTS Game Features

Game features are mentioned in many RTS game research works, but they are scattered across
different subdomains and research agendas. Our goal was to use the pool of research articles and
dissertations and to identify the game features included in this research. The pool was reviewed with
the help of a literature search. The ISI Web of Science and ProQuest research search engines were used.
A search query with the following search string was made: “game features” and “real-time strategy
games”, which returned 88 hits for the ISI Web of Science and 34 hits for ProQuest.

The results (articles and dissertations) were filtered to exclude non-RTS game research works.
A manual search was conducted through the research work for mentions of the “feature” string
(note: 14 works from the ISI Web of Science and 0 for ProQuest were located after a manual search).
The located text was extracted and analyzed for surrounding context, then transformed into a compact
format that could act as a short game feature description. The surrounding context was used to
transform the text, because not all research work has game features that can be used as-is. A short
description was then made of the list of game feature descriptions. If a description was already on the
list, and it was not adding additional information, it was omitted (note: seven works from the ISI Web
of Science were omitted). Additionally, one research work can include more than just one mention of
the string “feature” with the surrounding context.

Note: Future work could broaden the scope and include other search strings (like “aspect” or
“feature”) for a more in-depth survey of the general RTS features.

Table 1 includes a list of short game feature descriptions, which were produced after the completion
of the first step. The short game feature descriptions are accompanied by a reference.
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Table 1. Game feature descriptions derived from related work.

Game Feature Label Short Game Feature Description
Short Game

Feature Label
Reference (Used as a
Basis for Extraction)

Resource gathering
Game unit (worker) collects at least x units of type A
resources and at least y units of type B resources in

num trips.
GF1_RG [50]

Game engine
features and objects

Game unit (battle unit) always hits with x points
of damage. GF2_EOBJ [51]

Game difficulty
(aiding)

The opponent is aided with x more units, resulting in
a player losing every game.

Note: such a feature can be part of an advanced
mode, where non-advanced users must

not/cannot win.

GF3_DIFA [52]

Game objective
(construction)

If the player tries to, it must be able to create x game
structure(s) (e.g., barracks). GF4_CONS [53]

Game assessment
Game score is calculated based on raw features

(e.g., no. of workers) and must represent the game
state status correctly when presented to the player.

GF5_AST [54]

Stumbling block The player cannot destroy the enemy in a specific
part of the map due to stumbling blocks (e.g., a wall). GF6_SB [55]

Game exploration
(unlocking new

technologies)

If the player tries discovery, it can create x game
units (e.g., battle unit–light) through the usage of

game structure(s) (e.g., barracks).
GF7_EXPL [56]

Special unit
The player is confronted with a special game unit
(e.g., Super-Heavy with special features), which
cannot be destroyed with the given resources.

GF8_FANT [57]

Partial information
(fog-of-war)

The player cannot operate in a partially observable
environment, so it therefore cannot destroy the

opponent in such an environment.
GF9_PARI [58]

Game difficulty
(challenge)

The player cannot destroy x structures (e.g., barracks)
guarded with y rushing game units (e.g., battle

unit–heavy) with access to z units of A
type resources.

GF10_DIFC [52]

Game control (take
over the map)

The player can destroy all the structures on the map
before the time runs out. GF11_GCMP [59]

Interaction on a
complex map

If the player controlling x battle units (e.g., a heavy
battle unit) finds a static unit (e.g., barracks) in a

maze (or complex map), the static unit is
always destroyed.

GF12_INTE [60]

Resource gathering
under attack

A gatherer (e.g., a worker) is always destroyed when
trying to gather resources. GF13_RG2 [61]

3.2. Grouping the Game Features into Specific Groups

The grouping of game features into specific groups has two benefits: a group consists of game
features with similar modus operandi (i.e., correlated and in the same context), and groups can serve
as a basis for sharing research with other game genres.

We already mentioned (Section 2.1) that the literature search revealed 18 groups, which are
formed independently of the specific game genre, and which we will use for grouping. These groups
are: adaptation, assessment/rewards/scores, challenge, conflict, control, exploration, fantasy/location,
interaction/interactivity (equipment), interaction (interpersonal/social), language/communication,
motivation, mystery, pieces or players, progress and surprise, representation, rules/goals, safety and
sensory stimuli. A detailed description about the meaning of each of the groups can be found in the
tabular presentation in [62].

Table 2 presents the results after the completion of both steps, with references to the source of the
compact description. Our goal was to have at least one game feature representative for each of the
groups. If there was no game feature available in Table 1 for an empty group, we tried to locate the
research work for that group by searching via Google Scholar (STEP 3) using different search strings
(e.g., “impassable terrain” for a conflict group) in regard to the context of the group. The research
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works found went through the procedure described in STEP 1, and a short game feature description
was included in Table 1 and in the accordingly empty group in Table 2. (Observation: we noticed that
many research works on game feature descriptions originated from the domain of player/opponent
modeling, RTS replay analysis, game balancing and strategy selection/prediction.) One game feature
can belong to more than one group. For some groups, we could not find or create any viable game
feature description that could be measured by the game mechanics. Such groups remained empty
but were still included in the Table. The reason: future RTS research could produce game features for
currently empty groups.

Table 2. Game definition groups and their game feature representatives.

ID Group Short Game Feature Label

G1 Adaptation GF3_DIFA 1, GF10_DIFC

G2 Assessment/Rewards/Scores GF5_AST 1

G3 Challenge GF3_DIFA, GF8_FANT,
GF10_DIFC 1, GF12_INTE

G4 Conflict GF6_SB 1, GF9_PARI, GF10_DIFC, GF12_INTE, GF13_RG2

G5 Control GF2_EOBJ, GF9_PARI,
GF10_DIFC, GF11_GCMP 1, GF12_INTE

G6 Exploration GF7_EXPL 1, GF9_PARI, GF12_INTE

G7 Fantasy/Location GF8_FANT 1

G8
Interaction/Interactivity

(Equipment)
GF2_EOBJ, GF4_CONS,

GF7_EXPL, GF12_INTE 1

G9 Interaction (Interpersonal/Social) (empty—beyond the scope of this article 2)

G10 Language/Communication (empty)

G11 Motivation (empty)

G12 Mystery GF9_PARI 1

G13 Pieces or Players

GF1_RG, GF2_EOBJ 1, GF3_DIFA, GF4_CONS,
GF5_AST, GF6_SB,

GF7_EXPL, GF8_FANT, GF9_PARI,
GF10_DIFC, GF11_GCMP, GF12_INTE, GF13_RG2

G14 Progress and Surprise
GF1_RG, GF4_CONS 1, GF6_SB, GF7_EXPL,

GF8_FANT, GF9_PARI, GF10_DIFC,
GF11_GCMP, GF12_INTE, GF13_RG2

G15 Representation (empty)

G16 Rules/goals GF1_RG 1, GF2_EOBJ, GF4_CONS,
GF7_EXPL, GF13_RG2

G17 Safety GF1_RG, GF13_RG2 1

G18 Sensory stimuli (empty)
1 Representative of the group used for the experiment. 2 The interaction (Interpersonal/Social) group was left empty,
because it would require the interaction of multiple players (a single gameplaying agent modified for a playtesting
agent supports only single player operations).

3.3. Classification of Feature Groups According to Their Correlation and Importance

As game features tend to be correlated, so do groups. One group can be, context wise, closely
related to some groups but only loosely related to others. Additionally, some contexts are more
important than others with regard to RTS gameplay.

Table 3 presents the classification of feature groups into three importance classes:
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• The high-importance class contains groups that represent the essence of RTS gameplay (based on
our understanding of the RTS game worlds and their aspects [63]);

• Groups that operate on a game mechanics level (e.g., Interaction/Interactivity (Equipment) group)
or are not essential to the game (they could potentially be left out, e.g., Mystery group) are in the
medium-importance class; and

• Groups that, in Table 2, did not have a feature representative (empty of features) were included in
the low-importance class.

Table 3. Classification of feature groups based on their correlation and importance.

Class Groups Weight Set

High
importance

Adaptation, Challenge, Control, Pieces or Players,
Progress and Surprise, Rules/goals, Safety W1 CH = {G1, G3, G5, G13,

G14, G16, G17}

Medium
importance

Assessment/Rewards/Scores, Conflict,
Exploration, Fantasy/Location,

Interaction/Interactivity (Equipment),
Motivation, Mystery

W2 CM = {G2, G4, G6, G7, G8,
G12}

Low
importance

Interaction (Interpersonal/Social),
Language/Communication, Representation,

Sensory stimuli
W3 CL = {G9, G10, G11, G15,

G18}

The importance level of each of the groups is represented by a class. Regarding the game worlds,
we allow for the possibility of different reconfigurations of the groups inside the classes. We also
included the weight and mathematical description of the set. Weight is a numerical value that is set by
the user of the metric. It represents how much the groups belonging to the specific class will count
towards the metric score.

3.4. Proposal of the Metric

In this subchapter, we explain our metric for summarizing agents’ performance while they validate
game features in an RTS game space. The metric calculates its score based on how many times the
playtesting agent invalidated the game feature of a fixed number of repeats for a given scenario
(the sum of validations and invalidations equals the number of scenario repeats).

If the playtesting agent during the execution of the scenario could not test the game feature,
because it does not come into a situation, or it is not programmed to deal with the situation where
validation can take place, then such a game feature is valid from this point of view. The number of
successful validations is, therefore, omitted from the game score, since it is biased.

For a set of groups Gi, 1 ≤ i ≤ 18, where each member of group Gi holds a set of Game features
(GFs) (GFj ∈ Gi, 0 ≤ j), and each GFi holds a set of executable scenarios S (Sk ∈ GFi, 1 ≤ k), the number
of unsuccessful validations per scenario is defined by numInvalidijk, and the number of times the
scenario is repeated is defined by numOfScenRep = n, 1 ≤ n, the following formulas apply:

invalidPercPerScen (ijk, numOfScenReps) = numInvalidijk/numOfScenRep (1)

calcSetScore (set, numOfScenReps) =
∑

i ∈ set
∑

j≥0
∑

k≥1 invalidPercPerScen (ijk, numOfScenRep) (2)

agentPlaytestingScore =
W1 * calcSetScore ({1, 3, 5, 13, 14, 16, 17}, numOfScenRep)
+W2 * calcSetScore ({2, 4, 6, 7, 8, 12}, numOfScenRep)
+W3 * calcSetScore ({9, 10, 11, 15, 18}, numOfScenRep)

(3)

In Equation (1), the number of invalidations of a given group (index i), game feature (index j)
and scenario (index k) is divided by the total number of scenario repeats. In Equation (2), the score is
calculated for all the game features and scenarios that the set of groups holds. In Equation (3), the
scores of the set of groups are multiplied by their respective weights.
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4. Experiments and Results

In this chapter, we present the specifications of hardware and software used for the experimental
environment, as well as the results of the experiments.

4.1. Experimental Environment

Hardware: The experiment was carried out on an i7-3770k CPU computer @ 3.50 (turbo: 3.9) GHz,
4 cores (note: during the experimentation, only one core was used, since agents do not implement the
multi-core support) and 16 GB RAM.

Software: OS Windows 10 Pro and Java Development Kit 13.0.2. The experiment was set in the
latest version of the microRTS environment, acquired from an online source at the time of preparing
this article [64]. The microRTS environment comes pre-loaded with the following gameplaying agents:
RandomAI, RandomAIBiased, MonteCarlo, IDRTMinimax, IDRTMinimaxRandomized, IDABCD,
UCT, PuppetSearchMCTS, and NaiveMCTS. TiamatBot was acquired from the online source [65].
MixedBot (which includes TiamatBot source files but an improved version) was acquired from the
online source [66] and was included in the microRTS environment. Every gameplaying agent is used
in the experiment as it was acquired from the online source of original authors (i.e., no code or internal
parameter was changed for experimental purposes).

Table 4 shows the hyper-parameters used for the validation of every game feature presented in
Table 1.

Table 4. Hyper-parameters used in the experimentation.

Hyper-Parameter Value

continuing true
max_actions 100

max_playouts −1
playout_time 100
max_depth 10

randomized_ab_repeats 10
max_cycles 3000

max_inactive_cycles 300

These hyper-parameters are pre-set within the microRTS environment. The only parameter that
we changed was iterations, which we set to 50 (before it was set to 10). The standard UnitTypeTable
was used where necessary. Note: to validate the GF9_PARI, we changed the environment from fully
observable to partially observable.

The game feature descriptions presented in Table 1 were derived from related works and written
independently of a specific game environment, i.e., they can be implemented in any RTS game engine.
In Table 5, we present the same game features as those presented in Table 1, although the former are
adapted to the microRTS environment and a specific scenario. All game features in Table 5 are written
with the assumption that they are valid for the microRTS environment. If the playtesting agent actually
manages to invalidate a game feature from the list, it will add to its metric score.

4.2. Adaptation of Gameplaying Agents as Playtesting Agents

To adapt a gameplaying agent to the playtesting task, we created a non-intrusive component.
The component contains information about the scenario (map, position of units and the opponent) and
controls the validation procedure by following the playtesting agents’ progress (i.e., actions that it
executes) and by accessing game environment information (e.g., current game state status). All the
information is accessible through well-defined interfaces of the microRTS source code. One of the
interface methods is the method that returns the best action for the given game state, and every
gameplaying agent operating in the microRTS environment implements it.
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Table 5. microRTS game feature scenario.

Short Game
Feature Label

Experimental microRTS Game Feature Description Map

GF1_RG Worker collects at least 2 units of a resource in 2 trips. basesWorkers8x8.xml (standard map, which
comes with microRTS)

GF2_EOBJ A light battle unit always hits with 2 points
of damage.

melee4x4light2.xml
(standard map)

GF3_DIFA The opponent is aided by 5 more heavy battle units,
resulting in the player losing every game.

basesWorkers8x8.xml (standard map with 5
heavy units added for the opponent)

GF4_CONS If the player tries to, they must be able to create
1 barracks. basesWorkers8x8.xml (standard map)

GF5_AST

The game score is calculated on the basis of raw
features of the game state (no. of workers and no. of
light, heavy and ranged units multiplied by their cost

factors) and must represent the game state status
correctly when presented to the player.

melee14x12Mixed18.xml
(standard map)

GF6_SB The player cannot destroy the enemy in a specific
part of the map due to a wall.

basesWorkers12x12.xml
(standard map with a wall placed in the

middle of the map).

GF7_EXPL If the player tries discovery, it must be able to create 1
light battle unit through the usage of game barracks.

basesWorkers8x8.xml
(standard map)

GF8_FANT

The player is confronted with a special game unit
(Super-Heavy battle unit with ten-times the armor of

a normal-Heavy one), which cannot be destroyed
with the given resources.

basesWorkers8x8 (standard map with
Super-Heavy battle units added to help

the opponent)

GF9_PARI
The player cannot operate in a partially observable

environment, so it therefore cannot destroy the
opponent in such an environment.

basesWorkers12x12.xml (standard map with
a partially observable environment enabled)

GF10_DIFC
The player cannot destroy 2 barracks guarded with 3

heavy rushing units with access to 60 units
of resources.

8x8_2barracks3rushingHeavy60res.xml
(custom map)

GF11_GCMP The player can destroy three barracks before the time
runs out.

8x8_3barracks.xml
(custom map)

GF12_INTE
If the player controlling four heavy battle units finds
an enemy barracks in a large map (with obstacles and

walls), the enemy barracks are always destroyed.

chambers32x32.xml
(standard map with four heavy battle units

and barracks added)

GF13_RG2 The worker is always destroyed when trying to
gather resources.

8x8_workerDestroyed.xml (custom map
with the base and resources on different

parts of the map and four light battle units
in the middle)

When the actions are executed in a game state, it cycles to the next one (i.e., actions change the
inner state). During such cycles, our component tests if the Game Feature is valid or invalid. A Game
Feature is invalid if the condition that is written in the validation procedure of the game feature in
question is not fulfilled. The condition is tested against the information provided from the agent’s
executed action and the environment’s current game state. The validation procedure checks the validity
of the game feature, until either the maximum number of cycles is reached, or the game is over (i.e., one
of the players has no more units left on the field).

For example, the game feature, GF8_FANT, is validated by checking if the resulting game state
still holds this special unit after the agent has given an order to fire on it. If in any cycle the unit is
destroyed, the game feature is invalid.

4.3. Playtesting Agents

The following gameplaying agents have been adapted as playtesting agents for the purposes
of experimentation:
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1. Basic (part of the microRTS package):

• RandomAI: The choice of actions is completely random;
• RandomBiasedAI: Based on RandomAI, but with a five times higher probability of choosing

fighting or harvesting action over other actions; and
• MonteCarlo: A standard Monte Carlo search algorithm.

2. Evolutionary Algorithm (online source):

• TiamatBot (original): Uses an evolutionary procedure to derive action abstractions (conducted
as a preprocessing step [67]). The generation of action abstractions can be cast as a problem of
selecting a subset of pure strategies from a pool of options. It uses Stratified Strategy Selection
(SSS) to plan in real time in the space defined by the action abstraction thus generated [68].
It outperformed the best performing methods in the 2017 microRTS competition [69] and is
therefore considered as one of the current state-of-the-art gameplaying agents.

3. Tree-Based (part of the microRTS package):

• IDRTMinimax: An iterative-deepening version of RTMinimax (minimax is defined here by
time, not by agent moves) that uses available time to search in a tree as deeply as possible;

• IDRTMinimaxRandomized: An agent that uses randomized alpha-beta (a better assessment
for situations where players execute moves simultaneously);

• IDABCD: Alpha-beta considering duration. It is a modified RTMinimax [70];
• UCT: Standard UCT (with a UCB1 sampling policy);
• PuppetSearchMCTS: An adversarial search framework based on scripts that can expose

choice points to a look-ahead procedure. A Monte Carlo adversarial search tree was used to
search over sequences of puppet moves. The input script into an agent’s constructor was a
basic configurable script that used a Unit Type Table [71].

• NaiveMCTS: A Standard Monte Carlo search, but which uses naïve sampling [72].
Two variations of the same algorithm were used (which differ in their initial parameter
settings): NaiveMCTS#A (max_Depth= 1, εl= 0.33, ε0= 0.75) and NaiveMCTS#B (max_depth
= 10, εl = 1.00, ε0 = 0.25).

4. Evolutionary and Tree-Based (online source):

• MixedBot: This bot integrates three bots into a single agent. The TiamatBot (improved
original) was used for strategy decisions, Capivara was used for tactical decisions [73],
and MicroRTSbot [74] included a mechanism that could change the time allocated for two
decision parts dynamically based on the number of close armies. MixedBot placed second in
the 2019 microRTS (standard track) competition (first place went to the game bot that also
uses offline/out-game learning [75]).

4.4. Results of the Playtesting Agents

For each of the playtesting agents, Table 6 shows how many times the group’s game feature
representative was validated or invalidated. Table 6 also shows what metric score they acquired.
The weights for calculating the metric score were set as follows: W1 = 1, W2 = 0.5 and W3 = 0. W3 was
set to 0, because the CL class groups are devoid of features. Additionally, empty groups were omitted
from the Table.

To allow for clearer results, we abbreviated the game feature representatives’ labels, e.g., G1 and its
GF3_DIFA Game Feature representative, if validated 50 times and invalidated 0 times, was shortened
to G1GF3(50, 0).
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Table 6. Playtesting agent results for feature validations and their metric score.

Playtesting Agent
Groups and Game Features
(Valid num./Invalid num.)

Metric
Score

RandomAI

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(50, 0), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0

RandomBiasedAI

G1GF3(49, 1), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(28, 22), G8GF12(50, 0),
G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),

G17GF13(50, 0)

0.24

MonteCarlo

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.5

TiamatBot

G1GF3(21, 29), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.08

IDRTMinimax

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.5

IDRTMinimaxRandomized

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.5

IDABCD

G1GF3(49, 1), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.52

UCT

G1GF3(24, 26), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.02

PuppetSearchMCTS

G1GF3(46, 4), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.58

NaiveMCTS#A

G1GF3(11, 39), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.28

NaiveMCTS#B

G1GF3(12, 38), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.26

MixedBot

G1GF3(34, 16), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.82

Table A1, which, due to its size, can be found in Appendix A, shows how the metric score changes
for each of the playtesting agents and all combinations of the W1 to be decreased from 1 to 0.55 (with
steps of 0.05) and those of W2 to be decreased from 0.50 to 0.05 (also with steps of 0.05). Note: the data
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used for calculating the metric scores is the same as those presented in the second column of Table 6.
RandomAI was omitted from Table A1, because its metric score is zero for all the combinations (it did
not invalidate any of the features).

5. Discussion

During the experimentation phase, the microRTS game engine environment performed as expected
(i.e., without visible or known bugs). Our presumption from the start of the experiment was that all
of the Game Features were valid, yet the experiments showed that two of the Game Features were
actually invalid (GF3 and GF8). A closer inspection of the GF3 results, specifically its invalidation
number, revealed that not all of the playtesting agents caught the invalid game feature, and that some
of them only invalidated it in a fraction of tries. Additionally, if the number of scenario repeats would
be set to lower than fifty, it is possible that only the playtesting agents with a better performance would
be successful in finding GF3 to be invalid.

GF3 was invalidated by eight playtesting agents, while GF8 was invalidated by all of them,
with the only exception being the basic RandomAI. The difference in the number of playtesting agents
that invalidated the game features, GF3 and GF8, successfully shows us that some game features are
more sophisticated and require agents that intelligently explore and exploit the search space in question.

We discovered two important guidelines for validation testing:

1. Good agents’ gameplaying performance is important, because it also reflects playtesting
performance; and

2. With a greater number of scenario repeats comes a higher probability of game features being valid.

Our purpose was not to judge the existing gameplaying agents created by the research community
based on the score they achieved. We did, however, use the invalid number part that they attained to
calculate the metric score for metric testing purposes. The results were encouraging. The state-of-the
art evolutionary and tree-based agents were good performers, not just for gameplaying, but also for
playtesting. The line between basic agents (e.g., G1GF3(50, 0)) and advanced ones (e.g., G1GF3(21, 29))
can also be clearly seen. We did not measure the average time for an agent to complete a scenario,
but during playtesting, we noticed that agents that were either basic (e.g., RandomAI) or very good
performers (e.g., NaiveMCTS) completed the validations in the fastest amount of time. We believe that
this resulted from decisions being made quickly (either bad or good).

At this point, we can also provide answers to the research questions presented in the Introduction.
RQ1: the adaptation of a gameplaying agent as a playtesting agent is straightforward, provided that the
game engine follows good software design techniques (components, interfaces, etc.). In our estimation,
this is very important, because it allows for research discoveries in the gameplaying domain to be
transferred to the playtesting domain and probably also for higher adaptation rates of such discoveries
for commercial use. RQ2: In comparing different playtesting agents, our metric relies on the groups
presented in Table 2. The groups belong to different classes (Table 3), each with their own weights.
Additional information for comparisons can also be found based on the calibration of these weights.
For that purpose, Table A1 was created in Appendix A, which shows how the metric score changes in
relation to the changes of the weights. In this way, we can give importance to a specific set of groups
and achieve a greater differentiation between the playtesting agents covering them. RQ3: playtesting
agents are evaluated through game feature definitions using the created metric. The most beneficial
Game Feature definitions are the ones that belong to the groups that are in the high-importance
class, shown in Table 3. RQ4: evolutionary and non-evolutionary approaches in the state-of-the-art
segment both performed well, and their playtesting abilities are high. No major differences were
detected for the game features and scenarios tested. RQ5: the validity of the game feature was defined,
with the condition of the validation procedure inside the component used for the adaptation of the
gameplaying agents.
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6. Conclusions

The experiments provide encouraging results, and we confirmed our belief that playtesting with
agents is important and worthy of further research. Playtesting agents can play in the same scenario
repeatedly and with good results, while repetitive play (e.g., playing the same scenario fifty or more
times) is probably tiresome for human players, who are therefore more prone to making errors. We also
confirmed that our novel metric performed as expected, because the metric scores revealed a certain
consistency when traversing from basic to state-of-the art playtesting agents. To the knowledge of
the authors, such a metric (i.e., one that would evaluate playtesting game agents based on their game
feature performance) does not yet exist. The creation of it is necessary to establish common ground for
the research conducted in the domain of game features and in the domain of playtesting agents.

Through a series of experiments, we were also interested in how different evolutionary-based
playtesting agents explored the search space. The valuable information obtained in our experiments
will serve us as a steppingstone in the development of new playtesting agents that are based on modern
Evolutionary Algorithms, as well as Swarm Intelligence algorithms.
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Appendix A

Table A1. Metric scores with variable weights for all the playtesting agents.

Playtesting Agent Metric Scores

RandomBiasedAI

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.24 0.239 0.238 0.237 0.236 0.235 0.234 0.233 0.232 0.231
0.45 0.218 0.217 0.216 0.215 0.214 0.213 0.212 0.211 0.21 0.209
0.4 0.196 0.195 0.194 0.193 0.192 0.191 0.19 0.189 0.188 0.187
0.35 0.174 0.173 0.172 0.171 0.17 0.169 0.168 0.167 0.166 0.165
0.3 0.152 0.151 0.15 0.149 0.148 0.147 0.146 0.145 0.144 0.143
0.25 0.13 0.129 0.128 0.127 0.126 0.125 0.124 0.123 0.122 0.121
0.2 0.108 0.107 0.106 0.105 0.104 0.103 0.102 0.101 0.1 0.099
0.15 0.086 0.085 0.084 0.083 0.082 0.081 0.08 0.079 0.078 0.077
0.1 0.064 0.063 0.062 0.061 0.06 0.059 0.058 0.057 0.056 0.055
0.05 0.042 0.041 0.04 0.039 0.038 0.037 0.036 0.035 0.034 0.033

MonteCarlo

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
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Table A1. Cont.

Playtesting Agent Metric Scores

TiamatBot

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.08 1.051 1.022 0.993 0.964 0.935 0.906 0.877 0.848 0.819
0.45 1.03 1.001 0.972 0.943 0.914 0.885 0.856 0.827 0.798 0.769
0.4 0.98 0.951 0.922 0.893 0.864 0.835 0.806 0.777 0.748 0.719
0.35 0.93 0.901 0.872 0.843 0.814 0.785 0.756 0.727 0.698 0.669
0.3 0.88 0.851 0.822 0.793 0.764 0.735 0.706 0.677 0.648 0.619
0.25 0.83 0.801 0.772 0.743 0.714 0.685 0.656 0.627 0.598 0.569
0.2 0.78 0.751 0.722 0.693 0.664 0.635 0.606 0.577 0.548 0.519
0.15 0.73 0.701 0.672 0.643 0.614 0.585 0.556 0.527 0.498 0.469
0.1 0.68 0.651 0.622 0.593 0.564 0.535 0.506 0.477 0.448 0.419
0.05 0.63 0.601 0.572 0.543 0.514 0.485 0.456 0.427 0.398 0.369

IDRTMinimax

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

IDRTMinimaxRandomized

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

IDABCD

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.52 0.519 0.518 0.517 0.516 0.515 0.514 0.513 0.512 0.511
0.45 0.47 0.469 0.468 0.467 0.466 0.465 0.464 0.463 0.462 0.461
0.4 0.42 0.419 0.418 0.417 0.416 0.415 0.414 0.413 0.412 0.411
0.35 0.37 0.369 0.368 0.367 0.366 0.365 0.364 0.363 0.362 0.361
0.3 0.32 0.319 0.318 0.317 0.316 0.315 0.314 0.313 0.312 0.311
0.25 0.27 0.269 0.268 0.267 0.266 0.265 0.264 0.263 0.262 0.261
0.2 0.22 0.219 0.218 0.217 0.216 0.215 0.214 0.213 0.212 0.211
0.15 0.17 0.169 0.168 0.167 0.166 0.165 0.164 0.163 0.162 0.161
0.1 0.12 0.119 0.118 0.117 0.116 0.115 0.114 0.113 0.112 0.111
0.05 0.07 0.069 0.068 0.067 0.066 0.065 0.064 0.063 0.062 0.061

UCT

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.02 0.994 0.968 0.942 0.916 0.89 0.864 0.838 0.812 0.786
0.45 0.97 0.944 0.918 0.892 0.866 0.84 0.814 0.788 0.762 0.736
0.4 0.92 0.894 0.868 0.842 0.816 0.79 0.764 0.738 0.712 0.686
0.35 0.87 0.844 0.818 0.792 0.766 0.74 0.714 0.688 0.662 0.636
0.3 0.82 0.794 0.768 0.742 0.716 0.69 0.664 0.638 0.612 0.586
0.25 0.77 0.744 0.718 0.692 0.666 0.64 0.614 0.588 0.562 0.536
0.2 0.72 0.694 0.668 0.642 0.616 0.59 0.564 0.538 0.512 0.486
0.15 0.67 0.644 0.618 0.592 0.566 0.54 0.514 0.488 0.462 0.436
0.1 0.62 0.594 0.568 0.542 0.516 0.49 0.464 0.438 0.412 0.386
0.05 0.57 0.544 0.518 0.492 0.466 0.44 0.414 0.388 0.362 0.336
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Table A1. Cont.

Playtesting Agent Metric Scores

PuppetSearchMCTS

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.58 0.576 0.572 0.568 0.564 0.56 0.556 0.552 0.548 0.544
0.45 0.53 0.526 0.522 0.518 0.514 0.51 0.506 0.502 0.498 0.494
0.4 0.48 0.476 0.472 0.468 0.464 0.46 0.456 0.452 0.448 0.444
0.35 0.43 0.426 0.422 0.418 0.414 0.41 0.406 0.402 0.398 0.394
0.3 0.38 0.376 0.372 0.368 0.364 0.36 0.356 0.352 0.348 0.344
0.25 0.33 0.326 0.322 0.318 0.314 0.31 0.306 0.302 0.298 0.294
0.2 0.28 0.276 0.272 0.268 0.264 0.26 0.256 0.252 0.248 0.244
0.15 0.23 0.226 0.222 0.218 0.214 0.21 0.206 0.202 0.198 0.194
0.1 0.18 0.176 0.172 0.168 0.164 0.16 0.156 0.152 0.148 0.144
0.05 0.13 0.126 0.122 0.118 0.114 0.11 0.106 0.102 0.098 0.094

NaiveMCTS#A

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.28 1.241 1.202 1.163 1.124 1.085 1.046 1.007 0.968 0.929
0.45 1.23 1.191 1.152 1.113 1.074 1.035 0.996 0.957 0.918 0.879
0.4 1.18 1.141 1.102 1.063 1.024 0.985 0.946 0.907 0.868 0.829
0.35 1.13 1.091 1.052 1.013 0.974 0.935 0.896 0.857 0.818 0.779
0.3 1.08 1.041 1.002 0.963 0.924 0.885 0.846 0.807 0.768 0.729
0.25 1.03 0.991 0.952 0.913 0.874 0.835 0.796 0.757 0.718 0.679
0.2 0.98 0.941 0.902 0.863 0.824 0.785 0.746 0.707 0.668 0.629
0.15 0.93 0.891 0.852 0.813 0.774 0.735 0.696 0.657 0.618 0.579
0.1 0.88 0.841 0.802 0.763 0.724 0.685 0.646 0.607 0.568 0.529
0.05 0.83 0.791 0.752 0.713 0.674 0.635 0.596 0.557 0.518 0.479

NaiveMCTS#B

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.26 1.222 1.184 1.146 1.108 1.07 1.032 0.994 0.956 0.918
0.45 1.21 1.172 1.134 1.096 1.058 1.02 0.982 0.944 0.906 0.868
0.4 1.16 1.122 1.084 1.046 1.008 0.97 0.932 0.894 0.856 0.818
0.35 1.11 1.072 1.034 0.996 0.958 0.92 0.882 0.844 0.806 0.768
0.3 1.06 1.022 0.984 0.946 0.908 0.87 0.832 0.794 0.756 0.718
0.25 1.01 0.972 0.934 0.896 0.858 0.82 0.782 0.744 0.706 0.668
0.2 0.96 0.922 0.884 0.846 0.808 0.77 0.732 0.694 0.656 0.618
0.15 0.91 0.872 0.834 0.796 0.758 0.72 0.682 0.644 0.606 0.568
0.1 0.86 0.822 0.784 0.746 0.708 0.67 0.632 0.594 0.556 0.518
0.05 0.81 0.772 0.734 0.696 0.658 0.62 0.582 0.544 0.506 0.468

MixedBot

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.82 0.84 0.788 0.772 0.756 0.74 0.724 0.708 0.692 0.676
0.45 0.77 0.754 0.738 0.722 0.706 0.69 0.674 0.658 0.642 0.626
0.4 0.72 0.704 0.688 0.672 0.656 0.64 0.624 0.608 0.592 0.576
0.35 0.67 0.654 0.638 0.622 0.606 0.59 0.574 0.558 0.542 0.526
0.3 0.62 0.604 0.588 0.572 0.556 0.54 0.524 0.508 0.492 0.476
0.25 0.57 0.554 0.538 0.522 0.506 0.49 0.474 0.458 0.442 0.426
0.2 0.52 0.504 0.488 0.472 0.456 0.44 0.424 0.408 0.392 0.376
0.15 0.47 0.454 0.438 0.422 0.406 0.39 0.374 0.358 0.342 0.326
0.1 0.42 0.404 0.388 0.372 0.356 0.34 0.324 0.308 0.292 0.276
0.05 0.37 0.354 0.338 0.322 0.306 0.29 0.274 0.258 0.242 0.226
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Abstract: The ranking of multi-metric scientific achievements is a challenging task. For example,
the scientific ranking of researchers utilizes two major types of indicators; namely, number of
publications and citations. In fact, they focus on how to select proper indicators, considering only one
indicator or combination of them. The majority of ranking methods combine several indicators,
but these methods are faced with a challenging concern—the assignment of suitable/optimal
weights to the targeted indicators. Pareto optimality is defined as a measure of efficiency
in the multi-objective optimization which seeks the optimal solutions by considering multiple
criteria/objectives simultaneously. The performance of the basic Pareto dominance depth ranking
strategy decreases by increasing the number of criteria (generally speaking, when it is more than
three criteria). In this paper, a new, modified Pareto dominance depth ranking strategy is proposed
which uses some dominance metrics obtained from the basic Pareto dominance depth ranking and
some sorted statistical metrics to rank the scientific achievements. It attempts to find the clusters
of compared data by using all of indicators simultaneously. Furthermore, we apply the proposed
method to address the multi-source ranking resolution problem which is very common these days;
for example, there are several world-wide institutions which rank the world’s universities every year,
but their rankings are not consistent. As our case studies, the proposed method was used to rank
several scientific datasets (i.e., researchers, universities, and countries) for proof of concept.

Keywords: Pareto optimality; h-index; ranking; dominance; Pareto-front; multi-indicators;
multi-metric; multi-resources; citation; universities ranking

1. Introduction

Nowadays, ranking of scientific impacts is a crucial task and it is a focus of research communities,
universities, and governmental funding agencies. In this ranking, the target entities can be researchers,
universities, countries, journals, or conferences. Performance analysis and benchmarking of scientific
achievement has a variety of substantial purposes. At the researcher level, the research’s impact
is an important measure to define the main rules of academic institutions and universities on
determination of funding, hiring, and promotions [1–3]. From the university’s view point, university
rankings are considered as a source of strategic information for governments, funding agencies, and the
media in order to compare universities; then students and their parents use university rankings as a
selection criterion [4]. As the assessment of scientific achievement has gained a great deal of attention
for various interested groups, such as students, parents, institutions, academicians, policy makers,
political leaders, donors/funding agencies, and news media; several assessment methods have been
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developed in the field of bibliometry and scientometrics through the utilization of mathematical
and/or statistical methods [1].

In order to measure a researcher’s performance, many indicators have been proposed which
can also be utilized in other scientific areas. Traditional research indicators include the numbers of
publications and citations, the average number of citations per paper, and the average number of
citations per year [5]. In 2005, Hirsch [6] proposed a new indicator, called h-index, which revolutionized
scientometrics (informetrics). The original definition of the h-index indicator is that, “A scientist has
the index h if h of his/her Np papers have at least received h citations each, and the other Np − h
papers have no more than h citations each.” Later, other indicators were proposed to enhance the
h-index. Additionally, h-index was defined for other scientific aggregation levels [7]. Ranking methods
at researcher level tend to use only one indicator (h-index or its improved versions), but at other
aggregation scientific levels they prefer to have a more comprehensive set of indicators. Research works
in the scientometrics can be divided into the following two main categories: the first category includes
methods which focus on introducing new indicators to enhance the performances of assessment
metrics, and in the second category, methods attempt to develop enhanced ranking methods for
obtaining ranks by using several various indicators.

There are various kinds of ranking methods; first, methods which focus only on one indicator;
and second, methods which combine several of them. Considering only a specific indicator makes
differences among the quality assessments of research outcomes very hard to be revealed. On the
other hand, there are a few challenges for considering several indicators simultaneously. For instance,
the method needs to find the proper weights for combining the indicators and also an efficient merging
strategy to combine several different types of indicators.

In the field of optimization, an algorithm tries to find the best solution in a search space
in terms of an objective function which should be minimized or maximized [8] accordingly.
However, in singe-objective problems [9], there is only one objective to be optimized; in the
multi-objective version, the algorithm tries to find a set of solutions based on more than one
objective [10]. In the multi-objective optimization [11,12], the non-dominated sorting [13,14] is
defined and used as a measure of efficiency in metaheuristic-based methods [15,16]. In [17], the basic
dominance ranking was used to identify the excellent scientists according to all selected criteria.
They selected all researchers in the first Pareto-front as excellent scientists, but by increasing the
number of criteria (more than three) most compared entities were placed in the first Pareto front
[17]. In this paper, we propose a modified, non-dominated sorting, which according to the basic
dominance ranking, utilizes two main metrics and then two statistical metrics which are the computed
means and medians of some ranks obtained by sorting each criterion’s value in all compared vectors.
This ranking has many major advantages: (1) it can perform very well at ranking all compared vectors
even with a large number of criteria; (2) each obtained Pareto front in the modified non-dominated
sorting has a smaller number of vectors in compared to the basic non-dominated sorting approach;
(3) it can consider the length time of academic research (called the research period) as an independent
indicator, which makes it possible to compare junior and senior researchers; (4) it is independent and
capable of accommodating new indicators; (5) there is no need to determine the optimal weights to
combine indicators. The modified Pareto dominance ranking was used to rank two research datasets
with many criteria, ranking universities (200 samples) and countries (231 samples); additionally,
the basic dominance ranking was applied to rank two research datasets with a low number of the
criteria, ranking computer science researchers based on h-index and period of publication (350 samples)
and ranking of universities based on triple rankings resources (100 samples).

The remaining sections of this paper are organized as follows. Section 2 presents a background
review which provides state-of-the-art scientific indicators and ranking methods. Section 3 describes
the proposed ranking method in detail. Section 4 presents case studies and corresponding discussions.
Finally, the paper is concluded in Section 5.
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2. Background Review

In this section, we review several state-of-the-art scientific indicators and several recent ranking methods.

2.1. A Brief Description of State-of-the-Art Scientific Indicators

Several indicators have been proposed to measure the scientific achievements. The pioneer studies
introduced some basic indicators and described how these indicators can be combined to find the
general intuition of the scientific outputs for researchers [18,19]. These indicators can be categorized in
the following three main groups [20,21]:

• Production based indicators: these indicators were developed to assess the quantity of production
such as the total number of published papers and the number of papers published during
a limited time.

• Impact based indicators: they were proposed to quantify the impact of the researchers’ publications;
e.g., the total number of citations, the average number of citations per paper, the number of
high-impact papers (papers with more than a specific number of citations), and the number of
citations of the high-impact papers.

• Indicators based on the impact of the journals: these indicators were designed to consider journals
where the papers are published; e.g., the median impact factor of the journals, relative citation rates
(publication citations compared with the average citations of papers in the journal), and normalized
position of the journals (computed according to position of journal in the ordered list in term of
impact factor).

Some advantages and disadvantages of well-known indicators [6,22] are shown in Table 1.

Table 1. A summary of advantages and disadvantages for some commonly used indicators.

Indicator Advantage Disadvantage

The total number of
published papers

It is a proper measure to quantify the
productivity.

It does not consider the impact of
their publications.

The total number of received
citations

It can measure the total impact. It may be inflated by a small number
of “big hits” when a paper has many
co-authors. It gives a Excess weight
to highly cited survey papers.

Average number of citations
per publication, without
counting self-citations

It can be applied to compare junior
and senior scientists (not in a
complete way, because the senior
researchers had more time for better
building up of this metric).

It is hard to find and rewards
low productivity and penalizes high
productivity.

Number of “significant
papers” (as the number of
papers with having more
than y citations)

It eliminates disadvantages of the
previous mentioned indicators; the
total number of published papers,
the total number of citations, and
average number of citations per
publication.

The value of “y” should be adjusted.

The number of citations to
each of the q most cited
papers

Similar to Number of “significant
papers,” it can overcomes many of
the mentioned disadvantages above.

“q” has not a single value so it is
difficult to compute and compare.

In 2005, Hirsch dramatically changed scientometrics (informetrics) by introducing the h-index
measure. Several studies have discussed and extended the validity of the h-index [23] since its
introduction. The h-index has some significant properties [24,25]. It considers two aspects, the number
of publications and their impacts on research. It performs better than other basic indicators (total
number of papers, total number of citations, average number of significant papers, etc.) at evaluating
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scientific achievements. In [25], an empirical study was conducted to confirm the superiority of
the h-index over other basic indicators. In addition, the h-index can effortlessly be computed by
using available resources such as the ISI Web of Science. Although it was extensively utilized as
a scientometrics measure, it still suffers from the following drawbacks [1,26–28]:

• The h-index highly depends on the length of the academic career (the research period) because it
is supposed the publications and citations of researchers increase over time. The h-index of new
researchers has a very low value, and so it is not applicable for comparing scientists at different
stages of their academic careers.

• It is field-dependent; therefore it can be useful to compare scientists in the same field of study.
• The h-index never decreases and also it may increase even if no new papers are published because

the number of received citations for scientists can be increased with time. However, the value
of h-index indicates the impact of the publications; it is strongly dependent on one aspect of the
research; i.e., the age of research. In order to compare two scientists fairly based on their research
achievements, in addition to quality evaluation, the period of time that they have researched over
is also important. In other words, for two researchers with the same value of h-index, the researcher
with shorter research period is the more successful researcher. Consequently, the h-index cannot be
a standalone metric to assess the rank of a scientist in terms of different criteria.

• It is insensitive to performance changes because when first h articles received at least h times h,
i.e., h2 citations, it does not consider the number of citations they receive.

• Additionally, the h-index suffers from the same issues as other indicators, such as self-citations
and being field-dependent. Some of these issues include difficulty in finding reference
standards, and also problems of collecting all required data to compute the h-index (for example,
discriminating between scientists with the same names and initials is challenging).

Several variants of the h-index have been developed to overcome the drawbacks of the h-index.
The m-quotient [6] was proposed to account for years since the first publication, and it is computed
as follows.

m-quotient =
h-index

n
, (1)

where n is the number of years since the first published paper of the scientist. Batista et al. [29]
introduced a complementary index as the hI index which is defined by:

hI = h2/NT
a , (2)

where NT
a is the number of authors in the considered h papers. In [30], A-index was suggested as the

average number of citations of publications included in the h(Hirsch)-core which is mathematically
defined as.

A =
1
h

h

∑
j=1

citj (3)

The AR index [31] was proposed as the square root of the sum of the average number of citations
per year of articles included in the h(Hirsch)-core. The mathematical definition of the index is as bellow.

AR =

√√√√ h

∑
j=1

citj

aj
, (4)

where aj is the age of jth paper. Liang et al. [26] suggested a new index, the R-index, which found
by calculating the square root of the sum of citations in the Hirsch core without dividing by h.
This indicator is mathematically defined as.

R =

√√√√ h

∑
j=1

citj (5)
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Egghe [28] introduced the g index which is defined as the highest number g of papers such that
the top g papers together have at least g2 citations. Additionally, it has proven that there is a unique
g for any set of papers and g > h. Egghe and Rousseau [32] proposed the citation-weighted h-index
(hw-index) as follows.

hw =

√√√√ r0

∑
j=1

citj, rw(i) =
∑i

j=1 citj

h
, (6)

where citj is the number of the j-th most cited paper; r0 is the largest row index i such that rw(i) ≤ citi.
In general, even enhanced version of h-index metrics suffer from combining several metrics instead of
considering them simultaneously.

2.2. A Brief Review of Ranking Methods

At the researcher level, all mentioned indicators can be applied to measure researchers’
achievements. Although other scientific applications such as ranking scientific journals, research teams,
research institutions, and countries tend to include a more comprehensive set of indicators, it is
possible to apply the scientific indicators of researcher in other scientific comparative applications.
For example, h-index can be calculated for an institute: “The h-index of an institute would be
h2 if h2 number of its researchers have an h1-index of at least h2 each, and the other (N − h2)
researchers have h1-indices lower than h2 each” [7]. In following, we briefly review some
common ranking methods and indicators for universities. University rankings mainly use two
different general categorizes of methodologies [33–39]; the first category uses all indicators [40,41] to
calculate a single score, while the second category focuses more on a single dimension of university
performance, such as the quality of research output [4], career outcomes of graduates [37], or the
mean h-index [42]. The other indicators for university rankings are publication and citation counts,
student/faculty ratio, percentage of international students, Nobel and other prize commonality,
number of highly cited researchers and papers, articles published in Science and Nature, the h-index,
and web visibility. First, some ranking methodologies of the first category are briefly described
as below.

Liu and Cheng [43] proposed a ranking strategy, called Academic Ranking of World Universities
(ARWU), which considers four measures: quality of education, quality of faculty, research output,
and per capita performance. For comparison of four measures, the following six indicators are
considered: (1) alumni of a university winning a Nobel Prize or a Fields Medal, (2) staff of a university
winning a Nobel Prize or a Fields Medal, (3) highly cited researchers in 21 broad scientific fields,
(4) publications in Nature and Science, (5) publications indexed in Web of Science, and (6) per capita
academic performance of a university. It gives a score of 100 for the best performing university
in each category and this university is considered as the benchmark against for computing the
scores of all other universities. Then, the total scores of Universities are calculated as weighted
averages of their individual category scores [44]. THE-QS World University Ranking (THE-QS) (http:
//www.topuniversities.com) was published by the Quacquarelli Symonds Company and considers six
distinct indicators: academic reputation according to a large survey (40%), employer reputation (10%),
the student faculty ratio (20%), citations per faculty based on the Scopus database (20%), the proportions
of international professors (5%), and international students (5%). The World University Ranking
was developed by Times Higher Education (www.timeshighereducation.co.uk/world-university-
rankings) [41] which considers 13 indicators to rank universities. These indicators are categorized into
five areas: teaching (30%), research (30%), citations (30%), industry income (2.5%), and international
outlook (7.5%). They normalize the citation impact indicator to be suitable for different scientific
output data.

Another global ranking is the Scimago Institutions Rankings (SIR) developed by the Scimago
research group in Spain (www.scimagoir.com) [45]. SIR combines a quantity and various
quality metrics. Indicators are divided into three groups: research output (total number of the
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publication based on the Scopus database), international collaboration, leader output, high quality
publications, excellence, scientific leadership (excellence with leadership, and scientific talent pool),
innovation (innovative knowledge and technological impact), and societal (web size and the number
of incoming links). The Cybermetrics Lab developed the Ranking Web of World Universities
or Webometrics Ranking [46,47] which uses web data extracted from commercial search engines,
including the number of webpages, documents in rich formats (pdf, doc, ppt, and ps), papers indexed
by Google Scholar (indicator added in 2006), and the number of external in links as a measure of link
visibility or impact. Higher Education Evaluation and Accreditation Council of Taiwan [48]) conducts
university ranking which applies multiple indicators in the three categories: research productivity
(the number of articles published in the past 11 years (10%) and the number of articles published in
the current year (15%)), research impact (number of citations in the past 11 years (15%), number of
citations in the past 2 years (10%), and average number of citations in the past 11 years (10%)),
and research excellence (the h-index of the last 2 years (10%), the number of highly cited papers
in the past 11 years (15%), and the number of articles of the current year in high impact journals
(15%)). These rankings combine multiple weighted indicators to gain a single aggregate score to rank
all universities. Additionally, some universities rankings [49,50] employed I-distance method [51]
to apply all indicators for computing a single score as the rank. Besides its ability to calculate
a single index (by considering several indicators) and consequently ranking countries, CIDI startegy
utilizes the Pearson’s coefficients of correlation, calculated using the I-distance method. In this case,
the relevance of each input measure will be preserved. The I-distance method specifies the most
important indicator instead of calculating numerical weights. The rank of indicator is determined by
ordering them based on these correlations. In following, we mention some of ranking methodologies of
the second category. The Centre for Science and Technology Studies at Leiden University published the
LEIDEN Ranking (http://www.cwts.nl/ranking/LeidenRankingWebsite) [4,52] which has two main
categories of indicators: impact and collaboration. The impact group includes three indicators:
mean citation score, mean normalized citation score, and proportion of top 10% publications.
The collaboration group includes four indicators: proportion of inter-institutional collaborative
publications, proportion of international collaborative publications, proportion of collaborative
publications with industry, and mean geographical collaboration distance. The Leiden Ranking
considers the scientific performance instead of combining multiple indicators of university performance
in a single aggregate indicator. U-Multirank [53,54] employs the variety of institutional missions and
profiles and includes teaching and learning-related indicators. Additionally, it considers the importance
of a user-driven approach in which the stakeholders/users are asked to determine indicators and
their quality for ranking. In [37], they proposed a ranking methodology which considers only career
outcomes of university graduates. This ranking focuses on the impact of universities on industry
by their graduates. The mean h-index was used in [42] as a ranking metric to rank the chemical
engineering, chemistry, materials science, and physics departments in Greece.

3. Proposed Methodology

As mentioned in the Section 2, several indicators and ranking methods have been proposed
to measure the scientific achievements. There are two main categories of ranking methods: in the
first one, the methods use all indicators (multi-metric) and in the second one, the methods focus
on only one indicator (single-metric). Ranking methods by focusing on one indicator of scientific
achievements cannot reveal significant differences among compared entities. In ranking methods
with several indicators, first they need to assign weights for indicators which have considerable
impacts on the results of these raking methods [55,56]. Finding the proper weights according to
importance of indicators is a challenging task [57]. They also suffer from combining several different
kinds of indicators to achieve a single score. In this paper, we modify the dominance depth ranking
proposed in [13,14] utilized in the multi-objective optimization to rank scientific achievements. In 1964,
Pareto [58] proposed the Pareto optimality concept, which has been applied in a wide range of
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application, such as economics, game theory, multi-objective optimization, and the social sciences [59].
Pareto optimality was mathematically defined as a measure of efficiency in the multi-objective
optimization [12,60]. We explain Pareto optimality concepts and also the proposed method and
how it can be applied to evaluate scientific achievements. Without loss of generality, it is assumed
that the optimal value of each criterion as a preference be a minimal value. Seeking the optimal value
among both the minimal and maximal values is analogous, and if a criterion value element Ci to be
maximized, it is equivalent to minimize −Ci.

In the following, the Pareto optimality definitions are described by the assumption of the minimal
value as the optimal.

Definition 1 ((Pareto Dominance) [61]). A criterion vector u = (u1, . . . , un) dominates another criterion
vector v = (v1, . . . , vn) (denoted as u ≺ v) if and only if ∀i ∈ {1, . . . , n}, ui ≤ vi and u 
= v. This type of
dominance is called weak dominance in which two vectors can be same in some objectives, but they should be
different in at least one objective. However, in strict dominance, u has to be better on all objectives; i.e., it can not
have the same objective value with v.

The Pareto optimality concept is defined from the dominance concept as follows.

Definition 2 (Definition (Pareto Optimality) [61]). A criterion vector u in a set of criterion vectors (S) is
a Pareto optimal vector (non-dominated) if for every vector x, x does not dominate u, x � u.

Figure 1 shows Pareto optimal solutions and dominated solutions for a criterion value vectors (2D)
( f1, f2). According to this definition, for a set of objective function vectors or criterion value vectors,
the Pareto set is denoted as all Pareto optimal vectors which have no elements (criterion values) that
can be decreased without simultaneously causing an increase in at least one of the other elements of
vectors (assuming a Min-Min case).

Figure 1. Pareto optimal set (non-dominated solutions) and dominated solutions for a two dimensional space.

Definition 3 (Definition (Pareto-front) [61]). For a given set S, the Pareto front is defined as set S {x ∈
S|�y ∈ S, y ≺ x}.

Figure 2 shows the Pareto front for two dimensional space for all four possible cases for minimizing
or maximizing of two objective function vectors ( f1, f2) or a two criterion value vectors ( f1, f2).
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Figure 2. Pareto front for a two dimensional space.

Dominance depth ranking in the non-dominated sorting genetic algorithm (NSGA-II) was
proposed by Deb et al. [13] to partition a set of objective function vectors (criterion value vectors) into
several clusters by Pareto dominance concept. First, the non-dominated vectors in a set of criterion
value vectors assigned to rank 1 and form the first Pareto front (PF1), and all these non-dominated
vectors are removed. Then, non-dominated solutions are determined in the set and form the second
Pareto front (PF2). This process is repeated for other remaining criterion value vectors until there is
no vector left. Figure 3 illustrates an example of this ranking for a set of eight points (criterion value
vectors) and Table 2 shows the coordinates of points. First points 1, 2, 3, and 4 as non-dominated
solutions are ranked to rank 1. Then, for the rest of the points (points 5, 6, 7, and 8), non-dominated
solutions are determined so points 5 and 6 as non-dominated solutions are ranked as 2 and removed.
In the last iteration, the remaining points 7 and 8 are ranked as rank 3. The details of non-dominated
sorting algorithm is presented in Algorithm 1.
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Figure 3. An example of a dominance depth ranking method.
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Algorithm 1 Non-dominated sorting algorithm.
Input : V: Set of criteria vectors, N: The number of vectors
Output : Perato fronts ranks

while N 
= 0 do
for i ← 1 to N do

ni = 0 for j ← 1 to N do
// Calculating the number of vectors that dominate vi
if v(j) ≺ v(i) then

ni = ni + 1
end

end
if ni = ∅ then

Fi = Fi
⋃

v(i)
end

end
// Temporarily removing Pareto front from set to compute the next fronts

V = V − Fi N = N − size(Fi)
end

Table 2. A numerical example of computed new metrics for eight points shown in Figure 3. Four new
statistical metrics are mean-ranks, median-ranks, dominated number, and nn-dominated number.
Ranks-F1 and Ranks-F2 are ranks (two columns Ranks-F1 and Ranks-F2) for two criterion vectors F1
and F2.

Point F1 F2
Ranks-
F1

Ranks-
F2

Mean-
Ranks

Median-
Ranks

Non-
Dominated
Number

Dominated
Number

1 0.22 0.78 1 5 3 3 0 3
2 0.56 0.52 3 3 3 3 0 3
3 0.7 0.28 6 2 4 4 0 1
4 0.8 0.2 7 1 4 4 0 1
5 0.46 0.86 2 6 4 4 1 2
6 0.63 0.62 5 4 4.5 4.5 1 1
8 0.9 0.89 8 7 7.5 7.5 3 0
7 0.62 0.94 4 8 6 6 6 0

In [17], the dominance concept was used to identify the excellent scientists whose performances
cannot be surpassed by others with respect to all criteria. The proposed method can provide a short-list
of the distinguished researchers in the case of award nomination. It computes the sum of all criteria
and sorts all researchers according to this calculated sum value. After that, the researcher with the
maximum sum rmax is placed in the skyline set. The second best researcher is compared with the
researcher in the skyline set (rskyline); if he/she is not dominated by rmax, he/she is added into the
skyline set. This process is repeated for all remaining researchers to construct the skyline set: if
they are not dominated by all researchers in the skyline set (rskyline), then they are added into the
skyline set. In fact, they select all researchers in the first Pareto front using the dominance concept.
There is a well-known problem with the first Pareto created by the basic non-dominated sorting [17].
By increasing the number of criteria (more than three criteria) in the set of the criterion value vectors,
a large number of the compared vectors become non-dominated vectors and are placed in the first
Pareto front. By increasing the number of criteria, the chance of placing a criterion value vector while
having only one better criterion value in the first Pareto front is increased. In order to demonstrate this
problem, Table 3 shows three Pareto fronts by the non-dominated sorting for countries data extracted
from the site “http://www.scimagojr.com” including five indicators: citable documents (CI-DO),
citations, self-citations (SC), citations per document (CPD), and h-index; Table 3 shows the results of
the non-dominated sorting method. As it can be seen from Table 3, three countries, Panama, Gambia,
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and Bermuda, are in the first Pareto front because they have higher values for only one criterion
indicator (CPD) while other criteria values are low. Additionally, Montserrat has the rank 2 because it
has the high value for only the CPD indicator.

Table 3. Indicators and the Pareto fronts from one to three by the non-dominated sorting on the
country data.

Country Rank Documents CI-DO Citations CPD h-Index

United States 1 9,360,233 8,456,050 202,750,565 21.66 1783

Netherlands 1 746,289 682,627 16,594,528 22.24 752

Switzerland 1 541,846 501,917 12,592,003 23.24 744

Panama 1 5129 4830 137,585 26.82 142

Gambia 1 2004 1859 54,925 27.41 99

Bermuda 1 633 590 21,884 34.57 73

China 2 4,076,414 4,017,123 24,175,067 5.93 563

United Kingdom 2 2,624,530 2,272,675 50,790,508 19.35 1099

Sweden 2 503,889 471,036 10,832,336 21.5 666

Denmark 2 290,994 269,364 6,405,076 22.01 558

Iceland 2 15,625 14,353 357,678 22.89 218

Montserrat 2 95 93 2282 24.02 27

Germany 3 2,365,108 2,207,765 40,951,616 17.31 961

Canada 3 1,339,471 1,227,622 25,677,205 19.17 862

Israel 3 295,747 274,748 5,826,878 19.7 536

Faroe Islands 3 510 472 10,105 19.81 48

Guinea-Bissau 3 458 421 9357 20.43 50

In this paper, we propose a modified non-dominated sorting (described in Algorithm 2) to rank
the scientific data. First we use the dominance depth ranking for all vectors; after that for each
criterion value vector two new statistical metrics are calculated. For each vector, two metrics are the
dominated number and the non-dominated number which show the number of the dominated vectors
by this vector and the number of vectors which dominate this vector. Additionally, we used two other
statistical measures proposed in [62]. These statistical measures are computed to sort the criterion
value vectors. In [62], first for each criterion value Ci, all vectors are sorted according to this criterion
value Ci in ascending order and their ranks are assigned based on their sorting order. After that,
for each criterion value vector some statistical measures like the minimum of its rank or the sum of its
rank are used to make Pareto fronts.

We also sort all vectors according to each criterion value and calculate the ranks of vectors
corresponding this sorting; after that we compute the mean and median of ranks of each vector as
two new metrics. Table 2 shows an example of computed new metrics for eight points in Figure 3.
F1 and F2 are the values of sample points in Figure 3 which are considered just as the numerical
examples for a two-objective problem. For each point, ranks (two columns Ranks-F1 and Ranks-F2) for
two criterion vectors (F1, F2) are computed according to their sorting order. Thus, we have four new
statistical metrics (the mean and median of ranks, also the dominated number and the non-dominated
number) which we use as criteria (objectives) to measure various levels of scientific achievement by
applying dominance depth ranking again to make all Pareto fronts. We used the basic non-dominated
sorting for data with two and three criteria and the modified non-dominated sorting for the data with
more than three criteria. The proposed method has major advantages that are described in detail.
In this method, vectors with one better criterion value than others cannot move toward the first front.
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Additionally, increasing the number of criteria cannot negatively influence the obtained ranks (no big
portion of entities in the first front, as before); each rank corresponding to a Pareto front has a smaller
number of vectors, so in total it assigns more ranks to the criterion vectors.

Algorithm 2 Modified non-dominated sorting algorithm
Input : V: Dataset including criteria vectors.
Output : Ranks: Ranks of all criteria vectors

// determine the dominance relation on each pair of criterion vector.

Ndi=Number of vectors which dominate ith vector, vi in V;
NNdi=Number of dominated vectors by ith vector, vi in V;

// compute two new metrics

for c ← 1 to M do // For each criterion

// sort all values of each criteria over all vectors in ascending order.

SortedFc=Sort(Fc);
for i ← 1 to N do // For each vector in V
// compute the rank of ith vector based on cth criterion.

Rank(i, c)=Index of vi in SortedFc;
end

end
for i ← 1 to N do // For each vector in V

Meanranksi=Mean(SortedF(i, :));
Medianranksi=Median(SortedF(i, :));

end
// generate ranks of vectors based on the old and new metrics by Algorithm. 1

Ranks ← Non-dominated sorting algorithm(F1, ..., FM, Nd, NNd, Meanranks, Medianranks);

In order to demonstrate the performance of this modified non-dominated sorting, Table 4 shows
four Pareto fronts by the modified non-dominated sorting for extracted country data. Because the
considered criteria have different scales, in all experiments, in order to apply the proposed method,
they are normalized. As can be seen in the first Pareto front, only the United States is placed and
Panama is in the forth Pareto front. Additionally, other countries with only one high criterion value,
Gambia and Bermuda, which are in the first Pareto front by the non-dominated sorting method (as it
can be seen in Table 3) are not placed in four Pareto fronts obtained by the modified non-dominated
sorting method. Additionally, it can be seen that the number of countries in each Pareto front by using
the modified non-dominated sorting is smaller than in basic non-dominated sorting.

In addition, we consider the period research as a new criterion value. Using Pareto dominance
ranking makes it possible to have the research period as an independent indicator to be considered for
ranking the scientific data. Considering the research period as the indicator provides a predication
mean for some research cases. For example, suppose for comparing authors, criterion values be
h-index and the research period Ai = (h − index, time): two authors A1 = (80, 40) and A2 = (20, 10)
would be in the same Pareto front because based on Pareto optimality concept, they do not dominate
each other; therefore, we can predict that the author A2 probably will be able to have the same
performance as the author A1 (or even better) after some years. According to observed values of
indicators for universities, authors, and countries, this method can be utilized for prediction of their
future performance. Additionally, the time length indicator enhances this ranking method with
a traceable feature; that means by collecting data during times, we can observe how the performances
of universities or researchers change and if they can improve their Pareto front ranks or not. In addition,
this method can be applied to compute ranks by using obtained ranks from other ranking methods
(ranking by multiple resources). In this way, each indicator is an obtained rank from a ranking
method and it is expected that the non-dominated vectors in the first Pareto front contain the vectors
with the minimum/maximum values of indicators, for Min-Min or Max-Max cases, respectively.
Pareto dominance ranking can take into account any new kind of indicator as a new criterion value.
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Table 4. The Pareto fronts from one to forth by the proposed method on the country data.

Country Rank Documents CI-DO Citations CPD h-Index

United States 1 9,360,233 8,456,050 202,750,565 21.66 1783

Netherlands 2 746,289 682,627 16,594,528 22.24 752

United Kingdom 2 2,624,530 2,272,675 50,790,508 19.35 1099

Switzerland 3 541,846 501,917 12,592,003 23.24 7444

China 3 4,076,414 4,017,123 24,175,067 5.93 563

Germany 3 2,365,108 2,207,765 40,951,616 17.31 961

Canada 3 1,339,471 1,227,622 25,677,205 19.17 862

Panama 4 5129 4830 137,585 26.82 142

Sweden 4 503,889 471,036 10,832,336 21.5 666

Denmark 4 290,994 269,364 6,405,076 22.01 558

Iceland 4 15,625 14,353 357,678 22.89 218

Japan 4 2,212,636 2,133,326 30,436,114 13.76 797

France 4 1,684,479 1,582,197 28,329,815 16.82 878

4. Experimental Case Studies and Discussion

We run the basic Pareto dominance ranking on the following scientific data with two and three
criteria and modified Pareto dominance ranking on the following scientific data with more than three
criteria. The first dataset includes 350 top computer science researchers (http://web.cs.ucla.edu/
~palsberg/h-number.html) which contains a partial list of computer science researchers who each
has an h-index of 40 or higher according to the Google Scholar report. This data has two indicators:
research period (a low value is better) and h-index (a high value is better). The h-index values
were collected from Google Scholar for the year 2016 and research period values were calculated
from the year of the first publication of an author so far. The second dataset includes the 200 top
universities ranked by URAP (a nonprofit organization (http://www.urapcenter.org)). This dataset
has six indicators: article, citation, total document (TD), article impact total (AIT), citation impact
total (CIT), and international collaboration (IC). The third dataset has 231 top countries (for the year
2015) extracted from the site SJR (http://www.scimagojr.com), including six indicators: documents,
citable documents (CI-DO), citations, self-citations (SC), citations per document (CPD), and h-index.
We do not consider the SC indicator because it is not certain that the maximum value or minimum value
of this value is desirable. The forth dataset consists of the three ranks of 100 top common universities
collected from three resources; the QS World University Rankings (https://www.topuniversities.com),
URAP (http://www.urapcenter.org), and CWUR Rankings (http://cwur.org). In the following,
we report all results of mentioned approaches on the four datasets in detail.

4.1. The First Case Study: Ranking Researchers

Table A1 indicates the names of researchers, research period, h-index, and the obtained Pareto
ranks from the basic Pareto dominance ranking (Pareto ranking). From Table A1, it can be seen that
first Pareto ranks include researchers with high values of h-index and low research period values.
For instance, the researcher “Zhi-Hua Zhou” has the minimum value of research period 14 and the
researcher “A. Herbert” has the maximum value of h-index, 162. Researchers in the first Pareto front
are A. Herbert, K. Anil, Han Jiawei, Van Wil, Buyya Rajkumar, Perrig Adrian, and Zhou Zhi-Hua;
the second Pareto front contains Shenker Scott, Foster Ian, Salzberg Steven, Schlkopf Bernhard,
Schmid Cordelia, Abraham Ajith, and Xiao Yang. Additionally, it can be observed that researchers
with the maximum value of research year indicator (40) are associated with the higher rank because
they are dominated by other researchers according to Pareto dominance concept. Researchers having
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values close to the value of h-index 52 or higher are associated with the higher rank due to the Pareto
dominance concept. Figure 4 shows the ranks in terms of Pareto fronts for all researchers. It can be
seen from Figure 4 that the extent of improvement for a researcher Ai can change his/her Pareto front
ranking by looking at researchers which dominate Ai and are located in the better Pareto fronts.
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Figure 4. Pareto fronts for the researcher dataset. Different colors and symbols are used to distinguish
thirty five Pareto fronts with two research period (the horizontal axis) and h-index (the vertical
axis) indicators.

To gain a better understanding of the Pareto ranking with each indicator, we plot the obtained
Pareto ranks from the first rank to the thirty fifth versus each indicator. In Figure 5, vertical lines
demonstrate Pareto ranks from the first rank to the thirty fifth, which at the top of each line indicates
the maximum value of the indicator; its bottom is the minimum value of the indicator; and the short
horizontal tick in the middle of each line is the average value of the indicator. Figure 5 indicates
that the research period of the first Pareto front includes values with the maximum and minimum
of the length time. That is reasonable because it is expected that authors who have had more time
have higher h-index values so they could be located in the first Pareto front, and younger authors
having had shorter research periods and reasonable h-index values also could be in the first Pareto
front. The average values of the research period for the beginning Pareto fronts are low values while
the last Pareto fronts have higher average values. From Figure 5, we can see that the maximum,
average, and minimum of h-index values for Pareto fronts decrease from the first Pareto front to the
35th. Additionally, the first Pareto front has the maximum h-index values and the last Pareto front
includes the minimum h-index values.
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Figure 5. The rank of h-index and research period values for Pareto fronts in the researcher data.
(a) Research period; (b) h-index.

4.2. The Second Case Study: Ranking of Universities

Six indicators of university dataset and their ranks obtained by modified Pareto dominance
ranking are summarized in Table A2. As mentioned in Section 3, for fair comparison, we add the
time period of academic research (the research period (RP)) mentioned in Table A2 as an indicator in
the data which is calculated as the length of the university established year to present. Based on the
proposed method, the first Pareto front has six universities, including top universities; for example,
Harvard University, University of Toronto, and Stanford University. In the basic Pareto dominance
ranking, the first Pareto front has twenty universities. Additionally, the proposed ranking clusters this
data into twenty three Pareto fronts but the Pareto dominance ranking has only eight Pareto fronts.
As was mentioned in the Section 3, the proposed method can assign more ranks to the criterion vectors
even by increasing the number of criteria (many-metric cases).

In order to deep understand the behavior of the obtained Pareto ranks and indicators, we plot
the maximum, minimum, and average of values for all indicators versus Pareto ranks in Figures 6–8
as mentioned before. It can be seen from these figures—all plots for six indicators—that there is
a decreasing behavior in terms of the maximum, minimum, and average values, observable from the
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first Pareto front to the last Pareto front. In addition, Figure 9 visualizes universities in the four top
ranked Pareto fronts. Each line illustrates one university (a five dimensional vector) in which the
values of five indicators are presented using vertical axes; i.e., coordinate’s value.

(a)

(b)

Figure 6. The rank of article and citation indicators for universities based on each Pareto front in the
university data. (a) Article; (b) citation.
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(a)

(b)

Figure 7. The rank of total document and article indicators for universities based on each Pareto front
in the university data. (a) Total document; (b) article impact total (AIT).
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(a)

(b)

(c)

Figure 8. The rankk of each indicator for universities based on each Pareto front for the university data.
(a) Citation impact total (CIT); (b) collaboration; (c) research period.
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Figure 9. The Parallel coordinates for Pareto fronts one to four for the university data.

4.3. The Third Case Study: Ranking of Countries

Table A3 shows countries, the values of five indicators (documents, CI-DO, citations,
CPD, and h-index), and the obtained Pareto ranks from the proposed method (Pareto ranking).
The United States is located in the first Pareto front because it has the maximum values of four
indicators: documents, CI-DO, citations, CPD, and h-index. The United States is assigned to the rank
1 and in the second Pareto front, Switzerland and the United Kingdom are placed. The proposed
method ranks these countries into forty six ranks while in the Pareto dominance ranking, it has thirty
Pareto fronts.

Additionally, for this data, we plot the maximum, minimum, and average of values for all
indicators versus Pareto ranks in Figures 10 and 11. Figures show a falling tendency of the average
values from the first Pareto front to the last Pareto front. Additionally, we compute the percentage
of the number of countries from the different continents (Asia, Europe, Latin America, Middle East,
North America, and Pacific region) for each Pareto front. Figure 12 shows the percentage number for
each continent. In Figure 12, the first largest and second largest percentages of the first Pareto front are
North America and Europe. In addition, Figure 13 visualizes the values of indicators for countries
in the four top ranked Pareto fronts by the parallel coordinates visualization technique. Each line
illustrates one country (a five dimensional vector) in which the values of five indicators are presented
using vertical axes; i.e., coordinate’s value. For instance, the value of CI-DO indicator is in interval
[1, 107] for countries on the four first Pareto fronts.
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(a)

(b)

Figure 10. The rank of each indicator for countries based on each Pareto front for the country data.
(a) Citable documents (CI-DO); (b) citations.
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(a)

(b)

(c)

Figure 11. The rank of each indicator for countries based on each Pareto front for the country dataset.
(a) Document; (b) h-index; (c) citations per document (CPD).
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Figure 13. The parallel coordinates for Pareto fronts one to four for the country dataset.

4.4. The Forth Case Study: Resolution for Multi-Rankings of Universities

This case study collects the three ranks of 100 top common universities collected from the three
mentioned resources, from which it is supposed that the criterion vectors with the lesser values for
all three ranks are better vectors (i.e., Min-Min-Min). Table A4 shows universities, the values of three
ranks, and the obtained Pareto ranks from Pareto dominance ranking (Pareto ranking). As we can
see, three universities, “Massachusetts Institute of Technology,” “Stanford University,” and “Harvard
University” are located in the first Pareto front, which has elements with the values 1 and 2 as the
obtained ranks from other ranking resources. Figure 14 shows the numbers of Pareto fronts for all data.
Additionally, the maximum, minimum, and average of values for three rankings versus Pareto ranks
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are plotted in Figure 15. It can be seen from Figure 15 that the average values of three ranks increase
from the first Pareto front to 13th Pareto front.

At the end of this section, several points regarding the performance of the method and its
differences with other ranking strategies are mentioned. First of all, a multi-criteria indicator
is proposed for ranking the researchers, universities, and countries. Considering two or more
objectives simultaneously can provide a fairer ranking. For instance, using research period along
with other important criteria provides a fair comparison for senior and junior researchers to discover
more-talented researchers. Secondly, since the considered criteria to assess the entities are different
from indicators in other ranking strategies, the resultant rankings are completely different. In fact,
they evaluate the universities in terms of different metrics. As a result, the comparison between
the results of ranking strategies does not lead to a precise and meaningful conclusion. On the
other hand, the proposed method clusters the entities based on multiple criteria into different
levels. Accordingly, all universities in the same Pareto are ranked equally; for instance, based on
this perspective, all universities in the first Pareto are the top ranked universities. Finally, this method
does not actually define an evaluation measure; it gives a strategy to rank not only the case studies in
the paper, but also any multi-criteria data entities. In addition, using this general platform provides
the chance to utilize any metric to assess the related entities without modification to other parts of
the algorithm.

Figure 14. Pareto fronts obtained by using three ranks.
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(a)

(b)

(c)

Figure 15. The rank of ranks based on each Pareto front for the ranks of universities data. (a) Rank1;
(b) Rank2; (c) Rank3.
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5. Conclusions and Future Directions

In this paper, a modified Pareto-front based ranking was suggested as a new ranking method
for measuring the scientific achievements, or in general multi and many- metric rankings. By using
some dominance metrics obtained from the basic Pareto dominance depth ranking and some statistical
metrics sorting compared criteria, the proposed method is able to find some different groups
(clubs) for entities of a dataset having a large number of the criteria. It provides simultaneously
multiple comparisons, considering the time period of academic research, and the use of other ranking
methods. We selected different kinds of the scientific datasets; namely, computer science researchers,
top universities, countries, and multiple rankings of universities to rank by using Pareto ranking.
In future, we are planning to develop ranking strategies based on other dominance-based rankings;
for example, dominance rank [61,63] which is related to the number of data entries in the set which
dominates the considered point. Finally, we are interested in considering the use of other types of
domination definition, such as the concepts of weak dominance, strict dominance, and ε-dominance.
Additionally, many (more than three) metrics and various resources will be studied in the future.
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Appendix A

Table A1. Indicators and Pareto ranks for the author data. Indicators are h-index and the research
period (RP).

Author Rank RP H-Index Author Rank RP h-Index

A.Herbert 1 40 162 Burgard Wolfram 6 19 89

K.Anil 1 25 153 MllerKlaus Robert 6 18 86

Han Jiawei 1 21 136 Horrocks Ian 6 18 86

van Wil 1 18 124 Liu Bing 6 17 68

Buyya Rajkumar 1 16 98 Harman Mark 6 16 59

Perrig Adrian 1 15 82 Dongarra Jack 7 32 114

ZhouZhi-Hua 1 14 71 A.John 7 29 107

Shenker Scott 2 23 133 Nayar Shree 7 23 102

Foster Ian 2 21 117 SeidelHans-Peter 7 22 88

Salzberg Steven 2 20 116 Rexford Jennifer 7 19 86

Schölkopf
Bernhard

2 18 105 Govindan Ramesh 7 18 81

Schmid Cordelia 2 17 83 Gao Wen 7 17 66

Abraham Ajith 2 15 71 Grossberg Stephen 8 35 114

Xiao Yang 2 14 59 Dubois Didier 8 32 112

Sejnowski Terrence 3 30 132 H.Randy 8 31 106

Haussler David 3 27 129 Horowitz Mark 8 29 104
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Table A1. Cont.

Author Rank RP H-Index Author Rank RP h-Index

I.Michael 3 25 128 Osher Stanley 8 28 101

Zisserman Andrew 3 24 121 Szeliski Richard 8 25 98

Estrin Deborah 3 22 114 H.Vincent 8 24 96

Koller Daphne 3 21 110 Malik Jitendra 8 23 95

Herrera Francisco 3 20 107 B.Mani 8 20 86

Balakrishnan Hari 3 18 100 Baraniuk Richard 8 20 86

Staab Steffen 3 17 80 Fox Dieter 8 19 85

Tan Tieniu 3 16 69 HubauxJean-Pierre 8 18 72

Wattenhofer Roger 3 15 68 Lee Wenke 8 18 72

Kanade Takeo 4 30 131 Blaauw David 8 18 72

S.Philip 4 25 126 Sahai Amit 8 17 63

Giannakis Georgios 4 24 117 Prade Henri 9 32 111

Zhang Hong Jiang 4 22 110 Vetterli Martin 9 27 96

F.Ian 4 18 96 Kumar Vipin 9 24 95

WuJie 4 17 73 Deb Kalyanmoy 9 23 93
Sukhatme Gaurav 4 17 73 Benini Luca 9 20 85

Vasilakos
Athanasios

4 16 67 McCallum Andrew 9 19 84

Cao Guohong 4 15 61 Kumar Ravi 9 18 69

Garcia-MolinaHector 5 29 125 LiXiang-Yang 9 17 57

Towsley Don 5 27 117 Demaine Erik 9 17 57

Culler David 5 24 113 H.Christos 10 34 110

Jennings Nick 5 22 107 Yager Ronald 10 33 101

Halevy Alon 5 21 94 Sangiovanni-VincentelliAlberto10 32 99

Horvitz Eric 5 20 92 Agrawal Rakesh 10 25 95

J.Alexander 5 18 90 A.Thomas 10 24 93

Abdelzaher Tarek 5 17 72 Bellare Mihir 10 23 90

Fedkiw Ronald 5 16 60 Dorigo Marco 10 21 85

Poggio Tomaso 6 34 121 Karger David 10 20 84

E.Geoffrey 6 31 117 Friedman Nir 10 19 79

Pentland Alex 6 28 112 A.Carlos 10 18 67

VanLuc 6 22 104 D.Jeffrey 11 40 104

ChangShih-Fu 6 21 91 Shneiderman Ben 11 35 103

Szalay Alex 11 26 95 Mitzenmacher Michael 14 19 66

Sheth Amit 11 25 90 Reichert Manfred 14 18 60

Shah Mubarak 11 23 86 Davis Larry 15 36 93
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Table A1. Cont.

Author Rank RP H-Index Author Rank RP h-Index

Jiang Tao 11 22 85 Ayache Nicholas 15 29 90

Wooldridge
Michael

11 21 81 Finin Tim 15 28 86

Gross Markus 11 20 77 Bertino Elisa 15 27 83

Domingos Pedro 11 19 75 Joaquin Jose 15 24 80

H.Jason 11 18 66 Mukher jee Biswanath 15 23 79

Suri Subhash 11 18 66 Vahdat Amin 15 22 74

Zadeh Lotfi 12 40 100 J.Michael 15 22 74

H.Gene 12 38 99 Joshi Anupam 15 21 71

E.David 12 27 95 K. Sajal 15 20 69

Widom Jennifer 12 26 91 Vaidya Nitin 15 20 69

ZhangLixia 12 25 88 Thiele Lothar 15 20 69

Dumais Susan 12 23 84 Pappas George 15 19 65

Schulzrinne
Henning

12 22 81 Kraut Robert 16 29 88

Freeman William 12 22 81 Pedrycz Witold 16 28 83

Bengio Yoshua 12 21 76 Abadi Martin 16 27 81

Ray LiuK.J. 12 20 75 Hendler James 16 25 80

Wagner David 12 19 72 Roy Kaushik 16 23 76

Lu Songwu 12 18 63 Rus Daniela 16 21 70

W.Bruce 13 30 93 Handley Mark 16 21 70

Jajodia Sushil 13 27 92 Qiao Chunming 16 20 66

Anderson Thomas 13 26 86 Pollefeys Marc 16 19 63

Unser Michael 13 24 83 Y.Moshe 17 33 88

Manocha Dinesh 13 23 81 Doyle John 17 31 87

Perona Pietro 13 23 81 S.Kishor 17 31 87

Darrell Trevor 13 23 81 Alon Noga 17 29 85

Tsudik Gene 13 22 76 L.Ronald 17 29 85

Pevzner Pavel 13 22 76 Sontag Eduardo 17 28 82

Karypis George 13 22 76 C.Lee 17 26 79

Nahrstedt Klara 13 21 75 Taylor Chris 17 24 74

Yao Xin 13 21 75 S.Theodore 17 23 73

Diot Christophe 13 20 74 Reiter Michael 17 21 69

Goble Carole 13 19 69 Herrera Enrique 17 20 65

Liu Huan 13 19 69 Belongie Serge 17 19 62
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Table A1. Cont.

Author Rank RP H-Index Author Rank RP h-Index

Tse David 13 19 69 von John 18 40 87

Alouini
Mohamed-Slim

13 18 61 Yannakakis Mihalis 18 35 86

M.John 14 33 93 A.David 18 30 84

Faugeras Olivier 14 30 91 Hebert Martial 18 30 84

Chellappa Rama 14 28 90 Dally William 18 29 80
De Giovanni 14 27 87 Blake Andrew 18 28 79

Sycara Katia 14 25 83 Baldi Pierre 18 26 77

Franklin Michael 14 24 81 Greenberg Saul 18 26 77

Rost Burkhard 14 23 80 S.Daniel 18 26 77

Crowcroft Jon 14 22 75 Alur Rajeev 18 25 74

McKeown Nick 14 20 73 B.Andrew 18 24 73

Suciu Dan 14 20 73 Fua Pascal 18 24 73

Varghese George 18 23 70 Rothermel Gregg 21 21 60

Yao Yiyu 18 23 70 Gray Jim 22 39 79

LeJean-Yves 18 23 70 Y.Joseph 22 32 78

PedramMassoud 18 23 70 BezdekJames 22 31 76

Savage Stefan 18 22 69 Kiesler Sara 22 31 76

Sandholm Tuomas 18 22 69 Terzopoulos Demetri 22 29 74

D.Gregory 18 22 69 Lenzerini Maurizio 22 27 70

Leymann Frank 18 21 65 J.Haim 22 27 70

Jha Somesh 18 21 65 Peterson Larry 22 26 69

Rogaway Philip 18 21 65 Shasha Dennis 22 26 69

R.John 18 21 65 Agrawal Divyakant 22 26 69

Shenoy Prashant 18 20 63 Baeza-YatesRicardo 22 25 68

Canetti Ran 18 20 63 C.JayC 22 24 67

Gunopulos
Dimitrios

18 19 61 Stolcke Andreas 22 23 65

Pearl Judea 19 30 83 L.Michael 22 23 65

Ramakrishnan
Raghu

19 29 78 Alonso Gustavo 22 22 62

Waibel Alex 19 28 77 S.B. 22 22 62

Li Kai 19 27 76 V.S.Laks 22 21 59

EtzioniOren 19 26 75 S.David 23 37 78

Cohen-OrDaniel 19 25 73 Magnenat-ThalmannNadia 23 32 75

Metaxas Dimitris 19 24 70 Kaufman Arie 23 29 72
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Table A1. Cont.

Author Rank RP H-Index Author Rank RP h-Index

Veloso Manuela 19 24 70 Devadas Srinivas 23 27 69

Smyth Padhraic 19 22 68 Cipolla Roberto 23 25 67

Kacprzyk Janusz 19 21 64 Salesin David 23 24 65

Schaffer Alejandro 19 21 64 Kotz David 23 23 63

Voelker Geoffrey 19 20 62 Druschel Peter 23 22 61

Decker Stefan 19 19 59 L.Olvi 24 40 78

Norman Don 20 40 83 C.Fernando 24 33 74

Bertsekas Dimitri 20 31 82 S.Andrew 24 30 71

Abiteboul Serge 20 29 77 Kautz Henry 24 28 69

Hanrahan Pat 20 28 76 Dill David 24 27 68

A.Edward 20 27 75 H.Mostafa 24 26 67

Cong Jason 20 25 70 Gropp William 24 25 65

Campbell Andrew 20 23 68 Ostrovsky Rafail 24 24 62

C.Ming 20 22 67 Altman Eitan 24 24 62

Zorzi Michele 20 21 61 Smyth Barry 24 22 59

Mylopoulos John 21 33 80 Crovella Mark 24 22 59

Thalmann Daniel 21 32 79 Newell Allen 25 40 75

Adeli Hojjat 21 30 76 Samet Hanan 25 36 73

Myers Brad 21 30 76 Harel David 25 33 72

Smith Barry 21 28 74 Mitchell Tom 25 32 71

Witten Ian 21 26 70 Yuille Alan 25 30 70

K.Sankar 21 25 69 D. Hill Mark 25 30 70

Sandhu Ravi 21 25 69 Stolfo Salvatore 25 30 70

J.Ingemar 21 24 68 G.Kim 25 29 68

Stojmenovic Ivan 21 23 67 Gottlob Georg 25 28 67

Cootes Tim 21 23 67 Haralick Robert 25 27 66

Anderson Ross 21 22 66 Nisan Noam 25 26 64

van Frank 25 25 62 Shadbolt Nigel 28 25 59

W.William 25 24 61 Ishibuchi Hisao 28 24 58

Rogers Yvonne 25 22 58 Rastogi Rajeev 28 24 58

Fagin Ronald 26 38 73 Gelenbe Erol 29 39 66

W.Thomas 26 34 70 H.Russell 29 33 65

Vitter Jeffrey 26 30 69 Reif John 29 33 65

Mooney Raymond 26 30 69 Salton Gerard 29 32 64

Cohen Michael 26 29 67 Dietterich Thomas 29 30 63

Canny John 26 29 67 Kramer Jeff 29 29 61

Burns Alan 26 28 66 Bajaj Chandrajit 29 29 61

Deriche Rachid 26 27 65 Aiken Alex 29 27 60
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Table A1. Cont.

Author Rank RP H-Index Author Rank RP h-Index

W.Wen-Mei 26 26 62 Wiederhold Gio 29 26 59

Keutzer Kurt 26 26 62 Dasgupta Dipankar 29 24 52

Pazzani Michael 26 26 62 Wilks Yorick 30 40 66

Blum Avrim 26 25 61 Turner Jonathan 30 31 63

Nejdl Wolfgang 26 24 60 Elmagarmid Ahmed 30 28 59

de Maarten 26 22 57 Motta Enrico 30 26 58

Ceri Stefano 27 32 68 Herman Gabor 31 40 65
Levy Henry 27 30 67 F.James 31 32 62

Tambe Milind 27 28 65 Larus James 31 29 58

K.Pankaj 27 27 63 ChenMing-Syan 31 27 57

Knoblock Craig 27 27 63 LeeDer-Tsai 31 26 53

Fogel David 27 24 59 Reddy Sudhakar 32 35 62

Baruah Sanjoy 27 23 56 Beth Mary 32 30 58

Bobrow Daniel 28 40 67 I.Norman 33 37 62

Hennessy John 28 30 66 Dolev Danny 33 35 60

Ni Lionel 28 29 65 Padua David 33 33 58

Wadler Philip 28 28 64 Nicolau Alex 33 31 56

Peleg David 28 28 64 V. Aho Alfred 34 40 62

P.Michael 28 27 62 Sifakis Joseph 34 32 56

Malik Sharad 28 25 59 A.Edward 35 32 55

Table A2. Indicators and Pareto ranks for the university data. Indicators are article,
citation, Total Document (TD), Article Impact Total (AIT), Citation Impact Total (CIT),
International Collaboration (IC), and the research period (RP).

University Rank Article Citation TD AIT CIT IC RP

Harvard University 1 126 126 60 108 90 90 380

University of Toronto 1 125 125 59 105.21 69.32 89 189

Stanford University 1 112.36 124.36 49.4 102.94 75.04 70.32 131

Johns Hopkins University 1 113.67 122.23 52.63 99.61 70.65 71.43 140

University of California Los Angeles 1 107.16 114.03 49.09 96.08 67.17 68.06 97

University of California San Diego 1 98.67 105.73 45.03 90.89 65.07 65.29 56

University of California Berkeley 2 105.06 117.51 44.83 103.2 74.81 71.13 148

Imperial College London 2 102.43 103.35 47.03 88.11 61.83 76.89 109

KU Leuven 2 98.43 94.22 44.4 83.16 56.85 76.42 48

Pierre & Marie Curie University - Paris
6

2 99.24 94.84 41.98 83.2 58.1 72.36 45

University of Oxford 2 115.22 119.72 51.44 103.96 72.49 85.11 920

University College London 2 116.44 113.55 54.13 97.6 65.34 84.34 190
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Table A2. Cont.

University Rank Article Citation TD AIT CIT IC RP

University of Washington Seattle 2 108.58 116.21 48.95 97.19 68.28 67.17 155

Massachusetts Institute of Technology
(MIT)

3 98.63 121.19 42.3 107 89 67.57 155

University of British Columbia 3 99.67 97.32 45.22 85.14 59.24 71.99 108

National University of Singapore 3 98.37 93.31 42.62 80.8 55.57 72.93 36

University of Cambridge 3 107.79 114.24 48.42 99.83 70.45 81.35 807

University of Michigan 3 114.84 113.74 51.62 97.45 64.64 68.39 199

University of Tokyo 3 108.06 101.7 46.83 87.92 57.8 66.55 139

Zhejiang University 4 111.19 89.26 44.39 77.61 51.52 60.98 119

Tsinghua University 4 107.94 89.06 41.91 79.41 53.07 60.46 105

Universidade de Sao Paulo 4 109.85 83.6 47.45 73.44 49.63 67.18 82

Seoul National University 4 102.76 89.17 44.18 75.39 51.38 59.98 70

Nanyang Technological University 4 88.18 86.44 37.67 75.84 54.57 64.08 25

University of Pennsylvania 4 105.54 113.05 49.83 93.83 66.55 63.03 276

University of Chicago 4 94.78 103.18 43.22 89.78 65.95 62.39 126

University of California San Francisco 4 93.26 107.72 45.4 85.02 65.38 60.39 143

Cornell University 4 97.05 100.49 44.67 85.3 60.8 63.24 151

University of Sydney 4 101.35 93.57 46.99 81.14 55.77 70.05 166

Monash University 4 95.25 86.58 42.4 73.35 51.78 64.32 58

Columbia University 4 103.52 109.56 47.37 93.12 66.28 66.84 262

Duke University 4 96.65 102.58 45.32 85.08 61.46 61.91 178

Shanghai Jiao Tong University 5 112.85 87.81 43.93 75.74 50.9 60.55 120

University of Melbourne 5 99.48 92.8 44.23 80.4 55.86 67.58 163

University of Queensland 5 98.53 90.06 42.98 77 53.44 67.19 107

University of California Davis 5 93.06 90.56 42.42 80.29 56.63 61.71 111

Free University of Berlin 5 88.74 86.87 41.62 71.8 52.31 62.58 68

University of Copenhagen 5 103.59 100.53 45.35 85.42 60.5 75.63 537

University of Minnesota Twin Cities 5 100.35 96.34 45.2 84.67 57.89 62 165

Central South University 6 86.42 71.48 36.15 61.6 46.73 50.01 16

Peking University 6 106.48 90.88 42.87 79.04 53.52 63 118

University of Colorado Boulder 6 95.39 95.59 42.51 81.87 59.08 59.03 140

Ohio State University 6 97.46 91.51 43.97 82.1 57.84 60.06 146

University of Florida 6 93.55 88.3 42.92 77.72 54.49 60.9 111

Aarhus University 6 90 85.21 40.03 72.48 52.05 65.48 88

University of Wisconsin Madison 6 96.46 95.44 43.5 86.34 60.62 60.17 168

University of Pittsburgh 6 94.27 98.62 45.51 81.7 58.97 58.91 229
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Table A2. Cont.

University Rank Article Citation TD AIT CIT IC RP

Yale University 6 96.84 103.83 45 88.02 64.44 62.73 315

Swiss Federal Institute of Technology
Zurich

7 91.5 90.14 39.43 80.86 57.2 69.92 162

California Institute of Technology 7 80.64 91.01 35.94 80.84 64.69 58.91 125

University of Paris Diderot - Paris VII 7 82.43 84.92 37.03 73.33 56.17 60.31 46

Radboud University Nijmegen 7 83.98 82.98 38.7 72.31 53.82 61.26 93

McGill University 7 95.02 91.31 43.21 79.8 56.3 67.91 195

Kyoto University 7 94.92 87.64 42.22 75.7 52.31 58.98 119

University of New South Wales 7 91.21 83.93 40.66 72.61 51.45 63.02 67

University of North Carolina Chapel
Hill

7 93.35 96.13 43.42 79.93 58.08 57.65 227

Erasmus University Rotterdam 8 82.84 85.67 39.48 71.33 53.86 59.63 103

University of Calgary 8 80.47 77.12 37.76 65 48.87 56.69 50

Maastricht University 8 77.35 74.82 35.99 63.26 48.58 55.98 40

University of California Santa Cruz 8 68.71 76.1 32.27 66.59 57 49.98 51

Northwestern University 8 92.54 94.9 42.41 80.53 58.41 57.42 165

Penn State University 8 94.46 91.75 42.03 79.6 55.67 60.55 161

University of Texas Austin 8 88.6 88.4 39.15 78.45 57.02 57.21 135

University of Alberta 8 89.92 82.62 40.87 72.13 51.38 62.21 108

Ecole Polytechnique Federale de
Lausanne

8 78.45 81.86 35 71.47 54.97 59 51

University of Bristol 9 81.61 79.97 37.38 71.3 52.96 57.94 85

University of Paris Descartes - Paris V 9 78.7 78.14 36.4 64.68 49.81 55.65 45

University of Manchester 9 92.82 88.76 42.55 78.18 55.6 65.72 192

Washington University (WUSTL) 9 85.81 95.32 40.77 77.39 60.3 54.55 163

Fudan University 9 96.36 84.67 39.85 71.27 51.04 56.62 111

University of Southern California 9 86.45 86.57 39.75 73.86 54.66 56.58 136

VU University Amsterdam 9 86.49 84.65 39.82 72.01 52.62 62.11 136

University of Utrecht 9 92.3 92.51 42.21 78.61 56.05 66.52 380

University of Edinburgh 9 87.11 90.17 40.58 78.94 58.37 63.87 433

National Taiwan University 9 90.25 81.46 40.39 71.78 50.26 56.72 88

University of California Irvine 10 79.5 82.59 37.07 72.39 54.64 54.56 109

University of Claude Bernard - Lyon 1 10 77.39 75.36 35.21 66.46 50.37 55.59 45

Kings College London 10 88.56 87.8 42.28 75.5 55.64 63.08 187

University of Zurich 10 86.5 86.17 39.27 75.24 56.02 65.28 183

Vanderbilt University 10 84.94 88 39.85 74.73 56.02 54.13 143

University of Arizona 10 83.28 82.38 38.22 73.32 53.9 56.68 131

Sun Yat Sen University 10 93.75 79.59 38.93 68.85 49.69 53.61 92
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University of Science & Technology of
China

10 87.03 79.64 36.29 70.31 50.91 53.34 58

University of Hamburg 10 80.76 77.61 36.9 69.02 52.67 57.03 97

Tel Aviv University 10 83.45 77 38.05 67.76 49.97 57.41 60

University of Barcelona 10 93.33 92.11 42.39 77 55.09 66.57 566

Ruprecht Karl University Heidelberg 10 88.26 91.02 41.16 77.82 57.81 63.37 630

Karolinska Institutet 10 90.45 90.45 41.42 73.53 54.38 67.8 206

University of Munich 10 88.4 89.24 40.73 76.67 56.6 64.03 544

Osaka University 10 87.89 81.47 39.53 69.8 50.18 54.72 85

University of Milan 10 82.84 78.7 38.18 68.29 51.19 56.66 92

University of Illinois
Urbana-Champaign

11 88.61 83.81 39.34 75.86 53.9 57.68 149

Nanjing University 11 92.16 79.86 37.74 70.4 50.36 53.5 101

University of Geneva 11 78.31 80.67 36.53 71.01 54.96 59.55 140

University of Birmingham 11 79.7 78.21 38.05 69.02 52.11 56.73 116

Autonomous University of Barcelona 11 80.98 76.79 36.54 67.87 50.52 57.14 48

Universite Toulouse III - Paul Sabatier 11 77.42 75.94 34.94 65.12 49.64 56.82 47

University of Alabama Birmingham 11 75.88 78.19 36.86 64.02 49.9 50.24 47

Ghent University 11 92.24 83.31 40.58 74.82 52.29 67.23 199

New York University 11 88.57 86.84 41.02 76.06 55.34 56.61 185

Humboldt University of Berlin 11 87.79 86.45 41.06 73.29 53.69 61.82 205

Boston University 11 82.06 86.78 38.39 76.7 58.5 55.3 177

University of Montreal 11 84.99 81.52 39.57 70.85 51.58 60.52 138

Tohoku University 11 86.88 80.11 39.29 68.53 49.14 56.83 105

Universidade de Lisboa 11 84.96 75.09 37.75 67.52 48.99 60.59 105

University of Amsterdam 11 89.6 87.32 40.78 75.05 54.47 63.83 384

King Abdulaziz University 12 83.13 71.26 34.2 62.39 47.72 61.55 49

University of Maryland College Park 12 85.53 85.24 37.8 77.5 56.03 57.62 160

Huazhong University of Science &
Technology 12 94.22 76.78 38.13 67.75 48.51 52.97 109

University of California Santa Barbara 12 74.07 79.24 34.15 70.92 56.17 52.51 125

King Saud University 12 81.61 70.42 35.17 60.55 46.49 61 59

Technical University of Munich 12 85.41 82.83 38.02 70.76 52.07 60.24 148

Australian National University 12 80.86 76.09 36.24 66.79 49.53 57.88 70

Jilin University 12 90.4 75.46 37.77 64.59 47.77 50.8 70

University of Groningen 12 88.8 87.97 40.77 74.11 53.71 63.99 402

University of Helsinki 13 85.98 84.46 38.79 73.96 54.45 63.63 376

Emory University 13 85.31 88.39 41.09 71.91 54.01 54.36 180
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University of Oslo 13 84.56 81.86 38.4 71.61 53.18 61.9 205

Princeton University 13 79.62 84.19 35.91 76.18 58.53 55.73 270

Shandong University 13 92.53 75.48 37.9 66.61 48.45 51.74 115

University of Leeds 13 79.38 76.98 37.34 66.19 49.77 56.86 112

Newcastle University - UK 13 75.18 74.08 36.15 63.05 48.62 53.74 53

Sapienza University Rome 13 90.05 81.21 40.4 74.67 53.66 60.14 713

University of Hong Kong 13 81.72 77.6 36.83 66.37 49.24 54.98 105

Harbin Institute of Technology 13 88.78 73.47 37.14 65.59 47.69 51.92 96

Universidad Nacional Autonoma de
Mexico

13 82.93 71.29 36.55 61.79 46.56 56.98 106

University of Miami 13 75.35 77.57 36.29 64.56 50.1 51.28 91

Purdue University 14 84.43 78.86 37.5 71.8 51.79 55.03 140

McMaster University 14 80.98 79.62 38.05 67.28 50.46 57.26 129

Sichuan University 14 91.37 74.89 38.2 63.79 47.25 50.46 120

Nagoya University 14 79.99 74.5 36.4 65.02 48.7 51.87 77

University of Gothenburg 14 77.19 74.76 35.24 63.31 48.54 55.41 62

Leiden University 14 83.95 85.71 38.7 72.45 54.93 60.88 441

Lund University 14 85.58 82.77 38.57 72.11 52.93 63.82 350

Hebrew University of Jerusalem 14 77.35 75.99 35.91 64.76 49.23 55.37 98

Wageningen University & Research
Center

14 76.89 75.2 34.63 65.23 49.34 56.74 98

Georgia Institute of Technology 15 80.78 78.99 35.89 69.09 51.11 54.8 131

University of Waterloo 15 78.08 72.61 34.88 64.28 48.17 54.96 59

Rutgers State University 15 82.92 82.39 38.89 73.02 53.17 56.11 250

Texas A & M University College Station 15 85.21 78.81 37.8 70.59 50.83 57.22 163

University of Southampton 15 82.64 78.11 37.56 69.57 51.27 59.62 147

Michigan State University 15 83.49 79.5 37.73 70.72 51.52 55.15 161

University of Sheffield 15 78.55 75.56 36.89 67.27 50.39 55.73 111

University of Illinois Chicago 15 77.49 74.21 36.76 65.53 49.57 50.96 103

University of Paris Sud - Paris XI 15 83.29 82.86 37.31 73.7 54.24 61.5 759

Uppsala University 15 84.96 82.76 37.95 70.97 52.49 62.68 539

University of Aix-Marseille 15 85.64 81.77 38.19 71.74 52.21 61.44 607

University of Utah 16 82.83 81.24 38.29 68.1 51.19 53.08 166

University of Nottingham 16 80.15 78.05 37.97 67.01 50.12 56.48 135

University of Bonn 16 77.93 78.15 36.02 68.19 52.04 57.07 198

Yonsei University 16 87.79 76.2 38.48 65.27 47.85 52.65 131

Xian Jiaotong University 16 88.95 72.43 36.56 63.84 47.52 51.96 120

Universidade do Porto 16 79.21 72.6 36 62.61 47.42 56.16 105

Goethe University Frankfurt 16 74.56 75.63 35.37 63.9 49.5 54.17 102
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University of Padua 16 85.18 81.27 38.58 71.73 53.36 59.63 794

University of Western Australia 16 84.57 80.2 38.33 67.65 50.13 60.08 457

Universite Grenoble Alpes (UGA) 16 77.79 79.09 36.13 71.06 52.39 60.35 474

University of Bern 17 79.33 76.3 36.17 67.17 51.5 58.97 182

University of Virginia 17 78.15 78.2 36.72 68.55 52.23 52.2 197

Arizona State University 17 80.2 77.56 36.18 67.63 50.64 52.32 131

University of Iowa 17 78.68 76.15 36.98 68.19 51.93 51.01 169

Korea University 17 82.74 74.18 36.72 65.69 48.43 52.28 111

Cardiff University 17 75 76.04 35.9 65.22 50.76 54.59 133

University of Cologne 17 76.7 73.92 35.31 62.77 48.49 54.45 97

Charite Medical University of Berlin 17 78.46 80.17 37.97 65.5 50.48 55.65 306

University of Liverpool 17 77.49 74.92 36.09 65.56 50 56.24 135

Kyushu University 17 80.46 73.69 36.6 63.72 47.82 51.47 105

Tongji University 17 84.92 71.28 35.94 61.55 46.65 51.38 109

Hokkaido University 17 79.61 73.24 36.18 62.39 47.2 51.53 98

University of Bologna 17 81.81 76.2 37.47 69.83 51.99 56.52 928

Universite de Toulouse 17 81.97 77.85 36.5 67.4 49.97 59.67 787

University of Glasgow 17 77.61 77.37 37 68.44 51.98 56.16 565

Stockholm University 18 75.64 74.11 33.97 65.57 50.76 55.41 138

Brown University 18 77.68 78.44 36.28 68.39 52.87 51.02 252

Dresden University of Technology 18 78.34 76.02 35.85 66.66 50.43 55.25 188

RWTH Aachen University 18 77.44 74.74 35.37 65.96 50.2 54.39 146

University of Rochester 18 74.66 76.75 35.64 66.57 51.31 51.18 166

Wuhan University 18 85.16 73.3 35.54 63.01 47.56 50.48 123

Eberhard Karls University of Tubingen 18 78.97 78.74 36.83 66.24 50.28 57.19 539

University of Basel 18 77.08 77.77 35.86 65.65 50.75 58.36 556

Technical University of Denmark 19 78.02 75.91 34.54 66.6 50.24 56.59 187

University of Gottingen 19 77.24 75.75 35.5 66.69 50.57 55.63 282

University of Ottawa 19 79.59 75.55 37.19 64.48 48.61 54.72 168

Case Western Reserve University 19 76.74 78.47 36.39 65.74 51.09 50.86 190

Western University (University of
Western Ontario)

19 78.89 74 36.79 63.15 47.77 54.05 138

University of Auckland 19 76.53 71.95 35.01 63.94 48.93 54.97 133

Sungkyunkwan University 19 85.09 76.39 37 66.37 49.54 51.96 618

University of Freiburg 19 76.35 76.61 35.91 67.04 51.55 55.89 559

University of Erlangen Nuremberg 20 79.19 76.92 36.16 65.15 49.36 55.93 273

University of Adelaide 20 79.41 73.54 35.7 63.9 48.62 54.39 142

Lomonosov Moscow State University 20 82.26 69.62 36.05 64.56 48.18 54.81 261

North Carolina State University 20 79.13 73.4 35.37 64.17 48.05 51.84 129
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Universite de Montpellier 20 78.34 76.42 36.02 65.05 49.07 58.46 727

Karlsruhe Institute of Technology 20 77.15 73.49 34.36 65.91 49.88 55.64 191

University of Munster 21 75.94 76.75 35.61 64.51 49.82 54.1 236

Queen Mary University London 21 73.49 74.2 35.02 64.12 50.58 52.71 231

Charles University Prague 21 79.55 73.28 36.4 65.57 49.64 56.59 668

University of Naples Federico II 22 79.04 73.63 35.99 66.4 50.47 53.7 792

University of Turin 23 76.97 74.11 35.51 64.7 49.94 53.26 612

Johannes Gutenberg University of
Mainz

23 74.47 73.39 34.66 64.26 49.86 53.68 539

Table A3. Indicators and Pareto ranks for the country data. Indicators are documents,
Citable Documents (CI-DO), citations, Citations Per Document (CPD), and h-index.

Country Rank Documents CI-DO Citations CPD h-Index

United States 1 9,360,233 8,456,050 202,750,565 21.66 1783

Netherlands 2 746,289 682,627 16,594,528 22.24 752

United Kingdom 2 2,624,530 2,272,675 50,790,508 19.35 1099

Switzerland 3 541,846 501,917 12,592,003 23.24 744

China 3 4,076,414 4,017,123 24,175,067 5.93 563

Germany 3 2,365,108 2,207,765 40,951,616 17.31 961

Canada 3 1,339,471 1,227,622 25,677,205 19.17 862

Panama 4 5129 4830 137,585 26.82 142

Sweden 4 503,889 471,036 10,832,336 21.5 666

Denmark 4 290,994 269,364 6,405,076 22.01 558

Iceland 4 15,625 14,353 357,678 22.89 218

Japan 4 2,212,636 2,133,326 30,436,114 13.76 797

France 4 1,684,479 1,582,197 28,329,815 16.82 878

Gambia 5 2004 1859 54,925 27.41 99

Israel 5 295,747 274,748 5,826,878 19.7 536

Belgium 5 407,993 378,807 7,801,077 19.12 593

Italy 5 1,318,466 1,217,804 20,893,655 15.85 766

Australia 5 995,114 894,315 16,321,650 16.4 709

Bermuda 6 633 590 21,884 34.57 73

Finland 6 257,159 242,853 4,940,153 19.21 479

Spain 6 1,045,796 966,710 14,811,902 14.16 648

Montserrat 7 95 93 2282 24.02 27

Austria 7 295,668 273,467 5,052,810 17.09 487

India 7 1,140,717 1,072,927 8,458,373 7.41 426

South Korea 7 824,839 801,077 8,482,515 10.28 476
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Taiwan 7 532,534 516,171 5,622,744 10.56 363

Faroe Islands 8 510 472 10,105 19.81 48

United States Minor Outlying
Islands

8 30 29 710 23.67 11

Norway 8 229,276 209,259 3,951,661 17.24 439

Brazil 8 669,280 639,527 5,998,898 8.96 412

Guinea-Bissau 9 458 421 9357 20.43 50

Puerto Rico 9 13,841 13,293 248,888 17.98 166

Hong Kong 9 219,177 206,011 3,494,244 15.94 392

Greece 9 246,202 226,914 3,186,313 12.94 354

Russian Federation 9 770,491 755,186 4,907,109 6.37 421

Poland 9 475,693 460,979 4,083,631 8.58 401

Tokelau 10 2 1 43 21.5 1

Monaco 10 1586 1449 29,705 18.73 76

New Zealand 10 180,340 162,720 2,940,051 16.3 387

Singapore 10 215,553 202,089 3,135,524 14.55 392

Turkey 10 434,806 407,064 3,509,424 8.07 296

French Southern Territories 11 5 5 97 19.4 5

Bolivia 11 3569 3387 61,076 17.11 88

Ireland 11 150,552 135,523 2,382,077 15.82 364

Czech Republic 11 237,910 230,048 2,204,922 9.27 322

Mexico 11 232,828 221,611 2,305,554 9.9 316

Portugal 11 214,838 201,562 2,544,577 11.84 334

Argentina 11 159,172 150,927 1,965,624 12.35 300

Costa Rica 12 9177 8612 148,475 16.18 137

Gabon 12 2048 1936 34,704 16.95 80

Hungary 12 147,901 140,910 1,914,820 12.95 329

Kenya 12 24,458 22,347 379,560 15.52 179

South Africa 12 188,104 172,424 2,125,927 11.3 320

Iran 12 333,474 323,299 1,954,324 5.86 199

Seychelles 13 482 453 8579 17.8 44

North Korea 13 2384 2329 38,622 16.2 80

New Caledonia 13 2122 2041 34,753 16.38 73

Estonia 13 28,660 27,323 381,206 13.3 185

Chile 13 101,841 97,250 1,203,308 11.82 257

Uganda 13 11,528 10,599 171,367 14.87 128

Thailand 13 123,410 117,565 1,182,686 9.58 236

Egypt 13 137,350 133,147 1,009,954 7.35 184
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Malaysia 13 181,251 175,146 888,277 4.9 190

Saint Lucia 14 99 85 1774 17.92 17

Netherlands Antilles 14 435 397 7662 17.61 44

Martinique 14 653 598 10,737 16.44 39

Philippines 14 20,326 18,658 265,737 13.07 163

Tanzania 14 11,964 11,140 170,144 14.22 122

Slovenia 14 71,408 68,494 725,498 10.16 204

Saudi Arabia 14 111,117 106,187 748,069 6.73 195

Slovakia 14 80,765 78,484 653,526 8.09 195

Romania 14 141,731 138,041 752,219 5.31 187

Malawi 15 4952 4520 77,829 15.72 104

Peru 15 14,434 13,201 192,443 13.33 154

Uruguay 15 13,702 12,971 186,793 13.63 132

Bulgaria 15 59,384 57,590 523,844 8.82 184

Venezuela 15 33,780 32,445 321,006 9.5 166

Ukraine 15 145,332 142,812 732,429 5.04 188

Croatia 15 79,154 76,097 548,687 6.93 194

French Guiana 16 956 898 15,573 16.29 56

Mozambique 16 2382 2193 37,433 15.71 73

Ecuador 16 7942 7440 96,119 12.1 111

Zimbabwe 16 7243 6691 94,533 13.05 99

Zambia 16 3992 3623 56,481 14.15 92

Cyprus 16 17,072 15,552 172,117 10.08 127

Pakistan 16 94,285 90,034 546,210 5.79 166

Colombia 16 60,402 57,407 468,135 7.75 186

Viet Nam 16 29,238 27,989 253,661 8.68 142

Lebanon 16 20,815 19,040 186,558 8.96 138

Virgin Islands (British) 17 121 111 2047 16.92 20

Mali 17 2490 2353 36,254 14.56 75

Armenia 17 12,852 12,496 130,584 10.16 135

Nigeria 17 59,372 56,630 334,059 5.63 131

Tunisia 17 58,769 55,904 342,429 5.83 123

Indonesia 17 39,719 37,729 282,788 7.12 155

Lithuania 17 36,136 35,205 271,666 7.52 144

Kuwait 17 18,468 17,687 157,888 8.55 108

Hati 18 765 683 12,231 15.99 49

French Polynesia 18 1272 1207 19,523 15.35 58

Senegal 18 7220 6752 75,373 10.44 95
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Cambodia 18 2558 2292 34,654 13.55 72

Sri Lanka 18 12,557 11,532 121,696 9.69 120

Morocco 18 40,737 38,371 279,731 6.87 129

Ethiopia 18 13,363 12,625 118,656 8.88 101

Bangladesh 18 30,612 29,157 227,447 7.43 134

Guam 19 788 727 12,222 15.51 55

Cte dIvoire 19 4842 4621 52,446 10.83 89

Madagascar 19 3207 3059 39,217 12.23 74

Papua New Guinea 19 2258 2133 31,119 13.78 71

Luxembourg 19 12,562 11,567 120,570 9.6 114

United Arab Emirates 19 31,366 29,259 210,873 6.72 130

Belarus 19 30,944 30,439 202,088 6.53 133

Jordan 19 28,234 27,369 201,400 7.13 112

Nicaragua 20 1301 1233 18,269 14.04 62

Greenland 20 977 941 14,484 14.82 48

Namibia 20 2303 2125 28,985 12.59 72

Guatemala 20 2281 2085 29,034 12.73 69

Ghana 20 11,543 10,578 111,205 9.63 105

Serbia 20 53,116 50,436 258,732 4.87 118

Algeria 20 42,456 41,544 215,922 5.09 106

Cuba 20 31,690 30,382 202,503 6.39 127

Latvia 20 16,350 15,851 119,627 7.32 112

Cameroon 21 11,128 10,513 108,649 9.76 94

Democratic Republic Congo 21 517 481 7641 14.78 43

Georgia 21 11,196 10,305 105,036 9.38 114

Oman 21 12,846 11,919 87,333 6.8 91

Palau 22 149 143 2238 15.02 26

Botswana 22 5107 4545 52,195 10.22 79

Barbados 22 1690 1416 20,879 12.35 64

Nepal 22 9133 8196 85,174 9.33 94

Qatar 22 13,438 12,524 71,382 5.31 86

Congo 23 3304 3069 34,559 10.46 72

Honduras 23 995 950 13,157 13.22 51

Guinea 23 597 552 8320 13.94 46

Jamaica 23 4750 4220 48,226 10.15 75

Niger 23 1623 1553 19,835 12.22 59

Sudan 23 6099 5792 50,784 8.33 70

Syrian Arab Republic 23 5744 5459 53,601 9.33 81

Macedonia 23 8522 8167 54,409 6.38 81
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Laos 24 1802 1670 20,028 11.11 59

Belize 24 330 299 4734 14.35 38

Virgin Islands (U.S.) 24 215 204 3173 14.76 31

Mongolia 24 3319 3164 33,119 9.98 72

Paraguay 24 1454 1373 17,717 12.19 60

Moldova 24 5948 5828 46,522 7.82 80

Malta 24 4500 3980 40,668 9.04 83

Trinidad and Tobago 24 5037 4561 44,146 8.76 76

Sao Tome and Principe 25 47 45 695 14.79 15

Chad 25 382 363 5122 13.41 33

Guadeloupe 25 1435 1345 17,075 11.9 52

Benin 25 3851 3681 35,470 9.21 65

Kazakhstan 25 12,124 11,809 39,700 3.27 68

Iraq 25 11,605 11,042 39,145 3.37 59

Uzbekistan 25 9259 8997 46,900 5.07 68

Palestine 25 4506 4224 30,338 6.73 60

Central African Republic 26 538 500 6940 12.9 41

Fiji 26 2400 2188 22,836 9.52 56

Liechtenstein 26 1272 1172 14,339 11.27 55

Dominican Republic 26 1101 1029 12,965 11.78 51

Azerbaijan 26 9848 9620 40,070 4.07 64

Yemen 26 2776 2698 18,951 6.83 50

Macao 26 5157 4903 25,298 4.91 57

Bahrain 26 4657 4225 24,769 5.32 55

Falkland Islands (Malvinas) 27 358 341 4628 12.93 34

American Samoa 27 162 150 2127 13.13 22

Gibraltar 27 106 94 1451 13.69 19

Mauritius 27 2206 2035 17,629 7.99 54

Rwanda 27 1759 1554 15,356 8.73 54

Myanmar 27 1543 1458 13,764 8.92 51

Reunion 27 581 544 6605 11.37 38

Bosnia and Herzegovina 27 7054 6752 30,300 4.3 61

Brunei Darussalam 27 2440 2136 16,224 6.65 52

Albania 27 3172 3028 14,759 4.65 48

Solomon Islands 28 324 296 4125 12.73 33

Svalbard and Jan Mayen 28 20 18 283 14.15 8

Tonga 28 108 105 1408 13.04 21

Sierra Leone 28 590 529 5551 9.41 31
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Kyrgyzstan 28 1486 1402 9918 6.67 45

El Salvador 28 1149 1061 9994 8.7 44

Swaziland 28 1091 988 9618 8.82 43

Eritrea 28 488 468 5260 10.78 35

Bahamas 28 399 365 4535 11.37 36

Libya 28 4160 4020 18,971 4.56 51

San Marino 29 191 181 2365 12.38 23

British Indian Ocean Territory 29 19 16 267 14.05 7

Guyana 29 530 485 4898 9.24 32

Togo 29 1470 1367 8850 6.02 39

Angola 29 715 680 5422 7.58 35

Mauritania 29 482 456 4762 9.88 32

Samoa 29 249 231 2734 10.98 27

Montenegro 29 2232 2153 7346 3.29 32

Saint Vincent and the Grenadines 30 40 38 518 12.95 11

Federated States of Micronesia 30 188 175 2144 11.4 24

Grenada 30 965 824 6286 6.51 33

Afghanistan 30 791 674 5800 7.33 36

Vanuatu 30 317 295 3142 9.91 27

Tajikistan 30 1244 1209 4728 3.8 29

Lesotho 30 459 425 3524 7.68 28

Burundi 30 421 392 3761 8.93 32

Suriname 31 293 276 2921 9.97 30

Bhutan 31 551 499 3249 5.9 27

Andorra 31 172 151 1786 10.38 21

Turkmenistan 31 296 286 2291 7.74 20

Cocos (Keeling) Islands 32 14 14 162 11.57 4

Tuvalu 32 25 24 284 11.36 8

Dominica 32 266 234 2007 7.55 23

Cayman Islands 32 231 210 1857 8.04 23

Maldives 32 206 194 1833 8.9 21

Equatorial Guinea 32 153 147 1587 10.37 20

Turks and Caicos Islands 33 45 45 475 10.56 13

Saint Kitts and Nevis 33 350 240 1866 5.33 21

Liberia 33 263 216 1934 7.35 21

Comoros 33 96 89 839 8.74 13

Marshall Islands 33 84 77 827 9.85 16

Northern Mariana Islands 33 68 66 680 10 14

Cook Islands 33 64 61 658 10.28 14
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Cape Verde 34 199 194 1501 7.54 17

Djibouti 35 190 178 1206 6.35 18

Aruba 36 93 74 621 6.68 12

Somalia 36 115 97 685 5.96 15

Timor-Leste 37 125 102 628 5.02 13

Mayotte 37 74 72 416 5.62 10

Antigua and Barbuda 38 114 103 550 4.82 13

Anguilla 38 36 33 201 5.58 7

South Georgia and the South
Sandwich Islands

39 7 5 42 6 2

Kiribati 39 33 28 184 5.58 8

Norfolk Island 40 20 20 114 5.7 7

Nauru 40 22 21 118 5.36 6

Vatican City State 41 25 16 121 4.84 6

Christmas Island 41 7 7 38 5.43 4

Saint Helena 42 15 15 69 4.6 5

Niue 43 16 13 25 1.56 2

Bouvet Island 43 6 4 29 4.83 2

Wallis and Futuna 43 15 13 60 4 4

Western Sahara 44 11 9 22 2 3

Heard Island and McDonald Islands 45 1 1 3 3 1

Saint Pierre and Miquelon 45 5 4 6 1.2 1

Pitcairn 46 3 1 4 1.33 1

Table A4. Pareto ranks and ranks from three sites.

University Rank1 Rank2 Rank3 Pareto
Rank

Massachusetts Institute of
Technology

1 3 7 1

Stanford University 2 2 4 1

Harvard University 3 1 1 1

University of Cambridge 4 4 8 2

University of Oxford 6 5 3 2

University of Toronto 32 30 2 2

California Institute of Technology 5 11 59 3

University College London 7 31 5 3
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Table A4. Cont.

University Rank1 Rank2 Rank3 Pareto
Rank

University of Chicago 10 8 20 3

Yale University 15 10 19 3

Johns Hopkins University 17 16 6 3

University of Pennsylvania 18 14 13 3

Columbia University 20 6 14 3

University of California, Berkeley
(UCB)

28 7 9 3

Swiss Federal Institute of
Technology

8 96 5 4

Imperial College London 9 35 15 4

Princeton University 11 9 93 4

Cornell University 16 12 25 4

University of Michigan 23 19 10 4

University of California, Los
Angeles (UCLA)

31 15 12 4

University of Tokyo 34 13 18 4
Pennsylvania State University 95 14 13 4

National University of Singapore
(NUS)

12 63 29 5

The University of Edinburgh 19 55 52 5

Duke University 25 29 24 5

Northwestern University 26 21 46 5
Kyoto University 37 20 60 5

University of California, San Diego
(UCSD)

40 17 17 5

University of Washington 59 27 11 5

Nanyang Technological University 13 134 66 6

Tsinghua University 24 74 38 6

The University of Manchester 29 61 49 6

McGill University 30 42 35 6
Seoul National University 35 24 50 6

Peking University 39 60 33 6

The University of Melbourne 42 89 31 6

University of British Columbia 45 57 21 6

New York University 46 22 68 6

University of Wisconsin-Madison 53 25 30 6

University of Copenhagen 68 69 16 6

The University of Hong Kong 27 169 137 7

University of Bristol 41 129 102 7

Fudan University 43 192 74 7
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Table A4. Cont.

University Rank1 Rank2 Rank3 Pareto
Rank

University of Sydney 46 95 27 7

Brown University 49 87 144 7

Carnegie Mellon University 58 67 247 7

Osaka University 63 48 101 7

University of Illinois at
Urbana-Champaign

66 34 76 7

University of Texas at Austin 67 32 64 7

Ruprecht Karl University
Heidelberg

72 82 51 7

University of North Carolina,
Chapel Hill

78 38 43 7

Katholieke Universiteit Leuven 79 78 23 7

The Ohio State University 88 46 37 7

The Hong Kong University of
Science and Technology

36 312 325 8

The University of New South Wales
(UNSW Australia)

49 117 71 8

University of Queensland 51 99 41 8

Shanghai Jiao Tong University 61 166 39 8

National Taiwan University (NTU) 68 53 92 8

University of Zurich 80 93 65 8
University of California, Davis 85 49 47 8

Utrecht University 104 83 44 8

University of Warwick 51 280 208 9

Tokyo Institute of Technology 56 128 253 9

University of Amsterdam 57 111 61 9

Technical University of Munich 60 104 95 9

Monash University 65 143 57 9

Georgia Institute of Technology 71 86 125 9

Tohoku University 75 84 105 9

Boston University 89 62 79 9

University of Helsinki 91 107 72 9

Purdue University 92 56 109 9

University of Alberta 94 101 77 9

Washington University (WUSTL) 106 51 56 9

City University of Hong Kong 55 364 252 10

Delft University of Technology 62 255 210 10

University of Glasgow 63 132 130 10

Lund University 73 127 83 10

Rice University 90 114 292 10
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Table A4. Cont.

University Rank1 Rank2 Rank3 Pareto
Rank

University of Geneva 95 80 103 10

Uppsala University 98 126 89 10

Leiden University 102 112 82 10

Lomonosov Moscow State
University

108 77 177 10

Durham University 74 231 258 11

The University of Nottingham 75 139 127 11

University of Birmingham 82 158 119 11

University of Southampton 87 153 110 11

Royal Institute of Technology 97 131 206 11

The University of Western Australia 102 213 104 11

University of St Andrews 77 307 348 12

The University of Auckland 81 252 195 12

Pohang University of Science And
Technology (POSTECH)

83 191 349 12

The University of Sheffield 84 172 147 12

University of Leeds 93 159 138 12

Korea University 98 141 162 12

University of Science and
Technology of China

104 223 113 12

Universidad de Buenos Aires (UBA) 85 372 277 13

Trinity College Dublin 98 175 263 13

Karlsruhe Institute of Technology 101 215 172 13

Sungkyunkwan University (SKKU) 106 221 139 13

Technical University of Denmark 109 168 154 13
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Abstract: The particle swarm optimization algorithm (PSO) is not good at dealing with discrete
optimization problems, and for the krill herd algorithm (KH), the ability of local search is relatively poor.
In this paper, we optimized PSO by quantum behavior and optimized KH by simulated annealing, so
a new hybrid algorithm, named the annealing krill quantum particle swarm optimization (AKQPSO)
algorithm, is proposed, and is based on the annealing krill herd algorithm (AKH) and quantum
particle swarm optimization algorithm (QPSO). QPSO has better performance in exploitation and
AKH has better performance in exploration, so AKQPSO proposed on this basis increases the diversity
of population individuals, and shows better performance in both exploitation and exploration.
In addition, the quantum behavior increased the diversity of the population, and the simulated
annealing strategy made the algorithm avoid falling into the local optimal value, which made the
algorithm obtain better performance. The test set used in this paper is a classic 100-Digit Challenge
problem, which was proposed at 2019 IEEE Congress on Evolutionary Computation (CEC 2019), and
AKQPSO has achieved better performance on benchmark problems.

Keywords: swarm intelligence; simulated annealing; krill herd; particle swarm optimization; quantum

1. Introduction

With the development of modern technology, artificial intelligence is becoming more and more
important in society, and more and more mature, and can be used to deal with many problems
that cannot be solved by traditional methods, such as wind energy decision system (WEDS) [1]
and social cognitive radio network (SCRN) [2]. There are many kinds of classification methods; the
simplest classification method is divided into the traditional method and modern intelligent method [3].
The traditional optimization algorithms generally deal with structured problems. The algorithms are
deterministic and have only one global optimal solution. Meanwhile, the intelligent optimization
algorithms generally deal with a more general description of the problems, which is heuristic, and have
multiple extreme values. Intelligent optimization algorithms require certain strategies to prevent falling
into the local optimum and try to find the global optimum, such as scheduling [4–7], image [8–10], feature
selection [11–13] and detection [14,15], path planning [16,17], cyber-physical social system [18,19],
texture discrimination [20], factor evaluation [21], saliency detection [22], classification [23,24], object
extraction [25], gesture segmentation [26], economic load dispatch [27,28], shape design [29], big data
and large-scale optimization [30,31], signal processing [32], multi-objective optimization [33,34], big
data optimization [30,31], unit commitment [35], vehicle routing [36], knapsack problem [37–39], fault
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diagnosis [40–42], and test-sheet composition [43]. Because intelligent algorithms are not strictly
dependent on the mathematical relationship, and because the problems that need to be solved are
becoming more and more complex, intelligent algorithms are widely used to solve various complex
optimization problems. As a result, the frequency of intelligent algorithms has exceeded that of
traditional algorithms. At present, some main intelligent algorithms are widely used, such as genetic
algorithm (GA) [44,45], particle swarm optimization algorithm (PSO) [46–48], krill herd (KH) [49–54],
ant colony optimization algorithm (ACO) [55–57], differential evolution algorithm (DE) [58,59], adaptive
island evolutionary algorithm (AIE) [60], and delayed start parallel evolutionary algorithm (DSPE) [61].

The swarm intelligence algorithms mainly come from the bionic idea, which is a set of methods
summarized by referring to the laws of life and predatory behavior of animals in the biological world.
A swarm intelligence algorithm is a kind of algorithm that works by studying the collective behavior
of animals, and the most famous swarm intelligence algorithms are particle swarm optimization
algorithm (PSO) [46] and ant colony optimization algorithm (ACO) [55]. An evolutionary algorithm
is mainly a kind of method obtained by studying the process of biological genetic change, and these
include genetic algorithm (GA) [44], genetic programming (GP) [62], evolutionary strategy (ES) [63,64],
differential evolution (DE) [58] and other algorithms are based on genes. The krill herd (KH) [49] and
quantum-behaved particle swarm optimization (QPSO) [65] algorithms mentioned in this paper belong
to the swarm intelligence algorithm. The KH algorithm has the advantages of simplicity, flexibility, and
high computational efficiency, and the QPSO algorithm has a relatively fast convergence speed, but
when they are used to solve the 100-Digit Challenge problems, they do not do well. Owing to the poor
local optimization ability of QPSO, it is easy to fall into the local optimal value, so it does not solve this
problem well. In order to study an algorithm with very high accuracy, as well as to simultaneously
optimize the exploitation and exploration and improve the accuracy of annealing krill quantum particle
swarm optimization (AKQPSO), we studied the KH algorithm with strong exploitation and the QPSO
algorithm with strong exploration. By combining their advantages, the new algorithm overcomes
their original shortcomings and has a strong ability in exploration and exploitation. We combine
the advantages of KH and QPSO, and optimize them, forming the annealing krill quantum particle
swarm optimization (AKQPSO) algorithm. The new algorithm solved the 100-Digit Challenge better.
Moreover, the study solved the problem of the poor accuracy of general algorithms, and exploitation
and exploration cannot achieve the optimal at the same time.

In this paper, the 100-Digit Challenge problem is difficult to solve by traditional methods, and
we can solve this problem better by using a swarm intelligence algorithm. In 2002, academician
Nick Trefethen of Oxford University and the Society for Industrial and Applied Mathematics (SIAM)
jointly developed the 100-Digit Challenge problem, which was proposed mainly to test high-precision
computing [18]. The challenge consists of ten problems, each of which needs to be accurate to ten
decimal places, with a total of 100 digits, so the problem is named the 100-Digit Challenge. However,
traditional methods need a lot of computation to solve this challenge, and they cannot get good results,
so we use swarm intelligence algorithm to solve these problems, and get satisfactory results.

The rest of paper is organized as follows. Most representative studies regarding the KH and QPSO
algorithm are reviewed in Section 2, and these two algorithms are introduced in Section 3. The proposed
algorithm is described in Section 4 and the experimental results of AKQPSO are presented in Section 5.
Section 6 provides the main conclusions and highlights future work.

2. Related Work

In order to illustrate the hybrid method, we introduced KH and PSO algorithms. In the following,
we will introduce the KH algorithm, PSO algorithm, and 100-Digit Challenge problem, respectively.

2.1. KH

At present, we have two kinds of optimizations for the KH algorithm [49]; one is to improve the
KH algorithm itself, and the other is to improve the KH by other excellent operators or algorithms.
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Wang et al. [54] changed the parameters of the KH algorithm and improved the speed of global
convergence through chaos theory. Then, in order to improve the performance, they [66] used harmony
search to replace the physical diffusion, which greatly improved the performance and efficiency. These
algorithms belong to the first category, which optimized the KH algorithm itself. The following
are the second category, which optimized the algorithm with better strategies. Abualigah et al. [50]
put forward a new algorithm, which combined harmony search algorithm with he KH algorithm to
generate a new probability factor and improved exploration search ability, so as to get a better solution.
Another algorithm is proposed by Abualigah et al. [67], which combined the objective function with
the KH algorithm, and had better performance in solving the problem of text clustering. Niu et al. [68]
sped up the exploration convergence and improved the efficiency by using the opposite learning
strategy, using a sinusoidal graph to change the inertia weight, and modifying the search process
according to the inertia weight and acceleration coefficient.

2.2. PSO

The PSO algorithm is one of the most famous swarm intelligence algorithms [47,69,70]. It was
proposed in 1995, and it has the advantages of few parameters, a simple principle, and fast convergence.
This algorithm has been widely used. For example, Sun et al. [71] used the agent model to assist the
PSO algorithm to solve complex optimization problems. Through the combination of exploration
and exploitation, they can better solve high-dimensional problems with limited resources. Similarly,
for high-dimensional problems, Tran et al. [72] changed the fixed length of feature selection in the
PSO algorithm, so that the particle swarm had a shorter length. This operation reduced the search
space and gave shorter particles better performance. Thus, the overall efficiency of the PSO algorithm
is improved, and it is also more suitable for high-dimensional problems. For the feature selection
of the PSO algorithm, they [73] also optimized other methods. They improved the algorithm by
discretizing the feature selection, and proved that the single variable discretization may reduce the
performance of the feature selection stage, so they proposed a new discretization method, and got better
performance. Zhang et al. [74] considered that there was no PSO algorithm that can work in noisy
and noiseless environment at the same time, so they proposed the dual-environment PSO algorithm.
This new algorithm is based on the top-k elite particles to search, which not only guaranteed the good
performance in the noise environment, but also can be re-applied to the noise-free environment, so it
filled a gap in the field of the PSO algorithm.

2.3. 100-Digit Challenge

The 100-Digit Challenge problem was originally proposed by SIAM [75], which is a test method
for accuracy calculation, and has been studied by many experts. Many algorithms have been applied
to this challenge, and some of them are hybrid algorithms that are used to challenge this problem.
Epstein et al. [76] combined the genetic algorithm (GA) with differential evolution (DE) algorithm to
search the genetic space and find the latest solution. The new algorithm improved the ability to find
the right answer through the fitness-based opposition and tide mutation. Brest et al. [77] used the
self-adaptive differential evolution (jDE) algorithm in the DE algorithm to solve this problem, and also
got better results. Different from the above algorithms, Zhang et al. [78] proposed a new DE algorithm
named collective information powered DE. This new algorithm proposed a restart mechanism through
collective population information to improve the robustness.

3. KH and PSO

KH and PSO are very efficient algorithms in the field of swarm intelligence, and we will respectively
introduce them in the following.
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3.1. KH

In the process of predation, the predator will change the distribution of krill population, which
will make them move rapidly, and then cause their distribution density to decrease and the distance
between the predator and the food to become more and more far, which is the initial stage of KH.
In this process, the distribution of krill population is determined by the following three situations: the
influence of other krill individuals, behavior of getting food, and random diffusion. The KH algorithm
can be described as follows:

dXi
dt

= Ni + Fi + Di (1)

where Ni is the influence of other krill individuals, Fi is the behavior of getting food, and Di is the
behavior of random diffusion; i = 1, 2, . . . , N, and N is the population size.

For the influence of other krill individuals, the motion Ni,new of krill i induced by other krill is
defined as follows:

Ni,new = Nmaxαi +ωnNi,old (2)

where Nmax represents the maximum induced velocity, Ni,old represents the previously induced
movement, ωn represents the inertia weight and the value range is (0,1), and αi indicates that the
individuali is affected by the induction direction of the surrounding neighbors.

The next behavior Fi is to get food, as follows:

Fi = V fβi +ω f Fi,old (3)

where Vf is the maximum foraging speed, and its value is a constant, which is 0.02 (ms−1); ωf is the
inertia weight of foraging movement, and its range is (0, 1); Fi,old is the previous foraging movement;
and βi is the foraging direction.

The individual Di in the last behavior can be represented as follows:

Di = Dmax(1− I
Imax

)δ (4)

where Dmax represents the maximum random diffusion speed; δ represents the direction of random
diffusion; and I and Imax represent the current number and the maximum number of iterations,
respectively. From above process, we can get the krill update process of the KH algorithm as follows:

Xi(t + Δt) = Xi(t) + Δt
dXi
dt

(5)

Δt = Ct
NV∑
j=1

(UBj − LBj) (6)

where Δt is the time interval related to the specific application; NV is the dimension of the decision
variable; step factor Ct is a constant between 0 and 2; and UBj and LBj are the upper and lower bounds
of corresponding variable j (j = 1, 2, . . . , NV), respectively.

The process of the KH algorithm (Algorithm 1) is as follows.
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Algorithm 1. KH [49]

1. Begin

2. Step 1: Initialization. Initialize the generation counter G, the population P, Vf, Dmax, and Nmax.
3. Step 2: Fitness calculation. Calculate fitness for each krill according to its initial position.
4. Step 3: While G <MaxGeneration do

5. Sort the population according to their fitness.
6. for i = 1:N (all krill) do

7. Perform the following motion calculation.
8. Motion induced by other individuals
9. Foraging motion
10. Physical diffusion

11. Implement the genetic operators.
12. Update the krill position in the search space.
13. Calculate fitness for each krill according to its new position

14. end for i
15. G = G + 1.
16. Step 4: end while.

17. End.

3.2. PSO

In the PSO algorithm, each individual is called a “particle”, and each particle will find a potential
optimal solution at each iteration. Assuming that the size of the population is N, each particle i (i = 1, 2,
. . . , N) in the population has its own initial position Xi (Xi = xi1, xi2, . . . , xid) and initial velocity Vi (Vi
= vi1, vi2, . . . , vid), and they will search for the optimal solution in D-dimensional space according to
their own individual extremum pbest and global extremum gbest. Individual extremum is the current
best point found by each particle in the search space, and global extremum is the current best point
found by the whole particle group in the search space. During the search process, the updating formula
of particle’s relevant state parameters is as follows:

vt+1
i = ηvt

i + c1 ∗ rand1()·(pt
best − xt

i) + c2 ∗ rand2()·(gt
best − xt

i) (7)

xt+1
i = xt

i + vt
i (8)

η = ηstart − (ηstart − ηend)
t
T

(9)

where η is the inertia weight that determines the specific gravity of the particle to the current velocity.
If the η is large, the particle has a strong exploration ability and can span a longer distance to find the
global optimal solution, but it may cause the particle to oscillate back and forth before and after the
optimal solution. If the η is small, it means that particles have better ability to find the optimal solution
locally, but they can easily to fall into the local optimization solution.

The flow of the standard PSO algorithm (Algorithm 2) is given below, where bup and blo represent
the upper and lower bounds of the problem domain, respectively, and D represents the dimension of
the solution space.
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Algorithm 2. PSO [46]

Begin

Step 1: Initialization.
1. Initial position: the initial position of each particle obeys uniform distribution, that is Xi ∼ U(bup, blo).
2. Initialize its own optimal solution and the overall optimal solution: the initial position is its own

optimal solution pi = xi, and then calculating the corresponding value of each particle according to the defined utility
function f, and find the global optimal solution gbest.

3. Initial speed: the speed also obeys the uniform distribution.
Step 2: Update.

According to Equations (7) and (8), the velocity and position of particles are updated, and the current fitness
of particles is calculated according to the utility function f of the problem. If it is better than its own historical
optimal solution, it will update its own historical optimal solution pbest, otherwise it will not update. If the particle’s
own optimal solution pbest is better than the global optimal solution g, then the global optimal solution g is updated,
otherwise it is not updated.

Step 3: Determine whether to terminate:

Determine whether the best solution meets the termination conditions, if yes, stop.
Otherwise, return to Step 2.

End.

As shown in Equations (7) and (8), during each iteration, the particles update the direction and
speed of the next flight based on their own and group experience. The main characteristics of the PSO
algorithm are as follows:

1. Particles have memory. Each iteration of particles will transfer the optimal solution of the
population to each other, and update the database of all particles. If the particles deviate, the
direction and velocity can be corrected by self-cognition and group-cognition.

2. PSO algorithm has fewer parameters, so it is easy to adjust, and the structure is simple, so it is
easy to implement.

3. The operation is simple, and it only searches for the optimal solution in the solution space
according to the flight of particles.

4. AKQPSO

The AKQPSO algorithm is a mixed metaheuristic algorithm, which combines the advantages
of annealing krill herd (AKH) and QPSO [79]. AKH solves the disadvantage that KH cannot escape
from the local optimal solution. At the same time, the efficiency of KH algorithm is improved by
the simulated annealing strategy. Quantum behaved PSO (QPSO) is a new algorithm proposed by
Sun et al. [79] in 2004. By introducing the quantum behavior and combining it with the idea of
simulated annealing, the search ability of AKQPSO is greatly improved, and the new algorithm has
better performance. The principle of QPSO is shown below.

Quantum computing is a new computing mode, which follows the laws of quantum mechanics
and regulates the quantum information unit. In quantum space, when the aggregation state property
is satisfied, particles can search in the whole feasible solution space, thus greatly improving the
exploration search ability of QPSO. According to the analysis theory of particle convergence trajectory,
if every particle can converge to its local attraction point Pi = (pi1, pi2 . . . , pid), then the algorithm
has the possibility of convergence. The particle position update expression of the standard QPSO
algorithm is as follows:

xt+1
i j = pt

i j ± α·
∣∣∣∣Ct

ij − xt
i j

∣∣∣∣· ln[1/ut
ij], ut

ij ∼ U(0, 1) (10)

where α is the only parameter that needs to be adjusted in the algorithm, called the
compression-expansion factor, which is used to control the convergence rate of particles. During
the iterative process, the calculation method of individual and global optimal position is the same

150



Mathematics 2020, 8, 1403

as that of the PSO algorithm, and the biggest difference is that the QPSO algorithm removes the
speed information.

First of all, we initialize the whole population, and all the individuals in the population are
randomly generated. After initialization, we divide the population into two subpopulations according
to the ratio of 3:7, which is discussed in Section 5.2. The population with the proportion of 3/10 is
optimized by the improved KH algorithm, which is called subpopulation-AKH, and the population
with the proportion of 7/10 is optimized by the QPSO algorithm, which is called subpopulation-QPSO.
The two subpopulations will be re-integrated into a population after iterative optimization. If the
optimization result of the new population meets the output conditions, then the result can be output.
However, if it does not meet the output conditions, then it can be re-divided according to the proportion
of 3:7, and repeat the above process until the results meet the termination conditions. In the process
of decentralized and re-fusion of this population, the location information of individuals is shared,
so it will greatly improve the efficiency of fusion search and get the best results faster. In the process
of the AKQPSO algorithm, we also optimized the KH algorithm by the idea of simulated annealing,
named annealing KH (AKH), so we used QPSO and simulated annealing strategy to guarantee the
algorithm to escape from the local optimal value. The framework of AKQPSO is shown in Figure 1
and the process of the AKQPSO algorithm (Algorithm 3) is as follows.

Algorithm 3 AKQPSO

Initialization:

N random individuals were generated.
Set initialization parameters of AKH and QPSO.

Evaluation:

Evaluate all individuals based on location.

Partition:

The whole population was divided into subpopulation-AKH and subpopulation-QPSO.
AKH process:

Subpopulation-AKH individuals were optimized by AKH.
Update through these three actions of the influence of other krill individuals, behavior of getting food and

random diffusion.
The simulated annealing strategy is used to deal with the above behaviors.
Update the individual position according to the above behavior.

QPSO process:

Subpopulation-QPSO individuals were optimized by QPSO.
Update the particle’s local best point Pi and global best point Pbest.
Update the position xt+1

i j by Equation (10).

Combination:

The population optimized by AKH and QPSO was reconstituted into a new population.

Finding the best solution:

The fitness of all individuals was calculated, and the best solution was found in the newly-combined
population.
Determine whether to terminate:

Determine whether the best solution meets the termination conditions, if yes, stop.
Otherwise, return to step Evaluation.
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Start

Initialize the AKQPSO

Evaluate the individuals in the population

Partition the population 

Motion induced by other individuals

Foraging motion

Physical diffusion

Simulated annealing strategy

Calculate p(i) and g(best)

Update the position x(i) by 
Equation (11)

Combine the two subpopulations into one population

Find and record the best solution at present.

Whether the termination 
conditions are met

Output the optimal result

End

AKH QPSO

Y

N

Figure 1. Framework of annealing krill quantum particle swarm optimization (AKQPSO).

5. Simulation Results

The 100-Digit Challenge problem comes from CEC 2019 and can be found through the website
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2019. This challenge includes 10 problems,
which are 10 functions in our data. The goal is to calculate the accuracy of the function to 10 digits
without a time limit. The proposed algorithm was written in MATLAB R2016a and was run in the
following conditions: Intel(R) Core(TM) i5-8100 CPU 3.60 GHz, which possesses 8G of RAM on
Windows 10. Table 1 shows the basic parameters of the 100-Digit Challenge. The 10 test problems are
the definition of minimization and some other definitions are as follows:

Min f (x), x = [x1, x2, . . . , xD]
T (11)

where D is the dimension, the global optimal value of the shift is randomly distributed in (−80, 80),
and all testing problems are scalable.

Table 1. The basic parameters of the 100-Digit Challenge.

No. Functions F*
i=Fi(x*) D Search Range

1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 (−8192–8192)
2 Inverse Hilbert Matrix Problem 1 16 (−16,384–16,384)
3 Lennard–Jones Minimum Energy Cluster 1 18 (−4–4)
4 Rastrigin’s Function 1 10 (−100–100)
5 Griewangk’s Function 1 10 (−100–100)
6 Weierstrass Function 1 10 (−100–100)
7 Modified Schwefel’s Function 1 10 (−100–100)
8 Expanded Schaffer’s F6 Function 1 10 (−100–100)
9 Happy Cat Function 1 10 (−100–100)
10 Ackley Function 1 10 (−100–100)
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5.1. The Comparison of AKQPSO and Other Algorithms

In this paper, we compared the AKQPSO algorithm with the following eight
state-of-the-art algorithms.

1. By improving krill migration operator, biogeography-based KH (BBKH) [51] was proposed.
2. By adding a new hybrid differential evolution operator, the efficiency of the updating process is

improved, and differential evolution KH (DEKH) [80] was proposed.
3. By quantum behavior to optimize KH, quantum-behaved KH (QKH) [65] was proposed.
4. By adding the stud selection and crossover operator, the efficiency was improved and stud krill

herd (SKH) [81] was proposed.
5. By adding chaos map to optimize cuckoo search (CS), the chaotic CS (CCS) [82] was proposed.
6. By adding variable neighborhood (VN) search to bat algorithm (BA), VNBA [83] was proposed.
7. By discussing physical biogeography and its mathematics, biogeography-based optimization

(BBO) [84] was proposed.
8. Genetic algorithm (GA) [45] is basic algorithm of evolutionary computing.

Table 2 is the common parameter setting of these algorithms. We set the population size (N) to 50;
after 7500 iterations (max_gen) and 100 independent runs (max_run), all algorithm experiments are
carried out under the condition that the basic parameters are consistent.

Table 2. Parameter settings.

Parameters N max_gen max_run

Value 50 7500 100

Table 3 shows the optimization results of AKQPSO and eight other algorithms for ten of the
100-Digits Challenge, with the best value in bold. From the experimental results, we can see that the
optimal values of the ten problems are all calculated by the AKQPSO algorithm. AKQPSO is the best
algorithm among these algorithms, and the result is the best in every problem, but QKH is not the
second in every problem, so we can know that our algorithm improvement is very effective. Through
Figure 2, we can clearly conclude that the performance of AKQPSO is the best in general, followed by
QKH, and the performance of GA is the worst. In general, we rank the algorithms as follows: AKQPSO
> QKH > CCS > BBKH > DEKH > SKH > VNBA > GA.

 
Figure 2. Accuracy of AKQPSO and other algorithms on all problems.
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Table 3. The minimum value of annealing krill quantum particle swarm optimization (AKQPSO) and
other algorithms in the 100-Digit Challenge. BBKH, biogeography-based krill herd; DEKH, differential
evolution KH; QKH, quantum-behaved KH; SKH, stud KH; CCS, chaotic cuckoo search; VNBA,
variable neighborhood bat algorithm; BBO, biogeography-based optimization; GA, genetic algorithm.
(The table results retain ten decimal places.).

Algorithm Problem 1 Problem 2 Problem 3

AKQPSO
(Algorithm 3)

10,893.3861385383 215.6832766302 1.3068652046

BBKH 291,803.2852933580 613.7135086878 5.9027057769
DEKH 975,339.7308122220 708.0601338156 6.5872946609
QKH 47,583.9014728552 404.4416682185 2.1853645745
SKH 1,773,168.4809322700 402.7243166556 8.0692567398
CCS 211,411.5538712060 358.9175375272 12.4818284785

VNBA 2,550,944.5550316900 816.8071391350 4.6163144446
BBO 72,287.9373622652 311.8124377894 2.9209583205
GA 8,009,879.0206872900 2209.1904660292 9.7547945042

Algorithm Problem 4 Problem 5 Problem 6

AKQPSO
(Algorithm 3)

4.0398322695 1.0434696313 1.1185826442

BBKH 17.7900443880 1.8852367864 3.9551854227
DEKH 29.4088567232 1.9507021960 3.1953451545
QKH 7.1133424631 2.0695362381 3.1213610789
SKH 50.9548872356 1.9350825919 10.2543233489
CCS 61.4604530135 3.4583111771 6.6010211976

VNBA 24.7278199397 3.0251295691 5.7134938818
BBO 17.4206259198 1.0971964590 2.5154932374
GA 53.9444360765 2.7126573212 6.2420012291

Algorithm Problem 7 Problem 8 Problem 9

AKQPSO
(Algorithm 3)

121.8932375270 2.3131324015 1.0715438957

BBKH 779.4066229661 4.3846591727 1.3554069744
DEKH 1060.0387128932 4.4509969471 1.3614909209
QKH 195.0770363640 2.5711387868 1.2989726797
SKH 1348.8213407547 4.8795287164 1.5980935412
CCS 2247.4406602539 5.4002626350 1.6453371395

VNBA 644.6334455535 4.1477932707 1.3950038682
BBO 950.8018632939 3.5941524656 1.2098037868
GA 1276.4565372145 4.2393160129 1.3580083289

Algorithm Problem 10 - -

AKQPSO
(Algorithm 3)

21.0237707978 - -

BBKH 21.6420368754 - -
DEKH 21.6383024320 - -
QKH 21.1582649016 - -
SKH 21.6017549654 - -
CCS 21.9603961872 - -

VNBA 21.0799825759 - -
BBO 21.9988888954 - -
GA 21.4392031521 - -

Figures 3–12 show the results of the nine algorithms on each problem, and the experimental results
show that AKQPSO algorithm has obvious advantages over other algorithms. From these column
charts, we can see that the fluctuation of problem 1 is the largest. In problem 1, the results of the GA
algorithm with the worst performance are 735 times different from those of AKQPSO algorithm with
the best performance, which can be said to be very different. Because the 100-Digits Challenge problem
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is used to test the computational accuracy, we can know that the computational accuracy of AKQPSO
algorithm is the highest among the nine algorithms. In Figure 3, because the results of AKQPSO, QKH,
and BBO are so different from those of GA, the columns of these algorithms are almost invisible, so
they are not obvious in the same chart. However, in fact, the improvement of AKQPSO compared with
QKH and BBO is significant.

 
Figure 3. Accuracy of AKQPSO and other algorithms on problem 1: Storn’s Chebyshev polynomial
fitting problem. BBKH, biogeography-based krill herd; DEKH, differential evolution KH; QKH,
quantum-behaved KH; SKH, stud KH; CCS, chaotic cuckoo search; VNBA, variable neighborhood bat
algorithm; BBO, biogeography-based optimization; GA, genetic algorithm.

 
Figure 4. Accuracy of AKQPSO and other algorithms on problem 2: inverse Hilbert matrix problem.
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Figure 5. Accuracy of AKQPSO and other algorithms on problem 3: Lennard–Jones minimum
energy cluster.

 
Figure 6. Accuracy of AKQPSO and other algorithms on problem 4: Rastrigin’s function.

 
Figure 7. Accuracy of AKQPSO and other algorithms on problem 5: Griewangk’s function.
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Figure 8. Accuracy of AKQPSO and other algorithms on problem 6: Weierstrass function.

 
Figure 9. Accuracy of AKQPSO and other algorithms on problem 7: modified Schwefel’s function.

 
Figure 10. Accuracy of AKQPSO and other algorithms on problem 8: expanded Schaffer’s F6 function.
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Figure 11. Accuracy of AKQPSO and other algorithms on problem 9: happy cat function.

 
Figure 12. Accuracy of AKQPSO and other algorithms on problem 10: Ackley function.

Among these ten problems, we divide the problems into four groups according to the ability of
these problems to test the computational accuracy of AKQPSO. Some groups have a strong ability
to test, so it is more obvious which algorithm is better. The first group: problem 1. According to the
computational accuracy, the results displayed in this group are quite different. The second group:
problems 2, 3, and 7. This group has higher requirements for the accuracy, so it is difficult to calculate
the best value of the function. The third group: problems 4, 6, 8, and 10. This group has a slightly lower
requirement for the computational accuracy, so the results of various algorithms are very close, but it is
difficult to achieve the best results. The fourth group: problems 5 and 9. This group has the lowest
requirements for the computational accuracy, so many algorithms can be very close to the optimal
result 1.0000000000.

Figures 13–16 show the advantage of AKQPSO over other algorithms in each group of the
100-Digits Challenge problem. Although the accuracy of GA is the worst when ranking from the whole,
and in the first of the four groups, it is also the GA. In the other three groups, however, the algorithm
with the worst accuracy is CCS algorithm, so in terms of grouping comparison, CCS algorithm is the
worst. In addition, the accuracy of AKQPSO algorithm is still the best among the four groups, which
has not changed. From the above analysis, AKQPSO is the best in all aspects, and the computational
accuracy of this algorithm is also the highest.
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Figure 13. Ratio of AKQPSO over other algorithms in the first group.

 
Figure 14. Ratio of AKQPSO over other algorithms in the second group.

 
Figure 15. Ratio of AKQPSO over other algorithms in the third group.
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Figure 16. Ratio of AKQPSO over other algorithms in the fourth group.

5.2. Evaluation Parameter λ

In Section 4, after the initialization of the population, AKQPSO algorithm divided the population
into two subpopulations: AKH and QPSO. We set the parameter λ, which represents the proportion of
the two subpopulations. In the experiment, λ = 0.1, 0.2, . . . , 0.9. For example, if λ = 0.1, this means
that the ratio of subpopulation-AKH/subpopulation-QPSO is 1:9, and other numbers mean the same
thing. After a lot of experiments, the optimal parameter value is λ = 0.3. All the above experiments
are based on the results obtained using λ = 0.3, and the following part will introduce the experiments
on λ = 0.3. The parameters of this part of experiments are still the same as Table 2 to ensure that all
experiments are tested under the same conditions.

Table 4 shows the experimental results of 10 problems that are calculated by different λ in the
AKQPSO algorithm in the 100-Digit Challenge. Bold font indicates the best value. From Table 4, we
can see that, in the case of λ = 0.3, eight of the ten problems can get the best value. In the remaining
two problems, even if λ = 0.3 does not reach the best value, its result is the second among the nine
values, and it is very close to the best value. Therefore, when λ = 0.3, the performance of AKQPSO can
reach the best.

Table 4. The different subpopulations in the AKQPSO algorithm.

λ Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

0.1 49,649.1118923043 371.5625700159 1.4091799599 6.9697543426 1.1082189445
0.2 133,608.1106469210 370.0473039979 1.4091358439 3.9848771713 1.0983396055
0.3 10,893.3861385383 215.6832766302 1.3068652046 4.0398322695 1.0434696313
0.4 53,539.2035950009 346.1060025716 1.4091347288 4.9798362284 1.0588561989
0.5 86,346.3589566716 424.4795442904 1.4091497973 5.9747952855 1.0564120753
0.6 82,979.4098834243 422.2483723507 1.4094790359 5.0457481023 1.0861547616
0.7 99,948.7393233432 609.3844384539 7.7057897580 7.9647083618 1.0885926731
0.8 172,794.7224327620 462.1482898652 1.4091546130 13.9344627044 1.0689273036
0.9 29,013.1541012323 412.4776865757 3.9404220234 8.9597299262 1.0642761100

λ Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

0.1 1.4704093392 401.1855067018 3.0118025092 1.0958187632 21.1048204811
0.2 1.2289194470 336.4312675492 2.7987816724 1.0968167661 21.0708288643
0.3 1.1185826442 121.8932375270 2.3131324015 1.0715438957 21.0237707978
0.4 2.6943320338 119.5337169812 2.3299026264 1.1010758378 21.0389405345
0.5 2.9771884111 209.5578114314 2.5217968033 1.1257275250 21.0587530353
0.6 2.5706601162 253.1211550958 3.5227629532 1.1353127271 21.0976573470
0.7 1.4737157145 187.5895821815 3.0884949525 1.1344605652 21.1144506567
0.8 1.5487741806 144.3502633617 3.1612574448 1.1553497252 21.0835644844
0.9 4.0000000000 131.2707035329 4.0209018951 1.1615503990 21.0768903380
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As can be seen from Figure 17a, the fluctuation range of the result of problem 1 is the largest.
As problems 1–10 are in the same chart, and the fluctuation of problem 1 is much larger than that
of other problems, the fluctuation range of problems 2–10 is not obvious in Figure 17a. In order to
compare problems 2–10 more clearly, we used Figure 17b to show the fluctuation of other problems
2–10. Through Figure 17b, we can see that the fluctuation of problems 2 and 7 are also obvious.
Therefore, among these ten problems, problems 1, 2, and 7 are the three problems with the largest
fluctuation. Among these ten problems, the fluctuation of problem 7 is different from that of the other
nine problems. With the increasing proportion of AKH and QPSO, the result of problem 7 tends to be
better. For other problems, however, with the increasing proportion of AKH and QPSO, their results
tend to be worse, which is the opposite of problem 7.

 

 

 
(b) 

Figure 17. The different subpopulations in different problems. (a) The different subpopulations in
problems 1–10 and (b) the different subpopulations in problems 2–10.
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From the results of Sections 5.1 and 5.2, problems 1, 2, and 7 belong to the first and the second of
the four groups, respectively, and they are also the two groups with the highest requirements for the
computational accuracy of AKQPSO. Therefore, the adjustment of subpopulation has a very direct
effect on the accuracy of AKQPSO.

5.3. Complexity Analysis of AKQPSO

The main computing overhead of AKQPSO associated with Step “Partition” of the AKQPSO
algorithm in Section 4. The following is a detailed analysis of the single computational complexity of
Step “Partition” and other step in AKQPSO. N is the number of individuals in the population.

1. Step “Partition”: This step accounts for the main computational overhead, so we focus on
this step.

• Step “AKH process”: The computational complexity of this step mainly includes
“Subpopulation-AKH individuals were optimized by AKH”, “Update through these three
actions of the influence of other krill individuals, behavior of getting food and random
diffusion”, “The simulated annealing strategy is used to deal with the above behaviors”, and
“Update the individual position according to the above behavior”, and their complexities are
O(N), O(N2), O(N), and O(N), respectively.

• Step “QPSO process”: The computational complexity of this step mainly includes
“Subpopulation-QPSO individuals were optimized by QPSO”, “Update the particle’s local
best point Pi and global best point Pbest”, and “Update the position xt+1

i j by Equation (10)”,
and their complexities are all O(N).

2. Other step.

• The computational complexity of Step “Initialization”, Step “Evaluation”, Step

“Combination”, and Step “Finding the best solution” are all O(N).

Therefore, in one generation AKQPSO, the worst-case complexity is O(N2).

6. Conclusions

In this paper, aiming at the disadvantage of poor local search ability of KH algorithm, we optimized
it by simulated annealing strategy and QPSO algorithm, and proposed a new algorithm: AKQPSO.
This algorithm was compared with eight other excellent algorithms, and the computational accuracy
of AKQPSO was tested by the 100-Digit Challenge problem. As predicted before the experiment, the
computational accuracy of AKQPSO algorithm is the highest among these algorithms. Moreover, we
also adjusted the parameters of AKQPSO through experiments to further improve the computational
accuracy. By calculating the accuracy of the 100-Digit Challenge problem, our experiment provided
a new method to study the accuracy of the algorithm, and the paper provided a very high accuracy
algorithm. However, the research of this paper still has some limitations. The accuracy of the algorithm
in 100-Digit Challenge problem is very high, but it is unclear whether AKQPSO still has high accuracy
in general problems.

In the future, we can focus on other aspects. Firstly, besides the simulated annealing strategy
and QPSO algorithm, we could look for other metaheuristic algorithms [85] that can be used to
improve the search ability of KH and carry out in-depth research such as bat algorithm (BA) [86,87],
biogeography-based optimization (BBO) [84,88], cuckoo search (CS) [82,89–92], earthworm optimization
algorithm (EWA) [93], elephant herding optimization (EHO) [94,95], moth search (MS) algorithm [96],
firefly algorithm (FA) [97], artificial bee colony (ABC) [98–100], harmony search (HS) [101], monarch
butterfly optimization (MBO) [102,103], and genetic programming (GP) [104], as well as more recent
research. Secondly, for the parameters in the algorithm, besides the proportion of subpopulation,
we can also study the influence of other parameters on the computational accuracy of AKQPSO.
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Thirdly, now we just use two kinds of algorithms to make them cooperate and optimize in a relatively
simple way, and we can also study how to make them cooperate more efficiently through other
methods. Finally, although the 100-Digit Challenge is a classical problem, it is still less used for testing
computational accuracy of algorithms, and there is still a large development space in this area.
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Abstract: Elephant herding optimization (EHO) is a nature-inspired metaheuristic optimization
algorithm based on the herding behavior of elephants. EHO uses a clan operator to update the distance
of the elephants in each clan with respect to the position of a matriarch elephant. The superiority of
the EHO method to several state-of-the-art metaheuristic algorithms has been demonstrated for many
benchmark problems and in various application areas. A comprehensive review for the EHO-based
algorithms and their applications are presented in this paper. Various aspects of the EHO variants for
continuous optimization, combinatorial optimization, constrained optimization, and multi-objective
optimization are reviewed. Future directions for research in the area of EHO are further discussed.

Keywords: elephant herding optimization; engineering optimization; metaheuristic; constrained
optimization; multi-objective optimization

1. Introduction

The rapid growth of the size and complexity of optimization problems implies that the traditional
optimization algorithms are becoming more uncertain for solving these problems [1]. Metaheuristic
algorithms [2–4] have proved to be a viable solution to this challenge. Inspired by nature, these strong
metaheuristic algorithms are applied to solve NP-hard problems, such as flow shop scheduling [5–9],
image encryption [10–12], feature selection [13–15], facial feature detection [16,17], path planning [18,19],
cyber-physical social systems [20,21], texture discrimination [22], factor evaluation [23], saliency
detection [24], classification [25], engineering optimization [26], object extraction [27], gesture
segmentation [28], economic load dispatch [29], shape design [30], big data and large-scale
optimization [31], signal processing [32], multi-objective and many-objective optimization [33–35], unit
commitment [36], vehicle routing [37,38], and the knapsack problem [39,40]. Some of the well-known
methods in this area are genetic algorithms (GAs) [41], particle swarm optimization (PSO) [42–45],
differential evolution (DE) [19,46,47], monarch butterfly optimization (MBO) [48–52], artificial bee
colonies (ABCs) [53], earthworm optimization algorithms (EWAs) [54], ant colony optimization

Mathematics 2020, 8, 1415; doi:10.3390/math8091415 www.mdpi.com/journal/mathematics169
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(ACO) [55], cuckoo search (CS) [56–62], krill herd (KH) [63–67], firefly algorithms (FAs) [68–73],
simulated annealing (SA) [74], intelligent water drop (IWD) [75], water cycle algorithms (WCAs) [76],
moth search (MS) [77], monkey algorithms (MAs) [78], evolutionary strategy (ES) [79], free search
(FS) [80], probability-based incremental learning (PBIL) [81], biogeography-based optimization
(BBO) [82–85], dragonfly algorithms (DAs) [86], interior search algorithms (ISAs) [87], brain storm
optimization (BSO) [88,89], bat algorithms (BAs) [18,90–97], stud GAs (SGAs) [98], harmony search
(HS) [99–102], fireworks algorithms (FWAs) [103], and chicken swarm optimization (CSO) [104].

Based on the herding behavior of elephants, a new swarm intelligence-based global optimization
algorithm, namely elephant herding optimization (EHO), was proposed by Wang et al. [105]. Two special
operators, a clan updating operator and a separating operator, are included in EHO. The elephants
in each clan are updated with respect to their current position and the position of the matriarch.
The acceptable performance of EHO has drawn much attention from scholars and engineers. In this
paper, a comprehensive review for the EHO-based algorithms and their applications are presented.
The remainder of this paper is organized as follows. The main steps of the EHO is detailed in Section 2.
Improved EHO algorithm variants are presented in Section 3. Section 4 describes the EHO applications
for solving engineering optimization problems. Finally, Section 5 presents a conclusion and suggestions
for future work.

2. Historical Development of Elephant Herding Optimization

2.1. Elephant Herding Optimization Research Studies

The EHO algorithm with the herding behavior of elephant groups has received
significant attention from scholars [105]. Ninety-three related studies have been published in
journals/dissertations/conferences up to 23 April 2020 (Figure 1) since EHO was proposed in 2015.
Among these 93 papers, 2 papers were published in 2015 and 2016, 14 papers were published in 2017,
21 papers were published in 2018, and 32 and 24 papers were published in 2019 and 2020, respectively.

Figure 1. Related (Elephant Herding Optimization) EHO publications since 2015.

2.2. Basics of Elephant Herding Optimization

Elephants, as social creatures, live in social structures of females and calves. An elephant clan
is headed by a matriarch and composed of a number of elephants. Female members like to live
with family members, while the male members tend to live elsewhere. They will gradually become
independent of their families until they leave their families completely. The population of all elephants
is shown in Figure 2. The EHO technique proposed by Wang et al. in 2015 [105] was developed after
studying natural elephant herding behavior. The following assumptions are considered in EHO.
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Figure 2. Population of elephants.

(1) Some clans with fixed numbers of elephants comprise the elephant population.
(2) A fixed number of male elephants will leave their family group and live solitarily far away

from the main elephant group in each generation.
(3) A matriarch leads the elephants in each clan.

2.2.1. Clan-updating Operator

According to the natural habits of elephants, a matriarch leads the elephants in each clan. Therefore,
the new position of each elephant ci is influenced by matriarch ci. The elephant j in clan ci can be
calculated by Equation (1).

xnew,ci, j = xci, j + a× (xbest,ci − xci, j) × r (1)

where xnew,ci,j and xci,j present the new position and old position for elephant j in clan ci, respectively.
xbest,ci is matriarch ci which represents the best elephant in the clan. a ∈ [0,1] indicates a scale factor,
r ∈ [0,1]. The best elephant can be calculated by Equation (2) for each clan.

xnew,ci, j = β× xcenter,ci (2)

where β ∈ [0,1] represents a factor which determines the influence of the xcenter,ci on xnew,ci,j. xnew,ci,j is
the new individual. xcenter,ci is the center individual of clan ci. It can be calculated by Equation (3) for
the d-th dimension.

xcenter,ci,d =
1

nci
×

nci∑
j=1

xci, j,d (3)

where 1 ≤ d ≤ D and nci indicate the number of elephants in clan ci. xci,j,d represents the d-th dimension
of elephant individual xci,j. xcenter,ci is the center of clan ci and it can be updated by Equation (3).

2.2.2. Separating Operator

The separating process whereby male elephants leave their family group can be modeled into
separating operator when solving optimization problems. The separating operator is implemented by
the elephant individual with the worst fitness in each generation, as shown in Equation (4).

xworst,ci = xmin + (xmax − xmin + 1) × rand (4)
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where xmax represents the upper bound of the individual and xmin indicates lower bound of the
individual. xworst,ci indicates the worst individual in clan ci. Rand [0, 1] is a stochastic distribution
between 0 and 1.

According to the description of the clan-updating operator and separating operator, the mainframe
of EHO is summarized. The corresponding flowchart is shown as follows. MaxGen is the maximum
generation. The MATLAB code of EHO can be found on the website: https://www.mathworks.com/
matlabcentral/fileexchange/53486. The basic steps of the EHO is shown as follows (Algorithm 1).
The corresponding flowchart can also be seen in Figure 3.

Figure 3. Flowchart of the EHO algorithm.
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Algorithm 1. Elephant herding optimization

(1) Begin

(2) Initialization. Set the initialize iterations G = 1; initialize the population P randomly; set maximum
generation MaxGen.
(3) While stopping criterion is not met do

(4) Sort the population according to fitness of individuals.
(5) For all clans ci do
(6) For elephant j in the clan ci do

(7) Generate xnew, ci,j and update xci,j by Equation (1).
(8) If xci,j = xbest,ci then

(9) Generate xnew, ci,j and update xci,j by Equation (2).
(10) End if

(11) End for

(12) End for

(13) For all clans ci do

(14) Replace the worst individual ci by Equation (4).
(15) End for

(16) Evaluate each elephant individual according to its position.
(17) T = T + 1.
(18) End while

(19) End.

2.2.3. Analysis of Algorithm Complexity

The computational complexity of the EHO algorithm is analyzed according to the steps in the
EHO algorithm. Let the population size and dimension be NP and D, respectively. Obviously,
sort the population according to the fitness of individuals in step (4) with time complexity O(NP).
In steps (5)–(12), execute clan-updating operator for all clans ci with time complexity O(NP × D).
In steps (13)–(15), execute separating operator for all clans ci with time complexity O(NP). Evaluate
each elephant individual according to its position in step (16) with time complexity O(NP). To do so,
the total time complexity of elephant herding optimization is O(T × NP × D). From the above results,
after omitting the low-order terms, the total time complexity of the EHO algorithm is O(T × NP × D),
which is only related to T, NP, and D.

3. Different Variants of EHO

Several EHO variants have been proposed to solve different optimization problems. The variants
of EHO can be generally divided into three groups: improved EHO algorithms, hybrid EHO algorithms,
and variants of EHO.

3.1. Improved EHO Algorithms

A list of the improved EHO algorithms is given in Table 1 and Figure 4. An overview of each of
these methods is given below.

3.1.1. Chaotic EHO

Tuba et al. [106] proposed a new EHO algorithm with chaos theory called CEHO to solve
unconstrained global optimization problems. In CEHO, two different chaotic maps are introduced
into the EHO algorithm. Compared with 15 standard benchmark functions from IEEE Congress on
Evolutionary Computation (CEC) 2013, the CEHO algorithm outperforms the basic EHO and PSO in
almost all cases.
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Table 1. The improved EHO algorithms.

Name Author Reference

Chaotic elephant herding optimization (CEHO) Tuba et al. [106]
EHO with individual updating strategies Li et al. [107]

EHO with Lévy flight (LFEHO) Xu et al. [108]
Improved elephant herding optimization (IEHO) Xu et al. [109]

Multi-search elephant herding optimization (Multi-EHO) Hakli et al. [110]
k-means EHO Tuba et al. [111]

Dynamic Cauchy mutation EHO (EHO-DCM) Chakraborty et al. [112]
Adaptive whale elephant herding optimization (AWEHO) Chowdary et al. [113]

Different 
variants of 

EHO

Improved EHO 
algorithms

Chaotic EHO 

EHO with individual updating strategies 

Lévy-flight EHO 

Multi-search EHO 

K-means EHO 

Oppositional-based learning EHO 

Adaptive EHO 

Hybrid EHO 
algorithms

CBEHO, ATEHO, and BIEHO 

EEHO-ElShaarawy 

EEHO-Ismaeel 

Fuzzy logic EHO 

Hybrid EHO (EHO and GWO) 

Hybrid EHO (GA and EHO) 

Limit control parameter EHO 

Extreme learning machine EHO 

Global and local search EHO 

Variants of EHO
Binary EHO 

Multi-objective EHO 

Figure 4. Different variants of EHO.

3.1.2. EHO with Individual Updating Strategies

Li et al. [107] incorporated six individual updating strategies into basic EHO. The experimental
results for sixteen test functions show that the proposed improved EHO variant significantly
outperformed basic EHO.
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3.1.3. Lévy Flight EHO

Xu et al. [108] applied an improved EHO algorithm with Lévy flight (LFEHO) to solve network
intrusion detection problems. The research results showed that the LFEHO algorithm increased the
accuracy rate of the network.

Xu et al. [109] proposed improved EHO (IEHO) to solve network intrusion detection problems,
which improved the classification performance of intrusion detection under the premise of ensuring
the accuracy rate and meeting the needs in real time. The experimental results showed that the IEHO
algorithm was superior to other algorithms (EHO [105], PSO [2], and MS [77]).

3.1.4. Multi-Search EHO

Hakli et al. [110] proposed new EHO with a multi-search strategy (multi-EHO). Fifteen different
benchmark functions were used to verify the effectiveness of multi-EHO. In addition, the proposed
multi-EHO was compared with the whale optimization algorithm (WOA) and the gray wolf optimizer
(GWO). The multi-EHO method was also superior to other competitive algorithms.

3.1.5. k-Means EHO

Tuba et al. [111] introduced data clustering into EHO in which the local search ability of EHO
was improved through k-means. The proposed k-means EHO was tested on six benchmark datasets.
The clustering results showed that k-means EHO found better clusters than other algorithms.

3.1.6. Oppositional-Based Learning EHO

Chakraborty et al. [112] proposed improved EHO with a dynamic Cauchy mutation (EHO-DCM)
to solve the multilevel image thresholding for image segmentation problems. In EHO-DCM,
oppositional-based learning (OBL) and DCM were introduced, in which OBL and DCM were employed
to accelerate the conventional and mitigate the premature convergence, respectively. The results were
compared with five metaheuristic algorithms (EHO [105], CSO [104], ABCs [53], BAs [91], and PSO [2]).
It was demonstrated that EHO-DCM provided promising performance in view of optimized fitness
value, feature similarity index, and structure similarity index.

3.1.7. Adaptive Whale EHO

Chowdary et al. [113] proposed a hybrid mixture model based on the adaptive whale EHO
(AWEHO) algorithm, which is the integration of three technologies: EHO [105], the whale optimization
algorithm (WOA), and the adaptive concept. In the proposed method, the AWEHO algorithm was
applied to perform optimal sensing by using the foraging behavior of whales and the herding behavior
of elephants. The analysis of the computational results indicated that the herding and foraging behavior
of the AWEHO achieved efficient spectrum sensing in the cognitive radio network.

3.2. Hybrid EHO Algorithms

The hybrid EHO algorithms are presented in Table 2. The details are included in the
following sections.

3.2.1. CBEHO, ATEHO, and BIEHO

Rashwan et al. [114] studied three approaches, which are cultural-based EHO (CBEHO),
alpha-tuning EHO (ATEHO), and biased initialization EHO (BIEHO), to enhance the performance of
standard EHO. A comparative experiment from CEC 2016 was done between three EHO approaches
and the other optimization methods. It was demonstrated that the performances of the three EHO
approaches were superior to other comparison methods. In order to further verify the performance of
the three EHO approaches, various experiments were carried out on engineering problems such as the
welded beam, gear train, continuous stirred tank reactor, and three-bar truss design problem.
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Table 2. The hybrid EHO algorithms.

Name Author Reference

Cultural-based EHO, alpha-tuning EHO, and biased initialization EHO
(CBEHO, ATEHO, and BIEHO) Rashwan et al. [114]

Enhanced elephant herding optimization (EEHO-ElShaarawy) ElShaarawy et al. [115]
Enhanced elephant herding optimization (EEHO-Ismaeel) Ismaeel et al. [116]

Fuzzy elephant herding optimization (FEHO) Veera et al. [117]
Elephant herding optimization and gray wolf optimization (EHGWO) Arora et al. [118]

Genetic algorithm and elephant herding optimization (GEHO) Bukhsh et al. [119]
Hybrid elephant herding optimization (HEHO) Ivana et al. [120]

Extreme learning machine and elephant herding optimization (ELM-EHO) Satapathy et al. [121]
Global and local search (GL-EHO) Hakli et al. [122]

3.2.2. EEHO-ElShaarawy

ElShaarawy et al. [115] used an enhanced elephant herding optimization (EEHO-ElShaarawy)
algorithm to overcome the fast convergence of EHO. The exploitation and exploration of
EEHO-ElShaarawy were achieved by separating operators with balanced control. EEHO-ElShaarawy
showed a better performance of convergence rate compared with basic EHO.

3.2.3. EEHO-Ismaeel

Ismaeel et al. [116] proposed another enhanced elephant herding optimization algorithm with a
constant function (EEHO-Ismaeel). In order to overcome the shortcomings of EHO. In EEHO-Ismaeel,
two operators, the clan and separating operator, improved the exploitation abilities of the EEHO-Ismaeel
algorithms. The CEC 2017 test benchmark functions were utilized to verify the performance of the three
EEHO-Ismaeel versions (EEHO15, EEHO20, and EEHO25). The experimental results demonstrated
that, in most cases, the EEHO-Ismaeel algorithms obtained better results compared with the other
competitive algorithms, such as the PSO, bird swarm algorithm (BSA), and ant lion optimization
(ALO) algorithms.

3.2.4. FEHO

Veera et al. [117] introduced a fuzzy logic controller into EHO and proposed improved fuzzy
EHO (FEHO) to maximize power point tracking (MPPT) for a hybrid wind–solar system. Simulation
results indicated that the MPPT using the proposed FEHO had better performance compared with the
other type of controllers, which efficiently tracked the maximum power point of the wind–solar power
systems even with variations in the climatic conditions.

3.2.5. EHGWO

Arora et al. [118] combined the advantages of EHO and GWO and proposed a hybrid algorithm
(EHGWO). In EHGWO, the optimal virtual machines (VMs) are selected and reallocated by using
a newly devised fitness function. The tasks for overloaded VMs are removed and assigned to VMs
without affecting the system performance, which performed a load balancing technique.

3.2.6. GEHO

Bukhsh et al. [119] proposed a hybrid algorithm called GEHO by combining a GA and EHO.
Based on the results, the developed GEHO approach was able to schedule the appliance efficiently,
which reduced maximum cost compared with EHO for home appliance optimization problems.

3.2.7. HEHO

Strumberger et al. [120] developed improved hybrid EHO, named HEHO, to solve the wireless
sensor network localization problem. The limit control parameter from the ABC algorithm was
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incorporated into EHO to control the process of diversification. The usefulness of HEHO was
demonstrated using different sizes of sensor networks from 25 to 150 target nodes. Based on the results,
the HEHO approach was able to obtain more consistent and accurate locations of the unknown target
nodes than other approaches.

3.2.8. ELM-EHO

Satapathy et al. [121] proposed a combination model named EHO-ELM with a combination of
the advantages of extreme learning machine (ELM) and EHO. In this model, EHO-ELM was used to
determine the input weights of an ELM model. EHO-ELM was tested on three different brain image
datasets. The results demonstrated that EHO-ELM outperformed the basic ELM model in the three
brain image datasets.

3.2.9. Global and Local Search EHO

Hakli et al. [122] developed a new EHO approach to solve constrained optimization problems.
The EHO variants (GL-EHO) were adapted to implement constrained optimization. Experimental
results showed that GL-EHO was capable of overtaking EHO.

3.3. Variants of EHO

Different variants of the EHO algorithm are presented in Table 3. The detailed methods are
presented herein.

Table 3. Different variants of EHO.

Name Author Reference

Binary EHO algorithm (BinEHO) Huseyin et al. [123]
Multi-objective clustering EHO algorithm (MOEHO) Jaiprakash et al. [124]

Improved and multi-objective EHO (IMOEHO) Meena et al. [125]

3.3.1. Binary EHO

Hakli et al. [123] proposed a new binary variant of EHO (BinEHO) for solving binary optimization
problems. Through a dimension rate (DR) parameter and mutation process, BinEHO strengthened the
compromise between exploitation and exploration. In order to prove the robustness and accuracy of
BinEHO, it was compared with various binary variants in three different binary optimization problems.
The results concluded that BinEHO outperformed the other binary algorithm variants.

3.3.2. Multi-Objective EHO

Jaiprakash et al. [124] presented a multi-objective clustering EHO (MOEHO) to solve
multi-objective optimization problems. Comparative results revealed that MOEHO provided superior
performance compared with (fast and elitist multiobjective genetic algorithm) NSGA-II and MOPSO
in eight cases. In addition, MOEHO was used to cluster the activities of human models. The results
showed that MOEHO succeeded in eight out of five case studies.

Meena et al. [125] presented improved multi-objective EHO (IMOEHO) to solve distribution
system optimization problems. In IMOEHO, two techniques (order of preference by similarity to
the ideal solution technique and improved EHO technique) were combined. The IMOEHO method
was implemented in three benchmark test distribution systems. It was concluded that the IMOEHO
method was very effective for optimizing multi-objective complex optimization problems.
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4. Engineering Optimization/Applications

The EHO algorithm has been successfully applied to engineering optimization problems since it
was proposed. A summary for EHO in engineering optimization is presented in Tables 4 and 5 and
Figure 5.

Table 4. A summary of the EHO applications in engineering optimization.

Category Problem/Application Author Ref.

Continuous optimization

Training artificial neural networks Moayedi et al. [126]

Selecting structure and weights for neural networks Kowsalya et al. [127]

Training neural networks Sahlol et al. [128]

Optimizing underwater sensor networks Sukhman et al. [129]

Unmanned aerial vehicle path planning Alihodzic et al. [130]

Clustering Rani et al. [131]
Jaiprakash et al. [132]

Support vector regression (SVR) classifier

Hassanien et al. [133]
Hassanien et al. [134]

Tuba et al. [135]
Tuba et al. [136]

Control problem Sambariya et al. [137]

4.1. Continuous Optimization

4.1.1. Neural Networks

Moayedi et al. [126] synthesized a new EHO-MLP ensemble with a multi-layer perceptron (MLP)
neural network to predict cooling load. The results revealed that EHO-MLP performed efficiently for
adjusting biases of the MLP and the neural weights. It also outperformed the ACO [55] and EHO [105]
optimization algorithms both in training and testing accuracies. Meanwhile, EHO-MLP took less time
than ACO [55] and EHO [105] with regard to the time-effectiveness of the models.

Kowsalya et al. [127] used EHO to optimize neural network weights. The performance of the
proposed method was evaluated on evaluation metrics. It was concluded that the proposed method
provided better accuracy than existing classifiers.

Sahlol et al. [128] applied EHO to neural networks to classify each cell for the acute lymphoblastic
leukemia problem. In the proposed method, the weights and biases of the network were updated by
the EHO algorithm. The research results showed that EHO outperformed other classification methods.

4.1.2. Underwater Sensor Networks

Kaur et al. [129] used EHO to solve underwater sensor networks optimization tasks. The research
outcomes indicated that the proposed approach showed better performance than other strategies for
most parameters.

4.1.3. Unmanned Aerial Vehicle Path Planning

Alihodzic et al. [130] considered an approximation algorithm, adjusted EHO (AEHO), to solve
the unmanned aerial vehicle (UAV) path planning problem. AEHO was used for adjusting the UAV
path planning problem and it was compared with other state-of-the-art algorithms. The simulation
experiments showed that AEHO obtained a safe flight path and was an excellent choice for the UAV
path planning problem.
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4.1.4. Clustering

Rani et al. [131] proposed a new detection approach for dynamic protein complexes by using
Markov clustering with EHO (MC-EHO). The MC-EHO method divided the protein–protein interaction
(PPI) network into a set of dynamic sub-networks and employed the clustering analysis on every
sub-network. The experimental analysis was employed on 11 various widespread datasets and
four different benchmark databases. The results showed that MC-EHO surpassed various existing
approaches in terms of accuracy measures.

Jaiprakash et al. [132] formulated EHO to perform a clustering task by minimizing intra-cluster
distance. The simulation was verified on six benchmark datasets and three synthetic datasets.
The superior percentage accuracy of EHO was demonstrated by comparing it with other algorithms in
the form of box plots.

Table 5. A summary of the EHO applications in engineering optimization.

Category Problem/Application Author Ref.

Combinatorial
optimization

Traveling salesman problem Almufti et al. [138]

Knapsack Darmawan et al. [139]

Acoustic energy-based positioning Arora et al. [140]

Scheduling

Parasha et al. [141]
Cahig et al. [142]

Sarwar et al. [143]
Komal et al. [144]
Mohsin et al. [145]
Gholam et al. [146]
Fatima et al. [147]

Electrostatic powder coating process Pongchanun et al. [148]

Image safety model Shankar et al. [149]
Chibani et al. [150]

Image processing

Tuba et al. [151]
Shankar et al. [152]
Jayanth et al. [153]
Cardoso et al. [154]

Wireless sensor networks
Sérgio et al. [155]
Ivana et al. [156]
Kaur et al. [157]

Feature selection Xu et al. [158]

Optimal power flow problem
Mukherjee et al. [159]

S. Mani et al. [160]
Sambariya et al. [161]

Distribution systems Prasad et al. [162]
Vijay et al. [163]

Constrained
Optimization

Linear and nonlinear constrained optimization problems Ivana e et al. [164]
Economic dispatch problems Singh et al. [165]

Stochastic inequality constrained optimization problems Horng et al. [166]

Multi-objective
optimization

Quality of service (QoS) aware web service
composition optimization Sadouki et al. [167]

Civil engineering Adarsha et al. [168]
Structural optimization Malihe et al. [169]
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Figure 5. Engineering optimization/applications.

4.1.5. SVR Classifier

Hassanien et al. [133] introduced EHO to adjust the regression of emotional states for a support
vector regression (SVR) repressor (SVR-EHO). In this method, the feature selection was adapted and
the SVR classifier parameters were adjusted by using EHO, which provided a fast regression rate.
The SVR-EHO approach was verified on the open database for emotion detection. The results of emotion
regression on the SVR classifier indicated that SVR-EHO significantly improved regression accuracy.

Hassanien et al. [134] used two technologies, EHO and SVM (EHO-SVM), to develop a hybrid
approach for automatic electrocardiogram (ECG) signal classification. The proposed approach included
three modules, which were the efficient preprocessing module, feature extraction module, and feature
classification module. EHO-SVM was utilized to optimize the features and parameters. The experiments
showed that EHO-SVM achieved accurate classification results in terms of five statistical indices.

Tuba et al. [135] used the EHO algorithm to adjust the SVM parameter. The proposed approach
was tested on standard datasets and the results were obtained by EHO and compared with two
other approaches, which were the GA [41] and the grid search method (Grid). The computational
experiments concluded that the EHO algorithm outperformed the GA [41] and Grid in the accuracy of
classification for the same test problems.

Tuba et al. [136] used the EHO algorithm to find the optimal parameters of the SVM. In the
proposed approach, the parameters of SVM were adjusted by EHO. Four different experiments based
on a standard dataset were carried out. The simulation results showed that the performance of the
proposed method achieved better results than the other strategies in all cases.
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4.1.6. PID Control

Sambariya et al. [137] used the EHO algorithm to adjust the parameters of the proportional integral
derivative (PID) controller, which minimized the change in frequency of a single-area non-reheat
thermal power plant. The experimental results showed that a controller based on EHO had a better
performance than other conventional PID controllers.

4.2. Combinatorial Optimization

4.2.1. Traveling Salesman Problem

Almufti et al. [138] introduced EHO to solve symmetric traveling salesman problems (STSPs).
The experiment results indicated that EHO was adapted to solve STSPs by comparing the optimal
solutions of the traveling salesman problem library (TSPLIB).

4.2.2. Knapsack

Darmawan et al. [139] used the EHO algorithm to solve 0–1 knapsack problems. The analysis of
the computational results indicated that EHO outperformed other algorithms for convergence rate and
global search ability when more and more iterations were done.

4.2.3. Acoustic Energy-Based Positioning

Correia et al. [140] used the EHO algorithm to validate and adjust the decay acoustic model for
acoustic energy-based positioning problems. The implementation results for both simulation results
and real measurements showed EHO had a good alignment with conducted simulations and was
successfully applied to acoustic energy-based positioning problems.

4.2.4. Scheduling

Parashar et al. [141] used modified elephant herding optimization (MEHO) to model uncertain
renewable generation. The analysis of the computational results indicated that the proposed MEHO
approach had significant effects on the operational management of the microgrid compared with the
deterministic approach.

Cahig et al. [142] proposed a decision tool based on EHO for a virtual power plant (VPP) scheduling
problem. The algorithm was illustrated for a test system with a VPP. The results showed that the
canonical variant of EHO yielded the optimal scheduling, which suggested that it performed well as a
decision support tool to the VPP operator.

Sarwar et al. [143] used EHO to solve a home energy management system (HEMS) scheduling
problem. Simulations of a single home with 12 appliances were performed and the results showed
the EHO technique performed better than the other reported algorithms in reducing the waiting time
and cost.

Parvez et al. [144] used two optimizing techniques, EHO [105] and harmony search algorithm
(HSA) [99], to evaluate the performance of a home energy management system (HEMS). The simulation
results revealed that the proposed method was more effective in terms of electricity cost.

Mohsin et al. [145] implemented the EHO technique to solve the scheduling of smart home
appliances. The simulation results revealed that EHO performed much better in terms of total cost and
peak load reduction for different operation time intervals (OTIs). In addition, EHO with shorter OTIs
provided better results compared with longer OTIs.

Gholami et al. [146] developed improved EHO to solve large instances for hybrid flow shop
scheduling problems. The performance of the proposed algorithm was compared with two available
algorithms, which were SA and shuffled frog-leaping algorithm (SFLA). Based on the results,
the developed approach outperformed the other algorithms.
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Fatima et al. [147] developed an efficient optimization method via the hybridization of two
optimization algorithms, namely EHO [105] and the FA [69]. This method was used to reduce the
electricity cost for home energy management controller problems. The results indicated that the
proposed hybrid optimization technique performed more efficiently for achieving the lowest cost and
maximizing consumer satisfaction.

4.2.5. Electrostatic Powder Coating Process

Luangpaiboon et al. [148] proposed a modified simplex EHO algorithm with multiple performance
measures (MEHO). MEHO was used to solve the optimization of electrostatic powder coating process
parameter optimization problems. According to some performance measures, two phases based on
the response surface methodology were applied to study the EHO parameter levels. The simulation
experimental results demonstrated that MEHO was more efficient compared with the previous
operating condition.

4.2.6. Image Safety Model

Shankar et al. [149] proposed an image safety model based on the EHO algorithm. Two keys,
a general public key and a non-public key, were optimized by utilizing adaptive EHO (AEHO).
The device was optimized by a hybrid algorithm applying encryption and optimization techniques
which mixed the functionality of encryption and digital signatures. The experimental results indicated
that the confidentiality of the image was ultimately upheld.

Chibani et al. [150] introduced EHO into the quality of service (QoS) aware web service composition.
It was shown that the proposed method offered excellent performances compared with PSO in terms
of convergence speed, scalability, and fitness evaluations.

4.2.7. Image Processing

Tuba et al. [151] used the EHO algorithm to solved multilevel image thresholding problems based
on Kapur and Otsu’s criteria. The proposed algorithm was compared with four swarm intelligence
approaches. The experimental results concluded that the EHO algorithm successfully solved multilevel
thresholding problems and additionally had smaller variance.

Jino et al. [152] presented the short review of nature-inspired optimization algorithms, such as
EHO [105], BAs [91], ACO [55], ABCs [53], PSO [2], FAs [69], bumble bees mating (BBM), and CSO [104].
These algorithms were applied to advanced image processing fields.

Jayanth et al. [153] used the EHO algorithm to classify the high spatial resolution multispectral
image classification. According to the fitness function, EHO determines the information of class and
multispectral pixels. When compared with the SVM method, the experimental results of two datasets
demonstrated that the proposed method improved overall accuracy by 10.7% for dataset 1 and 6.63%
for dataset 2.

Cardoso et al. [154] used EHO to improve the search for the maximum correlation point of the
image. The search process was implemented in software based on an embedded general purpose
processor. The performance results showed that the proposed method outperformed other optimization
metaheuristics, which were PSO [2] and ES [79].

4.2.8. Wireless Sensor Networks

Correia et al. [155] applied the EHO algorithm to solve the energy-based source localization
problem for wireless sensors networks. The energy decay model between two sensor nodes was
matched through key optimized parameters of the EHO algorithm. Comparing the performance
between the proposed method and existing non-metaheuristic algorithms, EHO significantly reduced
the estimation error in environments with high noise power. In addition, EHO represented an excellent
balance between estimation accuracy and computational complexity.

182



Mathematics 2020, 8, 1415

Strumberger et al. [156] solved localization problems for wireless sensor networks using
the EHO algorithm. According to the simulation results and comparative analysis with other
state-of-the-art algorithms, EHO found the coordinates of unknown nodes randomly deployed in the
monitoring field, which proved to be robust and efficient metaheuristics when tackling wireless sensor
network localization.

Kaur et al. [157] proposed a novel and energy-efficient approach based on EHO to improve the
span of energy in nodes of an underwater network. In the proposed approach, a dynamic cluster
head in underwater wireless networks was formed by the behavior of the elephants selecting their
heads. It was demonstrated that the EHO algorithm was a promising algorithm for tackling multiple
parameters of underwater networks.

4.2.9. Feature Selection

Xu et al. [158] proposed an improved elephant herding optimization (IEHO) algorithm for feature
selection in several datasets and distributed environments, which effectively reduced the running
time of the algorithm under the premise of ensuring classification accuracy. The experiments showed
that the classification efficiency of the IEHO algorithm significantly outperformed other optimization
algorithms, such as PSO [2] and EHO [105].

4.2.10. Optimal Power Flow

Dhillon et al. [159] applied EHO to mitigate frequency deviations under sudden variations in
demand on the automatic generation control of an interconnected power system. The outcomes of
the EHO-based automatic generation control was compared with PSO-based automatic generation
control. It was concluded that the settling time of the EHO-based strategy took less time than the
PSO-based strategy.

Kuchibhatla et al. [160] used an EHO algorithm to improve the power quality (PQ) and reduce
the harmonic distortion in a photovoltaic (PV) interconnected wind energy conversion system (WECS).
The performances of three methods (EHO [105], BAs [91], and FAs [69]) were evaluated. The obtained
results showed that the proposed method enhanced the performance of the grid-connected hybrid
energy system.

Sambariya et al. [161] used EHO to adjust the parameters of a PID controller for the load frequency
control of a single-area reheat power system. The solution results showed that the proposed technique
obtained better robustness compared with the PID controller.

4.2.11. Distribution Systems

Prasad et al. [162] used EHO to determine the optimal distributed generation (DG) unit size.
The proposed model was performed on two types of DG (DG operating at 0.9 power factor lag and DG
operating at unity power factor). The numerical results indicated that the EHO algorithm obtained
overall better results compared with other algorithms in terms of reducing power consumption.

Vijay et al. [163] applied the EHO technique to the optimal placement and sizing of distributed
generation on an electric distribution network. EHO was tested on a 5-bus radial distribution
system. The results indicated that the overloading of the equipment, active power, reactive power,
and production cost of electricity were reduced, which was more intelligent and precise for the
allocation of distributed generation in an electric distribution network.

4.3. Constrained Optimization

4.3.1. Linear and Nonlinear Constrained Optimization

Strumberger et al. [164] presented a hybridized elephant herding optimization (HEHO) algorithm
to solve constrained optimization problems. Thirteen standard constrained benchmark functions were
conducted for evaluating the efficiency and robustness of the HEHO algorithm. The simulation results
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were compared with other state-of-the-art algorithms, such as firefly algorithms, seeker optimization
algorithms, and self-adaptive penalty function genetic algorithms. The study results showed that the
proposed HEHO was more efficient than the other reported algorithms.

4.3.2. Economic Dispatch Problems

Economic-Based Dispatch Problem

Singh et al. [165] proposed a new modified EHO called MEHO. MEHO was further applied to
solve the optimization of linear as well as nonlinear cost functions for economic load dispatch problems.
The results obtained showed that the total operating cost obtained by MEHO was less than that of
EHO [105], PSO [2], and ACO [55]. The results showed that the MEHO methods had potential for
solving linear as well as nonlinear optimization problems.

Stochastic Inequality Constrained Optimization Problems

Horng et al. [166] presented a heuristic method coupling EHO with ordinal optimization (EHOO)
to resolve stochastic inequality constrained optimization problems. The proposed method utilized
an improved elephant herding optimization to achieve diversification with an accelerated optimal
computing budget allocation. The simulation experiment results were obtained by EHOO and
compared with three optimization methods (PSO [2], GAs [1], and ES [79]). The results showed that the
EHOO approach obtained higher computational efficiency than the other three comparative methods.

4.4. Multi-Objective Optimization

4.4.1. QoS Aware Web Service Composition Optimization

Sadouki et al. [167] proposed a new discrete multi-objective metaheuristic bio-inspired
pareto-based approach based on the EHO algorithm to solve the QoS aware web service composition
problem. Compared with the multi-objective particle swarm optimization (MOPSO) algorithm and
strength pareto evolutionary algorithm 2 (SPEA2), the results showed that the presented method
significantly outperformed MOPSO and SPEA2 in terms of set coverage and spacing metrics.

4.4.2. Civil Engineering

Adarsha et al. [168] introduced a hybridized technique named elephant herding optimization-based
artificial neural network (EHO-ANN). Furthermore, the complicated experimental procedures for
finding the elastic modulus of concrete was solved by the EHO-ANN. The performance of the
EHO-ANN algorithm was compared with that of linear regression, empirical formula, and test
correlation coefficient (CC). The results showed that the EHO-ANN was more accurate than other
methods in predicting the elastic modulus of concrete.

4.4.3. Structural optimization

Jafari et al. [169] combined the advantage of elephant herding optimization (EHO) and the cultural
algorithm (CA) and proposed a hybrid algorithm (EHOC). In EHOC, EHO was improved by using
the belief space defined by the cultural algorithm. The performance of the EHOC algorithm was
evaluated on eight mathematical optimization problems and four truss weight minimization problems.
The solution results showed that EHOC was capable of accelerating the convergence rate effectively
compared with the CA and EHO.

5. Conclusions and Future Directions

In this paper, tens of research articles related to the EHO algorithm were reviewed. We also
discussed the application of the EHO variants in continuous optimization, combinatorial optimization,
constrained optimization, and multi-objective optimization. Researchers improved the EHO algorithms
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and successfully applied them to various optimization fields. This algorithm has proved to be a
promising tool for many optimization problems and engineering applications. However, several
aspects of the EHO method that should be further studied, and are as follows:

(1) Most researchers have merely focused on the optimization effects of EHO. There is not sufficient
explanation for theoretical analysis. Therefore, strengthening the theoretical analysis of EHO and the
mathematical model will remain a challenge in future research.

(2) Employing EHO to solve unsolved optimization problems, especially multi-objective
optimization problems, needs to be studied in more depth.

(3) Hybridizing EHO with other algorithm components, such as differential evolution and hill
climbing, is another interesting topic for future research [170].

(4) EHO has achieved some notable accomplishments in solving discrete and continuous
optimization problems. Therefore, expanding the application scope of EHO and designing suitable
optimization operators should be considered in future research.

(5) EHO has a lower level of constrained optimization than similar methods. This is undoubtedly
a shortcoming of EHO. Therefore, more research should be carried out to expand EHO for more
constrained optimization applications.
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Abstract: Single objective optimization algorithms are the foundation of establishing more complex
methods, like constrained optimization, niching and multi-objective algorithms. Therefore, improvements
to single objective optimization algorithms are important because they can impact other domains
as well. This paper proposes a method using turning-based mutation that is aimed to solve the
problem of premature convergence of algorithms based on SHADE (Success-History based Adaptive
Differential Evolution) in high dimensional search space. The proposed method is tested on the Single
Objective Bound Constrained Numerical Optimization (CEC2020) benchmark sets in 5, 10, 15, and 20
dimensions for all SHADE, L-SHADE, and jSO algorithms. The effectiveness of the method is verified
by population diversity measure and population clustering analysis. In addition, the new versions
(Tb-SHADE, TbL-SHADE and Tb-jSO) using the proposed turning-based mutation get apparently
better optimization results than the original algorithms (SHADE, L-SHADE, and jSO) as well as the
advanced DISH and the jDE100 algorithms in 10, 15, and 20 dimensional functions, but only have
advantages compared with the advanced j2020 algorithm in 5 dimensional functions.

Keywords: single objective optimization; differential evolution; success-history; premature convergence;
turning-based mutation

1. Introduction

The single objective global optimization problem involves finding a solution vector x = (x1, . . . , xD)
that minimizes the objective function f (x), where D is the dimension of the problem. The task of
black box optimization is to solve the global optimization problem without clear objective function
form or structure, that is, f is a “black box”. This problem appears in many problems of engineering
optimization, where complex simulations are used to calculate the objective function.

The differential evolution (DE) algorithm, proposed by Price and Storm in 1995, laid the foundation
for a series of successful algorithms for continuous optimization. DE is a random black box search
method, which was originally designed for numerical optimization problems [1], and it’s also an
evolutionary algorithm that ensures that every next generation has better solutions than the previous
generation: a phenomenon known as elitism. The extensive study fields of DE are summarized lately
in the references [2].

Studies on DE have yielded a number of improvements [3–17] to the classical DE algorithm, and
the status of research on it can be easily obtained by noting the results of the Continuous Optimization
Competition and the Evolutionary Computing Conference (CEC).

A popular variant of DE [18] is the algorithm proposed by Fukunaga and Tanabe called Success
History-based Adaptive Differential Evolution (SHADE) [19]. In the optimization process, the scale
factor F and the crossover rate CR of control parameters are adjusted to adapt to the given problem,
and the “current to pbest/1” mutation strategy and the external archive of poor quality solutions in
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JADE [20] are combined in SHADE. The SHADE algorithm ranked third in CEC2013. In the second
year, the author proposed an improved scheme, adding a linear reduction to the population size called
L-SHADE to improve the convergence rate of SHADE [21]. L-SHADE won the CEC2014 competition.
The winners in the subsequent years were SPS-L-SHADE-EIG [22] (CEC2015), LSHADE-EpSin [23]
(joint winner of CEC2016), and jSO [24] (CEC2017). These algorithms are all based on L-SHADE, which
makes it one of the most effective variants of SHADE [25]. With the exception of the jSO, the other
winners benefited from general enhancements in the area [26]. Consequently, this study applies an
improved method to the SHADE, L-SHADE and jSO algorithms. LSHADE-ESP [27] came in second in
CEC2018 and the jDE100 [28] won CEC2019. And the j2020 [29] algorithm, which was proposed on
CEC2020 recently, is also within the reference range. Enhanced versions of these DE algorithms add
new mechanisms or parameters for optimization, similar to those in other optimization algorithms [30],
as described in substantive surveys of these areas [25,31–37]. Moreover, theoretical analysis supporting
DE has also been provided, such as in [38–41].

The DE consists of three main steps: mutation, crossover, and selection. Many proposals [6,10,11,14,
24] have been made to improve the mutation process to improve optimization performance. For instance,
four strategies of combining mutation and crossover was used in SHADE4 [6], SHADE44 [10] and
L-SHADE44 [11] to create a new trial individual and realize an adaptive mechanism. A novel
multi-chaotic framework was used in MC-SHADE [14] to generate random numbers for the parent
selection process in mutation process. A new weighted mutation strategy with parameterization
enhancement was used in jSO [24] to enhance adaptability. This paper also focuses on improving this
process in the DE algorithm, especially SHADE-based algorithms.

The CEC2020 [42] single-objective boundary-constrained numerical optimization benchmark sets
are designed to determine the improvement in performance obtained by increasing the number of the
calculation of the fitness function of an optimization algorithm. There are thus two motivations for this
study. First, we need to solve the problem of premature convergence of algorithms based on SHADE
in high dimensional search spaces on CEC2020 benchmark sets, so that they can maintain a high
population diversity and a longer exploration phase. Second, the improvement to the algorithm should
be simple, should not excessively increase complexity, and should not render the proposed algorithm
incomprehensible and less applicable, as discussed in [43]. We proposed a method using turning-based
mutation, and apply it to the SHADE, L-SHADE, and jSO algorithms to yield good performance while
using relatively simple algorithm structure. Through experimental analysis involving 10, 15, and 20
dimensions, the improved algorithms achieved better performance than the original algorithms as
well as the advanced DISH [44] and jDE100 algorithms on CEC2020 benchmark sets, but were slightly
worse than the j2020 algorithm. We also use population diversity measure and population clustering
analysis to verify the effectiveness of the proposed method.

Section 2 describes the process of evolution from the DE algorithm to the SHADE, L-SHADE,
and jSO algorithms, and turning-based mutation is introduced in Section 3. The experimental settings
and results are described in Sections 4 and 5, respectively. Section 6 discusses the results, and the
conclusion of this paper is given in Section 7.

2. DE SHADE L-SHADE and jSO

2.1. Differential Evolution

The DE consists of three main steps: mutation, crossover, and selection. In mutation, the attribute
vector of the selected individual x is combined in a simple vector operation to generate the mutated
vector v. The scale factor F of the control parameter is used in this operation. In the crossover step,
according to the probability given by the crossover rate CR of the control parameter, the trial vector
u is created by selecting the attribute from the original vector x or mutated vector v. Finally, in the
selection step, the trial vector u is evaluated by the objective function and the fitness f (u) is compared
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with the fitness of the selected vector f (x). The vector with the better fitness value survives to the
next generation.

This paper focuses on improving the mutation process, so the paragraphs below describe the
mutation process of the DE algorithm. The complete steps of DE can be referred to the literature [1].
The mutation strategy of DE/rand/1/bin can be expressed as follows:

vi,G = xr1,G + Fi × (xr2,G − xr3,G) (1)

where vi,G is the mutated vector, and xr1,G, xr2,G, and xr3,G are three different individuals randomly
selected from the population. Fi is the scaling factor, and G is the index of the current generation.

If any dimension of the mutated vector vj,i,G is outside the boundary of the search range [xmin, xmax],
we perform the following correction for boundary-handling to handle infeasible solutions [45]:

v j,i,G =

⎧⎪⎪⎨⎪⎪⎩
xmin+x j,i,G

2 i f v j,i,G < xmin
xmax+x j,i,G

2 i f v j,i,G > xmax
(2)

where j is the dimensional index and i is the individual index.
The pseudo-code of the DE/rand/1/bin algorithm is shown in Algorithm 1.

Algorithm 1 DE/rand/1/bin

1: initialize P, NP, F, CR and MaxFES;
2: while FES <MaxFES do

3: for each individual x do

4: use mutation Formula (1) to create mutated vector v;
5: execute boundary-handling (2) to handle infeasible solutions;
6: use binomial crossover to create trial vector u;
7: use selection of classical DE to create individual of next generation;
8: end for

9: end while

10: return the best found solution.

It can be seen from the description of DE algorithm that users need to set three control parameters:
crossover rate CR, scaling factor F and population size NP. The setting of these parameters is very
important to the performance of DE.

Fine-tuning the control parameter is a time-consuming task, because of which most advanced
variants of DE use parameter adaptation. This is also why Tanabe and Fukunaga proposed the
SHADE [19] algorithm in 2013. Because the algorithms used in this paper are based on SHADE, it is
described in more detail below.

2.2. SHADE

In the control parameters of SHADE, crossover rate CR and scaling factor F are discussed.
The algorithm is based on JADE [20], proposed by Sanderson and Zhang, and so they share many
mechanisms [18]. The major difference between them is in historical memories MF and MCR with
their update mechanisms. The next subsections describe the historical memory update of SHADE and
the difference between DE and SHADE algorithm in initialization, mutation, crossover and selection,
respectively. The complete steps of SHADE can be referred to the literature [19].

2.2.1. Initialization

In SHADE, the population is initialized in the same manner as in DE, but there are two additional
components—historical memory and external archive—that also need to be initialized.
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Initialize the control parameters stored in the historical memory, crossover rate CR and scale factor
F to 0.5:

MCR,i = MF,i = 0.5;∀i = 1, · · · , H, (3)

where H is the size of the user-defined historical memory, and the index k to update the historical
memory is initialized to one.

In addition, the initialization of the external archive of poor quality solutions is empty, i.e., A = ∅.

2.2.2. Mutation

In contrast to DE/rand/1/bin, the “current to pbest/1” mutation strategy is used in SHADE:

vi,G = xi,G + Fi ×
(
xpbest,G − xi,G

)
+ Fi × (xr1,G − xr2,G) (4)

pi = rand[pmin, 0.2] (5)

pmin =
2

NP
(6)

where, xi,G is the given individual, and xpbest,G is an individual selected from the best NP × pi (pi ∈ [0, 1])
individuals randomly in the current population. Vector xr1,G is an individual selected from the current
population randomly, and xr2,G is an individual selected from a combination of the external archive
A and the current population randomly. Index r1 � r2 � i. Fi is a scaling factor, rand [] is a uniform
random distribution and NP is the size of population. The vi,G is the mutated vector and G is the index
of the current generation. The greed of the “current-to-pbest/1” mutation strategy depends on the
control parameter pi, which is calculated as shown in Equations (5) and (6). It balances exploration and
exploitation capabilities (a small value of p is more greedy). The scaling factor Fi is generated using the
following formula:

Fi = randci(MF,ri, 0.1) (7)

where randci () is the Cauchy distribution, and MF,ri is randomly selected from historical memory MF
(index ri is a uniformly distributed random value from [1, H]). If Fi > 1, let Fi = 1. If Fi ≤ 0, Equation (7)
is repeated to attempt to generate a valid value.

The boundary handling of SHADE is identical to that of DE, as shown in Equation (2).

2.2.3. Crossover

DE has 2 classic crossover strategies, i.e., binomial and exponential. The crossover strategies of
SHADE is the same as that of DE/rand/1/bin, i.e., binomial crossover. However, the crossover rate of
DE/rand/1/bin is set in advance while the CRi of SHADE is generated by the following formula:

CRi = randni(MCR,ri, 0.1) (8)

where randni () is Gaussian distribution, and MCR,ri are randomly selected from historical memory
MCR (index ri is a uniformly distributed random value from [1, H]). If CRi > 1, let CRi = 1; if CRi < 0,
let CRi = 0.

2.2.4. Selection

The process of selection of SHADE is the same as that of DE. However, the external archive needs
to be updated during selection. If a better trail individual is generated, the original individual xi,G is
stored in the external archive. If the external archive exceeds capacity, one of them is randomly deleted.

2.2.5. Historical Memory Update

Historical memory update is also an important operation in SHADE. The historical memories
MCR and MF are initialized by Formula (3) but their contents change with the iteration of the algorithm.
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These memories store the “successful” crossover rate CR and scaling factor F. “Successful” here means
that the trail vector u is selected instead of the original vector x to survive to the next generation.
In each generation, the values of these “successful” CR and F are first stored in arrays SCR and SF,
respectively. After each generation, a unit of each of the historical memories MF and MCR is updated.
The updated unit is specified by index k, which is initialized to one and increases by one after each
generation. If k exceeds the memory capacity H, it is reset to one. The following formula is used to
update the k-th unit of historical memory:

MCR,k,G+1 =

{
meanWA(SCR) i f SCR � ∅

MCR,k,G otherwise
(9)

MF,k,G+1 =

{
meanWL(SF) i f SF � ∅

MF,k,G otherwise
(10)

If all individuals in the G-th generation fail to generate a better trail vector, i.e., SF = SCR = ∅,
the historical memory will not be updated. The weighted Lehmer mean WL and weighted mean WA
are calculated using the following formulas, respectively:

meanWA(SCR) =

|SCR |∑
k=1

wk × SCR,k, (11)

meanWL(SF) =

∑|SF |
k=1 wk × S2

F,k∑|SF |
k=1 wk × SF,k

(12)

To improve the adaptability of the parameters, the weight vector w is calculated based on the
absolute value of the difference that is obtained by subtracting the objective function value of the given
vector from that of the trail vector in current generation G, as follows:

wk =
Δ fk∑|SCR |

k=1 Δ fk
(13)

where Δ fk =
∣∣∣∣ f (uk,G

)
− f
(
xk,G
)∣∣∣∣ in (13).

The pseudo-code of the SHADE algorithm is shown in Algorithm 2.

Algorithm 2 SHADE

1: initialize P, NP, F, CR, A, H and MaxFES;
2: initialize MF, MCR by (3);
3: while FES <MaxFES do

4: for each individual x do

5: use mutation Formulas (7) and (8) to select F and CR;
6: use Formula (4) to create mutated vector v;
7: execute boundary-handling (2) to handle infeasible solutions;
8: use binomial crossover to create trial vector u;
9: use selection of classical DE to create individual of next generation;
10: update external archive A;
11: end for

12: use Formulas (9) and (10) to update historical memory MF and MCR;
13: end while
14: return the best found solution.

2.3. Linear Decrease in Population Size: L-SHADE

In [21], a linear reduction of population size was introduced to SHADE to improve its performance.
The basic thought is to gradually reduce the population size during evolution to improve exploitation
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capabilities. In L-SHADE, the population size is calculated after each generation using Formula (14).
If the new population size NPnew is smaller than the previous population size NP, the all individuals
are sorted on the basis of the value of the objective function, and the worst NP-NPnew individuals are
cut. Also, the size of external archives/A/decreases synchronously with population size:

NPnew = round
(
NPinit − FES

MAXFES
×
(
NPinit −NP f

))
(14)

where NPf and NPinit are the final and initial population size, respectively. MaxFES and FES are the
maximum and current number of the calculation of the fitness function, respectively. And round () is a
rounding function.

2.4. Weighted Mutation Strategy with Parameterization Enhancement: jSO

The jSO [24] algorithm won the CEC2017 single-objective real parameter optimization competition [46].
It is a type of iL-SHADE algorithm that uses a weighted mutation strategy [47]. The iL-SHADE algorithm
extends L-SHADE by initializing all parameters in the historical memories MF and MCR to 0.8, statically
initializing the last unit of historical memories MF and MCR to 0.9, updating MF and MCR with the
weighted Lehmer average value, limiting the crossover rate CR and scaling factor F in the early stage,
and p is calculated for the “current-to-pbest/1” mutation strategy as:

p = pmin +
FES

MAXFES
(pmax − pmin) (15)

where pmin and pmax are the minimum and maximum value of p, respectively. FES and MaxFES are the
current and maximum number of the calculation of the fitness function, respectively.

The jSO algorithm sets pmax = 0.25 and pmin = pmax/2, initial population size to NPinit = 25
√

D log D,
and the size of the historical memory to H = 5. All parameters in MF and MCR are initialized to 0.3 and
0.8, respectively, and the weighted mutation strategy current-to-pbest-w/1 is used:

vi,G = xi,G + Fw ×
(
xpbest,G − xi,G

)
+ Fi × (xr1,G − xr2,G), (16)

where Fw is calculated as:

Fw =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.7Fi, FES < 0.2MAXFES,
0.8Fi, FES < 0.4MAXFES,
1.2Fi, otherwise.

(17)

3. Turning-Based Mutation

The opposition-based DE (ODE) algorithm was proposed by Shahryar et al. [48]. The opposition-
based learning (OBL) was used for generation jumping and population initialization, and the opposite
numbers was used to improve the convergence rate of DE. Shahryar et al. let all vectors of the initial
population take the opposite number in the initialization and allowed the trail vectors to take the
opposite number in the selection operation. They then compared their fitness values and selected the
vector with the better fitness to accelerate the convergence of the DE algorithm. We refer to the idea of
“opposition” in the above algorithm, but the purpose of this paper is to change the direction of mutation
under certain conditions to maintain population diversity and enable a longer exploration phase.

Suppose that the search space is two-dimensional (2D). There is a ring-shaped region, the center
of which is the global suboptimal individual xpbest,G. The outer radius of the ring is OR and the inner
radius is IR. If the Euclidean distance Distance between the given individual and the global suboptimal
individual is smaller than the outer radius OR and larger than the inner radius IR, the differential
vector dei from the mutation Formulas (1) and (4) takes the opposite number, and some dimensions are
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randomly selected to assign random values within the search range. Experiments have verified that
better outer radius OR and inner radius IR can be calculated as:

ORinit =
D∑

j=1

2

√(xmax − xmin
2

)2
(18)

IR =
D∑

j=1

2

√(xmax − xmin
40

)2
(19)

OR = ORinit +
IR−ORinit

MaxFES
× FES (20)

where ORinit is the initial value of the outer radius and IR is the inner radius, which is also the
minimum value of the outer radius. The outer radius OR decreases with an increase in the number
of fitness evaluations. MaxFES and FES are the maximum and current number of the calculation of
the fitness function, respectively, and xmax and xmin are the upper and lower bounds of the search
range, respectively.

The Euclidean distance Distance between the given individual and the global suboptimal individual
is calculated as:

Distance = 2

√√√√ D∑
j=1

(
x j,pbest,G − x j,i,G

)2
(21)

The differential vector dei from the mutation Equations (1) and (4) is calculated as:

dei = (Fi or Fw) ×
(
xpbest,G − xi,G

)
+ Fi × (xr1,G − xr2,G) (22)

The pseudo-code of the operation on the differential vector dei in turning-based mutation is shown
as Operation 1:

Operation 1 operation on dei

1: if Distance > IR and Distance < OR then

2: dei = −dei;
3: M = randi(D), R = randperm(D);
4: for d = 1 to M do

5: dei(R(d)) = rand (xmax−xmin) + xmin;
6: end for

7: end if

where R is the randomly disordered dimension index array, M is the number of randomly selected
dimensions, and xmax and xmin are the upper and lower bounds of the search range, respectively.

Finally, the mutation operation is performed as shown in Equation (23):

vi,G = xi,G + dei (23)

If the Euclidean distance Distance between the given individual and the global suboptimal
individual is smaller than the outer radius OR and larger than the inner radius IR, the improved
method changes the direction of mutation of the given individual to maintain the population diversity
and a longer exploration phase, thus enhancing the global search ability and the ability to escape
the local optimum. Then, with an increase in number of fitness evaluations, the performance of
the algorithm can be improved. If the Euclidean distance Distance between the given individual
and the global suboptimal individual is smaller than or equal to the inner radius IR, the former is
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allowed to mutate in the original direction. This enables the given individual to quickly converge
to the global optimal or suboptimal position to avoid the problem of non-convergence caused by
turning-based mutation.

Since Equation (21) and Operation 1 need to be executed in the mutation process of each individual,
the overall time complexity [42] of the improved algorithms is slightly higher than that of the original
algorithms, as shown in Tables 1–3.

Table 1. Time complexity specified by CEC2020 technical document-SHADE vs. Tb-SHADE.

D T0 T1
SHADE Tb-SHADE

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

5 6.03E+01 2.52E+02 4.81E+03 7.56E+01 5.58E+03 8.84E+01
10 6.03E+01 3.05E+02 5.55E+03 8.70E+01 6.35E+03 1.00E+02
15 6.03E+01 3.39E+02 5.68E+03 8.86E+01 6.76E+03 1.06E+02
20 6.03E+01 4.09E+02 6.03E+03 9.32E+01 7.14E+03 1.12E+02

Table 2. Time complexity specified by CEC2020 technical document—L-SHADE vs. TbL-SHADE.

D T0 T1
L-SHADE TbL-SHADE

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

5 6.03E+01 2.52E+02 4.44E+03 6.95E+01 4.97E+03 7.82E+01
10 6.03E+01 3.05E+02 4.77E+03 7.40E+01 6.71E+03 1.06E+02
15 6.03E+01 3.39E+02 4.98E+03 7.70E+01 6.97E+03 1.10E+02
20 6.03E+01 4.09E+02 5.24E+03 8.01E+01 7.30E+03 1.14E+02

Table 3. Time complexity specified by CEC2020 technical document-jSO vs. Tb-jSO.

D T0 T1
jSO Tb-jSO

T2 (T2 − T1)/T0 T2 (T2 − T1)/T0

5 6.03E+01 2.52E+02 4.30E+03 6.71E+01 5.24E+03 8.27E+01
10 6.03E+01 3.05E+02 5.28E+03 8.25E+01 6.51E+03 1.03E+02
15 6.03E+01 3.39E+02 6.50E+03 1.02E+02 7.12E+03 1.12E+02
20 6.03E+01 4.09E+02 7.27E+03 1.14E+02 7.81E+03 1.23E+02

The pseudo-code of the Tb-SHADE algorithm (SHADE algorithm using turning-based mutation)
is shown as Algorithm 3, that of the TbL-SHADE algorithm (L-SHADE algorithm using turning-based
mutation) is shown as Algorithm 4, and that of the Tb-jSO algorithm (jSO algorithm using turning-based
mutation) is shown as Algorithm 5. The improved parts of these algorithm are underlined.
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Algorithm 3 Tb-SHADE

1: initialize P, NP, F, CR, A, H and MaxFES;
2: initialize MF, MCR by (3);
3: initialize ORinit by (18), initialize IR by (19);

4: while FES <MaxFES do

5: Calculate OR by (20);

6: for each individual x do

7: use mutation Formulas (7) and (8) to select F and CR;
8: Set Distance by (21);

9: Execute Operation 1;

10: use Formula (23) to create mutated vector v;

11: execute boundary-handling (2) to handle infeasible solutions;
12: use binomial crossover to create trial vector u;
13: use selection of classical DE to create individual of next generation;
14: update external archive A;
15: end for

16: use Formulas (9) and (10) to update historical memory MF and MCR;
17: end while

18: return the best found solution.

Algorithm 4 TbL-SHADE

1: initialize P, NPinit, NPf, F, CR, A, H and MaxFES;

2: initialize MF, MCR by (3);
3: initialize ORinit by (18), initialize IR by (19);

4: while FES <MaxFES do

5: Calculate OR by (20);

6: for each individual x do

7: use mutation Formulas (7) and (8) to select F and CR;
8: Set Distance by (21);

9: Execute Operation 1;

10: use Formula (23) to create mutated vector v;

11: execute boundary-handling (2) to handle infeasible solutions;
12: use binomial crossover to create trial vector u;
13: use selection of classical DE to create individual of next generation;
14: update external archive A;
15: end for

16: use Formulas (9) and (10) to update historical memory MF and MCR;
17: use (14) to calculate NPnew;
18: NP = NPnew, |A| = NPnew;
19: end while

20: return the best found solution.
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Algorithm 5 Tb-jSO

1: initialize P, NPinit, NPf, F, CR, A, H and MaxFES;

2: initialize all values in MF to 0.3 and MCR to 0.8, but MF,H = 0.9 and MCR,H = 0.9;
3: initialize ORinit by (18), initialize IR by (19);

4: while FES <MaxFES do

5: Calculate OR by (20);

6: for each individual x do

7: use mutation Formulas (7) and (8) to select F and CR;
8: use (17) to calculate Fw;
9: if FES < 0.6MaxFES and Fi,G > 0.7 then

10: Fi,G = 0.7;
11: end if

12: if FES < 0.25MaxFES then

13: CRi,G =max(CRi,G, 0.7);
14: else if FES < 0.5MaxFES then

15: CRi,G =max(CRi,G, 0.6);
16: end if

17: Set Distance by (21);

18: Execute Operation 1;

19: use Formula (23) to create mutated vector v;

20: execute boundary-handling (2) to handle infeasible solutions;
21: use binomial crossover to create trial vector u;
22: use selection of classical DE to create individual of next generation;
23: update external archive A;
24: end for

25: use Formulas (9) and (10) to update historical memory MF and MCR;
26: use (14) to calculate NPnew;
27: NP = NPnew, |A| = NPnew;
28: end while

29: return the best found solution.

4. Experimental Settings

To verify the improved method by experiments, the original algorithm, the improved algorithm and
the advanced DISH and the jDE100 algorithms were tested on the Single Objective Bound Constrained
Numerical Optimization (CEC2020) benchmark sets in 5, 10, 15 and 20 dimensions. The termination
criteria, i.e., the maximum number of the calculation of the fitness function (MaxFES) and the minimum
error value (Min error value), were set as in Table 4. The search range is [xmin, xmax] = [−100, 100], and 30
independent repeated experiments were conducted. The parameter setting of most algorithm [19,21,24]
is shown in Tables 5 and 6. In addition, the parameter setting of j2020 algorithm can be found in [29].

Table 4. Termination criteria.

D MaxFES Min Error Value

5 50,000 10−8

10 1,000,000 10−8

15 3,000,000 10−8

20 10,000,000 10−8
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Table 5. Parameter setting of some algorithms.

Algorithm NP H |A| NPinit NPf MaxG MCRinit MFinit

SHADE 100 NP NP − − MaxFES/NP 0.5 0.5
Tb-SHADE 100 NP NP − − MaxFES/NP 0.5 0.5
L-SHADE Calculated by (18) 100 NP 100 4 Not fixed 0.5 0.5
TbL-SHADE Calculated by (18) 100 NP 100 4 Not fixed 0.5 0.5

jSO Calculated by (18) 5 NP 25logD 4 Not fixed 0.8
MCR, H = 0.9

0.3
MF, H = 0.9

Tb-jSO Calculated by (18) 5 NP 25logD 4 Not fixed 0.8
MCR, H = 0.9

0.3
MF, H = 0.9

DISH Calculated by (18) 5 NP 25logD 4 Not fixed 0.8
MCR, H = 0.9

0.3
MF, H = 0.9

Table 6. Parameter setting of jDE100.

Parameter Value Description

Fl
5.0√
bNP

lower limit of scale factor for the big population

Fl
1.0√
bNP

lower limit of scale factor for the small population

Fu 1.1 upper limit of scale factor
CRl 0.0 lower limit of crossover parameter
CRu 1.1 upper limit of crossover parameter
Finit 0.5 initial value of scale factor

CRinit 0.5 initial value of crossover parameter
τ1 0.1 probability to self-adapt scale factor
τ2 0.1 probability to self-adapt crossover parameter

bNP 1000 size of big population
sNP 25 size of small population

ageLmt 1 × 109 number of FEs when population restart needs to occurs
eps 1 × 10−16 small value used to check if two value are similar

myEqs 25 reinitialization if myEqs% of individuals in the corresponding
population have the similar function values

MaxG Not fixed the maximum number of generations

The hypothesis that the turning-based mutation can maintain a longer exploration phase can be
verified by analyzing the clustering and density of the population during the optimization process.
These two analyses are described in more detail below.

4.1. Cluster Analysis

The clustering algorithm selected in this experiment is density based noisy application spatial
clustering (DBSCAN) [49], which is based on the clustering density rather than its center, so it can find
clusters of arbitrary shape. DBSCAN algorithm needs to set two control parameters and a distance
measurement. The settings are as follows:

(1) distance between core points, that is, Eps = 1% of the decision space; for the CEC2020 benchmark
sets, Eps = 2;

(2) minimum number of points forming a cluster, that is, MinPts = 4 (minimum number of mutation
individuals); and

(3) distance measure uses Chebyshev distance [50]—if the distance between the corresponding
attributes of two individuals is greater than 1% of the decision space, they are not considered as
direct density reachable.

205



Mathematics 2020, 8, 1565

4.2. Population Diversity

The population diversity (PD) measure is taken from [51], which is based on the square root of
the deviation sum, Equation (25), of individual components and their corresponding mean values,
Equation (24):

xj =
1

NP

NP∑
i=1

x j,i (24)

PD =

√√√√
1

NP

NP∑
i=1

D∑
j=1

(
x j,i − xj

)2
. (25)

where i is the iterator of members of the population and j is that of the component (dimension).

5. Results

Tables 7–18 compare the error values (when the error value was smaller than 10−8,
the corresponding value was considered optimal) obtained by the original algorithms (SHADE,
L-SHADE, and jSO) and their improved versions using turning-based mutation (Tb-SHADE,
TbL-SHADE and Tb-jSO, respectively). The results of a comparison are showed in the last column of
each table. If the performance of the original version was significantly better, uses the “−” sign; if the
performance of the improved version was significantly better, uses the sign “+”; if their performances
were similar, “=” is used. The better performance values are displayed in bold, and the last row of these
tables shows the results of an overall comparison. Tables 19–22 provide the error values obtained by
the advanced algorithms DISH, jDE100 and j2020 on CEC2020. All tables provide the best, mean and
std (standard deviation) values of 30 independent repetitions of the experiments.

Table 7. SHADE vs. Tb-SHADE on CEC2020 in 5D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 1.70E−09 6.44E−09 2.40E−09 8.41E−01 5.37E+00 3.83E+00 −
2 3.78E−01 1.73E+00 1.80E+00 3.43E+00 1.30E+01 6.19E+00 −
3 1.32E+00 5.07E+00 1.07E+00 1.42E+00 6.73E+00 2.16E+00 =
4 1.23E−02 9.32E−02 4.43E−02 4.30E−02 1.71E−01 8.96E−02 =
5 1.65E−09 6.89E−09 2.39E−09 3.71E−02 1.05E+00 6.62E−01 =
6 5.41E−10 6.48E−09 2.54E−09 2.49E−02 5.89E−02 1.81E−02 =
7 2.83E−10 6.62E−09 3.01E−09 1.32E−05 2.12E−04 6.34E−04 =
8 4.29E−09 3.34E+00 1.83E+01 4.09E−01 2.23E+00 1.61E+00 =
9 1.00E+02 1.07E+02 3.65E+01 2.07E+01 7.80E+01 2.78E+01 +

10 3.00E+02 3.46E+02 8.65E+00 5.62E+01 2.76E+02 7.49E+01 +
2 + 2 −

Table 8. SHADE vs. Tb-SHADE on CEC2020 in 10D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 2.12E−09 7.52E−09 2.16E−09 1.50E−09 7.38E−09 2.13E−09 =
2 1.91E−01 5.14E+00 4.17E+00 3.67E+00 2.26E+01 1.22E+01 −
3 1.05E+01 1.18E+01 7.29E−01 3.71E+00 1.03E+01 3.49E+00 +
4 9.90E−02 1.63E−01 2.75E−02 3.67E−05 2.54E−02 1.47E−02 =
5 8.82E−09 3.54E−01 1.91E−01 9.23E−07 5.48E+00 5.13E+00 −
6 7.17E−02 1.95E−01 1.01E−01 1.68E−01 5.28E−01 2.05E−01 =
7 4.09E−06 1.39E−01 1.76E−01 3.97E−02 1.83E−01 1.19E−01 =
8 1.00E+02 1.00E+02 6.24E−07 2.15E−04 1.86E+01 1.76E+01 +
9 1.00E+02 2.92E+02 8.72E+01 1.00E+02 1.00E+02 4.45E−02 +

10 3.98E+02 4.16E+02 2.29E+01 1.00E+02 1.21E+02 6.61E+01 +
4 + 2 −

206



Mathematics 2020, 8, 1565

Table 9. SHADE vs. Tb-SHADE on CEC2020 in 15D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 6.48E−09 8.35E−09 9.82E−10 2.06E−09 7.43E−09 2.01E−09 =
2 1.68E−01 7.53E+00 2.16E+01 2.46E+00 3.08E+01 2.79E+01 −
3 1.56E+01 1.57E+01 2.05E−01 3.64E+00 8.46E+00 2.91E+00 +
4 1.78E−01 2.74E−01 3.69E−02 4.06E−02 7.41E−02 3.22E−02 =
5 1.31E+00 5.07E+01 5.74E+01 2.41E+01 4.89E+01 1.76E+01 −
6 7.43E−02 3.78E−01 2.22E−01 3.26E−01 2.61E+00 2.98E+00 =
7 4.18E−01 2.06E+01 4.50E+01 3.02E−01 3.07E+00 2.01E+00 +
8 1.00E+02 1.00E+02 0.00E+00 8.74E−09 5.20E+01 4.49E+01 +
9 3.38E+02 3.87E+02 9.71E+00 1.00E+02 1.46E+02 1.01E+02 +

10 4.00E+02 4.00E+02 0.00E+00 1.00E+02 2.07E+02 7.85E+01 +
5 + 2 −

Table 10. SHADE vs. Tb-SHADE on CEC2020 in 20D.

f
SHADE Tb-SHADE

Result
Best Mean Std Best Mean Std

1 5.87E−09 8.38E−09 9.25E−10 2.21E−09 7.94E−09 1.76E−09 =
2 8.52E−09 2.49E−01 5.14E−01 9.38E−02 1.97E+00 1.38E+00 =
3 2.04E+01 2.06E+01 3.27E−01 6.66E−09 1.46E+01 8.57E+00 +
4 2.27E−01 3.78E−01 4.93E−02 3.50E−01 4.09E−01 3.48E−02 =
5 2.06E+01 2.04E+02 8.51E+01 7.38E+00 1.56E+02 1.11E+02 +
6 9.26E−02 2.04E−01 6.62E−02 2.62E−01 3.84E−01 6.17E−02 =
7 3.55E−01 4.53E+01 5.54E+01 3.06E+00 2.49E+01 2.23E+01 +
8 1.00E+02 1.00E+02 2.23E−13 1.00E+02 1.00E+02 1.89E−13 =
9 4.01E+02 4.05E+02 2.00E+00 1.00E+02 3.99E+02 6.89E+01 +

10 4.14E+02 4.14E+02 9.83E−03 4.10E+02 4.13E+02 9.93E−01 =
4 + 0 −

Table 11. L-SHADE vs. TbL-SHADE on CEC2020 in 5D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 3.32E−09 7.16E−09 1.95E−09 1.86E−09 5.06E−05 2.77E−04 =
2 6.54E−10 9.34E−02 1.14E−01 1.30E−05 4.24E−01 1.22E+00 =
3 5.15E+00 5.17E+00 6.51E−02 6.14E−01 2.96E+00 1.73E+00 +
4 9.92E−03 6.52E−02 3.08E−02 7.35E−07 1.58E−02 1.81E−02 =
5 2.24E−09 6.88E−09 2.02E−09 2.19E−09 3.60E−05 1.97E−04 =
6 8.44E−10 5.15E−09 2.84E−09 6.25E−11 6.00E−09 5.02E−09 =
7 1.51E−09 6.13E−09 2.69E−09 7.16E−10 4.76E−09 2.96E−09 =
8 5.19E−09 7.95E−09 1.44E−09 6.25E−09 2.77E−04 1.04E−03 =
9 7.81E−09 9.67E+01 1.83E+01 4.50E−09 6.61E+01 4.36E+01 +

10 3.00E+02 3.44E+02 1.20E+01 8.19E−09 2.71E+02 8.34E+01 +
3 + 0 −

Table 12. L-SHADE vs. TbL-SHADE on CEC2020 in 10D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 5.88E−09 8.29E−09 1.22E−09 1.70E−09 6.65E−09 2.33E−09 =
2 3.44E−04 1.13E+00 1.53E+00 6.39E−02 7.09E+00 8.75E+00 −
3 1.04E+01 1.07E+01 2.92E−01 4.00E+00 9.40E+00 3.00E+00 +
4 9.87E−02 1.52E−01 2.23E−02 9.53E−09 1.90E−02 1.10E−02 =
5 3.83E−09 4.32E+00 2.20E+01 5.39E−02 1.60E+00 1.25E+00 =
6 2.33E−02 9.59E−02 5.58E−02 7.39E−02 3.75E−01 1.38E−01 =
7 1.06E−07 1.39E−01 2.02E−01 1.26E−06 2.14E−03 2.71E−03 =
8 7.59E−09 9.67E+01 1.83E+01 9.62E−09 3.20E+01 2.15E+01 +
9 1.00E+02 2.91E+02 8.70E+01 5.77E−09 1.02E+02 5.05E+01 +

10 3.98E+02 4.16E+02 2.29E+01 1.00E+02 1.40E+02 1.03E+02 +
4 + 1 −
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Table 13. L-SHADE vs. TbL-SHADE on CEC2020 in 15D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 3.53E−09 7.72E−09 1.70E−09 1.35E−09 7.01E−09 2.54E−09 =
2 3.64E−12 3.73E−01 7.99E−01 8.33E−02 1.08E+00 1.74E+00 =
3 1.56E+01 1.56E+01 1.41E−01 4.45E−09 2.55E+00 1.55E+00 +
4 2.07E−01 2.64E−01 3.91E−02 9.87E−03 4.13E−02 1.23E−02 =
5 2.46E+00 5.21E+01 6.26E+01 7.51E+00 3.40E+01 1.58E+01 +
6 2.43E−03 4.23E−01 1.52E+00 1.13E−01 1.82E+00 3.20E+00 =
7 6.63E−02 1.65E+01 4.13E+01 4.35E−01 9.54E−01 3.53E−01 +
8 1.00E+02 1.00E+02 0.00E+00 7.71E−09 6.02E+01 4.20E+01 +
9 3.00E+02 3.80E+02 2.36E+01 1.00E+02 1.80E+02 1.27E+02 +

10 4.00E+02 4.00E+02 0.00E+00 1.00E+02 2.20E+02 1.27E+02 +
6 + 0 −

Table 14. L-SHADE vs. TbL-SHADE on CEC2020 in 20D.

f
L-SHADE TbL-SHADE

Result
Best Mean Std Best Mean Std

1 4.35E−09 8.54E−09 1.33E−09 1.50E−09 7.72E−09 2.26E−09 =
2 9.46E−11 3.44E−02 3.88E−02 3.12E−02 5.21E−01 7.45E−01 =
3 2.04E+01 2.06E+01 3.93E−01 1.74E−09 2.28E+00 1.58E+00 +
4 2.57E−01 3.66E−01 3.95E−02 2.97E−02 7.35E−02 2.85E−02 =
5 3.02E+01 2.46E+02 1.02E+02 1.13E+01 2.42E+02 1.39E+02 +
6 8.46E−02 1.85E−01 7.59E−02 1.97E−01 3.13E−01 5.12E−02 =
7 2.23E−01 4.34E+01 5.64E+01 1.58E+00 4.15E+01 3.84E+01 =
8 1.00E+02 1.00E+02 1.89E−13 5.14E+01 9.40E+01 1.45E+01 +
9 4.00E+02 4.04E+02 2.37E+00 1.00E+02 4.12E+02 9.59E+01 +

10 4.14E+02 4.14E+02 1.08E−02 3.99E+02 4.03E+02 4.09E+00 +
5 + 0 −

Table 15. jSO vs. Tb-jSO on CEC2020 in 5D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 1.34E−09 6.70E−09 2.16E−09 2.24E−09 7.69E−09 2.26E−09 =
2 9.71E−09 4.11E−01 1.24E+00 8.54E−09 2.01E+00 3.43E+00 =
3 6.13E−01 4.92E+00 1.22E+00 2.91E−08 2.34E+00 1.75E+00 =
4 8.28E−09 6.28E−02 3.35E−02 1.92E−09 3.03E−02 3.47E−02 =
5 3.14E−09 2.08E−02 1.14E−01 3.85E−09 7.48E−02 2.35E−01 =
6 1.00E−09 5.84E−09 2.36E−09 4.08E−10 6.74E−09 2.84E−09 =
7 1.57E−10 5.51E−09 2.94E−09 3.82E−11 4.59E−09 3.30E−09 =
8 4.22E−09 7.95E−09 1.63E−09 5.87E−09 8.58E−09 1.08E−09 =
9 5.55E−09 9.67E+01 1.83E+01 6.29E−09 9.33E+01 2.54E+01 =

10 3.00E+02 3.46E+02 8.65E+00 3.00E+02 3.08E+02 1.80E+01 +
1 + 0 −

Table 16. jSO vs. Tb-jSO on CEC2020 in 10D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 4.05E−09 7.91E−09 1.39E−09 4.56E−09 8.54E−09 1.28E−09 =
2 3.12E−01 6.99E+00 4.53E+00 3.54E+00 2.03E+01 2.14E+01 −
3 1.04E+01 1.19E+01 6.21E−01 2.62E+00 8.28E+00 2.85E+00 +
4 9.86E−02 1.58E−01 3.20E−02 1.97E−02 5.51E−02 3.94E−02 =
5 6.31E−09 2.61E−01 2.94E−01 9.79E−09 1.50E+00 9.92E−01 =
6 1.95E−02 1.05E−01 8.44E−02 2.93E−02 3.63E−01 1.75E−01 =
7 6.94E−07 7.13E−02 1.60E−01 1.23E−06 4.87E−02 1.01E−01 =
8 1.00E+02 1.00E+02 0.00E+00 6.98E−09 1.45E+00 4.49E+00 +
9 1.00E+02 3.02E+02 6.89E+01 1.00E+02 1.19E+02 6.22E+01 +

10 3.98E+02 4.04E+02 1.57E+01 1.00E+02 3.88E+02 5.44E+01 +
4 + 1 −
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Table 17. jSO vs. Tb-jSO on CEC2020 in 15D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 4.88E−09 8.28E−09 1.34E−09 4.93E−09 8.62E−09 1.36E−09 =
2 4.16E−02 2.61E+01 4.47E+01 1.67E−01 2.04E+01 2.49E+01 +
3 1.56E+01 1.66E+01 5.14E−01 1.99E+00 4.75E+00 1.59E+00 +
4 1.78E−01 2.62E−01 3.76E−02 2.96E−02 9.31E−02 4.54E−02 =
5 1.15E+00 3.07E+00 2.07E+00 1.56E−01 1.13E+01 1.04E+01 −
6 3.33E−02 3.20E−01 3.15E−01 8.05E−02 2.70E−01 1.26E−01 =
7 1.24E−01 7.15E−01 2.13E−01 1.06E−01 4.85E−01 2.48E−01 =
8 1.00E+02 1.00E+02 0.00E+00 7.83E−09 5.54E+01 4.08E+01 +
9 3.86E+02 3.89E+02 8.36E−01 1.00E+02 2.55E+02 1.48E+02 +

10 4.00E+02 4.00E+02 0.00E+00 4.00E+02 4.00E+02 0.00E+00 =
4 + 1 −

Table 18. jSO vs. Tb-jSO on CEC2020 in 20D.

f
jSO Tb-jSO

Result
Best Mean Std Best Mean Std

1 5.80E−09 8.53E−09 1.32E−09 6.70E−09 9.21E−09 8.21E−10 =
2 6.25E−02 1.99E+00 1.60E+00 1.74E+00 6.29E+00 3.45E+00 =
3 2.04E+01 2.13E+01 5.24E−01 2.56E+00 5.17E+00 1.63E+00 +
4 1.97E−01 3.53E−01 4.48E−02 5.92E−02 1.21E−01 5.05E−02 =
5 1.20E+00 6.93E+00 5.07E+00 4.16E−01 3.27E+01 4.81E+01 −
6 5.63E−02 9.75E−01 4.25E−01 5.93E−02 3.11E−01 1.49E−01 =
7 5.31E−03 1.12E−01 1.10E−01 1.79E−01 3.07E+00 4.29E+00 =
8 1.00E+02 1.00E+02 8.44E−14 1.00E+02 1.00E+02 2.53E−13 =
9 3.98E+02 4.01E+02 1.36E+00 4.15E+02 4.24E+02 5.11E+00 −

10 4.14E+02 4.14E+02 4.73E−04 3.99E+02 3.99E+02 6.47E−01 +
2 + 2 −

Table 19. DISH and jDE100 on CEC2020 in 5D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 2.60E−09 7.84E−09 1.87E−09 1.19E+05 9.94E+05 1.05E+06 0.00E+00 0.00E+00 0.00E+00
2 4.32E−09 3.99E−01 1.22E+00 1.46E+02 3.26E+02 8.04E+01 1.91E−04 3.23E+00 3.74E+00
3 6.13E−01 5.11E+00 8.63E−01 1.07E+01 2.00E+01 4.14E+00 0.00E+00 3.42E+00 2.33E+00
4 2.90E−09 6.82E−02 4.43E−02 2.69E−01 1.32E+00 4.48E−01 0.00E+00 7.68E−02 6.40E−02
5 1.83E−09 6.24E−02 1.90E−01 1.97E+01 5.80E+01 2.42E+01 0.00E+00 1.37E−01 2.86E−01
6 2.01E−09 6.94E−09 2.32E−09 4.19E−01 1.47E+00 5.28E−01 − − −
7 1.49E−09 5.96E−09 2.57E−09 1.95E+00 2.69E+01 2.96E+01 − − −
8 5.76E−09 3.35E+00 1.83E+01 4.06E+00 2.18E+01 9.07E+00 0.00E+00 6.28E−01 2.39E+00
9 1.00E+02 1.07E+02 2.54E+01 1.04E+02 1.23E+02 1.07E+01 0.00E+00 2.05E+01 3.75E+01
10 3.00E+02 3.44E+02 1.20E+01 1.89E+02 3.38E+02 3.24E+01 0.00E+00 1.26E+02 9.03E+01

Table 20. DISH and jDE100 on CEC2020 in 10D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 4.26E−09 8.83E−09 1.17E−09 5.88E+07 2.80E+08 1.48E+08 0.00E+00 0.00E+00 0.00E+00
2 6.25E−02 5.26E+00 3.92E+00 7.66E+02 1.06E+03 1.13E+02 0.00E+00 6.79E−01 1.16E+00
3 1.07E+01 1.19E+01 5.71E−01 6.45E+01 8.68E+01 1.23E+01 0.00E+00 8.06E+00 3.88E+00
4 1.28E−01 1.64E−01 2.53E−02 6.08E+00 1.01E+01 2.35E+00 0.00E+00 1.09E−01 9.04E−02
5 4.96E−09 2.43E−01 1.65E−01 4.28E+03 1.38E+04 6.69E+03 0.00E+00 3.02E−01 3.13E−01
6 1.97E−02 1.61E−01 1.28E−01 3.72E+01 1.15E+02 3.93E+01 2.91E−02 4.78E−01 2.49E−01
7 1.14E−07 3.31E−02 1.09E−01 5.59E+02 2.35E+03 1.37E+03 3.10E−07 6.73E−02 1.25E−01
8 1.00E+02 1.00E+02 0.00E+00 7.55E+01 1.35E+02 2.19E+01 0.00E+00 1.54E+00 4.00E+00
9 1.00E+02 2.67E+02 1.02E+02 1.63E+02 2.24E+02 2.24E+01 0.00E+00 8.00E+01 4.07E+01
10 3.98E+02 4.07E+02 1.84E+01 4.49E+02 4.73E+02 1.26E+01 1.00E+02 1.40E+02 8.12E+01
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Table 21. DISH and jDE100 on CEC2020 in 15D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 4.42E−09 8.41E−09 1.42E−09 6.48E+08 1.38E+09 5.36E+08 0.00E+00 0.00E+00 0.00E+00
2 1.67E−01 2.19E+01 4.02E+01 1.49E+03 2.02E+03 2.22E+02 0.00E+00 5.72E−02 4.32E−02
3 1.56E+01 1.67E+01 5.06E−01 1.41E+02 1.84E+02 2.41E+01 0.00E+00 6.78E+00 7.82E+00
4 1.78E−01 2.60E−01 3.93E−02 1.75E+01 7.69E+01 6.76E+01 0.00E+00 1.99E−01 7.47E−02
5 1.56E−01 2.54E+00 1.17E+00 3.17E+04 2.06E+05 9.67E+04 0.00E+00 7.58E+00 7.69E+00
6 2.07E−02 2.47E−01 2.06E−01 1.70E+02 3.36E+02 7.58E+01 1.65E−03 8.45E−01 2.09E+00
7 4.38E−01 7.59E−01 1.89E−01 1.51E+04 6.11E+04 3.24E+04 6.81E−02 9.83E−01 2.03E+00
8 1.00E+02 1.00E+02 0.00E+00 1.81E+02 2.82E+02 6.30E+01 0.00E+00 9.49E+00 2.74E+01
9 3.00E+02 3.84E+02 1.88E+01 2.98E+02 4.27E+02 4.89E+01 1.00E+02 1.23E+02 5.68E+01
10 4.00E+02 4.00E+02 0.00E+00 7.07E+02 8.67E+02 8.83E+01 1.00E+02 3.90E+02 5.48E+01

Table 22. DISH and jDE100 on CEC2020 in 20D.

f
DISH jDE100 j2020

Best Mean Std Best Mean Std Best Mean Std

1 6.06E−09 8.44E−09 9.07E−10 1.76E+09 4.18E+09 1.38E+09 0.00E+00 0.00E+00 0.00E+00
2 6.25E−02 1.50E+00 1.69E+00 2.59E+03 3.11E+03 2.27E+02 0.00E+00 2.60E−02 2.47E−02
3 2.06E+01 2.16E+01 4.69E−01 2.29E+02 3.05E+02 3.33E+01 0.00E+00 1.44E+01 9.29E+00
4 2.56E−01 3.60E−01 4.24E−02 6.79E+01 4.38E+02 3.73E+02 2.98E−02 1.80E−01 7.84E−02
5 2.08E−01 6.77E+00 3.21E+00 3.58E+05 6.91E+05 1.88E+05 3.12E−01 7.78E+01 5.75E+01
6 3.67E−02 6.97E−01 4.64E−01 3.96E+02 6.86E+02 1.33E+02 6.84E−02 1.91E−01 1.01E−01
7 1.39E−02 1.17E−01 1.04E−01 2.25E+04 1.48E+05 5.43E+04 1.95E−02 1.98E+00 4.02E+00
8 1.00E+02 1.00E+02 2.23E−13 4.53E+02 7.18E+02 1.67E+02 0.00E+00 9.27E+01 2.21E+01
9 3.96E+02 4.01E+02 1.86E+00 5.04E+02 5.89E+02 3.25E+01 1.00E+02 3.39E+02 1.28E+02
10 4.14E+02 4.14E+02 5.12E−04 5.56E+02 8.34E+02 1.46E+02 1.00E+02 3.39E+02 1.28E+02

Convergence diagrams are shown in Figures 1–12. Figures 1–4 shows the convergence curves of
SHADE and Tb-SHADE, respectively, for some test functions in 5D, 10D, 15D, and 20D, Figures 5–8
shows those of L-SHADE and TbL-SHADE for some test functions in 5D, 10D, 15D, and 20D. and
Figures 9–12 shows those of the jSO and Tb-jSO, respectively, for some test functions in 5D, 10D, 15D
and 20D. It is apparent that the red line of the turning-based mutation version of the algorithm was
often slower to converge but attained better objective function values.

Figure 1. The selected average convergence of SHADE and Tb-SHADE on CEC2020 in 5D is compared.
From left to right f3, f9 and f10.

Figure 2. The selected average convergence of SHADE and Tb-SHADE is compared on CEC2020 in
10D. From left to right f8, f9 and f10.
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Figure 3. The selected average convergence of SHADE and Tb-SHADE is compared on CEC2020 in
15D. From left to right f8, f9 and f10.

Figure 4. The selected average convergence of SHADE and Tb-SHADE is compared on CEC2020 in
20D. From left to right f3, f5 and f9.

Figure 5. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
5D. From left to right f3, f4 and f10.

Figure 6. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
10D. From left to right f8, f9 and f10.

Figure 7. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
15D. From left to right f8, f9 and f10.
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Figure 8. The selected average convergence of L-SHADE and TbL-SHADE is compared on CEC2020 in
20D. From left to right f3, f5 and f9.

Figure 9. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 5D. From left
to right f3, f4 and f10.

Figure 10. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 10D.
From left to right f3, f8 and f9.

Figure 11. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 15D.
From left to right f3, f8 and f9.

Figure 12. The selected average convergence of jSO and Tb-jSO is compared on CEC2020 in 20D.
From left to right f3, f4 and f10.

Tables 23–34 shows the number of runs (#runs) of population aggregation, the average generation
(Mean CO) of the first cluster during these runs, and the average population diversity (Mean PD) of
these generations.
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Table 23. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 5D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 3.04E+01 3.74E+01 30 2.29E+02 4.84E+01
2 12 3.97E+02 7.29E+01 0 − −
3 12 4.01E+02 1.20E+01 0 − −
4 13 2.83E+02 1.16E+01 0 − −
5 30 9.24E+01 3.69E+01 30 4.40E+02 3.66E+01
6 30 1.13E+02 3.29E+01 30 4.61E+02 2.28E+01
7 30 7.66E+01 4.57E+01 30 3.63E+02 4.41E+01
8 30 6.46E+01 2.84E+01 29 4.42E+02 2.52E+01
9 30 7.91E+01 6.31E+01 30 4.13E+02 3.61E+01

10 30 3.57E+01 1.30E+01 30 3.87E+02 3.03E+01

Table 24. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 10D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 5.84E+01 1.88E+01 30 6.57E+02 8.30E+01
2 0 − − 0 − −
3 3 7.94E+03 1.35E+01 0 − −
4 0 − − 0 − −
5 30 7.14E+02 3.92E+01 16 8.18E+03 8.16E+01
6 0 − − 3 8.76E+03 8.21E+01
7 30 8.78E+02 2.36E+01 14 9.54E+03 3.66E+01
8 30 5.06E+01 1.48E+01 30 8.97E+02 1.39E+02
9 2 5.12E+03 3.09E+01 23 2.41E+03 1.12E+02

10 30 1.03E+02 2.37E+01 29 2.72E+03 7.69E+01

Table 25. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 15D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.08E+01 1.37E+01 30 8.93E+02 1.05E+02
2 0 − − 0 − −
3 30 1.65E+04 9.53E+00 0 − −
4 0 − − 0 − −
5 29 8.34E+02 3.33E+01 0 − −
6 3 1.44E+04 6.27E+01 0 − −
7 30 6.96E+02 1.56E+01 6 2.72E+04 6.18E+01
8 30 6.59E+01 1.12E+01 30 1.10E+03 2.16E+02
9 25 1.52E+04 3.12E+01 2 8.86E+03 9.17E+01

10 30 1.12E+02 6.72E+00 30 3.22E+03 1.13E+02

Table 26. Clustering and population diversity of SHADE and Tb-SHADE on the CEC2020 in 20D.

f
SHADE Tb-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.64E+01 1.19E+01 30 1.26E+03 8.92E+01
2 4 9.06E+04 7.74E+01 0 − −
3 30 3.34E+04 9.12E+00 0 − −
4 0 − − 0 − −
5 30 5.46E+02 1.86E+01 12 8.62E+04 1.27E+02
6 0 − − 0 - -
7 30 9.20E+02 2.59E+01 4 8.96E+04 4.63E+01
8 30 8.56E+01 1.06E+01 30 1.72E+03 2.82E+02
9 0 − − 0 - -

10 30 1.02E+02 6.21E+00 30 2.63E+03 1.26E+02
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Table 27. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 5D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 3.00E+01 3.75E+01 30 2.53E+02 4.85E+01
2 18 8.71E+02 3.20E+01 6 1.38E+03 1.66E+01
3 30 6.29E+02 7.01E+00 1 1.21E+03 6.85E+00
4 10 4.65E+02 1.06E+01 0 − −
5 30 8.75E+01 3.42E+01 30 1.10E+03 2.17E+01
6 30 1.14E+02 3.01E+01 30 7.34E+02 2.30E+01
7 30 7.66E+01 4.29E+01 30 4.85E+02 4.13E+01
8 30 6.47E+01 2.08E+01 30 7.59E+02 1.97E+01
9 30 7.11E+01 6.15E+01 30 3.90E+02 2.77E+01

10 30 3.52E+01 1.07E+01 30 3.71E+02 2.93E+01

Table 28. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 10D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 5.96E+01 2.01E+01 30 6.61E+02 8.21E+01
2 10 2.88E+04 2.98E+01 9 3.12E+04 2.12E+01
3 20 2.65E+04 4.36E+00 2 3.19E+04 3.52E+00
4 1 2.86E+04 8.35E+00 2 3.21E+04 1.97E+00
5 30 7.31E+02 4.15E+01 15 2.89E+04 1.58E+01
6 6 2.31E+04 1.10E+01 0 − −
7 30 9.46E+02 2.34E+01 30 2.30E+04 1.77E+01
8 30 5.75E+01 1.51E+01 30 8.86E+02 1.26E+02
9 10 1.63E+04 5.77E+01 26 6.57E+03 1.18E+02

10 30 1.08E+02 2.70E+01 28 4.24E+03 7.02E+01

Table 29. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 15D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.06E+01 1.45E+01 30 8.80E+02 1.05E+02
2 30 6.19E+04 4.25E+01 30 7.69E+04 3.52E+01
3 30 1.84E+04 7.97E+00 24 8.51E+04 2.14E+01
4 4 9.42E+04 6.03E+00 3 9.80E+04 1.64E+00
5 28 8.35E+02 3.80E+01 2 9.80E+04 1.21E+01
6 18 7.04E+04 1.09E+01 17 9.20E+04 2.24E+01
7 30 6.98E+02 1.54E+01 0 − −
8 30 6.60E+01 1.15E+01 30 1.10E+03 2.16E+02
9 30 2.00E+04 2.82E+01 14 7.38E+04 1.05E+02

10 30 1.14E+02 6.87E+00 30 3.13E+03 1.08E+02

Table 30. Clustering and population diversity of L-SHADE and TbL-SHADE on the CEC2020 in 20D.

f
L-SHADE TbL-SHADE

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 7.64E+01 1.22E+01 30 1.26E+03 8.95E+01
2 26 9.06E+04 6.00E+01 30 1.79E+05 6.37E+01
3 30 3.61E+04 8.72E+00 30 2.21E+05 4.83E+01
4 17 3.00E+05 1.14E+01 9 3.03E+05 6.49E+00
5 30 5.46E+02 1.63E+01 19 2.66E+05 7.85E+01
6 17 2.59E+05 1.75E+01 11 2.94E+05 1.89E+01
7 30 8.89E+02 1.92E+01 7 3.24E+05 1.18E+01
8 30 8.64E+01 8.66E+00 30 1.72E+03 2.80E+02
9 19 2.37E+05 3.59E+01 26 2.19E+05 1.11E+02
10 30 1.04E+02 6.78E+00 30 2.52E+03 1.26E+02

214



Mathematics 2020, 8, 1565

Table 31. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 5D.

f
jSO Tb- jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 3.17E+01 4.57E+01 30 3.17E+02 4.18E+01
2 29 9.61E+02 4.16E+01 26 1.22E+03 4.92E+01
3 30 9.12E+02 9.36E+00 19 1.43E+03 2.33E+01
4 29 1.08E+03 8.68E+00 22 1.44E+03 1.39E+01
5 30 1.17E+02 3.36E+01 30 9.94E+02 2.81E+01
6 30 1.57E+02 3.68E+01 30 9.66E+02 1.54E+01
7 30 1.06E+02 4.38E+01 29 6.79E+02 3.89E+01
8 30 7.21E+01 1.74E+01 30 7.20E+02 2.13E+01
9 30 5.49E+01 6.52E+01 30 3.94E+02 2.70E+01
10 30 3.25E+01 9.66E+00 30 3.90E+02 2.97E+01

Table 32. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 10D.

f
jSO Tb-jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 5.88E+01 3.93E+01 30 2.29E+03 7.97E+01
2 30 6.11E+03 1.12E+02 30 6.86E+03 1.65E+02
3 30 6.17E+03 1.48E+01 30 1.04E+04 4.81E+01
4 30 8.55E+03 1.28E+01 30 1.34E+04 2.44E+01
5 30 4.41E+03 3.63E+01 30 8.97E+03 5.36E+01
6 30 5.54E+03 2.38E+01 30 1.07E+04 5.42E+01
7 30 1.44E+03 3.57E+01 30 9.69E+03 3.94E+01
8 30 5.52E+01 9.59E+00 30 3.40E+03 5.53E+01
9 30 4.98E+03 4.19E+01 30 3.73E+03 4.66E+01
10 30 8.33E+01 2.45E+01 30 3.07E+03 6.99E+01

Table 33. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 15D.

f
jSO Tb- jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 8.09E+01 4.39E+01 30 5.34E+03 1.02E+02
2 30 1.39E+04 1.21E+02 30 1.54E+04 1.66E+02
3 30 1.20E+04 1.37E+01 30 2.02E+04 5.26E+01
4 30 1.69E+04 1.57E+01 30 2.99E+04 2.84E+01
5 30 1.17E+04 4.95E+01 30 1.31E+04 1.24E+02
6 30 1.79E+04 2.23E+01 30 2.41E+04 5.03E+01
7 30 2.53E+03 3.56E+01 30 2.26E+04 3.76E+01
8 30 7.50E+01 7.39E+00 30 3.53E+03 4.65E+01
9 30 1.07E+04 3.03E+01 30 1.83E+04 4.07E+01
10 30 9.39E+01 6.56E+00 30 8.49E+03 8.97E+01

Table 34. Clustering and population diversity of jSO and Tb-jSO on the CEC2020 in 20D.

f
jSO Tb-jSO

#runs Mean CO Mean PD #runs Mean CO Mean PD

1 30 9.32E+01 3.60E+01 30 9.38E+03 9.36E+01
2 30 3.15E+04 1.17E+02 30 3.48E+04 1.69E+02
3 30 2.91E+04 1.37E+01 30 4.65E+04 6.03E+01
4 30 3.86E+04 1.80E+01 30 7.28E+04 3.40E+01
5 30 2.94E+04 6.35E+01 30 3.25E+04 1.28E+02
6 30 3.81E+04 2.77E+01 30 4.80E+04 9.32E+01
7 30 3.06E+04 1.92E+01 30 4.83E+04 6.16E+01
8 30 9.09E+01 7.40E+00 30 7.11E+03 4.78E+01
9 30 2.84E+04 4.81E+01 30 3.68E+04 1.08E+02
10 30 9.94E+01 6.62E+00 30 1.08E+04 1.27E+02

The rankings of the Friedman test [52] were obtained by using the average value (Mean) of each
algorithm on all 10 test functions in Tables 7–22, and are shown in Tables 35–38. The related statistical
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values of the Friedman test are shown in Table 39. If the chi-square statistic was greater than the critical
value, the null hypothesis was rejected. p represents the probability of the null hypothesis obtaining.
The null hypothesis here was that there is no significant difference in performance among the nine
algorithms considered here on CEC2020.

Table 35. The Friedman ranks of comparative algorithms on CEC2020 in 5D.

Rank Name F-Rank

0 TbL-SHADE 3.2
1 Tb-jSO 3.55
2 L-SHADE 3.8
3 jSO 4.05
4 j2020 4.95
5 DISH 5.05
6 SHADE 5.2
7 Tb-SHADE 6.6
8 jDE100 8.6

Table 36. The Friedman ranks of comparative algorithms on CEC2020 in 10D.

Rank Name F-Rank

0 j2020 3.2
1 Tb-jSO 3.6
2 TbL-SHADE 3.9
3 DISH 4.9
4 jSO 4.95
5 Tb-SHADE 5.05
6 L-SHADE 5.05
7 SHADE 5.75
8 jDE100 8.6

Table 37. The Friedman ranks of comparative algorithms on CEC2020 in 15D.

Rank Name F-Rank

0 j2020 3.15
1 TbL-SHADE 3.45
2 Tb-jSO 3.45
3 Tb-SHADE 4.35
4 DISH 4.7
5 jSO 5.2
6 L-SHADE 5.6
7 SHADE 6.1
8 jDE100 9

Table 38. The Friedman ranks of comparative algorithms on CEC2020 in 20D.

Rank Name F-Rank

0 j2020 2.35
1 TbL-SHADE 4.05
2 Tb-jSO 4.3
3 DISH 4.8
4 jSO 4.9
5 Tb-SHADE 5
6 L-SHADE 5.1
7 SHADE 5.5
8 jDE100 9
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Table 39. Related statistical values obtained of Friedman test for α = 0.05.

D Chi-sq’ Prob > Chi-sq’ (p) Critical Value·
5 34.25414365 3.65E−05 15.51
10 28.83468835 3.39E−04 15.51
15 38.8213628 5.31E−06 15.51
20 37.00654818 1.15E−05 15.51

6. Results and Discussion

The results on the CEC2020 benchmark sets are first discussed. As shown in Tables 7–18, the scores
were two improvements against two instances of worsening (5D), four improvements and two instances
of worsening (10D), five improvements and two instances of worsening (15D), and four improvements
no instances of worsening (20D) in the case of SHADE; three improvements against zero instances
of worsening (5D), four improvements and one worsening (10D), six improvements no worsening
(15D), and five improvements and no worsening (20D) in the case of L-SHADE; and one improvement
against no worsening (5D), four improvements and one worsening (10D), four improvements and
one worsening (15D), and two improvements two instances of worsening (20D) in the case of jSO.
In some test functions, the improved algorithm even escaped the local optimum and found the optimal
value (if the error was smaller than 10−8, the relevant value was considered optimal). Examples are
f3 in Tables 10 and 13, and Table 14, f8 in Tables 9, 13 and 16, and Table 17, f9 in Table 12, and f10 in
Table 11. In most cases, the improved version was clearly better than the original algorithm except for
Tb-SHADE (5D) and Tb-jSO (20D).

According to the convergence curves in Figures 1–12, in most cases, the improved algorithm
showed similar convergence to the original in the early stage of the optimization process, but it clearly
maintained a longer exploration phase and achieved better values of the objective function in the
middle and late stages; in a few cases (such as f 4 in Figure 5), the improved algorithm had slower
convergence but did not achieve a better objective function value than the original.

As the numerical analyses in Tables 23–34 show, in most cases, the improved algorithms exhibited
fewer clusters (#runs), later clustering (mean CO), and higher population density (mean PD) than the
original algorithm. But Tb-SHADE (5D) had a lower population density on f 6–f 9, as did TbL-SHADE
(all dimensions) on f 2–f 7, where this might have been related to the linear decrease in the population
size. Tb-jSO showed similar numbers of clusters in all dimensions and a lower population density on
some test functions in 5D. Therefore, in most cases, the improved versions maintained the diversity of
population and a longer exploration phase in the optimization process.

The significant improvements in Tables 7–18 and the clustering analysis in Tables 23 and 24 can
be linked. The results in the former set of tables with the “+” symbol were always connected with
the occurrence of later clustering, none at all, or fewer instances of clusters of 30 (for the last option,
see, for example, column #runs in Tables 24–26, f 3). Consequently, the improvement in the performance
effected by the updated version was related to the maintenance of population diversity and a longer
exploration phase.

According to the Friedman ranking in Tables 35–38, Tb-SHADE, TbL-SHADE, and Tb-jSO were
clearly better than the original algorithms and the advanced DISH and jDE100 in 10D, 15D, and 20D.
But Tb-SHADE did not perform as well as SHADE in 5D and did not perform as well as DISH in 5D,
10D and 20D. In addition, the j2020 algorithm delivered the best performance and ranked first in 10D,
15D and 20D and one of the improved versions, TbL-SHADE, only delivered the best performance
and ranked first in 5D. And jDE100 (winner of CEC2019), which ranks last in Tables 35–38, did not
seem suitable for CEC2020. Table 39 shows that the null hypothesis was rejected in all dimensions,
and thus the Friedman ranking was correct. All in all, the three improved algorithms obtained good
optimization results in contrast to the original algorithm as well as the advanced DISH and jDE100
algorithms but were slightly worse than the advanced j2020 algorithm.
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7. Conclusions

In this paper, a relatively simple and direct method using turning-based mutation was proposed
and tested on Single Objective Bound Constrained Numerical Optimization (CEC2020) benchmark sets
in 5, 10, 15, and 20 dimensions against the SHADE, L-SHADE, and jSO algorithms. The basic thought
of the proposed method is to change the direction of mutation under certain conditions to maintain the
population diversity and a longer exploration phase. It can thus avoid premature convergence and
escape the local optimum to get better optimization results. The results of experiments showed that
this method is effective on CEC2020 benchmark sets in 10, 15, and 20 dimensions. The strong point of
the proposed method is that it can be applied to variants of SHADE easily. A disadvantage is that it
increases the time complexity and its effectiveness lacks theoretical proof. Our future research in the
area will focus on further experiments, and on applying the proposed method to more algorithms.
For example, the improved method may be useful for some practical problems featuring constraints.
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Abstract: Opposition-based learning (OBL) has been widely used to improve many swarm
intelligent optimization (SI) algorithms for continuous problems during the past few decades.
When the SI optimization algorithms apply OBL to solve discrete problems, the construction and
utilization of the opposite solution is the key issue. Ant colony optimization (ACO) generally
used to solve combinatorial optimization problems is a kind of classical SI optimization algorithm.
Opposition-based ACO which is combined in OBL is proposed to solve the symmetric traveling
salesman problem (TSP) in this paper. Two strategies for constructing opposite path by OBL based on
solution characteristics of TSP are also proposed. Then, in order to use information of opposite path
to improve the performance of ACO, three different strategies, direction, indirection, and random
methods, mentioned for pheromone update rules are discussed individually. According to the
construction of the inverse solution and the way of using it in pheromone updating, three kinds of
improved ant colony algorithms are proposed. To verify the feasibility and effectiveness of strategies,
two kinds of ACO algorithms are employed to solve TSP instances. The results demonstrate that the
performance of opposition-based ACO is better than that of ACO without OBL.

Keywords: opposition-based learning; ant colony optimization; opposite path; traveling salesman problems

1. Introduction

As an important branch of computational intelligence, swarm intelligence (SI) [1] provides a
competitive solution for dealing with large-scale, nonlinear, and complex problems, and has become
an important research direction of artificial intelligence. In the SI model, each individual constitutes
an organic whole by simulating the behavior of natural biological groups. Although each individual
is very simple, the group shows complex emergent behavior. In particular, it does not require prior
knowledge of the problem and has the characteristics of parallelism, so it has significant advantages
in dealing with problems that are difficult to solve by traditional optimization algorithms. With the
deepening of research, more and more swarm intelligence algorithms have been proposed, such as ant
colony optimization algorithm (ACO) [2], particle swarm optimization (PSO) [3], artificial bee colony
algorithm (ABC) [4], firefly algorithm (FA) [5], cuckoo algorithm (CA) [6], krill herd algorithm [7],
monarch butterfly optimization (MBO) [8], and moth search algorithm [9], etc.

ACO as one of the typical SI is first proposed by Macro Dorigo [2] based on the observation of
group behaviors of ants in nature. During the process of food searching, ants will release pheromones
in the path when they pass through. Pheromones can be detected by other ants and can affect their
further path choices. Generally, the shorter the path is, the more intense the pheromones will be,
which means the shortest path will be chosen with the highest probability. The pheromone in other
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paths will disappear with time. Therefore, given enough time, the optimal path will have the most
condensed pheromone. In this way, ants will find the shortest path from their nest to the food source
in the end.

ACO has advantages in reasonable robustness, distributed parallel computing, and easy
combination with other algorithms. It has been successfully applied in many fields, including
traveling salesman problem (TSP) [10,11], satellite control resource scheduling problem [12], knapsack
problem [13,14], vehicle routing problem [15,16], and continuous function optimization [17–19].
However, conventional ACO is still far from perfect due to issues like premature convergence and
long search time [20].

Many scholars have made substantial contributions to improve ACO, mainly focusing on two
perspectives, including model modification and algorithms combination. For example, in the line
of model improvement, an ant colony system (ACS) [21] employs a pseudo-random proportional
rule, which leads to faster convergence. In ACS, only the pheromone of the optimal path will be
increased after each iteration. To prevent premature convergence caused by excessive pheromones
concentration in some paths, the max-min ant system (MMAS) modifies AS with three main strategies
for pheromone [22], including limitation, maximum initialization, and updating rules. To avoid
the early planning of the blind search, an improved ACO algorithm by constructing the unequal
allocation initial pheromones is proposed in [23]. Path selecting is based on the pseudo-random rule
for state transition. The probability is decided by the number of iterations, and the optimal solution.
Introducing a penalty function to the pheromone updating, a novel ACO algorithm is addressed in [24]
to improve the solution accuracy.

Considering the other primary kind of modification to the original ACO, algorithm combination,
several approaches are proposed as well. A multi-type ant system (MTAS) [25] is proposed combining
ACS and MMAS, inheriting advantages from both of these algorithms. Combining particle swarm
algorithm (PSO) with ACO, a new ant colony algorithm was proposed in [26] and named PS-ACO.
PS-ACO employs pheromones updating rules of ACO and searches mechanisms of PSO simultaneously
to keep the trade-off between the exploitation and exploration. A multi-objective evolutionary
algorithm via decomposition is combined with ACO, an algorithm, termed MOEA/D-ACO [27],
which proposes a series of single-objective optimization problems to solve multi-objective optimization
problems. Executing ACO in combination with a genetic algorithm (GA), a new hybrid algorithm is
proposed in [28]. Embedding GA into ACO, this method improves ACO in convergence speed and
GA in searching ability.

Besides the above primary improvement strategies considering model modification and algorithm
combination, approaches based on machine learning are also proposed in recent decades [29]. On the
one hand, swarm intelligence can be used to solve the optimization problems in deep learning.
In deep neural networks, for example, convolutional neural network (CNN), the optimization of
hyperparameters is an NP hard problem. Using the SI method can solve this kind of problem better.
PSO, CS, and FA were employed to properly select dropout parameters concerning CNN in [30].
The hybridized algorithm [31] based on original MBO with ABC and FAs was proposed to solve
CNN hyperparameters optimization. On the other hand, we can learn from machine learning to
improve performance of SI. For example, information feedback models are used to enhance the ability
of algorithms [32–34]. In addition, opposition-based learning (OBL) [35], which was first proposed by
Tizhoosh, is a famous algorithm. Its main idea is to calculate all the opposite solutions after current
iteration, and then optimal solutions are selected among the generated solutions and their opposite
solutions for the next round of iteration. OBL has been widely accepted in SI, including ABC [36],
differential evolution (DE) [37–39], and PSO [40,41], leading to reasonable performances.

Since opposite solutions to continuous problems are convenient to construct, OBL has been used
to solve continuous problems more commonly as above, compared with discrete problems. OBL is
combined with ACS and applied to solve the TSP as an example for discrete problems in [42] to acquire
the better solution. The solution construction phase and the pheromone updating phase of ACS are
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the primary foci of this hybrid approach. Besides TSP, the graph coloring problem is also employed as
a discrete optimization problem in [43], and an improved DE algorithm based on OBL is proposed,
which introduces two different methods of opposition. In [44], a pretreatment step was added in
the initial stage when the two-membered evolution strategy was used to solve the total rotation
minimization problem. The opposite solutions generated by OBL is compared with the initial solutions
randomly generated, and a better solution is selected for the subsequent optimization process.

Inspired by the idea of OBL, in this paper, a series of methods, focusing on the opposite solution
construction and the pheromone updating rule, are proposed. Aiming to solve TSP, our proposed
methods introduce OBL to ACO and enable ACO no longer limited to the local optimal solutions,
avoid premature convergence, and improve its performances.

The rest of this paper is organized as follows. In Section 2, the background knowledge of ACO
and OBL are briefly reviewed. In Section 3, the opposition-based extensions to ACO are presented.
In Section 4, the effectiveness of the improvement is verified through experiments. Section 5 presents
the conclusions of this paper.

2. Background

In this section, we will take AS as an example to introduce the main process of ACO algorithm.
At the same time, some necessary explanations of OBL will also be given.

2.1. Ant System

TSP can be described as finding the shortest route for a salesman who needs to visit each city at
least once and no more than once [45]. TSP is a classical combination optimization problem which is
employed to test ACO algorithms, and, therefore, TSP is used here as an example as well. The TSP
includes symmetric TSP and asymmetric TSP. We only discuss symmetric TSP in this paper.

There are two primary steps in the AS algorithm, path construction, and pheromone updating [2].
During the first step, a solution is established according to the random proportion rule, and it can be
described in detail as follows.

In the beginning, m ants are randomly assigned to n cities. At the t-th iteration, the probability,
called the state transition probability, for the k-th ant to travel from the city i to j is

pk
ij (t) =

⎧⎪⎨
⎪⎩

[τij(t)]
α
[ηij(t)]

β

∑
s∈Jk(i)

[τis(t)]
α [ηis(t)]

β , if j ∈ Jk (i)

0, otherwise

(1)

where τij is the pheromone trail and ηij is the heuristic information, accordingly, while α and β are
parameters deciding their relative influences, respectively. Generally, ηij = 1/dij and dij is the distance
of the path (i, j). Jk (i) is the feasible neighborhood of k-th ant at the i-th city.

When all the ants finish touring around each city, pheromone updating is as follows:

τij (t + 1) = (1 − ρ) τij (t) +
m

∑
k=1

Δτk
ij (2)

where ρ (0 < ρ ≤ 1) is the evaporation rate, Δτk
ij represents the extra pheromone left in the path (i, j)

by the k-th ant. Δτk
ij could be decided through

Δτk
ij (t) =

{
Q
Lk

, if ant k passes the path (i, j)
0, otherwise

(3)

where Q is the pheromone enhancement coefficient and Lk is the total path length for the k-th ant.
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2.2. Opposition-Based Learning

In the continuous domain, OBL is employed to evaluate the current solutions and their
opposite solutions. Among these solutions, optimal ones are selected to boost the searchability [46].
Relative definitions are given as follows.

Definition 1. Let x ∈ R be a real number defined on a specific interval x ∈ [a, b]. The opposite number x̃ is
defined according to the following formula

x̃ = a + b − x (4)

Definition 2. Let Xi = (xi1, xi2, · · · , xiD) be a point in D dimensional space, xij ∈
[
aij, bij

]
, j = 1, 2, · · · , D.

The opposite point X̃i = (x̃i1, x̃i2, · · · , x̃iD) is defined by

x̃ij = aij + bij − xij (5)

Experiments show that, if there is no prior knowledge of optimization problem, the probability
that the opposite solution can reach the global optimum is higher than that of the random solution [47].
Based on the OBL, quasi-opposition based learning [48] and quasi-reflective based learning [49] are
proposed later. In this paper, we only consider OBL.

Taking TSP as an example, its solution is a sequence of numbers as the indices of cities. In addition,
according to the opposite solutions for a continuous domain, it is challenging to construct opposite
solutions for TSP due to the features of a discrete domain. Therefore, only a few scholars have made
contributions towards this topic, and Ergeze is one of them. In [43], Ergeze addresses the definition of
opposite paths according to the moving direction. For example, the initial path for n cities is given by

P = [1, 2, · · · , n] (6)

where the entries stand for the order of the cities that a salesman travels through. Then, the
corresponding opposite path in a clockwise (CW) direction could be given by

PCW =
[
1, 1 +

n
2

, 2, 2 +
n
2

, · · · ,
n
2
− 1, n − 1,

n
2

, n
]

(7)

where n is even.
In the case when n is odd, append an auxiliary city and make n even. In the end, find opposite

solutions according to Equation (7) and then remove this city. Since different moving directions may
lead to different opposite paths or solutions, moving in a counterclockwise (CCW) will result in
different opposite solutions compared with PCW.

When the number of cities is odd, one way of implementing CW opposition is to add an auxiliary
city to the end of the path. After the opposite path is found, remove the auxiliary city.

3. Opposition-Based ACO

The method of construction opposite path based on OBL is given in this section. At the same
time, in order to use the opposite path information, three kinds of frameworks of opposite-based ACO
algorithms including ACO-Index, ACO-MaxIt, and ACO-Rand will also be proposed. In order to unify
the content, the construction method of the opposite path will be combined with the specific algorithm.
Details will be given in the following subsections.

3.1. ACO-Index

According to the definition given in Equation (7), the same route may lead to different opposite
paths. Taking a TSP of six cities as an example, path (1, 2, 3, 4, 5, 6) and path (2, 3, 4, 5, 6, 1) are the same
path; however, their opposite paths, (1, 4, 2, 5, 3, 6) and (2, 5, 3, 6, 4, 1), are different.
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In addition, the initialization procedure of ACO is not random compared with DE, but more
similar to the greedy algorithm, which selects a closer according to the rule of state transition.
Therefore, opposite paths are always longer than the original ones generally and cannot be used
pheromone updating. Aiming to solve the shortcomings, a novel ACO algorithm, namely ACO-Index,
is proposed based on a modified strategy of opposite path construction.

Opposite path construction is mainly composed of two steps. The first step is the path sorting,
and the second is the decision of opposite path. Suppose the number of cities n is even, then, during
path sorting, put the path P back into a cycle and appoint a particular city A as the starting city with
index 1. In addition, the rest of the cities will be given indices according to their position in this cycle.
In this way, we could get the indices Pind= [1, 2, ..., n].

During the second step, indices of the opposite path PCW
ind should be found through Equation (7)

and the opposite path PCW can be found based on the indices PCW
ind appointed previously.

Moreover, when the number of cities n is odd, an auxiliary index should be added to the end of
the indices Pind, and we could get Paux. According to Equation (7), we could get the opposite indices
PCW

aux , and its last index is the auxiliary index itself. Remove the latest index, and we can get PCW
ind .

In addition, then, decide the opposite path PCW according to the opposite indices PCW
ind .

In this way, opposite paths for different paths that share the same cycle route are the same.
Pseudocode for opposite path construction is addressed in Algorithm 1.

Algorithm 1 Constructing the opposite path

Input: original path P
1: Put the path back into a circle
2: Appoint a specific city A with index 1
3: Appoint other cities in this circle with indices 2, 3, · · · , and get the indices Pind= [1, 2, · · · , n]
4: if n is even
5: Calculate the opposite indices PCW

ind according to Equation (7)
6: else
7: Add an auxiliary index at the end of Pind and get Paux
8: Calculate the opposite indices PCW

aux according to Equation (7)
9: Delete the final index from PCW

aux and get PCW
ind

10: endif
11: Calculate the PCW based on PCW

ind
Output: opposite path PCW

Although some paths may be longer than the optimal path, they still contain useful information
within themselves, which inspires us to apply them to reasonably modifying pheromone. For ACO
algorithms, if the number of ants is m, the number of paths should also be m for pheromone updating.
In the proposed ACO-Index, the top m1 shortest original paths and the top m2 shortest opposite
paths will be chosen to form the m = m1 + m2 paths. Algorithm 2 presents the pseudocode for
pheromone updating.

Algorithm 2 Updating pheromone

Input: original paths and opposite paths
1: Sort original paths and opposite paths by length
2: Select the top m1 shortest paths and the top m2 shortest opposite paths
3: Construct m = m1 + m2 new paths
4: Update pheromone according to Equation (2)

Output: Pheromone trail in each path
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Algorithm 3 shows the pseudocode for the primary steps of ACO-Index for total iterations Nmax.

Algorithm 3 ACO-Index algorithm

Input: parameters: m, n, α, β, ρ, Q, m1, m2, Nmax
1: Initialize pheromone and heuristic information
2: for iteration index Nc ≤ Nmax do
3: for k = 1 to m do
4: Construct paths according to Equation (1)
5: Construct opposite paths through Algorithm 1
6: endfor
7: Update pheromone according to Algorithm 2
8: endfor

Output: the optimal path

3.2. ACO-MaxIt

Although ACO-Index modifies ACO with a better path construction strategy, it inherits a similar
opposite path generation method from [43]. In this section, a novel opposite path generation method,
together with a novel pheromone updating rule, is proposed as an improved ACO algorithm, named
ACO-MaxIt, which will be described in detail as follows.

The mirror point M is defined by

M =

⌈
1 + n

2

⌉
(8)

where �· denotes the ceiling operator.
Considering the case when n is odd, the opposite city C̃ for the current city C could be defined

as follows:

C̃ =

⎧⎪⎨
⎪⎩

C,
C + M,
C − M,

if C = M
if C < M
if C > M

(9)

Considering the case when n is even, the opposite city C̃ for the current city C could be defined
as follows

C̃ =

⎧⎪⎨
⎪⎩

C,
C + M,
C − M,

if C =n/2 or (n/2 + 1)
else if C < M
else if C > M

(10)

The pseudocode for opposite path construction is shown in Algorithm 4.

Algorithm 4 Constructing the opposite path based on the mirror point

Input: original path
1: Decide mirror point M, according to Equation (8)
2: for C = 1 to n do
3: Calculate C̃ through Equation (9) or Equation (10) according to the parity of n
4: endfor

Output: opposite path

The pheromone update process consists of two stages. For the first stage, when Nc ≤ gNmax and
0 < g < 1, opposite paths will be decided through Algorithm 4. Meanwhile, the pheromone will be
updated according to Algorithm 2. In the later stage, when Nc > gNmax, no more opposite paths could
be calculated, and pheromones will still be updated according to Equation (2).

The pseudocode of ACO-MaxIt is presented in Algorithm 5.
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Algorithm 5 ACO-MaxIt algorithm

Input: parameters: m, n, α, β, ρ, Q, g, m1, m2, Nmax
1: Initialize pheromone and heuristic information
2: for iteration index Nc ≤ Nmax do
3: for k = 1 to m do
4: Construct paths according to Equation (1)
5: endfor
6: if Nc ≤ gNmax then
7: Construct opposite paths according to Algorithm 4
8: Update pheromone according to Algorithm 2
9: else

10: Update pheromone according to Equation (2)
11: endif
12: endfor
Output: the optimal solution

3.3. ACO-Rand

In the pheromone updating stage of ACO-Index or ACO-MaxIt, it is decided based on experiences
of when to calculate the opposite paths. Therefore, in this section, another strategy to update
pheromones is addressed, and the novel ACO algorithm is named ACO-Rand since whether or
not to construct the opposite path is decided by two random variables.

The whole procedure of ACO-Rand is much like that of ACO-MaxIt; however, two random
variables R0 and R are introduced. R0 is chosen randomly but fixed after generated, and R is randomly
selected during each iteration. The pseudocode of ACO-Rand is given in Algorithm 6.

Algorithm 6 ACO-Rand algorithm

Input: parameters: m, n, α, β, ρ, Q, m1, m2, Nmax, R0
1: Initialize pheromone and heuristic information
2: for iteration index Nc ≤ Nmax do
3: for k = 1 to m do
4: Construct paths according to Equation (1)
5: endfor
6: Generate a random variable R
7: if R < R0 then
8: Construct opposite paths according to Algorithm 4
9: Update pheromone according to Algorithm 2

10: else
11: Update pheromone according to Equation (2)
12: endif
13: endfor
Output: the optimal solution

3.4. Time Complexity Analysis

The main steps of the three improved ant colony algorithms include initialization, solution
construction and pheromone updating. The time complexity of initialization is O(n2 + m). The time
complexity of constructing the solution is O(mn2). The time complexity of pheromone updating is
O(n2). In addition, the time complexity of constructing and sorting the inverse solutions is O(n2).
Therefore, the complexity of the final algorithm is O(Nmaxmn2). It is the same time complexity as the
basic ant colony algorithm. Therefore, the improved algorithm does not increase significantly in time.
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4. Experiments and Results

AS and PS-ACO are employed as ACO algorithms to verify the feasibility of three opposition-based
ACO algorithms. The experiments were performed in the following hardware and software environments.
CPU is Core i5@2.9 GB, and RAM is 16 GB. The operating system is Windows 10. TSP examples are
exported from TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/).

4.1. Parameter Setting

In the following experiments, the parameters are setting as m = 50, m1 = 40, m2 = 10, α = 1,
β = 2, ρ=0.05, Q=1, Nmax = 2000, g = 0.5 for ACO-MaxIt, R0 = 0.6 while R ∈ (0, 1) for ACO-Rand.
Twenty cycles of experiments are carried out for each example independently. Then, minimum
solution Smin, maximum solution Smax, average solution Savg, standard deviation Std, and average
runtime Tavg for different examples of 20 times are given in the tables, where minimum solution Smin,
maximum solution Smax, and average solution Savg are the percentage value deviation against the
known optimal solution. The minimum value in each result is bolded in the tables.

4.2. Experimental Results Comparison Based on AS

First, we employ AS to three kinds of opposite based ACO, called AS-Index, AS-MaxIt, and
AS-Rand, to verify the effectiveness of the improved algorithm. Twenty-six TSP examples are divided
into three main categories, the small-scale, the medium-scale, and the large-scale according to the
number of cities, respectively.

Small-scale city example sets are selected from TSPLIB, including eil51, st70, pr76, kroA100, eil101,
bier127, pr136, pr152, u159, and rat195. The results are shown in Table 1.

From Table 1, the proposed AS-Index, AS-MaxIt, and AS-Rand show superior performances over
AS for the examples, st70, kroA100, eil101, bier127, pr136, and u159. For other examples, the proposed
algorithms outperform AS in general, except eil51. Meanwhile, stability by standard deviation is the
not the primary concern when evaluating an algorithm. Compared among three proposed algorithms,
AS-MaxIt illustrates superior performances for most cases.

To show more details in the process of evolutionary, curves for different stages are given in
Figure 1 based on the case of kroA100.

According to Figure 1, AS shows faster convergence speed than the other three proposed methods
in early iterations, while AS-Index, AS-MaxIt, and AS-Rand all surpass AS in average path length in
later iterations. Meanwhile, AS-MaxIt performs best among all these algorithms, which also verifies
the results in Table 1.

In the early stage, opposite path information introduced by OBL has negative impact on the
convergence speed for all three proposed algorithms; however, it can provide extra information which
guarantees the boost in accuracy for the later stage. The results lie in the fact that introducing extra
information of opposite paths help to increase the diversity of the population, which balances the
exploration and exploitation of solution space.

Medium-scale city example sets are selected from TSPLIB, including kroA200, ts225, tsp225, pr226,
pr299, lin318, fl417, pr439, pcb442, and d493. The results are shown in Table 2.

From Table 2, it can be found that the proposed algorithms outperform AS in all the cases except
ts225. Among all three algorithms, AS-Index and AS-MaxIt perform similarly, but better than AS-Rand
generally. From these results, it can be seen that, with the help of extra information from opposite
paths, three proposed methods all improve the original AS in solution accuracy.
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Table 1. Results comparison for small-scale example sets.

Instance Algorithm Smin(%) Smax(%) Savg(%) Std Tavg

eil51

AS 2.58 6.1 3.56 4.94 65.21
AS-Index 2.81 7.51 4.27 5.26 64.73
AS-MaxIt 2.58 7.04 4.25 6.66 63.1
AS-Rand 2.82 5.63 3.86 4.67 63.76

st70

AS 5.03 7.41 6.22 5.16 90.38
AS-Index 3.85 7.56 6.03 7.05 104.02
AS-MaxIt 4.59 6.81 5.83 4.63 89.87
AS-Rand 4.59 8.15 6.25 5.45 85.29

pr76

AS 6.03 9.11 7.49 897.25 101.6
AS-Index 6.22 9.83 7.81 926.53 118.32
AS-MaxIt 5.04 8.46 6.66 1151.2 95.9
AS-Rand 4.71 8.78 7.18 1336 95.72

kroA100

AS 4.86 6.78 5.32 94.22 146.29
AS-Index 4.29 6.36 4.93 111.14 163.71
AS-MaxIt 4.35 5.66 4.79 80.21 123.84
AS-Rand 4.53 5.8 5.11 56.40 124.99

eil101

AS 8.11 12.1 9.99 5.78 140.25
AS-Index 6.2 10.81 8.55 9.55 140.2
AS-MaxIt 7.15 11.8 9.3 6.86 128.16
AS-Rand 7.15 12.4 9.96 8.23 145.56

bier127

AS 4.75 7.15 6.05 828.19 195.33
AS-Index 4.07 6.75 5.32 870.88 176.32
AS-MaxIt 3.34 6.82 5.03 904.32 173.58
AS-Rand 3.52 6.8 5.05 961.25 175.14

pr136

AS 9.83 13.5 11.82 924.44 189.68
AS-Index 9.64 12.47 11.47 832.93 209.51
AS-MaxIt 8.13 12.34 10.73 976.21 190.95
AS-Rand 10.68 12.62 10.95 890.29 191.23

pr152

AS 4.3 7.34 5.79 552.91 214.30
AS-Index 3.56 8.03 6.25 804.54 238.72
AS-MaxIt 3.49 6.83 5.33 739.76 1982
AS-Rand 4.16 6.95 5.14 537.49 220.52

u159

AS 7.67 10.3 6.86 348.22 219.92
AS-Index 6.31 8.97 7.44 349.95 223.39
AS-MaxIt 3.85 8.32 6.28 479.93 206.23
AS-Rand 4.88 8.55 7.25 412.44 229.64

rat195

AS 3.92 9.38 7.43 35.28 286.38
AS-Index 3.49 8.52 6.47 37.02 283.31
AS-MaxIt 3.83 7.58 5.59 37.69 278.63
AS-Rand 4.00 6.54 5.31 17.01 280.39

Taking fl417 as the example, evolutionary curves in detail for different iteration stages are given in
Figure 2, accordingly. According to Figure 2, AS also converges faster than the other three proposed methods
in early iterations—for example before 1000 iterations. In addition, in later iterations, the other three proposed
methods all exceed AS in average path length. This further validates the conclusions obtained from the
analysis of Figure 1.
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Figure 1. Evolutionary curves for different iteration periods based on kroA100.

Table 2. Results comparison for medium-scale example sets.

Instance Algorithm Smin(%) Smax(%) Savg(%) Std Tavg

kroA200

AS 10.33 16.54 12.36 454.71 330.43
AS-Index 10.17 13.06 11.12 243.66 324.495
AS-MaxIt 8.09 13.48 11.27 367.58 270.07
AS-Rand 6.69 13.01 10.66 485.83 292.98

ts225

AS 3.53 4.27 3.89 275.55 345.62
AS-Index 3.13 4.74 3.91 488.06 329.03
AS-MaxIt 3.35 4.94 4.01 560.16 329.35
AS-Rand 3.63 5.52 4.23 607.16 325.54

tsp225

AS 9.4 12.03 10.37 30.67 346.81
AS-Index 8.02 12.16 9.9 38.02 345.35
AS-MaxIt 7.51 12.87 10.91 46.8 319.75
AS-Rand 9.5 12.39 10.88 36.13 355.0

pr226

AS 5.5 7.94 6.76 632.0 327.3
AS-Index 4.96 7.28 6.47 458.47 348.97
AS-MaxIt 4.29 7.24 6.34 631.53 335.54
AS-Rand 4.39 7.5 5.92 578.15 325.31

pr299

AS 13.31 19.48 17.03 732.30 512.6
AS-Index 9.43 17.41 14.95 1193.8 495.6
AS-MaxIt 15.53 18.24 16.91 419.72 487.8
AS-Rand 11.35 18.73 16.41 836.03 500.35

lin318

AS 12.57 17.15 15.33 517.72 508.6
AS-Index 11.8 17.16 14.97 544.18 554.6
AS-MaxIt 13.93 16.89 15.59 376.06 542.2
AS-Rand 14.28 17.74 16.22 415.81 542.55

fl417

AS 8.16 12.55 10.61 132.22 811.45
AS-Index 7.79 12.57 9.91 141.28 804.6
AS-MaxIt 8.35 11.55 10.3 108.13 773
AS-Rand 8.67 13.24 10.39 146.72 795.35

pr439

AS 9.5 13.74 11.56 1410.4 881.25
AS-Index 8.38 11.75 10.22 1010.9 845.75
AS-MaxIt 9.34 15.96 11.8 1555.1 841.9
AS-Rand 11.73 15.91 13.76 1205.6 859.8

pcb442

AS 13.57 18.87 16.84 610.98 933.5
AS-Index 11.62 16.37 14.22 640.69 930.7
AS-MaxIt 13.68 19.27 16.66 656.89 899.35
AS-Rand 14.54 18.85 16.68 644.38 888.45

d493

AS 13.4 19.18 16.26 459.03 1032.25
AS-Index 12.23 16.31 14.71 412.28 1043.25
AS-MaxIt 14.08 17.01 15.7 280.32 969.5
AS-Rand 13.46 19.21 16.4 449.97 1063.8
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Figure 2. Evolutionary curves for different iteration periods based on fl417.

Large-scale city example sets are selected from TSPLIB, including att532, rat575, d657, u724,
vm1084, and rl1304. The results are shown in Table 3.

From Table 3, it can be discovered that the AS-Index shows the obvious superior performance
over all the other algorithms, which reveals a fact that the advantages of AS-Index appears as the scale
of the example increases based on these results.

Taking vm1084 as the example, evolutionary curves in detail for different iteration stages are
given in Figure 3, accordingly. According to Figure 3, AS still shows faster convergence speed than the
other three proposed methods in early iterations, but AS-Index outperforms all the others in the end.

Based on all the tables and figures, it can be found that, in most scenarios, at least one of AS-Index,
AS-MaxIt, and AS-Rand outperforms AS in average path length. For small-scale examples, AS-MaxIt
shows better performance, while, for medium-scale cases, AS-Index and AS-MaxIt perform similarly
better than the others. For large-scale city sets, AS-Index is the best algorithm, while AS-Rand
ranks in the middle for most cases regarding figures, and it illustrates its stability to some extent.
Therefore, it can be drawn that the strategy to introduce OBL into AS provides more information,
namely better exploration capability, which explains the superiority of these proposed methods over
the original AS. By comparing the results of the running time from Tables 1–3, we can also find that
the running time of the three improved algorithms is not significantly increased compared with AS.
It also validates our previous discussion on time complexity.

4.3. Experimental Results Comparison Based on PS-ACO

To further verify the effectiveness of the proposed algorithm, we employed another PS-ACO to
three kinds of opposite based ACO, PS-ACO-Index, PS-ACO-MaxIt, and PS-ACO-Rand to verify the
effectiveness of the improved algorithm. The number of ants is 50, and the other parameters are the
same as in [26]. Twelve sets of TSP examples are eil51, st70, kroA100, pr136, u159, rat195, tsp225, pr299,
lin318, fl417, att532, and d657. The results are given in Table 4.

From Table 4, the proposed PS-ACO-Index, PS-ACO-MaxIt, and PS-ACO-Rand show superior
performances over PS-ACO for the examples, eil51, st70, rat195, tsp225, and pr299. For other
examples, the proposed algorithms outperform PS-ACO in general, except lin318 and fl417. Compared
among three proposed algorithms, PS-ACO-Rand illustrates superior performances for most cases.
By comparing the results of the running time, we can also find that the running time of the three
improved algorithms is not significantly increased compared with PS-ACO.
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Table 3. Results comparison for large-scale example sets.

Instance Algorithm Smin(%) Smax(%) Savg(%) Std Tavg

att532

AS 13.79 20.21 17.3 1415.4 1407.05
AS-Index 13.37 19.49 15.64 1203.4 1436.4
AS-MaxIt 14.33 18 16.15 766.9 1384.65
AS-Rand 14.63 17.98 16.34 803.93 1460.35

rat575

AS 18.69 22.52 20.5.3 75.22 1651.5
AS-Index 16.31 20.71 18.94 61.3 1661.7
AS-MaxIt 20.24 24.32 22.23 80.88 1602.55
AS-Rand 22.88 26.93 25.36 86.12 1598

d657

AS 17.6 23.88 21.97 823.36 2685.45
AS-Index 16.32 21.5 19.7 636.0 2673.65
AS-MaxIt 19.4 24.09 21.69 526.44 2114.15
AS-Rand 18.21 23.82 21.24 615.17 2138.1

u724

AS 20.9 26.43 24.19 625.6 2630.95
AS-Index 15.53 23.45 20.46 871.17 2624.7
AS-MaxIt 21.6 26.72 24.05 469.3 2651.65
AS-Rand 19.74 27.13 24.3 825.26 2609.7

vm1084

AS 22.65 27.78 25.76 3490.5 6722
AS-Index 17.69 24.73 21.1 4700 6726.5
AS-MaxIt 19.91 26.59 23.29 4476.6 6594
AS-Rand 20.72 25.71 23.04 3111 6695.5

rl1304

AS 19.51 24.37 21.76 3633.6 7436.5
AS-Index 16.65 21.63 18.95 3632.3 7383
AS-MaxIt 18.45 24.19 20.63 3709.8 8767.5
AS-Rand 17.09 22.82 20.12 4359.2 8652.5
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Figure 3. Evolutionary curves for different iteration periods based on vm1084.
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5. Conclusions

The performances of swarm optimization algorithms based on OBL present advantages when
handling problems of continuous optimization. However, there are only a few approaches proposed
to solve problems of discrete optimization. The difficulty in opposite solution construction is
considered as one top reason. To solve this problem, two different strategies, direction and indirection,
of constructing opposite paths are presented individually in this paper. For indirection strategy,
other than using the order of cities from the current solution directly, it studies the positions, noted as
indices, of the cities rearranged in a circle, and then calculates the opposite indices. While for direction
strategy, opposite operations are carried out directly to the cities in each path.

To use the information of the opposite path, three different frameworks of opposite-based ACO,
called ACO-Index, ACO-MaxIt, and ACO-Rand, are also proposed. All ants need to get the increment
of pheromone in three improved frameworks. Among three proposed algorithms, ACO-Index employs
the strategy of indirection to construct the opposite path and introduces it to pheromone updating.
ACO-MaxIt also employs direction strategy to obtain opposite path but only adopts it in the early
updating period. Similar to ACO-MaxIt in opposite path construction, ACO-Rand employs this
opposite path throughout the stage of pheromone updating. In order to verify the effectiveness of
the improvement strategy, AS and PS-ACO are used in three frameworks, respectively. Experiments
demonstrate that all three methods, As-Index, As-MaxIt, and AS-Rand, outperform original AS in the
cases of small-scale and medium-scale cities while AS-Index performs best when facing large-scale
cities. The three improved PS-ACO also showed good performance.

Constructing the opposite path mentioned in this paper is only suitable for symmetric TSP. This is
mainly because the path (solution) of the problem is an arrangement without considering the direction.
However, if it is replaced by the asymmetric TSP, this method needs to be modified. In addition, if it
is replaced by a more general combinatorial optimization problem, it is necessary to restudy how to
construct the opposite solution according to the characteristics of the problem. Therefore, our current
method of constructing opposite solution is not universal. This is one of the limitations of this study.
At the same time, the improved algorithm requires all ants to participate in pheromone updating in
order to use the information of opposite path. However, now many algorithms use the best ant to
update pheromone, so the method in this paper will have some limitations when it is extended to
more ant colony algorithm. However, we also find that it is effective to apply reverse learning to
combinatorial optimization problems. Therefore, we will carry out our future research work from
two aspects. On the one hand, we plan to continue to study the construction method of more general
opposite solution for combinatorial optimization problems, so as to improve its generality. In addition,
it will be applied to practical problems such as path optimization to further expand the scope of
application. Meanwhile, applying OBL to more widely used algorithms is also one interesting and
promising topic. Therefore, on the other hand, we plan to study more effective use of the reverse
solution and extend it to the more wildly used ACO, such as MMAS and ACS, and even some other
optimization algorithms such as PSO and ABC, to solve more combinatorial optimization problems
more effectively.
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Abstract: Feature selection (FS) was regarded as a global combinatorial optimization problem. FS is
used to simplify and enhance the quality of high-dimensional datasets by selecting prominent
features and removing irrelevant and redundant data to provide good classification results. FS aims
to reduce the dimensionality and improve the classification accuracy that is generally utilized
with great importance in different fields such as pattern classification, data analysis, and data
mining applications. The main problem is to find the best subset that contains the representative
information of all the data. In order to overcome this problem, two binary variants of the whale
optimization algorithm (WOA) are proposed, called bWOA-S and bWOA-V. They are used to
decrease the complexity and increase the performance of a system by selecting significant features
for classification purposes. The first bWOA-S version uses the Sigmoid transfer function to convert
WOA values to binary ones, whereas the second bWOA-V version uses a hyperbolic tangent transfer
function. Furthermore, the two binary variants introduced here were compared with three famous
and well-known optimization algorithms in this domain, such as Particle Swarm Optimizer (PSO),
three variants of binary ant lion (bALO1, bALO2, and bALO3), binary Dragonfly Algorithm (bDA)
as well as the original WOA, over 24 benchmark datasets from the UCI repository. Eventually,
a non-parametric test called Wilcoxon’s rank-sum was carried out at 5% significance to prove the
powerfulness and effectiveness of the two proposed algorithms when compared with other algorithms
statistically. The qualitative and quantitative results showed that the two introduced variants in the
FS domain are able to minimize the selected feature number as well as maximize the accuracy of the
classification within an appropriate time.

Keywords: whale optimization algorithm; WOA; Binary whale optimization algorithm; bWOA-S;
bWOA-V; Feature selection; Classification; Dimensionality reduction

1. Introduction

The datasets from real-world applications such industry or medicine are high-dimensional and
contain irrelevant or redundant features. These kind of datasets then have useless information
that affects the performance of machine learning algorithms; in such cases, the learning process is
affected. Feature selection (FS) is a powerful rattling technique used to select the most significant
subset of features, overcoming the high-dimensionality reduction problem [1], identifying the relevant
features and removing redundant ones [2]. Moreover, using the subset of features, any machine
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learning algorithm can be applied for classification. Therefore, several studies have taken into
consideration that the FS problem is an optimization problem, hence the fitness function for the
optimization algorithm has been changed to classifier’s accuracy, which may be maximized by the
selected features [3]. Moreover, FS has been applied successfully to solve many classification problems
in different domains, such as data mining [4,5], pattern recognition [6], information retrieval [7],
information feedback [8], drug design [9,10], job-shop scheduling problem [11], maximizing lifetime
of wireless sensor networks [12,13], and the others where FS can be utilized [14].

There are three main classes of FS methods: (1) The wrapper, (2) filter and (3) hybrid
methods [15]. The wrapper approaches generally incorporate classification algorithms to search
for and select the relevant features [16]. Filter methods calculate the relevant features without prior
data classification [17]. In the hybrid techniques, the compatible strengths of the wrapper and filter
methods are combined. Generally speaking, the wrapper methods outperform filter methods in terms
of classification accuracy, and hence the wrapper approaches are used in this paper.

In fact, a high accuracy classification does not depend on a large selected features number for
many classification problems. In this context, the classification problems can be categorized into two
groups: (1) binary classification and (2) multi-class classification. In this paper, we deal with the binary
classification problem. There are numerous methods that are applied for binary classification problems,
such as discriminant analysis [18], decision trees (DT) [19], the K-nearest neighbor (K-NN) [20],
artificial neural networks (ANN) [21], and support vector machines (SVMs) [22].

On the other hand, the traditional optimization methods suffer from some limitations in solving
the FS problems [23,24], and hence nature-inspired meta-heuristic algorithms [25] such as the whale
optimization algorithm (WOA) [26], moth–flame optimisation [27], Ant Lion Optimization [28],
Crow Search Algorithm [29], Lightning Search Algorithm [30], Henry gas solubility optimization [31]
and Lévy flight distribution [32] are widely used in the scientific community for solving complex
optimization problems and several real-world applications [33–35]. Optimization is defined as a
process of searching the optimal solutions to a specific problem. In order to address issues such as
FS, several nature-inspired algorithms have been applied; some of these algorithms are hybridized
with each other or used alone, others created new variants like binary methods to solve this problem.
A survey on evolutionary computation [36] approaches for FS is presented in [37]. Several separate and
hybrid algorithms have been proposed for FS, such as hybrid ant colony optimization algorithm [38],
forest optimization algorithm [39], firefly optimization algorithm [40], hybrid whale optimization
algorithm with simulated annealing [41], particle swarm optimization [42], sine cosine optimization
algorithm [43], monarch butterfly optimization [44], and moth search algorithm [45].

In addition to the aforementioned studies to find solutions for the FS problem, other search
strategies called the binary optimization algorithms have been implemented. Some examples are the
binary flower pollination algorithm (BFPA) in [46], binary bat algorithm (BBA) in [47], binary cuckoo
search algorithm (BCSA) in [48]; all of them evaluate the accuracy of the classifier as an objective
function. He et al. have presented a binary differential evolution algorithm (BDEA) [49] to select the
relevant subset to train a SVM with radial basis function (RBF). Moreover, Emary et al., have proposed
the binary ant lion and the binary grey wolf optimization [50,51], respectively. Rashedi et al. have
introduced an improved binary gravitational search algorithm version called (BGSA) [52]. In addition,
a salps algorithm is used for feature selection of the chemical compound activities [53]. A binary
version of particle swarm optimization (BPSO) is proposed [54]. A binary whale optimization
algorithm for feature selection [55–57] has also been introduced. As the NO Free Lunch (NFL)
theorm states, there is no algorithm that is able to solve all optimization problems. Hence, if an
algorithm shows a superior performance on a class of problem, it cannot show the same performance
on other classes. This is the motivation of our presented study, in which we propose two novel
binary variants of the whale optimization algorithm (WOA) called bWOA-S and bWOA-V. In this
regard, the WOA is a nature-inspired population-based metaheuristics optimization algorithm,
which simulates the humpback whales’ social behavior [26]. The original WOA was modified in this
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paper for solving FS issues. The two proposed variants are (1) the binary whale optimization algorithm
using S-shaped transfer function (bWOA-S) and (2) the binary whale optimization algorithm using
V-shaped transfer function (bWOA-V). In both approaches, the accuracy of K-NN classifier [58] is used
as an objective function that must be maximized. K-NN with leave-one-out cross-validation (LOOCV)
based on Euclidean distance is also used to investigate the performance of the compared algorithms.
The experiments results were evaluated on 24 datasets from UCI repository [59]. The results of the two
proposed algorithms were evaluated versus different well-known algorithms famous in this domain,
namely (1) particle swarm optimizer (PSO) [60], (2) three versions of binary ant lion (bALO1), bALO2,
and bALO3) [51], (3) binary gray wolf Optimizer bGWO [50], (4) binary dragonfly [61] and (5) the
original WOA. The reason behind choosing such algorithms is that PSO, one of the most famous and
well-know algorithms, as well as bALO, bGWO, and bDA, are recent algorithms whose performance
has been proved to be significant. Hence, we have implemented the compared algorithms using the
original studies and then generated new results using these methods under the same circumstances.
The experimental results revealed that bWOA-S and bWOA-V achieved higher classification accuracy
with better feature reduction than the compared algorithms.

Therefore, the merits of the proposed algorithms versus the previous algorithms is illustrated by
the following two aspects. First, bWOA-S and bWOA-V confirms not only feature reduction, but also
the selection of relevant features. Second, bWOA-S and bWOA-V utilize the wrapper methods search
technique for selecting prominent features, and hence the idea of these rules is based mainly on high
classification accuracy regardless of a large number of selected features. The purpose of wrapper
method is used to maintain an efficient balance between exploitation and exploration, so correct
information of the features is provided [62]. Thus, bWOA-S and bWOA-V achieve a strong search
capability that helps to select a minimum number of features as a subset from the most significant
features pool.

The rest of the paper is organized as follows: Section 2 briefly introduces the WOA. Section 3,
describes the two binary versions of whale optimization algorithm (bWOA), namely bWOA-S and
bWOA-V, for feature selection. Section 4, discusses the empirical results for bWOA-S and bWOA-V.
Eventually, conclusions and future work are drawn in Section 5.

2. Whale Optimization Algorithm

In [26], Mirjalili et al. introduced the whale optimization algorithm (WOA), based on the behaviour
of whales. The special hunting method is considered the most interesting behaviour of humpack
whales. This hunting technique is called bubble-net feeding. In the classical WOA, the solution of the
current best candidate is set as close to either the optimum or the target prey. The other whales will
update their position towards the best. Mathematically, the WOA mimics the collective movements
as follows

�D = |�C · �X∗(t)− �X(t)| (1)

�X(t + 1) = �X∗(t + 1)− �A · �D (2)

where t refers to the current number of iterations, X refers to the position vector, X∗ is the best solution
position vector. C and A are coefficient vectors and can be calculated from the following equations

�A = 2 ·�a ·�r −�a (3)

�C = 2 ·�r (4)

where r belongs to the interval [0, 1] and a decreases linearly through the iterations from 2 to 0.
WOA has two different phases: exploitation (Intensification) and exploration (diversification). In the
diversification phase, the agents are moved for exploring or searching different search space regions,
while in the intensification phase, the agents move in order to locally enhance the current solutions.
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The intensification phase: the intensification phase is divided into two processes: the first one
is the shrinking encircling technique which can be obtained by reducing a values using Equation (4).
Note that a is a stochastic value in the interval [−a, a]. The second phase is the spiral updating position
in which the distance between the whale and the prey is calculated. To model a spiral movement,
the following equation is used in order to mimic the movement of the helix-shaped.

�X(t + 1) = �Dlebl · cos(2πl)) + �X∗(t) (5)

From Equation (5), l is a randomly chosen value between [−1, 1] where b is a fixed. A 50%
probability is used for choosing either the spiral model or shrinking encircling mechanism, as assumed.
Consequently, the mathematical model is established as follows

�X(t + 1) =

{
�X∗(t)− �A · �D i f p < 0.5
�Dl

bl · cos(2πl) + �X∗(t) i f p ≥ 0.5
(6)

where p is a random number in a uniform distribution.
The exploration phase: In the exploration phase, A used random values within 1 ≺ A ≺ −1 to

force the agent to move away from this location mathematically, formulated as in Equation (7).

�D = |�C · �Xrand − �X| (7)

�X(t + 1) = Xrand − �A · �D (8)

3. Binary Whale Optimization Algorithm

In the classical WOA, whales move inside the continous search space in order to modify their
positions, and this is called the continuous space. However, to solve FS issues, the solutions are
limited to only {0, 1} values. In order to be able to solve feature selection problems, the continuous
(free position) must be converted to their corresponding binary solutions. Therefore, two binary
versions from WOA are introduced to investigate problems like FS and achieve superior results.
The conversion is performed by applying specific transfer functions, either the S-shaped function or
V-shaped function in each dimension [63]. Transfer functions show the probability of converting the
position vectors’ from 0 to 1 and vice versa, i.e., force the search agents to move in a binary space.
Figure 1 demonstrates the flow chart of the binary WOA version. Algorithm 1 shows the pseudo code
of the proposed bWOA-S and bWOA-V versions.

3.1. Approach 1: Proposed bWOA-S

The common S-shaped (Sigmoid) function is used in this version. The S-shaped function is
updating, as shown in Equation (11). Figure 2 illustrates the mathematical curve of the Sigmoid function.

3.2. Approach 2: Proposed bWOA-V

In this version, the hyperbolic tan function is applied. It is a common example of V-shaped
functions and is given in Equations (9) and (10).

yk = |tanhxk| (9)

Xd
i =

{
selt

d i f rand < S(xk
i (t + 1))

orgt
d otherwise

(10)

yk =
1

1 + e−xk
i (t)

(11)
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Figure 1. Binary whale optimization algorithm flowchart.
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Algorithm 1 Pseudo code of bWOA-S & bWOA-V

1: Input: n whales number in the population.

2: MaxIter maximum iteration number.

3: Output: position of the optimal whale.

4: Initialize a and n.

5: Calculate X∗.

6: while current iter < maximum iteration number do

7: for Each Whale do

8: Calculate a; A, C, p and l.

9: if p < 0.5 then

10: if (|A| < 1) then

11: Update the position of whale using Equation (2).

12: else(|A| ≥ 1)

13: Choose a random search agent (Xrand)

14: Update the position of whale using (8).

15: end if

16: else(p ≥ 0.5)

17: UUpdate the position of whale using (5).

18: end if

19: Update �X(t + 1) using Equation (11) or (9)

20: end for

21: Update X∗ if there is a better solution.

22: t ++

23: end while

3.3. bWOA-S and bWOA-V for Feature Selection

Two binary variants of whale optimization algorithm, called bWOA-S and bWOA-V, are employed
for solving the FS problem. For a feature vector size, if N is the number of different features, then the
combination number would be 2N , which is a huge feature number to search exhaustively. Under such
a situation, the proposed bWOA-S and bWOA-V algorithms are used in an adaptive feature space
search and provide the best combination of features. This combination is obtained by achieving
the maximum classification accuracy and the minimum selected features number. The following
Equation (12) shows the fitness function accompanied by the two proposed versions to evaluate
individual whale positions.

F = αγR(D) + β
|C − R|
|C| (12)

where F refers to Fitness function, R refers to the length of the selected feature subset, C refers to the
total features number, γR(D) refers to the classification accuracy of the condition attribute set R, α and
β are two arguments that are symmetric to the subset length and the accuracy of the classification,
and can be calculated as α ∈ [0, 1] and β = 1 − α. This will lead to the fitness function that achieves the
maximum classification accuracy. Equation (12) can be converted to a minimization problem based on
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the error rate of classification and selected features. Thus, the obtained minimization problem can be
calculated as in Equation (13)

F = αER(D) + β
|R|
|C| (13)

where F refers to Fitness function, ER(D) is the classification error rate. According to the wrapper
methods characteristic in FS, the classifier was employed as an FS guide. In this study, K-NN classifier
is used. Therefore, K-NN is applied to ensure that the selected features are the most relevant ones.
However, bWOA is the search method that tries to explore the feature space in order to maximize the
feature evaluation criteria, as shown in Equation (13).

4. Experimental Results and Discussion

The two proposed bWOA-S and bWOA-V methods are compared with a group of existing
algorithms, including the PSO, three variants of binary ant lion (bALO1, bALO2, and bALO3), and the
original WOA. Table 1 reports the parameter settings for the cometitior algorithms. In order to provide
a fair comparison, three initialization scenarios are used and the experimental results are performed
using 24 different datasets from the UCI repository.

Table 1. Parameter setting.

Parameter Value

No of search agents 8
No of iterations 70
Problem dimension No. of features in the data
Data Search domain [0, 1]
No. repetitions of runs 20
Inertia factor of PSO 0.1
Individual-best acceleration factor of PSO 0.1
α Parameter in the fitness function 0.99
β Parameter in the fitness function 0.01

4.1. Data Acquisition

Table 2 summarizes the 24 datasets from the UCI machine learning repository [59] that were
used in the experiments. The datasets were selected with different instances and attribute numbers
to represent various kinds of issue (small, medium and large). In each repository, the instances
are divided randomly into three different subsets, namely training, testing, and validation subsets.
The proposed algorithms were tested over three gene expression datasets of colon cancer, lymphoma
and the leukemia [64–66]. The K-NN is used in the experimental tests using the trial and error method,
and 5 is the best choice of K. Meanwhile, every position of whale produces one attribute subset
through the training process. The training set is used to test and evaluate the performance of the K-NN
classifier in the validation subset throughout the optimization process. The bWOA is employed to
simultaneously guide the FS process.
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Table 2. List of datasets used in the experiments results.

No. Name Features Samples

1 Breastcancer 9 699
2 Tic-tac-toe 9 958
3 Zoo 16 101
4 WineEW 13 178
5 SpectEW 22 267
6 SonarEW 60 208
7 IonosphereEW 34 351
8 HeartEW 13 270
9 CongressEW 16 435
10 KrvskpEW 36 3196
11 WaveformEW 40 5000
12 Exactly 13 1000
13 Exactly 2 13 1000
14 M-of-N 13 1000
15 vote 16 300
16 BreastEW 30 569
17 Semeion 265 1593
18 Clean 1 166 476
19 Clean 2 166 6598
20 Lymphography 18 148
21 PenghungEW 325 73
22 Colon 2000 62
23 lymphoma 96 4026
24 Leukemia 7129 72

4.2. Evaluation Criteria

Each algorithm carried out 20 independent runs with a random initial positioning of the search
agents. Repeated runs were used to test the capability of the convergence. Eight well-known and
common measures are recorded in order to investigate the algorithms performance in a comparative
way. Such metrics are listed as follows:

• Best: The minimum (or best for a minimization problem) fitness function value obtained at
different independent runs, as depicted in Equation (14).

Best = MinM
i=1gi∗ (14)

• Worst: The maximum (or worst for a minimization) fitness function value obtained at different
independent operations, as shown in Equation (15).

Worst = MaxM
i=1gi∗ (15)

• Mean: Average calculation performance of the optimization algorithm applied M times, as shown
in Equation (16).

Mean =
1
M

M

∑
i=1

gi∗ (16)

where gi∗ is the optimal solution obtained in the i-th operation;
• Standard deviation (Std) can be calculated from the following Equation (17).

Std =

√
1
M ∑(gi∗ − Mean)2 (17)
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• Average classification accuracy: Investigates the accuracy of the classifier and can be calculated
by Equation (18).

AvgeragePer f ormance =
1
M

M

∑
j=1

1
N

N

∑
i=1

Match(Ci, Li) (18)

where Ci refers to classifier output for instance i; N refers to the instance number in the test set;
and Li refers to the reference class corresponding to instance i;

• Average selection size (Avg-Selection) measures the average reduction in selected features from
all feature sets and is calculated by Equation (19)

AvgerageSelectionSize =
1
M

M

∑
i=1

size(gi∗)
Nt

(19)

where Nt is the total number of features in the original dataset;
• Average execution time (Avg-Time) measures the average execution time in milliseconds for all

comparison optimization algorithms to obtain the results over the different runs and calculated
by Equation (20)

Ra =
1
M

M

∑
i=1

RunTa,i (20)

where M refers to the run number for the optimizer a, and RunTa,i is the computational time for
optimizer a in milliseconds at run number i;

• Wilcoxon rank sum test (Wilcoxon): a non-parametric test called Wilcoxon Rank Sum (WRS) [67].
The test gives ranks to all the scores in one group, and after that the ranks of each group are
added. The rank-sum test is often described as the non-parametric version of the t test for two
independent groups.

The two proposed versions of whale optimization algorithm (bWOA-S and bWOA-V) are
compared with three common algorithms that are famous in this domain. Four different initialization
methods/techniques are used to guarantee the two proposed algorithms’ ability to converge from
different initial positions. These methods are: (1) a large initialization is expected to evaluate the
capability of locally searching a given algorithm, as the search agents’ positions are commonly close
to the optimal solution; (2) a small initialization method is expected to evaluate the ability of a given
algorithm to use global searching as the initial search; (3) mixed initialization is the case in which
some search agents are close enough to the optimal solution, whereas the other search agents are apart.
It will provide diversity of the population frequently. since the search agents are expected to be apart
from each other. (4) random initialization.

4.3. Performance on Small Initialization

The statistical average fitness values of the different datasets obtained from the compared
algorithms using the small initialization methods are shown in Table 3. Table 4 shows average
classification accuracy on the test data of the compared algorithms using small initialization methods.
From these tables, we can conclude that both bWOA-S and bWOA-V achieve better results compared
with other algorithms.

4.4. Performance on Large Initialization

The statistical average fitness values of the different datasets obtained from the compared
algorithms using the large initialization methods are shown in Table 5. Table 6 shows average
classification accuracy of the test data of the compared algorithms using small initialization methods.
From these tables, we can conclude that when using large initialization methods, both bWOA-S and
bWOA-V achieve better results compared with other algorithms.
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4.5. Performance on Mixed Initialization

The statistical average fitness values on the different datasets obtained from the compared
algorithms using the large initialization methods are shown in Table 7. Table 8 shows average
classification accuracy of the test data of the compared algorithms using small initialization methods.
As is notable from this table, we can conclude that both bWOA-S and bWOA-V achieve better results
compared with other algorithms.

Table 3. Statistical mean fitness measure on the different datasets calculated for the compared
algorithms using small initialization.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.061 0.049 0.051 0.079 0.095 0.088 0.060 0.035 0.031
2 0.327 0.224 0.313 0.345 0.352 0.334 0.333 0.243 0.210
3 0.247 0.133 0.220 0.411 0.395 0.416 0.249 0.127 0.058
4 0.933 0.908 0.937 0.955 0.960 0.953 0.926 0.880 0.877
5 0.345 0.295 0.340 0.351 0.391 0.375 0.362 0.276 0.253
6 0.337 0.203 0.315 0.374 0.372 0.369 0.303 0.154 0.188
7 0.137 0.123 0.131 0.175 0.177 0.184 0.141 0.098 0.125
8 0.297 0.251 0.273 0.294 0.302 0.288 0.282 0.195 0.169
9 0.381 0.361 0.379 0.391 0.397 0.394 0.402 0.354 0.338
10 0.391 0.081 0.375 0.421 0.418 0.419 0.421 0.079 0.052
11 0.436 0.196 0.437 0.499 0.498 0.517 0.432 0.181 0.187
12 0.322 0.297 0.337 0.347 0.332 0.334 0.314 0.314 0.208
13 0.245 0.244 0.239 0.237 0.264 0.240 0.243 0.244 0.237
14 0.291 0.135 0.299 0.359 0.351 0.352 0.289 0.133 0.075
15 0.125 0.068 0.140 0.151 0.155 0.174 0.130 0.062 0.054
16 0.051 0.047 0.059 0.087 0.084 0.083 0.051 0.038 0.030
17 0.097 0.035 0.097 0.095 0.094 0.096 0.099 0.025 0.033
18 0.298 0.150 0.298 0.357 0.375 0.367 0.294 0.110 0.141
19 0.087 0.044 0.087 0.128 0.131 0.134 0.086 0.035 0.043
20 0.294 0.203 0.275 0.376 0.317 0.379 0.309 0.183 0.165
21 0.461 0.181 0.444 0.614 0.602 0.606 0.446 0.148 0.176

Table 4. Average classification accuracy for the compared algorithms on the different datasets using
small initialization.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.863 0.648 0.745 0.834 0.814 0.842 0.867 0.966 0.758
2 0.652 0.781 0.670 0.598 0.599 0.584 0.620 0.743 0.685
3 0.740 0.843 0.770 0.457 0.471 0.442 0.588 0.862 0.817
4 0.041 0.057 0.026 0.014 0.011 0.017 0.033 0.088 0.033
5 0.624 0.663 0.606 0.566 0.557 0.550 0.583 0.705 0.640
6 0.632 0.712 0.658 0.547 0.548 0.549 0.609 0.832 0.696
7 0.845 0.835 0.838 0.780 0.779 0.761 0.820 0.890 0.828
8 0.674 0.645 0.632 0.602 0.592 0.604 0.653 0.793 0.658
9 0.585 0.584 0.587 0.557 0.540 0.572 0.565 0.629 0.584
10 0.586 0.919 0.606 0.517 0.519 0.519 0.545 0.916 0.782
11 0.556 0.804 0.552 0.398 0.402 0.392 0.392 0.817 0.742
12 0.635 0.668 0.618 0.588 0.622 0.619 0.656 0.656 0.640
13 0.725 0.722 0.703 0.744 0.692 0.704 0.724 0.728 0.710
14 0.699 0.845 0.845 0.720 0.723 0.708 0.814 0.932 0.873
15 0.864 0.915 0.838 0.720 0.723 0.708 0.814 0.932 0.873
16 0.899 0.694 0.724 0.808 0.821 0.833 0.893 0.963 0.780
17 0.897 0.964 0.890 0.876 0.902 0.903 0.898 0.971 0.956
18 0.685 0.815 0.674 0.593 0.582 0.589 0.641 0.875 0.796
19 0.909 0.957 0.908 0.847 0.848 0.842 0.884 0.965 0.952
20 0.674 0.734 0.654 0.513 0.553 0.523 0.616 0.799 0.706
21 0.491 0.748 0.493 0.285 0.295 0.300 0.415 0.809 0.729

4.6. Discussion

Figure 3 shows the effect of the initialization method on the different optimizers applied over
the selected datasets. The proposed bWOA-S and bWOA-V can reach the global optimal solution in
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almost half of the datasets, compared to the algorithms in all initialization methods. The limited search
space in the case of binary algorithms explains the enhanced performance due to the balance between
global and local searching. The balance between local and global searching assists the optimization
algorithm to avoid early convergence and local optimal values. The small initialization keeps away the
initial search agents from the optimal solution; however, in the large initialization, the search agents
are closest to the optimal solution, although they have low diversity. While the mixed initialization
method improves the performance of all compared algorithms, the two proposed algorithms are
superior even in a high-dimensional dataset as in Table 9.

Table 5. Statistical mean fitness measure calculated on the different datasets for the compared
algorithms using large initialization.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.133 0.127 0.164 0.183 0.146 0.223 0.160 0.036 0.032
2 0.215 0.207 0.209 0.241 0.248 0.243 0.204 0.211 0.209
3 0.149 0.138 0.139 0.168 0.129 0.182 0.171 0.101 0.076
4 0.928 0.928 0.929 0.938 0.937 0.924 0.925 0.907 0.882
5 0.316 0.312 0.314 0.322 0.320 0.312 0.314 0.303 0.249
6 0.303 0.289 0.293 0.273 0.298 0.288 0.277 0.258 0.197
7 0.168 0.163 0.180 0.162 0.177 0.166 0.160 0.150 0.127
8 0.349 0.337 0.349 0.341 0.358 0.346 0.345 0.288 0.171
9 0.400 0.403 0.390 0.403 0.403 0.388 0.397 0.375 0.343
10 0.069 0.073 0.072 0.073 0.071 0.073 0.069 0.067 0.051
11 0.193 0.192 0.192 0.196 0.193 0.191 0.188 0.189 0.187
12 0.303 0.309 0.312 0.305 0.305 0.304 0.302 0.305 0.207
13 0.259 0.259 0.260 0.260 0.266 0.264 0.258 0.256 0.241
14 0.138 0.131 0.138 0.143 0.137 0.133 0.121 0.121 0.068
15 0.087 0.090 0.086 0.089 0.093 0.094 0.086 0.084 0.053
16 0.217 0.220 0.156 0.108 0.155 0.205 0.200 0.043 0.030
17 0.044 0.043 0.044 0.043 0.042 0.045 0.046 0.036 0.033
18 0.187 0.186 0.189 0.182 0.195 0.190 0.189 0.170 0.138
19 0.052 0.052 0.053 0.052 0.051 0.052 0.051 0.049 0.043
20 0.238 0.232 0.222 0.248 0.235 0.233 0.234 0.228 0.147
21 0.260 0.246 0.273 0.274 0.262 0.273 0.232 0.227 0.183

Table 6. Average classification accuracy on the different datasets for the compared algorithms using
large initialization.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.616 0.619 0.615 0.679 0.693 0.666 0.748 0.959 0.780
2 0.792 0.799 0.798 0.740 0.738 0.742 0.748 0.760 0.668
3 0.833 0.839 0.832 0.811 0.847 0.798 0.817 0.890 0.787
4 0.059 0.056 0.054 0.048 0.050 0.062 0.060 0.084 0.033
5 0.664 0.670 0.668 0.663 0.668 0.674 0.668 0.688 0.643
6 0.692 0.703 0.698 0.719 0.696 0.705 0.720 0.741 0.704
7 0.830 0.836 0.819 0.838 0.821 0.832 0.839 0.852 0.819
8 0.645 0.654 0.637 0.648 0.630 0.639 0.642 0.697 0.653
9 0.593 0.583 0.598 0.581 0.580 0.593 0.586 0.620 0.589
10 0.934 0.930 0.932 0.918 0.925 0.923 0.931 0.939 0.777
11 0.810 0.808 0.810 0.804 0.807 0.810 0.813 0.815 0.740
12 0.693 0.683 0.685 0.680 0.680 0.679 0.684 0.689 0.648
13 0.740 0.741 0.741 0.728 0.723 0.724 0.734 0.737 0.712
14 0.861 0.865 0.862 0.831 0.833 0.834 0.856 0.866 0.721
15 0.907 0.908 0.905 0.907 0.903 0.901 0.906 0.917 0.881
16 0.612 0.610 0.613 0.715 0.697 0.656 0.714 0.938 0.766
17 0.963 0.964 0.963 0.964 0.965 0.962 0.962 0.971 0.958
18 0.814 0.818 0.812 0.820 0.807 0.812 0.812 0.834 0.807
19 0.956 0.956 0.955 0.955 0.957 0.956 0.956 0.959 0.953
20 0.742 0.754 0.762 0.736 0.746 0.752 0.745 0.770 0.717
21 0.742 0.755 0.731 0.729 0.742 0.730 0.769 0.773 0.731
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The standard deviation in the obtained fitness values on the different datasets for the compared
algorithms averaged over the initialization methods is given in Table 10. As shown in this table,
the proposed bWOA-V can reach the optimal solution better than compared algorithms, regardless of
the initialization used.

With regard to the time consumption for optimization of these 11 test datasets, Table 11 presents
the results of the average time obtained by the two proposed versions and other compared algorithms
with 20 independent runs. As can be concluded from Table 11, bWOA-V ranks first among the
algorithms. bWOA-S ranks fifth, but it is better than PSO and bALO, as it significantly outperforms
the other compared algorithms with a little more time consumption.

Table 7. Statistical mean fitness measure calculated on the different datasets for the compared
algorithms using mixed initialization.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.054 0.052 0.079 0.100 0.099 0.076 0.031 0.035 0.032
2 0.220 0.207 0.215 0.245 0.252 0.246 0.204 0.215 0.209
3 0.153 0.148 0.120 0.183 0.146 0.141 0.078 0.096 0.071
4 0.925 0.928 0.910 0.935 0.938 0.938 0.884 0.903 0.882
5 0.313 0.307 0.289 0.319 0.321 0.312 0.242 0.280 0.255
6 0.304 0.286 0.254 0.278 0.298 0.285 0.168 0.235 0.194
7 0.159 0.158 0.152 0.156 0.169 0.165 0.113 0.141 0.124
8 0.328 0.308 0.259 0.319 0.324 0.308 0.158 0.233 0.167
9 0.389 0.380 0.372 0.393 0.397 0.384 0.337 0.359 0.341
10 0.071 0.074 0.081 0.074 0.072 0.074 0.040 0.061 0.053
11 0.193 0.193 0.195 0.198 0.195 0.193 0.182 0.187 0.188
12 0.303 0.308 0.301 0.301 0.307 0.308 0.151 0.272 0.226
13 0.241 0.244 0.252 0.237 0.244 0.253 0.238 0.244 0.243
14 0.139 0.133 0.155 0.151 0.150 0.136 0.022 0.112 0.072
15 0.084 0.084 0.081 0.089 0.090 0.085 0.048 0.069 0.052
16 0.081 0.058 0.062 0.086 0.088 0.086 0.033 0.057 0.031
17 0.044 0.043 0.037 0.043 0.043 0.044 0.032 0.034 0.030
18 0.191 0.187 0.176 0.184 0.192 0.197 0.136 0.158 0.149
19 0.052 0.052 0.049 0.051 0.052 0.052 0.041 0.044 0.042
20 0.235 0.230 0.223 0.258 0.243 0.237 0.138 0.211 0.160
21 0.260 0.244 0.242 0.276 0.262 0.274 0.149 0.217 0.180

Table 8. Average classification accuracy on the different datasets for the compared algorithms using
mixed initialization.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.785 0.619 0.628 0.740 0.725 0.726 0.802 0.962 0.789
2 0.787 0.799 0.786 0.686 0.681 0.686 0.720 0.764 0.673
3 0.841 0.839 0.822 0.656 0.706 0.680 0.789 0.900 0.779
4 0.065 0.056 0.053 0.039 0.033 0.031 0.039 0.086 0.031
5 0.678 0.670 0.664 0.635 0.623 0.625 0.656 0.707 0.649
6 0.698 0.703 0.703 0.645 0.639 0.647 0.721 0.765 0.705
7 0.835 0.836 0.831 0.819 0.803 0.802 0.835 0.860 0.827
8 0.656 0.654 0.652 0.625 0.621 0.623 0.668 0.751 0.652
9 0.598 0.582 0.595 0.573 0.559 0.577 0.589 0.631 0.571
10 0.936 0.930 0.918 0.766 0.765 0.757 0.794 0.943 0.754
11 0.812 0.808 0.804 0.642 0.649 0.647 0.763 0.816 0.747
12 0.687 0.683 0.691 0.644 0.656 0.648 0.664 0.706 0.642
13 0.738 0.740 0.735 0.733 0.711 0.703 0.723 0.735 0.712
14 0.865 0.865 0.833 0.734 0.732 0.744 0.761 0.883 0.728
15 0.915 0.908 0.900 0.829 0.823 0.829 0.884 0.930 0.866
16 0.761 0.610 0.615 0.730 0.744 0.727 0.810 0.944 0.769
17 0.964 0.964 0.965 0.924 0.939 0.925 0.956 0.972 0.959
18 0.815 0.818 0.803 0.729 0.720 0.724 0.806 0.845 0.791
19 0.956 0.956 0.955 0.908 0.910 0.911 0.953 0.962 0.952
20 0.756 0.755 0.749 0.639 0.672 0.659 0.705 0.786 0.709
21 0.744 0.755 0.725 0.553 0.568 0.563 0.765 0.781 0.730
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Table 9. Results for high dimensional datasets.

Dataset Accuracy STDEV
Fitness

Time SelSize
Avg Min Max

Colon
WOA 0.67083 0.02710 0.52313 0.18933 0.33625 5.77346 0.52313
bWOA-S 0.66667 0.03066 0.45386 0.18940 0.31566 15.37727 0.45386
bWOA-V 0.66667 0.03003 0.49724 0.23179 0.35564 9.87549 0.49724
bALO1 0.62250 0.03513 0.46110 0.20995 0.35688 3.52489 0.46110
bALO2 0.62584 0.04386 0.47458 0.23059 0.37749 39.64500 0.47458
bALO3 0.62084 0.03544 0.49837 0.27183 0.35686 37.76940 0.49836
PSO 0.66084 0.02626 0.48793 0.16870 0.31424 3.52425
bGWO1 0.79584 0.03536 0.35911 0.12644 0.27228 44.10091 0.35911
bDA 0.65167 0.02854 0.43856 0.16915 0.25231 6.72146 0.43856
Lymphoma
WOA 0.42628 0.06076 0.47314 0.38451 0.72184 13.73907 0.47314
bWOA-S 0.35435 0.06035 0.44921 0.17422 0.71399 52.34015 0.44921
bWOA-V 0.39457 0.05754 0.49642 0.37169 0.80664 22.35106 0.49642
bALO1 0.41973 0.06194 0.51039 0.42877 0.73545 8.27976 0.510395
bALO2 0.39939 0.06230 0.44844 0.33482 0.74161 77.97951 0.44844
bALO3 0.39923 0.05861 0.48594 0.41489 0.76677 81.05818 0.48594
PSO 0.46635 0.05212 0.47878 0.18666 0.71151 7.31112
bGWO1 0.48642 0.05491 0.28062 0.26272 0.71343 89.87190 0.28062
bDA 0.40717 0.03993 0.37595 0.32643 0.84836 16.47820 0.37595
Leukemia
WOA 0.82353 0.08431 0.64732 0.15909 0.21848 30.54245 0.64732
bWOA-S 0.82353 0.08471 0.69674 0.07869 0.15941 85.80836 0.69674
bWOA-V 0.84647 0.07902 0.57925 0.09967 0.20281 45.17051 0.57925
bALO1 0.72500 0.08793 0.62512 0.14453 0.23919 14.68936 0.62511
bALO2 0.72471 0.09272 0.62429 0.15182 0.23920 171.695 0.62429
bALO3 0.73029 0.08913 0.62491 0.12273 0.23192 182.292 0.62491
PSO 0.85059 0.08055 0.80121 0.06281 0.1652 15.26511
bGWO1 0.94588 0.07589 0.47347 0.02565 0.09169 205.829 0.47348
bDA 0.83706 0.07626 0.48777 0.02671 0.06319 31.56270 0.48777

Table 10. Standard deviation fitness function on the different datasets averaged for the compared
algorithms over the three initialization methods.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.013 0.013 0.011 0.028 0.012 0.013 0.009 0.009 0.007
2 0.053 0.045 0.058 0.056 0.056 0.057 0.058 0.047 0.048
3 0.033 0.017 0.040 0.046 0.041 0.042 0.018 0.020 0.015
4 0.205 0.208 0.200 0.208 0.212 0.214 0.202 0.200 0.199
5 0.061 0.073 0.066 0.072 0.080 0.064 0.075 0.072 0.052
6 0.074 0.053 0.062 0.067 0.064 0.071 0.049 0.042 0.046
7 0.027 0.030 0.030 0.035 0.043 0.035 0.026 0.035 0.028
8 0.060 0.060 0.057 0.061 0.062 0.058 0.052 0.054 0.039
9 0.084 0.084 0.079 0.087 0.092 0.089 0.080 0.075 0.076
10 0.034 0.015 0.028 0.035 0.036 0.043 0.033 0.017 0.012
11 0.058 0.043 0.067 0.061 0.061 0.062 0.058 0.041 0.040
12 0.065 0.070 0.067 0.068 0.066 0.068 0.061 0.071 0.045
13 0.055 0.058 0.055 0.055 0.070 0.055 0.051 0.051 0.051
14 0.037 0.033 0.041 0.043 0.054 0.042 0.038 0.021 0.012
15 0.022 0.016 0.023 0.024 0.027 0.030 0.022 0.013 0.010
16 0.037 0.031 0.009 0.011 0.033 0.013 0.026 0.010 0.006
17 0.012 0.009 0.012 0.012 0.011 0.013 0.011 0.007 0.007
18 0.054 0.032 0.042 0.052 0.050 0.050 0.044 0.027 0.034
19 0.013 0.010 0.014 0.013 0.017 0.016 0.012 0.009 0.009
20 0.049 0.041 0.031 0.067 0.055 0.067 0.050 0.039 0.040
21 0.051 0.071 0.056 0.069 0.071 0.087 0.046 0.020 0.040
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Figure 3. Statistical mean fitness averaged on the different datasets for the different optimizers using
the different initializers.

Table 11. Average execution time in seconds on the different datasets for the compared algorithms
averaged over the three initialization methods.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 4.722 4.243 4.467 4.896 4.703 4.42890 6.172 7.177 4.629
2 9.747 8.784 9.114 7.791 7.468 6.81349 8.253 10.149 6.720
3 3.712 3.460 3.741 4.019 4.010 3.89503 3.822 4.771 3.859
4 11.094 10.557 12.450 11.934 10.94404 10.779 11.804 14.946 11.225
5 3.725 3.364 4.072 4.158 4.195 3.92277 4.423 5.218 3.654
6 3.835 3.540 3.816 3.673 5.014 4.83652 4.316 5.756 3.599
7 4.139 4.220 4.376 4.030 4.978 4.73393 4.456 5.670 4.033
8 3.714 3.124 3.642 3.614 3.796 3.87177 4.029 5.339 3.616
9 4.353 3.719 4.680 4.130 4.502 4.66121 4.411 133 4.477
10 78.311 78.516 77.182 65.795 64.663 57.458 39.671 78.063 51.987
11 180 2122 3449 157 153 140 112 199 116
12 6.610 8.068 8.672 8.004 7.259 6.740 6.287 7.011 6.468
13 7.210 8.422 9.819 8.554 6.946 6.554 6.783 6.720 7.123
14 7.334 8.638 6.957 8.169 6.332 6.519 7.789 7.856 6.569
15 3.281 3.901 3.307 4.267 3.668 3.717 4.213 3.695 3.303
16 4.248 4.600 3.919 5.464 4.751 4.294 4.995 5.090 3.813
17 107 139 144 91.552 95.185 77.564 86.140 99.636 122
18 9.497 11.970 17.209 8.412 10.710 11.481 8.893 10.474 5.933
19 2672 1996 1733 985 1018 858 920 2053 1281
20 3.593 3.932 3.917 3.605 3.683 3.396 3.809 3.941 3.087
21 4.830 6.478 5.522 3.993 10.437 10.220 4.407 7.852 4.183

On the other hand, Tables 12 and 13 summarize the experimental results of the best and worst
obtained fitness for the compared algorithms over 20 independent runs.

The mean selected features obtained from the compared algorithms are shown in Table 14.
Table 14 reports the ratio of mean selected features obtained from the compared algorithms.

In Table 14, the performance of bWOA-V is superior in keeping its good classification accuracy by
selecting a lower number of features.

This reveals the outstanding performance of bWOA-V in searching for both features’ reduction
and enhancing the optimization process.
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Table 12. Best fitness function on the different datasets averaged for the compared algorithms over the
three initialization methods.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.032 0.031 0.031 0.033 0.038 0.038 0.025 0.022 0.020
2 0.201 0.185 0.186 0.234 0.225 0.233 0.195 0.192 0.172
3 0.023 0.046 0.065 0.093 0.074 0.123 0.057 0.015 0.004
4 0.853 0.861 0.873 0.884 0.862 0.877 0.849 0.830 0.812
5 0.250 0.247 0.230 0.275 0.274 0.249 0.225 0.218 0.216
6 0.218 0.182 0.190 0.213 0.208 0.220 0.175 0.132 0.137
7 0.108 0.123 0.107 0.122 0.128 0.124 0.088 0.077 0.083
8 0.229 0.214 0.207 0.241 0.247 0.214 0.168 0.140 0.125
9 0.334 0.343 0.324 0.346 0.342 0.339 0.328 0.328 0.310
10 0.103 0.057 0.097 0.117 0.125 0.126 0.106 0.038 0.038
11 0.212 0.179 0.196 0.262 0.258 0.261 0.200 0.171 0.177
12 0.273 0.186 0.281 0.276 0.278 0.283 0.144 0.185 0.026
13 0.222 0.225 0.220 0.221 0.226 0.226 0.217 0.216 0.217
14 0.131 0.085 0.123 0.154 0.133 0.170 0.061 0.046 0.012
15 0.045 0.042 0.036 0.050 0.038 0.046 0.029 0.043 0.027
16 0.028 0.028 0.029 0.039 0.040 0.035 0.024 0.023 0.018
17 0.049 0.030 0.045 0.044 0.042 0.045 0.040 0.022 0.024
18 0.150 0.128 0.161 0.179 0.191 0.185 0.143 0.092 0.109
19 0.051 0.041 0.049 0.056 0.060 0.062 0.049 0.037 0.038
20 0.180 0.150 0.116 0.196 0.161 0.183 0.115 0.119 0.115
21 0.136 0.122 0.174 0.206 0.184 0.238 0.111 0.071 0.046

Table 13. Worst fitness function on the different datasets averaged for the compared algorithms over
the three initialization methods.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.171 0.239 0.339 0.251 0.341 0.282 0.151 0.145 0.047
2 0.304 0.264 0.322 0.345 0.338 0.330 0.271 0.262 0.238
3 0.301 0.256 0.267 0.360 0.331 0.326 0.290 0.238 0.154
4 0.978 0.993 0.961 0.981 0.985 0.993 0.945 0.956 0.922
5 0.377 0.356 0.394 0.384 0.417 0.421 0.401 0.328 0.288
6 0.375 0.387 0.356 0.365 0.389 0.372 0.290 0.286 0.256
7 0.214 0.176 0.215 0.204 0.222 0.213 0.190 0.182 0.165
8 0.376 0.360 0.386 0.411 0.407 0.383 0.301 0.347 0.198
9 0.442 0.419 0.446 0.480 0.455 0.436 0.433 0.399 0.375
10 0.211 0.106 0.224 0.234 0.231 0.222 0.194 0.142 0.064
11 0.315 0.207 0.321 0.301 0.301 0.322 0.273 0.199 0.198
12 0.354 0.333 0.365 0.371 0.372 0.379 0.324 0.335 0.294
13 0.303 0.276 0.278 0.282 0.345 0.286 0.287 0.275 0.262
14 0.220 0.198 0.277 0.264 0.265 0.255 0.197 0.181 0.127
15 0.190 0.124 0.198 0.150 0.203 0.192 0.118 0.118 0.077
16 0.314 0.183 0.343 0.334 0.328 0.251 0.148 0.235 0.046
17 0.072 0.050 0.069 0.065 0.066 0.071 0.062 0.041 0.042
18 0.284 0.222 0.261 0.280 0.286 0.279 0.233 0.202 0.185
19 0.069 0.056 0.069 0.080 0.082 0.082 0.061 0.049 0.048
20 0.337 0.305 0.303 0.374 0.352 0.394 0.289 0.274 0.202
21 0.440 0.381 0.462 0.474 0.481 0.528 0.433 0.365 0.312

In order to compare each runs results, a non-parametric statistical called Wilcoxon’s rank sum
(WRS) test was carried out over the 11 UCI datasets at 5% significance level, and the p-values are
given in Table 15. From this table, p-values for the bWOA-V are mostly less than 0.05, which proves
that this algorithm’s superiority is statistically significant. This means that bWOA-V exhibits a
statistically superior performance compared to the other compared algorithms in the pair-wise
Wilcoxon signed-ranks test.
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Table 14. Average selection size on the different datasets averaged for the compared algorithms over
the three initialization methods.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA

1 0.60875 0.63875 0.56750 0.47500 0.50250 0.50875 0.636 0.63875 0.50625
2 0.77500 0.97083 0.75555 0.61806 0.63750 0.62083 0.520 0.79167 0.80417
3 0.66172 0.76328 0.60625 0.62031 0.61797 0.62500 0.609 0.59141 0.47109
4 0.62596 0.69904 0.58365 0.55865 0.56154 0.54231 0.643 0.58269 0.47019
5 0.64602 0.73920 0.59148 0.54432 0.59886 0.56989 0.568 0.62898 0.45966
6 0.64729 0.66396 0.55667 0.60563 0.60566 0.62396 0.520 0.62146 0.43854
7 0.60221 0.66875 0.59265 0.54522 0.55699 0.54081 0.564 0.61213 0.40625
8 0.55577 0.54519 0.54134 0.51731 0.45769 0.47885 0.611 0.57596 0.41730
9 0.53281 0.58438 0.54609 0.50859 0.52578 0.50469 0.427 0.62891 0.44219
10 0.70417 0.90347 0.67951 0.61909 0.62535 0.62361 0.578 0.76314 0.53368
11 0.73344 0.90500 0.70750 0.62656 0.63156 0.63062 0.750 0.79906 0.58656
12 0.64038 0.72693 0.69712 0.51635 0.54231 0.54231 0.475 0.62212 0.61827
13 0.49904 0.46731 0.61538 0.39423 0.40385 0.44615 0.475 0.42981 0.17885
14 0.72404 0.87884 0.69135 0.62212 0.60865 0.62115 0.695 0.76442 0.63462
15 0.66719 0.74609 0.60234 0.59141 0.56640 0.61016 0.520 0.61094 0.37813
16 0.57250 0.62375 0.60250 0.51875 0.49500 0.51000 0.552 0.60750 0.48875
17 0.66788 0.79953 0.59774 0.62183 0.62538 0.62363 0.856 0.64108 0.50028
18 0.69247 0.79488 0.58893 0.62146 0.61942 0.62387 0657 0.64932 0.48532
19 0.66822 0.77086 0.57515 0.62432 0.62402 0.62771 0.781 0.68577 0.48735
20 0.66250 0.72708 0.60069 0.60555 0.58958 0.59028 0.499 0.62569 0.50486
21 0.64835 0.71131 0.53630 0.62142 0.62111 0.62312 0.550 0.49126 0.47477

Table 15. The Wilcoxon test for the average fitness obtained by the compared algorithms.

Algorithms
bWOA-S bWOA-V

Small Mixed Large Small Mixed Large

WOA 0.0606 0.4756 0.4201 0.4178 0.4352 0.5640
bALO1 0.0000 0.4006 0.4609 0.1191 0.2180 0.4480
bALO2 0.0038 0.2736 0.4248 0.0754 0.2036 0.5881
bALO3 0.0947 0.0596 0.6410 0.3404 0.0725 0.4672
bGWO 0.0589 0.0532 0.879 0.654 0.0587 0.0.300
bDA 0.0439 0.0298 0.1406 0.4892 0.0584 0.400

Moreover, Figure 4 outlines the best and worst acquired fitness function value averaged over all
the datasets, using small, mixed and large initialization. Figure 5 shows the classification accuracy
average. From these figures, it can be proven that the bWOA-V performs better than other compared
algorithms, such as PSO and bALO, which confirms bWOA-V’s searching capability, especially in the
large initialization.

In order to show the merits of bWOA-S and bWOA-V qualitatively, Figures 6–8, show the boxplots
results for the three initialization methods obtained by all compared algorithms. According to these
figures, bWOA-S and bWOA-V have superiority since the boxplot of bWOA-S and bWOA-V are
extremely narrow and located under the minima of PSO, bALO, and the original WOA. In summary,
the qualitative results prove that the two proposed algorithms are able to provide remarkable
convergence and coverage ability in solving FS problems. Another fact worth mentioning here
is that the boxplots show that bALO and PSO algorithms provide poor performance.
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Figure 4. Best and worst fitness obtained for the compared algorithms on the different datasets
averaged over the four initialization methods.
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Figure 5. Average classification accuracy and average selection size obtained on the different datasets
averaged for the compared algorithms over the three initialization methods.
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Figure 6. Small initialization boxplot for the compared algorithms on the different datasets.
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Figure 7. Mixed initialization boxplot for the compared algorithms on the different datasets.
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Figure 8. Large initialization boxplot for the compared algorithms on the different datasets.
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5. Conclusions and Future Work

In this paper, two binary version of the original whale optimization algorithm (WOA), called
bWOA-S and bWOA-V, have been proposed to solve the FS problem. To convert the original version
of WOA to a binary version, S-shaped and V-shaped transfer functions are employed. In order to
investigate the performance of the two proposed algorithms, the experiments employ 24 benchmark
datasets from the UCI repository and eight evaluation criteria to assess different aspects of the
compared algorithms.The experimental results revealed that the two proposed algorithms achieved
superior results compared to the three well-known algorithms, namely PSO, bALO (three variants),
and the original WOA. Furthermore, the results proved that bWOA-S and bWOA-V both achieved
smallest number of selected features with best classification accuracy in a minimum time. In addition,
the Wilcoxon’s rank-sum nonparametric statistical test was carried out at 5% significance level to judge
whether the results of the two proposed algorithms differ from the best results of the other compared
algorithms in a statistically significant way. More specifically, the results proved that the bWOA-s
and bWOA-V have merit among binary optimization algorithms. For future work, the two binary
algorithms introduced here will be applied to high-dimensional real-world applications and will be
used with more common classifiers such as SVM and ANN to verify the performance. The effects
of different transfer functions on the performance of the two proposed algorithms are also worth
investigating. This algorithm can be applied for many problems other than FS. We can also investigate
a multi-objective version.
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Abstract: Encouraging healthy and balanced diet plans is one of the most important action points
for governments around the world. Generating healthy, balanced and inexpensive menu plans
that fulfil all the recommendations given by nutritionists is a complex and time-consuming task;
because of this, computer science has an important role in this area. This paper deals with a novel
constrained multi-objective formulation of the menu planning problem specially designed for school
canteens that considers the minimisation of the cost and the minimisation of the level of repetition
of the specific courses and food groups contained in the plans. Particularly, this paper proposes a
multi-objective memetic approach based on the well-known multi-objective evolutionary algorithm
based on decomposition (MOEA/D). A crossover operator specifically designed for this problem
is included in the approach. Moreover, an ad-hoc iterated local search (ILS) is considered for the
improvement phase. As a result, our proposal is referred to as ILS-MOEA/D. A wide experimental
comparison against a recently proposed single-objective memetic scheme, which includes explicit
mechanisms to promote diversity in the decision variable space, is provided. The experimental
assessment shows that, even though the single-objective approach yields menu plans with lower
costs, our multi-objective proposal offers menu plans with a significantly lower level of repetition of
courses and food groups, with only a minor increase in cost. Furthermore, our studies demonstrate
that the application of multi-objective optimisers can be used to implicitly promote diversity not
only in the objective function space, but also in the decision variable space. Consequently, in contrast
to the single-objective optimiser, there was no need to include an explicit strategy to manage the
diversity in the decision space in the case of the multi-objective approach.

Keywords: menu planning problem; evolutionary algorithm; decomposition-based multi-objective
optimisation; memetic algorithm; iterated local search; diversity preservation

1. Introduction

Nowadays, due to unhealthy and sedentary lifestyles, a high percentage of the human population
suffers from various diseases such as high cholesterol, diabetes and other conditions related to those
habits which can cause other serious illnesses, including several types of cancer [1]. As a result,
promoting healthy and active habits for young people is becoming a significant duty for governments
around the world. Since it is impossible for governments to control what children and teenagers
consume in their homes, having a healthy and balanced meal plan for school cafeterias is essential
to help mitigate the effects of the remaining meals. The Government of the Canary Islands wants to
promote healthy habits in children and teenagers. Generating healthy and balanced menu plans is
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key to this effort. This is precisely the main goal of this research, which is part of the “Programa de
Eco-comedores Escolares de Canarias” programme, which seeks to generate healthy, balanced and
affordable menu plans for regional school cafeterias.

This work presents a novel constrained multi-objective formulation of the well-known menu
planning problem (MPP) [2]. Specifically, the version of the MPP considered herein is a multi-objective
formulation that includes a set of daily and n-days constraints for several nutrients, as introduced
in [3], as well as the two objective functions related to the cost of the menu and the level of repetition
of courses and food groups proposed in [4].

Planning and scheduling problems have been successfully solved with meta-heuristics.
Particularly, many of the best-known solutions for problems in this area have been achieved with
memetic algorithms (MAs) [5–8]. In [3], an MA was proposed to deal with a single-objective constrained
formulation of the MPP where the cost of the menu had to be minimised. To do so, a specific iterated
local search (ILS) was designed, as well as an ad-hoc crossover operator. Additionally, the MA included
an explicit mechanism to promote diversity in the decision variable space in order to avoid premature
convergence. The above allowed high-quality solutions to be attained. The working hypothesis herein
is that by using our novel multi-objective constrained formulation of the MPP, which considers the cost
of the plan and at the same time the level of repetition of the specific courses and food groups contained
in the plan, it is possible to find solutions that are similar in terms of the cost to those provided by the
aforementioned single-objective MA, but significantly better regarding the level of repetition.

Taking these findings into account, this work presents a novel multi-objective approach based
on the well-known multi-objective evolutionary algorithm based on decomposition (MOEA/D) [9].
MOEA/D was applied to the menu planning problem in a previous work carried out by the authors [10].
It was compared to the well-known Non-dominated Sorting Genetic Algorithm II (NSGA-II) [11] and
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [12]. Since knowledge about the menu planning
problem was not considered, ad-hoc variation operators, as well as an improvement operator, were not
incorporated into MOEA/D. Results showed that MOEA/D was outperformed by NSGA-II and
SPEA2. In order to improve the performance of MOEA/D when dealing with the menu planning
problem, in the current work, an extension of the ILS applied by the single-objective MA proposed
in [3] was considered as the improvement operator of MOEA/D. We should note that, in opposition
to other approaches, MOEA/D facilitates the incorporation of an improvement operator, which is
an important component to quickly yield feasible solutions. Finally, the ad-hoc crossover operator
proposed by the same authors was also integrated into MOEA/D.

As a result, our proposal is referred to as ILS-MOEA/D, and in contrast to the single-objective
optimiser presented in [3], it does not include an explicit strategy to manage diversity in the decision
variable space. The reason is that, as in other problems [13], the promotion of diversity in the objective
function space, imposed by the use of different weights in ILS-MOEA/D to decompose the problem,
causes an implicit preservation of diversity in the decision variable space. A wide experimental
evaluation is carried out herein, where the novel ILS-MOEA/D is compared against the single-objective
MA proposed in [3], in terms of the quality of the solutions attained by both optimisers.

Bearing all the above in mind, the main contributions of this work are the following:

• A novel constrained multi-objective formulation of the MPP.
• A novel adaptation of MOEA/D, ILS-MOEA/D, that integrates an ILS as the improvement step of

the approach, as well as an ad-hoc crossover operator to speed up the achievement of high-quality
solutions for the multi-objective constrained version of the MPP.

• In comparison to the single-objective MA, ILS-MOEA/D yields menu plans with a similar cost,
but with a significantly better level of repetition.

• The promotion of diversity in the objective function space through the application of a
multi-objective algorithm helps avoid premature convergence, since diversity is also implicitly
kept in the decision variable space.
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The rest of this paper is structured as follows. Section 2 provides a review of related works
and presents our new formulation of the MPP. Afterwards, the novel ILS-MOEA/D is detailed in
Section 3. Then, the experimental evaluation performed to validate our proposals is presented in
Section 4. The results obtained from the experiments are discussed in Section 5. Finally, the conclusions
are exposed in Section 6, together with some lines of further research.

2. Menu Planning Problem

2.1. Background

Menu planing has been solved by using computers since early 1960 [2,14]. Many of the proposed
formulations are NP-complete, meaning it is quite a complex task [15]. In essence, the classical MPP
aims to find a combination of dishes which satisfies certain restrictions involving budget, variety and
nutritional requirements for an n-day sequence. Even though there is no consensus on the specific
objectives that an MPP formulation should consider, in almost every formulation, it is common for
the cost of the menu plan to be considered one of the main objectives to optimise [2–4,10,16,17].
Other options for defining the objective functions are the users’ preferences for certain foods, the level
of adequacy or the level of acceptance [18–21].

The constraints considered in menu planning problems are usually based on the nutritional
requirements that meal plans have to satisfy. As a result a set of constraints is defined that models
the recommended minimum and maximum amounts of different nutrients [21–26]. Other constraints
consider the variety of the meals, their predominant colour, their consistency, the time required to
prepare them and food that cannot be consumed, among others [19,22,25,27]. Two of the most frequently
used techniques to handle constraints are based on the application of repairing methods [4,10,19,26,28,29]
or penalisation functions [16,30,31]. In the first case, operators are applied to an infeasible solution until
it becomes feasible. In the second case, the fitness function is penalised somehow depending on the
degree of infeasibility of the corresponding solution. Hence, the higher the degree of infeasibility of
the solution, the larger the probability to be discarded.

Both single-objective [3,16,19,32] and multi-objective optimisers [4,10,17,28] have been devised for
the MPP. In the single-objective case, most of the formulations consider the cost as the only objective
to optimise, while the nutritional requirements are used as constraints. In the case of multi-objective
formulations, the cost is always considered as one of the objective functions to optimise [29–31].
Additionally, the seasonal quality, food flavour and food temperature [29], food preferences [30]
and the nutritional error [31] are considered as other objective functions. In almost all cases,
the nutritional requirements, as well as the users’ personal preferences, model the constraints of
the multi-objective formulations.

Although there exist many different types of algorithms for solving this problem, a high percentage
of published papers use evolutionary algorithms (EAs) or other types of meta-heuristics due to the
benefits they offer, such as robustness, reliability, global-search ability and simplicity [16,20,21,26,28].
EAs are approximated methods based on the concept in natural evolution of survival of the fittest
individual [33]. Given a population of individuals in some environment with limited resources,
the competition for survival causes natural selection, with the fittest individuals more likely to survive
and reproduce. In addition, being approximated methods means that although there is no guarantee of
obtaining the optimal solution to a problem, high-quality solutions can be found in a reasonable period
of time. The classical genetic algorithm (GA) is the most common approach for solving single-objective
formulations of the MPP [16,34], while previous multi-objective formulations of the MPP have been
frequently addressed by applying the state-of-art NSGA-II, such as the work proposed in [28,30,31].

The lack of ad-hoc operators for the MPP could possibly yield sub-optimal solutions due to the
problem of premature convergence. In order to avoid this, problem-specific operators or procedures,
such as intensification mechanisms, have been included into EAs, resulting in memetic algorithms
(MAs) [35,36]. MAs can be seen as the combination of an EA with an intensification mechanism in
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order to improve the general performance of the optimiser [37]. An example of a single-objective MA
successfully applied to the MPP is that proposed in [3].

Additionally, a software named SCHOOLTHY was proposed in [4], which allows menus to be
planned automatically. The tool uses an MPP formulation similar to the one proposed in this work
to generate not only affordable plans, but also varied from a nutritional standpoint. Although it was
designed for school cafeterias, it could be adapted to other environments, such as hospitals, prisons and
retirement homes, among others.

As we previously mentioned in Section 1, in the current work, we present a novel constrained
multi-objective formulation of the MPP. It consists of the same set of nutritional daily and n-days
(global) constraints presented in [3]. At the same time, the two objective functions proposed in [4],
i.e., the cost of the meal plan and its level of repetition of courses and food groups, are also considered.
As far as we know, this is the first time that an objective function modelling the level of repetition
of specific courses and food groups is optimised together with the cost under a multi-objective
formulation of the menu planning problem, which in addition considers the management of daily
and global nutritional constraints. Those constraints are successfully managed by considering the
infeasibility degree of a particular solution, thus giving preference to those solutions with, first, a lower
infeasibility degree, and second, a lower fitness in terms of both aforementioned objective functions.
Furthermore, the application of a multi-objective memetic approach based on decomposition that
includes knowledge about the menu planning problem in the form of a tailored improvement operator
and an ad-hoc crossover operator had never been carried out before. The above allows feasible solutions
of the multi-objective constrained formulation that we are presenting herein to be attained quickly.

2.2. Formulation

In this work, a novel multi-objective constrained formulation of the MPP focused on school
cafeterias is proposed. Due to the above, only lunch is planned for n days, including a starter, a main
course and a dessert per day. The different courses are selected from a database containing their cost
and nutritional facts. Courses in the database are grouped into three different categories: starters,
main courses and desserts. The particular objective functions are, on the one hand, the cost of the
whole plan, which has to be minimised, and on the other hand, the level of repetition of specific courses
and food groups that the plan consists of, which has to be minimised as well. The motivation behind
the second objective function is to promote a varied plan from a nutritional point of view.

Additionally, the set of daily and global constraints applied in [3] are also taken into account
in this new formulation. Those constraints are modelled on the recommendations on intakes of
macro-nutrients and micro-nutrients following the guidelines given in the White Book on Child
Nutrition. Furthermore, other reference documents regarding school diets and allergens were also
consulted, specifically, those endorsed by the Spanish Government Ministry of Education, Culture and
Sports and the Ministry of Health, Social Services and Equality (These consensus documents are
available at http://www.aecosan.msssi.gob.es/AECOSAN/docs/documentos/nutricion/educanaos/
documento_consenso.pdf and https://www.aepnaa.org/).

As we said, the cost is an objective to be minimised and is calculated as the sum of the costs of the
courses included in the plan. Note that the cost of each course is calculated as the sum of the costs of
all the ingredients required to prepare that course. Formally, the cost is defined as follows:

C =
n

∑
j=1

(
c f cj

+ cscj + cdsj

)
(1)

where C is the total cost of the menu plan and c f cj
, cscj , cdsj

represent the cost of the starter, main course
and dessert, respectively, for day j, and n is the number of days for which the menu plan is
being designed.

An assorted menu plan is particularly important when it is intended for children. As a result of
this, the level of repetition of courses and food groups was defined as the second objective function to
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be minimised. The level of repetition represents the percentage of courses and food groups repeated
throughout the meal plan. The following equation defines how it is calculated:

LRep =
n

∑
j=1

(
vMCj +

p f c

d f cj

+
psc

dscj

+
pds
ddsj

+ vFGj

)
(2)

where LRep is the level of repetition, vMCj represents the compatibility, in terms of food groups,
among courses f cj, scj, dsj for day j; p is a penalty constant for every kind of course and d stands for
the number of days since a specific course was repeated. Finally, vFGj is the penalty value for repeating
particular food groups in the last five days.

Equation (3) allows the value of vMCj to be calculated, where |G| is the number of food groups,
xg ∈ {0, 1, 2, 3} is the number of times a particular food group is contained in the three courses (starter,
main course and dessert) of the menu for day j and pg is the corresponding penalty value for repeating
the food group g. The food groups considered in this work are as follows: meat, cereal, fruit, dairy,
legume, shellfish, pasta, fish, vegetable and other.

vMCj =
|G|
∑
g=1

(
xgj · pg

)
(3)

vFGj =
min(j−1,T)

∑
i=1

(
(
|G|
∑
g=1

xgi · pg) + (yi · p|G|+i)

)
(4)

Equation (4) is used to compute vFGj , where T = 5 days is the number of previous days considered,
|G| is the number of food groups, xgi ∈ {0, 1} indicates whether the food group g is repeated on day
j − i (xgi = 1) or not (xgi = 0) with respect to day j, yi ∈ {0, 1} indicates whether any food group
was repeated i day(s) before the current day j (yi = 1) or not (yi = 0), and pg and p|G|+i are the
corresponding penalty values.

The types of penalties and their values used to compute vMCj and vFGj are shown in Table 1.
Furthermore, penalties are determined by the repetition of food groups (p1–p10), the repetition of
the same food group from one to five days prior to the current day (p11–p15), and the repetition of
specific courses (p16 = p f c, p17 = psc, and p18 = pds). In the case of penalties for repeating food groups
(p1–p10), if the penalty value of a given food group is very large in comparison to the remaining food
group penalty values, then a plan with a lower number of courses belonging to that food group will be
provided. For instance, we have given preference to those courses consisting primarily of vegetables
(p10 = 0.1) over courses composed primarily of meat (p2 = 3).

Additionally, as stated earlier, in order to consider a menu plan as feasible, it must fulfil some
constraints related to a set of nutritional requirements, such as having each nutrient intake be within a
given range. Besides, the set of constraints of this MPP formulation is modelled by two sub-sets of
constraints: global constraints and daily constraints. For instance, energy (kcal), fats and proteins are
evaluated both daily and globally. At this point, we note that, since only lunch is considered in the meal
plans, the recommended nutritional intakes were adapted. For each nutrient h considered, rh denotes
the recommended amount to ingest every day at lunch. Based on the recommended amount, a range
of acceptable intake is generated for each nutrient. Table 2 defines a set R of pairs (rmin, rmax) with the
minimum and maximum amount allowed for each nutrient h, respectively (The set of micro-nutrients
is as follows: Folic acid, Phosphorus, Magnesium, Selenium, Sodium, Vitamins A, B1, B2, B6, B12, C,
D, E, Iodine, Zinc).
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Table 1. Types of penalties defined to calculate the level of repetition objective.

Penalty Description Value

p1 penalty for repeating other food group 0.1
p2 penalty for repeating meat food group 3
p3 penalty for repeating cereal food group 0.3
p4 penalty for repeating fruit food group 0.1
p5 penalty for repeating dairy food group 0.3
p6 penalty for repeating legume food group 0.3
p7 penalty for repeating shellfish food group 2
p8 penalty for repeating pasta food group 1.5
p9 penalty for repeating fish food group 0.5
p10 penalty for repeating vegetable food group 0.1

p11 penalty for repeating the same food group one day earlier 3
p12 penalty for repeating the same food group two days earlier 2.5
p13 penalty for repeating the same food group three days earlier 1.8
p14 penalty for repeating the same food group four days earlier 1
p15 penalty for repeating the same food group five days earlier 0.2

p16 = p f c penalty for repeating a starter 8
p17 = psc penalty for repeating a main course 10
p18 = pds penalty for repeating a dessert 2

Table 2. Minimum and maximum ranges for nutrient intakes

Nutrient rmin rmax

Energy (per day) 0.85 1.15
Fats (per day) 0.75 1.25
Proteins (per day) 0.75 1.25

Energy (n days) 0.90 1.10
Fats (n days) 0.90 1.10
Proteins (n days) 0.90 1.10

Micro-nutrients 0.70 1.30

Formally, an individual S would be considered feasible if and only if it satisfies the following set
of global constraints:

∀h ∈ HG : n × rminh × rh ≤ in(S, h) ≤ n × rmaxh × rh (5)

where in(S, h) is the global intake of nutrient h in the plan S, and HG denotes the set of nutrients
considered for the global constraints.

In the case of energy, fats and proteins, their intakes for every single day d, i.e., in(S, h, d) are also
checked to be in the established daily ranges:

∀h ∈ HD : rminh × rh ≤ in(S, h, d) ≤ rmaxh × rh (6)

where HD is the set of nutrients considered for the daily constraints.
In order to properly compare solutions, a definition of an infeasibility degree id is required.

As previously defined in [3], the infeasibility degree of a solution S is calculated as shown in
Equation (7). Note that an individual S that satisfies Equations (5) and (6) would have an infeasibility
degree id(S) = 0, and it would be considered a feasible solution.

id(S) = gid(S) + did(S) (7)
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The infeasibility degree id is calculated as the sum of the global infeasibility degree gid(S)
and the daily infeasibility degree did(S). Equations (8) and (9) show the calculation of gid(S) and
did(S), respectively.

gid(S) = ∑
h∈HG

(
max

(
in(S, h), rmaxh

)− rmaxh

)2 × 106+

∑
h∈HG

(
rminh − min

(
in(S, h), rminh

))2 × 106
(8)

did(S) = ∑
h∈HD

n

∑
d=1

(
max

(
in(S, h, d), rmaxh

)− rmaxh

)2
+

∑
h∈HD

n

∑
d=1

(
rminh − min

(
in(S, h, d), rminh

))2
(9)

3. Algorithms

The method that we are presenting herein (ILS-MOEA/D) is a particularisation of MOEA/D
that has been specifically designed to deal with the multi-objective constrained MPP proposed in
the previous section. MOEA/D is an EA for multi-objective optimisation proposed in [9], where the
underlying idea is to decompose a Multi-objective Optimisation Problem (MOP) into a number of
scalar optimisation sub-problems and optimise them simultaneously.

MOEA/D is a population-based EA that maintains N candidate solutions in the population.
The decomposition approach is applied to generate N sub-problems that are simultaneously optimised.
Specifically, each individual is associated to one of the generated sub-problems (a one-to-one mapping
is performed). Furthermore, it establishes some relationships between sub-problems and organises
them into neighbourhoods. These neighbourhoods are defined in terms of the weight vectors used
to decompose the problem. The optimisation of each sub-problem is influenced by information of its
neighbouring sub-problems. The principle for organising the optimisation process in this way is that
the optimal solution for two neighbouring sub-problems is expected to be similar [9]. Furthermore,
the process of decomposing an MOP into N scalar optimisation sub-problems can be done by applying
different approaches.

In this paper, our strategy relies on the Tchebycheff decomposition approach [38].
Let λ = {λ1, . . . , λN} be a set of even spread weight vectors. In this approach, the scalar objective
function associated to the j-th sub-problem, with j = 1, . . . , N, is defined as follows:

gte(x|λj, z∗) = maxm
i=1{λ

j
i | fi(x)− z∗i |} (10)

where x ∈ Ω is a solution to a multi-objective problem with m original objectives; z∗ = (z∗1, . . . , z∗m)
is the reference point with the best solution found so far for each of the i = 1, . . . , m original
objectives and λj = (λ

j
1, . . . , λ

j
m). We note that MOEA/D minimises all those N scalar optimisation

sub-problems simultaneously.
Since the MPP formulation considered in this work implies handling the feasibility constraints,

the replacement of any individual from the population must satisfy certain criteria. For example,
given two individuals S1 and S2:

• If their infeasibility degrees are different, the one with a lower infeasibility degree is better.
• Otherwise, if two individuals have the same infeasibility degree, i.e., id(S1) = id(S2), the individual

with better fitness is preferred. The fitness of an individual is computed using Equation (10).

Moreover, our novel ILS-MOEA/D includes two main improvements to speed up the achievement
of high-quality solutions. First, the Similarity-based Crossover (SX) proposed in [3] is used as the only
genetic operator that produces new individuals. Second, an adapted version of the ILS (Algorithm 1),
which was also proposed in [3], was integrated as the intensification phase of ILS-MOEA/D. This ILS
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is based on the well-known First-Improvement Hill Climbing approach (line 3). It explores the
neighbourhood of a solution in a random way by accepting any movement that improves the
current solution, and stopping after reaching a local optimum. The key difference of the ILS applied
herein in comparison to the one proposed in [3] is that the procedure evaluates each improvement
by using the Tchebycheff decomposition approach (Equation (10)) in a similar way as MOEA/D.
Furthermore, the reference point z∗ is also updated if any objective improves the current reference
point In addition, for any solution, instead of using the neighbourhood structure of MOEA/D,
the neighbours are generated by modifying a single course of the menu plan. As a result, the number
of neighbours of any solution is n × (l f c + lsc + lds − 3), where l f c, lsc and lds are the number of options
for starters, main courses and desserts, respectively. Finally, the procedure Perturb makes use of
problem-dependent information of the MPP, since it identifies the potential problems in a menu plan
in order to mitigate them. However, this procedure does not guarantee that the algorithm will not
stagnate in local optima solutions. Additionally, since this MPP formulation has not been solved with
any exact method, there is not any certainty that the solutions found by either ILS-MOEA/D or MA
are global optima. The Perturb (line 7) procedure is the same as the one applied in [3]. The above
steps are repeated Iterations times.

Algorithm 1: Iterated Local Search — ILS

Input : S (Initial Solution), Iterations, λS, z∗

1 Best = S;
2 for i ← 0 to Iterations do

3 S′ = First-Improvement-Hill-Climbing(S, λS, z∗);
4 if S′ is Better than Best then

5 Best = S′;
6 end

7 S = Perturb(Best);
8 end

9 return Best

The proposed ILS-MOEA/D outlined in Algorithm 2 involves similar steps as the standard
MOEA/D [9]:

1. The algorithm receives the population size N, the neighbourhood size L and a set of uniform
sparse weight vectors λ, as the parameters to set up the run.

2. In line 1, an external population, EP, is created to store the non-dominated individuals found
during the search. Since the population size parameter was set to a small value in this work,
the external population is used to keep additional solutions to those maintained in the current
population. An unbounded EP that maintains feasible non-dominated individuals is used.

3. Then, a set of neighbourhoods B is created in line 2. For each individual j in the population,
its corresponding neighbourhood Bj is created, considering the L closest weight vectors to λj.
The above is performed by computing the Euclidean distance between any two weight vectors.

4. After that, in line 3, the reference point z∗ is initialised using the opposite largest value to the
corresponding objective function direction, i.e., the maximum floating point number allowed for
an objective function that has to be minimised and vice-versa.

5. The last step before starting the MOEA/D updating phase is to initialise the population (line 4).
This procedure creates N new individuals randomly and then applies the aforementioned ILS
to improve the quality of the initial solutions. Additionally, the reference point z is updated
if required.
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Algorithm 2: ILS-MOEA/D
Input : N, L, λ

1 EP = ∅;
2 B = GenerateNeighbourhood(N, L, λ);
3 z∗ = InitialiseZ();
4 Population = InitialisePopulation(N, λ, z∗);
5 while StoppingCriterion is not satisfied do

6 for j ← 1 to N do

7 Offspring = Reproduce(B, j);
8 Offspring = ILS(Offspring, 100, λj, z∗);
9 z∗ = UpdateZ(Offspring);

10 Population = UpdateNeighbouringSolutions(Offspring);
11 EP = UpdateExternalPopulation(Offspring);
12 end

13 end

14 return EP

Afterwards, the main loop of the MOEA/D performs the updating phase of the algorithm by
carrying out the following steps until the stopping criterion is met:

1. For each individual j in the population (line 6), a new offspring is created by applying the SX
crossover operator to two neighbours of individual j (line 7), which are selected at random from
its neighbourhood Bj. Afterwards, the ILS is applied to the new offspring (line 8).

2. Then, in line 9, the reference point z∗ is updated if better objective values were found.
3. Next, in line 10, the offspring created is considered to replace individual j in the population by

following the aforementioned replacement criteria. Note that each offspring at most replaces one
individual in the population.

4. Finally, in line 11, the offspring is considered for insertion into the EP if its infeasibility degree is
equal to zero and there is no individual in EP that dominates it.

4. Experimental Assessment

Due to the fact that the same constraints and courses database used in [3] is applied in this work,
the results obtained by ILS-MOEA/D were compared, in terms of the meal plan cost, with those
attained by the single-objective MA proposed in [3], which will be referred to as MA in the rest of
the paper. Moreover, the level of repetition of the solutions provided by MA was also computed to
properly evaluate the difference between the two approaches.

Regarding the courses database, a total of 64 different courses were available, grouped into three
different categories: l f c: 18 starters, lsc: 33 main courses, lds: 13 desserts. Moreover, for every course
available, the following information was obtained: name of the course, cost of the course, amount of
nutrients in the course and the particular food groups the course belongs to.

Standard configurations for MA and ILS-MOEA/D were applied to different instances of the MPP.
Specifically, plans for n = 20, n = 40 and n = 60 days were considered. All the experiments were
performed using the elapsed time as the stopping criterion, which was different depending on the
instance size. For n = 20 days, the stopping criterion was set to one hour, and it was increased to two
and a half hours and five hours for n = 40 and n = 60 days, respectively.

Regarding the parameterisation of ILS-MOEA/D, the population size was set to N = 15
individuals, the neighbourhood size was fixed to L = 5 individuals and the crossover rate was
set to CR = 1.0. The set of weight vectors λ was generated using the method described in [9]. We note
that the same parameterisation was used to apply the single-objective MA, which means that the
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population size was set to N = 15 individuals and the crossover rate CR = 1.0. None of the algorithms
applied a mutation operator. Finally, the number of iterations of the ILS was set to 100 in both cases.

The Metaheuristic-based Extensible Tool for Cooperative Optimisation (METCO) (Available at:
https://github.com/PAL-ULL/software-metco), described in [39], was used to implement
ILS-MOEA/D and the multi-objective constrained formulation of the MPP discussed here, as well
as to perform the entire experimental assessment.Experiments were run on a server belonging to the
“Laboratorio de Supercómputo del Bajío”, which is maintained by the “Centro de Investigación en
Matemáticas” (CIMAT), Mexico. The server provides two Intel Xeon E5-2620 v2 processors with 6 cores
each at 2.1 GHz with 32 GB RAM. Since we are dealing with stochastic approaches, every execution
was repeated 30 times. In order to statistically support the conclusions, the following statistical testing
procedure, which was formerly used in previous work by the authors [40], was applied to conduct
comparisons between experiments. First, a Shapiro–Wilk test was performed to check whether the
values of the results followed a normal (Gaussian) distribution. If so, the Levene test checked for the
homogeneity of the variances. If the samples had equal variances, an ANOVA test was done; if not,
a Welch test was performed. For non-Gaussian distributions, the non-parametric Kruskal–Wallis test
was used. For every test, a significance level α = 0.05 was considered.

The hypervolume (HV) [41], normalised in the range [0, 1], was selected as the metric to measure
the performance of ILS-MOEA/D. To compute the normalised HV, the resulting Pareto Fronts of
ILS-MOEA/D were normalised using the worst and best values achieved for each objective function,
which defines the lower and upper bounds among all the executions performed. We should note that
since the HV metric has to be maximised, the higher its value, the better the performance.

5. Discussion

In this section, the results from the experimental assessment introduced previously are discussed
(The results, plots and source code are available at https://github.com/Tomas-Morph/MenuPlanning_
MOEAD_Mathematics). As mentioned earlier, the results attained by ILS-MOEA/D were compared
to the results achieved by MA. The reader should recall that the working hypothesis behind
this comparison is that by applying ILS-MOEA/D to a multi-objective formulation of the MPP,
which considers not only the cost of the plan but also the level of repetition, it is possible to find
solutions that are similar in terms of the cost to those provided by MA, but significantly better with
respect to the level of repetition of specific courses and food groups contained in the menu plan.

First of all, MA seeks to obtain the cheapest menu plan that satisfies all the constraints defined
in Section 2. Consequently, the menu plans generated by MA had a higher level of repetition in
comparison to those provided by ILS-MOEA/D, as shown in Figure 1. The statistical procedure
introduced previously shows that there were significant statistical differences in the results of
ILS-MOEA/D and MA. Although an explicit diversity management strategy was implemented in
MA, not considering the level of repetition in the single-objective formulation of the MPP led to more
affordable but less varied menu plans. In fact, in terms of the cost, the results obtained by MA were
statistically better than those achieved by ILS-MOEA/D for the three instances considered.

Since ILS-MOEA/D considers the level of repetition as one of the objective functions to be
optimised, the menu plans generated by this algorithm had a better ratio between the cost and the
level of repetition. Considering the level of repetition, ILS-MOEA/D provided statistically significant
better results than MA for the three instances. Furthermore, as Figure 1 shows, although the results
of ILS-MOEA/D in terms of the cost were noticeably more scattered than those attained by MA, in a
few executions, ILS-MOEA/D yielded the best menu plan cost obtained by MA with a significantly
lower level of repetition, in the case of n = 20 and n = 40 days. As the results in Table 3 show,
for n = 20 days, the mean cost of the solutions provided by ILS-MOEA/D was only 0.17% higher in
comparison to the mean cost of the solutions attained by MA. However, the mean level of repetition of
the solutions obtained by MA was 28.3% higher when compared to the mean level of repetition of the
solutions given by ILS-MOEA/D.
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Figure 1. Boxplot representation of the values obtained by memetic algorithm (MA) and iterated
local search (ILS)-multi-objective evolutionary algorithm based on decomposition (MOEA/D) for both
objective functions, i.e., cost and level of repetition of specific courses and food groups, considering
menu plans for n = 20 (upper-left), n = 40 (upper-right) and n = 60 (bottom) days.

Something similar happened for the menu plans for n = 40 days. In this case, the mean cost
of the solutions provided by ILS-MOEA/D was only 0.21% higher in comparison to the mean cost
of the solutions attained by MA. The mean level of repetition of the solutions obtained by MA,
however, was 38.5% higher when compared to the mean level of repetition of the solutions given by
ILS-MOEA/D. Finally, for n = 60 days, the mean cost provided by ILS-MOEA/D was only 1.05%
higher in comparison to the mean cost attained by MA. Still, the mean level of repetition of MA
was considerably larger than that obtained by ILS-MOEA/D, specifically, 25.4%. Bearing the above
discussion in mind, it is clear that the slight difference obtained by ILS-MOEA/D, in terms of the
cost, is much lower when compared to the difference between the two approaches in terms of the
level of repetition. As a result, ILS-MOEA/D clearly outperforms MA in this regard, which confirms
our hypothesis.

In order to graphically confirm the above conclusions, the best solution found by MA, i.e., that with
the lowest cost, was compared to the first of the thirty Pareto Fronts obtained by ILS-MOEA/D for
each instance considered. To do this, the level of repetition of the solutions obtained by MA had to
be calculated independently by considering the same source code implemented in the case of the
multi-objective constrained formulation of the MPP. Figure 2 undoubtedly shows how MA obtains the
best results in terms of the menu plan cost, for every instance. Nevertheless, the level of repetition
of said solutions is significantly higher when compared to the level of repetition of the solutions
belonging to the Pareto Fronts provided by ILS-MOEA/D. Note also how ILS-MOEA/D yielded
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different Pareto Front shapes, depending on the instance size. Bearing the above in mind, it is difficult
to apply a priori methods to focus the search on a certain region of the Pareto Front. Finally, we note
that one of the main advantages of applying a multi-objective optimiser, such as ILS-MOEA/D, is that
a diverse set of solutions, regarding the objective function space, is provided. All of these solutions are
trade-offs between cost and level of repetition, and the above allows the decision maker to select one
of those solutions depending on their particular requirements, something that is not possible when
solving a single-objective formulation of the MPP.

Table 3. Statistics for the cost and level of repetition achieved by ILS-MOEA/D and MA, considering
menu plans for n = 20, n = 40 and n = 60 days.

n Algorithm Cost Level of Repetition

Mean Std Min Max Mean Std Min Max

20 ILS-MOEA/D 20.299 1.384 ×10−02 20.264 20.304 269.800 3.695 263.166 278.222
MA 20.264 7.226 ×10−15 20.264 20.264 346.074 14.508 314.943 376.298

40 ILS-MOEA/D 40.153 0.102 40.038 40.335 601.309 8.616 579.400 615.871
MA 40.067 0.042 40.038 40.281 833.067 33.055 757.831 888.489

60 ILS-MOEA/D 60.368 0.154 60.076 60.636 994.252 19.886 949.750 1029.680
MA 59.738 0.045 59.721 59.940 1247.270 36.995 1143.820 1312.760

In the previous experiment, ILS-MOEA/D was unable to achieve the lowest cost provided by MA
for a menu plan of n = 60 days in any execution. In order to determine if ILS-MOEA/D could yield
the results attained by MA in large instances, such as n = 60, executions using a stopping criterion
equal to ten hours were also performed. As in the previous experiment, 30 repetitions were also run
by applying the same parameterisation of ILS-MOEA/D. The results obtained are shown in Table 4.
We note that even though ILS-MOEA/D could not replicate the best menu plan cost obtained by MA
after a five-hour execution (see Table 3), its results were improved in terms of both cost and level of
repetition. As a result, devoting more effort to the development of ILS-MOEA/D could improve its
performance when dealing with large instances.

Single-objective techniques that do not include any explicit diversity management mechanism
may fall into premature convergence. This means that solutions only improve for a short period of
time before stagnating at local optima. At the same time, multi-objective optimisers may also converge
to sub-optimal regions of the decision variable space of some MOPs, yielding effects that are similar
to premature convergence [42]. Although our proposal ILS-MOEA/D does not include any explicit
technique for properly managing diversity in the decision variable space, it would be interesting
to analyse if the above could be possible implicitly as a consequence of promoting diversity in the
objective function space.

Table 4. Statistics for the cost and level of repetition achieved by ILS-MOEA/D, considering menu
plans for n = 60 days, after ten hours of execution.

Cost Repetition

Mean Std Min Max Mean Std Min Max

60.368 0.154 60.076 60.636 994.252 19.886 949.750 1029.680
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Figure 2. Comparison of the Pareto Fronts achieved by ILS-MOEA/D versus a two-dimensional
representation of the best solution found by MA, i.e., the one with the lowest cost and lowest level of
repetition, considering menu plans for n = 20 (upper-left), n = 40 (upper-right) and n = 60 (bottom)
days. The reader should recall that the level of repetition of the solutions attained by MA had to be
computed separately. To this end, the same source code implemented in the case of the multi-objective
constrained formulation of the MPP was considered.

Figure 3 shows, in the case of MA and ILS-MOEA/D, how the mean diversity in the population,
considering the decision variable space, evolves during the runs for each instance considered.
Diversity was computed by applying a distance-like function specifically created for the MPP
formulations considered herein. This function determines distances among the courses assigned
to the different days of the plan. Further details about the distance-like function can be found in the
reference work [3]. Now how the mean diversity gradually decreases throughout the executions for
both MA and ILS-MOEA/D, starting from a more diverse population and finishing with one that is less
diverse. Figure 4 shows the evolution of the mean HV over the course of the ILS-MOEA/D executions.
Not only does the mean diversity gradually decrease throughout the executions for every instance
in the case of ILS-MOEA/D, but the mean HV also increases, which means that the effectiveness of
ILS-MOEA/D is suitable. Since ILS-MOEA/D implicitly promotes diversity in the objective function
space, diversity is also properly managed in the decision variable space. At this point, we should note,
however, that MA preserves, in a smarter and more explicit way, a larger diversity in the decision
variable space during the whole execution in comparison to ILS-MOEA/D, which results in better cost
solutions, something that we had already stated in previous experiments.
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Figure 3. Evolution of the mean diversity of the population in the decision variable space,
considering menu plans for n = 20 (upper-left), n = 40 (upper-right) and n = 60 (bottom) days.

Consequently, we note that not considering explicit diversity management schemes in the decision
variable space in the case of a multi-objective algorithm, like ILS-MOEA/D, seems to impact the
performance less than not considering them in the case of a single-objective optimiser. Even so,
it would be interesting to check in the future whether explicitly managing diversity in the decision
variable space helps ILS-MOEA/D to improve its performance in terms of the cost of the resulting
menu plans.

Lastly, regarding the time complexity of the proposed algorithm, the average elapsed time and
generations performed by ILS-MOEA/D are presented in Table 5. As it can be observed, ILS is the
most computationally expensive step of ILS-MOEA/D, since it involves the majority of the total
computational work. In particular, more than 99% of the total elapsed time of the algorithm is
performed by ILS.

Table 5. Running time of ILS-MOEA/D.

Days Avg. ILS Time (s) Avg. Total Time (s) Avg. Number of Generations

20 3591.6 (99.47%) 3610.7 187.2
40 8979.2 (99.31%) 9041.3 112.5
60 17962.1 (99.29%) 18089.7 110.1
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Figure 4. Evolution of the mean HV over the course of the executions, considering menu plans for
n = 20 (upper-left), n = 40 (upper-right) and n = 60 (bottom) days.

6. Conclusions

This paper proposes a memetic multi-objective algorithm based on the well-known MOEA/D,
which applies an ILS as the improvement phase, i.e., ILS-MOEA/D, to solve a novel multi-objective
constrained formulation of the MPP. The experimental assessment conducted to contrast the diversity in
the decision variable space of ILS-MOEA/D in comparison to a single-objective MA yielded interesting
conclusions and possible future lines of work.

Firstly, depending on the problem size evaluated, ILS-MOEA/D obtained different Pareto Front
shapes. This hinders the application of a priori methods to guide the search in a certain region of
the space. Second, the results show that for reduced problem sizes, i.e., n = 20, ILS-MOEA/D and
MA yield practically the same results in terms of the menu plan cost. However, as the problem size
increases, such as n = 40, 60, the results provided by ILS-MOEA/D are slightly worse than those of MA
in terms of the cost. Third, in the case of ILS-MOEA/D, diversity management in the decision variable
space is not as crucial when compared to MA. Considering the results, both techniques gradually
decrease the level of diversity; however, ILS-MOEA/D preserves lower levels of diversity in the same
time even though MA includes an explicit diversity management technique. This is due to the fact
that ILS-MOEA/D properly manages diversity in the decision variable space implicitly, since it also
promotes diversity in the objective function space. Last but not least, the working hypothesis of this
work is confirmed by the results provided in Section 5. Even though MA and ILS-MOEA/D yielded
similar results in terms of the menu plan cost for the different instances assessed, the latter provided
a much lower level of repetition of specific courses and food groups in comparison to the former.
As a consequence, the application of ILS-MOEA/D to solve the multi-objective constrained formulation
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of the MPP presented here, which considers the cost and the level of repetition as the objectives to
be optimised, produces not only affordable, but also considerably more balanced, menu plans when
compared to the plans obtained by MA when solving the single-objective formulation of the MPP,
which only considers the cost.

As we previously mentioned, note that the single-objective MA incorporates a mechanism to
explicitly promote diversity in the decision variable space, something that has not been included
into ILS-MOEA/D. The above could be the main reason why ILS-MOEA/D obtained slightly worse
meal plans in terms of their cost in comparison to the single-objective MA, particularly, for larger
instances. Consequently, including techniques in ILS-MOEA/D to explicitly manage the diversity in the
decision variable space could improve its performance in terms of the cost of the menu plans provided.
Moreover, even though proposing a deep comparison of evolutionary algorithms is not aligned
with our working hypothesis, further research may include a comparison with other multi-objective
evolutionary algorithms and state-of-art metaheuristics. For example, it would be interesting to
compare ILS-MOEA/D to differential evolution or particle swarm optimisation, even though major
design changes would have to be considered to apply those algorithms to a combinatorial optimisation
problem. As an alternative line of further research, it would be interesting to consider a comparison
between ILS-MOEA/D and a single-objective MA intended to optimise the level of repetition of
courses and food groups, rather than optimising the menu plan cost. Finally, we should note
that our method could be applied to constrained multi-objective problems in other domains by
performing a few modifications. First, the perturbation step of the ILS, as well as how neighbours are
obtained, should be adapted by considering information of the particular problem at hand. Moreover,
other problem-dependent variation operators should be incorporated into ILS-MOEA/D as well.
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Abstract: One of the main components of most modern Multi-Objective Evolutionary Algorithms
(MOEAs) is to maintain a proper diversity within a population in order to avoid the premature
convergence problem. Due to this implicit feature that most MOEAs share, their application
for Single-Objective Optimization (SO) might be helpful, and provides a promising field of
research. Some common approaches to this topic are based on adding extra—and generally
artificial—objectives to the problem formulation. However, when applying MOEAs to implicit
Multi-Objective Optimization Problems (MOPs), it is not common to analyze how effective said
approaches are in relation to optimizing each objective separately. In this paper, we present
a comparative study between MOEAs and Single-Objective Evolutionary Algorithms (SOEAs) when
optimizing every objective in a MOP, considering here the bi-objective case. For the study, we focus
on two well-known and widely studied optimization problems: the Knapsack Problem (KNP) and
the Travelling Salesman Problem (TSP). The experimental study considers three MOEAs and two
SOEAs. Each SOEA is applied independently for each optimization objective, such that the optimized
values obtained for each objective can be compared to the multi-objective solutions achieved by the
MOEAs. MOEAs, however, allow optimizing two objectives at once, since the resulting Pareto fronts
can be used to analyze the endpoints, i.e., the point optimizing objective 1 and the point optimizing
objective 2. The experimental results show that, although MOEAs have to deal with several objectives
simultaneously, they can compete with SOEAs, especially when dealing with strongly correlated or
large instances.

Keywords: multi-objective optimization; single-objective optimization; evolutionary algorithm;
knapsack problem; travelling salesman problem

1. Introduction

Evolutionary Algorithms (EAs) [1] were initially developed for unconstrained Single-Objective
Optimization Problems (SOPs). However, extensive research has been conducted to adapt them to
other types of problems. In recent years, many Multi-Objective Evolutionary Algorithms (MOEAs)
have been proposed in the literature [2,3] to adapt EAs to dealing with Multi-Objective Optimization
Problems (MOPs). One of the main components of most modern MOEAs is the ability to maintain
genetic diversity within a population of individuals [4]. Maintaining proper diversity is decisive
for the behavior of EAs, since a loss of diversity could lead to premature convergence, which is
a frequent drawback, especially for single-objective optimization. Most MOEAs implicitly manage
diversity by considering the objective function space [5] and, in some cases, the decision variable
space. Several mechanisms have been proposed in the literature to deal with the above, such as fitness
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sharing [6], clustering [7], and entropy [8], among others [4]. Promoting diversity is a key feature
of an efficient and reliable MOEA. In fact, it is an intrinsic component in many MOEAs. Because of
this, some authors have claimed that the application of MOEAs might be useful when dealing with
single-objective problems. Furthermore, several theoretical and empirical studies have shown that
multi-objective optimizers can even provide better solutions than single-objective optimizers [4,9–11].

MOEAs have been applied to SOPs using various guidelines. Usually, the mechanisms proposed
in the literature for solving SOPs by means of MOEAs consist of transforming the original SOP into
a MOP so that MOEAs can be applied to the transformed problem. This transformation can be done
by either replacing the original objective with a set of new objectives, or by adding new, additional
objectives to the original one [4,12]. Among these approaches, the best known and most widespread
in the literature are: transforming constraints into objectives [13], considering diversity as an explicit
objective function [14] and multiobjectivization schemes, which transform a SOP into a MOP by
modifying its fitness landscape [12]. In any case, these new objectives are included in order to promote
the exploration of different regions, since multi-objective approaches try to simultaneously optimize
several objectives. This might make it possible to escape from sub-optimal regions, thus providing
a suitable balance between exploration and exploitation. The analysis presented in [15] lists the benefits
of using additional objectives, named helper-objectives. The main ones are [12]: avoiding stagnation in
local optima and maintaining diversity within a population.

In this paper, we present a comparative study of MOEAs and SOEAs when both types of
schemes are separately applied to optimize each objective function of a bi-objective optimization
problem. The study is not intended to provide a novel algorithm or to compare a new proposal
with state-of-the-art algorithms. The main goal of this work is to investigate the effectiveness—or
at least the opportunities—of applying multi-objective approaches to single-objective optimization.
This study relies on comparisons of standard MOEAs and some general SOEAs when they seek to
optimize—independently—every objective in a bi-objective problem. In this study, we consider the
Knapsack Problem [16] and the Travelling Salesman Problem [17]. Both problems have been considered
in numerous theoretical and experimental studies in the literature, so many effective solvers are known
to perform successfully for a wide range of benchmarks.

Although there are many contributions that have been made in the field of mathematical
optimization, in this work we are interested in the analysis of a particular set of approximated
algorithms—named evolutionary algorithms—for both, single and multi-objective formulations of the
problems. For this reason, our literature review deepens the field of evolutionary computation and not
in other research areas that could also have great impact and interest nowadays. As an alternative,
some experts have advocated for pushing further the integration of machine learning and combinatorial
optimization [18]. Some operations research communities are introducing machine learning as
a modeling tool for discrete optimization [19] or to extract intuition and knowledge in order to
dynamically adapt the optimization process [20]. Despite the existence of such a huge amount of
alternatives to face these optimization problems, it is important to note that we are interested in
the comparative analysis of single and multi-objective evolutionary algorithms. Thus, the selected
optimization problems can be understood as simple use cases for our experimental study.

For the experiments, we have selected an extensive and diverse set of problem instances that
consider different features, sizes and complexities. However, all the instances have two optimization
objectives, meaning they can be used to apply multi-objective approaches. For the optimization
process, three MOEAs and two SOEAs have been analyzed. Each SOEA is applied twice for each
problem instance (one for each objective), so that the optimized values for each of the two objectives
can be compared to the multi-objective solutions offered by the MOEAs in question. The rest of this
paper is organized as follows: Section 2 describes the formulation of the two problems selected for
this study, as well as the set of instances solved during the experimental process. Then, Section 3
provides an overview of the approaches—MOEAs and SOEAs— applied during this study. A detailed
description of the experimental analysis and some underlying results, as well as their discussion,
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are presented in Section 4 Finally, the conclusions and some lines for future work are presented in
Section 5.

2. Problems: Formulation and Instances

This section presents two well-known problems, the Knapsack Problem (KNP) [16] and the
Travelling Salesman Problem (TSP) [17], which we have selected to conduct out experimental study.
For each problem, a formulation involving two objectives is described, as well as the corresponding
set of instances. Note that all instances presented below are bi-objective instances. This means that all
instances have information that allow the calculation of two different objective functions to be carried
out. Anyway, for the single-objective approaches, we can use only one of the objectives and discard
the other, depending on the objective being analyzed at a particular moment.

2.1. The Bi-Objective Knapsack Problem (BOKNP)

We consider the one-dimensional 0/1 knapsack problem with two objectives, where fractional
items are not allowed and each item is available only once. This multi-objective one-dimensional binary
knapsack problem can be defined as follows. Given a set of items J = {1, ..., n}, each with an associated
weight wj ∈ N∗ and a profit ck

j ∈ N0 for each objective k ∈ K = {1, ..., p}, the problem seeks to select
the subset of J whose total weight does not exceed a fixed capacity W ∈ N∗, while simultaneously
maximizing the accumulated profit according to each objective in K. Mathematically, the problem can
be formulated as follows [21]:

max f1(x) ∑n
j=1 c1

j xj
...

...
max fp(x) ∑n

j=1 cp
j xj

subject to ∑n
j=1 wjxj ≤ W, xj ∈ {0, 1}

(1)

Moreover, and without loss of generality, we assume that ck
j ≥ 0 and wj ≤ W : ∀j ∈ {1, ..., n},

∀k ∈ {1, ..., p}. Since, in this work, we are interested in a bi-objective formulation of this problem,
we let p = 2, such that the set K contains two functions ( f1 and f2) to be optimized, K = {1, 2}.

For this bi-objective knapsack problem, we propose using the subset benchmark “MOKP” data
sets available in the MOCOlib project [22]. MOCOlib is a collection of data sets and links for a variety
of multi-objective combinatorial optimization problems. In this collection, we found three different sets
of instances that are suitable for the bi-objective 0/1 unidimensional knapsack problem defined herein.

The data files themselves contain a description of the instances. Table 1 is attached in order
to summarize the main features of the different sets of instances as well as their original references.
Some of the key points for each data set are briefly broken down here:

1. Data set 1A: consists of five data files (instances) for the bi-objective 0/1 unidimensional knapsack
problem. The values for the profits and weights have been uniformly generated. The number
of items in the instances range from 50 to 500. The tightness ratio (Equation (2)) is in the
range [0.11, 0.92].

r = W
∑n

i=1 wi
(2)

2. Data set 1B: consists of 40 data files (instances) corresponding to the 10 bi-objective 0/1
unidimensional knapsack problems. Every instance has a tightness ratio r = 0.5. For each
problem, four variants (class A, B, C and D) are given:

• 1B/A: the weights and profits are uniformly distributed within the range [1, 100].
• 1B/B: these instances are created starting from data set 1B/A by defining the objectives in

reverse order.
• 1B/C: the profits are generated with plateaus of values of length ≤ 0.1 × n.
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• 1B/D: these instances are created starting from data set 1B/C by defining the objectives in
reverse order.

3. Data set 2: consists of 50 data files (instances) that also correspond to the bi-objective 0/1
unidimensional knapsack problem. For each data set the value for W is computed as the nearest
integer value of (P/100)∑n

j=1 wj (where P is a percentage of ∑n
j=1 wj). All these instances have

a tightness ratio r = 0.5. Two types of correlated instances (WEAK and STRONG), as well as
uncorrelated instances (UNCOR) were generated as follows [21]:

• UNCOR: 20 uncorrelated instances of 50 items. The profit vectors c1
j , c2

j and the weight
vector wj are uniformly generated at random in the range [1, 300] for ten items, while for the
remaining ones the range [1, 1000] is considered.

• WEAK: 15 weakly correlated instances ranging in size from 50 to 1000 items, where c1
j is

correlated with c2
j , i.e., c2

j ∈ [111, 1000], and c1
j ∈ [c2

j − 100, c2
j + 100]. The weight values wj

are uniformly generated at random in the range [1, 1000].
• STRONG: 15 strongly correlated instances with the number of items ranging between 50

and 1000. The weights wj are uniformly generated at random and are correlated with c1
j ,

i.e., wj ∈ [1, 1000], and c1
j = wj + 100. The value of c2

j is uniformly generated at random in
the range [1, 1000].

Table 1. Bi-objective KNP instances. The instance number (s), the number of items (n) and tightness
ratio (r) refer to the parameters of the instances.

Set Source Name Parameters

Set 1A Gandibleux and Freville [23] 2KNP50-r n = 50; r ∈ {0.11, 0.50, 0.92}
2KNP100-50 n = 100; r = 0.50
2KNP500-41 n = 500; r = 0.41

Set 1B/A Visée et al. [24] 2KNPn-1A n ∈ {100, 200, 300, 400, 500}; r = 0.5

Set 1B/B,C,D Degoutin and Gandibleux [25] 2KNPn-1B n ∈ {100, 200, 300, 400, 500}; r = 0.5
2KNPn-1C n ∈ {100, 200, 300, 400, 500}; r = 0.5
2KNPn-1D n ∈ {100, 200, 300, 400, 500}; r = 0.5

Set 2 (UNCORR) Captivo et al. [21] F5050Ws s ∈ {01, 02, 03, ..., 10}; n = 50; r = 0.5
K5050Ws s ∈ {01, 02, 03, ..., 10}; n = 50; r = 0.5

Set 2 (WEAK) Captivo et al. [21] W4C50W01 n = 50; r = 0.5
W4100W1 n = 100; r = 0.5
4WnW1 n ∈ {150, 200, ..., 1000}; r = 0.5

Set 2 (STRONG) Captivo et al. [21] S1C50W01 n = 50; r = 0.5
S1nW1 n ∈ {100, 150, 200}; r = 0.5
1SnW1 n ∈ {250, 300, ..., 1000}; r = 0.5

2.2. The Bi-Objective Travelling Salesman Problem (BOTSP)

In this work we consider a generalization of the classical Travelling Salesman Problem (TSP),
which is defined as follows. Given a complete graph—or fully connected network—G = (V, E) with
vertex set V (cities), edge set E (paths between any two cities i, j ∈ {1, ..., n}), and edge values ck

ij with
k ∈ K = {1, ..., p} (objective cost—it could be distance, time, energy, etc.—between city i and city j),
the problem is to find the Hamiltonian path [26] (tour), which is a single and cyclic circuit, along the
edges of G, such that each vertex (city) is visited exactly once and the total tour for each objective
k, defined as the sum of costs ck

ij, is minimized. A more detailed description of this multi-objective
formulation of TSP can be found in [27].

Given a graph G = (V, E), where V = {1, 2, ..., n} and E = {(i, π(i)), i ∈ V}, Πn denotes the set
of all possible permutations of n cities. For a permutation π ∈ Πn, π(i) represents the city that follows
city i on the tour represented by permutation π. A permutation whose graph is a Hamiltonian path is
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called a cyclic permutation. We denote by Πc the set of all cyclic permutations of n cities. Therefore,
a TSP tour can be represented by a permutation π = (π(1), . . . , π(n)) ∈ Πc. Thus, the formulation of
the multi-objective TSP is given by:

min
π∈Πc

n−1

∑
i=1

ck
π(i),π(i+1) + ck

π(n),π(1) k = {1, ..., p} (3)

Since in this work we are interested in multi-objective problems with two optimization objectives,
we have considered the bi-objective TSP formulation. Thus, the general Equation (3) is considered,
in which k = {1, 2}. Figure 1 is provided to better clarify the differences between a single and
a bi-objective formulation of the TSP. Figure 1a illustrates a single-objective formulation of the TSP
where there is only one set of costs (one for each edge), thus defining a single optimization function.
As a result, the single-objective formulation of the TSP consists of a list of n cities and a set of
costs—a single cost for each pair of cities—which are all stored in a cost matrix D with elements cij,
with i, j ∈ {1, ..., n}, and diagonal elements cii = 0. However, Figure 1b shows the differences between
a single and a bi-objective instance of the TSP. As shown in the example, a bi-objective formulation
considers instances with two different costs for each edge: one cost for objective 1 and another for
objective 2. Instead of having a single cost matrix, in a multi-objective formulation, we need to manage
a cost matrix for each objective function considered.

A

B

C D

E
(5)

(6)
(9)(4)

(3)

(5)

(3)

(2
)

(6
)

(2
)
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(b)

Figure 1. Illustration of single and bi-objective TSP graphs. (a) A graph with weights (distances) on its
edges as a single-objective optimization problem. (b) A graph with weights (distances and times) on its
edges as a bi-objective optimization problem.

For this bi-objective formulation of the problem, we need a suitable set of problem instances:
different types, sizes and costs between cities. Two types of instances are selected for the experimental
study that is presented in this work. First, in the Euclidean instances, the costs between edges
correspond to the Euclidean distance between two points on a plane, randomly sampled from
a uniform distribution. Meanwhile, in the clustered instances, the points are randomly clustered
on a plane, and the costs between edges correspond to the Euclidean distance. Then, the bi-objective
instances are obtained by combining a pair of single-objective instances. Table 2 shows the
information for the 19 problem instances of symmetric bi-objective TSPs with 100, 300 and 500
cities (these instances are available at http://www-desir.lip6.fr/~lustt/). These instances have
been used in several related works [28–30], so they have been successfully solved in the literature.
In fact, their exact fronts were already published by K. Florios (optimal fronts are available at
https://sites.google.com/site/kflorios/motsp). More details on the selected instances are given below:

• The TSPLIB Euclidean Instances [31] (files with prefix kro, from the authors Krolak/Felts/Nelson)
consist of 13 instances with two objectives which are generated on the basis of the single-objective

283



Mathematics 2020, 8, 2018

TSP instances from TSPLIB [32] (Library of Traveling Salesman Problems). The TSPLIB is
a library of sample instances for the TSP (and related problems) from various sources and
with different features.

• The DIMACS Clustered Instances [33] (files with prefix clus) are three instances that have been
created using the random instance generator available from the 8th DIMACS implementation
challenge site (the generator is available at http://dimacs.rutgers.edu/archive/Challenges/TSP/
index.html).

• The DIMACS Euclidean Instances [30] (files with prefix eucl) are a set of three instances which
were also generated using the DIMACS code.

Table 2. Bi-objective TSP instances.

Name Origin Type Source Num. of Variables Combinations

clusABn DIMACS Clustered Lust et al. [33] n ∈ {100, 300, 500} clusAn and clusBn

euclABn DIMACS Euclidean Paquete et al. [30] n ∈ {100, 300, 500} euclAn and euclBn

kroABn TSPLIB Euclidean Paquete et al. [30] n ∈ {100, 150, 200, 300, kroAn and kroBn
400, 500, 750, 1000}

kroACn kroAn and kroCn
kroADn kroAn and kroDn
kroBCn TSPLIB Euclidean Paquete et al. [30] n ∈ {100} kroBn and kroCn
kroBDn kroBn and kroDn
kroCDn kroCn and kroDn

3. Optimization Approaches

This section provides a description of all the algorithmic approaches selected, and thus considered
in the experimental study. We also attempt to justify the selection and design decisions made.

3.1. Multi-Objective Evolutionary Algorithms

Evolutionary Multi-Objective Optimization (EMO) [34] is a collection of research, applications
and algorithms in the field of Multi-Objective Optimization (MO) paradigms using Evolutionary
Algorithms (EAs). In the related literature, several Multi-Objective Evolutionary Algorithms (MOEAs)
have been proposed for solving MOPs, and these can be classified based on different features.
A widely accepted classification for MOEAs is one that considers the following families:

• Pareto-dominance-based algorithms use the Pareto dominance relationship, where the partner
of a non-dominated individual is chosen from among the individuals of the population that it
dominates. Some widely known algorithms from this type are: Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [35], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [36] and Pareto
Envelope-based Selection Algorithm II (PESA-II) [37].

• Decomposition-based algorithms transform a MOP into a set of SOPs using scalarizing functions.
The resulting single-objective problems are then solved simultaneously. Some examples of
algorithms that fall under this approach are Multi-Objective Genetic Local Search algorithm
(MOGLS) [38], Cellular Multi-Objective Genetic Algorithm (C-MOGA) [39] and Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D) [40], as well as their many
other variants.

• Indicator-based algorithms use an indicator function to assess the quality of a set of
solutions, combining the degree of convergence and/or the diversity of the objective
function space with a metric. These algorithms attempt to find the best subset of Pareto
non-dominated solutions based on the performance indicator. Their many variants include:
Indicator Based-Selection Evolutionary Algorithm (IBEA) [41], S-Metric Selection Evolutionary
Multi-Objective Optimization Algorithm (SMS-EMOA) [42], Fast Hypervolume Multi-Objective
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Evolutionary Algorithm (FV-MOEA) [43] and Many-Objective Metaheuristic Based on R2
Indicator (MOMBI-II) [44].

The No Free Lunch Theorem in optimization [45] states that any algorithm that searches
for an optimal cost or fitness solution is not universally superior to any other algorithm.
Therefore, for experimental studies, at least one algorithm of each type is usually selected as part
of the state of the art. In this work, we apply a Pareto-dominance-based algorithm (NSGA-II),
a decomposition-based approach (MOEA/D) and an indicator-based algorithm (SMS-EMOA),
which guides the search by means of the hypervolume metric. A brief description of said multi-objective
approaches is provided below:

• NSGA-II [35] is a generational genetic algorithm and is one of the most popular multi-objective
optimization algorithms, having been widely and successfully applied in many real-world
applications. It is one of the first multi-objective algorithms to introduce elitism, i.e., the elites of a
population are given the opportunity to be carried to the next generation. It uses a fast
non-dominated sorting procedure based on Pareto front ranking in an effort to promote
convergence, meaning it emphasizes non-dominated solutions. In addition to the reasons
given above, we have selected this algorithm because it uses an explicit diversity preservation
mechanism (crowding distance).

• MOEA/D [40] is probably the most representative decomposition-based multi-objective algorithm.
It processes a multi-objective problem by decomposing it into a set of single-objective
subproblems and then performing a heuristic search in order to optimize—simultaneously
and cooperatively—said subproblems. Generally, a MOEA needs to maintain diversity in its
population to produce a set of representative solutions. MOEAs, such as NSGA-II, use crowding
distances to maintain diversity. In MOEA/D, a MOP is decomposed into a number of scalar
optimization subproblems. Different solutions in the current population are associated with
different subproblems. The diversity among these subproblems will naturally lead to diversity in
the population [40], which could reinforce the rationale for selecting this algorithm in the context
of this study.

• SMS-EMOA [42] is an indicator-based algorithm that implements a special selection operator that
combines the hypervolume metric with the concept of Pareto dominance. Since the hypervolume
is a measure frequently applied for comparing the results of MOEAs, the underlying idea
is to explicitly manage and maximize the dominated hypervolume within the optimization
process. Hypervolume, which is also used for comparison purposes, measures convergence,
as well as diversity. The SMS-EMOA keeps a population of non-dominated and dominated
individuals at a constant size. Keeping only non-dominated individuals might lead to small
or even single-membered populations, and thus to a crucial loss of diversity. To avoid losing
diversity, defining a lower bound for the population size was suggested in [42]. These are the
reasons that make SMS-EMOA a good candidate for this study, especially to test the effectiveness
of the diversity of this algorithm to improve results in MOPs.

3.2. Single-Objective Evolutionary Algorithms

In the context of SOEAs, some of the most frequently used approaches are Evolution Strategies
(ESs) and Genetic Algorithms (GAs). The main differences between these types of EAs lie in the
calculation of the fitness and the application of operators (mutation, recombination and selection).
In contrast to GAs, where the main role of the mutation operator is simply to avoid the problem of
premature convergence, mutation is the primary operator of ESs. Furthermore, in contrast to GAs,
selection in the case of ESs is absolutely deterministic. For the experimental study conducted in this
work, we considered the following approaches:

• Generational Genetic Algorithm (gGA) [46]: two parents are selected from the population
in order to be crossed, yielding two offspring, which are later mutated and evaluated.
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These newly generated individuals are placed in an auxiliary population that will replace the
current population when it is completely full.

• Steady-State Genetic Algorithm (ssGA) [47]: two parents are selected and crossed,
yielding two offspring that are later crossed. Then one of the resulting offspring is mutated.
The mutated individual is evaluated and then inserted into the population, usually replacing the
worst individual in the population (if the new one is better). Hence, the parents and offspring can
co-exist in the population for the next iteration.

• Elitist Evolution Strategy (μ + λ) (eES) [48]: the elitist feature allows for the best solution
to be always kept. The algorithm starts with a population of size μ. Each generation λ of
mutated individuals is created from the current population. After the generation of the mutated
individuals, there are a total of (μ + λ) individuals, including the parents and the new individuals
generated from them. From these (μ + λ) individuals, the best μ ones are kept—as parents—for
the next generation.

• Non-Elitist Evolution Strategy (μ, λ) (neES) [48]. in this case the best μ mutated individuals
from among the new generated λ are selected as parents for the next generation, i.e., none of the
μ parents survive the next generation, meaning λ ≥ μ must hold.

3.3. Comparison of Single and Multi-Objective Approaches

For the comparison we will use the same set of bi-objective instances for the single-objective and
multi-objective algorithms here considered. Our aim will be to analyze the objectives independently,
i.e., first comparing the values of MOEAs and SOEAs for objective 1 in the whole set of instances
considered, and then, in a similar way, by comparing objective 2. The multi-objective approaches
directly address the bi-objective instances selected for the KNP and the TSP. The above means that they
obtain, at every execution, an extreme—best—value for objective 1, and another extreme—best—value
for objective 2. We note that both values—for the two optimization objectives—are obtained at the
same time, i.e., in one single execution of the algorithm. However, the single-objective approaches
cannot deal with several objectives simultaneously, and therefore, they need to be executed twice:
once to optimize objective 1 and another to optimize objective 2.

During the experimental evaluation we will focus on solution quality when comparing the
different approaches, i.e., we will not perform any analysis on the execution time for each approach.
Due to their stochastic nature, the time complexity analysis of EAs is not an easy task [49].
Many experimental results have been reported on all types of EAs but only a few results have
been proved on a theoretical context [50]. Besides, when the complexity analysis is about MOEAs,
the development of a theoretical study is even more complicated [51]. Since MOEAs implicitly deal
with objectives that are in conflict one with each other, they need to manage a set of trade-off solutions
instead of one single (optimal) solution. When tackling MOPs is necessary to distinguish the quality of
solutions consisting of multiple objective values. In many MOEAs, it is common to use the concepts of
Pareto dominance in order to sort a set of solutions: non-dominated sorting. This sorting procedure
aims to divide a solution set into a number of disjoint subsets or ranks, by means of comparing their
values of the same objective. After the sorting process, solutions in the same rank are viewed equally
important, and solutions in a smaller rank are better than those in a larger rank. Since a wide range
of the existing MOEAs have adopted this sorting strategy, they all involve a high computational
cost [52]. Some studies have shown that in an approach such as NSGA-II applied to a bi-objective
DTLZ1 benchmark problem, the non-dominated sorting consumes more than 70% of the run-time
for a population size of 1000 individuals and a maximum number of generations equal to 500 [52].
In our study, the execution times of the multi-objective approaches range from 5 to 10 times greater in
comparison to the time required by the two executions–one for each objective–of the corresponding
single-objective alternatives. These values depend on the problem (KNP or TSP) and on the instance
type or size. When dealing with many-objective optimization problems (three or more objectives) this
aspect of efficiency becomes even more critical. Bearing the above in mind, some authors have actively
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worked on reducing the number of objective functions by eliminating those that are not essential to
describe the Pareto-optimal front [53].

4. Experimental Results

As noted in previous sections, for the experimental study we considered the bi-objective
KNP and TSP formulations. Moreover, we have described the set of instances that could
be used in the context of these formulations. Regarding the type of approaches to apply,
as mentioned previously, we are interested in evaluating the possibilities offered by a multi-objective
optimization mechanism where we analyze, from the resulting Pareto front, the end points in each
objective independently. The optimization approaches compared herein consist of three MOEAs
(NSGA-II, MOEA/D, and SMS-EMOA) and two single-objective algorithms (gGA and eES). Note that,
initially, we checked the behavior of four single-objective approaches, but two of them (ssGA and neES)
were discarded for the exhaustive study presented here. This is because the results output by these
algorithms were not at all competitive when compared to the single-objective algorithms finally
selected for our comparisons (gGA and eES).

4.1. Parameter Setting

Since our focus is to conduct an experimental comparison between different MOEAs and different
SOEAs, it was necessary to carry out an exhaustive process to adjust and analyze the ideal parameters
for each algorithm. This section provides all the details on the algorithm configurations and the
experimental set-up. It is important to note that all the algorithms were implemented in Java using
the jMetal [54] framework (the source code used in the current work, as well as the results and
graphics extracted from them, can be found through https://github.com/Tomas-Morph/knp-tsp-
journal-mathematic). We also used the irace package [55] to set the automatic parameters in all of the
algorithms implemented. For each problem—KNP and TSP—we defined a common solution encoding
for all the algorithms implemented. We also decided to apply some standard and basic operators for
all the algorithms implemented (and in the same way for all of them). To set the automatic parameters,
a personalized adjustment was made for each approach. The set of configuration parameters that were
automatically tuned—for each algorithm—are as follows:

• Common operator parameters: mutation and crossover probabilities.
• Algorithm parameters: population sizes and other algorithm-specific parameters.
• Other parameters: selection, crossover, and mutation operators. These parameters were

set for each optimization problem, using the same operators for all the single and
multi-objective approaches.

As previously indicated, the parameters listed were automatically tuned using the irace package.
We first ran irace with the set of input parameters described in Table 3. For this initial tuning
process, we selected a subset of representative instances (different type and sizes) for each problem.
The best configuration obtained by this automatic process for each pair problem-algorithm after
training for a few hours is shown in Table 4. Considering these parameter settings and in order
to achieve statistically significant results, a total of 100 independent runs were executed for each
pair (algorithm, problem instance) . In order to statistically support the conclusions, the following
statistical testing procedure, which was used in a previous work by the authors [56], was applied to
compare the results obtained by the different algorithmic schemes. First, a Shapiro–Wilk test was
performed to check whether the values of the results followed a normal (Gaussian) distribution.
If so, the Levene test checked for the homogeneity of the variances. If the samples had equal variance,
an ANOVA test was done; if not, a Welch test was performed. For non-Gaussian distributions,
the non-parametric Kruskal–Wallis test was used. For all the tests, a significance level of α = 0.05
was considered.
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Finally, it is important to note that this study is not intended to offer a comparison of the
best-performing algorithms existing in the related literature; the main goal is to analyze the suitability
of MOEAs for optimizing single-objective problems.

Table 3. Input parameter set for irace auto-configuration.

Input parameter Possible values NSGA MOEA/D SMS-EMOA gGA eES

Crossover probability [0.0, 1.0] � � � �
Mutation probability [0.0, 1.0] � � � � �
Population size {10, 20, 50, 100, 200, 300} � � � � (μ)
Offspring population size {1, 2, 5, 10, 20, 50, 100, 200, 300} � � (λ)
Selection tournament size [2, 10] � � �
Hypervolume offset {10, 20, 50, 100, 200, 500} �
Neighborhood size {10, 20, 50, 100} �
Neighbor select probability [0.0, 1.0] �

Table 4. Parameter settings for each problem-algorithm pair.

Parameter KNP TSP

Encoding Binary strings Permutation of integers
Initial solutions random random
Mutation operator Bit-flip Permutation swap
Crossover operator Single point PMX
Selection Tournament Tournament

NSGA MOEA/D SMS-EMOA gGA eES NSGA MOEA/D SMS-EMOA gGA eES
Crossover probability 0.9784 0.9578 0.9512 0.8795 _ 0.9843 0.9421 0.9754 0.7895 _
Mutation probability 0.0485 0.0578 0.0358 0.0081 0.2239 0.0163 0.0105 0.0093 0.1116 0.3806
Population size 20 200 20 20 1 20 300 20 20 1
Offspring population size 20 _ _ 20 4 20 _ _ 100 2
Tournament size 5 _ 2 2 _ 6 _ 2 4 _
Hypervolume offset _ _ 200 _ _ _ _ 200 _ _
Neighborhood size _ 20 _ _ _ _ 50 _ _ _
Neighbor probability _ 0.8895 _ _ _ _ 0.9354 _ _ _

4.2. Performance

The first set of experiments focused on studying how the algorithms evolved over the course of the
executions. Figures 2 and 3 show the evolution—over the number of evaluations—of the mean fitness
values for both objectives, for the KNP and TSP, respectively. For this set of experiments, the stopping
criterion was set to a large number of function evaluations in order to analyze the convergence of
the different approaches studied. This will allow us to set the stopping criteria for all the approaches
and instances in subsequent experiments. Finally, we note that this preliminary experiment was not
applied to the complete set of instances. Instead, a representative set of instances of different types and
sizes was chosen for this preliminary overview.

For the KNP (see Figure 2), we solved a total of nine instances: three instances of size 50 and
type UNCOR, three instances of different sizes (300, 600, 900) and type WEAK; and finally three
of type STRONG with sizes of 300, 600, and 900. Each set of three instances of the same type
(UNCOR, WEAK, or STRONG) is shown in the same row. For each instance, two graphs are shown;
at the top, the one for objective 1, and the one for objective 2 below it. Note that, in most cases,
the algorithms converge quickly for the initial evaluations. The convergence is only slower for the
last instances, i.e., those that are strongly correlated. In general, we can see that all the algorithms
yield a sharp increase in solution quality in the early generations of the search. We note that, from
approximately 50 · 103 evaluations, the difference in performance remains constant during almost the
entire run; as a result, we used this point as the stopping criterion for the next experiment.

Based on the behavior among the different instances, we can state the following. For the
uncorrelated instances (first two rows; six graphs in total), we note that the SOEAs dominate for
both objectives at all times, although the MOEAs are very close, with a relatively constant difference.
However, for the weakly correlated instances, there is no apparent difference among the approaches,
although the gGA appears to be slightly superior. Finally, for the strongly correlated instances,
we see a clear dominance of the MOEAs for objective 1, with a notable difference between eES and the
remaining approaches.
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Figure 2. KNP evolution of the mean fitness for objectives 1 and 2.
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Figure 3. TSP evolution of the mean fitness for objectives 1 and 2.

For the TSP (see Figure 3), we notice that the size of the instances is directly related to the behavior
of the algorithms: regardless of the type of instance and the objectives, we can differentiate three
types of behaviors. For the small instances (with 100 cities), the SOEAs predominate at the beginning
of the runs, but we see how NSGA-II always achieves better objective values from the middle of

290



Mathematics 2020, 8, 2018

the runs until the end. There is also a noticeable difference in SMS-EMOA, which stagnates from
the beginning and fails to converge in all the small instances. However, in the case of medium-size
instances (with 300 cities), the SMS-EMOA converges rapidly, together with NSGA-II, exhibiting better
performance and surpassing the other algorithms, but only up to 2 · 106 evaluations approximately,
where again SMS-EMOA stagnates and is overtaken by SOEAs, which eventually outperforms the
other algorithms. For large instances (with 500 cities), once more, SMS-EMOA converges very quickly,
in this case accompanied by the other two MOEAs, NSGA-II and MOEA/D, until almost the end of
the runs, by which point the SOEAs manage to catch up to the other algorithms. Finally, as concerns
the convergence and stagnation of the approaches, we have set the stopping criterion of subsequent
experiments to 10 · 106 evaluations, in the case of the TSP.

Since, as we noted, the performance of the MOEAs in the TSP improves with the instance
size—especially for SMS-EMOA—we decided to run the two largest instances in the TSP data set.
These instances have 750 and 1,000 cities. Figure 4 shows that, for both objectives, MOEAs were able
to provide better mean objective values than SOEAs during the entire run. In particular, SMS-EMOA
yields the best results, despite being the algorithm that obtained the worst results in the small instances.
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Figure 4. TSP (large instances) evolution of the mean fitness for objectives 1 and 2.

4.3. Optimization Behavior

Based on the previous results, for this experiment, we selected 50 · 103 and 10 · 106 function
evaluations as the stopping criteria for the KNP and the TSP, respectively. As shown before, since the
solutions stop improving by that point for any of the approaches, we can reduce the computational
effort without losing generality in the analysis to be performed. Moreover, in this second experiment,
we ran the complete set of instances and did the comparison at the end of the executions, once the
corresponding stopping criterion was reached. Note that all the algorithms were executed 100 times.
In order to compare the results obtained by the multi-objective approaches with those achieved by
the single-objective optimizers, we calculated the extreme solutions in the Pareto optimal set, which
correspond to the best solution attained for each objective function.

The results shown in Tables 5 and 6 correspond to the KNP problem, considering objective 1 and
objective 2, respectively. Similarly, the results in Tables 7 and 8 correspond to the TSP. To facilitate
the analysis, the mean and median solution values for each problem-instance-algorithm have been
normalized as relative measures. Such relative solution values are expressed as a percentage with
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respect to the best corresponding solution. For each problem instance we fixed the best solution as
the best value found for a particular objective across the complete set of related executions. For each
instance and objective, we have performed a total of 500 executions (5 algorithms × 100 executions
each). From this total of 500 values, we fixed the best one as our reference to calculate the percentage
of solution quality obtained by each proposal (as shown in the tables). Furthermore, for each instance,
the cells containing the best median results have a gray background. Finally, the last column shows,
for each instance considered, whether statistically significant differences arose when comparing
the best-performing multi-objective approach against the best single-objective method by using the
statistical comparison procedure described at the beginning of this section. The best-performing
schemes are those that exhibit the best mean and median of the objective function for each test case.
If any statistically significant differences exist, i.e., the p-value obtained from the statistical comparison
procedure is lower than the significance level, an ‘S’ if shown if the corresponding single-objective
algorithm provides a better mean and median of the corresponding objective function. If the best mean
and median are provided by the corresponding multi-objective approach, an ‘M’ is shown. Finally, for
those test cases where the two algorithms exhibit no statistically significant differences, a ‘-’ is shown.

Table 5. Results for KNP instances (objective 1).

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median

Set 1/A 2KP100-50 76.1% 76.1% 81.1% 81.6% 77.3% 77.8% 96.1% 96.3% 93.5% 93.6% S
2KP50-11 85.3% 87.5% 89.0% 91.3% 88.9% 88.4% 99.1% 100.0% 96.3% 100.0% S
2KP50-50 83.4% 84.9% 92.0% 93.3% 84.0% 85.1% 97.8% 98.3% 95.4% 97.0% S
2KP50-92 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.7% 100.0% 98.0% 100.0% M
2KP500-41 63.1% 63.4% 63.3% 63.6% 62.4% 62.4% 94.3% 94.4% 88.9% 88.9% S

Set 1/B 2KP100-1A 70.2% 70.9% 78.4% 78.0% 73.4% 73.5% 96.1% 96.5% 90.7% 90.6% S
2KP100-1B 70.1% 70.2% 80.1% 79.8% 72.5% 72.7% 96.7% 96.6% 90.4% 90.8% S
2KP100-1C 82.1% 82.6% 85.4% 85.4% 82.6% 83.3% 96.5% 96.6% 93.1% 93.3% S
2KP100-1D 83.1% 84.4% 88.0% 87.8% 83.8% 84.8% 96.5% 97.0% 93.4% 93.8% S
2KP200-1A 69.6% 70.2% 76.4% 76.6% 71.3% 71.7% 95.7% 95.9% 89.2% 89.6% S
2KP200-1B 70.7% 70.7% 76.7% 76.6% 71.6% 71.8% 96.1% 96.4% 90.2% 90.4% S
2KP200-1C 65.7% 65.9% 77.2% 77.3% 66.6% 67.3% 96.5% 96.4% 91.0% 91.2% S
2KP200-1D 65.2% 65.7% 73.4% 73.7% 67.8% 68.6% 96.4% 96.1% 90.6% 90.8% S
2KP300-1A 68.4% 68.4% 73.1% 73.6% 68.7% 69.1% 95.4% 95.4% 89.7% 90.1% S
2KP300-1B 69.8% 70.3% 73.7% 73.4% 68.8% 68.9% 95.9% 96.0% 90.5% 90.8% S
2KP300-1C 71.1% 71.7% 81.7% 82.2% 71.5% 71.4% 95.2% 95.5% 90.9% 91.2% S
2KP300-1D 80.5% 80.3% 82.2% 82.4% 77.3% 77.4% 95.1% 95.3% 89.9% 90.1% S
2KP400-1A 68.0% 68.2% 69.4% 69.1% 67.3% 67.7% 95.8% 96.1% 87.8% 87.9% S
2KP400-1B 66.2% 65.9% 68.2% 68.0% 66.1% 66.5% 95.5% 95.3% 87.5% 87.4% S
2KP400-1C 65.6% 65.2% 69.6% 69.2% 65.4% 65.1% 97.4% 97.6% 85.3% 85.8% S
2KP400-1D 55.6% 55.7% 59.2% 59.8% 56.3% 56.4% 96.9% 96.9% 87.1% 87.0% S
2KP500-1A 63.9% 64.4% 67.2% 66.8% 63.3% 63.5% 93.4% 93.7% 85.4% 85.4% S
2KP500-1B 64.0% 63.8% 66.8% 66.6% 62.7% 62.4% 94.1% 94.2% 86.6% 87.0% S
2KP500-1C 75.8% 75.9% 81.4% 81.7% 74.4% 74.7% 95.2% 95.1% 88.3% 88.5% S
2KP500-1D 72.3% 72.7% 71.3% 71.4% 69.3% 69.7% 95.0% 94.9% 88.8% 88.3% S

Set 2/UNCOR F5050W01 82.9% 84.0% 90.7% 91.9% 80.7% 83.3% 96.9% 97.7% 94.0% 93.7% S
F5050W02 90.4% 90.9% 94.8% 94.8% 86.3% 87.0% 99.0% 99.3% 97.2% 98.2% S
F5050W03 89.4% 90.0% 95.6% 96.4% 84.2% 82.2% 99.5% 100.0% 97.9% 100.0% S
F5050W04 94.1% 95.3% 96.1% 95.3% 89.4% 92.4% 98.8% 99.5% 97.2% 98.8% S
F5050W05 86.2% 84.6% 91.1% 93.4% 85.1% 84.6% 98.6% 100.0% 95.2% 94.2% S
F5050W06 87.9% 88.1% 93.1% 92.6% 84.7% 85.7% 97.1% 97.0% 93.8% 93.8% S
F5050W07 88.6% 89.9% 93.8% 94.9% 86.7% 87.8% 99.1% 99.7% 97.9% 97.9% S
F5050W08 90.0% 91.8% 94.0% 94.2% 83.7% 83.9% 98.6% 99.3% 94.9% 97.4% S
F5050W09 97.2% 98.9% 98.8% 99.2% 95.5% 96.5% 99.0% 99.5% 98.8% 99.5% S
F5050W10 93.3% 94.6% 97.2% 98.6% 90.2% 89.9% 98.8% 100.0% 97.4% 100.0% S
K5050W01 87.0% 88.2% 92.0% 93.9% 80.3% 82.1% 95.5% 94.4% 92.6% 93.9% S
K5050W02 88.0% 88.1% 91.6% 93.1% 83.5% 84.1% 98.6% 99.2% 95.0% 95.5% S
K5050W03 96.3% 97.9% 97.7% 98.5% 94.4% 94.4% 99.1% 99.0% 96.7% 97.9% S
K5050W04 92.4% 93.0% 95.9% 97.4% 86.5% 86.5% 99.5% 99.7% 97.0% 99.1% S
K5050W05 79.8% 79.9% 89.2% 88.1% 76.7% 76.8% 98.7% 100.0% 93.5% 91.5% S
K5050W06 87.4% 87.0% 93.5% 93.7% 83.5% 84.3% 97.5% 97.0% 96.2% 96.0% S
K5050W07 84.6% 85.3% 92.5% 94.1% 79.0% 80.3% 98.8% 98.9% 97.6% 98.4% S
K5050W08 93.0% 91.3% 93.9% 94.3% 89.7% 90.9% 96.6% 97.2% 95.3% 97.2% S
K5050W09 91.3% 91.6% 94.4% 94.2% 85.8% 87.8% 98.6% 99.4% 96.1% 96.1% S
K5050W10 87.8% 87.6% 95.2% 95.6% 81.5% 82.5% 97.9% 97.8% 97.4% 97.4% S
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Table 5. Cont.

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median

Set 2/WEAK 4W150W1 98.2% 98.3% 98.2% 98.3% 98.1% 98.1% 98.5% 98.5% 97.8% 97.8% S
4W1W1 94.1% 94.1% 96.3% 96.5% 95.2% 95.3% 97.7% 97.7% 93.8% 93.9% S

4W200W1 97.8% 97.9% 97.7% 97.7% 97.7% 97.7% 98.1% 98.2% 96.9% 97.1% -
4W250W1 90.9% 90.6% 91.1% 91.5% 89.6% 89.7% 92.9% 92.9% 88.1% 88.3% S
4W300W1 92.7% 92.7% 93.9% 94.1% 91.7% 92.1% 95.3% 94.9% 89.9% 90.1% S
4W350W1 91.9% 92.0% 93.2% 93.0% 91.4% 91.5% 95.8% 96.1% 90.0% 90.2% S
4W400W1 92.0% 92.1% 93.6% 94.2% 91.9% 91.8% 96.5% 96.8% 89.2% 88.8% S
4W450W1 88.0% 88.1% 90.1% 90.0% 88.2% 88.2% 93.2% 93.5% 85.9% 85.8% S
4W500W1 88.9% 88.9% 91.3% 91.8% 89.4% 89.5% 95.0% 95.3% 87.2% 87.5% S
4W600W1 86.5% 86.9% 89.9% 89.8% 87.5% 87.5% 93.3% 93.2% 84.5% 84.1% S
4W700W1 84.0% 84.0% 87.2% 87.3% 85.7% 85.8% 91.3% 91.5% 81.5% 81.7% S
4W800W1 84.9% 84.7% 89.7% 89.7% 87.4% 87.9% 93.6% 93.8% 83.6% 83.6% S
4W900W1 83.3% 83.5% 89.3% 89.4% 86.9% 86.9% 93.0% 93.4% 83.1% 83.2% S
W4100W1 94.2% 94.5% 94.4% 94.8% 93.5% 93.7% 94.7% 95.0% 92.2% 92.6% -

W4C50W01 98.9% 98.8% 99.1% 98.8% 98.7% 98.8% 99.7% 100.0% 98.9% 98.8% S

Set 2/STRONG 1S1W1 84.9% 85.2% 77.2% 76.3% 78.4% 77.8% 66.7% 66.9% 18.8% 18.5% M
1S250W1 88.1% 88.8% 86.0% 85.5% 79.9% 80.7% 76.4% 77.6% 27.6% 27.1% M
1S300W1 87.3% 88.3% 85.9% 85.7% 79.5% 79.4% 78.3% 78.8% 32.7% 31.4% M
1S350W1 85.0% 85.2% 81.7% 82.4% 78.1% 78.2% 70.8% 70.6% 16.7% 17.9% M
1S400W1 88.6% 88.1% 86.2% 85.7% 79.0% 79.8% 72.2% 73.2% 21.0% 19.6% M
1S450W1 86.3% 85.8% 83.9% 85.5% 78.4% 79.5% 69.9% 68.9% 19.4% 18.7% M
1S500W1 87.8% 87.6% 85.5% 85.4% 79.6% 80.8% 71.8% 71.6% 21.9% 22.2% M
1S600W1 87.3% 87.5% 85.0% 84.3% 80.3% 80.6% 73.0% 73.1% 21.1% 20.6% M
1S700W1 84.9% 85.0% 82.6% 82.7% 77.3% 77.6% 70.2% 70.3% 19.9% 20.2% M
1S800W1 86.5% 86.3% 80.8% 81.5% 79.4% 80.5% 69.0% 69.6% 14.0% 13.1% M
1S900W1 82.9% 83.0% 79.3% 80.8% 75.3% 76.7% 66.4% 66.9% 17.6% 17.4% M
S1100W1 82.5% 86.7% 80.3% 80.4% 76.1% 75.5% 77.9% 75.6% 44.6% 50.5% M
S1150W1 82.5% 82.0% 82.5% 82.0% 75.6% 73.0% 74.0% 73.0% 26.3% 27.5% M
S1200W1 84.5% 85.7% 81.5% 80.7% 76.8% 75.7% 72.1% 70.6% 30.4% 30.1% M

S1C50W01 67.9% 74.4% 62.4% 51.4% 60.3% 51.4% 62.9% 70.5% 29.8% 26.3% M

Table 6. Results for KNP instances (objective 2).

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median

Set 1A 2KP100-50 76.4% 77.2% 86.6% 87.4% 79.5% 80.4% 97.0% 97.1% 95.1% 95.5% S
2KP50-11 81.8% 84.7% 82.2% 86.4% 88.6% 90.4% 98.5% 100.0% 93.7% 100.0% S
2KP50-50 85.9% 86.6% 90.9% 90.9% 87.3% 88.3% 97.3% 97.7% 94.1% 93.9% S
2KP50-92 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.6% 100.0% 98.1% 100.0% M

2KP500-41 63.4% 64.2% 57.1% 57.2% 61.3% 61.9% 97.2% 97.3% 91.6% 91.9% S

Set 1B 2KP100-1A 74.6% 74.9% 84.2% 84.8% 75.3% 75.8% 97.1% 97.4% 92.5% 93.6% S
2KP100-1B 74.3% 75.1% 83.4% 83.4% 77.0% 77.7% 97.3% 97.7% 93.1% 93.5% S
2KP100-1C 82.2% 82.3% 86.9% 86.5% 82.7% 82.1% 97.4% 97.9% 94.1% 94.3% S
2KP100-1D 76.4% 76.5% 81.3% 81.5% 76.8% 77.0% 96.4% 96.4% 92.0% 92.3% S
2KP200-1A 69.9% 70.3% 77.1% 76.5% 70.0% 70.5% 96.4% 96.5% 91.7% 91.6% S
2KP200-1B 69.8% 70.5% 75.9% 76.3% 70.4% 70.6% 96.7% 97.0% 91.0% 91.2% S
2KP200-1C 60.9% 61.1% 65.3% 65.4% 63.3% 63.4% 97.4% 97.4% 89.5% 89.8% S
2KP200-1D 63.6% 63.8% 71.4% 71.0% 64.1% 63.8% 96.8% 96.9% 90.3% 90.4% S
2KP300-1A 67.1% 67.2% 71.2% 71.5% 66.8% 66.7% 95.6% 95.6% 89.0% 88.5% S
2KP300-1B 68.5% 68.8% 73.0% 73.1% 68.3% 68.6% 96.6% 96.5% 90.8% 90.9% S
2KP300-1C 67.1% 67.3% 64.5% 64.4% 66.8% 66.0% 96.4% 96.4% 87.1% 87.0% S
2KP300-1D 82.9% 83.1% 84.7% 84.8% 80.7% 80.5% 96.7% 97.0% 92.2% 92.6% S
2KP400-1A 66.2% 66.7% 73.3% 73.4% 66.1% 66.1% 94.8% 94.8% 88.6% 88.5% S
2KP400-1B 67.6% 67.9% 73.7% 73.8% 66.7% 67.4% 94.6% 94.6% 89.3% 89.8% S
2KP400-1C 69.2% 69.3% 73.6% 73.6% 67.8% 68.1% 96.2% 96.1% 88.9% 88.9% S
2KP400-1D 54.4% 54.2% 58.3% 58.3% 54.4% 54.1% 97.3% 97.3% 86.7% 86.4% S
2KP500-1A 67.0% 66.8% 70.7% 70.6% 66.3% 66.2% 97.2% 97.6% 88.5% 88.6% S
2KP500-1B 65.1% 65.6% 69.2% 68.7% 64.5% 64.0% 95.0% 94.9% 86.9% 87.0% S
2KP500-1C 72.1% 72.1% 70.0% 70.7% 70.1% 70.7% 96.1% 96.0% 86.2% 85.6% S
2KP500-1D 71.7% 71.9% 72.5% 72.4% 70.0% 69.9% 94.0% 94.3% 87.3% 87.2% S

set 2/UNCOR F5050W01 86.9% 87.8% 93.4% 93.5% 82.7% 83.4% 97.2% 98.0% 95.3% 95.9% S
F5050W02 89.1% 89.5% 93.7% 94.0% 85.1% 86.2% 97.7% 98.9% 93.1% 92.8% S
F5050W03 88.6% 89.1% 95.0% 94.7% 86.6% 87.2% 98.1% 100.0% 95.8% 95.1% S
F5050W04 84.7% 85.2% 89.9% 90.5% 82.8% 83.9% 94.6% 94.5% 91.8% 91.9% S
F5050W05 91.8% 91.7% 96.2% 98.7% 84.1% 86.7% 98.7% 99.0% 97.4% 98.7% S
F5050W06 88.0% 88.6% 90.8% 91.2% 86.5% 86.7% 98.4% 100.0% 93.8% 94.4% S
F5050W07 91.4% 91.7% 98.6% 99.9% 89.6% 91.3% 99.7% 100.0% 99.3% 99.9% S
F5050W08 93.4% 94.7% 96.8% 97.4% 91.9% 93.9% 98.6% 98.9% 97.1% 97.7% S
F5050W09 94.9% 95.4% 98.2% 98.6% 93.0% 94.3% 98.4% 99.5% 97.0% 97.1% -
F5050W10 90.0% 90.6% 92.4% 91.0% 88.1% 89.8% 98.0% 99.3% 94.3% 93.1% S
K5050W01 87.0% 86.0% 92.9% 93.4% 84.7% 85.8% 97.3% 97.1% 95.0% 96.1% S
K5050W02 91.0% 89.3% 95.3% 100.0% 87.3% 87.2% 98.1% 100.0% 96.1% 96.0% S
K5050W03 89.9% 91.0% 92.6% 91.1% 86.3% 86.7% 98.1% 99.6% 93.0% 92.9% S
K5050W04 85.7% 87.2% 93.7% 93.8% 83.3% 84.7% 98.7% 98.9% 96.8% 99.3% S
K5050W05 87.0% 87.3% 93.7% 94.7% 84.5% 84.4% 98.8% 99.2% 97.2% 98.1% S
K5050W06 90.5% 91.3% 94.2% 93.5% 88.1% 88.5% 97.1% 99.8% 91.8% 92.1% S
K5050W07 84.2% 85.6% 91.9% 92.3% 81.4% 82.9% 97.7% 98.5% 95.6% 94.6% S
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Table 6. Cont.

Problem
Multi-Objective Single-Objective Test

NSGAII MOEA/D SMSEMOA GA ES

Mean Median Mean Median Mean Median Mean Median Mean Median

K5050W08 94.1% 94.3% 96.8% 97.0% 92.3% 93.5% 97.8% 97.8% 95.3% 96.1% S
K5050W09 90.2% 91.7% 95.2% 98.7% 85.1% 86.7% 99.6% 100.0% 97.7% 99.9% S
K5050W10 81.1% 80.8% 87.4% 87.5% 78.2% 79.0% 97.5% 97.5% 95.1% 96.1% S

set 2/WEAK 4W150W1 95.5% 95.6% 95.7% 96.0% 94.9% 95.2% 96.1% 96.6% 93.4% 93.5% -
4W1W1 86.5% 86.4% 93.1% 93.5% 89.6% 90.0% 94.5% 94.7% 85.7% 85.9% S

4W200W1 93.6% 93.9% 93.4% 93.8% 93.3% 93.6% 93.8% 94.2% 89.9% 89.9% -
4W250W1 91.9% 91.9% 92.4% 92.3% 90.6% 90.7% 93.2% 93.3% 89.2% 89.6% S
4W300W1 93.6% 93.5% 94.6% 94.4% 92.1% 92.1% 95.3% 95.4% 91.4% 91.2% -
4W350W1 93.3% 93.7% 94.4% 94.4% 92.7% 92.4% 96.2% 96.5% 90.9% 90.9% S
4W400W1 90.8% 91.4% 92.5% 92.4% 90.7% 90.3% 94.0% 94.3% 88.4% 88.4% S
4W450W1 89.8% 89.9% 92.0% 92.0% 90.0% 90.3% 94.2% 94.2% 87.2% 87.5% S
4W500W1 90.9% 90.5% 93.2% 93.9% 91.1% 90.6% 95.9% 96.1% 88.4% 88.8% S
4W600W1 89.0% 89.2% 92.6% 92.5% 90.1% 90.1% 95.2% 95.2% 87.3% 87.5% S
4W700W1 88.3% 88.6% 92.1% 92.2% 90.5% 90.3% 95.0% 95.4% 86.2% 86.0% S
4W800W1 87.8% 87.8% 92.8% 93.1% 90.2% 90.1% 95.7% 95.8% 86.6% 86.9% S
4W900W1 83.0% 83.2% 89.2% 89.1% 86.5% 86.5% 91.7% 91.7% 82.8% 83.3% S
W4100W1 95.5% 96.1% 95.7% 96.2% 94.9% 95.1% 95.7% 96.0% 93.8% 94.0% -

W4C50W01 98.6% 98.3% 98.7% 98.3% 98.7% 100.0% 99.2% 100.0% 98.5% 100.0% S

set 2/STRONG 1S1W1 48.4% 48.4% 30.6% 29.8% 41.0% 41.4% 96.4% 96.5% 86.6% 86.8% S
1S250W1 68.4% 68.7% 52.0% 52.4% 54.2% 55.2% 95.1% 95.1% 86.9% 87.0% S
1S300W1 65.1% 66.7% 52.8% 52.2% 49.6% 50.5% 94.6% 94.9% 86.3% 86.6% S
1S350W1 62.1% 63.4% 47.2% 47.1% 47.3% 47.5% 95.1% 95.1% 87.0% 87.0% S
1S400W1 66.9% 66.7% 56.6% 57.5% 54.4% 54.4% 94.5% 94.6% 87.2% 87.1% S
1S450W1 61.3% 61.2% 48.8% 49.0% 47.8% 47.9% 95.2% 95.3% 86.6% 86.3% S
1S500W1 54.0% 54.2% 39.6% 38.9% 41.2% 41.3% 94.2% 94.0% 84.7% 84.9% S
1S600W1 54.9% 55.6% 40.1% 40.7% 42.6% 43.1% 95.0% 95.1% 85.4% 85.1% S
1S700W1 58.7% 59.4% 48.2% 47.8% 50.7% 51.6% 95.9% 95.9% 87.4% 87.5% S
1S800W1 53.0% 52.5% 38.1% 36.6% 44.6% 44.7% 95.9% 96.1% 86.4% 86.1% S
1S900W1 50.8% 50.9% 35.5% 34.2% 40.7% 40.8% 95.4% 95.5% 85.4% 85.7% S
S1100W1 76.0% 76.3% 68.3% 68.5% 64.5% 66.5% 94.2% 94.5% 85.9% 86.5% S
S1150W1 78.3% 79.7% 70.7% 72.7% 65.6% 67.0% 95.8% 96.1% 91.2% 92.0% S
S1200W1 67.7% 68.5% 56.9% 59.5% 51.7% 52.1% 92.5% 92.6% 85.9% 86.4% S

S1C50W01 84.8% 87.3% 81.6% 81.8% 79.6% 82.6% 92.5% 92.6% 87.9% 90.9% S

In the case of the KNP, we see that, in most test cases, the SOEAs obtain the best results, especially
gGA, for both objective functions (see Tables 5 and 6). In fact, for those cases, gGA is statistically
superior to the corresponding multi-objective algorithms. However, the results of the best-performing
MOEAs are very close to those obtained by the best-performing SOEAs. Particularly, we should note the
behavior of NSGA-II when optimizing objective 1 of the strongly correlated instances Set2/STRONG
(see Table 5). NSGA-II not only provides the best solutions, but it is also statistically superior to gGA
in all instances belonging to that group. For those instances, NSGA-II is followed by MOEA/D and
SMS-EMOA in the ranking.

With regard to objective 1, Figure 5 shows more information on this ranking, and also that gGA is
close to the SMS-EMOA but never exceeds it, ranking fourth. We see that eES is ranked last, well behind
the remaining algorithms. In general, for objective 1, the SOEAs are statistically superior in 79% of the
instances, the MOEAs in 19%, while in 2% of the instances, the algorithms did not exhibit statistically
significant differences between the two approaches. Table 5 also shows that MOEA/D ranks second,
with 38%, surpassing the eES in these cases. Table 6 shows the KNP results for objective 2, where we
can see that gGA again yielded the best results in 93% of the instances, 1% for MOEAs, while 6%
present no statistically significant differences.

In this case, eES swapped the second position in the ranking with MOEA/D (for the Set2/UNCOR
and Set2/WEAK instances), where MOEA/D ranks second in 27% of the cases. As a result, we can
conclude that, when dealing with strongly correlated instances of the KNP, NSGA-II provides the best
results, and in fact has to be executed only once, rather than the multiple executions required with
a single-objective approach, like gGA, which would have to be executed twice, one run per objective
function being optimized. The above would result in significant savings in terms of the computational
resources required to solve this type of instance.
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Figure 5. Boxplots showing the results for the KNP (strongly correlated instances) achieved by the
different single-objective and multi-objective approaches at the end of 100 repetitions of the runs.
Some instances were omitted because of space restrictions. However, all graphics can be found in the
repository associated with this paper.
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Table 7. Results for TSP instances (objective 1).

Problem
Multi-Objective Single-Objective Test

NSGA-II MOEA/D SMS-EMOA gGA eES

Mean Median Mean Median Mean Median Mean Median Mean Median

clusAB100 71.3% 72.0% 59.7% 60.3% 22.5% 20.8% 65.6% 67.3% 62.2% 61.2% M
clusAB300 64.3% 64.5% 56.4% 55.7% 31.2% 32.0% 64.8% 66.2% 63.0% 63.9% -
clusAB500 62.1% 62.5% 66.2% 68.5% 71.2% 72.9% 31.7% 31.2% 29.5% 30.3% M
euclAB100 83.2% 82.5% 77.2% 77.2% 29.2% 29.3% 82.6% 82.8% 81.8% 82.45% -
euclAB300 72.2% 72.3% 68.8% 68.8% 29.8% 30.8% 79.2% 79.2% 78.3% 78.6% S
euclAB500 72.7% 72.7% 74.0% 73.2% 61.9% 63.3% 42.5% 43.8% 45.7% 45.7% M
kroAB100 83.1% 83.9% 71.2% 71.1% 27.3% 26.5% 79.0% 78.3% 77.7% 79.1% M
kroAB1000 69.3% 69.4% 74.3% 74.7% 93.0% 92.7% 11.8% 11.7% 10.9% 10.9% M
kroAB150 72.7% 73.1% 61.9% 61.6% 20.7% 20.5% 79.1% 80.2% 77.7% 78.2% S
kroAB200 67.3% 68.8% 58.5% 57.7% 21.9% 22.1% 77.9% 77.2% 78.6% 79.4% S
kroAB300 69.9% 70.3% 65.2% 64.9% 30.4% 28.6% 76.8% 77.5% 77.6% 79.0% S
kroAB400 73.7% 73.5% 64.4% 65.0% 39.1% 39.6% 58.2% 57.4% 59.2% 58.4% M
kroAB500 68.8% 68.4% 68.8% 67.8% 62.8% 63.5% 38.0% 37.8% 38.1% 39.2% M
kroAB750 67.2% 67.4% 71.7% 71.7% 84.7% 85.4% 19.9% 19.9% 18.8% 18.3% M
kroAC100 82.6% 83.1% 74.8% 75.4% 31.6% 31.6% 80.1% 79.4% 78.9% 80.2% M
kroAD100 80.9% 81.0% 72.6% 73.1% 27.4% 25.8% 77.0% 76.4% 75.8% 77.1% M
kroBC100 81.1% 81.3% 74.2% 73.9% 31.6% 32.3% 77.9% 77.2% 77.1% 76.1% M
kroBD100 80.8% 81.1% 71.7% 72.9% 26.9% 27.1% 76.5% 75.7% 75.6% 74.6% M
kroCD100 79.4% 79.9% 70.1% 71.8% 28.0% 29.0% 74.5% 73.9% 76.3% 76.9% M

Table 8. Results for TSP instances (objective 2).

Problem

Multi-Objective Single-Objective Test

NSGA-II MOEA/D SMS-EMOA gGA eES

Mean Median Mean Median Mean Median Mean Median Mean Median

clusAB100 78.3% 79.0% 69.7% 69.3% 31.6% 33.5% 70.9% 71.1% 70.1% 71.9% M
clusAB300 61.7% 61.5% 54.4% 55.4% 27.0% 24.4% 63.9% 64.9% 61.6% 62.4% -
clusAB500 68.2% 68.8% 69.4% 69.6% 72.8% 73.6% 38.5% 37.7% 38.2% 38.4% M
euclAB100 84.3% 84.0% 76.4% 75.6% 28.3% 29.7% 81.4% 81.5% 80.0% 81.3% M
euclAB300 71.2% 72.3% 63.1% 62.5% 23.0% 23.6% 79.5% 80.2% 76.1% 76.7% S
euclAB500 67.3% 67.1% 67.7% 67.1% 58.1% 58.2% 32.9% 33.2% 33.1% 33.3% M
kroAB100 81.6% 82.3% 72.0% 73.6% 24.5% 23.9% 77.2% 76.5% 76.3% 75.3% M
kroAB1000 67.4% 67.2% 72.6% 72.0% 91.7% 91.4% 11.1% 11.2% 10.0% 10.0% M
kroAB150 74.7% 74.8% 66.5% 66.2% 24.5% 25.0% 78.5% 79.4% 77.4% 78.7% S
kroAB200 72.2% 72.2% 63.9% 64.0% 24.1% 24.6% 81.8% 82.0% 80.9% 81.2% S
kroAB300 71.5% 71.7% 65.3% 65.5% 31.6% 31.9% 75.1% 74.2% 76.0% 77.0% S
kroAB400 70.2% 69.5% 66.9% 67.7% 43.0% 41.5% 62.3% 61.0% 60.7% 60.1% M
kroAB500 65.2% 66.1% 64.1% 64.1% 54.6% 53.0% 30.9% 33.1% 28.8% 29.8% M
kroAB750 65.9% 66.2% 70.6% 70.8% 85.3% 85.1% 16.8% 16.9% 16.6% 16.3% M
kroAC100 76.6% 77.0% 65.5% 66.0% 21.2% 20.0% 71.1% 70.6% 73.0% 73.6% M
kroAD100 81.2% 81.6% 69.3% 70.0% 21.8% 21.7% 76.4% 76.2% 72.3% 73.5% M
kroBC100 83.0% 83.0% 74.4% 75.0% 29.6% 29.0% 77.3% 76.7% 79.0% 79.6% M
kroBD100 79.1% 79.6% 72.3% 74.3% 20.0% 19.7% 77.4% 77.1% 72.9% 74.2% -
kroCD100 82.3% 82.8% 72.6% 73.4% 28.7% 28.9% 75.3% 74.7% 77.1% 77.7% M

Regarding the TSP, the results for objective 1 (Table 7) and objective 2 (Table 8), show hardly
any differences. In both cases, NSGA-II was the best-performing approach, not only considering
almost all small instances, but also some large ones. Furthermore, in those cases where NSGA-II was
superior, the differences were statistically significant compared the corresponding best-performing
single-objective approach. As in the case of the strongly correlated instances of the KNP, for those
particular instances of the TSP, it is better to run a multi-objective approach, such as NSGA-II,
instead of running a single-objective algorithm. As a first approach, decision makers usually tend
to perform a transformation of a multi-objective problem into a single-objective one, in the case they
are interested in a particular objective of a multi-objective problem. The said transformation is carried
out either by performing a scalarization of the different objective functions or by redefining objective
functions as constraints. Bearing the above in mind, although practitioners are only focused on one
of the objective functions of a multi-objective problem, the quality of the solutions attained by the
direct application of a multi-objective optimizer could be higher in comparison to the quality of
the solutions achieved by a single-objective algorithm executed for each of the objective functions
independently. As a result, from the practical point of view, the application of a multi-objective solver
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to a multi-objective problem could be a much better option rather than performing a transformation of
the multi-objective problem into a single-objective one to solve it through a single-objective approach.

Finally, we note that for most instances with a size between 150 and 300, MOEAs are dominated
by SOEAs. In larger instances, the SMS-EMOA tends to be superior to the other approaches. In general,
and considering both objective functions, the MOEAs are statistically superior in 69% of the instances,
SOEAs in 21%, while 10% exhibit no statistically significant differences, with the NSGA-II being the
best-ranked algorithm, followed by gGA, and finally by SMS-EMOA, eES, and MOEA/D. Moreover, if
we consider how MOEAs behave with the TSP problem, we see that for problem instances with sizes
of 100, 300, 500, 750 and 1000 (see Figures 3 and 4, Tables 6 and 7), MOEAs—especially SMS-EMOA—
can perform better than SOEAs as the size of the instances increases. Figure 6 provides more statistical
information. For example, note the significant difference in the behavior of SMS-EMOA between small
and large instances.
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Figure 6. Cont.
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Figure 6. Boxplots showing the results for the TSP achieved by the different single-objective and
multi-objective approaches at the end of 100 repetitions of the runs. Some instances were omitted
because of space restrictions. However, all graphics can be found in the repository associated with
this paper.

5. Conclusions

In this work, we have studied the assessment of multi-objective optimization approaches when
trying to optimize single-objective problems. From our point of view, it is interesting to analyze the
differences between the solutions provided by these multi-objective techniques (when considering each
objective value separately) and those reached by algorithms that are specifically designed to optimize
single and independent objectives. For this reason, in this paper, we presented a comparative study
between Multi-Objective Evolutionary Algorithms and Single-Objective Evolutionary Algorithms.
For the experimental analysis, we focused on two well-known and widely studied optimization
problems: the Knapsack Problem and the Travelling Salesman Problem. We considered bi-objective
formulations of the aforementioned problems. These bi-objective optimization problems were
directly—in a single run—processed using the multi-objective approaches, thus yielding a Pareto front,
from which we only are interested in two values: the point optimizing objective 1 and, separately,
the point optimizing objective 2. Meanwhile, the single-objective approaches must be executed twice:
once to optimize objective 1, defined in the bi-objective formulation of the problem, and again to
optimize objective 2.

The computational study carried out allows us to conclude that although MOEAs have to deal
with several objectives simultaneously, in some cases they have proven to be more effective than
single-objective approaches. In particular, the multi-objective approaches exhibited better behavior
when dealing with larger instances or with instances where the objectives are strongly correlated.
For those specific cases, the direct application of a multi-objective solver to a multi-objective problem is
a better choice in comparison to the transformation of the multi-objective problem into a single-objective
one to be solved by means of a single-objective algorithm. This conclusion can be explained by the
intrinsic capacity of MOEAs to maintain diversity within a population. MOEAs need conflicting
objectives and more time to converge, thus performing a larger exploration of the solution space.
The more negatively correlated the objectives, the more they conflict one with each other. Otherwise,
if we consider a context with non-conflicting objective functions, the Pareto front converges to a single
point. Hence, in these cases, it is better to address the problem by optimizing independently each of
the objective functions through a single-objective algorithm.

Considering the above, in the future, further evaluations should be done with
a more—representative and independent— set of problems and instances. We could thus further
investigate the key factors influencing the improvement of MOEA approaches to single-objective
environments. Since the design of MOEAs allows each objective to have a helper-objective effect on
the other objective, this property can provide more freedom to maintain the diversity of individuals
within a population. Such a feature is not present under the single-objective approaches.
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It is important to note that what is sought is useful diversity. A greater diversity does not
necessarily imply a proper balance between exploration and exploitation, so a high diversity might be
counterproductive. In this work, we did not employ a suitable diversity management strategy because
our intention was to study the intrinsic capacity of MOEAs to maintain diversity and to analyze how
effective these approaches are in single-objective optimization. However, after this initial analysis,
it would be worthwhile to design new experiments were the intrinsic and specific features of MOEAs
could be evaluated separately in some way.
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Abstract: Coverage-based Greybox Fuzzing (CGF) is a practical and effective solution for finding
bugs and vulnerabilities in software. A key challenge of CGF is how to select conducive seeds and
allocate accurate energy. To address this problem, we propose a novel many-objective optimization
solution, MooFuzz, which can identify different states of the seed pool and continuously gather
different information about seeds to guide seed schedule and energy allocation. First, MooFuzz
conducts risk marking in dangerous positions of the source code. Second, it can automatically
update the collected information, including the path risk, the path frequency, and the mutation
information. Next, MooFuzz classifies seed pool into three states and adopts different objectives
to select seeds. Finally, we design an energy recovery mechanism to monitor energy usage in the
fuzzing process and reduce energy consumption. We implement our fuzzing framework and evaluate
it on seven real-world programs. The experimental results show that MooFuzz outperforms other
state-of-the-art fuzzers, including AFL, AFLFast, FairFuzz, and PerfFuzz, in terms of path discovery
and bug detection.

Keywords: seed schedule; many-objective optimization; fuzzing; bug detection; path discovery

1. Introduction

Fuzzing is a popular and effective software testing technology for detecting bugs
and vulnerabilities. In the past few years, it has gained widespread usage in mainstream
software companies (such as Google [1–3], Microsoft [4], and Adobe [5]) and has found
thousands of vulnerabilities.

Coverage-based Greybox Fuzzing (CGF) [6,7] is one of the most popular methods of
fuzzing. It is based on the guidance that increasing code coverage usually leads to better
crash detection. By using lightweight instrumentation, CGF automatically generates a large
number of inputs to feed target programs, and continuously collects coverage information
as feedback to guide fuzzing.

Inspired by the impressive achievements of CGF, many researchers have conducted
studies and developed their own fuzzers from different perspectives [8–10]. AFLFast [11]
assigns more energy to the low-frequency paths based on the Markov chain model.
AFLGo [12], a directed grey-box fuzzer, is implemented to generate inputs to reach given
sets of target program locations. FairFuzz [13] identifies rare branches in the program
and adjusts mutation strategies to increase coverage. MOPT [14] leverages a mutation
schedule based on particle swarm optimization (PSO) to accelerate the convergence speed.
EcoFuzz [15] improves the power schedule for discovering new paths using a variant of
the adversarial multi-armed bandit model. PerfFuzz [16] generates pathological inputs to
detect algorithm complexity vulnerabilities. MemLock [17] utilizes memory consumption
information to guide seed selection to trigger the weakness of memory corruption.

However, most previous approaches mainly leverage a single selection criterion to
select seeds. While these approaches are simple and easy to use in solving specific problems,
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they are still inadequate to reach effective coverage and detect bugs within a reasonable
amount of time. Cerebro [18] uses many objectives as the seed selection criteria, but it
cannot dynamically adjust the seed selection strategy according to the fuzzing process.
As a result, much useful information is ignored, affecting the discovery of bugs and paths.

In this paper, we propose a many-objective optimization seed schedule model, named
MooFuzz, which is aimed at speeding up bug discovery and improving code coverage.
MooFuzz performs static analysis on the code and marks the risky locations in order to
collect edge risk information. In the fuzzing process, a novel measurement method is used
to update useful information including the path risk, the path frequency, and the mutation
information. According to the fuzzing process, MooFuzz divides the seed pool state into
three categories: Exploration State, Search State, and Assessment State. In Exploration State,
the fuzzer emphasizes the exploration of high-risk locations in the program. In Search State,
the fuzzer spends more energy to find the new path. In Assessment State, the fuzzer aims
to select and evaluate promising seeds. MooFuzz collects different information to measure
the priority of seeds in each state and builds a many-objective optimization model to select
optimal seed set using a non-dominated sorting algorithm [19]. Beside, we also observe
that many studies have improved power schedule method, but they have not performed
energy monitoring in power schedule. Therefore, MooFuzz uses multiple information to
set the energy for selected seeds and monitors energy usage.

We design and implement our prototype by extending American Fuzzy Lop (AFL) [7],
and evaluate it against for popular fuzzers AFL, AFLFast, FairFuzz, and PerfFuzz in terms
of path discovery and bug detection. We conduct our evaluation on seven real-world
applications. The experimental results demonstrate that MooFuzz performs better than
others. Compared with AFL, AFLFast, Fairfuzz, and PerfFuzz, it triggers 46%, 32%, 34%,
and 153% more crashes with almost the same execution time, respectively. Furthermore,
we run cases and analyze the discovery of vulnerabilities. MooFuzz is able to trigger stack
overflow, heap overflow, null pointer dereference, and memory leaks related vulnerabilities.

The contributions of this paper are as follows.

• We propose the path risk measurement method to assist seed schedule in Explo-
ration State.

• We use many-objective optimization to model CGF and classify three different states of
seed pool and put forth different selection criteria that enhance the fuzzer performance.

• We propose an energy allocation and monitor mechanism to improve the power schedule.
• We implement our framework as MooFuzz and evaluate its effectiveness on a se-

ries of popular real-world applications. MooFuzz substantially outperforms the
other fuzzers.

The rest of this paper is organized as follows. Section 2 introduces the background
and related work of many-objective optimization and CGF. Section 3 shows the design of
MooFuzz. Section 4 presents the evaluation and we get the conclusion in Section 5.

2. Background and Related Work

In this section, we introduce the background of many-objective optimization and CGF
and discuss related work.

2.1. Many-Objective Optimization

Multi-objective optimization [20–23] falls into the field of multiple criteria decision-
making. It optimizes all goals at the same time to get the optimal solution. Therefore,
multi-objective optimization problems (MOPs) get a set of solutions. Generally, a MOP
is an optimization problem with two or three objectives. A many-objective optimization
problem (MaOP) is an optimization problem [24–27] with four or more objectives. In recent
years, many researchers have used multi-objective optimization methods to solve practical
problems [28–31], such as scheduling [32,33], planning [34–36], fault diagnosis [37–39],
classification [40,41], test-sheet composition [42], object extraction [43], variable reduc-
tion [44], and virtual machine placement [45]. Multi-objective evolutionary algorithms
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(MOEAs), such as non-dominated sorting GA [46], multi-objective particle swarm optimiza-
tion (MOPSO) [47–49], NSGA-II [50], NSGA-III [51,52], decomposition-based MOEA [53]
and corresponding improved versions [54–56], are the most used solutions.

In many-objective optimization problems, minimization problems simultaneously
optimize minimize objectives to obtain the maximum benefit. Within the scope of mathe-
matics, minimization problems are embodied in the minimization of objective functions
(that is, to minimize all objective values of objective functions as far as possible). In this
paper, we use the minimum optimization model to carry out seed schedule. The definition
of minimum optimization problems is given below.

⎧⎪⎨
⎪⎩

Min F(x) = [ f1(x), f2(x), · · · , fm(x)]T

s.t. m > 3
x ∈ X ⊆ Rn

(1)

where F(x) is the objective vector, fi(x) is the i-th objective to be minimized, x = (x1, · · · , xn)
is a vector of n decision variables, X is an n-dimensional decision space, and m denotes the
number of objectives to be optimized.

Definition 1 (Pareto Dominance [57]). Given any two decision vectors x, y with M objectives
for the minimization optimization. ∀x, y ∈ X, if there is fm(x) ≤ fm(y) for all m = 1, 2, · · · , M
then x dominates y, which is denoted as x ≺ y.

Definition 2 (Pareto Optimal [57]). Assuming that x∗ ∈ X, if there is no solution x ∈ X
satisfying x ≺ x∗, then x∗ is the Pareto optimal solution.

Definition 3 (Pareto Optimal Set [57]). All the Pareto optimal solutions constitute the Pareto
optimal set (PS).

Definition 4 (Pareto Front [57]). All the objective vectors of the solutions in Pareto optimal set
constitute the Pareto front (PF).

Figure 1 is a solution distribution under two-dimensional objective space, where all
points represent solutions. For a minimal optimization problem, it can be seen that the
point A is smaller than the point C under the two-dimensional objective space, that is,
there is a dominance relationship between the point A and the point C, and the point C is
dominated the point A. For the points A and B in Figure 1, we can see that the point A is
greater than the point B on the f2 axis, but the point A is less than B on the f1 axis, so there
is not a dominance relationship between the point A and the point B.

C

A

B

f2(C)

f2

f11

f2(A)

f2(B)

f1(C)f1(A) f1(B)

Figure 1. Solutions in a two-dimensional objective space.
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2.2. Coverage-Based Greybox Fuzzing

CGF is an evolutionary algorithm that includes two stages: the static analysis stage
and the fuzzing loop stage. In the static analysis stage, it executes compile-time or dynamic
binary instrumentation to obtain the instrumented target program. In the fuzzing loop
stage, CGF uses a series of initial seeds provided by the user as inputs and maintains a seed
queue stored in the seed pool. CGF first selects a saved seed input from the seed queue
and mutates it to generate the new input by using mutation strategies. Next, the target
program is executed with the new input. Then, lightweight instrumentation technique is
used to gather coverage information, if the new input causes a crash, it will be marked and
added to the crash set. If the new input leads to new coverage, CGF will judge that the
new input is interesting and add it to the seed pool. Algorithm 1 shows the workflow of
CGF in the fuzzing loop stage.

Algorithm 1: Coverage-based Greybox Fuzzing
Input: a data set of initial seeds, an instrumented target program P
Output: a seed queue Q, a crash set C

1 Q ← seeds
2 C ← ∅
3 Procedure fuzzing process
4 while TRUE do

5 S ← SeedsSelect(Q)

6 E ← PowerSchedule(S)
7 for mutation in deterministic stage do

8 for i in Range(0, S.length) do

9 S′ ← Mutation(S)
10 RunAndSave(P, S′)

11 HavocMutation(P, E)
12 RunAndSave(P, S′)
13 Procedure RunAndSave(P, S′)
14 status ← Run_Target(P, S′)
15 if is_NewCoverage(status) then

16 Q ← Q ∪ S′
17 return

18 if is_Crash(status) then

19 C ← C ∪ S′
20 return

2.2.1. Code Instrumentation

Code instrumentation aims to insert code fragments at compile-time, which is useful
for path tracing and testing during the fuzzing process. AFL [7] is a greybox fuzzer using
edge (branch) coverage as feedback. Before the fuzzing loop stage, AFL first uses afl-gcc
or afl-clang as instrumentation commands to trace edge coverage. AFL preserves a 64KB
shared bitmap Bitmap to record edge coverage information including whether the edge
has been visited, and the count of hits. AFL assigns a random number to represent each
basic block in the program and uses the XOR and right shift operation for the current basic
block and the previous basic block to mark each edge. Each edge is used as an offset of
Bitmap and the value is the count of hits.

The specific formula for coverage calculation is as follows [9].

cur_location = Random() (2)

Bitmap[cur_location ⊕ prev_location] + + (3)
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prev_location = cur_location >> 1 (4)

2.2.2. Seed Schedule

Seed schedule refers to select seeds from the seed pool for future mutation. A perfect
seed schedule scheme is conducive to speeding up path discovery and bug detection.
AFL [7] gives priority to seeds that are unfuzzed (not selected for mutation) and favored
(among all seeds passing through the edge, the seed with the smallest product of seed length
and execution time). AFLGo [12] preferentially selects seeds closer to the target location
for directed fuzzing. VUzzer [8] prioritizes seeds of deeper paths, it may detect bugs
deep in the code. SlowFuzz [58] preferentially selects seeds that generate more resource
consumption to trigger algorithm complexity vulnerabilities. In order to discover memory
consumption bugs, MemLock [17] preferentially selects seed inputs that generate more
memory consumption. UAFL [59] preferentially selects seeds that execute the operation
sequence violating typestate properties to uncover use-after-free (UAF) vulnerabilities.

2.2.3. Mutation Strategy

The mutation strategy determines where and how to mutate the selected seed. Differ-
ent fuzzers use different mutation strategies. AFL has two mutation stages: the determinis-
tic stage and the indeterministic stage.

The deterministic stage. The deterministic stage is used when the first time fuzzing
seed. This stage includes mutation operators, bitflip, byteflip, arithmetic addition/subtrac-
tion, interesting values, and dictionary.

The indeterministic stage. After completing the deterministic stage, seeds will enter
the indeterministic stage, in which AFL includes havoc and splice. In this stage, AFL
randomly selects a sequences of mutation operators and assigns random location to mutate
the seed.

There are many studies on mutation strategies for fuzzer. VUzzer [8] leverages
data flow and control flow features to infer the critical regions of the input for mutation.
GREYONE [60] uses a fuzzing-driven taint inference to infer taint variables for mutation.
Superion [61] deploys mutation strategies to fuzz programs that process structured inputs.
MOPT [14] uses particle swarm optimization algorithm to optimize mutation operators.

2.2.4. Power Schedule

Power schedule aims to allocate energy to each seed during the fuzzing process, which
determines the number of seed mutations. Reasonable energy allocation can effectively
improve the discovery of new paths. If the energy of a seed is over allocated, other seeds
mutation will be affected. Conversely, if the energy of one seed is under allocated, it will
be detrimental to new path discovery and potential bug detection.

AFL has two power schedule methods based on different mutation stages. In the
deterministic stage, the energy of a seed is related to its length. The longer seed length,
the more energy will be consumed. In the indeterministic stage, the energy allocation
depends on the running time, the number of edges, the average size of the file, the number
of cycles, and others.

Recent research shows that power schedule is very critical for fuzzer. AFLFast [11]
allocates more energy to the low-frequency path to explore more paths. EcoFuzz [15] uses
reinforcement learning to model power schedule as the adversarial multi-armed bandit
model that enables adaptive energy saving. However, they did not consider the path risk
and the effectiveness of energy allocation.

3. The Design of MooFuzz

To address problems mentioned in the previous sections, we propose a many-objective
optimization fuzzer MooFuzz, as shown in Figure 2. The main components of MooFuzz
contain static analyzer, feedback collector, seed scheduler, and power scheduler. In Moo-
Fuzz, static analyzer marks the risk edge and records the risk value for each edge by
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scanning the source code and then inserts code fragments to update the edge risk value
in running program. Feedback collector is used to record and update related information
to guide the seed schedule after the program execution. Seed scheduler adopts different
many-objective optimization schedules based on different states of the seed pool to se-
lect seeds. Power scheduler assigns energy based on feedback information and monitors
energy usage.

Figure 2. A high-level overview of MooFuzz.

3.1. Static Analyzer

A common idea is that the place has dangerous functions may trigger vulnerabilities.
For example, the function malloc is used to dynamically allocate memory in C language.
Although it can automatically allocate memory space, if used improperly, it may cause
problems such as overflow, heap exhaustion, and use-after-free. The function write shall
attempt to write n bytes from the buffer pointed to by bu f into the file associated with the
open file descriptor. However, if programmer cannot control the size of the bytes written
to bu f , it will cause the risk of out-of-bounds read of the memory. Therefore, MooFuzz
identifies potentially dangerous functions as risk edges to label in static analyzer. In this
paper, MooFuzz uses functions in Table 1 as dangerous functions [62], including memory
allocation, memory recovery, memory operation, string operation, and file I/O operation.
At the same time, users can also customize dangerous functions and add them to static
analyzer for fuzzing.

Table 1. Dangerous functions.

Class Description Function Name

memory

memory allocation calloc; malloc; realloc

memory recovery f ree

memory operation memcpy; memmove; memchr; memset; memcmp

string string operation strcpy; strlen; strcat; strcmp; strspn; strcoll; strstr; strtok

others file I/O read; write

Algorithm 2 shows the basic idea of MooFuzz instrumentation. Before the static
analysis, there are well-known potentially dangerous functions. The static analyzer can
identify them by traversing the source code and perform source code instrumentation at
the corresponding edge position without running the program. MooFuzz uses a pointer
danger_trace to record the hit-counts of the risk edge in shared memory after running
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program every time. Specifically, MooFuzz first obtains each basic block information of the
program, then identifies each call instruction and judges whether someone is dangerous
(Lines 1–7). If any exists, the hit-counts will be updated and stored in the memory pointed
to by danger_trace (Lines 8–11).

Algorithm 2: Code instrumentation
Input: the program P, a set of dangerous functions DF, a pointer variable

danger_trace
Output: the instrumented program P′

1 MAP_SIZE = 216

2 for basic_block in P do

3 bool risk = f alse
4 for CallInstr in basic_block do

5 if CallInstr.CalledFuncName in DF then

6 risk = true
7 break

8 cur = Random(0, MAP_SIZE)
9 if risk=true then

10 danger_trace[cur ⊕ pre]++
11 pre = cur >> 1

3.2. Feedback Collector

The feedback collector is mainly used to continuously update seed information to
assist seed schedule. For the running of the instrumented program, a series of running
information would be updated for seeds. Algorithm 3 shows the process of information
updating by feedback collector. It takes the seed queue Q and the pointer variable as
inputs, and output is the seed queue Q′ with new information. The new information
includes the number of times the seed has been selected, the path frequency, the path
risk, and the mutation information. Specifically, MooFuzz selects a seed s by using seed
scheduler (see Section 3.3) and updates the number of times it has been selected (Lines
1–3). Then, it uses a mutation strategy to generate a new test case s′ and executes the
target program by using test case s′ (Lines 4–5). Next, two pointer variables danger_bits
and edger are used to update the edge risk (Line 6). Here, danger_bits is obtained with the
pointer variable danger_trace. The edger records the risk of each edge. At the beginning,
the edge corresponding to dangerous function has a maximum value, while those of the
other edges are zero. Next, if the mutated test case produces new coverage, MooFuzz
will calculate path risk value (Lines 7–8). Next, MooFuzz traverses each seed in the seed
pool and determine whether its path is the same as the current path. If so, the frequency
information of the seeds in seed pools will be updated (Lines 9–11). Finally, if the path of s
is identical to the path of s′, the mutation information will be updated (Lines 12–13).

We discuss how to update different information separately as follows.
The path risk mainly refers to the ability of seeds to detect dangerous locations, which

determines the number and speed of bug discovery. Before discussing the path risk, we
first give the definition of edge risk update and then that of path risk update.

The edge risk update. Given an edge ei and the corresponding hit-count danger_bits[ei],
the edge risk edger[ei] is updated as follows.

edger[ei] =

{
edger[ei]− danger_bits[ei], ei ∈ danger_edge
0, others

(5)

where danger_edge is the set of edges corresponding to dangerous function.
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Algorithm 3: Information update
Input: a seed queue Q, a pointer variable danger_bits, a pointer variable edger,

the instrumented program P
Output: a seed queue Q′ with new information

1 S = SeedSchedule(Q)

2 for s in S do

3 s.select_num++
4 s′ ← Mutation(s)
5 (trace_bits, danger_bits) ← Run_target(s′)
6 update_edge_risk(danger_bits, edger)

7 if is_NewCoverage(P, s′) then

8 calculate_path_risk(edger)

9 for si in seed pool do

10 if the path of si is the same as that of s′ then

11 update_ f re_in f o(si)

12 if the path of s′ is the same as that of s then

13 update_mta_in f o(s)

The path risk update. Given a seed s and the risk values of all edges covered by the
seed s, the path risk of seed s, s.risk is calculated as follows.

s.risk =
N

∑
i=1

edger[ei]

N
(6)

The path frequency indicates the ability of the seed to discover a new path. As time
goes by, there are high-frequency paths and low-frequency paths in the program. Generally,
those seeds that cover low-frequency paths have a higher probability of discovering new
paths than those that cover high-frequency paths (the larger the value, the higher the path
frequency) after the program running for a while.

The path frequency update. Given a seed s′ and its path ps′ , if there is a seed s in the
seed pool and its path ps, and ps is the same as ps′ . We add one to the path frequency of
seed s, that is,

s. f re = s. f re + 1, if ps′ = ps (7)

The mutation information indicates the mutation ability of a seed. For each seed that
has not been fuzzed, its mutation effectiveness is set to 0, indicating that the seed has the
best mutation validity. Among the seeds being fuzzed, the mutation ability of the seeds
will be continuously evaluated, and individuals with high mutation ability (the smaller the
value, the better) will obtain priority.

The mutation information update. Given a seed s and its mutation strategy M, if the
path of seed s is the same as that of seed s′ generated by seed mutation upon s, the mutation
information of seed s, s.mta is calculated as follows.

s.mta = s.mta + 1, if s′ = M(s) and ps′ = ps (8)

3.3. Seed Scheduler

Seed scheduler is mainly used for seeds selection. In order to effectively prioritize
seeds, we propose a many-objective optimization seed schedule scheme.

Before seed schedule, MooFuzz divides the seed pool into three states according to
seed attributes.
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Exploration State. Exploration State refers to the existence of unfuzzed and favored
seeds in the seed pool. Exploration State represents that the current seed pool state is an
excellent state and it maintains the diversity of seeds.

Search State. In this state, the favored seeds have been fuzzed, but there are still
unfuzzed seeds. Search State represents that there is a risk that the seed pool is completely
fuzzed, and it is necessary to concentrate on finding more paths.

Assessment State. In this state, all the seeds are all fuzzed. It is very difficult to
find a priority seed, but the fuzzed seeds produce a lot of information that can serve as a
reference. Besides, MooFuzz performs state monitoring in the assessment state. Once the
state changes, the seed set of the current state will be discarded to perform seed schedule
in other states.

For these three states, MooFuzz uses different selection criteria based on bug detection,
path discovery, and seed evaluation. MooFuzz constructs different objective functions
based on different states.

In the previous discussion, MooFuzz has obtained the risk value of the seed before it
is added to the seed pool, indicating the path risk. Based on previous research [8], seeds
with deeper executing paths may be more capable of detecting bugs. Therefore, MooFuzz
uses path risk r and path depth d as objectives for seed selection. To reduce the energy
consumption of seeds and speed up the discovery of bugs, MooFuzz also takes the length
l of the seed data and the execution time t of the seed as objectives. In Exploration State,
MooFuzz uses the following objective functions to select the seeds that have not been
fuzzed and favored.

Min F(s) = [−r,−d, l, t]T , s ∈ S (9)

Search State indicates that all the favored seeds in current seed pool have been fuzzed
and there are unfuzzed seeds. At this time, MooFuzz’s selection of seeds will mainly
focus on the path discovery. The frequency information of the seeds will increase with
the running time changes. In this state, those seeds that pass the low-frequency path will
have greater potential to discover new paths. MooFuzz regards path frequency e and path
depth d as criteria for seeds selection. Meanwhile, MooFuzz uses l and t described above
to balance energy consumption. In Search State, MooFuzz uses the following objective
functions to select the seeds that have not been fuzzed.

Min F(s) = [e,−d, l, t]T , s ∈ S (10)

Assessment State means that all seeds in the current seed pool have been fuzzed.
MooFuzz will obtain the information of the seed including the path frequency e, the number
of times that the seed has been selected n, the seed path depth d, and the mutation
information m, and then add them to the objective functions as mutation criterion. Note
that the current state does not choose the length and execution time of the seed as criteria
to balance energy consumption, because the current state is very difficult to generate
new seeds. Besides, once new seeds are generated in this state, Assessment State will
be terminated and enter other state. In Assessment State, MooFuzz uses the following
objective functions to select the seeds from the seed pool.

Min F(s) = [e, n,−d, m]T , s ∈ S (11)

MooFuzz selects the optimal seed set after establishing objective functions for different
seed pool states and models seed schedule as a minimization problem. Algorithm 4 mainly
completes the seed schedule by using non-dominated sorting [19]. The seed set S that
satisfies state conditions will be selected as the input. A set CF that is used to store the
optimal seed set. Initially, CF is an empty set, and s1 in seed set S was added to CF. For each
seed si from the seed set S and seeds sj in CF finish the dominance comparisons (Lines
1–9). If sj dominates si (each attribute value of sj is less than si), the next seed comparison
will be performed. If si dominates sj, remove sj from CF. After the comparison between
the seed si and sj, if there is not a dominance relationship between si and all the seeds in
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CF, si will be added to CF (Lines 10–11). After the above cycle is completed, the optimal
seed set is stored in CF, and MooFuzz extracts each seed inside for fuzzing (Lines 12–13).

Algorithm 4: Seed schedule
Input: the seed set S satisfying conditions in different states
Output: a series of optional seed s′

1 CF ← ∅
2 for si in S do

3 bool isdominated = f alse
4 for sj in CF do

5 if sj dominates si then

6 isdominated = true
7 break

8 if si dominates sj then

9 CF ← CF − sj

10 if not isdominated then

11 CF ← CF ∪ si

12 for s′ in CF do

13 f uzz(s′)

3.4. Power Scheduler

The purpose of power schedule is assigning reasonable energy for each seed involved
in mutation. A high quality seed has more chances to mutation and should be assigned
with more energy in fuzzing process.

Existing coverage-based fuzzers (such as AFL [7]) usually calculate the energy for the
selected seeds as follows [18],

energy(i) = allocate_energy(qi) (12)

where i is the seed and qi is the quality of the seed, depending on the execution time,
branch edge coverage, creation time, and so on.

Algorithm 5 is the seed power schedule algorithm. MooFuzz considers different seed
pool states to set up different energy distribution methods. Meanwhile, it also uses an
energy monitoring mechanism, which has the ability to monitor the execution of target
programs and reduce unnecessary energy consumption.

After many experiments, we find that the amount of energy in the deterministic stage
is mainly related to the length of the seed, which is a relatively fine-grained mutation,
but as the number of candidate seeds in the seed pool increases, it will affect the path
discovery. Thus, in Algorithm 5 we open the deterministic stage to seeds that cause crashes
after mutation (Lines 1–2). In the indeterministic stage, MooFuzz judges the state of the
current seed. If it belongs to Search State, MooFuzz uses the frequency information to
set the energy. If it belongs to Assessment State, both the frequency and the mutation
information will be comprehensively considered to set the energy (Lines 3–6).

After energy allocation, we set up a monitoring mechanism to monitor the mutation
of seeds (Lines 7–14). When each seed consumes 75% of the allocated energy, MooFuzz
monitors the mutation of the current seed, and records the ratio of the average energy
consumption of the current seed covering a new path and that of all seeds covering a new
path. If its ratio is lower than threshold1, MooFuzz will withdraw the energy, if its ratio is
higher than threshold2, the mutation information will be updated. Here, threshold1 is equal
to 0.9 and threshold2 is equal to 1.3.
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Algorithm 5: Power schedule
Input: a seed s, the number of all seeds in seed pool total_seed, the total energy

consumed in the fuzzing process total_energy, the number of new seeds
generated by the current seed mutation cur_seed

Output: the energy of seed s s.energy
1 if seed s that causes crashes after mutation then
2 goto deterministic stage

/* indeterministic stage: */

3 if state is Search State then

4 s.energy = (1 + 1
s. f re ) ∗ energy(s)

5 if state is Assessment State then

6 s.energy = (1 + ( 1
s.mta +

1
s. f re )) ∗ energy(s)

7 for cur_energy = 0 to s.energy do
8 if the energy consumption of seed s reaches 75% then

9 total_average = total_energy
total_seed

10 cur_average = cur_energy
cur_seed

11 if
cur_average

total_average < threshold1 then

12 break

13 if
cur_average

total_average > threshold2 then

14 s.mta = s.mta ∗ 0.9

4. Evaluation

MooFuzz is built on top of AFL-2.52b [7]. The implementation adds C/C++ code to
the AFL. The instrumentation components are implemented to mark danger edges based
on the LLVM framework [63] in static analysis. Through these experiments, the following
research questions are tackled:

RQ1: How capable is MooFuzz in crash detection?
RQ2: How effective is the code coverage of MooFuzz?
RQ3: How capable is MooFuzz in identifying real-world vulnerabilities?

4.1. Experimental Settings

Baseline Fuzzer. We compare MooFuzz with existing state-of-the-art tools AFL [7],
AFLFast [11], FairFuzz [13], and PerfFuzz [16]. The selection of baseline fuzzer is mainly
based on the following considerations:

1. AFL is currently one of the most common coverage-based greybox fuzzer in community.
2. AFLFast is a variant of AFL with better power schedule.
3. FairFuzz is also an extending fuzzer of AFL. It optimizes inputs that hit rare branches.
4. PerfFuzz improves the instrumented components to generate pathological inputs.

Benchmark. To evaluate MooFuzz, we choose seven real-world open source Linux
applications as the benchmark to conduct experiments. Jasper [64] is a software tool kit
for processing image data that provides a way to represent images and facilitates the
manipulation of image data. LibSass [65] is a C/C++ port of the Sass engine. Exiv2 [66] is a
C++ library and a command line utility to read, write, delete, and modify Exif, IPTC, XMP,
and ICC image metadata. Libming [67] is a library for generating Macromedia Flash files,
written in C, and includes useful utilities for working with Flash files. OpenJPEG [68] is an
open source JPEG 2000 codec written in C language. Bento4 [69] is a C++ class library that
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is designed to read and write ISO-MP4 files. The GUN Binutils [70] is a collection of binary
tools. Table 2 shows target applications and their fuzzing configure.

Table 2. Target applications and their fuzzing configure.

Program Command Line Project Version

jasper jasper - -input @@ - -output t.bmp Jasper 2.0.14
libsass tester @@ LibSass 3.5.4
exiv2 exiv2 -pX @@ Exiv2 0.26

libming listswf @@ Libming 0.4.8
openjpeg opj_decompress -i @@ -o t.png OpenJPEG 0.26

cxxfilt c++filt -t GUN Binutils 2.31
bento4 mp42hls @@ Bento4 1.5.1

Performance Metrics. Crashes, paths, and vulnerabilities are chosen as metrics in
this section. In code coverage metrics, we use the number of seeds in the queue as an
indicator and use tool Afl-cov [71] to measure code line coverage and function coverage.
In vulnerability detection, we directly use AddressSanitizer [72] to detect it.

Experiment Environment. All experiments are conducted on a server configured
with two Xeon E5-2680 v4 processors (56 logical cores in total) and 32 GB RAM. The server
installed Ubuntu 18.04 system. For the same application, the initial seed set is the same.
We fuzz each application for 24 h (on a single logical core) and repeat 5 times to reduce
randomness. In all implementations, we use 42 logical cores, and we leave 14 logical cores
for other processes to keep the workload stable.

4.2. Unique Crashes Evaluation (RQ1)

In order to evaluate the effectiveness of MooFuzz, a direct method is to evaluate the
number of crashes and the speed at which they are triggered. It is believed that more
crashes may trigger more bugs. We fuzz each application to run on 5 different fuzzers to
compare the number of unique crashes and the speed of discovery. Figure 3 shows the
growth trends of unique crashes discovery in different fuzzers. From these results, we can
make the follow observations.
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Figure 3. The growth trends of unique crashes discovery in different fuzzers within 24 h.

First, different fuzzers have different capability in fuzzing different application pro-
grams. For example, PerfFuzz has zero crash in fuzzing openjpeg within 24 h, but it can
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trigger most crashes in fuzzing exiv2 among other fuzzers. This shows that the different
criteria of the seed selection affect the number of crashes.

Second, seed schedule and power schedule affect the efficiency of crashes discovery.
The experimental results show that MooFuzz outperforms AFL in the speed of crashes
discovery and just takes about 10 h to trigger most of the unique crashes. There is no path
risk measurement and energy monitoring in AFL, leading to a lot of time spent on invalid
mutation operators.

Third, MooFuzz is able to find more crashes than other state-of-the-art fuzzers.
The static results are shown in Table 3. We count the number of crashes found in ap-
plications by different fuzzers within 24 h, and count the total number of crashes found by
each fuzzer. Table 3 shows that except for exiv2, MooFuzz triggers more crashes than other
fuzzers, among which jasper triggers 182 crashes within 24 h and AFL only triggers 118
crashes. In total, MooFuzz triggers 818 crashes in benchmark application programs, im-
proving by 46%, 32%, 34%, and 153%, respectively, compared with state-of-the-art fuzzers
AFL [7], AFLFast [11], FairFuzz [13], and PerfFuzz [16].

Table 3. Number of unique crashes found in real-world programs by various fuzzers.

Program MooFuzz AFL AFLFast FairFuzz PerfFuzz

jasper 182 118 136 110 102
libming 377 341 371 364 92
libsass 41 33 40 26 39
exiv2 16 9 15 18 17

bento4 123 40 54 91 44
cxxfilt 50 21 0 0 29

openjpeg 29 0 5 0 0

total 818 562 621 609 323

Overall, MooFuzz significantly outperforms other fuzzers in terms of speed and
number of unique crashes.

4.3. Coverage Evaluation (RQ2)

Code coverage is an effective way to evaluate fuzzers. The experiment measures
coverage from source code line, function, and path. Table 4 shows the line and function
covered by different fuzzers. In total, MooFuzz’s line coverage and function coverage are
better than AFL, AFLFast, FairFuzz, and PerfFuzz.

Table 4. Line and function covered by fuzzers.

Program
MooFuzz AFL AFLFast FairFuzz PerfFuzz

Line Func Line Func Line Func Line Func Line Func

jasper 32.8% 47.5% 32.1% 46.4% 32.2% 46.7% 31.4% 45.8% 32.2% 46.7%
libming 15.5% 16.8% 13.6% 14.8% 13.0% 14.3% 16.1% 17.3% 6.0% 7.4%
libsass 52.2% 35.0% 51.1% 35.1% 50.2% 34.5% 52.2% 35.3% 45.3% 32.8%
exiv2 5.0% 9.0% 4.9% 8.8% 4.9% 8.9% 4.9% 8.8% 4.9% 8.8%

bento4 12.1% 12.6% 11.4% 11.5% 11.4% 11.5% 11.5% 11.7% 11.5% 11.7%
cxxfilt 2.5% 3.0% 2.5% 3.0% 2.7% 3.1% 2.8% 3.1% 1.5% 2.5%

openjpeg 31.2% 41.4% 29.2% 33.5% 31.7% 41.3% 33.2% 41.9% 29.5% 39.0%

Figure 4 shows the growth trends of paths discovery in five different fuzzers after
fuzzing applications for 24 h. We can clearly observe that except for cxxfilt, MooFuzz ranks
first among all fuzzers from the perspective of the number of path discovery. Among them,
it can find about 6000 paths in fuzzing openjpeg, and the other four fuzzers can only find
about 3600 paths. It can find about 1200 paths after fuzzing jasper for 24 h, while other
fuzzers can only find about 500 to 700 paths. Although the number of paths discovered
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by MooFuzz is lower than FairFuzz and AFLFast in fuzzing cxxfilt, it can trigger the most
crashes compared with other fuzzers. From the speed of path discovery, MooFuzz is
significantly higher than other fuzzers.
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Figure 4. The growth trends of paths discovery in different fuzzers within 24 h.

Overall, MooFuzz outperforms other fuzzers in terms of line, function, and path coverage.

4.4. Vulnerability Evaluation (RQ3)

MooFuzz tests old version of the applications and analyzes related vulnerabilities
to evaluate the ability in vulnerability detection. Table 5 shows the real vulnerabilities
combination with its IDs identified by MooFuzz. MooFuzz is able to find stack overflow,
heap overflow, null pointer dereference, and memory leaks related vulnerabilities.

Table 5. Real-world vulnerabilities found by MooFuzz.

Program CVE Vulnerability

cxxfilt CVE-2018-9138 stack overflow
cxxfilt CVE-2018-17985 stack overflow
jasper CVE-2018-19543 out-of-bounds read
jasper CVE-2018-19542 null pointer dereference
jasper CVE-2018-19541 out-of-bounds read
libsass CVE-2018-19837 stack overflow
libsass CVE-2018-20821 stack overflow
libsass CVE-2018-20822 stack overflow
exiv2 CVE-2018-16336 heap-buffer-overflow
exiv2 CVE-2018-17229 heap-buffer-overflow
exiv2 CVE-2018-17230 heap-buffer-overflow
exiv2 CVE-2017-14861 stack-buffer-overflow

libming CVE-2018-13066 memory leaks
libming CVE-2020-6628 heap-buffer-overflow

openjpeg CVE-2020-8112 heap-buffer-overflow
bento4 CVE-2019-15050 out-of-bounds read
bento4 CVE-2019-15048 heap-buffer-overflow

Vulnerability analysis. We use a real-world application program vulnerability to
analyze the effectiveness of our approach, as shown in Figure 5. This is a code snippet from
openjpeg [68] which contains a heap-buffer-overflow vulnerability (i.e., CVE-2020-8112).
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In Figure 5, the main function contains a conditional statement (Lines 1–9). In Moo-
Fuzz, the seed st satisfies the judgment condition and enters the true branch to execute
function opj_tcd_decode_tile(...). Moreover, the seed sn enters the false branch to exe-
cute other codes that do not contain dangerous functions. Asmalloc is a dangerous
function which is used in opj_tcd_decode_tile(...), risks might emerge when this func-
tion is used. Therefore, MooFuzz preferentially selects seed st for mutation. In this case,
malloc(l_data_size) is called and l_data_size comes from an unsigned operation in the func-
tion opj_tcd_decode_tile. Then, the function opj_t1_clbl_decode_processor will be called in
the following program flow, where the allocated memory will be modify through two vari-
ables cblk_h and cblk_w. All of these two variables are obtained through signed operation,
which causes an integer overflow making cblk_h ∗ cblk_w > l_data_size, and MooFuzz eas-
ily satisfies the above conditions through mutation, so the heap-buffer-overflow happened.

1 int main(int argc , char **argv){

2 ...

3 if (! parameters.nb_tile_to_decode){

4 opj_tcd_decode_tile (...)

5 }

6 else{

7 ...

8 }

9 }

10
11 OPJ_BOOL opj_tcd_decode_tile(opj_tcd_t *p_tcd , ...){

12 /* unsigned operations */

13 OPJ_SIZE_T res_w = (OPJ_SIZE_T)(l_res ->x1 - l_res ->x0);

14 OPJ_SIZE_T res_h = (OPJ_SIZE_T)(l_res ->y1 - l_res ->y0);

15
16 l_data_size = res_w * res_h;

17 /* tile ->data allocate l_data_size space */

18 tilec ->data = malloc(l_data_size);

19 ...

20 opj_t1_clbl_decode_processor (...);

21 }

22
23 static void opj_t1_clbl_decode_processor (...){

24 /* cblk_h and cblk_w are obtained through signed operation

25 * which cause integer overflow

26 * cblk_h * cblk_w > l_data_size , heap overflow happened. */

27 datap = tilec ->data;

28 for (j = 0; j < cblk_h; ++j){

29 i = 0;

30 for (; i < (cblk_w & ~( OPJ_UINT32)3U); i += 4U){

31 OPJ_INT32 tmp0 = datap[(j * cblk_w) + i + 0U];

32 ...

33 }

34 }

35 }

Figure 5. An example from openjpeg (CVE-2020-8112).

4.5. Discussion

We enhance fuzzing from the perspectives of vulnerabilities and coverage. Al-
though more coverage may trigger more vulnerabilities, not all coverage is equal [62].
Based on our observation of the fuzzing process, we define the path risk and prioritize
seeds that consume less energy while executing high risks, to maximize the improvement
of fuzzing. Meanwhile, we use different objectives for seed optimization and energy
allocation. It can improve the efficiency of fuzzing in a limited time.

In the algorithm design of the power schedule, we use two thresholds to judge
the current seed energy usage. There is still an opportunity to adaptively adjust these
two thresholds instead of the fixed thresholds. For example, these thresholds can be
dynamically adjusted according to the fuzzing process. In our evaluation, our method
can improve the probability of triggering vulnerabilities, but it may not be effective for
triggering vulnerabilities that require complex conditions, such as deeply nested conditions.
Although we use a variety of open source benchmarks to evaluation MooFuzz, it may not
be effective for programs that require specific grammatical conditions for inputs (such as
XML). However, the prototype we develop, MooFuzz, is a completely dynamic prototype.

317



Mathematics 2021, 9, 205

It can integrate static analysis techniques like symbolic execution to generate test cases that
satisfy specific conditions to improve fuzzing.

5. Conclusions and Further Work

In this paper, a many-objective optimization model is built for seed schedule. Con-
sidering the three states of the seed pool, we use different objective functions to select
seeds from the perspectives of bug detection, path discovery, and seed evaluation. At the
same time, an energy recovery mechanism is designed to monitor energy usage during
the fuzzing process. We implement a prototype MooFuzz on top of AFL and evaluate it
on seven real-world programs. The experiment results show that MooFuzz behaves more
effectively than state-of-the-art fuzzers in path discovery and bug detection.

In the future, we plan to use MooFuzz to fuzz the latest version of the applications
to assist testers in testing. In next study, we will consider optimizing power schedule
through multi-information feedback on the basis of MooFuzz, so that it can monitor energy
consumption according to the current program running progress, and automatically set
and adjust energy. We also consider starting from the seed mutation, and propose a
new decision model to determine effective region of the seed and select the effective
mutation strategy.
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Abstract: Due to the complexity of many-objective optimization problems, the existing many-
objective optimization algorithms cannot solve all the problems well, especially those with complex
Pareto front. In order to solve the shortcomings of existing algorithms, this paper proposes a co-
evolutionary algorithm based on dynamic learning strategy. Evolution is realized mainly through
the use of Pareto criterion and non-Pareto criterion, respectively, for two populations, and informa-
tion exchange between two populations is used to better explore the whole objective space. The
dynamic learning strategy acts on the non-Pareto evolutionary to improve the convergence and
diversity. Besides, a dynamic convergence factor is proposed, which can be changed according to
the evolutionary state of the two populations. Through these effective heuristic strategies, the pro-
posed algorithm can maintain the convergence and diversity of the final solution set. The proposed
algorithm is compared with five state-of-the-art algorithms and two weight-sum based algorithms
on a many-objective test suite, and the results are measured by inverted generational distance and
hypervolume performance indicators. The experimental results show that, compared with the other
five state-of-the-art algorithms, the proposed algorithm achieved the optimal performance in 47 of
the 90 cases evaluated by the two indicators. When the proposed algorithm is compared with the
weight-sum based algorithms, 83 out of 90 examples achieve the optimal performance.

Keywords: evolutionary algorithms (EAs); many-objective optimization; coevolution; dynamic
learning; performance indicators

1. Introduction

In recent years, with the development of technology, more and more new problems
appear in the field of industry or control and so on. This problem is usually characterized by
containing more than one objective function to be optimized, and these objective functions
contradict each other. Such problems are generally called multi-objective optimization
problems (MOPs) or many-objective optimization problems (MaOPs). Generally, MOPs are
problems having two or three objectives, and MaOPs contain more than four objectives [1].
A MaOP is defined as follows:

minimize F(x) = { f1(x), f2(x), . . . , fM(x)}
subject to x ∈ X

(1)

where M is the objective number. x = (x1, x2, . . . , xn) is decision variable, and X ⊆ Rn is the
decision space of the n-dimensional real number field. F is a mapping from decision space
to objective space, and F(x) contains M different objective functions fi(x) (i = 1, 2, . . . , M).

Mathematics 2021, 9, 420. https://doi.org/10.3390/math9040420 https://www.mdpi.com/journal/mathematics

323



Mathematics 2021, 9, 420

Generally, the optimal solutions of MaOPs are distributed on Pareto front (PF), and the
solutions on PF generally show the trade-off on all M objectives. Therefore, it is impossible
to obtain an optimal solution by an optimization method to make it optimal on all objectives.
What is needed to solve MaOPs is to obtain a set that has a finite number of solutions, so
that the solutions in this solution set can well represent the whole PF, no matter in terms of
convergence or diversity. The EAs had its unique advantages in solving MaOPs because of
its population-based characteristics. After years of development, scholars from all over the
world have proposed various many-objective optimization algorithms (MaOEAs) to solve
MaOPs. Because different MaOPs also have different characteristics, currently no general
algorithm can perfectly solve all MaOPs.

MaOPs usually have more than three objective numbers, so the objective space cannot
be visualized, and the high-dimension calculation equation can only be obtained through
derivation in solutions with fewer objectives. For example, grid-based evolutionary al-
gorithm (GrEA) [2] deduces the high-dimensional grid calculation equation through a
two-dimensional equation. Moreover, with the increasing of the objective number, the
number of non-dominated individuals in the population will also increase exponentially.
Studies have shown that almost all the solutions in the obtained population will be non-
dominated when M > 12 [3]. As a result, the selection pressure of the algorithm based on
non-dominated sorting is reduced, which makes the algorithm unable to solve the MaOPs
well. In addition, the shape and density of PF vary greatly for different problems, which
brings great challenges to obtaining a solution set with good convergence and diversity.

To overcome these difficulties with MaOPs, a number of MaOEAs have been pro-
posed. For example, on the basis of fast and elitist multi-objective genetic algorithm
(NAGA-II) [4], reference points are introduced to guide individual convergence and help
evolution through the concept of domination, called NSGA-III [5,6]. Knee point-driven
evolutionary algorithm (KnEA) [7] used knee points to guide individual convergence,
and GrEA introduced the concept of grid to choose the better of two non-dominated
individuals. In addition, some indicator-based algorithms are proposed, such as indicator-
based selection in multi-objective search (IBEA) [8] and fast hypervolume-based algorithm
(HypE) [9], which adopt Iε+ [10] and hypervolume (HV) [11,12] indicators as the criteria
for selecting individuals, respectively. The selection process is the evolution process of
the whole population or individuals towards the direction with better indicator values.
Finally, there is the evolutionary algorithm based on decomposition (MOEA/D) [13], which
adopts the idea of mathematical decomposition to decompose a MaOP into M subproblems
for simultaneous optimization. Common decomposition approaches include weighted
sum approach, Tchebycheff approach, and penalty-based boundary intersection approach.
There is a new way called MOEA/D-PaS [14] to combine the decomposition with Pareto
adaptive scalarizing methods to balance the selection pressure toward the Pareto optimal
and the algorithm robustness to PF.

At the same time, these MaOEAs also contain some disadvantages. The convergence
speed of the Pareto-based algorithm is slow, or even unable to converge to PF. Indicator-
based algorithms often tend to favor one or some of special regions of PF. Although the
convergence speed of an indicator-based algorithm is generally relatively fast, the diversity
of the solution set is usually poor. Besides, the decomposition-based MaOEAs are very
dependent on the selection of decomposition approaches, such as weighted sum method
in dealing with the non-convex problem (in the case of minimization) of PF shape, and
not all Pareto optimal vectors can surely be obtained [13]. In addition, when the shape
and density of PF are very complex and changeable, the traditional method to generate a
weight vector is not suitable for this environment.

Existing multi-objective optimization algorithms (MOEAs) will still be affected by the
increased number of objectives when dealing with MOPs, especially MAOPs. Moreover,
the complexity of the PF also brings great challenges to the MOEAs. However, the dynamic
learning strategy can pay more attention to the improvement of convergence when the
population has poor convergence in the early evolutionary stage, and pay more attention
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to the improvement of diversity in the late evolutionary stage. In addition, coevolution is a
promising idea to improve the quality of individuals in a population through the mode of
cooperation (or competition) between multiple populations (or subpopulations). Through
coevolution, some key information of the population (such as the evolutionary state of the
population) can be obtained in the process of algorithm iteration. The information of the
population can be fed back flexibly to change the dynamic level (this will be discussed in
Section 4) of dynamic learning strategies. In conclusion, the combination of a dynamic
learning strategy and a coevolution model is a promising way to improve the convergence
and diversity of the population.

The rest of this paper will be arranged as follows. Section 2 introduces the related
works of the coevolutionary algorithm, other background, and the motivation for a two-
population coevolution algorithm with dynamic learning strategy (DL-TPCEA). Section 3
will give the background of the MaOPs. The algorithm framework, process details, and
parameter settings will be introduced in Section 4. Sections 5 and 6 carry out the analysis
of experiments and the conclusion, respectively.

2. Related Works

In biology, the concept of coevolution is defined as follows: an adaptive coevolution
in which two interacting species develop in the course of evolution. An evolutionary type
of genetic evolution in which one species is influenced by another. At the biological level,
it has several major significances:

1. Promote the increase of biological diversity;
2. Promote the co-adaptation of species;
3. Maintain the stability of the biological community.

This idea was successfully introduced into computer algorithms. More and more
researchers begin to pay attention to the performance improvement brought by coevolu-
tion strategy to the EAs. In order to adapt to increasingly complex problems, Potter et al.
incorporated the idea of coevolution into EAs. It extended the evolutionary paradigm
of the time and described an architecture that evolved subcomponents into collections
of collaborative species [15]. Then they analyzed the robustness of cooperative coevolu-
tionary algorithms (CCEAs), which provided a theoretical basis for the effectiveness of
coevolutionary strategies [16]. Wiegand et al. also used evolutionary game theoretic (EGT)
models to help understand CCEAs and analyze whether CCEAs are really suitable for
optimization tasks [17]. One of the EGT models was the multi-population symmetric game,
which can be used to analyze and model the coevolutionary algorithm. In this context,
coevolution tended to decompose an evolving population into several small subpopula-
tions and ensured that each subpopulation did not interfere with each other. Then the
individual in the population was optimized continuously through the cooperation of each
subpopulation. The effectiveness of CCEAs is verified using CCEAs to solve complex
problems (or structure) [18,19].

The coevolution strategy of CCEAs can group the population, which is suitable for
large-scale optimization problems (LSOPs). The dimension of decision variables in LSOP
is too high, so grouping is a good solution at present. This is also the initial application
scenario of CCEAs. Yang et al. considered that traditional CCEAs can only deal with and
decompose separable LSOPs, but often cannot solve the inseparable LSOPs. Therefore,
a stochastic grouping scheme and adaptive weighting were introduced into problem
decomposition and coevolution, and a new differential evolutionary algorithm was used to
replace the traditional evolutionary algorithm. Through this improvement, the algorithm
can effectively optimize the 1000-dimensional indivisible problem [20]. In addition, a
multilevel coevolution (MLCC) [21] framework was proposed to solve LSOPs. MLCC was
a framework that determined the size of a group when the problem was decomposed.
MLCC constructed a set of problem decomposers based on random grouping strategies
with different group sizes, and used an adaptive mechanism to select decomposers based
on historical performance to self-adapt between different levels.
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CCEAs is also applied to optimization problems in other scenarios. Liu et al. used
cooperative coevolution (CC) to improve the speed of evolutionary programming (EP) [22].
However, this study showed that the time cost increased linearly as the dimension of the
problems was increased. CC was also used to deal with global optimization and find
global optimal solutions [23]. Chen et al. proposed a cooperative coevolution with variable
interaction learning (CCVIL) framework [24], which treated all variables as independent
and put them into separate groups, and then continuously merged groups when found the
relationship between them at the iteration.

In addition to the above optimization problems, many researchers in recent years
have begun to apply CC to MaOPs. Tan et al. combined SPEA2 and CC effectively and
proposed SPEA2-CC [25]. After experimental comparison, the performance of SPEA2-
CC was significantly better than that of the original SPEA2 as the number of objectives
increases. SPEA2-CC provided theoretical support for the scalability of performance of CC
in MaOPs.

A lot of researchers combined CC with the preference of the decision maker to deal
with MaOPs, which led to the preference-inspired coevolutionary algorithm (PICEA) [26].
Researchers have shown that PICEA can handle not only MOPs, but also MaOPs [27]. The
experiments showed that the preference-driven coevolution algorithm was superior to
some other methods under the measurement of a hypervolume indicator. One defect of
PICEA was the uneven distribution of the obtained solutions on PF, which means poor
diversity. In order to solve this problem, an improved fitness allocation method (PICEA-
g) [28] was proposed, which can consider the density information of solutions. In addition,
a new preference-inspired coevolutionary algorithm using weight vectors (PICEA-w) [29]
was proposed. The algorithm coevolved with the candidate solution during the search
process. Coevolution adaptively constructed the appropriate weights in the optimization
process, thus, effectively led the candidate solutions to the PF.

Liang et al. proposed a multi-objective coevolutionary algorithm based on a decompo-
sition method [30], which used subpopulations to enhance objectives. Running on multiple
subpopulations and external archive via the differential evolution (DE) operator to improve
each objective and diversify the trade-offs of external archiving solutions. In addition,
when an objective was not optimized, computing resources on that objective were allocated
to other objectives and external archive strengthens the tradeoffs on all objectives. In
addition, PF was approximated by parallel subpopulations [31]. Firstly, the MaOPs were
decomposed by using a uniformly distributed weight vector, and then each subpopulation
was associated with a weight vector. Using subpopulations to optimize each subproblem,
and elite individuals in subpopulations were used to produce offspring. This can not only
enhanced the diversity of the population, but also accelerated the convergence rate.

There were also studies that used new approaches to further improve CC perfor-
mance on MaOPs. Shu et al. proposed a preference-inspired coevolution algorithm
(PICEA-g/LPCA) with local principal component analysis (PCA) oriented goal vectors [32].
PICEA-g/LPCA was a further improvement on the basis of PICEA-g, and it used local
PCA to extend the ability of PICEA-g and improved the convergence. In addition, a co-
evolutionary particle swarm optimization algorithm with a bottleneck objective learning
(BOL) strategy [33] was proposed to meet the convergence and diversity challenges in
finite population size. In this algorithm, multiple subpopulations coevolved to maintain
diversity. The BOL strategy was also used to improve convergence across all objectives.
Elitist learning strategy (ELS) was also used to jump out of local PFs, and juncture learning
strategy (JLS) was used to develop areas that are missing in PF.

Coevolution strategies have now been applied to many problems. In addition to
general MaOPs, there are dynamic interval many-objective optimization problems
(IMaOPs) [34,35], large-scale multi-objective optimization problems (LSMOPs) [33,36],
and feature selection [37]. Finally, some recent work also uses coevolution or learning
techniques [38,39] to deal with MaOPs [40–42].
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As described in Section 1, the solution set obtained by Pareto-based MOEAs has
a good distribution on PF, but there is a general problem of slow convergence and the
performance will decline with the increase of the objective number. Non-Pareto MOEAs
shows good convergence performance, but not good diversity performance. The solution
set of non-Pareto MOEAs tends to converge to one or some special regions of PF, especially
in the case of extremely irregular PF. Li et al. proposed a bi-criterion evolution (BCE)
framework in 2015 [43], which performed well in many-objective optimization. In the BCE
framework, two populations evolved simultaneously. One used the Pareto criterion (PC)
and the other used the non-Pareto criterion (NPC). The aim was to take advantage of both
approaches and compensate for their shortcomings. These two parts work together to
promote evolution through the exchange of information between populations. Among
them, NPC population led PC population to converge, and PC population can make up for
the loss of NPC population in diversity. The two operations included in the framework,
population maintenance and individual exploration, were used to preserve good non-
dominated individuals and explore unexplored areas of NPC population respectively.
Although the framework of BCE did not use the method of subpopulation coevolution in
CC, the idea of cooperation between the two populations should also belong to CC.

Dynamic learning strategy (DLS) can consider the evolutionary state of solution set
during algorithm iteration. It is well known that the initial population of MOEAs is
randomly generated without specific requirements. The randomly generated solution is to
take the value of the solution in the domain [xmin, xmax] in the case of a normal (Gaussian)
distribution. The equation is as follows:

x = xmin + rand ∗ (xmax − xmin) (2)

where rand is a random number generated by a standard normal distribution. So, the
convergence of initial population is very poor, just random individuals in the solution
space. DLS can pay attention to this point, so that in the initial stage of population
evolution, it can ensure rapid convergence of solutions by using more computing resources
to the selection of convergence-related solutions. As the iteration goes on, the solutions
converge towards PF. At this time, it is necessary to keep the solution set more diversified.
Therefore, with the iteration of MaOEAs, computational resources will gradually incline to
diversity-related solutions to maintain a better distribution of the population on PF.

Therefore, an effective combination of BCE and DLS may yield relatively good results,
as confirmed by the experimental results in Section 5. This paper takes advantage of the
coevolution of information interaction between the two populations, and introduces DLS
into the environmental selection of NPC to better enable the evolution of NPC population.
The cost value (CV) [44] will be selected as indicator. This algorithm will be called DL-
TPCEA. The detailed algorithm will be described in Section 4.

3. The Background of MaOPs

At present, many single objective optimization problems in the optimization field have
become the focus of research, such as workshop scheduling problems [45–49] and numerical
optimization problems [50,51]. Most of these can be solved by classical algorithms and their
improved versions, such as artificial bee colony algorithm (ABC) [47,48,52,53], particle
swarm optimization (PSO) [51,54], monarch butterfly optimization (MBO) [55–58], ant
colony optimization (ACO) [59,60], krill herd algorithm (KH) [52,61–64], elephant herding
optimization (EHO) [65–67], and other metaheuristic algorithms [68–77]. However, there
are some problems in many-objective optimizations, which cannot be solved by single
objective techniques. Because of the conflicts between objectives, all objectives cannot be
optimized simultaneously using single objective techniques. MaOPs also have different
characteristics, which are described in more detail below. The current MaOPs in the field
of many-objective optimizations are mainly divided into the following categories:

(1) General MaOPs: As mentioned in Equation (1), general MaOPs are problems with
M conflicting objectives. The overall goal of solving MaOPs is to obtain a solution set that
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can characterize PF, but at the same time there are a variety of problems. For objective
numbers, MaOPs are more difficult to resolve than MOPs. Low dimensional optimization is
mainly solved by non-dominated sorting, such as NSGA-II [4] and improving the strength
of the Pareto evolutionary algorithm (SPEA2) [78]. The non-dominated sorting is described
as follows: for the minimization problem, taking two vectors x1 and x2 in Ω, if and only if
fi(x1) ≤ fi(x2) for each i in {1, 2, . . . , M} and fj(x1) < fj(x2) for at least one j in {1, 2, . . . , M}.
Let us call it F(x1) Pareto dominates F(x2), and the notation is F(x1) > F(x2), and if, and
only if, no point x in Ω to satisfy F(x) > F(x*), called F(x*) Pareto optimal solution and x* is
Pareto optimal point, and the set of all Pareto optimal solutions is PF mentioned above, the
set of all Pareto optimal points is called Pareto Set (PS).

(2) Large-scale MaOPs: these problems often involve high dimensional decision
variables. In general, MOPs are called large-scale MOPs (LSMOPs) [79] when its decision
variable dimension N > 100. The performance of the MaOEAs will decrease as the number
of decision variables increases. For example, when using a mutation operator to mutate
individuals, the probability of producing good individuals after mutation will also decrease
due to the large dimension of decision variables. There are some researches on LSMOPs.
At present, most of this work is based on classifying decision variables and dealing with
them separately.

Ma et al. proposed a many-objective evolutionary algorithm based on decision variable
analysis (MOEA/DVA) [80], which divided the whole population into convergence-related
variables and diversity-related variables through decision variable analysis strategy. More-
over, MOEA/DVA optimized the two parts respectively, so that the convergence and diver-
sity of the population were maintained well. Zhang et al. [81] proposed an evolutionary
algorithm based on decision variable clustering for large-scale many-objective optimization
problems (LMEA). LMEA used k-means clustering method and takes the angle between
solutions and the direction of convergence as the feature to carry out the clustering, and
divided the decision variables into convergence-related variables and diversity-related
variables. LMEA further classified the unclassified individuals in MOEA/DVA to promote
the convergence and diversity of the population. In addition, Chen et al. [1] proposed
an evolutionary algorithm based on covariance matrix adaptation evolution strategy and
scalable small subpopulation to solve large-scale many-objective optimization problems
(S3-CMA-ES).

The above work is based on the premise of grouping decision variables to deal with
large-scale many-objective optimization problems, which makes a great contribution to the
large-scale many-objective optimization.

(3) Dynamic MaOPs (DMaOPs): DMaOPs add time (environment) variation to the
general MaOPs. It is described as follows:

minimize F(x) = { f1(x, t), f2(x, t), . . . , fM(x, t)}
subject to x ∈ X

(3)

where t is time (environment) variation. When time (environment) changes, PF of the
MaOPs also changes, that is, the optimal solution set in the previous state is not necessarily
the optimal solution set in the current state. This means that the algorithm is not only
required to adapt to the many-objective environment to optimize multiple objectives,
but also needs the changes brought by the response time (environment). When the time
(environment) changes, the algorithm can respond quickly and get the optimal solution set
in the latest environment.

In the environment of DMaOPs, many excellent algorithms have been proposed.
Liu et al. proposed a dynamic multi-population particle swarm optimization algorithm
(DP-DMPPSO) based on decomposition and prediction [82]. Using the archive update
mechanism based on the objective space decomposition and the population prediction
mechanism to accelerate the convergence, the results show that the algorithm has a good
effect in DMaOPs processing. Finally, there are also many dynamic multi-objective evo-
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lutionary algorithms (DMOEAs) that use various optimization strategies [83–87] to deal
with DMaOPs.

The main purpose of this paper is to solve the general MaOPs with high dimensional
objective space, using the Pareto-based and non-Pareto-based methods for coevolution of
the two populations, respectively. The two populations make use of the advantages of each
other and make up for the disadvantages, which is very promising to solve the difficulty
of optimization in the high-dimensional objective space. The details will be introduced in
Section 4.

4. The Framework of DL-TPCEA

In this part, the specific process of the dynamic learning strategy will be introduced
first, and then the DL-TPCEA will be introduced. All algorithmic details such as parameter
control and algorithmic flow are given.

4.1. Dynamic Learning Strategy
4.1.1. The Description of DLS

Previous MOEAs generally used the immutable evolution strategy during iteration.
For example, NSGA-II used non-dominated sorting to select the non-dominated solutions
in population to control the convergence, and then used crowding distance to select among
the non-dominated solutions to improve the diversity of the population. This method
is very time-consuming because of Pareto sorting, and tends to have poor convergence
effect when the number of objectives is relatively large. However, DLS will make full use
of the advantages of fast running speed and good convergence effect of indicator-based
algorithm. Moreover, the enhancement of diversity is further strengthened to balance
the convergence and diversity of the solution set. This paper will take a two-objective
problem as an example to illustrate the advantages of DLS over traditional immutable
evolutionary strategies.

As shown in Figure 1a, after the population initialization, the distribution of these
individuals in the objective space is very chaotic. In other words, the convergence and
diversity of the population are poor. According to the current population, the priority
is to get these individuals to converge to PF as soon as possible. This will be guided by
indicator-based method. For example, in a practical engineering problem, the individuals
on PF are those who can minimize the cost. In this case, more computing resources should
be allocated to the process of convergence-related operations to achieve rapid convergence
of the population to PF. A small part of the computational resources are then allocated to
operations that increase the diversity of the population to ensure that the diversity of the
population is not particularly poor.

After the above operation, the distribution of individuals in the population in the
objective space will gradually move towards PF, as shown in Figure 1b. However, the
convergence level of the whole population is not enough at this time, so high selection
pressure is still needed to promote convergence. As the iteration goes on, the distribution of
individuals in population in the objective space will gradually become close to PF, as shown
in Figure 1c. As introduced in Section 1, the indicator-based algorithm converges quickly
but loses diversity easily. The example in Figure 1c shows that these individuals are close
to PF under the guidance of the indicator, but the convergence position is more inclined
to the central region of PF. At this point, more computing resources need to be tilted to
increase the diversity of the population, such as the preference to keep the individual A
and the individual B in Figure 1c into the next generation. By changing the computational
resource allocation according to the evolutionary state of the population, individuals in the
population can maintain good convergence and diversity. As in Figure 1d, the individuals
in the resulting solution set are uniformly distributed on PF.
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Figure 1. The process of dynamic learning strategy. (a) The state after initialization; (b) the state at the beginning of
evolution; (c) the state of late evolution; (d) the state at the end of evolution.

4.1.2. The Details of DLS

The above is only a brief description of the steps of DLS; the following is a detailed
explanation of the specific process of DLS. First, supposing the population size of MaOEAs
is N. In an iteration, N new individuals are generated by crossover and mutation oper-
ators, at which time the original individuals and newly generated individuals form a
new population, which is denoted as P2N here. What needs to be done next is to select
N individuals that are most conducive to maintain convergence and diversity through
environmental selection as the initial population Pnew of the next iteration. These operations
are accomplished through DLS.

As shown in Algorithm 1, the 2N individuals are first layered by non-dominated
sorting (Line 1, Algorithm 1). Here, FrontNo is the number of layers that each individual
resides in, and MaxFNo is the largest number of layers that are non-dominated. Where
MaxFNo satisfies:

MaxFNo−1

∑
i=1

Li ≤ N&&
MaxFNo

∑
i=1

Li > N (4)

where Li represents the number of individuals in the ith non-dominated layer (i = 1, 2, . . . ,
MaxFNo). Here, the non-dominated individuals in Layer 1 to layer MaxFNo-1 will prefer-
entially select into Pnew (Line 2, Algorithm 1), and then continue to select the remaining
individuals in Layer MaxFNo.

Although in the case of 2- or 3-objective problems (MOPs), it may be more clearly
layered. This makes the number of individuals in Layer MaxFNo smaller, which means
fewer individuals are selected through DLS. However, with the increase of the objective
number, the proportion of non-dominated individuals in the whole population also in-
creased, almost all individuals are non-dominated when the objective number is more than
12 which is described in Section 1. This leads to an increase in the number of individuals in
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Layer MaxFNo, even if all individuals in the population are in Layer MaxFNo. This also
makes the role of DLS greatly increased, and become more useful in solving MaOPs.

Algorithm 1 Dynamic Learning Strategy

Next, the values of Cn and Dn will be calculated according to needs (Lines 3–4,
Algorithm 1), representing the number of convergence-related individuals and diversity-
related individuals that need to be preserved, respectively. This is also the key for DLS
to ensure dynamic computational resource allocation within algorithm iteration. The
calculation equation of the Cn is as follows:

Cn =

⌈
Rgen × α × (1 − gen

max gen
)

⌉
(5)

where gen represents the current number of iterations and maxgen represents the maximum
number of iterations. Rgen represents the total number of individuals that need to be
selected at Layer MaxFNo at generation gen. Moreover, α ε [0, 1] is a convergence factor
that controls the rate of convergence of the population. Through experimental research,
it is found that when α is about 0.9, the performance can reach the best. In this way, the
convergence speed can be achieved quickly at the same time; it will not fall into the local
optimal. The symbol �·  rounds the element to the nearest integer greater than or equal to
that element. Then the number of diversity-related individuals that needs to be preserved
will continue to be calculated. The calculation of Dn is as follows:

Dn = Rgen − Cn (6)

After Cn and Dn are calculated, two indicators of convergence and diversity will be
calculated for the individuals in population, and Rgen individuals in Layer MaxFNo will be
retained according to the rules of DLS. In this paper, cost value (CV) [44] will be selected
as the convergence-related indicator. Let F(xi) = (f 1(xi), f 2(xi), . . . , fM(xi)) be the objective
vector for individual xi (i = 1, 2, . . . , N). Then the mutual evaluation of individual xi by
individual xj is as follows:

cvij = max
m

{
fm(xj)/ fm(xi)

}
, m = 1, 2, . . . , M (7)

Then the mutual evaluation of each individual in the population is as follows:

CVi = min
j 
=i

cvij, j = 1, 2, . . . , N (8)
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This indicator will not be affected by the change of objective number, and the char-
acteristics of this indicator can be clearly understood according to Equations (7) and (8).
The first point is that xi is a non-dominated individual when CVi > 1, and the second is
that xi is a dominated individual when CVi ≤ 1. Therefore, we can use this indicator as
convergence-related indicator to select the individuals in Layer MaxFNo. The individuals
that have larger CV will be retained, in other words, retaining the individuals who have
better convergence.

As for the diversity-related indicators, the distance between individuals in the popula-
tion is generally used as the evaluation criterion. For example, Euclidean distance is used
to calculate the crowding distance in NSGA-II. In this paper, the Lp-norm-based distance
is selected to calculate the distance between individuals in the population. It has been
experimentally demonstrated that the Lp-norm-based distance is more efficient than the
Euclidean distance, Manhattan distance, etc., especially when dealing with MaOPs [88].
Parameter p of Lp-norm-based distance is recommended as 1/M. Therefore, Lp-norm-based
distance is selected as the diversity-related indicator in this paper.

After the calculation of two indicators for individuals in the population, the individu-
als in Layer MaxFNo were selected and saved to Pnew according to Cn and Dn, until the size
of Pnew reached N.

4.2. The Framework of BCE

There are two main populations in BCE, namely NPC population and PC population.
These two parts use the non-Pareto method and Pareto method to evolve the popula-
tion, respectively. For the NPC population, any non-Pareto evolutionary criterion can be
used directly. However, when the next generation is produced through competition, the
environmental selection needs to select individuals from both NPC population and PC
population (NPC selection). For PC population, non-dominated individuals from NPC and
PC population are reserved (PC selection). Since the number of non-dominated solutions is
unknown, population maintenance operation is carried out to eliminate some individuals
with poor diversity when the number of non-dominated individuals is greater than the
predefined threshold N.

Because of NPC population convergence speed is relatively fast, the individuals in
NPC population can accelerate the convergence of PC population in PC selection. Because
of the diversity of PC population is better, NPC population can explore the unexplored
areas on PF through individual exploration operation and use the individuals in NPC
population to enhance the diversity of PC population. In this way, the two populations
interact with each other to promote the evolution of each population so that the convergence
and diversity of the final solution set are good. The final output here is the PC population.

4.2.1. PC Selection and NPC Selection

The process of PC selection is to select non-dominated individuals from the mixed
set of PC population and the new individuals produced by PC and NPC evolutions. NPC
selection is based on the criteria of NPC evolution, which conducts environmental selection
on a mixture of NPC populations and new individuals generated by PC populations.
Assuming that the evolution of NPC populations uses indicator-based algorithms, then
NPC selection is the selection of individuals having better indicator values in the mixed
population for the next generation.

For the evolution of NPC populations, some algorithms rely on the information of the
parent generation to update the individual, which is not feasible here. So individuals in the
PC population are compared with individuals in the NPC population. If an individual in
the PC population is better than one or more individuals in the NPC population according
to the evolutionary criteria of the NPC population, then that individual (or a random one
of those individuals) in the NPC population will be replaced by that individual in the
PC population.
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4.2.2. Population Maintenance

In PC selection, all non-dominated individuals are selected from a hybrid population
of new individuals resulting from PC and NPC evolutions. Therefore, it is likely to make
the number of non-dominated individuals larger than the preset threshold N (population
size), especially when the objective number is large. Therefore, an effective means of
population maintenance should be added to ensure that the PC population maintains a
representative (with better convergence and diversity) group of individuals.

Population maintenance is to ensure the quality of individuals in a population through
niche techniques. This is also a popular technique in EAs to assess the crowding degree
of each individual in the population by the location and number of individuals in the
niche (objective space). The crowding degree of individual p in population P is defined
as follows:

D(p) = 1 − ∏
q∈P,q 
=p

R(p, q) (9)

R(p, q) =
{

d(p, q)/r, i f d(p, q) ≤ r
1, otherwise

(10)

where d(p, q) is the Euclidian distance between individuals p and q, and r is the radius of
the niche. Due to the size of each objective is different, in order to prevent the influence
of problem size, the objective value of individuals in population will be normalized by
maximum and minimum normalized first when calculating the distance.

It means that each is in the other’s niche when the Euclidean distance between
individuals p and q is less than r. This point can be seen in Equations (9) and (10), and
the range of this crowding degree D(p) is [0, 1]. Otherwise, there would be no effect on
the crowding of these two individuals since R(p, q) = 1. When d(p, q) ≤ r, the larger the
Euclidean distance between the two individuals is, the smaller the calculated crowding
degree will be, which means that the two individuals have a good crowding degree. So, this
is a good way to eliminate the more crowded (poor diversity) individuals in the population.

Since the population is constantly evolving, it is not appropriate to set a fixed niche
radius r. The setting of r must be related to the evolutionary state of the population. The
radius r of the niche in BCE was set as the average Euclidian distance from each individual
to k closest individuals in the population. The aim is to include one or more individuals
in the niche of as many individuals as possible. Here, k is recommended to be set to 3
for better performance. Based on this crowding degree, the most congested individual in
the population (the population of non-dominated individuals selected by PC selection) is
eliminated each time and the crowding degree is recalculated. This process is repeated
until the number of remaining non-dominated individuals is N.

4.2.3. Individual Exploration

The evolution part of the NPC population in BCE usually has high selection pressure;
it converges quickly. However, the general NPC evolution tends to converge to one or more
regions of PF, rather than the entire PF. This leads to a lack of diversity, as there are areas
of PF that have never even been explored. It is through individual exploration that NPC
evolution explores unknown areas on PF to achieve the purpose of increasing the diversity
of NPC population. Individual exploration will explore some promising individuals in the
PC population rather than all individuals in the PC population, because some individuals
in the PC population have been well explored by NPC populations. These promising
individuals generally have been eliminated (by NPC evolution), are less developed, or
are not even visited in NPC evolution. From this point of view, the discussion is mainly
focused on two types of individuals in the PC population:

1. Individuals whose niche has no NPC individual;
2. Individuals whose niche has only one NPC individual.

First of all, for the first group of individuals, these individuals are not in the niche of
individuals in the NPC population. Such individuals are far away from the individuals in
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the NPC population in the objective space, obviously not the individuals favored by the
NPC criterion. However, it is such individuals that are in areas that NPC evolution has not
explored. While the second kind of individuals have an NPC individual in niche, which is
not a lot of individuals when considering that the k is set to 3. However, such individuals
are likely to be located in areas where NPC evolution is incomplete, and it is necessary to
explore such promising individuals.

During individual exploration, the above two kind of individuals contained in the PC
population are first marked and stored in set S (individual sets to be explored). Then, the
variation operation is carried out on the individuals in set S, and all the new individuals
generated by the variation operator are stored in set T (the new individuals set generated
by individual exploration) for the next PC selection. The variation operator here can be
selected arbitrarily, but it should be noted that the number of parent individuals required
by the selected variation operator should be changed accordingly.

The influence of the radius of the niche should also be considered here. A relatively
small radius may allow all individuals in the PC population to be explored, as there may
not be many NPC individuals in each individual’s niche. The reverse is also true, larger
radius may cause all individuals to remain unexplored. Therefore, a dynamically varying
radius is used here, which can vary with the size of the PC population.

With the continuous evolutions of PC and NPC, more and more non-dominated
individuals are produced, and the selection pressure of PC gradually decreases. This
slows down PC evolution when the number of newly created non-dominated individuals
exceeds the size of the remaining PC population that can be stored. This allows for less
individual exploration, allowing the high selection pressure of NPC to play a greater role.
The dynamic radius of the niche is set as follows:

r = (N′/N) ∗ r0 (11)

where N represents the PC population size, and N′ represents the size of the PC population
before population maintenance, and r0 represents the base niche radius calculated by
means of population maintenance.

In the case of fixed computational resources (functional evaluations), this process of
adaptive exploration is necessary according to the evolutionary state of the population. On
the one hand, individual exploration can make up for the lack of diversity in NPC popula-
tion. On the other hand, when there is a lack of convergence, more computing resources
can be given to NPC evolution to accelerate convergence under higher selection pressure.

As shown in Figure 2, individual exploration on a 3-objective optimization problem is
given. The triangle of coordinates in the figure represents the Pareto front of the problem,
and the points in the figure represent the distribution of individuals in the population
in the objective space. Suppose the NPC population is shown in Figure 2a, and the PC
population is shown in Figure 2b. Due to the characteristics of NPC population, the
obtained solution set may be distributed in some part of the Pareto front. For example,
the population in Figure 2a is concentrated to the left and to the top of the Pareto front,
while there is no individual distribution on the right. While PC population is relatively
evenly distributed around the Pareto front, but the convergence is not good (some points
do not converge to the Pareto front). Moreover, the role of individual exploration is to
explore the promising individuals in the PC population to promote the diversity of the
NPC population. It can be seen here that several individuals marked in red in Figure 2b
are still promising individuals although they have not converged to the Pareto front. By
exploring these solutions, it is possible to get some solutions that have never been explored
in the PC population but have a good diversity. After continuous individual exploration,
the diversity of PC population will also be improved and finally reach the state, as shown
in Figure 2c. The population in Figure 2c well balances convergence and diversity, thus,
achieving the purpose of individual exploration.
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Figure 2. The individual exploration process in bi-criterion evolution (BCE). (a) The optimal solution
set obtained by non-Pareto criterion; (b) the optimal solution set obtained by Pareto criterion; (c) the
optimal solution set obtained by the individual exploration.

4.3. Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy

From the above description, it can be seen that these strategies have great advantages
and far-reaching significance in solving many-objective optimization problems. Next, we
will introduce DL-TPCEA in the above context.

4.3.1. The Process of DL-TPCEA

Algorithm 2 gives the whole process of DL-TPCEA, from which it can be seen that
the input parameters of DL-TPCEA include population size N, objective number M, and
function evaluations (FEs). The final output is the population in which PC evolution. First,
a parameter setting (Line 1, Algorithm 2) will be performed, which is mainly set for the
current iteration number gen and the maximum iteration number maxgen in Equation (5).
In addition, Lp-norm-based distance is also used in DLS for diversity maintenance, where
the value p is also initialized. The inverse of the objective number (1/M) will be used here
as the value of p. The parameter settings (Line 5, Algorithm 2) in the later steps do the
same thing.

Before the proceeding of BCE, the populations (PC population and NPC population)
in both evolutionary approaches should first be initialized (Lines 2–3, Algorithm 2). The
NPC population randomly generates N decision vectors with dimension D in the domain
by satisfying the normal distribution, where D represents the dimension of the decision
variable. The PC population is generated by PC selection on the NPC population. This
ensures that the individuals stored in the PC population will always be non-dominated.
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Algorithm 2 Framework of DL-TPCEA

When the algorithm begins to iterate, the individual exploration (Line 6, Algorithm 2)
described in Section 4.2.3 is first performed. Exploring whether there are individuals
in the PC population that the NPC population has not been (fully) explored. If these
individuals existed, it will be stored in set S as described above. Then, the new individuals
generated using variation operator to S was store in the set T. Finally, the returned NewPC
population is all individuals in the set T. The ExRatio is a ratio coefficient, which represents
the proportion of individuals to be explored. The ExRatio is calculated as follows:

ExRatio =
Length(S)

Length(PC)
(12)

where Length(·) represents the size of the set or population. When ExRatio is greater than 0,
it indicates that there are individuals in the PC population that need to be explored. The
larger ExRatio means the more individuals in PC population need to be explored, and the
value range of ExRatio is in [0, 1).

The ExRatio is set to dynamically change the convergence factor (dynamic convergence
factor) of DLS later when using DLS for environment selection. As new individuals are
generated by individual exploration, most of these individuals are located in areas that have
not been explored or are not fully explored in NPC evolution. Therefore, the exploration at
this iteration should pay more attention to these individuals, which means more diversity-
related individuals should be appropriately selected to better explore these regions in
the evolution of NPC. In this case, the convergence factor is appropriately scaled down
according to the size of ExRatio at this iteration to achieve this purpose. The detailed
process is described in Section 4.3.2.

After individual exploration, the following is the evolution of NPC population (Lines
7–9, Algorithm 2) and PC population (Line 10, Algorithm 2), respectively. First of all, an
environment selection is carried out, and the individuals in mixed population of NewPC
population and NPC population is selected by using the non-Pareto criterion and stored
in NPC population. The variation operator is then applied to the NPC population to
generate a new NewNPC population. Then the individuals with better performance in non-
Pareto criterion are selected from the mixed population of NPC population and NewNPC
population. The evolution of PC population uses PC selection to select non-dominated
individuals in mixed population of original PC population, NPC population, and NewNPC
population. This will select all non-dominated individuals from the three populations to
archive in the PC population. Population maintenance operation is performed on the PC
population if necessary (when Length(PC) > N).
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4.3.2. Environmental Selection in NPC Evolution

The process of environmental selection in NPC evolution is shown in Algorithm 3. The
environmental selection mainly uses DLS to select NPC population. However, dynamic
convergence factors α’ should be set according to the evolutionary state of the current popu-
lation before selection. As the number of individuals explored by individual exploration is
different at each iteration, the value of ExRatio is also different. However, when individuals
need to be explored, the convergence factor α should be scaled down. In order to respond
to the information of the number of individuals to be explored, the dynamic convergence
factor α’ is calculated as follows:

α′ = α − ω ∗ sin(
ExRatio ∗ π

2
) (13)

where ω is a dynamic scaling factor and is set to 0.1. The main purpose of this setting is
to prevent the convergence factor from scaling too much, because a good convergence
performance can be maintained when the convergence factor is set at 0.9 or so. Since the
value interval of ExRatio is [0, 1), the value interval of dynamic convergence factor α’ is
[0.8, 0.9). This allows DLS to play a better role even in individual exploration.

After the predefined parameters are set, the next step is to select the individuals
in the candidate population using DLS as shown in Algorithm 1. The population, here,
is generated by the BCE process rather than a hybrid population with a parent–child
relationship. In addition, the convergence factors used are dynamic convergence factors α’
that are scaled according to the state of individual exploration.

Algorithm 3 Environmental Selection in NPC Evolution

 

4.3.3. The Time Complexity Analysis of DL-TPCEA

The time complexity of DL-TPCEA is mainly determined by the party that consumes
more time during the evolution of PC and NPC. In PC selection, the time complexity of se-
lecting non- dominated individuals from the three-part population (Line 10 of Algorithm 2)
is O(MN2). The time complexity of population maintenance and individual exploration is
also O(MN2). So, the time complexity of PC evolution is O(MN2). In the NPC evolution,
the time complexity of first non-dominated sort is O(NlogM−2N). The time complexity of
calculating the number of convergence-related and diversity-related individuals is C (C
is a constant), while the time complexity of calculating the two indicators of candidate
solutions is O(MN2) and O(N2), respectively. The time complexity of using the indicators
to select the candidate solution is O(N). In conclusion, the time complexity of DL-TPCEA is
max{O(NlogM−2N), O(MN2)}.
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5. Experiments

This section will verify the performance of the DL-TPCEA through experiments. First
of all, the proposed dynamic convergence factor will be through a number of experiments to
get an optimal equation. In addition, this paper will conduct an experimental analysis of the
role of individual exploration in the whole evolutionary process. Finally, the performance
of the DL-TPCEA is validated against several state-of-the-art algorithms.

5.1. Parameter Setting

In order to give full play to the performance of MaOEAs on MaOPs with different
objective number, different FEs and population size N should be set for different objective
number M. Taking the WFG [89,90] test suite as an example, the number of dimensions D
needs to be dynamically changed. Here is set as recommended D = M + 9. In addition, the
number of objectives in the experiments conducted in this paper is divided into five groups,
and the number of objectives is 3, 5, 8, 10, and 15, respectively. In terms of population size
setting, since reference points are used in both MOEA/D-PaS and NSGA-III, the original
reference points need to be generated in a certain way. In this case, Das and Dennis’s
approach [91] is used to generate the original reference points on the hyperplane, while
the other algorithms should have the same initial population size to ensure fairness. In
addition, the number of generated reference points is the same with set in NSGA-III [5,6].
So, the corresponding population size N is set to 91, 210, 156, 275, and 135, respectively. The
corresponding number of FEs is 104–104 × 5. The detailed parameter settings are shown in
Table 1.

Table 1. The parameter settings of experiments.

M N D FEs

3 91 12 10000
5 210 14 20000
8 156 17 30000
10 275 19 40000
15 135 24 50000

In the experiments of dynamic convergence factor, α in the base DLS are set to the
recommended 0.9. In the setting of dynamic convergence factors, various functions mono-
tonically increasing in the interval [0, 1] are adopted for dynamic adjustment, which will
be described in detail in Section 5.2. For all comparative algorithms in experiments, the
parameter settings on each objective were also consistent with those in Table 1.

In addition, the running device is PC, the system version is Windows 10 enterprise
version, the processor is Intel(R) Core (TM) i3-8100 CPU 3.6 GHz, and the RAM is 8 GB.

5.2. Experiments on Dynamic Convergence Factors

This paper proposes the concept of dynamic convergence factor in Section 4.3.2. The
main approach is to determine the size of convergence factor dynamically based on the
basic DLS and the state of individual exploration. The purpose of dynamic convergence
factor is to make DLS adapt better to the evolutionary state of the population, so as to
achieve the optimal convergence factor setting. Since the optimal value range of the
convergence factor α is the interval [0.8, 0.9], we take the value of a monotone increasing
function in the interval [0, 1] as shown in Equation (13), multiply it by a dynamic scaling
factor ω by the function mapping of proportional coefficient ExRatio, and then subtract the
corrected value from the original. In this way, it is possible to dynamically change the value
of α’ according to the proportionality coefficient ExRatio. In addition, when the ExRatio is
relatively large (more diversity-related solutions need to be explored), the convergence
factor can be appropriately reduced to better satisfy the convergence and diversity balance
of the population.
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In order to give full play to the optimal performance of the DL-TPCEA, certain work
require to select the monotone increasing function in the interval [0, 1] of Equation (13).
Columns 3 through 11 of the first row in Table 2 show some common monotone increasing
functions in the interval [0, 1] as a comparative experiment. For example, the corresponding
formula of Tan in the fourth column is as follows:

α′ = α − ω ∗ tan(
ExRatio ∗ π

4
) (14)

Table 2. The results of various monotone increasing functions on the WFG test suite, and the inverted
generational distance (IGD) values of the results are tested by Friedman test.

M/Func Ori Sin Tan x1 x1/2 x1/3 x1/M x2 x3 xM Fix

3 5.56 4.44 6.22 6.22 5.67 6.78 6.78 5.22 7.33 6.67 5.11

5 5.44 5.56 6.44 6.89 7.33 4.22 5.67 6.67 7.22 4.11 6.44

8 7.22 5.22 6.44 5.11 4.72 4.89 5.78 6.50 6.44 8.22 5.44

10 4.78 4.89 5.33 5.89 6.56 6.17 6.28 7.44 6.00 6.67 6.00

15 6.00 5.00 6.33 6.00 6.44 6.33 5.89 5.67 6.00 6.11 6.22

Avg 5.80 5.02 6.16 6.02 6.14 5.68 6.08 6.30 6.60 6.36 5.84

In addition, column 2 corresponds to the original DLS that the value of α is set to 0.9.
The last column is a control group, and the method used here is that when ExRatio > 0,
the value of α is multiplied by a value less than 1 (set as 0.9 here). This is equivalent
to setting up a fixed set of transformations instead of making dynamic changes through
functional mapping and the proportional coefficient ExRatio. This group is designed to
analyze and compare the advantages and disadvantages of fixed transformations over
functional mappings.

According to the parameter settings in Table 1, the different algorithms were run
independently 30 times on each WFG test suite. The average inverted generational distance
(IGD) values of the 30 runs were performed using the Friedman test (the smaller the better)
and presented in Table 2. The last row is the average of the five sets of Friedman tests. Dark
gray represents the best result and light gray represents the second-best result. From the
results, the best performance is obtained when the monotone increasing function is taken
as the sine function, and the optimal value (minimum value) is obtained on the 3- and
15-objective WFG, respectively. The second-best result is obtained on the 10-objective WFG.
Although the results on 5- and 8-objective WFG are not so good, they are also relatively
small in terms of numerical values. At the same time, the sinusoidal results were also the
best among the average Friedman results of the five experiments. In addition, when the
monotone increasing function is x1/3, it performs second-best, and obtains second best
results on the 5- and 8-objective WFG, respectively, and also obtains second best results in
the average Friedman test.

When the monotone increasing function is selected as xM and x1/2, the optimal value
is obtained on 5- and 8-objective WFG, respectively. However, the average Friedman
test results for these two functions are not very good. It is worth noting that the original
DLS obtained the optimal result on 10-objective WFG, followed by the mapping of sine
function. In addition, the set of fixed transformations also showed the second-best result
on 3-objective WFG. The average Friedman test results of these two strategies are not much
different, but they are not as good as the average Friedman test results of the sine function.

Therefore, the sine function mapping of ExRatio is finally selected in dynamic conver-
gence factor. In the experiments in Section 5.3 below, the dynamic convergence factor in
DL-TPCEA is calculated in the form shown in Equation (13).
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5.3. Experiments on Comparative Algorithms

To verify the performance of the proposed DL-TPCEA, we compare it with five state-
of-the-art algorithms: MOEA/D-PaS [14], NSGA-III [5], CMOPSO [92], Two_Arch2 [88],
and DLEA. The brief introduction to these comparative algorithms is given below.

In MOEA/D-PaS, a Pareto adaptive scalarizing (PaS) approximation method was
proposed, which approximated the optimal p value of the commonly used scalarizing
method. This is the key to balancing Pareto optimal selection pressure and algorithm
robustness to PF geometries. It guarantees that any solution can be found along PF for
given some weight. PaS is combined with the decomposition-based algorithm (MOEA/D)
to increase the ability of balanced convergence and diversity.

NSGA-III is an improved version based on the framework of NSGA-II [4]. The
crowding distance operator that was used to balance diversity in NSGA-II is modified
into a diversity keeping strategy based on weight vector guidance. NSGA-III used a set
of pre-generated uniformly distributed weight vectors to simulate the distribution of PF.
When selecting solutions, the candidate solutions with the shortest vertical distance to
these weight vectors will be selected.

CMOPSO is an improved version of the multi-objective particle swarm optimization
(MOPSO [93]) by adding a competition mechanism. CMOPSO makes particles pairwise
competitions to select particles in each generation of population. This makes the per-
formance of CMOPSO less dependent on global and local optimal particles stored in an
external archive.

Two_Arch2 uses two external archives, where each archive promotes convergence
(CA) and diversity (DA). The two archives use different selection principles, where CA is
indicator-based and DA is Pareto-based. At the same time, Lp-norm-based diversity mainte-
nance scheme was also proposed in Two_Arch2 to improve the diversity of the population.

DLEA mainly uses the DLS mentioned in Section 4.1. The algorithm mainly used
DLS to enhance the balance of convergence and diversity in environmental selection. Two
different indicators are used to improve the performance by maintaining the convergence
and diversity, respectively. Meanwhile, the convergence factor α in DLEA was fixed at
0.9. Compared with DLEA, DL-TPCEA proposes the concept of dynamic convergence
factor. The comparison of these two algorithms is mainly to highlight the performance
improvement brought by the dynamic convergence factors and the coevolution of the
two populations.

The five comparative algorithms selected have their own characteristics, including
operators frequently used in the many-objective optimization field: decomposition-based
operator, Pareto-based operator, indicator-based operator, external-archive-based operator,
and weight-vector-based operator. Comparing these algorithms can show the performance
advantage of an algorithm more significantly.

For DL-TPCEA and other five comparative algorithms, Tables 3 and 4 give the mean
and standard deviation (in parentheses) of HV values run on five sets of WFG test suites,
and the results in Tables 5 and 6 are corresponding IGD values. Wilkerson Rank-Sum test
(α = 0.05) was used to test the significant difference between HV values and IGD values of
these six algorithms. The symbols −, +, and ≈ stand for that the indicator values of the
comparative algorithms were significantly worse than, better than, and similar to that of
DL-TPCEA, respectively. In addition, for each test instance, the best (maximum) HV value
and the best (minimum) IGD value were highlighted in gray.
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As shown in Tables 3 and 4, in terms of HV, the proposed DL-TPCEA was significantly
better than the other five algorithms on 26 out of 45 test instances, and performed similarly
to them on two test instances. Specifically, DL-TPCEA generated higher HV values than
MOEA/D-PaS, NSGA-III, CMOPSO, Two_Arch2, and DLEA on 39, 33, 39, 38, and 36 out
of the 45 test instances, respectively. As shown in Tables 5 and 6, in terms of IGD, the
proposed DL-TPCEA was significantly better than the other five algorithms on 21 out
of 45 test instances, and performed similarly to them on one test instance. DL-TPCEA
generated smaller IGD values than MOEA/D-PaS, NSGA-III, CMOPSO, Two_Arch2, and
DLEA on 44, 31, 26, 29, and 29 out of the 45 test instances, respectively. The results
demonstrated that it was a promising way to approximate the PFs of WFGs via coevolution
and dynamic learning strategy in the proposed DL-TPCEA. CMOPSO and DLEA showed
better results for IGD values than for HV values, indicating that these two algorithms also
had a good ability to maintain the trade-off between convergence and diversity. In addition,
from the comprehensive results of HV values and IGD values, NSGA-III was also a good
algorithm. However, compared with these three MaOEAs, the proposed DL-TPCEA also
showed much better performance with respect to both convergence and diversity.

The superiority of DL-TPCEA can be explained as follows. The other five comparative
algorithms, with the exception of Two_Ach2, attempted to simulate PFs of WFGs through
balanced convergence and diversity using a single population. However, as the number
of objectives increases, the balance between convergence and diversity became more diffi-
cult. This was because the increasing number of objectives led to more serious conflicts
on multiple objectives, so that the selection pressure of the MOEAs was not as good as
when there were fewer objectives. When the number of objectives kept increasing, the
solutions generated by these algorithms may only be single convergence-related solutions
or diversity-related solutions, but there was no compromise between convergence and
diversity over the whole PF. In addition, Two_Arch2 used two different external archives to
store convergence-related solutions or diversity-related solutions, respectively. Moreover,
Two_Arch2 promoted the evolution between the two archives so that the population main-
tained a compromise between convergence and diversity. However, these two external
archiving methods had poor performance in dealing with MaOPs, especially the objective
conflicts were serious. The proposed DL-TPCEA used two populations for coevolution
and the shortcomings of each population will be compensated by BCE. It kept a good
balance between convergence and diversity, and used dynamic learning strategy to fur-
ther strengthen the balance. As a result, the proposed DL-TPCEA did not degrade the
performance because of the conflicts caused by the number of objectives increased.

From the HV values in Tables 3 and 4, we can see that the HV value obtained by
other related algorithms except MOEA/D-PaS on 8-, 10-, and 15-objective WFG3 was zero.
This was caused by the calculation of the HV results using a set of reference points set on
the corresponding test instance. When the corresponding algorithms failed to obtain any
candidate solution dominating the reference point on those test instances, the value of the
hypervolume (HV value) formed by the non-dominated population and the reference point
was zero. In these three test instances, only MOEA/D-PaS obtained HV results, which also
indicates that MOEA/D-PaS had its own advantages in dealing with WFG3. In addition
to the three test instances, all the algorithms obtained HV values (non-zero) on the other
test instances.

It can also be concluded from the results that DL-TPCEA mainly showed poor perfor-
mance on WFG1 and WFG3. In terms of the characteristics of the problem, WFG1 is convex
and mixed, while WFG3 is linear and degenerate. DL-TPCEA may not be able to find
boundary individuals well on such problems like WFG1 or WFG3, thus, resulting in poor
performance. In addition, WFG2 is convex and disconnected. However, DL-TPCEA was
still able to obtain the optimal HV results, indicating that the two-population coevolution
of DL-TPCEA is capable of dealing with disconnected MaOPs. Finally, WFG4-9 is concave,
and DL-TPCEA also has the best performance. The performance of DL-TPCEA on 10- and
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15-objective WFG4-9 was lower than DLEA, indicating that dynamic learning strategies
played a significant role in dealing with concave MaOPs.

In order to more intuitively observe the ability of the six algorithms to balance con-
vergence and diversity on the WFG test suite, the parallel coordinates of the solution set
obtained by the six algorithms on the 5-objective WFG2 and 10-objective WFG9 were given
in Figures 3 and 4, respectively. In parallel coordinates, the ordinate represents the objective
value, and the convergence information can be obtained. An algorithm has good conver-
gence if it can converge to the range of PF. At the same time, the vertical height can also
reflect the performance in the diversity. The horizontal axis corresponds to each objective,
which can reflect the diversity information of MaOEAs. It is an algorithm that maintains
solutions for every objective, and the denser the lines, the better the diversity. Therefore,
using the parallel coordinates of the solution set can better compare the performance
of MaOEAs.

For 5-objective WFG2, the range of PF on each objective dimension m is from 0 to
m * 2 (m = 1, . . . , M). As shown in Figure 3, although the solution sets obtained by all
the six algorithms can successfully converged to the range of the corresponding objective
dimension on PF, their diversity was significantly different. Among the six algorithms,
MOEA/D-PaS and DLEA had the worst performance in diversity. MOEA/D-PaS had a
poor diversity in the second objective, while DLEA had a poor diversity in the second to
fourth objectives. By contrast, NSGA-III, CMOPSO, and Two_Arch2 algorithms performed
better in diversity. However, the diversity of the solution sets obtained by these three
algorithms was not as good as that of DL-TPCEA. It can be seen from in Figure 3f that the
diversity of the solution set obtained by DL-TPCEA was good in each objective dimension.
This indicated that the output solution set of the proposed DL-TPCEA was better than the
other five comparative algorithms in terms of convergence and diversity. This result was
also consistent with the maximum HV value and minimum IGD value of DL-TPCEA on
5-objective WFG2, as shown in Tables 3 and 5.

Figure 3. The final solution set obtained by the six MOEAs on 5-objectives WFG2, shown by parallel coordinates. (a) The
final solution set obtained by MOEA/D-Pas; (b) The final solution set obtained by NSGA-III; (c) The final solution set
obtained by CMOPSO; (d) The final solution set obtained by Two_Arch2; (e) The final solution set obtained by DLEA;
(f) The final solution set obtained by DL-TPCEA.
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Figure 4. The final solution set obtained by the six MOEAs on 10-objectives WFG9, shown by parallel coordinates. (a)
The final solution set obtained by MOEA/D-Pas; (b) The final solution set obtained by NSGA-III; (c) The final solution
set obtained by CMOPSO; (d) The final solution set obtained by Two_Arch2; (e) The final solution set obtained by DLEA;
(f) The final solution set obtained by DL-TPCEA.

As shown in Figure 4, the solution set obtained by DL-TPCEA was superior to the five
comparative algorithms in terms of convergence and diversity. For 10-objective WFG9, the
range of PF on each objective dimension m is from 0 to m * 2 (m = 1, . . . , M). Among the six
algorithms, MOEA/D-PaS converged to few solutions on PF of 10-objective WFG9, so it
cannot approach PF well. As shown in Figure 4c,e, the solution set obtained by CMOPSO
had a relatively poor diversity on the sixth objective, while DLEA had a relatively poor
diversity on the seventh and ninth objectives. NSGA-III and Two_Arch2 algorithms
performed well, second only to the convergence and diversity of the solution set obtained
by DL-TPCEA on 10-objective WFG9. This was consistent with the HV values and IGD
values in Tables 4 and 6.

Figure 5 showed the IGD value trajectories obtained by running six algorithms on the
5-objective WFG test suite. The algorithm for each trajectory was identified in the bottom
legend, and DL-TPCEA was specifically highlighted in red. Each subgraph was marked
with a different problem, and its abscissa was the number of evaluations during algorithm
iteration, and its ordinate was the IGD value. As can be seen from Figure 5, the IGD value
trajectory of DL-TPCEA generally declines fastest (except for WFG1 and WFG3), which
indicated that DLEA converged very quickly. In addition, from the final result, the IGD
value obtained by DL-TPCEA is usually the minimum or not far from the minimum. On
5-objective WFG1, the final IGD value obtained by DL-TPCEA was second only to DLEA.
And DLEA obtained the best IGD values on WFG3, while DL-TPCEA performed only at
the mid-range level on this issue. Except for WFG1 and WFG3, DL-TPCEA performed very
well on the other seven 5-objective WFGs. In general, DL-TPCEA had the best performance
among the six algorithms.
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Figure 5. The IGD values convergence trajectories obtained by the six MOEAs on 5-objectives WFG test suite.

Combined with results of HV values and IGD values in Tables 3–6, convergence and
diversity effects of solution sets in Figures 3 and 4, as well as IGD value trajectory shown
in Figure 5, DL-TPCEA had the best performance in these six algorithms. DL-TPCEA had
great advantages in many-objective optimization, both in terms of the convergence and
diversity of the final solution set and the convergence speed.

Table 7 shows the average running time of the six comparative algorithms on 3-, 5-,
8-, 10-, and 15-objective WFG1. The last one is the results of Wilcoxon test (the smaller the
value is, the shorter the corresponding running time is). The shortest time is NSGA-III,
which is due to the simple structure. However, DL-TPCEA is only ranked fourth, which is
also a shortcoming. However, given the performance gains, it is worth it, especially for
problems that require a lot of accuracy.

Table 7. Comparison of runtime (s) among the six algorithms on 3-, 5-, 8-, 10-, and 15-objective WFG1.

Problem M MOEA/D-PaS NSGA-III CMOPSO Two_Arch2 DLEA DL-TPCEA

WFG1

3 1.7368e+1 (1.75e−1) 6.5904e−1 (3.59e−2) 3.0853e+0 (5.20e−1) 1.1769e+1 (4.49e−1) 1.2042e+1 (8.84e−2) 5.0030e+0 (2.58e−1)
5 3.5334e+1 (3.27e−1) 1.5763e+0 (6.25e−2) 1.7703e+1 (2.45e+0) 3.8577e+1 (1.06e+0) 2.5697e+1 (1.80e−1) 1.9692e+1 (1.46e+0)
8 7.2000e+1 (3.02e−1) 2.9553e+0 (5.70e−2) 3.3330e+1 (5.32e+0) 1.0961e+2 (2.00e+0) 6.1095e+1 (5.83e−1) 7.5986e+1 (3.63e+0)
10 6.7838e+1 (6.60e−1) 3.1321e+0 (2.52e−1) 3.0180e+1 (7.89e+0) 1.1603e+2 (2.26e+0) 5.8485e+1 (2.66e−1) 8.3710e+1 (3.01e+0)
15 1.0624e+2 (4.48e+0) 4.4098e+0 (1.35e−1) 1.2978e+2 (2.33e+1) 2.4883e+2 (4.10e+0) 1.0903e+2 (7.38e−1) 2.2197e+2 (6.09e+0)

rank 4.20 1.00 2.40 5.60 3.60 4.20

5.4. Comparison Experiments of DL-TPCEA and Two Weight-Sum Based Algorithms

In this section, we compared DL-TPCEA with two weight-sum based algorithms. The
weighted sum method is characterized by fast running speed, simple structure, and easy
operation. MaOPs in industrial production tend to have more complex PF, so it may be
very limited to solve such problems only by weighted sum method. For this purpose,
DL-TPCEA is compared with the weight-sum based approach to verify the advantages of
the proposed algorithm.

This paper provides two weight-sum based algorithms for comparison. The first
algorithm is a modification of the classic NSGA-II framework, which is called WSEA. The
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environment selection of the WSEA starts with a non-dominated sort, and then the rest of
the solutions are selected by using weight-sum method in the layer MaxFNo mentioned in
Section 4.1.2. The environment selection of the second algorithm only selects individuals by
weight-sum method, which is called WSEA2. From the point of minimizing the problem,
the way to select individuals here is to pick out the N individuals with smallest weighted
sum to the next generation. In addition, both algorithms use crossover and mutation
operators to generate offspring. Finally, since there is no preference for an objective, the
weights of the two algorithms on each objective are set to the same value of 1/M. However,
in order to consider the impact of each objective size on the algorithm, a normalization
operation should be carried out for each objective before calculating the weighted sum.
DL-TPCEA is compared with the two weight-sum based algorithms mentioned above, and
the results are shown in Tables 8–11.

Table 8. HV results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 3, 5, and
8 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1

3 2.5940e+1 (3.02e+0) 6.9900e+0 (5.88e+0) 2.7839e+1 (1.96e+0)

5 4.3534e+3 (2.87e+2) 1.5758e+3 (9.81e+2) 2.6535e+3 (2.70e+2)

8 1.8437e+7 (1.20e+6) 1.1020e+7 (7.58e+6) 6.9852e+6 (1.19e+6)

WFG2

3 4.4022e+1 (1.02e+0) 1.0113e+1 (4.37e+0) 5.8855e+1 (2.83e−1)

5 4.2104e+3 (9.81e+2) 2.2314e+3 (1.04e+3) 6.1122e+3 (1.83e+1)

8 1.6107e+7 (2.25e+6) 1.6424e+7 (2.47e+6) 2.1889e+7 (8.02e+4)

WFG3

3 4.7170e+0 (3.09e−1) 1.4324e+0 (1.07e−2) 5.9102e+0 (9.30e−2)

5 1.2563e+0 (9.19e−2) 1.0850e+0 (6.56e−3) 1.1142e+0 (3.37e−1)

8 1.6284e−2 (2.65e−3) 1.3718e−2 (1.29e−3) 0.0000e+0 (0.00e+0)

WFG4

3 2.1540e+1 (2.61e−1) 5.8596e+0 (1.05e−1) 3.5106e+1 (1.47e−1)

5 1.5536e+3 (1.18e+2) 7.4547e+2 (1.23e+2) 4.8905e+3 (2.30e+1)

8 5.1626e+6 (1.10e+6) 4.0105e+6 (8.00e+5) 2.0259e+7 (1.20e+5)

WFG5

3 5.6176e+0 (3.55e−1) 4.9062e+0 (2.20e−4) 3.3072e+1 (2.45e−1)

5 4.8517e+2 (7.18e−4) 4.8516e+2 (2.96e−6) 4.5798e+3 (1.63e+1)

8 1.7489e+6 (4.13e+0) 1.7489e+6 (4.42e+0) 1.8993e+7 (7.80e+4)

WFG6

3 1.9143e+1 (8.51e−1) 5.2439e+0 (9.21e−1) 3.1280e+1 (8.81e−1)

5 1.4861e+3 (4.26e+2) 8.3328e+2 (4.21e+2) 4.3856e+3 (8.73e+1)

8 4.0300e+6 (1.18e+6) 2.3463e+6 (1.30e+5) 1.8534e+7 (4.34e+5)

WFG7

3 1.7538e+1 (1.22e+0) 9.4479e+0 (3.78e+0) 3.5763e+1 (9.24e−2)

5 1.5602e+3 (3.41e+2) 8.5188e+2 (3.01e+2) 4.9534e+3 (8.29e+0)

8 6.0797e+6 (7.26e+5) 4.7256e+6 (1.71e+6) 2.0675e+7 (3.51e+4)

WFG8

3 1.6581e+1 (2.50e+0) 5.6755e+0 (1.60e−1) 2.9372e+1 (2.48e−1)

5 6.8821e+2 (6.54e+1) 6.1305e+2 (7.08e+1) 3.8241e+3 (4.35e+1)

8 2.2857e+6 (6.42e+5) 2.0356e+6 (3.05e+5) 1.6523e+7 (2.10e+5)

WFG9

3 8.3332e+0 (1.99e+0) 3.4207e+0 (4.40e−5) 3.4084e+1 (2.54e−1)

5 6.5479e+2 (9.07e+1) 4.4075e+2 (9.90e+1) 4.6044e+3 (4.08e+1)

8 3.0759e+6 (7.92e+5) 2.8697e+6 (5.56e+5) 1.8621e+7 (1.34e+5)
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Table 9. HV results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 10 and
15 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1
10 8.3451e+9 (3.40e+8) 8.0823e+9 (8.38e+8) 3.0894e+9 (9.09e+7)

15 1.3885e+17 (1.57e+14) 1.3151e+17 (7.93e+15) 3.9888e+16 (6.02e+15)

WFG2
10 7.7232e+9 (5.92e+8) 5.1805e+9 (1.83e+9) 9.5531e+9 (2.77e+7)

15 1.2874e+17 (2.49e+16) 1.0902e+17 (2.21e+16) 1.7777e+17 (1.70e+14)

WFG3
10 3.8860e−5 (5.32e−6) 3.8105e−5 (5.43e−6) 0.0000e+0 (0.00e+0)

15 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0)

WFG4
10 2.0785e+9 (6.77e+8) 2.5030e+9 (7.61e+8) 9.1189e+9 (4.33e+7)

15 4.9360e+16 (2.12e+16) 3.1410e+16 (1.15e+16) 1.7439e+17 (6.93e+14)

WFG5
10 7.6254e+8 (9.65e−1) 7.6254e+8 (4.37e+1) 8.5253e+9 (2.97e+7)

15 1.4147e+16 (1.75e+12) 1.4146e+16 (1.83e+12) 1.6240e+17 (3.51e+14)

WFG6
10 1.8340e+9 (5.01e+8) 1.7364e+9 (7.30e+8) 8.1978e+9 (2.35e+8)

15 4.5548e+16 (1.85e+16) 3.2527e+16 (1.02e+16) 1.5706e+17 (2.76e+15)

WFG7
10 2.8722e+9 (6.09e+8) 2.2976e+9 (9.57e+8) 9.2994e+9 (7.01e+6)

15 4.9910e+16 (1.06e+16) 3.4728e+16 (9.38e+15) 1.7724e+17 (1.34e+14)

WFG8
10 8.7211e+8 (9.80e+7) 8.6477e+8 (2.00e+8) 7.8199e+9 (1.26e+8)

15 3.6695e+16 (2.82e+16) 4.2377e+16 (9.52e+15) 1.5825e+17 (3.19e+15)

WFG9
10 1.6703e+9 (9.25e+8) 1.4451e+9 (5.64e+8) 8.4373e+9 (7.94e+7)

15 5.4094e+16 (7.47e+15) 4.6128e+16 (2.02e+16) 1.5617e+17 (1.04e+16)

As can be seen from the results in Tables 8–11, DL-TPCEA obtained the optimal
results in all the other instances except for the HV results of seven instances on WFG1
and WFG3. Regardless of HV or IGD indicator, DL-TPCEA has the best performance
among the three algorithms. It also reflects that the complexity of MaOPs cannot be well
adapted to only relying on a single weighted sum method. The reasons are as follows:
without considering the objective preference, it is not guaranteed that the solution in the
population will converge to PF only by the magnitude of the weighted sum. A smaller
weighted sum may just be that the individual retains a smaller objective value for some
objective, but whether the individual is a non-dominated solution is unknown. In addition,
the method based on the weighted sum is linearly convergent. However, different MaOPs
have different characteristics, making it difficult to apply this method to all problems.

From the point of the feature of the problem, WFG1 is convex and mixed, while
WFG3 is linear and degenerate. WSEA has just obtained the optimal HV results in several
examples of these two problems, indicating the weighted sum method is promising to
deal with these problems. However, the IGD values obtained by WSEA and WSEA2 on
these examples are very poor, which also indicates that the convergence ability is not
strong. The calculation of HV will consider some boundary individuals in the population,
so DL-TPCEA may not get good HV results because of the boundary individuals in the
population. However, combining the results of the two indicators, DL-TPCEA performed
best in 83 out of 90 instances, which is an overwhelming advantage. These results reflect the
limitations of using the weighted sum method to solve MaOPs, and show that DL-TPCEA
has good advantages.
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Table 10. IGD results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 3, 5, and
8 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1

3 1.2881e+0 (1.35e−1) 3.4165e+0 (9.29e−1) 1.1443e+0 (7.65e−2)

5 2.0015e+0 (1.18e−1) 5.0632e+0 (1.85e+0) 1.5296e+0 (1.11e−1)

8 2.4999e+0 (2.12e−1) 7.6394e+0 (4.79e+0) 2.2369e+0 (2.02e−1)

WFG2

3 7.7414e−1 (4.59e−2) 3.1113e+0 (3.99e−1) 1.1400e−1 (8.60e−3)

5 1.6495e+0 (4.13e−1) 2.7955e+0 (9.76e−1) 5.1156e−1 (6.59e−2)

8 3.8914e+0 (6.35e−1) 3.5795e+0 (5.84e−1) 1.0066e+0 (2.18e−1)

WFG3

3 1.4793e+0 (1.96e−1) 3.2014e+0 (2.81e−3) 1.1065e−1 (1.13e−2)

5 5.2586e+0 (1.01e−1) 5.4443e+0 (4.88e−4) 5.6591e−1 (6.60e−2)

8 8.5239e+0 (3.90e−1) 8.8671e+0 (3.27e−2) 1.6935e+0 (3.31e−1)

WFG4

3 1.4651e+0 (1.51e−2) 3.9049e+0 (7.37e−2) 1.7016e−1 (3.78e−3)

5 5.7459e+0 (2.93e−1) 7.4360e+0 (3.14e−1) 9.7239e−1 (9.44e−3)

8 1.1621e+1 (1.03e+0) 1.2737e+1 (4.56e−1) 2.5307e+0 (1.51e−2)

WFG5

3 3.6430e+0 (9.53e−2) 3.8534e+0 (6.71e−5) 1.8664e−1 (3.07e−3)

5 7.9990e+0 (5.15e−6) 7.9990e+0 (2.13e−8) 9.9293e−1 (9.04e−3)

8 1.4670e+1 (9.68e−6) 1.4670e+1 (1.06e−5) 2.6346e+0 (3.32e−2)

WFG6

3 1.5039e+0 (7.48e−2) 3.7653e+0 (2.26e−1) 2.4262e−1 (1.89e−2)

5 5.3476e+0 (8.43e−1) 7.0610e+0 (9.93e−1) 1.0488e+0 (1.30e−2)

8 1.2326e+1 (1.24e+0) 1.3945e+1 (1.32e−1) 2.8073e+0 (4.48e−2)

WFG7

3 1.8260e+0 (1.95e−1) 3.1263e+0 (6.97e−1) 1.7794e−1 (5.79e−3)

5 5.1307e+0 (5.05e−1) 7.2260e+0 (7.30e−1) 1.0808e+0 (2.16e−2)

8 1.1043e+1 (4.85e−1) 1.1873e+1 (1.83e+0) 2.7405e+0 (2.75e−2)

WFG8

3 1.5861e+0 (3.63e−1) 3.8409e+0 (2.16e−1) 2.9003e−1 (5.52e−3)

5 5.5266e+0 (1.98e−1) 6.6281e+0 (8.22e−1) 1.1148e+0 (1.25e−2)

8 1.1010e+1 (1.07e+0) 1.3450e+1 (1.43e+0) 2.9559e+0 (4.04e−2)

WFG9

3 3.1525e+0 (2.30e−1) 3.8736e+0 (1.04e−6) 1.6080e−1 (3.23e−3)

5 7.5318e+0 (2.87e−1) 7.9566e+0 (6.88e−2) 9.5847e−1 (1.16e−2)

8 1.3446e+1 (6.85e−1) 1.3468e+1 (5.75e−1) 2.6905e+0 (4.47e−2)

Table 11. IGD results of DL-TPCEA and two weight-sum based algorithms on benchmarks WFG1-WFG9 with 10 and
15 objectives.

Problems M WSEA WSEA2 DL-TPCEA

WFG1
10 2.7506e+0 (4.24e−1) 3.2357e+0 (1.43e+0) 2.3727e+0 (1.48e−1)

15 3.3141e+0 (1.74e−1) 3.5682e+0 (7.23e−1) 3.2972e+0 (2.62e−1)

WFG2
10 5.1728e+0 (6.06e−1) 6.3742e+0 (1.88e+0) 1.7920e+0 (3.61e−1)

15 1.2806e+1 (1.47e+0) 1.3168e+1 (2.04e+0) 2.3050e+0 (7.98e−1)

WFG3
10 1.1169e+1 (2.14e−2) 1.1187e+1 (2.10e−3) 2.4613e+0 (2.26e−1)

15 1.5948e+1 (1.23e+0) 1.6847e+1 (1.76e−1) 4.2693e+0 (1.23e+0)
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Table 11. Cont.

Problems M WSEA WSEA2 DL-TPCEA

WFG4
10 1.5880e+1 (1.63e+0) 1.5367e+1 (1.51e+0) 4.2136e+0 (1.04e−1)
15 2.5245e+1 (2.83e+0) 2.7162e+1 (1.53e+0) 7.7824e+0 (1.11e−1)

WFG5
10 1.8913e+1 (6.20e−9) 1.8913e+1 (6.95e−8) 4.0344e+0 (3.86e−2)
15 3.0022e+1 (6.26e−4) 3.0023e+1 (6.52e−4) 7.5313e+0 (6.01e−2)

WFG6
10 1.5554e+1 (1.64e+0) 1.6302e+1 (1.94e+0) 4.3695e+0 (2.07e−1)
15 2.4092e+1 (2.70e+0) 2.5533e+1 (2.47e+0) 8.0243e+0 (1.90e−1)

WFG7
10 1.3849e+1 (1.58e+0) 1.4887e+1 (2.41e+0) 4.1518e+0 (6.56e−2)
15 2.2743e+1 (2.69e+0) 2.6167e+1 (2.09e+0) 7.6130e+0 (8.70e−2)

WFG8
10 1.4975e+1 (1.68e+0) 1.5039e+1 (1.52e+0) 4.2410e+0 (4.91e−2)
15 2.4219e+1 (4.49e+0) 2.1602e+1 (2.28e+0) 7.3664e+0 (2.52e−1)

WFG9
10 1.6810e+1 (2.26e+0) 1.7056e+1 (1.58e+0) 4.1677e+0 (2.88e−2)
15 2.3731e+1 (1.25e+0) 2.5088e+1 (3.06e+0) 7.2405e+0 (1.43e−1)

6. Conclusions

In recent years, in order to enable MOEAs to handle MaOPs with various character-
istics, various MOEAs have been proposed. However, these MOEAs also had their own
disadvantages. For example, MOEAs that rely on reference vectors cannot well represent
the characteristics of the whole PF when generating reference vectors, which results in
the performance degradation of MOEAs. This paper made full use of the advantages of
DLS in many-objective optimization (better to maintain convergence and diversity), and
proposed DL-TPCEA in combination with the BCE framework. The effective combination
of the two strategies can further explore the entire decision space. At the same time, the
convergence factor in DLS is further improved according to the evolutionary state of the
population in BCE, and then the dynamic convergence factor is proposed to better use the
important element of the evolutionary state of the population. This effective combination
greatly improves the performance of DL-TPCEA. When compared with five state-of-the-art
MOEAs, DL-TPCEA has significant advantages. Finally, in order to verify the performance
advantage of DL-TPCEA over the weight-sum based algorithm, DL-TPCEA was compared
with the two weight-sum based algorithms, and the results showed that DL-TPCEA still
had significant advantages.

In addition, the original DLS used Iε+ to maintain individual convergence and a
diversity maintenance mechanism based on Lp-norm distance to maintain diversity. In this
paper, the CV indicator is used to maintain individual convergence, and the comparison
between CV and Iε+ should be the future research direction. In addition, there are still
many excellent strategies that can be used to maintain convergence and diversity, and this
paper does not compare these strategies. The future direction of work can start from this
point and be improved under the framework of DL-TPCEA to achieve better results. We
used dynamic learning factors to combine DLS and BCE more effectively, but there are
more ways to combine them more effectively in the future. In terms of the selection of the
initial value of the dynamic convergence factor, suggestions in relevant paper [94] can also
be referred to get a better initial value.
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Abstract: The heuristic algorithm represented by particle swarm optimization (PSO) is an effective
tool for addressing serious nonlinearity in one-dimensional magnetotelluric (MT) inversions. PSO has
the shortcomings of insufficient population diversity and a lack of coordination between individual
cognition and social cognition in the process of optimization. Based on PSO, we propose a new
memetic strategy, which firstly selectively enhances the diversity of the population in evolutionary
iterations through reverse learning and gene mutation mechanisms. Then, dynamic inertia weights
and cognitive attraction coefficients are designed through sine-cosine mapping to balance individual
cognition and social cognition in the optimization process and to integrate previous experience into
the evolutionary process. This improves convergence and the ability to escape from local extremes in
the optimization process. The memetic strategy passes the noise resistance test and an actual MT
data test. The results show that the memetic strategy increases the convergence speed in the PSO
optimization process, and the inversion accuracy is also greatly improved.

Keywords: particle swarm optimization; magnetotelluric; one-dimensional inversions; geoelectric
model; optimization problem

1. Introduction

The magnetotelluric (MT) technology is a geophysical electromagnetic detection
method that uses electromagnetic induction signals to detect underground electrical struc-
tures [1,2]. The horizontal magnetic field is vertically incident into the Earth, which
produces a time-harmonic changing induced electromagnetic field in the ground. When
the excitation field source is constant, the electromagnetic field induced in the Earth is
determined by the underground electrical structure and frequency [3]. Calculating the
induced electromagnetic signal based on the electrical structure and frequency constitutes
MT forward modeling, and this process satisfies the Maxwell equations. The process of
calculating the geoelectric structure according to the induced electromagnetic signal and
frequency is the MT inversion, which is implemented by the optimization method [4].

In the optimization process, the electrical structure is used as the optimization pa-
rameter to find the smallest objective function, and the difference between the predicted
electromagnetic signal and the observed signal is evaluated by the objective function [5].
When only surface electromagnetic signals can be obtained, the inversion problem is
severely underdetermined and has multiple solutions. Model roughness is commonly
added as a Lagrangian penalty term to the objective function to address ambiguity [6,7].
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However, due to the serious nonlinearity of the MT inversion problem, the commonly
used gradient optimization method is slow in the optimization process, and the optimal
solution is not accurate. Nonlinear optimization methods based on intelligent algorithms
often have better results in solving such nonlinear problems [8,9].

Heuristic algorithms are commonly used to solve such nonlinear problems [10,11].
Several common algorithms, including the simulated annealing method, the Bayesian
inversion method and genetic algorithm, have been able to initially solve the MT inversion
problem and determine the underground electrical structure through the electromagnetic
response signal of the MT method [12,13]. Among these heuristic swarm intelligence
algorithms, the particle swarm optimization (PSO) algorithm is widely used in the MT in-
version due to its simple implementation and less adjustment parameters [14,15]. With the
introduction of the inertia weight factor, the time-varying acceleration factor strategy
and the strategy based on reproduction and subgroup hybridization, the shortcomings of
PSO—that it easily falls into local extremes and has slow convergence in the later stages
of evolution—are gradually improved [16–18]. However, these algorithms still have not
overcome the shortcomings of the lack of population diversity and the uncoordination of
individual cognition and social cognition capabilities.

With the development of memetic strategies, which take the process of memetic
evolution as inspiration, using interactions between intelligent individuals to achieve
population evolution and memetic evolution has become an important tool for enhancing
population diversity and coordinating individual cognition and social cognition [19,20].
For the MT inversion problem, our strategy is to calculate the cognitive attraction coefficient
through sine-cosine mapping to balance individual cognition and social cognition in the
optimization process. Then, to further improve convergence in the optimization process
and the ability to escape local extremes, we use dynamic inertia weights (DIWs) to integrate
the previous experience of the population into the evolutionary process, and we use genetic
mutations to enrich the diversity of the population.

Our contributions to the MT inversion with PSO optimization are as follows:

• We use opposition-based learning strategy to search for a suitable initial population of
geoelectric model more accurately, the strategy can help to determine the appropriate
global optimal search direction in the early stage and accelerate convergence.

• We use DIWs based on sine mapping to integrate empirical cognition of the previ-
ous inversion iterations, and this strategy can strengthen the optimization ability of
MT inversions.

• We used sine-cosine acceleration coefficients to balance the influence of individual cog-
nition and group cognition on the evolutionary process, this strategy can improve the
global optimization capability, and convergence stability in the MT inversion process.

In the remainder of this paper, we first review the background of MT inversions based
on PSO in Section 2. Then, we present the proposed memetic strategy in detail in Section 3.
This section mainly focuses on the main framework of the memetic strategy, introduces
population initialization, uses DIWs to integrate empirical cognition, and uses the cognitive
attraction coefficient to accelerate population evolution and population mutation (PM).
In Section 4, the inversion effects of the proposed memetic strategy on different geoelectric
models are presented. Subsequently, in Section 5, we evaluate the stability of the memetic
strategy using a noise immunity test and an actual data test. Finally, conclusions are drawn
in Section 6.

2. PSO for 1D MT Inversions

2.1. Forward Modeling

The MT method involves measuring orthogonal components of the electric field E and
the magnetic field H at the Earth’s surface (Figure 1a). The electromagnetic field we observe
is excited by the natural magnetic field. The frequency is lower than 105 Hz so we could
ignore the displacement current in the quasi-static approximation of electromagnetic field.
When a magnetic field H is applied to the ground, it produces an electric field E through
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electromagnetic induction. The impedance Z is used to express the relation between the
electromagnetic fields as follows [2]:

[
Ex
Ey

]
=

[
Zxx Zxy
Zyx Zyy

][
Hx
Hy

]
(1)

Figure 1. Basic introduction of the magnetotelluric (MT) method. (a) shows the layout of the MT
signal acquisition system. The electrodes connected by wires is used to obtain electric field data,
and the magnetic field probes are used for collecting magnetic field data. The host is used to record
the signal at various frequencies. (b) The application of the optimization process in MT inversions.

For the one-dimensional case, Zxx = 0, Zyy = 0 and Zxy = −Zyx. The impedance
tensor can be decomposed into two components, corresponding to the apparent resistivity
and the phase. For an N-stratum geoelectric model, the apparent resistivity ρω and the
phase ϕ can be derived from the impedance Z regardless of the orientations of the x and y
axes as follows:

ρω = |Z1|2
ωμ ϕ = tan−1 Im(Z1)

Re(Z1)

Zm = Zom
1−Lm+1e−2kmhm

1+Lm+1e−2kmhm Lm+1 = Zom+Zm+1
Zom+Zm+1

ZN = ZoN Zom=− iωμ
/

km km=
√−iμσmω

(2)

where Zm is the impedance at the top of the mth stratum, Zom is the intrinsic impedance of
the mth stratum, the magnetic permeability μ is assigned its free space value and ω is the
angular frequency. For the mth stratum, ρm is the resistivity and hm is the thickness. Usually,
the apparent resistivity is the observed response that is used to obtain the geoelectric model
through inversion.

2.2. Inversions

The MT inversion problem is an optimization problem in which the objective is to
predict a model that is close to the real geoelectric structure from the observed response
(Figure 1b). The optimization process update the geoelectric model iteratively to find the
minimum objective function. The objective function of this optimization problem can
be divided into two terms, one corresponding to data fitting and one corresponding to
the model smoothness [18]. The data fitting term measures the difference between the
observed response and the predicted response (Figure 1b). The smoothness term measures
the change in the magnitude of the resistivity of each stratum [21]. The objective function
can be expressed as follows:

min Φ(m) = min
(

λ‖Cmm‖2 + ‖Cd(F[m]− d)‖2
)

(3)
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where Φ(m) is the objective function; F is the forward modeling operator; d represents
the observed data; Cm and Cd are the covariance matrices of the model vector and the
observed data vector, respectively; and λ is the Lagrange multiplier weighting the model
smoothness term relative to the total norm. The objective function is updated with the
predicted model m, and its value gradually decreases in each iteration.

To minimize the objective function, several iterative methods of linear inversions have
been proposed [22,23]. The occam’s inversion is a popular and stable inversion algorithm
based on an iterative method in which the model is directly updated in each iteration,
causing the value of the objective function to decrease steadily [24–26]. The model is
updated as follows:

mk+1 =
[

1
λ CT

mCm + (CdJk)
TCdJk

]−1
(CdJk)

TCddg

dg = d − F[mk] + Jkmk

(4)

The iteration process begins with an initial model guess m0, and the model is updated
to mk in the kth iteration. The optimal model is considered to be found when a maximum
number of iterations, a convergence threshold for the objective function or some other ter-
mination criterion is reached. In addition, it is important to note that the model parameters
are typically expressed in terms of the logarithm of the resistivity in order to reduce the
variations in the gradient.

The linear inversion methods can easily become trapped in local minima and require
considerable computational effort to calculate the gradient of the objective function [24].
Moreover, they are critically dependent on the initial model [27]. However, global opti-
mization methods based on heuristic algorithms overcome these shortcomings [8,28].

2.3. PSO Optimization

The PSO algorithm will make the population evolve more intelligently after each
iteration and can accumulate search knowledge, which is called an evolutionary algo-
rithm [29–31]. The PSO algorithm does not use the survival of the fittest but uses a
mechanism in which each individual in the population competes with the others to gen-
erate the global optimal solution. It generates the optimal solution through information
sharing and a mechanism of cooperation between the individuals in the population [32,33].

Suppose the PSO consists of multiple particles. In the D-dimensional search space,
the particle swarm contains n particles. The position of the nth particle in the D-dimensional
space is defined as xi:

xi = (xi1, xi2, · · · , xiD), i = 1, 2, · · · , n. (5)

Suppose the current velocity of particle xi and its individual optimal historical position
are vi and pi, respectively, as follows:

vi = (vi1, vi2, · · · , viD)
pi = (pi1, pi2, · · · , piD).

(6)

Then, for the entire particle swarm, the global optimal position is Pg:

pg =
(

pg1, pg2, · · · , pgD
)
. (7)

At the tth moment, the velocity update formula of the dth dimension of particle xi is:

vid(t+1) = ωvid(t) + c1r1(pid(t)− xid(t)) + c2r2(pgi(t)− xid(t)), (8)

where ω is the inertia weight and is in the range [0, 1]. c1 and c2 are the acceleration
coefficients. r1 and r2 are random coefficients, both of which are in [0, 1], which determine
the motion of semirandom particles affected by the single and global optimal solutions.
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The particle velocity update process has three main parts: the current initial velocity,
the self-motion trajectory and self-trajectory correction. The influence of the current speed
on the particle update speed can be adjusted by the inertia weight. The influence of the
particle’s own trajectory on the particle update speed can be adjusted by the acceleration
coefficients and the random coefficients. When the trajectory is inaccurate, it needs to be
corrected with the help of global optimization.

For particle xi, we can update the position xid of the dth dimension according to
the velocity:

xid(t + 1) = xid(t) + vid(t + 1). (9)

3. Memetic Strategies

If the particle swarm is regarded as a social population, the three parts of the particle
update speed reflect the balance of the population with respect to the global optimum
and the local optimum. The particle update speed can be regarded as the cognition of
the social population in the evolutionary direction. The evolutionary update speed at the
current moment t can provide a reference basis for the evolutionary update speed at the
next moment t + 1. During evolution, the evolution of a single particle needs to refer to its
own previous evolutionary state and the evolutionary state of the population. The main
advantage of the PSO algorithm is that it is simple, effective and easy to implement.
However, the PSO algorithm faces premature convergence and easily falls into a local
optimal solution [34].

Compared with other group-based methods, the ability of PSO to micromediate and
avoid local optima is weaker, which is mainly due to the lack of diversity in the search
process [35]. Therefore, we improve the evolutionary diversity of the population in the
search process; the basic flow of the cultural strategy is shown in Figure 2.

Figure 2. Flow chart of memetic strategy for MT inversions.

3.1. Framework

In the memetic strategy, the overall optimization search uses PSO. To optimize an
objective function, the first task is to generate the initial population. The initial population
in PSO is randomly generated, which may affect the convergence speed of the algorithm
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and the accuracy of the final solution. In the absence of prior knowledge, we use a method
based on opposition learning to replace the random initial population positions as a new
initial population strategy. This can increase the chance of reaching the global optimal
solution [36].

In the entire iterative search process, we hope that the search range in the early stage
is as large as possible to enhance the global optimization capability. We hope that the
search range in the search period does not change greatly in order to enhance the local
optimization capability. These factors mean that we need to change the inertia weight to
adjust the first part of the right-hand term of Equation (8). The dynamic inertia weight is
applied to the previous population cognition to provide a reference for the optimization
process in the current iteration.

In population evolution, the second part of the right term in Equation (8) represents
the synchronization between the current position of the particle and the optimal position
of the individual in the iteration. This is the process of the particle revising its own
evolutionary path, reflecting the effect of the particle’s own evolutionary experience on
its own next evolution. The third part of the right-hand term of Equation (8) shows the
process of synchronizing the current position of the particle with the best position of the
group. This is the corrective behavior of the particle after observing the evolution of the
surrounding particles. This kind of social behavior reflects the group’s information sharing
and cooperation.

After obtaining the best population in the current iteration, to further enhance the
diversity of the population, we set the mutation of the individual particles for the popula-
tion. The aim of this operation is to make the optimization process converge stably while
maintaining a certain ability to jump out of a local optimum.

3.2. Population Initialization

When there is no prior information, the initial population is usually randomly gener-
ated, which often leads to revisiting a hopeless area in the search space [37]. Opposition-
based learning (OBL) considers candidate solutions as well as their opposite solutions [38].
OBL introduces a random solution and its corresponding inverse solution, which can
yield more than two independent solutions. This randomly generates more promising
solutions. OBL has been successfully applied in various population-based evolutionary
algorithms [39,40]. To effectively increase the diversity of the initial population, we use
the OBL strategy to generate the initial population, which includes two types of popula-
tions: a random initial population and an anti-population. The random initial population
{xid, d = 1, 2, . . . , D} is generated randomly according to the form shown in Equation (5).
Supposing the inverse population is {x′id, d = 1, 2, . . . , D}, x′id can be expressed as:

x′id = xmax,d + xmin,d − xid, (10)

where xmax,d and xmin,d are the maximum and minimum values of the dth dimension of par-
ticle xi in the D-dimensional search space. After merging the random initial population and
the antipopulation, we select the particles with less fitness to form a new initial population.

3.3. Dynamic Inertia Weight

The inertia weight ω can limit the search range of particles, which allows the particles
to maintain inertia of motion and search in a new area. This means that this new evolution
includes old evolutionary habits and experiences. When the inertial weight is relatively
high, the new evolution can eliminate the influence of the previous evolutionary experience.
This is conducive to expanding the search field, but the convergence speed can easily slow
in optimization. When the inertia weight is relatively small, the particle maintains its
evolutionary direction based on previous experience. When the evolutionary direction is
correct, this will help speed up the convergence rate of the global optimization, but it is
easy for the optimization to fall into local extremes [35].
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The inertial weight ω affects the search speed and accuracy. For optimization problems
with severe nonlinearity, the use of fixed inertia weights will result in fast convergence,
and global optimization is often impossible. For the algorithm to obtain the best results
in the optimization process, varying inertia weights need to be used. Using a linearly
decreasing inertia weight is a traditional variable inertia weight strategy that can optimize
performance well [16]. When the initial inertia weight value is large, the optimal solution
range can be found quickly; then, the inertia weight value decreases, and the particles
begin to search more finely.

However, because the slope is constant, the speed change always remains at the same
level. If the initial iteration does not produce better points, then the accumulation of itera-
tions and the rapid decay of speed may lead to a final local optimal value. Therefore, we use
a nonlinear strategy, sine mapping, with ergodicity, nonrepetition and irregularity [34,41]
to adjust the inertia weight ω of PSO. This strategy can not only enhance the population di-
versity in the search process but also enhance the ability to converge to the global optimum.
The dynamic inertia weight based on sine mapping can be expressed as:

ω = kt =
q
4 sin(πkt − 1), kt ∈ (0, 1), t = 1, 2, 3, . . . , T, (11)

where the range of q is from 0 to 4.

3.4. Accelerating Evolution

The acceleration coefficients c1 and c2 (Equation (8)) are the cognitive attraction coeffi-
cients in the optimization process, and the optimization of the group is controlled by the
learning situation. In the early stage of the optimization process, the particles need strong
self-cognition and weak social cognition. The global search function is more important.
At this time, the particle can traverse as many local extremes as possible in the search space.

In the later stage of optimization, the particles must have strong social cognition and
weak self-awareness to avoid falling into local extremes in optimization. The values of the
cognitive attraction coefficients reflect the degree of influence of the information exchange
on particles, and the information exchange includes the experiential information of the
particle itself and the global optimal information. Setting the learning factor to a value
that is too large or too small is not conducive to the optimization of the particles, so it is
necessary to balance the evolution speed of the particles in the early and late stages of the
optimization process.

The enhancing effect of sine-cosine mapping on population diversity and convergence
in the optimization process can be used to improve this linear asynchronous strategy. We
use sine-cosine acceleration coefficients (SCACs) to adjust the balance between individual
cognition and social cognition [42]. The cognitive attraction coefficient can be expressed as:

c1 = α × sin((1 − t
T )× π

2 ) + δ

c2 = α × cos((1 − t
T )× π

2 ) + δ,
(12)

where the constants α and δ are 2 and 0.5, respectively.

3.5. Population Mutation

To enhance the ability to jump out of local extremes, we introduce the mutation
operator from the genetic algorithm into the PSO [43]. This can expand the search space of
the particles themselves, enhance the diversity of the population and further increase the
possibility of finding the optimal solution. The particles will reset with a certain probability
after each evolution. When the mutation condition is met, the mutation jumps out of the
current position; otherwise, the original position remains unchanged. The particle variation
can be expressed as:

xid(t) = r × (Ux − Lx)/n + (Ux − Lx)/2, (13)
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where r is uniformly distributed in the range [−1, 1], Ux and Lx are the upper and lower
limits of a given position and n is 4. The mutation condition is random mutation, and the
mutation probability is 10%.

3.6. Fitness

The fitness in the optimization process refers to the objective function setting in MT
inversions. The L2 norm is used to define the misfit between the observed MT response
data and the predicted response data. The fitness can be expressed as:

f it = crho f itrho+cphi f itphi

= crho

∥∥∥1 − ρpred

/
ρobs

∥∥∥2
+cphi

∥∥∥1 − ϕpred

/
ϕobs

∥∥∥2 (14)

where the overall fitness is composed of apparent resistivity fitness and phase fitness model
fitness. Their weight coefficients are crho and cphi. Since the apparent resistivity and phase
are variables with different units, in order to transform the apparent resistivity and phase
fitness into a unified dimension, we normalize the response data and prediction data.

4. Test Model

We designed two common geoelectric models, a three-layer model and a five-layer
model. These models were used to generate synthetic MT response data. Different PSO
methods predicted the geoelectric models based on these response data, and the MT
responses were obtained through MT forward modeling. Comparing the geoelectric model
and the responses predicted by different methods allowed us to test the effect of our
memetic strategy.

4.1. Three-Layer Model

The three-layer geoelectric model and its MT response are shown in Figure 3. The re-
sistivity values of the geoelectric model are 100 Ω·m, 20 Ω·m and 100 Ω·m. The thicknesses
of the geoelectric model are 100 m, 200 m and infinity. We used this model to generate
an MT response including the apparent resistivity and phase, which was the supposed
response. The geoelectric model predicted by the optimization method based on the sup-
posed MT response contains five values, namely, the resistivity values of the three layers
in the geoelectric model and the thickness values of the first two layers. The predicted
geoelectric model can be used to regenerate the apparent resistivity and phase response
through MT forward modeling.

In the optimization process, the population size is 100. For the supposed three-layer
geoelectric model, both traditional PSO and our strategy can obtain good results, but our
strategy predicts the results more accurately. From the comparison of the geoelectric models
(Figure 3a), the resistivity value of the second layer of the geoelectric model predicted by
traditional PSO is less than the supposed value, and the depth value at the bottom of this
layer is slightly larger. The resistivity values of the first layer and the third layer predicted
by traditional PSO are smaller than the supposed value, and the misfit of the two strata is
not as large as the misfit of the second stratum.

From the comparison of the MT responses (Figure 3b,c), the misfit between the MT re-
sponses predicted by traditional PSO and the supposed responses is larger. The large misfit
is mainly concentrated in the low- and high-frequency ranges. This misfit is more obvious
on the apparent resistivity curve. The responses predicted by our strategy, the apparent
resistivity curve and the phase curve, perfectly match the supposed response curve.
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Figure 3. The three-layer geoelectric model and its MT response predicted by traditional PSO and
by our strategy. (a–c) represent the geoelectric model, apparent resistivity responses and represent
phase responses, respectively. The blue lines represent the supposed three-layer geoelectric model
and its MT responses. The green lines represent the geoelectric model predicted by the traditional
PSO and its MT responses. The purple lines represent the geoelectric model predicted by our strategy
and its MT responses.

A detailed comparison of the low-frequency and high-frequency parts is shown in
Figure 4. For the apparent resistivity curve, the responses predicted by traditional PSO
show a large misfit starting at 104 Hz. In the 104 Hz–102.5 Hz interval, this deviation is very
obvious (Figure 4a). In the range of 100 Hz–10−1 Hz, the misfit of the response predicted by
traditional PSO decreases, and it gradually increases as the frequency decreases (Figure 4b).
For the same low-frequency and high-frequency ranges, the characteristics of the misfit of
apparent resistivity are different. In the low-frequency range, the misfit of traditional PSO
always exists and is not concentrated in the 104 Hz–102.5 Hz range, similar to the misfit
of the apparent resistivity curve (Figure 4c). The deviation of the response predicted by
traditional PSO has the same characteristics in the high-frequency range (Figure 4d).

For the traditional PSO method, our memetic strategy has four improved steps,
namely, group initialization with OBL, using DIWs to integrate empirical cognition, using
the cognitive attraction coefficient to accelerate population evolution and PM. We call
them PSO-OBL, PSO-OBL-DIW, PSO-OBL-DIW-SCAC and PSO-OBL-DIW-SCAC-PM.
Combining traditional PSO and these four improvements, the corresponding optimization
process is shown in Figure 5.
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Figure 4. Comparison of the MT response in special frequency bands for the three-layer model. (a,b)
represent apparent resistivity curves, and (c,d) represent phase curves. The blue lines represent the
supposed MT responses. The green lines represent the MT responses predicted by traditional PSO.
The purple lines represent the MT responses predicted by our strategy.

Figure 5. Comparison of the optimization process of different strategies in the three-layer geoelectric
model test. The number of evolutionary iterations is 50. The blue line represents the optimization
process of traditional PSO. The orange line represents the optimization process of PSO-opposition-
based learning (OBL). The green line represents the optimization process of PSO-OBL-dynamic
inertia weight (DIW). The red line represents the optimization process of PSO-OBL-DIW-sine-cosine
acceleration coefficient (SCAC). The violet line represents the optimization process of PSO-OBL-DIW-
SCAC-population mutation (PM).

Using OBL can determine the appropriate initial population more accurately, which
can enable the search process to find the appropriate global optimal search direction in
the early stage and accelerate convergence. At the early stage, the fitness decline rate
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of PSO-OBL is faster than that of traditional PSO. Adding DIWs based on sine mapping
can enable the evolution of the population to better combine with previous cognitive
experience. Therefore, after 17 iterations, the fitness decline rate of PSO-OBL-DIW is faster
than that of PSO-OBL.

On the basis of PSO-OBL-DIW, the advantages of SCACs in effectively integrating
individual experience and group experience are used to reflect the faster fitness decline rate
of PSO-OBL-DIW-SCAC. The final fitness also remained at a low level. After the population
evolution, the population was allowed to continue to produce genetic mutations, which
can further accelerate the convergence of the optimization process. The final fitness of
PSO-OBL-DIW-SCAC-PM was generally lower than that of PSO-OBL-DIW-SCAC.

The accuracy comparison of the three-layer geoelectric models predicted by different
methods is shown in Table 1. The misfit between the predicted value and the supporting
value can be expressed as the absolute value of the normalized error. The misfit trends
of different methods are consistent with the final fitness trend of optimization. Each
improvement increases the prediction accuracy of the resistivity value and the thickness
value in the geoelectric model.

Table 1. Accuracy comparison of three-layer geoelectric model predicted by different methods.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 h1(m) h2(m)

Supposed model 100.00 20.00 100.00 100.00 200.00

PSO model 98.61 19.38 98.27 102.58 189.95
3.32 × 10−3

misfit 1 1.39 3.08 1.73 2.58 5.02

PSO-OBL model 99.84 20.42 100.12 97.36 205.08
1.95 × 10−3

misfit 0.16 2.09 0.12 2.64 2.54

PSO-OBL-DIW model 100.16 20.37 100.21 98.21 205.27
5.94 × 10−4

misfit 0.16 1.87 0.21 1.78 2.64

PSO-OBL-DIW-SCAC model 100.05 20.12 100.06 99.41 201.61
4.03 × 10−4

misfit 0.05 0.58 0.06 0.59 0.81

PSO-OBL-DIW-SCAC-PM
model 99.96 19.97 100.03 200.15 99.86

2.39 × 10−4
misfit 0.04 0.17 0.03 0.08 0.14

1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

4.2. Five-Layer Model

Our method is suitable not only for three-layer models but also for more complex
five-layer models. The five-layer geoelectric model and its MT responses are shown in
Figure 6. The resistivity values of the geoelectric model are 100 Ω·m, 20 Ω·m, 200 Ω·m,
50 Ω·m and 100 Ω·m. The thicknesses of the geoelectric model are 1000 m, 500 m, 1000 m,
2000 m and infinity. The geoelectric model predicted by the optimization method based on
the supposed MT responses contains nine values, namely, the resistivity values of the five
layers in the geoelectric model and the thickness values of the first four layers.

For the supposed five-layer geoelectric model, both traditional PSO and our strategy
can achieve good results, but our strategy predicts the results more accurately. From the
comparison of geoelectric models (Figure 6a), the resistivity value of the third layer of the
geoelectric model predicted by traditional PSO is greater than the supposed value, and the
top depth and the bottom depth are both larger. The bottom depth of the fourth layer of
the geoelectric model predicted by traditional PSO is obviously smaller than the supposed
value, and the misfit reaches approximately 200 m.
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Figure 6. The five-layer geoelectric model and its MT response predicted by traditional PSO and our
strategy. (a–c) represent the geoelectric model, apparent resistivity responses and represent phase
responses, respectively. The blue lines represent the supposed three-layer geoelectric model and its
MT responses. The green lines represent the geoelectric model predicted by traditional PSO and its
MT responses. The purple lines represent the geoelectric model predicted by our strategy and its
MT responses.

From the comparison of the MT responses (Figure 6b,c), the responses predicted by
traditional PSO have a greater misfit with the supposed responses, and this deviation is
mainly concentrated in the mid-frequency range. Similar to the results of the three-layer
model (Figure 4b,c), the responses predicted by our strategy, the apparent resistivity curve
and the phase curve, perfectly match the assumed response curve.

A detailed comparison of the middle frequency range is shown in Figure 7. The middle
frequency interval can be divided into two subintervals for evaluation: the 50 Hz–1 Hz
interval (Figure 7a,c) and the 100.8 Hz–10−0.3 Hz interval (Figure 7b,d). In the first interval,
the apparent resistivity and phase misfit of traditional PSO are not concentrated in a certain
frequency range but have wide coverage. In the second interval, the apparent resistivity
misfit of traditional PSO is mainly concentrated in the middle frequency range, and the
phase misfit is mainly concentrated in the higher frequency range.
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Figure 7. Comparison of the MT response in special frequency bands for the five-layer model. (a,b)
represent apparent resistivity curves, and (c,d) represent phase curves. The blue lines represent the
supposed MT responses. The green lines represent the MT responses predicted by traditional PSO.
The purple lines represent the MT responses predicted by our strategy.

For the supposed MT responses of the five-layer geoelectric model, we use traditional
PSO, PSO-OBL, PSO-OBL-DIW, PSO-OBL-DIW-SCAC and PSO-OBL-DIW-SCAC-PM to
optimize the misfit of the supposed responses and predicted responses. The corresponding
optimization process is shown in Figure 8.

Figure 8. Comparison of the optimization process of different strategies in the five-layer geoelectric
model test. The number of evolutionary iterations is 50. The blue line represents the supposed MT
response. The green line represents the optimization process of traditional PSO. The yellow line
represents the optimization process of PSO-OBL. The green line represents the optimization process
of PSO-OBL-DIW. The red line represents the optimization process of PSO-OBL-DIW-SCAC. The red
line represents the optimization process of PSO-OBL-DIW-SCAC-PM.
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OBL allows the optimization process to find the appropriate global optimal search
direction at an early stage and speed up the convergence. This shows the effectiveness of
using OBL to determine a suitable initial population. The advantages of PSO-OBL-DIW
began to manifest after the 10th evolutionary iteration, indicating that the combination of
PSO-OBL-DIW with previous evolutionary cognitive experience is conducive to obtaining
a more accurate evolutionary direction for the population. The effective integration of
individual experience and group experience through SCACs is still obvious in promoting
the optimization process. PSO-OBL-DIW-SCAC changed after the fifth evolutionary itera-
tion to accelerate the convergence speed of fitness and keep the convergence trend stable.
Although we set only a 10% gene mutation probability, PSO-OBL-DIW-SCAC-PM still has
a great advantage in fitness convergence over PSO-OBL-DIW-SCAC.

Table 2 shows an accuracy comparison of different methods used to predict the five-
layer geoelectric model. The misfit between the predicted value and the supposed value can
be expressed as the absolute value of the normalized error. The number of parameters of the
five-layer geoelectric model is greater than that of the three-layer geoelectric model, and the
accuracy of the resistivity and thickness values predicted in the five-layer geoelectric model
test is not as good as that in the three-layer geoelectric model test. However, the effect of
each improvement on the prediction accuracy is consistent with the effect in the three-layer
geoelectric model test. This shows that the effect of our memetic strategy can be applied to
a more complex five-layer geoelectric model.

Table 2. Accuracy comparison of five-layer geoelectric model predicted by different methods.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 ρ4 ρ5 h1(m) h2(m) h3(m) h4(m)

Supposed model 100.00 20.00 200.00 50.00 100.00 1000.00 500.00 1000.00 2000.00

PSO model 100.11 20.34 207.38 49.67 98.51 1009.82 530 1019.5 1806.08
8.60 × 10−3

misfit 1 0.11 1.68 3.69 0.67 1.49 0.98 6 1.95 9.7

PSO-OBL model 99.79 20.21 200.52 48.3 100.81 973.19 483.79 968.88 1984.67
5.10 × 10−3

misfit 0.21 1.04 0.26 3.39 0.81 2.68 3.24 3.11 0.77

PSO-OBL-DIW model 99.53 19.96 195 50.4 98.03 1012.72 510.31 1008.9 1977.88
1.72 × 10−4

misfit 0.47 0.22 2.5 0.79 1.97 1.27 2.06 0.89 1.11

PSO-OBL-DIW-SCAC model 100 20.31 198.23 50.32 100.04 996.66 508.88 990.29 2021.54
9.18 × 10−5

misfit 0 1.53 0.88 0.64 0.04 0.33 1.78 0.97 1.08

PSO-OBL-DIW-SCAC-PM
model 100.36 20.06 200.48 50.34 100.8 990.26 496.39 996.2 1988.36

2.52 × 10−6
misfit 0.36 0.3 0.24 0.69 0.8 0.97 0.72 0.38 0.58

1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

5. Stability Evaluation

To evaluate the stability of our strategy for MT inversions, we conducted a noise
immunity test and a test with actual data. In the tests, we compared our improvement
strategy with traditional PSO.

5.1. Noise Immunity Test

In the noise immunity test, we designed three different levels of random noise and
added noise to the supposed MT responses of the three-layer geoelectric model and the
five-layer geoelectric model. The noise levels are 5%, 10% and 15%, respectively. The MT
responses of the three-layer geoelectric model with noise are shown in Figure 9.
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Figure 9. Supposed MT responses of a three-layer geoelectric model with different levels of noise.
(a,b) represent the MT responses when the noise level is 5%. (c,d) represent the MT responses when
the noise level is 10%. (e,f) represent the MT responses when the noise level is 15%. (a,c,e) represent
the apparent resistivity responses. (b,d,f) represent the apparent resistivity responses. The blue lines
represent the clean supposed responses. The red dots indicate the noisy responses. The red lines are
the error bars between the noisy data and clean data.

For the responses of the three-layer geoelectric model, 5% of the noise has basically
no effect on our final prediction results. The predicted geoelectric model and responses
perfectly match the assumed geoelectric model and responses. From the comparison of the
geoelectric models (Figure 10a), 10% noise and 15% noise cause the predicted resistivity
value of the first layer of the geoelectric model to deviate, and the greater the noise is,
the greater the deviation. However, the thickness of the first layer is basically consistent
with the supposed value. The predicted resistivity value of the second layer is also not
affected by noise, but 15% noise makes the predicted thickness smaller than the supposed
value. The predicted resistivity value in the third layer corresponding to 10% noise and
15% noise is smaller than the supposed value. Table 3 shows the accuracy comparison of
the detailed predictive electrical model.

From the comparison of the MT responses (Figure 10b,c), the predicted value misfit
caused by 10% noise and 15% noise is in the same frequency range. For the apparent
resistivity curves, the misfit is concentrated in the low- and high-frequency regions, and the
misfit in the low-frequency region is larger than that in other regions (Figure 10b). For the
phase curves, the misfit is concentrated in the low-frequency to mid-frequency region,
and the misfit in the high-frequency data is milder (Figure 10c).

371



Mathematics 2021, 9, 519

Figure 10. The predicted three-layer geoelectric models and their MT responses under noisy con-
ditions. (a–c) represent the geoelectric model, apparent resistivity responses and phase responses,
respectively. The blue lines represent the supposed three-layer electrical model and clean MT re-
sponses, and the purple lines represent the predicted geoelectric model and its MT responses when
the noise level is 5%. The green lines represent the predicted geoelectric model and its MT responses
when the noise level is 10%. The red lines represent the predicted geoelectric model and its MT
responses when the noise level is 15%.

Table 3. Comparison of the accuracy of the predicted three-layer geoelectric model under different noise levels.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 h1(m) h2(m)

Supposed model 100.00 20.00 100.00 200.00 100.00

5% noise model 100.42 19.98 100.8 100.25 197.8
2.19 × 10−2

misfit 1 0.42 0.09 0.8 0.24 1.1

10% noise model 105.6 19.8 95.34 97.31 200.7
4.25 × 10−2

misfit 5.6 0.98 4.66 2.69 0.36

15% noise
model 109.44 19.4 96.43 96.72 189.6

6.63 × 10−2
misfit 9.44 2.99 3.57 3.28 5.2

1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

For the MT response of the synthetic five-layer geoelectric model, the response after
adding noise is shown in Figure 11. For the noise-containing responses of the five-layer
geoelectric model, the influence of noise is obviously greater than that in the three-layer
model. From the comparison of the geoelectric models (Figure 12a), the predicted resistivity
values are close to the supposed values in the first three layers. For the second stratum,
the predicted value for 5% noise has a slight deviation. 10% noise and 15% noise increase
the deviation. The maximum misfit of the predicted resistivity of 15% noise is close to 15%,
and the maximum misfit of the predicted layer thickness is close to 10%. Table 4 shows the
accuracy comparison of the detailed predictive geoelectric model.
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Figure 11. Supposed MT responses of a five-layer geoelectric model with different levels of noise.
(a,b) represent the MT responses when the noise level is 5%. (c,d) represent the MT responses when
the noise level is 10%. (e,f) represent the MT responses when the noise level is 15%. (a,c,e) represent
the apparent resistivity responses. (b,d,f) represent the apparent resistivity responses. The blue lines
represent the clean supposed responses. The red dots indicate the noisy responses. The red lines are
the error bars between the noisy data and clean data.

From the comparison of the MT responses (Figure 12b,c), the predicted response for
5% noise has a small deviation from the supposed value, and the two types of responses are
basically consistent. A 10% noise level will increase the deviation, and 15% noise will cause
the most serious deviation. In particular, with the deviation of the apparent resistivity
response, 15% noise causes the deviation to cover almost the whole frequency band. For the
phase responses, the deviation caused by 15% noise covers most of the frequency range,
from low to intermediate frequencies.
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Figure 12. The predicted five-layer geoelectric models and their MT responses under noisy conditions.
(a–c) represent the geoelectric model, apparent resistivity responses and phase responses, respectively.
The blue lines represent the supposed three-layer electrical model and clean MT responses, and the
purple lines represent the predicted geoelectric model and its MT responses when the noise level is
5%. The green lines represent the predicted geoelectric model and its MT responses when the noise
level is 10%. The red lines represent the predicted geoelectric model and its MT responses when the
noise level is 15%.

Table 4. Comparison of the accuracy of the predicted five-layer geoelectric model under different noise levels.

ρ(Ω·m) h(m)
Fitnessρ1 ρ2 ρ3 ρ4 ρ5 h1(m) h2(m) h3(m) h4(m)

Supposed mode 100.00 20.00 200.00 50.00 100.00 1000.00 500.00 1000.00 2000.00

5% noise model 99.47 19.98 203.61 48.63 102.5 1016.27 505.19 1017 2020.14 0.0241
misfit 1 0.53 0.12 1.81 2.73 2.5 1.63 1.038 1.7 1.01

10% noise model 99.54 20.09 199.34 54.21 94.39 1025.08 502.03 989.19 2091.82 0.0491misfit 0.46 0.44 0.33 8.41 5.61 2.51 0.41 1.08 4.59

15% noise
model 97.28 19.77 209.19 57.04 105.71 1050.71 549.93 1054.34 2058.1

0.077misfit 2.71 1.13 4.6 14.08 5.71 5.07 9.99 5.43 2.91
1 The misfit = |vpred − vsupp|/vsupp, vpred is the predictive value, vsupp is the parameter of the supposed model.

5.2. Real Application Data

The COPROD2 dataset is a public dataset for testing the MT inversion effect, which
contains measured MT response data [44]. However, the underground structure is not
accurately proven. We can evaluate the inversion effect by observing the difference in
fit between the predicted responses and the measured responses. The prediction effect
of the proposed memetic strategy is compared with that of the traditional PSO method.
The COPROD2 data contain 35 observation points. We selected the fifth, tenth, 15th and
20th observation points as our test data. The measured data can be divided into YX mode
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and XY mode according to the polarization mode. The prediction results under the two
modes are shown in Figures 13 and 14.

Figure 13. Comparison of the predicted and measured responses in YX mode. (a–d) represent the
apparent resistivity response curves, and (e–h) represent the phase response curves. (a,e) represent
the response curves of the fifth observation station, (b,f) represent the response curves of the tenth
observation station, (c,g) represent the response curves of the 15th observation station, and (d,h)
represent the response curves of the 20th observation station. The blue lines represent the measured
response curves. The yellow lines represent the response curves predicted by traditional PSO.
The yellow lines represent the response curves predicted by the proposed memetic strategy.

Among the results for the four observation stations, our memetic strategy prediction
results are significantly better than the traditional PSO prediction results. When the mea-
sured responses fluctuate gently, the predicted responses can fit the measured responses.
However, the prediction results of traditional PSO are consistent only with the measured
responses in the change trend, and the predicted value has a large deviation. When the
measured responses fluctuate violently, the predicted results of the two methods are quite
different from the measured response.

Considering the volume effect of electromagnetic waves and the static effect near
the surface, the response curve of the one-dimensional geoelectric model has difficulty
matching the measured curve perfectly. In addition, the violent fluctuations in the measured
data are mainly concentrated in the high-frequency range, which is also influenced by
human noise, magnetic storms and substation interference. This nonrandom noise increases
the difficulty of inversions.
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Figure 14. Comparison of the predicted and measured responses in XY mode. (a–d) represent the
apparent resistivity response curves, and (e–h) represent the phase response curves. (a,e) represent
the response curves of the fifth observation station, (b,f) represent the response curves of the tenth
observation station, (c,g) represent the response curves of the 15th observation station, and (d,h)
represent the response curves of the 20th observation station. The blue lines represent the measured
response curves. The yellow lines represent the response curves predicted by traditional PSO.
The yellow lines represent the response curves predicted by the proposed memetic strategy.

6. Conclusions

For MT inversions, we propose a memetic strategy on the basis of traditional PSO,
which includes four parts: opposition-based learning, dynamic inertia weights, sine-cosine
acceleration coefficients and gene mutation. The test results of the different models show
that reverse learning can selectively enhance the population diversity and accelerate the
optimization process. The dynamic inertia weights based on sine mapping can strengthen
the optimization ability by fusing previous cognitive experience. By balancing the influence
of individual cognition and group cognition on the evolutionary process, the sine-cosine
acceleration coefficients can improve the global optimization capability in the early stages
of the optimization process and maintain convergence stability in the later stages. Genetic
mutation can further strengthen the ability to find the best solution by enhancing the
population diversity.

The noise test verifies that this memetic strategy can improve the noise immunity of
PSO. Moreover, the proposed strategy outperforms the traditional PSO method on the
measured MT data. We have greatly improved the ability of PSO to invert MT data by
enhancing the diversity of the population and fusing the individual and social cognition of
the population.
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Abstract: The knapsack problem is one of the most widely researched NP-complete combinatorial
optimization problems and has numerous practical applications. This paper proposes a quantum-
inspired differential evolution algorithm with grey wolf optimizer (QDGWO) to enhance the di-
versity and convergence performance and improve the performance in high-dimensional cases for
0-1 knapsack problems. The proposed algorithm adopts quantum computing principles such as
quantum superposition states and quantum gates. It also uses adaptive mutation operations of
differential evolution, crossover operations of differential evolution, and quantum observation to
generate new solutions as trial individuals. Selection operations are used to determine the better
solutions between the stored individuals and the trial individuals created by mutation and crossover
operations. In the event that the trial individuals are worse than the current individuals, the adaptive
grey wolf optimizer and quantum rotation gate are used to preserve the diversity of the population as
well as speed up the search for the global optimal solution. The experimental results for 0-1 knapsack
problems confirm the advantages of QDGWO with the effectiveness and global search capability for
knapsack problems, especially for high-dimensional situations.

Keywords: quantum computing; differential evolution; grey wolf optimizer; evolutionary algorithm;
0-1 knapsack problem

1. Introduction

The 0-1 knapsack problem (KP01) is a classical combinatorial optimization problem.
It has many practical applications, such as project selection, investment decisions, and
complexity theory [1,2]. Two classes of approaches were previously proposed to solve the
KP01 [3]. The first class of approaches includes exact methods based on mathematical
programming and operational research. It is possible to obtain the exact solutions of small-
scale KP01 problems by exact methods such as branching and bound algorithm [4] and
dynamic programming [5]. However, KP01 problems in various complex situations are
NP-hard problems, and it is impractical to obtain optimal solutions using deterministic
optimization methods for large-scale problems. The second class contains approximate
methods based on metaheuristic algorithms [6]. Metaheuristic algorithms are shown to be
effective approaches to solving complex engineering problems in a reasonable time when
compared with exact methods [7]. Therefore, the application of metaheuristic algorithms
has drawn a great deal of attention in the field of optimization.

In recent years, most of the metaheuristic algorithms, such as the genetic algorithm
(GA) [8], ant colony optimization (ACO) [9], particle swarm algorithm (PSO) [10], artificial
bee colony (ABC) [11], cuckoo search (CS) [12], firefly algorithm (FA) [13], and improved ap-
proaches based on these algorithms [14–19], were applied to KP01 problems and achieved
outstanding results. However, these metaheuristic algorithms require not only a large
amount of memory for storing the population of solutions, but also a long computational
time for finding the optimal solutions. In the last few years, novel metaheuristic algorithms
were proposed. Wang et al. [20,21] improved the swarm intelligence optimization approach
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inspired by the herding behavior of krill and came up with the krill herd (KH) algorithm to
solve combinatorial optimization problems. Faramarzi et al. [22] presented a metaheuristic
called the Marine Predators Algorithm (MPA) with an application in engineering design
problems. MPA follows the rules that naturally govern in optimal foraging strategy and
encounters a rate policy between predator and prey in marine ecosystems. Inspired by the
phototaxis and Lévy flights of moths, Wang et al. [23] developed a new metaheuristic algo-
rithm called the moth search (MS) algorithm. MS was applied to solve discounted 0-1 knap-
sack problems [24] and set-union knapsack problems [25]. Gao et al. [26] presented a novel
selection mechanism augmenting the generic DE algorithm (NSODE) to achieve better
optimization results for solving fuzzy job-shop scheduling problems. Abualigah et al. [27]
proposed the arithmetic optimization algorithm (AOA) based on the distribution behavior
of the main arithmetic operators in mathematics: multiplication, division, subtraction, and
addition. Wang et al. [28] proposed a new nature-inspired metaheuristic algorithm called
monarch butterfly optimization (MBO) by simulating the migration of monarch butter-
flies. MBO was applied to solve classic KP01 [29], discounted KP01 [30], and large-scale
KP01 [31,32] problems with superior searching accuracy, convergent capability, and stabil-
ity. In most metaheuristic algorithms, it is difficult to use the information from individuals
in previous iterations in the updating process. Wang et al. [33] presented a method for
reusing the information available from previous individuals and feeding previous useful
information back into the updating process in order to guide later searches.

The emergence of quantum computing [34,35] was derived from the principles of
quantum theory such as quantum superposition, quantum entanglement, quantum inter-
ference, and quantum collapse. Quantum computing brings new ideas to optimization
due to its underlying concepts, along with the ability to process huge numbers of quan-
tum states simultaneously in parallel. The merging of metaheuristic optimization and
quantum computing recently became a growing theoretical and practical interest aiming at
deriving benefits from quantum computing capabilities to enhance the convergence and
speed of metaheuristic algorithms. Several scholars investigated the effect of introducing
quantum computing in metaheuristic algorithms to maintain a balance between explo-
ration and exploitation. Han and Kim proposed a genetic quantum algorithm (GQA) [36]
and a quantum inspired evolutionary algorithm (QEA) [37] by merging classical evolu-
tionary algorithms with quantum computing concepts such as the quantum bit and the
quantum rotation gate. Talbi et al. [38] proposed a new algorithm inspired by genetic
algorithms and quantum computing for solving the traveling salesman problem (TSP).
Chang et al. [39] proposed a quantum-inspired electromagnetism-like mechanism (QEM)
to solve the KP01. Xiong et al. [40] presented an analysis of quantum rotation gates in
quantum-inspired evolutionary algorithms. To avoid the problem of premature conver-
gence, mutation operation [41], crossover operation [42], new termination criterion, and
new rotation gate [43] were applied to the QEA and subsequently improved.

The differential evolution (DE) algorithm [44], proposed by Storn and Price, was
derived from differential vectors of solutions for global optimization. Several simple op-
erations including mutation, crossover, and selection were used in the DE algorithm to
explore the search space. Subsequently, several algorithms combining the DE algorithm
with quantum computing were designed to increase global search ability. Hota and Pat [45]
extended the concept of differential operators with adaptive parameter control to the quan-
tum paradigm and proposed the adaptive quantum-inspired differential evolution (AQDE)
algorithm. In addition, quantum interference operation [46] and mutation operation [47]
were brought into a quantum-inspired DE algorithm.

Several metaheuristic algorithms combining the QEA and DE were proven to be
effective and efficient for solving the KP01. Wang et al. [48] proposed a quantum swarm
evolutionary (QSE) algorithm that updated quantum angles automatically with improved
PSO. Layeb [49] presented a quantum inspired harmony search algorithm (QIHSA) based
on a harmony search algorithm (HSA) and quantum computing. Zouache et al. [50]
proposed a merged algorithm called quantum-inspired differential evolution with particle
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swarm optimization (QDEPSO) to solve the KP01. Gao et al. [51] proposed a quantum-
inspired wolf pack algorithm (QWPA) with quantum rotation and quantum collapse to
improve the performance of the wolf pack algorithm for the KP01.

The grey wolf optimizer (GWO) proposed by Mirjalili et al. [52] mimics the specific
behavior of grey wolves based on leadership hierarchy in nature. Srikanth et al. [53]
presented a quantum-inspired binary grey wolf optimizer (QIBGWO) to solve the problem
of unit commitment scheduling.

Population diversity is crucial in evolutionary algorithms to enable global exploration
and to avoid poor performance due to premature convergence [54]. However, it is hard
for classical algorithms to enhance diversity and convergence performance because their
population quickly converges to a specific region of the solution space. In addition, these
algorithms require a large amount of memory as well as long computational time to find the
optimal solution for high-dimensional situations. To avoid these difficulties, we propose a
new algorithm, called quantum-inspired differential evolution algorithm with grey wolf
optimizer (QDGWO). The proposed algorithm combines the features of the QEA, DE, and
GWO to solve the 0-1 knapsack problem. To preserve diversity throughout the evolution,
the new algorithm adopts the concepts of quantum representation and the integration of
the quantum operators such as quantum measurement and quantum rotation. The adaptive
operations of the DE (mutation, crossover, selection) and GWO can increase the adaptation
and diversification in updating individuals. The experimental results demonstrate the
competitive performance of the proposed algorithm.

The rest of the paper is organized as follows: Section 2 defines the 0-1 knapsack
problem. The proposed QDGWO algorithm is presented in Section 3. The experimental
results and discussion are summarized in Section 4. Conclusions and directions for future
work are discussed in Section 5.

2. Related Work

2.1. Knapsack Problem

The 0-1 knapsack problem is a well-known combinatorial optimal problem that has
been studied in areas such as project selection, resource distribution, and the network
interdiction problem. The KP01 was demonstrated to be NP-complete [55,56]. It can be
described as follows:

Given a set W of m items, W = (x1, x2, x3, . . . , xm). wi is the weight item xi, and pi is
the profit of xi. C is the weight capacity of the knapsack. The objective is to find the subset
Xoptimal from set of m items that maximizes the total profit, while keeping the total weight
of the selected items from exceeding C.

The 0-1 knapsack problem can be defined as:

Maximize f (x) =
m
∑

i=1
pixi

s.t.
m
∑

i=1
wixi ≤ C, xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , m}

(1)

where xi can take either the value 1 (as selected) or the value 0 (as not selected, also
called rejected).

2.2. Grey Wolf Optimizer (GWO)

The GWO algorithm [52] is inspired by the leadership hierarchy and hunting mech-
anism of grey wolves. To model the social order of grey wolves in the GWO, the best
solution is considered the alpha (α) wolf, and the second and third best solutions are beta
(β) and delta (δ) wolves, respectively. The rest of the feasible solutions are considered as
omega (ω) wolves. In the GWO, α, β, and δ wolves lead the hunting, and the ω wolves go
after these leading wolves when searching for the global optimal solution (target) as the
prey, as shown in Figure 1.
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Figure 1. Position updating mechanism of GWO.

Grey wolves have the ability to recognize the location of prey and encircle them during
the hunt. In order to simulate the hunting behavior of grey wolves mathematically, it is
supposed that the α, β, and δ wolves have better knowledge about the potential location of
prey. Therefore, the GWO saves the first three best solutions arrived at so far and forces the
other ω wolves to update their positions according to the position of the best search agents.

During optimization, the GWO algorithm allows its search agents to update their
position based on the location of the alpha, beta, and delta wolves with the distance vector
between itself and the three best wolves when attacking the prey. Finally, the position and
fitness of the alpha wolf are regarded as the global optimal solution in searching for the
optimization when a termination criterion is satisfied.

3. Quantum-Inspired Differential Evolution with Adaptive Grey Wolf Optimizer

The proposed QDGWO algorithm is presented for the knapsack problems. First,
the proposed algorithm adopts the quantum computing principles such as quantum
representation and quantum measurement operation. Quantum representation allows
the representation of the superposition of all potential states in one quantum individual.
Second, adaptive mutation operations (used in the DE), crossover operations (used in the
DE), and quantum observation are combined to generate new solutions as trial individuals
in the solution space. Finally, the selection operator chooses the better solutions between
the stored individuals and the trial individuals generated by the mutation and crossover
operations of the DE. In the event that the trial individuals are worse than the current
individuals, the QDGWO integrates the adaptive GWO and quantum rotation gate to
preserve the diversity of the population of solutions as well as accelerate the search for the
global optimum. The framework of the QDGWO algorithm is shown in Figure 2.
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Figure 2. Framework of QDGWO.

3.1. Binary Representation

The choice of the representation for individuals, also known as individual coding, is
a crucial issue in evolutionary algorithms. The proposed QDGWO algorithm adopts the
binary coding, which is the most appropriate way to indicate the selection or rejection of
items. Each individual X is represented as a binary vector with length m (m is the item
size): X = (x1, x2, . . . , xm), where m is the number of items.{

xi = 1, if item xi is selected
xi = 0, if item xi is rejected

(2)

The following example shows the binary representation for item selection: x1 and x3
from the item set W are selected: W = {x1, x2, x3, x4} → X = (1 0 1 0).

The binary population P(t) =
(
Xt

1, Xt
2, . . . , Xt

n
)

is made up of the binary individuals
at the tth generation, where n is the size of population.
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3.2. Quantum Representation

The representation of the AQDE [45] is used in the proposed algorithm, where each
quantum individual q corresponds to a phase vector qθ , which is a string of phase angles θi
(1 ≤ i ≤ m), which can be given by

qθ = [θ1, θ2, . . . , θm], θi ∈ [0, 2π] (3)

where m is the length of the quantum bit (qubit) individual.
Each quantum individual q is a string of qubits:

q =

[
cos(θ1)
sin(θ1)

∣∣∣∣ cos(θ2)
sin(θ2)

∣∣∣∣ · · ·
∣∣∣∣ cos(θm)

sin(θm)

]
(4)

The probability amplitudes of a quantum bit are expressed as a pair of numbers
(cos(θi), sin(θi)). |sin(θi)|2 represents the probability of selecting item xi, and |cos(θi)|2

represents the probability of rejecting item xi.
The quantum population Q(t) =

(
qt

1, qt
2, . . . , qt

n
)

is made up of the quantum individu-
als at the tth generation, where n is the size of the population.

3.3. Initialization

The general principle of superposition of quantum mechanics assumes that the original
state must be considered as the result of a superposition of two or more other states in an
infinite number of ways [57]. Therefore, the initial quantum individual is regarded as a
superposition of all possible states. For 0-1 knapsack problems, each state represents a
combination of selecting or rejecting items, and the initial quantum individual is required
to generate every possible combination. For this, each vector qθi is initialized by:

qt=0
θi =

((π

4

)
· ri1, . . . ,

(π

4

)
· rim

)
(5)

where rij = random{1,3,5,7}, which means rij is an odd integer generated randomly in the
set rij ∈ {1, 3, 5, 7} while θij ∈ {

π
4 , 3π

4 , 5π
4 , 7π

4
}

. This means that for initial individuals,
|cos(θij)|2 = |sin(θij)|2 = 1/2, so that the probabilities of selecting item xi and rejecting
item xi are equal.

The initial quantum individual qt=0
i which corresponds to qt=0

θi can be given by:

qt=0
i =

[
cos θ0

i1
sin θ0

i1

∣∣∣∣ cos θ0
i2

sin θ0
i2

∣∣∣∣ . . .
∣∣∣∣ cos θ0

im
sin θ0

im

]
(6)

where m is the length of the qubit quantum individual.
Q(0) =

(
q0

1, q0
2, . . . , q0

n
)

is the initial quantum population, where n is the size of
the population.

3.4. Quantum Observation and Fitness Evaluation

Based on the quantum superposition principle, a quantum state is a superposition
of all possibly stationary states. The quantum superposition state will collapse to a sta-
tionary state by quantum observation. In the proposed QDGWO algorithm, the quantum
superposition states are represented by quantum individuals, and the stationary states
are represented through binary individuals. Before evaluating the fitness of individuals,
quantum observation and reparation for quantum individuals q are required to receive
binary individuals X, as shown in Algorithm 1.

After quantum observation, the fitness of binary individual X is evaluated as:

f
(
Xt

i
)
=

m

∑
i=1

pixt
i (7)
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Algorithm 1 Quantum Observation and Reparation

Input: quantum individuals q
Output: binary individuals X
xi ← 0 //Initialize the bits of individual X to 0.
wtotal ← 0 // Initialize the total weights of the individuals to 0.
while (totalw ≤ C) do

i ← rand_i[1, m] //Generate the random integer i ∈ {1, 2, . . . , m}.
if (xi = 0) then r ← rand(0, 1)

if(r > |cos(θi)|2) then

xi ← 1
wtotal ← wtotal + wi //Select item xi and include the weight wi of item xi in the total

weight wtotal.
end if

end if

end while

xi ← 0
wtotal ← wtotal − wi //The total weight wtotal has exceeded the capacity C when the loop is
ended, so item xi needs to be extracted from the selected items for reparation.

3.5. Adaptive Mutation Operation with Dynamic Iteration Factor

The mutation operation is one of the main operations in differential evolution. In the
QDGWO, DE/best/2, proposed by Price and Storn [44], is used to select parent vectors. In
this strategy, the mutation vector qMt

θi is generated by the vector qθα corresponding to the
current best binary individual Xα and the difference between two different target vectors
qθr1 and qθr2 which are randomly selected. This difference is weighted by the differentiation
control factor F.

The quantum mutation vector qMt
θi at the tth generation can be generated by:

qMt
θi = qθα + Ft(qθr1 − qθr2) (8)

where r1 ∈ {1, 2, . . . , m} and r1 
= i; r2 ∈ {1, 2, . . . , m} and r2 
= i; r1 
= r2.
To improve the performance of differential operations in different phases, we propose

an adaptive strategy to determine the differentiation control factor F with the iteration
of evolution:

Ft = F0 + F1 · 2ω · rand(0, 1) (9)

ω = e1− tmax
tmax−t (10)

where F0 is the initial differentiation control factor, and F1 is the adaptive f differentiation
control factor. tmax is the maximum iteration number of the algorithm.

With this adaptive strategy, in the early stage of the iteration, the smaller t will be
proposed with a larger Ft, which is beneficial for attaining good diversity of individuals for
global searching. Ft will be smaller and smaller during the iteration. In the late stages, Ft is
close to F0, which aids in local searching for the global optimal solution.

The quantum mutation individual qMt
i corresponding to the quantum mutant vector

qMt
θi can be obtained by:

qMt
i =

[
cos θMt

i1
sin θMt

i1

∣∣∣∣ cos θMt
i2

sin θMt
i2

∣∣∣∣ . . .
∣∣∣∣ cos θMt

im
sin θMt

im

]
(11)

where m is the length of the qubit quantum individual.
The quantum mutation population QM(t) = (qMt

1 , qMt
2 , . . . , qMt

n ) is made up of the
quantum mutation individuals at the tth generation, where n is the size of the population.
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3.6. Crossover Operation

The crossover operation is another main operation in differential evolution. The trial
vector qCt

θi is generated by crossover between the mutant vector qMt
θi and the target vector

qt
θi with a binomial crossover strategy [44].

The quantum trial vector qCt
θi at the tth generation can be generated by:

qCt
θij =

{
qMt

θij , if
(
randj(0, 1) ≤ CRt) or (j = rnbr_i)

qt
θij, if (randj(0, 1) > CRt) and (j 
= rnbr_i)

(12)

where CR ∈ [0, 1] is the probability of the crossover operation which is randomly generated
at tth iteration. In addition, rnbr_i ∈ {1, m} is an integer to ensure that qCt

θi obtains at least
one vector from qMt

θi .
The quantum trial individual qCt

i corresponding to the quantum trial vector qCt
θi can be

obtained by:

qCt
i =

[
cos θCt

i1
sin θCt

i1

∣∣∣∣ cos θCt
i2

sin θCt
i2

∣∣∣∣ . . .
∣∣∣∣ cos θCt

im
sin θCt

im

]
(13)

where m is the length of the qubit quantum individual.
The quantum trial population QC(t) =

(
qCt

1 , qCt
2 , . . . , qCt

n
)

is made up of the quantum
trial individuals at the tth generation, where n is the size of the population.

3.7. Selection Operation

After the crossover operation, the trial quantum individuals will be transformed
into binary individuals by observation and reparation, as discussed in Section 3.4. The
population of trial quantum individuals QC(t) is transformed into a population of trial
binary individuals PC(t) =

{
XCt

1 , XCt
2 , . . . , XCt

n
}

.
The selection operation generates the individuals of next iteration Xt+1

i between the
current individuals Xt

i and the trial binary individuals XCt
i , as follows:

Xt+1
i =

{
XCt

i , if ( f (XCt
i ) > f (Xt

i ))
Xt

i , if ( f (XCt
i ) ≤ f (Xt

i ))
(14)

The quantum individuals of the next iteration are generated by:

qt+1
θi =

{
qCt

θi , if ( f
(
XCt

i
)
> f

(
Xt

i
)
)

update qt
θi by RGWO, if

(
f
(
XCt

i
) ≤ f

(
Xt

i
)) (15)

where RGWO is a quantum rotation gate (QRG) with an adaptive GWO. RGWO is presented
in Section 3.8.

3.8. Quantum Rotation Gate with Adaptive GWO

The quantum rotation gate U(θi) is used to update the values of the qubits in a
quantum individual as follows [36]:

U(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(16)

The quantum individuals of the next iteration after quantum rotation are presented as:
[

α′ i
β′

i

]
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

][
αi
βi

]
(17)

where θi = s(αiβi)Δθi is the rotation angle of the QRG, and s(αi βi) is the direction signal of
the rotation angle.

The polar plot of the QRG for qubits is illustrated in Figure 3, and the quantum
rotation angle parameters used in [36] are shown in Table 1.
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Figure 3. Polar plot of quantum rotation gate for qubit.

Table 1. Lookup table of rotation angle.

xi bi f(x)≥f(b) Δθi
s(αi βi)

αi βi > 0 αi βi < 0 αi = 0 βi = 0

0 0 false 0 0 0 0 0
0 0 true 0 0 0 0 0
0 1 false 0 0 0 0 0
0 1 true 0.05π −1 +1 ±1 0
1 0 false 0.01π −1 +1 ±1 0
1 0 true 0.025π +1 −1 0 ±1
1 1 false 0.005π +1 −1 0 ±1
1 1 true 0.025π +1 −1 0 ±1

Where f (.) is the profit; s(αi βi) is the direction sign of rotation angle; and xi and bi are the ith bits of the binary
solution x and the best solution b, respectively.

Generally speaking, the core concept of the quantum rotation gate is to motivate the
probability amplitudes of each qubit in quantum individuals to converge to the correspond-
ing bits of the current best solution in the population. Realistically, the lookup table is a
convergence strategy. In this strategy, the fitness f(x) of the binary solution x after quantum
observation is compared with the fitness f(b) of the current best solution b. The quantum
rotation gate will update the probability amplitude (αi, βi) toward the direction that favors
the emergence of the better solution between x and b. For example, if xi = 0 and bi = 1, and
f (xi) > f (bi), then xi is the current best solution. This means that the state |0〉 is the optimal
state for the ith qubit of a quantum individual, and that the QRG will update (αi, βi) to
increase the probability of the state |0〉 to make the probability amplitude evolve toward
the direction benefiting the appearance of xi = 0. If (αi, βi) is located in the first quadrant as
shown in Figure 2, the quantum rotation is in a clockwise direction, which favors xi = 0.

Normally, quantum rotation can bring the quantum chromosomes closer to the current
optimal chromosomes and generate the exploitation near the current optimal solution to
find better solutions. As with other metaheuristic algorithms, individuals of the population
converge more closely to the best solution after quantum rotation. The QRG makes the
population evolve continuously and speeds up the convergence of the algorithm.

The magnitude of Δθi determines the granularity of the search and should be chosen
appropriately. A too-small value of the rotation angle will affect the convergence speed
and may even lead to a stagnant state. However, if the value is too large, the solutions may
diverge or converge prematurely to a local optimal solution [37].

The traditional QRG requires predefined rotation angles, and the value and direction
of θi should be designed for specific application problems. Because the values of quantum
rotation angles are dependent on the problems, the verification of angle selection becomes
important, although tedious, work when traditional QRGs are used for optimization
problems. If the quantum rotation angles can be obtained adaptively without relying on
predefined data, the efficiency of the QRG will be greatly improved, while the types of
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applications with the QRG can be easily increased. This is exactly what metaheuristic
algorithms are good at. Of the large number of metaheuristics, the GWO is a novel swarm
optimization algorithm motivated by the social behavior of grey wolves. Because the GWO
has the advantages of simple principles, fast searching speed, high seeking accuracy, and
easy implementation, it can be easily combined with practical engineering problems [58].
Therefore, the GWO has high theoretical research value and application value, and becomes
suitable for generating quantum rotation angles.

In addition, the traditional QRG motivates the probability amplitudes of each qubit in
quantum individuals to converge to the corresponding bits of the current best solution in
the population. If the current best solution is not the global optimal solution, the direction
of quantum rotation may be far from the global optimal solution, and the algorithm may
be trapped in local optimal stagnation. Since the GWO records multiple best individuals, it
is useful for the QRG to jump out of local optimum with the GWO.

In the proposed QDGWO algorithm, the rotation angle of the QRG is determined
with an adaptive GWO. This is described as follows: In the original GWO algorithm, the
positions of other ω wolves are updated by the distance vector between themselves and
the three best wolves, while for the α, β, and δ wolves, they can hunt the prey more freely.
The hunting zone for α, β, and δ wolves will become smaller during the iteration. In the
adaptive GWO, these features of the GWO will be inherited and developed.

For a quantum rotation gate with an adaptive GWO (RGWO),Δθt
ij is calculated using

the position of α, β, and δ wolves as follows:

Δθt
ij = θ ·

{
γα

i

(
Xt

αj − Xt
ij

)
+ γ

β
i

(
Xt

βj − Xt
ij

)
+ γδ

i

(
Xt

δj − Xt
ij

)}
(18)

where i ∈ {1, 2, 3, . . . , n}; j ∈ {1, 2, 3, . . . , m}; n is the size of the population; m is the number
of items; θ is the rotation angle magnitude; Xt

ij is the jth component in the binary individual

of the ith wolf during tth iteration; and γα
i , γ

β
i and γδ

i are determined by comparing the
fitness of the current binary individual with α, β, and δ wolves as follows:

γα
i =

⎧⎨
⎩

f (Xt
α)

f (Xt
i )

, if f (Xt
i ) < f (Xt

α)

N(0,1)×tmax
k(tmax+t) , otherwise

(19)

γ
β
i =

⎧⎪⎨
⎪⎩

f
(

Xt
β

)
f (Xt

i )
, if f

(
Xt

i
)
< f

(
Xt

β

)
N(0,1)×tmax

k(tmax+t) , otherwise
(20)

γδ
i =

⎧⎨
⎩

f (Xt
δ)

f (Xt
i )

, if f
(
Xt

i
)
< f

(
Xt

δ

)
N(0,1)×tmax

k(tmax+t) , otherwise
(21)

where N(0,1) is the Gaussian distribution, μ = 0, σ = 1.
For the ω wolves, they hunt the prey based on their own positions vs. the posi-

tions of the three best wolves. It is obvious that for the ith wolf in the ω wolves group,
f
(
Xt

i
)

< f
(
Xt

δ

) ≤ f
(

Xt
β

)
≤ f

(
Xt

α

)
. Therefore, the rotation angle of the ith wolf can be

calculated with the binary individuals of α, β, δ, and the ith wolf.
For α, β, and δ wolves, they have the duty of searching for the optimal solution from

their old positions. With increasing t, γα
i , γ

β
i and γδ

i will be much smaller in the late stages
of the iteration than what they are in the early stages of the iteration, which helps the ω
wolves converge toward an estimated position of prey calculated by α, β, and δ wolves.
This strategy is helpful for jumping out of local optimal stagnation, especially in the final
stage of iterations.
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The speed of convergence and quality of the solution are greatly affected by the
magnitude of the rotation angle θ, which is given by:

θ = θmin +
(

1 − t
tmax

)
· (θmax − θmin)

0 < θmin < θmax
(22)

where θ is linearly decreasing from θmax to θmin during the iteration.
In the end, qt+1

θi can be generated by:

θt+1
ij = θt

ij + st
ijΔθt

ij (23)

where st
ij is the direction signal of the rotation angle as follows:

st
ij =

⎧⎪⎨
⎪⎩

1, if θt
ij ∈ (0, π

2 ) ∪ (π, 3π
2 )

−1, if θt
ij ∈ (π

2 , π) ∪ ( 3π
2 , 2π)

±1, otherwise
(24)

With the adaptive strategy of γ and θ, the searching granularity of the QDGWO
changes from coarse to fine. A different searching granularity in the iteration will facilitate
the process for search agents to reach the global optimal solution.

3.9. Procedure of QDGWO Algorithm

Based on the description above, the procedure of the QDGWO and its main steps can
be summarized as shown in Algorithm 2.

Algorithm 2 QDGWO

t ← 0 // Initializes the iteration
Initialize Q(0) by Equations (5) and (6)
while (t < MaxIter) do

Observe to get X(t) from q(t)//Quantum observation
Evaluate fitness of X(t) by Equation (7)
Apply mutation on qM(t) by Equations (8) and (11)//Adaptive mutation
Obtain qC(t) by crossover by Equations (12) and (13)//Crossover
Observe to get XC(t) from qC(t)//Quantum observation
Evaluate fitness of XC(t)
if the trial binary individuals XC(t) is better than X(t) then

Update X(t+1) and q(t+1) by Equations (14) and (15)//Selection
else

Update q(t + 1) using QRG with adaptive GWO by Equations (16)–(24)
end if

t ← t + 1
end while

3.10. Example of QDGWO Algorithm to Solve KP01

In the following, a KP01 problem is described as an example to be solved by the
QDGWO algorithm.

Given a set of ten items, W = (x1, x2, x3, . . . , x10), and wi is the weight of the ith item
xi; pi is the value of xi; and C is the weight capacity of the knapsack. Suppose that wi = i,

and pi = wi+5, and C = 1
2

m
∑

i=1
wi = 27.5.
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Then, this 0-1 knapsack problem can be defined as:

Maximize f (x) =
m
∑

i=1
pixi

s.t.
m
∑

i=1
wixi ≤ 27.5, xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , 10}

(25)

where wi = i, and pi = wi + 5 = i + 5.
In this example, the population size was set to 20, and the maximum number of

iterations was set to 200. The other parameters are presented in Table 2. The evolution
process of q1, an individual of the quantum population, is shown below.

Table 2. Parameters of algorithms in experiments.

QEA AQDE QSE QDGWO

Differential control
parameter (F) / rand(0,1) × rand(0,1) × 0.1 / F0 = 0.02

F1 = 0.03
Crossover control
parameter (CR) / Gaussian distribution

N(0.5, 0.0375) / Gaussian distribution
N(0.5, 0.0375)

Parameters of PSO / /
W = 0.7298

c1 = 1.42
c2 = 1.57

/

Quantum rotation
angle (Δθ) 0.01π / /

θmin = 0.01π
θmax = 0.03π

k = 10

The initial quantum population Q(0) =
(
q0

1, q0
2, . . . , q0

20
)

was initialized by Equations (5)
and (6). The vector qθ1 was initialized by q0

θ1 =
( 3π

4 , π
4 , 5π

4 , 7π
4 , 5π

4 , 7π
4 , 3π

4 , π
4 , 5π

4 , π
4
)
,

and the quantum individual q0
1 was initialized by

q0
1 =

[ −√
2

2√
2

2

∣∣∣∣∣
√

2
2√
2

2

∣∣∣∣∣
−√

2
2

−√
2

2

∣∣∣∣∣
√

2
2

−√
2

2

∣∣∣∣∣
−√

2
2

−√
2

2

∣∣∣∣∣
√

2
2

−√
2

2

∣∣∣∣∣
−√

2
2√
2

2

∣∣∣∣∣
√

2
2√
2

2

∣∣∣∣∣
−√

2
2

−√
2

2

∣∣∣∣∣
√

2
2√
2

2

]
.

After quantum observation, the binary individual X0
1 was generated as

(1, 0, 1, 1, 0, 0, 1, 0, 0, 1), and the fitness of X0
1 was evaluated as f

(
X0

1
)
=

10
∑

i=1
pix0

i = 50.

The mutation vector qM0
θ1 was generated by Equations (8)–(11), where t = 0;

ω = e1− tmax
tmax−t = 1; and F0 = F0 + F1 · 2ω · rand(0, 1) = 0.02 + 0.03 × 2 × 0.68 = 0.0608

(rand(0,1) was randomly generated as 0.68).
The vector qθα corresponding to the current best binary individual Xα and two different

random target vectors qθr1 and qθr2 are shown as:

qθα =

(
π

4
,

3π

4
,

π

4
,

5π

4
,

7π

4
,

3π

4
,

π

4
,

π

4
,

3π

4
,

3π

4

)
;

qθr1 =

(
3π

4
,

7π

4
,

7π

4
,

5π

4
,

π

4
,

3π

4
,

5π

4
,

5π

4
,

π

4
,

7π

4

)
;

qθr2 =

(
7π

4
,

7π

4
,

3π

4
,

5π

4
,

π

4
,

5π

4
,

π

4
,

π

4
,

5π

4
,

3π

4

)
.

The quantum mutation vector qM0
θ1 was generated by:

qM0
θ1 = qθα + F0(qθr1 − qθr2)

= (0.1892π, 0.75π, 0.3108π, 1.25π, 1.75π, 0.7196π, 0.3108π, 0.3108π, 0.6892π, 0.8108π)
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The quantum trial vector qC0
θ1 at the tth generation was generated by Equations (12)

and (13):

qC0
θ1 = (0.75π, 0.75π, 0.3108π, 1.75π, 1.25π, 1.75π, 0.3108π, 0.25π, 0.6892π, 0.25π)

where CR was randomly generated as 0.35, and rnbr_i = 3.
After quantum observation, the trial binary individual XC0

1 was generated as

(1, 0, 1, 1, 0, 0, 1, 0, 1, 0), and the fitness was evaluated as f
(
XC0

1
)
=

10
∑

i=1
pix0

i = 49. Because

f
(
XCt

1
)
< f

(
Xt

1
)
, qt+1 should be updated by the QRG with an adaptive GWO.

The positions and profits of the current three best wolves were shown as:

X0
α = (1, 1, 1, 0, 1, 1, 0, 1, 0, 0), f (X0

α) =
10

∑
i=1

pix0
i = 55;

X0
β = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0), f (X0

β) =
10

∑
i=1

pix0
i = 54;

X0
δ = (0, 1, 1, 0, 0, 1, 1, 0, 1, 0), f (X0

δ) =
10

∑
i=1

pix0
i = 52.

Additionally, θ = θmin +
(

1 − t
tmax

)
· (θmax − θmin) = θmax = 0.03π; γα

1 =
f (X0

α)
f (X0

1)
= 1.1;

γ
β
1 =

f (X0
β)

f (X0
1)

= 1.08; γδ
1 =

f (X0
δ )

f (X0
1)

= 1.04.

Then, the quantum individual of the next iteration qt+1
θi was generated by

Equations (16)–(24) as:

Δq0
θ1 = [Δθ0

11, Δθ0
12, . . . , Δθ0

110]
= [−0.0312π, 0.0966π, 0,−0.0642π, 0.0654π, 0.0642π,−0.0654π, 0.033π, 0.0636π,−0.0966π]

q0
θ1 =

(
3π

4
,

π

4
,

5π

4
,

7π

4
,

5π

4
,

7π

4
,

3π

4
,

π

4
,

5π

4
,

π

4

)

q1
θ1 = q0

θ1 + s0
1Δq0

θ1
= (0.7812π, 0.3466π, 1.25π, 1.8142π, 1.3154π, 1.6858π, 0.8154π, 0.283π, 1.3136π, 0.1534π)

The individuals of the next iteration continued to evolve until the maximum number
of iterations was reached. After the iterations, the best profit of this KP01 problem was 57,
and one of the best solutions was (0,1,1,1,1,1,1,0,0,0).

4. Experimental Results

To assess the performance of the proposed QDGWO algorithm, two groups of datasets
are used for solving the KP01.

All experiments were conducted with Matlab 2016b, running on an Intel Core i7-4790
CPU @ 3.60 GHz, and Windows 7 Ultimate Edition.

In the first experiment described in [37], there were 50, 250, 500, 1000, 1500, 2000, 2500,
and 3000 dimension sets of data by Equation (26) to test the performance of the QDGWO
in high-dimension situations.

Given a set of m items, W = (x1, x2, x3, . . . , xm).

wi = rand_i[1, 10]
pi = wi + 5

C = 1
2

m
∑

i=1
wi

(26)
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where wi is the weight of the ith item xi; pi is the value of xi; C is the weight capacity of the
knapsack; and m is the number of items.

In the first experiment, m ranged from 50 to 3000, and the maximum number of
iterations in all cases was set to 1000.

To verify the effectiveness and efficiency of the QDGWO, the results of the proposed
algorithm were compared with three algorithms: QEA [37], AQDE [45], and QSE [48].
The parameters of algorithms used in the experiments are presented in Table 2, where
the population size is 20. The best profits, the average profits, the worst profits, and the
standard deviations of 30 independent runs are shown in Table 3 and Figures 4–7. The
Wilcoxon signed-rank test [59] is performed for the results of the competing algorithms in
Table 3 with a significance level α = 0.05, where +, −, and = indicate that this algorithm is
superior, inferior, or equal to the QDGWO, respectively.

Table 3. Experimental results for 0-1 knapsack problems (Experiment 1).

Number of Items QEA AQDE QSE QDGWO

50

Best 302(=) 292(−) 297(=) 302
Average 300.63(=) 287.2(−) 294.26(−) 302

Worst 297(=) 282(−) 290(−) 302
Std 2.23(−) 2.97(−) 2.41(−) 0

250

Best 1517(=) 1417(−) 1446(−) 1554
Average 1502.9(=) 1397.6(−) 1,427.7(−) 1549.3

Worst 1496(=) 1382(−) 1412(−) 1542
Std 4.4562(−) 7.3178(−) 8.2040(−) 2.3419

500

Best 2946(=) 2772(−) 2799(−) 3091
Average 2917.3(−) 2732(−) 2783(−) 3072.1

Worst 2907(−) 2717(−) 2763(−) 3058
Std 8.8198(=) 11.3304(=) 9.2364(=) 8.9624

1000

Best 5695(−) 5382(−) 5460(−) 6121
Average 5662.5(−) 5,364.4(−) 5442.2(−) 6085.3

Worst 5633(−) 5342(−) 5422(−) 6048
Std 12.7028(=) 11.2975(=) 10.1018(+) 13.4812

1500

Best 8464(−) 8198(−) 8128(−) 9126
Average 8,439.4(−) 8,178.7(−) 8,082.8(−) 9077.1

Worst 8414(−) 8149(−) 8039(−) 9027
Std 15.1535(+) 13.6188(+) 20.6722(=) 21.5347

2000

Best 11,217(−) 10,951(−) 10,813(−) 12,027
Average 11,191.2(−) 10,900.4(−) 10,781.1(−) 11,971.4

Worst 11,164(=) 10,865(−) 10,747(−) 11,913
Std 14.7202(+) 24.6167(=) 16.2827(+) 24.3967

2500

Best 13,907(−) 13,569(−) 13,466(−) 14,886
Average 13,865.8(−) 13,523.3(−) 13,394.2(−) 14,831.4

Worst 13,839(−) 13,482(−) 13,342(−) 14,751
Std 19.0504(+) 24.5971(+) 23.5438(+) 28.4894

3000

Best 16,604(−) 16,221(−) 16,071(−) 17,769
Average 16,549.9(−) 16,175.8(−) 16,033.2(−) 17,670.1

Worst 16,506(−) 16,128(−) 15,995(−) 17,588
Std 20.2286(+) 22.0621(+) 20.5269(+) 29.5280
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Figure 4. Best profits for the 0-1 knapsack problems (250 items in Experiment 1).

Figure 5. Best profits for the 0-1 knapsack problems (500 items in Experiment 1).
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Figure 6. Best profits for the 0-1 knapsack problems (1000 items in Experiment 1).

Figure 7. Best profits for the 0-1 knapsack problems (3000 items in Experiment 1).

To illustrate the importance of the role of the crossover operation of the DE in ex-
ploring the global optimum, comparative tests between the QDGWO with and without
the crossover operation were performed. Moreover, we compared the binomial crossover
operator of the DE with the exponential crossover operator of the DE. The best profits, the
average profits, the worst profits, and the standard deviations of 30 independent runs are
presented in Table 4. The Wilcoxon signed-rank test [59] is performed for the results in
Table 4 with a significance level α = 0.05, where +, −, and = indicate that this strategy is
superior, inferior, or equal to the QDGWO with a binomial crossover of the DE, respectively.
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Table 4. Experimental results of QDGWO algorithm without crossover of DE, with binomial crossover
of DE, and with exponential crossover of DE.

Number of Items
Without

Crossover of DE

With Binomial
Crossover of
DE (CR = 0.5)

With
Exponential
Crossover of
DE (CR = 0.5)

500

Best 3001(−) 3046 3046(=)
Average 2990.3(−) 3038.6 3040.1(=)

Worst 2981(−) 3031 3031(=)
Std 6.1752(−) 3.6191 3.4287(=)

1000

Best 5926(−) 6126 6126(=)
Average 5893.8(−) 6109.4 6107.7(=)

Worst 5851(−) 6096 6081(=)
Std 18.0843(−) 7.2612 9.5447(=)

1500

Best 8752(−) 9126 9126(=)
Average 8707.7(−) 9094.9 9090.9(=)

Worst 8647(−) 9066 9042(=)
Std 23.2206(−) 16.8516 21.4710(−)

In the second experiment described in [49], there were 50, 200, 500, 1000, 1500, and
2000 dimension sets of data by Equation (27) to test the performance of the QDGWO in
high-dimension situations.

Given a set of m items, W = (x1, x2, x3, . . . , xm).

wi = rand_i[1, 10]
pi = wi + 5

C = 3
4

m
∑

i=1
wi

(27)

where wi is the weight of the ith item xi; pi is the value of xi; C is the weight capacity of the
knapsack; and m is the number of items.

In the second experiment, m ranged from 50 to 2000, and the maximum number of
iterations in all cases was set to 1000.

To present the performance of the proposed algorithm in the global optimization,
we compared the QDGWO algorithm with the QIHSA [49] for knapsack problems. The
optimization results of the success rate (SR%) and the best profit are shown in Table 5. The
Wilcoxon signed-rank test [59] is performed for the results of the QIHSA in Table 5 with
a significance level α = 0.05, where +, −, and = indicate that this algorithm is superior,
inferior, or equal to the QDGWO, respectively.

The obtained results demonstrate the competitive performance of the proposed
QDGWO algorithm. According to the results, the proposed algorithm is more efficient
for the high-dimensional 0-1 knapsack problems, as shown in Table 4 and Figures 3–5.
Compared with the QEA [25], AQDE [33], QSE [36], and QIHSA [37], the QDGWO was the
most effective and efficient algorithm in the experiments. The advantages of the QDGWO
became more obvious when the number of items was large, especially in high dimensional
cases of the knapsack problems.
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Table 5. Experimental results of QDGWO and QIHSA for 0-1 knapsack problems (Experiment 2).

Test Item Size Optimal Solution QIHSA QDGWO

Knapinst50 50 1177
SR% 99.83(=) 100
best 1175(=) 1177

Knapinst200 200 4860
SR% 97.83(−) 100
best 4755(−) 4860

Knapinst500 500 11,922
SR% 93.74(−) 98.56
best 11,174(−) 11,748

Knapinst1000 1000 24,356
SR% 87.97(−) 98.14
best 21,427(−) 23,903

Knapinst1500 1500 35,891
SR% 86.31(−) 97.25
best 30,978(−) 34,904

Knapinst2000 2000 49,007
SR% 85.8(−) 96.36
best 42,052(−) 47,223

The proposed algorithm obtains both rapid exploration and high exploitation in
searching solutions. The QDGWO converges quickly to the global optimal solution. For
example, the algorithm approaches the global optimum at about the 500th iteration in
the case of 500 items (see Figure 4). However, the algorithm continues searching near the
global optimal solution, i.e., the exploitation. To illustrate this, in the case of 500 items
(see Figure 4), the QDGWO continues seeking further optimization after approaching
the optimal solution and obtains better solutions in the exploitation until the end of
the iterations.

Based on the results shown in Table 3, it can be concluded that the crossover operation
plays a significant role in searching the solution space efficiently. However, the performance
of the QDGWO is not very sensitive to which kind of crossover operator is used in the
algorithm. From the experiment results, the binomial crossover operator of the DE yields
slightly better optimal solutions than the exponential crossover operator of the DE in all
cases. The results can be interpreted to show that quantum updating with the quantum
rotation gate remains the most decisive and crucial operation in exploring the search space
even if the crossover operation is required to improve the solutions.

Finally, compared with the other four methods, the experimental results show the ad-
vantages of the collaborative optimization with operations of adaptive mutation, crossover,
and quantum rotation gate with the adaptive GWO in investigating the search space.

5. Conclusions

A quantum-inspired differential evolution algorithm with grey wolf optimizer (QDGWO)
was proposed to solve the 0-1 knapsack problems. The proposed algorithm combined
the superposition principles of quantum computing, differential evolution operations,
and the hunting behaviors of grey wolves. The QDGWO used the principles of quantum
computing such as quantum superposition states and quantum gates. Furthermore, it con-
tained mutation, crossover, and selection operations of the DE. To maintain a better balance
between the exploration and exploitation of searching for the global optimal solution, the
proposed algorithm adapted a quantum rotation gate with the adaptive GWO to update
the population of solutions. The results of tests performed for resolving the knapsack
problems demonstrate that the QDGWO was able to enhance diversity and convergence
performance for solving 0-1 knapsack problems. In addition, the QDGWO was effective
and efficient in finding the optimal solutions for high-dimensional situations.

Although the QDGWO displays excellent performance in solving 0-1 knapsack prob-
lems, there are several directions of improvement for the proposed algorithm. First, to
improve the effectiveness of the QDGWO, initial solutions of the quantum population can
be generated with metaheuristic methods. In addition, the proposed approaches can be
applied to solve other combinatorial optimization problems. Moreover, it is worth studying
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how to use the concepts of quantum computing in other novel metaheuristic approaches
such as the MPA [22] and AOA [27], as well as multi-objective optimization algorithms.
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Abstract: In this era of unprecedented economic and social prosperity, problems such as energy
shortages and environmental pollution are gradually coming to the fore, which seriously restrict
economic and social development. In order to solve these problems, green shop scheduling, which
is a key aspect of the manufacturing industry, has attracted the attention of researchers, and the
widely used flow shop scheduling problem (HFSP) has become a hot topic of research. In this paper,
we study the fuzzy hybrid green shop scheduling problem (FHFGSP) with fuzzy processing time,
with the objective of minimizing makespan and total energy consumption. This is more in line with
real-life situations. The non-linear integer programming model of FHFGSP is built by expressing job
processing times as triangular fuzzy numbers (TFN) and considering the machine setup times when
processing different jobs. To address the FHFGSP, a discrete artificial bee colony (DABC) algorithm
based on similarity and non-dominated solution ordering is proposed, which allows individuals to
explore their neighbors to different degrees in the employed bee phase according to a sequence of
positions, increasing the diversity of the algorithm. During the onlooker bee phase, individuals at
the front of the sequence have a higher chance of being tracked, increasing the convergence rate of
the colony. In addition, a mutation strategy is proposed to prevent the population from falling into a
local optimum. To verify the effectiveness of the algorithm, 400 test cases were generated, comparing
the proposed strategy and the overall algorithm with each other and evaluating them using three
different metrics. The experimental results show that the proposed algorithm outperforms other
algorithms in terms of quantity, quality, convergence and diversity.

Keywords: green shop scheduling; fuzzy hybrid flow shop scheduling; discrete artificial bee colony
algorithm; minimize makespan; minimize total energy consumption

1. Introduction

The growth of manufacturing has brought economic and social prosperity. Shop
scheduling, as a key part of manufacturing, plays an important role in economic de-
velopment. Hybrid flow shop (HFS) is a common manufacturing environment [1] that
combines the features of process shop and parallel machine scheduling and is widely
used in container handling [2], electronics manufacturing, chemical production, and steel
production [3–5], in addition to applications in internet service architecture [6], civil engi-
neering [7], and production planting [8]. The hybrid flow shop scheduling problem (HFSP)
refers to multiple jobs to be processed in multiple stages with one or more machines in each
stage, and a specific optimization objective is achieved by determining the order in which
the jobs are processed and the allocation of machines to each job in each stage [1]. It is
worth noting that there are two other cases of HFSP in real life [9,10]: (1) the processing time
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of a job is often not fixed but fluctuates within a limited range due to worker proficiency,
newness of the machine. (2) The same machine processing different jobs requires a certain
setup of the machine before processing, and due to the differences between jobs, the setup
time required by the machine varies from job to job. Therefore, it is more meaningful and
practical to study HFSP with setup time and fuzzy job processing time.

While the world is experiencing unprecedented economic and social prosperity, en-
vironmental pollution and energy scarcity are becoming a serious problem that seriously
affects the future development of humanity. In particular, the manufacturing industry
takes up most of the world’s energy and produces a large amount of pollutant emis-
sions [11]. Therefore, in order to solve the energy and environmental problems, green shop
scheduling, as a key aspect of manufacturing, has become a hot spot for research [12]. The
purpose of green shop scheduling is to reduce energy consumption, reduce environmental
pressure, and achieve sustainable development without losing economic benefits. There-
fore, the widely used hybrid flow green shop scheduling problem (HFGSP) has a high
research value.

However, HFGSPs that consider fuzzy job processing time are not common at present.
Fu et al. [13] developed a hybrid multi-objective optimization algorithm to solve HFSP with
fuzzy processing time but did not consider the energy problem. Wang et al. [14] investigated
the HFGSP of job processing time variation caused by the dynamic reconfiguration process
of the device to minimize the energy consumption of makespan and the whole device and
proposed an improved multi-objective whale optimization algorithm to solve it.

As HFSP has a wide range of application scenarios, the uncertain job processing
time meets the actual production needs and the energy saving is in line with the future
direction of manufacturing. In this paper, we study the fuzzy hybrid flow green shop
scheduling problem (FHFGSP) which meets the above three scenarios and is less studied
currently. FHFGSP considers fuzzy job processing time and machine setup time with
the objective of minimizing both makespan (MS) and total energy consumption (TEC).
Uncertain completion time is denoted by triangular fuzzy numbers (TFN) and TEC is
divided into three parts: machine working time, machine setup time, and machine idle
time. At present, there are not many HFGSPs that consider both fuzzy processing time
and work sequence-related setup time, but FHFGSP is more in line with actual production
scenarios and has higher research value.

Artificial bee colony (ABC) [15] is one of the swarm intelligence algorithms, which
is divided into employed bees, onlooker bees, and scout bees according to the foraging
behavior of the swarm, with good global exploration and local development. ABC has
been shown to be superior or close to other classical swarm intelligence algorithms [16,17].
ABC is widely used to solve shop scheduling problems [18]. To solve FHFGSP, this paper
proposed a sorting-based discrete artificial bee colony algorithm (SDABC). Individuals in
the population are ranked according to non-dominated solutions and similarity to the ideal
solution and adopt different search and follow strategies according to the location to achieve
full exploration of the solution space and discover better solutions. It is worth mentioning
that SDABC can be used not only to solve FHFGSP problems such as turning shop [19]. It
can also be used to solve the expansion of FHFGSP described in the first paragraph.

The main contributions of this paper are as follows:

(1) The FHFGSP with processing time fuzzy is investigated. The completion time is rep-
resented by TFN, and the energy consumption in the scheduling process is considered
in three parts, which is more in line with the actual production environment.

(2) In the employed bee phase, the population was ranked based on the number of
dominant solutions and the similarity of ideal solutions, and different degrees of
exploration were taken for individuals according to the results of the ranking, with
the best individuals being more fully explored.

(3) In the onlooker bee phase, a selection strategy is adopted so that individuals in the
top ranking have a higher probability of being selected, and a mutation strategy is
adopted to avoid falling into a local optimum.
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The paper is organized as follows: Section 2 gives the relevant works, Section 3
describes what the FHFGSP is, gives a symbolic representation and builds a mathematical
model of the FHFGSP. Section 4 details the SDABC for solving the FHFGSP. Experimental
validation is presented in Section 5 and the last section contains conclusions and outlook.

2. Related Works

ABC has been successfully applied to solve shop scheduling problems due to its
advantages such as few control parameters and ease of implementation [20]. As there is no
research related to ABC for solving FHFGSP, this section reviews the work related to the
use of ABC for solving shop scheduling problems.

Li et al. [18] proposed a novel hybrid ABC and tabu search algorithm (TABC) to
solve the HFSP finite buffers, employing a TS-based adaptive neighborhood strategy that
gives the TABC algorithm the ability to learn and generate neighborhood solutions in
different promising regions as a means to minimize makespan. Yue et al. [21] investigated
the batching and hybrid model scheduling problem in a flexible parallel production line,
considering the sequence-dependent setup time between hybrid model products with the
aim of minimizing the manufacturing cycle time of the line while balancing the workload
between lines and maximizing the net profit. In addition, a new material availability
constraint is introduced to the problem. A novel Pareto guided ABC is designed to address
the current problem. Gong et al. [22] considered the impact and potential of human factors
on improving productivity and reducing production costs in real production systems and
proposed a hybrid ABC to solve flexible job shop scheduling problems (FJSP) with worker
flexibility. Zadeh et al. [23] proposed a heuristic model based on an ABC for the dynamic
FJSP. Lei et al. [24] studied the distributed unrelated parallel machine scheduling problem
with preventive maintenance (DUPMSP) and proposed an ABC with division to minimize
MS. Xie et al. [25] proposed an improved ABC considering machining structure evaluation
to solve the flexible integrated scheduling problem of networked equipment, which is an
extension of job shop scheduling. Xuan et al. [20] proposed an improved DABC with the
introduction of a genetic algorithm to solve FJSP for uncorrelated parallel machines with
progressively deteriorating jobs and timing dependencies.

As flow shops are very common in practical production activities, the HFSP is of high
research value. Wang et al. [19] proposed a new decoding method that simultaneously
considers spindle speed optimization and scheduling scheme optimization and acts on
the distribution estimation algorithm to simultaneously reduce energy consumption and
makspan in the turning shop. Li et al. [26] proposed an improved ABC to solve the
distributed flow shop problem (DFSP) with the objective of minimizing MS. Li et al. [27]
proposed a hybrid ABC to solve the parallel batch DFSP with deteriorating jobs. In
the proposed algorithms, two types of problem-specific heuristics are proposed, namely
batch allocation and right-shift heuristics, which can significantly shorten makespan.
Gong et al. [28] proposed a hybrid multi-objective DABC for solving the blocked batch
flow process shop scheduling problem with two conflicting criteria of minimizing MS and
lead time. With the objective of minimizing the total process time, Pan et al. [29] solved
the distributed arrangement flow job scheduling problem based on a high-performance
framework of DABC. Li et al. [30] proposed an improved ABC to solve a multi-objective
optimization model with the objectives of minimizing MS and processing cost for the
hybrid flow shop process planning and production scheduling independently of each
other. Peng et al. [31] investigated the problem of flow shop rescheduling in the actual
steelmaking process, considering interruptions caused by machine failures and controllable
processing times in the final stages, and proposed an improved ABC to solve the problem.

However, in actual production, the processing time of jobs is often uncertain and there
is very little research on ABC solutions to fuzzy HFSP. Zhong et al. [32] proposed a new
artificial swarm algorithm, the improved artificial swarm algorithm, for the multi-objective
fuzzy FJSP. The objectives are to minimize the maximum fuzzy MS, maximize the weighted
consistency index and minimize the maximum fuzzy machine workload.
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Most of the research on the use of ABC to solve shop scheduling problems is in the
area of improving economic efficiency. Very little research has been done on saving energy
and reducing pollution emissions. Li et al. [33] designed an improved ABC to solve a
multi-objective low-carbon job shop scheduling problem with variable machining speed
constraints. Zhang et al. [34] studied HFGSP with variable machine processing speed to
minimize MS and TEC and proposed a multi-objective DABC (MDABC) to solve HFGSP.
However, in HFGSP, the processing time of the job is set to an exact value, which is not fully
compatible with the actual production environment. In real life, the processing time of the
job often deviates due to the operator’s business ability, machine aging, etc. Moreover, the
neighborhood search adopted by MDABC in the employed bee phase and the binary race
strategy adopted in the onlooker bee phase make the algorithm suffer from the problem
that it cannot fully explore in the solution space, the convergence of the algorithm is not
high, and it is easy to fall into local optimum.

For this reason, this paper studies the FHFGSP with uncertain job processing time and
proposes SDABC to solve FHFGSP. In SDABC, the dominant individuals guide the poor
individuals to update in the employed bee phase, which improves the convergence speed
of the population, and the proposed ranking-based selection strategy and mutation strategy
can prevent individuals from falling into local optimum in the onlooker bee phase. FHFGSP
is consistent with the actual production environment and production requirements, but it
is not common in previous studies.

3. FHFGSP

This section first details the problem definition of FHFGSP, then the rules of TFN
operations are explained, and finally the symbolic representation of FHFGSP is given and
the mathematical model of FHFGSP is developed.

3.1. Description of the Problem

FHFGSP combines the features of fuzzy scheduling and HFSP. In FHFGSP, n jobs will
be processed in m (m ≥ 2) stages in the same order. Each stage j has at least one machine
Mj,k (k ≥ 1) and at least one stage has multiple machines [1,35,36]. The processing time Ti,j,v

of jobi on machine Mj,k is uncertain and is given by the triple [37] (to
i,j,v, tm

i,j,v, tp
i,j,v) where

to
i,j,v ≤ tm

i,j,v ≤ tp
i,j,v. to

i,j,v denotes the optimal processing time, tm
i,j,v denotes the most probable

processing time, and tp
i,j,v denotes the worst processing time.

The constraints for FHFGSP are formulated as follows:

(1) Jobs are not allowed to be interrupted and preempted when there is a job being
processed on the machine, and the machine is not allowed to stop.

(2) At the beginning, all jobs and machines are available.
(3) Only one job can be processed by any one machine at any one time and any job is

only allowed to be processed by one machine at any one time.
(4) Machines at the same stage process jobs at the same speed with the same power.
(5) Machines are allowed to idle.
(6) Machines can only process jobs at a selected speed. This cannot be changed during

the processing.

The objective to be optimized by FHFGSP is to minimize MS and TEC. In this paper,
the TEC is divided into three parts: when the machine is idle, when the machine is in the
setup phase, and when the machine is processing jobs. There are three ways to reduce
MS: (1) reduce machine idle time, which is influenced by the job sequence. (2) Reduce
machine setup time, which also reduces TEC, which is also influenced by the job sequence.
(3) Reducing the time of the job being processed, which means increasing the processing
speed of the job. However, the energy consumption of the machine when processing a job
is proportional to the processing speed of the job [38], and reducing the job processing time
increases the TEC. Since the two objectives to be optimized are in conflict with each other,
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this paper solves the FHFGSP by adjusting the job sequence and the speed of the machine
when processing the job.

3.2. TFN Concepts and Operations

The concept of fuzzy sets was introduced by Zadeh [39] and the basic idea is to
fuzzily the absolute affiliation in classical sets. It can be used to solve real-life uncertainty
problems [40]. This subsection gives the rules for the operation of the TFN to facilitate the
solution of the GFHSP.

For any two TFNs A = (a1, a2, a3) and B = (b1, b2, b3) the rules for each operation are
as follows:

1. Additive operations

A + B = (a1 + b1, a2 + b2, a3 + b3) (1)

2. Multiplication operations

A × B = (a1 × b1, a2 × b2, a3 × b3) (2)

3. Comparative operations
−
A = (

a1 + 2a2 + a3

4
) (3)

The TFN comparison operation is divided into three steps and has three judgement criteria.

Step 1: Get
−
A and

−
B by (3). If

−
A > (<)

−
B, then A > (<) B.

Step 2: If
−
A =

−
B, then compare a2 and b2. If a2 > (<) b2, then A > (<) B.

Step 3: If
−
A =

−
B and a2 = b2, then compare the difference between a3 and a1. If

a3−a1 > (<) b3−b1, then A < (>) B.

3.3. Mathematical Models

After understanding the basic concepts of FHFGSP and TFN, mathematical modelling
of FHFGSP from the perspective of optimization objectives is needed to facilitate a better
understanding of the problem to solve it. The interpretation of the relevant symbols
appearing in the FHFGSP is shown in Table 1.

Objective:
Min{MS, TEC} (4)

Subject to:
∑

k∈Mj

∑
v∈Vj

xi,j,k,v = 1, ∀i ∈ I, j ∈ J (5)

ei,j − bi,j = ∑
k∈Mj

∑
v∈Vj

xi,j,k,v · pti,j,v (6)

bi,j − ei,j−1 ≥ 0, j ∈ {2, . . . , m} (7)

zi,i∗ ,j,k + zi∗ ,i,j,k ≤ 1, ∀i, i∗ ∈ I, k ∈ Mj (8)

bi,j − ∑
i∗∈I

ei∗ ,j · zi∗ ,i,j,k − ∑
k∈Mj

∑
i∗∈I

zi∗ ,i,j,k · sti∗ ,i,j ≥ 0 (9)

ei,j − ∑
k∈Mj

∑
v∈Vj

xi,j,k,v · pti,j,v − ∑
k∈Mj

∑
i∗∈I

zi∗ ,i,j,k · sti∗ ,i,j = 0 (10)

MS = maxei,m (11)

TEC = PE + SE + IE (12)

ppi,j,v = pi,j/cj,v (13)
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PE = ∑
j∈J

∑
k∈Mj

∑
i∈I

∑
v∈Vj

xi,j,k,v · Ti,j,v · ppi, j,v (14)

SE = ∑
j∈J

∑
k∈Mj

∑
i∈I

∑
i∗∈I

∑
v∈Vj

xi,j,k,v · zi∗ ,i,j,k · sti∗ ,i,j · sp (15)

IE = ∑
j∈J

∑
k∈Mj

⎡
⎣Ek,j − Bk,j − ∑

i∈I
∑

v∈Vj

xi,j,k,v · (pti,j,v + ∑
i∗∈I

zi∗ ,i,j,k · sti∗ ,i,j)

⎤
⎦ · ip (16)

where (4) gives the objective of the FHFGSP to minimize both MS and TEC (5)–(10) give the
associated constraints. (5) guarantees that each job i can be assigned to a specific machine
k for processing at speed v at each stage j. (6)–(9) guarantees that no interruptions and
preemptions by jobs are allowed during the processing and setup phases. (10) indicates
that the machine starts processing as soon as setup is complete. (11) indicates that MS is
determined by the end time of the last job to be processed in the final stage. (12) indicates
that the TEC consists of three components, PE indicates the energy consumption of the
machine while processing the job, SE indicates the energy consumption of the machine
during the setup time, IE indicates the energy consumption of the machine during the
idle time. (13) denotes the actual power of job i when it is processed at speed v in stage j.
(14)–(16) are the specific information of PE, SE, and IE, respectively, all energy consumption
is obtained by multiplying power by time.

Table 1. Nomenclature.

Symbol Meaning

MS The time required to complete the entire scheduling program

TEC The total energy consumption required to complete the entire scheduling
program

I The set of jobs and |I| = n
i Index of the job, indicating the i-th job
J The set of stages and |J| = m
j Index of the stage, indicating the j-th stage

Mj The set of machines at stage j
k Index of the machine

ei,j The ending time of job i at stage j and its value is greater than 0
pi,j The standard processing time for job i at stage j
cj,v The adjustment factor when the machine is running at speed v at stage j

Ti,j,v The time required for job i to be processed at speed v at stage j

sti*,i,j
The setup time from job i* (i* is the previous job of i) to job i at stage j. If

i* = i, si*,i,j indicates the setup time required for job i as the first job
sp Energy consumed by the machine per unit time during the setup phase

ap Energy consumed by auxiliary equipment per unit of time throughout the
scheduling process

ip Energy consumed by the machine per unit of time during the idle phase
bi,j The beginning time of job i at stage j and its value is greater than 0

xi,j,k,v
A control variable for job position that is equal to 1 if job i is processed on

machine k at speed v at stage j, and 0 otherwise

zi,i*,j,k
A control variable for job sequence that is equal to 1 if the next job on the

machine k at stage j for job i* is job i, and 0 otherwise
Bk,j The start time of the parallel machine k is at stage j
Ek,j The shutdown time of parallel machine k at stage j

4. SDABC of FHFGSP

This section presents the proposed SDABC algorithm for solving FHFGSP. The basic
framework of the ABC algorithm is first presented, and then the encoding and decoding
scheme and the energy saving procedure are described, followed by the details of SDABC,
and finally a summary.
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4.1. The Framework of ABC

In ABC, during the initialization phase, a set of food source locations are randomly
selected by bees and their nectar amount is determined, then these bees enter the colony
and share nectar information. Each search cycle consists of three steps. In the first phase,
after information sharing, each employed bee searches for information in the vicinity of
the food source location and abandons the old food source to choose a new food source if a
better one is found. In the second phase, the onlooker bee selects a food source to follow
based on the nectar distribution information sent by the employed bee, the better the food
source the more likely it is to be followed. If the current food source is not updated for a
long time, the employed bee will abandon the current food source and become a scout bee.
The scout bee randomly selects a new food source to replace the abandoned food source.
The overall framework of the basic ABC framework is shown in Algorithm 1.

Algorithm 1 Framework of the basic ABC framework

Input: population P;
Output: results;
1: Initialize population P;
2: while requirements are met do

3: Employed bees to explore around food sources;
4: Onlooker bees select good individuals to follow and explore around the food source;
5: if triali > threshold limit then

6: Employed bees transformed into scout bees looking for new food sources;
7: end if

8: end while

9: return results.

In this paper, the linear weighted sum method is used as the decomposition method.
For a multi-objective optimization problem with m objectives, a weight vector λ = (λ1, λ2,
. . . , λm) T is added, where i represents the sum of the weight values of the i-th objective.
As shown in (17).

min F(X) =
m
∑

i=1
λi fi(xi)

s.t. x ∈ Ω
(17)

where fi(xi) is the objective value for the i-th objective. Since this paper is a two-objective
problem, λ = (λ1, λ2,) T the values of λ1 are taken in {0/H, 1/H, . . . , i/H, . . . , H/H}, where
H = N − 1 and λ2 = 1 − λ1.

4.2. Coding Scheme

This subsection gives the encoding and decoding scheme of FHFGSP. The objective of
FHFGSP is the minimum MS and TEC. To achieve these two optimization objectives, it is
necessary to determine the sequence of jobs in each stage, the machine allocation for each
stage of the job, and the speed at which each stage of the job is processed on the machine.
Due to the characteristics of FHFGSP, each job needs to go through the same processing
stages, so we only need to determine the sequence of jobs into the first stage, and the
sequence of jobs in other stages can be determined automatically. However, since the
processing speed of each job in each stage is independent of the preceding and following
stages and the preceding and following jobs, the processing speed of each job in each stage
is independent of the preceding and following jobs. Therefore, the speed of each job in
each stage should be determined separately.
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Therefore, the solution is coded in two parts. The first part is the sequence of jobs into
the first stage. The second part is the velocity selection matrix. In this paper, the two parts
of the solution are represented as follows:

πn = {π1, . . . , πi, . . . πn}

Vm×n =

⎡
⎢⎢⎢⎢⎢⎢⎣

v1,1, · · · v1,i, · · · v1,n
...

...
...

vj,1, · · · vj,i, · · · vj,n
...

...
...

vm,1, · · · vm,i, · · · vm,n

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

where πn denotes the n-dimensional job sequence vector, πi is the sequence number of the
i-th job entering the machine, Vm×n represents the speed matrix of the jobs, and vi,j is the
machine processing speed level of the i-th job at stage j.

The second part represents the solution to the three-stage scheduling problem for three
jobs as <π3, V3×3>. As shown below, the solution to the three-stage scheduling problem
for three jobs is denoted as <π3, V3×3>. π3 indicates that the order in which jobs enter the
first stage of scheduling is job1, job3, and job2. V3×3 indicates that in the three stages, job1
is processed at levels 1, 2, and 3, while job2 is processed at levels 2, 1, and 1, and job3 is
processed at levels 2, 1, and 3, respectively.

π3= {1, 3, 2} V3×3 =

⎛
⎝ 1 2 2

2 1 1
3 1 3

⎞
⎠ (19)

After the coding scheme is determined, it needs to be decoded into an actual schedul-
ing scheme to make sense. The detailed decoding scheme is as follows. In the first stage,
machines are available at the moment 0. According to the order of jobs in πn, the jobs are
placed on the machine that can be executed earliest and the jobs are processed according to
the corresponding speed in the speed matrix, after which the available time of the machine
is updated before processing the next job. The following steps are performed for each job
in turn in the other stages:

Step 1: Process the job according to its completion time in the previous stage, according
to the first-come, first-served principle, i.e., the one that was completed earlier in the
previous stage and arrives at this stage first is processed first.

Step 2: Based on the speed in the speed matrix, select the parallel machine that can
process the job as early as possible.

Step 3: Update the available time of the machines. Assuming that machine k is
available at the moment 0, it takes 3 times to process job i and 1 time to set up, then the
available time of the machine is 0 + 3 + 1 = 4 times.

4.3. Initialization and Energy Saving Procedures

After determining the encoding, it is necessary to initialize the populations and
external populations. In this paper, the population is initialized in a random way, and for
each individual, the job sequence and velocity matrix are generated randomly.

After the population initialization is completed, the dominance relationship between
individuals needs to be calculated and the non-dominated solutions are populated with
external population.

Although the two optimization objectives of the FHFGSP conflict with each other,
it is possible to use a suitable strategy to improve the other objective while controlling
one optimization objective constant. To obtain high-quality solutions, individuals use an
energy-saving procedure after initialization with the aim of further improving the quality
of the population. The basic idea of the energy-saving procedure is to achieve a reduction
of PE in TEC by reducing the processing speed of the job while controlling a constant MS.
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To achieve constant MS, the energy-saving procedure uses the idea of backtracking.
Starting from the last job in the last stage, the processing speed of the job is minimized
without affecting the completion time of other jobs. The detailed steps are shown in
Algorithm 2, where the symbols that appear are given in Table 1.

Algorithm 2 Energy saving procedure

Input: sequence of assignments in order of completion, π’;
speed selection matrix, V;
integer related to the number of parallel machines, k;
Output: new speed selection matrix, V*;
1: i’ = the job processed on machine k after i;
2: i* = the job processed on machine k before i
3: for j = m to 1 do

4: for l = n to 1 do

5: i← Index of the l-th job in π’;
6: for v* = 1 to vi,j do

7: if pti,j,v* <= bi’,j - sti*,i,j-sti,i’,j- ei*,j then

8: vi,j ← v*;
9: bi,j = ei,j- pti,j,v*;
10: break;

11: end if

12: end for

13: end for

14: end for

15: return V*.

4.4. Employed Bees

During the employed bee phase, each individual tries to search around the food source
to obtain a better food source. The food source is the solution to the problem.

In order to allow the employed bee to fully explore around the solution, a local search
strategy based on ranking is proposed, with the central idea that high-quality solutions are
used to guide bad solutions to update themselves.

First, there is a requirement to identify high quality individuals in population. A new
way of determining high-quality individuals is proposed. The quality of each individual is
related to two factors: the number of dominant solutions and the similarity to the ideal
solution. (21) gives a high-quality assessment function for each individual, where ni denotes
the number of solutions in population that are dominated by the current individual i, d+,
and d– denote the Euclidean distances to the ideal and negative ideal solutions, respectively.
(22) gives the formula for the Euclidean distance, where xi denotes the i-th subproblem
of the current solution and x*i denotes the i-th subproblem of the ideal solution. Since
this paper is about finding a minimum of two objectives, the ideal solution is the lower
boundary of the search space and the negative ideal solution is the upper boundary of the
search space.

valuei =
d
−
i

d−
i + d+i

+
N − ni

N2 (20)

d =
√(

∑ (xi − x∗i )2
)

(21)

The high-quality individuals then guide the poor individuals to self-renewal when
the employed bees search around solutions. The high-quality individuals guided the poor
individuals to different degrees, and (23) gives the degree to which each individual i guided
the poor individuals. It is worth noting that the high-quality individuals only guide the
poorer individuals in their neighborhood. The Euclidean distance of each individual i
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in population from other individuals was calculated and the nearest T individuals were
selected as neighbors of i.

l = π ∗ ni
N

(22)

In addition, in order to prevent individuals in the population from leading differential
updates that affect other individuals that have already been updated and destroy the
structure of individuals, individuals in population are sorted in a non-ascending order ac-
cording to their quality, and individuals that have already been updated do not participate
in updates in the same population.

It is also worth noting that five update strategies are used in this paper, depending
on the problem to be solved. These strategies are insertion and exchange of working
sequences, mutation of velocity matrices, and insertion mutation and cross mutation of
working sequences and velocity matrices. The employed bees obtain possible solutions
based on these update strategies.

The employed bees search around the solution starting from the first update strategy.
If the currently selected update strategy does not yield a solution with high fitness, then the
next employed bee searches based on the next update strategy until it finds a high-quality
solution. When all five update strategies have been searched, the search starts from the
first one again. The flow of the employed bee phase is shown in Algorithm 3, where
Quality() means calculating the quality of each individual according to (21), Level() means
determining the degree to which an individual leads the difference solution, GetNew()
means updating individuals according to the strategy qi with an initial value of 1 for qi, and
GetBad() means obtaining the difference solution that has a high similarity to the current
individual and has not been updated.

4.5. Onlooker Bees

In the onlooker bee phase, the onlooker bee will select good food sources for further
search based on the information conveyed by the employed bee, with the aim of obtaining
high-quality solutions and accelerating the convergence of the algorithm. In this paper,
a sorting-based selection strategy is proposed to improve the search efficiency of the
onlooker bee and speed up the convergence of the algorithm. First, the individuals in
population are ranked according to (21), and those with small values are in the front. The
high-quality solutions are placed in front of the bad solutions. Then, the onlooker bee
selects an individual in population to follow according to (24), in which (24), i represents
the i-th individual to follow and N denotes the population size. Therefore, the individual
with the top ranking has a higher probability of being selected.

indexi = rand
(

N + i
2

)
(23)

After selecting the individual Xindex according to the selection method proposed in
this paper, the onlooker bees randomly select the neighboring individual Ti of the current
individual for two-point crossover [41] to generate a new individual. The two-point
crossover is divided into two parts: the sequence of operations and the velocity matrix,
and the specific operation is as follows: two points in the range are randomly selected,
the part between two points in Xindex is left untouched, and the rest is filled by Ti. For the
job sequence, the remaining positions in Xindex are filled by the jobs in Ti that are different
from the remaining jobs in Xindex in turn. For the velocity matrix the remaining positions in
Xindex are filled by the corresponding positions in Ti.

Regarding the newly generated individuals, the algorithm will decide whether to
replace the original individuals according to the greedy selection algorithm. In particular,
in order to prevent the algorithm from falling into local optimum, this paper introduces
mutation in the onlooker bee phase, and the probability of mutation of individuals in the
population is 1/N. This avoids the algorithm from falling into local optimum to some
extent. The whole onlooker bee detailed process is shown in Algorithm 4.
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Algorithm 3 Employed bee phase

Input: population P;
Output: new population, P’;
1: P’ = P;
2: for i = 1 to N do

3: si = Quality(Xi);
4: end for

5: Sort(P’, s);
6: for i = 1 to N do

7: li = Level(Xi);
8: X’

i = GetNew(Xi,qi);
9: for z = 0 to li do

10: if z = 0 then

11: if X’
i < Xi then

12: Xi = X’
i;

13: qi = 1;
14: else

15: qi = qi + 1;
16: end if

17: if qi > 5 then

18: qi= 1;
19: end if

20: else

21: Xb=GetBad(Xi);
22: if X’

i < Xb then

23: Xb = X’
i;

24: break;

25: else

26: qb = qb + 1;
27: end if

28: end if

29: end for

30: end for

31: return P*.

In Algorithm 4, Select() indicates that the onlooker bee selects a food source to follow
according to (23), GetNeighbourhood() indicates a random selection from the neighbors of the
food source, TPX() indicates the two-point crossover, and Mutation() represents mutation
of an individual X, including the job sequence and speed selection matrix.

4.6. Scouting Bees

If a solution is not updated for a long time, the solution will be abandoned and
the employed bee will then be transformed into a scout bee, choosing a new solution at
random in the solution space. As random search is uncontrollable, this random strategy
does not have a positive impact on the algorithm, therefore, this paper uses a neighborhood-
based solution swapping strategy to improve the efficiency of the scout bee phase of the
algorithm [34]. This is because the solutions of neighboring sub-problems should be similar.

The scout bee searches in the following way: for a solution that has not improved after
L cycles, the scout bee first finds a more suitable solution among its neighboring individuals.
Then they exchange them with each other. If no better one is found, one individual
is randomly chosen to exchange with each other. The basic procedure is described in
Algorithm 5, where L(Xi) denotes the number of cycles Xi has gone through, T denotes
the number of neighboring individuals, Xi,j denotes the j-th neighboring individual of the
i-th solution.
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Algorithm 4 Onlooker bee phase

Input: population, P;
Output: new population, P’;
1: P’ = P;
2: for j = 1 to N do

3: sj = Quality(Xj);
4: end for

5: Sort(P’, si);
6: for j = 1 to N do

7: Xindex = Select(P’)
8: Ti = GetNeighborhood(Xindex);
9: Xchild = TPX(Xindex,Ti);
10: if 0.1 < Random() then

11: Xchild =Mutation(Xchild);
12: end if

13: if Xchild < Xindex then

14: Xindex =Xchild;
15: end if

16: if Xchild) < Ti then

17: Ti = Xchild;
18: end if

19: end for

20: return P’.

Algorithm 5 Scout bee phase

Input: population, P;
Output: new population, P’;
1: for i = 1 to N do

2: if L(Xi) > L then

3: for j = 1 to T do

4: if Xi,j < Xi then

5: Xi,j ↔ Xi;
6: break;

7: end if

8: end for

9: if j > T then

10: r = Rand(1, T);
11: Xi,r ↔ Xi;
12: end if

13: end if

14: end for

15: return P’.

4.7. The Whole Process of the Algorithm

This section outlines the entire algorithmic process of SDABC. It can be roughly
divided into four steps.

Step 1: The population is initialized randomly and is energy-efficient to improve the
quality of the solution.

Step 2: Sort the population in the manner described in Section 4.4 and perform
the algorithmic operations described in Sections 4.5–4.7 in sequence, while updating the
domain relationships of individuals in population and the external populations after each
subsection is completed.

Step 3: Repeat Step 2 until the end conditions are met.
Step 4: Perform another energy saving procedure on the external population.
The algorithm flow of SDABC can be shown in Figure 1.
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Figure 1. The overall flow of the SDABC.

5. Experiment

In this section, the proposed SDABC algorithm and strategy will be evaluated through
experiments. Firstly, the parameter settings of FHFGSP and the performance indicators
of the evaluation algorithm are introduced. Then the proposed strategy is compared
with other common strategies in experiments. Finally, SDABC is compared with other
algorithms in experiments.

The algorithm proposed in this paper is coded in C++ and performed in Codeblocks
16.01. All experiments were run on a PC with an Intel(R) Core (TM) i3-8100U CPU, 3.60 GHz,
and 8 GB RAM. Maximum CPU usage time t = 100 was used as a stopping criterion.

5.1. Test Data

In order to fully evaluate the performance of the algorithm from different levels, the
performance of SDABC needs to be tested by selecting different problem instances. The
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parameters controlling the problem instances are n, m, and st. In this paper, to extensively
test the ability of SDABC to solve HFSP of different sizes, five different levels of n, four
different levels of m and four different levels of st were designed [34]. This results in
80 problem combinations of different levels. Once the n, m, and st of the problem instances
have been determined, it is also necessary to set them separately for the job and the
workshop environment. For jobi, the processing speed v and the standard processing time
p need to be set, and for the shop environment, the number of parallel machines per stage
k needs to be set, by means of the previous problem description. It is also necessary to
set the energy consumption per unit time of the machines in the processing phase, the
setup phase and the idle phase. To avoid chance in the algorithm results, five instances
were generated for each problem combination. In summary, the factors and their levels of
FHFGSP in generating test data are summarized in Table 2.

Table 2. Summary of test data.

Factors Levels Number of Levels

n 20, 40, 60, 80, 100 5
m 3, 5, 8, 10 4

st U[1, 25], U[1, 49], U[1, 99],
U[1, 124] 4

k U[1, 5] 1
v U[1, 5] 1
p U[1, 99] 1
sp 2 1
ip 1 1

5.2. Performance Metrics

Three popular metrics for evaluating multi-objective optimization problems
(MOPs) [34,42,43], namely the number of non-dominant solutions, set coverage, and
inverse generation distance, were adapted to evaluate the performance of SDABC. The
mean and standard deviation of each metric at each level were obtained from 400 instance
problems of the FHFGSP over 30 independent iterations.

(1) Number of non-dominated solutions (N-metric). This metric is the number of non-
dominant solutions produced by the algorithm, with higher values indicating better
performance the closer the PF is.

(2) Inverse Generational Distance (IGD-metric). This metric evaluates the convergence
and distribution performance of the algorithm.

IGD(A, PF*) =

∑
v∈PF*

d(v, A)∣∣∣PF*
∣∣∣ (24)

where d(v, A) is the minimum Euclidean distance between v and the point in A.
The smaller the value, the better the comprehensive performance of the algorithm
including convergence and distribution performance. Since the real PF* cannot
be solved, all non-dominated solutions obtained jointly by the algorithms of each
comparison are used as PF* in this paper.

(3) Set coverage (C-metric). This metric measures the dominance relationship between
the two solution sets A and B.

C(A, B) =
|{μ ∈ B|∃v ∈ A : v ≺ μ}|

|B| (25)

where C(A, B) represents the percentage of ideal solutions in B that are identical or
dominant to those in A. The higher the value, the higher the performance.
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In order to eliminate the effect of different metrics, a very simple max-min method [44]
is used in this paper to normalize the obtained MS and TEC as follows.

fi =
fi − min( fi)

max( fi)− min( fi)
(26)

5.3. Effect of Search Strategy

To evaluate the performance of the search strategy, SDABC with a search strategy
was compared with DABC without a search strategy. All content factors of the algorithm
were the same except for the difference in the employed bee phase search strategy. The
evaluation results of the three metrics for the two strategies are shown in Tables A1–A3
(Tables in Appendix A), where the better values are shown in bold and the last row is the
average of the 20 problem dimensions.

For the N-metric, it can be seen from Table A1 that SDABC has a higher average (AVG)
for 85% of the questions and a lower standard deviation (SD) for 75% of the questions. In
summary: no problems were found in DABC where both the AVG and SD were better
than in SDABC, so SDABC led to better results. For the FHFGSP, for which it is difficult to
find the exact solution, a higher N-metric can plot the PF more accurately and also help
managers to get more options. Therefore, SDABC is more advantageous in this respect.

This is because in the search phase, the employed bee is able to obtain more non-
dominated solutions by searching around the individual to different degrees depending on
the number of dominant solutions and the similarity of the ideal solutions.

For the C-metric, it can be seen from Table A2 that, with the exception for 20 × 5 and
60 × 3, SDABC resulted in a better AVG on 90% of the questions and obtained a lower SD
on 79% of the questions. Overall SDABC achieved a lower AVG and SD than DABC. To
better show the difference between the C-metric obtained by SDABC and DABC, a boxplot
of the two is plotted in Figure 2, and it can be seen that SDABC is able to obtain more
concentrated and dense values and the median was significantly higher for SDABC than
DABC. For the values of C (SDABC, DABC) away from the whole, which is the C-metric
obtained for question 100 × 5, a comparison of Table A2 shows that lower values were
obtained with DABC for the same question.

Figure 2. C-metric boxplot for DABC and SDABC.

This indicates that the quality of the solutions obtained by SDABC is higher than that
of DABC. This is because in the employed bee phase, the employed bee searches around
the individual to different degrees based on the similarity between the current solution
and the ideal solution, and by being guided by the ideal solution, the employed bee is able
to obtain a high-quality solution.
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For the IGD-metric, it can be seen from Table A3 that SDABC obtains a lower mean
value than DABC, except for 20 × 5, 60 × 8, and 80 × 10. For 75% of the questions, SDABC
obtained a lower SD. Taken together, SDABC obtained a lower AVG and SD. In order to
show the difference more graphically, a boxplot of the two is plotted in Figure 3. It can be
seen that SDABC is able to obtain a much more concentrated lower IGD and a much lower
median value than DABC.

Figure 3. IGD-metric boxplot for DABC and SDABC.

This indicates that the solutions obtained by SDABC are better than DABC in terms of
diversity and convergence. This is due to the design of five different directions in the search
phase, which improves the diversity of solutions obtained. The employed bee improved the
convergence by searching around individuals based on the number of dominant solutions
and the similarity of ideal solutions.

5.4. Effect of Selection Strategy

Three different selection strategies were compared, in order to evaluate the perfor-
mance of the newly proposed selection strategy. The three strategies are as follows: the
selection strategy proposed in this paper (denoted by ABC_snm), the selection strategy
in which individuals in population are selected according to similarity with mutation
(denoted by ABC_sm), and the selection strategy in which individuals in population are se-
lected according to similarity without mutation (denoted by ABC_s). The evaluation results
of the three metrics for the three strategies are shown in Tables A4–A6, where the better
values are shown in bold and the last row is the average of the 20 problem dimensions.

For the N-metric, it can be seen from Table A4 that ABC_snm obtained significantly
better mean values than ABC_s. Compared to ABC_sm, ABC_snm achieved better results
in 80% of the questions. For SD, ABC_s obtained a lower SD value due to the fact that the
size of SD is positively related to AVG, and ABC_s has a significantly smaller AVG value,
so the resulting SD is also smaller. However, on balance ABC_snm was able to obtain more
non-dominated solutions, giving the manager more options to choose from.

This indicates that it is more advantageous to select individuals in the onlooker bee
phase based on the number of solutions dominated by them and their similarity to the
ideal solution than to select only on the basis of similarity. A comparison of the three can
reveal that ABC_snm was able to obtain a greater number of non-dominated solutions.

For C-metric, it can be seen from Table A5 that ABC_snm obtains significantly better
AVG and SD than ABC_s and ABC_sm. In each problem, ABC_snm achieves better results.
Of course, overall, ABC_snm also obtains better AVG and SD than the other two strategies.
Figure 4 plots the boxplots of the C-metric obtained by the three strategies, and it can be
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seen that ABC_snm is able to obtain more concentrated values and obtains a much higher
median than the other two strategies, and the minimum value obtained for ABC_snm is
also higher than the maximum values of ABC_s and ABC_sn.

Figure 4. C-metric boxplot for ABC_sm, ABC_snm, and ABC_s.

This indicates that in this paper the proposed strategy is able to give obtain high-
quality non-dominated solutions. This is due to the fact that the adopted selection strategy
can speed up the convergence of the algorithm and the adopted mutation strategy can
prevent the algorithm from falling into local optimum.

For IGD-metric, it can be seen from Table A6 that in each problem, ABC_snm obtained
significantly lower AVG than ABC_s and ABC_sm. In total, 85% of the problems in
ABC_snm had smaller SDs than the other two algorithms. As a whole, both the AVG and
SD of ABC_snm are smaller than the other two strategies. Figure 5 plots the boxplot of the
IGD-metric obtained by the three algorithms, and it can be seen that ABC_snm is able to
obtain more concentrated values, and the median obtained is much lower than the other
two strategies.

Figure 5. IGD-metric boxplot for ABC_sm, ABC_snm, and ABC_s.
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This indicates that in this paper the proposed strategy has better diversity and conver-
gence. This is because there is some probability that some low-quality individuals are also
selected, which improves the diversity of the algorithm to some extent, and the proposed
mutation strategy also has some contribution to the diversity. In addition, the adopted
selection strategy can speed up the convergence of the algorithm.

5.5. Evaluation of SDABC

In this subsection, SDABC is compared with IMDABC, MDABC, and NSGAII. All
algorithms use the same CPU time as a stopping criterion and all use the same parameter
settings, and the results are shown in Tables 8–13 and A7, respectively. The last row of the
table represents the average of the 20 problems. The best parts are marked in bold.

Table A7 shows the N-metrics obtained by the four algorithms, and it can be seen that
the average values obtained in SDABC are higher than the three remaining algorithms.
The values obtained by SDABC are significantly higher than IMDABC and NSGAII in each
problem. In addition, although some values of MDABC are higher than SDABC, the differ-
ence is not significant, and SDABC achieves higher values in 70% of the problems. To sum
up, SDABC is able to obtain more non-dominated solutions compared to other algorithms.

This is because the search strategy proposed by the SDABC in the employed bee phase
proposed in this paper is able to search in both depth and breadth directions, enhancing
the diversity of individuals and contributing to obtaining a greater number of solutions.

Tables 8–10 show the C-metric obtained by the four algorithms, and it can be seen that
the AVG and SD obtained by SDABC are significantly higher than IMDABC, MDABC and
NSGAII in each of the problems except for the 100 × 10 problem in Table 10 where the SD
is slightly higher. Figure 6 shows a boxplot of the C-metric obtained by SDABC versus the
other three algorithms. The outliers in (a) are the C-metric obtained for problem 100 × 5. In
Table 8, both C-metrics for 100 × 5 are lower than the overall value, but SDABC’s is better
than IMDABC’s. In (b) it can be seen that SDABC is significantly higher than NSGAII
overall. Two independent values of C (SDABC, MDABC) in (c) are for problems 100 × 3
and 100 × 5. While these two values deviate from the overall, SDABC has a higher quality
AVG and SD for the same problem dimension. Additionally, the median of SDABC is
significantly higher than the other three algorithms. Therefore, SDABC obtains solutions of
significantly higher quality than IMDABC, MDABC and NSGAII.

This is because SDABC follows the individual in the population in both the employed
and onlooker bee phases. The evolution of SDABC continued in accordance with the
dominance of individuals in population and the similarity to the ideal solution. At the
same time, it is possible to find high-quality solutions faster.

Tables 11–13 show the IGD-metric obtained by the four algorithms, and it can be
seen that in each problem SDABC obtains significantly lower AVG and SD than IMDABC,
MDABC, and NSGAII. Figure 7 plots the boxplot of the IGD-metrics obtained by the four
algorithms. Figure 7a shows that the overall and median SDABC is much lower than
IMDABC. Figure 7b demonstrates that SDABC has a better concentration than MDABC.
Figure 7c indicates that SDABC has a better overall and median quality than NSGAII. With
Figure 7, we can see that the SDABC distribution is more concentrated under the condition
of obtaining a lower IGD.
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(a) C-metric boxplot for IMABC and SDABC 

(b) C-metric boxplot for IMDABC and SDABC 

 
(c) C-metric boxplot for MDABC and SDABC 

Figure 6. C-metric boxplot for NSGAII, IMDABC, MDABC, and SDABC.
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(a) IGD-metric boxplot for MDABC and SDABC 

(b) IGD-metric boxplot for MDABC and SDABC 

(c) IGD-metric boxplot for MDABC and SDABC 

Figure 7. IGD-metric boxplot for NSGAII, IMDABC, MDABC, and SDABC.
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This indicates that SDABC performs better than IMDABC, MDABC, and NSGAII in
terms of convergence and diversity. This is because SDABC takes five different search
directions in the employed bee phase and also explores them to different degrees depending
on the ranking, both of which can become a more adequate search for individuals in the
solution space and increase the diversity of the population. In addition, in the onlooker bee
phase, every individual in population has the potential to be tracked. It also contributes to
the diversity of the algorithm due to the introduction of the variation strategy. In terms
of convergence, both the employed bee and the onlooker bee phases operate based on
ranking, which speeds up the convergence of the population based on the similarity and
dominance with the ideal solution.

6. Conclusions

In this paper, we studied the FHFGSP with fuzzy processing time that minimizes
makespan and total energy consumption. To solve FHFGSP, a discrete artificial bee colony
algorithm based on similarity and non-dominated solution ordering was proposed. After
extensive numerical experiments, it can be demonstrated that the proposed strategy and
algorithm outperforms other algorithms in terms of performance.

In the employed bee phase, individuals fully explore around the dominant solution;
in the onlooker bee phase, individuals at the front of the sequence have a greater chance of
being followed; in addition, a mutation strategy was proposed to prevent the population
from falling into a local optimum. The algorithm produced solutions of high-quality in
terms of quantity, quality, convergence, and distribution.

In future, our aim is to study more flexible HFGSPs, such as the proficiency of shop
workers, and to consider other green metrics, such as noise and carbon emissions. We
will verify the effectiveness of the algorithm by comparing it with more optimization
algorithms based on mimicking animal behavior, which will have a positive impact on
the role of such algorithms in relation to the green shop scheduling problem. In addition,
as smart manufacturing continues to evolve and people start to use information physical
systems and industrial Internet of Things to obtain data in real time during manufacturing
processes, it is also interesting to study how to process real-time state data for decision
making and optimization of green shop scheduling.
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Appendix A

Table A1. N-metric for search strategy.

Problem
DABC SDABC

AVG SD AVG SD

20 × 3 86 62 92 59
20 × 5 65 36 67 40
20 × 8 45 16 49 16
20 × 10 40 16 44 15
40 × 3 106 72 110 71
40 × 5 54 30 59 32
40 × 8 34 16 34 15
40 × 10 25 11 23 9
60 × 3 79 58 76 52
60 × 5 50 21 54 25
60 × 8 32 12 33 11
60 × 10 26 10 28 9
80 × 3 61 53 65 55
80 × 5 32 20 42 29
80 × 8 30 11 28 10

80 × 10 22 9 22 8
100 × 3 58 46 63 53
100 × 5 38 25 36 24
100 × 8 25 13 25 12
100 × 10 22 9 23 10

Mean 47 27 49 28

Table A2. C-metric for search strategy.

Problem
C(DABC,SDABC) C(SDABC,DABC)

AVG SD AVG SD

20 × 3 0.93880 0.04258 0.93900 0.06198
20 × 5 0.95766 0.04046 0.92896 0.04124
20 × 8 0.88912 0.07329 0.96045 0.03546

20 × 10 0.88997 0.08919 0.90871 0.07201
40 × 3 0.93179 0.05220 0.94715 0.05798
40 × 5 0.88794 0.06988 0.93452 0.05402
40 × 8 0.86480 0.10236 0.90333 0.07605

40 × 10 0.86490 0.10413 0.88452 0.06131
60 × 3 0.92796 0.05899 0.90222 0.07063
60 × 5 0.86644 0.14676 0.89354 0.10818
60 × 8 0.92089 0.06839 0.92381 0.05100

60 × 10 0.90767 0.05409 0.93009 0.04827
80 × 3 0.86559 0.14008 0.89635 0.07251
80 × 5 0.79823 0.22431 0.86336 0.15612
80 × 8 0.87951 0.09336 0.93812 0.06277

80 × 10 0.92683 0.07375 0.93418 0.04575
100 × 3 0.84100 0.16037 0.87990 0.13044
100 × 5 0.78436 0.18936 0.78886 0.19950
100 × 8 0.88830 0.08372 0.92509 0.07065
100 × 10 0.92985 0.05288 0.93574 0.06011

Mean 0.88808 0.09601 0.91090 0.07680
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Table A3. IGD-metric for search strategy.

Problem
DABC SDABC

AVG SD AVG SD

20 × 3 0.02663 0.02198 0.01794 0.03307
20 × 5 0.01793 0.02496 0.02749 0.01907
20 × 8 0.03927 0.02212 0.01332 0.01327

20 × 10 0.03363 0.02926 0.02788 0.02733
40 × 3 0.02985 0.03042 0.01365 0.01382
40 × 5 0.05140 0.04928 0.02094 0.02754
40 × 8 0.05918 0.05344 0.02634 0.01598

40 × 10 0.05839 0.04808 0.03257 0.02078
60 × 3 0.03715 0.02399 0.02437 0.02303
60 × 5 0.05341 0.04582 0.03521 0.03348
60 × 8 0.02940 0.03220 0.03209 0.02915

60 × 10 0.04229 0.04451 0.02626 0.02061
80 × 3 0.04921 0.04863 0.02606 0.02082
80 × 5 0.07811 0.07623 0.04645 0.05436
80 × 8 0.04589 0.03531 0.03138 0.04547

80 × 10 0.03663 0.04203 0.04585 0.05587
100 × 3 0.05310 0.06431 0.05235 0.06774
100 × 5 0.06235 0.03463 0.04102 0.03457
100 × 8 0.05340 0.05929 0.03441 0.03360

100 × 10 0.04582 0.04686 0.04199 0.06017
Mean 0.04515 0.04167 0.03088 0.03249

Table A4. N-metric for selection strategy.

Problem
ABC_sm ABC_snm ABC_s

AVG SD AVG SD AVG SD

20 × 3 81 55 92 59 47 33
20 × 5 61 34 67 40 50 31
20 × 8 40 13 49 16 42 18

20 × 10 36 14 44 15 37 17
40 × 3 102 64 110 71 51 35
40 × 5 55 29 59 32 42 26
40 × 8 34 14 34 15 32 19
40 × 10 27 12 23 9 26 12
60 × 3 75 53 76 52 35 28
60 × 5 53 24 54 25 31 19
60 × 8 32 10 33 11 26 7
60 × 10 27 10 28 9 21 10
80 × 3 57 46 65 55 23 21
80 × 5 29 18 42 29 18 12
80 × 8 30 11 28 10 20 7
80 × 10 22 8 22 8 16 6
100 × 3 60 48 63 53 19 12
100 × 5 39 27 36 24 19 12
100 × 8 25 13 26 12 13 6

100 × 10 26 11 23 10 13 4
Mean 46 26 49 28 29 17
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Table A5. C-metric for selection strategy.

Problem
C(ABC_sm,ABC_snm) C(ABC_snm,ABC_sm) C(ABC_s,ABC_snm) C(ABC_snm,ABC_s)

AVG SD AVG SD AVG SD AVG SD

20 × 3 0.85934 0.08758 0.98144 0.01982 0.73993 0.17995 0.97764 0.02051
20 × 5 0.89810 0.05966 0.96951 0.03490 0.78039 0.16583 0.98023 0.02181
20 × 8 0.86900 0.11023 0.96419 0.03952 0.82839 0.10178 0.97108 0.03337
20 × 10 0.82771 0.13341 0.97760 0.02258 0.78766 0.12764 0.98465 0.01848
40 × 3 0.91836 0.04773 0.97068 0.02106 0.73526 0.16708 0.97883 0.02344
40 × 5 0.89508 0.08619 0.95619 0.04185 0.79438 0.16022 0.97169 0.03042
40 × 8 0.89812 0.06417 0.96804 0.02755 0.85335 0.12335 0.96984 0.03199
40 × 10 0.87944 0.06824 0.96875 0.02753 0.83444 0.11672 0.95150 0.05400
60 × 3 0.90653 0.06056 0.95775 0.04265 0.73289 0.17950 0.95740 0.10376
60 × 5 0.87867 0.09270 0.95395 0.05534 0.71341 0.16273 0.94364 0.06230
60 × 8 0.82253 0.09272 0.98044 0.03144 0.78647 0.13140 0.95530 0.04929
60 × 10 0.89406 0.06943 0.95311 0.04333 0.82031 0.14776 0.95453 0.06291
80 × 3 0.84510 0.10849 0.97731 0.02936 0.77974 0.21686 0.96227 0.05675
80 × 5 0.68997 0.20446 0.98967 0.02097 0.73794 0.21694 0.95857 0.05943
80 × 8 0.80327 0.13293 0.96337 0.05757 0.77936 0.10541 0.94491 0.06676
80 × 10 0.88756 0.08520 0.93426 0.09061 0.79879 0.15662 0.96216 0.04526
100 × 3 0.88165 0.12186 0.95392 0.03888 0.77351 0.19366 0.95870 0.04537
100 × 5 0.87378 0.10167 0.94669 0.05262 0.68042 0.21482 0.92094 0.08275
100 × 8 0.81979 0.11728 0.92500 0.08941 0.64569 0.19238 0.94140 0.09557

100 × 10 0.85256 0.09924 0.91935 0.14346 0.72247 0.17505 0.93433 0.11018
Mean 0.86003 0.09719 0.96056 0.04652 0.76624 0.16179 0.95898 0.05372

Table A6. IGD-metric for selection strategy.

Problem
ABC_sm ABC_snm ABC_s

AVG SD AVG SD AVG SD

20 × 3 0.04042 0.03405 0.00845 0.01556 0.08057 0.03846
20 × 5 0.03659 0.02632 0.01319 0.01536 0.06153 0.03196
20 × 8 0.03577 0.02567 0.01321 0.01561 0.04449 0.02785

20 × 10 0.04829 0.03799 0.00998 0.01414 0.05901 0.03691
40 × 3 0.03020 0.02552 0.01083 0.01343 0.08398 0.03540
40 × 5 0.03330 0.03128 0.02825 0.04225 0.06741 0.05066
40 × 8 0.04468 0.03790 0.02478 0.03358 0.04649 0.02746

40 × 10 0.03573 0.02457 0.01409 0.01484 0.04507 0.02870
60 × 3 0.02988 0.02740 0.01928 0.02141 0.10136 0.04475
60 × 5 0.04250 0.03227 0.02603 0.05360 0.09486 0.06072
60 × 8 0.07492 0.05767 0.01267 0.02564 0.07959 0.04397

60 × 10 0.04170 0.03099 0.02281 0.02704 0.06926 0.04548
80 × 3 0.06017 0.05241 0.01338 0.02040 0.09440 0.07314
80 × 5 0.11588 0.06826 0.00406 0.00849 0.11549 0.06856
80 × 8 0.07187 0.05380 0.00723 0.00979 0.09838 0.09451

80 × 10 0.05573 0.05833 0.02134 0.02361 0.10140 0.09607
100 × 3 0.06039 0.06521 0.01807 0.01793 0.11416 0.07280
100 × 5 0.05374 0.05680 0.01827 0.01903 0.11104 0.08333
100 × 8 0.05678 0.05496 0.03197 0.05249 0.12985 0.08506
100 × 10 0.06252 0.04959 0.03104 0.05631 0.12392 0.08962

Mean 0.05155 0.04255 0.01745 0.02502 0.08611 0.05677
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Table A7. N-metrics for the four algorithms.

Problem
MDABC SDABC IMDABC NSGAII

AVG SD AVG SD AVG SD AVG SD

20 × 3 81 55 92 59 47 33 4 1
20 × 5 6 34 73 39 50 31 4 1
20 × 8 40 13 49 16 42 18 4 1

20 × 10 36 14 44 15 37 17 3 1
40 × 3 102 64 110 71 51 35 4 1
40 × 5 55 29 59 32 42 26 4 1
40 × 8 34 14 33 15 32 19 4 1

40 × 10 27 12 23 9 26 12 3 1
60 × 3 75 53 76 52 35 28 4 1
60 × 5 53 24 54 25 31 19 4 1
60 × 8 32 10 33 11 26 7 4 1

60 × 10 27 10 28 9 21 10 4 1
80 × 3 57 46 65 55 23 21 4 1
80 × 5 29 18 42 29 18 12 4 1
80 × 8 30 11 28 10 20 7 4 1

80 × 10 22 8 21 8 16 6 4 1
100 × 3 60 48 63 53 19 12 4 1
100 × 5 39 27 36 24 19 12 4 1
100 × 8 26 13 21 11 13 6 4 1
100 × 10 26 11 19 7 13 4 4 1

Mean 4 26 49 28 29 17 1

Table 8. C-metric for SDABC and IMDABC.

Problem
C(IMDABC, SDABC) C(SDABC, IMDABC)

AVG SD AVG SD

20 × 3 0.71958 0.17690 0.97863 0.02441
20 × 5 0.81245 0.17156 0.96822 0.04305
20 × 8 0.69710 0.16276 0.98021 0.02158

20 × 10 0.67717 0.19304 0.95016 0.06298
40 × 3 0.67268 0.19374 0.96970 0.04154
40 × 5 0.71662 0.20731 0.96423 0.03848
40 × 8 0.71277 0.18846 0.88374 0.09222

40 × 10 0.65302 0.23329 0.87723 0.09688
60 × 3 0.68624 0.21262 0.93698 0.09011
60 × 5 0.58662 0.22109 0.86391 0.18674
60 × 8 0.75941 0.15186 0.94086 0.04614

60 × 10 0.74989 0.22071 0.91005 0.08697
80 × 3 0.69941 0.26287 0.90214 0.12340
80 × 5 0.60641 0.27873 0.85887 0.17892
80 × 8 0.72325 0.19220 0.93444 0.13380

80 × 10 0.79106 0.13459 0.95489 0.05211
100 × 3 0.61688 0.26191 0.83928 0.25371
100 × 5 0.52884 0.27615 0.66027 0.32685
100 × 8 0.60399 0.22069 0.93966 0.10319
100 × 10 0.70389 0.14102 0.93097 0.10896

Mean 0.68586 0.20508 0.91222 0.10560
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Table 9. C-metric for SDABC and NSGAII.

Problem
C(NSGAII, SDABC) C(SDABC, NSGAII)

AVG SD AVG SD

20 × 3 0.47604 0.19696 0.99894 0.00364
20 × 5 0.43420 0.21366 0.99839 0.00606
20 × 8 0.51249 0.18648 0.99817 0.00693

20 × 10 0.62232 0.28094 0.97241 0.04692
40 × 3 0.30179 0.20107 0.99637 0.01581
40 × 5 0.40568 0.24291 0.98909 0.03957
40 × 8 0.46779 0.23882 0.99658 0.01490

40 × 10 0.44047 0.25663 0.99565 0.01653
60 × 3 0.30520 0.23747 0.99847 0.00666
60 × 5 0.35629 0.20641 0.99647 0.01527
60 × 8 0.37387 0.25821 0.98637 0.05803

60 × 10 0.50566 0.27560 0.98842 0.03011
80 × 3 0.23740 0.18040 0.98565 0.04320
80 × 5 0.30696 0.23777 0.99592 0.00717
80 × 8 0.31161 0.27681 0.98151 0.03140

80 × 10 0.34208 0.30953 0.90678 0.16100
100 × 3 0.27811 0.21478 0.98198 0.06273
100 × 5 0.41473 0.25368 0.99075 0.02246
100 × 8 0.53949 0.31026 0.97923 0.05386
100 × 10 0.47040 0.32454 0.96777 0.08233

Mean 0.40513 0.24514 0.98525 0.03623

Table 10. C-metric for SDABC and MDABC.

Problem
C(MDABC, SDABC) C(SDABC, MDABC)

AVG SD AVG SD

20 × 3 0.85678 0.11097 0.97497 0.02959
20 × 5 0.92044 0.05882 0.96118 0.04077
20 × 8 0.83238 0.09010 0.97593 0.03354

20 × 10 0.82119 0.12392 0.95335 0.05121
40 × 3 0.90210 0.06388 0.96763 0.03469
40 × 5 0.86154 0.10690 0.95649 0.04270
40 × 8 0.81330 0.11659 0.90450 0.09811

40 × 10 0.77790 0.12432 0.92043 0.05911
60 × 3 0.90741 0.06411 0.93831 0.05046
60 × 5 0.81425 0.13803 0.92594 0.07804
60 × 8 0.79762 0.10058 0.96047 0.04091

60 × 10 0.86893 0.07453 0.95030 0.04694
80 × 3 0.78871 0.19319 0.94319 0.05262
80 × 5 0.58628 0.21435 0.95776 0.10780
80 × 8 0.74688 0.13289 0.97491 0.03945

80 × 10 0.86783 0.10606 0.93900 0.10327
100 × 3 0.79428 0.16286 0.88190 0.11669
100 × 5 0.75590 0.17291 0.82682 0.15634
100 × 8 0.79468 0.14633 0.93958 0.10413
100 × 10 0.84412 0.10980 0.93745 0.13495

Mean 0.81763 0.12056 0.93951 0.07107
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Table 11. IGD-metric for SDABC and IMDABC.

Problem
IMDABC SDABC

AVG SD AVG SD

20 × 3 0.09976 0.03581 0.00663 0.01234
20 × 5 0.05147 0.03417 0.00869 0.01174
20 × 8 0.07184 0.03675 0.01113 0.01998

20 × 10 0.07962 0.03873 0.01176 0.01615
40 × 3 0.11765 0.04426 0.00600 0.00950
40 × 5 0.10199 0.05379 0.00720 0.00759
40 × 8 0.07725 0.05090 0.02156 0.01843

40 × 10 0.08825 0.05355 0.02981 0.02419
60 × 3 0.12603 0.06153 0.00790 0.00855
60 × 5 0.12552 0.05599 0.01545 0.01365
60 × 8 0.07575 0.04625 0.01527 0.01209

60 × 10 0.08662 0.06164 0.02675 0.04270
80 × 3 0.12157 0.10182 0.00800 0.01224
80 × 5 0.15439 0.09136 0.01543 0.02934
80 × 8 0.11297 0.08460 0.00951 0.01343

80 × 10 0.09190 0.06572 0.01140 0.01092
100 × 3 0.15286 0.08546 0.01482 0.02365
100 × 5 0.15846 0.09721 0.02767 0.03839
100 × 8 0.14235 0.09122 0.01025 0.01173
100 × 10 0.11993 0.09412 0.00646 0.00858

Mean 0.10781 0.06424 0.01358 0.01726

Table 12. IGD-metric for SDABC and MDABC.

Problem
MDABC SDABC

AVG SD AVG SD

20 × 3 0.04353 0.03879 0.00829 0.01226
20 × 5 0.02825 0.02566 0.01355 0.01575
20 × 8 0.05191 0.02136 0.00551 0.00716

20 × 10 0.05523 0.03113 0.01197 0.01563
40 × 3 0.03621 0.02506 0.01228 0.01483
40 × 5 0.04554 0.03478 0.02105 0.02939
40 × 8 0.06442 0.05616 0.03238 0.04255

40 × 10 0.06916 0.04299 0.02161 0.02047
60 × 3 0.04003 0.02879 0.02216 0.02420
60 × 5 0.04527 0.02730 0.02194 0.02262
60 × 8 0.06443 0.04546 0.01398 0.02034

60 × 10 0.04712 0.03247 0.01629 0.01596
80 × 3 0.07120 0.06431 0.02195 0.03317
80 × 5 0.13071 0.06473 0.00966 0.01330
80 × 8 0.08625 0.04796 0.00926 0.01318

80 × 10 0.05353 0.03556 0.02344 0.02623
100 × 3 0.06290 0.05063 0.02225 0.02473
100 × 5 0.06074 0.03328 0.02962 0.02276
100 × 8 0.06374 0.05757 0.02619 0.04760
100 × 10 0.06049 0.04981 0.02627 0.04505

Mean 0.05903 0.04069 0.01848 0.02336
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Table 13. IGD-metric for SDABC and NSGAII.

Problem
NSGAII SDABC

AVG SD AVG SD

20 × 3 0.11426 0.05009 0.00008 0.00028
20 × 5 0.12345 0.03838 0.00003 0.00013
20 × 8 0.12013 0.04920 0.00024 0.00098

20 × 10 0.07980 0.04905 0.01939 0.03984
40 × 3 0.18873 0.09539 0.00145 0.00633
40 × 5 0.14942 0.08224 0.00299 0.00774
40 × 8 0.15783 0.08214 0.00319 0.01391

40 × 10 0.16789 0.09567 0.00303 0.00927
60 × 3 0.19377 0.08821 0.00019 0.00082
60 × 5 0.20634 0.10966 0.00194 0.00843
60 × 8 0.23376 0.13245 0.00425 0.00973

60 × 10 0.19724 0.10722 0.00435 0.00995
80 × 3 0.21405 0.10015 0.00240 0.00795
80 × 5 0.22440 0.11524 0.00139 0.00267
80 × 8 0.25470 0.16455 0.01070 0.01762

80 × 10 0.20225 0.16029 0.03841 0.05594
100 × 3 0.22540 0.12751 0.00505 0.01453
100 × 5 0.19644 0.10497 0.00318 0.00710
100 × 8 0.19358 0.16121 0.01789 0.02596
100 × 10 0.26764 0.19026 0.01394 0.03123

Mean 0.18555 0.10519 0.00670 0.01352
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